source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
moment1 = self.moment1
delays, response = self.delay_response_series
return statstools.calc_mean_time_deviation(delays, response, moment1)
|
moment2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n moment1 = self.moment1\n delays, response = self.delay_response_series\n return statstools.calc_mean_time_deviation(delays, response, moment1)\n",
"role": "user"
},
{
"content": "moment2",
"role": "assistant"
}
] |
def x(self):
self.a = self.x / (2.0 * self.d ** 0.5)
self.b = self.u / (2.0 * self.d ** 0.5)
|
calc_secondary_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.a = self.x / (2.0 * self.d ** 0.5)\n self.b = self.u / (2.0 * self.d ** 0.5)\n",
"role": "user"
},
{
"content": "calc_secondary_parameters",
"role": "assistant"
}
] |
def x(self):
self.c = 1.0 / (self.k * special.gamma(self.n))
|
calc_secondary_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.c = 1.0 / (self.k * special.gamma(self.n))\n",
"role": "user"
},
{
"content": "calc_secondary_parameters",
"role": "assistant"
}
] |
def x(self, lower=None, upper=None):
pwmax = self.subseqs.seqs.model.parameters.control.pwmax
waes = self.subseqs.waes
if lower is None:
lower = numpy.clip(waes / pwmax, 0.0, numpy.inf)
lower[numpy.isnan(lower)] = 0.0
lland_sequences.State1DSequence.trim(self, lower, upper)
|
trim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lower=None, upper=None):\n pwmax = self.subseqs.seqs.model.parameters.control.pwmax\n waes = self.subseqs.waes\n if lower is None:\n lower = numpy.clip(waes / pwmax, 0.0, numpy.inf)\n lower[numpy.isnan(lower)] = 0.0\n lland_sequences.State1DSequence.trim(self, lower, upper)\n",
"role": "user"
},
{
"content": "trim",
"role": "assistant"
}
] |
def x(self, lower=None, upper=None):
pwmax = self.subseqs.seqs.model.parameters.control.pwmax
wats = self.subseqs.wats
if upper is None:
upper = pwmax * wats
lland_sequences.State1DSequence.trim(self, lower, upper)
|
trim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lower=None, upper=None):\n pwmax = self.subseqs.seqs.model.parameters.control.pwmax\n wats = self.subseqs.wats\n if upper is None:\n upper = pwmax * wats\n lland_sequences.State1DSequence.trim(self, lower, upper)\n",
"role": "user"
},
{
"content": "trim",
"role": "assistant"
}
] |
def x(self, lower=None, upper=None):
if upper is None:
upper = self.subseqs.seqs.model.parameters.control.nfk
lland_sequences.State1DSequence.trim(self, lower, upper)
|
trim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lower=None, upper=None):\n if upper is None:\n upper = self.subseqs.seqs.model.parameters.control.nfk\n lland_sequences.State1DSequence.trim(self, lower, upper)\n",
"role": "user"
},
{
"content": "trim",
"role": "assistant"
}
] |
def x(self, request, pk):
location = self.get_object()
present_prefixes = [x.split('-')[0] for x in request.POST.keys()]
day_forms = OrderedDict()
for day_no, day_name in WEEKDAYS:
for slot_no in (1, 2):
prefix = self.form_prefix(day_no, slot_no)
if prefix not in present_prefixes:
continue
day_forms[prefix] = day_no, Slot(request.POST, prefix=prefix)
if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]):
OpeningHours.objects.filter(company=location).delete()
for prefix, day_form in day_forms.items():
day, form = day_form
opens, shuts = [str_to_time(form.cleaned_data[x]) for x in (
'opens', 'shuts')]
if opens != shuts:
OpeningHours(from_hour=opens, to_hour=shuts, company=
location, weekday=day).save()
return redirect(request.path_info)
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, pk):\n location = self.get_object()\n present_prefixes = [x.split('-')[0] for x in request.POST.keys()]\n day_forms = OrderedDict()\n for day_no, day_name in WEEKDAYS:\n for slot_no in (1, 2):\n prefix = self.form_prefix(day_no, slot_no)\n if prefix not in present_prefixes:\n continue\n day_forms[prefix] = day_no, Slot(request.POST, prefix=prefix)\n if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]):\n OpeningHours.objects.filter(company=location).delete()\n for prefix, day_form in day_forms.items():\n day, form = day_form\n opens, shuts = [str_to_time(form.cleaned_data[x]) for x in (\n 'opens', 'shuts')]\n if opens != shuts:\n OpeningHours(from_hour=opens, to_hour=shuts, company=\n location, weekday=day).save()\n return redirect(request.path_info)\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self, request, pk):
location = self.get_object()
two_sets = False
closed = None
opening_hours = {}
for o in OpeningHours.objects.filter(company=location):
opening_hours.setdefault(o.weekday, []).append(o)
days = []
for day_no, day_name in WEEKDAYS:
if day_no not in opening_hours.keys():
if opening_hours:
closed = True
ini1, ini2 = [None, None]
else:
closed = False
ini = [{'opens': time_to_str(oh.from_hour), 'shuts':
time_to_str(oh.to_hour)} for oh in opening_hours[day_no]]
ini += [None] * (2 - len(ini[:2]))
ini1, ini2 = ini[:2]
if ini2:
two_sets = True
days.append({'name': day_name, 'number': day_no, 'slot1': Slot(
prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2':
Slot(prefix=self.form_prefix(day_no, 2), initial=ini2),
'closed': closed})
return render(request, self.template_name, {'days': days, 'two_sets':
two_sets, 'location': location})
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, pk):\n location = self.get_object()\n two_sets = False\n closed = None\n opening_hours = {}\n for o in OpeningHours.objects.filter(company=location):\n opening_hours.setdefault(o.weekday, []).append(o)\n days = []\n for day_no, day_name in WEEKDAYS:\n if day_no not in opening_hours.keys():\n if opening_hours:\n closed = True\n ini1, ini2 = [None, None]\n else:\n closed = False\n ini = [{'opens': time_to_str(oh.from_hour), 'shuts':\n time_to_str(oh.to_hour)} for oh in opening_hours[day_no]]\n ini += [None] * (2 - len(ini[:2]))\n ini1, ini2 = ini[:2]\n if ini2:\n two_sets = True\n days.append({'name': day_name, 'number': day_no, 'slot1': Slot(\n prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2':\n Slot(prefix=self.form_prefix(day_no, 2), initial=ini2),\n 'closed': closed})\n return render(request, self.template_name, {'days': days, 'two_sets':\n two_sets, 'location': location})\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
new = self.sequences.states.fastaccess_new
old = self.sequences.states.fastaccess_old
for j in range(der.nmbsegments):
new.qjoints[j + 1] = der.c1 * new.qjoints[j] + der.c2 * old.qjoints[j
] + der.c3 * old.qjoints[j + 1]
|
calc_qjoints_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n new = self.sequences.states.fastaccess_new\n old = self.sequences.states.fastaccess_old\n for j in range(der.nmbsegments):\n new.qjoints[j + 1] = der.c1 * new.qjoints[j] + der.c2 * old.qjoints[j\n ] + der.c3 * old.qjoints[j + 1]\n",
"role": "user"
},
{
"content": "calc_qjoints_v1",
"role": "assistant"
}
] |
def x(self):
inl = self.sequences.inlets.fastaccess
new = self.sequences.states.fastaccess_new
new.qjoints[0] = 0.0
for idx in range(inl.len_q):
new.qjoints[0] += inl.q[idx][0]
|
pick_q_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n inl = self.sequences.inlets.fastaccess\n new = self.sequences.states.fastaccess_new\n new.qjoints[0] = 0.0\n for idx in range(inl.len_q):\n new.qjoints[0] += inl.q[idx][0]\n",
"role": "user"
},
{
"content": "pick_q_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
new = self.sequences.states.fastaccess_new
out = self.sequences.outlets.fastaccess
out.q[0] += new.qjoints[der.nmbsegments]
|
pass_q_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n new = self.sequences.states.fastaccess_new\n out = self.sequences.outlets.fastaccess\n out.q[0] += new.qjoints[der.nmbsegments]\n",
"role": "user"
},
{
"content": "pass_q_v1",
"role": "assistant"
}
] |
def x(data=None):
import locale
enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720'
]
code = locale.getpreferredencoding(False)
if data is None:
return code
if code.lower() not in enc_list:
enc_list.insert(0, code.lower())
for c in enc_list:
try:
for line in data:
line.decode(c)
except (UnicodeDecodeError, UnicodeError, AttributeError):
continue
return c
print('Encoding not detected. Please pass encoding value manually')
|
detect_encoding
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data=None):\n import locale\n enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720'\n ]\n code = locale.getpreferredencoding(False)\n if data is None:\n return code\n if code.lower() not in enc_list:\n enc_list.insert(0, code.lower())\n for c in enc_list:\n try:\n for line in data:\n line.decode(c)\n except (UnicodeDecodeError, UnicodeError, AttributeError):\n continue\n return c\n print('Encoding not detected. Please pass encoding value manually')\n",
"role": "user"
},
{
"content": "detect_encoding",
"role": "assistant"
}
] |
def x(timestep=None):
if timestep is not None:
parametertools.Parameter.parameterstep(timestep)
namespace = inspect.currentframe().f_back.f_locals
model = namespace.get('model')
if model is None:
model = namespace['Model']()
namespace['model'] = model
if hydpy.pub.options.usecython and 'cythonizer' in namespace:
cythonizer = namespace['cythonizer']
namespace['cythonmodule'] = cythonizer.cymodule
model.cymodel = cythonizer.cymodule.Model()
namespace['cymodel'] = model.cymodel
model.cymodel.parameters = cythonizer.cymodule.Parameters()
model.cymodel.sequences = cythonizer.cymodule.Sequences()
for numpars_name in ('NumConsts', 'NumVars'):
if hasattr(cythonizer.cymodule, numpars_name):
numpars_new = getattr(cythonizer.cymodule, numpars_name)()
numpars_old = getattr(model, numpars_name.lower())
for name_numpar, numpar in vars(numpars_old).items():
setattr(numpars_new, name_numpar, numpar)
setattr(model.cymodel, numpars_name.lower(), numpars_new)
for name in dir(model.cymodel):
if not name.startswith('_') and hasattr(model, name):
setattr(model, name, getattr(model.cymodel, name))
if 'Parameters' not in namespace:
namespace['Parameters'] = parametertools.Parameters
model.parameters = namespace['Parameters'](namespace)
if 'Sequences' not in namespace:
namespace['Sequences'] = sequencetools.Sequences
model.sequences = namespace['Sequences'](**namespace)
namespace['parameters'] = model.parameters
for pars in model.parameters:
namespace[pars.name] = pars
namespace['sequences'] = model.sequences
for seqs in model.sequences:
namespace[seqs.name] = seqs
if 'Masks' in namespace:
model.masks = namespace['Masks'](model)
namespace['masks'] = model.masks
try:
namespace.update(namespace['CONSTANTS'])
except KeyError:
pass
focus = namespace.get('focus')
for par in model.parameters.control:
try:
if focus is None or par is focus:
namespace[par.name] = par
else:
namespace[par.name] = lambda *args, **kwargs: None
except AttributeError:
pass
|
parameterstep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timestep=None):\n if timestep is not None:\n parametertools.Parameter.parameterstep(timestep)\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is None:\n model = namespace['Model']()\n namespace['model'] = model\n if hydpy.pub.options.usecython and 'cythonizer' in namespace:\n cythonizer = namespace['cythonizer']\n namespace['cythonmodule'] = cythonizer.cymodule\n model.cymodel = cythonizer.cymodule.Model()\n namespace['cymodel'] = model.cymodel\n model.cymodel.parameters = cythonizer.cymodule.Parameters()\n model.cymodel.sequences = cythonizer.cymodule.Sequences()\n for numpars_name in ('NumConsts', 'NumVars'):\n if hasattr(cythonizer.cymodule, numpars_name):\n numpars_new = getattr(cythonizer.cymodule, numpars_name)()\n numpars_old = getattr(model, numpars_name.lower())\n for name_numpar, numpar in vars(numpars_old).items():\n setattr(numpars_new, name_numpar, numpar)\n setattr(model.cymodel, numpars_name.lower(), numpars_new)\n for name in dir(model.cymodel):\n if not name.startswith('_') and hasattr(model, name):\n setattr(model, name, getattr(model.cymodel, name))\n if 'Parameters' not in namespace:\n namespace['Parameters'] = parametertools.Parameters\n model.parameters = namespace['Parameters'](namespace)\n if 'Sequences' not in namespace:\n namespace['Sequences'] = sequencetools.Sequences\n model.sequences = namespace['Sequences'](**namespace)\n namespace['parameters'] = model.parameters\n for pars in model.parameters:\n namespace[pars.name] = pars\n namespace['sequences'] = model.sequences\n for seqs in model.sequences:\n namespace[seqs.name] = seqs\n if 'Masks' in namespace:\n model.masks = namespace['Masks'](model)\n namespace['masks'] = model.masks\n try:\n namespace.update(namespace['CONSTANTS'])\n except KeyError:\n pass\n focus = namespace.get('focus')\n for par in model.parameters.control:\n try:\n if focus is None or par is focus:\n namespace[par.name] = par\n else:\n namespace[par.name] = lambda *args, **kwargs: None\n except AttributeError:\n pass\n",
"role": "user"
},
{
"content": "parameterstep",
"role": "assistant"
}
] |
def x():
namespace = inspect.currentframe().f_back.f_locals
model = namespace.get('model')
if model is not None:
for subpars in model.parameters:
for par in subpars:
namespace.pop(par.name, None)
namespace.pop(objecttools.classname(par), None)
namespace.pop(subpars.name, None)
namespace.pop(objecttools.classname(subpars), None)
for subseqs in model.sequences:
for seq in subseqs:
namespace.pop(seq.name, None)
namespace.pop(objecttools.classname(seq), None)
namespace.pop(subseqs.name, None)
namespace.pop(objecttools.classname(subseqs), None)
for name in ('parameters', 'sequences', 'masks', 'model',
'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer',
'cymodel', 'cythonmodule'):
namespace.pop(name, None)
for key in list(namespace.keys()):
try:
if namespace[key].__module__ == model.__module__:
del namespace[key]
except AttributeError:
pass
|
reverse_model_wildcard_import
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is not None:\n for subpars in model.parameters:\n for par in subpars:\n namespace.pop(par.name, None)\n namespace.pop(objecttools.classname(par), None)\n namespace.pop(subpars.name, None)\n namespace.pop(objecttools.classname(subpars), None)\n for subseqs in model.sequences:\n for seq in subseqs:\n namespace.pop(seq.name, None)\n namespace.pop(objecttools.classname(seq), None)\n namespace.pop(subseqs.name, None)\n namespace.pop(objecttools.classname(subseqs), None)\n for name in ('parameters', 'sequences', 'masks', 'model',\n 'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer',\n 'cymodel', 'cythonmodule'):\n namespace.pop(name, None)\n for key in list(namespace.keys()):\n try:\n if namespace[key].__module__ == model.__module__:\n del namespace[key]\n except AttributeError:\n pass\n",
"role": "user"
},
{
"content": "reverse_model_wildcard_import",
"role": "assistant"
}
] |
def x(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg=None
):
if timestep is not None:
parametertools.Parameter.parameterstep(timetools.Period(timestep))
try:
model = module.Model()
except AttributeError:
module = importlib.import_module(f'hydpy.models.{module}')
model = module.Model()
if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'):
cymodule = module.cythonizer.cymodule
cymodel = cymodule.Model()
cymodel.parameters = cymodule.Parameters()
cymodel.sequences = cymodule.Sequences()
model.cymodel = cymodel
for numpars_name in ('NumConsts', 'NumVars'):
if hasattr(cymodule, numpars_name):
numpars_new = getattr(cymodule, numpars_name)()
numpars_old = getattr(model, numpars_name.lower())
for name_numpar, numpar in vars(numpars_old).items():
setattr(numpars_new, name_numpar, numpar)
setattr(cymodel, numpars_name.lower(), numpars_new)
for name in dir(cymodel):
if not name.startswith('_') and hasattr(model, name):
setattr(model, name, getattr(cymodel, name))
dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel}
else:
dict_ = {}
dict_.update(vars(module))
dict_['model'] = model
if hasattr(module, 'Parameters'):
model.parameters = module.Parameters(dict_)
else:
model.parameters = parametertools.Parameters(dict_)
if hasattr(module, 'Sequences'):
model.sequences = module.Sequences(**dict_)
else:
model.sequences = sequencetools.Sequences(**dict_)
if hasattr(module, 'Masks'):
model.masks = module.Masks(model)
return model
|
prepare_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg=None\n ):\n if timestep is not None:\n parametertools.Parameter.parameterstep(timetools.Period(timestep))\n try:\n model = module.Model()\n except AttributeError:\n module = importlib.import_module(f'hydpy.models.{module}')\n model = module.Model()\n if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'):\n cymodule = module.cythonizer.cymodule\n cymodel = cymodule.Model()\n cymodel.parameters = cymodule.Parameters()\n cymodel.sequences = cymodule.Sequences()\n model.cymodel = cymodel\n for numpars_name in ('NumConsts', 'NumVars'):\n if hasattr(cymodule, numpars_name):\n numpars_new = getattr(cymodule, numpars_name)()\n numpars_old = getattr(model, numpars_name.lower())\n for name_numpar, numpar in vars(numpars_old).items():\n setattr(numpars_new, name_numpar, numpar)\n setattr(cymodel, numpars_name.lower(), numpars_new)\n for name in dir(cymodel):\n if not name.startswith('_') and hasattr(model, name):\n setattr(model, name, getattr(cymodel, name))\n dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel}\n else:\n dict_ = {}\n dict_.update(vars(module))\n dict_['model'] = model\n if hasattr(module, 'Parameters'):\n model.parameters = module.Parameters(dict_)\n else:\n model.parameters = parametertools.Parameters(dict_)\n if hasattr(module, 'Sequences'):\n model.sequences = module.Sequences(**dict_)\n else:\n model.sequences = sequencetools.Sequences(**dict_)\n if hasattr(module, 'Masks'):\n model.masks = module.Masks(model)\n return model\n",
"role": "user"
},
{
"content": "prepare_model",
"role": "assistant"
}
] |
def x(timestep):
if hydpy.pub.options.warnsimulationstep:
warnings.warn(
'Note that the applied function `simulationstep` is intended for testing purposes only. When doing a HydPy simulation, parameter values are initialised based on the actual simulation time step as defined under `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored.'
)
parametertools.Parameter.simulationstep(timestep)
|
simulationstep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timestep):\n if hydpy.pub.options.warnsimulationstep:\n warnings.warn(\n 'Note that the applied function `simulationstep` is intended for testing purposes only. When doing a HydPy simulation, parameter values are initialised based on the actual simulation time step as defined under `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored.'\n )\n parametertools.Parameter.simulationstep(timestep)\n",
"role": "user"
},
{
"content": "simulationstep",
"role": "assistant"
}
] |
def x(controldir='default', projectdir=None, controlfile=None):
namespace = inspect.currentframe().f_back.f_locals
model = namespace.get('model')
if model is None:
if not controlfile:
controlfile = os.path.split(namespace['__file__'])[-1]
if projectdir is None:
projectdir = os.path.split(os.path.split(os.path.split(os.
getcwd())[0])[0])[-1]
dirpath = os.path.abspath(os.path.join('..', '..', '..', projectdir,
'control', controldir))
class CM(filetools.ControlManager):
currentpath = dirpath
model = CM().load_file(filename=controlfile)['model']
model.parameters.update()
namespace['model'] = model
for name in ('states', 'logs'):
subseqs = getattr(model.sequences, name, None)
if subseqs is not None:
for seq in subseqs:
namespace[seq.name] = seq
|
controlcheck
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(controldir='default', projectdir=None, controlfile=None):\n namespace = inspect.currentframe().f_back.f_locals\n model = namespace.get('model')\n if model is None:\n if not controlfile:\n controlfile = os.path.split(namespace['__file__'])[-1]\n if projectdir is None:\n projectdir = os.path.split(os.path.split(os.path.split(os.\n getcwd())[0])[0])[-1]\n dirpath = os.path.abspath(os.path.join('..', '..', '..', projectdir,\n 'control', controldir))\n\n\n class CM(filetools.ControlManager):\n currentpath = dirpath\n model = CM().load_file(filename=controlfile)['model']\n model.parameters.update()\n namespace['model'] = model\n for name in ('states', 'logs'):\n subseqs = getattr(model.sequences, name, None)\n if subseqs is not None:\n for seq in subseqs:\n namespace[seq.name] = seq\n",
"role": "user"
},
{
"content": "controlcheck",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
temp = con.zonearea.values.copy()
temp[con.zonetype.values == GLACIER] = 0.0
temp[con.zonetype.values == ILAKE] = 0.0
self(numpy.sum(temp) / con.area)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n temp = con.zonearea.values.copy()\n temp[con.zonetype.values == GLACIER] = 0.0\n temp[con.zonetype.values == ILAKE] = 0.0\n self(numpy.sum(temp) / con.area)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.tt + con.dttm)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.tt + con.dttm)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
maxbaz = self.subpars.pars.control.maxbaz.value
quh = self.subpars.pars.model.sequences.logs.quh
if maxbaz <= 1.0:
self.shape = 1
self(1.0)
quh.shape = 1
else:
full = maxbaz
if full % 1.0 < 0.0001:
full //= 1.0
full_f = int(numpy.floor(full))
full_c = int(numpy.ceil(full))
half = full / 2.0
half_f = int(numpy.floor(half))
half_c = int(numpy.ceil(half))
full_2 = full ** 2.0
self.shape = full_c
uh = self.values
quh.shape = full_c
points = numpy.arange(1, half_f + 1)
uh[:half_f] = (2.0 * points - 1.0) / (2.0 * full_2)
if numpy.mod(half, 1.0) != 0.0:
uh[half_f] = (half_c - half) / full + (2 * half ** 2.0 - half_f **
2.0 - half_c ** 2.0) / (2.0 * full_2)
points = numpy.arange(half_c + 1.0, full_f + 1.0)
uh[half_c:full_f] = 1.0 / full - (2.0 * points - 1.0) / (2.0 * full_2)
if numpy.mod(full, 1.0) != 0.0:
uh[full_f] = (full - full_f) / full - (full_2 - full_f ** 2.0) / (
2.0 * full_2)
self(uh / numpy.sum(uh))
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n maxbaz = self.subpars.pars.control.maxbaz.value\n quh = self.subpars.pars.model.sequences.logs.quh\n if maxbaz <= 1.0:\n self.shape = 1\n self(1.0)\n quh.shape = 1\n else:\n full = maxbaz\n if full % 1.0 < 0.0001:\n full //= 1.0\n full_f = int(numpy.floor(full))\n full_c = int(numpy.ceil(full))\n half = full / 2.0\n half_f = int(numpy.floor(half))\n half_c = int(numpy.ceil(half))\n full_2 = full ** 2.0\n self.shape = full_c\n uh = self.values\n quh.shape = full_c\n points = numpy.arange(1, half_f + 1)\n uh[:half_f] = (2.0 * points - 1.0) / (2.0 * full_2)\n if numpy.mod(half, 1.0) != 0.0:\n uh[half_f] = (half_c - half) / full + (2 * half ** 2.0 - half_f **\n 2.0 - half_c ** 2.0) / (2.0 * full_2)\n points = numpy.arange(half_c + 1.0, full_f + 1.0)\n uh[half_c:full_f] = 1.0 / full - (2.0 * points - 1.0) / (2.0 * full_2)\n if numpy.mod(full, 1.0) != 0.0:\n uh[full_f] = (full - full_f) / full - (full_2 - full_f ** 2.0) / (\n 2.0 * full_2)\n self(uh / numpy.sum(uh))\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
self(self.subpars.pars.control.area * 1000.0 / self.subpars.qfactor.
simulationstep.seconds)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self(self.subpars.pars.control.area * 1000.0 / self.subpars.qfactor.\n simulationstep.seconds)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, ...]:
return tuple(numpy.asarray(self._cann.nmb_neurons))
|
nmb_neurons
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, ...]:\n return tuple(numpy.asarray(self._cann.nmb_neurons))\n",
"role": "user"
},
{
"content": "nmb_neurons",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, int, int]:
if self.nmb_layers > 1:
nmb_neurons = self.nmb_neurons
return self.nmb_layers - 1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])
return 0, 0, 0
|
shape_weights_hidden
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, int, int]:\n if self.nmb_layers > 1:\n nmb_neurons = self.nmb_neurons\n return self.nmb_layers - 1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])\n return 0, 0, 0\n",
"role": "user"
},
{
"content": "shape_weights_hidden",
"role": "assistant"
}
] |
def x(self) ->int:
nmb = 0
for idx_layer in range(self.nmb_layers - 1):
nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer + 1]
return nmb
|
nmb_weights_hidden
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->int:\n nmb = 0\n for idx_layer in range(self.nmb_layers - 1):\n nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer + 1]\n return nmb\n",
"role": "user"
},
{
"content": "nmb_weights_hidden",
"role": "assistant"
}
] |
def x(self) ->None:
if not self.__protectedproperties.allready(self):
raise RuntimeError(
'The shape of the the artificial neural network parameter %s has not been defined so far.'
% objecttools.elementphrase(self))
|
verify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n if not self.__protectedproperties.allready(self):\n raise RuntimeError(\n 'The shape of the the artificial neural network parameter %s has not been defined so far.'\n % objecttools.elementphrase(self))\n",
"role": "user"
},
{
"content": "verify",
"role": "assistant"
}
] |
def x(self, prefix) ->str:
prefix = '%s%s(' % (prefix, self.name)
blanks = len(prefix) * ' '
lines = [objecttools.assignrepr_value(self.nmb_inputs, '%snmb_inputs=' %
prefix) + ',', objecttools.assignrepr_tuple(self.nmb_neurons,
'%snmb_neurons=' % blanks) + ',', objecttools.assignrepr_value(self
.nmb_outputs, '%snmb_outputs=' % blanks) + ',', objecttools.
assignrepr_list2(self.weights_input, '%sweights_input=' % blanks) + ','
]
if self.nmb_layers > 1:
lines.append(objecttools.assignrepr_list3(self.weights_hidden,
'%sweights_hidden=' % blanks) + ',')
lines.append(objecttools.assignrepr_list2(self.weights_output,
'%sweights_output=' % blanks) + ',')
lines.append(objecttools.assignrepr_list2(self.intercepts_hidden,
'%sintercepts_hidden=' % blanks) + ',')
lines.append(objecttools.assignrepr_list(self.intercepts_output,
'%sintercepts_output=' % blanks) + ')')
return '\n'.join(lines)
|
assignrepr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix) ->str:\n prefix = '%s%s(' % (prefix, self.name)\n blanks = len(prefix) * ' '\n lines = [objecttools.assignrepr_value(self.nmb_inputs, '%snmb_inputs=' %\n prefix) + ',', objecttools.assignrepr_tuple(self.nmb_neurons, \n '%snmb_neurons=' % blanks) + ',', objecttools.assignrepr_value(self\n .nmb_outputs, '%snmb_outputs=' % blanks) + ',', objecttools.\n assignrepr_list2(self.weights_input, '%sweights_input=' % blanks) + ','\n ]\n if self.nmb_layers > 1:\n lines.append(objecttools.assignrepr_list3(self.weights_hidden, \n '%sweights_hidden=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list2(self.weights_output, \n '%sweights_output=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list2(self.intercepts_hidden, \n '%sintercepts_hidden=' % blanks) + ',')\n lines.append(objecttools.assignrepr_list(self.intercepts_output, \n '%sintercepts_output=' % blanks) + ')')\n return '\\n'.join(lines)\n",
"role": "user"
},
{
"content": "assignrepr",
"role": "assistant"
}
] |
def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs
) ->None:
xs_ = numpy.linspace(xmin, xmax, points)
ys_ = numpy.zeros(xs_.shape)
for idx, x__ in enumerate(xs_):
self.inputs[idx_input] = x__
self.process_actual_input()
ys_[idx] = self.outputs[idx_output]
pyplot.plot(xs_, ys_, **kwargs)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs\n ) ->None:\n xs_ = numpy.linspace(xmin, xmax, points)\n ys_ = numpy.zeros(xs_.shape)\n for idx, x__ in enumerate(xs_):\n self.inputs[idx_input] = x__\n self.process_actual_input()\n ys_[idx] = self.outputs[idx_output]\n pyplot.plot(xs_, ys_, **kwargs)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self) ->None:
if self._do_refresh:
if self.anns:
self.__sann = annutils.SeasonalANN(self.anns)
setattr(self.fastaccess, self.name, self._sann)
self._set_shape((None, self._sann.nmb_anns))
if self._sann.nmb_anns > 1:
self._interp()
else:
self._sann.ratios[:, 0] = 1.0
self.verify()
else:
self.__sann = None
|
refresh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n if self._do_refresh:\n if self.anns:\n self.__sann = annutils.SeasonalANN(self.anns)\n setattr(self.fastaccess, self.name, self._sann)\n self._set_shape((None, self._sann.nmb_anns))\n if self._sann.nmb_anns > 1:\n self._interp()\n else:\n self._sann.ratios[:, 0] = 1.0\n self.verify()\n else:\n self.__sann = None\n",
"role": "user"
},
{
"content": "refresh",
"role": "assistant"
}
] |
def x(self) ->None:
if not self.anns:
self._toy2ann.clear()
raise RuntimeError(
'Seasonal artificial neural network collections need to handle at least one "normal" single neural network, but for the seasonal neural network `%s` of element `%s` none has been defined so far.'
% (self.name, objecttools.devicename(self)))
for toy, ann_ in self:
ann_.verify()
if (self.nmb_inputs != ann_.nmb_inputs or self.nmb_outputs != ann_.
nmb_outputs):
self._toy2ann.clear()
raise RuntimeError(
'The number of input and output values of all neural networks contained by a seasonal neural network collection must be identical and be known by the containing object. But the seasonal neural network collection `%s` of element `%s` assumes `%d` input and `%d` output values, while the network corresponding to the time of year `%s` requires `%d` input and `%d` output values.'
% (self.name, objecttools.devicename(self), self.
nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_.
nmb_outputs))
|
verify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n if not self.anns:\n self._toy2ann.clear()\n raise RuntimeError(\n 'Seasonal artificial neural network collections need to handle at least one \"normal\" single neural network, but for the seasonal neural network `%s` of element `%s` none has been defined so far.'\n % (self.name, objecttools.devicename(self)))\n for toy, ann_ in self:\n ann_.verify()\n if (self.nmb_inputs != ann_.nmb_inputs or self.nmb_outputs != ann_.\n nmb_outputs):\n self._toy2ann.clear()\n raise RuntimeError(\n 'The number of input and output values of all neural networks contained by a seasonal neural network collection must be identical and be known by the containing object. But the seasonal neural network collection `%s` of element `%s` assumes `%d` input and `%d` output values, while the network corresponding to the time of year `%s` requires `%d` input and `%d` output values.'\n % (self.name, objecttools.devicename(self), self.\n nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_.\n nmb_outputs))\n",
"role": "user"
},
{
"content": "verify",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, ...]:
return tuple(int(sub) for sub in self.ratios.shape)
|
shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, ...]:\n return tuple(int(sub) for sub in self.ratios.shape)\n",
"role": "user"
},
{
"content": "shape",
"role": "assistant"
}
] |
def x(self, shape):
try:
shape = int(shape),
except TypeError:
pass
shp = list(shape)
shp[0] = timetools.Period('366d') / self.simulationstep
shp[0] = int(numpy.ceil(round(shp[0], 10)))
getattr(self.fastaccess, self.name).ratios = numpy.zeros(shp, dtype=float)
|
set_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape):\n try:\n shape = int(shape),\n except TypeError:\n pass\n shp = list(shape)\n shp[0] = timetools.Period('366d') / self.simulationstep\n shp[0] = int(numpy.ceil(round(shp[0], 10)))\n getattr(self.fastaccess, self.name).ratios = numpy.zeros(shp, dtype=float)\n",
"role": "user"
},
{
"content": "set_shape",
"role": "assistant"
}
] |
def x(self) ->Tuple[timetools.TOY, ...]:
return tuple(toy for toy, _ in self)
|
toys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[timetools.TOY, ...]:\n return tuple(toy for toy, _ in self)\n",
"role": "user"
},
{
"content": "toys",
"role": "assistant"
}
] |
def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs
) ->None:
for toy, ann_ in self:
ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output,
points=points, label=str(toy), **kwargs)
pyplot.legend()
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs\n ) ->None:\n for toy, ann_ in self:\n ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output,\n points=points, label=str(toy), **kwargs)\n pyplot.legend()\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self):
if self.subgroup is None:
variable = self.variable
else:
variable = f'{self.subgroup}.{self.variable}'
if self.series:
variable = f'{variable}.series'
return variable
|
specstring
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.subgroup is None:\n variable = self.variable\n else:\n variable = f'{self.subgroup}.{self.variable}'\n if self.series:\n variable = f'{variable}.series'\n return variable\n",
"role": "user"
},
{
"content": "specstring",
"role": "assistant"
}
] |
def x(self, selections) ->None:
self.insert_variables(self.device2target, self.targetspecs, selections)
|
collect_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, selections) ->None:\n self.insert_variables(self.device2target, self.targetspecs, selections)\n",
"role": "user"
},
{
"content": "collect_variables",
"role": "assistant"
}
] |
def x(self, device2variable, exchangespec, selections) ->None:
if self.targetspecs.master in ('node', 'nodes'):
for node in selections.nodes:
variable = self._query_nodevariable(node, exchangespec)
device2variable[node] = variable
else:
for element in self._iter_relevantelements(selections):
variable = self._query_elementvariable(element, exchangespec)
device2variable[element] = variable
|
insert_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device2variable, exchangespec, selections) ->None:\n if self.targetspecs.master in ('node', 'nodes'):\n for node in selections.nodes:\n variable = self._query_nodevariable(node, exchangespec)\n device2variable[node] = variable\n else:\n for element in self._iter_relevantelements(selections):\n variable = self._query_elementvariable(element, exchangespec)\n device2variable[element] = variable\n",
"role": "user"
},
{
"content": "insert_variables",
"role": "assistant"
}
] |
def x(self, variable, value) ->None:
try:
variable(value)
except BaseException:
objecttools.augment_excmessage(
f'When trying to update a target variable of {objecttools.classname(self)} `{self.name}` with the value(s) `{value}`'
)
|
update_variable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, variable, value) ->None:\n try:\n variable(value)\n except BaseException:\n objecttools.augment_excmessage(\n f'When trying to update a target variable of {objecttools.classname(self)} `{self.name}` with the value(s) `{value}`'\n )\n",
"role": "user"
},
{
"content": "update_variable",
"role": "assistant"
}
] |
def x(self) ->None:
value = self.value
for variable in self.device2target.values():
self.update_variable(variable, value)
|
update_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n value = self.value\n for variable in self.device2target.values():\n self.update_variable(variable, value)\n",
"role": "user"
},
{
"content": "update_variables",
"role": "assistant"
}
] |
def x(self, selections) ->None:
super().collect_variables(selections)
self.insert_variables(self.device2base, self.basespecs, selections)
|
collect_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, selections) ->None:\n super().collect_variables(selections)\n self.insert_variables(self.device2base, self.basespecs, selections)\n",
"role": "user"
},
{
"content": "collect_variables",
"role": "assistant"
}
] |
def x(self) ->None:
value = self.value
for device, target in self.device2target.items():
base = self.device2base[device]
try:
result = base.value + value
except BaseException:
raise objecttools.augment_excmessage(
f'When trying to add the value(s) `{value}` of AddItem `{self.name}` and the value(s) `{base.value}` of variable {objecttools.devicephrase(base)}'
)
self.update_variable(target, result)
|
update_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n value = self.value\n for device, target in self.device2target.items():\n base = self.device2base[device]\n try:\n result = base.value + value\n except BaseException:\n raise objecttools.augment_excmessage(\n f'When trying to add the value(s) `{value}` of AddItem `{self.name}` and the value(s) `{base.value}` of variable {objecttools.devicephrase(base)}'\n )\n self.update_variable(target, result)\n",
"role": "user"
},
{
"content": "update_variables",
"role": "assistant"
}
] |
def x(self, selections) ->None:
super().collect_variables(selections)
for device in sorted(self.device2target.keys(), key=lambda x: x.name):
self._device2name[device] = f'{device.name}_{self.target}'
for target in self.device2target.values():
self.ndim = target.NDIM
if self.targetspecs.series:
self.ndim += 1
break
|
collect_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, selections) ->None:\n super().collect_variables(selections)\n for device in sorted(self.device2target.keys(), key=lambda x: x.name):\n self._device2name[device] = f'{device.name}_{self.target}'\n for target in self.device2target.values():\n self.ndim = target.NDIM\n if self.targetspecs.series:\n self.ndim += 1\n break\n",
"role": "user"
},
{
"content": "collect_variables",
"role": "assistant"
}
] |
def x(self, idx1=None, idx2=None) ->Iterator[Tuple[str, str]]:
for device, name in self._device2name.items():
target = self.device2target[device]
if self.targetspecs.series:
values = target.series[idx1:idx2]
else:
values = target.values
if self.ndim == 0:
values = objecttools.repr_(float(values))
else:
values = objecttools.repr_list(values.tolist())
yield name, values
|
yield_name2value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx1=None, idx2=None) ->Iterator[Tuple[str, str]]:\n for device, name in self._device2name.items():\n target = self.device2target[device]\n if self.targetspecs.series:\n values = target.series[idx1:idx2]\n else:\n values = target.values\n if self.ndim == 0:\n values = objecttools.repr_(float(values))\n else:\n values = objecttools.repr_list(values.tolist())\n yield name, values\n",
"role": "user"
},
{
"content": "yield_name2value",
"role": "assistant"
}
] |
def x(d):
if int(d) == utils.get_now().isoweekday():
return _('today')
for w in WEEKDAYS:
if w[0] == int(d):
return w[1]
|
iso_day_to_weekday
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n if int(d) == utils.get_now().isoweekday():\n return _('today')\n for w in WEEKDAYS:\n if w[0] == int(d):\n return w[1]\n",
"role": "user"
},
{
"content": "iso_day_to_weekday",
"role": "assistant"
}
] |
def x(location=None, attr=None):
obj = utils.is_open(location)
if obj is False:
return False
if attr is not None:
return getattr(obj, attr)
return obj
|
is_open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(location=None, attr=None):\n obj = utils.is_open(location)\n if obj is False:\n return False\n if attr is not None:\n return getattr(obj, attr)\n return obj\n",
"role": "user"
},
{
"content": "is_open",
"role": "assistant"
}
] |
def x(location=None, attr=None):
obj = utils.is_open(location, now=datetime.datetime.now())
if obj is False:
return False
if attr is not None:
return getattr(obj, attr)
return obj
|
is_open_now
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(location=None, attr=None):\n obj = utils.is_open(location, now=datetime.datetime.now())\n if obj is False:\n return False\n if attr is not None:\n return getattr(obj, attr)\n return obj\n",
"role": "user"
},
{
"content": "is_open_now",
"role": "assistant"
}
] |
def x(location=None, concise=False):
template_name = 'openinghours/opening_hours_list.html'
days = []
if location:
ohrs = OpeningHours.objects.filter(company=location)
else:
try:
Location = utils.get_premises_model()
ohrs = Location.objects.first().openinghours_set.all()
except AttributeError:
raise Exception(
'You must define some opening hours to use the opening hours tags.'
)
ohrs.order_by('weekday', 'from_hour')
for o in ohrs:
days.append({'day_number': o.weekday, 'name': o.get_weekday_display
(), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours':
'%s%s to %s%s' % (o.from_hour.strftime('%I:%M').lstrip('0'), o.
from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M').
lstrip('0'), o.to_hour.strftime('%p').lower())})
open_days = [o.weekday for o in ohrs]
for day_number, day_name in WEEKDAYS:
if day_number not in open_days:
days.append({'day_number': day_number, 'name': day_name,
'hours': 'Closed'})
days = sorted(days, key=lambda k: k['day_number'])
if concise:
template_name = 'openinghours/opening_hours_list_concise.html'
concise_days = []
current_set = {}
for day in days:
if 'hours' not in current_set.keys():
current_set = {'day_names': [day['name']], 'hours': day[
'hours']}
elif day['hours'] != current_set['hours']:
concise_days.append(current_set)
current_set = {'day_names': [day['name']], 'hours': day[
'hours']}
else:
current_set['day_names'].append(day['name'])
concise_days.append(current_set)
for day_set in concise_days:
if len(day_set['day_names']) > 2:
day_set['day_names'] = '%s to %s' % (day_set['day_names'][0
], day_set['day_names'][-1])
elif len(day_set['day_names']) > 1:
day_set['day_names'] = '%s and %s' % (day_set['day_names'][
0], day_set['day_names'][-1])
else:
day_set['day_names'] = '%s' % day_set['day_names'][0]
days = concise_days
template = get_template(template_name)
return template.render({'days': days})
|
opening_hours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(location=None, concise=False):\n template_name = 'openinghours/opening_hours_list.html'\n days = []\n if location:\n ohrs = OpeningHours.objects.filter(company=location)\n else:\n try:\n Location = utils.get_premises_model()\n ohrs = Location.objects.first().openinghours_set.all()\n except AttributeError:\n raise Exception(\n 'You must define some opening hours to use the opening hours tags.'\n )\n ohrs.order_by('weekday', 'from_hour')\n for o in ohrs:\n days.append({'day_number': o.weekday, 'name': o.get_weekday_display\n (), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours': \n '%s%s to %s%s' % (o.from_hour.strftime('%I:%M').lstrip('0'), o.\n from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M').\n lstrip('0'), o.to_hour.strftime('%p').lower())})\n open_days = [o.weekday for o in ohrs]\n for day_number, day_name in WEEKDAYS:\n if day_number not in open_days:\n days.append({'day_number': day_number, 'name': day_name,\n 'hours': 'Closed'})\n days = sorted(days, key=lambda k: k['day_number'])\n if concise:\n template_name = 'openinghours/opening_hours_list_concise.html'\n concise_days = []\n current_set = {}\n for day in days:\n if 'hours' not in current_set.keys():\n current_set = {'day_names': [day['name']], 'hours': day[\n 'hours']}\n elif day['hours'] != current_set['hours']:\n concise_days.append(current_set)\n current_set = {'day_names': [day['name']], 'hours': day[\n 'hours']}\n else:\n current_set['day_names'].append(day['name'])\n concise_days.append(current_set)\n for day_set in concise_days:\n if len(day_set['day_names']) > 2:\n day_set['day_names'] = '%s to %s' % (day_set['day_names'][0\n ], day_set['day_names'][-1])\n elif len(day_set['day_names']) > 1:\n day_set['day_names'] = '%s and %s' % (day_set['day_names'][\n 0], day_set['day_names'][-1])\n else:\n day_set['day_names'] = '%s' % day_set['day_names'][0]\n days = concise_days\n template = get_template(template_name)\n return template.render({'days': days})\n",
"role": "user"
},
{
"content": "opening_hours",
"role": "assistant"
}
] |
def x(self):
self.prepare_network()
self.init_models()
self.load_conditions()
with hydpy.pub.options.warnmissingobsfile(False):
self.prepare_nodeseries()
self.prepare_modelseries()
self.load_inputseries()
|
prepare_everything
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.prepare_network()\n self.init_models()\n self.load_conditions()\n with hydpy.pub.options.warnmissingobsfile(False):\n self.prepare_nodeseries()\n self.prepare_modelseries()\n self.load_inputseries()\n",
"role": "user"
},
{
"content": "prepare_everything",
"role": "assistant"
}
] |
def x(self):
hydpy.pub.selections = selectiontools.Selections()
hydpy.pub.selections += hydpy.pub.networkmanager.load_files()
self.update_devices(hydpy.pub.selections.complete)
|
prepare_network
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n hydpy.pub.selections = selectiontools.Selections()\n hydpy.pub.selections += hydpy.pub.networkmanager.load_files()\n self.update_devices(hydpy.pub.selections.complete)\n",
"role": "user"
},
{
"content": "prepare_network",
"role": "assistant"
}
] |
def x(self, parameterstep=None, simulationstep=None, auxfiler=None):
self.elements.save_controls(parameterstep=parameterstep, simulationstep
=simulationstep, auxfiler=auxfiler)
|
save_controls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameterstep=None, simulationstep=None, auxfiler=None):\n self.elements.save_controls(parameterstep=parameterstep, simulationstep\n =simulationstep, auxfiler=auxfiler)\n",
"role": "user"
},
{
"content": "save_controls",
"role": "assistant"
}
] |
def x(self):
print('Number of nodes: %d' % len(self.nodes))
print('Number of elements: %d' % len(self.elements))
print('Number of end nodes: %d' % len(self.endnodes))
print('Number of distinct networks: %d' % len(self.numberofnetworks))
print('Applied node variables: %s' % ', '.join(self.variables))
|
networkproperties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n print('Number of nodes: %d' % len(self.nodes))\n print('Number of elements: %d' % len(self.elements))\n print('Number of end nodes: %d' % len(self.endnodes))\n print('Number of distinct networks: %d' % len(self.numberofnetworks))\n print('Applied node variables: %s' % ', '.join(self.variables))\n",
"role": "user"
},
{
"content": "networkproperties",
"role": "assistant"
}
] |
def x(self):
sels1 = selectiontools.Selections()
sels2 = selectiontools.Selections()
complete = selectiontools.Selection('complete', self.nodes, self.elements)
for node in self.endnodes:
sel = complete.copy(node.name).select_upstream(node)
sels1 += sel
sels2 += sel.copy(node.name)
for sel1 in sels1:
for sel2 in sels2:
if sel1.name != sel2.name:
sel1 -= sel2
for name in list(sels1.names):
if not sels1[name].elements:
del sels1[name]
return sels1
|
numberofnetworks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n sels1 = selectiontools.Selections()\n sels2 = selectiontools.Selections()\n complete = selectiontools.Selection('complete', self.nodes, self.elements)\n for node in self.endnodes:\n sel = complete.copy(node.name).select_upstream(node)\n sels1 += sel\n sels2 += sel.copy(node.name)\n for sel1 in sels1:\n for sel2 in sels2:\n if sel1.name != sel2.name:\n sel1 -= sel2\n for name in list(sels1.names):\n if not sels1[name].elements:\n del sels1[name]\n return sels1\n",
"role": "user"
},
{
"content": "numberofnetworks",
"role": "assistant"
}
] |
def x(self):
endnodes = devicetools.Nodes()
for node in self.nodes:
for element in node.exits:
if element in self.elements and node not in element.receivers:
break
else:
endnodes += node
return endnodes
|
endnodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n endnodes = devicetools.Nodes()\n for node in self.nodes:\n for element in node.exits:\n if element in self.elements and node not in element.receivers:\n break\n else:\n endnodes += node\n return endnodes\n",
"role": "user"
},
{
"content": "endnodes",
"role": "assistant"
}
] |
def x(self):
variables = set([])
for node in self.nodes:
variables.add(node.variable)
return sorted(variables)
|
variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n variables = set([])\n for node in self.nodes:\n variables.add(node.variable)\n return sorted(variables)\n",
"role": "user"
},
{
"content": "variables",
"role": "assistant"
}
] |
def x(self):
return hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate
], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate]
|
simindices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate\n ], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate]\n",
"role": "user"
},
{
"content": "simindices",
"role": "assistant"
}
] |
def x(self, idx=0):
self.elements.open_files(idx=idx)
self.nodes.open_files(idx=idx)
|
open_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx=0):\n self.elements.open_files(idx=idx)\n self.nodes.open_files(idx=idx)\n",
"role": "user"
},
{
"content": "open_files",
"role": "assistant"
}
] |
def x(self, selection=None):
if selection is not None:
self.nodes = selection.nodes
self.elements = selection.elements
self._update_deviceorder()
|
update_devices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, selection=None):\n if selection is not None:\n self.nodes = selection.nodes\n self.elements = selection.elements\n self._update_deviceorder()\n",
"role": "user"
},
{
"content": "update_devices",
"role": "assistant"
}
] |
def x(self):
funcs = []
for node in self.nodes:
if node.deploymode == 'oldsim':
funcs.append(node.sequences.fastaccess.load_simdata)
elif node.deploymode == 'obs':
funcs.append(node.sequences.fastaccess.load_obsdata)
for node in self.nodes:
if node.deploymode != 'oldsim':
funcs.append(node.reset)
for device in self.deviceorder:
if isinstance(device, devicetools.Element):
funcs.append(device.model.doit)
for element in self.elements:
if element.senders:
funcs.append(element.model.update_senders)
for element in self.elements:
if element.receivers:
funcs.append(element.model.update_receivers)
for element in self.elements:
funcs.append(element.model.save_data)
for node in self.nodes:
if node.deploymode != 'oldsim':
funcs.append(node.sequences.fastaccess.save_simdata)
return funcs
|
methodorder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n funcs = []\n for node in self.nodes:\n if node.deploymode == 'oldsim':\n funcs.append(node.sequences.fastaccess.load_simdata)\n elif node.deploymode == 'obs':\n funcs.append(node.sequences.fastaccess.load_obsdata)\n for node in self.nodes:\n if node.deploymode != 'oldsim':\n funcs.append(node.reset)\n for device in self.deviceorder:\n if isinstance(device, devicetools.Element):\n funcs.append(device.model.doit)\n for element in self.elements:\n if element.senders:\n funcs.append(element.model.update_senders)\n for element in self.elements:\n if element.receivers:\n funcs.append(element.model.update_receivers)\n for element in self.elements:\n funcs.append(element.model.save_data)\n for node in self.nodes:\n if node.deploymode != 'oldsim':\n funcs.append(node.sequences.fastaccess.save_simdata)\n return funcs\n",
"role": "user"
},
{
"content": "methodorder",
"role": "assistant"
}
] |
def x(self):
idx_start, idx_end = self.simindices
self.open_files(idx_start)
methodorder = self.methodorder
for idx in printtools.progressbar(range(idx_start, idx_end)):
for func in methodorder:
func(idx)
self.close_files()
|
doit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n idx_start, idx_end = self.simindices\n self.open_files(idx_start)\n methodorder = self.methodorder\n for idx in printtools.progressbar(range(idx_start, idx_end)):\n for func in methodorder:\n func(idx)\n self.close_files()\n",
"role": "user"
},
{
"content": "doit",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
inl = self.sequences.inlets.fastaccess
flu.inflow = inl.q[0]
|
pic_inflow_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n inl = self.sequences.inlets.fastaccess\n flu.inflow = inl.q[0]\n",
"role": "user"
},
{
"content": "pic_inflow_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
inl = self.sequences.inlets.fastaccess
flu.inflow = inl.q[0] + inl.s[0] + inl.r[0]
|
pic_inflow_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n inl = self.sequences.inlets.fastaccess\n flu.inflow = inl.q[0] + inl.s[0] + inl.r[0]\n",
"role": "user"
},
{
"content": "pic_inflow_v2",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
rec = self.sequences.receivers.fastaccess
flu.totalremotedischarge = rec.q[0]
|
pic_totalremotedischarge_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n rec = self.sequences.receivers.fastaccess\n flu.totalremotedischarge = rec.q[0]\n",
"role": "user"
},
{
"content": "pic_totalremotedischarge_v1",
"role": "assistant"
}
] |
def x(self):
log = self.sequences.logs.fastaccess
rec = self.sequences.receivers.fastaccess
log.loggedrequiredremoterelease[0] = rec.d[0]
|
pic_loggedrequiredremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedrequiredremoterelease[0] = rec.d[0]\n",
"role": "user"
},
{
"content": "pic_loggedrequiredremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
log = self.sequences.logs.fastaccess
rec = self.sequences.receivers.fastaccess
log.loggedrequiredremoterelease[0] = rec.s[0]
|
pic_loggedrequiredremoterelease_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedrequiredremoterelease[0] = rec.s[0]\n",
"role": "user"
},
{
"content": "pic_loggedrequiredremoterelease_v2",
"role": "assistant"
}
] |
def x(self):
log = self.sequences.logs.fastaccess
rec = self.sequences.receivers.fastaccess
log.loggedallowedremoterelieve[0] = rec.r[0]
|
pic_loggedallowedremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log = self.sequences.logs.fastaccess\n rec = self.sequences.receivers.fastaccess\n log.loggedallowedremoterelieve[0] = rec.r[0]\n",
"role": "user"
},
{
"content": "pic_loggedallowedremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(con.nmblogentries - 1, 0, -1):
log.loggedtotalremotedischarge[idx] = log.loggedtotalremotedischarge[
idx - 1]
log.loggedtotalremotedischarge[0] = flu.totalremotedischarge
|
update_loggedtotalremotedischarge_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(con.nmblogentries - 1, 0, -1):\n log.loggedtotalremotedischarge[idx] = log.loggedtotalremotedischarge[\n idx - 1]\n log.loggedtotalremotedischarge[0] = flu.totalremotedischarge\n",
"role": "user"
},
{
"content": "update_loggedtotalremotedischarge_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
new = self.sequences.states.fastaccess_new
aid = self.sequences.aides.fastaccess
con.watervolume2waterlevel.inputs[0] = new.watervolume
con.watervolume2waterlevel.process_actual_input()
aid.waterlevel = con.watervolume2waterlevel.outputs[0]
|
calc_waterlevel_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n new = self.sequences.states.fastaccess_new\n aid = self.sequences.aides.fastaccess\n con.watervolume2waterlevel.inputs[0] = new.watervolume\n con.watervolume2waterlevel.process_actual_input()\n aid.waterlevel = con.watervolume2waterlevel.outputs[0]\n",
"role": "user"
},
{
"content": "calc_waterlevel_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
toy = der.toy[self.idx_sim]
flu.allowedremoterelieve = con.highestremoterelieve[toy
] * smoothutils.smooth_logistic1(con.waterlevelrelievethreshold[toy
] - aid.waterlevel, der.waterlevelrelievesmoothpar[toy])
|
calc_allowedremoterelieve_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n toy = der.toy[self.idx_sim]\n flu.allowedremoterelieve = con.highestremoterelieve[toy\n ] * smoothutils.smooth_logistic1(con.waterlevelrelievethreshold[toy\n ] - aid.waterlevel, der.waterlevelrelievesmoothpar[toy])\n",
"role": "user"
},
{
"content": "calc_allowedremoterelieve_v2",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
toy = der.toy[self.idx_sim]
flu.requiredremotesupply = con.highestremotesupply[toy
] * smoothutils.smooth_logistic1(con.waterlevelsupplythreshold[toy] -
aid.waterlevel, der.waterlevelsupplysmoothpar[toy])
|
calc_requiredremotesupply_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n toy = der.toy[self.idx_sim]\n flu.requiredremotesupply = con.highestremotesupply[toy\n ] * smoothutils.smooth_logistic1(con.waterlevelsupplythreshold[toy] -\n aid.waterlevel, der.waterlevelsupplysmoothpar[toy])\n",
"role": "user"
},
{
"content": "calc_requiredremotesupply_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
flu.naturalremotedischarge = 0.0
for idx in range(con.nmblogentries):
flu.naturalremotedischarge += log.loggedtotalremotedischarge[idx
] - log.loggedoutflow[idx]
if flu.naturalremotedischarge > 0.0:
flu.naturalremotedischarge /= con.nmblogentries
else:
flu.naturalremotedischarge = 0.0
|
calc_naturalremotedischarge_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.naturalremotedischarge = 0.0\n for idx in range(con.nmblogentries):\n flu.naturalremotedischarge += log.loggedtotalremotedischarge[idx\n ] - log.loggedoutflow[idx]\n if flu.naturalremotedischarge > 0.0:\n flu.naturalremotedischarge /= con.nmblogentries\n else:\n flu.naturalremotedischarge = 0.0\n",
"role": "user"
},
{
"content": "calc_naturalremotedischarge_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim]
] - flu.naturalremotedischarge, 0.0)
|
calc_remotedemand_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim]\n ] - flu.naturalremotedischarge, 0.0)\n",
"role": "user"
},
{
"content": "calc_remotedemand_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
flu.remotefailure = 0
for idx in range(con.nmblogentries):
flu.remotefailure -= log.loggedtotalremotedischarge[idx]
flu.remotefailure /= con.nmblogentries
flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]
|
calc_remotefailure_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.remotefailure = 0\n for idx in range(con.nmblogentries):\n flu.remotefailure -= log.loggedtotalremotedischarge[idx]\n flu.remotefailure /= con.nmblogentries\n flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]\n",
"role": "user"
},
{
"content": "calc_remotefailure_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
flu.requiredremoterelease = flu.remotedemand + con.remotedischargesafety[
der.toy[self.idx_sim]] * smoothutils.smooth_logistic1(flu.
remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]])
|
calc_requiredremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredremoterelease = flu.remotedemand + con.remotedischargesafety[\n der.toy[self.idx_sim]] * smoothutils.smooth_logistic1(flu.\n remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]])\n",
"role": "user"
},
{
"content": "calc_requiredremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
flu.requiredremoterelease = log.loggedrequiredremoterelease[0]
|
calc_requiredremoterelease_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.requiredremoterelease = log.loggedrequiredremoterelease[0]\n",
"role": "user"
},
{
"content": "calc_requiredremoterelease_v2",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]
|
calc_allowedremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]\n",
"role": "user"
},
{
"content": "calc_allowedremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.
idx_sim]]
flu.requiredrelease = flu.requiredrelease + smoothutils.smooth_logistic2(
flu.requiredremoterelease - flu.requiredrelease, der.
neardischargeminimumsmoothpar2[der.toy[self.idx_sim]])
|
calc_requiredrelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.\n idx_sim]]\n flu.requiredrelease = flu.requiredrelease + smoothutils.smooth_logistic2(\n flu.requiredremoterelease - flu.requiredrelease, der.\n neardischargeminimumsmoothpar2[der.toy[self.idx_sim]])\n",
"role": "user"
},
{
"content": "calc_requiredrelease_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.
idx_sim]]
|
calc_requiredrelease_v2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.requiredrelease = con.neardischargeminimumthreshold[der.toy[self.\n idx_sim]]\n",
"role": "user"
},
{
"content": "calc_requiredrelease_v2",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
con.waterlevel2possibleremoterelieve.inputs[0] = aid.waterlevel
con.waterlevel2possibleremoterelieve.process_actual_input()
flu.possibleremoterelieve = con.waterlevel2possibleremoterelieve.outputs[0]
|
calc_possibleremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n con.waterlevel2possibleremoterelieve.inputs[0] = aid.waterlevel\n con.waterlevel2possibleremoterelieve.process_actual_input()\n flu.possibleremoterelieve = con.waterlevel2possibleremoterelieve.outputs[0]\n",
"role": "user"
},
{
"content": "calc_possibleremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
flu = self.sequences.fluxes.fastaccess
d_smoothpar = con.remoterelievetolerance * flu.allowedremoterelieve
flu.actualremoterelieve = smoothutils.smooth_min1(flu.
possibleremoterelieve, flu.allowedremoterelieve, d_smoothpar)
for dummy in range(5):
d_smoothpar /= 5.0
flu.actualremoterelieve = smoothutils.smooth_max1(flu.
actualremoterelieve, 0.0, d_smoothpar)
d_smoothpar /= 5.0
flu.actualremoterelieve = smoothutils.smooth_min1(flu.
actualremoterelieve, flu.possibleremoterelieve, d_smoothpar)
flu.actualremoterelieve = min(flu.actualremoterelieve, flu.
possibleremoterelieve)
flu.actualremoterelieve = min(flu.actualremoterelieve, flu.
allowedremoterelieve)
flu.actualremoterelieve = max(flu.actualremoterelieve, 0.0)
|
calc_actualremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n d_smoothpar = con.remoterelievetolerance * flu.allowedremoterelieve\n flu.actualremoterelieve = smoothutils.smooth_min1(flu.\n possibleremoterelieve, flu.allowedremoterelieve, d_smoothpar)\n for dummy in range(5):\n d_smoothpar /= 5.0\n flu.actualremoterelieve = smoothutils.smooth_max1(flu.\n actualremoterelieve, 0.0, d_smoothpar)\n d_smoothpar /= 5.0\n flu.actualremoterelieve = smoothutils.smooth_min1(flu.\n actualremoterelieve, flu.possibleremoterelieve, d_smoothpar)\n flu.actualremoterelieve = min(flu.actualremoterelieve, flu.\n possibleremoterelieve)\n flu.actualremoterelieve = min(flu.actualremoterelieve, flu.\n allowedremoterelieve)\n flu.actualremoterelieve = max(flu.actualremoterelieve, 0.0)\n",
"role": "user"
},
{
"content": "calc_actualremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
if con.restricttargetedrelease:
flu.targetedrelease = smoothutils.smooth_logistic1(flu.inflow - con
.neardischargeminimumthreshold[der.toy[self.idx_sim]], der.
neardischargeminimumsmoothpar1[der.toy[self.idx_sim]])
flu.targetedrelease = flu.targetedrelease * flu.requiredrelease + (
1.0 - flu.targetedrelease) * flu.inflow
else:
flu.targetedrelease = flu.requiredrelease
|
calc_targetedrelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n if con.restricttargetedrelease:\n flu.targetedrelease = smoothutils.smooth_logistic1(flu.inflow - con\n .neardischargeminimumthreshold[der.toy[self.idx_sim]], der.\n neardischargeminimumsmoothpar1[der.toy[self.idx_sim]])\n flu.targetedrelease = flu.targetedrelease * flu.requiredrelease + (\n 1.0 - flu.targetedrelease) * flu.inflow\n else:\n flu.targetedrelease = flu.requiredrelease\n",
"role": "user"
},
{
"content": "calc_targetedrelease_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
flu.actualrelease = flu.targetedrelease * smoothutils.smooth_logistic1(
aid.waterlevel - con.waterlevelminimumthreshold, der.
waterlevelminimumsmoothpar)
|
calc_actualrelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n flu.actualrelease = flu.targetedrelease * smoothutils.smooth_logistic1(\n aid.waterlevel - con.waterlevelminimumthreshold, der.\n waterlevelminimumsmoothpar)\n",
"role": "user"
},
{
"content": "calc_actualrelease_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
flu.missingremoterelease = max(flu.requiredremoterelease - flu.
actualrelease, 0.0)
|
calc_missingremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n flu.missingremoterelease = max(flu.requiredremoterelease - flu.\n actualrelease, 0.0)\n",
"role": "user"
},
{
"content": "calc_missingremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
flu.actualremoterelease = (flu.requiredremoterelease * smoothutils.
smooth_logistic1(aid.waterlevel - con.
waterlevelminimumremotethreshold, der.waterlevelminimumremotesmoothpar)
)
|
calc_actualremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n flu.actualremoterelease = (flu.requiredremoterelease * smoothutils.\n smooth_logistic1(aid.waterlevel - con.\n waterlevelminimumremotethreshold, der.waterlevelminimumremotesmoothpar)\n )\n",
"role": "user"
},
{
"content": "calc_actualremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
d_smooth = der.highestremotesmoothpar
d_highest = con.highestremotedischarge
d_value = smoothutils.smooth_min1(flu.actualremoterelieve, d_highest,
d_smooth)
for dummy in range(5):
d_smooth /= 5.0
d_value = smoothutils.smooth_max1(d_value, 0.0, d_smooth)
d_smooth /= 5.0
d_value = smoothutils.smooth_min1(d_value, d_highest, d_smooth)
d_value = min(d_value, flu.actualremoterelieve)
d_value = min(d_value, d_highest)
flu.actualremoterelieve = max(d_value, 0.0)
|
update_actualremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n d_smooth = der.highestremotesmoothpar\n d_highest = con.highestremotedischarge\n d_value = smoothutils.smooth_min1(flu.actualremoterelieve, d_highest,\n d_smooth)\n for dummy in range(5):\n d_smooth /= 5.0\n d_value = smoothutils.smooth_max1(d_value, 0.0, d_smooth)\n d_smooth /= 5.0\n d_value = smoothutils.smooth_min1(d_value, d_highest, d_smooth)\n d_value = min(d_value, flu.actualremoterelieve)\n d_value = min(d_value, d_highest)\n flu.actualremoterelieve = max(d_value, 0.0)\n",
"role": "user"
},
{
"content": "update_actualremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
aid = self.sequences.aides.fastaccess
con.waterlevel2flooddischarge.inputs[0] = aid.waterlevel
con.waterlevel2flooddischarge.process_actual_input(der.toy[self.idx_sim])
flu.flooddischarge = con.waterlevel2flooddischarge.outputs[0]
|
calc_flooddischarge_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n con.waterlevel2flooddischarge.inputs[0] = aid.waterlevel\n con.waterlevel2flooddischarge.process_actual_input(der.toy[self.idx_sim])\n flu.flooddischarge = con.waterlevel2flooddischarge.outputs[0]\n",
"role": "user"
},
{
"content": "calc_flooddischarge_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
flu.outflow = max(flu.actualrelease + flu.flooddischarge, 0.0)
|
calc_outflow_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n flu.outflow = max(flu.actualrelease + flu.flooddischarge, 0.0)\n",
"role": "user"
},
{
"content": "calc_outflow_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
old = self.sequences.states.fastaccess_old
new = self.sequences.states.fastaccess_new
new.watervolume = old.watervolume + der.seconds * (flu.inflow - flu.outflow
) / 1000000.0
|
update_watervolume_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n old = self.sequences.states.fastaccess_old\n new = self.sequences.states.fastaccess_new\n new.watervolume = old.watervolume + der.seconds * (flu.inflow - flu.outflow\n ) / 1000000.0\n",
"role": "user"
},
{
"content": "update_watervolume_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
out = self.sequences.outlets.fastaccess
out.q[0] += flu.outflow
|
pass_outflow_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.q[0] += flu.outflow\n",
"role": "user"
},
{
"content": "pass_outflow_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
out = self.sequences.outlets.fastaccess
out.s[0] += flu.actualremoterelease
|
pass_actualremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.s[0] += flu.actualremoterelease\n",
"role": "user"
},
{
"content": "pass_actualremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
out = self.sequences.outlets.fastaccess
out.r[0] += flu.actualremoterelieve
|
pass_actualremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.r[0] += flu.actualremoterelieve\n",
"role": "user"
},
{
"content": "pass_actualremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
sen = self.sequences.senders.fastaccess
sen.d[0] += flu.missingremoterelease
|
pass_missingremoterelease_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.d[0] += flu.missingremoterelease\n",
"role": "user"
},
{
"content": "pass_missingremoterelease_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
sen = self.sequences.senders.fastaccess
sen.r[0] += flu.allowedremoterelieve
|
pass_allowedremoterelieve_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.r[0] += flu.allowedremoterelieve\n",
"role": "user"
},
{
"content": "pass_allowedremoterelieve_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
sen = self.sequences.senders.fastaccess
sen.s[0] += flu.requiredremotesupply
|
pass_requiredremotesupply_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n sen = self.sequences.senders.fastaccess\n sen.s[0] += flu.requiredremotesupply\n",
"role": "user"
},
{
"content": "pass_requiredremotesupply_v1",
"role": "assistant"
}
] |
def x(self):
con = self.parameters.control.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(con.nmblogentries - 1, 0, -1):
log.loggedoutflow[idx] = log.loggedoutflow[idx - 1]
log.loggedoutflow[0] = flu.outflow
|
update_loggedoutflow_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(con.nmblogentries - 1, 0, -1):\n log.loggedoutflow[idx] = log.loggedoutflow[idx - 1]\n log.loggedoutflow[0] = flu.outflow\n",
"role": "user"
},
{
"content": "update_loggedoutflow_v1",
"role": "assistant"
}
] |
def x(self):
coefs = []
sum_coefs = 0.0
moment1 = self.iuh.moment1
for t in itertools.count(0.0, 1.0):
points = (moment1 % 1,) if t <= moment1 <= t + 2.0 else ()
try:
coef = integrate.quad(self._quad, 0.0, 1.0, args=(t,), points=
points)[0]
except integrate.IntegrationWarning:
idx = int(moment1)
coefs = numpy.zeros(idx + 2, dtype=float)
weight = moment1 - idx
coefs[idx] = 1.0 - weight
coefs[idx + 1] = weight
self.coefs = coefs
warnings.warn(
'During the determination of the MA coefficients corresponding to the instantaneous unit hydrograph `%s` a numerical integration problem occurred. Please check the calculated coefficients: %s.'
% (repr(self.iuh), objecttools.repr_values(coefs)))
break
sum_coefs += coef
if sum_coefs > 0.9 and coef < self.smallest_coeff:
coefs = numpy.array(coefs)
coefs /= numpy.sum(coefs)
self.coefs = coefs
break
else:
coefs.append(coef)
|
update_coefs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n coefs = []\n sum_coefs = 0.0\n moment1 = self.iuh.moment1\n for t in itertools.count(0.0, 1.0):\n points = (moment1 % 1,) if t <= moment1 <= t + 2.0 else ()\n try:\n coef = integrate.quad(self._quad, 0.0, 1.0, args=(t,), points=\n points)[0]\n except integrate.IntegrationWarning:\n idx = int(moment1)\n coefs = numpy.zeros(idx + 2, dtype=float)\n weight = moment1 - idx\n coefs[idx] = 1.0 - weight\n coefs[idx + 1] = weight\n self.coefs = coefs\n warnings.warn(\n 'During the determination of the MA coefficients corresponding to the instantaneous unit hydrograph `%s` a numerical integration problem occurred. Please check the calculated coefficients: %s.'\n % (repr(self.iuh), objecttools.repr_values(coefs)))\n break\n sum_coefs += coef\n if sum_coefs > 0.9 and coef < self.smallest_coeff:\n coefs = numpy.array(coefs)\n coefs /= numpy.sum(coefs)\n self.coefs = coefs\n break\n else:\n coefs.append(coef)\n",
"role": "user"
},
{
"content": "update_coefs",
"role": "assistant"
}
] |
def x(self):
coefs = self.coefs
old_dc = coefs[1] - coefs[0]
for idx in range(self.order - 2):
new_dc = coefs[idx + 2] - coefs[idx + 1]
if old_dc < 0.0 and new_dc > old_dc:
return idx, coefs[idx]
old_dc = new_dc
raise RuntimeError(
'Not able to detect a turning point in the impulse response defined by the MA coefficients %s.'
% objecttools.repr_values(coefs))
|
turningpoint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n coefs = self.coefs\n old_dc = coefs[1] - coefs[0]\n for idx in range(self.order - 2):\n new_dc = coefs[idx + 2] - coefs[idx + 1]\n if old_dc < 0.0 and new_dc > old_dc:\n return idx, coefs[idx]\n old_dc = new_dc\n raise RuntimeError(\n 'Not able to detect a turning point in the impulse response defined by the MA coefficients %s.'\n % objecttools.repr_values(coefs))\n",
"role": "user"
},
{
"content": "turningpoint",
"role": "assistant"
}
] |
def x(self):
moment1 = statstools.calc_mean_time(self.delays, self.coefs)
moment2 = statstools.calc_mean_time_deviation(self.delays, self.coefs,
moment1)
return numpy.array([moment1, moment2])
|
moments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n moment1 = statstools.calc_mean_time(self.delays, self.coefs)\n moment2 = statstools.calc_mean_time_deviation(self.delays, self.coefs,\n moment1)\n return numpy.array([moment1, moment2])\n",
"role": "user"
},
{
"content": "moments",
"role": "assistant"
}
] |
def x(self):
return min(self.max_ar_order, self.ma.order - self.ma.turningpoint[0] - 1)
|
effective_max_ar_order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return min(self.max_ar_order, self.ma.order - self.ma.turningpoint[0] - 1)\n",
"role": "user"
},
{
"content": "effective_max_ar_order",
"role": "assistant"
}
] |
def x(self):
del self.ar_coefs
for ar_order in range(1, self.effective_max_ar_order + 1):
self.calc_all_ar_coefs(ar_order, self.ma)
if self._rel_rmse < self.max_rel_rmse:
break
else:
with hydpy.pub.options.reprdigits(12):
raise RuntimeError(
f'Method `update_ar_coefs` is not able to determine the AR coefficients of the ARMA model with the desired accuracy. You can either set the tolerance value `max_rel_rmse` to a higher value or increase the allowed `max_ar_order`. An accuracy of `{objecttools.repr_(self._rel_rmse)}` has been reached using `{self.effective_max_ar_order}` coefficients.'
)
|
update_ar_coefs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n del self.ar_coefs\n for ar_order in range(1, self.effective_max_ar_order + 1):\n self.calc_all_ar_coefs(ar_order, self.ma)\n if self._rel_rmse < self.max_rel_rmse:\n break\n else:\n with hydpy.pub.options.reprdigits(12):\n raise RuntimeError(\n f'Method `update_ar_coefs` is not able to determine the AR coefficients of the ARMA model with the desired accuracy. You can either set the tolerance value `max_rel_rmse` to a higher value or increase the allowed `max_ar_order`. An accuracy of `{objecttools.repr_(self._rel_rmse)}` has been reached using `{self.effective_max_ar_order}` coefficients.'\n )\n",
"role": "user"
},
{
"content": "update_ar_coefs",
"role": "assistant"
}
] |
def x(self):
return numpy.sum(numpy.abs(self.moments - self.ma.moments))
|
dev_moments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return numpy.sum(numpy.abs(self.moments - self.ma.moments))\n",
"role": "user"
},
{
"content": "dev_moments",
"role": "assistant"
}
] |
def x(self):
sum_coefs = self.sum_coefs
self.ar_coefs /= sum_coefs
self.ma_coefs /= sum_coefs
|
norm_coefs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n sum_coefs = self.sum_coefs\n self.ar_coefs /= sum_coefs\n self.ma_coefs /= sum_coefs\n",
"role": "user"
},
{
"content": "norm_coefs",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.