source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): moment1 = self.moment1 delays, response = self.delay_response_series return statstools.calc_mean_time_deviation(delays, response, moment1)
moment2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n moment1 = self.moment1\n delays, response = self.delay_response_series\n return statstools.calc_mean_time_deviation(delays, response, moment1)\n", "role": "user" }, { "content": "moment2", "role": "assistant" } ]
def x(self): self.a = self.x / (2.0 * self.d ** 0.5) self.b = self.u / (2.0 * self.d ** 0.5)
calc_secondary_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.a = self.x / (2.0 * self.d ** 0.5)\n self.b = self.u / (2.0 * self.d ** 0.5)\n", "role": "user" }, { "content": "calc_secondary_parameters", "role": "assistant" } ]
def x(self): self.c = 1.0 / (self.k * special.gamma(self.n))
calc_secondary_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.c = 1.0 / (self.k * special.gamma(self.n))\n", "role": "user" }, { "content": "calc_secondary_parameters", "role": "assistant" } ]
def x(self, lower=None, upper=None): pwmax = self.subseqs.seqs.model.parameters.control.pwmax waes = self.subseqs.waes if lower is None: lower = numpy.clip(waes / pwmax, 0.0, numpy.inf) lower[numpy.isnan(lower)] = 0.0 lland_sequences.State1DSequence.trim(self, lower, upper)
trim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lower=None, upper=None):\n pwmax = self.subseqs.seqs.model.parameters.control.pwmax\n waes = self.subseqs.waes\n if lower is None:\n lower = numpy.clip(waes / pwmax, 0.0, numpy.inf)\n lower[numpy.isnan(lower)] = 0.0\n lland_sequences.State1DSequence.trim(self, lower, upper)\n", "role": "user" }, { "content": "trim", "role": "assistant" } ]
def x(self, lower=None, upper=None): pwmax = self.subseqs.seqs.model.parameters.control.pwmax wats = self.subseqs.wats if upper is None: upper = pwmax * wats lland_sequences.State1DSequence.trim(self, lower, upper)
trim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lower=None, upper=None):\n pwmax = self.subseqs.seqs.model.parameters.control.pwmax\n wats = self.subseqs.wats\n if upper is None:\n upper = pwmax * wats\n lland_sequences.State1DSequence.trim(self, lower, upper)\n", "role": "user" }, { "content": "trim", "role": "assistant" } ]
def x(self, lower=None, upper=None): if upper is None: upper = self.subseqs.seqs.model.parameters.control.nfk lland_sequences.State1DSequence.trim(self, lower, upper)
trim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lower=None, upper=None):\n if upper is None:\n upper = self.subseqs.seqs.model.parameters.control.nfk\n lland_sequences.State1DSequence.trim(self, lower, upper)\n", "role": "user" }, { "content": "trim", "role": "assistant" } ]
def x(self, request, pk): location = self.get_object() present_prefixes = [x.split('-')[0] for x in request.POST.keys()] day_forms = OrderedDict() for day_no, day_name in WEEKDAYS: for slot_no in (1, 2): prefix = self.form_prefix(day_no, slot_no) if prefix not in present_prefixes: continue day_forms[prefix] = day_no, Slot(request.POST, prefix=prefix) if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]): OpeningHours.objects.filter(company=location).delete() for prefix, day_form in day_forms.items(): day, form = day_form opens, shuts = [str_to_time(form.cleaned_data[x]) for x in ( 'opens', 'shuts')] if opens != shuts: OpeningHours(from_hour=opens, to_hour=shuts, company= location, weekday=day).save() return redirect(request.path_info)
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, pk):\n location = self.get_object()\n present_prefixes = [x.split('-')[0] for x in request.POST.keys()]\n day_forms = OrderedDict()\n for day_no, day_name in WEEKDAYS:\n for slot_no in (1, 2):\n prefix = self.form_prefix(day_no, slot_no)\n if prefix not in present_prefixes:\n continue\n day_forms[prefix] = day_no, Slot(request.POST, prefix=prefix)\n if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]):\n OpeningHours.objects.filter(company=location).delete()\n for prefix, day_form in day_forms.items():\n day, form = day_form\n opens, shuts = [str_to_time(form.cleaned_data[x]) for x in (\n 'opens', 'shuts')]\n if opens != shuts:\n OpeningHours(from_hour=opens, to_hour=shuts, company=\n location, weekday=day).save()\n return redirect(request.path_info)\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self, request, pk): location = self.get_object() two_sets = False closed = None opening_hours = {} for o in OpeningHours.objects.filter(company=location): opening_hours.setdefault(o.weekday, []).append(o) days = [] for day_no, day_name in WEEKDAYS: if day_no not in opening_hours.keys(): if opening_hours: closed = True ini1, ini2 = [None, None] else: closed = False ini = [{'opens': time_to_str(oh.from_hour), 'shuts': time_to_str(oh.to_hour)} for oh in opening_hours[day_no]] ini += [None] * (2 - len(ini[:2])) ini1, ini2 = ini[:2] if ini2: two_sets = True days.append({'name': day_name, 'number': day_no, 'slot1': Slot( prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2': Slot(prefix=self.form_prefix(day_no, 2), initial=ini2), 'closed': closed}) return render(request, self.template_name, {'days': days, 'two_sets': two_sets, 'location': location})
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, pk):\n location = self.get_object()\n two_sets = False\n closed = None\n opening_hours = {}\n for o in OpeningHours.objects.filter(company=location):\n opening_hours.setdefault(o.weekday, []).append(o)\n days = []\n for day_no, day_name in WEEKDAYS:\n if day_no not in opening_hours.keys():\n if opening_hours:\n closed = True\n ini1, ini2 = [None, None]\n else:\n closed = False\n ini = [{'opens': time_to_str(oh.from_hour), 'shuts':\n time_to_str(oh.to_hour)} for oh in opening_hours[day_no]]\n ini += [None] * (2 - len(ini[:2]))\n ini1, ini2 = ini[:2]\n if ini2:\n two_sets = True\n days.append({'name': day_name, 'number': day_no, 'slot1': Slot(\n prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2':\n Slot(prefix=self.form_prefix(day_no, 2), initial=ini2),\n 'closed': closed})\n return render(request, self.template_name, {'days': days, 'two_sets':\n two_sets, 'location': location})\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new old = self.sequences.states.fastaccess_old for j in range(der.nmbsegments): new.qjoints[j + 1] = der.c1 * new.qjoints[j] + der.c2 * old.qjoints[j ] + der.c3 * old.qjoints[j + 1]
calc_qjoints_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n new = self.sequences.states.fastaccess_new\n old = self.sequences.states.fastaccess_old\n for j in range(der.nmbsegments):\n new.qjoints[j + 1] = der.c1 * new.qjoints[j] + der.c2 * old.qjoints[j\n ] + der.c3 * old.qjoints[j + 1]\n", "role": "user" }, { "content": "calc_qjoints_v1", "role": "assistant" } ]
def x(self): inl = self.sequences.inlets.fastaccess new = self.sequences.states.fastaccess_new new.qjoints[0] = 0.0 for idx in range(inl.len_q): new.qjoints[0] += inl.q[idx][0]
pick_q_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n inl = self.sequences.inlets.fastaccess\n new = self.sequences.states.fastaccess_new\n new.qjoints[0] = 0.0\n for idx in range(inl.len_q):\n new.qjoints[0] += inl.q[idx][0]\n", "role": "user" }, { "content": "pick_q_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new out = self.sequences.outlets.fastaccess out.q[0] += new.qjoints[der.nmbsegments]
pass_q_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n new = self.sequences.states.fastaccess_new\n out = self.sequences.outlets.fastaccess\n out.q[0] += new.qjoints[der.nmbsegments]\n", "role": "user" }, { "content": "pass_q_v1", "role": "assistant" } ]
def x(data=None): import locale enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720' ] code = locale.getpreferredencoding(False) if data is None: return code if code.lower() not in enc_list: enc_list.insert(0, code.lower()) for c in enc_list: try: for line in data: line.decode(c) except (UnicodeDecodeError, UnicodeError, AttributeError): continue return c print('Encoding not detected. Please pass encoding value manually')
detect_encoding
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data=None):\n import locale\n enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720'\n ]\n code = locale.getpreferredencoding(False)\n if data is None:\n return code\n if code.lower() not in enc_list:\n enc_list.insert(0, code.lower())\n for c in enc_list:\n try:\n for line in data:\n line.decode(c)\n except (UnicodeDecodeError, UnicodeError, AttributeError):\n continue\n return c\n print('Encoding not detected. Please pass encoding value manually')\n", "role": "user" }, { "content": "detect_encoding", "role": "assistant" } ]
def x(timestep=None): if timestep is not None: parametertools.Parameter.parameterstep(timestep) namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: model = namespace['Model']() namespace['model'] = model if hydpy.pub.options.usecython and 'cythonizer' in namespace: cythonizer = namespace['cythonizer'] namespace['cythonmodule'] = cythonizer.cymodule model.cymodel = cythonizer.cymodule.Model() namespace['cymodel'] = model.cymodel model.cymodel.parameters = cythonizer.cymodule.Parameters() model.cymodel.sequences = cythonizer.cymodule.Sequences() for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cythonizer.cymodule, numpars_name): numpars_new = getattr(cythonizer.cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for name_numpar, numpar in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(model.cymodel, numpars_name.lower(), numpars_new) for name in dir(model.cymodel): if not name.startswith('_') and hasattr(model, name): setattr(model, name, getattr(model.cymodel, name)) if 'Parameters' not in namespace: namespace['Parameters'] = parametertools.Parameters model.parameters = namespace['Parameters'](namespace) if 'Sequences' not in namespace: namespace['Sequences'] = sequencetools.Sequences model.sequences = namespace['Sequences'](**namespace) namespace['parameters'] = model.parameters for pars in model.parameters: namespace[pars.name] = pars namespace['sequences'] = model.sequences for seqs in model.sequences: namespace[seqs.name] = seqs if 'Masks' in namespace: model.masks = namespace['Masks'](model) namespace['masks'] = model.masks try: namespace.update(namespace['CONSTANTS']) except KeyError: pass focus = namespace.get('focus') for par in model.parameters.control: try: if focus is None or par is focus: namespace[par.name] = par else: namespace[par.name] = lambda *args, **kwargs: None except AttributeError: pass
parameterstep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timestep=None):\n if timestep is not None:\n parametertools.Parameter.parameterstep(timestep)\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is None:\n model = namespace['Model']()\n namespace['model'] = model\n if hydpy.pub.options.usecython and 'cythonizer' in namespace:\n cythonizer = namespace['cythonizer']\n namespace['cythonmodule'] = cythonizer.cymodule\n model.cymodel = cythonizer.cymodule.Model()\n namespace['cymodel'] = model.cymodel\n model.cymodel.parameters = cythonizer.cymodule.Parameters()\n model.cymodel.sequences = cythonizer.cymodule.Sequences()\n for numpars_name in ('NumConsts', 'NumVars'):\n if hasattr(cythonizer.cymodule, numpars_name):\n numpars_new = getattr(cythonizer.cymodule, numpars_name)()\n numpars_old = getattr(model, numpars_name.lower())\n for name_numpar, numpar in vars(numpars_old).items():\n setattr(numpars_new, name_numpar, numpar)\n setattr(model.cymodel, numpars_name.lower(), numpars_new)\n for name in dir(model.cymodel):\n if not name.startswith('_') and hasattr(model, name):\n setattr(model, name, getattr(model.cymodel, name))\n if 'Parameters' not in namespace:\n namespace['Parameters'] = parametertools.Parameters\n model.parameters = namespace['Parameters'](namespace)\n if 'Sequences' not in namespace:\n namespace['Sequences'] = sequencetools.Sequences\n model.sequences = namespace['Sequences'](**namespace)\n namespace['parameters'] = model.parameters\n for pars in model.parameters:\n namespace[pars.name] = pars\n namespace['sequences'] = model.sequences\n for seqs in model.sequences:\n namespace[seqs.name] = seqs\n if 'Masks' in namespace:\n model.masks = namespace['Masks'](model)\n namespace['masks'] = model.masks\n try:\n namespace.update(namespace['CONSTANTS'])\n except KeyError:\n pass\n focus = namespace.get('focus')\n for par in model.parameters.control:\n try:\n if focus is None or par is focus:\n namespace[par.name] = par\n else:\n namespace[par.name] = lambda *args, **kwargs: None\n except AttributeError:\n pass\n", "role": "user" }, { "content": "parameterstep", "role": "assistant" } ]
def x(): namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is not None: for subpars in model.parameters: for par in subpars: namespace.pop(par.name, None) namespace.pop(objecttools.classname(par), None) namespace.pop(subpars.name, None) namespace.pop(objecttools.classname(subpars), None) for subseqs in model.sequences: for seq in subseqs: namespace.pop(seq.name, None) namespace.pop(objecttools.classname(seq), None) namespace.pop(subseqs.name, None) namespace.pop(objecttools.classname(subseqs), None) for name in ('parameters', 'sequences', 'masks', 'model', 'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer', 'cymodel', 'cythonmodule'): namespace.pop(name, None) for key in list(namespace.keys()): try: if namespace[key].__module__ == model.__module__: del namespace[key] except AttributeError: pass
reverse_model_wildcard_import
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is not None:\n for subpars in model.parameters:\n for par in subpars:\n namespace.pop(par.name, None)\n namespace.pop(objecttools.classname(par), None)\n namespace.pop(subpars.name, None)\n namespace.pop(objecttools.classname(subpars), None)\n for subseqs in model.sequences:\n for seq in subseqs:\n namespace.pop(seq.name, None)\n namespace.pop(objecttools.classname(seq), None)\n namespace.pop(subseqs.name, None)\n namespace.pop(objecttools.classname(subseqs), None)\n for name in ('parameters', 'sequences', 'masks', 'model',\n 'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer',\n 'cymodel', 'cythonmodule'):\n namespace.pop(name, None)\n for key in list(namespace.keys()):\n try:\n if namespace[key].__module__ == model.__module__:\n del namespace[key]\n except AttributeError:\n pass\n", "role": "user" }, { "content": "reverse_model_wildcard_import", "role": "assistant" } ]
def x(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg=None ): if timestep is not None: parametertools.Parameter.parameterstep(timetools.Period(timestep)) try: model = module.Model() except AttributeError: module = importlib.import_module(f'hydpy.models.{module}') model = module.Model() if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'): cymodule = module.cythonizer.cymodule cymodel = cymodule.Model() cymodel.parameters = cymodule.Parameters() cymodel.sequences = cymodule.Sequences() model.cymodel = cymodel for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cymodule, numpars_name): numpars_new = getattr(cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for name_numpar, numpar in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(cymodel, numpars_name.lower(), numpars_new) for name in dir(cymodel): if not name.startswith('_') and hasattr(model, name): setattr(model, name, getattr(cymodel, name)) dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel} else: dict_ = {} dict_.update(vars(module)) dict_['model'] = model if hasattr(module, 'Parameters'): model.parameters = module.Parameters(dict_) else: model.parameters = parametertools.Parameters(dict_) if hasattr(module, 'Sequences'): model.sequences = module.Sequences(**dict_) else: model.sequences = sequencetools.Sequences(**dict_) if hasattr(module, 'Masks'): model.masks = module.Masks(model) return model
prepare_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg=None\n ):\n if timestep is not None:\n parametertools.Parameter.parameterstep(timetools.Period(timestep))\n try:\n model = module.Model()\n except AttributeError:\n module = importlib.import_module(f'hydpy.models.{module}')\n model = module.Model()\n if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'):\n cymodule = module.cythonizer.cymodule\n cymodel = cymodule.Model()\n cymodel.parameters = cymodule.Parameters()\n cymodel.sequences = cymodule.Sequences()\n model.cymodel = cymodel\n for numpars_name in ('NumConsts', 'NumVars'):\n if hasattr(cymodule, numpars_name):\n numpars_new = getattr(cymodule, numpars_name)()\n numpars_old = getattr(model, numpars_name.lower())\n for name_numpar, numpar in vars(numpars_old).items():\n setattr(numpars_new, name_numpar, numpar)\n setattr(cymodel, numpars_name.lower(), numpars_new)\n for name in dir(cymodel):\n if not name.startswith('_') and hasattr(model, name):\n setattr(model, name, getattr(cymodel, name))\n dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel}\n else:\n dict_ = {}\n dict_.update(vars(module))\n dict_['model'] = model\n if hasattr(module, 'Parameters'):\n model.parameters = module.Parameters(dict_)\n else:\n model.parameters = parametertools.Parameters(dict_)\n if hasattr(module, 'Sequences'):\n model.sequences = module.Sequences(**dict_)\n else:\n model.sequences = sequencetools.Sequences(**dict_)\n if hasattr(module, 'Masks'):\n model.masks = module.Masks(model)\n return model\n", "role": "user" }, { "content": "prepare_model", "role": "assistant" } ]
def x(timestep): if hydpy.pub.options.warnsimulationstep: warnings.warn( 'Note that the applied function `simulationstep` is intended for testing purposes only. When doing a HydPy simulation, parameter values are initialised based on the actual simulation time step as defined under `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored.' ) parametertools.Parameter.simulationstep(timestep)
simulationstep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timestep):\n if hydpy.pub.options.warnsimulationstep:\n warnings.warn(\n 'Note that the applied function `simulationstep` is intended for testing purposes only. When doing a HydPy simulation, parameter values are initialised based on the actual simulation time step as defined under `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored.'\n )\n parametertools.Parameter.simulationstep(timestep)\n", "role": "user" }, { "content": "simulationstep", "role": "assistant" } ]
def x(controldir='default', projectdir=None, controlfile=None): namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: if not controlfile: controlfile = os.path.split(namespace['__file__'])[-1] if projectdir is None: projectdir = os.path.split(os.path.split(os.path.split(os. getcwd())[0])[0])[-1] dirpath = os.path.abspath(os.path.join('..', '..', '..', projectdir, 'control', controldir)) class CM(filetools.ControlManager): currentpath = dirpath model = CM().load_file(filename=controlfile)['model'] model.parameters.update() namespace['model'] = model for name in ('states', 'logs'): subseqs = getattr(model.sequences, name, None) if subseqs is not None: for seq in subseqs: namespace[seq.name] = seq
controlcheck
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(controldir='default', projectdir=None, controlfile=None):\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is None:\n if not controlfile:\n controlfile = os.path.split(namespace['__file__'])[-1]\n if projectdir is None:\n projectdir = os.path.split(os.path.split(os.path.split(os.\n getcwd())[0])[0])[-1]\n dirpath = os.path.abspath(os.path.join('..', '..', '..', projectdir,\n 'control', controldir))\n\n\n class CM(filetools.ControlManager):\n currentpath = dirpath\n model = CM().load_file(filename=controlfile)['model']\n model.parameters.update()\n namespace['model'] = model\n for name in ('states', 'logs'):\n subseqs = getattr(model.sequences, name, None)\n if subseqs is not None:\n for seq in subseqs:\n namespace[seq.name] = seq\n", "role": "user" }, { "content": "controlcheck", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control temp = con.zonearea.values.copy() temp[con.zonetype.values == GLACIER] = 0.0 temp[con.zonetype.values == ILAKE] = 0.0 self(numpy.sum(temp) / con.area)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n temp = con.zonearea.values.copy()\n temp[con.zonetype.values == GLACIER] = 0.0\n temp[con.zonetype.values == ILAKE] = 0.0\n self(numpy.sum(temp) / con.area)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.tt + con.dttm)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.tt + con.dttm)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): maxbaz = self.subpars.pars.control.maxbaz.value quh = self.subpars.pars.model.sequences.logs.quh if maxbaz <= 1.0: self.shape = 1 self(1.0) quh.shape = 1 else: full = maxbaz if full % 1.0 < 0.0001: full //= 1.0 full_f = int(numpy.floor(full)) full_c = int(numpy.ceil(full)) half = full / 2.0 half_f = int(numpy.floor(half)) half_c = int(numpy.ceil(half)) full_2 = full ** 2.0 self.shape = full_c uh = self.values quh.shape = full_c points = numpy.arange(1, half_f + 1) uh[:half_f] = (2.0 * points - 1.0) / (2.0 * full_2) if numpy.mod(half, 1.0) != 0.0: uh[half_f] = (half_c - half) / full + (2 * half ** 2.0 - half_f ** 2.0 - half_c ** 2.0) / (2.0 * full_2) points = numpy.arange(half_c + 1.0, full_f + 1.0) uh[half_c:full_f] = 1.0 / full - (2.0 * points - 1.0) / (2.0 * full_2) if numpy.mod(full, 1.0) != 0.0: uh[full_f] = (full - full_f) / full - (full_2 - full_f ** 2.0) / ( 2.0 * full_2) self(uh / numpy.sum(uh))
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n maxbaz = self.subpars.pars.control.maxbaz.value\n quh = self.subpars.pars.model.sequences.logs.quh\n if maxbaz <= 1.0:\n self.shape = 1\n self(1.0)\n quh.shape = 1\n else:\n full = maxbaz\n if full % 1.0 < 0.0001:\n full //= 1.0\n full_f = int(numpy.floor(full))\n full_c = int(numpy.ceil(full))\n half = full / 2.0\n half_f = int(numpy.floor(half))\n half_c = int(numpy.ceil(half))\n full_2 = full ** 2.0\n self.shape = full_c\n uh = self.values\n quh.shape = full_c\n points = numpy.arange(1, half_f + 1)\n uh[:half_f] = (2.0 * points - 1.0) / (2.0 * full_2)\n if numpy.mod(half, 1.0) != 0.0:\n uh[half_f] = (half_c - half) / full + (2 * half ** 2.0 - half_f **\n 2.0 - half_c ** 2.0) / (2.0 * full_2)\n points = numpy.arange(half_c + 1.0, full_f + 1.0)\n uh[half_c:full_f] = 1.0 / full - (2.0 * points - 1.0) / (2.0 * full_2)\n if numpy.mod(full, 1.0) != 0.0:\n uh[full_f] = (full - full_f) / full - (full_2 - full_f ** 2.0) / (\n 2.0 * full_2)\n self(uh / numpy.sum(uh))\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): self(self.subpars.pars.control.area * 1000.0 / self.subpars.qfactor. simulationstep.seconds)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self(self.subpars.pars.control.area * 1000.0 / self.subpars.qfactor.\n simulationstep.seconds)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self) ->Tuple[int, ...]: return tuple(numpy.asarray(self._cann.nmb_neurons))
nmb_neurons
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, ...]:\n return tuple(numpy.asarray(self._cann.nmb_neurons))\n", "role": "user" }, { "content": "nmb_neurons", "role": "assistant" } ]
def x(self) ->Tuple[int, int, int]: if self.nmb_layers > 1: nmb_neurons = self.nmb_neurons return self.nmb_layers - 1, max(nmb_neurons[:-1]), max(nmb_neurons[1:]) return 0, 0, 0
shape_weights_hidden
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, int, int]:\n if self.nmb_layers > 1:\n nmb_neurons = self.nmb_neurons\n return self.nmb_layers - 1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])\n return 0, 0, 0\n", "role": "user" }, { "content": "shape_weights_hidden", "role": "assistant" } ]
def x(self) ->int: nmb = 0 for idx_layer in range(self.nmb_layers - 1): nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer + 1] return nmb
nmb_weights_hidden
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->int:\n nmb = 0\n for idx_layer in range(self.nmb_layers - 1):\n nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer + 1]\n return nmb\n", "role": "user" }, { "content": "nmb_weights_hidden", "role": "assistant" } ]
def x(self) ->None: if not self.__protectedproperties.allready(self): raise RuntimeError( 'The shape of the the artificial neural network parameter %s has not been defined so far.' % objecttools.elementphrase(self))
verify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n if not self.__protectedproperties.allready(self):\n raise RuntimeError(\n 'The shape of the the artificial neural network parameter %s has not been defined so far.'\n % objecttools.elementphrase(self))\n", "role": "user" }, { "content": "verify", "role": "assistant" } ]
def x(self, prefix) ->str: prefix = '%s%s(' % (prefix, self.name) blanks = len(prefix) * ' ' lines = [objecttools.assignrepr_value(self.nmb_inputs, '%snmb_inputs=' % prefix) + ',', objecttools.assignrepr_tuple(self.nmb_neurons, '%snmb_neurons=' % blanks) + ',', objecttools.assignrepr_value(self .nmb_outputs, '%snmb_outputs=' % blanks) + ',', objecttools. assignrepr_list2(self.weights_input, '%sweights_input=' % blanks) + ',' ] if self.nmb_layers > 1: lines.append(objecttools.assignrepr_list3(self.weights_hidden, '%sweights_hidden=' % blanks) + ',') lines.append(objecttools.assignrepr_list2(self.weights_output, '%sweights_output=' % blanks) + ',') lines.append(objecttools.assignrepr_list2(self.intercepts_hidden, '%sintercepts_hidden=' % blanks) + ',') lines.append(objecttools.assignrepr_list(self.intercepts_output, '%sintercepts_output=' % blanks) + ')') return '\n'.join(lines)
assignrepr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prefix) ->str:\n prefix = '%s%s(' % (prefix, self.name)\n blanks = len(prefix) * ' '\n lines = [objecttools.assignrepr_value(self.nmb_inputs, '%snmb_inputs=' %\n prefix) + ',', objecttools.assignrepr_tuple(self.nmb_neurons, \n '%snmb_neurons=' % blanks) + ',', objecttools.assignrepr_value(self\n .nmb_outputs, '%snmb_outputs=' % blanks) + ',', objecttools.\n assignrepr_list2(self.weights_input, '%sweights_input=' % blanks) + ','\n ]\n if self.nmb_layers > 1:\n lines.append(objecttools.assignrepr_list3(self.weights_hidden, \n '%sweights_hidden=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list2(self.weights_output, \n '%sweights_output=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list2(self.intercepts_hidden, \n '%sintercepts_hidden=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list(self.intercepts_output, \n '%sintercepts_output=' % blanks) + ')')\n return '\\n'.join(lines)\n", "role": "user" }, { "content": "assignrepr", "role": "assistant" } ]
def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs ) ->None: xs_ = numpy.linspace(xmin, xmax, points) ys_ = numpy.zeros(xs_.shape) for idx, x__ in enumerate(xs_): self.inputs[idx_input] = x__ self.process_actual_input() ys_[idx] = self.outputs[idx_output] pyplot.plot(xs_, ys_, **kwargs)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs\n ) ->None:\n xs_ = numpy.linspace(xmin, xmax, points)\n ys_ = numpy.zeros(xs_.shape)\n for idx, x__ in enumerate(xs_):\n self.inputs[idx_input] = x__\n self.process_actual_input()\n ys_[idx] = self.outputs[idx_output]\n pyplot.plot(xs_, ys_, **kwargs)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self) ->None: if self._do_refresh: if self.anns: self.__sann = annutils.SeasonalANN(self.anns) setattr(self.fastaccess, self.name, self._sann) self._set_shape((None, self._sann.nmb_anns)) if self._sann.nmb_anns > 1: self._interp() else: self._sann.ratios[:, 0] = 1.0 self.verify() else: self.__sann = None
refresh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n if self._do_refresh:\n if self.anns:\n self.__sann = annutils.SeasonalANN(self.anns)\n setattr(self.fastaccess, self.name, self._sann)\n self._set_shape((None, self._sann.nmb_anns))\n if self._sann.nmb_anns > 1:\n self._interp()\n else:\n self._sann.ratios[:, 0] = 1.0\n self.verify()\n else:\n self.__sann = None\n", "role": "user" }, { "content": "refresh", "role": "assistant" } ]
def x(self) ->None: if not self.anns: self._toy2ann.clear() raise RuntimeError( 'Seasonal artificial neural network collections need to handle at least one "normal" single neural network, but for the seasonal neural network `%s` of element `%s` none has been defined so far.' % (self.name, objecttools.devicename(self))) for toy, ann_ in self: ann_.verify() if (self.nmb_inputs != ann_.nmb_inputs or self.nmb_outputs != ann_. nmb_outputs): self._toy2ann.clear() raise RuntimeError( 'The number of input and output values of all neural networks contained by a seasonal neural network collection must be identical and be known by the containing object. But the seasonal neural network collection `%s` of element `%s` assumes `%d` input and `%d` output values, while the network corresponding to the time of year `%s` requires `%d` input and `%d` output values.' % (self.name, objecttools.devicename(self), self. nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_. nmb_outputs))
verify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n if not self.anns:\n self._toy2ann.clear()\n raise RuntimeError(\n 'Seasonal artificial neural network collections need to handle at least one \"normal\" single neural network, but for the seasonal neural network `%s` of element `%s` none has been defined so far.'\n % (self.name, objecttools.devicename(self)))\n for toy, ann_ in self:\n ann_.verify()\n if (self.nmb_inputs != ann_.nmb_inputs or self.nmb_outputs != ann_.\n nmb_outputs):\n self._toy2ann.clear()\n raise RuntimeError(\n 'The number of input and output values of all neural networks contained by a seasonal neural network collection must be identical and be known by the containing object. But the seasonal neural network collection `%s` of element `%s` assumes `%d` input and `%d` output values, while the network corresponding to the time of year `%s` requires `%d` input and `%d` output values.'\n % (self.name, objecttools.devicename(self), self.\n nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_.\n nmb_outputs))\n", "role": "user" }, { "content": "verify", "role": "assistant" } ]
def x(self) ->Tuple[int, ...]: return tuple(int(sub) for sub in self.ratios.shape)
shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, ...]:\n return tuple(int(sub) for sub in self.ratios.shape)\n", "role": "user" }, { "content": "shape", "role": "assistant" } ]
def x(self, shape): try: shape = int(shape), except TypeError: pass shp = list(shape) shp[0] = timetools.Period('366d') / self.simulationstep shp[0] = int(numpy.ceil(round(shp[0], 10))) getattr(self.fastaccess, self.name).ratios = numpy.zeros(shp, dtype=float)
set_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape):\n try:\n shape = int(shape),\n except TypeError:\n pass\n shp = list(shape)\n shp[0] = timetools.Period('366d') / self.simulationstep\n shp[0] = int(numpy.ceil(round(shp[0], 10)))\n getattr(self.fastaccess, self.name).ratios = numpy.zeros(shp, dtype=float)\n", "role": "user" }, { "content": "set_shape", "role": "assistant" } ]
def x(self) ->Tuple[timetools.TOY, ...]: return tuple(toy for toy, _ in self)
toys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[timetools.TOY, ...]:\n return tuple(toy for toy, _ in self)\n", "role": "user" }, { "content": "toys", "role": "assistant" } ]
def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs ) ->None: for toy, ann_ in self: ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output, points=points, label=str(toy), **kwargs) pyplot.legend()
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs\n ) ->None:\n for toy, ann_ in self:\n ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output,\n points=points, label=str(toy), **kwargs)\n pyplot.legend()\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self): if self.subgroup is None: variable = self.variable else: variable = f'{self.subgroup}.{self.variable}' if self.series: variable = f'{variable}.series' return variable
specstring
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.subgroup is None:\n variable = self.variable\n else:\n variable = f'{self.subgroup}.{self.variable}'\n if self.series:\n variable = f'{variable}.series'\n return variable\n", "role": "user" }, { "content": "specstring", "role": "assistant" } ]
def x(self, selections) ->None: self.insert_variables(self.device2target, self.targetspecs, selections)
collect_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selections) ->None:\n self.insert_variables(self.device2target, self.targetspecs, selections)\n", "role": "user" }, { "content": "collect_variables", "role": "assistant" } ]
def x(self, device2variable, exchangespec, selections) ->None: if self.targetspecs.master in ('node', 'nodes'): for node in selections.nodes: variable = self._query_nodevariable(node, exchangespec) device2variable[node] = variable else: for element in self._iter_relevantelements(selections): variable = self._query_elementvariable(element, exchangespec) device2variable[element] = variable
insert_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, device2variable, exchangespec, selections) ->None:\n if self.targetspecs.master in ('node', 'nodes'):\n for node in selections.nodes:\n variable = self._query_nodevariable(node, exchangespec)\n device2variable[node] = variable\n else:\n for element in self._iter_relevantelements(selections):\n variable = self._query_elementvariable(element, exchangespec)\n device2variable[element] = variable\n", "role": "user" }, { "content": "insert_variables", "role": "assistant" } ]
def x(self, variable, value) ->None: try: variable(value) except BaseException: objecttools.augment_excmessage( f'When trying to update a target variable of {objecttools.classname(self)} `{self.name}` with the value(s) `{value}`' )
update_variable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, variable, value) ->None:\n try:\n variable(value)\n except BaseException:\n objecttools.augment_excmessage(\n f'When trying to update a target variable of {objecttools.classname(self)} `{self.name}` with the value(s) `{value}`'\n )\n", "role": "user" }, { "content": "update_variable", "role": "assistant" } ]
def x(self) ->None: value = self.value for variable in self.device2target.values(): self.update_variable(variable, value)
update_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n value = self.value\n for variable in self.device2target.values():\n self.update_variable(variable, value)\n", "role": "user" }, { "content": "update_variables", "role": "assistant" } ]
def x(self, selections) ->None: super().collect_variables(selections) self.insert_variables(self.device2base, self.basespecs, selections)
collect_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selections) ->None:\n super().collect_variables(selections)\n self.insert_variables(self.device2base, self.basespecs, selections)\n", "role": "user" }, { "content": "collect_variables", "role": "assistant" } ]
def x(self) ->None: value = self.value for device, target in self.device2target.items(): base = self.device2base[device] try: result = base.value + value except BaseException: raise objecttools.augment_excmessage( f'When trying to add the value(s) `{value}` of AddItem `{self.name}` and the value(s) `{base.value}` of variable {objecttools.devicephrase(base)}' ) self.update_variable(target, result)
update_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n value = self.value\n for device, target in self.device2target.items():\n base = self.device2base[device]\n try:\n result = base.value + value\n except BaseException:\n raise objecttools.augment_excmessage(\n f'When trying to add the value(s) `{value}` of AddItem `{self.name}` and the value(s) `{base.value}` of variable {objecttools.devicephrase(base)}'\n )\n self.update_variable(target, result)\n", "role": "user" }, { "content": "update_variables", "role": "assistant" } ]
def x(self, selections) ->None: super().collect_variables(selections) for device in sorted(self.device2target.keys(), key=lambda x: x.name): self._device2name[device] = f'{device.name}_{self.target}' for target in self.device2target.values(): self.ndim = target.NDIM if self.targetspecs.series: self.ndim += 1 break
collect_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selections) ->None:\n super().collect_variables(selections)\n for device in sorted(self.device2target.keys(), key=lambda x: x.name):\n self._device2name[device] = f'{device.name}_{self.target}'\n for target in self.device2target.values():\n self.ndim = target.NDIM\n if self.targetspecs.series:\n self.ndim += 1\n break\n", "role": "user" }, { "content": "collect_variables", "role": "assistant" } ]
def x(self, idx1=None, idx2=None) ->Iterator[Tuple[str, str]]: for device, name in self._device2name.items(): target = self.device2target[device] if self.targetspecs.series: values = target.series[idx1:idx2] else: values = target.values if self.ndim == 0: values = objecttools.repr_(float(values)) else: values = objecttools.repr_list(values.tolist()) yield name, values
yield_name2value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx1=None, idx2=None) ->Iterator[Tuple[str, str]]:\n for device, name in self._device2name.items():\n target = self.device2target[device]\n if self.targetspecs.series:\n values = target.series[idx1:idx2]\n else:\n values = target.values\n if self.ndim == 0:\n values = objecttools.repr_(float(values))\n else:\n values = objecttools.repr_list(values.tolist())\n yield name, values\n", "role": "user" }, { "content": "yield_name2value", "role": "assistant" } ]
def x(d): if int(d) == utils.get_now().isoweekday(): return _('today') for w in WEEKDAYS: if w[0] == int(d): return w[1]
iso_day_to_weekday
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n if int(d) == utils.get_now().isoweekday():\n return _('today')\n for w in WEEKDAYS:\n if w[0] == int(d):\n return w[1]\n", "role": "user" }, { "content": "iso_day_to_weekday", "role": "assistant" } ]
def x(location=None, attr=None): obj = utils.is_open(location) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
is_open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(location=None, attr=None):\n obj = utils.is_open(location)\n if obj is False:\n return False\n if attr is not None:\n return getattr(obj, attr)\n return obj\n", "role": "user" }, { "content": "is_open", "role": "assistant" } ]
def x(location=None, attr=None): obj = utils.is_open(location, now=datetime.datetime.now()) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
is_open_now
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(location=None, attr=None):\n obj = utils.is_open(location, now=datetime.datetime.now())\n if obj is False:\n return False\n if attr is not None:\n return getattr(obj, attr)\n return obj\n", "role": "user" }, { "content": "is_open_now", "role": "assistant" } ]
def x(location=None, concise=False): template_name = 'openinghours/opening_hours_list.html' days = [] if location: ohrs = OpeningHours.objects.filter(company=location) else: try: Location = utils.get_premises_model() ohrs = Location.objects.first().openinghours_set.all() except AttributeError: raise Exception( 'You must define some opening hours to use the opening hours tags.' ) ohrs.order_by('weekday', 'from_hour') for o in ohrs: days.append({'day_number': o.weekday, 'name': o.get_weekday_display (), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours': '%s%s to %s%s' % (o.from_hour.strftime('%I:%M').lstrip('0'), o. from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M'). lstrip('0'), o.to_hour.strftime('%p').lower())}) open_days = [o.weekday for o in ohrs] for day_number, day_name in WEEKDAYS: if day_number not in open_days: days.append({'day_number': day_number, 'name': day_name, 'hours': 'Closed'}) days = sorted(days, key=lambda k: k['day_number']) if concise: template_name = 'openinghours/opening_hours_list_concise.html' concise_days = [] current_set = {} for day in days: if 'hours' not in current_set.keys(): current_set = {'day_names': [day['name']], 'hours': day[ 'hours']} elif day['hours'] != current_set['hours']: concise_days.append(current_set) current_set = {'day_names': [day['name']], 'hours': day[ 'hours']} else: current_set['day_names'].append(day['name']) concise_days.append(current_set) for day_set in concise_days: if len(day_set['day_names']) > 2: day_set['day_names'] = '%s to %s' % (day_set['day_names'][0 ], day_set['day_names'][-1]) elif len(day_set['day_names']) > 1: day_set['day_names'] = '%s and %s' % (day_set['day_names'][ 0], day_set['day_names'][-1]) else: day_set['day_names'] = '%s' % day_set['day_names'][0] days = concise_days template = get_template(template_name) return template.render({'days': days})
opening_hours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(location=None, concise=False):\n template_name = 'openinghours/opening_hours_list.html'\n days = []\n if location:\n ohrs = OpeningHours.objects.filter(company=location)\n else:\n try:\n Location = utils.get_premises_model()\n ohrs = Location.objects.first().openinghours_set.all()\n except AttributeError:\n raise Exception(\n 'You must define some opening hours to use the opening hours tags.'\n )\n ohrs.order_by('weekday', 'from_hour')\n for o in ohrs:\n days.append({'day_number': o.weekday, 'name': o.get_weekday_display\n (), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours': \n '%s%s to %s%s' % (o.from_hour.strftime('%I:%M').lstrip('0'), o.\n from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M').\n lstrip('0'), o.to_hour.strftime('%p').lower())})\n open_days = [o.weekday for o in ohrs]\n for day_number, day_name in WEEKDAYS:\n if day_number not in open_days:\n days.append({'day_number': day_number, 'name': day_name,\n 'hours': 'Closed'})\n days = sorted(days, key=lambda k: k['day_number'])\n if concise:\n template_name = 'openinghours/opening_hours_list_concise.html'\n concise_days = []\n current_set = {}\n for day in days:\n if 'hours' not in current_set.keys():\n current_set = {'day_names': [day['name']], 'hours': day[\n 'hours']}\n elif day['hours'] != current_set['hours']:\n concise_days.append(current_set)\n current_set = {'day_names': [day['name']], 'hours': day[\n 'hours']}\n else:\n current_set['day_names'].append(day['name'])\n concise_days.append(current_set)\n for day_set in concise_days:\n if len(day_set['day_names']) > 2:\n day_set['day_names'] = '%s to %s' % (day_set['day_names'][0\n ], day_set['day_names'][-1])\n elif len(day_set['day_names']) > 1:\n day_set['day_names'] = '%s and %s' % (day_set['day_names'][\n 0], day_set['day_names'][-1])\n else:\n day_set['day_names'] = '%s' % day_set['day_names'][0]\n days = concise_days\n template = get_template(template_name)\n return template.render({'days': days})\n", "role": "user" }, { "content": "opening_hours", "role": "assistant" } ]
def x(self): self.prepare_network() self.init_models() self.load_conditions() with hydpy.pub.options.warnmissingobsfile(False): self.prepare_nodeseries() self.prepare_modelseries() self.load_inputseries()
prepare_everything
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.prepare_network()\n self.init_models()\n self.load_conditions()\n with hydpy.pub.options.warnmissingobsfile(False):\n self.prepare_nodeseries()\n self.prepare_modelseries()\n self.load_inputseries()\n", "role": "user" }, { "content": "prepare_everything", "role": "assistant" } ]
def x(self): hydpy.pub.selections = selectiontools.Selections() hydpy.pub.selections += hydpy.pub.networkmanager.load_files() self.update_devices(hydpy.pub.selections.complete)
prepare_network
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n hydpy.pub.selections = selectiontools.Selections()\n hydpy.pub.selections += hydpy.pub.networkmanager.load_files()\n self.update_devices(hydpy.pub.selections.complete)\n", "role": "user" }, { "content": "prepare_network", "role": "assistant" } ]
def x(self, parameterstep=None, simulationstep=None, auxfiler=None): self.elements.save_controls(parameterstep=parameterstep, simulationstep =simulationstep, auxfiler=auxfiler)
save_controls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameterstep=None, simulationstep=None, auxfiler=None):\n self.elements.save_controls(parameterstep=parameterstep, simulationstep\n =simulationstep, auxfiler=auxfiler)\n", "role": "user" }, { "content": "save_controls", "role": "assistant" } ]
def x(self): print('Number of nodes: %d' % len(self.nodes)) print('Number of elements: %d' % len(self.elements)) print('Number of end nodes: %d' % len(self.endnodes)) print('Number of distinct networks: %d' % len(self.numberofnetworks)) print('Applied node variables: %s' % ', '.join(self.variables))
networkproperties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print('Number of nodes: %d' % len(self.nodes))\n print('Number of elements: %d' % len(self.elements))\n print('Number of end nodes: %d' % len(self.endnodes))\n print('Number of distinct networks: %d' % len(self.numberofnetworks))\n print('Applied node variables: %s' % ', '.join(self.variables))\n", "role": "user" }, { "content": "networkproperties", "role": "assistant" } ]
def x(self): sels1 = selectiontools.Selections() sels2 = selectiontools.Selections() complete = selectiontools.Selection('complete', self.nodes, self.elements) for node in self.endnodes: sel = complete.copy(node.name).select_upstream(node) sels1 += sel sels2 += sel.copy(node.name) for sel1 in sels1: for sel2 in sels2: if sel1.name != sel2.name: sel1 -= sel2 for name in list(sels1.names): if not sels1[name].elements: del sels1[name] return sels1
numberofnetworks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sels1 = selectiontools.Selections()\n sels2 = selectiontools.Selections()\n complete = selectiontools.Selection('complete', self.nodes, self.elements)\n for node in self.endnodes:\n sel = complete.copy(node.name).select_upstream(node)\n sels1 += sel\n sels2 += sel.copy(node.name)\n for sel1 in sels1:\n for sel2 in sels2:\n if sel1.name != sel2.name:\n sel1 -= sel2\n for name in list(sels1.names):\n if not sels1[name].elements:\n del sels1[name]\n return sels1\n", "role": "user" }, { "content": "numberofnetworks", "role": "assistant" } ]
def x(self): endnodes = devicetools.Nodes() for node in self.nodes: for element in node.exits: if element in self.elements and node not in element.receivers: break else: endnodes += node return endnodes
endnodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n endnodes = devicetools.Nodes()\n for node in self.nodes:\n for element in node.exits:\n if element in self.elements and node not in element.receivers:\n break\n else:\n endnodes += node\n return endnodes\n", "role": "user" }, { "content": "endnodes", "role": "assistant" } ]
def x(self): variables = set([]) for node in self.nodes: variables.add(node.variable) return sorted(variables)
variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n variables = set([])\n for node in self.nodes:\n variables.add(node.variable)\n return sorted(variables)\n", "role": "user" }, { "content": "variables", "role": "assistant" } ]
def x(self): return hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate ], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate]
simindices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate\n ], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate]\n", "role": "user" }, { "content": "simindices", "role": "assistant" } ]
def x(self, idx=0): self.elements.open_files(idx=idx) self.nodes.open_files(idx=idx)
open_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx=0):\n self.elements.open_files(idx=idx)\n self.nodes.open_files(idx=idx)\n", "role": "user" }, { "content": "open_files", "role": "assistant" } ]
def x(self, selection=None): if selection is not None: self.nodes = selection.nodes self.elements = selection.elements self._update_deviceorder()
update_devices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selection=None):\n if selection is not None:\n self.nodes = selection.nodes\n self.elements = selection.elements\n self._update_deviceorder()\n", "role": "user" }, { "content": "update_devices", "role": "assistant" } ]
def x(self): funcs = [] for node in self.nodes: if node.deploymode == 'oldsim': funcs.append(node.sequences.fastaccess.load_simdata) elif node.deploymode == 'obs': funcs.append(node.sequences.fastaccess.load_obsdata) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.reset) for device in self.deviceorder: if isinstance(device, devicetools.Element): funcs.append(device.model.doit) for element in self.elements: if element.senders: funcs.append(element.model.update_senders) for element in self.elements: if element.receivers: funcs.append(element.model.update_receivers) for element in self.elements: funcs.append(element.model.save_data) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.sequences.fastaccess.save_simdata) return funcs
methodorder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n funcs = []\n for node in self.nodes:\n if node.deploymode == 'oldsim':\n funcs.append(node.sequences.fastaccess.load_simdata)\n elif node.deploymode == 'obs':\n funcs.append(node.sequences.fastaccess.load_obsdata)\n for node in self.nodes:\n if node.deploymode != 'oldsim':\n funcs.append(node.reset)\n for device in self.deviceorder:\n if isinstance(device, devicetools.Element):\n funcs.append(device.model.doit)\n for element in self.elements:\n if element.senders:\n funcs.append(element.model.update_senders)\n for element in self.elements:\n if element.receivers:\n funcs.append(element.model.update_receivers)\n for element in self.elements:\n funcs.append(element.model.save_data)\n for node in self.nodes:\n if node.deploymode != 'oldsim':\n funcs.append(node.sequences.fastaccess.save_simdata)\n return funcs\n", "role": "user" }, { "content": "methodorder", "role": "assistant" } ]
def x(self): idx_start, idx_end = self.simindices self.open_files(idx_start) methodorder = self.methodorder for idx in printtools.progressbar(range(idx_start, idx_end)): for func in methodorder: func(idx) self.close_files()
doit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n idx_start, idx_end = self.simindices\n self.open_files(idx_start)\n methodorder = self.methodorder\n for idx in printtools.progressbar(range(idx_start, idx_end)):\n for func in methodorder:\n func(idx)\n self.close_files()\n", "role": "user" }, { "content": "doit", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0]
pic_inflow_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n inl = self.sequences.inlets.fastaccess\n flu.inflow = inl.q[0]\n", "role": "user" }, { "content": "pic_inflow_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0] + inl.s[0] + inl.r[0]
pic_inflow_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n inl = self.sequences.inlets.fastaccess\n flu.inflow = inl.q[0] + inl.s[0] + inl.r[0]\n", "role": "user" }, { "content": "pic_inflow_v2", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess rec = self.sequences.receivers.fastaccess flu.totalremotedischarge = rec.q[0]
pic_totalremotedischarge_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n rec = self.sequences.receivers.fastaccess\n flu.totalremotedischarge = rec.q[0]\n", "role": "user" }, { "content": "pic_totalremotedischarge_v1", "role": "assistant" } ]
def x(self): log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.d[0]
pic_loggedrequiredremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedrequiredremoterelease[0] = rec.d[0]\n", "role": "user" }, { "content": "pic_loggedrequiredremoterelease_v1", "role": "assistant" } ]
def x(self): log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.s[0]
pic_loggedrequiredremoterelease_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedrequiredremoterelease[0] = rec.s[0]\n", "role": "user" }, { "content": "pic_loggedrequiredremoterelease_v2", "role": "assistant" } ]
def x(self): log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedallowedremoterelieve[0] = rec.r[0]
pic_loggedallowedremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedallowedremoterelieve[0] = rec.r[0]\n", "role": "user" }, { "content": "pic_loggedallowedremoterelieve_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess for idx in range(con.nmblogentries - 1, 0, -1): log.loggedtotalremotedischarge[idx] = log.loggedtotalremotedischarge[ idx - 1] log.loggedtotalremotedischarge[0] = flu.totalremotedischarge
update_loggedtotalremotedischarge_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(con.nmblogentries - 1, 0, -1):\n log.loggedtotalremotedischarge[idx] = log.loggedtotalremotedischarge[\n idx - 1]\n log.loggedtotalremotedischarge[0] = flu.totalremotedischarge\n", "role": "user" }, { "content": "update_loggedtotalremotedischarge_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess con.watervolume2waterlevel.inputs[0] = new.watervolume con.watervolume2waterlevel.process_actual_input() aid.waterlevel = con.watervolume2waterlevel.outputs[0]
calc_waterlevel_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n new = self.sequences.states.fastaccess_new\n aid = self.sequences.aides.fastaccess\n con.watervolume2waterlevel.inputs[0] = new.watervolume\n con.watervolume2waterlevel.process_actual_input()\n aid.waterlevel = con.watervolume2waterlevel.outputs[0]\n", "role": "user" }, { "content": "calc_waterlevel_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.allowedremoterelieve = con.highestremoterelieve[toy ] * smoothutils.smooth_logistic1(con.waterlevelrelievethreshold[toy ] - aid.waterlevel, der.waterlevelrelievesmoothpar[toy])
calc_allowedremoterelieve_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n toy = der.toy[self.idx_sim]\n flu.allowedremoterelieve = con.highestremoterelieve[toy\n ] * smoothutils.smooth_logistic1(con.waterlevelrelievethreshold[toy\n ] - aid.waterlevel, der.waterlevelrelievesmoothpar[toy])\n", "role": "user" }, { "content": "calc_allowedremoterelieve_v2", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.requiredremotesupply = con.highestremotesupply[toy ] * smoothutils.smooth_logistic1(con.waterlevelsupplythreshold[toy] - aid.waterlevel, der.waterlevelsupplysmoothpar[toy])
calc_requiredremotesupply_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n toy = der.toy[self.idx_sim]\n flu.requiredremotesupply = con.highestremotesupply[toy\n ] * smoothutils.smooth_logistic1(con.waterlevelsupplythreshold[toy] -\n aid.waterlevel, der.waterlevelsupplysmoothpar[toy])\n", "role": "user" }, { "content": "calc_requiredremotesupply_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.naturalremotedischarge = 0.0 for idx in range(con.nmblogentries): flu.naturalremotedischarge += log.loggedtotalremotedischarge[idx ] - log.loggedoutflow[idx] if flu.naturalremotedischarge > 0.0: flu.naturalremotedischarge /= con.nmblogentries else: flu.naturalremotedischarge = 0.0
calc_naturalremotedischarge_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.naturalremotedischarge = 0.0\n for idx in range(con.nmblogentries):\n flu.naturalremotedischarge += log.loggedtotalremotedischarge[idx\n ] - log.loggedoutflow[idx]\n if flu.naturalremotedischarge > 0.0:\n flu.naturalremotedischarge /= con.nmblogentries\n else:\n flu.naturalremotedischarge = 0.0\n", "role": "user" }, { "content": "calc_naturalremotedischarge_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim] ] - flu.naturalremotedischarge, 0.0)
calc_remotedemand_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim]\n ] - flu.naturalremotedischarge, 0.0)\n", "role": "user" }, { "content": "calc_remotedemand_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.remotefailure = 0 for idx in range(con.nmblogentries): flu.remotefailure -= log.loggedtotalremotedischarge[idx] flu.remotefailure /= con.nmblogentries flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]
calc_remotefailure_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.remotefailure = 0\n for idx in range(con.nmblogentries):\n flu.remotefailure -= log.loggedtotalremotedischarge[idx]\n flu.remotefailure /= con.nmblogentries\n flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]\n", "role": "user" }, { "content": "calc_remotefailure_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.requiredremoterelease = flu.remotedemand + con.remotedischargesafety[ der.toy[self.idx_sim]] * smoothutils.smooth_logistic1(flu. remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]])
calc_requiredremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredremoterelease = flu.remotedemand + con.remotedischargesafety[\n der.toy[self.idx_sim]] * smoothutils.smooth_logistic1(flu.\n remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]])\n", "role": "user" }, { "content": "calc_requiredremoterelease_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.requiredremoterelease = log.loggedrequiredremoterelease[0]
calc_requiredremoterelease_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.requiredremoterelease = log.loggedrequiredremoterelease[0]\n", "role": "user" }, { "content": "calc_requiredremoterelease_v2", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]
calc_allowedremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]\n", "role": "user" }, { "content": "calc_allowedremoterelieve_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self. idx_sim]] flu.requiredrelease = flu.requiredrelease + smoothutils.smooth_logistic2( flu.requiredremoterelease - flu.requiredrelease, der. neardischargeminimumsmoothpar2[der.toy[self.idx_sim]])
calc_requiredrelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.\n idx_sim]]\n flu.requiredrelease = flu.requiredrelease + smoothutils.smooth_logistic2(\n flu.requiredremoterelease - flu.requiredrelease, der.\n neardischargeminimumsmoothpar2[der.toy[self.idx_sim]])\n", "role": "user" }, { "content": "calc_requiredrelease_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self. idx_sim]]
calc_requiredrelease_v2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.\n idx_sim]]\n", "role": "user" }, { "content": "calc_requiredrelease_v2", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess con.waterlevel2possibleremoterelieve.inputs[0] = aid.waterlevel con.waterlevel2possibleremoterelieve.process_actual_input() flu.possibleremoterelieve = con.waterlevel2possibleremoterelieve.outputs[0]
calc_possibleremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n con.waterlevel2possibleremoterelieve.inputs[0] = aid.waterlevel\n con.waterlevel2possibleremoterelieve.process_actual_input()\n flu.possibleremoterelieve = con.waterlevel2possibleremoterelieve.outputs[0]\n", "role": "user" }, { "content": "calc_possibleremoterelieve_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess d_smoothpar = con.remoterelievetolerance * flu.allowedremoterelieve flu.actualremoterelieve = smoothutils.smooth_min1(flu. possibleremoterelieve, flu.allowedremoterelieve, d_smoothpar) for dummy in range(5): d_smoothpar /= 5.0 flu.actualremoterelieve = smoothutils.smooth_max1(flu. actualremoterelieve, 0.0, d_smoothpar) d_smoothpar /= 5.0 flu.actualremoterelieve = smoothutils.smooth_min1(flu. actualremoterelieve, flu.possibleremoterelieve, d_smoothpar) flu.actualremoterelieve = min(flu.actualremoterelieve, flu. possibleremoterelieve) flu.actualremoterelieve = min(flu.actualremoterelieve, flu. allowedremoterelieve) flu.actualremoterelieve = max(flu.actualremoterelieve, 0.0)
calc_actualremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n d_smoothpar = con.remoterelievetolerance * flu.allowedremoterelieve\n flu.actualremoterelieve = smoothutils.smooth_min1(flu.\n possibleremoterelieve, flu.allowedremoterelieve, d_smoothpar)\n for dummy in range(5):\n d_smoothpar /= 5.0\n flu.actualremoterelieve = smoothutils.smooth_max1(flu.\n actualremoterelieve, 0.0, d_smoothpar)\n d_smoothpar /= 5.0\n flu.actualremoterelieve = smoothutils.smooth_min1(flu.\n actualremoterelieve, flu.possibleremoterelieve, d_smoothpar)\n flu.actualremoterelieve = min(flu.actualremoterelieve, flu.\n possibleremoterelieve)\n flu.actualremoterelieve = min(flu.actualremoterelieve, flu.\n allowedremoterelieve)\n flu.actualremoterelieve = max(flu.actualremoterelieve, 0.0)\n", "role": "user" }, { "content": "calc_actualremoterelieve_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess if con.restricttargetedrelease: flu.targetedrelease = smoothutils.smooth_logistic1(flu.inflow - con .neardischargeminimumthreshold[der.toy[self.idx_sim]], der. neardischargeminimumsmoothpar1[der.toy[self.idx_sim]]) flu.targetedrelease = flu.targetedrelease * flu.requiredrelease + ( 1.0 - flu.targetedrelease) * flu.inflow else: flu.targetedrelease = flu.requiredrelease
calc_targetedrelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n if con.restricttargetedrelease:\n flu.targetedrelease = smoothutils.smooth_logistic1(flu.inflow - con\n .neardischargeminimumthreshold[der.toy[self.idx_sim]], der.\n neardischargeminimumsmoothpar1[der.toy[self.idx_sim]])\n flu.targetedrelease = flu.targetedrelease * flu.requiredrelease + (\n 1.0 - flu.targetedrelease) * flu.inflow\n else:\n flu.targetedrelease = flu.requiredrelease\n", "role": "user" }, { "content": "calc_targetedrelease_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess flu.actualrelease = flu.targetedrelease * smoothutils.smooth_logistic1( aid.waterlevel - con.waterlevelminimumthreshold, der. waterlevelminimumsmoothpar)
calc_actualrelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n flu.actualrelease = flu.targetedrelease * smoothutils.smooth_logistic1(\n aid.waterlevel - con.waterlevelminimumthreshold, der.\n waterlevelminimumsmoothpar)\n", "role": "user" }, { "content": "calc_actualrelease_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess flu.missingremoterelease = max(flu.requiredremoterelease - flu. actualrelease, 0.0)
calc_missingremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n flu.missingremoterelease = max(flu.requiredremoterelease - flu.\n actualrelease, 0.0)\n", "role": "user" }, { "content": "calc_missingremoterelease_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess flu.actualremoterelease = (flu.requiredremoterelease * smoothutils. smooth_logistic1(aid.waterlevel - con. waterlevelminimumremotethreshold, der.waterlevelminimumremotesmoothpar) )
calc_actualremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n flu.actualremoterelease = (flu.requiredremoterelease * smoothutils.\n smooth_logistic1(aid.waterlevel - con.\n waterlevelminimumremotethreshold, der.waterlevelminimumremotesmoothpar)\n )\n", "role": "user" }, { "content": "calc_actualremoterelease_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess d_smooth = der.highestremotesmoothpar d_highest = con.highestremotedischarge d_value = smoothutils.smooth_min1(flu.actualremoterelieve, d_highest, d_smooth) for dummy in range(5): d_smooth /= 5.0 d_value = smoothutils.smooth_max1(d_value, 0.0, d_smooth) d_smooth /= 5.0 d_value = smoothutils.smooth_min1(d_value, d_highest, d_smooth) d_value = min(d_value, flu.actualremoterelieve) d_value = min(d_value, d_highest) flu.actualremoterelieve = max(d_value, 0.0)
update_actualremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n d_smooth = der.highestremotesmoothpar\n d_highest = con.highestremotedischarge\n d_value = smoothutils.smooth_min1(flu.actualremoterelieve, d_highest,\n d_smooth)\n for dummy in range(5):\n d_smooth /= 5.0\n d_value = smoothutils.smooth_max1(d_value, 0.0, d_smooth)\n d_smooth /= 5.0\n d_value = smoothutils.smooth_min1(d_value, d_highest, d_smooth)\n d_value = min(d_value, flu.actualremoterelieve)\n d_value = min(d_value, d_highest)\n flu.actualremoterelieve = max(d_value, 0.0)\n", "role": "user" }, { "content": "update_actualremoterelieve_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess con.waterlevel2flooddischarge.inputs[0] = aid.waterlevel con.waterlevel2flooddischarge.process_actual_input(der.toy[self.idx_sim]) flu.flooddischarge = con.waterlevel2flooddischarge.outputs[0]
calc_flooddischarge_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n con.waterlevel2flooddischarge.inputs[0] = aid.waterlevel\n con.waterlevel2flooddischarge.process_actual_input(der.toy[self.idx_sim])\n flu.flooddischarge = con.waterlevel2flooddischarge.outputs[0]\n", "role": "user" }, { "content": "calc_flooddischarge_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess flu.outflow = max(flu.actualrelease + flu.flooddischarge, 0.0)
calc_outflow_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n flu.outflow = max(flu.actualrelease + flu.flooddischarge, 0.0)\n", "role": "user" }, { "content": "calc_outflow_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new new.watervolume = old.watervolume + der.seconds * (flu.inflow - flu.outflow ) / 1000000.0
update_watervolume_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n old = self.sequences.states.fastaccess_old\n new = self.sequences.states.fastaccess_new\n new.watervolume = old.watervolume + der.seconds * (flu.inflow - flu.outflow\n ) / 1000000.0\n", "role": "user" }, { "content": "update_watervolume_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += flu.outflow
pass_outflow_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.q[0] += flu.outflow\n", "role": "user" }, { "content": "pass_outflow_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.s[0] += flu.actualremoterelease
pass_actualremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.s[0] += flu.actualremoterelease\n", "role": "user" }, { "content": "pass_actualremoterelease_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.r[0] += flu.actualremoterelieve
pass_actualremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.r[0] += flu.actualremoterelieve\n", "role": "user" }, { "content": "pass_actualremoterelieve_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess sen = self.sequences.senders.fastaccess sen.d[0] += flu.missingremoterelease
pass_missingremoterelease_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.d[0] += flu.missingremoterelease\n", "role": "user" }, { "content": "pass_missingremoterelease_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess sen = self.sequences.senders.fastaccess sen.r[0] += flu.allowedremoterelieve
pass_allowedremoterelieve_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.r[0] += flu.allowedremoterelieve\n", "role": "user" }, { "content": "pass_allowedremoterelieve_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess sen = self.sequences.senders.fastaccess sen.s[0] += flu.requiredremotesupply
pass_requiredremotesupply_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.s[0] += flu.requiredremotesupply\n", "role": "user" }, { "content": "pass_requiredremotesupply_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess for idx in range(con.nmblogentries - 1, 0, -1): log.loggedoutflow[idx] = log.loggedoutflow[idx - 1] log.loggedoutflow[0] = flu.outflow
update_loggedoutflow_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(con.nmblogentries - 1, 0, -1):\n log.loggedoutflow[idx] = log.loggedoutflow[idx - 1]\n log.loggedoutflow[0] = flu.outflow\n", "role": "user" }, { "content": "update_loggedoutflow_v1", "role": "assistant" } ]
def x(self): coefs = [] sum_coefs = 0.0 moment1 = self.iuh.moment1 for t in itertools.count(0.0, 1.0): points = (moment1 % 1,) if t <= moment1 <= t + 2.0 else () try: coef = integrate.quad(self._quad, 0.0, 1.0, args=(t,), points= points)[0] except integrate.IntegrationWarning: idx = int(moment1) coefs = numpy.zeros(idx + 2, dtype=float) weight = moment1 - idx coefs[idx] = 1.0 - weight coefs[idx + 1] = weight self.coefs = coefs warnings.warn( 'During the determination of the MA coefficients corresponding to the instantaneous unit hydrograph `%s` a numerical integration problem occurred. Please check the calculated coefficients: %s.' % (repr(self.iuh), objecttools.repr_values(coefs))) break sum_coefs += coef if sum_coefs > 0.9 and coef < self.smallest_coeff: coefs = numpy.array(coefs) coefs /= numpy.sum(coefs) self.coefs = coefs break else: coefs.append(coef)
update_coefs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n coefs = []\n sum_coefs = 0.0\n moment1 = self.iuh.moment1\n for t in itertools.count(0.0, 1.0):\n points = (moment1 % 1,) if t <= moment1 <= t + 2.0 else ()\n try:\n coef = integrate.quad(self._quad, 0.0, 1.0, args=(t,), points=\n points)[0]\n except integrate.IntegrationWarning:\n idx = int(moment1)\n coefs = numpy.zeros(idx + 2, dtype=float)\n weight = moment1 - idx\n coefs[idx] = 1.0 - weight\n coefs[idx + 1] = weight\n self.coefs = coefs\n warnings.warn(\n 'During the determination of the MA coefficients corresponding to the instantaneous unit hydrograph `%s` a numerical integration problem occurred. Please check the calculated coefficients: %s.'\n % (repr(self.iuh), objecttools.repr_values(coefs)))\n break\n sum_coefs += coef\n if sum_coefs > 0.9 and coef < self.smallest_coeff:\n coefs = numpy.array(coefs)\n coefs /= numpy.sum(coefs)\n self.coefs = coefs\n break\n else:\n coefs.append(coef)\n", "role": "user" }, { "content": "update_coefs", "role": "assistant" } ]
def x(self): coefs = self.coefs old_dc = coefs[1] - coefs[0] for idx in range(self.order - 2): new_dc = coefs[idx + 2] - coefs[idx + 1] if old_dc < 0.0 and new_dc > old_dc: return idx, coefs[idx] old_dc = new_dc raise RuntimeError( 'Not able to detect a turning point in the impulse response defined by the MA coefficients %s.' % objecttools.repr_values(coefs))
turningpoint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n coefs = self.coefs\n old_dc = coefs[1] - coefs[0]\n for idx in range(self.order - 2):\n new_dc = coefs[idx + 2] - coefs[idx + 1]\n if old_dc < 0.0 and new_dc > old_dc:\n return idx, coefs[idx]\n old_dc = new_dc\n raise RuntimeError(\n 'Not able to detect a turning point in the impulse response defined by the MA coefficients %s.'\n % objecttools.repr_values(coefs))\n", "role": "user" }, { "content": "turningpoint", "role": "assistant" } ]
def x(self): moment1 = statstools.calc_mean_time(self.delays, self.coefs) moment2 = statstools.calc_mean_time_deviation(self.delays, self.coefs, moment1) return numpy.array([moment1, moment2])
moments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n moment1 = statstools.calc_mean_time(self.delays, self.coefs)\n moment2 = statstools.calc_mean_time_deviation(self.delays, self.coefs,\n moment1)\n return numpy.array([moment1, moment2])\n", "role": "user" }, { "content": "moments", "role": "assistant" } ]
def x(self): return min(self.max_ar_order, self.ma.order - self.ma.turningpoint[0] - 1)
effective_max_ar_order
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return min(self.max_ar_order, self.ma.order - self.ma.turningpoint[0] - 1)\n", "role": "user" }, { "content": "effective_max_ar_order", "role": "assistant" } ]
def x(self): del self.ar_coefs for ar_order in range(1, self.effective_max_ar_order + 1): self.calc_all_ar_coefs(ar_order, self.ma) if self._rel_rmse < self.max_rel_rmse: break else: with hydpy.pub.options.reprdigits(12): raise RuntimeError( f'Method `update_ar_coefs` is not able to determine the AR coefficients of the ARMA model with the desired accuracy. You can either set the tolerance value `max_rel_rmse` to a higher value or increase the allowed `max_ar_order`. An accuracy of `{objecttools.repr_(self._rel_rmse)}` has been reached using `{self.effective_max_ar_order}` coefficients.' )
update_ar_coefs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n del self.ar_coefs\n for ar_order in range(1, self.effective_max_ar_order + 1):\n self.calc_all_ar_coefs(ar_order, self.ma)\n if self._rel_rmse < self.max_rel_rmse:\n break\n else:\n with hydpy.pub.options.reprdigits(12):\n raise RuntimeError(\n f'Method `update_ar_coefs` is not able to determine the AR coefficients of the ARMA model with the desired accuracy. You can either set the tolerance value `max_rel_rmse` to a higher value or increase the allowed `max_ar_order`. An accuracy of `{objecttools.repr_(self._rel_rmse)}` has been reached using `{self.effective_max_ar_order}` coefficients.'\n )\n", "role": "user" }, { "content": "update_ar_coefs", "role": "assistant" } ]
def x(self): return numpy.sum(numpy.abs(self.moments - self.ma.moments))
dev_moments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return numpy.sum(numpy.abs(self.moments - self.ma.moments))\n", "role": "user" }, { "content": "dev_moments", "role": "assistant" } ]
def x(self): sum_coefs = self.sum_coefs self.ar_coefs /= sum_coefs self.ma_coefs /= sum_coefs
norm_coefs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sum_coefs = self.sum_coefs\n self.ar_coefs /= sum_coefs\n self.ma_coefs /= sum_coefs\n", "role": "user" }, { "content": "norm_coefs", "role": "assistant" } ]