source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self) ->None: kwargs = {} for keyword in ('flattennetcdf', 'isolatenetcdf', 'timeaxisnetcdf'): argument = getattr(hydpy.pub.options, keyword, None) if argument is not None: kwargs[keyword[:-6]] = argument hydpy.pub.sequencemanager.open_netcdf_reader(**kwargs) self.prepare_sequencemanager() for sequence in self._iterate_sequences(): sequence.load_ext() hydpy.pub.sequencemanager.close_netcdf_reader()
load_series
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n kwargs = {}\n for keyword in ('flattennetcdf', 'isolatenetcdf', 'timeaxisnetcdf'):\n argument = getattr(hydpy.pub.options, keyword, None)\n if argument is not None:\n kwargs[keyword[:-6]] = argument\n hydpy.pub.sequencemanager.open_netcdf_reader(**kwargs)\n self.prepare_sequencemanager()\n for sequence in self._iterate_sequences():\n sequence.load_ext()\n hydpy.pub.sequencemanager.close_netcdf_reader()\n", "role": "user" }, { "content": "load_series", "role": "assistant" } ]
def x(self) ->None: hydpy.pub.sequencemanager.open_netcdf_writer(flatten=hydpy.pub.options. flattennetcdf, isolate=hydpy.pub.options.isolatenetcdf) self.prepare_sequencemanager() for sequence in self._iterate_sequences(): sequence.save_ext() hydpy.pub.sequencemanager.close_netcdf_writer()
save_series
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n hydpy.pub.sequencemanager.open_netcdf_writer(flatten=hydpy.pub.options.\n flattennetcdf, isolate=hydpy.pub.options.isolatenetcdf)\n self.prepare_sequencemanager()\n for sequence in self._iterate_sequences():\n sequence.save_ext()\n hydpy.pub.sequencemanager.close_netcdf_writer()\n", "role": "user" }, { "content": "save_series", "role": "assistant" } ]
def x(self): target = f'{self.master.name}.{self.name}' if self.master.name == 'nodes': master = self.master.name itemgroup = self.master.master.name else: master = self.master.master.name itemgroup = self.master.master.master.name itemclass = _ITEMGROUP2ITEMCLASS[itemgroup] if itemgroup == 'getitems': return self._get_getitem(target, master, itemclass) return self._get_changeitem(target, master, itemclass, itemgroup)
item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n target = f'{self.master.name}.{self.name}'\n if self.master.name == 'nodes':\n master = self.master.name\n itemgroup = self.master.master.name\n else:\n master = self.master.master.name\n itemgroup = self.master.master.master.name\n itemclass = _ITEMGROUP2ITEMCLASS[itemgroup]\n if itemgroup == 'getitems':\n return self._get_getitem(target, master, itemclass)\n return self._get_changeitem(target, master, itemclass, itemgroup)\n", "role": "user" }, { "content": "item", "role": "assistant" } ]
def x(cls) ->None: with open(cls.filepath_source) as file_: template = file_.read() template = template.replace('<!--include model sequence groups-->', cls .get_insertion()) template = template.replace('<!--include exchange items-->', cls. get_exchangeinsertion()) with open(cls.filepath_target, 'w') as file_: file_.write(template)
write_xsd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls) ->None:\n with open(cls.filepath_source) as file_:\n template = file_.read()\n template = template.replace('<!--include model sequence groups-->', cls\n .get_insertion())\n template = template.replace('<!--include exchange items-->', cls.\n get_exchangeinsertion())\n with open(cls.filepath_target, 'w') as file_:\n file_.write(template)\n", "role": "user" }, { "content": "write_xsd", "role": "assistant" } ]
def x() ->List[str]: return sorted(str(fn.split('.')[0]) for fn in os.listdir(models. __path__[0]) if fn.endswith('.py') and fn != '__init__.py')
get_modelnames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x() ->List[str]:\n return sorted(str(fn.split('.')[0]) for fn in os.listdir(models.\n __path__[0]) if fn.endswith('.py') and fn != '__init__.py')\n", "role": "user" }, { "content": "get_modelnames", "role": "assistant" } ]
def x(cls) ->str: indent = 1 blanks = ' ' * (indent + 4) subs = [] for name in cls.get_modelnames(): subs.extend([f'{blanks}<element name="{name}"', f'{blanks} substitutionGroup="hpcb:sequenceGroup"', f'{blanks} type="hpcb:{name}Type"/>', f'', f'{blanks}<complexType name="{name}Type">', f'{blanks} <complexContent>', f'{blanks} <extension base="hpcb:sequenceGroupType">', f'{blanks} <sequence>']) model = importtools.prepare_model(name) subs.append(cls.get_modelinsertion(model, indent + 4)) subs.extend([f'{blanks} </sequence>', f'{blanks} </extension>', f'{blanks} </complexContent>', f'{blanks}</complexType>', f'']) return '\n'.join(subs)
get_insertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls) ->str:\n indent = 1\n blanks = ' ' * (indent + 4)\n subs = []\n for name in cls.get_modelnames():\n subs.extend([f'{blanks}<element name=\"{name}\"',\n f'{blanks} substitutionGroup=\"hpcb:sequenceGroup\"',\n f'{blanks} type=\"hpcb:{name}Type\"/>', f'',\n f'{blanks}<complexType name=\"{name}Type\">',\n f'{blanks} <complexContent>',\n f'{blanks} <extension base=\"hpcb:sequenceGroupType\">',\n f'{blanks} <sequence>'])\n model = importtools.prepare_model(name)\n subs.append(cls.get_modelinsertion(model, indent + 4))\n subs.extend([f'{blanks} </sequence>',\n f'{blanks} </extension>',\n f'{blanks} </complexContent>', f'{blanks}</complexType>', f''])\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_insertion", "role": "assistant" } ]
def x(cls, model, indent) ->str: texts = [] for name in ('inputs', 'fluxes', 'states'): subsequences = getattr(model.sequences, name, None) if subsequences: texts.append(cls.get_subsequencesinsertion(subsequences, indent)) return '\n'.join(texts)
get_modelinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, model, indent) ->str:\n texts = []\n for name in ('inputs', 'fluxes', 'states'):\n subsequences = getattr(model.sequences, name, None)\n if subsequences:\n texts.append(cls.get_subsequencesinsertion(subsequences, indent))\n return '\\n'.join(texts)\n", "role": "user" }, { "content": "get_modelinsertion", "role": "assistant" } ]
def x(cls, subsequences, indent) ->str: blanks = ' ' * (indent * 4) lines = [f'{blanks}<element name="{subsequences.name}"', f'{blanks} minOccurs="0">', f'{blanks} <complexType>', f'{blanks} <sequence>'] for sequence in subsequences: lines.append(cls.get_sequenceinsertion(sequence, indent + 3)) lines.extend([f'{blanks} </sequence>', f'{blanks} </complexType>', f'{blanks}</element>']) return '\n'.join(lines)
get_subsequencesinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, subsequences, indent) ->str:\n blanks = ' ' * (indent * 4)\n lines = [f'{blanks}<element name=\"{subsequences.name}\"',\n f'{blanks} minOccurs=\"0\">', f'{blanks} <complexType>',\n f'{blanks} <sequence>']\n for sequence in subsequences:\n lines.append(cls.get_sequenceinsertion(sequence, indent + 3))\n lines.extend([f'{blanks} </sequence>',\n f'{blanks} </complexType>', f'{blanks}</element>'])\n return '\\n'.join(lines)\n", "role": "user" }, { "content": "get_subsequencesinsertion", "role": "assistant" } ]
def x(cls): indent = 1 subs = [cls.get_mathitemsinsertion(indent)] for groupname in ('setitems', 'additems', 'getitems'): subs.append(cls.get_itemsinsertion(groupname, indent)) subs.append(cls.get_itemtypesinsertion(groupname, indent)) return '\n'.join(subs)
get_exchangeinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n indent = 1\n subs = [cls.get_mathitemsinsertion(indent)]\n for groupname in ('setitems', 'additems', 'getitems'):\n subs.append(cls.get_itemsinsertion(groupname, indent))\n subs.append(cls.get_itemtypesinsertion(groupname, indent))\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_exchangeinsertion", "role": "assistant" } ]
def x(cls, indent) ->str: blanks = ' ' * (indent * 4) subs = [] for modelname in cls.get_modelnames(): model = importtools.prepare_model(modelname) subs.extend([ f'{blanks}<complexType name="{modelname}_mathitemType">', f'{blanks} <complexContent>', f'{blanks} <extension base="hpcb:setitemType">', f'{blanks} <choice>']) for subvars in cls._get_subvars(model): for var in subvars: subs.append( f'{blanks} <element name="{subvars.name}.{var.name}"/>' ) subs.extend([f'{blanks} </choice>', f'{blanks} </extension>', f'{blanks} </complexContent>', f'{blanks}</complexType>', f'']) return '\n'.join(subs)
get_mathitemsinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, indent) ->str:\n blanks = ' ' * (indent * 4)\n subs = []\n for modelname in cls.get_modelnames():\n model = importtools.prepare_model(modelname)\n subs.extend([\n f'{blanks}<complexType name=\"{modelname}_mathitemType\">',\n f'{blanks} <complexContent>',\n f'{blanks} <extension base=\"hpcb:setitemType\">',\n f'{blanks} <choice>'])\n for subvars in cls._get_subvars(model):\n for var in subvars:\n subs.append(\n f'{blanks} <element name=\"{subvars.name}.{var.name}\"/>'\n )\n subs.extend([f'{blanks} </choice>',\n f'{blanks} </extension>',\n f'{blanks} </complexContent>', f'{blanks}</complexType>', f''])\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_mathitemsinsertion", "role": "assistant" } ]
def x(cls, itemgroup, indent) ->str: blanks = ' ' * (indent * 4) subs = [] subs.extend([f'{blanks}<element name="{itemgroup}">', f'{blanks} <complexType>', f'{blanks} <sequence>', f'{blanks} <element ref="hpcb:selections"', f'{blanks} minOccurs="0"/>', f'{blanks} <element ref="hpcb:devices"', f'{blanks} minOccurs="0"/>']) for modelname in cls.get_modelnames(): type_ = cls._get_itemstype(modelname, itemgroup) subs.append(f'{blanks} <element name="{modelname}"') subs.append(f'{blanks} type="hpcb:{type_}"') subs.append(f'{blanks} minOccurs="0"') subs.append(f'{blanks} maxOccurs="unbounded"/>') if itemgroup in ('setitems', 'getitems'): type_ = f'nodes_{itemgroup}Type' subs.append(f'{blanks} <element name="nodes"') subs.append(f'{blanks} type="hpcb:{type_}"') subs.append(f'{blanks} minOccurs="0"') subs.append(f'{blanks} maxOccurs="unbounded"/>') subs.extend([f'{blanks} </sequence>', f'{blanks} <attribute name="info" type="string"/>', f'{blanks} </complexType>', f'{blanks}</element>', f'']) return '\n'.join(subs)
get_itemsinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, indent) ->str:\n blanks = ' ' * (indent * 4)\n subs = []\n subs.extend([f'{blanks}<element name=\"{itemgroup}\">',\n f'{blanks} <complexType>', f'{blanks} <sequence>',\n f'{blanks} <element ref=\"hpcb:selections\"',\n f'{blanks} minOccurs=\"0\"/>',\n f'{blanks} <element ref=\"hpcb:devices\"',\n f'{blanks} minOccurs=\"0\"/>'])\n for modelname in cls.get_modelnames():\n type_ = cls._get_itemstype(modelname, itemgroup)\n subs.append(f'{blanks} <element name=\"{modelname}\"')\n subs.append(f'{blanks} type=\"hpcb:{type_}\"')\n subs.append(f'{blanks} minOccurs=\"0\"')\n subs.append(f'{blanks} maxOccurs=\"unbounded\"/>')\n if itemgroup in ('setitems', 'getitems'):\n type_ = f'nodes_{itemgroup}Type'\n subs.append(f'{blanks} <element name=\"nodes\"')\n subs.append(f'{blanks} type=\"hpcb:{type_}\"')\n subs.append(f'{blanks} minOccurs=\"0\"')\n subs.append(f'{blanks} maxOccurs=\"unbounded\"/>')\n subs.extend([f'{blanks} </sequence>',\n f'{blanks} <attribute name=\"info\" type=\"string\"/>',\n f'{blanks} </complexType>', f'{blanks}</element>', f''])\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_itemsinsertion", "role": "assistant" } ]
def x(cls, itemgroup, indent) ->str: subs = [] for modelname in cls.get_modelnames(): subs.append(cls.get_itemtypeinsertion(itemgroup, modelname, indent)) subs.append(cls.get_nodesitemtypeinsertion(itemgroup, indent)) return '\n'.join(subs)
get_itemtypesinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, indent) ->str:\n subs = []\n for modelname in cls.get_modelnames():\n subs.append(cls.get_itemtypeinsertion(itemgroup, modelname, indent))\n subs.append(cls.get_nodesitemtypeinsertion(itemgroup, indent))\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_itemtypesinsertion", "role": "assistant" } ]
def x(cls, itemgroup, modelname, indent) ->str: blanks = ' ' * (indent * 4) type_ = cls._get_itemstype(modelname, itemgroup) subs = [f'{blanks}<complexType name="{type_}">', f'{blanks} <sequence>', f'{blanks} <element ref="hpcb:selections"', f'{blanks} minOccurs="0"/>', f'{blanks} <element ref="hpcb:devices"', f'{blanks} minOccurs="0"/>', cls. get_subgroupsiteminsertion(itemgroup, modelname, indent + 2), f'{blanks} </sequence>', f'{blanks}</complexType>', f''] return '\n'.join(subs)
get_itemtypeinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, modelname, indent) ->str:\n blanks = ' ' * (indent * 4)\n type_ = cls._get_itemstype(modelname, itemgroup)\n subs = [f'{blanks}<complexType name=\"{type_}\">',\n f'{blanks} <sequence>',\n f'{blanks} <element ref=\"hpcb:selections\"',\n f'{blanks} minOccurs=\"0\"/>',\n f'{blanks} <element ref=\"hpcb:devices\"',\n f'{blanks} minOccurs=\"0\"/>', cls.\n get_subgroupsiteminsertion(itemgroup, modelname, indent + 2),\n f'{blanks} </sequence>', f'{blanks}</complexType>', f'']\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_itemtypeinsertion", "role": "assistant" } ]
def x(cls, itemgroup, indent) ->str: blanks = ' ' * (indent * 4) subs = [f'{blanks}<complexType name="nodes_{itemgroup}Type">', f'{blanks} <sequence>', f'{blanks} <element ref="hpcb:selections"', f'{blanks} minOccurs="0"/>', f'{blanks} <element ref="hpcb:devices"', f'{blanks} minOccurs="0"/>'] type_ = 'getitemType' if itemgroup == 'getitems' else 'setitemType' for name in ('sim', 'obs', 'sim.series', 'obs.series'): subs.extend([f'{blanks} <element name="{name}"', f'{blanks} type="hpcb:{type_}"', f'{blanks} minOccurs="0"', f'{blanks} maxOccurs="unbounded"/>']) subs.extend([f'{blanks} </sequence>', f'{blanks}</complexType>', f'']) return '\n'.join(subs)
get_nodesitemtypeinsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, indent) ->str:\n blanks = ' ' * (indent * 4)\n subs = [f'{blanks}<complexType name=\"nodes_{itemgroup}Type\">',\n f'{blanks} <sequence>',\n f'{blanks} <element ref=\"hpcb:selections\"',\n f'{blanks} minOccurs=\"0\"/>',\n f'{blanks} <element ref=\"hpcb:devices\"',\n f'{blanks} minOccurs=\"0\"/>']\n type_ = 'getitemType' if itemgroup == 'getitems' else 'setitemType'\n for name in ('sim', 'obs', 'sim.series', 'obs.series'):\n subs.extend([f'{blanks} <element name=\"{name}\"',\n f'{blanks} type=\"hpcb:{type_}\"',\n f'{blanks} minOccurs=\"0\"',\n f'{blanks} maxOccurs=\"unbounded\"/>'])\n subs.extend([f'{blanks} </sequence>', f'{blanks}</complexType>', f''])\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_nodesitemtypeinsertion", "role": "assistant" } ]
def x(cls, itemgroup, modelname, indent) ->str: subs = [] model = importtools.prepare_model(modelname) for subvars in cls._get_subvars(model): subs.append(cls.get_subgroupiteminsertion(itemgroup, model, subvars, indent)) return '\n'.join(subs)
get_subgroupsiteminsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, modelname, indent) ->str:\n subs = []\n model = importtools.prepare_model(modelname)\n for subvars in cls._get_subvars(model):\n subs.append(cls.get_subgroupiteminsertion(itemgroup, model, subvars,\n indent))\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_subgroupsiteminsertion", "role": "assistant" } ]
def x(cls, itemgroup, model, subgroup, indent) ->str: blanks1 = ' ' * (indent * 4) blanks2 = ' ' * ((indent + 5) * 4 + 1) subs = [f'{blanks1}<element name="{subgroup.name}"', f'{blanks1} minOccurs="0"', f'{blanks1} maxOccurs="unbounded">', f'{blanks1} <complexType>', f'{blanks1} <sequence>', f'{blanks1} <element ref="hpcb:selections"', f'{blanks1} minOccurs="0"/>', f'{blanks1} <element ref="hpcb:devices"', f'{blanks1} minOccurs="0"/>'] seriesflags = (False,) if subgroup.name == 'control' else (False, True) for variable in subgroup: for series in seriesflags: name = f'{variable.name}.series' if series else variable.name subs.append(f'{blanks1} <element name="{name}"') if itemgroup == 'setitems': subs.append(f'{blanks2}type="hpcb:setitemType"') elif itemgroup == 'getitems': subs.append(f'{blanks2}type="hpcb:getitemType"') else: subs.append(f'{blanks2}type="hpcb:{model.name}_mathitemType"') subs.append(f'{blanks2}minOccurs="0"') subs.append(f'{blanks2}maxOccurs="unbounded"/>') subs.extend([f'{blanks1} </sequence>', f'{blanks1} </complexType>', f'{blanks1}</element>']) return '\n'.join(subs)
get_subgroupiteminsertion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, itemgroup, model, subgroup, indent) ->str:\n blanks1 = ' ' * (indent * 4)\n blanks2 = ' ' * ((indent + 5) * 4 + 1)\n subs = [f'{blanks1}<element name=\"{subgroup.name}\"',\n f'{blanks1} minOccurs=\"0\"',\n f'{blanks1} maxOccurs=\"unbounded\">',\n f'{blanks1} <complexType>', f'{blanks1} <sequence>',\n f'{blanks1} <element ref=\"hpcb:selections\"',\n f'{blanks1} minOccurs=\"0\"/>',\n f'{blanks1} <element ref=\"hpcb:devices\"',\n f'{blanks1} minOccurs=\"0\"/>']\n seriesflags = (False,) if subgroup.name == 'control' else (False, True)\n for variable in subgroup:\n for series in seriesflags:\n name = f'{variable.name}.series' if series else variable.name\n subs.append(f'{blanks1} <element name=\"{name}\"')\n if itemgroup == 'setitems':\n subs.append(f'{blanks2}type=\"hpcb:setitemType\"')\n elif itemgroup == 'getitems':\n subs.append(f'{blanks2}type=\"hpcb:getitemType\"')\n else:\n subs.append(f'{blanks2}type=\"hpcb:{model.name}_mathitemType\"')\n subs.append(f'{blanks2}minOccurs=\"0\"')\n subs.append(f'{blanks2}maxOccurs=\"unbounded\"/>')\n subs.extend([f'{blanks1} </sequence>',\n f'{blanks1} </complexType>', f'{blanks1}</element>'])\n return '\\n'.join(subs)\n", "role": "user" }, { "content": "get_subgroupiteminsertion", "role": "assistant" } ]
def x(cls, array=None, **kwargs): kwargs['dtype'] = bool if array is None: return numpy.ndarray.__new__(cls, 0, **kwargs) return numpy.asarray(array, **kwargs).view(cls)
array2mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, array=None, **kwargs):\n kwargs['dtype'] = bool\n if array is None:\n return numpy.ndarray.__new__(cls, 0, **kwargs)\n return numpy.asarray(array, **kwargs).view(cls)\n", "role": "user" }, { "content": "array2mask", "role": "assistant" } ]
def x(cls, variable, **kwargs): return cls.array2mask(numpy.full(variable.shape, True))
new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, variable, **kwargs):\n return cls.array2mask(numpy.full(variable.shape, True))\n", "role": "user" }, { "content": "new", "role": "assistant" } ]
def x(cls, variable, **kwargs): indices = cls.get_refindices(variable) if numpy.min(getattr(indices, 'values', 0)) < 1: raise RuntimeError( f'The mask of parameter {objecttools.elementphrase(variable)} cannot be determined, as long as parameter `{indices.name}` is not prepared properly.' ) mask = numpy.full(indices.shape, False, dtype=bool) refvalues = indices.values for relvalue in cls.RELEVANT_VALUES: mask[refvalues == relvalue] = True return cls.array2mask(mask, **kwargs)
new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, variable, **kwargs):\n indices = cls.get_refindices(variable)\n if numpy.min(getattr(indices, 'values', 0)) < 1:\n raise RuntimeError(\n f'The mask of parameter {objecttools.elementphrase(variable)} cannot be determined, as long as parameter `{indices.name}` is not prepared properly.'\n )\n mask = numpy.full(indices.shape, False, dtype=bool)\n refvalues = indices.values\n for relvalue in cls.RELEVANT_VALUES:\n mask[refvalues == relvalue] = True\n return cls.array2mask(mask, **kwargs)\n", "role": "user" }, { "content": "new", "role": "assistant" } ]
def x(self) ->List[int]: return [idx for idx in numpy.unique(self.refindices.values) if idx in self.RELEVANT_VALUES]
relevantindices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->List[int]:\n return [idx for idx in numpy.unique(self.refindices.values) if idx in\n self.RELEVANT_VALUES]\n", "role": "user" }, { "content": "relevantindices", "role": "assistant" } ]
def x(self): new = self.sequences.states.fastaccess_new old = self.sequences.states.fastaccess_old flu = self.sequences.fluxes.fastaccess flu.qref = (new.qz + old.qz + old.qa) / 3.0
calc_qref_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new = self.sequences.states.fastaccess_new\n old = self.sequences.states.fastaccess_old\n flu = self.sequences.fluxes.fastaccess\n flu.qref = (new.qz + old.qz + old.qa) / 3.0\n", "role": "user" }, { "content": "calc_qref_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess if flu.ag > 0.0 and flu.qref > 0.0: flu.rk = 1000.0 * con.laen * flu.ag / (der.sek * flu.qref) else: flu.rk = 0.0
calc_rk_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n if flu.ag > 0.0 and flu.qref > 0.0:\n flu.rk = 1000.0 * con.laen * flu.ag / (der.sek * flu.qref)\n else:\n flu.rk = 0.0\n", "role": "user" }, { "content": "calc_rk_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess if flu.h <= 0.0: flu.am = 0.0 flu.um = 0.0 elif flu.h < con.hm: flu.am = flu.h * (con.bm + flu.h * con.bnm) flu.um = con.bm + 2.0 * flu.h * (1.0 + con.bnm ** 2) ** 0.5 else: flu.am = con.hm * (con.bm + con.hm * con.bnm) + (flu.h - con.hm) * (con .bm + 2.0 * con.hm * con.bnm) flu.um = con.bm + 2.0 * con.hm * (1.0 + con.bnm ** 2) ** 0.5 + 2 * (flu .h - con.hm)
calc_am_um_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n if flu.h <= 0.0:\n flu.am = 0.0\n flu.um = 0.0\n elif flu.h < con.hm:\n flu.am = flu.h * (con.bm + flu.h * con.bnm)\n flu.um = con.bm + 2.0 * flu.h * (1.0 + con.bnm ** 2) ** 0.5\n else:\n flu.am = con.hm * (con.bm + con.hm * con.bnm) + (flu.h - con.hm) * (con\n .bm + 2.0 * con.hm * con.bnm)\n flu.um = con.bm + 2.0 * con.hm * (1.0 + con.bnm ** 2) ** 0.5 + 2 * (flu\n .h - con.hm)\n", "role": "user" }, { "content": "calc_am_um_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess if flu.am > 0.0 and flu.um > 0.0: flu.qm = con.ekm * con.skm * flu.am ** (5.0 / 3.0) / flu.um ** (2.0 / 3.0) * con.gef ** 0.5 else: flu.qm = 0.0
calc_qm_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n if flu.am > 0.0 and flu.um > 0.0:\n flu.qm = con.ekm * con.skm * flu.am ** (5.0 / 3.0) / flu.um ** (2.0 /\n 3.0) * con.gef ** 0.5\n else:\n flu.qm = 0.0\n", "role": "user" }, { "content": "calc_qm_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess for i in range(2): if flu.h <= con.hm: flu.av[i] = 0.0 flu.uv[i] = 0.0 elif flu.h <= con.hm + der.hv[i]: flu.av[i] = (flu.h - con.hm) * (con.bv[i] + (flu.h - con.hm) * con.bnv[i] / 2.0) flu.uv[i] = con.bv[i] + (flu.h - con.hm) * (1.0 + con.bnv[i] ** 2 ) ** 0.5 else: flu.av[i] = der.hv[i] * (con.bv[i] + der.hv[i] * con.bnv[i] / 2.0 ) + (flu.h - (con.hm + der.hv[i])) * (con.bv[i] + der.hv[i] * con.bnv[i]) flu.uv[i] = con.bv[i] + der.hv[i] * (1.0 + con.bnv[i] ** 2 ) ** 0.5 + (flu.h - (con.hm + der.hv[i]))
calc_av_uv_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for i in range(2):\n if flu.h <= con.hm:\n flu.av[i] = 0.0\n flu.uv[i] = 0.0\n elif flu.h <= con.hm + der.hv[i]:\n flu.av[i] = (flu.h - con.hm) * (con.bv[i] + (flu.h - con.hm) *\n con.bnv[i] / 2.0)\n flu.uv[i] = con.bv[i] + (flu.h - con.hm) * (1.0 + con.bnv[i] ** 2\n ) ** 0.5\n else:\n flu.av[i] = der.hv[i] * (con.bv[i] + der.hv[i] * con.bnv[i] / 2.0\n ) + (flu.h - (con.hm + der.hv[i])) * (con.bv[i] + der.hv[i] *\n con.bnv[i])\n flu.uv[i] = con.bv[i] + der.hv[i] * (1.0 + con.bnv[i] ** 2\n ) ** 0.5 + (flu.h - (con.hm + der.hv[i]))\n", "role": "user" }, { "content": "calc_av_uv_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess for i in range(2): if flu.av[i] > 0.0 and flu.uv[i] > 0.0: flu.qv[i] = con.ekv[i] * con.skv[i] * flu.av[i] ** (5.0 / 3.0 ) / flu.uv[i] ** (2.0 / 3.0) * con.gef ** 0.5 else: flu.qv[i] = 0.0
calc_qv_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for i in range(2):\n if flu.av[i] > 0.0 and flu.uv[i] > 0.0:\n flu.qv[i] = con.ekv[i] * con.skv[i] * flu.av[i] ** (5.0 / 3.0\n ) / flu.uv[i] ** (2.0 / 3.0) * con.gef ** 0.5\n else:\n flu.qv[i] = 0.0\n", "role": "user" }, { "content": "calc_qv_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess for i in range(2): if flu.h <= con.hm + der.hv[i]: flu.avr[i] = 0.0 flu.uvr[i] = 0.0 else: flu.avr[i] = (flu.h - (con.hm + der.hv[i])) ** 2 * con.bnvr[i ] / 2.0 flu.uvr[i] = (flu.h - (con.hm + der.hv[i])) * (1.0 + con.bnvr[i ] ** 2) ** 0.5
calc_avr_uvr_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for i in range(2):\n if flu.h <= con.hm + der.hv[i]:\n flu.avr[i] = 0.0\n flu.uvr[i] = 0.0\n else:\n flu.avr[i] = (flu.h - (con.hm + der.hv[i])) ** 2 * con.bnvr[i\n ] / 2.0\n flu.uvr[i] = (flu.h - (con.hm + der.hv[i])) * (1.0 + con.bnvr[i\n ] ** 2) ** 0.5\n", "role": "user" }, { "content": "calc_avr_uvr_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess for i in range(2): if flu.avr[i] > 0.0 and flu.uvr[i] > 0.0: flu.qvr[i] = con.ekv[i] * con.skv[i] * flu.avr[i] ** (5.0 / 3.0 ) / flu.uvr[i] ** (2.0 / 3.0) * con.gef ** 0.5 else: flu.qvr[i] = 0.0
calc_qvr_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for i in range(2):\n if flu.avr[i] > 0.0 and flu.uvr[i] > 0.0:\n flu.qvr[i] = con.ekv[i] * con.skv[i] * flu.avr[i] ** (5.0 / 3.0\n ) / flu.uvr[i] ** (2.0 / 3.0) * con.gef ** 0.5\n else:\n flu.qvr[i] = 0.0\n", "role": "user" }, { "content": "calc_qvr_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess flu.ag = flu.am + flu.av[0] + flu.av[1] + flu.avr[0] + flu.avr[1]
calc_ag_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n flu.ag = flu.am + flu.av[0] + flu.av[1] + flu.avr[0] + flu.avr[1]\n", "role": "user" }, { "content": "calc_ag_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess self.calc_am_um() self.calc_qm() self.calc_av_uv() self.calc_qv() self.calc_avr_uvr() self.calc_qvr() flu.qg = flu.qm + flu.qv[0] + flu.qv[1] + flu.qvr[0] + flu.qvr[1]
calc_qg_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n self.calc_am_um()\n self.calc_qm()\n self.calc_av_uv()\n self.calc_qv()\n self.calc_avr_uvr()\n self.calc_qvr()\n flu.qg = flu.qm + flu.qv[0] + flu.qv[1] + flu.qvr[0] + flu.qvr[1]\n", "role": "user" }, { "content": "calc_qg_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess if flu.qref <= der.qm: aid.hmin = 0.0 aid.qmin = 0.0 aid.hmax = con.hm aid.qmax = der.qm elif flu.qref <= min(der.qv[0], der.qv[1]): aid.hmin = con.hm aid.qmin = der.qm aid.hmax = con.hm + min(der.hv[0], der.hv[1]) aid.qmax = min(der.qv[0], der.qv[1]) elif flu.qref < max(der.qv[0], der.qv[1]): aid.hmin = con.hm + min(der.hv[0], der.hv[1]) aid.qmin = min(der.qv[0], der.qv[1]) aid.hmax = con.hm + max(der.hv[0], der.hv[1]) aid.qmax = max(der.qv[0], der.qv[1]) else: flu.h = con.hm + max(der.hv[0], der.hv[1]) aid.hmin = flu.h aid.qmin = flu.qg while True: flu.h *= 2.0 self.calc_qg() if flu.qg < flu.qref: aid.hmin = flu.h aid.qmin = flu.qg else: aid.hmax = flu.h aid.qmax = flu.qg break
calc_hmin_qmin_hmax_qmax_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n if flu.qref <= der.qm:\n aid.hmin = 0.0\n aid.qmin = 0.0\n aid.hmax = con.hm\n aid.qmax = der.qm\n elif flu.qref <= min(der.qv[0], der.qv[1]):\n aid.hmin = con.hm\n aid.qmin = der.qm\n aid.hmax = con.hm + min(der.hv[0], der.hv[1])\n aid.qmax = min(der.qv[0], der.qv[1])\n elif flu.qref < max(der.qv[0], der.qv[1]):\n aid.hmin = con.hm + min(der.hv[0], der.hv[1])\n aid.qmin = min(der.qv[0], der.qv[1])\n aid.hmax = con.hm + max(der.hv[0], der.hv[1])\n aid.qmax = max(der.qv[0], der.qv[1])\n else:\n flu.h = con.hm + max(der.hv[0], der.hv[1])\n aid.hmin = flu.h\n aid.qmin = flu.qg\n while True:\n flu.h *= 2.0\n self.calc_qg()\n if flu.qg < flu.qref:\n aid.hmin = flu.h\n aid.qmin = flu.qg\n else:\n aid.hmax = flu.h\n aid.qmax = flu.qg\n break\n", "role": "user" }, { "content": "calc_hmin_qmin_hmax_qmax_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.qmin -= flu.qref aid.qmax -= flu.qref if modelutils.fabs(aid.qmin) < con.qtol: flu.h = aid.hmin self.calc_qg() elif modelutils.fabs(aid.qmax) < con.qtol: flu.h = aid.hmax self.calc_qg() elif modelutils.fabs(aid.hmax - aid.hmin) < con.htol: flu.h = (aid.hmin + aid.hmax) / 2.0 self.calc_qg() else: while True: flu.h = aid.hmin - aid.qmin * (aid.hmax - aid.hmin) / (aid.qmax - aid.qmin) self.calc_qg() aid.qtest = flu.qg - flu.qref if modelutils.fabs(aid.qtest) < con.qtol: return if (aid.qmax < 0.0 and aid.qtest < 0.0 or aid.qmax > 0.0 and aid.qtest > 0.0): aid.qmin *= aid.qmax / (aid.qmax + aid.qtest) else: aid.hmin = aid.hmax aid.qmin = aid.qmax aid.hmax = flu.h aid.qmax = aid.qtest if modelutils.fabs(aid.hmax - aid.hmin) < con.htol: return
calc_h_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n aid.qmin -= flu.qref\n aid.qmax -= flu.qref\n if modelutils.fabs(aid.qmin) < con.qtol:\n flu.h = aid.hmin\n self.calc_qg()\n elif modelutils.fabs(aid.qmax) < con.qtol:\n flu.h = aid.hmax\n self.calc_qg()\n elif modelutils.fabs(aid.hmax - aid.hmin) < con.htol:\n flu.h = (aid.hmin + aid.hmax) / 2.0\n self.calc_qg()\n else:\n while True:\n flu.h = aid.hmin - aid.qmin * (aid.hmax - aid.hmin) / (aid.qmax -\n aid.qmin)\n self.calc_qg()\n aid.qtest = flu.qg - flu.qref\n if modelutils.fabs(aid.qtest) < con.qtol:\n return\n if (aid.qmax < 0.0 and aid.qtest < 0.0 or aid.qmax > 0.0 and \n aid.qtest > 0.0):\n aid.qmin *= aid.qmax / (aid.qmax + aid.qtest)\n else:\n aid.hmin = aid.hmax\n aid.qmin = aid.qmax\n aid.hmax = flu.h\n aid.qmax = aid.qtest\n if modelutils.fabs(aid.hmax - aid.hmin) < con.htol:\n return\n", "role": "user" }, { "content": "calc_h_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess if flu.rk <= 0.0: new.qa = new.qz elif flu.rk > 1e+200: new.qa = old.qa + new.qz - old.qz else: aid.temp = 1.0 - modelutils.exp(-1.0 / flu.rk) new.qa = old.qa + (old.qz - old.qa) * aid.temp + (new.qz - old.qz) * ( 1.0 - flu.rk * aid.temp)
calc_qa_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n old = self.sequences.states.fastaccess_old\n new = self.sequences.states.fastaccess_new\n aid = self.sequences.aides.fastaccess\n if flu.rk <= 0.0:\n new.qa = new.qz\n elif flu.rk > 1e+200:\n new.qa = old.qa + new.qz - old.qz\n else:\n aid.temp = 1.0 - modelutils.exp(-1.0 / flu.rk)\n new.qa = old.qa + (old.qz - old.qa) * aid.temp + (new.qz - old.qz) * (\n 1.0 - flu.rk * aid.temp)\n", "role": "user" }, { "content": "calc_qa_v1", "role": "assistant" } ]
def x(self): sta = self.sequences.states.fastaccess inl = self.sequences.inlets.fastaccess sta.qz = 0.0 for idx in range(inl.len_q): sta.qz += inl.q[idx][0]
pick_q_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sta = self.sequences.states.fastaccess\n inl = self.sequences.inlets.fastaccess\n sta.qz = 0.0\n for idx in range(inl.len_q):\n sta.qz += inl.q[idx][0]\n", "role": "user" }, { "content": "pick_q_v1", "role": "assistant" } ]
def x(self): sta = self.sequences.states.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += sta.qa
pass_q_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sta = self.sequences.states.fastaccess\n out = self.sequences.outlets.fastaccess\n out.q[0] += sta.qa\n", "role": "user" }, { "content": "pass_q_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess inp = self.sequences.inputs.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): flu.tc[k] = inp.t - con.tcalt[k] * (con.zonez[k] - con.zrelt)
calc_tc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n inp = self.sequences.inputs.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n flu.tc[k] = inp.t - con.tcalt[k] * (con.zonez[k] - con.zrelt)\n", "role": "user" }, { "content": "calc_tc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.tmean = 0.0 for k in range(con.nmbzones): flu.tmean += der.relzonearea[k] * flu.tc[k]
calc_tmean_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.tmean = 0.0\n for k in range(con.nmbzones):\n flu.tmean += der.relzonearea[k] * flu.tc[k]\n", "role": "user" }, { "content": "calc_tmean_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): if flu.tc[k] >= con.tt[k] + con.ttint[k] / 2.0: flu.fracrain[k] = 1.0 elif flu.tc[k] <= con.tt[k] - con.ttint[k] / 2.0: flu.fracrain[k] = 0.0 else: flu.fracrain[k] = (flu.tc[k] - (con.tt[k] - con.ttint[k] / 2.0) ) / con.ttint[k]
calc_fracrain_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n if flu.tc[k] >= con.tt[k] + con.ttint[k] / 2.0:\n flu.fracrain[k] = 1.0\n elif flu.tc[k] <= con.tt[k] - con.ttint[k] / 2.0:\n flu.fracrain[k] = 0.0\n else:\n flu.fracrain[k] = (flu.tc[k] - (con.tt[k] - con.ttint[k] / 2.0)\n ) / con.ttint[k]\n", "role": "user" }, { "content": "calc_fracrain_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): flu.rfc[k] = flu.fracrain[k] * con.rfcf[k] flu.sfc[k] = (1.0 - flu.fracrain[k]) * con.sfcf[k]
calc_rfc_sfc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n flu.rfc[k] = flu.fracrain[k] * con.rfcf[k]\n flu.sfc[k] = (1.0 - flu.fracrain[k]) * con.sfcf[k]\n", "role": "user" }, { "content": "calc_rfc_sfc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess inp = self.sequences.inputs.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): flu.pc[k] = inp.p * (1.0 + con.pcalt[k] * (con.zonez[k] - con.zrelp)) if flu.pc[k] <= 0.0: flu.pc[k] = 0.0 else: flu.pc[k] *= con.pcorr[k] * (flu.rfc[k] + flu.sfc[k])
calc_pc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n inp = self.sequences.inputs.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n flu.pc[k] = inp.p * (1.0 + con.pcalt[k] * (con.zonez[k] - con.zrelp))\n if flu.pc[k] <= 0.0:\n flu.pc[k] = 0.0\n else:\n flu.pc[k] *= con.pcorr[k] * (flu.rfc[k] + flu.sfc[k])\n", "role": "user" }, { "content": "calc_pc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess inp = self.sequences.inputs.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): flu.ep[k] = inp.epn * (1.0 + con.etf[k] * (flu.tmean - inp.tn)) flu.ep[k] = min(max(flu.ep[k], 0.0), 2.0 * inp.epn)
calc_ep_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n inp = self.sequences.inputs.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n flu.ep[k] = inp.epn * (1.0 + con.etf[k] * (flu.tmean - inp.tn))\n flu.ep[k] = min(max(flu.ep[k], 0.0), 2.0 * inp.epn)\n", "role": "user" }, { "content": "calc_ep_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess for k in range(con.nmbzones): flu.epc[k] = flu.ep[k] * con.ecorr[k] * (1.0 - con.ecalt[k] * (con. zonez[k] - con.zrele)) if flu.epc[k] <= 0.0: flu.epc[k] = 0.0 else: flu.epc[k] *= modelutils.exp(-con.epf[k] * flu.pc[k])
calc_epc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for k in range(con.nmbzones):\n flu.epc[k] = flu.ep[k] * con.ecorr[k] * (1.0 - con.ecalt[k] * (con.\n zonez[k] - con.zrele))\n if flu.epc[k] <= 0.0:\n flu.epc[k] = 0.0\n else:\n flu.epc[k] *= modelutils.exp(-con.epf[k] * flu.pc[k])\n", "role": "user" }, { "content": "calc_epc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): flu.tf[k] = max(flu.pc[k] - (con.icmax[k] - sta.ic[k]), 0.0) sta.ic[k] += flu.pc[k] - flu.tf[k] else: flu.tf[k] = flu.pc[k] sta.ic[k] = 0.0
calc_tf_ic_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n flu.tf[k] = max(flu.pc[k] - (con.icmax[k] - sta.ic[k]), 0.0)\n sta.ic[k] += flu.pc[k] - flu.tf[k]\n else:\n flu.tf[k] = flu.pc[k]\n sta.ic[k] = 0.0\n", "role": "user" }, { "content": "calc_tf_ic_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): flu.ei[k] = min(flu.epc[k], sta.ic[k]) sta.ic[k] -= flu.ei[k] else: flu.ei[k] = 0.0 sta.ic[k] = 0.0
calc_ei_ic_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n flu.ei[k] = min(flu.epc[k], sta.ic[k])\n sta.ic[k] -= flu.ei[k]\n else:\n flu.ei[k] = 0.0\n sta.ic[k] = 0.0\n", "role": "user" }, { "content": "calc_ei_ic_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] != ILAKE: if flu.rfc[k] + flu.sfc[k] > 0.0: sta.wc[k] += flu.tf[k] * flu.rfc[k] / (flu.rfc[k] + flu.sfc[k]) sta.sp[k] += flu.tf[k] * flu.sfc[k] / (flu.rfc[k] + flu.sfc[k]) else: sta.wc[k] = 0.0 sta.sp[k] = 0.0
calc_sp_wc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] != ILAKE:\n if flu.rfc[k] + flu.sfc[k] > 0.0:\n sta.wc[k] += flu.tf[k] * flu.rfc[k] / (flu.rfc[k] + flu.sfc[k])\n sta.sp[k] += flu.tf[k] * flu.sfc[k] / (flu.rfc[k] + flu.sfc[k])\n else:\n sta.wc[k] = 0.0\n sta.sp[k] = 0.0\n", "role": "user" }, { "content": "calc_sp_wc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] != ILAKE: if flu.tc[k] < der.ttm[k]: flu.refr[k] = min(con.cfr[k] * con.cfmax[k] * (der.ttm[k] - flu.tc[k]), sta.wc[k]) sta.sp[k] += flu.refr[k] sta.wc[k] -= flu.refr[k] else: flu.refr[k] = 0.0 else: flu.refr[k] = 0.0 sta.wc[k] = 0.0 sta.sp[k] = 0.0
calc_refr_sp_wc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] != ILAKE:\n if flu.tc[k] < der.ttm[k]:\n flu.refr[k] = min(con.cfr[k] * con.cfmax[k] * (der.ttm[k] -\n flu.tc[k]), sta.wc[k])\n sta.sp[k] += flu.refr[k]\n sta.wc[k] -= flu.refr[k]\n else:\n flu.refr[k] = 0.0\n else:\n flu.refr[k] = 0.0\n sta.wc[k] = 0.0\n sta.sp[k] = 0.0\n", "role": "user" }, { "content": "calc_refr_sp_wc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] != ILAKE: flu.in_[k] = max(sta.wc[k] - con.whc[k] * sta.sp[k], 0.0) sta.wc[k] -= flu.in_[k] else: flu.in_[k] = flu.tf[k] sta.wc[k] = 0.0
calc_in_wc_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] != ILAKE:\n flu.in_[k] = max(sta.wc[k] - con.whc[k] * sta.sp[k], 0.0)\n sta.wc[k] -= flu.in_[k]\n else:\n flu.in_[k] = flu.tf[k]\n sta.wc[k] = 0.0\n", "role": "user" }, { "content": "calc_in_wc_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] == GLACIER and sta.sp[k] <= 0.0 and flu.tc[k ] > der.ttm[k]: flu.glmelt[k] = con.gmelt[k] * (flu.tc[k] - der.ttm[k]) flu.in_[k] += flu.glmelt[k] else: flu.glmelt[k] = 0.0
calc_glmelt_in_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] == GLACIER and sta.sp[k] <= 0.0 and flu.tc[k\n ] > der.ttm[k]:\n flu.glmelt[k] = con.gmelt[k] * (flu.tc[k] - der.ttm[k])\n flu.in_[k] += flu.glmelt[k]\n else:\n flu.glmelt[k] = 0.0\n", "role": "user" }, { "content": "calc_glmelt_in_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): if con.fc[k] > 0.0: flu.r[k] = flu.in_[k] * (sta.sm[k] / con.fc[k]) ** con.beta[k] flu.r[k] = max(flu.r[k], sta.sm[k] + flu.in_[k] - con.fc[k]) else: flu.r[k] = flu.in_[k] sta.sm[k] += flu.in_[k] - flu.r[k] else: flu.r[k] = flu.in_[k] sta.sm[k] = 0.0
calc_r_sm_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n if con.fc[k] > 0.0:\n flu.r[k] = flu.in_[k] * (sta.sm[k] / con.fc[k]) ** con.beta[k]\n flu.r[k] = max(flu.r[k], sta.sm[k] + flu.in_[k] - con.fc[k])\n else:\n flu.r[k] = flu.in_[k]\n sta.sm[k] += flu.in_[k] - flu.r[k]\n else:\n flu.r[k] = flu.in_[k]\n sta.sm[k] = 0.0\n", "role": "user" }, { "content": "calc_r_sm_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): if con.fc[k] > 0.0: flu.cf[k] = con.cflux[k] * (1.0 - sta.sm[k] / con.fc[k]) flu.cf[k] = min(flu.cf[k], sta.uz + flu.r[k]) flu.cf[k] = min(flu.cf[k], con.fc[k] - sta.sm[k]) else: flu.cf[k] = 0.0 sta.sm[k] += flu.cf[k] else: flu.cf[k] = 0.0 sta.sm[k] = 0.0
calc_cf_sm_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n if con.fc[k] > 0.0:\n flu.cf[k] = con.cflux[k] * (1.0 - sta.sm[k] / con.fc[k])\n flu.cf[k] = min(flu.cf[k], sta.uz + flu.r[k])\n flu.cf[k] = min(flu.cf[k], con.fc[k] - sta.sm[k])\n else:\n flu.cf[k] = 0.0\n sta.sm[k] += flu.cf[k]\n else:\n flu.cf[k] = 0.0\n sta.sm[k] = 0.0\n", "role": "user" }, { "content": "calc_cf_sm_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): if sta.sp[k] <= 0.0: if con.lp[k] * con.fc[k] > 0.0: flu.ea[k] = flu.epc[k] * sta.sm[k] / (con.lp[k] * con.fc[k] ) flu.ea[k] = min(flu.ea[k], flu.epc[k]) else: flu.ea[k] = flu.epc[k] flu.ea[k] -= max(con.ered[k] * (flu.ea[k] + flu.ei[k] - flu .epc[k]), 0.0) flu.ea[k] = min(flu.ea[k], sta.sm[k]) else: flu.ea[k] = 0.0 sta.sm[k] -= flu.ea[k] else: flu.ea[k] = 0.0 sta.sm[k] = 0.0
calc_ea_sm_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n if sta.sp[k] <= 0.0:\n if con.lp[k] * con.fc[k] > 0.0:\n flu.ea[k] = flu.epc[k] * sta.sm[k] / (con.lp[k] * con.fc[k]\n )\n flu.ea[k] = min(flu.ea[k], flu.epc[k])\n else:\n flu.ea[k] = flu.epc[k]\n flu.ea[k] -= max(con.ered[k] * (flu.ea[k] + flu.ei[k] - flu\n .epc[k]), 0.0)\n flu.ea[k] = min(flu.ea[k], sta.sm[k])\n else:\n flu.ea[k] = 0.0\n sta.sm[k] -= flu.ea[k]\n else:\n flu.ea[k] = 0.0\n sta.sm[k] = 0.0\n", "role": "user" }, { "content": "calc_ea_sm_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.inuz = 0.0 for k in range(con.nmbzones): if con.zonetype[k] != ILAKE: flu.inuz += der.rellandzonearea[k] * (flu.r[k] - flu.cf[k])
calc_inuz_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.inuz = 0.0\n for k in range(con.nmbzones):\n if con.zonetype[k] != ILAKE:\n flu.inuz += der.rellandzonearea[k] * (flu.r[k] - flu.cf[k])\n", "role": "user" }, { "content": "calc_inuz_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess if con.resparea and der.relsoilarea > 0.0: flu.contriarea = 0.0 for k in range(con.nmbzones): if con.zonetype[k] in (FIELD, FOREST): if con.fc[k] > 0.0: flu.contriarea += der.relsoilzonearea[k] * (sta.sm[k] / con.fc[k]) ** con.beta[k] else: flu.contriarea += der.relsoilzonearea[k] else: flu.contriarea = 1.0
calc_contriarea_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n if con.resparea and der.relsoilarea > 0.0:\n flu.contriarea = 0.0\n for k in range(con.nmbzones):\n if con.zonetype[k] in (FIELD, FOREST):\n if con.fc[k] > 0.0:\n flu.contriarea += der.relsoilzonearea[k] * (sta.sm[k] /\n con.fc[k]) ** con.beta[k]\n else:\n flu.contriarea += der.relsoilzonearea[k]\n else:\n flu.contriarea = 1.0\n", "role": "user" }, { "content": "calc_contriarea_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess flu.perc = 0.0 flu.q0 = 0.0 for dummy in range(con.recstep): sta.uz += der.dt * flu.inuz d_perc = min(der.dt * con.percmax * flu.contriarea, sta.uz) sta.uz -= d_perc flu.perc += d_perc if sta.uz > 0.0: if flu.contriarea > 0.0: d_q0 = der.dt * con.k * (sta.uz / flu.contriarea) ** (1.0 + con.alpha) d_q0 = min(d_q0, sta.uz) else: d_q0 = sta.uz sta.uz -= d_q0 flu.q0 += d_q0 else: d_q0 = 0.0
calc_q0_perc_uz_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n flu.perc = 0.0\n flu.q0 = 0.0\n for dummy in range(con.recstep):\n sta.uz += der.dt * flu.inuz\n d_perc = min(der.dt * con.percmax * flu.contriarea, sta.uz)\n sta.uz -= d_perc\n flu.perc += d_perc\n if sta.uz > 0.0:\n if flu.contriarea > 0.0:\n d_q0 = der.dt * con.k * (sta.uz / flu.contriarea) ** (1.0 +\n con.alpha)\n d_q0 = min(d_q0, sta.uz)\n else:\n d_q0 = sta.uz\n sta.uz -= d_q0\n flu.q0 += d_q0\n else:\n d_q0 = 0.0\n", "role": "user" }, { "content": "calc_q0_perc_uz_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess sta.lz += der.rellandarea * flu.perc for k in range(con.nmbzones): if con.zonetype[k] == ILAKE: sta.lz += der.relzonearea[k] * flu.pc[k]
calc_lz_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n sta.lz += der.rellandarea * flu.perc\n for k in range(con.nmbzones):\n if con.zonetype[k] == ILAKE:\n sta.lz += der.relzonearea[k] * flu.pc[k]\n", "role": "user" }, { "content": "calc_lz_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess for k in range(con.nmbzones): if con.zonetype[k] == ILAKE and flu.tc[k] > con.ttice[k]: flu.el[k] = flu.epc[k] sta.lz -= der.relzonearea[k] * flu.el[k] else: flu.el[k] = 0.0
calc_el_lz_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n for k in range(con.nmbzones):\n if con.zonetype[k] == ILAKE and flu.tc[k] > con.ttice[k]:\n flu.el[k] = flu.epc[k]\n sta.lz -= der.relzonearea[k] * flu.el[k]\n else:\n flu.el[k] = 0.0\n", "role": "user" }, { "content": "calc_el_lz_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess sta = self.sequences.states.fastaccess if sta.lz > 0.0: flu.q1 = con.k4 * sta.lz ** (1.0 + con.gamma) else: flu.q1 = 0.0 sta.lz -= flu.q1
calc_q1_lz_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n sta = self.sequences.states.fastaccess\n if sta.lz > 0.0:\n flu.q1 = con.k4 * sta.lz ** (1.0 + con.gamma)\n else:\n flu.q1 = 0.0\n sta.lz -= flu.q1\n", "role": "user" }, { "content": "calc_q1_lz_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.inuh = der.rellandarea * flu.q0 + flu.q1
calc_inuh_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.inuh = der.rellandarea * flu.q0 + flu.q1\n", "role": "user" }, { "content": "calc_inuh_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.outuh = der.uh[0] * flu.inuh + log.quh[0] for jdx in range(1, len(der.uh)): log.quh[jdx - 1] = der.uh[jdx] * flu.inuh + log.quh[jdx]
calc_outuh_quh_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n flu.outuh = der.uh[0] * flu.inuh + log.quh[0]\n for jdx in range(1, len(der.uh)):\n log.quh[jdx - 1] = der.uh[jdx] * flu.inuh + log.quh[jdx]\n", "role": "user" }, { "content": "calc_outuh_quh_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess flu.qt = max(flu.outuh - con.abstr, 0.0)
calc_qt_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.qt = max(flu.outuh - con.abstr, 0.0)\n", "role": "user" }, { "content": "calc_qt_v1", "role": "assistant" } ]
def x(self, parameterstep=None, simulationstep=None): par = parametertools.Parameter for modelname, var2aux in self: for filename in var2aux.filenames: with par.parameterstep(parameterstep), par.simulationstep( simulationstep): lines = [parametertools.get_controlfileheader(modelname, parameterstep, simulationstep)] for par in getattr(var2aux, filename): lines.append(repr(par) + '\n') hydpy.pub.controlmanager.save_file(filename, ''.join(lines))
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameterstep=None, simulationstep=None):\n par = parametertools.Parameter\n for modelname, var2aux in self:\n for filename in var2aux.filenames:\n with par.parameterstep(parameterstep), par.simulationstep(\n simulationstep):\n lines = [parametertools.get_controlfileheader(modelname,\n parameterstep, simulationstep)]\n for par in getattr(var2aux, filename):\n lines.append(repr(par) + '\\n')\n hydpy.pub.controlmanager.save_file(filename, ''.join(lines))\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, *values): for value in objecttools.extract(values, (str, variabletools.Variable)): try: deleted_something = False for fn2var in list(self._type2filename2variable.values()): for fn_, var in list(fn2var.items()): if value in (fn_, var): del fn2var[fn_] deleted_something = True if not deleted_something: raise ValueError( f'`{repr(value)}` is neither a registered filename nor a registered variable.' ) except BaseException: objecttools.augment_excmessage( f'While trying to remove the given object `{value}` of type `{objecttools.classname(value)}` from the actual Variable2AuxFile object' )
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *values):\n for value in objecttools.extract(values, (str, variabletools.Variable)):\n try:\n deleted_something = False\n for fn2var in list(self._type2filename2variable.values()):\n for fn_, var in list(fn2var.items()):\n if value in (fn_, var):\n del fn2var[fn_]\n deleted_something = True\n if not deleted_something:\n raise ValueError(\n f'`{repr(value)}` is neither a registered filename nor a registered variable.'\n )\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to remove the given object `{value}` of type `{objecttools.classname(value)}` from the actual Variable2AuxFile object'\n )\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(self): fns = set() for fn2var in self._type2filename2variable.values(): fns.update(fn2var.keys()) return sorted(fns)
filenames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fns = set()\n for fn2var in self._type2filename2variable.values():\n fns.update(fn2var.keys())\n return sorted(fns)\n", "role": "user" }, { "content": "filenames", "role": "assistant" } ]
def x(self, variable): fn2var = self._type2filename2variable.get(type(variable), {}) for fn_, var in fn2var.items(): if var == variable: return fn_ return None
get_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, variable):\n fn2var = self._type2filename2variable.get(type(variable), {})\n for fn_, var in fn2var.items():\n if var == variable:\n return fn_\n return None\n", "role": "user" }, { "content": "get_filename", "role": "assistant" } ]
def x(self): metapar = self.subpars.pars.control.remotedischargesafety self.shape = metapar.shape self(tuple(smoothtools.calc_smoothpar_logistic1(mp) for mp in metapar. values))
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n metapar = self.subpars.pars.control.remotedischargesafety\n self.shape = metapar.shape\n self(tuple(smoothtools.calc_smoothpar_logistic1(mp) for mp in metapar.\n values))\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): metapar = self.subpars.pars.control.waterlevelminimumremotetolerance self(smoothtools.calc_smoothpar_logistic1(metapar))
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n metapar = self.subpars.pars.control.waterlevelminimumremotetolerance\n self(smoothtools.calc_smoothpar_logistic1(metapar))\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): control = self.subpars.pars.control if numpy.isinf(control.highestremotedischarge): self(0.0) else: self(control.highestremotedischarge * smoothtools. calc_smoothpar_min1(control.highestremotetolerance))
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n control = self.subpars.pars.control\n if numpy.isinf(control.highestremotedischarge):\n self(0.0)\n else:\n self(control.highestremotedischarge * smoothtools.\n calc_smoothpar_min1(control.highestremotetolerance))\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(command: str, verbose: bool=True, blocking: bool=True) ->Optional[ subprocess.Popen]: if blocking: result1 = subprocess.run(command, stdout=subprocess.PIPE, stderr= subprocess.PIPE, encoding='utf-8', shell=True) if verbose: for output in (result1.stdout, result1.stderr): output = output.strip() if output: print(output) return None stdouterr = None if verbose else subprocess.DEVNULL result2 = subprocess.Popen(command, stdout=stdouterr, stderr=stdouterr, encoding='utf-8', shell=True) return result2
run_subprocess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command: str, verbose: bool=True, blocking: bool=True) ->Optional[\n subprocess.Popen]:\n if blocking:\n result1 = subprocess.run(command, stdout=subprocess.PIPE, stderr=\n subprocess.PIPE, encoding='utf-8', shell=True)\n if verbose:\n for output in (result1.stdout, result1.stderr):\n output = output.strip()\n if output:\n print(output)\n return None\n stdouterr = None if verbose else subprocess.DEVNULL\n result2 = subprocess.Popen(command, stdout=stdouterr, stderr=stdouterr,\n encoding='utf-8', shell=True)\n return result2\n", "role": "user" }, { "content": "run_subprocess", "role": "assistant" } ]
def x(commands: str, **parameters: Any) ->None: cmdlist = commands.split(';') print(f'Start to execute the commands {cmdlist} for testing purposes.') for par, value in parameters.items(): exec(f'{par} = {value}') for command in cmdlist: command = command.replace('__', 'temptemptemp') command = command.replace('_', ' ') command = command.replace('temptemptemp', '_') exec(command)
exec_commands
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(commands: str, **parameters: Any) ->None:\n cmdlist = commands.split(';')\n print(f'Start to execute the commands {cmdlist} for testing purposes.')\n for par, value in parameters.items():\n exec(f'{par} = {value}')\n for command in cmdlist:\n command = command.replace('__', 'temptemptemp')\n command = command.replace('_', ' ')\n command = command.replace('temptemptemp', '_')\n exec(command)\n", "role": "user" }, { "content": "exec_commands", "role": "assistant" } ]
def x(filename: str) ->str: if filename == 'stdout': return filename if filename == 'default': filename = datetime.datetime.now().strftime( 'hydpy_%Y-%m-%d_%H-%M-%S.log') with open(filename, 'w'): pass return os.path.abspath(filename)
prepare_logfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename: str) ->str:\n if filename == 'stdout':\n return filename\n if filename == 'default':\n filename = datetime.datetime.now().strftime(\n 'hydpy_%Y-%m-%d_%H-%M-%S.log')\n with open(filename, 'w'):\n pass\n return os.path.abspath(filename)\n", "role": "user" }, { "content": "prepare_logfile", "role": "assistant" } ]
def x() ->None: try: args_given = [] kwargs_given = {} for arg in sys.argv[1:]: if len(arg) < 3: args_given.append(arg) else: try: key, value = parse_argument(arg) kwargs_given[key] = value except ValueError: args_given.append(arg) logfilepath = prepare_logfile(kwargs_given.pop('logfile', 'stdout')) logstyle = kwargs_given.pop('logstyle', 'plain') try: funcname = str(args_given.pop(0)) except IndexError: raise ValueError( 'The first positional argument defining the function to be called is missing.' ) try: func = hydpy.pub.scriptfunctions[funcname] except KeyError: available_funcs = objecttools.enumeration(sorted(hydpy.pub. scriptfunctions.keys())) raise ValueError( f'There is no `{funcname}` function callable by `hyd.py`. Choose one of the following instead: {available_funcs}.' ) args_required = inspect.getfullargspec(func).args nmb_args_required = len(args_required) nmb_args_given = len(args_given) if nmb_args_given != nmb_args_required: enum_args_given = '' if nmb_args_given: enum_args_given = f' ({objecttools.enumeration(args_given)})' enum_args_required = '' if nmb_args_required: enum_args_required = ( f' ({objecttools.enumeration(args_required)})') raise ValueError( f'Function `{funcname}` requires `{nmb_args_required:d}` positional arguments{enum_args_required}, but `{nmb_args_given:d}` are given{enum_args_given}.' ) with _activate_logfile(logfilepath, logstyle, 'info', 'warning'): func(*args_given, **kwargs_given) except BaseException as exc: if logstyle not in LogFileInterface.style2infotype2string: logstyle = 'plain' with _activate_logfile(logfilepath, logstyle, 'exception', 'exception' ): arguments = ', '.join(sys.argv) print( f"""Invoking hyd.py with arguments `{arguments}` resulted in the following error: {str(exc)} See the following stack traceback for debugging: """ , file=sys.stderr) traceback.print_tb(sys.exc_info()[2])
execute_scriptfunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x() ->None:\n try:\n args_given = []\n kwargs_given = {}\n for arg in sys.argv[1:]:\n if len(arg) < 3:\n args_given.append(arg)\n else:\n try:\n key, value = parse_argument(arg)\n kwargs_given[key] = value\n except ValueError:\n args_given.append(arg)\n logfilepath = prepare_logfile(kwargs_given.pop('logfile', 'stdout'))\n logstyle = kwargs_given.pop('logstyle', 'plain')\n try:\n funcname = str(args_given.pop(0))\n except IndexError:\n raise ValueError(\n 'The first positional argument defining the function to be called is missing.'\n )\n try:\n func = hydpy.pub.scriptfunctions[funcname]\n except KeyError:\n available_funcs = objecttools.enumeration(sorted(hydpy.pub.\n scriptfunctions.keys()))\n raise ValueError(\n f'There is no `{funcname}` function callable by `hyd.py`. Choose one of the following instead: {available_funcs}.'\n )\n args_required = inspect.getfullargspec(func).args\n nmb_args_required = len(args_required)\n nmb_args_given = len(args_given)\n if nmb_args_given != nmb_args_required:\n enum_args_given = ''\n if nmb_args_given:\n enum_args_given = f' ({objecttools.enumeration(args_given)})'\n enum_args_required = ''\n if nmb_args_required:\n enum_args_required = (\n f' ({objecttools.enumeration(args_required)})')\n raise ValueError(\n f'Function `{funcname}` requires `{nmb_args_required:d}` positional arguments{enum_args_required}, but `{nmb_args_given:d}` are given{enum_args_given}.'\n )\n with _activate_logfile(logfilepath, logstyle, 'info', 'warning'):\n func(*args_given, **kwargs_given)\n except BaseException as exc:\n if logstyle not in LogFileInterface.style2infotype2string:\n logstyle = 'plain'\n with _activate_logfile(logfilepath, logstyle, 'exception', 'exception'\n ):\n arguments = ', '.join(sys.argv)\n print(\n f\"\"\"Invoking hyd.py with arguments `{arguments}` resulted in the following error:\n{str(exc)}\n\nSee the following stack traceback for debugging:\n\"\"\"\n , file=sys.stderr)\n traceback.print_tb(sys.exc_info()[2])\n", "role": "user" }, { "content": "execute_scriptfunction", "role": "assistant" } ]
def x(string: str) ->Union[str, Tuple[str, str]]: idx_equal = string.find('=') if idx_equal == -1: return string idx_quote = idx_equal + 1 for quote in ('"', "'"): idx = string.find(quote) if -1 < idx < idx_quote: idx_quote = idx if idx_equal < idx_quote: return string[:idx_equal], string[idx_equal + 1:] return string
parse_argument
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string: str) ->Union[str, Tuple[str, str]]:\n idx_equal = string.find('=')\n if idx_equal == -1:\n return string\n idx_quote = idx_equal + 1\n for quote in ('\"', \"'\"):\n idx = string.find(quote)\n if -1 < idx < idx_quote:\n idx_quote = idx\n if idx_equal < idx_quote:\n return string[:idx_equal], string[idx_equal + 1:]\n return string\n", "role": "user" }, { "content": "parse_argument", "role": "assistant" } ]
def x(text: str) ->None: timestring = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f') print(f'{text} ({timestring}).')
print_textandtime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text: str) ->None:\n timestring = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')\n print(f'{text} ({timestring}).')\n", "role": "user" }, { "content": "print_textandtime", "role": "assistant" } ]
def x(self, string: str) ->None: self.logfile.write('\n'.join(f'{self._string}{substring}' if substring else '' for substring in string.split('\n')))
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, string: str) ->None:\n self.logfile.write('\\n'.join(f'{self._string}{substring}' if substring else\n '' for substring in string.split('\\n')))\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess flu.qa = 0.0 aid.v = old.v for _ in range(der.nmbsubsteps): self.calc_vq() self.interp_qa() self.calc_v_qa() flu.qa += aid.qa flu.qa /= der.nmbsubsteps new.v = aid.v
solve_dv_dt_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n old = self.sequences.states.fastaccess_old\n new = self.sequences.states.fastaccess_new\n aid = self.sequences.aides.fastaccess\n flu.qa = 0.0\n aid.v = old.v\n for _ in range(der.nmbsubsteps):\n self.calc_vq()\n self.interp_qa()\n self.calc_v_qa()\n flu.qa += aid.qa\n flu.qa /= der.nmbsubsteps\n new.v = aid.v\n", "role": "user" }, { "content": "solve_dv_dt_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.vq = 2.0 * aid.v + der.seconds / der.nmbsubsteps * flu.qz
calc_vq_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n aid.vq = 2.0 * aid.v + der.seconds / der.nmbsubsteps * flu.qz\n", "role": "user" }, { "content": "calc_vq_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess aid = self.sequences.aides.fastaccess idx = der.toy[self.idx_sim] for jdx in range(1, con.n): if der.vq[idx, jdx] >= aid.vq: break aid.qa = (aid.vq - der.vq[idx, jdx - 1]) * (con.q[idx, jdx] - con.q[idx, jdx - 1]) / (der.vq[idx, jdx] - der.vq[idx, jdx - 1]) + con.q[idx, jdx - 1] aid.qa = max(aid.qa, 0.0)
interp_qa_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n aid = self.sequences.aides.fastaccess\n idx = der.toy[self.idx_sim]\n for jdx in range(1, con.n):\n if der.vq[idx, jdx] >= aid.vq:\n break\n aid.qa = (aid.vq - der.vq[idx, jdx - 1]) * (con.q[idx, jdx] - con.q[idx,\n jdx - 1]) / (der.vq[idx, jdx] - der.vq[idx, jdx - 1]) + con.q[idx, \n jdx - 1]\n aid.qa = max(aid.qa, 0.0)\n", "role": "user" }, { "content": "interp_qa_v1", "role": "assistant" } ]
def x(self): der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.qa = min(aid.qa, flu.qz + der.nmbsubsteps / der.seconds * aid.v) aid.v = max(aid.v + der.seconds / der.nmbsubsteps * (flu.qz - aid.qa), 0.0)
calc_v_qa_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n aid = self.sequences.aides.fastaccess\n aid.qa = min(aid.qa, flu.qz + der.nmbsubsteps / der.seconds * aid.v)\n aid.v = max(aid.v + der.seconds / der.nmbsubsteps * (flu.qz - aid.qa), 0.0)\n", "role": "user" }, { "content": "calc_v_qa_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new for jdx in range(1, con.n): if con.v[jdx] >= new.v: break new.w = (new.v - con.v[jdx - 1]) * (con.w[jdx] - con.w[jdx - 1]) / (con .v[jdx] - con.v[jdx - 1]) + con.w[jdx - 1]
interp_w_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n new = self.sequences.states.fastaccess_new\n for jdx in range(1, con.n):\n if con.v[jdx] >= new.v:\n break\n new.w = (new.v - con.v[jdx - 1]) * (con.w[jdx] - con.w[jdx - 1]) / (con\n .v[jdx] - con.v[jdx - 1]) + con.w[jdx - 1]\n", "role": "user" }, { "content": "interp_w_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new idx = der.toy[self.idx_sim] if con.maxdw[idx] > 0.0 and old.w - new.w > con.maxdw[idx]: new.w = old.w - con.maxdw[idx] self.interp_v() flu.qa = flu.qz + (old.v - new.v) / der.seconds
corr_dw_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n old = self.sequences.states.fastaccess_old\n new = self.sequences.states.fastaccess_new\n idx = der.toy[self.idx_sim]\n if con.maxdw[idx] > 0.0 and old.w - new.w > con.maxdw[idx]:\n new.w = old.w - con.maxdw[idx]\n self.interp_v()\n flu.qa = flu.qz + (old.v - new.v) / der.seconds\n", "role": "user" }, { "content": "corr_dw_v1", "role": "assistant" } ]
def x(self): con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess idx = der.toy[self.idx_sim] flu.qa = max(flu.qa - con.verzw[idx], 0.0)
modify_qa_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.parameters.control.fastaccess\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n idx = der.toy[self.idx_sim]\n flu.qa = max(flu.qa - con.verzw[idx], 0.0)\n", "role": "user" }, { "content": "modify_qa_v1", "role": "assistant" } ]
def x(self): flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += flu.qa
pass_q_v1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n out = self.sequences.outlets.fastaccess\n out.q[0] += flu.qa\n", "role": "user" }, { "content": "pass_q_v1", "role": "assistant" } ]
def x(self): return numpy.array(sorted(self._key2float(key) for key in self._coefs), dtype=float)
thresholds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return numpy.array(sorted(self._key2float(key) for key in self._coefs),\n dtype=float)\n", "role": "user" }, { "content": "thresholds", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False): if node: if sim is not None: raise ValueError( 'Values are passed to both arguments `sim` and `node`, which is not allowed.' ) if obs is not None: raise ValueError( 'Values are passed to both arguments `obs` and `node`, which is not allowed.' ) sim = node.sequences.sim.series obs = node.sequences.obs.series elif sim is not None and obs is None: raise ValueError( 'A value is passed to argument `sim` but no value is passed to argument `obs`.' ) elif obs is not None and sim is None: raise ValueError( 'A value is passed to argument `obs` but no value is passed to argument `sim`.' ) elif sim is None and obs is None: raise ValueError( 'Neither a `Node` object is passed to argument `node` nor are arrays passed to arguments `sim` and `obs`.' ) sim = numpy.asarray(sim) obs = numpy.asarray(obs) if skip_nan: idxs = ~numpy.isnan(sim) * ~numpy.isnan(obs) sim = sim[idxs] obs = obs[idxs] return sim, obs
prepare_arrays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False):\n if node:\n if sim is not None:\n raise ValueError(\n 'Values are passed to both arguments `sim` and `node`, which is not allowed.'\n )\n if obs is not None:\n raise ValueError(\n 'Values are passed to both arguments `obs` and `node`, which is not allowed.'\n )\n sim = node.sequences.sim.series\n obs = node.sequences.obs.series\n elif sim is not None and obs is None:\n raise ValueError(\n 'A value is passed to argument `sim` but no value is passed to argument `obs`.'\n )\n elif obs is not None and sim is None:\n raise ValueError(\n 'A value is passed to argument `obs` but no value is passed to argument `sim`.'\n )\n elif sim is None and obs is None:\n raise ValueError(\n 'Neither a `Node` object is passed to argument `node` nor are arrays passed to arguments `sim` and `obs`.'\n )\n sim = numpy.asarray(sim)\n obs = numpy.asarray(obs)\n if skip_nan:\n idxs = ~numpy.isnan(sim) * ~numpy.isnan(obs)\n sim = sim[idxs]\n obs = obs[idxs]\n return sim, obs\n", "role": "user" }, { "content": "prepare_arrays", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) return 1.0 - numpy.sum((sim - obs) ** 2) / numpy.sum((obs - numpy.mean( obs)) ** 2)
nse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n return 1.0 - numpy.sum((sim - obs) ** 2) / numpy.sum((obs - numpy.mean(\n obs)) ** 2)\n", "role": "user" }, { "content": "nse", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.mean(sim - obs)
bias_abs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n return numpy.mean(sim - obs)\n", "role": "user" }, { "content": "bias_abs", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.std(sim) / numpy.std(obs) - 1.0
std_ratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n return numpy.std(sim) / numpy.std(obs) - 1.0\n", "role": "user" }, { "content": "std_ratio", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.corrcoef(sim, obs)[0, 1]
corr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n return numpy.corrcoef(sim, obs)[0, 1]\n", "role": "user" }, { "content": "corr", "role": "assistant" } ]
def x(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) sigmas = _pars_h(sigma1, sigma2, sim) mu_xi, sigma_xi, w_beta, c_beta = _pars_sepd(xi, beta) x, mu = obs, sim a = (x - mu) / sigmas a_xi = numpy.empty(a.shape) idxs = mu_xi + sigma_xi * a < 0.0 a_xi[idxs] = numpy.absolute(xi * (mu_xi + sigma_xi * a[idxs])) a_xi[~idxs] = numpy.absolute(1.0 / xi * (mu_xi + sigma_xi * a[~idxs])) ps = 2.0 * sigma_xi / (xi + 1.0 / xi) * w_beta * numpy.exp(-c_beta * a_xi ** (2.0 / (1.0 + beta))) / sigmas return ps
hsepd_pdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n sigmas = _pars_h(sigma1, sigma2, sim)\n mu_xi, sigma_xi, w_beta, c_beta = _pars_sepd(xi, beta)\n x, mu = obs, sim\n a = (x - mu) / sigmas\n a_xi = numpy.empty(a.shape)\n idxs = mu_xi + sigma_xi * a < 0.0\n a_xi[idxs] = numpy.absolute(xi * (mu_xi + sigma_xi * a[idxs]))\n a_xi[~idxs] = numpy.absolute(1.0 / xi * (mu_xi + sigma_xi * a[~idxs]))\n ps = 2.0 * sigma_xi / (xi + 1.0 / xi) * w_beta * numpy.exp(-c_beta * \n a_xi ** (2.0 / (1.0 + beta))) / sigmas\n return ps\n", "role": "user" }, { "content": "hsepd_pdf", "role": "assistant" } ]
def x(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): sim, obs = prepare_arrays(sim, obs, node, skip_nan) return _hsepd_manual(sigma1, sigma2, xi, beta, sim, obs)
hsepd_manual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False):\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n return _hsepd_manual(sigma1, sigma2, xi, beta, sim, obs)\n", "role": "user" }, { "content": "hsepd_manual", "role": "assistant" } ]
def x(sim=None, obs=None, node=None, skip_nan=False, inits=None, return_pars=False, silent=True): def x(pars): sigma1, sigma2, xi, beta = constrain(*pars) return -_hsepd_manual(sigma1, sigma2, xi, beta, sim, obs) def x(sigma1, sigma2, xi, beta): sigma1 = numpy.clip(sigma1, 0.0, None) sigma2 = numpy.clip(sigma2, 0.0, None) xi = numpy.clip(xi, 0.1, 10.0) beta = numpy.clip(beta, -0.99, 5.0) return sigma1, sigma2, xi, beta sim, obs = prepare_arrays(sim, obs, node, skip_nan) if not inits: inits = [0.1, 0.2, 3.0, 1.0] values = optimize.fmin(transform, inits, ftol=1e-12, xtol=1e-12, disp= not silent) values = constrain(*values) result = _hsepd_manual(*values, sim=sim, obs=obs) if return_pars: return result, values return result
hsepd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim=None, obs=None, node=None, skip_nan=False, inits=None,\n return_pars=False, silent=True):\n\n def x(pars):\n sigma1, sigma2, xi, beta = constrain(*pars)\n return -_hsepd_manual(sigma1, sigma2, xi, beta, sim, obs)\n\n def x(sigma1, sigma2, xi, beta):\n sigma1 = numpy.clip(sigma1, 0.0, None)\n sigma2 = numpy.clip(sigma2, 0.0, None)\n xi = numpy.clip(xi, 0.1, 10.0)\n beta = numpy.clip(beta, -0.99, 5.0)\n return sigma1, sigma2, xi, beta\n sim, obs = prepare_arrays(sim, obs, node, skip_nan)\n if not inits:\n inits = [0.1, 0.2, 3.0, 1.0]\n values = optimize.fmin(transform, inits, ftol=1e-12, xtol=1e-12, disp=\n not silent)\n values = constrain(*values)\n result = _hsepd_manual(*values, sim=sim, obs=obs)\n if return_pars:\n return result, values\n return result\n", "role": "user" }, { "content": "hsepd", "role": "assistant" } ]
def x(timepoints, weights): timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) return numpy.dot(timepoints, weights) / numpy.sum(weights)
calc_mean_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timepoints, weights):\n timepoints = numpy.array(timepoints)\n weights = numpy.array(weights)\n validtools.test_equal_shape(timepoints=timepoints, weights=weights)\n validtools.test_non_negative(weights=weights)\n return numpy.dot(timepoints, weights) / numpy.sum(weights)\n", "role": "user" }, { "content": "calc_mean_time", "role": "assistant" } ]
def x(timepoints, weights, mean_time=None): timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) if mean_time is None: mean_time = calc_mean_time(timepoints, weights) return numpy.sqrt(numpy.dot(weights, (timepoints - mean_time) ** 2) / numpy.sum(weights))
calc_mean_time_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timepoints, weights, mean_time=None):\n timepoints = numpy.array(timepoints)\n weights = numpy.array(weights)\n validtools.test_equal_shape(timepoints=timepoints, weights=weights)\n validtools.test_non_negative(weights=weights)\n if mean_time is None:\n mean_time = calc_mean_time(timepoints, weights)\n return numpy.sqrt(numpy.dot(weights, (timepoints - mean_time) ** 2) /\n numpy.sum(weights))\n", "role": "user" }, { "content": "calc_mean_time_deviation", "role": "assistant" } ]
def x(nodes, criteria, nodenames=None, critnames=None, skip_nan=False): if nodenames: if len(nodes) != len(nodenames): raise ValueError( '%d node objects are given which does not match with number of given alternative names beeing %s.' % (len(nodes), len(nodenames))) else: nodenames = [node.name for node in nodes] if critnames: if len(criteria) != len(critnames): raise ValueError( '%d criteria functions are given which does not match with number of given alternative names beeing %s.' % (len(criteria), len(critnames))) else: critnames = [crit.__name__ for crit in criteria] data = numpy.empty((len(nodes), len(criteria)), dtype=float) for idx, node in enumerate(nodes): sim, obs = prepare_arrays(None, None, node, skip_nan) for jdx, criterion in enumerate(criteria): data[idx, jdx] = criterion(sim, obs) table = pandas.DataFrame(data=data, index=nodenames, columns=critnames) return table
evaluationtable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nodes, criteria, nodenames=None, critnames=None, skip_nan=False):\n if nodenames:\n if len(nodes) != len(nodenames):\n raise ValueError(\n '%d node objects are given which does not match with number of given alternative names beeing %s.'\n % (len(nodes), len(nodenames)))\n else:\n nodenames = [node.name for node in nodes]\n if critnames:\n if len(criteria) != len(critnames):\n raise ValueError(\n '%d criteria functions are given which does not match with number of given alternative names beeing %s.'\n % (len(criteria), len(critnames)))\n else:\n critnames = [crit.__name__ for crit in criteria]\n data = numpy.empty((len(nodes), len(criteria)), dtype=float)\n for idx, node in enumerate(nodes):\n sim, obs = prepare_arrays(None, None, node, skip_nan)\n for jdx, criterion in enumerate(criteria):\n data[idx, jdx] = criterion(sim, obs)\n table = pandas.DataFrame(data=data, index=nodenames, columns=critnames)\n return table\n", "role": "user" }, { "content": "evaluationtable", "role": "assistant" } ]
def x(self, **kwargs): given = sorted(kwargs.keys()) required = sorted(self._PRIMARY_PARAMETERS) if given == required: for key, value in kwargs.items(): setattr(self, key, value) else: raise ValueError( 'When passing primary parameter values as initialization arguments of the instantaneous unit hydrograph class `%s`, or when using method `set_primary_parameters, one has to to define all values at once via keyword arguments. But instead of the primary parameter names `%s` the following keywords were given: %s.' % (objecttools.classname(self), ', '.join(required), ', '.join (given)))
set_primary_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n given = sorted(kwargs.keys())\n required = sorted(self._PRIMARY_PARAMETERS)\n if given == required:\n for key, value in kwargs.items():\n setattr(self, key, value)\n else:\n raise ValueError(\n 'When passing primary parameter values as initialization arguments of the instantaneous unit hydrograph class `%s`, or when using method `set_primary_parameters, one has to to define all values at once via keyword arguments. But instead of the primary parameter names `%s` the following keywords were given: %s.'\n % (objecttools.classname(self), ', '.join(required), ', '.join\n (given)))\n", "role": "user" }, { "content": "set_primary_parameters", "role": "assistant" } ]
def x(self): for primpar in self._PRIMARY_PARAMETERS.values(): if primpar.__get__(self) is None: return False return True
primary_parameters_complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for primpar in self._PRIMARY_PARAMETERS.values():\n if primpar.__get__(self) is None:\n return False\n return True\n", "role": "user" }, { "content": "primary_parameters_complete", "role": "assistant" } ]
def x(self): del self.ma.coefs del self.arma.ma_coefs del self.arma.ar_coefs if self.primary_parameters_complete: self.calc_secondary_parameters() else: for secpar in self._SECONDARY_PARAMETERS.values(): secpar.__delete__(self)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n del self.ma.coefs\n del self.arma.ma_coefs\n del self.arma.ar_coefs\n if self.primary_parameters_complete:\n self.calc_secondary_parameters()\n else:\n for secpar in self._SECONDARY_PARAMETERS.values():\n secpar.__delete__(self)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): delays = [] responses = [] sum_responses = 0.0 for t in itertools.count(self.dt_response / 2.0, self.dt_response): delays.append(t) response = self(t) responses.append(response) sum_responses += self.dt_response * response if sum_responses > 0.9 and response < self.smallest_response: break return numpy.array(delays), numpy.array(responses)
delay_response_series
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n delays = []\n responses = []\n sum_responses = 0.0\n for t in itertools.count(self.dt_response / 2.0, self.dt_response):\n delays.append(t)\n response = self(t)\n responses.append(response)\n sum_responses += self.dt_response * response\n if sum_responses > 0.9 and response < self.smallest_response:\n break\n return numpy.array(delays), numpy.array(responses)\n", "role": "user" }, { "content": "delay_response_series", "role": "assistant" } ]
def x(self, threshold=None, **kwargs): delays, responses = self.delay_response_series pyplot.plot(delays, responses, **kwargs) pyplot.xlabel('time') pyplot.ylabel('response') if threshold is not None: threshold = numpy.clip(threshold, 0.0, 1.0) cumsum = numpy.cumsum(responses) idx = numpy.where(cumsum >= threshold * cumsum[-1])[0][0] pyplot.xlim(0.0, delays[idx])
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold=None, **kwargs):\n delays, responses = self.delay_response_series\n pyplot.plot(delays, responses, **kwargs)\n pyplot.xlabel('time')\n pyplot.ylabel('response')\n if threshold is not None:\n threshold = numpy.clip(threshold, 0.0, 1.0)\n cumsum = numpy.cumsum(responses)\n idx = numpy.where(cumsum >= threshold * cumsum[-1])[0][0]\n pyplot.xlim(0.0, delays[idx])\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self): delays, response = self.delay_response_series return statstools.calc_mean_time(delays, response)
moment1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n delays, response = self.delay_response_series\n return statstools.calc_mean_time(delays, response)\n", "role": "user" }, { "content": "moment1", "role": "assistant" } ]