source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, fo):
motifs = []
p = re.compile('\\d+\\s+@\\s+\\d+\\.\\d+\\s+sd\\s+\\d+\\.\\d+\\s+(\\w+)$')
line = fo.readline()
while line and line.find('Color') == -1:
m = p.search(line)
if m:
pwm_data = {}
for i in range(4):
vals = [x.strip() for x in fo.readline().strip().split(' ') if
x]
pwm_data[vals[0].upper()] = vals[1:]
pwm = []
for i in range(len(pwm_data['A'])):
pwm.append([float(pwm_data[x][i]) for x in ['A', 'C', 'G',
'T']])
motifs.append(Motif(pwm))
motifs[-1].id = '%s_%s' % (self.name, m.group(1))
line = fo.readline()
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n p = re.compile('\\\\d+\\\\s+@\\\\s+\\\\d+\\\\.\\\\d+\\\\s+sd\\\\s+\\\\d+\\\\.\\\\d+\\\\s+(\\\\w+)$')\n line = fo.readline()\n while line and line.find('Color') == -1:\n m = p.search(line)\n if m:\n pwm_data = {}\n for i in range(4):\n vals = [x.strip() for x in fo.readline().strip().split(' ') if\n x]\n pwm_data[vals[0].upper()] = vals[1:]\n pwm = []\n for i in range(len(pwm_data['A'])):\n pwm.append([float(pwm_data[x][i]) for x in ['A', 'C', 'G',\n 'T']])\n motifs.append(Motif(pwm))\n motifs[-1].id = '%s_%s' % (self.name, m.group(1))\n line = fo.readline()\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
tmp = NamedTemporaryFile(mode='w', dir=self.tmpdir, delete=False)
shutil.copy(fastafile, tmp.name)
fastafile = tmp.name
current_path = os.getcwd()
os.chdir(self.dir())
motifs = []
stdout = ''
stderr = ''
for wildcard in [0, 1, 2]:
cmd = (
'%s -sample %s -background %s -directory %s -strand %s -wildcard %s'
% (bin, fastafile, params['background'], self.tmpdir, params[
'strand'], wildcard))
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
os.chdir(current_path)
pwmfiles = glob.glob('{}/tmp*/result/*pwm'.format(self.tmpdir))
if len(pwmfiles) > 0:
out_file = pwmfiles[0]
stdout += '\nOutfile: {}'.format(out_file)
my_motifs = []
if os.path.exists(out_file):
my_motifs = read_motifs(out_file, fmt='pwm')
for m in motifs:
m.id = '{}_{}'.format(self.name, m.id)
stdout += '\nTrawler: {} motifs'.format(len(motifs))
if os.path.exists(tmp.name):
os.unlink(tmp.name)
for motif in my_motifs:
motif.id = '{}_{}_{}'.format(self.name, wildcard, motif.id)
motifs += my_motifs
else:
stderr += '\nNo outfile found'
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n tmp = NamedTemporaryFile(mode='w', dir=self.tmpdir, delete=False)\n shutil.copy(fastafile, tmp.name)\n fastafile = tmp.name\n current_path = os.getcwd()\n os.chdir(self.dir())\n motifs = []\n stdout = ''\n stderr = ''\n for wildcard in [0, 1, 2]:\n cmd = (\n '%s -sample %s -background %s -directory %s -strand %s -wildcard %s'\n % (bin, fastafile, params['background'], self.tmpdir, params[\n 'strand'], wildcard))\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n os.chdir(current_path)\n pwmfiles = glob.glob('{}/tmp*/result/*pwm'.format(self.tmpdir))\n if len(pwmfiles) > 0:\n out_file = pwmfiles[0]\n stdout += '\\nOutfile: {}'.format(out_file)\n my_motifs = []\n if os.path.exists(out_file):\n my_motifs = read_motifs(out_file, fmt='pwm')\n for m in motifs:\n m.id = '{}_{}'.format(self.name, m.id)\n stdout += '\\nTrawler: {} motifs'.format(len(motifs))\n if os.path.exists(tmp.name):\n os.unlink(tmp.name)\n for motif in my_motifs:\n motif.id = '{}_{}_{}'.format(self.name, wildcard, motif.id)\n motifs += my_motifs\n else:\n stderr += '\\nNo outfile found'\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
organism = params['organism']
weeder_organisms = {'hg18': 'HS', 'hg19': 'HS', 'hg38': 'HS', 'mm9':
'MM', 'mm10': 'MM', 'dm3': 'DM', 'dm5': 'DM', 'dm6': 'DM', 'yeast':
'SC', 'sacCer2': 'SC', 'sacCer3': 'SC', 'TAIR10': 'AT', 'TAIR11': 'AT'}
weeder_organism = weeder_organisms.get(organism, 'HS')
tmp = NamedTemporaryFile(dir=self.tmpdir)
name = tmp.name
tmp.close()
shutil.copy(fastafile, name)
fastafile = name
cmd = '{} -f {} -O'.format(self.cmd, fastafile, weeder_organism)
if params['single']:
cmd += ' -ss'
stdout, stderr = '', ''
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(fastafile + '.matrix.w2'):
f = open(fastafile + '.matrix.w2')
motifs = self.parse(f)
f.close()
for m in motifs:
m.id = '{}_{}'.format(self.name, m.id.split('\t')[0])
for ext in ['.w2', '.matrix.w2']:
if os.path.exists(fastafile + ext):
os.unlink(fastafile + ext)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n organism = params['organism']\n weeder_organisms = {'hg18': 'HS', 'hg19': 'HS', 'hg38': 'HS', 'mm9':\n 'MM', 'mm10': 'MM', 'dm3': 'DM', 'dm5': 'DM', 'dm6': 'DM', 'yeast':\n 'SC', 'sacCer2': 'SC', 'sacCer3': 'SC', 'TAIR10': 'AT', 'TAIR11': 'AT'}\n weeder_organism = weeder_organisms.get(organism, 'HS')\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n name = tmp.name\n tmp.close()\n shutil.copy(fastafile, name)\n fastafile = name\n cmd = '{} -f {} -O'.format(self.cmd, fastafile, weeder_organism)\n if params['single']:\n cmd += ' -ss'\n stdout, stderr = '', ''\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(fastafile + '.matrix.w2'):\n f = open(fastafile + '.matrix.w2')\n motifs = self.parse(f)\n f.close()\n for m in motifs:\n m.id = '{}_{}'.format(self.name, m.id.split('\\t')[0])\n for ext in ['.w2', '.matrix.w2']:\n if os.path.exists(fastafile + ext):\n os.unlink(fastafile + ext)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, params=None):
prm = self.default_params.copy()
if params is not None:
prm.update(params)
if prm['background_model']:
prm['background_model'] = os.path.abspath(prm['background_model'])
elif prm.get('organism', None):
prm['background_model'] = os.path.join(self.config.get_bg_dir(),
'{}.{}.bg'.format(prm['organism'], 'MotifSampler'))
else:
raise Exception('No background specified for {}'.format(self.name))
prm['strand'] = 1
if prm['single']:
prm['strand'] = 0
tmp = NamedTemporaryFile(dir=self.tmpdir)
prm['pwmfile'] = tmp.name
tmp2 = NamedTemporaryFile(dir=self.tmpdir)
prm['outfile'] = tmp2.name
return prm
|
parse_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if prm['background_model']:\n prm['background_model'] = os.path.abspath(prm['background_model'])\n elif prm.get('organism', None):\n prm['background_model'] = os.path.join(self.config.get_bg_dir(),\n '{}.{}.bg'.format(prm['organism'], 'MotifSampler'))\n else:\n raise Exception('No background specified for {}'.format(self.name))\n prm['strand'] = 1\n if prm['single']:\n prm['strand'] = 0\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n prm['pwmfile'] = tmp.name\n tmp2 = NamedTemporaryFile(dir=self.tmpdir)\n prm['outfile'] = tmp2.name\n return prm\n",
"role": "user"
},
{
"content": "parse_params",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
cmd = '%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s' % (bin, fastafile,
params['background_model'], params['pwmfile'], params['width'],
params['number'], params['outfile'], params['strand'])
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
motifs = []
if os.path.exists(params['outfile']):
with open(params['outfile']) as f:
motifs = self.parse_out(f)
for motif in motifs:
motif.id = '%s_%s' % (self.name, motif.id)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n cmd = '%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s' % (bin, fastafile,\n params['background_model'], params['pwmfile'], params['width'],\n params['number'], params['outfile'], params['strand'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n motifs = []\n if os.path.exists(params['outfile']):\n with open(params['outfile']) as f:\n motifs = self.parse_out(f)\n for motif in motifs:\n motif.id = '%s_%s' % (self.name, motif.id)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
pwm = []
info = {}
for line in fo.readlines():
if line.startswith('#'):
vals = line.strip()[1:].split(' = ')
if len(vals) > 1:
info[vals[0]] = vals[1]
elif len(line) > 1:
pwm.append([float(x) for x in line.strip().split('\t')])
else:
motifs.append(Motif())
motifs[-1].consensus = info['Consensus']
motifs[-1].width = info['W']
motifs[-1].id = info['ID']
motifs[-1].pwm = pwm[:]
pwm = []
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n pwm = []\n info = {}\n for line in fo.readlines():\n if line.startswith('#'):\n vals = line.strip()[1:].split(' = ')\n if len(vals) > 1:\n info[vals[0]] = vals[1]\n elif len(line) > 1:\n pwm.append([float(x) for x in line.strip().split('\\t')])\n else:\n motifs.append(Motif())\n motifs[-1].consensus = info['Consensus']\n motifs[-1].width = info['W']\n motifs[-1].id = info['ID']\n motifs[-1].pwm = pwm[:]\n pwm = []\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
pseudo = 0.0
aligns = {}
for line in fo.readlines():
if line.startswith('#'):
pass
elif len(line) > 1:
vals = line.strip().split('\t')
m_id, site = [x.strip().split(' ')[1].replace('"', '') for x in
vals[8].split(';') if x]
if site.upper().find('N') == -1:
aligns.setdefault(m_id, []).append(site)
for m_id, align in aligns.items():
width = len(align[0])
pfm = [[(0) for x in range(4)] for x in range(width)]
for row in align:
for i in range(len(row)):
pfm[i][nucs[row[i]]] += 1
total = float(len(align))
pwm = [[((x + pseudo / 4) / total + pseudo) for x in row] for row in
pfm]
m = Motif()
m.align = align[:]
m.pwm = pwm[:]
m.pfm = pfm[:]
m.id = m_id
motifs.append(m)
return motifs
|
parse_out
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pseudo = 0.0\n aligns = {}\n for line in fo.readlines():\n if line.startswith('#'):\n pass\n elif len(line) > 1:\n vals = line.strip().split('\\t')\n m_id, site = [x.strip().split(' ')[1].replace('\"', '') for x in\n vals[8].split(';') if x]\n if site.upper().find('N') == -1:\n aligns.setdefault(m_id, []).append(site)\n for m_id, align in aligns.items():\n width = len(align[0])\n pfm = [[(0) for x in range(4)] for x in range(width)]\n for row in align:\n for i in range(len(row)):\n pfm[i][nucs[row[i]]] += 1\n total = float(len(align))\n pwm = [[((x + pseudo / 4) / total + pseudo) for x in row] for row in\n pfm]\n m = Motif()\n m.align = align[:]\n m.pwm = pwm[:]\n m.pfm = pfm[:]\n m.id = m_id\n motifs.append(m)\n return motifs\n",
"role": "user"
},
{
"content": "parse_out",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
default_params = {'width': 10, 'number': 10}
if params is not None:
default_params.update(params)
new_file = os.path.join(self.tmpdir, 'mdmodule_in.fa')
shutil.copy(fastafile, new_file)
fastafile = new_file
pwmfile = fastafile + '.out'
width = default_params['width']
number = default_params['number']
current_path = os.getcwd()
os.chdir(self.tmpdir)
cmd = '%s -i %s -a 1 -o %s -w %s -t 100 -r %s' % (bin, fastafile,
pwmfile, width, number)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
stdout = 'cmd: {}\n'.format(cmd) + stdout.decode()
motifs = []
if os.path.exists(pwmfile):
with open(pwmfile) as f:
motifs = self.parse(f)
os.chdir(current_path)
for motif in motifs:
motif.id = '%s_%s' % (self.name, motif.id)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n default_params = {'width': 10, 'number': 10}\n if params is not None:\n default_params.update(params)\n new_file = os.path.join(self.tmpdir, 'mdmodule_in.fa')\n shutil.copy(fastafile, new_file)\n fastafile = new_file\n pwmfile = fastafile + '.out'\n width = default_params['width']\n number = default_params['number']\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n cmd = '%s -i %s -a 1 -o %s -w %s -t 100 -r %s' % (bin, fastafile,\n pwmfile, width, number)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n stdout = 'cmd: {}\\n'.format(cmd) + stdout.decode()\n motifs = []\n if os.path.exists(pwmfile):\n with open(pwmfile) as f:\n motifs = self.parse(f)\n os.chdir(current_path)\n for motif in motifs:\n motif.id = '%s_%s' % (self.name, motif.id)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
p = re.compile(
'(\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)'
)
pf = re.compile('>.+\\s+[bf]\\d+\\s+(\\w+)')
pwm = []
pfm = []
align = []
m_id = ''
for line in fo.readlines():
if line.startswith('Motif'):
if m_id:
motifs.append(Motif())
motifs[-1].id = m_id
motifs[-1].pwm = pwm
motifs[-1].pfm = pfm
motifs[-1].align = align
pwm = []
pfm = []
align = []
m_id = line.split('\t')[0]
else:
m = p.search(line)
if m:
pwm.append([(float(m.group(x)) / 100) for x in [2, 3, 4, 5]])
m = pf.search(line)
if m:
if not pfm:
pfm = [[(0) for x in range(4)] for x in range(len(m.
group(1)))]
for i in range(len(m.group(1))):
pfm[i][nucs[m.group(1)[i]]] += 1
align.append(m.group(1))
if pwm:
motifs.append(Motif())
motifs[-1].id = m_id
motifs[-1].pwm = pwm
motifs[-1].pfm = pfm
motifs[-1].align = align
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n p = re.compile(\n '(\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)'\n )\n pf = re.compile('>.+\\\\s+[bf]\\\\d+\\\\s+(\\\\w+)')\n pwm = []\n pfm = []\n align = []\n m_id = ''\n for line in fo.readlines():\n if line.startswith('Motif'):\n if m_id:\n motifs.append(Motif())\n motifs[-1].id = m_id\n motifs[-1].pwm = pwm\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n pwm = []\n pfm = []\n align = []\n m_id = line.split('\\t')[0]\n else:\n m = p.search(line)\n if m:\n pwm.append([(float(m.group(x)) / 100) for x in [2, 3, 4, 5]])\n m = pf.search(line)\n if m:\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(len(m.\n group(1)))]\n for i in range(len(m.group(1))):\n pfm[i][nucs[m.group(1)[i]]] += 1\n align.append(m.group(1))\n if pwm:\n motifs.append(Motif())\n motifs[-1].id = m_id\n motifs[-1].pwm = pwm\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, params=None):
prm = self.default_params.copy()
if params is not None:
prm.update(params)
return prm
|
parse_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n return prm\n",
"role": "user"
},
{
"content": "parse_params",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
basename = 'munk_in.fa'
new_file = os.path.join(self.tmpdir, basename)
out = open(new_file, 'w')
f = Fasta(fastafile)
for seq in f.seqs:
header = len(seq) // 2
out.write('>%s\n' % header)
out.write('%s\n' % seq)
out.close()
fastafile = new_file
outfile = fastafile + '.out'
current_path = os.getcwd()
os.chdir(self.dir())
motifs = []
ncpus = 4
stdout = ''
stderr = ''
for zoops_factor in ['oops', 0.0, 0.5, 1.0]:
cmd = '{} {} {} y {} m:{} 100 10 1 {} 1>{}'.format(bin, params.get(
'width', 8), params.get('width', 20), zoops_factor, fastafile,
ncpus, outfile)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
std = p.communicate()
stdout = stdout + std[0].decode()
stderr = stderr + std[1].decode()
if 'RuntimeException' in stderr:
return [], stdout, stderr
if os.path.exists(outfile):
with open(outfile) as f:
motifs += self.parse(f)
os.chdir(current_path)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n basename = 'munk_in.fa'\n new_file = os.path.join(self.tmpdir, basename)\n out = open(new_file, 'w')\n f = Fasta(fastafile)\n for seq in f.seqs:\n header = len(seq) // 2\n out.write('>%s\\n' % header)\n out.write('%s\\n' % seq)\n out.close()\n fastafile = new_file\n outfile = fastafile + '.out'\n current_path = os.getcwd()\n os.chdir(self.dir())\n motifs = []\n ncpus = 4\n stdout = ''\n stderr = ''\n for zoops_factor in ['oops', 0.0, 0.5, 1.0]:\n cmd = '{} {} {} y {} m:{} 100 10 1 {} 1>{}'.format(bin, params.get(\n 'width', 8), params.get('width', 20), zoops_factor, fastafile,\n ncpus, outfile)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n std = p.communicate()\n stdout = stdout + std[0].decode()\n stderr = stderr + std[1].decode()\n if 'RuntimeException' in stderr:\n return [], stdout, stderr\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs += self.parse(f)\n os.chdir(current_path)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
line = fo.readline()
if not line:
return []
while not line.startswith('A|'):
line = fo.readline()
matrix = []
for _ in range(4):
matrix.append([float(x) for x in line.strip().split('|')[1].split(' ')]
)
line = fo.readline()
matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))]
m = Motif(matrix)
m.id = 'ChIPMunk_w%s' % len(m)
return [m]
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n line = fo.readline()\n if not line:\n return []\n while not line.startswith('A|'):\n line = fo.readline()\n matrix = []\n for _ in range(4):\n matrix.append([float(x) for x in line.strip().split('|')[1].split(' ')]\n )\n line = fo.readline()\n matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))]\n m = Motif(matrix)\n m.id = 'ChIPMunk_w%s' % len(m)\n return [m]\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
default_params = {}
if params is not None:
default_params.update(params)
width = params.get('width', 8)
basename = 'posmo_in.fa'
new_file = os.path.join(self.tmpdir, basename)
shutil.copy(fastafile, new_file)
fastafile = new_file
motifs = []
current_path = os.getcwd()
os.chdir(self.tmpdir)
for n_ones in range(4, min(width, 11), 2):
x = '1' * n_ones
outfile = '%s.%s.out' % (fastafile, x)
cmd = '%s 5000 %s %s 1.6 2.5 %s 200' % (bin, x, fastafile, width)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
stdout = stdout.decode()
stderr = stderr.decode()
context_file = fastafile.replace(basename, 'context.%s.%s.txt' % (
basename, x))
cmd = '%s %s %s simi.txt 0.88 10 2 10' % (bin.replace('posmo',
'clusterwd'), context_file, outfile)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
if os.path.exists(outfile):
with open(outfile) as f:
motifs += self.parse(f, width, n_ones)
os.chdir(current_path)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n default_params = {}\n if params is not None:\n default_params.update(params)\n width = params.get('width', 8)\n basename = 'posmo_in.fa'\n new_file = os.path.join(self.tmpdir, basename)\n shutil.copy(fastafile, new_file)\n fastafile = new_file\n motifs = []\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n for n_ones in range(4, min(width, 11), 2):\n x = '1' * n_ones\n outfile = '%s.%s.out' % (fastafile, x)\n cmd = '%s 5000 %s %s 1.6 2.5 %s 200' % (bin, x, fastafile, width)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n stdout = stdout.decode()\n stderr = stderr.decode()\n context_file = fastafile.replace(basename, 'context.%s.%s.txt' % (\n basename, x))\n cmd = '%s %s %s simi.txt 0.88 10 2 10' % (bin.replace('posmo',\n 'clusterwd'), context_file, outfile)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs += self.parse(f, width, n_ones)\n os.chdir(current_path)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo, width, seed=None):
motifs = []
lines = [fo.readline() for x in range(6)]
while lines[0]:
matrix = [[float(x) for x in line.strip().split('\t')] for line in
lines[2:]]
matrix = [[matrix[x][y] for x in range(4)] for y in range(len(
matrix[0]))]
m = Motif(matrix)
m.trim(0.1)
m.id = lines[0].strip().split(' ')[-1]
motifs.append(m)
lines = [fo.readline() for x in range(6)]
for i, motif in enumerate(motifs):
if seed:
motif.id = '%s_w%s.%s_%s' % (self.name, width, seed, i + 1)
else:
motif.id = '%s_w%s_%s' % (self.name, width, i + 1)
motif.trim(0.25)
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo, width, seed=None):\n motifs = []\n lines = [fo.readline() for x in range(6)]\n while lines[0]:\n matrix = [[float(x) for x in line.strip().split('\\t')] for line in\n lines[2:]]\n matrix = [[matrix[x][y] for x in range(4)] for y in range(len(\n matrix[0]))]\n m = Motif(matrix)\n m.trim(0.1)\n m.id = lines[0].strip().split(' ')[-1]\n motifs.append(m)\n lines = [fo.readline() for x in range(6)]\n for i, motif in enumerate(motifs):\n if seed:\n motif.id = '%s_w%s.%s_%s' % (self.name, width, seed, i + 1)\n else:\n motif.id = '%s_w%s_%s' % (self.name, width, i + 1)\n motif.trim(0.25)\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
lines = fo.readlines()
for i in range(0, len(lines), 5):
align = []
pwm = []
pfm = []
m_id = ''
line = lines[i].strip()
m_id = line[1:]
number = m_id.split('_')[0][1:]
if os.path.exists('%s.seq' % number):
with open('%s.seq' % number) as f:
for l in f:
if 'x' not in l and 'n' not in l:
l = l.strip().upper()
align.append(l)
if not pfm:
pfm = [[(0) for x in range(4)] for x in range(
len(l))]
for p in range(len(l)):
pfm[p][nucs[l[p]]] += 1
m = [l.strip().split(' ')[1].split('\t') for l in lines[i + 1:i + 5]]
pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))]
motifs.append(Motif(pwm))
motifs[-1].id = '{}_{}'.format(self.name, m_id)
if align:
motifs[-1].pfm = pfm
motifs[-1].align = align
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n lines = fo.readlines()\n for i in range(0, len(lines), 5):\n align = []\n pwm = []\n pfm = []\n m_id = ''\n line = lines[i].strip()\n m_id = line[1:]\n number = m_id.split('_')[0][1:]\n if os.path.exists('%s.seq' % number):\n with open('%s.seq' % number) as f:\n for l in f:\n if 'x' not in l and 'n' not in l:\n l = l.strip().upper()\n align.append(l)\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(\n len(l))]\n for p in range(len(l)):\n pfm[p][nucs[l[p]]] += 1\n m = [l.strip().split(' ')[1].split('\\t') for l in lines[i + 1:i + 5]]\n pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))]\n motifs.append(Motif(pwm))\n motifs[-1].id = '{}_{}'.format(self.name, m_id)\n if align:\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
fname = os.path.join(self.config.get_motif_dir(),
'JASPAR2010_vertebrate.pwm')
motifs = read_motifs(fname, fmt='pwm')
for motif in motifs:
motif.id = 'JASPAR_%s' % motif.id
return motifs, '', ''
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n fname = os.path.join(self.config.get_motif_dir(),\n 'JASPAR2010_vertebrate.pwm')\n motifs = read_motifs(fname, fmt='pwm')\n for motif in motifs:\n motif.id = 'JASPAR_%s' % motif.id\n return motifs, '', ''\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
default_params = {'width': 10, 'single': False, 'number': 10}
if params is not None:
default_params.update(params)
tmp = NamedTemporaryFile(dir=self.tmpdir)
tmpname = tmp.name
strand = '-revcomp'
width = default_params['width']
number = default_params['number']
cmd = [bin, fastafile, '-text', '-dna', '-nostatus', '-mod', 'zoops',
'-nmotifs', '%s' % number, '-w', '%s' % width, '-maxsize', '10000000']
if not default_params['single']:
cmd.append(strand)
p = Popen(cmd, bufsize=1, stderr=PIPE, stdout=PIPE)
stdout, stderr = p.communicate()
motifs = []
motifs = self.parse(io.StringIO(stdout.decode()))
tmp.close()
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n default_params = {'width': 10, 'single': False, 'number': 10}\n if params is not None:\n default_params.update(params)\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n tmpname = tmp.name\n strand = '-revcomp'\n width = default_params['width']\n number = default_params['number']\n cmd = [bin, fastafile, '-text', '-dna', '-nostatus', '-mod', 'zoops',\n '-nmotifs', '%s' % number, '-w', '%s' % width, '-maxsize', '10000000']\n if not default_params['single']:\n cmd.append(strand)\n p = Popen(cmd, bufsize=1, stderr=PIPE, stdout=PIPE)\n stdout, stderr = p.communicate()\n motifs = []\n motifs = self.parse(io.StringIO(stdout.decode()))\n tmp.close()\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
p = re.compile(
'MOTIF.+MEME-(\\d+)\\s*width\\s*=\\s*(\\d+)\\s+sites\\s*=\\s*(\\d+)')
pa = re.compile('\\)\\s+([A-Z]+)')
line = fo.readline()
while line:
m = p.search(line)
align = []
pfm = None
if m:
id = '%s_%s_w%s' % (self.name, m.group(1), m.group(2))
while not line.startswith('//'):
ma = pa.search(line)
if ma:
l = ma.group(1)
align.append(l)
if not pfm:
pfm = [[(0) for x in range(4)] for x in range(len(l))]
for pos in range(len(l)):
if l[pos] in nucs:
pfm[pos][nucs[l[pos]]] += 1
else:
for i in range(4):
pfm[pos][i] += 0.25
line = fo.readline()
motifs.append(Motif(pfm[:]))
motifs[-1].id = id
motifs[-1].align = align[:]
line = fo.readline()
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n p = re.compile(\n 'MOTIF.+MEME-(\\\\d+)\\\\s*width\\\\s*=\\\\s*(\\\\d+)\\\\s+sites\\\\s*=\\\\s*(\\\\d+)')\n pa = re.compile('\\\\)\\\\s+([A-Z]+)')\n line = fo.readline()\n while line:\n m = p.search(line)\n align = []\n pfm = None\n if m:\n id = '%s_%s_w%s' % (self.name, m.group(1), m.group(2))\n while not line.startswith('//'):\n ma = pa.search(line)\n if ma:\n l = ma.group(1)\n align.append(l)\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(len(l))]\n for pos in range(len(l)):\n if l[pos] in nucs:\n pfm[pos][nucs[l[pos]]] += 1\n else:\n for i in range(4):\n pfm[pos][i] += 0.25\n line = fo.readline()\n motifs.append(Motif(pfm[:]))\n motifs[-1].id = id\n motifs[-1].align = align[:]\n line = fo.readline()\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(input_table, genome, scoring, pwmfile=None, ncpus=None):
config = MotifConfig()
if pwmfile is None:
pwmfile = config.get_default_params().get('motif_db', None)
if pwmfile is not None:
pwmfile = os.path.join(config.get_motif_dir(), pwmfile)
if pwmfile is None:
raise ValueError('no pwmfile given and no default database specified')
logger.info('reading table')
if input_table.endswith('feather'):
df = pd.read_feather(input_table)
idx = df.iloc[:, 0].values
else:
df = pd.read_table(input_table, index_col=0, comment='#')
idx = df.index
regions = list(idx)
s = Scanner(ncpus=ncpus)
s.set_motifs(pwmfile)
s.set_genome(genome)
s.set_background(genome=genome)
nregions = len(regions)
scores = []
if scoring == 'count':
logger.info('setting threshold')
s.set_threshold(fpr=FPR)
logger.info('creating count table')
for row in s.count(regions):
scores.append(row)
logger.info('done')
else:
s.set_threshold(threshold=0.0)
logger.info('creating score table')
for row in s.best_score(regions, normalize=True):
scores.append(row)
logger.info('done')
motif_names = [m.id for m in read_motifs(pwmfile)]
logger.info('creating dataframe')
return pd.DataFrame(scores, index=idx, columns=motif_names)
|
scan_to_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_table, genome, scoring, pwmfile=None, ncpus=None):\n config = MotifConfig()\n if pwmfile is None:\n pwmfile = config.get_default_params().get('motif_db', None)\n if pwmfile is not None:\n pwmfile = os.path.join(config.get_motif_dir(), pwmfile)\n if pwmfile is None:\n raise ValueError('no pwmfile given and no default database specified')\n logger.info('reading table')\n if input_table.endswith('feather'):\n df = pd.read_feather(input_table)\n idx = df.iloc[:, 0].values\n else:\n df = pd.read_table(input_table, index_col=0, comment='#')\n idx = df.index\n regions = list(idx)\n s = Scanner(ncpus=ncpus)\n s.set_motifs(pwmfile)\n s.set_genome(genome)\n s.set_background(genome=genome)\n nregions = len(regions)\n scores = []\n if scoring == 'count':\n logger.info('setting threshold')\n s.set_threshold(fpr=FPR)\n logger.info('creating count table')\n for row in s.count(regions):\n scores.append(row)\n logger.info('done')\n else:\n s.set_threshold(threshold=0.0)\n logger.info('creating score table')\n for row in s.best_score(regions, normalize=True):\n scores.append(row)\n logger.info('done')\n motif_names = [m.id for m in read_motifs(pwmfile)]\n logger.info('creating dataframe')\n return pd.DataFrame(scores, index=idx, columns=motif_names)\n",
"role": "user"
},
{
"content": "scan_to_table",
"role": "assistant"
}
] |
def x(infile, genome, outdir, pwmfile=None, plot=True, cluster=False,
score_table=None, count_table=None, methods=None, ncpus=None):
logger.info('Starting maelstrom')
if infile.endswith('feather'):
df = pd.read_feather(infile)
df = df.set_index(df.columns[0])
else:
df = pd.read_table(infile, index_col=0, comment='#')
if df.index.duplicated(keep=False).any():
raise ValueError(
'Input file contains duplicate regions! Please remove them.')
if not os.path.exists(outdir):
os.mkdir(outdir)
if methods is None:
methods = Moap.list_predictors()
methods = [m.lower() for m in methods]
shutil.copyfile(infile, os.path.join(outdir, 'input.table.txt'))
pwmfile = pwmfile_location(pwmfile)
if pwmfile:
shutil.copy2(pwmfile, outdir)
mapfile = re.sub('.p[fw]m$', '.motif2factors.txt', pwmfile)
if os.path.exists(mapfile):
shutil.copy2(mapfile, outdir)
if not count_table:
count_table = os.path.join(outdir, 'motif.count.txt.gz')
if not os.path.exists(count_table):
logger.info('Motif scanning (counts)')
counts = scan_to_table(infile, genome, 'count', pwmfile=pwmfile,
ncpus=ncpus)
counts.to_csv(count_table, sep='\t', compression='gzip')
else:
logger.info('Counts, using: %s', count_table)
if not score_table:
score_table = os.path.join(outdir, 'motif.score.txt.gz')
if not os.path.exists(score_table):
logger.info('Motif scanning (scores)')
scores = scan_to_table(infile, genome, 'score', pwmfile=pwmfile,
ncpus=ncpus)
scores.to_csv(score_table, sep='\t', float_format='%.3f',
compression='gzip')
else:
logger.info('Scores, using: %s', score_table)
if cluster:
cluster = False
for method in methods:
m = Moap.create(method, ncpus=ncpus)
if m.ptype == 'classification':
cluster = True
break
if not cluster:
logger.info('Skipping clustering, no classification methods')
exps = []
clusterfile = infile
if df.shape[1] != 1:
for method in Moap.list_regression_predictors():
if method in methods:
m = Moap.create(method, ncpus=ncpus)
exps.append([method, m.pref_table, infile])
logger.debug('Adding %s', method)
if cluster:
clusterfile = os.path.join(outdir, os.path.basename(infile) +
'.cluster.txt')
df[:] = scale(df, axis=0)
names = df.columns
df_changed = pd.DataFrame(index=df.index)
df_changed['cluster'] = np.nan
for name in names:
df_changed.loc[df[name] - df.loc[:, df.columns != name].max
(1) > 0.5, 'cluster'] = name
df_changed.dropna().to_csv(clusterfile, sep='\t')
if df.shape[1] == 1 or cluster:
for method in Moap.list_classification_predictors():
if method in methods:
m = Moap.create(method, ncpus=ncpus)
exps.append([method, m.pref_table, clusterfile])
if len(exps) == 0:
logger.error('No method to run.')
sys.exit(1)
for method, scoring, fname in exps:
try:
if scoring == 'count' and count_table:
moap_with_table(fname, count_table, outdir, method, scoring,
ncpus=ncpus)
elif scoring == 'score' and score_table:
moap_with_table(fname, score_table, outdir, method, scoring,
ncpus=ncpus)
else:
moap_with_bg(fname, genome, outdir, method, scoring,
pwmfile=pwmfile, ncpus=ncpus)
except Exception as e:
logger.warn('Method %s with scoring %s failed', method, scoring)
logger.warn(e)
logger.warn('Skipping')
raise
dfs = {}
for method, scoring, fname in exps:
t = '{}.{}'.format(method, scoring)
fname = os.path.join(outdir, 'activity.{}.{}.out.txt'.format(method,
scoring))
try:
dfs[t] = pd.read_table(fname, index_col=0, comment='#')
except:
logging.warn('Activity file for {} not found!\n'.format(t))
if len(methods) > 1:
logger.info('Rank aggregation')
df_p = df_rank_aggregation(df, dfs, exps)
df_p.to_csv(os.path.join(outdir, 'final.out.csv'), sep='\t')
if df.shape[1] == 1:
mcount = df.join(pd.read_table(count_table, index_col=0, comment='#'))
m_group = mcount.groupby(df.columns[0])
freq = m_group.sum() / m_group.count()
freq.to_csv(os.path.join(outdir, 'motif.freq.txt'), sep='\t')
if plot and len(methods) > 1:
logger.info('html report')
maelstrom_html_report(outdir, os.path.join(outdir, 'final.out.csv'),
pwmfile)
logger.info(os.path.join(outdir, 'gimme.maelstrom.report.html'))
|
run_maelstrom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, genome, outdir, pwmfile=None, plot=True, cluster=False,\n score_table=None, count_table=None, methods=None, ncpus=None):\n logger.info('Starting maelstrom')\n if infile.endswith('feather'):\n df = pd.read_feather(infile)\n df = df.set_index(df.columns[0])\n else:\n df = pd.read_table(infile, index_col=0, comment='#')\n if df.index.duplicated(keep=False).any():\n raise ValueError(\n 'Input file contains duplicate regions! Please remove them.')\n if not os.path.exists(outdir):\n os.mkdir(outdir)\n if methods is None:\n methods = Moap.list_predictors()\n methods = [m.lower() for m in methods]\n shutil.copyfile(infile, os.path.join(outdir, 'input.table.txt'))\n pwmfile = pwmfile_location(pwmfile)\n if pwmfile:\n shutil.copy2(pwmfile, outdir)\n mapfile = re.sub('.p[fw]m$', '.motif2factors.txt', pwmfile)\n if os.path.exists(mapfile):\n shutil.copy2(mapfile, outdir)\n if not count_table:\n count_table = os.path.join(outdir, 'motif.count.txt.gz')\n if not os.path.exists(count_table):\n logger.info('Motif scanning (counts)')\n counts = scan_to_table(infile, genome, 'count', pwmfile=pwmfile,\n ncpus=ncpus)\n counts.to_csv(count_table, sep='\\t', compression='gzip')\n else:\n logger.info('Counts, using: %s', count_table)\n if not score_table:\n score_table = os.path.join(outdir, 'motif.score.txt.gz')\n if not os.path.exists(score_table):\n logger.info('Motif scanning (scores)')\n scores = scan_to_table(infile, genome, 'score', pwmfile=pwmfile,\n ncpus=ncpus)\n scores.to_csv(score_table, sep='\\t', float_format='%.3f',\n compression='gzip')\n else:\n logger.info('Scores, using: %s', score_table)\n if cluster:\n cluster = False\n for method in methods:\n m = Moap.create(method, ncpus=ncpus)\n if m.ptype == 'classification':\n cluster = True\n break\n if not cluster:\n logger.info('Skipping clustering, no classification methods')\n exps = []\n clusterfile = infile\n if df.shape[1] != 1:\n for method in Moap.list_regression_predictors():\n if method in methods:\n m = Moap.create(method, ncpus=ncpus)\n exps.append([method, m.pref_table, infile])\n logger.debug('Adding %s', method)\n if cluster:\n clusterfile = os.path.join(outdir, os.path.basename(infile) +\n '.cluster.txt')\n df[:] = scale(df, axis=0)\n names = df.columns\n df_changed = pd.DataFrame(index=df.index)\n df_changed['cluster'] = np.nan\n for name in names:\n df_changed.loc[df[name] - df.loc[:, df.columns != name].max\n (1) > 0.5, 'cluster'] = name\n df_changed.dropna().to_csv(clusterfile, sep='\\t')\n if df.shape[1] == 1 or cluster:\n for method in Moap.list_classification_predictors():\n if method in methods:\n m = Moap.create(method, ncpus=ncpus)\n exps.append([method, m.pref_table, clusterfile])\n if len(exps) == 0:\n logger.error('No method to run.')\n sys.exit(1)\n for method, scoring, fname in exps:\n try:\n if scoring == 'count' and count_table:\n moap_with_table(fname, count_table, outdir, method, scoring,\n ncpus=ncpus)\n elif scoring == 'score' and score_table:\n moap_with_table(fname, score_table, outdir, method, scoring,\n ncpus=ncpus)\n else:\n moap_with_bg(fname, genome, outdir, method, scoring,\n pwmfile=pwmfile, ncpus=ncpus)\n except Exception as e:\n logger.warn('Method %s with scoring %s failed', method, scoring)\n logger.warn(e)\n logger.warn('Skipping')\n raise\n dfs = {}\n for method, scoring, fname in exps:\n t = '{}.{}'.format(method, scoring)\n fname = os.path.join(outdir, 'activity.{}.{}.out.txt'.format(method,\n scoring))\n try:\n dfs[t] = pd.read_table(fname, index_col=0, comment='#')\n except:\n logging.warn('Activity file for {} not found!\\n'.format(t))\n if len(methods) > 1:\n logger.info('Rank aggregation')\n df_p = df_rank_aggregation(df, dfs, exps)\n df_p.to_csv(os.path.join(outdir, 'final.out.csv'), sep='\\t')\n if df.shape[1] == 1:\n mcount = df.join(pd.read_table(count_table, index_col=0, comment='#'))\n m_group = mcount.groupby(df.columns[0])\n freq = m_group.sum() / m_group.count()\n freq.to_csv(os.path.join(outdir, 'motif.freq.txt'), sep='\\t')\n if plot and len(methods) > 1:\n logger.info('html report')\n maelstrom_html_report(outdir, os.path.join(outdir, 'final.out.csv'),\n pwmfile)\n logger.info(os.path.join(outdir, 'gimme.maelstrom.report.html'))\n",
"role": "user"
},
{
"content": "run_maelstrom",
"role": "assistant"
}
] |
def x(self, kind='final', min_freq=0.01, threshold=2, name=True, max_len=50,
aspect=1, **kwargs):
filt = np.any(np.abs(self.result) >= threshold, 1) & np.any(np.abs(self
.freq.T) >= min_freq, 1)
idx = self.result[filt].index
cmap = 'RdBu_r'
if kind == 'final':
data = self.result
elif kind == 'freq':
data = self.freq.T
cmap = 'Reds'
elif kind in self.activity:
data = self.activity[dtype]
if kind in ['hypergeom.count', 'mwu.score']:
cmap = 'Reds'
else:
raise ValueError('Unknown dtype')
m = data.loc[idx]
if name:
m['factors'] = [join_max(self.motifs[n].factors, max_len, ',',
suffix=',(...)') for n in m.index]
m = m.set_index('factors')
h, w = m.shape
cg = sns.clustermap(m, cmap=cmap, col_cluster=False, figsize=(2 + w *
0.5 * aspect, 0.5 * h), linewidths=1, **kwargs)
cg.ax_col_dendrogram.set_visible(False)
plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
return cg
|
plot_heatmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kind='final', min_freq=0.01, threshold=2, name=True, max_len=50,\n aspect=1, **kwargs):\n filt = np.any(np.abs(self.result) >= threshold, 1) & np.any(np.abs(self\n .freq.T) >= min_freq, 1)\n idx = self.result[filt].index\n cmap = 'RdBu_r'\n if kind == 'final':\n data = self.result\n elif kind == 'freq':\n data = self.freq.T\n cmap = 'Reds'\n elif kind in self.activity:\n data = self.activity[dtype]\n if kind in ['hypergeom.count', 'mwu.score']:\n cmap = 'Reds'\n else:\n raise ValueError('Unknown dtype')\n m = data.loc[idx]\n if name:\n m['factors'] = [join_max(self.motifs[n].factors, max_len, ',',\n suffix=',(...)') for n in m.index]\n m = m.set_index('factors')\n h, w = m.shape\n cg = sns.clustermap(m, cmap=cmap, col_cluster=False, figsize=(2 + w * \n 0.5 * aspect, 0.5 * h), linewidths=1, **kwargs)\n cg.ax_col_dendrogram.set_visible(False)\n plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)\n return cg\n",
"role": "user"
},
{
"content": "plot_heatmap",
"role": "assistant"
}
] |
def x(self, motifs, name=True, max_len=50):
if self.input.shape[1] != 1:
raise ValueError("Can't make a categorical plot with real-valued data")
if type('') == type(motifs):
motifs = [motifs]
plot_motifs = []
for motif in motifs:
if motif in self.motifs:
plot_motifs.append(motif)
else:
for m in self.motifs.values():
if motif in m.factors:
plot_motifs.append(m.id)
data = self.scores[plot_motifs]
data[:] = data.scale(data, axix=0)
if name:
data = data.T
data['factors'] = [join_max(self.motifs[n].factors, max_len, ',',
suffix=',(...)') for n in plot_motifs]
data = data.set_index('factors').T
data = pd.melt(self.input.join(data), id_vars=['cluster'])
data.columns = ['cluster', 'motif', 'z-score']
g = sns.factorplot(data=data, y='motif', x='z-score', hue='cluster',
kind='box', aspect=2)
return g
|
plot_scores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, motifs, name=True, max_len=50):\n if self.input.shape[1] != 1:\n raise ValueError(\"Can't make a categorical plot with real-valued data\")\n if type('') == type(motifs):\n motifs = [motifs]\n plot_motifs = []\n for motif in motifs:\n if motif in self.motifs:\n plot_motifs.append(motif)\n else:\n for m in self.motifs.values():\n if motif in m.factors:\n plot_motifs.append(m.id)\n data = self.scores[plot_motifs]\n data[:] = data.scale(data, axix=0)\n if name:\n data = data.T\n data['factors'] = [join_max(self.motifs[n].factors, max_len, ',',\n suffix=',(...)') for n in plot_motifs]\n data = data.set_index('factors').T\n data = pd.melt(self.input.join(data), id_vars=['cluster'])\n data.columns = ['cluster', 'motif', 'z-score']\n g = sns.factorplot(data=data, y='motif', x='z-score', hue='cluster',\n kind='box', aspect=2)\n return g\n",
"role": "user"
},
{
"content": "plot_scores",
"role": "assistant"
}
] |
def x(package, url_pattern=URL_PATTERN):
req = requests.get(url_pattern.format(package=package))
version = parse('0')
if req.status_code == requests.codes.ok:
j = req.json()
releases = j.get('releases', [])
for release in releases:
ver = parse(release)
if not ver.is_prerelease:
version = max(version, ver)
return version
|
get_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package, url_pattern=URL_PATTERN):\n req = requests.get(url_pattern.format(package=package))\n version = parse('0')\n if req.status_code == requests.codes.ok:\n j = req.json()\n releases = j.get('releases', [])\n for release in releases:\n ver = parse(release)\n if not ver.is_prerelease:\n version = max(version, ver)\n return version\n",
"role": "user"
},
{
"content": "get_version",
"role": "assistant"
}
] |
def x(parser):
args = vars(parser.parse_args()).items()
return {key: val for key, val in args if not isinstance(val, NotSet)}
|
get_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parser):\n args = vars(parser.parse_args()).items()\n return {key: val for key, val in args if not isinstance(val, NotSet)}\n",
"role": "user"
},
{
"content": "get_args",
"role": "assistant"
}
] |
def x(val, parsebool=False):
try:
return int(val)
except ValueError:
pass
try:
return float(val)
except:
pass
if parsebool:
if re.match('yes|on', str(val), re.IGNORECASE):
return True
elif re.match('no|off', str(val), re.IGNORECASE):
return False
return val
|
parse_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(val, parsebool=False):\n try:\n return int(val)\n except ValueError:\n pass\n try:\n return float(val)\n except:\n pass\n if parsebool:\n if re.match('yes|on', str(val), re.IGNORECASE):\n return True\n elif re.match('no|off', str(val), re.IGNORECASE):\n return False\n return val\n",
"role": "user"
},
{
"content": "parse_value",
"role": "assistant"
}
] |
def x(fp):
response = ''
oldlen = 0
newlen = 0
while True:
response += fp.read(buffSize)
newlen = len(response)
if newlen - oldlen == 0:
break
else:
oldlen = newlen
return response
|
socket_read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fp):\n response = ''\n oldlen = 0\n newlen = 0\n while True:\n response += fp.read(buffSize)\n newlen = len(response)\n if newlen - oldlen == 0:\n break\n else:\n oldlen = newlen\n return response\n",
"role": "user"
},
{
"content": "socket_read",
"role": "assistant"
}
] |
def x(self, klist, value):
keys = list(klist)
if len(keys) > 0:
curr_dict = self
last_key = keys.pop()
for key in keys:
if not curr_dict.has_key(key) or not isinstance(curr_dict[key],
NestedDict):
curr_dict[key] = type(self)()
curr_dict = curr_dict[key]
curr_dict[last_key] = value
|
set_nested
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, klist, value):\n keys = list(klist)\n if len(keys) > 0:\n curr_dict = self\n last_key = keys.pop()\n for key in keys:\n if not curr_dict.has_key(key) or not isinstance(curr_dict[key],\n NestedDict):\n curr_dict[key] = type(self)()\n curr_dict = curr_dict[key]\n curr_dict[last_key] = value\n",
"role": "user"
},
{
"content": "set_nested",
"role": "assistant"
}
] |
def x(self, column, patterns, is_regex=False, ignore_case=False):
if isinstance(patterns, basestring):
patt_list = patterns,
elif isinstance(patterns, (tuple, list)):
patt_list = list(patterns)
else:
raise ValueError(
'The patterns parameter must either be as string or a tuple / list of strings.'
)
if is_regex:
if ignore_case:
flags = re.IGNORECASE
else:
flags = 0
patt_exprs = [re.compile(pattern, flags) for pattern in patt_list]
elif ignore_case:
patt_exprs = [pattern.lower() for pattern in patt_list]
else:
patt_exprs = patt_list
self._filters[column] = patt_exprs, is_regex, ignore_case
|
registerFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, column, patterns, is_regex=False, ignore_case=False):\n if isinstance(patterns, basestring):\n patt_list = patterns,\n elif isinstance(patterns, (tuple, list)):\n patt_list = list(patterns)\n else:\n raise ValueError(\n 'The patterns parameter must either be as string or a tuple / list of strings.'\n )\n if is_regex:\n if ignore_case:\n flags = re.IGNORECASE\n else:\n flags = 0\n patt_exprs = [re.compile(pattern, flags) for pattern in patt_list]\n elif ignore_case:\n patt_exprs = [pattern.lower() for pattern in patt_list]\n else:\n patt_exprs = patt_list\n self._filters[column] = patt_exprs, is_regex, ignore_case\n",
"role": "user"
},
{
"content": "registerFilter",
"role": "assistant"
}
] |
def x(self, column):
if self._filters.has_key(column):
del self._filters[column]
|
unregisterFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, column):\n if self._filters.has_key(column):\n del self._filters[column]\n",
"role": "user"
},
{
"content": "unregisterFilter",
"role": "assistant"
}
] |
def x(self, **kwargs):
for key, patterns in kwargs.items():
if key.endswith('_regex'):
col = key[:-len('_regex')]
is_regex = True
else:
col = key
is_regex = False
if col.endswith('_ic'):
col = col[:-len('_ic')]
ignore_case = True
else:
ignore_case = False
self.registerFilter(col, patterns, is_regex, ignore_case)
|
registerFilters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n for key, patterns in kwargs.items():\n if key.endswith('_regex'):\n col = key[:-len('_regex')]\n is_regex = True\n else:\n col = key\n is_regex = False\n if col.endswith('_ic'):\n col = col[:-len('_ic')]\n ignore_case = True\n else:\n ignore_case = False\n self.registerFilter(col, patterns, is_regex, ignore_case)\n",
"role": "user"
},
{
"content": "registerFilters",
"role": "assistant"
}
] |
def x(self, headers, table):
result = []
column_idxs = {}
for column in self._filters.keys():
try:
column_idxs[column] = headers.index(column)
except ValueError:
raise ValueError('Invalid column name %s in filter.' % column)
for row in table:
for column, (patterns, is_regex, ignore_case) in self._filters.items():
col_idx = column_idxs[column]
col_val = row[col_idx]
if is_regex:
for pattern in patterns:
if pattern.search(col_val):
break
else:
break
else:
if ignore_case:
col_val = col_val.lower()
if col_val in patterns:
pass
else:
break
else:
result.append(row)
return result
|
applyFilters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, headers, table):\n result = []\n column_idxs = {}\n for column in self._filters.keys():\n try:\n column_idxs[column] = headers.index(column)\n except ValueError:\n raise ValueError('Invalid column name %s in filter.' % column)\n for row in table:\n for column, (patterns, is_regex, ignore_case) in self._filters.items():\n col_idx = column_idxs[column]\n col_val = row[col_idx]\n if is_regex:\n for pattern in patterns:\n if pattern.search(col_val):\n break\n else:\n break\n else:\n if ignore_case:\n col_val = col_val.lower()\n if col_val in patterns:\n pass\n else:\n break\n else:\n result.append(row)\n return result\n",
"role": "user"
},
{
"content": "applyFilters",
"role": "assistant"
}
] |
def x(self, host=None, port=0, socket_file=None, timeout=socket.
getdefaulttimeout()):
self.socket_file = socket_file
if host is not None:
if sys.version_info[:2] >= (2, 6):
telnetlib.Telnet.open(self, host, port, timeout)
else:
telnetlib.Telnet.open(self, host, port)
elif socket_file is not None:
self.eof = 0
self.host = host
self.port = port
self.timeout = timeout
self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
self.sock.settimeout(timeout)
self.sock.connect(socket_file)
else:
raise TypeError('Either host or socket_file argument is required.')
|
open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, host=None, port=0, socket_file=None, timeout=socket.\n getdefaulttimeout()):\n self.socket_file = socket_file\n if host is not None:\n if sys.version_info[:2] >= (2, 6):\n telnetlib.Telnet.open(self, host, port, timeout)\n else:\n telnetlib.Telnet.open(self, host, port)\n elif socket_file is not None:\n self.eof = 0\n self.host = host\n self.port = port\n self.timeout = timeout\n self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\n self.sock.settimeout(timeout)\n self.sock.connect(socket_file)\n else:\n raise TypeError('Either host or socket_file argument is required.')\n",
"role": "user"
},
{
"content": "open",
"role": "assistant"
}
] |
def x(egg, subjgroup=None, listgroup=None, subjname='Subject', listname=
'List', analysis=None, position=0, permute=False, n_perms=1000,
parallel=False, match='exact', distance='euclidean', features=None, ts=None
):
if analysis is None:
raise ValueError('You must pass an analysis type.')
if analysis not in analyses.keys():
raise ValueError(
'Analysis not recognized. Choose one of the following: accuracy, spc, pfr, lag-crp, fingerprint, temporal'
)
from ..egg import FriedEgg
if hasattr(egg, 'subjgroup'):
if egg.subjgroup is not None:
subjgroup = egg.subjgroup
if hasattr(egg, 'subjname'):
if egg.subjname is not None:
subjname = egg.subjname
if hasattr(egg, 'listgroup'):
if egg.listgroup is not None:
listgroup = egg.listgroup
if hasattr(egg, 'listname'):
if egg.listname is not None:
listname = egg.listname
if features is None:
features = egg.feature_names
opts = {'subjgroup': subjgroup, 'listgroup': listgroup, 'subjname':
subjname, 'parallel': parallel, 'match': match, 'distance':
distance, 'features': features, 'analysis_type': analysis,
'analysis': analyses[analysis]}
if analysis is 'pfr':
opts.update({'position': 0})
elif analysis is 'pnr':
opts.update({'position': position})
if analysis is 'temporal':
opts.update({'features': ['temporal']})
if analysis in ['temporal', 'fingerprint']:
opts.update({'permute': permute, 'n_perms': n_perms})
if analysis is 'lagcrp':
opts.update({'ts': ts})
return FriedEgg(data=_analyze_chunk(egg, **opts), analysis=analysis,
list_length=egg.list_length, n_lists=egg.n_lists, n_subjects=egg.
n_subjects, position=position)
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(egg, subjgroup=None, listgroup=None, subjname='Subject', listname=\n 'List', analysis=None, position=0, permute=False, n_perms=1000,\n parallel=False, match='exact', distance='euclidean', features=None, ts=None\n ):\n if analysis is None:\n raise ValueError('You must pass an analysis type.')\n if analysis not in analyses.keys():\n raise ValueError(\n 'Analysis not recognized. Choose one of the following: accuracy, spc, pfr, lag-crp, fingerprint, temporal'\n )\n from ..egg import FriedEgg\n if hasattr(egg, 'subjgroup'):\n if egg.subjgroup is not None:\n subjgroup = egg.subjgroup\n if hasattr(egg, 'subjname'):\n if egg.subjname is not None:\n subjname = egg.subjname\n if hasattr(egg, 'listgroup'):\n if egg.listgroup is not None:\n listgroup = egg.listgroup\n if hasattr(egg, 'listname'):\n if egg.listname is not None:\n listname = egg.listname\n if features is None:\n features = egg.feature_names\n opts = {'subjgroup': subjgroup, 'listgroup': listgroup, 'subjname':\n subjname, 'parallel': parallel, 'match': match, 'distance':\n distance, 'features': features, 'analysis_type': analysis,\n 'analysis': analyses[analysis]}\n if analysis is 'pfr':\n opts.update({'position': 0})\n elif analysis is 'pnr':\n opts.update({'position': position})\n if analysis is 'temporal':\n opts.update({'features': ['temporal']})\n if analysis in ['temporal', 'fingerprint']:\n opts.update({'permute': permute, 'n_perms': n_perms})\n if analysis is 'lagcrp':\n opts.update({'ts': ts})\n return FriedEgg(data=_analyze_chunk(egg, **opts), analysis=analysis,\n list_length=egg.list_length, n_lists=egg.n_lists, n_subjects=egg.\n n_subjects, position=position)\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(data, subjgroup=None, subjname='Subject', listgroup=None, listname=
'List', analysis=None, analysis_type=None, pass_features=False,
features=None, parallel=False, **kwargs):
def x(c):
subj, lst = c
subjects = [s for s in subjdict[subj]]
lists = [l for l in listdict[subj][lst]]
s = data.crack(lists=lists, subjects=subjects)
index = pd.MultiIndex.from_arrays([[subj], [lst]], names=[subjname,
listname])
opts = dict()
if analysis_type is 'fingerprint':
opts.update({'columns': features})
elif analysis_type is 'lagcrp':
if kwargs['ts']:
opts.update({'columns': range(-kwargs['ts'], kwargs['ts'] + 1)}
)
else:
opts.update({'columns': range(-data.list_length, data.
list_length + 1)})
return pd.DataFrame([analysis(s, features=features, **kwargs)],
index=index, **opts)
subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values
listgroup = listgroup if listgroup else data.pres.index.levels[1].values
subjdict = {subj: data.pres.index.levels[0].values[subj == np.array(
subjgroup)] for subj in set(subjgroup)}
if all(isinstance(el, list) for el in listgroup):
listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(
listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in
listgroup]
else:
listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(
listgroup)] for lst in set(listgroup)} for subj in subjdict]
chunks = [(subj, lst) for subj in subjdict for lst in listdict[0]]
if parallel:
import multiprocessing
from pathos.multiprocessing import ProcessingPool as Pool
p = Pool(multiprocessing.cpu_count())
res = p.map(_analysis, chunks)
else:
res = [_analysis(c) for c in chunks]
return pd.concat(res)
|
analyze_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, subjgroup=None, subjname='Subject', listgroup=None, listname=\n 'List', analysis=None, analysis_type=None, pass_features=False,\n features=None, parallel=False, **kwargs):\n\n def x(c):\n subj, lst = c\n subjects = [s for s in subjdict[subj]]\n lists = [l for l in listdict[subj][lst]]\n s = data.crack(lists=lists, subjects=subjects)\n index = pd.MultiIndex.from_arrays([[subj], [lst]], names=[subjname,\n listname])\n opts = dict()\n if analysis_type is 'fingerprint':\n opts.update({'columns': features})\n elif analysis_type is 'lagcrp':\n if kwargs['ts']:\n opts.update({'columns': range(-kwargs['ts'], kwargs['ts'] + 1)}\n )\n else:\n opts.update({'columns': range(-data.list_length, data.\n list_length + 1)})\n return pd.DataFrame([analysis(s, features=features, **kwargs)],\n index=index, **opts)\n subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values\n listgroup = listgroup if listgroup else data.pres.index.levels[1].values\n subjdict = {subj: data.pres.index.levels[0].values[subj == np.array(\n subjgroup)] for subj in set(subjgroup)}\n if all(isinstance(el, list) for el in listgroup):\n listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(\n listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in\n listgroup]\n else:\n listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(\n listgroup)] for lst in set(listgroup)} for subj in subjdict]\n chunks = [(subj, lst) for subj in subjdict for lst in listdict[0]]\n if parallel:\n import multiprocessing\n from pathos.multiprocessing import ProcessingPool as Pool\n p = Pool(multiprocessing.cpu_count())\n res = p.map(_analysis, chunks)\n else:\n res = [_analysis(c) for c in chunks]\n return pd.concat(res)\n",
"role": "user"
},
{
"content": "analyze_chunk",
"role": "assistant"
}
] |
def x(self):
if self.hasGraph('tomcat_memory'):
stats = self._tomcatInfo.getMemoryStats()
self.setGraphVal('tomcat_memory', 'used', stats['total'] - stats[
'free'])
self.setGraphVal('tomcat_memory', 'free', stats['free'])
self.setGraphVal('tomcat_memory', 'max', stats['max'])
for port, stats in self._tomcatInfo.getConnectorStats().iteritems():
thrstats = stats['threadInfo']
reqstats = stats['requestInfo']
if self.portIncluded(port):
name = 'tomcat_threads_%d' % port
if self.hasGraph(name):
self.setGraphVal(name, 'busy', thrstats['currentThreadsBusy'])
self.setGraphVal(name, 'idle', thrstats[
'currentThreadCount'] - thrstats['currentThreadsBusy'])
self.setGraphVal(name, 'max', thrstats['maxThreads'])
name = 'tomcat_access_%d' % port
if self.hasGraph(name):
self.setGraphVal(name, 'reqs', reqstats['requestCount'])
name = 'tomcat_error_%d' % port
if self.hasGraph(name):
self.setGraphVal(name, 'errors', reqstats['errorCount'])
name = 'tomcat_traffic_%d' % port
if self.hasGraph(name):
self.setGraphVal(name, 'rx', reqstats['bytesReceived'])
self.setGraphVal(name, 'tx', reqstats['bytesSent'])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.hasGraph('tomcat_memory'):\n stats = self._tomcatInfo.getMemoryStats()\n self.setGraphVal('tomcat_memory', 'used', stats['total'] - stats[\n 'free'])\n self.setGraphVal('tomcat_memory', 'free', stats['free'])\n self.setGraphVal('tomcat_memory', 'max', stats['max'])\n for port, stats in self._tomcatInfo.getConnectorStats().iteritems():\n thrstats = stats['threadInfo']\n reqstats = stats['requestInfo']\n if self.portIncluded(port):\n name = 'tomcat_threads_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'busy', thrstats['currentThreadsBusy'])\n self.setGraphVal(name, 'idle', thrstats[\n 'currentThreadCount'] - thrstats['currentThreadsBusy'])\n self.setGraphVal(name, 'max', thrstats['maxThreads'])\n name = 'tomcat_access_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'reqs', reqstats['requestCount'])\n name = 'tomcat_error_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'errors', reqstats['errorCount'])\n name = 'tomcat_traffic_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'rx', reqstats['bytesReceived'])\n self.setGraphVal(name, 'tx', reqstats['bytesSent'])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(data, maxt=None):
data = np.atleast_1d(data)
assert len(np.shape(data)
) == 1, 'The autocorrelation function can only by computed ' + 'on a 1D time series.'
if maxt is None:
maxt = len(data)
result = np.zeros(maxt, dtype=float)
_acor.function(np.array(data, dtype=float), result)
return result / result[0]
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, maxt=None):\n data = np.atleast_1d(data)\n assert len(np.shape(data)\n ) == 1, 'The autocorrelation function can only by computed ' + 'on a 1D time series.'\n if maxt is None:\n maxt = len(data)\n result = np.zeros(maxt, dtype=float)\n _acor.function(np.array(data, dtype=float), result)\n return result / result[0]\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self):
nginxInfo = NginxInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
stats = nginxInfo.getServerStats()
if stats:
if self.hasGraph('nginx_activeconn'):
self.setGraphVal('nginx_activeconn', 'proc', stats['writing'])
self.setGraphVal('nginx_activeconn', 'read', stats['reading'])
self.setGraphVal('nginx_activeconn', 'wait', stats['waiting'])
self.setGraphVal('nginx_activeconn', 'total', stats['connections'])
if self.hasGraph('nginx_connections'):
self.setGraphVal('nginx_connections', 'handled', stats['handled'])
self.setGraphVal('nginx_connections', 'nothandled', stats[
'accepts'] - stats['handled'])
if self.hasGraph('nginx_requests'):
self.setGraphVal('nginx_requests', 'requests', stats['requests'])
if self.hasGraph('nginx_requestsperconn'):
curr_stats = stats['handled'], stats['requests']
hist_stats = self.restoreState()
if hist_stats:
prev_stats = hist_stats[0]
else:
hist_stats = []
prev_stats = 0, 0
conns = max(curr_stats[0] - prev_stats[0], 0)
reqs = max(curr_stats[1] - prev_stats[1], 0)
if conns > 0:
self.setGraphVal('nginx_requestsperconn', 'requests', float
(reqs) / float(conns))
else:
self.setGraphVal('nginx_requestsperconn', 'requests', 0)
hist_stats.append(curr_stats)
self.saveState(hist_stats[-self._numSamples:])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nginxInfo = NginxInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = nginxInfo.getServerStats()\n if stats:\n if self.hasGraph('nginx_activeconn'):\n self.setGraphVal('nginx_activeconn', 'proc', stats['writing'])\n self.setGraphVal('nginx_activeconn', 'read', stats['reading'])\n self.setGraphVal('nginx_activeconn', 'wait', stats['waiting'])\n self.setGraphVal('nginx_activeconn', 'total', stats['connections'])\n if self.hasGraph('nginx_connections'):\n self.setGraphVal('nginx_connections', 'handled', stats['handled'])\n self.setGraphVal('nginx_connections', 'nothandled', stats[\n 'accepts'] - stats['handled'])\n if self.hasGraph('nginx_requests'):\n self.setGraphVal('nginx_requests', 'requests', stats['requests'])\n if self.hasGraph('nginx_requestsperconn'):\n curr_stats = stats['handled'], stats['requests']\n hist_stats = self.restoreState()\n if hist_stats:\n prev_stats = hist_stats[0]\n else:\n hist_stats = []\n prev_stats = 0, 0\n conns = max(curr_stats[0] - prev_stats[0], 0)\n reqs = max(curr_stats[1] - prev_stats[1], 0)\n if conns > 0:\n self.setGraphVal('nginx_requestsperconn', 'requests', float\n (reqs) / float(conns))\n else:\n self.setGraphVal('nginx_requestsperconn', 'requests', 0)\n hist_stats.append(curr_stats)\n self.saveState(hist_stats[-self._numSamples:])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
nginxInfo = NginxInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
return nginxInfo is not None
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nginxInfo = NginxInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return nginxInfo is not None\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(self):
url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath
)
response = util.get_url(url, self._user, self._password)
stats = {}
for line in response.splitlines():
mobj = re.match('([\\w\\s]+):\\s+(\\w+)$', line)
if mobj:
stats[mobj.group(1)] = util.parse_value(mobj.group(2))
return stats
|
getStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath\n )\n response = util.get_url(url, self._user, self._password)\n stats = {}\n for line in response.splitlines():\n mobj = re.match('([\\\\w\\\\s]+):\\\\s+(\\\\w+)$', line)\n if mobj:\n stats[mobj.group(1)] = util.parse_value(mobj.group(2))\n return stats\n",
"role": "user"
},
{
"content": "getStats",
"role": "assistant"
}
] |
def x(self):
apcinfo = APCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl, self._extras)
stats = apcinfo.getAllStats()
if self.hasGraph('php_apc_memory') and stats:
filecache = stats['cache_sys']['mem_size']
usercache = stats['cache_user']['mem_size']
total = stats['memory']['seg_size'] * stats['memory']['num_seg']
free = stats['memory']['avail_mem']
other = total - free - filecache - usercache
self.setGraphVal('php_apc_memory', 'filecache', filecache)
self.setGraphVal('php_apc_memory', 'usercache', usercache)
self.setGraphVal('php_apc_memory', 'other', other)
self.setGraphVal('php_apc_memory', 'free', free)
if self.hasGraph('php_apc_items') and stats:
self.setGraphVal('php_apc_items', 'filecache', stats['cache_sys'][
'num_entries'])
self.setGraphVal('php_apc_items', 'usercache', stats['cache_user'][
'num_entries'])
if self.hasGraph('php_apc_reqs_filecache') and stats:
self.setGraphVal('php_apc_reqs_filecache', 'hits', stats[
'cache_sys']['num_hits'])
self.setGraphVal('php_apc_reqs_filecache', 'misses', stats[
'cache_sys']['num_misses'])
self.setGraphVal('php_apc_reqs_filecache', 'inserts', stats[
'cache_sys']['num_inserts'])
if self.hasGraph('php_apc_reqs_usercache') and stats:
self.setGraphVal('php_apc_reqs_usercache', 'hits', stats[
'cache_user']['num_hits'])
self.setGraphVal('php_apc_reqs_usercache', 'misses', stats[
'cache_user']['num_misses'])
self.setGraphVal('php_apc_reqs_usercache', 'inserts', stats[
'cache_user']['num_inserts'])
if self.hasGraph('php_apc_expunge') and stats:
self.setGraphVal('php_apc_expunge', 'filecache', stats['cache_sys']
['expunges'])
self.setGraphVal('php_apc_expunge', 'usercache', stats['cache_user'
]['expunges'])
if self.hasGraph('php_apc_mem_util_frag'):
self.setGraphVal('php_apc_mem_util_frag', 'util', stats['memory'][
'utilization_ratio'] * 100)
self.setGraphVal('php_apc_mem_util_frag', 'frag', stats['memory'][
'fragmentation_ratio'] * 100)
if self.hasGraph('php_apc_mem_frag_count'):
self.setGraphVal('php_apc_mem_frag_count', 'num', stats['memory'][
'fragment_count'])
if self.hasGraph('php_apc_mem_frag_avgsize'):
self.setGraphVal('php_apc_mem_frag_avgsize', 'size', stats['memory'
]['fragment_avg_size'])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n apcinfo = APCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl, self._extras)\n stats = apcinfo.getAllStats()\n if self.hasGraph('php_apc_memory') and stats:\n filecache = stats['cache_sys']['mem_size']\n usercache = stats['cache_user']['mem_size']\n total = stats['memory']['seg_size'] * stats['memory']['num_seg']\n free = stats['memory']['avail_mem']\n other = total - free - filecache - usercache\n self.setGraphVal('php_apc_memory', 'filecache', filecache)\n self.setGraphVal('php_apc_memory', 'usercache', usercache)\n self.setGraphVal('php_apc_memory', 'other', other)\n self.setGraphVal('php_apc_memory', 'free', free)\n if self.hasGraph('php_apc_items') and stats:\n self.setGraphVal('php_apc_items', 'filecache', stats['cache_sys'][\n 'num_entries'])\n self.setGraphVal('php_apc_items', 'usercache', stats['cache_user'][\n 'num_entries'])\n if self.hasGraph('php_apc_reqs_filecache') and stats:\n self.setGraphVal('php_apc_reqs_filecache', 'hits', stats[\n 'cache_sys']['num_hits'])\n self.setGraphVal('php_apc_reqs_filecache', 'misses', stats[\n 'cache_sys']['num_misses'])\n self.setGraphVal('php_apc_reqs_filecache', 'inserts', stats[\n 'cache_sys']['num_inserts'])\n if self.hasGraph('php_apc_reqs_usercache') and stats:\n self.setGraphVal('php_apc_reqs_usercache', 'hits', stats[\n 'cache_user']['num_hits'])\n self.setGraphVal('php_apc_reqs_usercache', 'misses', stats[\n 'cache_user']['num_misses'])\n self.setGraphVal('php_apc_reqs_usercache', 'inserts', stats[\n 'cache_user']['num_inserts'])\n if self.hasGraph('php_apc_expunge') and stats:\n self.setGraphVal('php_apc_expunge', 'filecache', stats['cache_sys']\n ['expunges'])\n self.setGraphVal('php_apc_expunge', 'usercache', stats['cache_user'\n ]['expunges'])\n if self.hasGraph('php_apc_mem_util_frag'):\n self.setGraphVal('php_apc_mem_util_frag', 'util', stats['memory'][\n 'utilization_ratio'] * 100)\n self.setGraphVal('php_apc_mem_util_frag', 'frag', stats['memory'][\n 'fragmentation_ratio'] * 100)\n if self.hasGraph('php_apc_mem_frag_count'):\n self.setGraphVal('php_apc_mem_frag_count', 'num', stats['memory'][\n 'fragment_count'])\n if self.hasGraph('php_apc_mem_frag_avgsize'):\n self.setGraphVal('php_apc_mem_frag_avgsize', 'size', stats['memory'\n ]['fragment_avg_size'])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
apcinfo = APCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
return apcinfo is not None
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n apcinfo = APCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n return apcinfo is not None\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(self):
info_dict = {}
args = [varnishstatCmd, '-1']
if self._instance is not None:
args.extend(['-n', self._instance])
output = util.exec_command(args)
if self._descDict is None:
self._descDict = {}
for line in output.splitlines():
mobj = re.match(
'(\\S+)\\s+(\\d+)\\s+(\\d+\\.\\d+|\\.)\\s+(\\S.*\\S)\\s*$', line)
if mobj:
fname = mobj.group(1).replace('.', '_')
info_dict[fname] = util.parse_value(mobj.group(2))
self._descDict[fname] = mobj.group(4)
return info_dict
|
getStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n info_dict = {}\n args = [varnishstatCmd, '-1']\n if self._instance is not None:\n args.extend(['-n', self._instance])\n output = util.exec_command(args)\n if self._descDict is None:\n self._descDict = {}\n for line in output.splitlines():\n mobj = re.match(\n '(\\\\S+)\\\\s+(\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+|\\\\.)\\\\s+(\\\\S.*\\\\S)\\\\s*$', line)\n if mobj:\n fname = mobj.group(1).replace('.', '_')\n info_dict[fname] = util.parse_value(mobj.group(2))\n self._descDict[fname] = mobj.group(4)\n return info_dict\n",
"role": "user"
},
{
"content": "getStats",
"role": "assistant"
}
] |
def x(self, entry):
if len(self._descDict) == 0:
self.getStats()
return self._descDict.get(entry)
|
getDesc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, entry):\n if len(self._descDict) == 0:\n self.getStats()\n return self._descDict.get(entry)\n",
"role": "user"
},
{
"content": "getDesc",
"role": "assistant"
}
] |
def x(self):
opcinfo = OPCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
stats = opcinfo.getAllStats()
if self.hasGraph('php_opc_memory') and stats:
mem = stats['memory_usage']
keys = 'used_memory', 'wasted_memory', 'free_memory'
map(lambda k: self.setGraphVal('php_opc_memory', k, mem[k]), keys)
if self.hasGraph('php_opc_opcache_statistics') and stats:
st = stats['opcache_statistics']
self.setGraphVal('php_opc_opcache_statistics', 'hits', st['hits'])
self.setGraphVal('php_opc_opcache_statistics', 'misses', st['misses'])
if self.hasGraph('php_opc_opcache_hitrate') and stats:
st = stats['opcache_statistics']
self.setGraphVal('php_opc_opcache_hitrate', 'opcache_hit_rate', st[
'opcache_hit_rate'])
if self.hasGraph('php_opc_key_status') and stats:
st = stats['opcache_statistics']
wasted = st['num_cached_keys'] - st['num_cached_scripts']
free = st['max_cached_keys'] - st['num_cached_keys']
self.setGraphVal('php_opc_key_status', 'num_cached_scripts', st[
'num_cached_scripts'])
self.setGraphVal('php_opc_key_status', 'num_wasted_keys', wasted)
self.setGraphVal('php_opc_key_status', 'num_free_keys', free)
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n opcinfo = OPCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n stats = opcinfo.getAllStats()\n if self.hasGraph('php_opc_memory') and stats:\n mem = stats['memory_usage']\n keys = 'used_memory', 'wasted_memory', 'free_memory'\n map(lambda k: self.setGraphVal('php_opc_memory', k, mem[k]), keys)\n if self.hasGraph('php_opc_opcache_statistics') and stats:\n st = stats['opcache_statistics']\n self.setGraphVal('php_opc_opcache_statistics', 'hits', st['hits'])\n self.setGraphVal('php_opc_opcache_statistics', 'misses', st['misses'])\n if self.hasGraph('php_opc_opcache_hitrate') and stats:\n st = stats['opcache_statistics']\n self.setGraphVal('php_opc_opcache_hitrate', 'opcache_hit_rate', st[\n 'opcache_hit_rate'])\n if self.hasGraph('php_opc_key_status') and stats:\n st = stats['opcache_statistics']\n wasted = st['num_cached_keys'] - st['num_cached_scripts']\n free = st['max_cached_keys'] - st['num_cached_keys']\n self.setGraphVal('php_opc_key_status', 'num_cached_scripts', st[\n 'num_cached_scripts'])\n self.setGraphVal('php_opc_key_status', 'num_wasted_keys', wasted)\n self.setGraphVal('php_opc_key_status', 'num_free_keys', free)\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
opcinfo = OPCinfo(self._host, self._port, self._user, self._password,
self._monpath, self._ssl)
return opcinfo is not None
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n opcinfo = OPCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n return opcinfo is not None\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(egg, permute=False, n_perms=1000, match='exact', distance='euclidean',
features=None):
if features is None:
features = egg.dist_funcs.keys()
inds = egg.pres.index.tolist()
slices = [egg.crack(subjects=[i], lists=[j]) for i, j in inds]
weights = _get_weights(slices, features, distdict, permute, n_perms,
match, distance)
return np.nanmean(weights, axis=0)
|
fingerprint_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(egg, permute=False, n_perms=1000, match='exact', distance='euclidean',\n features=None):\n if features is None:\n features = egg.dist_funcs.keys()\n inds = egg.pres.index.tolist()\n slices = [egg.crack(subjects=[i], lists=[j]) for i, j in inds]\n weights = _get_weights(slices, features, distdict, permute, n_perms,\n match, distance)\n return np.nanmean(weights, axis=0)\n",
"role": "user"
},
{
"content": "fingerprint_helper",
"role": "assistant"
}
] |
def x(pres_list, rec_list, feature_list, distances):
weights = {}
for feature in feature_list[0]:
weights[feature] = []
if len(rec_list) <= 2:
print(
'Not enough recalls to compute fingerprint, returning defaultfingerprint.. (everything is .5)'
)
for feature in feature_list[0]:
weights[feature] = 0.5
return [weights[key] for key in weights]
past_words = []
past_idxs = []
for i in range(len(rec_list) - 1):
c = rec_list[i]
n = rec_list[i + 1]
if (c in pres_list and n in pres_list) and (c not in past_words and
n not in past_words):
for feature in feature_list[0]:
dists = distances[feature][pres_list.index(c), :]
cdist = dists[pres_list.index(n)]
dists_filt = np.array([dist for idx, dist in enumerate(
dists) if idx not in past_idxs])
avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==
cdist)[0] + 1)
weights[feature].append(avg_rank / len(dists_filt))
past_idxs.append(pres_list.index(c))
past_words.append(c)
for feature in weights:
with warnings.catch_warnings():
warnings.simplefilter('ignore', category=RuntimeWarning)
weights[feature] = np.nanmean(weights[feature])
return [weights[key] for key in weights]
|
compute_feature_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pres_list, rec_list, feature_list, distances):\n weights = {}\n for feature in feature_list[0]:\n weights[feature] = []\n if len(rec_list) <= 2:\n print(\n 'Not enough recalls to compute fingerprint, returning defaultfingerprint.. (everything is .5)'\n )\n for feature in feature_list[0]:\n weights[feature] = 0.5\n return [weights[key] for key in weights]\n past_words = []\n past_idxs = []\n for i in range(len(rec_list) - 1):\n c = rec_list[i]\n n = rec_list[i + 1]\n if (c in pres_list and n in pres_list) and (c not in past_words and\n n not in past_words):\n for feature in feature_list[0]:\n dists = distances[feature][pres_list.index(c), :]\n cdist = dists[pres_list.index(n)]\n dists_filt = np.array([dist for idx, dist in enumerate(\n dists) if idx not in past_idxs])\n avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==\n cdist)[0] + 1)\n weights[feature].append(avg_rank / len(dists_filt))\n past_idxs.append(pres_list.index(c))\n past_words.append(c)\n for feature in weights:\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n weights[feature] = np.nanmean(weights[feature])\n return [weights[key] for key in weights]\n",
"role": "user"
},
{
"content": "compute_feature_weights",
"role": "assistant"
}
] |
def x(egg, match='exact', distance='euclidean', ts=None, features=None):
def x(rec, lstlen):
def x(a, b):
if (a > 0 and b > 0) and a != b:
return True
else:
return False
def x(rec, lstlen):
arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-
lstlen, 0)) + list(range(1, lstlen + 1)))
recalled = []
for trial in range(0, len(rec) - 1):
a = rec[trial]
b = rec[trial + 1]
if check_pair(a, b
) and a not in recalled and b not in recalled:
arr[b - a] += 1
recalled.append(a)
return arr
def x(rec, lstlen):
arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-
lstlen, 0)) + list(range(1, lstlen + 1)))
recalled = []
for trial in rec:
if np.isnan(trial):
pass
else:
lbound = int(1 - trial)
ubound = int(lstlen - trial)
chances = list(range(lbound, 0)) + list(range(1, ubound +
1))
for each in recalled:
if each - trial in chances:
chances.remove(each - trial)
arr[chances] += 1
recalled.append(trial)
return arr
actual = compute_actual(rec, lstlen)
possible = compute_possible(rec, lstlen)
crp = [(0.0 if j == 0 else i / j) for i, j in zip(actual, possible)]
crp.insert(int(len(crp) / 2), np.nan)
return crp
def x(distmat, ts=None):
def x(s):
idx = list(range(0, -s, -1))
return np.array([list(range(i, i + s)) for i in idx])
distmat = distmat[:, ~np.all(np.isnan(distmat), axis=0)].T
model = lagcrp_model(distmat.shape[1])
lagcrp = np.zeros(ts * 2)
for rdx in range(len(distmat) - 1):
item = distmat[rdx, :]
next_item = distmat[rdx + 1, :]
if not np.isnan(item).any() and not np.isnan(next_item).any():
outer = np.outer(item, next_item)
lagcrp += np.array(list(map(lambda lag: np.mean(outer[model ==
lag]), range(-ts, ts))))
lagcrp /= ts
lagcrp = list(lagcrp)
lagcrp.insert(int(len(lagcrp) / 2), np.nan)
return np.array(lagcrp)
def x(p, r):
p = np.matrix([np.array(i) for i in p])
if p.shape[0] == 1:
p = p.T
r = map(lambda x: [np.nan] * p.shape[1] if check_nan(x) else x, r)
r = np.matrix([np.array(i) for i in r])
if r.shape[0] == 1:
r = r.T
return p, r
opts = dict(match=match, distance=distance, features=features)
if match is 'exact':
opts.update({'features': 'item'})
recmat = recall_matrix(egg, **opts)
if not ts:
ts = egg.pres.shape[1]
if match in ['exact', 'best']:
lagcrp = [lagcrp(lst, egg.list_length) for lst in recmat]
elif match is 'smooth':
lagcrp = np.atleast_2d(np.mean([nlagcrp(r, ts=ts) for r in recmat], 0))
else:
raise ValueError('Match must be set to exact, best or smooth.')
return np.nanmean(lagcrp, axis=0)
|
lagcrp_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(egg, match='exact', distance='euclidean', ts=None, features=None):\n\n def x(rec, lstlen):\n\n def x(a, b):\n if (a > 0 and b > 0) and a != b:\n return True\n else:\n return False\n\n def x(rec, lstlen):\n arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-\n lstlen, 0)) + list(range(1, lstlen + 1)))\n recalled = []\n for trial in range(0, len(rec) - 1):\n a = rec[trial]\n b = rec[trial + 1]\n if check_pair(a, b\n ) and a not in recalled and b not in recalled:\n arr[b - a] += 1\n recalled.append(a)\n return arr\n\n def x(rec, lstlen):\n arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-\n lstlen, 0)) + list(range(1, lstlen + 1)))\n recalled = []\n for trial in rec:\n if np.isnan(trial):\n pass\n else:\n lbound = int(1 - trial)\n ubound = int(lstlen - trial)\n chances = list(range(lbound, 0)) + list(range(1, ubound +\n 1))\n for each in recalled:\n if each - trial in chances:\n chances.remove(each - trial)\n arr[chances] += 1\n recalled.append(trial)\n return arr\n actual = compute_actual(rec, lstlen)\n possible = compute_possible(rec, lstlen)\n crp = [(0.0 if j == 0 else i / j) for i, j in zip(actual, possible)]\n crp.insert(int(len(crp) / 2), np.nan)\n return crp\n\n def x(distmat, ts=None):\n\n def x(s):\n idx = list(range(0, -s, -1))\n return np.array([list(range(i, i + s)) for i in idx])\n distmat = distmat[:, ~np.all(np.isnan(distmat), axis=0)].T\n model = lagcrp_model(distmat.shape[1])\n lagcrp = np.zeros(ts * 2)\n for rdx in range(len(distmat) - 1):\n item = distmat[rdx, :]\n next_item = distmat[rdx + 1, :]\n if not np.isnan(item).any() and not np.isnan(next_item).any():\n outer = np.outer(item, next_item)\n lagcrp += np.array(list(map(lambda lag: np.mean(outer[model ==\n lag]), range(-ts, ts))))\n lagcrp /= ts\n lagcrp = list(lagcrp)\n lagcrp.insert(int(len(lagcrp) / 2), np.nan)\n return np.array(lagcrp)\n\n def x(p, r):\n p = np.matrix([np.array(i) for i in p])\n if p.shape[0] == 1:\n p = p.T\n r = map(lambda x: [np.nan] * p.shape[1] if check_nan(x) else x, r)\n r = np.matrix([np.array(i) for i in r])\n if r.shape[0] == 1:\n r = r.T\n return p, r\n opts = dict(match=match, distance=distance, features=features)\n if match is 'exact':\n opts.update({'features': 'item'})\n recmat = recall_matrix(egg, **opts)\n if not ts:\n ts = egg.pres.shape[1]\n if match in ['exact', 'best']:\n lagcrp = [lagcrp(lst, egg.list_length) for lst in recmat]\n elif match is 'smooth':\n lagcrp = np.atleast_2d(np.mean([nlagcrp(r, ts=ts) for r in recmat], 0))\n else:\n raise ValueError('Match must be set to exact, best or smooth.')\n return np.nanmean(lagcrp, axis=0)\n",
"role": "user"
},
{
"content": "lagcrp_helper",
"role": "assistant"
}
] |
def x(self):
if self._diskList:
self._fetchDevAll('disk', self._diskList, self._info.getDiskStats)
if self._mdList:
self._fetchDevAll('md', self._mdList, self._info.getMDstats)
if self._partList:
self._fetchDevAll('part', self._partList, self._info.getPartitionStats)
if self._lvList:
self._fetchDevAll('lv', self._lvList, self._info.getLVstats)
self._fetchDevAll('fs', self._fsList, self._info.getFilesystemStats)
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._diskList:\n self._fetchDevAll('disk', self._diskList, self._info.getDiskStats)\n if self._mdList:\n self._fetchDevAll('md', self._mdList, self._info.getMDstats)\n if self._partList:\n self._fetchDevAll('part', self._partList, self._info.getPartitionStats)\n if self._lvList:\n self._fetchDevAll('lv', self._lvList, self._info.getLVstats)\n self._fetchDevAll('fs', self._fsList, self._info.getFilesystemStats)\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self, namestr, titlestr, devlist):
name = 'diskio_%s_requests' % namestr
if self.graphEnabled(name):
graph = MuninGraph('Disk I/O - %s - Requests' % titlestr, self.
_category, info=
'Disk I/O - %s Throughput, Read / write requests per second.' %
titlestr, args='--base 1000 --lower-limit 0', vlabel=
'reqs/sec read (-) / write (+)', printf='%6.1lf', autoFixNames=True
)
for dev in devlist:
graph.addField(dev + '_read', fixLabel(dev,
maxLabelLenGraphDual, repl='..', truncend=False, delim=self
._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',
min=0, graph=False)
graph.addField(dev + '_write', fixLabel(dev,
maxLabelLenGraphDual, repl='..', truncend=False, delim=self
._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',
min=0, negative=dev + '_read', info=dev)
self.appendGraph(name, graph)
|
configDevRequests
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, namestr, titlestr, devlist):\n name = 'diskio_%s_requests' % namestr\n if self.graphEnabled(name):\n graph = MuninGraph('Disk I/O - %s - Requests' % titlestr, self.\n _category, info=\n 'Disk I/O - %s Throughput, Read / write requests per second.' %\n titlestr, args='--base 1000 --lower-limit 0', vlabel=\n 'reqs/sec read (-) / write (+)', printf='%6.1lf', autoFixNames=True\n )\n for dev in devlist:\n graph.addField(dev + '_read', fixLabel(dev,\n maxLabelLenGraphDual, repl='..', truncend=False, delim=self\n ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',\n min=0, graph=False)\n graph.addField(dev + '_write', fixLabel(dev,\n maxLabelLenGraphDual, repl='..', truncend=False, delim=self\n ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',\n min=0, negative=dev + '_read', info=dev)\n self.appendGraph(name, graph)\n",
"role": "user"
},
{
"content": "configDevRequests",
"role": "assistant"
}
] |
def x(self, namestr, titlestr, devlist):
name = 'diskio_%s_active' % namestr
if self.graphEnabled(name):
graph = MuninGraph('Disk I/O - %s - Queue Length' % titlestr, self.
_category, info=
'Disk I/O - Number of I/O Operations in Progress for every %s.' %
titlestr, args='--base 1000 --lower-limit 0', printf='%6.1lf',
autoFixNames=True)
for dev in devlist:
graph.addField(dev, fixLabel(dev, maxLabelLenGraphSimple, repl=
'..', truncend=False, delim=self._labelDelim.get(namestr)),
draw='AREASTACK', type='GAUGE', info=dev)
self.appendGraph(name, graph)
|
configDevActive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, namestr, titlestr, devlist):\n name = 'diskio_%s_active' % namestr\n if self.graphEnabled(name):\n graph = MuninGraph('Disk I/O - %s - Queue Length' % titlestr, self.\n _category, info=\n 'Disk I/O - Number of I/O Operations in Progress for every %s.' %\n titlestr, args='--base 1000 --lower-limit 0', printf='%6.1lf',\n autoFixNames=True)\n for dev in devlist:\n graph.addField(dev, fixLabel(dev, maxLabelLenGraphSimple, repl=\n '..', truncend=False, delim=self._labelDelim.get(namestr)),\n draw='AREASTACK', type='GAUGE', info=dev)\n self.appendGraph(name, graph)\n",
"role": "user"
},
{
"content": "configDevActive",
"role": "assistant"
}
] |
def x(self, namestr, devlist, statsfunc):
for dev in devlist:
stats = statsfunc(dev)
name = 'diskio_%s_requests' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev + '_read', stats['rios'])
self.setGraphVal(name, dev + '_write', stats['wios'])
name = 'diskio_%s_bytes' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev + '_read', stats['rbytes'])
self.setGraphVal(name, dev + '_write', stats['wbytes'])
name = 'diskio_%s_active' % namestr
if self.hasGraph(name):
self.setGraphVal(name, dev, stats['ios_active'])
|
fetchDevAll
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, namestr, devlist, statsfunc):\n for dev in devlist:\n stats = statsfunc(dev)\n name = 'diskio_%s_requests' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev + '_read', stats['rios'])\n self.setGraphVal(name, dev + '_write', stats['wios'])\n name = 'diskio_%s_bytes' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev + '_read', stats['rbytes'])\n self.setGraphVal(name, dev + '_write', stats['wbytes'])\n name = 'diskio_%s_active' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev, stats['ios_active'])\n",
"role": "user"
},
{
"content": "fetchDevAll",
"role": "assistant"
}
] |
def x(self):
for graph_name in self.getGraphList():
for field_name in self.getGraphFieldList(graph_name):
self.setGraphVal(graph_name, field_name, self._stats.get(
field_name))
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for graph_name in self.getGraphList():\n for field_name in self.getGraphFieldList(graph_name):\n self.setGraphVal(graph_name, field_name, self._stats.get(\n field_name))\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
if self.hasGraph('sys_loadavg'):
self._loadstats = self._sysinfo.getLoadAvg()
if self._loadstats:
self.setGraphVal('sys_loadavg', 'load15min', self._loadstats[2])
self.setGraphVal('sys_loadavg', 'load5min', self._loadstats[1])
self.setGraphVal('sys_loadavg', 'load1min', self._loadstats[0])
if self._cpustats and self.hasGraph('sys_cpu_util'):
for field in self.getGraphFieldList('sys_cpu_util'):
self.setGraphVal('sys_cpu_util', field, int(self._cpustats[
field] * 1000))
if self._memstats:
if self.hasGraph('sys_mem_util'):
for field in self.getGraphFieldList('sys_mem_util'):
self.setGraphVal('sys_mem_util', field, self._memstats[field])
if self.hasGraph('sys_mem_avail'):
for field in self.getGraphFieldList('sys_mem_avail'):
self.setGraphVal('sys_mem_avail', field, self._memstats[field])
if self.hasGraph('sys_mem_huge'):
for field in ['Rsvd', 'Surp', 'Free']:
fkey = 'HugePages_' + field
if self._memstats.has_key(fkey):
self.setGraphVal('sys_mem_huge', field, self._memstats[
fkey] * self._memstats['Hugepagesize'])
if self.hasGraph('sys_processes'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
self.setGraphVal('sys_processes', 'running', self._procstats[
'procs_running'])
self.setGraphVal('sys_processes', 'blocked', self._procstats[
'procs_blocked'])
if self.hasGraph('sys_forks'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
self.setGraphVal('sys_forks', 'forks', self._procstats['processes']
)
if self.hasGraph('sys_intr_ctxt'):
if self._procstats is None:
self._procstats = self._sysinfo.getProcessStats()
if self._procstats:
for field in self.getGraphFieldList('sys_intr_ctxt'):
self.setGraphVal('sys_intr_ctxt', field, self._procstats[field]
)
if self.hasGraph('sys_vm_paging'):
if self._vmstats is None:
self._vmstats = self._sysinfo.getVMstats()
if self._vmstats:
self.setGraphVal('sys_vm_paging', 'in', self._vmstats['pgpgin'])
self.setGraphVal('sys_vm_paging', 'out', self._vmstats['pgpgout'])
if self.hasGraph('sys_vm_swapping'):
if self._vmstats is None:
self._vmstats = self._sysinfo.getVMstats()
if self._vmstats:
self.setGraphVal('sys_vm_swapping', 'in', self._vmstats['pswpin'])
self.setGraphVal('sys_vm_swapping', 'out', self._vmstats['pswpout']
)
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.hasGraph('sys_loadavg'):\n self._loadstats = self._sysinfo.getLoadAvg()\n if self._loadstats:\n self.setGraphVal('sys_loadavg', 'load15min', self._loadstats[2])\n self.setGraphVal('sys_loadavg', 'load5min', self._loadstats[1])\n self.setGraphVal('sys_loadavg', 'load1min', self._loadstats[0])\n if self._cpustats and self.hasGraph('sys_cpu_util'):\n for field in self.getGraphFieldList('sys_cpu_util'):\n self.setGraphVal('sys_cpu_util', field, int(self._cpustats[\n field] * 1000))\n if self._memstats:\n if self.hasGraph('sys_mem_util'):\n for field in self.getGraphFieldList('sys_mem_util'):\n self.setGraphVal('sys_mem_util', field, self._memstats[field])\n if self.hasGraph('sys_mem_avail'):\n for field in self.getGraphFieldList('sys_mem_avail'):\n self.setGraphVal('sys_mem_avail', field, self._memstats[field])\n if self.hasGraph('sys_mem_huge'):\n for field in ['Rsvd', 'Surp', 'Free']:\n fkey = 'HugePages_' + field\n if self._memstats.has_key(fkey):\n self.setGraphVal('sys_mem_huge', field, self._memstats[\n fkey] * self._memstats['Hugepagesize'])\n if self.hasGraph('sys_processes'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n self.setGraphVal('sys_processes', 'running', self._procstats[\n 'procs_running'])\n self.setGraphVal('sys_processes', 'blocked', self._procstats[\n 'procs_blocked'])\n if self.hasGraph('sys_forks'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n self.setGraphVal('sys_forks', 'forks', self._procstats['processes']\n )\n if self.hasGraph('sys_intr_ctxt'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n for field in self.getGraphFieldList('sys_intr_ctxt'):\n self.setGraphVal('sys_intr_ctxt', field, self._procstats[field]\n )\n if self.hasGraph('sys_vm_paging'):\n if self._vmstats is None:\n self._vmstats = self._sysinfo.getVMstats()\n if self._vmstats:\n self.setGraphVal('sys_vm_paging', 'in', self._vmstats['pgpgin'])\n self.setGraphVal('sys_vm_paging', 'out', self._vmstats['pgpgout'])\n if self.hasGraph('sys_vm_swapping'):\n if self._vmstats is None:\n self._vmstats = self._sysinfo.getVMstats()\n if self._vmstats:\n self.setGraphVal('sys_vm_swapping', 'in', self._vmstats['pswpin'])\n self.setGraphVal('sys_vm_swapping', 'out', self._vmstats['pswpout']\n )\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(key, default=None):
try:
return ast.literal_eval(os.environ.get(key.upper(), default))
except (ValueError, SyntaxError):
return os.environ.get(key.upper(), default)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, default=None):\n try:\n return ast.literal_eval(os.environ.get(key.upper(), default))\n except (ValueError, SyntaxError):\n return os.environ.get(key.upper(), default)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(filepath=None, **kwargs):
if filepath is None:
filepath = os.path.join('.env')
with open(filepath, 'wb') as file_handle:
file_handle.writelines('{0}={1}\n'.format(key.upper(), val) for key,
val in kwargs.items())
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filepath=None, **kwargs):\n if filepath is None:\n filepath = os.path.join('.env')\n with open(filepath, 'wb') as file_handle:\n file_handle.writelines('{0}={1}\\n'.format(key.upper(), val) for key,\n val in kwargs.items())\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(filepath=None):
if filepath and os.path.exists(filepath):
pass
else:
if not os.path.exists('.env'):
return False
filepath = os.path.join('.env')
for key, value in _get_line_(filepath):
os.environ.setdefault(key, str(value))
return True
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filepath=None):\n if filepath and os.path.exists(filepath):\n pass\n else:\n if not os.path.exists('.env'):\n return False\n filepath = os.path.join('.env')\n for key, value in _get_line_(filepath):\n os.environ.setdefault(key, str(value))\n return True\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(filepath):
for line in open(filepath):
line = line.strip()
if line.startswith('#') or '=' not in line:
continue
key, value = line.split('=', 1)
key = key.strip().upper()
value = value.strip()
if not (key and value):
continue
try:
value = ast.literal_eval(value)
except (ValueError, SyntaxError):
pass
yield key, value
|
get_line_
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filepath):\n for line in open(filepath):\n line = line.strip()\n if line.startswith('#') or '=' not in line:\n continue\n key, value = line.split('=', 1)\n key = key.strip().upper()\n value = value.strip()\n if not (key and value):\n continue\n try:\n value = ast.literal_eval(value)\n except (ValueError, SyntaxError):\n pass\n yield key, value\n",
"role": "user"
},
{
"content": "get_line_",
"role": "assistant"
}
] |
def x(self):
url = '%s://%s:%d/%s?auto' % (self._proto, self._host, self._port, self
._statuspath)
response = util.get_url(url, self._user, self._password)
self._statusDict = {}
for line in response.splitlines():
mobj = re.match('(\\S.*\\S)\\s*:\\s*(\\S+)\\s*$', line)
if mobj:
self._statusDict[mobj.group(1)] = util.parse_value(mobj.group(2))
if self._statusDict.has_key('Scoreboard'):
self._statusDict['MaxWorkers'] = len(self._statusDict['Scoreboard'])
|
initStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n url = '%s://%s:%d/%s?auto' % (self._proto, self._host, self._port, self\n ._statuspath)\n response = util.get_url(url, self._user, self._password)\n self._statusDict = {}\n for line in response.splitlines():\n mobj = re.match('(\\\\S.*\\\\S)\\\\s*:\\\\s*(\\\\S+)\\\\s*$', line)\n if mobj:\n self._statusDict[mobj.group(1)] = util.parse_value(mobj.group(2))\n if self._statusDict.has_key('Scoreboard'):\n self._statusDict['MaxWorkers'] = len(self._statusDict['Scoreboard'])\n",
"role": "user"
},
{
"content": "initStats",
"role": "assistant"
}
] |
def x(self, features=None):
if features is None:
features = self.dist_funcs.keys()
elif not isinstance(features, list):
features = [features]
return self.pres.applymap(lambda x: {k: v for k, v in x.items() if k in
features} if x is not None else None)
|
get_pres_features
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, features=None):\n if features is None:\n features = self.dist_funcs.keys()\n elif not isinstance(features, list):\n features = [features]\n return self.pres.applymap(lambda x: {k: v for k, v in x.items() if k in\n features} if x is not None else None)\n",
"role": "user"
},
{
"content": "get_pres_features",
"role": "assistant"
}
] |
def x(self, features=None):
if features is None:
features = self.dist_funcs.keys()
elif not isinstance(features, list):
features = [features]
return self.rec.applymap(lambda x: {k: v for k, v in x.items() if k !=
'item'} if x is not None else None)
|
get_rec_features
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, features=None):\n if features is None:\n features = self.dist_funcs.keys()\n elif not isinstance(features, list):\n features = [features]\n return self.rec.applymap(lambda x: {k: v for k, v in x.items() if k !=\n 'item'} if x is not None else None)\n",
"role": "user"
},
{
"content": "get_rec_features",
"role": "assistant"
}
] |
def x(self):
print('Number of subjects: ' + str(self.n_subjects))
print('Number of lists per subject: ' + str(self.n_lists))
print('Number of words per list: ' + str(self.list_length))
print('Date created: ' + str(self.date_created))
print('Meta data: ' + str(self.meta))
|
info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n print('Number of subjects: ' + str(self.n_subjects))\n print('Number of lists per subject: ' + str(self.n_lists))\n print('Number of words per list: ' + str(self.list_length))\n print('Date created: ' + str(self.date_created))\n print('Meta data: ' + str(self.meta))\n",
"role": "user"
},
{
"content": "info",
"role": "assistant"
}
] |
def x(self, fname, compression='blosc'):
egg = {'pres': df2list(self.pres), 'rec': df2list(self.rec),
'dist_funcs': self.dist_funcs, 'subjgroup': self.subjgroup,
'subjname': self.subjname, 'listgroup': self.listgroup, 'listname':
self.listname, 'date_created': self.date_created, 'meta': self.meta}
if fname[-4:] != '.egg':
fname += '.egg'
with warnings.catch_warnings():
warnings.simplefilter('ignore')
dd.io.save(fname, egg, compression=compression)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname, compression='blosc'):\n egg = {'pres': df2list(self.pres), 'rec': df2list(self.rec),\n 'dist_funcs': self.dist_funcs, 'subjgroup': self.subjgroup,\n 'subjname': self.subjname, 'listgroup': self.listgroup, 'listname':\n self.listname, 'date_created': self.date_created, 'meta': self.meta}\n if fname[-4:] != '.egg':\n fname += '.egg'\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n dd.io.save(fname, egg, compression=compression)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, fname, compression='blosc'):
egg = {'data': self.data, 'analysis': self.analysis, 'list_length':
self.list_length, 'n_lists': self.n_lists, 'n_subjects': self.
n_subjects, 'position': self.position, 'date_created': self.
date_created, 'meta': self.meta}
if fname[-4:] != '.fegg':
fname += '.fegg'
with warnings.catch_warnings():
warnings.simplefilter('ignore')
dd.io.save(fname, egg, compression=compression)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname, compression='blosc'):\n egg = {'data': self.data, 'analysis': self.analysis, 'list_length':\n self.list_length, 'n_lists': self.n_lists, 'n_subjects': self.\n n_subjects, 'position': self.position, 'date_created': self.\n date_created, 'meta': self.meta}\n if fname[-4:] != '.fegg':\n fname += '.fegg'\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n dd.io.save(fname, egg, compression=compression)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(egg, position, match='exact', distance='euclidean', features=None):
def x(lst, position):
return [(1 if pos == lst[position] else 0) for pos in range(1, egg.
list_length + 1)]
opts = dict(match=match, distance=distance, features=features)
if match is 'exact':
opts.update({'features': 'item'})
recmat = recall_matrix(egg, **opts)
if match in ['exact', 'best']:
result = [pnr(lst, position) for lst in recmat]
elif match is 'smooth':
result = np.atleast_2d(recmat[:, :, 0])
else:
raise ValueError('Match must be set to exact, best or smooth.')
return np.nanmean(result, axis=0)
|
pnr_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(egg, position, match='exact', distance='euclidean', features=None):\n\n def x(lst, position):\n return [(1 if pos == lst[position] else 0) for pos in range(1, egg.\n list_length + 1)]\n opts = dict(match=match, distance=distance, features=features)\n if match is 'exact':\n opts.update({'features': 'item'})\n recmat = recall_matrix(egg, **opts)\n if match in ['exact', 'best']:\n result = [pnr(lst, position) for lst in recmat]\n elif match is 'smooth':\n result = np.atleast_2d(recmat[:, :, 0])\n else:\n raise ValueError('Match must be set to exact, best or smooth.')\n return np.nanmean(result, axis=0)\n",
"role": "user"
},
{
"content": "pnr_helper",
"role": "assistant"
}
] |
def x(self):
apacheInfo = ApacheInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
stats = apacheInfo.getServerStats()
if self.hasGraph('apache_access'):
self.setGraphVal('apache_access', 'reqs', stats['Total Accesses'])
if self.hasGraph('apache_bytes'):
self.setGraphVal('apache_bytes', 'bytes', stats['Total kBytes'] * 1000)
if self.hasGraph('apache_workers'):
self.setGraphVal('apache_workers', 'busy', stats['BusyWorkers'])
self.setGraphVal('apache_workers', 'idle', stats['IdleWorkers'])
self.setGraphVal('apache_workers', 'max', stats['MaxWorkers'])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n apacheInfo = ApacheInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = apacheInfo.getServerStats()\n if self.hasGraph('apache_access'):\n self.setGraphVal('apache_access', 'reqs', stats['Total Accesses'])\n if self.hasGraph('apache_bytes'):\n self.setGraphVal('apache_bytes', 'bytes', stats['Total kBytes'] * 1000)\n if self.hasGraph('apache_workers'):\n self.setGraphVal('apache_workers', 'busy', stats['BusyWorkers'])\n self.setGraphVal('apache_workers', 'idle', stats['IdleWorkers'])\n self.setGraphVal('apache_workers', 'max', stats['MaxWorkers'])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
apacheInfo = ApacheInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
return apacheInfo is not None
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n apacheInfo = ApacheInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return apacheInfo is not None\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(self):
ntpinfo = NTPinfo()
ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)
if ntpstats:
for host in self._remoteHosts:
hostkey = re.sub('\\.', '_', host)
hoststats = ntpstats.get(host)
if hoststats:
if self.hasGraph('ntp_host_stratums'):
self.setGraphVal('ntp_host_stratums', hostkey,
hoststats.get('stratum'))
if self.hasGraph('ntp_host_offsets'):
self.setGraphVal('ntp_host_offsets', hostkey, hoststats
.get('offset'))
if self.hasGraph('ntp_host_delays'):
self.setGraphVal('ntp_host_delays', hostkey, hoststats.
get('delay'))
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ntpinfo = NTPinfo()\n ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)\n if ntpstats:\n for host in self._remoteHosts:\n hostkey = re.sub('\\\\.', '_', host)\n hoststats = ntpstats.get(host)\n if hoststats:\n if self.hasGraph('ntp_host_stratums'):\n self.setGraphVal('ntp_host_stratums', hostkey,\n hoststats.get('stratum'))\n if self.hasGraph('ntp_host_offsets'):\n self.setGraphVal('ntp_host_offsets', hostkey, hoststats\n .get('offset'))\n if self.hasGraph('ntp_host_delays'):\n self.setGraphVal('ntp_host_delays', hostkey, hoststats.\n get('delay'))\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
ntpinfo = NTPinfo()
ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)
return len(ntpstats) > 0
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ntpinfo = NTPinfo()\n ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)\n return len(ntpstats) > 0\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(self):
lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
stats = lighttpdInfo.getServerStats()
if self.hasGraph('lighttpd_access'):
self.setGraphVal('lighttpd_access', 'reqs', stats['Total Accesses'])
if self.hasGraph('lighttpd_bytes'):
self.setGraphVal('lighttpd_bytes', 'bytes', stats['Total kBytes'] *
1000)
if self.hasGraph('lighttpd_servers'):
self.setGraphVal('lighttpd_servers', 'busy', stats['BusyServers'])
self.setGraphVal('lighttpd_servers', 'idle', stats['IdleServers'])
self.setGraphVal('lighttpd_servers', 'max', stats['MaxServers'])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = lighttpdInfo.getServerStats()\n if self.hasGraph('lighttpd_access'):\n self.setGraphVal('lighttpd_access', 'reqs', stats['Total Accesses'])\n if self.hasGraph('lighttpd_bytes'):\n self.setGraphVal('lighttpd_bytes', 'bytes', stats['Total kBytes'] *\n 1000)\n if self.hasGraph('lighttpd_servers'):\n self.setGraphVal('lighttpd_servers', 'busy', stats['BusyServers'])\n self.setGraphVal('lighttpd_servers', 'idle', stats['IdleServers'])\n self.setGraphVal('lighttpd_servers', 'max', stats['MaxServers'])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self):
lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.
_password, self._statuspath, self._ssl)
return lighttpdInfo is not None
|
autoconf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return lighttpdInfo is not None\n",
"role": "user"
},
{
"content": "autoconf",
"role": "assistant"
}
] |
def x(self):
name = 'diskspace'
if self.hasGraph(name):
for fspath in self._fslist:
if self._statsSpace.has_key(fspath):
self.setGraphVal(name, fspath, self._statsSpace[fspath][
'inuse_pcent'])
name = 'diskinode'
if self.hasGraph(name):
for fspath in self._fslist:
if self._statsInode.has_key(fspath):
self.setGraphVal(name, fspath, self._statsInode[fspath][
'inuse_pcent'])
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name = 'diskspace'\n if self.hasGraph(name):\n for fspath in self._fslist:\n if self._statsSpace.has_key(fspath):\n self.setGraphVal(name, fspath, self._statsSpace[fspath][\n 'inuse_pcent'])\n name = 'diskinode'\n if self.hasGraph(name):\n for fspath in self._fslist:\n if self._statsInode.has_key(fspath):\n self.setGraphVal(name, fspath, self._statsInode[fspath][\n 'inuse_pcent'])\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
def x(self, mtx):
self.free_symbolic()
indx = self._getIndx(mtx)
if not assumeSortedIndices:
mtx.sort_indices()
if self.isReal:
status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape
[1], mtx.indptr, indx, mtx.data, self.control, self.info)
else:
real, imag = mtx.data.real.copy(), mtx.data.imag.copy()
status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape
[1], mtx.indptr, indx, real, imag, self.control, self.info)
if status != UMFPACK_OK:
raise RuntimeError('%s failed with %s' % (self.funs.symbolic,
umfStatus[status]))
self.mtx = mtx
|
symbolic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mtx):\n self.free_symbolic()\n indx = self._getIndx(mtx)\n if not assumeSortedIndices:\n mtx.sort_indices()\n if self.isReal:\n status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape\n [1], mtx.indptr, indx, mtx.data, self.control, self.info)\n else:\n real, imag = mtx.data.real.copy(), mtx.data.imag.copy()\n status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape\n [1], mtx.indptr, indx, real, imag, self.control, self.info)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.symbolic,\n umfStatus[status]))\n self.mtx = mtx\n",
"role": "user"
},
{
"content": "symbolic",
"role": "assistant"
}
] |
def x(self, mtx):
self.free_numeric()
if self._symbolic is None:
self.symbolic(mtx)
indx = self._getIndx(mtx)
failCount = 0
while 1:
if self.isReal:
status, self._numeric = self.funs.numeric(mtx.indptr, indx, mtx
.data, self._symbolic, self.control, self.info)
else:
real, imag = mtx.data.real.copy(), mtx.data.imag.copy()
status, self._numeric = self.funs.numeric(mtx.indptr, indx,
real, imag, self._symbolic, self.control, self.info)
if status != UMFPACK_OK:
if status == UMFPACK_WARNING_singular_matrix:
warnings.warn('Singular matrix', UmfpackWarning)
break
elif status in (UMFPACK_ERROR_different_pattern,
UMFPACK_ERROR_invalid_Symbolic_object):
warnings.warn('Recomputing symbolic', UmfpackWarning)
self.symbolic(mtx)
failCount += 1
else:
failCount += 100
else:
break
if failCount >= 2:
raise RuntimeError('%s failed with %s' % (self.funs.numeric,
umfStatus[status]))
|
numeric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mtx):\n self.free_numeric()\n if self._symbolic is None:\n self.symbolic(mtx)\n indx = self._getIndx(mtx)\n failCount = 0\n while 1:\n if self.isReal:\n status, self._numeric = self.funs.numeric(mtx.indptr, indx, mtx\n .data, self._symbolic, self.control, self.info)\n else:\n real, imag = mtx.data.real.copy(), mtx.data.imag.copy()\n status, self._numeric = self.funs.numeric(mtx.indptr, indx,\n real, imag, self._symbolic, self.control, self.info)\n if status != UMFPACK_OK:\n if status == UMFPACK_WARNING_singular_matrix:\n warnings.warn('Singular matrix', UmfpackWarning)\n break\n elif status in (UMFPACK_ERROR_different_pattern,\n UMFPACK_ERROR_invalid_Symbolic_object):\n warnings.warn('Recomputing symbolic', UmfpackWarning)\n self.symbolic(mtx)\n failCount += 1\n else:\n failCount += 100\n else:\n break\n if failCount >= 2:\n raise RuntimeError('%s failed with %s' % (self.funs.numeric,\n umfStatus[status]))\n",
"role": "user"
},
{
"content": "numeric",
"role": "assistant"
}
] |
def x(self):
if self._symbolic is not None:
self.funs.free_symbolic(self._symbolic)
self._symbolic = None
self.mtx = None
|
free_symbolic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._symbolic is not None:\n self.funs.free_symbolic(self._symbolic)\n self._symbolic = None\n self.mtx = None\n",
"role": "user"
},
{
"content": "free_symbolic",
"role": "assistant"
}
] |
def x(self):
if self._numeric is not None:
self.funs.free_numeric(self._numeric)
self._numeric = None
self.free_symbolic()
|
free_numeric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._numeric is not None:\n self.funs.free_numeric(self._numeric)\n self._numeric = None\n self.free_symbolic()\n",
"role": "user"
},
{
"content": "free_numeric",
"role": "assistant"
}
] |
def x(self, sys, mtx, rhs, autoTranspose=False):
if sys not in umfSys:
raise ValueError('sys must be in' % umfSys)
if autoTranspose and self.isCSR:
if self.family in umfRealTypes:
ii = 0
else:
ii = 1
if sys in umfSys_transposeMap[ii]:
sys = umfSys_transposeMap[ii][sys]
else:
raise RuntimeError('autoTranspose ambiguous, switch it off')
if self._numeric is not None:
if self.mtx is not mtx:
raise ValueError('must be called with same matrix as numeric()')
else:
raise RuntimeError('numeric() not called')
indx = self._getIndx(mtx)
if self.isReal:
rhs = rhs.astype(np.float64)
sol = np.zeros((mtx.shape[1],), dtype=np.float64)
status = self.funs.solve(sys, mtx.indptr, indx, mtx.data, sol, rhs,
self._numeric, self.control, self.info)
else:
rhs = rhs.astype(np.complex128)
sol = np.zeros((mtx.shape[1],), dtype=np.complex128)
mreal, mimag = mtx.data.real.copy(), mtx.data.imag.copy()
sreal, simag = sol.real.copy(), sol.imag.copy()
rreal, rimag = rhs.real.copy(), rhs.imag.copy()
status = self.funs.solve(sys, mtx.indptr, indx, mreal, mimag, sreal,
simag, rreal, rimag, self._numeric, self.control, self.info)
sol.real, sol.imag = sreal, simag
if status != UMFPACK_OK:
if status == UMFPACK_WARNING_singular_matrix:
warnings.warn('Zeroing nan and inf entries...', UmfpackWarning)
sol[~np.isfinite(sol)] = 0.0
else:
raise RuntimeError('%s failed with %s' % (self.funs.solve,
umfStatus[status]))
econd = 1.0 / self.info[UMFPACK_RCOND]
if econd > self.maxCond:
msg = ('(almost) singular matrix! ' +
'(estimated cond. number: %.2e)' % econd)
warnings.warn(msg, UmfpackWarning)
return sol
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sys, mtx, rhs, autoTranspose=False):\n if sys not in umfSys:\n raise ValueError('sys must be in' % umfSys)\n if autoTranspose and self.isCSR:\n if self.family in umfRealTypes:\n ii = 0\n else:\n ii = 1\n if sys in umfSys_transposeMap[ii]:\n sys = umfSys_transposeMap[ii][sys]\n else:\n raise RuntimeError('autoTranspose ambiguous, switch it off')\n if self._numeric is not None:\n if self.mtx is not mtx:\n raise ValueError('must be called with same matrix as numeric()')\n else:\n raise RuntimeError('numeric() not called')\n indx = self._getIndx(mtx)\n if self.isReal:\n rhs = rhs.astype(np.float64)\n sol = np.zeros((mtx.shape[1],), dtype=np.float64)\n status = self.funs.solve(sys, mtx.indptr, indx, mtx.data, sol, rhs,\n self._numeric, self.control, self.info)\n else:\n rhs = rhs.astype(np.complex128)\n sol = np.zeros((mtx.shape[1],), dtype=np.complex128)\n mreal, mimag = mtx.data.real.copy(), mtx.data.imag.copy()\n sreal, simag = sol.real.copy(), sol.imag.copy()\n rreal, rimag = rhs.real.copy(), rhs.imag.copy()\n status = self.funs.solve(sys, mtx.indptr, indx, mreal, mimag, sreal,\n simag, rreal, rimag, self._numeric, self.control, self.info)\n sol.real, sol.imag = sreal, simag\n if status != UMFPACK_OK:\n if status == UMFPACK_WARNING_singular_matrix:\n warnings.warn('Zeroing nan and inf entries...', UmfpackWarning)\n sol[~np.isfinite(sol)] = 0.0\n else:\n raise RuntimeError('%s failed with %s' % (self.funs.solve,\n umfStatus[status]))\n econd = 1.0 / self.info[UMFPACK_RCOND]\n if econd > self.maxCond:\n msg = ('(almost) singular matrix! ' + \n '(estimated cond. number: %.2e)' % econd)\n warnings.warn(msg, UmfpackWarning)\n return sol\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(self, sys, mtx, rhs, autoTranspose=False):
if sys not in umfSys:
raise ValueError('sys must be in' % umfSys)
if self._numeric is None:
self.numeric(mtx)
elif self.mtx is not mtx:
self.numeric(mtx)
sol = self.solve(sys, mtx, rhs, autoTranspose)
self.free_numeric()
return sol
|
linsolve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sys, mtx, rhs, autoTranspose=False):\n if sys not in umfSys:\n raise ValueError('sys must be in' % umfSys)\n if self._numeric is None:\n self.numeric(mtx)\n elif self.mtx is not mtx:\n self.numeric(mtx)\n sol = self.solve(sys, mtx, rhs, autoTranspose)\n self.free_numeric()\n return sol\n",
"role": "user"
},
{
"content": "linsolve",
"role": "assistant"
}
] |
def x(self, mtx):
mtx = mtx.tocsc()
self.numeric(mtx)
status, lnz, unz, n_row, n_col, nz_udiag = self.funs.get_lunz(self._numeric
)
if status != UMFPACK_OK:
raise RuntimeError('%s failed with %s' % (self.funs.get_lunz,
umfStatus[status]))
i_type = mtx.indptr.dtype
Lp = np.zeros((n_row + 1,), dtype=i_type)
Lj = np.zeros((lnz,), dtype=i_type)
Lx = np.zeros((lnz,), dtype=np.double)
Up = np.zeros((n_col + 1,), dtype=i_type)
Ui = np.zeros((unz,), dtype=i_type)
Ux = np.zeros((unz,), dtype=np.double)
P = np.zeros((n_row,), dtype=i_type)
Q = np.zeros((n_col,), dtype=i_type)
Dx = np.zeros((min(n_row, n_col),), dtype=np.double)
Rs = np.zeros((n_row,), dtype=np.double)
if self.isReal:
status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P,
Q, Dx, Rs, self._numeric)
if status != UMFPACK_OK:
raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,
umfStatus[status]))
L = sp.csr_matrix((Lx, Lj, Lp), (n_row, min(n_row, n_col)))
U = sp.csc_matrix((Ux, Ui, Up), (min(n_row, n_col), n_col))
R = Rs
return L, U, P, Q, R, bool(do_recip)
else:
Lz = np.zeros((lnz,), dtype=np.double)
Uz = np.zeros((unz,), dtype=np.double)
Dz = np.zeros((min(n_row, n_col),), dtype=np.double)
status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Lz, Up, Ui, Ux,
Uz, P, Q, Dx, Dz, Rs, self._numeric)
if status != UMFPACK_OK:
raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,
umfStatus[status]))
Lxz = np.zeros((lnz,), dtype=np.complex128)
Uxz = np.zeros((unz,), dtype=np.complex128)
Dxz = np.zeros((min(n_row, n_col),), dtype=np.complex128)
Lxz.real, Lxz.imag = Lx, Lz
Uxz.real, Uxz.imag = Ux, Uz
Dxz.real, Dxz.imag = Dx, Dz
L = sp.csr_matrix((Lxz, Lj, Lp), (n_row, min(n_row, n_col)))
U = sp.csc_matrix((Uxz, Ui, Up), (min(n_row, n_col), n_col))
R = Rs
return L, U, P, Q, R, bool(do_recip)
|
lu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mtx):\n mtx = mtx.tocsc()\n self.numeric(mtx)\n status, lnz, unz, n_row, n_col, nz_udiag = self.funs.get_lunz(self._numeric\n )\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_lunz,\n umfStatus[status]))\n i_type = mtx.indptr.dtype\n Lp = np.zeros((n_row + 1,), dtype=i_type)\n Lj = np.zeros((lnz,), dtype=i_type)\n Lx = np.zeros((lnz,), dtype=np.double)\n Up = np.zeros((n_col + 1,), dtype=i_type)\n Ui = np.zeros((unz,), dtype=i_type)\n Ux = np.zeros((unz,), dtype=np.double)\n P = np.zeros((n_row,), dtype=i_type)\n Q = np.zeros((n_col,), dtype=i_type)\n Dx = np.zeros((min(n_row, n_col),), dtype=np.double)\n Rs = np.zeros((n_row,), dtype=np.double)\n if self.isReal:\n status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P,\n Q, Dx, Rs, self._numeric)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,\n umfStatus[status]))\n L = sp.csr_matrix((Lx, Lj, Lp), (n_row, min(n_row, n_col)))\n U = sp.csc_matrix((Ux, Ui, Up), (min(n_row, n_col), n_col))\n R = Rs\n return L, U, P, Q, R, bool(do_recip)\n else:\n Lz = np.zeros((lnz,), dtype=np.double)\n Uz = np.zeros((unz,), dtype=np.double)\n Dz = np.zeros((min(n_row, n_col),), dtype=np.double)\n status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Lz, Up, Ui, Ux,\n Uz, P, Q, Dx, Dz, Rs, self._numeric)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,\n umfStatus[status]))\n Lxz = np.zeros((lnz,), dtype=np.complex128)\n Uxz = np.zeros((unz,), dtype=np.complex128)\n Dxz = np.zeros((min(n_row, n_col),), dtype=np.complex128)\n Lxz.real, Lxz.imag = Lx, Lz\n Uxz.real, Uxz.imag = Ux, Uz\n Dxz.real, Dxz.imag = Dx, Dz\n L = sp.csr_matrix((Lxz, Lj, Lp), (n_row, min(n_row, n_col)))\n U = sp.csc_matrix((Uxz, Ui, Up), (min(n_row, n_col), n_col))\n R = Rs\n return L, U, P, Q, R, bool(do_recip)\n",
"role": "user"
},
{
"content": "lu",
"role": "assistant"
}
] |
def x(presenter, egg, dist_dict, strategy, fingerprint):
def x(features, weights, alpha):
feature_stick = []
for f, w in zip(features, weights):
feature_stick += [f] * int(np.power(w, alpha) * 100)
return feature_stick
def x(egg, feature_stick, dist_dict, tau):
def x(s, tau):
feature_stick = [([weights[feature]] * round(weights[feature] **
alpha) * 100) for feature in w]
return [item for sublist in feature_stick for item in sublist]
pres, rec, features, dist_funcs = parse_egg(egg)
pres_arr = np.array(pres)
features_arr = np.array(features)
reordered_list = []
reordered_features = []
idx = np.random.choice(len(pres), 1)[0]
inds = list(range(len(pres)))
inds_used = [idx]
current_word = pres[idx]
current_features = features[idx]
reordered_list.append(current_word)
reordered_features.append(current_features)
for i in range(len(pres) - 1):
feature_sample = feature_stick[np.random.choice(len(
feature_stick), 1)[0]]
inds_left = [ind for ind in inds if ind not in inds_used]
words_left = pres[inds_left]
dists_left = np.array([dist_dict[current_word][word][
feature_sample] for word in words_left])
features_left = features[inds_left]
dists_left_max = np.max(dists_left)
if dists_left_max > 0:
dists_left_norm = dists_left / np.max(dists_left)
else:
dists_left_norm = dists_left
dists_left_min = np.min(-dists_left_norm)
dists_left_inv = -dists_left_norm - dists_left_min + 0.01
words_stick = []
for word, dist in zip(words_left, dists_left_inv):
words_stick += [word] * int(np.power(dist, tau) * 100)
next_word = np.random.choice(words_stick)
next_word_idx = np.where(pres == next_word)[0]
inds_used.append(next_word_idx)
reordered_list.append(next_word)
reordered_features.append(features[next_word_idx][0])
return Egg(pres=[reordered_list], rec=[reordered_list], features=[[
reordered_features]], dist_funcs=dist_funcs)
pres, rec, features, dist_funcs = parse_egg(egg)
features = presenter.get_params('fingerprint').get_features()
alpha = presenter.get_params('alpha')
tau = presenter.get_params('tau')
weights = fingerprint
if strategy == 'destabilize':
weights = 1 - weights
feature_stick = compute_feature_stick(features, weights, alpha)
return reorder_list(egg, feature_stick, dist_dict, tau)
|
order_stick
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(presenter, egg, dist_dict, strategy, fingerprint):\n\n def x(features, weights, alpha):\n feature_stick = []\n for f, w in zip(features, weights):\n feature_stick += [f] * int(np.power(w, alpha) * 100)\n return feature_stick\n\n def x(egg, feature_stick, dist_dict, tau):\n\n def x(s, tau):\n feature_stick = [([weights[feature]] * round(weights[feature] **\n alpha) * 100) for feature in w]\n return [item for sublist in feature_stick for item in sublist]\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_arr = np.array(pres)\n features_arr = np.array(features)\n reordered_list = []\n reordered_features = []\n idx = np.random.choice(len(pres), 1)[0]\n inds = list(range(len(pres)))\n inds_used = [idx]\n current_word = pres[idx]\n current_features = features[idx]\n reordered_list.append(current_word)\n reordered_features.append(current_features)\n for i in range(len(pres) - 1):\n feature_sample = feature_stick[np.random.choice(len(\n feature_stick), 1)[0]]\n inds_left = [ind for ind in inds if ind not in inds_used]\n words_left = pres[inds_left]\n dists_left = np.array([dist_dict[current_word][word][\n feature_sample] for word in words_left])\n features_left = features[inds_left]\n dists_left_max = np.max(dists_left)\n if dists_left_max > 0:\n dists_left_norm = dists_left / np.max(dists_left)\n else:\n dists_left_norm = dists_left\n dists_left_min = np.min(-dists_left_norm)\n dists_left_inv = -dists_left_norm - dists_left_min + 0.01\n words_stick = []\n for word, dist in zip(words_left, dists_left_inv):\n words_stick += [word] * int(np.power(dist, tau) * 100)\n next_word = np.random.choice(words_stick)\n next_word_idx = np.where(pres == next_word)[0]\n inds_used.append(next_word_idx)\n reordered_list.append(next_word)\n reordered_features.append(features[next_word_idx][0])\n return Egg(pres=[reordered_list], rec=[reordered_list], features=[[\n reordered_features]], dist_funcs=dist_funcs)\n pres, rec, features, dist_funcs = parse_egg(egg)\n features = presenter.get_params('fingerprint').get_features()\n alpha = presenter.get_params('alpha')\n tau = presenter.get_params('tau')\n weights = fingerprint\n if strategy == 'destabilize':\n weights = 1 - weights\n feature_stick = compute_feature_stick(features, weights, alpha)\n return reorder_list(egg, feature_stick, dist_dict, tau)\n",
"role": "user"
},
{
"content": "order_stick",
"role": "assistant"
}
] |
def x(presenter, egg, dist_dict, strategy):
np.random.seed()
egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg)
regg = order_stick(presenter, egg, dist_dict, strategy)
regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg)
regg_pres = list(regg_pres)
egg_pres = list(egg_pres)
idx = [egg_pres.index(r) for r in regg_pres]
weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres),
list(regg_features), dist_dict)
orders = idx
return weights, orders
|
stick_perm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(presenter, egg, dist_dict, strategy):\n np.random.seed()\n egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg)\n regg = order_stick(presenter, egg, dist_dict, strategy)\n regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg)\n regg_pres = list(regg_pres)\n egg_pres = list(egg_pres)\n idx = [egg_pres.index(r) for r in regg_pres]\n weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres),\n list(regg_features), dist_dict)\n orders = idx\n return weights, orders\n",
"role": "user"
},
{
"content": "stick_perm",
"role": "assistant"
}
] |
def x(egg):
pres, rec, features, dist_funcs = parse_egg(egg)
pres_list = list(pres)
features_list = list(features)
distances = {}
for idx1, item1 in enumerate(pres_list):
distances[item1] = {}
for idx2, item2 in enumerate(pres_list):
distances[item1][item2] = {}
for feature in dist_funcs:
distances[item1][item2][feature] = builtin_dist_funcs[
dist_funcs[feature]](features_list[idx1][feature],
features_list[idx2][feature])
return distances
|
compute_distances_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(egg):\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_list = list(pres)\n features_list = list(features)\n distances = {}\n for idx1, item1 in enumerate(pres_list):\n distances[item1] = {}\n for idx2, item2 in enumerate(pres_list):\n distances[item1][item2] = {}\n for feature in dist_funcs:\n distances[item1][item2][feature] = builtin_dist_funcs[\n dist_funcs[feature]](features_list[idx1][feature],\n features_list[idx2][feature])\n return distances\n",
"role": "user"
},
{
"content": "compute_distances_dict",
"role": "assistant"
}
] |
def x(pres_list, rec_list, feature_list, dist_dict):
weights = {}
for feature in feature_list[0]:
weights[feature] = []
if len(rec_list) < 2:
print(
'Not enough recalls to compute fingerprint, returning default fingerprint.. (everything is .5)'
)
for feature in feature_list[0]:
weights[feature] = 0.5
return [weights[key] for key in weights]
past_words = []
past_idxs = []
for i in range(len(rec_list) - 1):
c = rec_list[i]
n = rec_list[i + 1]
if (c in pres_list and n in pres_list) and (c not in past_words and
n not in past_words):
for feature in feature_list[0]:
c_dist = dist_dict[c][n][feature]
dists_filt = [dist_dict[c][j][feature] for j in dist_dict[c
] if j not in past_words]
avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==
c_dist)[0] + 1)
weights[feature].append(avg_rank / len(dists_filt))
past_idxs.append(pres_list.index(c))
past_words.append(c)
for feature in weights:
with warnings.catch_warnings():
warnings.simplefilter('ignore', category=RuntimeWarning)
weights[feature] = np.nanmean(weights[feature])
return [weights[key] for key in weights]
|
compute_feature_weights_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pres_list, rec_list, feature_list, dist_dict):\n weights = {}\n for feature in feature_list[0]:\n weights[feature] = []\n if len(rec_list) < 2:\n print(\n 'Not enough recalls to compute fingerprint, returning default fingerprint.. (everything is .5)'\n )\n for feature in feature_list[0]:\n weights[feature] = 0.5\n return [weights[key] for key in weights]\n past_words = []\n past_idxs = []\n for i in range(len(rec_list) - 1):\n c = rec_list[i]\n n = rec_list[i + 1]\n if (c in pres_list and n in pres_list) and (c not in past_words and\n n not in past_words):\n for feature in feature_list[0]:\n c_dist = dist_dict[c][n][feature]\n dists_filt = [dist_dict[c][j][feature] for j in dist_dict[c\n ] if j not in past_words]\n avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==\n c_dist)[0] + 1)\n weights[feature].append(avg_rank / len(dists_filt))\n past_idxs.append(pres_list.index(c))\n past_words.append(c)\n for feature in weights:\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n weights[feature] = np.nanmean(weights[feature])\n return [weights[key] for key in weights]\n",
"role": "user"
},
{
"content": "compute_feature_weights_dict",
"role": "assistant"
}
] |
def x(self, egg, permute=False, nperms=1000, parallel=False):
self.n += 1
next_weights = np.nanmean(_analyze_chunk(egg, analysis=
fingerprint_helper, analysis_type='fingerprint', pass_features=True,
permute=permute, n_perms=nperms, parallel=parallel).values, 0)
if self.state is not None:
c = self.state * self.n
self.state = np.nansum(np.array([c, next_weights]), axis=0) / (self
.n + 1)
else:
self.state = next_weights
self.history.append(next_weights)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, egg, permute=False, nperms=1000, parallel=False):\n self.n += 1\n next_weights = np.nanmean(_analyze_chunk(egg, analysis=\n fingerprint_helper, analysis_type='fingerprint', pass_features=True,\n permute=permute, n_perms=nperms, parallel=parallel).values, 0)\n if self.state is not None:\n c = self.state * self.n\n self.state = np.nansum(np.array([c, next_weights]), axis=0) / (self\n .n + 1)\n else:\n self.state = next_weights\n self.history.append(next_weights)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, egg, method='permute', nperms=2500, strategy=None, distfun=
'correlation', fingerprint=None):
def x(self, egg, dist_dict, strategy, nperm, distperm, fingerprint):
pres, rec, features, dist_funcs = parse_egg(egg)
pres_len = len(pres)
weights = []
orders = []
for i in range(nperms):
x = rand_perm(pres, features, dist_dict, dist_funcs)
weights.append(x[0])
orders.append(x[1])
weights = np.array(weights)
orders = np.array(orders)
if strategy == 'stabilize':
closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin
=2), weights, distperm)), :].astype(int).tolist()
elif strategy == 'destabilize':
closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin
=2), weights, distperm)), :].astype(int).tolist()
return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],
features=[list(features[closest])])
def x(self, egg, dist_dict, strategy, nperms, distfun, fingerprint):
pres, rec, features, dist_funcs = parse_egg(egg)
results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(
stick_perm)(self, egg, dist_dict, strategy) for i in range(nperms))
weights = np.array([x[0] for x in results])
orders = np.array([x[1] for x in results])
if strategy == 'stabilize':
closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin
=2), weights, distfun)), :].astype(int).tolist()
elif strategy == 'destabilize':
closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin
=2), weights, distfun)), :].astype(int).tolist()
return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],
features=[list(features[closest])], dist_funcs=dist_funcs)
def x(self, egg, dist_dict, nperms, distfun, fingerprint):
strategy = self.strategy
pres, rec, features, dist_funcs = parse_egg(egg)
results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(
choice_perm)(self, egg, dist_dict) for i in range(nperms))
weights = np.array([x[0] for x in results])
orders = np.array([x[1] for x in results])
if strategy == 'stabilize':
closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin
=2), weights, distfun)), :].astype(int).tolist()
elif strategy == 'destabilize':
closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin
=2), weights, distfun)), :].astype(int).tolist()
return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],
features=[list(features[closest])], dist_funcs=dist_funcs)
if strategy is None:
strategy = self.strategy
dist_dict = compute_distances_dict(egg)
if fingerprint is None:
fingerprint = self.get_params('fingerprint').state
elif isinstance(fingerprint, Fingerprint):
fingerprint = fingerprint.state
else:
print('using custom fingerprint')
if strategy == 'random' or method == 'random':
return shuffle_egg(egg)
elif method == 'permute':
return order_perm(self, egg, dist_dict, strategy, nperms, distfun,
fingerprint)
elif method == 'stick':
return order_stick(self, egg, dist_dict, strategy, fingerprint)
elif method == 'best_stick':
return order_best_stick(self, egg, dist_dict, strategy, nperms,
distfun, fingerprint)
elif method == 'best_choice':
return order_best_choice(self, egg, dist_dict, nperms, fingerprint)
|
order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, egg, method='permute', nperms=2500, strategy=None, distfun=\n 'correlation', fingerprint=None):\n\n def x(self, egg, dist_dict, strategy, nperm, distperm, fingerprint):\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_len = len(pres)\n weights = []\n orders = []\n for i in range(nperms):\n x = rand_perm(pres, features, dist_dict, dist_funcs)\n weights.append(x[0])\n orders.append(x[1])\n weights = np.array(weights)\n orders = np.array(orders)\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distperm)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distperm)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])])\n\n def x(self, egg, dist_dict, strategy, nperms, distfun, fingerprint):\n pres, rec, features, dist_funcs = parse_egg(egg)\n results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(\n stick_perm)(self, egg, dist_dict, strategy) for i in range(nperms))\n weights = np.array([x[0] for x in results])\n orders = np.array([x[1] for x in results])\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])], dist_funcs=dist_funcs)\n\n def x(self, egg, dist_dict, nperms, distfun, fingerprint):\n strategy = self.strategy\n pres, rec, features, dist_funcs = parse_egg(egg)\n results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(\n choice_perm)(self, egg, dist_dict) for i in range(nperms))\n weights = np.array([x[0] for x in results])\n orders = np.array([x[1] for x in results])\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])], dist_funcs=dist_funcs)\n if strategy is None:\n strategy = self.strategy\n dist_dict = compute_distances_dict(egg)\n if fingerprint is None:\n fingerprint = self.get_params('fingerprint').state\n elif isinstance(fingerprint, Fingerprint):\n fingerprint = fingerprint.state\n else:\n print('using custom fingerprint')\n if strategy == 'random' or method == 'random':\n return shuffle_egg(egg)\n elif method == 'permute':\n return order_perm(self, egg, dist_dict, strategy, nperms, distfun,\n fingerprint)\n elif method == 'stick':\n return order_stick(self, egg, dist_dict, strategy, fingerprint)\n elif method == 'best_stick':\n return order_best_stick(self, egg, dist_dict, strategy, nperms,\n distfun, fingerprint)\n elif method == 'best_choice':\n return order_best_choice(self, egg, dist_dict, nperms, fingerprint)\n",
"role": "user"
},
{
"content": "order",
"role": "assistant"
}
] |
def x(self, extras=None):
url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath
)
response = util.get_url(url, self._user, self._password)
self._statusDict = json.loads(response)
|
initStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, extras=None):\n url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath\n )\n response = util.get_url(url, self._user, self._password)\n self._statusDict = json.loads(response)\n",
"role": "user"
},
{
"content": "initStats",
"role": "assistant"
}
] |
def x(self, devpath):
fstat = os.stat(devpath)
if stat.S_ISBLK(fstat.st_mode):
return os.major(fstat.st_rdev), os.minor(fstat.st_rdev)
else:
raise ValueError('The file %s is not a valid block device.' % devpath)
|
getDevMajorMinor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, devpath):\n fstat = os.stat(devpath)\n if stat.S_ISBLK(fstat.st_mode):\n return os.major(fstat.st_rdev), os.minor(fstat.st_rdev)\n else:\n raise ValueError('The file %s is not a valid block device.' % devpath)\n",
"role": "user"
},
{
"content": "getDevMajorMinor",
"role": "assistant"
}
] |
def x(self, devpath):
realpath = os.path.realpath(devpath)
mobj = re.match('\\/dev\\/(.*)$', realpath)
if mobj:
dev = mobj.group(1)
if dev in self._diskStats:
return dev
else:
try:
major, minor = self._getDevMajorMinor(realpath)
except:
return None
return self._mapMajorMinor2dev.get((major, minor))
return None
|
getUniqueDev
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, devpath):\n realpath = os.path.realpath(devpath)\n mobj = re.match('\\\\/dev\\\\/(.*)$', realpath)\n if mobj:\n dev = mobj.group(1)\n if dev in self._diskStats:\n return dev\n else:\n try:\n major, minor = self._getDevMajorMinor(realpath)\n except:\n return None\n return self._mapMajorMinor2dev.get((major, minor))\n return None\n",
"role": "user"
},
{
"content": "getUniqueDev",
"role": "assistant"
}
] |
def x(self):
self._mapMajorDevclass = {}
try:
fp = open(devicesFile, 'r')
data = fp.read()
fp.close()
except:
raise IOError('Failed reading device information from file: %s' %
devicesFile)
skip = True
for line in data.splitlines():
if skip:
if re.match('block.*:', line, re.IGNORECASE):
skip = False
else:
mobj = re.match('\\s*(\\d+)\\s+([\\w\\-]+)$', line)
if mobj:
major = int(mobj.group(1))
devtype = mobj.group(2)
self._mapMajorDevclass[major] = devtype
if devtype == 'device-mapper':
self._dmMajorNum = major
|
initBlockMajorMap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._mapMajorDevclass = {}\n try:\n fp = open(devicesFile, 'r')\n data = fp.read()\n fp.close()\n except:\n raise IOError('Failed reading device information from file: %s' %\n devicesFile)\n skip = True\n for line in data.splitlines():\n if skip:\n if re.match('block.*:', line, re.IGNORECASE):\n skip = False\n else:\n mobj = re.match('\\\\s*(\\\\d+)\\\\s+([\\\\w\\\\-]+)$', line)\n if mobj:\n major = int(mobj.group(1))\n devtype = mobj.group(2)\n self._mapMajorDevclass[major] = devtype\n if devtype == 'device-mapper':\n self._dmMajorNum = major\n",
"role": "user"
},
{
"content": "initBlockMajorMap",
"role": "assistant"
}
] |
def x(self):
self._mapLVtuple2dm = {}
self._mapLVname2dm = {}
self._vgTree = {}
if self._dmMajorNum is None:
self._initBlockMajorMap()
for file in os.listdir(devmapperDir):
mobj = re.match(
'([a-zA-Z0-9+_.\\-]*[a-zA-Z0-9+_.])-([a-zA-Z0-9+_.][a-zA-Z0-9+_.\\-]*)$'
, file)
if mobj:
path = os.path.join(devmapperDir, file)
major, minor = self._getDevMajorMinor(path)
if major == self._dmMajorNum:
vg = mobj.group(1).replace('--', '-')
lv = mobj.group(2).replace('--', '-')
dmdev = 'dm-%d' % minor
self._mapLVtuple2dm[vg, lv] = dmdev
self._mapLVname2dm[file] = dmdev
if not vg in self._vgTree:
self._vgTree[vg] = []
self._vgTree[vg].append(lv)
|
initDMinfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._mapLVtuple2dm = {}\n self._mapLVname2dm = {}\n self._vgTree = {}\n if self._dmMajorNum is None:\n self._initBlockMajorMap()\n for file in os.listdir(devmapperDir):\n mobj = re.match(\n '([a-zA-Z0-9+_.\\\\-]*[a-zA-Z0-9+_.])-([a-zA-Z0-9+_.][a-zA-Z0-9+_.\\\\-]*)$'\n , file)\n if mobj:\n path = os.path.join(devmapperDir, file)\n major, minor = self._getDevMajorMinor(path)\n if major == self._dmMajorNum:\n vg = mobj.group(1).replace('--', '-')\n lv = mobj.group(2).replace('--', '-')\n dmdev = 'dm-%d' % minor\n self._mapLVtuple2dm[vg, lv] = dmdev\n self._mapLVname2dm[file] = dmdev\n if not vg in self._vgTree:\n self._vgTree[vg] = []\n self._vgTree[vg].append(lv)\n",
"role": "user"
},
{
"content": "initDMinfo",
"role": "assistant"
}
] |
def x(self):
self._mapFSpathDev = {}
fsinfo = FilesystemInfo()
for fs in fsinfo.getFSlist():
devpath = fsinfo.getFSdev(fs)
dev = self._getUniqueDev(devpath)
if dev is not None:
self._mapFSpathDev[fs] = dev
|
initFilesystemInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._mapFSpathDev = {}\n fsinfo = FilesystemInfo()\n for fs in fsinfo.getFSlist():\n devpath = fsinfo.getFSdev(fs)\n dev = self._getUniqueDev(devpath)\n if dev is not None:\n self._mapFSpathDev[fs] = dev\n",
"role": "user"
},
{
"content": "initFilesystemInfo",
"role": "assistant"
}
] |
def x(self):
self._swapList = []
sysinfo = SystemInfo()
for swap, attrs in sysinfo.getSwapStats().iteritems():
if attrs['type'] == 'partition':
dev = self._getUniqueDev(swap)
if dev is not None:
self._swapList.append(dev)
|
initSwapInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._swapList = []\n sysinfo = SystemInfo()\n for swap, attrs in sysinfo.getSwapStats().iteritems():\n if attrs['type'] == 'partition':\n dev = self._getUniqueDev(swap)\n if dev is not None:\n self._swapList.append(dev)\n",
"role": "user"
},
{
"content": "initSwapInfo",
"role": "assistant"
}
] |
def x(self):
self._diskStats = {}
self._mapMajorMinor2dev = {}
try:
fp = open(diskStatsFile, 'r')
data = fp.read()
fp.close()
except:
raise IOError('Failed reading disk stats from file: %s' % diskStatsFile
)
for line in data.splitlines():
cols = line.split()
dev = cols.pop(2)
if len(cols) == 13:
self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',
'rmerges', 'rsect', 'rticks', 'wios', 'wmerges', 'wsect',
'wticks', 'ios_active', 'totticks', 'rqticks'), [int(x) for
x in cols]))
elif len(cols) == 6:
self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',
'rsect', 'wios', 'wsect'), [int(x) for x in cols]))
else:
continue
self._diskStats[dev]['rbytes'] = self._diskStats[dev]['rsect'
] * sectorSize
self._diskStats[dev]['wbytes'] = self._diskStats[dev]['wsect'
] * sectorSize
self._mapMajorMinor2dev[int(cols[0]), int(cols[1])] = dev
|
initDiskStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._diskStats = {}\n self._mapMajorMinor2dev = {}\n try:\n fp = open(diskStatsFile, 'r')\n data = fp.read()\n fp.close()\n except:\n raise IOError('Failed reading disk stats from file: %s' % diskStatsFile\n )\n for line in data.splitlines():\n cols = line.split()\n dev = cols.pop(2)\n if len(cols) == 13:\n self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',\n 'rmerges', 'rsect', 'rticks', 'wios', 'wmerges', 'wsect',\n 'wticks', 'ios_active', 'totticks', 'rqticks'), [int(x) for\n x in cols]))\n elif len(cols) == 6:\n self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',\n 'rsect', 'wios', 'wsect'), [int(x) for x in cols]))\n else:\n continue\n self._diskStats[dev]['rbytes'] = self._diskStats[dev]['rsect'\n ] * sectorSize\n self._diskStats[dev]['wbytes'] = self._diskStats[dev]['wsect'\n ] * sectorSize\n self._mapMajorMinor2dev[int(cols[0]), int(cols[1])] = dev\n",
"role": "user"
},
{
"content": "initDiskStats",
"role": "assistant"
}
] |
def x(self):
self._devClassTree = {}
self._partitionTree = {}
self._mapDevType = {}
basedevs = []
otherdevs = []
if self._mapMajorDevclass is None:
self._initBlockMajorMap()
for dev in self._diskStats:
stats = self._diskStats[dev]
devclass = self._mapMajorDevclass.get(stats['major'])
if devclass is not None:
devdir = os.path.join(sysfsBlockdevDir, dev)
if os.path.isdir(devdir):
if not self._devClassTree.has_key(devclass):
self._devClassTree[devclass] = []
self._devClassTree[devclass].append(dev)
self._mapDevType[dev] = devclass
basedevs.append(dev)
else:
otherdevs.append(dev)
basedevs.sort(key=len, reverse=True)
otherdevs.sort(key=len, reverse=True)
idx = 0
for partdev in otherdevs:
while len(basedevs[idx]) > partdev:
idx += 1
for dev in basedevs[idx:]:
if re.match('%s(\\d+|p\\d+)$' % dev, partdev):
if not self._partitionTree.has_key(dev):
self._partitionTree[dev] = []
self._partitionTree[dev].append(partdev)
self._mapDevType[partdev] = 'part'
|
initDevClasses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._devClassTree = {}\n self._partitionTree = {}\n self._mapDevType = {}\n basedevs = []\n otherdevs = []\n if self._mapMajorDevclass is None:\n self._initBlockMajorMap()\n for dev in self._diskStats:\n stats = self._diskStats[dev]\n devclass = self._mapMajorDevclass.get(stats['major'])\n if devclass is not None:\n devdir = os.path.join(sysfsBlockdevDir, dev)\n if os.path.isdir(devdir):\n if not self._devClassTree.has_key(devclass):\n self._devClassTree[devclass] = []\n self._devClassTree[devclass].append(dev)\n self._mapDevType[dev] = devclass\n basedevs.append(dev)\n else:\n otherdevs.append(dev)\n basedevs.sort(key=len, reverse=True)\n otherdevs.sort(key=len, reverse=True)\n idx = 0\n for partdev in otherdevs:\n while len(basedevs[idx]) > partdev:\n idx += 1\n for dev in basedevs[idx:]:\n if re.match('%s(\\\\d+|p\\\\d+)$' % dev, partdev):\n if not self._partitionTree.has_key(dev):\n self._partitionTree[dev] = []\n self._partitionTree[dev].append(partdev)\n self._mapDevType[partdev] = 'part'\n",
"role": "user"
},
{
"content": "initDevClasses",
"role": "assistant"
}
] |
def x(self, dev):
if self._devClassTree is None:
self._initDevClasses()
return self._mapDevType.get(dev)
|
getDevType
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dev):\n if self._devClassTree is None:\n self._initDevClasses()\n return self._mapDevType.get(dev)\n",
"role": "user"
},
{
"content": "getDevType",
"role": "assistant"
}
] |
def x(self):
if self._partList is None:
self._partList = []
for disk, parts in self.getPartitionDict().iteritems():
for part in parts:
self._partList.append((disk, part))
return self._partList
|
getPartitionList
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._partList is None:\n self._partList = []\n for disk, parts in self.getPartitionDict().iteritems():\n for part in parts:\n self._partList.append((disk, part))\n return self._partList\n",
"role": "user"
},
{
"content": "getPartitionList",
"role": "assistant"
}
] |
def x(self, dev):
if self._swapList is None:
self._initSwapInfo()
if dev in self._swapList:
return self.getDevStats(dev)
else:
return None
|
getSwapStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dev):\n if self._swapList is None:\n self._initSwapInfo()\n if dev in self._swapList:\n return self.getDevStats(dev)\n else:\n return None\n",
"role": "user"
},
{
"content": "getSwapStats",
"role": "assistant"
}
] |
def x(self, *args):
if not len(args) in (1, 2):
raise TypeError(
'The getLVstats must be called with either one or two arguments.')
if self._vgTree is None:
self._initDMinfo()
if len(args) == 1:
dmdev = self._mapLVname2dm.get(args[0])
else:
dmdev = self._mapLVtuple2dm.get(args)
if dmdev is not None:
return self.getDevStats(dmdev)
else:
return None
|
getLVstats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args):\n if not len(args) in (1, 2):\n raise TypeError(\n 'The getLVstats must be called with either one or two arguments.')\n if self._vgTree is None:\n self._initDMinfo()\n if len(args) == 1:\n dmdev = self._mapLVname2dm.get(args[0])\n else:\n dmdev = self._mapLVtuple2dm.get(args)\n if dmdev is not None:\n return self.getDevStats(dmdev)\n else:\n return None\n",
"role": "user"
},
{
"content": "getLVstats",
"role": "assistant"
}
] |
def x(self, fs):
if self._mapFSpathDev is None:
self._initFilesystemInfo()
return self._diskStats.get(self._mapFSpathDev.get(fs))
|
getFilesystemStats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fs):\n if self._mapFSpathDev is None:\n self._initFilesystemInfo()\n return self._diskStats.get(self._mapFSpathDev.get(fs))\n",
"role": "user"
},
{
"content": "getFilesystemStats",
"role": "assistant"
}
] |
def x(self):
ntpinfo = NTPinfo()
stats = ntpinfo.getHostOffset(self._remoteHost)
if stats:
graph_name = 'ntp_host_stratum_%s' % self._remoteHost
if self.hasGraph(graph_name):
self.setGraphVal(graph_name, 'stratum', stats.get('stratum'))
graph_name = 'ntp_host_stat_%s' % self._remoteHost
if self.hasGraph(graph_name):
self.setGraphVal(graph_name, 'offset', stats.get('offset'))
self.setGraphVal(graph_name, 'delay', stats.get('delay'))
|
retrieveVals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ntpinfo = NTPinfo()\n stats = ntpinfo.getHostOffset(self._remoteHost)\n if stats:\n graph_name = 'ntp_host_stratum_%s' % self._remoteHost\n if self.hasGraph(graph_name):\n self.setGraphVal(graph_name, 'stratum', stats.get('stratum'))\n graph_name = 'ntp_host_stat_%s' % self._remoteHost\n if self.hasGraph(graph_name):\n self.setGraphVal(graph_name, 'offset', stats.get('offset'))\n self.setGraphVal(graph_name, 'delay', stats.get('delay'))\n",
"role": "user"
},
{
"content": "retrieveVals",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.