source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, fo): motifs = [] p = re.compile('\\d+\\s+@\\s+\\d+\\.\\d+\\s+sd\\s+\\d+\\.\\d+\\s+(\\w+)$') line = fo.readline() while line and line.find('Color') == -1: m = p.search(line) if m: pwm_data = {} for i in range(4): vals = [x.strip() for x in fo.readline().strip().split(' ') if x] pwm_data[vals[0].upper()] = vals[1:] pwm = [] for i in range(len(pwm_data['A'])): pwm.append([float(pwm_data[x][i]) for x in ['A', 'C', 'G', 'T']]) motifs.append(Motif(pwm)) motifs[-1].id = '%s_%s' % (self.name, m.group(1)) line = fo.readline() return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n p = re.compile('\\\\d+\\\\s+@\\\\s+\\\\d+\\\\.\\\\d+\\\\s+sd\\\\s+\\\\d+\\\\.\\\\d+\\\\s+(\\\\w+)$')\n line = fo.readline()\n while line and line.find('Color') == -1:\n m = p.search(line)\n if m:\n pwm_data = {}\n for i in range(4):\n vals = [x.strip() for x in fo.readline().strip().split(' ') if\n x]\n pwm_data[vals[0].upper()] = vals[1:]\n pwm = []\n for i in range(len(pwm_data['A'])):\n pwm.append([float(pwm_data[x][i]) for x in ['A', 'C', 'G',\n 'T']])\n motifs.append(Motif(pwm))\n motifs[-1].id = '%s_%s' % (self.name, m.group(1))\n line = fo.readline()\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) tmp = NamedTemporaryFile(mode='w', dir=self.tmpdir, delete=False) shutil.copy(fastafile, tmp.name) fastafile = tmp.name current_path = os.getcwd() os.chdir(self.dir()) motifs = [] stdout = '' stderr = '' for wildcard in [0, 1, 2]: cmd = ( '%s -sample %s -background %s -directory %s -strand %s -wildcard %s' % (bin, fastafile, params['background'], self.tmpdir, params[ 'strand'], wildcard)) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) out, err = p.communicate() stdout += out.decode() stderr += err.decode() os.chdir(current_path) pwmfiles = glob.glob('{}/tmp*/result/*pwm'.format(self.tmpdir)) if len(pwmfiles) > 0: out_file = pwmfiles[0] stdout += '\nOutfile: {}'.format(out_file) my_motifs = [] if os.path.exists(out_file): my_motifs = read_motifs(out_file, fmt='pwm') for m in motifs: m.id = '{}_{}'.format(self.name, m.id) stdout += '\nTrawler: {} motifs'.format(len(motifs)) if os.path.exists(tmp.name): os.unlink(tmp.name) for motif in my_motifs: motif.id = '{}_{}_{}'.format(self.name, wildcard, motif.id) motifs += my_motifs else: stderr += '\nNo outfile found' return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n tmp = NamedTemporaryFile(mode='w', dir=self.tmpdir, delete=False)\n shutil.copy(fastafile, tmp.name)\n fastafile = tmp.name\n current_path = os.getcwd()\n os.chdir(self.dir())\n motifs = []\n stdout = ''\n stderr = ''\n for wildcard in [0, 1, 2]:\n cmd = (\n '%s -sample %s -background %s -directory %s -strand %s -wildcard %s'\n % (bin, fastafile, params['background'], self.tmpdir, params[\n 'strand'], wildcard))\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n os.chdir(current_path)\n pwmfiles = glob.glob('{}/tmp*/result/*pwm'.format(self.tmpdir))\n if len(pwmfiles) > 0:\n out_file = pwmfiles[0]\n stdout += '\\nOutfile: {}'.format(out_file)\n my_motifs = []\n if os.path.exists(out_file):\n my_motifs = read_motifs(out_file, fmt='pwm')\n for m in motifs:\n m.id = '{}_{}'.format(self.name, m.id)\n stdout += '\\nTrawler: {} motifs'.format(len(motifs))\n if os.path.exists(tmp.name):\n os.unlink(tmp.name)\n for motif in my_motifs:\n motif.id = '{}_{}_{}'.format(self.name, wildcard, motif.id)\n motifs += my_motifs\n else:\n stderr += '\\nNo outfile found'\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) organism = params['organism'] weeder_organisms = {'hg18': 'HS', 'hg19': 'HS', 'hg38': 'HS', 'mm9': 'MM', 'mm10': 'MM', 'dm3': 'DM', 'dm5': 'DM', 'dm6': 'DM', 'yeast': 'SC', 'sacCer2': 'SC', 'sacCer3': 'SC', 'TAIR10': 'AT', 'TAIR11': 'AT'} weeder_organism = weeder_organisms.get(organism, 'HS') tmp = NamedTemporaryFile(dir=self.tmpdir) name = tmp.name tmp.close() shutil.copy(fastafile, name) fastafile = name cmd = '{} -f {} -O'.format(self.cmd, fastafile, weeder_organism) if params['single']: cmd += ' -ss' stdout, stderr = '', '' p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir) out, err = p.communicate() stdout += out.decode() stderr += err.decode() motifs = [] if os.path.exists(fastafile + '.matrix.w2'): f = open(fastafile + '.matrix.w2') motifs = self.parse(f) f.close() for m in motifs: m.id = '{}_{}'.format(self.name, m.id.split('\t')[0]) for ext in ['.w2', '.matrix.w2']: if os.path.exists(fastafile + ext): os.unlink(fastafile + ext) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n organism = params['organism']\n weeder_organisms = {'hg18': 'HS', 'hg19': 'HS', 'hg38': 'HS', 'mm9':\n 'MM', 'mm10': 'MM', 'dm3': 'DM', 'dm5': 'DM', 'dm6': 'DM', 'yeast':\n 'SC', 'sacCer2': 'SC', 'sacCer3': 'SC', 'TAIR10': 'AT', 'TAIR11': 'AT'}\n weeder_organism = weeder_organisms.get(organism, 'HS')\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n name = tmp.name\n tmp.close()\n shutil.copy(fastafile, name)\n fastafile = name\n cmd = '{} -f {} -O'.format(self.cmd, fastafile, weeder_organism)\n if params['single']:\n cmd += ' -ss'\n stdout, stderr = '', ''\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(fastafile + '.matrix.w2'):\n f = open(fastafile + '.matrix.w2')\n motifs = self.parse(f)\n f.close()\n for m in motifs:\n m.id = '{}_{}'.format(self.name, m.id.split('\\t')[0])\n for ext in ['.w2', '.matrix.w2']:\n if os.path.exists(fastafile + ext):\n os.unlink(fastafile + ext)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, params=None): prm = self.default_params.copy() if params is not None: prm.update(params) if prm['background_model']: prm['background_model'] = os.path.abspath(prm['background_model']) elif prm.get('organism', None): prm['background_model'] = os.path.join(self.config.get_bg_dir(), '{}.{}.bg'.format(prm['organism'], 'MotifSampler')) else: raise Exception('No background specified for {}'.format(self.name)) prm['strand'] = 1 if prm['single']: prm['strand'] = 0 tmp = NamedTemporaryFile(dir=self.tmpdir) prm['pwmfile'] = tmp.name tmp2 = NamedTemporaryFile(dir=self.tmpdir) prm['outfile'] = tmp2.name return prm
parse_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if prm['background_model']:\n prm['background_model'] = os.path.abspath(prm['background_model'])\n elif prm.get('organism', None):\n prm['background_model'] = os.path.join(self.config.get_bg_dir(),\n '{}.{}.bg'.format(prm['organism'], 'MotifSampler'))\n else:\n raise Exception('No background specified for {}'.format(self.name))\n prm['strand'] = 1\n if prm['single']:\n prm['strand'] = 0\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n prm['pwmfile'] = tmp.name\n tmp2 = NamedTemporaryFile(dir=self.tmpdir)\n prm['outfile'] = tmp2.name\n return prm\n", "role": "user" }, { "content": "parse_params", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) cmd = '%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s' % (bin, fastafile, params['background_model'], params['pwmfile'], params['width'], params['number'], params['outfile'], params['strand']) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() motifs = [] if os.path.exists(params['outfile']): with open(params['outfile']) as f: motifs = self.parse_out(f) for motif in motifs: motif.id = '%s_%s' % (self.name, motif.id) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n cmd = '%s -f %s -b %s -m %s -w %s -n %s -o %s -s %s' % (bin, fastafile,\n params['background_model'], params['pwmfile'], params['width'],\n params['number'], params['outfile'], params['strand'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n motifs = []\n if os.path.exists(params['outfile']):\n with open(params['outfile']) as f:\n motifs = self.parse_out(f)\n for motif in motifs:\n motif.id = '%s_%s' % (self.name, motif.id)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] pwm = [] info = {} for line in fo.readlines(): if line.startswith('#'): vals = line.strip()[1:].split(' = ') if len(vals) > 1: info[vals[0]] = vals[1] elif len(line) > 1: pwm.append([float(x) for x in line.strip().split('\t')]) else: motifs.append(Motif()) motifs[-1].consensus = info['Consensus'] motifs[-1].width = info['W'] motifs[-1].id = info['ID'] motifs[-1].pwm = pwm[:] pwm = [] return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n pwm = []\n info = {}\n for line in fo.readlines():\n if line.startswith('#'):\n vals = line.strip()[1:].split(' = ')\n if len(vals) > 1:\n info[vals[0]] = vals[1]\n elif len(line) > 1:\n pwm.append([float(x) for x in line.strip().split('\\t')])\n else:\n motifs.append(Motif())\n motifs[-1].consensus = info['Consensus']\n motifs[-1].width = info['W']\n motifs[-1].id = info['ID']\n motifs[-1].pwm = pwm[:]\n pwm = []\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, fo): motifs = [] nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} pseudo = 0.0 aligns = {} for line in fo.readlines(): if line.startswith('#'): pass elif len(line) > 1: vals = line.strip().split('\t') m_id, site = [x.strip().split(' ')[1].replace('"', '') for x in vals[8].split(';') if x] if site.upper().find('N') == -1: aligns.setdefault(m_id, []).append(site) for m_id, align in aligns.items(): width = len(align[0]) pfm = [[(0) for x in range(4)] for x in range(width)] for row in align: for i in range(len(row)): pfm[i][nucs[row[i]]] += 1 total = float(len(align)) pwm = [[((x + pseudo / 4) / total + pseudo) for x in row] for row in pfm] m = Motif() m.align = align[:] m.pwm = pwm[:] m.pfm = pfm[:] m.id = m_id motifs.append(m) return motifs
parse_out
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pseudo = 0.0\n aligns = {}\n for line in fo.readlines():\n if line.startswith('#'):\n pass\n elif len(line) > 1:\n vals = line.strip().split('\\t')\n m_id, site = [x.strip().split(' ')[1].replace('\"', '') for x in\n vals[8].split(';') if x]\n if site.upper().find('N') == -1:\n aligns.setdefault(m_id, []).append(site)\n for m_id, align in aligns.items():\n width = len(align[0])\n pfm = [[(0) for x in range(4)] for x in range(width)]\n for row in align:\n for i in range(len(row)):\n pfm[i][nucs[row[i]]] += 1\n total = float(len(align))\n pwm = [[((x + pseudo / 4) / total + pseudo) for x in row] for row in\n pfm]\n m = Motif()\n m.align = align[:]\n m.pwm = pwm[:]\n m.pfm = pfm[:]\n m.id = m_id\n motifs.append(m)\n return motifs\n", "role": "user" }, { "content": "parse_out", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): default_params = {'width': 10, 'number': 10} if params is not None: default_params.update(params) new_file = os.path.join(self.tmpdir, 'mdmodule_in.fa') shutil.copy(fastafile, new_file) fastafile = new_file pwmfile = fastafile + '.out' width = default_params['width'] number = default_params['number'] current_path = os.getcwd() os.chdir(self.tmpdir) cmd = '%s -i %s -a 1 -o %s -w %s -t 100 -r %s' % (bin, fastafile, pwmfile, width, number) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() stdout = 'cmd: {}\n'.format(cmd) + stdout.decode() motifs = [] if os.path.exists(pwmfile): with open(pwmfile) as f: motifs = self.parse(f) os.chdir(current_path) for motif in motifs: motif.id = '%s_%s' % (self.name, motif.id) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n default_params = {'width': 10, 'number': 10}\n if params is not None:\n default_params.update(params)\n new_file = os.path.join(self.tmpdir, 'mdmodule_in.fa')\n shutil.copy(fastafile, new_file)\n fastafile = new_file\n pwmfile = fastafile + '.out'\n width = default_params['width']\n number = default_params['number']\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n cmd = '%s -i %s -a 1 -o %s -w %s -t 100 -r %s' % (bin, fastafile,\n pwmfile, width, number)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n stdout = 'cmd: {}\\n'.format(cmd) + stdout.decode()\n motifs = []\n if os.path.exists(pwmfile):\n with open(pwmfile) as f:\n motifs = self.parse(f)\n os.chdir(current_path)\n for motif in motifs:\n motif.id = '%s_%s' % (self.name, motif.id)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} p = re.compile( '(\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)' ) pf = re.compile('>.+\\s+[bf]\\d+\\s+(\\w+)') pwm = [] pfm = [] align = [] m_id = '' for line in fo.readlines(): if line.startswith('Motif'): if m_id: motifs.append(Motif()) motifs[-1].id = m_id motifs[-1].pwm = pwm motifs[-1].pfm = pfm motifs[-1].align = align pwm = [] pfm = [] align = [] m_id = line.split('\t')[0] else: m = p.search(line) if m: pwm.append([(float(m.group(x)) / 100) for x in [2, 3, 4, 5]]) m = pf.search(line) if m: if not pfm: pfm = [[(0) for x in range(4)] for x in range(len(m. group(1)))] for i in range(len(m.group(1))): pfm[i][nucs[m.group(1)[i]]] += 1 align.append(m.group(1)) if pwm: motifs.append(Motif()) motifs[-1].id = m_id motifs[-1].pwm = pwm motifs[-1].pfm = pfm motifs[-1].align = align return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n p = re.compile(\n '(\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)'\n )\n pf = re.compile('>.+\\\\s+[bf]\\\\d+\\\\s+(\\\\w+)')\n pwm = []\n pfm = []\n align = []\n m_id = ''\n for line in fo.readlines():\n if line.startswith('Motif'):\n if m_id:\n motifs.append(Motif())\n motifs[-1].id = m_id\n motifs[-1].pwm = pwm\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n pwm = []\n pfm = []\n align = []\n m_id = line.split('\\t')[0]\n else:\n m = p.search(line)\n if m:\n pwm.append([(float(m.group(x)) / 100) for x in [2, 3, 4, 5]])\n m = pf.search(line)\n if m:\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(len(m.\n group(1)))]\n for i in range(len(m.group(1))):\n pfm[i][nucs[m.group(1)[i]]] += 1\n align.append(m.group(1))\n if pwm:\n motifs.append(Motif())\n motifs[-1].id = m_id\n motifs[-1].pwm = pwm\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, params=None): prm = self.default_params.copy() if params is not None: prm.update(params) return prm
parse_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n return prm\n", "role": "user" }, { "content": "parse_params", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) basename = 'munk_in.fa' new_file = os.path.join(self.tmpdir, basename) out = open(new_file, 'w') f = Fasta(fastafile) for seq in f.seqs: header = len(seq) // 2 out.write('>%s\n' % header) out.write('%s\n' % seq) out.close() fastafile = new_file outfile = fastafile + '.out' current_path = os.getcwd() os.chdir(self.dir()) motifs = [] ncpus = 4 stdout = '' stderr = '' for zoops_factor in ['oops', 0.0, 0.5, 1.0]: cmd = '{} {} {} y {} m:{} 100 10 1 {} 1>{}'.format(bin, params.get( 'width', 8), params.get('width', 20), zoops_factor, fastafile, ncpus, outfile) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) std = p.communicate() stdout = stdout + std[0].decode() stderr = stderr + std[1].decode() if 'RuntimeException' in stderr: return [], stdout, stderr if os.path.exists(outfile): with open(outfile) as f: motifs += self.parse(f) os.chdir(current_path) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n basename = 'munk_in.fa'\n new_file = os.path.join(self.tmpdir, basename)\n out = open(new_file, 'w')\n f = Fasta(fastafile)\n for seq in f.seqs:\n header = len(seq) // 2\n out.write('>%s\\n' % header)\n out.write('%s\\n' % seq)\n out.close()\n fastafile = new_file\n outfile = fastafile + '.out'\n current_path = os.getcwd()\n os.chdir(self.dir())\n motifs = []\n ncpus = 4\n stdout = ''\n stderr = ''\n for zoops_factor in ['oops', 0.0, 0.5, 1.0]:\n cmd = '{} {} {} y {} m:{} 100 10 1 {} 1>{}'.format(bin, params.get(\n 'width', 8), params.get('width', 20), zoops_factor, fastafile,\n ncpus, outfile)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n std = p.communicate()\n stdout = stdout + std[0].decode()\n stderr = stderr + std[1].decode()\n if 'RuntimeException' in stderr:\n return [], stdout, stderr\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs += self.parse(f)\n os.chdir(current_path)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): line = fo.readline() if not line: return [] while not line.startswith('A|'): line = fo.readline() matrix = [] for _ in range(4): matrix.append([float(x) for x in line.strip().split('|')[1].split(' ')] ) line = fo.readline() matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))] m = Motif(matrix) m.id = 'ChIPMunk_w%s' % len(m) return [m]
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n line = fo.readline()\n if not line:\n return []\n while not line.startswith('A|'):\n line = fo.readline()\n matrix = []\n for _ in range(4):\n matrix.append([float(x) for x in line.strip().split('|')[1].split(' ')]\n )\n line = fo.readline()\n matrix = [[matrix[x][y] for x in range(4)] for y in range(len(matrix[0]))]\n m = Motif(matrix)\n m.id = 'ChIPMunk_w%s' % len(m)\n return [m]\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): default_params = {} if params is not None: default_params.update(params) width = params.get('width', 8) basename = 'posmo_in.fa' new_file = os.path.join(self.tmpdir, basename) shutil.copy(fastafile, new_file) fastafile = new_file motifs = [] current_path = os.getcwd() os.chdir(self.tmpdir) for n_ones in range(4, min(width, 11), 2): x = '1' * n_ones outfile = '%s.%s.out' % (fastafile, x) cmd = '%s 5000 %s %s 1.6 2.5 %s 200' % (bin, x, fastafile, width) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() stdout = stdout.decode() stderr = stderr.decode() context_file = fastafile.replace(basename, 'context.%s.%s.txt' % ( basename, x)) cmd = '%s %s %s simi.txt 0.88 10 2 10' % (bin.replace('posmo', 'clusterwd'), context_file, outfile) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) out, err = p.communicate() stdout += out.decode() stderr += err.decode() if os.path.exists(outfile): with open(outfile) as f: motifs += self.parse(f, width, n_ones) os.chdir(current_path) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n default_params = {}\n if params is not None:\n default_params.update(params)\n width = params.get('width', 8)\n basename = 'posmo_in.fa'\n new_file = os.path.join(self.tmpdir, basename)\n shutil.copy(fastafile, new_file)\n fastafile = new_file\n motifs = []\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n for n_ones in range(4, min(width, 11), 2):\n x = '1' * n_ones\n outfile = '%s.%s.out' % (fastafile, x)\n cmd = '%s 5000 %s %s 1.6 2.5 %s 200' % (bin, x, fastafile, width)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n stdout = stdout.decode()\n stderr = stderr.decode()\n context_file = fastafile.replace(basename, 'context.%s.%s.txt' % (\n basename, x))\n cmd = '%s %s %s simi.txt 0.88 10 2 10' % (bin.replace('posmo',\n 'clusterwd'), context_file, outfile)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs += self.parse(f, width, n_ones)\n os.chdir(current_path)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo, width, seed=None): motifs = [] lines = [fo.readline() for x in range(6)] while lines[0]: matrix = [[float(x) for x in line.strip().split('\t')] for line in lines[2:]] matrix = [[matrix[x][y] for x in range(4)] for y in range(len( matrix[0]))] m = Motif(matrix) m.trim(0.1) m.id = lines[0].strip().split(' ')[-1] motifs.append(m) lines = [fo.readline() for x in range(6)] for i, motif in enumerate(motifs): if seed: motif.id = '%s_w%s.%s_%s' % (self.name, width, seed, i + 1) else: motif.id = '%s_w%s_%s' % (self.name, width, i + 1) motif.trim(0.25) return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo, width, seed=None):\n motifs = []\n lines = [fo.readline() for x in range(6)]\n while lines[0]:\n matrix = [[float(x) for x in line.strip().split('\\t')] for line in\n lines[2:]]\n matrix = [[matrix[x][y] for x in range(4)] for y in range(len(\n matrix[0]))]\n m = Motif(matrix)\n m.trim(0.1)\n m.id = lines[0].strip().split(' ')[-1]\n motifs.append(m)\n lines = [fo.readline() for x in range(6)]\n for i, motif in enumerate(motifs):\n if seed:\n motif.id = '%s_w%s.%s_%s' % (self.name, width, seed, i + 1)\n else:\n motif.id = '%s_w%s_%s' % (self.name, width, i + 1)\n motif.trim(0.25)\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, fo): motifs = [] nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} lines = fo.readlines() for i in range(0, len(lines), 5): align = [] pwm = [] pfm = [] m_id = '' line = lines[i].strip() m_id = line[1:] number = m_id.split('_')[0][1:] if os.path.exists('%s.seq' % number): with open('%s.seq' % number) as f: for l in f: if 'x' not in l and 'n' not in l: l = l.strip().upper() align.append(l) if not pfm: pfm = [[(0) for x in range(4)] for x in range( len(l))] for p in range(len(l)): pfm[p][nucs[l[p]]] += 1 m = [l.strip().split(' ')[1].split('\t') for l in lines[i + 1:i + 5]] pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))] motifs.append(Motif(pwm)) motifs[-1].id = '{}_{}'.format(self.name, m_id) if align: motifs[-1].pfm = pfm motifs[-1].align = align return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n lines = fo.readlines()\n for i in range(0, len(lines), 5):\n align = []\n pwm = []\n pfm = []\n m_id = ''\n line = lines[i].strip()\n m_id = line[1:]\n number = m_id.split('_')[0][1:]\n if os.path.exists('%s.seq' % number):\n with open('%s.seq' % number) as f:\n for l in f:\n if 'x' not in l and 'n' not in l:\n l = l.strip().upper()\n align.append(l)\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(\n len(l))]\n for p in range(len(l)):\n pfm[p][nucs[l[p]]] += 1\n m = [l.strip().split(' ')[1].split('\\t') for l in lines[i + 1:i + 5]]\n pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))]\n motifs.append(Motif(pwm))\n motifs[-1].id = '{}_{}'.format(self.name, m_id)\n if align:\n motifs[-1].pfm = pfm\n motifs[-1].align = align\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): fname = os.path.join(self.config.get_motif_dir(), 'JASPAR2010_vertebrate.pwm') motifs = read_motifs(fname, fmt='pwm') for motif in motifs: motif.id = 'JASPAR_%s' % motif.id return motifs, '', ''
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n fname = os.path.join(self.config.get_motif_dir(),\n 'JASPAR2010_vertebrate.pwm')\n motifs = read_motifs(fname, fmt='pwm')\n for motif in motifs:\n motif.id = 'JASPAR_%s' % motif.id\n return motifs, '', ''\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): default_params = {'width': 10, 'single': False, 'number': 10} if params is not None: default_params.update(params) tmp = NamedTemporaryFile(dir=self.tmpdir) tmpname = tmp.name strand = '-revcomp' width = default_params['width'] number = default_params['number'] cmd = [bin, fastafile, '-text', '-dna', '-nostatus', '-mod', 'zoops', '-nmotifs', '%s' % number, '-w', '%s' % width, '-maxsize', '10000000'] if not default_params['single']: cmd.append(strand) p = Popen(cmd, bufsize=1, stderr=PIPE, stdout=PIPE) stdout, stderr = p.communicate() motifs = [] motifs = self.parse(io.StringIO(stdout.decode())) tmp.close() return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n default_params = {'width': 10, 'single': False, 'number': 10}\n if params is not None:\n default_params.update(params)\n tmp = NamedTemporaryFile(dir=self.tmpdir)\n tmpname = tmp.name\n strand = '-revcomp'\n width = default_params['width']\n number = default_params['number']\n cmd = [bin, fastafile, '-text', '-dna', '-nostatus', '-mod', 'zoops',\n '-nmotifs', '%s' % number, '-w', '%s' % width, '-maxsize', '10000000']\n if not default_params['single']:\n cmd.append(strand)\n p = Popen(cmd, bufsize=1, stderr=PIPE, stdout=PIPE)\n stdout, stderr = p.communicate()\n motifs = []\n motifs = self.parse(io.StringIO(stdout.decode()))\n tmp.close()\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} p = re.compile( 'MOTIF.+MEME-(\\d+)\\s*width\\s*=\\s*(\\d+)\\s+sites\\s*=\\s*(\\d+)') pa = re.compile('\\)\\s+([A-Z]+)') line = fo.readline() while line: m = p.search(line) align = [] pfm = None if m: id = '%s_%s_w%s' % (self.name, m.group(1), m.group(2)) while not line.startswith('//'): ma = pa.search(line) if ma: l = ma.group(1) align.append(l) if not pfm: pfm = [[(0) for x in range(4)] for x in range(len(l))] for pos in range(len(l)): if l[pos] in nucs: pfm[pos][nucs[l[pos]]] += 1 else: for i in range(4): pfm[pos][i] += 0.25 line = fo.readline() motifs.append(Motif(pfm[:])) motifs[-1].id = id motifs[-1].align = align[:] line = fo.readline() return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n p = re.compile(\n 'MOTIF.+MEME-(\\\\d+)\\\\s*width\\\\s*=\\\\s*(\\\\d+)\\\\s+sites\\\\s*=\\\\s*(\\\\d+)')\n pa = re.compile('\\\\)\\\\s+([A-Z]+)')\n line = fo.readline()\n while line:\n m = p.search(line)\n align = []\n pfm = None\n if m:\n id = '%s_%s_w%s' % (self.name, m.group(1), m.group(2))\n while not line.startswith('//'):\n ma = pa.search(line)\n if ma:\n l = ma.group(1)\n align.append(l)\n if not pfm:\n pfm = [[(0) for x in range(4)] for x in range(len(l))]\n for pos in range(len(l)):\n if l[pos] in nucs:\n pfm[pos][nucs[l[pos]]] += 1\n else:\n for i in range(4):\n pfm[pos][i] += 0.25\n line = fo.readline()\n motifs.append(Motif(pfm[:]))\n motifs[-1].id = id\n motifs[-1].align = align[:]\n line = fo.readline()\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(input_table, genome, scoring, pwmfile=None, ncpus=None): config = MotifConfig() if pwmfile is None: pwmfile = config.get_default_params().get('motif_db', None) if pwmfile is not None: pwmfile = os.path.join(config.get_motif_dir(), pwmfile) if pwmfile is None: raise ValueError('no pwmfile given and no default database specified') logger.info('reading table') if input_table.endswith('feather'): df = pd.read_feather(input_table) idx = df.iloc[:, 0].values else: df = pd.read_table(input_table, index_col=0, comment='#') idx = df.index regions = list(idx) s = Scanner(ncpus=ncpus) s.set_motifs(pwmfile) s.set_genome(genome) s.set_background(genome=genome) nregions = len(regions) scores = [] if scoring == 'count': logger.info('setting threshold') s.set_threshold(fpr=FPR) logger.info('creating count table') for row in s.count(regions): scores.append(row) logger.info('done') else: s.set_threshold(threshold=0.0) logger.info('creating score table') for row in s.best_score(regions, normalize=True): scores.append(row) logger.info('done') motif_names = [m.id for m in read_motifs(pwmfile)] logger.info('creating dataframe') return pd.DataFrame(scores, index=idx, columns=motif_names)
scan_to_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_table, genome, scoring, pwmfile=None, ncpus=None):\n config = MotifConfig()\n if pwmfile is None:\n pwmfile = config.get_default_params().get('motif_db', None)\n if pwmfile is not None:\n pwmfile = os.path.join(config.get_motif_dir(), pwmfile)\n if pwmfile is None:\n raise ValueError('no pwmfile given and no default database specified')\n logger.info('reading table')\n if input_table.endswith('feather'):\n df = pd.read_feather(input_table)\n idx = df.iloc[:, 0].values\n else:\n df = pd.read_table(input_table, index_col=0, comment='#')\n idx = df.index\n regions = list(idx)\n s = Scanner(ncpus=ncpus)\n s.set_motifs(pwmfile)\n s.set_genome(genome)\n s.set_background(genome=genome)\n nregions = len(regions)\n scores = []\n if scoring == 'count':\n logger.info('setting threshold')\n s.set_threshold(fpr=FPR)\n logger.info('creating count table')\n for row in s.count(regions):\n scores.append(row)\n logger.info('done')\n else:\n s.set_threshold(threshold=0.0)\n logger.info('creating score table')\n for row in s.best_score(regions, normalize=True):\n scores.append(row)\n logger.info('done')\n motif_names = [m.id for m in read_motifs(pwmfile)]\n logger.info('creating dataframe')\n return pd.DataFrame(scores, index=idx, columns=motif_names)\n", "role": "user" }, { "content": "scan_to_table", "role": "assistant" } ]
def x(infile, genome, outdir, pwmfile=None, plot=True, cluster=False, score_table=None, count_table=None, methods=None, ncpus=None): logger.info('Starting maelstrom') if infile.endswith('feather'): df = pd.read_feather(infile) df = df.set_index(df.columns[0]) else: df = pd.read_table(infile, index_col=0, comment='#') if df.index.duplicated(keep=False).any(): raise ValueError( 'Input file contains duplicate regions! Please remove them.') if not os.path.exists(outdir): os.mkdir(outdir) if methods is None: methods = Moap.list_predictors() methods = [m.lower() for m in methods] shutil.copyfile(infile, os.path.join(outdir, 'input.table.txt')) pwmfile = pwmfile_location(pwmfile) if pwmfile: shutil.copy2(pwmfile, outdir) mapfile = re.sub('.p[fw]m$', '.motif2factors.txt', pwmfile) if os.path.exists(mapfile): shutil.copy2(mapfile, outdir) if not count_table: count_table = os.path.join(outdir, 'motif.count.txt.gz') if not os.path.exists(count_table): logger.info('Motif scanning (counts)') counts = scan_to_table(infile, genome, 'count', pwmfile=pwmfile, ncpus=ncpus) counts.to_csv(count_table, sep='\t', compression='gzip') else: logger.info('Counts, using: %s', count_table) if not score_table: score_table = os.path.join(outdir, 'motif.score.txt.gz') if not os.path.exists(score_table): logger.info('Motif scanning (scores)') scores = scan_to_table(infile, genome, 'score', pwmfile=pwmfile, ncpus=ncpus) scores.to_csv(score_table, sep='\t', float_format='%.3f', compression='gzip') else: logger.info('Scores, using: %s', score_table) if cluster: cluster = False for method in methods: m = Moap.create(method, ncpus=ncpus) if m.ptype == 'classification': cluster = True break if not cluster: logger.info('Skipping clustering, no classification methods') exps = [] clusterfile = infile if df.shape[1] != 1: for method in Moap.list_regression_predictors(): if method in methods: m = Moap.create(method, ncpus=ncpus) exps.append([method, m.pref_table, infile]) logger.debug('Adding %s', method) if cluster: clusterfile = os.path.join(outdir, os.path.basename(infile) + '.cluster.txt') df[:] = scale(df, axis=0) names = df.columns df_changed = pd.DataFrame(index=df.index) df_changed['cluster'] = np.nan for name in names: df_changed.loc[df[name] - df.loc[:, df.columns != name].max (1) > 0.5, 'cluster'] = name df_changed.dropna().to_csv(clusterfile, sep='\t') if df.shape[1] == 1 or cluster: for method in Moap.list_classification_predictors(): if method in methods: m = Moap.create(method, ncpus=ncpus) exps.append([method, m.pref_table, clusterfile]) if len(exps) == 0: logger.error('No method to run.') sys.exit(1) for method, scoring, fname in exps: try: if scoring == 'count' and count_table: moap_with_table(fname, count_table, outdir, method, scoring, ncpus=ncpus) elif scoring == 'score' and score_table: moap_with_table(fname, score_table, outdir, method, scoring, ncpus=ncpus) else: moap_with_bg(fname, genome, outdir, method, scoring, pwmfile=pwmfile, ncpus=ncpus) except Exception as e: logger.warn('Method %s with scoring %s failed', method, scoring) logger.warn(e) logger.warn('Skipping') raise dfs = {} for method, scoring, fname in exps: t = '{}.{}'.format(method, scoring) fname = os.path.join(outdir, 'activity.{}.{}.out.txt'.format(method, scoring)) try: dfs[t] = pd.read_table(fname, index_col=0, comment='#') except: logging.warn('Activity file for {} not found!\n'.format(t)) if len(methods) > 1: logger.info('Rank aggregation') df_p = df_rank_aggregation(df, dfs, exps) df_p.to_csv(os.path.join(outdir, 'final.out.csv'), sep='\t') if df.shape[1] == 1: mcount = df.join(pd.read_table(count_table, index_col=0, comment='#')) m_group = mcount.groupby(df.columns[0]) freq = m_group.sum() / m_group.count() freq.to_csv(os.path.join(outdir, 'motif.freq.txt'), sep='\t') if plot and len(methods) > 1: logger.info('html report') maelstrom_html_report(outdir, os.path.join(outdir, 'final.out.csv'), pwmfile) logger.info(os.path.join(outdir, 'gimme.maelstrom.report.html'))
run_maelstrom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, genome, outdir, pwmfile=None, plot=True, cluster=False,\n score_table=None, count_table=None, methods=None, ncpus=None):\n logger.info('Starting maelstrom')\n if infile.endswith('feather'):\n df = pd.read_feather(infile)\n df = df.set_index(df.columns[0])\n else:\n df = pd.read_table(infile, index_col=0, comment='#')\n if df.index.duplicated(keep=False).any():\n raise ValueError(\n 'Input file contains duplicate regions! Please remove them.')\n if not os.path.exists(outdir):\n os.mkdir(outdir)\n if methods is None:\n methods = Moap.list_predictors()\n methods = [m.lower() for m in methods]\n shutil.copyfile(infile, os.path.join(outdir, 'input.table.txt'))\n pwmfile = pwmfile_location(pwmfile)\n if pwmfile:\n shutil.copy2(pwmfile, outdir)\n mapfile = re.sub('.p[fw]m$', '.motif2factors.txt', pwmfile)\n if os.path.exists(mapfile):\n shutil.copy2(mapfile, outdir)\n if not count_table:\n count_table = os.path.join(outdir, 'motif.count.txt.gz')\n if not os.path.exists(count_table):\n logger.info('Motif scanning (counts)')\n counts = scan_to_table(infile, genome, 'count', pwmfile=pwmfile,\n ncpus=ncpus)\n counts.to_csv(count_table, sep='\\t', compression='gzip')\n else:\n logger.info('Counts, using: %s', count_table)\n if not score_table:\n score_table = os.path.join(outdir, 'motif.score.txt.gz')\n if not os.path.exists(score_table):\n logger.info('Motif scanning (scores)')\n scores = scan_to_table(infile, genome, 'score', pwmfile=pwmfile,\n ncpus=ncpus)\n scores.to_csv(score_table, sep='\\t', float_format='%.3f',\n compression='gzip')\n else:\n logger.info('Scores, using: %s', score_table)\n if cluster:\n cluster = False\n for method in methods:\n m = Moap.create(method, ncpus=ncpus)\n if m.ptype == 'classification':\n cluster = True\n break\n if not cluster:\n logger.info('Skipping clustering, no classification methods')\n exps = []\n clusterfile = infile\n if df.shape[1] != 1:\n for method in Moap.list_regression_predictors():\n if method in methods:\n m = Moap.create(method, ncpus=ncpus)\n exps.append([method, m.pref_table, infile])\n logger.debug('Adding %s', method)\n if cluster:\n clusterfile = os.path.join(outdir, os.path.basename(infile) +\n '.cluster.txt')\n df[:] = scale(df, axis=0)\n names = df.columns\n df_changed = pd.DataFrame(index=df.index)\n df_changed['cluster'] = np.nan\n for name in names:\n df_changed.loc[df[name] - df.loc[:, df.columns != name].max\n (1) > 0.5, 'cluster'] = name\n df_changed.dropna().to_csv(clusterfile, sep='\\t')\n if df.shape[1] == 1 or cluster:\n for method in Moap.list_classification_predictors():\n if method in methods:\n m = Moap.create(method, ncpus=ncpus)\n exps.append([method, m.pref_table, clusterfile])\n if len(exps) == 0:\n logger.error('No method to run.')\n sys.exit(1)\n for method, scoring, fname in exps:\n try:\n if scoring == 'count' and count_table:\n moap_with_table(fname, count_table, outdir, method, scoring,\n ncpus=ncpus)\n elif scoring == 'score' and score_table:\n moap_with_table(fname, score_table, outdir, method, scoring,\n ncpus=ncpus)\n else:\n moap_with_bg(fname, genome, outdir, method, scoring,\n pwmfile=pwmfile, ncpus=ncpus)\n except Exception as e:\n logger.warn('Method %s with scoring %s failed', method, scoring)\n logger.warn(e)\n logger.warn('Skipping')\n raise\n dfs = {}\n for method, scoring, fname in exps:\n t = '{}.{}'.format(method, scoring)\n fname = os.path.join(outdir, 'activity.{}.{}.out.txt'.format(method,\n scoring))\n try:\n dfs[t] = pd.read_table(fname, index_col=0, comment='#')\n except:\n logging.warn('Activity file for {} not found!\\n'.format(t))\n if len(methods) > 1:\n logger.info('Rank aggregation')\n df_p = df_rank_aggregation(df, dfs, exps)\n df_p.to_csv(os.path.join(outdir, 'final.out.csv'), sep='\\t')\n if df.shape[1] == 1:\n mcount = df.join(pd.read_table(count_table, index_col=0, comment='#'))\n m_group = mcount.groupby(df.columns[0])\n freq = m_group.sum() / m_group.count()\n freq.to_csv(os.path.join(outdir, 'motif.freq.txt'), sep='\\t')\n if plot and len(methods) > 1:\n logger.info('html report')\n maelstrom_html_report(outdir, os.path.join(outdir, 'final.out.csv'),\n pwmfile)\n logger.info(os.path.join(outdir, 'gimme.maelstrom.report.html'))\n", "role": "user" }, { "content": "run_maelstrom", "role": "assistant" } ]
def x(self, kind='final', min_freq=0.01, threshold=2, name=True, max_len=50, aspect=1, **kwargs): filt = np.any(np.abs(self.result) >= threshold, 1) & np.any(np.abs(self .freq.T) >= min_freq, 1) idx = self.result[filt].index cmap = 'RdBu_r' if kind == 'final': data = self.result elif kind == 'freq': data = self.freq.T cmap = 'Reds' elif kind in self.activity: data = self.activity[dtype] if kind in ['hypergeom.count', 'mwu.score']: cmap = 'Reds' else: raise ValueError('Unknown dtype') m = data.loc[idx] if name: m['factors'] = [join_max(self.motifs[n].factors, max_len, ',', suffix=',(...)') for n in m.index] m = m.set_index('factors') h, w = m.shape cg = sns.clustermap(m, cmap=cmap, col_cluster=False, figsize=(2 + w * 0.5 * aspect, 0.5 * h), linewidths=1, **kwargs) cg.ax_col_dendrogram.set_visible(False) plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0) return cg
plot_heatmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kind='final', min_freq=0.01, threshold=2, name=True, max_len=50,\n aspect=1, **kwargs):\n filt = np.any(np.abs(self.result) >= threshold, 1) & np.any(np.abs(self\n .freq.T) >= min_freq, 1)\n idx = self.result[filt].index\n cmap = 'RdBu_r'\n if kind == 'final':\n data = self.result\n elif kind == 'freq':\n data = self.freq.T\n cmap = 'Reds'\n elif kind in self.activity:\n data = self.activity[dtype]\n if kind in ['hypergeom.count', 'mwu.score']:\n cmap = 'Reds'\n else:\n raise ValueError('Unknown dtype')\n m = data.loc[idx]\n if name:\n m['factors'] = [join_max(self.motifs[n].factors, max_len, ',',\n suffix=',(...)') for n in m.index]\n m = m.set_index('factors')\n h, w = m.shape\n cg = sns.clustermap(m, cmap=cmap, col_cluster=False, figsize=(2 + w * \n 0.5 * aspect, 0.5 * h), linewidths=1, **kwargs)\n cg.ax_col_dendrogram.set_visible(False)\n plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)\n return cg\n", "role": "user" }, { "content": "plot_heatmap", "role": "assistant" } ]
def x(self, motifs, name=True, max_len=50): if self.input.shape[1] != 1: raise ValueError("Can't make a categorical plot with real-valued data") if type('') == type(motifs): motifs = [motifs] plot_motifs = [] for motif in motifs: if motif in self.motifs: plot_motifs.append(motif) else: for m in self.motifs.values(): if motif in m.factors: plot_motifs.append(m.id) data = self.scores[plot_motifs] data[:] = data.scale(data, axix=0) if name: data = data.T data['factors'] = [join_max(self.motifs[n].factors, max_len, ',', suffix=',(...)') for n in plot_motifs] data = data.set_index('factors').T data = pd.melt(self.input.join(data), id_vars=['cluster']) data.columns = ['cluster', 'motif', 'z-score'] g = sns.factorplot(data=data, y='motif', x='z-score', hue='cluster', kind='box', aspect=2) return g
plot_scores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, motifs, name=True, max_len=50):\n if self.input.shape[1] != 1:\n raise ValueError(\"Can't make a categorical plot with real-valued data\")\n if type('') == type(motifs):\n motifs = [motifs]\n plot_motifs = []\n for motif in motifs:\n if motif in self.motifs:\n plot_motifs.append(motif)\n else:\n for m in self.motifs.values():\n if motif in m.factors:\n plot_motifs.append(m.id)\n data = self.scores[plot_motifs]\n data[:] = data.scale(data, axix=0)\n if name:\n data = data.T\n data['factors'] = [join_max(self.motifs[n].factors, max_len, ',',\n suffix=',(...)') for n in plot_motifs]\n data = data.set_index('factors').T\n data = pd.melt(self.input.join(data), id_vars=['cluster'])\n data.columns = ['cluster', 'motif', 'z-score']\n g = sns.factorplot(data=data, y='motif', x='z-score', hue='cluster',\n kind='box', aspect=2)\n return g\n", "role": "user" }, { "content": "plot_scores", "role": "assistant" } ]
def x(package, url_pattern=URL_PATTERN): req = requests.get(url_pattern.format(package=package)) version = parse('0') if req.status_code == requests.codes.ok: j = req.json() releases = j.get('releases', []) for release in releases: ver = parse(release) if not ver.is_prerelease: version = max(version, ver) return version
get_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(package, url_pattern=URL_PATTERN):\n req = requests.get(url_pattern.format(package=package))\n version = parse('0')\n if req.status_code == requests.codes.ok:\n j = req.json()\n releases = j.get('releases', [])\n for release in releases:\n ver = parse(release)\n if not ver.is_prerelease:\n version = max(version, ver)\n return version\n", "role": "user" }, { "content": "get_version", "role": "assistant" } ]
def x(parser): args = vars(parser.parse_args()).items() return {key: val for key, val in args if not isinstance(val, NotSet)}
get_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parser):\n args = vars(parser.parse_args()).items()\n return {key: val for key, val in args if not isinstance(val, NotSet)}\n", "role": "user" }, { "content": "get_args", "role": "assistant" } ]
def x(val, parsebool=False): try: return int(val) except ValueError: pass try: return float(val) except: pass if parsebool: if re.match('yes|on', str(val), re.IGNORECASE): return True elif re.match('no|off', str(val), re.IGNORECASE): return False return val
parse_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(val, parsebool=False):\n try:\n return int(val)\n except ValueError:\n pass\n try:\n return float(val)\n except:\n pass\n if parsebool:\n if re.match('yes|on', str(val), re.IGNORECASE):\n return True\n elif re.match('no|off', str(val), re.IGNORECASE):\n return False\n return val\n", "role": "user" }, { "content": "parse_value", "role": "assistant" } ]
def x(fp): response = '' oldlen = 0 newlen = 0 while True: response += fp.read(buffSize) newlen = len(response) if newlen - oldlen == 0: break else: oldlen = newlen return response
socket_read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fp):\n response = ''\n oldlen = 0\n newlen = 0\n while True:\n response += fp.read(buffSize)\n newlen = len(response)\n if newlen - oldlen == 0:\n break\n else:\n oldlen = newlen\n return response\n", "role": "user" }, { "content": "socket_read", "role": "assistant" } ]
def x(self, klist, value): keys = list(klist) if len(keys) > 0: curr_dict = self last_key = keys.pop() for key in keys: if not curr_dict.has_key(key) or not isinstance(curr_dict[key], NestedDict): curr_dict[key] = type(self)() curr_dict = curr_dict[key] curr_dict[last_key] = value
set_nested
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, klist, value):\n keys = list(klist)\n if len(keys) > 0:\n curr_dict = self\n last_key = keys.pop()\n for key in keys:\n if not curr_dict.has_key(key) or not isinstance(curr_dict[key],\n NestedDict):\n curr_dict[key] = type(self)()\n curr_dict = curr_dict[key]\n curr_dict[last_key] = value\n", "role": "user" }, { "content": "set_nested", "role": "assistant" } ]
def x(self, column, patterns, is_regex=False, ignore_case=False): if isinstance(patterns, basestring): patt_list = patterns, elif isinstance(patterns, (tuple, list)): patt_list = list(patterns) else: raise ValueError( 'The patterns parameter must either be as string or a tuple / list of strings.' ) if is_regex: if ignore_case: flags = re.IGNORECASE else: flags = 0 patt_exprs = [re.compile(pattern, flags) for pattern in patt_list] elif ignore_case: patt_exprs = [pattern.lower() for pattern in patt_list] else: patt_exprs = patt_list self._filters[column] = patt_exprs, is_regex, ignore_case
registerFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, column, patterns, is_regex=False, ignore_case=False):\n if isinstance(patterns, basestring):\n patt_list = patterns,\n elif isinstance(patterns, (tuple, list)):\n patt_list = list(patterns)\n else:\n raise ValueError(\n 'The patterns parameter must either be as string or a tuple / list of strings.'\n )\n if is_regex:\n if ignore_case:\n flags = re.IGNORECASE\n else:\n flags = 0\n patt_exprs = [re.compile(pattern, flags) for pattern in patt_list]\n elif ignore_case:\n patt_exprs = [pattern.lower() for pattern in patt_list]\n else:\n patt_exprs = patt_list\n self._filters[column] = patt_exprs, is_regex, ignore_case\n", "role": "user" }, { "content": "registerFilter", "role": "assistant" } ]
def x(self, column): if self._filters.has_key(column): del self._filters[column]
unregisterFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, column):\n if self._filters.has_key(column):\n del self._filters[column]\n", "role": "user" }, { "content": "unregisterFilter", "role": "assistant" } ]
def x(self, **kwargs): for key, patterns in kwargs.items(): if key.endswith('_regex'): col = key[:-len('_regex')] is_regex = True else: col = key is_regex = False if col.endswith('_ic'): col = col[:-len('_ic')] ignore_case = True else: ignore_case = False self.registerFilter(col, patterns, is_regex, ignore_case)
registerFilters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n for key, patterns in kwargs.items():\n if key.endswith('_regex'):\n col = key[:-len('_regex')]\n is_regex = True\n else:\n col = key\n is_regex = False\n if col.endswith('_ic'):\n col = col[:-len('_ic')]\n ignore_case = True\n else:\n ignore_case = False\n self.registerFilter(col, patterns, is_regex, ignore_case)\n", "role": "user" }, { "content": "registerFilters", "role": "assistant" } ]
def x(self, headers, table): result = [] column_idxs = {} for column in self._filters.keys(): try: column_idxs[column] = headers.index(column) except ValueError: raise ValueError('Invalid column name %s in filter.' % column) for row in table: for column, (patterns, is_regex, ignore_case) in self._filters.items(): col_idx = column_idxs[column] col_val = row[col_idx] if is_regex: for pattern in patterns: if pattern.search(col_val): break else: break else: if ignore_case: col_val = col_val.lower() if col_val in patterns: pass else: break else: result.append(row) return result
applyFilters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, headers, table):\n result = []\n column_idxs = {}\n for column in self._filters.keys():\n try:\n column_idxs[column] = headers.index(column)\n except ValueError:\n raise ValueError('Invalid column name %s in filter.' % column)\n for row in table:\n for column, (patterns, is_regex, ignore_case) in self._filters.items():\n col_idx = column_idxs[column]\n col_val = row[col_idx]\n if is_regex:\n for pattern in patterns:\n if pattern.search(col_val):\n break\n else:\n break\n else:\n if ignore_case:\n col_val = col_val.lower()\n if col_val in patterns:\n pass\n else:\n break\n else:\n result.append(row)\n return result\n", "role": "user" }, { "content": "applyFilters", "role": "assistant" } ]
def x(self, host=None, port=0, socket_file=None, timeout=socket. getdefaulttimeout()): self.socket_file = socket_file if host is not None: if sys.version_info[:2] >= (2, 6): telnetlib.Telnet.open(self, host, port, timeout) else: telnetlib.Telnet.open(self, host, port) elif socket_file is not None: self.eof = 0 self.host = host self.port = port self.timeout = timeout self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.sock.settimeout(timeout) self.sock.connect(socket_file) else: raise TypeError('Either host or socket_file argument is required.')
open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, host=None, port=0, socket_file=None, timeout=socket.\n getdefaulttimeout()):\n self.socket_file = socket_file\n if host is not None:\n if sys.version_info[:2] >= (2, 6):\n telnetlib.Telnet.open(self, host, port, timeout)\n else:\n telnetlib.Telnet.open(self, host, port)\n elif socket_file is not None:\n self.eof = 0\n self.host = host\n self.port = port\n self.timeout = timeout\n self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\n self.sock.settimeout(timeout)\n self.sock.connect(socket_file)\n else:\n raise TypeError('Either host or socket_file argument is required.')\n", "role": "user" }, { "content": "open", "role": "assistant" } ]
def x(egg, subjgroup=None, listgroup=None, subjname='Subject', listname= 'List', analysis=None, position=0, permute=False, n_perms=1000, parallel=False, match='exact', distance='euclidean', features=None, ts=None ): if analysis is None: raise ValueError('You must pass an analysis type.') if analysis not in analyses.keys(): raise ValueError( 'Analysis not recognized. Choose one of the following: accuracy, spc, pfr, lag-crp, fingerprint, temporal' ) from ..egg import FriedEgg if hasattr(egg, 'subjgroup'): if egg.subjgroup is not None: subjgroup = egg.subjgroup if hasattr(egg, 'subjname'): if egg.subjname is not None: subjname = egg.subjname if hasattr(egg, 'listgroup'): if egg.listgroup is not None: listgroup = egg.listgroup if hasattr(egg, 'listname'): if egg.listname is not None: listname = egg.listname if features is None: features = egg.feature_names opts = {'subjgroup': subjgroup, 'listgroup': listgroup, 'subjname': subjname, 'parallel': parallel, 'match': match, 'distance': distance, 'features': features, 'analysis_type': analysis, 'analysis': analyses[analysis]} if analysis is 'pfr': opts.update({'position': 0}) elif analysis is 'pnr': opts.update({'position': position}) if analysis is 'temporal': opts.update({'features': ['temporal']}) if analysis in ['temporal', 'fingerprint']: opts.update({'permute': permute, 'n_perms': n_perms}) if analysis is 'lagcrp': opts.update({'ts': ts}) return FriedEgg(data=_analyze_chunk(egg, **opts), analysis=analysis, list_length=egg.list_length, n_lists=egg.n_lists, n_subjects=egg. n_subjects, position=position)
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(egg, subjgroup=None, listgroup=None, subjname='Subject', listname=\n 'List', analysis=None, position=0, permute=False, n_perms=1000,\n parallel=False, match='exact', distance='euclidean', features=None, ts=None\n ):\n if analysis is None:\n raise ValueError('You must pass an analysis type.')\n if analysis not in analyses.keys():\n raise ValueError(\n 'Analysis not recognized. Choose one of the following: accuracy, spc, pfr, lag-crp, fingerprint, temporal'\n )\n from ..egg import FriedEgg\n if hasattr(egg, 'subjgroup'):\n if egg.subjgroup is not None:\n subjgroup = egg.subjgroup\n if hasattr(egg, 'subjname'):\n if egg.subjname is not None:\n subjname = egg.subjname\n if hasattr(egg, 'listgroup'):\n if egg.listgroup is not None:\n listgroup = egg.listgroup\n if hasattr(egg, 'listname'):\n if egg.listname is not None:\n listname = egg.listname\n if features is None:\n features = egg.feature_names\n opts = {'subjgroup': subjgroup, 'listgroup': listgroup, 'subjname':\n subjname, 'parallel': parallel, 'match': match, 'distance':\n distance, 'features': features, 'analysis_type': analysis,\n 'analysis': analyses[analysis]}\n if analysis is 'pfr':\n opts.update({'position': 0})\n elif analysis is 'pnr':\n opts.update({'position': position})\n if analysis is 'temporal':\n opts.update({'features': ['temporal']})\n if analysis in ['temporal', 'fingerprint']:\n opts.update({'permute': permute, 'n_perms': n_perms})\n if analysis is 'lagcrp':\n opts.update({'ts': ts})\n return FriedEgg(data=_analyze_chunk(egg, **opts), analysis=analysis,\n list_length=egg.list_length, n_lists=egg.n_lists, n_subjects=egg.\n n_subjects, position=position)\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(data, subjgroup=None, subjname='Subject', listgroup=None, listname= 'List', analysis=None, analysis_type=None, pass_features=False, features=None, parallel=False, **kwargs): def x(c): subj, lst = c subjects = [s for s in subjdict[subj]] lists = [l for l in listdict[subj][lst]] s = data.crack(lists=lists, subjects=subjects) index = pd.MultiIndex.from_arrays([[subj], [lst]], names=[subjname, listname]) opts = dict() if analysis_type is 'fingerprint': opts.update({'columns': features}) elif analysis_type is 'lagcrp': if kwargs['ts']: opts.update({'columns': range(-kwargs['ts'], kwargs['ts'] + 1)} ) else: opts.update({'columns': range(-data.list_length, data. list_length + 1)}) return pd.DataFrame([analysis(s, features=features, **kwargs)], index=index, **opts) subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values listgroup = listgroup if listgroup else data.pres.index.levels[1].values subjdict = {subj: data.pres.index.levels[0].values[subj == np.array( subjgroup)] for subj in set(subjgroup)} if all(isinstance(el, list) for el in listgroup): listdict = [{lst: data.pres.index.levels[1].values[lst == np.array( listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in listgroup] else: listdict = [{lst: data.pres.index.levels[1].values[lst == np.array( listgroup)] for lst in set(listgroup)} for subj in subjdict] chunks = [(subj, lst) for subj in subjdict for lst in listdict[0]] if parallel: import multiprocessing from pathos.multiprocessing import ProcessingPool as Pool p = Pool(multiprocessing.cpu_count()) res = p.map(_analysis, chunks) else: res = [_analysis(c) for c in chunks] return pd.concat(res)
analyze_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, subjgroup=None, subjname='Subject', listgroup=None, listname=\n 'List', analysis=None, analysis_type=None, pass_features=False,\n features=None, parallel=False, **kwargs):\n\n def x(c):\n subj, lst = c\n subjects = [s for s in subjdict[subj]]\n lists = [l for l in listdict[subj][lst]]\n s = data.crack(lists=lists, subjects=subjects)\n index = pd.MultiIndex.from_arrays([[subj], [lst]], names=[subjname,\n listname])\n opts = dict()\n if analysis_type is 'fingerprint':\n opts.update({'columns': features})\n elif analysis_type is 'lagcrp':\n if kwargs['ts']:\n opts.update({'columns': range(-kwargs['ts'], kwargs['ts'] + 1)}\n )\n else:\n opts.update({'columns': range(-data.list_length, data.\n list_length + 1)})\n return pd.DataFrame([analysis(s, features=features, **kwargs)],\n index=index, **opts)\n subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values\n listgroup = listgroup if listgroup else data.pres.index.levels[1].values\n subjdict = {subj: data.pres.index.levels[0].values[subj == np.array(\n subjgroup)] for subj in set(subjgroup)}\n if all(isinstance(el, list) for el in listgroup):\n listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(\n listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in\n listgroup]\n else:\n listdict = [{lst: data.pres.index.levels[1].values[lst == np.array(\n listgroup)] for lst in set(listgroup)} for subj in subjdict]\n chunks = [(subj, lst) for subj in subjdict for lst in listdict[0]]\n if parallel:\n import multiprocessing\n from pathos.multiprocessing import ProcessingPool as Pool\n p = Pool(multiprocessing.cpu_count())\n res = p.map(_analysis, chunks)\n else:\n res = [_analysis(c) for c in chunks]\n return pd.concat(res)\n", "role": "user" }, { "content": "analyze_chunk", "role": "assistant" } ]
def x(self): if self.hasGraph('tomcat_memory'): stats = self._tomcatInfo.getMemoryStats() self.setGraphVal('tomcat_memory', 'used', stats['total'] - stats[ 'free']) self.setGraphVal('tomcat_memory', 'free', stats['free']) self.setGraphVal('tomcat_memory', 'max', stats['max']) for port, stats in self._tomcatInfo.getConnectorStats().iteritems(): thrstats = stats['threadInfo'] reqstats = stats['requestInfo'] if self.portIncluded(port): name = 'tomcat_threads_%d' % port if self.hasGraph(name): self.setGraphVal(name, 'busy', thrstats['currentThreadsBusy']) self.setGraphVal(name, 'idle', thrstats[ 'currentThreadCount'] - thrstats['currentThreadsBusy']) self.setGraphVal(name, 'max', thrstats['maxThreads']) name = 'tomcat_access_%d' % port if self.hasGraph(name): self.setGraphVal(name, 'reqs', reqstats['requestCount']) name = 'tomcat_error_%d' % port if self.hasGraph(name): self.setGraphVal(name, 'errors', reqstats['errorCount']) name = 'tomcat_traffic_%d' % port if self.hasGraph(name): self.setGraphVal(name, 'rx', reqstats['bytesReceived']) self.setGraphVal(name, 'tx', reqstats['bytesSent'])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.hasGraph('tomcat_memory'):\n stats = self._tomcatInfo.getMemoryStats()\n self.setGraphVal('tomcat_memory', 'used', stats['total'] - stats[\n 'free'])\n self.setGraphVal('tomcat_memory', 'free', stats['free'])\n self.setGraphVal('tomcat_memory', 'max', stats['max'])\n for port, stats in self._tomcatInfo.getConnectorStats().iteritems():\n thrstats = stats['threadInfo']\n reqstats = stats['requestInfo']\n if self.portIncluded(port):\n name = 'tomcat_threads_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'busy', thrstats['currentThreadsBusy'])\n self.setGraphVal(name, 'idle', thrstats[\n 'currentThreadCount'] - thrstats['currentThreadsBusy'])\n self.setGraphVal(name, 'max', thrstats['maxThreads'])\n name = 'tomcat_access_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'reqs', reqstats['requestCount'])\n name = 'tomcat_error_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'errors', reqstats['errorCount'])\n name = 'tomcat_traffic_%d' % port\n if self.hasGraph(name):\n self.setGraphVal(name, 'rx', reqstats['bytesReceived'])\n self.setGraphVal(name, 'tx', reqstats['bytesSent'])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(data, maxt=None): data = np.atleast_1d(data) assert len(np.shape(data) ) == 1, 'The autocorrelation function can only by computed ' + 'on a 1D time series.' if maxt is None: maxt = len(data) result = np.zeros(maxt, dtype=float) _acor.function(np.array(data, dtype=float), result) return result / result[0]
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, maxt=None):\n data = np.atleast_1d(data)\n assert len(np.shape(data)\n ) == 1, 'The autocorrelation function can only by computed ' + 'on a 1D time series.'\n if maxt is None:\n maxt = len(data)\n result = np.zeros(maxt, dtype=float)\n _acor.function(np.array(data, dtype=float), result)\n return result / result[0]\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self): nginxInfo = NginxInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) stats = nginxInfo.getServerStats() if stats: if self.hasGraph('nginx_activeconn'): self.setGraphVal('nginx_activeconn', 'proc', stats['writing']) self.setGraphVal('nginx_activeconn', 'read', stats['reading']) self.setGraphVal('nginx_activeconn', 'wait', stats['waiting']) self.setGraphVal('nginx_activeconn', 'total', stats['connections']) if self.hasGraph('nginx_connections'): self.setGraphVal('nginx_connections', 'handled', stats['handled']) self.setGraphVal('nginx_connections', 'nothandled', stats[ 'accepts'] - stats['handled']) if self.hasGraph('nginx_requests'): self.setGraphVal('nginx_requests', 'requests', stats['requests']) if self.hasGraph('nginx_requestsperconn'): curr_stats = stats['handled'], stats['requests'] hist_stats = self.restoreState() if hist_stats: prev_stats = hist_stats[0] else: hist_stats = [] prev_stats = 0, 0 conns = max(curr_stats[0] - prev_stats[0], 0) reqs = max(curr_stats[1] - prev_stats[1], 0) if conns > 0: self.setGraphVal('nginx_requestsperconn', 'requests', float (reqs) / float(conns)) else: self.setGraphVal('nginx_requestsperconn', 'requests', 0) hist_stats.append(curr_stats) self.saveState(hist_stats[-self._numSamples:])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nginxInfo = NginxInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = nginxInfo.getServerStats()\n if stats:\n if self.hasGraph('nginx_activeconn'):\n self.setGraphVal('nginx_activeconn', 'proc', stats['writing'])\n self.setGraphVal('nginx_activeconn', 'read', stats['reading'])\n self.setGraphVal('nginx_activeconn', 'wait', stats['waiting'])\n self.setGraphVal('nginx_activeconn', 'total', stats['connections'])\n if self.hasGraph('nginx_connections'):\n self.setGraphVal('nginx_connections', 'handled', stats['handled'])\n self.setGraphVal('nginx_connections', 'nothandled', stats[\n 'accepts'] - stats['handled'])\n if self.hasGraph('nginx_requests'):\n self.setGraphVal('nginx_requests', 'requests', stats['requests'])\n if self.hasGraph('nginx_requestsperconn'):\n curr_stats = stats['handled'], stats['requests']\n hist_stats = self.restoreState()\n if hist_stats:\n prev_stats = hist_stats[0]\n else:\n hist_stats = []\n prev_stats = 0, 0\n conns = max(curr_stats[0] - prev_stats[0], 0)\n reqs = max(curr_stats[1] - prev_stats[1], 0)\n if conns > 0:\n self.setGraphVal('nginx_requestsperconn', 'requests', float\n (reqs) / float(conns))\n else:\n self.setGraphVal('nginx_requestsperconn', 'requests', 0)\n hist_stats.append(curr_stats)\n self.saveState(hist_stats[-self._numSamples:])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): nginxInfo = NginxInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) return nginxInfo is not None
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nginxInfo = NginxInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return nginxInfo is not None\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(self): url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath ) response = util.get_url(url, self._user, self._password) stats = {} for line in response.splitlines(): mobj = re.match('([\\w\\s]+):\\s+(\\w+)$', line) if mobj: stats[mobj.group(1)] = util.parse_value(mobj.group(2)) return stats
getStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath\n )\n response = util.get_url(url, self._user, self._password)\n stats = {}\n for line in response.splitlines():\n mobj = re.match('([\\\\w\\\\s]+):\\\\s+(\\\\w+)$', line)\n if mobj:\n stats[mobj.group(1)] = util.parse_value(mobj.group(2))\n return stats\n", "role": "user" }, { "content": "getStats", "role": "assistant" } ]
def x(self): apcinfo = APCinfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl, self._extras) stats = apcinfo.getAllStats() if self.hasGraph('php_apc_memory') and stats: filecache = stats['cache_sys']['mem_size'] usercache = stats['cache_user']['mem_size'] total = stats['memory']['seg_size'] * stats['memory']['num_seg'] free = stats['memory']['avail_mem'] other = total - free - filecache - usercache self.setGraphVal('php_apc_memory', 'filecache', filecache) self.setGraphVal('php_apc_memory', 'usercache', usercache) self.setGraphVal('php_apc_memory', 'other', other) self.setGraphVal('php_apc_memory', 'free', free) if self.hasGraph('php_apc_items') and stats: self.setGraphVal('php_apc_items', 'filecache', stats['cache_sys'][ 'num_entries']) self.setGraphVal('php_apc_items', 'usercache', stats['cache_user'][ 'num_entries']) if self.hasGraph('php_apc_reqs_filecache') and stats: self.setGraphVal('php_apc_reqs_filecache', 'hits', stats[ 'cache_sys']['num_hits']) self.setGraphVal('php_apc_reqs_filecache', 'misses', stats[ 'cache_sys']['num_misses']) self.setGraphVal('php_apc_reqs_filecache', 'inserts', stats[ 'cache_sys']['num_inserts']) if self.hasGraph('php_apc_reqs_usercache') and stats: self.setGraphVal('php_apc_reqs_usercache', 'hits', stats[ 'cache_user']['num_hits']) self.setGraphVal('php_apc_reqs_usercache', 'misses', stats[ 'cache_user']['num_misses']) self.setGraphVal('php_apc_reqs_usercache', 'inserts', stats[ 'cache_user']['num_inserts']) if self.hasGraph('php_apc_expunge') and stats: self.setGraphVal('php_apc_expunge', 'filecache', stats['cache_sys'] ['expunges']) self.setGraphVal('php_apc_expunge', 'usercache', stats['cache_user' ]['expunges']) if self.hasGraph('php_apc_mem_util_frag'): self.setGraphVal('php_apc_mem_util_frag', 'util', stats['memory'][ 'utilization_ratio'] * 100) self.setGraphVal('php_apc_mem_util_frag', 'frag', stats['memory'][ 'fragmentation_ratio'] * 100) if self.hasGraph('php_apc_mem_frag_count'): self.setGraphVal('php_apc_mem_frag_count', 'num', stats['memory'][ 'fragment_count']) if self.hasGraph('php_apc_mem_frag_avgsize'): self.setGraphVal('php_apc_mem_frag_avgsize', 'size', stats['memory' ]['fragment_avg_size'])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n apcinfo = APCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl, self._extras)\n stats = apcinfo.getAllStats()\n if self.hasGraph('php_apc_memory') and stats:\n filecache = stats['cache_sys']['mem_size']\n usercache = stats['cache_user']['mem_size']\n total = stats['memory']['seg_size'] * stats['memory']['num_seg']\n free = stats['memory']['avail_mem']\n other = total - free - filecache - usercache\n self.setGraphVal('php_apc_memory', 'filecache', filecache)\n self.setGraphVal('php_apc_memory', 'usercache', usercache)\n self.setGraphVal('php_apc_memory', 'other', other)\n self.setGraphVal('php_apc_memory', 'free', free)\n if self.hasGraph('php_apc_items') and stats:\n self.setGraphVal('php_apc_items', 'filecache', stats['cache_sys'][\n 'num_entries'])\n self.setGraphVal('php_apc_items', 'usercache', stats['cache_user'][\n 'num_entries'])\n if self.hasGraph('php_apc_reqs_filecache') and stats:\n self.setGraphVal('php_apc_reqs_filecache', 'hits', stats[\n 'cache_sys']['num_hits'])\n self.setGraphVal('php_apc_reqs_filecache', 'misses', stats[\n 'cache_sys']['num_misses'])\n self.setGraphVal('php_apc_reqs_filecache', 'inserts', stats[\n 'cache_sys']['num_inserts'])\n if self.hasGraph('php_apc_reqs_usercache') and stats:\n self.setGraphVal('php_apc_reqs_usercache', 'hits', stats[\n 'cache_user']['num_hits'])\n self.setGraphVal('php_apc_reqs_usercache', 'misses', stats[\n 'cache_user']['num_misses'])\n self.setGraphVal('php_apc_reqs_usercache', 'inserts', stats[\n 'cache_user']['num_inserts'])\n if self.hasGraph('php_apc_expunge') and stats:\n self.setGraphVal('php_apc_expunge', 'filecache', stats['cache_sys']\n ['expunges'])\n self.setGraphVal('php_apc_expunge', 'usercache', stats['cache_user'\n ]['expunges'])\n if self.hasGraph('php_apc_mem_util_frag'):\n self.setGraphVal('php_apc_mem_util_frag', 'util', stats['memory'][\n 'utilization_ratio'] * 100)\n self.setGraphVal('php_apc_mem_util_frag', 'frag', stats['memory'][\n 'fragmentation_ratio'] * 100)\n if self.hasGraph('php_apc_mem_frag_count'):\n self.setGraphVal('php_apc_mem_frag_count', 'num', stats['memory'][\n 'fragment_count'])\n if self.hasGraph('php_apc_mem_frag_avgsize'):\n self.setGraphVal('php_apc_mem_frag_avgsize', 'size', stats['memory'\n ]['fragment_avg_size'])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): apcinfo = APCinfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl) return apcinfo is not None
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n apcinfo = APCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n return apcinfo is not None\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(self): info_dict = {} args = [varnishstatCmd, '-1'] if self._instance is not None: args.extend(['-n', self._instance]) output = util.exec_command(args) if self._descDict is None: self._descDict = {} for line in output.splitlines(): mobj = re.match( '(\\S+)\\s+(\\d+)\\s+(\\d+\\.\\d+|\\.)\\s+(\\S.*\\S)\\s*$', line) if mobj: fname = mobj.group(1).replace('.', '_') info_dict[fname] = util.parse_value(mobj.group(2)) self._descDict[fname] = mobj.group(4) return info_dict
getStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n info_dict = {}\n args = [varnishstatCmd, '-1']\n if self._instance is not None:\n args.extend(['-n', self._instance])\n output = util.exec_command(args)\n if self._descDict is None:\n self._descDict = {}\n for line in output.splitlines():\n mobj = re.match(\n '(\\\\S+)\\\\s+(\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+|\\\\.)\\\\s+(\\\\S.*\\\\S)\\\\s*$', line)\n if mobj:\n fname = mobj.group(1).replace('.', '_')\n info_dict[fname] = util.parse_value(mobj.group(2))\n self._descDict[fname] = mobj.group(4)\n return info_dict\n", "role": "user" }, { "content": "getStats", "role": "assistant" } ]
def x(self, entry): if len(self._descDict) == 0: self.getStats() return self._descDict.get(entry)
getDesc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, entry):\n if len(self._descDict) == 0:\n self.getStats()\n return self._descDict.get(entry)\n", "role": "user" }, { "content": "getDesc", "role": "assistant" } ]
def x(self): opcinfo = OPCinfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl) stats = opcinfo.getAllStats() if self.hasGraph('php_opc_memory') and stats: mem = stats['memory_usage'] keys = 'used_memory', 'wasted_memory', 'free_memory' map(lambda k: self.setGraphVal('php_opc_memory', k, mem[k]), keys) if self.hasGraph('php_opc_opcache_statistics') and stats: st = stats['opcache_statistics'] self.setGraphVal('php_opc_opcache_statistics', 'hits', st['hits']) self.setGraphVal('php_opc_opcache_statistics', 'misses', st['misses']) if self.hasGraph('php_opc_opcache_hitrate') and stats: st = stats['opcache_statistics'] self.setGraphVal('php_opc_opcache_hitrate', 'opcache_hit_rate', st[ 'opcache_hit_rate']) if self.hasGraph('php_opc_key_status') and stats: st = stats['opcache_statistics'] wasted = st['num_cached_keys'] - st['num_cached_scripts'] free = st['max_cached_keys'] - st['num_cached_keys'] self.setGraphVal('php_opc_key_status', 'num_cached_scripts', st[ 'num_cached_scripts']) self.setGraphVal('php_opc_key_status', 'num_wasted_keys', wasted) self.setGraphVal('php_opc_key_status', 'num_free_keys', free)
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n opcinfo = OPCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n stats = opcinfo.getAllStats()\n if self.hasGraph('php_opc_memory') and stats:\n mem = stats['memory_usage']\n keys = 'used_memory', 'wasted_memory', 'free_memory'\n map(lambda k: self.setGraphVal('php_opc_memory', k, mem[k]), keys)\n if self.hasGraph('php_opc_opcache_statistics') and stats:\n st = stats['opcache_statistics']\n self.setGraphVal('php_opc_opcache_statistics', 'hits', st['hits'])\n self.setGraphVal('php_opc_opcache_statistics', 'misses', st['misses'])\n if self.hasGraph('php_opc_opcache_hitrate') and stats:\n st = stats['opcache_statistics']\n self.setGraphVal('php_opc_opcache_hitrate', 'opcache_hit_rate', st[\n 'opcache_hit_rate'])\n if self.hasGraph('php_opc_key_status') and stats:\n st = stats['opcache_statistics']\n wasted = st['num_cached_keys'] - st['num_cached_scripts']\n free = st['max_cached_keys'] - st['num_cached_keys']\n self.setGraphVal('php_opc_key_status', 'num_cached_scripts', st[\n 'num_cached_scripts'])\n self.setGraphVal('php_opc_key_status', 'num_wasted_keys', wasted)\n self.setGraphVal('php_opc_key_status', 'num_free_keys', free)\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): opcinfo = OPCinfo(self._host, self._port, self._user, self._password, self._monpath, self._ssl) return opcinfo is not None
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n opcinfo = OPCinfo(self._host, self._port, self._user, self._password,\n self._monpath, self._ssl)\n return opcinfo is not None\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(egg, permute=False, n_perms=1000, match='exact', distance='euclidean', features=None): if features is None: features = egg.dist_funcs.keys() inds = egg.pres.index.tolist() slices = [egg.crack(subjects=[i], lists=[j]) for i, j in inds] weights = _get_weights(slices, features, distdict, permute, n_perms, match, distance) return np.nanmean(weights, axis=0)
fingerprint_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(egg, permute=False, n_perms=1000, match='exact', distance='euclidean',\n features=None):\n if features is None:\n features = egg.dist_funcs.keys()\n inds = egg.pres.index.tolist()\n slices = [egg.crack(subjects=[i], lists=[j]) for i, j in inds]\n weights = _get_weights(slices, features, distdict, permute, n_perms,\n match, distance)\n return np.nanmean(weights, axis=0)\n", "role": "user" }, { "content": "fingerprint_helper", "role": "assistant" } ]
def x(pres_list, rec_list, feature_list, distances): weights = {} for feature in feature_list[0]: weights[feature] = [] if len(rec_list) <= 2: print( 'Not enough recalls to compute fingerprint, returning defaultfingerprint.. (everything is .5)' ) for feature in feature_list[0]: weights[feature] = 0.5 return [weights[key] for key in weights] past_words = [] past_idxs = [] for i in range(len(rec_list) - 1): c = rec_list[i] n = rec_list[i + 1] if (c in pres_list and n in pres_list) and (c not in past_words and n not in past_words): for feature in feature_list[0]: dists = distances[feature][pres_list.index(c), :] cdist = dists[pres_list.index(n)] dists_filt = np.array([dist for idx, dist in enumerate( dists) if idx not in past_idxs]) avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] == cdist)[0] + 1) weights[feature].append(avg_rank / len(dists_filt)) past_idxs.append(pres_list.index(c)) past_words.append(c) for feature in weights: with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) weights[feature] = np.nanmean(weights[feature]) return [weights[key] for key in weights]
compute_feature_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pres_list, rec_list, feature_list, distances):\n weights = {}\n for feature in feature_list[0]:\n weights[feature] = []\n if len(rec_list) <= 2:\n print(\n 'Not enough recalls to compute fingerprint, returning defaultfingerprint.. (everything is .5)'\n )\n for feature in feature_list[0]:\n weights[feature] = 0.5\n return [weights[key] for key in weights]\n past_words = []\n past_idxs = []\n for i in range(len(rec_list) - 1):\n c = rec_list[i]\n n = rec_list[i + 1]\n if (c in pres_list and n in pres_list) and (c not in past_words and\n n not in past_words):\n for feature in feature_list[0]:\n dists = distances[feature][pres_list.index(c), :]\n cdist = dists[pres_list.index(n)]\n dists_filt = np.array([dist for idx, dist in enumerate(\n dists) if idx not in past_idxs])\n avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==\n cdist)[0] + 1)\n weights[feature].append(avg_rank / len(dists_filt))\n past_idxs.append(pres_list.index(c))\n past_words.append(c)\n for feature in weights:\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n weights[feature] = np.nanmean(weights[feature])\n return [weights[key] for key in weights]\n", "role": "user" }, { "content": "compute_feature_weights", "role": "assistant" } ]
def x(egg, match='exact', distance='euclidean', ts=None, features=None): def x(rec, lstlen): def x(a, b): if (a > 0 and b > 0) and a != b: return True else: return False def x(rec, lstlen): arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(- lstlen, 0)) + list(range(1, lstlen + 1))) recalled = [] for trial in range(0, len(rec) - 1): a = rec[trial] b = rec[trial + 1] if check_pair(a, b ) and a not in recalled and b not in recalled: arr[b - a] += 1 recalled.append(a) return arr def x(rec, lstlen): arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(- lstlen, 0)) + list(range(1, lstlen + 1))) recalled = [] for trial in rec: if np.isnan(trial): pass else: lbound = int(1 - trial) ubound = int(lstlen - trial) chances = list(range(lbound, 0)) + list(range(1, ubound + 1)) for each in recalled: if each - trial in chances: chances.remove(each - trial) arr[chances] += 1 recalled.append(trial) return arr actual = compute_actual(rec, lstlen) possible = compute_possible(rec, lstlen) crp = [(0.0 if j == 0 else i / j) for i, j in zip(actual, possible)] crp.insert(int(len(crp) / 2), np.nan) return crp def x(distmat, ts=None): def x(s): idx = list(range(0, -s, -1)) return np.array([list(range(i, i + s)) for i in idx]) distmat = distmat[:, ~np.all(np.isnan(distmat), axis=0)].T model = lagcrp_model(distmat.shape[1]) lagcrp = np.zeros(ts * 2) for rdx in range(len(distmat) - 1): item = distmat[rdx, :] next_item = distmat[rdx + 1, :] if not np.isnan(item).any() and not np.isnan(next_item).any(): outer = np.outer(item, next_item) lagcrp += np.array(list(map(lambda lag: np.mean(outer[model == lag]), range(-ts, ts)))) lagcrp /= ts lagcrp = list(lagcrp) lagcrp.insert(int(len(lagcrp) / 2), np.nan) return np.array(lagcrp) def x(p, r): p = np.matrix([np.array(i) for i in p]) if p.shape[0] == 1: p = p.T r = map(lambda x: [np.nan] * p.shape[1] if check_nan(x) else x, r) r = np.matrix([np.array(i) for i in r]) if r.shape[0] == 1: r = r.T return p, r opts = dict(match=match, distance=distance, features=features) if match is 'exact': opts.update({'features': 'item'}) recmat = recall_matrix(egg, **opts) if not ts: ts = egg.pres.shape[1] if match in ['exact', 'best']: lagcrp = [lagcrp(lst, egg.list_length) for lst in recmat] elif match is 'smooth': lagcrp = np.atleast_2d(np.mean([nlagcrp(r, ts=ts) for r in recmat], 0)) else: raise ValueError('Match must be set to exact, best or smooth.') return np.nanmean(lagcrp, axis=0)
lagcrp_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(egg, match='exact', distance='euclidean', ts=None, features=None):\n\n def x(rec, lstlen):\n\n def x(a, b):\n if (a > 0 and b > 0) and a != b:\n return True\n else:\n return False\n\n def x(rec, lstlen):\n arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-\n lstlen, 0)) + list(range(1, lstlen + 1)))\n recalled = []\n for trial in range(0, len(rec) - 1):\n a = rec[trial]\n b = rec[trial + 1]\n if check_pair(a, b\n ) and a not in recalled and b not in recalled:\n arr[b - a] += 1\n recalled.append(a)\n return arr\n\n def x(rec, lstlen):\n arr = pd.Series(data=np.zeros(lstlen * 2), index=list(range(-\n lstlen, 0)) + list(range(1, lstlen + 1)))\n recalled = []\n for trial in rec:\n if np.isnan(trial):\n pass\n else:\n lbound = int(1 - trial)\n ubound = int(lstlen - trial)\n chances = list(range(lbound, 0)) + list(range(1, ubound +\n 1))\n for each in recalled:\n if each - trial in chances:\n chances.remove(each - trial)\n arr[chances] += 1\n recalled.append(trial)\n return arr\n actual = compute_actual(rec, lstlen)\n possible = compute_possible(rec, lstlen)\n crp = [(0.0 if j == 0 else i / j) for i, j in zip(actual, possible)]\n crp.insert(int(len(crp) / 2), np.nan)\n return crp\n\n def x(distmat, ts=None):\n\n def x(s):\n idx = list(range(0, -s, -1))\n return np.array([list(range(i, i + s)) for i in idx])\n distmat = distmat[:, ~np.all(np.isnan(distmat), axis=0)].T\n model = lagcrp_model(distmat.shape[1])\n lagcrp = np.zeros(ts * 2)\n for rdx in range(len(distmat) - 1):\n item = distmat[rdx, :]\n next_item = distmat[rdx + 1, :]\n if not np.isnan(item).any() and not np.isnan(next_item).any():\n outer = np.outer(item, next_item)\n lagcrp += np.array(list(map(lambda lag: np.mean(outer[model ==\n lag]), range(-ts, ts))))\n lagcrp /= ts\n lagcrp = list(lagcrp)\n lagcrp.insert(int(len(lagcrp) / 2), np.nan)\n return np.array(lagcrp)\n\n def x(p, r):\n p = np.matrix([np.array(i) for i in p])\n if p.shape[0] == 1:\n p = p.T\n r = map(lambda x: [np.nan] * p.shape[1] if check_nan(x) else x, r)\n r = np.matrix([np.array(i) for i in r])\n if r.shape[0] == 1:\n r = r.T\n return p, r\n opts = dict(match=match, distance=distance, features=features)\n if match is 'exact':\n opts.update({'features': 'item'})\n recmat = recall_matrix(egg, **opts)\n if not ts:\n ts = egg.pres.shape[1]\n if match in ['exact', 'best']:\n lagcrp = [lagcrp(lst, egg.list_length) for lst in recmat]\n elif match is 'smooth':\n lagcrp = np.atleast_2d(np.mean([nlagcrp(r, ts=ts) for r in recmat], 0))\n else:\n raise ValueError('Match must be set to exact, best or smooth.')\n return np.nanmean(lagcrp, axis=0)\n", "role": "user" }, { "content": "lagcrp_helper", "role": "assistant" } ]
def x(self): if self._diskList: self._fetchDevAll('disk', self._diskList, self._info.getDiskStats) if self._mdList: self._fetchDevAll('md', self._mdList, self._info.getMDstats) if self._partList: self._fetchDevAll('part', self._partList, self._info.getPartitionStats) if self._lvList: self._fetchDevAll('lv', self._lvList, self._info.getLVstats) self._fetchDevAll('fs', self._fsList, self._info.getFilesystemStats)
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._diskList:\n self._fetchDevAll('disk', self._diskList, self._info.getDiskStats)\n if self._mdList:\n self._fetchDevAll('md', self._mdList, self._info.getMDstats)\n if self._partList:\n self._fetchDevAll('part', self._partList, self._info.getPartitionStats)\n if self._lvList:\n self._fetchDevAll('lv', self._lvList, self._info.getLVstats)\n self._fetchDevAll('fs', self._fsList, self._info.getFilesystemStats)\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self, namestr, titlestr, devlist): name = 'diskio_%s_requests' % namestr if self.graphEnabled(name): graph = MuninGraph('Disk I/O - %s - Requests' % titlestr, self. _category, info= 'Disk I/O - %s Throughput, Read / write requests per second.' % titlestr, args='--base 1000 --lower-limit 0', vlabel= 'reqs/sec read (-) / write (+)', printf='%6.1lf', autoFixNames=True ) for dev in devlist: graph.addField(dev + '_read', fixLabel(dev, maxLabelLenGraphDual, repl='..', truncend=False, delim=self ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE', min=0, graph=False) graph.addField(dev + '_write', fixLabel(dev, maxLabelLenGraphDual, repl='..', truncend=False, delim=self ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE', min=0, negative=dev + '_read', info=dev) self.appendGraph(name, graph)
configDevRequests
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, namestr, titlestr, devlist):\n name = 'diskio_%s_requests' % namestr\n if self.graphEnabled(name):\n graph = MuninGraph('Disk I/O - %s - Requests' % titlestr, self.\n _category, info=\n 'Disk I/O - %s Throughput, Read / write requests per second.' %\n titlestr, args='--base 1000 --lower-limit 0', vlabel=\n 'reqs/sec read (-) / write (+)', printf='%6.1lf', autoFixNames=True\n )\n for dev in devlist:\n graph.addField(dev + '_read', fixLabel(dev,\n maxLabelLenGraphDual, repl='..', truncend=False, delim=self\n ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',\n min=0, graph=False)\n graph.addField(dev + '_write', fixLabel(dev,\n maxLabelLenGraphDual, repl='..', truncend=False, delim=self\n ._labelDelim.get(namestr)), draw='LINE2', type='DERIVE',\n min=0, negative=dev + '_read', info=dev)\n self.appendGraph(name, graph)\n", "role": "user" }, { "content": "configDevRequests", "role": "assistant" } ]
def x(self, namestr, titlestr, devlist): name = 'diskio_%s_active' % namestr if self.graphEnabled(name): graph = MuninGraph('Disk I/O - %s - Queue Length' % titlestr, self. _category, info= 'Disk I/O - Number of I/O Operations in Progress for every %s.' % titlestr, args='--base 1000 --lower-limit 0', printf='%6.1lf', autoFixNames=True) for dev in devlist: graph.addField(dev, fixLabel(dev, maxLabelLenGraphSimple, repl= '..', truncend=False, delim=self._labelDelim.get(namestr)), draw='AREASTACK', type='GAUGE', info=dev) self.appendGraph(name, graph)
configDevActive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, namestr, titlestr, devlist):\n name = 'diskio_%s_active' % namestr\n if self.graphEnabled(name):\n graph = MuninGraph('Disk I/O - %s - Queue Length' % titlestr, self.\n _category, info=\n 'Disk I/O - Number of I/O Operations in Progress for every %s.' %\n titlestr, args='--base 1000 --lower-limit 0', printf='%6.1lf',\n autoFixNames=True)\n for dev in devlist:\n graph.addField(dev, fixLabel(dev, maxLabelLenGraphSimple, repl=\n '..', truncend=False, delim=self._labelDelim.get(namestr)),\n draw='AREASTACK', type='GAUGE', info=dev)\n self.appendGraph(name, graph)\n", "role": "user" }, { "content": "configDevActive", "role": "assistant" } ]
def x(self, namestr, devlist, statsfunc): for dev in devlist: stats = statsfunc(dev) name = 'diskio_%s_requests' % namestr if self.hasGraph(name): self.setGraphVal(name, dev + '_read', stats['rios']) self.setGraphVal(name, dev + '_write', stats['wios']) name = 'diskio_%s_bytes' % namestr if self.hasGraph(name): self.setGraphVal(name, dev + '_read', stats['rbytes']) self.setGraphVal(name, dev + '_write', stats['wbytes']) name = 'diskio_%s_active' % namestr if self.hasGraph(name): self.setGraphVal(name, dev, stats['ios_active'])
fetchDevAll
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, namestr, devlist, statsfunc):\n for dev in devlist:\n stats = statsfunc(dev)\n name = 'diskio_%s_requests' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev + '_read', stats['rios'])\n self.setGraphVal(name, dev + '_write', stats['wios'])\n name = 'diskio_%s_bytes' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev + '_read', stats['rbytes'])\n self.setGraphVal(name, dev + '_write', stats['wbytes'])\n name = 'diskio_%s_active' % namestr\n if self.hasGraph(name):\n self.setGraphVal(name, dev, stats['ios_active'])\n", "role": "user" }, { "content": "fetchDevAll", "role": "assistant" } ]
def x(self): for graph_name in self.getGraphList(): for field_name in self.getGraphFieldList(graph_name): self.setGraphVal(graph_name, field_name, self._stats.get( field_name))
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for graph_name in self.getGraphList():\n for field_name in self.getGraphFieldList(graph_name):\n self.setGraphVal(graph_name, field_name, self._stats.get(\n field_name))\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): if self.hasGraph('sys_loadavg'): self._loadstats = self._sysinfo.getLoadAvg() if self._loadstats: self.setGraphVal('sys_loadavg', 'load15min', self._loadstats[2]) self.setGraphVal('sys_loadavg', 'load5min', self._loadstats[1]) self.setGraphVal('sys_loadavg', 'load1min', self._loadstats[0]) if self._cpustats and self.hasGraph('sys_cpu_util'): for field in self.getGraphFieldList('sys_cpu_util'): self.setGraphVal('sys_cpu_util', field, int(self._cpustats[ field] * 1000)) if self._memstats: if self.hasGraph('sys_mem_util'): for field in self.getGraphFieldList('sys_mem_util'): self.setGraphVal('sys_mem_util', field, self._memstats[field]) if self.hasGraph('sys_mem_avail'): for field in self.getGraphFieldList('sys_mem_avail'): self.setGraphVal('sys_mem_avail', field, self._memstats[field]) if self.hasGraph('sys_mem_huge'): for field in ['Rsvd', 'Surp', 'Free']: fkey = 'HugePages_' + field if self._memstats.has_key(fkey): self.setGraphVal('sys_mem_huge', field, self._memstats[ fkey] * self._memstats['Hugepagesize']) if self.hasGraph('sys_processes'): if self._procstats is None: self._procstats = self._sysinfo.getProcessStats() if self._procstats: self.setGraphVal('sys_processes', 'running', self._procstats[ 'procs_running']) self.setGraphVal('sys_processes', 'blocked', self._procstats[ 'procs_blocked']) if self.hasGraph('sys_forks'): if self._procstats is None: self._procstats = self._sysinfo.getProcessStats() if self._procstats: self.setGraphVal('sys_forks', 'forks', self._procstats['processes'] ) if self.hasGraph('sys_intr_ctxt'): if self._procstats is None: self._procstats = self._sysinfo.getProcessStats() if self._procstats: for field in self.getGraphFieldList('sys_intr_ctxt'): self.setGraphVal('sys_intr_ctxt', field, self._procstats[field] ) if self.hasGraph('sys_vm_paging'): if self._vmstats is None: self._vmstats = self._sysinfo.getVMstats() if self._vmstats: self.setGraphVal('sys_vm_paging', 'in', self._vmstats['pgpgin']) self.setGraphVal('sys_vm_paging', 'out', self._vmstats['pgpgout']) if self.hasGraph('sys_vm_swapping'): if self._vmstats is None: self._vmstats = self._sysinfo.getVMstats() if self._vmstats: self.setGraphVal('sys_vm_swapping', 'in', self._vmstats['pswpin']) self.setGraphVal('sys_vm_swapping', 'out', self._vmstats['pswpout'] )
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.hasGraph('sys_loadavg'):\n self._loadstats = self._sysinfo.getLoadAvg()\n if self._loadstats:\n self.setGraphVal('sys_loadavg', 'load15min', self._loadstats[2])\n self.setGraphVal('sys_loadavg', 'load5min', self._loadstats[1])\n self.setGraphVal('sys_loadavg', 'load1min', self._loadstats[0])\n if self._cpustats and self.hasGraph('sys_cpu_util'):\n for field in self.getGraphFieldList('sys_cpu_util'):\n self.setGraphVal('sys_cpu_util', field, int(self._cpustats[\n field] * 1000))\n if self._memstats:\n if self.hasGraph('sys_mem_util'):\n for field in self.getGraphFieldList('sys_mem_util'):\n self.setGraphVal('sys_mem_util', field, self._memstats[field])\n if self.hasGraph('sys_mem_avail'):\n for field in self.getGraphFieldList('sys_mem_avail'):\n self.setGraphVal('sys_mem_avail', field, self._memstats[field])\n if self.hasGraph('sys_mem_huge'):\n for field in ['Rsvd', 'Surp', 'Free']:\n fkey = 'HugePages_' + field\n if self._memstats.has_key(fkey):\n self.setGraphVal('sys_mem_huge', field, self._memstats[\n fkey] * self._memstats['Hugepagesize'])\n if self.hasGraph('sys_processes'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n self.setGraphVal('sys_processes', 'running', self._procstats[\n 'procs_running'])\n self.setGraphVal('sys_processes', 'blocked', self._procstats[\n 'procs_blocked'])\n if self.hasGraph('sys_forks'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n self.setGraphVal('sys_forks', 'forks', self._procstats['processes']\n )\n if self.hasGraph('sys_intr_ctxt'):\n if self._procstats is None:\n self._procstats = self._sysinfo.getProcessStats()\n if self._procstats:\n for field in self.getGraphFieldList('sys_intr_ctxt'):\n self.setGraphVal('sys_intr_ctxt', field, self._procstats[field]\n )\n if self.hasGraph('sys_vm_paging'):\n if self._vmstats is None:\n self._vmstats = self._sysinfo.getVMstats()\n if self._vmstats:\n self.setGraphVal('sys_vm_paging', 'in', self._vmstats['pgpgin'])\n self.setGraphVal('sys_vm_paging', 'out', self._vmstats['pgpgout'])\n if self.hasGraph('sys_vm_swapping'):\n if self._vmstats is None:\n self._vmstats = self._sysinfo.getVMstats()\n if self._vmstats:\n self.setGraphVal('sys_vm_swapping', 'in', self._vmstats['pswpin'])\n self.setGraphVal('sys_vm_swapping', 'out', self._vmstats['pswpout']\n )\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(key, default=None): try: return ast.literal_eval(os.environ.get(key.upper(), default)) except (ValueError, SyntaxError): return os.environ.get(key.upper(), default)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, default=None):\n try:\n return ast.literal_eval(os.environ.get(key.upper(), default))\n except (ValueError, SyntaxError):\n return os.environ.get(key.upper(), default)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(filepath=None, **kwargs): if filepath is None: filepath = os.path.join('.env') with open(filepath, 'wb') as file_handle: file_handle.writelines('{0}={1}\n'.format(key.upper(), val) for key, val in kwargs.items())
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filepath=None, **kwargs):\n if filepath is None:\n filepath = os.path.join('.env')\n with open(filepath, 'wb') as file_handle:\n file_handle.writelines('{0}={1}\\n'.format(key.upper(), val) for key,\n val in kwargs.items())\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(filepath=None): if filepath and os.path.exists(filepath): pass else: if not os.path.exists('.env'): return False filepath = os.path.join('.env') for key, value in _get_line_(filepath): os.environ.setdefault(key, str(value)) return True
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filepath=None):\n if filepath and os.path.exists(filepath):\n pass\n else:\n if not os.path.exists('.env'):\n return False\n filepath = os.path.join('.env')\n for key, value in _get_line_(filepath):\n os.environ.setdefault(key, str(value))\n return True\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(filepath): for line in open(filepath): line = line.strip() if line.startswith('#') or '=' not in line: continue key, value = line.split('=', 1) key = key.strip().upper() value = value.strip() if not (key and value): continue try: value = ast.literal_eval(value) except (ValueError, SyntaxError): pass yield key, value
get_line_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filepath):\n for line in open(filepath):\n line = line.strip()\n if line.startswith('#') or '=' not in line:\n continue\n key, value = line.split('=', 1)\n key = key.strip().upper()\n value = value.strip()\n if not (key and value):\n continue\n try:\n value = ast.literal_eval(value)\n except (ValueError, SyntaxError):\n pass\n yield key, value\n", "role": "user" }, { "content": "get_line_", "role": "assistant" } ]
def x(self): url = '%s://%s:%d/%s?auto' % (self._proto, self._host, self._port, self ._statuspath) response = util.get_url(url, self._user, self._password) self._statusDict = {} for line in response.splitlines(): mobj = re.match('(\\S.*\\S)\\s*:\\s*(\\S+)\\s*$', line) if mobj: self._statusDict[mobj.group(1)] = util.parse_value(mobj.group(2)) if self._statusDict.has_key('Scoreboard'): self._statusDict['MaxWorkers'] = len(self._statusDict['Scoreboard'])
initStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n url = '%s://%s:%d/%s?auto' % (self._proto, self._host, self._port, self\n ._statuspath)\n response = util.get_url(url, self._user, self._password)\n self._statusDict = {}\n for line in response.splitlines():\n mobj = re.match('(\\\\S.*\\\\S)\\\\s*:\\\\s*(\\\\S+)\\\\s*$', line)\n if mobj:\n self._statusDict[mobj.group(1)] = util.parse_value(mobj.group(2))\n if self._statusDict.has_key('Scoreboard'):\n self._statusDict['MaxWorkers'] = len(self._statusDict['Scoreboard'])\n", "role": "user" }, { "content": "initStats", "role": "assistant" } ]
def x(self, features=None): if features is None: features = self.dist_funcs.keys() elif not isinstance(features, list): features = [features] return self.pres.applymap(lambda x: {k: v for k, v in x.items() if k in features} if x is not None else None)
get_pres_features
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, features=None):\n if features is None:\n features = self.dist_funcs.keys()\n elif not isinstance(features, list):\n features = [features]\n return self.pres.applymap(lambda x: {k: v for k, v in x.items() if k in\n features} if x is not None else None)\n", "role": "user" }, { "content": "get_pres_features", "role": "assistant" } ]
def x(self, features=None): if features is None: features = self.dist_funcs.keys() elif not isinstance(features, list): features = [features] return self.rec.applymap(lambda x: {k: v for k, v in x.items() if k != 'item'} if x is not None else None)
get_rec_features
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, features=None):\n if features is None:\n features = self.dist_funcs.keys()\n elif not isinstance(features, list):\n features = [features]\n return self.rec.applymap(lambda x: {k: v for k, v in x.items() if k !=\n 'item'} if x is not None else None)\n", "role": "user" }, { "content": "get_rec_features", "role": "assistant" } ]
def x(self): print('Number of subjects: ' + str(self.n_subjects)) print('Number of lists per subject: ' + str(self.n_lists)) print('Number of words per list: ' + str(self.list_length)) print('Date created: ' + str(self.date_created)) print('Meta data: ' + str(self.meta))
info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print('Number of subjects: ' + str(self.n_subjects))\n print('Number of lists per subject: ' + str(self.n_lists))\n print('Number of words per list: ' + str(self.list_length))\n print('Date created: ' + str(self.date_created))\n print('Meta data: ' + str(self.meta))\n", "role": "user" }, { "content": "info", "role": "assistant" } ]
def x(self, fname, compression='blosc'): egg = {'pres': df2list(self.pres), 'rec': df2list(self.rec), 'dist_funcs': self.dist_funcs, 'subjgroup': self.subjgroup, 'subjname': self.subjname, 'listgroup': self.listgroup, 'listname': self.listname, 'date_created': self.date_created, 'meta': self.meta} if fname[-4:] != '.egg': fname += '.egg' with warnings.catch_warnings(): warnings.simplefilter('ignore') dd.io.save(fname, egg, compression=compression)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname, compression='blosc'):\n egg = {'pres': df2list(self.pres), 'rec': df2list(self.rec),\n 'dist_funcs': self.dist_funcs, 'subjgroup': self.subjgroup,\n 'subjname': self.subjname, 'listgroup': self.listgroup, 'listname':\n self.listname, 'date_created': self.date_created, 'meta': self.meta}\n if fname[-4:] != '.egg':\n fname += '.egg'\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n dd.io.save(fname, egg, compression=compression)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, fname, compression='blosc'): egg = {'data': self.data, 'analysis': self.analysis, 'list_length': self.list_length, 'n_lists': self.n_lists, 'n_subjects': self. n_subjects, 'position': self.position, 'date_created': self. date_created, 'meta': self.meta} if fname[-4:] != '.fegg': fname += '.fegg' with warnings.catch_warnings(): warnings.simplefilter('ignore') dd.io.save(fname, egg, compression=compression)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname, compression='blosc'):\n egg = {'data': self.data, 'analysis': self.analysis, 'list_length':\n self.list_length, 'n_lists': self.n_lists, 'n_subjects': self.\n n_subjects, 'position': self.position, 'date_created': self.\n date_created, 'meta': self.meta}\n if fname[-4:] != '.fegg':\n fname += '.fegg'\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n dd.io.save(fname, egg, compression=compression)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(egg, position, match='exact', distance='euclidean', features=None): def x(lst, position): return [(1 if pos == lst[position] else 0) for pos in range(1, egg. list_length + 1)] opts = dict(match=match, distance=distance, features=features) if match is 'exact': opts.update({'features': 'item'}) recmat = recall_matrix(egg, **opts) if match in ['exact', 'best']: result = [pnr(lst, position) for lst in recmat] elif match is 'smooth': result = np.atleast_2d(recmat[:, :, 0]) else: raise ValueError('Match must be set to exact, best or smooth.') return np.nanmean(result, axis=0)
pnr_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(egg, position, match='exact', distance='euclidean', features=None):\n\n def x(lst, position):\n return [(1 if pos == lst[position] else 0) for pos in range(1, egg.\n list_length + 1)]\n opts = dict(match=match, distance=distance, features=features)\n if match is 'exact':\n opts.update({'features': 'item'})\n recmat = recall_matrix(egg, **opts)\n if match in ['exact', 'best']:\n result = [pnr(lst, position) for lst in recmat]\n elif match is 'smooth':\n result = np.atleast_2d(recmat[:, :, 0])\n else:\n raise ValueError('Match must be set to exact, best or smooth.')\n return np.nanmean(result, axis=0)\n", "role": "user" }, { "content": "pnr_helper", "role": "assistant" } ]
def x(self): apacheInfo = ApacheInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) stats = apacheInfo.getServerStats() if self.hasGraph('apache_access'): self.setGraphVal('apache_access', 'reqs', stats['Total Accesses']) if self.hasGraph('apache_bytes'): self.setGraphVal('apache_bytes', 'bytes', stats['Total kBytes'] * 1000) if self.hasGraph('apache_workers'): self.setGraphVal('apache_workers', 'busy', stats['BusyWorkers']) self.setGraphVal('apache_workers', 'idle', stats['IdleWorkers']) self.setGraphVal('apache_workers', 'max', stats['MaxWorkers'])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n apacheInfo = ApacheInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = apacheInfo.getServerStats()\n if self.hasGraph('apache_access'):\n self.setGraphVal('apache_access', 'reqs', stats['Total Accesses'])\n if self.hasGraph('apache_bytes'):\n self.setGraphVal('apache_bytes', 'bytes', stats['Total kBytes'] * 1000)\n if self.hasGraph('apache_workers'):\n self.setGraphVal('apache_workers', 'busy', stats['BusyWorkers'])\n self.setGraphVal('apache_workers', 'idle', stats['IdleWorkers'])\n self.setGraphVal('apache_workers', 'max', stats['MaxWorkers'])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): apacheInfo = ApacheInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) return apacheInfo is not None
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n apacheInfo = ApacheInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return apacheInfo is not None\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(self): ntpinfo = NTPinfo() ntpstats = ntpinfo.getHostOffsets(self._remoteHosts) if ntpstats: for host in self._remoteHosts: hostkey = re.sub('\\.', '_', host) hoststats = ntpstats.get(host) if hoststats: if self.hasGraph('ntp_host_stratums'): self.setGraphVal('ntp_host_stratums', hostkey, hoststats.get('stratum')) if self.hasGraph('ntp_host_offsets'): self.setGraphVal('ntp_host_offsets', hostkey, hoststats .get('offset')) if self.hasGraph('ntp_host_delays'): self.setGraphVal('ntp_host_delays', hostkey, hoststats. get('delay'))
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ntpinfo = NTPinfo()\n ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)\n if ntpstats:\n for host in self._remoteHosts:\n hostkey = re.sub('\\\\.', '_', host)\n hoststats = ntpstats.get(host)\n if hoststats:\n if self.hasGraph('ntp_host_stratums'):\n self.setGraphVal('ntp_host_stratums', hostkey,\n hoststats.get('stratum'))\n if self.hasGraph('ntp_host_offsets'):\n self.setGraphVal('ntp_host_offsets', hostkey, hoststats\n .get('offset'))\n if self.hasGraph('ntp_host_delays'):\n self.setGraphVal('ntp_host_delays', hostkey, hoststats.\n get('delay'))\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): ntpinfo = NTPinfo() ntpstats = ntpinfo.getHostOffsets(self._remoteHosts) return len(ntpstats) > 0
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ntpinfo = NTPinfo()\n ntpstats = ntpinfo.getHostOffsets(self._remoteHosts)\n return len(ntpstats) > 0\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(self): lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) stats = lighttpdInfo.getServerStats() if self.hasGraph('lighttpd_access'): self.setGraphVal('lighttpd_access', 'reqs', stats['Total Accesses']) if self.hasGraph('lighttpd_bytes'): self.setGraphVal('lighttpd_bytes', 'bytes', stats['Total kBytes'] * 1000) if self.hasGraph('lighttpd_servers'): self.setGraphVal('lighttpd_servers', 'busy', stats['BusyServers']) self.setGraphVal('lighttpd_servers', 'idle', stats['IdleServers']) self.setGraphVal('lighttpd_servers', 'max', stats['MaxServers'])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n stats = lighttpdInfo.getServerStats()\n if self.hasGraph('lighttpd_access'):\n self.setGraphVal('lighttpd_access', 'reqs', stats['Total Accesses'])\n if self.hasGraph('lighttpd_bytes'):\n self.setGraphVal('lighttpd_bytes', 'bytes', stats['Total kBytes'] *\n 1000)\n if self.hasGraph('lighttpd_servers'):\n self.setGraphVal('lighttpd_servers', 'busy', stats['BusyServers'])\n self.setGraphVal('lighttpd_servers', 'idle', stats['IdleServers'])\n self.setGraphVal('lighttpd_servers', 'max', stats['MaxServers'])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self): lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self. _password, self._statuspath, self._ssl) return lighttpdInfo is not None
autoconf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lighttpdInfo = LighttpdInfo(self._host, self._port, self._user, self.\n _password, self._statuspath, self._ssl)\n return lighttpdInfo is not None\n", "role": "user" }, { "content": "autoconf", "role": "assistant" } ]
def x(self): name = 'diskspace' if self.hasGraph(name): for fspath in self._fslist: if self._statsSpace.has_key(fspath): self.setGraphVal(name, fspath, self._statsSpace[fspath][ 'inuse_pcent']) name = 'diskinode' if self.hasGraph(name): for fspath in self._fslist: if self._statsInode.has_key(fspath): self.setGraphVal(name, fspath, self._statsInode[fspath][ 'inuse_pcent'])
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name = 'diskspace'\n if self.hasGraph(name):\n for fspath in self._fslist:\n if self._statsSpace.has_key(fspath):\n self.setGraphVal(name, fspath, self._statsSpace[fspath][\n 'inuse_pcent'])\n name = 'diskinode'\n if self.hasGraph(name):\n for fspath in self._fslist:\n if self._statsInode.has_key(fspath):\n self.setGraphVal(name, fspath, self._statsInode[fspath][\n 'inuse_pcent'])\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]
def x(self, mtx): self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: mtx.sort_indices() if self.isReal: status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape [1], mtx.indptr, indx, mtx.data, self.control, self.info) else: real, imag = mtx.data.real.copy(), mtx.data.imag.copy() status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape [1], mtx.indptr, indx, real, imag, self.control, self.info) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.symbolic, umfStatus[status])) self.mtx = mtx
symbolic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mtx):\n self.free_symbolic()\n indx = self._getIndx(mtx)\n if not assumeSortedIndices:\n mtx.sort_indices()\n if self.isReal:\n status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape\n [1], mtx.indptr, indx, mtx.data, self.control, self.info)\n else:\n real, imag = mtx.data.real.copy(), mtx.data.imag.copy()\n status, self._symbolic = self.funs.symbolic(mtx.shape[0], mtx.shape\n [1], mtx.indptr, indx, real, imag, self.control, self.info)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.symbolic,\n umfStatus[status]))\n self.mtx = mtx\n", "role": "user" }, { "content": "symbolic", "role": "assistant" } ]
def x(self, mtx): self.free_numeric() if self._symbolic is None: self.symbolic(mtx) indx = self._getIndx(mtx) failCount = 0 while 1: if self.isReal: status, self._numeric = self.funs.numeric(mtx.indptr, indx, mtx .data, self._symbolic, self.control, self.info) else: real, imag = mtx.data.real.copy(), mtx.data.imag.copy() status, self._numeric = self.funs.numeric(mtx.indptr, indx, real, imag, self._symbolic, self.control, self.info) if status != UMFPACK_OK: if status == UMFPACK_WARNING_singular_matrix: warnings.warn('Singular matrix', UmfpackWarning) break elif status in (UMFPACK_ERROR_different_pattern, UMFPACK_ERROR_invalid_Symbolic_object): warnings.warn('Recomputing symbolic', UmfpackWarning) self.symbolic(mtx) failCount += 1 else: failCount += 100 else: break if failCount >= 2: raise RuntimeError('%s failed with %s' % (self.funs.numeric, umfStatus[status]))
numeric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mtx):\n self.free_numeric()\n if self._symbolic is None:\n self.symbolic(mtx)\n indx = self._getIndx(mtx)\n failCount = 0\n while 1:\n if self.isReal:\n status, self._numeric = self.funs.numeric(mtx.indptr, indx, mtx\n .data, self._symbolic, self.control, self.info)\n else:\n real, imag = mtx.data.real.copy(), mtx.data.imag.copy()\n status, self._numeric = self.funs.numeric(mtx.indptr, indx,\n real, imag, self._symbolic, self.control, self.info)\n if status != UMFPACK_OK:\n if status == UMFPACK_WARNING_singular_matrix:\n warnings.warn('Singular matrix', UmfpackWarning)\n break\n elif status in (UMFPACK_ERROR_different_pattern,\n UMFPACK_ERROR_invalid_Symbolic_object):\n warnings.warn('Recomputing symbolic', UmfpackWarning)\n self.symbolic(mtx)\n failCount += 1\n else:\n failCount += 100\n else:\n break\n if failCount >= 2:\n raise RuntimeError('%s failed with %s' % (self.funs.numeric,\n umfStatus[status]))\n", "role": "user" }, { "content": "numeric", "role": "assistant" } ]
def x(self): if self._symbolic is not None: self.funs.free_symbolic(self._symbolic) self._symbolic = None self.mtx = None
free_symbolic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._symbolic is not None:\n self.funs.free_symbolic(self._symbolic)\n self._symbolic = None\n self.mtx = None\n", "role": "user" }, { "content": "free_symbolic", "role": "assistant" } ]
def x(self): if self._numeric is not None: self.funs.free_numeric(self._numeric) self._numeric = None self.free_symbolic()
free_numeric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._numeric is not None:\n self.funs.free_numeric(self._numeric)\n self._numeric = None\n self.free_symbolic()\n", "role": "user" }, { "content": "free_numeric", "role": "assistant" } ]
def x(self, sys, mtx, rhs, autoTranspose=False): if sys not in umfSys: raise ValueError('sys must be in' % umfSys) if autoTranspose and self.isCSR: if self.family in umfRealTypes: ii = 0 else: ii = 1 if sys in umfSys_transposeMap[ii]: sys = umfSys_transposeMap[ii][sys] else: raise RuntimeError('autoTranspose ambiguous, switch it off') if self._numeric is not None: if self.mtx is not mtx: raise ValueError('must be called with same matrix as numeric()') else: raise RuntimeError('numeric() not called') indx = self._getIndx(mtx) if self.isReal: rhs = rhs.astype(np.float64) sol = np.zeros((mtx.shape[1],), dtype=np.float64) status = self.funs.solve(sys, mtx.indptr, indx, mtx.data, sol, rhs, self._numeric, self.control, self.info) else: rhs = rhs.astype(np.complex128) sol = np.zeros((mtx.shape[1],), dtype=np.complex128) mreal, mimag = mtx.data.real.copy(), mtx.data.imag.copy() sreal, simag = sol.real.copy(), sol.imag.copy() rreal, rimag = rhs.real.copy(), rhs.imag.copy() status = self.funs.solve(sys, mtx.indptr, indx, mreal, mimag, sreal, simag, rreal, rimag, self._numeric, self.control, self.info) sol.real, sol.imag = sreal, simag if status != UMFPACK_OK: if status == UMFPACK_WARNING_singular_matrix: warnings.warn('Zeroing nan and inf entries...', UmfpackWarning) sol[~np.isfinite(sol)] = 0.0 else: raise RuntimeError('%s failed with %s' % (self.funs.solve, umfStatus[status])) econd = 1.0 / self.info[UMFPACK_RCOND] if econd > self.maxCond: msg = ('(almost) singular matrix! ' + '(estimated cond. number: %.2e)' % econd) warnings.warn(msg, UmfpackWarning) return sol
solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sys, mtx, rhs, autoTranspose=False):\n if sys not in umfSys:\n raise ValueError('sys must be in' % umfSys)\n if autoTranspose and self.isCSR:\n if self.family in umfRealTypes:\n ii = 0\n else:\n ii = 1\n if sys in umfSys_transposeMap[ii]:\n sys = umfSys_transposeMap[ii][sys]\n else:\n raise RuntimeError('autoTranspose ambiguous, switch it off')\n if self._numeric is not None:\n if self.mtx is not mtx:\n raise ValueError('must be called with same matrix as numeric()')\n else:\n raise RuntimeError('numeric() not called')\n indx = self._getIndx(mtx)\n if self.isReal:\n rhs = rhs.astype(np.float64)\n sol = np.zeros((mtx.shape[1],), dtype=np.float64)\n status = self.funs.solve(sys, mtx.indptr, indx, mtx.data, sol, rhs,\n self._numeric, self.control, self.info)\n else:\n rhs = rhs.astype(np.complex128)\n sol = np.zeros((mtx.shape[1],), dtype=np.complex128)\n mreal, mimag = mtx.data.real.copy(), mtx.data.imag.copy()\n sreal, simag = sol.real.copy(), sol.imag.copy()\n rreal, rimag = rhs.real.copy(), rhs.imag.copy()\n status = self.funs.solve(sys, mtx.indptr, indx, mreal, mimag, sreal,\n simag, rreal, rimag, self._numeric, self.control, self.info)\n sol.real, sol.imag = sreal, simag\n if status != UMFPACK_OK:\n if status == UMFPACK_WARNING_singular_matrix:\n warnings.warn('Zeroing nan and inf entries...', UmfpackWarning)\n sol[~np.isfinite(sol)] = 0.0\n else:\n raise RuntimeError('%s failed with %s' % (self.funs.solve,\n umfStatus[status]))\n econd = 1.0 / self.info[UMFPACK_RCOND]\n if econd > self.maxCond:\n msg = ('(almost) singular matrix! ' + \n '(estimated cond. number: %.2e)' % econd)\n warnings.warn(msg, UmfpackWarning)\n return sol\n", "role": "user" }, { "content": "solve", "role": "assistant" } ]
def x(self, sys, mtx, rhs, autoTranspose=False): if sys not in umfSys: raise ValueError('sys must be in' % umfSys) if self._numeric is None: self.numeric(mtx) elif self.mtx is not mtx: self.numeric(mtx) sol = self.solve(sys, mtx, rhs, autoTranspose) self.free_numeric() return sol
linsolve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sys, mtx, rhs, autoTranspose=False):\n if sys not in umfSys:\n raise ValueError('sys must be in' % umfSys)\n if self._numeric is None:\n self.numeric(mtx)\n elif self.mtx is not mtx:\n self.numeric(mtx)\n sol = self.solve(sys, mtx, rhs, autoTranspose)\n self.free_numeric()\n return sol\n", "role": "user" }, { "content": "linsolve", "role": "assistant" } ]
def x(self, mtx): mtx = mtx.tocsc() self.numeric(mtx) status, lnz, unz, n_row, n_col, nz_udiag = self.funs.get_lunz(self._numeric ) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_lunz, umfStatus[status])) i_type = mtx.indptr.dtype Lp = np.zeros((n_row + 1,), dtype=i_type) Lj = np.zeros((lnz,), dtype=i_type) Lx = np.zeros((lnz,), dtype=np.double) Up = np.zeros((n_col + 1,), dtype=i_type) Ui = np.zeros((unz,), dtype=i_type) Ux = np.zeros((unz,), dtype=np.double) P = np.zeros((n_row,), dtype=i_type) Q = np.zeros((n_col,), dtype=i_type) Dx = np.zeros((min(n_row, n_col),), dtype=np.double) Rs = np.zeros((n_row,), dtype=np.double) if self.isReal: status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, Rs, self._numeric) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_numeric, umfStatus[status])) L = sp.csr_matrix((Lx, Lj, Lp), (n_row, min(n_row, n_col))) U = sp.csc_matrix((Ux, Ui, Up), (min(n_row, n_col), n_col)) R = Rs return L, U, P, Q, R, bool(do_recip) else: Lz = np.zeros((lnz,), dtype=np.double) Uz = np.zeros((unz,), dtype=np.double) Dz = np.zeros((min(n_row, n_col),), dtype=np.double) status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz, Rs, self._numeric) if status != UMFPACK_OK: raise RuntimeError('%s failed with %s' % (self.funs.get_numeric, umfStatus[status])) Lxz = np.zeros((lnz,), dtype=np.complex128) Uxz = np.zeros((unz,), dtype=np.complex128) Dxz = np.zeros((min(n_row, n_col),), dtype=np.complex128) Lxz.real, Lxz.imag = Lx, Lz Uxz.real, Uxz.imag = Ux, Uz Dxz.real, Dxz.imag = Dx, Dz L = sp.csr_matrix((Lxz, Lj, Lp), (n_row, min(n_row, n_col))) U = sp.csc_matrix((Uxz, Ui, Up), (min(n_row, n_col), n_col)) R = Rs return L, U, P, Q, R, bool(do_recip)
lu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mtx):\n mtx = mtx.tocsc()\n self.numeric(mtx)\n status, lnz, unz, n_row, n_col, nz_udiag = self.funs.get_lunz(self._numeric\n )\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_lunz,\n umfStatus[status]))\n i_type = mtx.indptr.dtype\n Lp = np.zeros((n_row + 1,), dtype=i_type)\n Lj = np.zeros((lnz,), dtype=i_type)\n Lx = np.zeros((lnz,), dtype=np.double)\n Up = np.zeros((n_col + 1,), dtype=i_type)\n Ui = np.zeros((unz,), dtype=i_type)\n Ux = np.zeros((unz,), dtype=np.double)\n P = np.zeros((n_row,), dtype=i_type)\n Q = np.zeros((n_col,), dtype=i_type)\n Dx = np.zeros((min(n_row, n_col),), dtype=np.double)\n Rs = np.zeros((n_row,), dtype=np.double)\n if self.isReal:\n status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P,\n Q, Dx, Rs, self._numeric)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,\n umfStatus[status]))\n L = sp.csr_matrix((Lx, Lj, Lp), (n_row, min(n_row, n_col)))\n U = sp.csc_matrix((Ux, Ui, Up), (min(n_row, n_col), n_col))\n R = Rs\n return L, U, P, Q, R, bool(do_recip)\n else:\n Lz = np.zeros((lnz,), dtype=np.double)\n Uz = np.zeros((unz,), dtype=np.double)\n Dz = np.zeros((min(n_row, n_col),), dtype=np.double)\n status, do_recip = self.funs.get_numeric(Lp, Lj, Lx, Lz, Up, Ui, Ux,\n Uz, P, Q, Dx, Dz, Rs, self._numeric)\n if status != UMFPACK_OK:\n raise RuntimeError('%s failed with %s' % (self.funs.get_numeric,\n umfStatus[status]))\n Lxz = np.zeros((lnz,), dtype=np.complex128)\n Uxz = np.zeros((unz,), dtype=np.complex128)\n Dxz = np.zeros((min(n_row, n_col),), dtype=np.complex128)\n Lxz.real, Lxz.imag = Lx, Lz\n Uxz.real, Uxz.imag = Ux, Uz\n Dxz.real, Dxz.imag = Dx, Dz\n L = sp.csr_matrix((Lxz, Lj, Lp), (n_row, min(n_row, n_col)))\n U = sp.csc_matrix((Uxz, Ui, Up), (min(n_row, n_col), n_col))\n R = Rs\n return L, U, P, Q, R, bool(do_recip)\n", "role": "user" }, { "content": "lu", "role": "assistant" } ]
def x(presenter, egg, dist_dict, strategy, fingerprint): def x(features, weights, alpha): feature_stick = [] for f, w in zip(features, weights): feature_stick += [f] * int(np.power(w, alpha) * 100) return feature_stick def x(egg, feature_stick, dist_dict, tau): def x(s, tau): feature_stick = [([weights[feature]] * round(weights[feature] ** alpha) * 100) for feature in w] return [item for sublist in feature_stick for item in sublist] pres, rec, features, dist_funcs = parse_egg(egg) pres_arr = np.array(pres) features_arr = np.array(features) reordered_list = [] reordered_features = [] idx = np.random.choice(len(pres), 1)[0] inds = list(range(len(pres))) inds_used = [idx] current_word = pres[idx] current_features = features[idx] reordered_list.append(current_word) reordered_features.append(current_features) for i in range(len(pres) - 1): feature_sample = feature_stick[np.random.choice(len( feature_stick), 1)[0]] inds_left = [ind for ind in inds if ind not in inds_used] words_left = pres[inds_left] dists_left = np.array([dist_dict[current_word][word][ feature_sample] for word in words_left]) features_left = features[inds_left] dists_left_max = np.max(dists_left) if dists_left_max > 0: dists_left_norm = dists_left / np.max(dists_left) else: dists_left_norm = dists_left dists_left_min = np.min(-dists_left_norm) dists_left_inv = -dists_left_norm - dists_left_min + 0.01 words_stick = [] for word, dist in zip(words_left, dists_left_inv): words_stick += [word] * int(np.power(dist, tau) * 100) next_word = np.random.choice(words_stick) next_word_idx = np.where(pres == next_word)[0] inds_used.append(next_word_idx) reordered_list.append(next_word) reordered_features.append(features[next_word_idx][0]) return Egg(pres=[reordered_list], rec=[reordered_list], features=[[ reordered_features]], dist_funcs=dist_funcs) pres, rec, features, dist_funcs = parse_egg(egg) features = presenter.get_params('fingerprint').get_features() alpha = presenter.get_params('alpha') tau = presenter.get_params('tau') weights = fingerprint if strategy == 'destabilize': weights = 1 - weights feature_stick = compute_feature_stick(features, weights, alpha) return reorder_list(egg, feature_stick, dist_dict, tau)
order_stick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(presenter, egg, dist_dict, strategy, fingerprint):\n\n def x(features, weights, alpha):\n feature_stick = []\n for f, w in zip(features, weights):\n feature_stick += [f] * int(np.power(w, alpha) * 100)\n return feature_stick\n\n def x(egg, feature_stick, dist_dict, tau):\n\n def x(s, tau):\n feature_stick = [([weights[feature]] * round(weights[feature] **\n alpha) * 100) for feature in w]\n return [item for sublist in feature_stick for item in sublist]\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_arr = np.array(pres)\n features_arr = np.array(features)\n reordered_list = []\n reordered_features = []\n idx = np.random.choice(len(pres), 1)[0]\n inds = list(range(len(pres)))\n inds_used = [idx]\n current_word = pres[idx]\n current_features = features[idx]\n reordered_list.append(current_word)\n reordered_features.append(current_features)\n for i in range(len(pres) - 1):\n feature_sample = feature_stick[np.random.choice(len(\n feature_stick), 1)[0]]\n inds_left = [ind for ind in inds if ind not in inds_used]\n words_left = pres[inds_left]\n dists_left = np.array([dist_dict[current_word][word][\n feature_sample] for word in words_left])\n features_left = features[inds_left]\n dists_left_max = np.max(dists_left)\n if dists_left_max > 0:\n dists_left_norm = dists_left / np.max(dists_left)\n else:\n dists_left_norm = dists_left\n dists_left_min = np.min(-dists_left_norm)\n dists_left_inv = -dists_left_norm - dists_left_min + 0.01\n words_stick = []\n for word, dist in zip(words_left, dists_left_inv):\n words_stick += [word] * int(np.power(dist, tau) * 100)\n next_word = np.random.choice(words_stick)\n next_word_idx = np.where(pres == next_word)[0]\n inds_used.append(next_word_idx)\n reordered_list.append(next_word)\n reordered_features.append(features[next_word_idx][0])\n return Egg(pres=[reordered_list], rec=[reordered_list], features=[[\n reordered_features]], dist_funcs=dist_funcs)\n pres, rec, features, dist_funcs = parse_egg(egg)\n features = presenter.get_params('fingerprint').get_features()\n alpha = presenter.get_params('alpha')\n tau = presenter.get_params('tau')\n weights = fingerprint\n if strategy == 'destabilize':\n weights = 1 - weights\n feature_stick = compute_feature_stick(features, weights, alpha)\n return reorder_list(egg, feature_stick, dist_dict, tau)\n", "role": "user" }, { "content": "order_stick", "role": "assistant" } ]
def x(presenter, egg, dist_dict, strategy): np.random.seed() egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg) regg = order_stick(presenter, egg, dist_dict, strategy) regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg) regg_pres = list(regg_pres) egg_pres = list(egg_pres) idx = [egg_pres.index(r) for r in regg_pres] weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres), list(regg_features), dist_dict) orders = idx return weights, orders
stick_perm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(presenter, egg, dist_dict, strategy):\n np.random.seed()\n egg_pres, egg_rec, egg_features, egg_dist_funcs = parse_egg(egg)\n regg = order_stick(presenter, egg, dist_dict, strategy)\n regg_pres, regg_rec, regg_features, regg_dist_funcs = parse_egg(regg)\n regg_pres = list(regg_pres)\n egg_pres = list(egg_pres)\n idx = [egg_pres.index(r) for r in regg_pres]\n weights = compute_feature_weights_dict(list(regg_pres), list(regg_pres),\n list(regg_features), dist_dict)\n orders = idx\n return weights, orders\n", "role": "user" }, { "content": "stick_perm", "role": "assistant" } ]
def x(egg): pres, rec, features, dist_funcs = parse_egg(egg) pres_list = list(pres) features_list = list(features) distances = {} for idx1, item1 in enumerate(pres_list): distances[item1] = {} for idx2, item2 in enumerate(pres_list): distances[item1][item2] = {} for feature in dist_funcs: distances[item1][item2][feature] = builtin_dist_funcs[ dist_funcs[feature]](features_list[idx1][feature], features_list[idx2][feature]) return distances
compute_distances_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(egg):\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_list = list(pres)\n features_list = list(features)\n distances = {}\n for idx1, item1 in enumerate(pres_list):\n distances[item1] = {}\n for idx2, item2 in enumerate(pres_list):\n distances[item1][item2] = {}\n for feature in dist_funcs:\n distances[item1][item2][feature] = builtin_dist_funcs[\n dist_funcs[feature]](features_list[idx1][feature],\n features_list[idx2][feature])\n return distances\n", "role": "user" }, { "content": "compute_distances_dict", "role": "assistant" } ]
def x(pres_list, rec_list, feature_list, dist_dict): weights = {} for feature in feature_list[0]: weights[feature] = [] if len(rec_list) < 2: print( 'Not enough recalls to compute fingerprint, returning default fingerprint.. (everything is .5)' ) for feature in feature_list[0]: weights[feature] = 0.5 return [weights[key] for key in weights] past_words = [] past_idxs = [] for i in range(len(rec_list) - 1): c = rec_list[i] n = rec_list[i + 1] if (c in pres_list and n in pres_list) and (c not in past_words and n not in past_words): for feature in feature_list[0]: c_dist = dist_dict[c][n][feature] dists_filt = [dist_dict[c][j][feature] for j in dist_dict[c ] if j not in past_words] avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] == c_dist)[0] + 1) weights[feature].append(avg_rank / len(dists_filt)) past_idxs.append(pres_list.index(c)) past_words.append(c) for feature in weights: with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) weights[feature] = np.nanmean(weights[feature]) return [weights[key] for key in weights]
compute_feature_weights_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pres_list, rec_list, feature_list, dist_dict):\n weights = {}\n for feature in feature_list[0]:\n weights[feature] = []\n if len(rec_list) < 2:\n print(\n 'Not enough recalls to compute fingerprint, returning default fingerprint.. (everything is .5)'\n )\n for feature in feature_list[0]:\n weights[feature] = 0.5\n return [weights[key] for key in weights]\n past_words = []\n past_idxs = []\n for i in range(len(rec_list) - 1):\n c = rec_list[i]\n n = rec_list[i + 1]\n if (c in pres_list and n in pres_list) and (c not in past_words and\n n not in past_words):\n for feature in feature_list[0]:\n c_dist = dist_dict[c][n][feature]\n dists_filt = [dist_dict[c][j][feature] for j in dist_dict[c\n ] if j not in past_words]\n avg_rank = np.mean(np.where(np.sort(dists_filt)[::-1] ==\n c_dist)[0] + 1)\n weights[feature].append(avg_rank / len(dists_filt))\n past_idxs.append(pres_list.index(c))\n past_words.append(c)\n for feature in weights:\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n weights[feature] = np.nanmean(weights[feature])\n return [weights[key] for key in weights]\n", "role": "user" }, { "content": "compute_feature_weights_dict", "role": "assistant" } ]
def x(self, egg, permute=False, nperms=1000, parallel=False): self.n += 1 next_weights = np.nanmean(_analyze_chunk(egg, analysis= fingerprint_helper, analysis_type='fingerprint', pass_features=True, permute=permute, n_perms=nperms, parallel=parallel).values, 0) if self.state is not None: c = self.state * self.n self.state = np.nansum(np.array([c, next_weights]), axis=0) / (self .n + 1) else: self.state = next_weights self.history.append(next_weights)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, egg, permute=False, nperms=1000, parallel=False):\n self.n += 1\n next_weights = np.nanmean(_analyze_chunk(egg, analysis=\n fingerprint_helper, analysis_type='fingerprint', pass_features=True,\n permute=permute, n_perms=nperms, parallel=parallel).values, 0)\n if self.state is not None:\n c = self.state * self.n\n self.state = np.nansum(np.array([c, next_weights]), axis=0) / (self\n .n + 1)\n else:\n self.state = next_weights\n self.history.append(next_weights)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, egg, method='permute', nperms=2500, strategy=None, distfun= 'correlation', fingerprint=None): def x(self, egg, dist_dict, strategy, nperm, distperm, fingerprint): pres, rec, features, dist_funcs = parse_egg(egg) pres_len = len(pres) weights = [] orders = [] for i in range(nperms): x = rand_perm(pres, features, dist_dict, dist_funcs) weights.append(x[0]) orders.append(x[1]) weights = np.array(weights) orders = np.array(orders) if strategy == 'stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin =2), weights, distperm)), :].astype(int).tolist() elif strategy == 'destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin =2), weights, distperm)), :].astype(int).tolist() return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])]) def x(self, egg, dist_dict, strategy, nperms, distfun, fingerprint): pres, rec, features, dist_funcs = parse_egg(egg) results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed( stick_perm)(self, egg, dist_dict, strategy) for i in range(nperms)) weights = np.array([x[0] for x in results]) orders = np.array([x[1] for x in results]) if strategy == 'stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin =2), weights, distfun)), :].astype(int).tolist() elif strategy == 'destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin =2), weights, distfun)), :].astype(int).tolist() return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])], dist_funcs=dist_funcs) def x(self, egg, dist_dict, nperms, distfun, fingerprint): strategy = self.strategy pres, rec, features, dist_funcs = parse_egg(egg) results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed( choice_perm)(self, egg, dist_dict) for i in range(nperms)) weights = np.array([x[0] for x in results]) orders = np.array([x[1] for x in results]) if strategy == 'stabilize': closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin =2), weights, distfun)), :].astype(int).tolist() elif strategy == 'destabilize': closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin =2), weights, distfun)), :].astype(int).tolist() return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])], features=[list(features[closest])], dist_funcs=dist_funcs) if strategy is None: strategy = self.strategy dist_dict = compute_distances_dict(egg) if fingerprint is None: fingerprint = self.get_params('fingerprint').state elif isinstance(fingerprint, Fingerprint): fingerprint = fingerprint.state else: print('using custom fingerprint') if strategy == 'random' or method == 'random': return shuffle_egg(egg) elif method == 'permute': return order_perm(self, egg, dist_dict, strategy, nperms, distfun, fingerprint) elif method == 'stick': return order_stick(self, egg, dist_dict, strategy, fingerprint) elif method == 'best_stick': return order_best_stick(self, egg, dist_dict, strategy, nperms, distfun, fingerprint) elif method == 'best_choice': return order_best_choice(self, egg, dist_dict, nperms, fingerprint)
order
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, egg, method='permute', nperms=2500, strategy=None, distfun=\n 'correlation', fingerprint=None):\n\n def x(self, egg, dist_dict, strategy, nperm, distperm, fingerprint):\n pres, rec, features, dist_funcs = parse_egg(egg)\n pres_len = len(pres)\n weights = []\n orders = []\n for i in range(nperms):\n x = rand_perm(pres, features, dist_dict, dist_funcs)\n weights.append(x[0])\n orders.append(x[1])\n weights = np.array(weights)\n orders = np.array(orders)\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distperm)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distperm)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])])\n\n def x(self, egg, dist_dict, strategy, nperms, distfun, fingerprint):\n pres, rec, features, dist_funcs = parse_egg(egg)\n results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(\n stick_perm)(self, egg, dist_dict, strategy) for i in range(nperms))\n weights = np.array([x[0] for x in results])\n orders = np.array([x[1] for x in results])\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])], dist_funcs=dist_funcs)\n\n def x(self, egg, dist_dict, nperms, distfun, fingerprint):\n strategy = self.strategy\n pres, rec, features, dist_funcs = parse_egg(egg)\n results = Parallel(n_jobs=multiprocessing.cpu_count())(delayed(\n choice_perm)(self, egg, dist_dict) for i in range(nperms))\n weights = np.array([x[0] for x in results])\n orders = np.array([x[1] for x in results])\n if strategy == 'stabilize':\n closest = orders[np.nanargmin(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n elif strategy == 'destabilize':\n closest = orders[np.nanargmax(cdist(np.array(fingerprint, ndmin\n =2), weights, distfun)), :].astype(int).tolist()\n return Egg(pres=[list(pres[closest])], rec=[list(pres[closest])],\n features=[list(features[closest])], dist_funcs=dist_funcs)\n if strategy is None:\n strategy = self.strategy\n dist_dict = compute_distances_dict(egg)\n if fingerprint is None:\n fingerprint = self.get_params('fingerprint').state\n elif isinstance(fingerprint, Fingerprint):\n fingerprint = fingerprint.state\n else:\n print('using custom fingerprint')\n if strategy == 'random' or method == 'random':\n return shuffle_egg(egg)\n elif method == 'permute':\n return order_perm(self, egg, dist_dict, strategy, nperms, distfun,\n fingerprint)\n elif method == 'stick':\n return order_stick(self, egg, dist_dict, strategy, fingerprint)\n elif method == 'best_stick':\n return order_best_stick(self, egg, dist_dict, strategy, nperms,\n distfun, fingerprint)\n elif method == 'best_choice':\n return order_best_choice(self, egg, dist_dict, nperms, fingerprint)\n", "role": "user" }, { "content": "order", "role": "assistant" } ]
def x(self, extras=None): url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath ) response = util.get_url(url, self._user, self._password) self._statusDict = json.loads(response)
initStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, extras=None):\n url = '%s://%s:%d/%s' % (self._proto, self._host, self._port, self._monpath\n )\n response = util.get_url(url, self._user, self._password)\n self._statusDict = json.loads(response)\n", "role": "user" }, { "content": "initStats", "role": "assistant" } ]
def x(self, devpath): fstat = os.stat(devpath) if stat.S_ISBLK(fstat.st_mode): return os.major(fstat.st_rdev), os.minor(fstat.st_rdev) else: raise ValueError('The file %s is not a valid block device.' % devpath)
getDevMajorMinor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, devpath):\n fstat = os.stat(devpath)\n if stat.S_ISBLK(fstat.st_mode):\n return os.major(fstat.st_rdev), os.minor(fstat.st_rdev)\n else:\n raise ValueError('The file %s is not a valid block device.' % devpath)\n", "role": "user" }, { "content": "getDevMajorMinor", "role": "assistant" } ]
def x(self, devpath): realpath = os.path.realpath(devpath) mobj = re.match('\\/dev\\/(.*)$', realpath) if mobj: dev = mobj.group(1) if dev in self._diskStats: return dev else: try: major, minor = self._getDevMajorMinor(realpath) except: return None return self._mapMajorMinor2dev.get((major, minor)) return None
getUniqueDev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, devpath):\n realpath = os.path.realpath(devpath)\n mobj = re.match('\\\\/dev\\\\/(.*)$', realpath)\n if mobj:\n dev = mobj.group(1)\n if dev in self._diskStats:\n return dev\n else:\n try:\n major, minor = self._getDevMajorMinor(realpath)\n except:\n return None\n return self._mapMajorMinor2dev.get((major, minor))\n return None\n", "role": "user" }, { "content": "getUniqueDev", "role": "assistant" } ]
def x(self): self._mapMajorDevclass = {} try: fp = open(devicesFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading device information from file: %s' % devicesFile) skip = True for line in data.splitlines(): if skip: if re.match('block.*:', line, re.IGNORECASE): skip = False else: mobj = re.match('\\s*(\\d+)\\s+([\\w\\-]+)$', line) if mobj: major = int(mobj.group(1)) devtype = mobj.group(2) self._mapMajorDevclass[major] = devtype if devtype == 'device-mapper': self._dmMajorNum = major
initBlockMajorMap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._mapMajorDevclass = {}\n try:\n fp = open(devicesFile, 'r')\n data = fp.read()\n fp.close()\n except:\n raise IOError('Failed reading device information from file: %s' %\n devicesFile)\n skip = True\n for line in data.splitlines():\n if skip:\n if re.match('block.*:', line, re.IGNORECASE):\n skip = False\n else:\n mobj = re.match('\\\\s*(\\\\d+)\\\\s+([\\\\w\\\\-]+)$', line)\n if mobj:\n major = int(mobj.group(1))\n devtype = mobj.group(2)\n self._mapMajorDevclass[major] = devtype\n if devtype == 'device-mapper':\n self._dmMajorNum = major\n", "role": "user" }, { "content": "initBlockMajorMap", "role": "assistant" } ]
def x(self): self._mapLVtuple2dm = {} self._mapLVname2dm = {} self._vgTree = {} if self._dmMajorNum is None: self._initBlockMajorMap() for file in os.listdir(devmapperDir): mobj = re.match( '([a-zA-Z0-9+_.\\-]*[a-zA-Z0-9+_.])-([a-zA-Z0-9+_.][a-zA-Z0-9+_.\\-]*)$' , file) if mobj: path = os.path.join(devmapperDir, file) major, minor = self._getDevMajorMinor(path) if major == self._dmMajorNum: vg = mobj.group(1).replace('--', '-') lv = mobj.group(2).replace('--', '-') dmdev = 'dm-%d' % minor self._mapLVtuple2dm[vg, lv] = dmdev self._mapLVname2dm[file] = dmdev if not vg in self._vgTree: self._vgTree[vg] = [] self._vgTree[vg].append(lv)
initDMinfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._mapLVtuple2dm = {}\n self._mapLVname2dm = {}\n self._vgTree = {}\n if self._dmMajorNum is None:\n self._initBlockMajorMap()\n for file in os.listdir(devmapperDir):\n mobj = re.match(\n '([a-zA-Z0-9+_.\\\\-]*[a-zA-Z0-9+_.])-([a-zA-Z0-9+_.][a-zA-Z0-9+_.\\\\-]*)$'\n , file)\n if mobj:\n path = os.path.join(devmapperDir, file)\n major, minor = self._getDevMajorMinor(path)\n if major == self._dmMajorNum:\n vg = mobj.group(1).replace('--', '-')\n lv = mobj.group(2).replace('--', '-')\n dmdev = 'dm-%d' % minor\n self._mapLVtuple2dm[vg, lv] = dmdev\n self._mapLVname2dm[file] = dmdev\n if not vg in self._vgTree:\n self._vgTree[vg] = []\n self._vgTree[vg].append(lv)\n", "role": "user" }, { "content": "initDMinfo", "role": "assistant" } ]
def x(self): self._mapFSpathDev = {} fsinfo = FilesystemInfo() for fs in fsinfo.getFSlist(): devpath = fsinfo.getFSdev(fs) dev = self._getUniqueDev(devpath) if dev is not None: self._mapFSpathDev[fs] = dev
initFilesystemInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._mapFSpathDev = {}\n fsinfo = FilesystemInfo()\n for fs in fsinfo.getFSlist():\n devpath = fsinfo.getFSdev(fs)\n dev = self._getUniqueDev(devpath)\n if dev is not None:\n self._mapFSpathDev[fs] = dev\n", "role": "user" }, { "content": "initFilesystemInfo", "role": "assistant" } ]
def x(self): self._swapList = [] sysinfo = SystemInfo() for swap, attrs in sysinfo.getSwapStats().iteritems(): if attrs['type'] == 'partition': dev = self._getUniqueDev(swap) if dev is not None: self._swapList.append(dev)
initSwapInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._swapList = []\n sysinfo = SystemInfo()\n for swap, attrs in sysinfo.getSwapStats().iteritems():\n if attrs['type'] == 'partition':\n dev = self._getUniqueDev(swap)\n if dev is not None:\n self._swapList.append(dev)\n", "role": "user" }, { "content": "initSwapInfo", "role": "assistant" } ]
def x(self): self._diskStats = {} self._mapMajorMinor2dev = {} try: fp = open(diskStatsFile, 'r') data = fp.read() fp.close() except: raise IOError('Failed reading disk stats from file: %s' % diskStatsFile ) for line in data.splitlines(): cols = line.split() dev = cols.pop(2) if len(cols) == 13: self._diskStats[dev] = dict(zip(('major', 'minor', 'rios', 'rmerges', 'rsect', 'rticks', 'wios', 'wmerges', 'wsect', 'wticks', 'ios_active', 'totticks', 'rqticks'), [int(x) for x in cols])) elif len(cols) == 6: self._diskStats[dev] = dict(zip(('major', 'minor', 'rios', 'rsect', 'wios', 'wsect'), [int(x) for x in cols])) else: continue self._diskStats[dev]['rbytes'] = self._diskStats[dev]['rsect' ] * sectorSize self._diskStats[dev]['wbytes'] = self._diskStats[dev]['wsect' ] * sectorSize self._mapMajorMinor2dev[int(cols[0]), int(cols[1])] = dev
initDiskStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._diskStats = {}\n self._mapMajorMinor2dev = {}\n try:\n fp = open(diskStatsFile, 'r')\n data = fp.read()\n fp.close()\n except:\n raise IOError('Failed reading disk stats from file: %s' % diskStatsFile\n )\n for line in data.splitlines():\n cols = line.split()\n dev = cols.pop(2)\n if len(cols) == 13:\n self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',\n 'rmerges', 'rsect', 'rticks', 'wios', 'wmerges', 'wsect',\n 'wticks', 'ios_active', 'totticks', 'rqticks'), [int(x) for\n x in cols]))\n elif len(cols) == 6:\n self._diskStats[dev] = dict(zip(('major', 'minor', 'rios',\n 'rsect', 'wios', 'wsect'), [int(x) for x in cols]))\n else:\n continue\n self._diskStats[dev]['rbytes'] = self._diskStats[dev]['rsect'\n ] * sectorSize\n self._diskStats[dev]['wbytes'] = self._diskStats[dev]['wsect'\n ] * sectorSize\n self._mapMajorMinor2dev[int(cols[0]), int(cols[1])] = dev\n", "role": "user" }, { "content": "initDiskStats", "role": "assistant" } ]
def x(self): self._devClassTree = {} self._partitionTree = {} self._mapDevType = {} basedevs = [] otherdevs = [] if self._mapMajorDevclass is None: self._initBlockMajorMap() for dev in self._diskStats: stats = self._diskStats[dev] devclass = self._mapMajorDevclass.get(stats['major']) if devclass is not None: devdir = os.path.join(sysfsBlockdevDir, dev) if os.path.isdir(devdir): if not self._devClassTree.has_key(devclass): self._devClassTree[devclass] = [] self._devClassTree[devclass].append(dev) self._mapDevType[dev] = devclass basedevs.append(dev) else: otherdevs.append(dev) basedevs.sort(key=len, reverse=True) otherdevs.sort(key=len, reverse=True) idx = 0 for partdev in otherdevs: while len(basedevs[idx]) > partdev: idx += 1 for dev in basedevs[idx:]: if re.match('%s(\\d+|p\\d+)$' % dev, partdev): if not self._partitionTree.has_key(dev): self._partitionTree[dev] = [] self._partitionTree[dev].append(partdev) self._mapDevType[partdev] = 'part'
initDevClasses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._devClassTree = {}\n self._partitionTree = {}\n self._mapDevType = {}\n basedevs = []\n otherdevs = []\n if self._mapMajorDevclass is None:\n self._initBlockMajorMap()\n for dev in self._diskStats:\n stats = self._diskStats[dev]\n devclass = self._mapMajorDevclass.get(stats['major'])\n if devclass is not None:\n devdir = os.path.join(sysfsBlockdevDir, dev)\n if os.path.isdir(devdir):\n if not self._devClassTree.has_key(devclass):\n self._devClassTree[devclass] = []\n self._devClassTree[devclass].append(dev)\n self._mapDevType[dev] = devclass\n basedevs.append(dev)\n else:\n otherdevs.append(dev)\n basedevs.sort(key=len, reverse=True)\n otherdevs.sort(key=len, reverse=True)\n idx = 0\n for partdev in otherdevs:\n while len(basedevs[idx]) > partdev:\n idx += 1\n for dev in basedevs[idx:]:\n if re.match('%s(\\\\d+|p\\\\d+)$' % dev, partdev):\n if not self._partitionTree.has_key(dev):\n self._partitionTree[dev] = []\n self._partitionTree[dev].append(partdev)\n self._mapDevType[partdev] = 'part'\n", "role": "user" }, { "content": "initDevClasses", "role": "assistant" } ]
def x(self, dev): if self._devClassTree is None: self._initDevClasses() return self._mapDevType.get(dev)
getDevType
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dev):\n if self._devClassTree is None:\n self._initDevClasses()\n return self._mapDevType.get(dev)\n", "role": "user" }, { "content": "getDevType", "role": "assistant" } ]
def x(self): if self._partList is None: self._partList = [] for disk, parts in self.getPartitionDict().iteritems(): for part in parts: self._partList.append((disk, part)) return self._partList
getPartitionList
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._partList is None:\n self._partList = []\n for disk, parts in self.getPartitionDict().iteritems():\n for part in parts:\n self._partList.append((disk, part))\n return self._partList\n", "role": "user" }, { "content": "getPartitionList", "role": "assistant" } ]
def x(self, dev): if self._swapList is None: self._initSwapInfo() if dev in self._swapList: return self.getDevStats(dev) else: return None
getSwapStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dev):\n if self._swapList is None:\n self._initSwapInfo()\n if dev in self._swapList:\n return self.getDevStats(dev)\n else:\n return None\n", "role": "user" }, { "content": "getSwapStats", "role": "assistant" } ]
def x(self, *args): if not len(args) in (1, 2): raise TypeError( 'The getLVstats must be called with either one or two arguments.') if self._vgTree is None: self._initDMinfo() if len(args) == 1: dmdev = self._mapLVname2dm.get(args[0]) else: dmdev = self._mapLVtuple2dm.get(args) if dmdev is not None: return self.getDevStats(dmdev) else: return None
getLVstats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args):\n if not len(args) in (1, 2):\n raise TypeError(\n 'The getLVstats must be called with either one or two arguments.')\n if self._vgTree is None:\n self._initDMinfo()\n if len(args) == 1:\n dmdev = self._mapLVname2dm.get(args[0])\n else:\n dmdev = self._mapLVtuple2dm.get(args)\n if dmdev is not None:\n return self.getDevStats(dmdev)\n else:\n return None\n", "role": "user" }, { "content": "getLVstats", "role": "assistant" } ]
def x(self, fs): if self._mapFSpathDev is None: self._initFilesystemInfo() return self._diskStats.get(self._mapFSpathDev.get(fs))
getFilesystemStats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fs):\n if self._mapFSpathDev is None:\n self._initFilesystemInfo()\n return self._diskStats.get(self._mapFSpathDev.get(fs))\n", "role": "user" }, { "content": "getFilesystemStats", "role": "assistant" } ]
def x(self): ntpinfo = NTPinfo() stats = ntpinfo.getHostOffset(self._remoteHost) if stats: graph_name = 'ntp_host_stratum_%s' % self._remoteHost if self.hasGraph(graph_name): self.setGraphVal(graph_name, 'stratum', stats.get('stratum')) graph_name = 'ntp_host_stat_%s' % self._remoteHost if self.hasGraph(graph_name): self.setGraphVal(graph_name, 'offset', stats.get('offset')) self.setGraphVal(graph_name, 'delay', stats.get('delay'))
retrieveVals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ntpinfo = NTPinfo()\n stats = ntpinfo.getHostOffset(self._remoteHost)\n if stats:\n graph_name = 'ntp_host_stratum_%s' % self._remoteHost\n if self.hasGraph(graph_name):\n self.setGraphVal(graph_name, 'stratum', stats.get('stratum'))\n graph_name = 'ntp_host_stat_%s' % self._remoteHost\n if self.hasGraph(graph_name):\n self.setGraphVal(graph_name, 'offset', stats.get('offset'))\n self.setGraphVal(graph_name, 'delay', stats.get('delay'))\n", "role": "user" }, { "content": "retrieveVals", "role": "assistant" } ]