source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
nodes = self.element.inlets
total = self.sequences.inlets.total
if total.shape != (len(nodes),):
total.shape = len(nodes)
for idx, node in enumerate(nodes):
double = node.get_double('inlets')
total.set_pointer(double, idx)
for idx, name in enumerate(self.nodenames):
try:
outlet = getattr(self.element.outlets, name)
double = outlet.get_double('outlets')
except AttributeError:
raise RuntimeError(
f'Model {objecttools.elementphrase(self)} tried to connect to an outlet node named `{name}`, which is not an available outlet node of element `{self.element.name}`.'
)
self.sequences.outlets.branched.set_pointer(double, idx)
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nodes = self.element.inlets\n total = self.sequences.inlets.total\n if total.shape != (len(nodes),):\n total.shape = len(nodes)\n for idx, node in enumerate(nodes):\n double = node.get_double('inlets')\n total.set_pointer(double, idx)\n for idx, name in enumerate(self.nodenames):\n try:\n outlet = getattr(self.element.outlets, name)\n double = outlet.get_double('outlets')\n except AttributeError:\n raise RuntimeError(\n f'Model {objecttools.elementphrase(self)} tried to connect to an outlet node named `{name}`, which is not an available outlet node of element `{self.element.name}`.'\n )\n self.sequences.outlets.branched.set_pointer(double, idx)\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self):
pars = self.subpars.pars
responses = pars.control.responses
fluxes = pars.model.sequences.fluxes
self(len(responses))
fluxes.qpin.shape = self.value
fluxes.qpout.shape = self.value
fluxes.qma.shape = self.value
fluxes.qar.shape = self.value
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pars = self.subpars.pars\n responses = pars.control.responses\n fluxes = pars.model.sequences.fluxes\n self(len(responses))\n fluxes.qpin.shape = self.value\n fluxes.qpout.shape = self.value\n fluxes.qma.shape = self.value\n fluxes.qar.shape = self.value\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
responses = self.subpars.pars.control.responses
self.shape = len(responses)
self(responses.ar_orders)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n responses = self.subpars.pars.control.responses\n self.shape = len(responses)\n self(responses.ar_orders)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
pars = self.subpars.pars
coefs = pars.control.responses.ar_coefs
self.shape = coefs.shape
self(coefs)
pars.model.sequences.logs.logout.shape = self.shape
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pars = self.subpars.pars\n coefs = pars.control.responses.ar_coefs\n self.shape = coefs.shape\n self(coefs)\n pars.model.sequences.logs.logout.shape = self.shape\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
pars = self.subpars.pars
coefs = pars.control.responses.ma_coefs
self.shape = coefs.shape
self(coefs)
pars.model.sequences.logs.login.shape = self.shape
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pars = self.subpars.pars\n coefs = pars.control.responses.ma_coefs\n self.shape = coefs.shape\n self(coefs)\n pars.model.sequences.logs.login.shape = self.shape\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x():
if config.USEAUTODOC:
source = inspect.getsource(Options)
docstrings = source.split('"""')[3::2]
attributes = [line.strip().split()[0] for line in source.split('\n'
) if '_Option(' in line]
for attribute, docstring in zip(attributes, docstrings):
Options.__dict__[attribute].__doc__ = docstring
|
prepare_docstrings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if config.USEAUTODOC:\n source = inspect.getsource(Options)\n docstrings = source.split('\"\"\"')[3::2]\n attributes = [line.strip().split()[0] for line in source.split('\\n'\n ) if '_Option(' in line]\n for attribute, docstring in zip(attributes, docstrings):\n Options.__dict__[attribute].__doc__ = docstring\n",
"role": "user"
},
{
"content": "prepare_docstrings",
"role": "assistant"
}
] |
def x(self) ->devicetools.Nodes:
nodes = devicetools.Nodes()
for selection in self:
nodes += selection.nodes
return nodes
|
nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->devicetools.Nodes:\n nodes = devicetools.Nodes()\n for selection in self:\n nodes += selection.nodes\n return nodes\n",
"role": "user"
},
{
"content": "nodes",
"role": "assistant"
}
] |
def x(self) ->devicetools.Elements:
elements = devicetools.Elements()
for selection in self:
elements += selection.elements
return elements
|
elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->devicetools.Elements:\n elements = devicetools.Elements()\n for selection in self:\n elements += selection.elements\n return elements\n",
"role": "user"
},
{
"content": "elements",
"role": "assistant"
}
] |
def x(value):
if isinstance(value, Selection):
return [value]
try:
for selection in value:
if not isinstance(selection, Selection):
raise TypeError
return list(value)
except TypeError:
raise TypeError(
f'Binary operations on Selections objects are defined for other Selections objects, single Selection objects, or iterables containing `Selection` objects, but the type of the given argument is `{objecttools.classname(value)}`.'
)
|
getiterable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n if isinstance(value, Selection):\n return [value]\n try:\n for selection in value:\n if not isinstance(selection, Selection):\n raise TypeError\n return list(value)\n except TypeError:\n raise TypeError(\n f'Binary operations on Selections objects are defined for other Selections objects, single Selection objects, or iterables containing `Selection` objects, but the type of the given argument is `{objecttools.classname(value)}`.'\n )\n",
"role": "user"
},
{
"content": "getiterable",
"role": "assistant"
}
] |
def x(self, prefix='') ->str:
with objecttools.repr_.preserve_strings(True):
with hydpy.pub.options.ellipsis(2, optional=True):
prefix += '%s(' % objecttools.classname(self)
repr_ = objecttools.assignrepr_values(sorted(self.names),
prefix, 70)
return repr_ + ')'
|
assignrepr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix='') ->str:\n with objecttools.repr_.preserve_strings(True):\n with hydpy.pub.options.ellipsis(2, optional=True):\n prefix += '%s(' % objecttools.classname(self)\n repr_ = objecttools.assignrepr_values(sorted(self.names),\n prefix, 70)\n return repr_ + ')'\n",
"role": "user"
},
{
"content": "assignrepr",
"role": "assistant"
}
] |
def x(self, device: devicetools.Device, name: str='upstream') ->'Selection':
try:
selection = Selection(name)
if isinstance(device, devicetools.Node):
node = self.nodes[device.name]
return self.__get_nextnode(node, selection)
if isinstance(device, devicetools.Element):
element = self.elements[device.name]
return self.__get_nextelement(element, selection)
raise TypeError(
f'Either a `Node` or an `Element` object is required as the "outlet device", but the given `device` value is of type `{objecttools.classname(device)}`.'
)
except BaseException:
objecttools.augment_excmessage(
f'While trying to determine the upstream network of selection `{self.name}`'
)
|
search_upstream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device: devicetools.Device, name: str='upstream') ->'Selection':\n try:\n selection = Selection(name)\n if isinstance(device, devicetools.Node):\n node = self.nodes[device.name]\n return self.__get_nextnode(node, selection)\n if isinstance(device, devicetools.Element):\n element = self.elements[device.name]\n return self.__get_nextelement(element, selection)\n raise TypeError(\n f'Either a `Node` or an `Element` object is required as the \"outlet device\", but the given `device` value is of type `{objecttools.classname(device)}`.'\n )\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to determine the upstream network of selection `{self.name}`'\n )\n",
"role": "user"
},
{
"content": "search_upstream",
"role": "assistant"
}
] |
def x(self, device: devicetools.Device) ->'Selection':
upstream = self.search_upstream(device)
self.nodes = upstream.nodes
self.elements = upstream.elements
return self
|
select_upstream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device: devicetools.Device) ->'Selection':\n upstream = self.search_upstream(device)\n self.nodes = upstream.nodes\n self.elements = upstream.elements\n return self\n",
"role": "user"
},
{
"content": "select_upstream",
"role": "assistant"
}
] |
def x(self, *models: ModelTypesArg, name: str='modeltypes') ->'Selection':
try:
typelist = []
for model in models:
if not isinstance(model, modeltools.Model):
model = importtools.prepare_model(model)
typelist.append(type(model))
typetuple = tuple(typelist)
selection = Selection(name)
for element in self.elements:
if isinstance(element.model, typetuple):
selection.elements += element
return selection
except BaseException:
values = objecttools.enumeration(models)
classes = objecttools.enumeration(objecttools.classname(model) for
model in models)
objecttools.augment_excmessage(
f'While trying to determine the elements of selection `{self.name}` handling the model defined by the argument(s) `{values}` of type(s) `{classes}`'
)
|
search_modeltypes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *models: ModelTypesArg, name: str='modeltypes') ->'Selection':\n try:\n typelist = []\n for model in models:\n if not isinstance(model, modeltools.Model):\n model = importtools.prepare_model(model)\n typelist.append(type(model))\n typetuple = tuple(typelist)\n selection = Selection(name)\n for element in self.elements:\n if isinstance(element.model, typetuple):\n selection.elements += element\n return selection\n except BaseException:\n values = objecttools.enumeration(models)\n classes = objecttools.enumeration(objecttools.classname(model) for\n model in models)\n objecttools.augment_excmessage(\n f'While trying to determine the elements of selection `{self.name}` handling the model defined by the argument(s) `{values}` of type(s) `{classes}`'\n )\n",
"role": "user"
},
{
"content": "search_modeltypes",
"role": "assistant"
}
] |
def x(self, *models: ModelTypesArg) ->'Selection':
self.nodes = devicetools.Nodes()
self.elements = self.search_modeltypes(*models).elements
return self
|
select_modeltypes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *models: ModelTypesArg) ->'Selection':\n self.nodes = devicetools.Nodes()\n self.elements = self.search_modeltypes(*models).elements\n return self\n",
"role": "user"
},
{
"content": "select_modeltypes",
"role": "assistant"
}
] |
def x(self, *substrings: str, name: str='nodenames') ->'Selection':
try:
selection = Selection(name)
for node in self.nodes:
for substring in substrings:
if substring in node.name:
selection.nodes += node
break
return selection
except BaseException:
values = objecttools.enumeration(substrings)
objecttools.augment_excmessage(
f'While trying to determine the nodes of selection `{self.name}` with names containing at least one of the given substrings `{values}`'
)
|
search_nodenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str, name: str='nodenames') ->'Selection':\n try:\n selection = Selection(name)\n for node in self.nodes:\n for substring in substrings:\n if substring in node.name:\n selection.nodes += node\n break\n return selection\n except BaseException:\n values = objecttools.enumeration(substrings)\n objecttools.augment_excmessage(\n f'While trying to determine the nodes of selection `{self.name}` with names containing at least one of the given substrings `{values}`'\n )\n",
"role": "user"
},
{
"content": "search_nodenames",
"role": "assistant"
}
] |
def x(self, *substrings: str) ->'Selection':
self.nodes = self.search_nodenames(*substrings).nodes
return self
|
select_nodenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str) ->'Selection':\n self.nodes = self.search_nodenames(*substrings).nodes\n return self\n",
"role": "user"
},
{
"content": "select_nodenames",
"role": "assistant"
}
] |
def x(self, *substrings: str) ->'Selection':
self.nodes -= self.search_nodenames(*substrings).nodes
return self
|
deselect_nodenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str) ->'Selection':\n self.nodes -= self.search_nodenames(*substrings).nodes\n return self\n",
"role": "user"
},
{
"content": "deselect_nodenames",
"role": "assistant"
}
] |
def x(self, *substrings: str, name: str='elementnames') ->'Selection':
try:
selection = Selection(name)
for element in self.elements:
for substring in substrings:
if substring in element.name:
selection.elements += element
break
return selection
except BaseException:
values = objecttools.enumeration(substrings)
objecttools.augment_excmessage(
f'While trying to determine the elements of selection `{self.name}` with names containing at least one of the given substrings `{values}`'
)
|
search_elementnames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str, name: str='elementnames') ->'Selection':\n try:\n selection = Selection(name)\n for element in self.elements:\n for substring in substrings:\n if substring in element.name:\n selection.elements += element\n break\n return selection\n except BaseException:\n values = objecttools.enumeration(substrings)\n objecttools.augment_excmessage(\n f'While trying to determine the elements of selection `{self.name}` with names containing at least one of the given substrings `{values}`'\n )\n",
"role": "user"
},
{
"content": "search_elementnames",
"role": "assistant"
}
] |
def x(self, *substrings: str) ->'Selection':
self.elements = self.search_elementnames(*substrings).elements
return self
|
select_elementnames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str) ->'Selection':\n self.elements = self.search_elementnames(*substrings).elements\n return self\n",
"role": "user"
},
{
"content": "select_elementnames",
"role": "assistant"
}
] |
def x(self, *substrings: str) ->'Selection':
self.elements -= self.search_elementnames(*substrings).elements
return self
|
deselect_elementnames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *substrings: str) ->'Selection':\n self.elements -= self.search_elementnames(*substrings).elements\n return self\n",
"role": "user"
},
{
"content": "deselect_elementnames",
"role": "assistant"
}
] |
def x(self, name: str) ->'Selection':
return type(self)(name, copy.copy(self.nodes), copy.copy(self.elements))
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str) ->'Selection':\n return type(self)(name, copy.copy(self.nodes), copy.copy(self.elements))\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, filepath: Union[str, None]=None, write_nodes: bool=True) ->None:
if filepath is None:
filepath = self.name + '.py'
with open(filepath, 'w', encoding='utf-8') as file_:
file_.write('# -*- coding: utf-8 -*-\n')
file_.write('\nfrom hydpy import Node, Element\n\n')
if write_nodes:
for node in self.nodes:
file_.write('\n' + repr(node) + '\n')
file_.write('\n')
for element in self.elements:
file_.write('\n' + repr(element) + '\n')
|
save_networkfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filepath: Union[str, None]=None, write_nodes: bool=True) ->None:\n if filepath is None:\n filepath = self.name + '.py'\n with open(filepath, 'w', encoding='utf-8') as file_:\n file_.write('# -*- coding: utf-8 -*-\\n')\n file_.write('\\nfrom hydpy import Node, Element\\n\\n')\n if write_nodes:\n for node in self.nodes:\n file_.write('\\n' + repr(node) + '\\n')\n file_.write('\\n')\n for element in self.elements:\n file_.write('\\n' + repr(element) + '\\n')\n",
"role": "user"
},
{
"content": "save_networkfile",
"role": "assistant"
}
] |
def x(self, prefix: str) ->str:
with objecttools.repr_.preserve_strings(True):
with hydpy.pub.options.ellipsis(2, optional=True):
with objecttools.assignrepr_tuple.always_bracketed(False):
classname = objecttools.classname(self)
blanks = ' ' * (len(prefix + classname) + 1)
nodestr = objecttools.assignrepr_tuple(self.nodes.names,
blanks + 'nodes=', 70)
elementstr = objecttools.assignrepr_tuple(self.elements.
names, blanks + 'elements=', 70)
return (
f'{prefix}{classname}("{self.name}",\n{nodestr},\n{elementstr})'
)
|
assignrepr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix: str) ->str:\n with objecttools.repr_.preserve_strings(True):\n with hydpy.pub.options.ellipsis(2, optional=True):\n with objecttools.assignrepr_tuple.always_bracketed(False):\n classname = objecttools.classname(self)\n blanks = ' ' * (len(prefix + classname) + 1)\n nodestr = objecttools.assignrepr_tuple(self.nodes.names, \n blanks + 'nodes=', 70)\n elementstr = objecttools.assignrepr_tuple(self.elements.\n names, blanks + 'elements=', 70)\n return (\n f'{prefix}{classname}(\"{self.name}\",\\n{nodestr},\\n{elementstr})'\n )\n",
"role": "user"
},
{
"content": "assignrepr",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
for idx in range(der.nmb - 1):
if flu.qin < der.maxq[idx]:
flu.qpin[idx] = 0.0
elif flu.qin < der.maxq[idx + 1]:
flu.qpin[idx] = flu.qin - der.maxq[idx]
else:
flu.qpin[idx] = der.diffq[idx]
flu.qpin[der.nmb - 1] = max(flu.qin - der.maxq[der.nmb - 1], 0.0)
|
calc_qpin_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for idx in range(der.nmb - 1):\n if flu.qin < der.maxq[idx]:\n flu.qpin[idx] = 0.0\n elif flu.qin < der.maxq[idx + 1]:\n flu.qpin[idx] = flu.qin - der.maxq[idx]\n else:\n flu.qpin[idx] = der.diffq[idx]\n flu.qpin[der.nmb - 1] = max(flu.qin - der.maxq[der.nmb - 1], 0.0)\n",
"role": "user"
},
{
"content": "calc_qpin_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(der.nmb):
for jdx in range(der.ma_order[idx] - 2, -1, -1):
log.login[idx, jdx + 1] = log.login[idx, jdx]
for idx in range(der.nmb):
log.login[idx, 0] = flu.qpin[idx]
|
calc_login_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(der.nmb):\n for jdx in range(der.ma_order[idx] - 2, -1, -1):\n log.login[idx, jdx + 1] = log.login[idx, jdx]\n for idx in range(der.nmb):\n log.login[idx, 0] = flu.qpin[idx]\n",
"role": "user"
},
{
"content": "calc_login_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(der.nmb):
flu.qma[idx] = 0.0
for jdx in range(der.ma_order[idx]):
flu.qma[idx] += der.ma_coefs[idx, jdx] * log.login[idx, jdx]
|
calc_qma_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(der.nmb):\n flu.qma[idx] = 0.0\n for jdx in range(der.ma_order[idx]):\n flu.qma[idx] += der.ma_coefs[idx, jdx] * log.login[idx, jdx]\n",
"role": "user"
},
{
"content": "calc_qma_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(der.nmb):
flu.qar[idx] = 0.0
for jdx in range(der.ar_order[idx]):
flu.qar[idx] += der.ar_coefs[idx, jdx] * log.logout[idx, jdx]
|
calc_qar_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(der.nmb):\n flu.qar[idx] = 0.0\n for jdx in range(der.ar_order[idx]):\n flu.qar[idx] += der.ar_coefs[idx, jdx] * log.logout[idx, jdx]\n",
"role": "user"
},
{
"content": "calc_qar_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
for idx in range(der.nmb):
flu.qpout[idx] = flu.qma[idx] + flu.qar[idx]
|
calc_qpout_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n for idx in range(der.nmb):\n flu.qpout[idx] = flu.qma[idx] + flu.qar[idx]\n",
"role": "user"
},
{
"content": "calc_qpout_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
log = self.sequences.logs.fastaccess
for idx in range(der.nmb):
for jdx in range(der.ar_order[idx] - 2, -1, -1):
log.logout[idx, jdx + 1] = log.logout[idx, jdx]
for idx in range(der.nmb):
if der.ar_order[idx] > 0:
log.logout[idx, 0] = flu.qpout[idx]
|
calc_logout_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n log = self.sequences.logs.fastaccess\n for idx in range(der.nmb):\n for jdx in range(der.ar_order[idx] - 2, -1, -1):\n log.logout[idx, jdx + 1] = log.logout[idx, jdx]\n for idx in range(der.nmb):\n if der.ar_order[idx] > 0:\n log.logout[idx, 0] = flu.qpout[idx]\n",
"role": "user"
},
{
"content": "calc_logout_v1",
"role": "assistant"
}
] |
def x(self):
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
flu.qout = 0.0
for idx in range(der.nmb):
flu.qout += flu.qpout[idx]
|
calc_qout_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.parameters.derived.fastaccess\n flu = self.sequences.fluxes.fastaccess\n flu.qout = 0.0\n for idx in range(der.nmb):\n flu.qout += flu.qpout[idx]\n",
"role": "user"
},
{
"content": "calc_qout_v1",
"role": "assistant"
}
] |
def x(self):
flu = self.sequences.fluxes.fastaccess
inl = self.sequences.inlets.fastaccess
flu.qin = 0.0
for idx in range(inl.len_q):
flu.qin += inl.q[idx][0]
|
pick_q_v1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flu = self.sequences.fluxes.fastaccess\n inl = self.sequences.inlets.fastaccess\n flu.qin = 0.0\n for idx in range(inl.len_q):\n flu.qin += inl.q[idx][0]\n",
"role": "user"
},
{
"content": "pick_q_v1",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.ypoints.shape[0])
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.ypoints.shape[0])\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(0.0)
for idx in range(2):
if con.bbv[idx] > 0.0 and con.bnv[idx] > 0.0:
self.values[idx] = con.bbv[idx] / con.bnv[idx]
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(0.0)\n for idx in range(2):\n if con.bbv[idx] > 0.0 and con.bnv[idx] > 0.0:\n self.values[idx] = con.bbv[idx] / con.bnv[idx]\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
mod = self.subpars.pars.model
con = mod.parameters.control
flu = mod.sequences.fluxes
flu.h = con.hm
mod.calc_qg()
self(flu.qg)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mod = self.subpars.pars.model\n con = mod.parameters.control\n flu = mod.sequences.fluxes\n flu.h = con.hm\n mod.calc_qg()\n self(flu.qg)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
pars = self.subpars.pars
self(int(round(pars.control.lag)))
pars.model.sequences.states.qjoints.shape = self + 1
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pars = self.subpars.pars\n self(int(round(pars.control.lag)))\n pars.model.sequences.states.qjoints.shape = self + 1\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
damp = self.subpars.pars.control.damp
self(numpy.clip(damp / (1.0 + damp), 0.0, 0.5))
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n damp = self.subpars.pars.control.damp\n self(numpy.clip(damp / (1.0 + damp), 0.0, 0.5))\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
der = self.subpars
self(numpy.clip(1.0 - der.c1 - der.c3, 0.0, 1.0))
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n der = self.subpars\n self(numpy.clip(1.0 - der.c1 - der.c3, 0.0, 1.0))\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(data, enc=None, start_pos=None, delimiter=None, hdr_rows=None,
idx_cols=None, sheet_index=0, transpose=False, wait=None, recycle=None,
detach=None, metavar=None, title=None):
global WAIT, RECYCLE, DETACH, VIEW
model = read_model(data, enc=enc, delimiter=delimiter, hdr_rows=
hdr_rows, idx_cols=idx_cols, sheet_index=sheet_index, transpose=
transpose)
if model is None:
warnings.warn('cannot visualize the supplied data type: {}'.format(
type(data)), category=RuntimeWarning)
return None
if wait is None:
wait = WAIT
if recycle is None:
recycle = RECYCLE
if detach is None:
detach = DETACH
if wait is None:
if 'matplotlib' not in sys.modules:
wait = not bool(detach)
else:
import matplotlib.pyplot as plt
wait = not plt.isinteractive()
if metavar is None:
if isinstance(data, basestring):
metavar = data
else:
metavar = _varname_in_stack(data, 1)
if VIEW is None:
if not detach:
VIEW = ViewController()
else:
VIEW = DetachedViewController()
VIEW.setDaemon(True)
VIEW.start()
if VIEW.is_detached():
atexit.register(VIEW.exit)
else:
VIEW = None
return None
view_kwargs = {'hdr_rows': hdr_rows, 'idx_cols': idx_cols, 'start_pos':
start_pos, 'metavar': metavar, 'title': title}
VIEW.view(model, view_kwargs, wait=wait, recycle=recycle)
return VIEW
|
view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, enc=None, start_pos=None, delimiter=None, hdr_rows=None,\n idx_cols=None, sheet_index=0, transpose=False, wait=None, recycle=None,\n detach=None, metavar=None, title=None):\n global WAIT, RECYCLE, DETACH, VIEW\n model = read_model(data, enc=enc, delimiter=delimiter, hdr_rows=\n hdr_rows, idx_cols=idx_cols, sheet_index=sheet_index, transpose=\n transpose)\n if model is None:\n warnings.warn('cannot visualize the supplied data type: {}'.format(\n type(data)), category=RuntimeWarning)\n return None\n if wait is None:\n wait = WAIT\n if recycle is None:\n recycle = RECYCLE\n if detach is None:\n detach = DETACH\n if wait is None:\n if 'matplotlib' not in sys.modules:\n wait = not bool(detach)\n else:\n import matplotlib.pyplot as plt\n wait = not plt.isinteractive()\n if metavar is None:\n if isinstance(data, basestring):\n metavar = data\n else:\n metavar = _varname_in_stack(data, 1)\n if VIEW is None:\n if not detach:\n VIEW = ViewController()\n else:\n VIEW = DetachedViewController()\n VIEW.setDaemon(True)\n VIEW.start()\n if VIEW.is_detached():\n atexit.register(VIEW.exit)\n else:\n VIEW = None\n return None\n view_kwargs = {'hdr_rows': hdr_rows, 'idx_cols': idx_cols, 'start_pos':\n start_pos, 'metavar': metavar, 'title': title}\n VIEW.view(model, view_kwargs, wait=wait, recycle=recycle)\n return VIEW\n",
"role": "user"
},
{
"content": "view",
"role": "assistant"
}
] |
def x() ->Tuple[Dict, Mapping, Mapping]:
id2devices = copy.copy(_id2devices)
registry = copy.copy(_registry)
selection = copy.copy(_selection)
dict_ = globals()
dict_['_id2devices'] = {}
dict_['_registry'] = {Node: {}, Element: {}}
dict_['_selection'] = {Node: {}, Element: {}}
return id2devices, registry, selection
|
gather_registries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x() ->Tuple[Dict, Mapping, Mapping]:\n id2devices = copy.copy(_id2devices)\n registry = copy.copy(_registry)\n selection = copy.copy(_selection)\n dict_ = globals()\n dict_['_id2devices'] = {}\n dict_['_registry'] = {Node: {}, Element: {}}\n dict_['_selection'] = {Node: {}, Element: {}}\n return id2devices, registry, selection\n",
"role": "user"
},
{
"content": "gather_registries",
"role": "assistant"
}
] |
def x(dicts: Tuple[Dict, Mapping, Mapping]):
dict_ = globals()
dict_['_id2devices'] = dicts[0]
dict_['_registry'] = dicts[1]
dict_['_selection'] = dicts[2]
|
reset_registries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dicts: Tuple[Dict, Mapping, Mapping]):\n dict_ = globals()\n dict_['_id2devices'] = dicts[0]\n dict_['_registry'] = dicts[1]\n dict_['_selection'] = dicts[2]\n",
"role": "user"
},
{
"content": "reset_registries",
"role": "assistant"
}
] |
def x():
tg = hydpy.pub.timegrids.init
shift = tg.stepsize / 2
index = pandas.date_range((tg.firstdate + shift).datetime, (tg.lastdate -
shift).datetime, (tg.lastdate - tg.firstdate - tg.stepsize) / tg.
stepsize + 1)
return index
|
get_pandasindex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n tg = hydpy.pub.timegrids.init\n shift = tg.stepsize / 2\n index = pandas.date_range((tg.firstdate + shift).datetime, (tg.lastdate -\n shift).datetime, (tg.lastdate - tg.firstdate - tg.stepsize) / tg.\n stepsize + 1)\n return index\n",
"role": "user"
},
{
"content": "get_pandasindex",
"role": "assistant"
}
] |
def x(self, name: str) ->List[str]:
return sorted(keyword for keyword in self if keyword.startswith(name))
|
startswith
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str) ->List[str]:\n return sorted(keyword for keyword in self if keyword.startswith(name))\n",
"role": "user"
},
{
"content": "startswith",
"role": "assistant"
}
] |
def x(self, name: str) ->List[str]:
return sorted(keyword for keyword in self if keyword.endswith(name))
|
endswith
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str) ->List[str]:\n return sorted(keyword for keyword in self if keyword.endswith(name))\n",
"role": "user"
},
{
"content": "endswith",
"role": "assistant"
}
] |
def x(self, name: str) ->List[str]:
return sorted(keyword for keyword in self if name in keyword)
|
contains
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str) ->List[str]:\n return sorted(keyword for keyword in self if name in keyword)\n",
"role": "user"
},
{
"content": "contains",
"role": "assistant"
}
] |
def x(self, *names: Any) ->None:
_names = [str(name) for name in names]
self._check_keywords(_names)
super().update(_names)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *names: Any) ->None:\n _names = [str(name) for name in names]\n self._check_keywords(_names)\n super().update(_names)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, name: Any) ->None:
self._check_keywords([str(name)])
super().add(str(name))
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: Any) ->None:\n self._check_keywords([str(name)])\n super().add(str(name))\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, device: Union[DeviceType, str]) ->None:
try:
if self.mutable:
_device = self.get_contentclass()(device)
self._name2device[_device.name] = _device
_id2devices[_device][id(self)] = self
else:
raise RuntimeError(
f'Adding devices to immutable {objecttools.classname(self)} objects is not allowed.'
)
except BaseException:
objecttools.augment_excmessage(
f'While trying to add the device `{device}` to a {objecttools.classname(self)} object'
)
|
add_device
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device: Union[DeviceType, str]) ->None:\n try:\n if self.mutable:\n _device = self.get_contentclass()(device)\n self._name2device[_device.name] = _device\n _id2devices[_device][id(self)] = self\n else:\n raise RuntimeError(\n f'Adding devices to immutable {objecttools.classname(self)} objects is not allowed.'\n )\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to add the device `{device}` to a {objecttools.classname(self)} object'\n )\n",
"role": "user"
},
{
"content": "add_device",
"role": "assistant"
}
] |
def x(self, device: Union[DeviceType, str]) ->None:
try:
if self.mutable:
_device = self.get_contentclass()(device)
try:
del self._name2device[_device.name]
except KeyError:
raise ValueError(
f'The actual {objecttools.classname(self)} object does not handle such a device.'
)
del _id2devices[_device][id(self)]
else:
raise RuntimeError(
f'Removing devices from immutable {objecttools.classname(self)} objects is not allowed.'
)
except BaseException:
objecttools.augment_excmessage(
f'While trying to remove the device `{device}` from a {objecttools.classname(self)} object'
)
|
remove_device
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device: Union[DeviceType, str]) ->None:\n try:\n if self.mutable:\n _device = self.get_contentclass()(device)\n try:\n del self._name2device[_device.name]\n except KeyError:\n raise ValueError(\n f'The actual {objecttools.classname(self)} object does not handle such a device.'\n )\n del _id2devices[_device][id(self)]\n else:\n raise RuntimeError(\n f'Removing devices from immutable {objecttools.classname(self)} objects is not allowed.'\n )\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to remove the device `{device}` from a {objecttools.classname(self)} object'\n )\n",
"role": "user"
},
{
"content": "remove_device",
"role": "assistant"
}
] |
def x(self) ->Set[str]:
return set(keyword for device in self for keyword in device.keywords if
keyword not in self._shadowed_keywords)
|
keywords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Set[str]:\n return set(keyword for device in self for keyword in device.keywords if\n keyword not in self._shadowed_keywords)\n",
"role": "user"
},
{
"content": "keywords",
"role": "assistant"
}
] |
def x(self: DevicesTypeBound) ->DevicesTypeBound:
new = type(self)()
vars(new).update(vars(self))
vars(new)['_name2device'] = copy.copy(self._name2device)
vars(new)['_shadowed_keywords'].clear()
for device in self:
_id2devices[device][id(new)] = new
return new
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self: DevicesTypeBound) ->DevicesTypeBound:\n new = type(self)()\n vars(new).update(vars(self))\n vars(new)['_name2device'] = copy.copy(self._name2device)\n vars(new)['_shadowed_keywords'].clear()\n for device in self:\n _id2devices[device][id(new)] = new\n return new\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
self.prepare_simseries(ramflag)
self.prepare_obsseries(ramflag)
|
prepare_allseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n self.prepare_simseries(ramflag)\n self.prepare_obsseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_allseries",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for node in printtools.progressbar(self):
node.prepare_simseries(ramflag)
|
prepare_simseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for node in printtools.progressbar(self):\n node.prepare_simseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_simseries",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for node in printtools.progressbar(self):
node.prepare_obsseries(ramflag)
|
prepare_obsseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for node in printtools.progressbar(self):\n node.prepare_obsseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_obsseries",
"role": "assistant"
}
] |
def x(self) ->None:
try:
for element in printtools.progressbar(self):
element.init_model(clear_registry=False)
finally:
hydpy.pub.controlmanager.clear_registry()
|
init_models
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n try:\n for element in printtools.progressbar(self):\n element.init_model(clear_registry=False)\n finally:\n hydpy.pub.controlmanager.clear_registry()\n",
"role": "user"
},
{
"content": "init_models",
"role": "assistant"
}
] |
def x(self, parameterstep: 'timetools.PeriodConstrArg'=None, simulationstep:
'timetools.PeriodConstrArg'=None, auxfiler:
'Optional[auxfiletools.Auxfiler]'=None):
if auxfiler:
auxfiler.save(parameterstep, simulationstep)
for element in printtools.progressbar(self):
element.model.parameters.save_controls(parameterstep=parameterstep,
simulationstep=simulationstep, auxfiler=auxfiler)
|
save_controls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameterstep: 'timetools.PeriodConstrArg'=None, simulationstep:\n 'timetools.PeriodConstrArg'=None, auxfiler:\n 'Optional[auxfiletools.Auxfiler]'=None):\n if auxfiler:\n auxfiler.save(parameterstep, simulationstep)\n for element in printtools.progressbar(self):\n element.model.parameters.save_controls(parameterstep=parameterstep,\n simulationstep=simulationstep, auxfiler=auxfiler)\n",
"role": "user"
},
{
"content": "save_controls",
"role": "assistant"
}
] |
def x(self) ->None:
for element in printtools.progressbar(self):
element.model.sequences.load_conditions()
|
load_conditions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n for element in printtools.progressbar(self):\n element.model.sequences.load_conditions()\n",
"role": "user"
},
{
"content": "load_conditions",
"role": "assistant"
}
] |
def x(self) ->None:
for element in printtools.progressbar(self):
element.model.sequences.save_conditions()
|
save_conditions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n for element in printtools.progressbar(self):\n element.model.sequences.save_conditions()\n",
"role": "user"
},
{
"content": "save_conditions",
"role": "assistant"
}
] |
def x(self) ->Dict[str, Dict[str, Dict[str, Union[float, numpy.ndarray]]]]:
return {element.name: element.model.sequences.conditions for element in
self}
|
conditions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Dict[str, Dict[str, Dict[str, Union[float, numpy.ndarray]]]]:\n return {element.name: element.model.sequences.conditions for element in\n self}\n",
"role": "user"
},
{
"content": "conditions",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for element in printtools.progressbar(self):
element.prepare_allseries(ramflag)
|
prepare_allseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for element in printtools.progressbar(self):\n element.prepare_allseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_allseries",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for element in printtools.progressbar(self):
element.prepare_inputseries(ramflag)
|
prepare_inputseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for element in printtools.progressbar(self):\n element.prepare_inputseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_inputseries",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for element in printtools.progressbar(self):
element.prepare_fluxseries(ramflag)
|
prepare_fluxseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for element in printtools.progressbar(self):\n element.prepare_fluxseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_fluxseries",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
for element in printtools.progressbar(self):
element.prepare_stateseries(ramflag)
|
prepare_stateseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n for element in printtools.progressbar(self):\n element.prepare_stateseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_stateseries",
"role": "assistant"
}
] |
def x(cls) ->DevicesTypeUnbound:
devices = cls.get_handlerclass()(*_selection[cls])
_selection[cls].clear()
return devices
|
extract_new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls) ->DevicesTypeUnbound:\n devices = cls.get_handlerclass()(*_selection[cls])\n _selection[cls].clear()\n return devices\n",
"role": "user"
},
{
"content": "extract_new",
"role": "assistant"
}
] |
def x(self, group: str) ->pointerutils.Double:
if group in ('inlets', 'receivers'):
if self.deploymode != 'obs':
return self.sequences.fastaccess.sim
return self.sequences.fastaccess.obs
if group in ('outlets', 'senders'):
if self.deploymode != 'oldsim':
return self.sequences.fastaccess.sim
return self.__blackhole
raise ValueError(
f'Function `get_double` of class `Node` does not support the given group name `{group}`.'
)
|
get_double
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, group: str) ->pointerutils.Double:\n if group in ('inlets', 'receivers'):\n if self.deploymode != 'obs':\n return self.sequences.fastaccess.sim\n return self.sequences.fastaccess.obs\n if group in ('outlets', 'senders'):\n if self.deploymode != 'oldsim':\n return self.sequences.fastaccess.sim\n return self.__blackhole\n raise ValueError(\n f'Function `get_double` of class `Node` does not support the given group name `{group}`.'\n )\n",
"role": "user"
},
{
"content": "get_double",
"role": "assistant"
}
] |
def x(self, **kwargs: Any) ->None:
self.__plot_series([self.sequences.sim], kwargs)
|
plot_simseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs: Any) ->None:\n self.__plot_series([self.sequences.sim], kwargs)\n",
"role": "user"
},
{
"content": "plot_simseries",
"role": "assistant"
}
] |
def x(self, **kwargs: Any) ->None:
self.__plot_series([self.sequences.obs], kwargs)
|
plot_obsseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs: Any) ->None:\n self.__plot_series([self.sequences.obs], kwargs)\n",
"role": "user"
},
{
"content": "plot_obsseries",
"role": "assistant"
}
] |
def x(self, prefix: str='') ->str:
lines = ['%sNode("%s", variable="%s",' % (prefix, self.name, self.variable)
]
if self.keywords:
subprefix = '%skeywords=' % (' ' * (len(prefix) + 5))
with objecttools.repr_.preserve_strings(True):
with objecttools.assignrepr_tuple.always_bracketed(False):
line = objecttools.assignrepr_list(sorted(self.keywords),
subprefix, width=70)
lines.append(line + ',')
lines[-1] = lines[-1][:-1] + ')'
return '\n'.join(lines)
|
assignrepr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix: str='') ->str:\n lines = ['%sNode(\"%s\", variable=\"%s\",' % (prefix, self.name, self.variable)\n ]\n if self.keywords:\n subprefix = '%skeywords=' % (' ' * (len(prefix) + 5))\n with objecttools.repr_.preserve_strings(True):\n with objecttools.assignrepr_tuple.always_bracketed(False):\n line = objecttools.assignrepr_list(sorted(self.keywords),\n subprefix, width=70)\n lines.append(line + ',')\n lines[-1] = lines[-1][:-1] + ')'\n return '\\n'.join(lines)\n",
"role": "user"
},
{
"content": "assignrepr",
"role": "assistant"
}
] |
def x(self) ->'modeltools.Model':
model = vars(self).get('model')
if model:
return model
raise AttributeError(
f'The model object of element `{self.name}` has been requested but not been prepared so far.'
)
|
model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->'modeltools.Model':\n model = vars(self).get('model')\n if model:\n return model\n raise AttributeError(\n f'The model object of element `{self.name}` has been requested but not been prepared so far.'\n )\n",
"role": "user"
},
{
"content": "model",
"role": "assistant"
}
] |
def x(self, clear_registry: bool=True) ->None:
try:
with hydpy.pub.options.warnsimulationstep(False):
info = hydpy.pub.controlmanager.load_file(element=self,
clear_registry=clear_registry)
self.model = info['model']
self.model.parameters.update()
except OSError:
if hydpy.pub.options.warnmissingcontrolfile:
warnings.warn(
f'Due to a missing or no accessible control file, no model could be initialised for element `{self.name}`'
)
else:
objecttools.augment_excmessage(
f'While trying to initialise the model object of element `{self.name}`'
)
except BaseException:
objecttools.augment_excmessage(
f'While trying to initialise the model object of element `{self.name}`'
)
|
init_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, clear_registry: bool=True) ->None:\n try:\n with hydpy.pub.options.warnsimulationstep(False):\n info = hydpy.pub.controlmanager.load_file(element=self,\n clear_registry=clear_registry)\n self.model = info['model']\n self.model.parameters.update()\n except OSError:\n if hydpy.pub.options.warnmissingcontrolfile:\n warnings.warn(\n f'Due to a missing or no accessible control file, no model could be initialised for element `{self.name}`'\n )\n else:\n objecttools.augment_excmessage(\n f'While trying to initialise the model object of element `{self.name}`'\n )\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to initialise the model object of element `{self.name}`'\n )\n",
"role": "user"
},
{
"content": "init_model",
"role": "assistant"
}
] |
def x(self) ->Set[str]:
variables: Set[str] = set()
for connection in self.__connections:
variables.update(connection.variables)
return variables
|
variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Set[str]:\n variables: Set[str] = set()\n for connection in self.__connections:\n variables.update(connection.variables)\n return variables\n",
"role": "user"
},
{
"content": "variables",
"role": "assistant"
}
] |
def x(self, ramflag: bool=True) ->None:
self.prepare_inputseries(ramflag)
self.prepare_fluxseries(ramflag)
self.prepare_stateseries(ramflag)
|
prepare_allseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ramflag: bool=True) ->None:\n self.prepare_inputseries(ramflag)\n self.prepare_fluxseries(ramflag)\n self.prepare_stateseries(ramflag)\n",
"role": "user"
},
{
"content": "prepare_allseries",
"role": "assistant"
}
] |
def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **
kwargs: Any) ->None:
self.__plot(self.model.sequences.inputs, names, average, kwargs)
|
plot_inputseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **\n kwargs: Any) ->None:\n self.__plot(self.model.sequences.inputs, names, average, kwargs)\n",
"role": "user"
},
{
"content": "plot_inputseries",
"role": "assistant"
}
] |
def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **
kwargs: Any) ->None:
self.__plot(self.model.sequences.fluxes, names, average, kwargs)
|
plot_fluxseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **\n kwargs: Any) ->None:\n self.__plot(self.model.sequences.fluxes, names, average, kwargs)\n",
"role": "user"
},
{
"content": "plot_fluxseries",
"role": "assistant"
}
] |
def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **
kwargs: Any) ->None:
self.__plot(self.model.sequences.states, names, average, kwargs)
|
plot_stateseries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, names: Optional[Iterable[str]]=None, average: bool=False, **\n kwargs: Any) ->None:\n self.__plot(self.model.sequences.states, names, average, kwargs)\n",
"role": "user"
},
{
"content": "plot_stateseries",
"role": "assistant"
}
] |
def x(self, prefix: str) ->str:
with objecttools.repr_.preserve_strings(True):
with objecttools.assignrepr_tuple.always_bracketed(False):
blanks = ' ' * (len(prefix) + 8)
lines = ['%sElement("%s",' % (prefix, self.name)]
for groupname in ('inlets', 'outlets', 'receivers', 'senders'):
group = getattr(self, groupname, Node)
if group:
subprefix = '%s%s=' % (blanks, groupname)
nodes = [str(node) for node in group]
line = objecttools.assignrepr_list(nodes, subprefix,
width=70)
lines.append(line + ',')
if self.keywords:
subprefix = '%skeywords=' % blanks
line = objecttools.assignrepr_list(sorted(self.keywords),
subprefix, width=70)
lines.append(line + ',')
lines[-1] = lines[-1][:-1] + ')'
return '\n'.join(lines)
|
assignrepr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefix: str) ->str:\n with objecttools.repr_.preserve_strings(True):\n with objecttools.assignrepr_tuple.always_bracketed(False):\n blanks = ' ' * (len(prefix) + 8)\n lines = ['%sElement(\"%s\",' % (prefix, self.name)]\n for groupname in ('inlets', 'outlets', 'receivers', 'senders'):\n group = getattr(self, groupname, Node)\n if group:\n subprefix = '%s%s=' % (blanks, groupname)\n nodes = [str(node) for node in group]\n line = objecttools.assignrepr_list(nodes, subprefix,\n width=70)\n lines.append(line + ',')\n if self.keywords:\n subprefix = '%skeywords=' % blanks\n line = objecttools.assignrepr_list(sorted(self.keywords),\n subprefix, width=70)\n lines.append(line + ',')\n lines[-1] = lines[-1][:-1] + ')'\n return '\\n'.join(lines)\n",
"role": "user"
},
{
"content": "assignrepr",
"role": "assistant"
}
] |
def x(self):
for name_group in self._METHOD_GROUPS:
functions = getattr(self, name_group, ())
uniques = {}
for func in functions:
name_func = func.__name__
method = types.MethodType(func, self)
setattr(self, name_func, method)
shortname = '_'.join(name_func.split('_')[:-1])
if shortname in uniques:
uniques[shortname] = None
else:
uniques[shortname] = method
for shortname, method in uniques.items():
if method is not None:
setattr(self, shortname, method)
|
init_methods
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for name_group in self._METHOD_GROUPS:\n functions = getattr(self, name_group, ())\n uniques = {}\n for func in functions:\n name_func = func.__name__\n method = types.MethodType(func, self)\n setattr(self, name_func, method)\n shortname = '_'.join(name_func.split('_')[:-1])\n if shortname in uniques:\n uniques[shortname] = None\n else:\n uniques[shortname] = method\n for shortname, method in uniques.items():\n if method is not None:\n setattr(self, shortname, method)\n",
"role": "user"
},
{
"content": "init_methods",
"role": "assistant"
}
] |
def x(self):
name = self.__name
if name:
return name
subs = self.__module__.split('.')
if len(subs) == 2:
type(self).__name = subs[1]
else:
type(self).__name = subs[2]
return self.__name
|
name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name = self.__name\n if name:\n return name\n subs = self.__module__.split('.')\n if len(subs) == 2:\n type(self).__name = subs[1]\n else:\n type(self).__name = subs[2]\n return self.__name\n",
"role": "user"
},
{
"content": "name",
"role": "assistant"
}
] |
def x(self):
try:
for group in ('inlets', 'receivers', 'outlets', 'senders'):
self._connect_subgroup(group)
except BaseException:
objecttools.augment_excmessage(
'While trying to build the node connection of the `%s` sequences of the model handled by element `%s`'
% (group[:-1], objecttools.devicename(self)))
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n for group in ('inlets', 'receivers', 'outlets', 'senders'):\n self._connect_subgroup(group)\n except BaseException:\n objecttools.augment_excmessage(\n 'While trying to build the node connection of the `%s` sequences of the model handled by element `%s`'\n % (group[:-1], objecttools.devicename(self)))\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self):
self.numvars.nmb_calls = self.numvars.nmb_calls + 1
for method in self.PART_ODE_METHODS:
method(self)
|
calculate_single_terms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.numvars.nmb_calls = self.numvars.nmb_calls + 1\n for method in self.PART_ODE_METHODS:\n method(self)\n",
"role": "user"
},
{
"content": "calculate_single_terms",
"role": "assistant"
}
] |
def x(self):
fluxes = self.sequences.fluxes
for flux in fluxes.numerics:
flux(getattr(fluxes.fastaccess, '_%s_sum' % flux.name))
|
get_sum_fluxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fluxes = self.sequences.fluxes\n for flux in fluxes.numerics:\n flux(getattr(fluxes.fastaccess, '_%s_sum' % flux.name))\n",
"role": "user"
},
{
"content": "get_sum_fluxes",
"role": "assistant"
}
] |
def x(self):
fluxes = self.sequences.fluxes
for flux in fluxes.numerics:
points = getattr(fluxes.fastaccess, '_%s_points' % flux.name)
coefs = self.numconsts.a_coefs[self.numvars.idx_method - 1, self.
numvars.idx_stage, :self.numvars.idx_method]
flux(self.numvars.dt * numpy.dot(coefs, points[:self.numvars.
idx_method]))
|
integrate_fluxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fluxes = self.sequences.fluxes\n for flux in fluxes.numerics:\n points = getattr(fluxes.fastaccess, '_%s_points' % flux.name)\n coefs = self.numconsts.a_coefs[self.numvars.idx_method - 1, self.\n numvars.idx_stage, :self.numvars.idx_method]\n flux(self.numvars.dt * numpy.dot(coefs, points[:self.numvars.\n idx_method]))\n",
"role": "user"
},
{
"content": "integrate_fluxes",
"role": "assistant"
}
] |
def x(self):
fluxes = self.sequences.fluxes
for flux in fluxes.numerics:
if flux.NDIM == 0:
setattr(fluxes.fastaccess, '_%s_sum' % flux.name, 0.0)
else:
getattr(fluxes.fastaccess, '_%s_sum' % flux.name)[:] = 0.0
|
reset_sum_fluxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fluxes = self.sequences.fluxes\n for flux in fluxes.numerics:\n if flux.NDIM == 0:\n setattr(fluxes.fastaccess, '_%s_sum' % flux.name, 0.0)\n else:\n getattr(fluxes.fastaccess, '_%s_sum' % flux.name)[:] = 0.0\n",
"role": "user"
},
{
"content": "reset_sum_fluxes",
"role": "assistant"
}
] |
def x(self):
fluxes = self.sequences.fluxes
for flux in fluxes.numerics:
sum_ = getattr(fluxes.fastaccess, '_%s_sum' % flux.name)
sum_ += flux
if flux.NDIM == 0:
setattr(fluxes.fastaccess, '_%s_sum' % flux.name, sum_)
|
addup_fluxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fluxes = self.sequences.fluxes\n for flux in fluxes.numerics:\n sum_ = getattr(fluxes.fastaccess, '_%s_sum' % flux.name)\n sum_ += flux\n if flux.NDIM == 0:\n setattr(fluxes.fastaccess, '_%s_sum' % flux.name, sum_)\n",
"role": "user"
},
{
"content": "addup_fluxes",
"role": "assistant"
}
] |
def x(self):
self.numvars.error = 0.0
fluxes = self.sequences.fluxes
for flux in fluxes.numerics:
results = getattr(fluxes.fastaccess, '_%s_results' % flux.name)
diff = results[self.numvars.idx_method] - results[self.numvars.
idx_method - 1]
self.numvars.error = max(self.numvars.error, numpy.max(numpy.abs(diff))
)
|
calculate_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.numvars.error = 0.0\n fluxes = self.sequences.fluxes\n for flux in fluxes.numerics:\n results = getattr(fluxes.fastaccess, '_%s_results' % flux.name)\n diff = results[self.numvars.idx_method] - results[self.numvars.\n idx_method - 1]\n self.numvars.error = max(self.numvars.error, numpy.max(numpy.abs(diff))\n )\n",
"role": "user"
},
{
"content": "calculate_error",
"role": "assistant"
}
] |
def x(self):
if self.numvars.idx_method > 2:
self.numvars.extrapolated_error = modelutils.exp(modelutils.log(
self.numvars.error) + (modelutils.log(self.numvars.error) -
modelutils.log(self.numvars.last_error)) * (self.numconsts.
nmb_methods - self.numvars.idx_method))
else:
self.numvars.extrapolated_error = -999.9
|
extrapolate_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.numvars.idx_method > 2:\n self.numvars.extrapolated_error = modelutils.exp(modelutils.log(\n self.numvars.error) + (modelutils.log(self.numvars.error) -\n modelutils.log(self.numvars.last_error)) * (self.numconsts.\n nmb_methods - self.numvars.idx_method))\n else:\n self.numvars.extrapolated_error = -999.9\n",
"role": "user"
},
{
"content": "extrapolate_error",
"role": "assistant"
}
] |
def x(projectname: str, xmlfile: str):
write = commandtools.print_textandtime
hydpy.pub.options.printprogress = False
write(f'Start HydPy project `{projectname}`')
hp = hydpytools.HydPy(projectname)
write(f'Read configuration file `{xmlfile}`')
interface = XMLInterface(xmlfile)
write('Interpret the defined options')
interface.update_options()
hydpy.pub.options.printprogress = False
write('Interpret the defined period')
interface.update_timegrids()
write('Read all network files')
hp.prepare_network()
write('Activate the selected network')
hp.update_devices(interface.fullselection)
write('Read the required control files')
hp.init_models()
write('Read the required condition files')
interface.conditions_io.load_conditions()
write('Read the required time series files')
interface.series_io.prepare_series()
interface.series_io.load_series()
write('Perform the simulation run')
hp.doit()
write('Write the desired condition files')
interface.conditions_io.save_conditions()
write('Write the desired time series files')
interface.series_io.save_series()
|
run_simulation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(projectname: str, xmlfile: str):\n write = commandtools.print_textandtime\n hydpy.pub.options.printprogress = False\n write(f'Start HydPy project `{projectname}`')\n hp = hydpytools.HydPy(projectname)\n write(f'Read configuration file `{xmlfile}`')\n interface = XMLInterface(xmlfile)\n write('Interpret the defined options')\n interface.update_options()\n hydpy.pub.options.printprogress = False\n write('Interpret the defined period')\n interface.update_timegrids()\n write('Read all network files')\n hp.prepare_network()\n write('Activate the selected network')\n hp.update_devices(interface.fullselection)\n write('Read the required control files')\n hp.init_models()\n write('Read the required condition files')\n interface.conditions_io.load_conditions()\n write('Read the required time series files')\n interface.series_io.prepare_series()\n interface.series_io.load_series()\n write('Perform the simulation run')\n hp.doit()\n write('Write the desired condition files')\n interface.conditions_io.save_conditions()\n write('Write the desired time series files')\n interface.series_io.save_series()\n",
"role": "user"
},
{
"content": "run_simulation",
"role": "assistant"
}
] |
def x(self) ->None:
try:
filenames = 'HydPyConfigSingleRun.xsd', 'HydPyConfigMultipleRuns.xsd'
for name in filenames:
if name in self.root.tag:
schemafile = name
break
else:
raise RuntimeError(
f'Configuration file `{os.path.split(self.filepath)[-1]}` does not correctly refer to one of the available XML schema files ({objecttools.enumeration(filenames)}).'
)
schemapath = os.path.join(conf.__path__[0], schemafile)
schema = xmlschema.XMLSchema(schemapath)
schema.validate(self.filepath)
except BaseException:
objecttools.augment_excmessage(
f'While trying to validate XML file `{self.filepath}`')
|
validate_xml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n try:\n filenames = 'HydPyConfigSingleRun.xsd', 'HydPyConfigMultipleRuns.xsd'\n for name in filenames:\n if name in self.root.tag:\n schemafile = name\n break\n else:\n raise RuntimeError(\n f'Configuration file `{os.path.split(self.filepath)[-1]}` does not correctly refer to one of the available XML schema files ({objecttools.enumeration(filenames)}).'\n )\n schemapath = os.path.join(conf.__path__[0], schemafile)\n schema = xmlschema.XMLSchema(schemapath)\n schema.validate(self.filepath)\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to validate XML file `{self.filepath}`')\n",
"role": "user"
},
{
"content": "validate_xml",
"role": "assistant"
}
] |
def x(self) ->None:
options = hydpy.pub.options
for option in self.find('options'):
value = option.text
if value in ('true', 'false'):
value = value == 'true'
setattr(options, strip(option.tag), value)
options.printprogress = False
options.printincolor = False
|
update_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n options = hydpy.pub.options\n for option in self.find('options'):\n value = option.text\n if value in ('true', 'false'):\n value = value == 'true'\n setattr(options, strip(option.tag), value)\n options.printprogress = False\n options.printincolor = False\n",
"role": "user"
},
{
"content": "update_options",
"role": "assistant"
}
] |
def x(self) ->None:
timegrid_xml = self.find('timegrid')
try:
timegrid = timetools.Timegrid(*(timegrid_xml[idx].text for idx in
range(3)))
hydpy.pub.timegrids = timetools.Timegrids(timegrid)
except IndexError:
seriesfile = find(timegrid_xml, 'seriesfile').text
with netcdf4.Dataset(seriesfile) as ncfile:
hydpy.pub.timegrids = timetools.Timegrids(netcdftools.
query_timegrid(ncfile))
|
update_timegrids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n timegrid_xml = self.find('timegrid')\n try:\n timegrid = timetools.Timegrid(*(timegrid_xml[idx].text for idx in\n range(3)))\n hydpy.pub.timegrids = timetools.Timegrids(timegrid)\n except IndexError:\n seriesfile = find(timegrid_xml, 'seriesfile').text\n with netcdf4.Dataset(seriesfile) as ncfile:\n hydpy.pub.timegrids = timetools.Timegrids(netcdftools.\n query_timegrid(ncfile))\n",
"role": "user"
},
{
"content": "update_timegrids",
"role": "assistant"
}
] |
def x(self) ->Iterator[devicetools.Element]:
selections = copy.copy(self.selections)
selections += self.devices
elements = set()
for selection in selections:
for element in selection.elements:
if element not in elements:
elements.add(element)
yield element
|
elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Iterator[devicetools.Element]:\n selections = copy.copy(self.selections)\n selections += self.devices\n elements = set()\n for selection in selections:\n for element in selection.elements:\n if element not in elements:\n elements.add(element)\n yield element\n",
"role": "user"
},
{
"content": "elements",
"role": "assistant"
}
] |
def x(self) ->selectiontools.Selection:
fullselection = selectiontools.Selection('fullselection')
for selection in self.selections:
fullselection += selection
fullselection += self.devices
return fullselection
|
fullselection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->selectiontools.Selection:\n fullselection = selectiontools.Selection('fullselection')\n for selection in self.selections:\n fullselection += selection\n fullselection += self.devices\n return fullselection\n",
"role": "user"
},
{
"content": "fullselection",
"role": "assistant"
}
] |
def x(self) ->None:
hydpy.pub.conditionmanager.currentdir = strip(self.find('inputdir').text)
for element in self.master.elements:
element.model.sequences.load_conditions()
|
load_conditions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n hydpy.pub.conditionmanager.currentdir = strip(self.find('inputdir').text)\n for element in self.master.elements:\n element.model.sequences.load_conditions()\n",
"role": "user"
},
{
"content": "load_conditions",
"role": "assistant"
}
] |
def x(self) ->None:
hydpy.pub.conditionmanager.currentdir = strip(self.find('outputdir').text)
for element in self.master.elements:
element.model.sequences.save_conditions()
if strip(self.find('zip').text) == 'true':
hydpy.pub.conditionmanager.zip_currentdir()
|
save_conditions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n hydpy.pub.conditionmanager.currentdir = strip(self.find('outputdir').text)\n for element in self.master.elements:\n element.model.sequences.save_conditions()\n if strip(self.find('zip').text) == 'true':\n hydpy.pub.conditionmanager.zip_currentdir()\n",
"role": "user"
},
{
"content": "save_conditions",
"role": "assistant"
}
] |
def x(self) ->None:
memory = set()
for output in itertools.chain(self.readers, self.writers):
output.prepare_series(memory)
|
prepare_series
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n memory = set()\n for output in itertools.chain(self.readers, self.writers):\n output.prepare_series(memory)\n",
"role": "user"
},
{
"content": "prepare_series",
"role": "assistant"
}
] |
def x(self) ->selectiontools.Selections:
selections = self.find('selections')
master = self
while selections is None:
master = master.master
selections = master.find('selections')
return _query_selections(selections)
|
selections
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->selectiontools.Selections:\n selections = self.find('selections')\n master = self\n while selections is None:\n master = master.master\n selections = master.find('selections')\n return _query_selections(selections)\n",
"role": "user"
},
{
"content": "selections",
"role": "assistant"
}
] |
def x(self) ->selectiontools.Selection:
devices = self.find('devices')
master = self
while devices is None:
master = master.master
devices = master.find('devices')
return _query_devices(devices)
|
devices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->selectiontools.Selection:\n devices = self.find('devices')\n master = self\n while devices is None:\n master = master.master\n devices = master.find('devices')\n return _query_devices(devices)\n",
"role": "user"
},
{
"content": "devices",
"role": "assistant"
}
] |
def x(self) ->None:
for config, convert in (('filetype', lambda x: x), ('aggregation', lambda
x: x), ('overwrite', lambda x: x.lower() == 'true'), ('dirpath', lambda
x: x)):
xml_special = self.find(config)
xml_general = self.master.find(config)
for name_manager, name_xml in zip(('input', 'flux', 'state', 'node'
), ('inputs', 'fluxes', 'states', 'nodes')):
value = None
for xml, attr_xml in zip((xml_special, xml_special, xml_general,
xml_general), (name_xml, 'general', name_xml, 'general')):
try:
value = find(xml, attr_xml).text
except AttributeError:
continue
break
setattr(hydpy.pub.sequencemanager, f'{name_manager}{config}',
convert(value))
|
prepare_sequencemanager
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n for config, convert in (('filetype', lambda x: x), ('aggregation', lambda\n x: x), ('overwrite', lambda x: x.lower() == 'true'), ('dirpath', lambda\n x: x)):\n xml_special = self.find(config)\n xml_general = self.master.find(config)\n for name_manager, name_xml in zip(('input', 'flux', 'state', 'node'\n ), ('inputs', 'fluxes', 'states', 'nodes')):\n value = None\n for xml, attr_xml in zip((xml_special, xml_special, xml_general,\n xml_general), (name_xml, 'general', name_xml, 'general')):\n try:\n value = find(xml, attr_xml).text\n except AttributeError:\n continue\n break\n setattr(hydpy.pub.sequencemanager, f'{name_manager}{config}',\n convert(value))\n",
"role": "user"
},
{
"content": "prepare_sequencemanager",
"role": "assistant"
}
] |
def x(self) ->Dict[str, Dict[str, List[str]]]:
model2subs2seqs = collections.defaultdict(lambda : collections.
defaultdict(list))
for model in self.find('sequences'):
model_name = strip(model.tag)
if model_name == 'node':
continue
for group in model:
group_name = strip(group.tag)
for sequence in group:
seq_name = strip(sequence.tag)
model2subs2seqs[model_name][group_name].append(seq_name)
return model2subs2seqs
|
model2subs2seqs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Dict[str, Dict[str, List[str]]]:\n model2subs2seqs = collections.defaultdict(lambda : collections.\n defaultdict(list))\n for model in self.find('sequences'):\n model_name = strip(model.tag)\n if model_name == 'node':\n continue\n for group in model:\n group_name = strip(group.tag)\n for sequence in group:\n seq_name = strip(sequence.tag)\n model2subs2seqs[model_name][group_name].append(seq_name)\n return model2subs2seqs\n",
"role": "user"
},
{
"content": "model2subs2seqs",
"role": "assistant"
}
] |
def x(self) ->Dict[str, List[str]]:
subs2seqs = collections.defaultdict(list)
nodes = find(self.find('sequences'), 'node')
if nodes is not None:
for seq in nodes:
subs2seqs['node'].append(strip(seq.tag))
return subs2seqs
|
subs2seqs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Dict[str, List[str]]:\n subs2seqs = collections.defaultdict(list)\n nodes = find(self.find('sequences'), 'node')\n if nodes is not None:\n for seq in nodes:\n subs2seqs['node'].append(strip(seq.tag))\n return subs2seqs\n",
"role": "user"
},
{
"content": "subs2seqs",
"role": "assistant"
}
] |
def x(self, memory: set) ->None:
for sequence in self._iterate_sequences():
if sequence not in memory:
memory.add(sequence)
sequence.activate_ram()
|
prepare_series
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, memory: set) ->None:\n for sequence in self._iterate_sequences():\n if sequence not in memory:\n memory.add(sequence)\n sequence.activate_ram()\n",
"role": "user"
},
{
"content": "prepare_series",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.