blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
d907d58d96d89dae7c7aed5d1b6018504a7c8906
Python
MaEvGoR/datamining_project
/Spectrum.py
UTF-8
13,129
2.765625
3
[]
no_license
import math import numpy as np class Spectrum: def __init__(self, price_step): self.price_step = price_step self.buy_bins = [] self.all_buy_bins = [] self.all_buy_volumes = [] self.all_sell_bins = [] self.all_sell_volumes = [] self.sell_bins = [] self.best_sell = -1 self.best_buy = -1 self.buy_volumes = [0 for i in range(50)] self.sell_volumes = [0 for i in range(50)] self.spectrum_sell_bins = [] self.spectrum_buy_bins = [] self.spectrum_sell = [0 for i in range(10)] self.spectrum_buy = [0 for i in range(10)] def insert_to_buy(self, price, volume): max_price = self.all_buy_bins[0] # new one is greater than the currently recorded maximum if price > max_price: dist = math.ceil((price - max_price) / self.price_step) self.all_buy_bins = [i for i in np.arange(price, max_price, -self.price_step)] + self.all_buy_bins self.all_buy_volumes = [0 for i in range(len(self.all_buy_bins) - len(self.all_buy_volumes))] + self.all_buy_volumes self.all_buy_volumes[0] += volume return 0 else: idx = math.ceil((max_price - price) / self.price_step) if idx < len(self.all_buy_bins): self.all_buy_volumes[idx] += volume return idx else: dist = idx - len(self.all_buy_bins) + 1 self.all_buy_bins = self.all_buy_bins + [i for i in np.arange(self.all_buy_bins[-1] - self.price_step, price - 1, -self.price_step)] self.all_buy_volumes = self.all_buy_volumes + [0 for i in range( len(self.all_buy_bins) - len(self.all_buy_volumes))] self.all_buy_volumes[idx] += volume return idx def insert_to_sell(self, price, volume): min_price = self.all_sell_bins[0] # new one is less than the currently recorded minimum if price < min_price: dist = math.ceil((min_price - price) / self.price_step) self.all_sell_bins = [i for i in np.arange(price, min_price, self.price_step)] + self.all_sell_bins self.all_sell_volumes = [0 for i in range( len(self.all_sell_bins) - len(self.all_sell_volumes))] + self.all_sell_volumes self.all_sell_volumes[0] += volume return 0 else: idx = math.ceil((price - min_price) / self.price_step) if idx < len(self.all_sell_bins): self.all_sell_volumes[idx] += volume return idx else: dist = idx - len(self.all_sell_bins) + 1 self.all_sell_bins = self.all_sell_bins + [i for i in np.arange(self.all_sell_bins[-1] + self.price_step, price + 1, self.price_step)] self.all_sell_volumes = self.all_sell_volumes + [0 for i in range( len(self.all_sell_bins) - len(self.all_sell_volumes))] self.all_sell_volumes[idx] += volume return idx def delete_from_buy(self, price, volume): max_price = self.all_buy_bins[0] idx = math.ceil((max_price - price) / self.price_step) if 0 <= idx < len(self.all_buy_bins): if volume < self.all_buy_volumes[idx]: self.all_buy_volumes[idx] -= volume return idx # find first non-zero element else: self.all_buy_volumes[idx] = 0 while self.all_buy_volumes[idx] == 0: if (idx == len(self.all_buy_volumes) - 1): break idx += 1 return idx else: return -1 def delete_from_sell(self, price, volume): min_price = self.all_sell_bins[0] idx = math.ceil((price - min_price) / self.price_step) if 0 <= idx < len(self.all_sell_bins): if volume < self.all_sell_volumes[idx]: self.all_sell_volumes[idx] -= volume return idx # find first non-zero element else: self.all_sell_volumes[idx] = 0 while self.all_sell_volumes[idx] == 0: if (idx == len(self.all_sell_volumes) - 1): break idx += 1 return idx else: return -1 def find_idx_sell(self, price): k = math.ceil((price - self.best_sell) / self.price_step) if k == 50: k = 49 return int(k) def find_idx_buy(self, price): k = math.ceil((self.best_buy - price) / self.price_step) if k == 50: k = 49 return int(k) def find_idx_spectrum_sell(self, price): k = math.ceil((price - self.best_sell) / self.price_step) // 5 if k == 10: k = 9 return k def find_idx_spectrum_buy(self, price): k = math.ceil((self.best_buy - price) / self.price_step) // 5 if k == 10: k = 9 return k def recalc_spectrum_sell(self): self.spectrum_sell_bins = [self.sell_bins[i] for i in range(0, 50, 5)] self.spectrum_sell = [sum(self.sell_volumes[i:i + 5]) for i in range(0, 50, 5)] def recalc_spectrum_buy(self): self.spectrum_buy_bins = [self.buy_bins[i] for i in range(0, 50, 5)] self.spectrum_buy = [sum(self.buy_volumes[i:i + 5]) for i in range(0, 50, 5)] def new_sell_order(self, price, volume): # no sell orders recorded yet if self.best_sell == -1: self.best_sell = price max_sell = self.best_sell + 50 * self.price_step self.sell_bins = [p for p in np.arange(self.best_sell, max_sell, self.price_step)] self.spectrum_sell_bins = [p for p in np.arange(self.best_sell, max_sell, self.price_step * 5)] self.sell_volumes[0] = volume self.spectrum_sell[0] = volume self.all_sell_bins = self.sell_bins.copy() self.all_sell_volumes = self.sell_volumes.copy() else: # sell order falls somewhere in the existing bins if self.best_sell <= price < self.best_sell + 50 * self.price_step: idx = self.find_idx_sell(price) if idx == 50: idx = 49 self.sell_volumes[idx] += volume spect_idx = self.find_idx_spectrum_sell(price) self.spectrum_sell[spect_idx] += volume _ = self.insert_to_sell(price, volume) else: # found new best, update everything if self.best_sell > price: idx = self.insert_to_sell(price, volume) self.best_sell = price if idx + 50 < len(self.all_sell_bins): self.sell_bins = self.all_sell_bins[idx:idx + 50] self.sell_volumes = self.all_sell_volumes[idx:idx + 50] else: self.sell_bins = [p for p in np.arange(self.best_sell, self.best_sell + 50 * self.price_step, self.price_step)] self.sell_volumes = self.all_sell_volumes[idx:] + [0 for i in range(50 - len(self.all_sell_volumes) + idx)] self.recalc_spectrum_sell() # save for the later usage else: _ = self.insert_to_sell(price, volume) def new_buy_order(self, price, volume): # no buy orders recorded yet if self.best_buy == -1: self.best_buy = price min_buy = self.best_buy - 50 * self.price_step self.buy_bins = [p for p in np.arange(self.best_buy, min_buy, -self.price_step)] self.spectrum_buy_bins = [p for p in np.arange(self.best_buy, min_buy, -self.price_step * 5)] self.buy_volumes[0] = volume self.spectrum_buy[0] = volume self.all_buy_bins = self.buy_bins.copy() self.all_buy_volumes = self.buy_volumes.copy() else: # buy order falls somewhere in the existing bins if self.best_buy >= price > self.best_buy - 50 * self.price_step: idx = self.find_idx_buy(price) if idx == 50: idx = 49 self.buy_volumes[idx] += volume spect_idx = self.find_idx_spectrum_buy(price) self.spectrum_buy[spect_idx] += volume _ = self.insert_to_buy(price, volume) else: # found new best, update everything if self.best_buy < price: idx = self.insert_to_buy(price, volume) self.best_buy = price if idx + 50 < len(self.all_buy_bins): self.buy_bins = self.all_buy_bins[idx:idx + 50] self.buy_volumes = self.all_buy_volumes[idx:idx + 50] else: self.buy_bins = [p for p in np.arange(self.best_buy, self.best_buy - 50 * self.price_step, -self.price_step)] self.buy_volumes = self.all_buy_volumes[idx:] + [0 for i in range(50 - len(self.all_buy_volumes) + idx)] self.recalc_spectrum_buy() # save for the later usage else: _ = self.insert_to_buy(price, volume) def delete_sell_order(self, price, volume): # does not remove current best if self.best_sell + 50 * self.price_step > price > self.best_sell or price == self.best_sell and volume < \ self.sell_volumes[0]: idx = self.find_idx_sell(price) self.sell_volumes[idx] = max(0, self.sell_volumes[idx] - volume) spect_idx = self.find_idx_spectrum_sell(price) self.spectrum_sell[spect_idx] = max(0, self.spectrum_sell[spect_idx] - volume) else: # if removes current best if price == self.best_sell and volume >= self.sell_volumes[0]: idx = self.delete_from_sell(price, volume) self.best_sell = self.all_sell_bins[idx] if idx + 50 < len(self.all_sell_bins): self.sell_bins = self.all_sell_bins[idx:idx + 50] self.sell_volumes = self.all_sell_volumes[idx:idx + 50] else: self.sell_bins = [p for p in np.arange(self.best_sell, self.best_sell + 50 * self.price_step, self.price_step)] self.sell_volumes = self.all_sell_volumes[idx:] + [0 for i in range(50 - len(self.all_sell_volumes) + idx)] self.recalc_spectrum_sell() # if does not fall in 50 steps elif price > self.best_sell + 50 * self.price_step: _ = self.delete_from_sell(price, volume) def delete_buy_order(self, price, volume): # does not remove current best if self.best_buy - 50 * self.price_step < price < self.best_buy or price == self.best_buy and volume < \ self.buy_volumes[0]: idx = self.find_idx_buy(price) self.buy_volumes[idx] = max(0, self.buy_volumes[idx] - volume) spect_idx = self.find_idx_spectrum_buy(price) self.spectrum_buy[spect_idx] = max(0, self.spectrum_buy[spect_idx] - volume) else: # if removes current best if price == self.best_buy and volume >= self.buy_volumes[0]: idx = self.delete_from_buy(price, volume) self.best_buy = self.all_buy_bins[idx] if idx + 50 < len(self.all_buy_bins): self.buy_bins = self.all_buy_bins[idx:idx + 50] self.buy_volumes = self.all_buy_volumes[idx:idx + 50] else: self.buy_bins = [p for p in np.arange(self.best_buy, self.best_buy - 50 * self.price_step, -self.price_step)] self.buy_volumes = self.all_buy_volumes[idx:] + [0 for i in range(50 - len(self.all_buy_volumes) + idx)] self.recalc_spectrum_buy() # if does not fall in 50 steps elif price > self.best_buy + 50 * self.price_step: _ = self.delete_from_buy(price, volume)
true
0bfc3a6dedfd160096540ca46b1ab7c7f55db3a5
Python
SandaruwanWije/cryptography
/ceasar_cipher/ceasar_cipher.py
UTF-8
2,180
3.1875
3
[]
no_license
import sys def help(): print("python3 ceasar_cipher.py -e -m \"Enter Mesage Here\" -k 3") print("python3 ceasar_cipher.py -d -c \"ciper text\" -k 3") print("-k should me 0 26") def encrypt(msg, key): cipher = "" for letter in msg: int_ltr = ord(letter) if int_ltr > 64 and int_ltr < 91: new_int_ltr = int_ltr + key if new_int_ltr > 90: new_int_ltr = 64 + (key - (90 - int_ltr)) cipher = cipher + chr(new_int_ltr) elif int_ltr > 96 and int_ltr < 123: new_int_ltr = int_ltr + key if new_int_ltr > 122: new_int_ltr = 96 + (key - (122 - int_ltr)) cipher = cipher + chr(new_int_ltr) else: cipher = cipher + letter return cipher def decrypt(cipher, key): msg = "" for letter in cipher: int_ltr = ord(letter) if int_ltr > 64 and int_ltr < 91: new_int_ltr = int_ltr - key if new_int_ltr < 65: new_int_ltr = 91 - (65 - new_int_ltr) msg = msg + chr(new_int_ltr) elif int_ltr > 96 and int_ltr < 123: new_int_ltr = int_ltr - key if new_int_ltr < 97: new_int_ltr = 123 - (97 - new_int_ltr) msg = msg + chr(new_int_ltr) else: msg = msg + letter return msg if __name__ == "__main__": try: argv = sys.argv if "-h" in argv: help() elif "-e" in argv: msg_index = argv.index("-m") + 1 msg = argv[msg_index].replace("\"", "") key_index = argv.index("-k") + 1 key = argv[key_index] cipher = encrypt(msg, int(key)) print(cipher) else: cipher_index = argv.index("-c") + 1 cipher = argv[cipher_index].replace("\"", "") key_index = argv.index("-k") + 1 key = argv[key_index] msg = decrypt(cipher, int(key)) print(msg) except Exception as e: print("Something went wrong. python3 ceasar_cipher.py -h for help") print("\nHere the errand log:\n") print(e)
true
4e95a9a726881c765106344fca263a5f0118729e
Python
ifebuche/2NYP-DS-Project
/onboard.py
UTF-8
2,991
2.625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Oct 30 2020 11:13:37 Updated on Sat Oct 31, 2020 11:14:29 @author: Fesh """ ################################################################################### ##1. This Script finds and assembles all Excel files sent over by streamers which are products of meating.py ##2. The joined dataset is written to our database and the excel files moved to 'Warehoused' folder ################################################################################## print("Onboarding script pipline for 2NYP DS Project v1") print("Importing modules...") import pyodbc, time, os, sys import pandas as pd from datetime import datetime import urllib from sqlalchemy import create_engine, types #Make connection params = urllib.parse.quote_plus('DRIVER={ODBC Driver 17 for SQL Server};SERVER=FESH\FESHQL; DATABASE=feshdb; Trusted_Connection=yes') engine = create_engine("mssql+pyodbc:///?odbc_connect=%s" % params) files = [line for line in os.listdir() if line.endswith('xlsx')] if not files: print(f"We could not find any Excel files.\nExiting") time.sleep(2) sys.exit() #Checker checker = ['id', 'text', 'source', 'in_reply_to_status_id', 'create_date', 'create_time', 'followers', 'fav_count', 'statuses_count', 'loacation', 'verified', 'name', 'screen_name'] #Assemble all files dfs = [] for item in files: df = pd.read_excel(item) if df.columns.tolist() == checker: dfs.append(df) print(f"{item} done") else: print(f"Inconsistent column names in {item}") print("Trying to correct it") #Check if the two params dropped by Twitter is the old df try: if 'extended_tweet' in df.columns and 'display_text_range' in df.columns: del df['extended_tweet'] del df['display_text_range'] dfs.append(df) print(f"{item} done") else: print('Was not what we thought.\nExiting.') time.sleep(2) sys.exit() except: print('Was not what we thought.\nExiting.') time.sleep(2) sys.exit() combo = pd.concat(dfs).reset_index(drop=True) #Rename id to tweet_id combo = combo.rename(columns = {'id':'tweet_id'}) combo.keys() print("Commencing write to warehouse") #Write data to LifeRenewals table and replace if exists try: combo.to_sql('_2NYP', engine, if_exists='append', index=False) print("Successfully writtent to warehouse") #Move file Warehoused folder for item in files: namer = item[:-5] print(f"Moving {item} to the 'Warehoused' folder...") time.sleep(2) now = datetime.now() name_marker = datetime.strftime(now, '%Y_%m_%d_%H_%M') path_now = os.getcwd() + '\\' os.replace(path_now + item, path_now + 'Warehoused\\' + namer + '_' + name_marker + '.xlsx') except Exception as e: print("Something bad occurred!") print(e)
true
ae7ecfd0f92e3e8ab0323f456b5f4cb4513172e0
Python
lipug/misc
/tinkering/background_tasks.py
UTF-8
5,594
3.234375
3
[]
no_license
import asyncio, socket def schedule_coroutine(target, *, loop=None): """Schedules target coroutine in the given event loop If not given, *loop* defaults to the current thread's event loop Returns the scheduled task. """ if asyncio.iscoroutine(target): return asyncio.ensure_future(target, loop=loop) raise TypeError("target must be a coroutine, " "not {!r}".format(type(target))) def call_in_background(target, *, loop=None, executor=None): """Schedules and starts target callable as a background task If not given, *loop* defaults to the current thread's event loop If not given, *executor* defaults to the loop's default executor Returns the scheduled task. """ if loop is None: loop = asyncio.get_event_loop() if callable(target): return loop.run_in_executor(executor, target) raise TypeError("target must be a callable, " "not {!r}".format(type(target))) def run_in_foreground(task, *, loop=None): """Runs event loop in current thread until the given task completes Returns the result of the task. For more complex conditions, combine with asyncio.wait() To include a timeout, combine with asyncio.wait_for() """ if loop is None: loop = asyncio.get_event_loop() return loop.run_until_complete(asyncio.ensure_future(task, loop=loop)) async def handle_tcp_echo(reader, writer): data = await reader.read(100) message = data.decode() addr = writer.get_extra_info('peername') print("-> Server received %r from %r" % (message, addr)) print("<- Server sending: %r" % message) writer.write(data) await writer.drain() print("-- Terminating connection on server") writer.close() async def tcp_echo_client(message, port, loop=None): reader, writer = await asyncio.open_connection('127.0.0.1', port, loop=loop) print('-> Client sending: %r' % message) writer.write(message.encode()) data = (await reader.read(100)).decode() print('<- Client received: %r' % data) print('-- Terminating connection on client') writer.close() return data def tcp_echo_client_sync(message, port): conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('-> Client connecting to port: %r' % port) conn.connect(('127.0.0.1', port)) print('-> Client sending: %r' % message) conn.send(message.encode()) data = conn.recv(100).decode() print('<- Client received: %r' % data) print('-- Terminating connection on client') conn.close() return data """ make_server = asyncio.start_server(handle_tcp_echo, '127.0.0.1') server = run_in_foreground(make_server) server.sockets[0] port = server.sockets[0].getsockname()[1] make_server2 = asyncio.start_server(handle_tcp_echo, '127.0.0.1') server2 = run_in_foreground(make_server2) server2.sockets[0] port2 = server2.sockets[0].getsockname()[1] print(run_in_foreground(tcp_echo_client('Hello World!', port))) print(run_in_foreground(tcp_echo_client('Hello World!', port2))) echo1 = schedule_coroutine(tcp_echo_client('Hello World!', port)) echo2 = schedule_coroutine(tcp_echo_client('Hello World!', port2)) run_in_foreground(asyncio.wait([echo1, echo2])) echo1.result() echo2.result() query_server = partial(tcp_echo_client_sync, "Hello World!", port) query_server2 = partial(tcp_echo_client_sync, "Hello World!", port2) bg_call = call_in_background(query_server) bg_call2 = call_in_background(query_server2) run_in_foreground(asyncio.wait([bg_call, bg_call2])) bg_call.result() bg_call2.result() """ """ import socket def blocking_tcp_client(message, port): conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('-> Client connecting to port: {}'.format(port)) conn.connect(('127.0.0.1', port)) print('-> Client sending: {!r}'.format(message)) conn.send(message.encode()) response = conn.recv(100).decode() print('<- Client received: {!r}'.format(response)) print('-- Terminating connection on client') conn.close() return response import asyncio async def handle_tcp_echo(reader, writer): message = (await reader.read(100)).decode() print('-> Server received: {!r}'.format(message)) client = writer.get_extra_info('peername') print("<- Server sending {!r} to {}".format(message, client)) writer.write(message.encode()) await writer.drain() print("-- Terminating connection on server") writer.close() loop = asyncio.get_event_loop() make_server = asyncio.start_server(handle_tcp_echo, '127.0.0.1') server = loop.run_until_complete(make_server) server.sockets port = server.sockets[0].getsockname()[1] from functools import partial query_server = partial(blocking_tcp_client, "Hello World!", port) background_call = loop.run_in_executor(None, query_server) response = loop.run_until_complete(background_call) response async def tcp_echo_client(message, port): reader, writer = await asyncio.open_connection('127.0.0.1', port) print('-> Client sending: {!r}'.format(message)) writer.write(message.encode()) response = (await reader.read(100)).decode() print('<- Client received: {!r}'.format(response)) print('-- Terminating connection on client') writer.close() return response response = loop.run_until_complete(tcp_echo_client('Hello World!', port)) response def echo_range(stop): tasks = (asyncio.ensure_future(tcp_echo_client(str(i), port)) for i in range(stop)) return asyncio.gather(*tasks) responses = list(loop.run_until_complete(echo_range(10))) responses """
true
ec0d764500c36af6b6dfbad031c0470922b8d7a0
Python
jtsw1990/oop_vending_machine
/main.py
UTF-8
2,066
2.515625
3
[ "MIT" ]
permissive
from vending_machine.vending_machine import DataReader, VendingMachine from vending_machine.customer_simulation import CustomerArrival, CustomerChoice import time import datetime import csv from datetime import datetime import os import json with open("config.json") as f: config = json.load(f) PERIOD_IN_HOURS = config["HOURS"] ts = datetime.now().strftime("%d-%m-%y_%H-%M") output_folder = "./analytics/{}".format(ts) vending_one = VendingMachine(config["MAX_CAPACITY"]) vending_one.load_drinks("./vending_machine/drinks_list.csv") sample_customer = CustomerArrival() sample_customer_choice = CustomerChoice() if not os.path.exists(output_folder): try: os.makedirs(output_folder) except OSError as exc: if exc.errno != errno.EEXIST: raise with open("{}/report_{}.csv".format(output_folder, ts, ts), mode="w+") as csv_file: colnames = ["drink", "price", "hour", "arrival_no"] writer = csv.DictWriter(csv_file, fieldnames=colnames) writer.writeheader() for hour in range(PERIOD_IN_HOURS): arrived_per_unit_time = sample_customer.calculate_arrivals() print("{} customers arrived in time {}".format( arrived_per_unit_time, hour + 1)) for customer in range(arrived_per_unit_time): drinks_displayed = vending_one.drinks_displayed drink_choice = sample_customer_choice.choose_drink( vending_one.display_stock()) if (vending_one.dispense_drink(drink_choice) == drink_choice) & (drink_choice is not None): print("Customer: {} from time: {} chose: {}".format( customer + 1, hour + 1, drink_choice)) print("Drinks left: {}, Cumulative Earnings: {}".format( vending_one.current_stock, vending_one.current_earnings)) writer.writerow( { "drink": drink_choice, "price": vending_one.stock_list[drink_choice][0], "hour": hour, "arrival_no": customer } ) else: print("{} was chosen but not available".format(drink_choice)) writer.writerow( { "drink": "missed_sale", "price": 0, "hour": hour, "arrival_no": customer } )
true
581934820e5e49bec35507639f3ffda488b1f4f9
Python
GazzolaLab/PyElastica
/examples/RigidBodyCases/RodRigidBodyContact/post_processing.py
UTF-8
28,770
2.59375
3
[ "MIT" ]
permissive
import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from typing import Dict, Sequence from tqdm import tqdm def make_data_for_cylinder_along_y(cstart, cradius, cheight): center_x, center_z = cstart[0], cstart[1] y = np.linspace(0, cheight, 5) theta = np.linspace(0, 2 * np.pi, 20) theta_grid, y_grid = np.meshgrid(theta, y) x_grid = cradius * np.cos(theta_grid) + center_x z_grid = cradius * np.sin(theta_grid) + center_z y_grid += cstart[2] return [x_grid, y_grid, z_grid] def plot_video( rod_history: dict, cylinder_history: dict, video_name="video.mp4", margin=0.2, fps=60, step=1, *args, **kwargs, ): # (time step, x/y/z, node) cylinder_start = np.array(cylinder_history["position"])[0, ...] cylinder_radius = kwargs.get("cylinder_radius") cylinder_height = kwargs.get("cylinder_height") cylinder_direction = kwargs.get("cylinder_direction") XC, YC, ZC = make_data_for_cylinder_along_y( cylinder_start, cylinder_radius, cylinder_height ) import matplotlib.animation as manimation plt.rcParams.update({"font.size": 22}) # Should give a (n_time, 3, n_elem) array positions = np.array(rod_history["position"]) # (n_time, 3) array com = np.array(rod_history["com"]) cylinder_com = np.array(cylinder_history["com"]) cylinder_origin = cylinder_com - 0.5 * cylinder_height * cylinder_direction print("plot video") FFMpegWriter = manimation.writers["ffmpeg"] metadata = dict(title="Movie Test", artist="Matplotlib", comment="Movie support!") writer = FFMpegWriter(fps=fps, metadata=metadata) dpi = 50 # min_limits = np.roll(np.array([0.0, -0.5 * cylinder_height, 0.0]), _roll_key) fig = plt.figure(1, figsize=(10, 8), frameon=True, dpi=dpi) ax = plt.axes(projection="3d") # fig.add_subplot(111) ax.grid(which="minor", color="k", linestyle="--") ax.grid(which="major", color="k", linestyle="-") # plt.axis("square") i = 0 (rod_line,) = ax.plot(positions[i, 0], positions[i, 1], positions[i, 2], lw=3.0) XC, YC, ZC = make_data_for_cylinder_along_y( cylinder_origin[i, ...], cylinder_radius, cylinder_height ) surf = ax.plot_surface(XC, YC, ZC, color="g", alpha=0.5) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") min_limits = np.array([0.0, 0.0, -0.5 * cylinder_height]) min_limits = -np.abs(min_limits) max_limits = min_limits + cylinder_height ax.set_xlim([min_limits[0], max_limits[0]]) ax.set_ylim([min_limits[1], max_limits[1]]) ax.set_zlim([min_limits[2], max_limits[2]]) with writer.saving(fig, video_name, dpi): with plt.style.context("seaborn-white"): for i in range(0, positions.shape[0], int(step)): rod_line.set_xdata(positions[i, 0]) rod_line.set_ydata(positions[i, 1]) rod_line.set_3d_properties(positions[i, 2]) XC, YC, ZC = make_data_for_cylinder_along_y( cylinder_origin[i, ...], cylinder_radius, cylinder_height ) surf.remove() surf = ax.plot_surface(XC, YC, ZC, color="g", alpha=0.5) writer.grab_frame() from matplotlib.patches import Circle fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) i = 0 cstart = cylinder_origin (rod_line,) = ax.plot(positions[i, 0], positions[i, 1], lw=3.0) (tip_line,) = ax.plot(com[i, 0], com[i, 1], "k--") min_limits = np.array([0.0, 0.0, -0.5 * cylinder_height]) max_limits = min_limits + cylinder_height ax.set_xlim([min_limits[0], max_limits[0]]) ax.set_ylim([min_limits[2], max_limits[2]]) circle_artist = Circle((cstart[i, 0], cstart[i, 2]), cylinder_radius, color="g") ax.add_artist(circle_artist) ax.set_aspect("equal") video_name = "2D_" + video_name with writer.saving(fig, video_name, dpi): with plt.style.context("fivethirtyeight"): for i in range(0, positions.shape[0], int(step)): rod_line.set_xdata(positions[i, 0]) rod_line.set_ydata(positions[i, 2]) tip_line.set_xdata(com[:i, 0]) tip_line.set_ydata(com[:i, 2]) circle_artist.center = cstart[i, 0], cstart[i, 2] writer.grab_frame() def plot_cylinder_rod_position( rod_history, cylinder_history, cylinder_radius, rod_base_radius, TIP_COLLISION, TIP_CHOICE, _roll_key=0, ): cylinder_start = np.array(cylinder_history["position"])[0, ...] positions = np.array(rod_history["position"]) sim_time = np.array(rod_history["time"]) n_elem = positions.shape[-1] fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150) plt.rcParams.update({"font.size": 18}) ax = fig.add_subplot(111) colliding_element_idx = n_elem // 2 if TIP_COLLISION: colliding_element_idx = 0 if TIP_CHOICE == 1 else -1 colliding_element_history = positions[:, :, colliding_element_idx] # fig = plt.figure(3, figsize=(8, 5)) # ax = fig.add_subplot(111) ax.plot(sim_time, colliding_element_history[:, _roll_key], label="rod") ax.hlines( cylinder_start[_roll_key] - cylinder_radius - rod_base_radius, sim_time[0], sim_time[-1], "k", linestyle="dashed", label="cylinder", ) plt.xlabel("Time [s]", fontsize=20) plt.ylabel("Position", fontsize=20) fig.legend(prop={"size": 20}) plt.show() def plot_velocity( plot_params_rod_one: dict, plot_params_rod_two: dict, filename="velocity.png", SAVE_FIGURE=False, ): time = np.array(plot_params_rod_one["time"]) avg_velocity_rod_one = np.array(plot_params_rod_one["com_velocity"]) avg_velocity_rod_two = np.array(plot_params_rod_two["com_velocity"]) total_energy_rod_one = np.array(plot_params_rod_one["total_energy"]) total_energy_rod_two = np.array(plot_params_rod_two["total_energy"]) fig = plt.figure(figsize=(12, 10), frameon=True, dpi=150) axs = [] axs.append(plt.subplot2grid((4, 1), (0, 0))) axs.append(plt.subplot2grid((4, 1), (1, 0))) axs.append(plt.subplot2grid((4, 1), (2, 0))) axs.append(plt.subplot2grid((4, 1), (3, 0))) axs[0].plot(time[:], avg_velocity_rod_one[:, 0], linewidth=3, label="rod_one") axs[0].plot(time[:], avg_velocity_rod_two[:, 0], linewidth=3, label="rod_two") axs[0].plot( time[:], avg_velocity_rod_one[:, 0] + avg_velocity_rod_two[:, 0], "--", linewidth=3, label="total", ) axs[0].set_ylabel("x velocity", fontsize=20) axs[1].plot( time[:], avg_velocity_rod_one[:, 1], linewidth=3, ) axs[1].plot( time[:], avg_velocity_rod_two[:, 1], linewidth=3, ) axs[1].plot( time[:], avg_velocity_rod_one[:, 1] + avg_velocity_rod_two[:, 1], "--", linewidth=3, ) axs[1].set_ylabel("y velocity", fontsize=20) axs[2].plot( time[:], avg_velocity_rod_one[:, 2], linewidth=3, ) axs[2].plot( time[:], avg_velocity_rod_two[:, 2], linewidth=3, ) axs[2].plot( time[:], avg_velocity_rod_one[:, 2] + avg_velocity_rod_two[:, 2], "--", linewidth=3, ) axs[2].set_ylabel("z velocity", fontsize=20) axs[3].semilogy( time[:], total_energy_rod_one[:], linewidth=3, ) axs[3].semilogy( time[:], total_energy_rod_two[:], linewidth=3, ) axs[3].semilogy( time[:], np.abs(total_energy_rod_one[:] - total_energy_rod_two[:]), "--", linewidth=3, ) axs[3].set_ylabel("total_energy", fontsize=20) axs[3].set_xlabel("time [s]", fontsize=20) plt.tight_layout() # fig.align_ylabels() fig.legend(prop={"size": 20}) # fig.savefig(filename) # plt.show() plt.close(plt.gcf()) if SAVE_FIGURE: fig.savefig(filename) def plot_video_with_surface( rods_history: Sequence[Dict], video_name="video.mp4", fps=60, step=1, vis2D=True, **kwargs, ): plt.rcParams.update({"font.size": 22}) folder_name = kwargs.get("folder_name", "") # 2d case <always 2d case for now> import matplotlib.animation as animation # simulation time sim_time = np.array(rods_history[0]["time"]) # Rod n_visualized_rods = len(rods_history) # should be one for now # Rod info rod_history_unpacker = lambda rod_idx, t_idx: ( rods_history[rod_idx]["position"][t_idx], rods_history[rod_idx]["radius"][t_idx], ) # Rod center of mass com_history_unpacker = lambda rod_idx, t_idx: rods_history[rod_idx]["com"][time_idx] # Generate target sphere data sphere_flag = False if kwargs.__contains__("sphere_history"): sphere_flag = True sphere_history = kwargs.get("sphere_history") n_visualized_spheres = len(sphere_history) # should be one for now sphere_history_unpacker = lambda sph_idx, t_idx: ( sphere_history[sph_idx]["position"][t_idx], sphere_history[sph_idx]["radius"][t_idx], ) # color mapping sphere_cmap = cm.get_cmap("Spectral", n_visualized_spheres) # video pre-processing print("plot scene visualization video") FFMpegWriter = animation.writers["ffmpeg"] metadata = dict(title="Movie Test", artist="Matplotlib", comment="Movie support!") writer = FFMpegWriter(fps=fps, metadata=metadata) dpi = kwargs.get("dpi", 100) xlim = kwargs.get("x_limits", (-1.0, 1.0)) ylim = kwargs.get("y_limits", (-1.0, 1.0)) zlim = kwargs.get("z_limits", (-0.05, 1.0)) difference = lambda x: x[1] - x[0] max_axis_length = max(difference(xlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis if kwargs.get("vis3D", True): fig = plt.figure(1, figsize=(10, 8), frameon=True, dpi=dpi) ax = plt.axes(projection="3d") ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.set_xlim(*xlim) ax.set_ylim(*ylim) ax.set_zlim(*zlim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) # for reference see # https://stackoverflow.com/questions/48172928/scale-matplotlib-pyplot # -axes-scatter-markersize-by-x-scale/48174228#48174228 scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[1], inst_position[2], # for circle s = 4/pi*area = 4 * r^2 s=4 * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) sphere_artists[sphere_idx] = ax.scatter( sphere_position[0], sphere_position[1], sphere_position[2], s=4 * (scaling_factor * sphere_radius) ** 2, ) # sphere_radius, # color=sphere_cmap(sphere_idx),) ax.add_artist(sphere_artists[sphere_idx]) # ax.set_aspect("equal") video_name_3D = folder_name + "3D_" + video_name with writer.saving(fig, video_name_3D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_scatters[rod_idx]._offsets3d = ( inst_position[0], inst_position[1], inst_position[2], ) scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) # rod_scatters[rod_idx].set_offsets(inst_position[:2].T) rod_scatters[rod_idx].set_sizes( 4 * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx]._offsets3d = ( sphere_position[0], sphere_position[1], sphere_position[2], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) if kwargs.get("vis2D", True): max_axis_length = max(difference(xlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*xlim) ax.set_ylim(*ylim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[0], inst_position[1], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[0], inst_com[1], "k--", lw=2.0)[0] scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[1], s=4 * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[0], sphere_position[1]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_xy_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[0]) rod_lines[rod_idx].set_ydata(inst_position[1]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[0]) rod_com_lines[rod_idx].set_ydata(com[1]) rod_scatters[rod_idx].set_offsets(inst_position[:2].T) scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx].set_sizes( 4 * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[0], sphere_position[1], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) # Plot zy max_axis_length = max(difference(zlim), difference(ylim)) # The scaling factor from physical space to matplotlib space scaling_factor = (2 * 0.1) / max_axis_length # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*zlim) ax.set_ylim(*ylim) time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[2], inst_position[1], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[2], inst_com[1], "k--", lw=2.0)[0] scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx] = ax.scatter( inst_position[2], inst_position[1], s=4 * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[2], sphere_position[1]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_zy_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[2]) rod_lines[rod_idx].set_ydata(inst_position[1]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[2]) rod_com_lines[rod_idx].set_ydata(com[1]) rod_scatters[rod_idx].set_offsets( np.vstack((inst_position[2], inst_position[1])).T ) scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx].set_sizes( 4 * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[2], sphere_position[1], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) # Plot xz fig = plt.figure(2, figsize=(10, 8), frameon=True, dpi=dpi) ax = fig.add_subplot(111) ax.set_xlim(*xlim) ax.set_ylim(*zlim) # The scaling factor from physical space to matplotlib space max_axis_length = max(difference(zlim), difference(xlim)) scaling_factor = (2 * 0.1) / (max_axis_length) # Octopus head dimension scaling_factor *= 2.6e3 # Along one-axis time_idx = 0 rod_lines = [None for _ in range(n_visualized_rods)] rod_com_lines = [None for _ in range(n_visualized_rods)] rod_scatters = [None for _ in range(n_visualized_rods)] for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker(rod_idx, time_idx) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * (inst_position[..., 1:] + inst_position[..., :-1]) rod_lines[rod_idx] = ax.plot( inst_position[0], inst_position[2], "r", lw=0.5 )[0] inst_com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx] = ax.plot(inst_com[0], inst_com[2], "k--", lw=2.0)[0] scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx] = ax.scatter( inst_position[0], inst_position[2], s=4 * (scaling_factor * inst_radius) ** 2, ) if sphere_flag: sphere_artists = [None for _ in range(n_visualized_spheres)] for sphere_idx in range(n_visualized_spheres): sphere_position, sphere_radius = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx] = Circle( (sphere_position[0], sphere_position[2]), sphere_radius, color=sphere_cmap(sphere_idx), ) ax.add_artist(sphere_artists[sphere_idx]) ax.set_aspect("equal") video_name_2D = folder_name + "2D_xz_" + video_name with writer.saving(fig, video_name_2D, dpi): with plt.style.context("seaborn-whitegrid"): for time_idx in tqdm(range(0, sim_time.shape[0], int(step))): for rod_idx in range(n_visualized_rods): inst_position, inst_radius = rod_history_unpacker( rod_idx, time_idx ) if not inst_position.shape[1] == inst_radius.shape[0]: inst_position = 0.5 * ( inst_position[..., 1:] + inst_position[..., :-1] ) rod_lines[rod_idx].set_xdata(inst_position[0]) rod_lines[rod_idx].set_ydata(inst_position[2]) com = com_history_unpacker(rod_idx, time_idx) rod_com_lines[rod_idx].set_xdata(com[0]) rod_com_lines[rod_idx].set_ydata(com[2]) rod_scatters[rod_idx].set_offsets( np.vstack((inst_position[0], inst_position[2])).T ) scaling_factor = ( ax.get_window_extent().width / (max_axis_length) * 72.0 / fig.dpi ) rod_scatters[rod_idx].set_sizes( 4 * (scaling_factor * inst_radius) ** 2 ) if sphere_flag: for sphere_idx in range(n_visualized_spheres): sphere_position, _ = sphere_history_unpacker( sphere_idx, time_idx ) sphere_artists[sphere_idx].center = ( sphere_position[0], sphere_position[2], ) writer.grab_frame() # Be a good boy and close figures # https://stackoverflow.com/a/37451036 # plt.close(fig) alone does not suffice # See https://github.com/matplotlib/matplotlib/issues/8560/ plt.close(plt.gcf()) def plot_force_vs_energy( normalized_force, total_final_energy, friction_coefficient, filename="energy_vs_force.png", SAVE_FIGURE=False, ): fig = plt.figure(figsize=(12, 10), frameon=True, dpi=150) axs = [] axs.append(plt.subplot2grid((1, 1), (0, 0))) axs[0].plot( normalized_force, total_final_energy, linewidth=3, ) plt.axvline(x=friction_coefficient, linewidth=3, color="r", label="threshold") axs[0].set_ylabel("total energy", fontsize=20) axs[0].set_xlabel("normalized force", fontsize=20) plt.tight_layout() # fig.align_ylabels() fig.legend(prop={"size": 20}) # fig.savefig(filename) # plt.show() plt.close(plt.gcf()) if SAVE_FIGURE: fig.savefig(filename)
true
81119c5abb6f84b2f51c1e3a9b5ac9837cb0bcd3
Python
YuRiTan/rsgeo
/rsgeo-py/tests/test_rsgeo.py
UTF-8
391
2.515625
3
[ "MIT" ]
permissive
import numpy as np from rsgeo import contains, distance # noqa def test_contains(polygon_coords, xs, ys): result = contains(polygon_coords, xs, ys) np.testing.assert_array_equal(result, [False, False, False, True]) def test_distance(polygon_coords, xs, ys): result = distance(polygon_coords, xs, ys) np.testing.assert_array_equal(result, [0, 0, 1.4142135623730951, 0])
true
825fc032cadd4974322b076d5c7a57a28d65eee5
Python
yanghun-park/PowerShell-Token-Analyzer
/PSDecode.py
UTF-8
2,930
3.234375
3
[]
no_license
import subprocess, locale # ----------------------------------------------------------------------------------------------- # 1. PSDecode (File): Decryption module using PSDecode # Return value (String): 0 - When decryption fails / [String] - When decryption # Translation : 2021/04/29 # ----------------------------------------------------------------------------------------------- def PSDecode(File): command = "powershell.exe Get-Content " + File + " | PSDecode;" # Invoke command to Subprocess ps = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) data, err = ps.communicate() # Decode the results to fit the system lang = locale.getdefaultlocale() # Import Operating System Language # Use second value because the resulting value of lang is (language, encoding) try: data = data.decode(lang[1]) err = err.decode(lang[1]) except UnicodeDecodeError: # In case of Unicode error try: data = data.decode('UTF-8') err = err.decode('UTF-8') except: return 0 # Returns 0 if an error still occurs if(err != ""): print("==========[Error]==========") print("Either it was not run in PowerShell or the PSDecode module was not installed.") return 0 Check = False # Save Detections Successful Output = [] # Variables to hold results on successful decryption Del_output = 0 # Variables to remember unnecessary lines of data dataline = data.split('\n') for word in dataline: Checkline = word[31:38] if(Check): if(word == ""): Check = False if not word[0:10] == "No actions": # No actions Identified. Methods~~ Remove Phrase Output.append(word) # Adding decryption data to the output file Del_output = Del_output + 1 for N in range(3, 1, -1): if(Checkline == "Layer " + str(N)): # On successful decryption Check = True continue if "### Actions ###" in word: Check = True continue elif "### Warning! ###" in word: # On alert if (Check): # If decryption is successful and "Warning" appears, del Output[len(Output)-1] # ### Warning! ### remove break return 0 # Otherwise, return as Decryption Failed elif "### ERROR! ###" in word: # When Decryption Fails return 0 # return Fails Decode_File = open(File + "_decode", 'w', encoding='UTF-8') # Creating a Decoded Temporary File Num = 1 for dataline in Output: # Write File if(Num == Del_output): break Decode_File.write(dataline) Num = Num + 1 Decode_File.close() return File + "_decode"
true
1a20789533f1e35f8e68120eaf8044c959a5f969
Python
Aasthaengg/IBMdataset
/Python_codes/p03416/s073236091.py
UTF-8
154
3.078125
3
[]
no_license
a,b = map(int, input().split()) ans = 0 for i in range(a,b+1): s = str(i) hl = len(s)//2 if s[:hl]== s[-1:-1-hl:-1]: ans+=1 print(ans)
true
e1081ee92a93c1c0d02369a5484c5e8604108619
Python
kmilewczyk96/zadania_dodatkowe
/closest_power.py
UTF-8
427
3.109375
3
[]
no_license
def closest_power(base, num): result = 0 powered = 0 while powered < num: powered = base ** result result = result + 1 if ((base ** (result - 2)) + powered) / 2 >= num: return result - 2 return result - 1 if __name__ == '__main__': assert closest_power(3, 6) == 1 assert closest_power(4, 12) == 2 assert closest_power(3, 12) == 2 assert closest_power(4, 1) == 0
true
db2e0abdeb0f39a35fe7afc3799610322806a52a
Python
totomz/docker-tasker
/tasker/examples/SimpleSum.py
UTF-8
1,166
3.09375
3
[ "MIT" ]
permissive
import logging import sys import os from tasker.master.Master import Master from dotenv import load_dotenv load_dotenv() logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(sys.stdout)]) def supply(): n = 1 while n <= 10: task = { "id": "test-{}".format(n), "image": "ubuntu", "arguments": "/bin/bash -c 'sleep 1; echo {number}'".format(number=n) } yield task n += 1 def reduce(value, accumulator, bar): # value is a dictionary similar to {'id': 'test-2', 'isSuccess': True, 'payload': '2'} bar.text("Processing: {task}".format(task=value['id'])) if value['isSuccess']: accumulator.append(int(value['payload'])) def termination(values): logging.info("Termination! Values: {}".format(values)) _sum = 0 for v in values: _sum += v logging.info("DONE! The sum is {}".format(_sum)) logging.info(_sum) if __name__ == '__main__': print("DIOCANE PYTHON") master = Master(supplier=supply, reducer=reduce, terminate=termination) master.start() print("### DONE ###")
true
db9ad58d9f0b19396c6d9d75c7004698881c20ff
Python
YangForever/COP514Group
/guifinal/cwgui/gui_readpic.py
UTF-8
423
2.78125
3
[]
no_license
from PIL import Image import numpy as np def readPic(filename): im = Image.open(str(filename)) # im.show() pix = im.load() x = im.size[0] y = im.size[1] temp = [] for i in range(x): for j in range(y): temp.append(pix[j,i]) return ''.join(s for s in str(temp).split(', ')) # temp = np.asarray(temp) # temp.resize(200, 200) # print len(temp) # img = Image.fromarray(temp) # img.show()
true
2a8395863917a8f6771b5bfec569e2f10ab3f5e7
Python
rds504/AoC-2020
/solutions/day16.py
UTF-8
3,105
3.109375
3
[ "MIT" ]
permissive
import re from functools import reduce from operator import mul from tools.general import load_input class ValidValues: def __init__(self, bounds): self._lo1, self._hi1, self._lo2, self._hi2 = [int(bound) for bound in bounds] def __contains__(self, value): return self._lo1 <= value <= self._hi1 or self._lo2 <= value <= self._hi2 def parse_ticket_data(ticket_data): rule_pattern = re.compile(r"([a-z ]+): ([0-9]+)-([0-9]+) or ([0-9]+)-([0-9]+)") field_rules = {} your_ticket = None near_tickets = [] parsing_mode = "rules" for line in ticket_data.split('\n'): if line == "your ticket:": parsing_mode = "yours" elif line == "nearby tickets:": parsing_mode = "nearby" elif parsing_mode == "rules": match = rule_pattern.match(line) if match: field, *bounds = match.groups() field_rules[field] = ValidValues(bounds) elif line != "": ticket = [int(i) for i in line.split(',')] if parsing_mode == "yours": your_ticket = ticket elif parsing_mode == "nearby": near_tickets.append(ticket) return (field_rules, your_ticket, near_tickets) def validate_tickets(rule_list, ticket_list): invalid_fields = [] valid_tickets = [] for ticket in ticket_list: ticket_valid = True for field in ticket: for valid_values in rule_list: if field in valid_values: break else: invalid_fields.append(field) ticket_valid = False if ticket_valid: valid_tickets.append(ticket) return (valid_tickets, sum(invalid_fields)) def resolve_field_positions(field_rules, valid_ticket_list): field_positions = {} field_valid_positions = {} for field, valid_values in field_rules.items(): valid_positions = set(range(len(valid_ticket_list[0]))) for ticket in valid_ticket_list: for position, value in enumerate(ticket): if value not in valid_values: valid_positions.remove(position) field_valid_positions[field] = valid_positions for field, valid_positions in sorted(field_valid_positions.items(), key = lambda x: len(x[1])): for position in valid_positions: if position not in field_positions.values(): field_positions[field] = position break return field_positions def check_departure_fields(field_map, ticket): return reduce( mul, (ticket[pos] for fld, pos in field_map.items() if fld.startswith("departure")) ) rules, own_ticket, nearby_tickets = parse_ticket_data(load_input("day16.txt")) nearby_valid_tickets, invalid_fieldsum = validate_tickets(rules.values(), nearby_tickets) print(f"Part 1 => {invalid_fieldsum}") fld_positions = resolve_field_positions(rules, nearby_valid_tickets) print(f"Part 2 => {check_departure_fields(fld_positions, own_ticket)}")
true
2102505bbbe24a5cd7136c4b066da59739f9889f
Python
indahwlnlstr/apd
/postest2.py
UTF-8
1,052
3.859375
4
[]
no_license
#operasi aritmatika print("Hello,""Selamat Datang") def print_menu(): print(30 * "-", "MENU", 30*"-") print("1. Menghitung Luas Balok") print("2. Menghitung Konversi Suhu") print("3. Menghitung Volume Kerucut") print_menu() pilihan = int(input("Masukkan Pilihan: ")) if pilihan == 1: p = int(input("masukkan panjang = ")) l = int(input('masukkan luas = ')) t = int(input('masukkan tinggi = ')) luas = (2*p*l)+(2*p*t)+(2*l*t) print("luas balok adalah = ", luas) elif pilihan == 2: Celcius = float(input("masukkan suhu = ")) Reamur = 4/5*Celcius Farenheit = 9/5*Celcius+32 Kelvin = 273+Celcius print("Celcius = ", Celcius) print("Reamur = ", Reamur) print("Farenheit = ", Farenheit) print("Kelvin = ", Kelvin) elif pilihan == 3: r = int(input("Masukkan jari-jari = ")) t = int(input("Masukkan Tinggi = ")) phi = 3.14 volume = 1/3*(phi*r*r*t) print("Volume Kerucut adalah = ", volume) print(30* "-", "TERIMAKASIH", 30* "-")
true
8d9976b103e8fd867701953efaba9446eaad818c
Python
JHWu92/public-safety-baltimore
/src/vis/map.py
UTF-8
4,248
2.796875
3
[]
no_license
# coding=utf-8 import folium from folium.plugins import MarkerCluster, FastMarkerCluster def add_common_tiles(m): folium.TileLayer('Stamen Terrain').add_to(m) folium.TileLayer('Stamen Toner').add_to(m) folium.TileLayer('Stamen Watercolor').add_to(m) folium.TileLayer('CartoDB dark_matter').add_to(m) folium.TileLayer('CartoDB positron').add_to(m) # the last one is the default tiles def marker_cluster(named_data, lonlat=True, filename='tmp_marker_cluster.html', verbose=0): """ Parameters ---------- :param named_data: dict of lists of coords points to be plot on the map :param lonlat: boolean, default True whether the coords are in (lon, lat) order. coords are required in (lat, lon) order in MarkerCluster, but usually in geopandas, coords are in (lon, lat) :param filename: str file name of the map visualization :param verbose: int, default 0 verbosity :return: the folium map object Examples: ---------- >>> named_data = {'A': [(38.9305064,-77.116761), (38.9195066, -77.1069168)]} >>> marker_cluster(named_data, lonlat=True, filename='tmp_marker_cluster.html') """ # TODO: diversify inputs, currently only dict of lists of coords is handled # if lonlat, make it (lat, lon) if lonlat: if verbose > 0: print('transformed to (lat,lon)') named_data = {name: [(c[1], c[0]) for c in coords] for name, coords in named_data.items()} # get bounding box lons, lats = [], [] for _, coords in named_data.items(): lats.extend([coord[0] for coord in coords]) lons.extend([coord[1] for coord in coords]) w, e, s, n = min(lons), max(lons), min(lats), max(lats) # build map m = folium.Map() add_common_tiles(m) m.fit_bounds([(s, w), (n, e)]) # bind data to map for name, coords in named_data.items(): f = folium.FeatureGroup(name=name) if verbose > 0: print('adding layer of', name) # TODO: add custom popups popups = ['group: {}<br>lon:{}<br>lat:{}'.format(name, lon, lat) for (lat, lon) in coords] f.add_child(MarkerCluster(locations=coords, popups=popups)) m.add_child(f) # layer control m.add_child(folium.LayerControl()) m.save(filename) return m def marker_cluster_fast(named_data, lonlat=True,filename='tmp_marker_cluster.html', verbose=0): if lonlat: if verbose > 0: print('transformed to (lat,lon)') named_data = {name: [(c[1], c[0]) for c in coords] for name, coords in named_data.items()} # get bounding box lons, lats = [], [] for _, coords in named_data.items(): lats.extend([coord[0] for coord in coords]) lons.extend([coord[1] for coord in coords]) w, e, s, n = min(lons), max(lons), min(lats), max(lats) # build map m = folium.Map() add_common_tiles(m) m.fit_bounds([(s, w), (n, e)]) # bind data to map callback = """ function (row) {{ var icon, marker; icon = L.AwesomeMarkers.icon({{ icon: "map-marker", markerColor: "{color}"}}); marker = L.marker(new L.LatLng(row[0], row[1])); marker.setIcon(icon); return marker; }}; """ colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple'] for i, (name, coords) in enumerate(named_data.items()): if verbose > 0: print('adding layer of', name) FastMarkerCluster(data=coords, callback=callback.format(color=colors[i % len(colors)])).add_to(m) # layer control m.add_child(folium.LayerControl()) m.save(filename) def main(): import geopandas as gp from shapely.geometry import Point gpdfs = [] gpdfs.append(gp.GeoDataFrame([Point(-77.116761, 38.9305064), Point(-77.1069168, 38.9195066)], columns=['geometry'])) gpdfs.append( gp.GeoDataFrame([Point(-77.0908494, 38.9045525), Point(-77.0684995, 38.9000923)], columns=['geometry'])) for gpdf in gpdfs: gpdf.crs = {'init': 'epsg:4326', 'no_defs': True} named_coords = {'obj a': gpdfs[0].geometry.apply(lambda x: x.coords[0]).tolist()} marker_cluster(named_coords, True, verbose=1) return if __name__ == '__main__': main()
true
38e0294a57e9ff531cedc73ddaa99920b20372a1
Python
renzildourado/Capstone_Project
/building_model.py
UTF-8
4,390
2.671875
3
[]
no_license
import pandas as pd import scipy from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LinearRegression from sklearn import linear_model from sklearn.neural_network import MLPClassifier from sklearn.feature_selection import RFE def open_file(): file_name = "cleaned_dataset_3.csv" data_frame = pd.read_csv(file_name, low_memory=False) return data_frame def build_decision_tree(data_frame): X = data_frame.drop(["MALWARE_DETECTION"], axis=1) Y = data_frame['MALWARE_DETECTION'] train_data_x, test_data_x, train_data_y, test_data_y = train_test_split(X, Y, test_size=0.30) ############################################################################################################## # neural_network = MLPClassifier() # neural_network = neural_network.fit(train_data_x, train_data_y) # # predicted_y = neural_network.predict(test_data_x) # # print("FOR Neural Network") # acc = accuracy_score(predicted_y.round(), test_data_y) # print("ACCURACY: " + str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y.round())) ############################################################################################################## # linear_regression = LinearRegression() # linear_regression = linear_regression.fit(train_data_x, train_data_y) # # predicted_y = linear_regression.predict(test_data_x) # # print("FOR Linear Regression") # acc = accuracy_score(predicted_y.round(), test_data_y) # print("ACCURACY: " + str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y.round())) ############################################################################################################## # naive_bayes = GaussianNB() # naive_bayes = naive_bayes.fit(train_data_x, train_data_y) # # predicted_y = naive_bayes.predict(test_data_x) # # print("FOR Naive Bayes Classifier") # acc = accuracy_score(predicted_y, test_data_y) # print("ACCURACY: " + str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y)) ############################################################################################################## # knn_classifier = KNeighborsClassifier() # knn_classifier = knn_classifier.fit(train_data_x, train_data_y) # # predicted_y = knn_classifier.predict(test_data_x) # # print("FOR K NEAREST NEIGHBORS") # acc = accuracy_score(predicted_y, test_data_y ) # print("ACCURACY: "+str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y)) ############################################################################################################## # random_forest = RandomForestClassifier() # random_forest = random_forest.fit(train_data_x, train_data_y) # # predicted_y = random_forest.predict(test_data_x) # # print("FOR RANDOM FOREST") # acc = accuracy_score(predicted_y, test_data_y ) # print("ACCURACY: "+str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y)) ############################################################################################################### # decision_tree = tree.DecisionTreeClassifier() # decision_tree = decision_tree.fit(train_data_x, train_data_y) # # predicted_y = decision_tree.predict(test_data_x) # # print("FOR DECISION TREE") # acc = accuracy_score(predicted_y, test_data_y) # print("ACCURACY: " + str(acc)) # print("CONFUSION MATRIX") # print(confusion_matrix(test_data_y, predicted_y)) ################################################################################################################## # test_sample = list(train_data_frame.iloc[807]) # test_sample = [int(num) for num in test_sample] # # print(test_sample) # print(decision_tree.predict([test_sample])) def main(): data_frame = open_file() build_decision_tree(data_frame) if __name__ == '__main__': main()
true
8717be7555a09846b66b0284714f50ca3294d655
Python
uuuChen/PLAYGROUND-Seq2SeqTranslation
/data_loader.py
UTF-8
6,436
2.828125
3
[]
no_license
import random import torch from torch.autograd import Variable class Vocabulary: def __init__(self, text_file_path): # initialize parameter self.word2idx = dict() self.sequences = list() self.indices = list() # corresponding indices of sequences self.max_length = 0 self.word_counts = 0 # build vocabulary self._build(text_file_path) def _build(self, text_file_path): signals = ['SOS', 'EOS', 'PAD', 'UNK'] with open(text_file_path, "r", encoding="utf-8-sig") as fp: lines = fp.readlines() for line in lines: sequence = line.strip().split(' ') self.sequences.append(sequence) if len(sequence) > self.max_length: self.max_length = len(sequence) flat_sequences = [word for sequence in self.sequences for word in sequence] unique_words = signals + list(set(flat_sequences)) self.word_counts = len(unique_words) self.word2idx = dict(zip(unique_words, range(len(unique_words)))) self.idx2word = dict(zip(range(len(unique_words)), unique_words)) def sequence_to_indices(self, sequence, add_sos=False, add_eos=False): indices = list() if add_sos: indices.append(self.word2idx['SOS']) for word in sequence: index = self.word2idx['UNK'] if word not in self.word2idx else self.word2idx[word] indices.append(index) if add_eos: indices.append(self.word2idx['EOS']) return indices def batch_indices_to_batch_sequences(self, batch_indices): batch_sequences = list() for indices in batch_indices: sequence = list() for index in indices: word = self.idx2word[index] if word == 'EOS': break sequence.append(word) batch_sequences.append(sequence) return batch_sequences class DataLoader: def __init__(self, train_inputs_vocab, train_targets_vocab, inputs_file_path, targets_file_path, device=None, batch_size=1, shuffle=False, is_train=False): self.device = device self.num_of_batches = None self.batch_size = batch_size self.is_train = is_train self.train_inputs_vocab = train_inputs_vocab self.train_targets_vocab = train_targets_vocab self.SOS_IDX = train_inputs_vocab.word2idx['SOS'] self.EOS_IDX = train_inputs_vocab.word2idx['EOS'] self.PAD_IDX = train_inputs_vocab.word2idx['PAD'] self.UNK_IDX = train_inputs_vocab.word2idx['UNK'] if is_train: self.inputs_sequences = self.get_sequences(inputs_file_path) self.targets_sequences = self.get_sequences(targets_file_path) self.inputs = [train_inputs_vocab.sequence_to_indices(sequence, add_eos=True) for sequence in self.inputs_sequences] self.targets = [train_targets_vocab.sequence_to_indices(sequence, add_eos=True) for sequence in self.targets_sequences] if shuffle: inputs_targets_list = list(zip(self.inputs, self.targets)) random.shuffle(inputs_targets_list) self.inputs, self.targets = zip(*inputs_targets_list) inputs_lens = [len(input) for input in self.inputs] targets_lens = [len(target) for target in self.targets] self.batches = [ ((self.inputs[k: k + self.batch_size], max(inputs_lens[k: k + self.batch_size])), (self.targets[k: k + self.batch_size], max(targets_lens[k: k + self.batch_size]))) for k in range(0, len(self.inputs), self.batch_size) ] else: # no targets self.inputs_sequences = self.get_sequences(inputs_file_path) self.inputs = [train_inputs_vocab.sequence_to_indices(sequence, add_eos=True) for sequence in self.inputs_sequences] if shuffle: random.shuffle(self.inputs) inputs_lens = [len(input) for input in self.inputs] self.batches = [ ((self.inputs[k: k + self.batch_size], max(inputs_lens[k: k + self.batch_size])), (None, None)) for k in range(0, len(self.inputs), self.batch_size) ] self.num_of_batches = len(self.batches) def get_batch(self): for batch in self.batches: if self.is_train: (inputs, max_input_len), (targets, max_target_len) = batch padded_inputs = self._pad_sequences(inputs, max_input_len) padded_targets = self._pad_sequences(targets, max_target_len) inputs_var = Variable(torch.LongTensor(padded_inputs)).transpose(0, 1).to(self.device) # time * batch targets_var = Variable(torch.LongTensor(padded_targets)).transpose(0, 1).to(self.device) # time * batch yield inputs_var, targets_var else: (inputs, max_input_len), _ = batch padded_inputs = self._pad_sequences(inputs, max_input_len) inputs_var = Variable(torch.LongTensor(padded_inputs)).transpose(0, 1).to(self.device) # time * batch yield inputs_var @staticmethod def get_sequences(text_file_path): sequences = list() with open(text_file_path, "r", encoding="utf-8-sig") as fp: lines = fp.readlines() for line in lines: sequence = line.strip().split(' ') sequences.append(sequence) return sequences def _pad_sequences(self, sequences, max_length): pad_sequences = list() for sequence in sequences: pad_sequence = sequence + [self.PAD_IDX] * (max_length - len(sequence)) pad_sequences.append(pad_sequence) return pad_sequences if __name__ == '__main__': train_inputs_path = 'data/train_en.txt' train_targets_path = 'data/train_fr.txt' train_inputs_vocab = Vocabulary(train_inputs_path) train_targets_vocab = Vocabulary(train_targets_path) train_loader = DataLoader(train_inputs_vocab, train_targets_vocab, train_inputs_path, train_targets_path, shuffle=True, batch_size=128, device='cuda', is_train=True) for inputs, label in train_loader.get_batch(): print(inputs.shape, label.shape)
true
216dcf1594bf48a9315420124c36b351ea78237a
Python
AbhiniveshP/CodeBreakersCode
/10 - DP/CoinChangeMinCoins.py
UTF-8
1,322
2.84375
3
[]
no_license
class Solution: def coinChange(self, coins: List[int], amount: int) -> int: # edge cases if (amount == 0): return 0 if (coins == None or len(coins) == 0): return -1 # if not possible => inf coins required => initialize with +inf minCoins = [ [ float('inf') for c in range(amount + 1) ] for r in range(len(coins)) ] for r in range(len(coins)): minCoins[r][0] = 0 for coinIndex in range(len(coins)): for currentAmount in range(1, amount + 1): ways1, ways2 = float('inf'), float('inf') # don't include if (coinIndex >= 1): ways1 = minCoins[coinIndex - 1][currentAmount] # include (check +inf condition as well***) if (currentAmount >= coins[coinIndex] and minCoins[coinIndex][currentAmount - coins[coinIndex]] != float('inf')): ways2 = minCoins[coinIndex][currentAmount - coins[coinIndex]] + 1 minCoins[coinIndex][currentAmount] = min(ways1, ways2) return minCoins[-1][amount] if minCoins[-1][amount] != float('inf') else -1
true
a31fe550eefbc862b2219827d9a900a613448182
Python
nlp-study/zhihu_competition
/tools/word_freq_2_doc.py
UTF-8
3,242
2.8125
3
[]
no_license
''' Created on 2016年5月5日 @author: Zhang Xiulong ''' import codecs from tools.list_operation import * def trans_word_freq_2_doc(input_path,output_path): word_freq_map = {} processed_word_freq_map = {} generated_str = [] max_value = 0 min_value = 0 read_file = codecs.open(input_path,'r','utf-8') for line in read_file: line = line.strip() if len(line) == 0: continue line_list = line.split('\t') word = line_list[0] freq = int(line_list[1]) word_freq_map[word] = freq print('word_freq_map size:',len(word_freq_map)) read_file.close() sorted_freq_words = sorted(word_freq_map.items(), key=lambda d:d[1], reverse = True) print(dict) for i in range(len(sorted_freq_words)): word_iterm = sorted_freq_words[i] processed_word_freq_map[word_iterm[0]] = len(sorted_freq_words) - i # print(processed_word_freq_map) # temp_processed_word_freq_map = sorted(processed_word_freq_map.items(), key=lambda d:d[1], reverse = True) # print('temp_processed_word_freq_map:',temp_processed_word_freq_map) # value_list = list(word_freq_map.values()) # value_list.sort() # print(value_list) # min_value = value_list[0] # max_value = value_list[-1] # # for key in word_freq_map: # value = word_freq_map[key] # value = value - min_value + 1 # multiple = value / 100 # processed_word_freq_map[key] += int(multiple) write_sorted_str_int_map(processed_word_freq_map,'../../result_data/temp.txt') temp_processed_word_freq_tulp = sorted(processed_word_freq_map.items(), key=lambda d:d[1], reverse = True) for i in range(len(temp_processed_word_freq_tulp)): temp_item = temp_processed_word_freq_tulp[i] word = temp_item[0] freq = int(temp_item[1]) if i%100 == 0: print('index:',i) for j in range(freq): generated_str.append(word) print('length of generated_str:',len(generated_str)) print('last one generated_str:',generated_str[-3:-1]) write_file = codecs.open(output_path,'w','utf-8') line_str = '' for i in range(len(generated_str)): line_str += generated_str[i] + ' ' if i % 50 == 0: write_file.write(line_str + '\n') line_str = '' write_file.write(line_str + '\n') write_file.close() def check_word_freq_correct(file_path_1,file_path_2): check_list_1 = read_list(file_path_1) check_list_2 = read_list(file_path_2) if len(check_list_1) != len(check_list_2): print('>>>>Error,two check list is not same length!,Exit<<<<<') exit() for i in range(len(check_list_1)): line_1 = check_list_1[i] word_1 = line_1.split('\t')[0] line_2 = check_list_2[i] word_2 = line_2.split('\t')[0] if word_1 != word_2: print(word_1,word_2,' is not same!') if __name__ == '__main__': input_path = '../../result_data/cleaned_wrod_freq.txt' output_path = '../../result_data/wrod_freq_2_doc.txt' trans_word_freq_2_doc(input_path,output_path) check_word_freq_correct(input_path,output_path)
true
e94a5b20a17e8083c212340ee91f5f6863edea4a
Python
CSI-Woo-Lab/gym-rock-paper-scissors
/gym_rock_paper_scissors/envs/rock_paper_scissors.py
UTF-8
5,213
2.65625
3
[]
no_license
import gym import numpy as np from gym import spaces ROCK = 0 PAPER = 1 SCISSORS = 2 NULL_ACTION = 3 RENDER_MAP = {0: "@", 1: "#", 2: "%"} class RockPaperScissorsBaseEnv(gym.Env): optimal_winning_rate = None def __init__(self) -> None: self.action_space = spaces.Discrete(3) self.observation_space = spaces.Discrete(4) # represent NULL_ACTION def step(self, action): info = {} # FIXME: concat prev_obs and prev_action env_action = self.env_policy(self.prev_obs) if action == ROCK and env_action == SCISSORS: reward = 1 elif action == SCISSORS and env_action == ROCK: reward = -1 elif env_action < action: reward = 1 elif action == env_action: reward = 0 else: reward = -1 self.prev_obs = env_action self.prev_action = action done = False if reward == 0 else True # state = np.array([action, self.prev_obs]) obs = np.array([env_action]) return obs, reward, done, info def reset(self): self.prev_obs = None return np.array([NULL_ACTION]) def render(self, mode="human"): user = RENDER_MAP[self.prev_action] computer = RENDER_MAP[self.prev_obs] print( "USER vs COMP\n", f" {user} || {computer} ", ) def env_policy(self, obs): """return env_action """ raise NotImplementedError class RockPaperScissorsSequencePolicyEnv(RockPaperScissorsBaseEnv): optimal_winning_rate = 1 def __init__(self, start_with=PAPER, other_sequence=False) -> None: super().__init__() self.start_with = start_with self.other_sequence = other_sequence def env_policy(self, obs): if obs == None: env_action = self.start_with elif obs == ROCK: if self.other_sequence: env_action = SCISSORS else: env_action = PAPER elif obs == PAPER: if self.other_sequence: env_action = ROCK else: env_action = SCISSORS elif obs == SCISSORS: if self.other_sequence: env_action = PAPER else: env_action = ROCK return env_action class RockPaperScissorsRandomPolicyEnv(RockPaperScissorsBaseEnv): optimal_winning_rate = 1/2 # win + win after draw + ... def env_policy(self, obs): return np.random.choice([ROCK, PAPER, SCISSORS]) class RockPaperScissorsBiasedPolicyEnv(RockPaperScissorsBaseEnv): optimal_winning_rate = 2/3 # win + win after draw + ... def __init__(self, biased_by=ROCK) -> None: super().__init__() self.biased_by = biased_by def env_policy(self, obs): if self.biased_by == ROCK: return np.random.choice([ROCK, PAPER, SCISSORS], p=[0.5, 0.25, 0.25]) if self.biased_by == PAPER: return np.random.choice([ROCK, PAPER, SCISSORS], p=[0.25, 0.5, 0.25]) if self.biased_by == SCISSORS: return np.random.choice([ROCK, PAPER, SCISSORS], p=[0.25, 0.25, 0.5]) class RockPaperScissorsSequencePolicy2Env(RockPaperScissorsBaseEnv): optimal_winning_rate = 1 def __init__(self, start_with=PAPER, other_sequence=False, double_with=ROCK) -> None: super().__init__() self.start_with = start_with self.other_sequence = other_sequence self.double_with = double_with self.double_flag = False def reset(self): self.double_flag = False return super().reset() def env_policy(self, obs): if obs == None: env_action = self.start_with elif obs == ROCK: if self.double_with == ROCK and not self.double_flag: env_action = ROCK self.double_flag = True else: self.double_flag = False if self.other_sequence: env_action = SCISSORS else: env_action = PAPER elif obs == PAPER: if self.double_with == PAPER and not self.double_flag: env_action = PAPER self.double_flag = True else: self.double_flag = False if self.other_sequence: env_action = ROCK else: env_action = SCISSORS elif obs == SCISSORS: if self.double_with == SCISSORS and not self.double_flag: env_action = SCISSORS self.double_flag = True else: self.double_flag = False if self.other_sequence: env_action = PAPER else: env_action = ROCK return env_action if __name__ == "__main__": env = RockPaperScissorsSequencePolicy2Env(other_sequence=True, double_with=SCISSORS) env.reset() for _ in range(10): obs, reward, done, info = env.step( np.random.choice([ROCK, PAPER, SCISSORS])) env.render() print(obs, reward, done, info)
true
b67a4655ff598645cfa41ae7e3249cb26b42d682
Python
haavardtysland/IDATT2502
/1/b/MultipleLinearRegressionModel.py
UTF-8
540
2.75
3
[]
no_license
import torch as to class MultipleLinearRegressionModel: def __init__(self): self.W_1 = to.tensor([[0.0]], requires_grad=True) self.W_2 = to.tensor([[0.0]], requires_grad=True) self.b = to.tensor([[0.0]], requires_grad=True) def f(self, length, weight): return (length @ self.W_1) + (weight @ self.W_2) + self.b def loss(self, x_1, x_2, y): return to.nn.functional.mse_loss(self.f(x_1, x_2), y) def test (self, length, weight): return length * self.W_1.item() + weight * self.W_2.item() + self.b.item()
true
928ed1df7c5e78bb955bd7bdaa47def63f27043f
Python
shivamnegi1705/Competitive-Programming
/Leetcode/Weekly Contest 210/1614. Maximum Nesting Depth of the Parentheses.py
UTF-8
685
3.484375
3
[]
no_license
# Question Link:- https://leetcode.com/problems/maximum-nesting-depth-of-the-parentheses/ class Solution: def maxDepth(self, s: str) -> int: # stack to push ( st = [] # number of ( in stack n = 0 # ans --> to store max depth ans = 0 # Traverse in string from L to R for i in s: # Push ( if i=='(': st.append('(') n+=1 ans = max(ans,n) # Pop ) elif i==')': st.pop() n-=1 # Update ans ans = max(ans,n) return ans
true
3eccbf6381055b09e523d2a7c56ab1beb1c872b2
Python
bgoesswe/openeo-repeatability
/backend/openshift-old/services/user/service/api/api_validation.py
UTF-8
1,435
3.109375
3
[ "Apache-2.0" ]
permissive
''' API Payload Validation ''' from re import match from service.api.api_exceptions import ValidationError def validate_user(payload): ''' Ensures that the structure of a process spec is correct. ''' if "username" not in payload: raise ValidationError("'username' is missing.") if not match(r"^\w{5,}$", payload["username"]): raise ValidationError("Format of 'username' is wrong. (At least 5 letters/digits)") if "email" not in payload: raise ValidationError("'email' is missing.") if not match(r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$", payload["email"]): raise ValidationError("Format of 'email' is wrong.") if "admin" not in payload: raise ValidationError("'admin' is missing.") if not isinstance(payload["admin"], bool): raise ValidationError("Format of 'admin' is wrong (boolean)") if "password" not in payload: raise ValidationError("'password' is missing.") if not match(r"^(?=.*?[A-Z])(?=.*?[a-z])(?=.*?[0-9])(?=.*?[#?!@$%^&*-]).{8,}$", payload["password"]): raise ValidationError("Format of 'password' is wrong." \ "(At least one upper case, at least one lower case, " \ "at least one digit, " \ "at least one special character (#?!@$%^&*-), " \ "minimum eight in length)")
true
d267d2e400aff73d994bfc735f341074084a514c
Python
shimech/instance-builder
/instance_builder/setter.py
UTF-8
1,019
3.453125
3
[ "MIT" ]
permissive
from typing import Callable, TypeVar from .lib import find_attributes T = TypeVar("T") def setter(Class: type) -> type: """Setter method generator Setter methods are generated by decorating class with this function. Args: Class (type): Class which you want to generate setter methods. Returns: type: Class having setter methods for its private fields. Examples: @setter class User: __id: int = 0 __name: str = "Shuntaro Shimizu" user = User() user.set_id(1) # user._User__id == 1 user.set_name("New Name") # user._User__name == "New Name" """ def generate_setter(name: str) -> Callable[T, None]: def set_value(self, value: T) -> None: setattr(self, name, value) return set_value for attribute in find_attributes(Class): setter_name = "set_" + attribute.replace(f"_{Class.__name__}__", "") setattr(Class, setter_name, generate_setter(attribute)) return Class
true
a125d8674dec2e56ae8ace77b634713bf6062a71
Python
paulrschrater/design2align-scanner
/kicd/validation.py
UTF-8
8,217
2.796875
3
[ "MIT" ]
permissive
################################################## # MIT License # # Copyright (c) 2019 Learning Equality # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ################################################## import re def assert_top_level_numbers_are_sequential_and_properly_indented( items, exceptions=["32.2.4", "44.2.3"] ): last_unit, last_section, last_subsection = None, None, None for item in items: header = re.search(r"(\d+)\.(\d+)\.(\d+)", item.bullet or "") if not header: continue if item.indent != 1: print( "Expected indentation of 1, got {}, in line:\n{}\n\n".format( item.indent, str(item) ) ) continue unit, section, subsection = ( int(header.group(1)), int(header.group(2)), int(header.group(3)), ) if last_unit is not None and item.bullet not in exceptions: if unit == last_unit: if section == last_section: if subsection != last_subsection + 1: print( "Expected {}, got {}, in line:\n{}\n\n".format( "{}.{}.{}".format(unit, section, last_subsection + 1), item.bullet, str(item), ) ) else: if section != last_section + 1 or subsection != 0: print( "Expected {}, got {}, in line:\n{}\n\n".format( "{}.{}.{}".format(unit, last_section + 1, 0), item.bullet, str(item), ) ) else: if ( (unit != 1 and unit != last_unit + 1) or section != 0 or subsection != 0 ): print( "Expected {}, got {}, in line:\n{}\n\n".format( "{}.{}.{}".format(last_unit + 1, 0, 0), item.bullet, str(item), ) ) last_unit, last_section, last_subsection = unit, section, subsection def assert_all_section_headers_have_lesson_count(items, exceptions=["3.0.0", "53.0.0"]): for i, item in enumerate(items): if item.indent != 1: continue if not item.bullet.endswith(".0.0"): continue if item.bullet in exceptions: continue if not re.search(r"^(.*) \((\d+) Lessons?\)", item.text, flags=re.IGNORECASE): print( "Expected 'A.B.C ______ (X Lessons)', got:\n{}\n{}\n{}\n\n".format( *items[i - 1 : i + 2] ) ) def assert_all_top_level_bullets_are_dotted_numbers(items): for i, item in enumerate(items): if item.indent != 1: continue header = re.search(r"(\d+)\.(\d+)\.(\d+)", item.bullet or "") if not header: print( "Should not be at top-level of bullets:\n{}\n{}\n{}\n\n".format( *items[i - 1 : i + 2] ) ) def assert_parenthetical_bullets_are_sequential(items): roman_numerals = [ "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix", "x", "xi", "xii", "xiii", "xiv", "xv", "xvi", "xvii", "xviii", "xix", "xx", ] last_bullet_by_level = [] for i, item in enumerate(items): level = item.indent while len(last_bullet_by_level) < level: last_bullet_by_level.append(None) while len(last_bullet_by_level) > level: last_bullet_by_level.pop() if not item.bullet or ")" not in item.bullet: last_bullet = None last_level = None continue last_bullet = last_bullet_by_level[-1] bullet = item.bullet.strip(")") if not last_bullet: expected = ["a", "i"] elif last_bullet == "i": expected = ["j", "ii"] elif last_bullet in roman_numerals: expected = [roman_numerals[roman_numerals.index(last_bullet) + 1]] elif len(bullet) > 1: print( "We expected a single-character bullet but got '{}':\n{}\n{}\n{}\n\n".format( bullet, *items[i - 1 : i + 2] ) ) else: expected = [chr(ord(last_bullet) + 1)] if bullet not in expected: print( "We expected a bullet from {} but got '{}':\n{}\n{}\n{}\n\n".format( expected, bullet, *items[i - 1 : i + 2] ) ) last_bullet_by_level[-1] = bullet def assert_standard_numbering_titles(items): for i, item in enumerate(items): header = re.search(r"(\d+)\.(\d+)\.(\d+)", item.bullet or "") if not header: continue unit, section, subsection = ( int(header.group(1)), int(header.group(2)), int(header.group(3)), ) if section == 1 and subsection == 0: options = ["Specific Objectives", "Specific Objective"] if item.text.title() not in options: print( "Title for {} should be one of {}:\n{}\n{}\n{}\n\n".format( item.bullet, options, *items[i - 1 : i + 2] ) ) next_item = items[i + 1] next_item_text = next_item.text.strip(":").lower() if not next_item_text.startswith( "by the end of th" ) or not next_item_text.endswith("the learner should be able to"): print( "Title for {} should be 'By the end of (this|the) topic, the learner should be able to:':\n{}\n{}\n{}\n\n".format( item.bullet, *items[i : i + 3] ) ) if section == 2 and subsection == 0: options = ["Contents", "Content"] if item.text.title() not in options: print( "Title for {} should be one of {}:\n{}\n{}\n{}\n\n".format( item.bullet, options, *items[i - 1 : i + 2] ) ) if section == 3 and subsection == 0: options = [ "Project Work", "Projects", "Project", "Practical Activities", "Excursion", ] if item.text.title() not in options: print( "Title for {} should be one of {}:\n{}\n{}\n{}\n\n".format( item.bullet, options, *items[i - 1 : i + 2] ) )
true
093cd0197d1e74a0ee20f4c6bead6b84fcce7c13
Python
tylergallen/fantasyfootballapp
/classes/team_class.py
UTF-8
342
3.453125
3
[]
no_license
class Team: number_of_teams = 0 def __init__(self, code, fullName, shortName): self.code = code self.fullName = fullName self.shortName = shortName Team.number_of_teams += 1 def add_bye_week(self, byeWeek): self.byeWeek = byeWeek def display_number_of_teams(): print (f'Total number of teams in the NFL: {number_of_teams}')
true
1eabf5cf7f4781d061ce1deb14aa95a55734f12e
Python
kurff/pytorch
/third_party/ideep/python/ideep4py/tests/mm/test_mdarray3_mm.py
UTF-8
1,422
2.671875
3
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "BSD-2-Clause" ]
permissive
import numpy import ideep4py import testing import unittest @testing.parameterize(*testing.product({ 'dtype': [numpy.float32], 'shape': [(3, 16, 2, 4), (2, 7, 1, 1), (2, 7, 3, 2), (2, 2, 2, 2), (3, 4), (1, 1)], })) class TestMdarray3(unittest.TestCase): def setUp(self): self.x = numpy.ndarray(shape=self.shape, dtype=self.dtype, order='C') self.x.fill(2.) self.check_options = {'atol': 1e-5, 'rtol': 1e-4} @unittest.skip("should be catch in the future") def test_noneInput(self): x1 = None x2 = numpy.ndarray(x1) x = ideep4py.mdarray(x1) print(x, x2) def test_basicOp(self): x1 = self.x x = ideep4py.mdarray(x1) numpy.testing.assert_allclose(1 / x1, 1 / x, **self.check_options) numpy.testing.assert_allclose(2 * x1, 2 * x, **self.check_options) numpy.testing.assert_allclose(1 - x1, 1 - x, **self.check_options) numpy.testing.assert_allclose(1 + x1, 1 + x, **self.check_options) x1 /= 3 x /= 3 numpy.testing.assert_allclose(x1, x, **self.check_options) x1 *= 2 x *= 2 numpy.testing.assert_allclose(x1, x, **self.check_options) x1 += 3 x += 3 numpy.testing.assert_allclose(x1, x, **self.check_options) x1 -= 5 x -= 5 numpy.testing.assert_allclose(x1, x, **self.check_options)
true
23cd688ed052680d79596f915b9e68fbb4b4f74b
Python
puyamirkarimi/quantum-walks
/Max2SAT_graphs/inf_time_probability_histograms.py
UTF-8
3,035
2.890625
3
[ "MIT" ]
permissive
import matplotlib.pyplot as plt import numpy as np def average_data(data): num_repeats = len(data[:, 0]) num_x_vals = len(data[0, :]) y_av = np.zeros(num_x_vals) y_std_error = np.zeros(num_x_vals) for x in range(num_x_vals): y_av[x] = np.mean(data[:, x]) y_std_error[x] = np.std(data[:, x], ddof=1) / np.sqrt(num_repeats) return y_av, y_std_error def mask_data(data): num_repeats = len(data[:, 0]) num_x_vals = len(data[0, :]) out = np.zeros((num_repeats-2, num_x_vals)) for x in range(num_x_vals): vals = data[:, x] vals1 = np.delete(vals, vals.argmin()) vals2 = np.delete(vals1, vals1.argmax()) out[:, x] = vals2 return out # def plot_graph(x, y, y_std_error, fit_1, fit_2): # fig, ax = plt.subplots() # plt.scatter(x[4:], y[4:]) # plt.scatter(x[:4], y[:4], color="gray") # plt.plot(x, fit_1, '--', label="$y=0.0005x + 0.0012$", color="red") # plt.plot(x, fit_2, label=r"$y=0.0036 \times 2^{0.0871x}$", color="green") # #plt.errorbar(x, y, y_std_error) # ax.set_xlabel("Number of variables, $n$") # ax.set_ylabel("Average runtime ($s$)") # ax.set_xlim([5, 20]) # ax.set_xticks(range(5, 21, 3)) # ax.set_ylim([0.004, 0.012]) # ax.set_yscale('log') # plt.legend() # plt.tight_layout() # plt.show() def zero_to_nan(array): """Replace every 0 with 'nan' and return a copy.""" return [float('nan') if x==0 else x for x in array] def probs_data(n): data = np.loadtxt("./../Max2SAT_quantum/inf_time_probs_n_" + str(n) + ".txt") return np.reciprocal(data) if __name__ == '__main__': plt.rc('text', usetex=True) plt.rc('font', size=14) n_list = [5, 10] probs_list = [] num_bins = 100 for n in n_list: probs = probs_data(n) probs_list.append(probs) min_prob = np.min(np.array(probs_list).flatten()) max_prob = np.max(np.array(probs_list).flatten()) print(min_prob, max_prob) x = np.linspace(min_prob, max_prob, num=num_bins) fig, ax1 = plt.subplots() # for i_adam, n in enumerate(n_list): # plt.scatter(x, y_adam[i_adam], label="n="+str(n), marker='+') # plt.errorbar(x, runtimes_average, runtimes_standard_error) # plt.xlim([0, 0.021]) # plt.ylim([9e-5, 0.013]) print(np.shape(np.array(probs_list))) ax1.hist(np.swapaxes(np.array(probs_list), 0, 1), x, color=('deeppink', 'seagreen')) ax1.set_yscale('log') ax1.set_xlim([0, 100]) # ax1.yaxis.tick_left() # ax1.tick_params(labelright='off') ax1.set_ylim([0, 10e4]) ax1.set_xlabel(r"$P_\infty$") # ax2.set_xlabel(r"$\overline{T}_{inst}$~/~$s$") ax1.set_ylabel(r"$p(P_\infty)$") # ax2.set_ylabel(r"$\overline{T}_{inst}$~/~$s$") # plt.tight_layout() # plt.savefig('mixsat.png', dpi=300) # plt.show() ax1.tick_params(direction='in', top=True, right=True, which='both') # plt.savefig('runtimes_histograms.png', dpi=200) plt.tight_layout() plt.show()
true
fbebd785339375c43040c0fd62be57b743812be0
Python
sourabhshete99/HackerRank-Programs
/diagonaldiff.py
UTF-8
890
3.546875
4
[]
no_license
#!/bin/python3. Given a matrix, calc the difference between the diagonal elements import math import os import random import re import sys # # Complete the 'diagonalDifference' function below. # # The function is expected to return an INTEGER. # The function accepts 2D_INTEGER_ARRAY arr as parameter. # def diagonalDifference(arr): # Write your code here l=len(arr) d1=d2=0 for j in range (0,l): d1=d1+arr[j][j] d2=d2+arr[j][l-1-j] if d1>=d2: ans=d1-d2 else: ans=d2-d1 return ans if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input().strip()) arr = [] for i in range(n): arr.append(list(map(int, input().rstrip().split()))) result = diagonalDifference(arr) fptr.write(str(result) + '\n') fptr.close()
true
10dd56e6b966545c6f3945c5364ef45367de1f98
Python
Duisus/allure-python
/allure-pytest-bdd/test/links_tests/conftest.py
UTF-8
711
2.5625
3
[ "Apache-2.0" ]
permissive
from pytest_bdd import then, parsers @then(parsers.parse( "report has link type of {type_name} with url:\n{url}")) def check_link(type_name, url, allure_report): links = _get_links(allure_report) desired_link = {"type": type_name, "url": url, "name": url} assert desired_link in links @then(parsers.parse( "report has link type of {type_name} with \"{link_name}\" name and url:\n{url}")) def check_link_with_custom_name(type_name, link_name, url, allure_report): links = _get_links(allure_report) desired_link = {"type": type_name, "url": url, "name": link_name} assert desired_link in links def _get_links(allure_report): return allure_report.test_cases[0]["links"]
true
5627a94057edcba6eec371ec516b19b20a7949a9
Python
raviraju/recommender_system
/binary_recommender/recommender/rec_popularity_based.py
UTF-8
8,659
2.734375
3
[]
no_license
"""Module for Popularity Based Recommender""" import os import sys import logging from timeit import default_timer from pprint import pprint import joblib import pandas as pd logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger(__name__) sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from lib import utilities from recommender.rec_interface import Recommender from recommender.evaluation import PrecisionRecall class PopularityBasedRecommender(Recommender): """Popularity based recommender system model""" def __init__(self, results_dir, model_dir, train_data, test_data, user_id_col, item_id_col, **kwargs): """constructor""" super().__init__(results_dir, model_dir, train_data, test_data, user_id_col, item_id_col, **kwargs) self.model_file = os.path.join(self.model_dir, 'popularity_based_model.pkl') self.user_features = kwargs['user_features'] #print(self.user_features) self.data_groups = None ####################################### def train(self): """train the popularity based recommender system model""" super().train() print() print("*"*80) print("\tPopularity Based : Recommending Trending items ...") print("*"*80) start_time = default_timer() # Get a count of user_ids for each unique item as popularity score self.data_groups = self.train_data.groupby(self.user_features + [self.item_id_col])\ .agg({self.user_id_col: 'count'})\ .reset_index() self.data_groups.rename(columns={self.user_id_col:'no_of_users', self.item_id_col:self.item_id_col}, inplace=True) #print(self.data_groups.head()) end_time = default_timer() print("{:50} {}".format("Completed. ", utilities.convert_sec(end_time - start_time))) joblib.dump(self.data_groups, self.model_file) LOGGER.debug("Saved Model") ####################################### def __get_feature_val(self, identifiers, user_feature): """retrieve value for user_feature using identifiers from test_data""" for identifier, val in identifiers.items(): #print(identifier, val, type(val)) data = self.test_data[self.test_data[identifier] == val] return data[user_feature].values[0] def __generate_top_recommendations(self, user_id, known_interacted_items): """Generate top popularity recommendations""" items_to_recommend = [] columns = [self.user_id_col, self.item_id_col, 'score', 'rank'] #print(user_id) identifiers = {self.user_id_col:user_id} feature_vals = dict() for user_feature in self.user_features: feature_vals[user_feature] = self.__get_feature_val(identifiers, user_feature) #pprint(feature_vals) for feature, val in feature_vals.items(): self.data_groups = self.data_groups[self.data_groups[feature] == val] #Sort the items based upon popularity score : no_of_users data_groups_sort = self.data_groups.sort_values(['no_of_users', self.item_id_col], ascending=[0, 1]) total_no_of_users = len(self.get_all_users(dataset='train')) if total_no_of_users == 0: total_no_of_users = 1#to avoid division by zero data_groups_sort['users_percent'] = data_groups_sort['no_of_users']/total_no_of_users data_groups_sort.reset_index(drop=True, inplace=True) #print(data_groups_sort.head()) rank = 1 for _, reco in data_groups_sort.iterrows(): item_id = reco[self.item_id_col] score = reco['users_percent'] if not self.allow_recommending_known_items and item_id in known_interacted_items:#to avoid items which user has already aware continue if rank > self.no_of_recs:#limit no of recommendations break item_dict = { self.item_id_col : item_id, 'score' : round(score, 3), 'rank' : rank } items_to_recommend.append(item_dict) rank += 1 if len(items_to_recommend) > 0: items_to_recommend_df = pd.DataFrame(items_to_recommend) else: items_to_recommend_df = pd.DataFrame(columns = [self.item_id_col, 'score', 'rank']) return items_to_recommend_df def recommend_items(self, user_id): """recommend items for given user_id from test dataset""" super().recommend_items(user_id) if os.path.exists(self.model_file): self.data_groups = joblib.load(self.model_file) LOGGER.debug("Loaded Trained Model") start_time = default_timer() known_interacted_items = self.items_for_evaluation[user_id]['known_interacted_items'] items_to_recommend_df = self.__generate_top_recommendations(user_id, known_interacted_items) end_time = default_timer() print("{:50} {}".format("Recommendations generated. ", utilities.convert_sec(end_time - start_time))) return items_to_recommend_df else: print("Trained Model not found !!!. Failed to generate recommendations") return None ####################################### def __recommend_items_to_evaluate(self): """recommend items for all users from test dataset""" for user_id in self.items_for_evaluation: known_interacted_items = self.items_for_evaluation[user_id]['known_interacted_items'] items_to_recommend_df = self.__generate_top_recommendations(user_id, known_interacted_items) recommended_items_dict = items_to_recommend_df.set_index(self.item_id_col).to_dict('index') self.items_for_evaluation[user_id]['items_recommended'] = list(recommended_items_dict.keys()) self.items_for_evaluation[user_id]['items_recommended_score'] = recommended_items_dict items_to_be_interacted_set = set(self.items_for_evaluation[user_id]['items_to_be_interacted']) items_recommended_set = set(self.items_for_evaluation[user_id]['items_recommended']) correct_recommendations = items_to_be_interacted_set.intersection(items_recommended_set) no_of_correct_recommendations = len(correct_recommendations) self.items_for_evaluation[user_id]['no_of_correct_recommendations'] = no_of_correct_recommendations self.items_for_evaluation[user_id]['correct_recommendations'] = list(correct_recommendations) return self.items_for_evaluation def evaluate(self, no_of_recs_to_eval, eval_res_file='evaluation_results.json'): """Evaluate trained model for different no of ranked recommendations""" super().evaluate(no_of_recs_to_eval, eval_res_file) if os.path.exists(self.model_file): self.data_groups = joblib.load(self.model_file) LOGGER.debug("Loaded Trained Model") start_time = default_timer() #Generate recommendations for the users self.items_for_evaluation = self.__recommend_items_to_evaluate() self.save_items_for_evaluation() precision_recall_intf = PrecisionRecall() evaluation_results = precision_recall_intf.compute_precision_recall( no_of_recs_to_eval, self.items_for_evaluation, self.items_all) end_time = default_timer() print("{:50} {}".format("Evaluation Completed. ", utilities.convert_sec(end_time - start_time))) results_file = os.path.join(self.model_dir, eval_res_file) utilities.dump_json_file(evaluation_results, results_file) return evaluation_results else: print("Trained Model not found !!!. Failed to evaluate") evaluation_results = {'status' : "Trained Model not found !!!. Failed to evaluate"} results_file = os.path.join(self.model_dir, eval_res_file) utilities.dump_json_file(evaluation_results, results_file) return evaluation_results #######################################
true
919a7b0f89a1ebab1c204204af6ec5fef083ce88
Python
basharSaid/Python
/While-Schleife.py
UTF-8
251
3.21875
3
[]
no_license
#zufallsgenerator import random random.seed() # Initialisirung summe = 0 # Whlie-Schliefe while summe < 30 : zzahl = random.randint(1, 10) summe = summe + zzahl print("zahl:", zzahl, "Zwischensumme", summe) # Ende print("Ende")
true
31f370dfecd34ce28ab7d63681dc76f2808e7af8
Python
xiaoyaoshuai/-
/作业/7.17/038idcard.py
UTF-8
641
4.09375
4
[]
no_license
''' 创建一个名称为idcard.py的文件,然后在该文件中定义3个字符串变量,分别记录两个程序员说话,再从程序员甲说的身份证号码中截取出生日日期,并组合成"YYYY年MM月DD日"格式的字符串将两个字符串拼接到一起,并且在中间拼接一个转义字符(换行符),最后输出,输出截取到的出生日期 ''' c = '程序员甲说:你知道我的生日么?' b = '程序员乙说:输入你的身份证号' print(c) print(b) a = input('程序员甲说:') print('你的出生日期是%s年%s月%s日,所以你的生日是%s月%s日'%(a[6:10],a[10:12],a[12:14],a[10:12],a[12:14]))
true
15e83d3c89b98172846bc716a814f2b510695797
Python
eridanletalis/Python
/stepik/base_course_1/file_reading/school_data/school_data.py
UTF-8
710
3.25
3
[]
no_license
s = [] d = {} with open('in.txt', 'r') as file_reader: for line in file_reader: for i in line.strip().lower().split(';'): s.append(i) for i in range(len(s)): if i == 0: d[s[i]] = [] else: d[s[0]].append(int(s[i])) s.clear() sum0 = 0 sum1 = 0 sum2 = 0 sum3 = 0 for grades in d.values(): for i in range(len(grades)): sum0 += grades[i] if i == 0: sum1 += grades[i] if i == 1: sum2 += grades[i] if i == 2: sum3 += grades[i] print(sum0 / len(grades)) sum0 = 0 print(str(sum1 / len(d)) + " " + str(sum2 / len(d)) + " " + str(sum3 / len(d)))
true
96c6a1824bb4cd7d6cb752aa14b442e121dcef0b
Python
m1ghtfr3e/Competitive-Programming
/Leetcode/Python/April-30-day-Challenge/moveZero_2.py
UTF-8
325
3.3125
3
[]
no_license
def moveZero(nums): x = 0 # we use it as a pointer for i in nums: if i != 0: nums[x] = i x += 1 for i in range(x, len(nums)): nums[i] = 0 return nums if __name__ == '__main__': print(moveZero([0,1,0,3,12])) print(moveZero([0,0,1]))
true
57f3a8a792694f098cac5c9d838d457690e4f58a
Python
Danucas/holbertonschool-higher_level_programming
/0x07-python-test_driven_development/2-matrix_divided.py
UTF-8
1,128
3.921875
4
[]
no_license
#!/usr/bin/python3 """Divides a matrix""" def matrix_divided(matrix, div): """matrix division Arguments: arg1 (matrix): the matrix to divide arg2 (div): number to divide by """ if type(div) != int and type(div) != float: raise TypeError("div must be a number") if div == 0: raise ZeroDivisionError("division by zero") if type(matrix) != list: raise TypeError("matrix must be a matrix (list of lists) of integers/\ floats") length = 0 new_matrix = [] overf = "Each row of the matrix must have the same size" form = "matrix must be a matrix (list of lists) of integers/floats" for y, row in enumerate(matrix): new_matrix.append([]) if y > 0: if len(row) != length: raise TypeError(overf) for x, col in enumerate(row): if type(col) != int and type(col) != float or\ (float(col) == float("inf")): raise TypeError(form) else: new_matrix[y].append(round(col / div, 2)) length = len(row) return new_matrix
true
794094ca26a13fa89a3dc766a2cf49c2e06e8a3e
Python
dradosevich/SwimScripts
/divegenstate.py
UTF-8
2,619
3.03125
3
[]
no_license
#Danny Radosevich #Dive XML Generator import subprocess as sp import os import re toOpen = input("Enter the file to read from:\n") #prompt user for input readFrom = open(toOpen) #open file readFrom = readFrom.read() #read in readFrom = readFrom.split("\n") #get each individual line lineNum = 1 #control variable writeOut = 0 #will be used as the write out file for line in readFrom: #go through every line #print(line+" "+str(lineNum)) if lineNum == 6: #this is the line with the meet title newFile = line.replace(' ','')+".xml" #remove spaces, add xml extension, to make file name newFile = newFile.replace('/','-') #clean up bad characters for the date #os.system("touch "+newFile) newFile = str(newFile) #not needed at all writeOut = open(newFile,"w")#open file to write out writeOut.write("<?xml version=\"1.0\" encoding=\"utf-8\"?>\n")#header writeOut.write("<divingevent>\n") #denote this is a diving event writeOut.write("<eventtitle>"+newFile[:-4]+"</eventtitle>\n") #use file name to make title elif lineNum > 13 and "</" not in line: #now to do the divers, if at rigth line #print(line) #re.sub('\s+', ' ',line).strip() #line.replace("\t"," ") if "," in line: line = line.replace(",","") if "FR" in line: line = line.replace("FR","") if "SO" in line: line = line.replace("SO","") if "JR" in line: line = line.replace("JR","") if "SR" in line: line = line.replace("SR","") for char in line: #for every character in the line if char.isdigit(): line = line.replace(char, '') #if it is a number remove it line = line.replace('.','') #remove all periods while ' 'in line: line = line.replace(' ',' ') #get down to single spacing print(line) #print out line for verification, not needed line = line.split(" ") #split out the line to individual words if(len(line)>4): #bounds check newDiver = "\t<diver>\n" #xml write out newDiver+= "\t\t<lastname>"+line[2]+"</lastname>\n" #write out last name newDiver+= "\t\t<firstname>"+line[1]+"</firstname>\n" #writeout first name newDiver+="\t\t<team>"+line[3][:3]+"</team>\n" #write out team newDiver+="\t</diver>\n" #end the diver writeOut.write(newDiver) #write out to the file lineNum+=1 #increment control writeOut.write("</divingevent>") #end the diving event #readFrom.close() writeOut.close() #close the file
true
1fb5ea2fed2ee0c5e83c89ab199b0700c8683304
Python
zxteloiv/AdaNSP
/src/models/transformer/adaptive_computing.py
UTF-8
2,996
2.828125
3
[]
no_license
from typing import List, Tuple, Dict, Mapping, Optional import torch class AdaptiveComputing(torch.nn.Module): def __init__(self, halting_fn: torch.nn.Module, max_computing_time: int = 10, epsilon: float = 0.1, mode: str = "basic" ): super(AdaptiveComputing, self).__init__() self._halting_fn: torch.nn.Module = halting_fn self._threshold: float = 1 - epsilon self._max_computing_time: int = max_computing_time self._mode: str = mode def forward(self, *args, inputs: torch.nn.Module, step_fn: torch.nn.Module, ) -> torch.Tensor: """ Adaptively compute the hidden states, and compute the halting probability for each token :param inputs: (batch, seq_len, emb_dim) :param mask: (batch, seq_len), input padding mask :param step_fn: step function to take to compute a new recurrent state, which accepts inputs, padding mask and timestep, then returns another state :param halting_prob_cumulation: (batch, seq_len), the previous cumulated halting_probability :return: halting probability: (batch, seq_len) """ timestep = 0 hidden = inputs # halting_prob_cumulation: (batch, seq_len) halting_prob_cumulation = hidden.new_zeros(hidden.size()[:-1]).float() while timestep < self._max_computing_time and "TODO: exit if all place exhausted": # current all alive tokens, which need further computation # alive_mask: (batch, seq_len) alive_mask: torch.Tensor = halting_prob_cumulation < 1. alive_mask = alive_mask.float() # halting_prob: (batch, seq_len) <- (batch, seq_len, 1) halting_prob = self._halting_fn(hidden).squeeze(-1) # temp_cumulation: (batch, seq_len) temp_cumulation = halting_prob * alive_mask + halting_prob_cumulation # mask to the newly halted tokens, which is exhausted at the current timestep of computation # new_halted: (batch, seq_len) new_halted = (temp_cumulation > self._threshold).float() remainder = 1. - halting_prob_cumulation + 1.e-10 # all tokens that survives from the current timestep's computation # alive_mask: (batch, seq_len) alive_mask = (1 - new_halted) * alive_mask halting_prob_cumulation += halting_prob * alive_mask # cumulations for newly halted positions will reach 1.0 after adding up remainder at the current timestep halting_prob_cumulation += remainder * new_halted step_out = step_fn(hidden, *args, timestep) timestep += 1 state_update_weight = alive_mask.unsqueeze(-1) hidden = state_update_weight * step_out + (1 - state_update_weight) * hidden return hidden
true
c879c4be55fa646b6f909bb49e0cae2873efde91
Python
KristallWang/LMS8001-PLL-Sim
/src/vco.py
UTF-8
14,152
2.6875
3
[ "Apache-2.0", "CC-BY-3.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
from header import * from plot_funcs import searchF import pandas as pnd class vco(object): """Represents ideal VCO. F is frequency of oscillation in Hz, and KVCO is tuning sensistivity in Hz/V""" def __init__(self, name='VCO', F=1.0e9, KVCO=20.0e6, fc=200.0e3, (pn,fpn)=(-121, 1.0e6), noise_floor=-165.0): self.name=name if (F<=0): print "VCO oscillation frequency should be positive real number." print "VCO object not created. Returning None." return None else: self.F=F self.KVCO=KVCO if (fc>0 and fpn>0): self.fc=fc self.pn=pn self.fpn=fpn self.noise_floor=noise_floor else: print "Corner frequency and phase noise frequency should be positive real number." print "VCO object not created. Returning None." return None def setNoise(self, fc, (pn, fpn)=(-121, 1.0e6), noise_floor=-165.0): if (fc>0 and fpn>0): self.fc=fc self.pn=pn self.fpn else: print "Corner frequnecy and phase noise frequency should be positive real number." print "VCO Noise parameters not changed." def __str__(self): return ("VCO class instance\n\tInst.Name= %s\n\tF=%.2f GHZ\n\tKVCO=%.2f MHz/V\n\tfc=%.2e Hz\n\tPhase Noise-Freq Pair=(%.2f dBc/Hz, %.2eHz)\n\tNoise Floor=%.2f dBc/Hz" %(self.name, self.F/1.0e9, self.KVCO/1.0e6, self.fc, self.pn, self.fpn, self.noise_floor)) def tfunc(self,f): j=np.complex(0,1) w=2*math.pi*f s=j*w Kvco=2*math.pi*self.KVCO return Kvco/(j*w) def setName(self, name): self.name=name def setF(self,F): if (F<0): print "VCO oscillation frequency should be positive real number." print "VCO oscillation frequency will not be changed." else: self.F=F def setKVCO(self,KVCO): self.KVCO=KVCO def getF(self): return self.F def getKVCO(self): return self.KVCO def calc_pnoise_pwl(self, f): pn_vals=[] fc=self.fc pn=self.pn fpn=self.fpn ind_fst=searchF(fpn, f[0], 'greater-equal', 'first') ind_lst=searchF(fpn, f[len(f)-1], 'lower-equal', 'last') if (ind_lst<ind_fst): print "Error: VCO Calculate Phase Noise Method, PieceWise Approx." print "Unordered list of offset frequencies. Returning None." return None if (ind_fst>0 and ind_fst<len(fpn)): slope_fst=(pn[ind_fst]-pn[ind_fst-1])/log10(fpn[ind_fst]/fpn[ind_fst-1]) pn_fst=pn[ind_fst-1]+slope_fst*log10(f[0]/fpn[ind_fst-1]) else: if (fpn[ind_fst]<fc): slope_fst=-30.0 else: slope_fst=-20.0 if (ind_fst==0): pn_fst=pn[0]-slope_fst*log10(fpn[0]/f[0]) else: pn_fst=pn[len(fpn)-1]+slope_fst*log10(f[0]/fpn[len(fpn)-1]) if (ind_lst>0 and ind_lst<len(fpn)-1): slope_lst=(pn[ind_lst]-pn[ind_lst-1])/log10(fpn[ind_lst]/fpn[ind_lst-1]) #if (fpn[ind_lst]<fc): # slope_lst=max(-30.0, slope_lst) #else: # slope_lst=max(-20.0, slope_lst) else: if (fpn[ind_lst]<fc): slope_lst=-30.0 else: slope_lst=-20.0 fpn_ind=ind_fst pn_sec=pn_fst f_ind_sec=0 slope=slope_fst f_ind=0 while (f_ind<len(f)): if (f[f_ind]>fpn[fpn_ind]): pn_sec=pn_last f_ind_sec=f_ind-1 if (fpn_ind==ind_lst): slope=slope_lst else: fpn_ind+=1 slope=(pn[fpn_ind]-pn[fpn_ind-1])/log10(fpn[fpn_ind]/fpn[fpn_ind-1]) pn_last=pn_sec+slope*log10(f[f_ind]/f[f_ind_sec]) pn_vals.append(pn_last) f_ind+=1 pn_vco=np.array(pn_vals) pn_vco=np.power(10.0, pn_vco/10.0)+np.power(10.0, self.noise_floor/10.0) pn_vco=10.0*np.log10(pn_vco) return pn_vco def calc_pnoise_1p(self, f): """fc - VCO pnoise corner frequency, where slope changes from -30 dB/dec(upconv. flicker noise) to -20 dB/dec (upconv. thermal noise), (pn, fpn) - tuple which defines one (pnoise[dBc/Hz], foffset[Hz]) known pair.""" fc=self.fc pn=self.pn fpn=self.fpn if (fpn<fc): slope=-30 else: slope=-20 pn_fc=pn-slope*log10(fpn/fc) pn_vals=[] for fval in f: if (fval<fc): slope=-30 else: slope=-20 pn_vals.append(pn_fc+slope*log10(fval/fc)) pn_vco=np.array(pn_vals) pn_vco=np.power(10.0, pn_vco/10.0)+np.power(10.0, self.noise_floor/10.0) pn_vco=10.0*np.log10(pn_vco) return pn_vco def calc_pnoise(self,f): if (type(self.fpn) is list) and (type(self.pn) is list): return self.calc_pnoise_pwl(f) else: return self.calc_pnoise_1p(f) class lms8001_vco(vco): def __init__(self, name='VCO_LMS8001IC', EM_MODEL=False, MEAS_FREQ=True, SEL=3, FREQ=128, VTUNE=0.6, fc=200.0e3, (pn,fpn)=(-121, 1.0e6), noise_floor=-165.0): self.name=name SEL=lms8001_vco.checkCTRL(SEL, 'SEL', 0, 3) FREQ=lms8001_vco.checkCTRL(FREQ, 'FREQ', 0, 255) VTUNE=lms8001_vco.checkVTUNE(VTUNE, 'VTUNE', LMS8001_VTUNE_MIN, LMS8001_VTUNE_MAX) self.SEL=SEL self.FREQ=FREQ self.VTUNE=VTUNE script_dir=os.path.dirname(__file__) if not(EM_MODEL): VCOL_FILEPATH=os.path.join(script_dir, 'Data/VCOL_RCEXT.csv') VCOM_FILEPATH=os.path.join(script_dir, 'Data/VCOM_RCEXT.csv') VCOH_FILEPATH=os.path.join(script_dir, 'Data/VCOH_RCEXT.csv') else: if (MEAS_FREQ): VCOL_FILEPATH=os.path.join(script_dir, 'Data/VCOL_MEAS.csv') VCOM_FILEPATH=os.path.join(script_dir, 'Data/VCOM_MEAS.csv') VCOH_FILEPATH=os.path.join(script_dir, 'Data/VCOH_MEAS.csv') else: VCOL_FILEPATH=os.path.join(script_dir, 'Data/VCOL_RLCKEXT.csv') VCOM_FILEPATH=os.path.join(script_dir, 'Data/VCOM_RLCKEXT.csv') VCOH_FILEPATH=os.path.join(script_dir, 'Data/VCOH_RLCKEXT.csv') self.VCOL_DATA=(pnd.read_csv(VCOL_FILEPATH)).values self.VCOM_DATA=(pnd.read_csv(VCOM_FILEPATH)).values self.VCOH_DATA=(pnd.read_csv(VCOH_FILEPATH)).values self.setF(SEL, FREQ, VTUNE) if ((type(fc) is float) and (type(fpn) is float)) and (fc>0 and fpn>0): self.fc=fc self.pn=pn self.fpn=fpn elif (type(fc) is float) and ((type(fpn) is list) and (type(pn) is list)): print "Warning: List of offset frequencies should contain only positive real numbers." self.fc=fc self.pn=pn self.fpn=fpn else: print "Offset frequency and phase noise frequency should be positive real number(s) (scalar or list)." print "If a list of offset frequencies and corresponding phase noise values is used, they should have the same length." print "VCO object not created. Returning None." return None self.noise_floor=noise_floor @staticmethod def checkVTUNE(val, valname, val_min, val_max): if (val<val_min): print "Warning: VCO %s cannot go lower then %d. Minimum value will be used." % (valname, val_min) val=val_min elif (val>val_max): print "Warning: VCO %s cannot go higher then %d. Maximum value will be used." % (valname, val_max) val=val_max return val @staticmethod def checkCTRL(val, valname, val_min, val_max): val=floor(val) if (val<val_min): print "Warning: VCO digital control %s is considered as %d bit positive integer. Minimum value is %d. This value will be used." % (valname, math.log10(val_max-val_min+1)/math.log10(2.0), val_min) val=val_min elif (val>val_max): print "Warning: VCO digital control %s is considered as %d bit positive integer. Maximum value is %d. This value will be used." % (valname, math.log10(val_max-val_min+1)/math.log10(2.0), val_max) val=val_max return val def setNoise(self, fc, (pn, fpn), noise_floor=-165.0): if ((type(fc) is float) and (type(fpn) is float)) and (fc>0 and fpn>0): self.fc=fc self.pn=pn self.fpn=fpn elif (type(fc) is float) and ((type(fpn) is list) and (type(pn) is list)) and (len(pn)==len(fpn)) and (len(pn)==len(fpn)): print "Warning: List of offset frequencies should contain only positive real numbers." self.fc=fc self.pn=pn self.fpn=fpn else: print "Offset frequency and phase noise frequency should be positive real number(s) (scalar or list)." print "If a list of offset frequencies and corresponding phase noise values is used, they should have the same length." print "VCO object not created. Returning None." return None self.noise_floor=noise_floor def getVars(self, SEL,FREQ): if (SEL==0): self.F=0 print "Warning: External LO Mode Configured. SEL of %s set to 0." % (self.name) return (0.0, 0.0, 0.0, 0.0, 0.0) else: if (SEL==1): VCO_DATA=self.VCOL_DATA elif (SEL==2): VCO_DATA=self.VCOM_DATA else: VCO_DATA=self.VCOH_DATA F0=VCO_DATA[FREQ,1] P3=VCO_DATA[FREQ,2] P2=VCO_DATA[FREQ,3] P1=VCO_DATA[FREQ,4] P0=VCO_DATA[FREQ,5] return (F0,P3,P2,P1,P0) def calcF(self,SEL,FREQ,VTUNE): (F0,P3,P2,P1,P0)=self.getVars(SEL,FREQ) return F0*(P3*(VTUNE**3)+P2*(VTUNE**2)+P1*VTUNE+P0) def calcKVCO(self, SEL, FREQ, VTUNE): (F0,P3,P2,P1,P0)=self.getVars(SEL,FREQ) return F0*(3*P3*(VTUNE**2)+2*P2*VTUNE+P1) def setF(self, SEL, FREQ, VTUNE): SEL=lms8001_vco.checkCTRL(SEL, 'SEL', 0, 3) FREQ=lms8001_vco.checkCTRL(FREQ, 'FREQ', 0, 255) VTUNE=lms8001_vco.checkVTUNE(VTUNE, 'VTUNE', 0.0, 1.2) self.SEL=SEL self.FREQ=FREQ self.VTUNE=VTUNE self.F=self.calcF(SEL,FREQ,VTUNE) self.KVCO=self.calcKVCO(SEL,FREQ,VTUNE) def setKVCO(self, KVCO=0): print "Warning: %s Tuning Sensitivity is automatically calculated when defining (SEL,FREQ,VTUNE) parameters." % (self.name) print "Warning: KVCO attribute of %s will not be changed." % (self.name) def AUTO_CAL(self, F_TARGET, VTUNE_FIX=0.6, VTUNE_STEP=0.01, SEL_INIT=0): """This method is used to find optimal VCO digital configuration (SEL and FREQ) and to estimate approx. VTUNE value for targeted VCO frequency of F_TARGET""" DF_BEST=100.0e9 if (SEL_INIT==0): SEL_OPT=0 SEL_LIST=range(1,4) else: SEL_INIT=lms8001_vco.checkCTRL(SEL_INIT, 'VCO_AUTO_CAL:SEL_INIT', 1, 3) SEL_OPT=SEL_INIT SEL_LIST=range(int(SEL_OPT),int(SEL_OPT)+1) FREQ_OPT=0 VTUNE_OPT=VTUNE_FIX VTUNE_N=int(floor((LMS8001_VTUNE_MAX-LMS8001_VTUNE_MIN)*1.0/VTUNE_STEP)) for SEL in SEL_LIST: for FREQ in range(0,256): F_ESTIM=self.calcF(SEL,FREQ,VTUNE_FIX) DF=abs(F_ESTIM-F_TARGET) if (DF<DF_BEST): DF_BEST=DF SEL_OPT=SEL FREQ_OPT=FREQ DF_BEST=100.0e9 if (SEL_OPT>0): for i in range(0,VTUNE_N): VTUNE_VAL=LMS8001_VTUNE_MIN+i*VTUNE_STEP F_ESTIM=self.calcF(SEL_OPT,FREQ_OPT,VTUNE_VAL) DF=abs(F_ESTIM-F_TARGET) if (DF<DF_BEST): DF_BEST=DF VTUNE_OPT=VTUNE_VAL VCO_CONFIG={'SEL':SEL_OPT, 'FREQ':FREQ_OPT, 'VTUNE':VTUNE_OPT} return VCO_CONFIG def get_TCURVE(self, SEL, FREQ, VTUNE_STEP=0.05): SEL=lms8001_vco.checkCTRL(SEL, 'SEL', 0, 3) FREQ=lms8001_vco.checkCTRL(FREQ, 'FREQ', 0, 255) VTUNE_N=int(floor((LMS8001_VTUNE_MAX-LMS8001_VTUNE_MIN)*1.0/VTUNE_STEP)) VTUNE_SWEEP=[] F_SWEEP=[] for i in range(0,VTUNE_N): VTUNE_VAL=LMS8001_VTUNE_MIN+i*VTUNE_STEP F_ESTIM=self.calcF(SEL,FREQ,VTUNE_VAL) VTUNE_SWEEP.append(VTUNE_VAL) F_SWEEP.append(F_ESTIM) return (np.array(VTUNE_SWEEP),np.array(F_SWEEP)) def CTUNE_SEL(self, F_TARGET, SEL_FORCE=False, SEL_INIT=2, FREQ_MIN=5, FREQ_MAX=250, VTUNE_FIX=0.6): if (SEL_FORCE): return SEL_INIT else: if (self.calcF(2, FREQ_MIN, VTUNE_FIX)>F_TARGET): return 1 elif (self.calcF(2, FREQ_MAX, VTUNE_FIX)<F_TARGET): return 3 else: return 2 def CTUNE_FREQ(self, F_TARGET, SEL, FREQ_FORCE=0, FREQ_INIT=128, FREQ_INIT_POS=7, VTUNE_FIX=0.6, VTUNE_STEP=0.01): SEL=lms8001_vco.checkCTRL(SEL, 'SEL', 1, 3) FREQ_INIT=lms8001_vco.checkCTRL(FREQ_INIT, 'FREQ_INIT', 0, 255) FREQ_INIT_POS=lms8001_vco.checkCTRL(FREQ_INIT_POS, 'FREQ_INIT_POS', 0, 7) VTUNE_FIX=lms8001_vco.checkVTUNE(VTUNE_FIX, 'VTUNE_FIX', LMS8001_VTUNE_MIN, LMS8001_VTUNE_MAX) VTUNE_N=int(floor((LMS8001_VTUNE_MAX-LMS8001_VTUNE_MIN)*1.0/VTUNE_STEP)) if not (FREQ_FORCE): FREQ_INIT_POS=7 FREQ_POS=FREQ_INIT_POS FREQ_CURRENT=int(pow(2,FREQ_INIT_POS)) else: FREQ_POS=FREQ_INIT_POS i=7 FREQ_MASK=0 while (i>=FREQ_POS): FREQ_MASK+=int(pow(2,i)) FREQ_CURRENT=FREQ_INIT&FREQ_MASK while (FREQ_POS>=0): F_VAL=self.calcF(SEL, FREQ_CURRENT, VTUNE_FIX) FREQ_HIGH=(F_VAL>F_TARGET) #print 'FREQ_CURRENT= %d , FREQ_HIGH= %d' % (FREQ_CURRENT, FREQ_HIGH) FREQ_EQUAL=(F_VAL==F_TARGET) FREQ_LOW=(F_VAL<F_TARGET) FREQ_MASK=0 i=7 while (i>FREQ_POS): FREQ_MASK+=int(pow(2,i)) i=i-1 if not (FREQ_HIGH): FREQ_MASK+=int(pow(2,FREQ_POS)) FREQ_CURRENT=FREQ_CURRENT&FREQ_MASK FREQ_POS-=1 if (FREQ_POS>=0): FREQ_CURRENT+=int(pow(2,FREQ_POS)) FREQ_OPT=FREQ_CURRENT DF_BEST=100.0e9 for i in range(0,VTUNE_N): VTUNE_VAL=LMS8001_VTUNE_MIN+i*VTUNE_STEP F_ESTIM=self.calcF(SEL,FREQ_OPT,VTUNE_VAL) DF=abs(F_ESTIM-F_TARGET) if (DF<DF_BEST): DF_BEST=DF VTUNE_OPT=VTUNE_VAL return (FREQ_OPT, VTUNE_OPT) def CTUNE(self, F_TARGET, SEL_FORCE=False, SEL_INIT=2, FREQ_FORCE=False, FREQ_INIT=128, FREQ_INIT_POS=7, FREQ_MIN=5, FREQ_MAX=250, VTUNE_FIX=0.6, VTUNE_STEP=0.01): SEL_OPT=self.CTUNE_SEL(F_TARGET, SEL_FORCE, SEL_INIT, FREQ_MIN, FREQ_MAX, VTUNE_FIX) (FREQ_OPT, VTUNE_OPT)=self.CTUNE_FREQ(F_TARGET, SEL_OPT, FREQ_FORCE, FREQ_INIT, FREQ_INIT_POS, VTUNE_FIX, VTUNE_STEP) VCO_CONFIG={'SEL':SEL_OPT, 'FREQ':FREQ_OPT, 'VTUNE':VTUNE_OPT} return VCO_CONFIG def __str__(self): pn_str='[' if ((type(self.fpn) is list) and (type(self.pn) is list)): for i in range(0,len(self.fpn)-1): pn_str+='(%.2f dBc/Hz, %.2eHz), ' % (self.pn[i], self.fpn[i]) pn_str+='(%.2f dBc/Hz, %.2eHz)' % (self.pn[len(self.fpn)-1], self.fpn[len(self.fpn)-1]) else: pn_str='(%.2f dBc/Hz, %.2eHz)]' % (self.pn, self.fpn) #return ("VCO class instance\n\tInst.Name= %s\n\tF=%.4f GHZ (SEL= %d, FREQ= %d, VTUNE= %.2f V)\n\tKVCO=%.2f MHz/V\n\tfc=%.2e Hz\n\tPhase Noise-Freq Pair=(%.2f dBc/Hz, %.2eHz)" %(self.name, self.F/1.0e9, self.SEL, self.FREQ, self.VTUNE, self.KVCO/1.0e6, self.fc, self.pn, self.fpn)) return ("VCO class instance\n\tInst.Name= %s\n\tF=%.4f GHZ (SEL= %d, FREQ= %d, VTUNE= %.3f V)\n\tKVCO=%.2f MHz/V\n\tfc=%.2e Hz\n\tPhase Noise vs. Freq=%s\n\tNoise Floor=%.2f dBc/Hz" %(self.name, self.F/1.0e9, self.SEL, self.FREQ, self.VTUNE, self.KVCO/1.0e6, self.fc, pn_str, self.noise_floor))
true
0a320278c301f722dfbc51a8ef33108428545692
Python
FlaviaGarcia/Content-Based-Artist-Classifier-using-CNN
/01-Development_code/CV_CNN1_.py
UTF-8
11,342
2.796875
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 19 18:54:54 2018 @author: flaviagv In this script, the training, validation, and test accuracy of a CNN with different inputs has been made. This was in order to compare what input performs better with this CNN. This CNN is composed by the following layers: 2D CONV(128 filters, 3x3) + MAX_POOLING(2x2) + 2D CONV(256 filters, 3x3) + MAX_POOLING + FLATTEN + DENSE(64) + DROPOUT(0.2) + DENSE(num_classes = 50) """ from sklearn.model_selection import train_test_split import numpy as np from sklearn.metrics import accuracy_score #confusion_matrix, from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.losses import categorical_crossentropy from keras.callbacks import EarlyStopping import tensorflow as tf import keras from six.moves import cPickle as pickle #from sklearn.metrics import roc_auc_score #from sklearn.metrics import f1_score # import matplotlib.pyplot as plt #import random #import datetime def LoadDatasets(pickle_file = "dataset.pickle"): f = open(pickle_file, "rb") Datasets = pickle.load(f) return Datasets def createConvNN(input_shape, num_classes): model = Sequential() # conv: 128 filtros model.add(Conv2D(filters = 128, kernel_size = 3, activation = "relu", use_bias = True, strides = 1, padding = "same", input_shape = input_shape)) # max pool 2x2 model.add(MaxPooling2D(pool_size = 2, strides = None, padding = "same")) # conv # 256 filtros model.add(Conv2D(filters = 256, kernel_size = 3, activation = "relu", use_bias = True, strides = 1, padding = "same")) # kernel_initializer='glorot_uniform', # bias_initializer='zeros' # padding='valid' # max pool 2x2 model.add(MaxPooling2D(pool_size = 2, strides = None, padding = "same")) # flatten -> poner todo en un vector (sera de 256x32x32) model.add(Flatten()) # fully connected 64 model.add(Dense(64, activation = 'relu')) model.add(Dropout(0.2)) # we randomnly disable 20% of the neurons # softmax de 50 outputs model.add(Dense(num_classes, activation='softmax')) # Adam Optimizer, Batch size = 64, n_epochs -> early stopping model.compile(optimizer = Adam(), #lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, decay = 0.0) loss = categorical_crossentropy, #"mse", metrics = ["accuracy"]) return model def plot_model_history(history, iteracion, tituloIm): plt.plot(history.history['acc']) # plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train'], loc='upper left') # , 'test' plt.savefig(tituloIm + "_IT_" + str(iteracion )+ '.jpg') #plt.show() # summarize history for loss # plt.plot(history.history['loss']) # # plt.plot(history.history['val_loss']) # plt.title('model loss') # plt.ylabel('loss') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() def cross_validation(X, y, tituloIm): """ Hacemos tanto las 4 rounds como el train y la evaluation El 75% del train será usado para el tren de CV y el 15% para la validacion """ # X sigue siendo una lista # iteracion es un numero que tiene que estar en range(5), sino lanzar una excepcion # quedarnos con 4/5(80%) para el train y 1/5 para el test(20%) # En cada iteracion coger un trozo diferente del test, y que el resto sean train acc_train_list = [] acc_val_list = [] num_classes = 20 num_elems = len(y)//20 # Coger 3 sumAcc = 0 # Si hay restantes, se lo queda el train # primer bloque -> [0:num_elems] # segundo bloque -> [num_elems*1:num_elems*2] # tercer bloque -> [num_elems*2:num_elems*3] # cuarto bloque -> [num_elems*3:num_elems*4] # quinto bloque -> [num_elems*4:num_elems*5] # el numero del bloque del test te lo va a dar la iteracion np.random.seed(133) np.random.shuffle(X) np.random.shuffle(y) fin = 0 #np.random.permutation(len(y)).shape #iteracion = 0 for iteracion in range(6): X_val = X[fin: 3*num_elems*(iteracion+1)] y_val = y[fin : 3*num_elems*(iteracion+1)] X_train = X[0:fin] + X[3*num_elems*(iteracion+1):len(X)] y_train = y[0:fin] + y[3*num_elems*(iteracion+1):len(y)] print("----- iteracion %d -----"%iteracion) print(" X_val --> %f"%(len(X_val)*100/len(X))) print(" y_val --> %f"%(len(y_val)*100/len(X))) print(" X_train --> %f"%(len(X_train)*100/len(X))) print(" y_train --> %f\n"%(len(y_train)*100/len(X))) fin = 3*num_elems*(iteracion+1) X_train = np.asarray(X_train) y_train = np.asarray(y_train) X_val = np.asarray(X_val) y_val = np.asarray(y_val) ### HACEMOS EL ENTRENAMIENTO DE LA RED X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1) X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], X_val.shape[2], 1) y_train = keras.utils.to_categorical(y_train, num_classes) # y_val = keras.utils.to_categorical(y_val, num_classes) input_shape = X_train.shape[1:] model = createConvNN(input_shape, num_classes) # define early stopping callback # earlystop = EarlyStopping(monitor = 'acc', # min_delta = 0.0001, # patience = 5, # verbose = 1, # mode = 'auto') # callbacks_list = [earlystop] keras.backend.get_session().run(tf.global_variables_initializer()) model_info = model.fit(X_train, y_train, # validation_split=0.33 verbose = 0, batch_size = 16, epochs = 100)#100, #100 # callbacks = callbacks_list) # No estoy poniendo validation split plot_model_history(model_info, iteracion, tituloIm) # Te indica en que epoch se ha parado debido a early stopping y te enseñan dos gráficas: # - Model accuracy / epoch # - Model loss / epoch #score = model.evaluate(X_test, y_test, verbose = 0) y_pred_probs = model.predict(X_val) y_pred = np.argmax(y_pred_probs, axis = 1) #y_pred = model.predict_classes(X_test) #print('Test loss:', score[0]) print("Getting validation ACC ...") acc_val = accuracy_score(y_val, y_pred) print("Getting train ACC ...") acc_train = model.evaluate(X_train, y_train, verbose = 0)[1] print("Validation ACC iteration " + str(iteracion) +": " + str(acc_val)) print("Train ACC: iteration " + str(iteracion) + ": " + str(acc_train)) acc_val_list.append(acc_val) acc_train_list.append(acc_train) sumAcc += acc_val # roc_auc_score(y_val, y_pred) # sumAcc += accuracy_score(np.argmax(y_val, axis = 1), y_pred) #score[1]) # print("CONFUSION MATRIX: \n", confusion_matrix(np.argmax(y_test, axis = 1), y_pred)) k_fold = range(6) plt.plot(k_fold, acc_train_list) plt.plot(k_fold, acc_val_list, "g-") #plt.plot(eje_x, f1_10_list_, "r-") #plt.plot(eje_x, f1_20_list_, "y-") plt.legend(["Train accuracy", "Test accuracy"])#, "Top 20 list"]) plt.title("Accurary in each cross validation fold") plt.xlabel("Number of k-fold") plt.ylabel("Accuracy") # dt = datetime.datetime.now().strftime("%m_%d_%H_%M_%S") plt.savefig(tituloIm + '.jpg') #plt.show() return (sumAcc/6)# average AUC values # y_pred_ran = [random.randint(0, 19) for test in y_test] # acc_val = accuracy_score(y_test, y_pred_ran) # ##### RANDOM DE MFCC DE LOS H5 # Datasets = LoadDatasets("../02-Data_out/Dataset_MFCC_h5.pickle") # X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) # y_pred_ran = [random.randint(0, 19) for test in y_test] # accuracy_score(y_test, y_pred_ran) if __name__ == "__main__": ### ITERAR PARA CADA MFCC QUE HE SACADO Datasets = LoadDatasets("../02-Data_out/Xy_7_MFCC1.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_7_MFCC1 = cross_validation(X_train, y_train, "CNN1_7_MFCC1") print("ACC 7 SECONDS MFCC1 -->" + str(acc_7_MFCC1)) Datasets = LoadDatasets("../02-Data_out/Xy_7_MFCC2.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_7_MFCC2 = cross_validation(X_train, y_train, "CNN1_7_MFCC2") print("ACC 7 SECONDS MFCC2 -->" + str(acc_7_MFCC2)) Datasets = LoadDatasets("../02-Data_out/Xy_14_MFCC1.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_14_MFCC1 = cross_validation(X_train, y_train, "CNN1_14_MFCC1") print("ACC 14 SECONDS MFCC1 -->" + str(acc_14_MFCC1)) Datasets = LoadDatasets("../02-Data_out/Xy_14_MFCC2.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_14_MFCC2 = cross_validation(X_train, y_train, "CNN1_14_MFCC2") print("ACC 14 SECONDS MFCC2 -->" + str(acc_14_MFCC2)) Datasets = LoadDatasets("../02-Data_out/Dataset_MFCC_h5_24-48_segs.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_24_48_MFCC_h5 = cross_validation(X_train, y_train, "CNN1_24-48_MFCC_h5") print("ACC 24-48 SECONDS MFCC H5-->" + str(acc_24_48_MFCC_h5)) Datasets = LoadDatasets("../02-Data_out/Dataset_MFCC_h5_12-24_segs.pickle") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_12_24_MFCC_h5 = cross_validation(X_train, y_train, "CNN1_12-24_MFCC_h5") print("ACC 12-24 SECONDS MFCC H5-->" + str(acc_12_24_MFCC_h5)) Datasets = LoadDatasets("../02-Data_out/ataset_MFCC_h5_6-12_segs.pickleD") X_train, X_test, y_train, y_test = train_test_split(Datasets["X"], Datasets["y"], test_size = 0.1, random_state=42) acc_6_12_MFCC_h5 = cross_validation(X_train, y_train, "CNN1_6-12_MFCC_h5") print("ACC 6-12 SECONDS MFCC H5-->" + str(acc_6_12_MFCC_h5)) # model.save(model_path)
true
786893c4c73aa1b6c103db42df28d7cc07a3dbb5
Python
qubvel/ttach
/ttach/transforms.py
UTF-8
7,977
2.796875
3
[ "MIT" ]
permissive
from functools import partial from typing import Optional, List, Union, Tuple from . import functional as F from .base import DualTransform, ImageOnlyTransform class HorizontalFlip(DualTransform): """Flip images horizontally (left->right)""" identity_param = False def __init__(self): super().__init__("apply", [False, True]) def apply_aug_image(self, image, apply=False, **kwargs): if apply: image = F.hflip(image) return image def apply_deaug_mask(self, mask, apply=False, **kwargs): if apply: mask = F.hflip(mask) return mask def apply_deaug_label(self, label, apply=False, **kwargs): return label def apply_deaug_keypoints(self, keypoints, apply=False, **kwargs): if apply: keypoints = F.keypoints_hflip(keypoints) return keypoints class VerticalFlip(DualTransform): """Flip images vertically (up->down)""" identity_param = False def __init__(self): super().__init__("apply", [False, True]) def apply_aug_image(self, image, apply=False, **kwargs): if apply: image = F.vflip(image) return image def apply_deaug_mask(self, mask, apply=False, **kwargs): if apply: mask = F.vflip(mask) return mask def apply_deaug_label(self, label, apply=False, **kwargs): return label def apply_deaug_keypoints(self, keypoints, apply=False, **kwargs): if apply: keypoints = F.keypoints_vflip(keypoints) return keypoints class Rotate90(DualTransform): """Rotate images 0/90/180/270 degrees Args: angles (list): angles to rotate images """ identity_param = 0 def __init__(self, angles: List[int]): if self.identity_param not in angles: angles = [self.identity_param] + list(angles) super().__init__("angle", angles) def apply_aug_image(self, image, angle=0, **kwargs): k = angle // 90 if angle >= 0 else (angle + 360) // 90 return F.rot90(image, k) def apply_deaug_mask(self, mask, angle=0, **kwargs): return self.apply_aug_image(mask, -angle) def apply_deaug_label(self, label, angle=0, **kwargs): return label def apply_deaug_keypoints(self, keypoints, angle=0, **kwargs): angle *= -1 k = angle // 90 if angle >= 0 else (angle + 360) // 90 return F.keypoints_rot90(keypoints, k=k) class Scale(DualTransform): """Scale images Args: scales (List[Union[int, float]]): scale factors for spatial image dimensions interpolation (str): one of "nearest"/"lenear" (see more in torch.nn.interpolate) align_corners (bool): see more in torch.nn.interpolate """ identity_param = 1 def __init__( self, scales: List[Union[int, float]], interpolation: str = "nearest", align_corners: Optional[bool] = None, ): if self.identity_param not in scales: scales = [self.identity_param] + list(scales) self.interpolation = interpolation self.align_corners = align_corners super().__init__("scale", scales) def apply_aug_image(self, image, scale=1, **kwargs): if scale != self.identity_param: image = F.scale( image, scale, interpolation=self.interpolation, align_corners=self.align_corners, ) return image def apply_deaug_mask(self, mask, scale=1, **kwargs): if scale != self.identity_param: mask = F.scale( mask, 1 / scale, interpolation=self.interpolation, align_corners=self.align_corners, ) return mask def apply_deaug_label(self, label, scale=1, **kwargs): return label def apply_deaug_keypoints(self, keypoints, scale=1, **kwargs): return keypoints class Resize(DualTransform): """Resize images Args: sizes (List[Tuple[int, int]): scale factors for spatial image dimensions original_size Tuple(int, int): optional, image original size for deaugmenting mask interpolation (str): one of "nearest"/"lenear" (see more in torch.nn.interpolate) align_corners (bool): see more in torch.nn.interpolate """ def __init__( self, sizes: List[Tuple[int, int]], original_size: Tuple[int, int] = None, interpolation: str = "nearest", align_corners: Optional[bool] = None, ): if original_size is not None and original_size not in sizes: sizes = [original_size] + list(sizes) self.interpolation = interpolation self.align_corners = align_corners self.original_size = original_size super().__init__("size", sizes) def apply_aug_image(self, image, size, **kwargs): if size != self.original_size: image = F.resize( image, size, interpolation=self.interpolation, align_corners=self.align_corners, ) return image def apply_deaug_mask(self, mask, size, **kwargs): if self.original_size is None: raise ValueError( "Provide original image size to make mask backward transformation" ) if size != self.original_size: mask = F.resize( mask, self.original_size, interpolation=self.interpolation, align_corners=self.align_corners, ) return mask def apply_deaug_label(self, label, size=1, **kwargs): return label def apply_deaug_keypoints(self, keypoints, size=1, **kwargs): return keypoints class Add(ImageOnlyTransform): """Add value to images Args: values (List[float]): values to add to each pixel """ identity_param = 0 def __init__(self, values: List[float]): if self.identity_param not in values: values = [self.identity_param] + list(values) super().__init__("value", values) def apply_aug_image(self, image, value=0, **kwargs): if value != self.identity_param: image = F.add(image, value) return image class Multiply(ImageOnlyTransform): """Multiply images by factor Args: factors (List[float]): factor to multiply each pixel by """ identity_param = 1 def __init__(self, factors: List[float]): if self.identity_param not in factors: factors = [self.identity_param] + list(factors) super().__init__("factor", factors) def apply_aug_image(self, image, factor=1, **kwargs): if factor != self.identity_param: image = F.multiply(image, factor) return image class FiveCrops(ImageOnlyTransform): """Makes 4 crops for each corner + center crop Args: crop_height (int): crop height in pixels crop_width (int): crop width in pixels """ def __init__(self, crop_height, crop_width): crop_functions = ( partial(F.crop_lt, crop_h=crop_height, crop_w=crop_width), partial(F.crop_lb, crop_h=crop_height, crop_w=crop_width), partial(F.crop_rb, crop_h=crop_height, crop_w=crop_width), partial(F.crop_rt, crop_h=crop_height, crop_w=crop_width), partial(F.center_crop, crop_h=crop_height, crop_w=crop_width), ) super().__init__("crop_fn", crop_functions) def apply_aug_image(self, image, crop_fn=None, **kwargs): return crop_fn(image) def apply_deaug_mask(self, mask, **kwargs): raise ValueError("`FiveCrop` augmentation is not suitable for mask!") def apply_deaug_keypoints(self, keypoints, **kwargs): raise ValueError("`FiveCrop` augmentation is not suitable for keypoints!")
true
47877a9c168037a3c44e1a70a4af0abee53a1a62
Python
jiaoyasen/interview-witn-X.Wang
/data_generator.py
UTF-8
163
2.625
3
[]
no_license
import random import collections def data_generator(n):#生成随机数list,list长度为n data= [random.randint(-100,101) for j in range(n)] return data
true
48703e2c0e492df310cfd9d8ac79c49d7a2ce511
Python
Success2014/Leetcode
/multipleStrings_2.py
UTF-8
741
3.53125
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Aug 06 16:26:14 2015 @author: Neo """ class Solution: # @param {string} num1 # @param {string} num2 # @return {string} def multiply(self, num1, num2): num1 = num1[::-1] num2 = num2[::-1] prodt = [0 for i in range(len(num1)+len(num2))] for i in xrange(len(num1)): for j in xrange(len(num2)): prodt[i+j] += int(num1[i]) * int(num2[j]) res = 0 t = 1 for i in xrange(len(prodt)): res += prodt[i]*t#prodt[i]最大81,乘以t不会溢出,但是没有之前的算法快 t *= 10 return str(res) sol = Solution() print sol.multiply("25","25")
true
7351306f117daf1a8ddef75b5ce9007be56829e4
Python
yochaiz/SmartHome
/Visualization/Microphone.py
UTF-8
1,669
2.859375
3
[]
no_license
from Device import Device from datetime import datetime from Plot import Plot class Microphone(Device): keys = {'RmsVolume': 'go', 'MaxVolume': 'bo'} nullValue = "null" def __init__(self, filename): super(Microphone, self).__init__(filename) def collectData(self, startDate, lambdaFunc): x = [] xByClass = {} yByClass = {} for key in self.keys.iterkeys(): xByClass[key] = [] yByClass[key] = [] i = self._Device__skipToDate(startDate) while i < len(self.root): child = self.root[i] date = datetime.strptime(child.get('Time')[:-3], self.dateFormat) if lambdaFunc(x, date) != date: break elem = {} for k in self.keys: val = child.findall(k) if len(val) > 0 and val[0].text != self.nullValue: elem[k] = float(val[0].text) # print(elem) if len(elem.keys()) > 0: x.append(date) for key in elem.keys(): xByClass[key].append(date) yByClass[key].append(elem[key]) i += 1 return x, [xByClass, yByClass] def _Device__plotInternal(self, ax, x, k): ax.set_ylabel("Volume [dB]") xByClass = k[0] yByClass = k[1] for key in xByClass.keys(): ax.__plot(xByClass[key], yByClass[key], self.keys[key], label=key) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) return None, None def __plotInternal(self, ax, x, k): self._Device__plotInternal(ax, x, k)
true
cd4c9a5f4f9dc49140a0f41cf39eea29cb051247
Python
BenjaminGaymay/trade_2017
/test_client/data.py
UTF-8
2,668
3.421875
3
[]
no_license
#!/usr/bin/env python3 ## ## EPITECH PROJECT, 2018 ## Sans titre(Espace de travail) ## File description: ## data ## """ Data class hold datas """ class Data: """Class that holds different data""" def __init__(self): self.avg = { 'crypto': -1, 'forex': -1, 'stock_exchange': -1, 'raw_material': -1 } self.current = { 'crypto': -1, 'forex': -1, 'stock_exchange': -1, 'raw_material': -1 } self.history = { 'crypto': [], 'forex': [], 'stock_exchange': [], 'raw_material': [] } self.bought_price = { 'crypto': -1, 'forex': -1, 'stock_exchange': -1, 'raw_material': -1 } def parse_data(self, data): """Store data in variables of the class""" for elem in data: for key in self.current: if elem.split(':')[0] == key: string = elem.split(':')[1].replace(',', '.') value = float(string) self.current[key] = value self.history[key].append(value) def get_bought_price(self, market): """ get_bought_price [summary] Returns the price of the last market's share price bought :param market: market's name :type market: str """ return self.bought_price[market] def get_prev_day(self, market): """ get_prev_day Return previous day :param market: market's name :type market: str :return: price of stock of previous day :rtype: float """ try: return self.history[market][-2] except IndexError: return -1 def get_current_day(self, market): """ get_current_day Return current day :param market: market's name :type market: str :return: price of current day's stock :rtype: float """ return self.current[market] def calc_avg(self): """ calc_avg """ for key in self.avg: self.avg[key] = sum(self.history[key]) / len(self.history[key]) def __str__(self): return 'crypto : {}\nforex : {}\n\ stock : {}\nraw : {}\n'.format(self.current['crypto'], self.current['forex'], self.current['stock_exchange'], self.current['raw_material'])
true
d8d69f8a833bab54478c510940ab1739298a0835
Python
pombredanne/poodle-lex
/Test/TestLexicalAnalyzer.py
UTF-8
6,724
2.59375
3
[ "MIT" ]
permissive
# coding=utf8 import sys sys.path.append("..") import unittest from Generator import Automata from Generator.CoverageSet import CoverageSet from Generator.RulesFile import AST, NonDeterministicIR, DeterministicIR def hash_ids(*ids): rules = set() for id in ids: rules.add(hash((id.lower(), frozenset(), (None, None)))) return frozenset(rules) class TestDFAEquivalency(unittest.TestCase): def test_lexical_analyzer(self): # Generate DFA through the LexicalAnalyzer class rules_file = AST.Section("::main::", None, rule = [ AST.Rule("keyword", AST.Pattern(ur'k€yword', AST.PatternAttributes(True, False, False))), AST.Rule("identifier", AST.Pattern(ur'[a-zA-Z][a-zA-Z0-9€_]*', AST.PatternAttributes(True, False, False))), AST.Rule("float", AST.Pattern(ur'[0-9]+\.[0-9]*|[0-9]*\.[0-9]+')), AST.Rule("integer", AST.Pattern(ur'[[:digit:]]+')), AST.Rule("quote", AST.Pattern(ur'"([^"\\]|\\.)*"')), AST.Rule("newline", AST.Pattern(ur'\r\n|\r|\n')), AST.Rule("whitespace", AST.Pattern(ur'[\t\s]+'))]) nfa_ir = NonDeterministicIR(rules_file) dfa_ir = DeterministicIR(nfa_ir) # Compare DFA to expected minimized DFA expected_dfa = Automata.DeterministicFinite() dfa_s = [Automata.DeterministicState() for i in xrange(18)] #Start state dfa_s[0].ids = hash_ids("float", "whitespace", "keyword", "integer", "quote", "identifier", "newline") #quote dfa_s[0].edges[dfa_s[2]] = CoverageSet([(34, 34)]) dfa_s[2].is_final = False dfa_s[2].ids = hash_ids("quote") dfa_s[2].edges[dfa_s[10]] = CoverageSet([(92, 92)]) dfa_s[2].edges[dfa_s[2]] = CoverageSet([(1, 33), (35, 91), (93, 0x10FFFF)]) dfa_s[10].is_final = False dfa_s[10].ids = hash_ids("quote") dfa_s[10].edges[dfa_s[2]] = CoverageSet([(1, 0x10FFFF)]) dfa_s[2].edges[dfa_s[9]] = CoverageSet([(34, 34)]) dfa_s[9].is_final = True dfa_s[9].final_ids = hash_ids("quote") dfa_s[9].ids = hash_ids("quote") #newline dfa_s[0].edges[dfa_s[3]] = CoverageSet([(13, 13)]) dfa_s[0].edges[dfa_s[1]] = CoverageSet([(10, 10)]) dfa_s[3].is_final = True dfa_s[3].ids = hash_ids("newline") dfa_s[3].final_ids = hash_ids("newline") dfa_s[3].edges[dfa_s[1]] = CoverageSet([(10, 10)]) dfa_s[1].is_final = True dfa_s[1].ids = hash_ids("newline") dfa_s[1].final_ids = hash_ids("newline") #identifier dfa_s[0].edges[dfa_s[5]] = CoverageSet([(65, 74), (76, 90), (97, 106), (108, 122)]) dfa_s[5].is_final = True dfa_s[5].ids = hash_ids("identifier") dfa_s[5].final_ids = hash_ids("identifier") dfa_s[5].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 90), (95, 95), (97, 122), (0x20ac, 0x20ac)]) #integer dfa_s[0].edges[dfa_s[4]] = CoverageSet([(48, 57)]) dfa_s[4].is_final = True dfa_s[4].ids = hash_ids("integer","float") dfa_s[4].final_ids = hash_ids("integer") dfa_s[4].edges[dfa_s[4]] = CoverageSet([(48, 57)]) dfa_s[4].edges[dfa_s[11]] = CoverageSet([(46, 46)]) #float dfa_s[0].edges[dfa_s[6]] = CoverageSet([(46, 46)]) dfa_s[6].is_final = False dfa_s[6].ids = hash_ids("float") dfa_s[6].edges[dfa_s[11]] = CoverageSet([(48, 57)]) dfa_s[11].is_final = True dfa_s[11].ids = hash_ids("float") dfa_s[11].final_ids = hash_ids("float") dfa_s[11].edges[dfa_s[11]] = CoverageSet([(48, 57)]) #whitespace dfa_s[0].edges[dfa_s[7]] = CoverageSet([(9, 9), (32, 32)]) dfa_s[7].is_final = True dfa_s[7].ids = hash_ids("whitespace") dfa_s[7].final_ids = hash_ids("whitespace") dfa_s[7].edges[dfa_s[7]] = CoverageSet([(9, 9), (32, 32)]) #keyword dfa_s[0].edges[dfa_s[8]] = CoverageSet([(75, 75), (107, 107)]) dfa_s[8].is_final = True dfa_s[8].ids = hash_ids("identifier", "keyword") dfa_s[8].final_ids = hash_ids("identifier") dfa_s[8].edges[dfa_s[12]] = CoverageSet([(0x20ac, 0x20ac)]) dfa_s[8].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 90), (95, 95), (97, 122)]) dfa_s[12].is_final = True dfa_s[12].ids = hash_ids("identifier", "keyword") dfa_s[12].final_ids = hash_ids("identifier") dfa_s[12].edges[dfa_s[13]] = CoverageSet([(121, 121), (89, 89)]) dfa_s[12].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 88), (90, 90), (95, 95), (97, 120), (122, 122), (0x20ac, 0x20ac)]) dfa_s[13].is_final = True dfa_s[13].ids = hash_ids("identifier", "keyword") dfa_s[13].final_ids = hash_ids("identifier") dfa_s[13].edges[dfa_s[14]] = CoverageSet([(119, 119), (87, 87)]) dfa_s[13].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 86), (88, 90), (95, 95), (97, 118), (120, 122), (0x20ac, 0x20ac)]) dfa_s[14].is_final = True dfa_s[14].ids = hash_ids("identifier", "keyword") dfa_s[14].final_ids = hash_ids("identifier") dfa_s[14].edges[dfa_s[15]] = CoverageSet([(111, 111), (79, 79)]) dfa_s[14].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 78), (80, 90), (95, 95), (97, 110), (112, 122), (0x20ac, 0x20ac)]) dfa_s[15].is_final = True dfa_s[15].ids = hash_ids("identifier", "keyword") dfa_s[15].final_ids = hash_ids("identifier") dfa_s[15].edges[dfa_s[16]] = CoverageSet([(114, 114), (82, 82)]) dfa_s[15].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 81), (83, 90), (95, 95), (97, 113), (115, 122), (0x20ac, 0x20ac)]) dfa_s[16].is_final = True dfa_s[16].ids = hash_ids("identifier", "keyword") dfa_s[16].final_ids = hash_ids("identifier") dfa_s[16].edges[dfa_s[17]] = CoverageSet([(100, 100), (68, 68)]) dfa_s[16].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 67), (69, 90), (95, 95), (97, 99), (101, 122), (0x20ac, 0x20ac)]) dfa_s[17].is_final = True dfa_s[17].ids = hash_ids("identifier", "keyword") dfa_s[17].final_ids = hash_ids("identifier","keyword") dfa_s[17].edges[dfa_s[5]] = CoverageSet([(48, 57), (65, 90), (95, 95), (97, 122), (0x20ac, 0x20ac)]) expected_dfa.start_state = dfa_s[0] self.assertEqual(dfa_ir.sections.values()[0].dfa, expected_dfa) if __name__ == '__main__': unittest.main()
true
3674aa4be7d0d603aaf493259ee7fda75f04295a
Python
kishandongare/genetic-algorithm-tsp
/genetic algorithm tsp.py
UTF-8
407
3.609375
4
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[7]: import random # # Travelling Salesman problem # # # for any sample dataset,implement order encoding for TSP # In[8]: def tsp(n): p = random.sample(range(n),n) random.shuffle(p) return p n_cities = int(input('No. of cities ')) p1 = tsp(n_cities) print("Parent 1: ",p1) p2 = tsp(n_cities) print("Parent 2: ",p2) # In[ ]:
true
d5ff7adbacdae1d6e361a37ab34129fae0e064da
Python
fabiovpcaumo/curso-de-python
/semana04/aula02/tests_exercicio_12.py
UTF-8
583
2.921875
3
[]
no_license
from unittest import TestCase from exercicio_12 import ContaInvestimento class TestContaInvestimento(TestCase): def setUp(self): self.c = ContaInvestimento(100, 10) def tearDown(self): del(self.c) def test_adicionar_juros_deve_retornar_121_com_100_reais_e_5_meses_e_taxa_10(self): esperado = (161.051) self.assertEqual(self.c.adicionar_juros(5), esperado) def test_adicionar_juros_deve_retornar_100_com_100_reais_e_0_meses_e_taxa_10(self): esperado = (100.00) self.assertEqual(self.c.adicionar_juros(0), esperado)
true
adf323d03d5ec4996f1f492dec2cbfb2cb5469db
Python
Gawesomer/cTest
/run_tests.py
UTF-8
3,468
3.25
3
[]
no_license
#!/usr/bin/env python3 import argparse import os """ Get command line arguments params: none returns: taget_file: filename valgrind: boolean to indicate whether Valgrind should be used """ def get_args(): help_text = "Run tests" parser = argparse.ArgumentParser(description=help_text) parser.add_argument("target_file", nargs='?', default=os.getcwd(), \ help="top directory from which test executables will be searched") parser.add_argument("--valgrind", action="store_true", help="run tests with Valgrind") args = parser.parse_args() return (args.target_file, args.valgrind) """ Search recursively from `search_dir` for test files. Test files are files with names starting in "test_" that are executable. params: - search_dir: top directory from which recursive search will begin returns: set of test file names relative to current working directory """ def find_test_files(search_dir): test_files = set() for (root, dirs, files) in os.walk(search_dir): for filename in (name for name in files if name.startswith("test_")): file_rel_path = os.path.join(root, filename) if os.access(file_rel_path, os.X_OK): test_files.add(file_rel_path) return test_files """ Determine if Valgrind is installed params: none return: True if Valgrind is installed, False otherwise """ def valgrind_installed(): return (os.system("which valgrind > /dev/null") == 0) """ Run test files in `test_files` params: - test_files: collection of test file names file name must be relative to the current working directory test files must be executable - use_valgrind: boolean too indicate whether tests should be run using Valgrind. Valgrind will only be used if it`s determined to be installed returns: set of test file names that failed (i.e. returned a nonzero exit status) """ def run_tests(test_files, use_valgrind): failed_tests = set() print("### Running tests ////////////////////////////////////////////////") if use_valgrind and valgrind_installed(): valgrind_cmd = "valgrind --error-exitcode=1 --leak-check=full" else: valgrind_cmd = "" for test_file in test_files: cmd = "{} {}".format(valgrind_cmd, test_file) if os.system(cmd) != 0: failed_tests.add(test_file) return failed_tests """ Display final status Prints OK if all tests passed, prints the filenames of the test files that failed otherwise params: - test_files: collection of test files that were run - failed_tests: collection of test file names that failed returns: nothing """ def display_status(test_files, failed_tests): print("//////////////////////////////////////////////////////////////////") print("") print("Ran the following files:") for test_file in test_files: print("\t- {}".format(test_file)) print("") if len(failed_tests) == 0: print("OK - All tests passed") return print("FAILED - The following failed:") for test_file in failed_tests: print("\t- {}".format(test_file)) if __name__ == "__main__": search_dir, use_valgrind = get_args() test_files = find_test_files(search_dir) failed_tests = run_tests(test_files, use_valgrind) display_status(test_files, failed_tests) exit(len(failed_tests))
true
b1fb74f1f33b019e8bebed6f49ea803a1897d273
Python
MLDL/uninas
/uninas/optimization/metrics/nas/by_value.py
UTF-8
3,732
2.671875
3
[ "MIT" ]
permissive
import numpy as np import matplotlib.pyplot as plt from uninas.optimization.metrics.nas.abstract import AbstractNasMetric from uninas.register import Register class ByXNasMetric(AbstractNasMetric): """ Calculate metrics based on predicted/true network performance values, how much the network quality improves over the worst possible one, when we consider fewer networks as selected by a NAS algorithm """ _short_name = None _x_label = None _y_label = None @classmethod def _get_data(cls, predictions: np.array, targets: np.array) -> {str: np.array}: """ :param predictions: network predictions (e.g. accuracy) :param targets: ground truth values """ raise NotImplementedError @classmethod def _plot_to_axis(cls, ax: plt.Axes, x: np.array, data: {str: np.array}, name: str, has_multiple=True, index=0, **_) -> dict: """ plots the data to an axis :param ax: plt axis to plot to :param data: {key: np.array(runs, data)} as returned from get_data, but possibly containing data of multiple runs :param name: name :param has_multiple: whether multiple plots will be added to this axis :return: dict of plotting state """ ax.set_ylabel(cls._y_label) if data.get('min').shape[0] == 1: mean_min = np.min(data.get('min'), axis=0) mean_max = np.max(data.get('max'), axis=0) ax.fill_between(x, mean_min, mean_max, alpha=0.15, color=cls._cols[index]) for i, v in enumerate(data.get('values')): ax.scatter(x, v, label=("%s, all networks" % name) if i == 0 else None, color=cls._cols[index], s=2) return {} @Register.nas_metric() class ByPredictionNasMetric(ByXNasMetric): """ Calculate metrics based on predicted/true network performance values, how much the network quality improves over the worst possible one, when we consider fewer networks as selected by a NAS algorithm """ _short_name = "by prediction" _x_label = "top n best predicted networks" _y_label = "ground truth" @classmethod def _get_data(cls, predictions: np.array, targets: np.array) -> {str: np.array}: """ :param predictions: network predictions (e.g. accuracy) :param targets: ground truth values """ predictions, targets = cls._sorted_by_predictions(predictions, targets, ascending=True) min_, max_ = [], [] for i in range(len(predictions)): min_.append(np.min(targets[i:])) max_.append(np.max(targets[i:])) return dict(min=np.array(min_), max=np.array(max_), values=np.array(targets)) @Register.nas_metric() class ByTargetsNasMetric(ByXNasMetric): """ Calculate metrics based on predicted/true network performance values, how much the network quality improves over the worst possible one, when we consider fewer networks as selected by a NAS algorithm """ _short_name = "by prediction" _x_label = "top n networks" _y_label = "predictions" @classmethod def _get_data(cls, predictions: np.array, targets: np.array) -> {str: np.array}: """ :param predictions: network predictions (e.g. accuracy) :param targets: ground truth values """ predictions, targets = cls._sorted_by_targets(predictions, targets, ascending=True) min_, max_ = [], [] for i in range(len(predictions)): min_.append(np.min(predictions[i:])) max_.append(np.max(predictions[i:])) return dict(min=np.array(min_), max=np.array(max_), values=np.array(predictions))
true
885f99a98201a27283f39380895a936f8b1622f3
Python
krish7891/pylearn
/numpy/arr_numeric_range/logspace.py
UTF-8
87
2.796875
3
[]
no_license
import numpy as np # default base is 10 a = np.logspace(1.0, 2.0, num = 10) print a
true
89e4b09db4162f7f3fed05adf68062ef72a7e863
Python
pallaviibhat/hacktoberfest2021
/Python program/quick_number_exponentiation.py
UTF-8
725
3.78125
4
[]
no_license
import math # Get_power: Returns "val" raised to the power of "power" with modulo "mod" # Does that in O(logN), where N is power to raise number by def Get_power(val, power, mod): power = int(power) val = int(val) mod = int(mod) powers = [ 0 for i in range(__next_power_of_2_power(power)) ] powers[0] = val for bit in range(1, len(powers)): powers[bit] = ( powers[bit - 1] * powers[bit - 1] ) % mod result = 1 for bit in range(len(powers)): if int(2**bit) & power: result = (result * powers[bit]) % mod return result def __next_power_of_2_power(x): return 1 if x == 0 else math.ceil(math.log2(x)) if __name__ == "__main__": print( Get_power(2, 5, 10000) ) print( Get_power(2, 20, 1e9+7) )
true
8031e53cb481fdf3381c3167c6a3ea2c4713dc0b
Python
00void00/DSA
/List/reverse.py
UTF-8
73
3.328125
3
[]
no_license
L = [1,2,4,2,6,5] print(L) print("after reversing") L.reverse() print(L)
true
eab468209a68401bd61bb9e41de177fd3cb092cc
Python
timcurrell/dev
/python/IdeaProjects/MyWork/Identifiers.py
UTF-8
557
3.546875
4
[]
no_license
# Python Identifiers # Python identifiers must start with an alpha character # or an underscore. They are case-sensitive. Numerals # are allowed in the identifier, but no special chars Tim = 1 tIm = 2 tiM = 3 _tim = 4 _TIM = 5 t_1_m = 6 print(Tim, tIm, tiM, _tim, _TIM, t_1_m) # By convention, class names start with an uppercase # letter, private variables start with an underscore, # and (with rare exception) everything else starts # with a lowercase letter. # Python has the usual boat-load of reserved words, # look them up if you're wondering.
true
375af0779b68906e41910b67d47763eb4484f311
Python
Keonhong/IT_Education_Center
/Jumptopy/Jump_to_python/Chapter4/149.py
UTF-8
81
3.46875
3
[]
no_license
def sum_and_mul(a,b): return a+b,a*b result = sum_and_mul(3,4) print(result)
true
64ec52fbfe03645548d725d097b18fcc992c5187
Python
ideoforms/pylive
/live/exceptions.py
UTF-8
422
2.515625
3
[]
no_license
class LiveException(Exception): """ Base class for all Live-related errors """ pass class LiveConnectionError(LiveException): """ Error establishing a connection to AbletonOSC. """ pass class LiveIOError(LiveException): """ Error accessing a file descriptor. """ pass class LiveInvalidOperationException(LiveException): """ Error performing an operation. """
true
fced4fb55f654502b328f79d2972911a8a78c1a3
Python
otakbeku/elixir-bnf
/Contoh_Symbols.py
UTF-8
3,654
3.359375
3
[]
no_license
contoh3_code = """ defmodule Contoh3 do def find_fibonacci(nth) do list = [1, 1] fib(list, nth) end def fib(list, 2) do Enum.reverse(list) end def fib(list, n) do [first_elem, second_elem | _] = list fib([first_elem + second_elem | list], n - 1) end end IO.puts(inspect(Contoh3.find_fibonacci(10))) """ terminals3 = ["defmodule","alias_name","do","def", "funct_name", "(", ")", "param_name", ",", "var_name", "=", "[", "]", "number", "end", ".", "|", "_", "+", "-"] symbols3 = [ "defmodule", "alias_name", "do", "def", "funct_name", "(","param_name", ")", "do", "var_name", "=", "[","number", ",", "number", "]", "funct_name", "(", "var_name", ",", "var_name", ")", "end", "def", "funct_name", "(", "param_name", ",", "number", ")", "do", "alias_name", ".", "funct_name", "(","var_name", ")", "end", "def", "funct_name", "(", "param_name", ",", "param_name", ")", "do", "[","var_name", ",", "var_name", "|", "_", "]", "=", "var_name", "funct_name", "(","[","var_name", "+", "var_name", "|", "var_name", "]", ",", "var_name", "-", "number", ")", "end", "end", "alias_name",".","funct_name", "(", "funct_name", "(", "alias_name", ".", "funct_name", "(", "number", ")", ")", ")", "EOF"] contoh3 = [contoh3_code, terminals3, symbols3] # asignment, list, patern matching, or and empty, contoh2_code = """ defmodule Contoh2 do def is_prime_number(a, i) when i<a/2 and rem(a, i) != 0 do IO.puts("#{a} is prime number") end def is_prime_number(a, i) when i<a/2 and rem(a, i) == 0 do IO.puts("#{a} is not prime number") end def find_prime(a) do k = 1 is_prime_number(a, k+1) end end Contoh2.find_prime(10) """ terminals2 = ["defmodule","alias_name","do","def", "funct_name", "(", ")", "parameter", ",", "when","and", "<", "/", "!=", "==", "literal",'"', "#", "{", "}", "var_name", "=", "[", "]", "number", "end", ".", "|", "_", "+", "-"] symbols2 = [ "defmodule", "alias_name", "do", "def", "funct_name", "(","param_name", ",", "param_name", ")", "when", "var_name", "<","var_name","/", "number", "and", "funct_name","(","var_name", ",", "var_name", ")", "!=", "number", "do", "alias_name", ".", "funct_name", "(",'"',"#","{", "var_name" ,"}", "literal", "literal", "literal", '"', ")" , "end", "def", "funct_name", "(","param_name", ",", "param_name", ")", "when", "var_name", "<","var_name","/", "number", "and", "funct_name","(","var_name", ",", "var_name", ")", "==", "number", "do", "alias_name", ".", "funct_name", "(",'"',"#","{", "var_name" ,"}", "literal", "literal", "literal", "literal", '"', ")" , "end", "def", "funct_name", "(","param_name", ")", "do", "var_name", "=", "number", "funct_name", "(", "var_name", ",", "var_name", "+", "number", ")", "end", "end", "alias_name", ".", "funct_name", "(", "number", ")", "EOF"] contoh2 = [contoh2_code, terminals2, symbols2] # parameter list, binary operation (arith and comparison), string interpolation, pattern matching, when in function def contoh1_code = """ defmodule Contoh1 do def hello do IO.puts("Hello world!") end end Contoh1.hello() """ # Lexxers : # code : str -> terminal : list[str] terminals1 = ["defmodule","alias_name","do","def","funct_name",".","(",r'"',r"'", ")", "end", "literal"] symbols1 = ["defmodule","alias_name","do","def","funct_name","do", "alias_name",".","funct_name","(",'"',"literal","literal",'"',")","end","end", "alias_name", ".", "funct_name", "(", ")", "EOF"] contoh1 = [contoh1_code, terminals1, symbols1]
true
2e337c5857c3a002e07d10c8b54b66a48d6eef47
Python
eric93/scheduler
/poc/solver.py
UTF-8
2,415
2.78125
3
[]
no_license
#!/bin/env python2 from z3 import * num = 0 def genSym(): global num num += 1 return 'x-' + str(num) def getSolver(nodes, edges): s = z3.Solver() for node_num in nodes: n = Int('n' + str(node_num)) s.add(n == node_num) dependency = Function('depends-on',IntSort(),IntSort(),BoolSort()); for e in edges: s.add(dependency(e[1],e[0])) # (a depends on b) and (b depends on c) => a depends on c a = Int(genSym()) b = Int(genSym()) c = Int(genSym()) s.add(ForAll([a,b,c], Implies(And(dependency(a,b),dependency(b,c)),dependency(a,c)))) result = Function('partition', IntSort(),IntSort()) h = Int(genSym()) s.add(ForAll([h], 1 <= result(h))) d = Int(genSym()) e = Int(genSym()) s.add(ForAll([d,e],\ Implies(dependency(d,e), result(d) >= result(e)))) return (s,result,len(nodes)) def getSolution(solver): (s, f, num_nodes) = solver (model, num_partitions) = findMinimal(s,f,num_nodes) traversals = [] for i in range(num_partitions): traversals.append(set()) for i in range(1, num_nodes + 1): cur_trav = model.evaluate(f(i)).as_long() traversals[cur_trav - 1].add(i) return traversals def addConstraint(solver, sets): (sol, f, n) = solver for s in sets: l = list(s) prev = None prevNode = None for node in l: if prev == None: prev = f(IntVal(l[0])) == f(IntVal(l[-1])) else: prev = And(prev, f(IntVal(node)) == f(IntVal(prevNode))) prevNode = node sol.add(Not(prev)) def findMinimal(solver,mapping,domain): ret = None maxVal = 0 solver.push() while True: if(solver.check() == sat): ret = solver.model() maxVal = 0 for i in range(1,domain + 1): maxVal=max(maxVal, ret.evaluate(mapping(i)).as_long()) print 'Found solution with at most ' + str(maxVal) + ' traversals, iterating...' qv = Int(genSym()) solver.add(ForAll([qv], mapping(qv) < maxVal)) else: if ret != None: print 'Using solution with at most ' + str(maxVal) + ' traversals.' solver.pop() return (ret, maxVal) else: raise Exception('Could not find a solution')
true
da779c99d8df716b6fc8ee95451b486092f99a41
Python
cooper-mj/tabbycat
/tabbycat/venues/allocator.py
UTF-8
7,998
2.84375
3
[]
no_license
import itertools import logging import random from .models import VenueConstraint logger = logging.getLogger(__name__) def allocate_venues(round, debates=None): allocator = VenueAllocator() allocator.allocate(round, debates) class VenueAllocator: """Allocates venues in a draw to satisfy, as best it can, applicable venue constraints. The algorithm naïvely allocates from the debate with the highest-priority constraint to the debate with the lowest-priority constraint, choosing at random if more than one is available. This isn't guaranteed to be optimal, since a flexible high-priority debate might randomly choose a room demanded by a picky low-priority room. """ def allocate(self, round, debates=None): if debates is None: debates = round.debate_set_with_prefetches(speakers=False) self._all_venues = list(round.active_venues.order_by('-priority')) self._preferred_venues = self._all_venues[:len(debates)] # take note of how many venues we expect to be short by (for error checking) self._venue_shortage = max(0, len(debates) - len(self._all_venues)) debate_constraints = self.collect_constraints(debates) debate_venues = self.allocate_constrained_venues(debate_constraints) unconstrained_debates = [d for d in debates if d not in debate_venues] unconstrained_venues = self.allocate_unconstrained_venues(unconstrained_debates) debate_venues.update(unconstrained_venues) # this set is only non-empty if there were too few venues overall debates_without_venues = [d for d in debates if d not in debate_venues] if len(debates_without_venues) != self._venue_shortage: logger.error("Expected venue shortage %d, but %d debates without venues", self._venue_shortage, len(debates_without_venues)) debate_venues.update({debate: None for debate in debates_without_venues}) self.save_venues(debate_venues) def collect_constraints(self, debates): """Returns a list of tuples `(debate, constraints)`, where `constraints` is a list of constraints. Each list of constraints is sorted by descending order of priority. Debates with no constraints are omitted from the dict, so each list of constraints is guaranteed not to be empty. The constraints for each debate are just all of the venue constraints relating to the teams, adjudicators, institutions and division of the debate.""" all_constraints = {} for vc in VenueConstraint.objects.filter_for_debates(debates).prefetch_related('subject'): all_constraints.setdefault(vc.subject, []).append(vc) debate_constraints = [] for debate in debates: subjects = itertools.chain( debate.teams, debate.adjudicators.all(), [team.institution for team in debate.teams], [] if debate.division is None else [debate.division] ) constraints = [vc for subject in subjects for vc in all_constraints.get(subject, [])] if len(constraints) > 0: constraints.sort(key=lambda x: x.priority, reverse=True) debate_constraints.append((debate, constraints)) logger.info("Constraints on %s: %s", debate, constraints) debate_constraints.sort(key=lambda x: x[1][0].priority, reverse=True) return debate_constraints def allocate_constrained_venues(self, debate_constraints): """Allocates venues for debates that have one or more constraints on them. `debate_constraints` should be For each debate, it finds the set of venues that meet all its constraints, or if that set is empty, then it satisfies as many constraints as it can, with higher-priority constraints taking absolute precedence over lower-priority constraints. It then chooses a random venue from the preferred venues in that set, or if there are no preferred venues, then from all venues in that set. It runs through debates in descending order of priority, where the priority of a debate is the priority of its highest-priority constraint. """ debate_venues = dict() while len(debate_constraints) > 0: debate, constraints = debate_constraints.pop(0) highest_constraint = constraints.pop(0) eligible_venues = set(highest_constraint.category.venues.all()) & set(self._all_venues) # If we can't fulfil the highest constraint, bump it down the list. if len(eligible_venues) == 0: logger.debug("Unfulfilled (highest): %s", highest_constraint) if len(constraints) == 0: logger.debug("%s is now unconstrained", debate) continue # Failed all constraints, debate is now unconstrained new_priority = constraints[0].priority for i, dc in enumerate(debate_constraints): if new_priority >= dc[1][0].priority: break else: i = 0 debate_constraints.insert(i, (debate, constraints)) continue # If we get this far, we have at least one eligible venue. # Find the set of eligible venues satisfying the best set of constraints. satisified_constraints = [] for constraint in constraints: if any(sc.subject == constraint.subject for sc in satisified_constraints): continue # Skip if we've already done a constraint for this subject constraint_venues = set(constraint.category.venues.all()) if eligible_venues.isdisjoint(constraint_venues): logger.debug("Unfilfilled: %s", constraint) else: eligible_venues &= constraint_venues satisified_constraints.append(constraint) # If no eligible venues are preferred venues, drop the last preferred venue. preferred_venues = set(self._preferred_venues) if eligible_venues.isdisjoint(preferred_venues): logger.debug("No preferred venues available: %s", debate) self._preferred_venues = self._preferred_venues[:-1] else: eligible_venues &= preferred_venues # Finally, assign the venue. venue = random.choice(list(eligible_venues)) debate_venues[debate] = venue self._all_venues.remove(venue) if venue in self._preferred_venues: self._preferred_venues.remove(venue) logger.debug("Assigning %s to %s", venue, debate) return debate_venues def allocate_unconstrained_venues(self, debates): """Allocates unconstrained venues by randomly shuffling the remaining preferred venues.""" if len(debates) - len(self._preferred_venues) != self._venue_shortage: logger.error("preferred venues to unconstrained debates mismatch: " "%s preferred venues, %d debates", len(self._preferred_venues), len(debates)) # we'll still keep going, since zip() stops at the end of the shorter list elif len(debates) != len(self._preferred_venues): logger.warning("%s preferred venues, %d debates, matches expected venue shortage %s", len(self._preferred_venues), len(debates), self._venue_shortage) random.shuffle(debates) return {debate: venue for debate, venue in zip(debates, self._preferred_venues)} def save_venues(self, debate_venues): for debate, venue in debate_venues.items(): logger.debug("Saving %s for %s", venue, debate) debate.venue = venue debate.save()
true
06c02822974aa71928c08132b989967b5733c154
Python
Leedokyeong95/PythonWorks
/Ch09/9_2_Selector.py
UTF-8
931
3.359375
3
[]
no_license
""" 날짜 : 2021/03/08 이름 : 이도경 내용 : 파이썬 크롤링 선택자 실습하기 """ import requests as req from bs4 import BeautifulSoup as bs # 페이지 요청 resp = req.get('http://chhak.kr/py/test1.html') resp.encoding = 'utf-8' # 한글이 깨질때 print(resp.text) # 파싱 dom = bs(resp.text, 'html.parser') # dom 문서 객체 document object model tag_tit = dom.html.body.h1 tag_txt = dom.select_one('#txt') # id 검색전에는 #(샵) tag_li1 = dom.select_one('ul > li:nth-child(1)') # = first-child tag_li2 = dom.select_one('ul > li:nth-child(2)') tag_li_last = dom.select_one('ul > li:last-child') tag_lis = dom.select('ul > li') print('tit :', tag_tit.text) print('txt :', tag_txt.text) print('li1 text :', tag_li1.text) print('li2 text :', tag_li2.text) print('li_last text :', tag_li_last.text) >> print('lis :', tag_lis) >>for li in tag_lis: print('li text :', li.text)
true
cd8f92dfe25384ecae34f96c43463b590244115d
Python
BuLiHanjie/Ml_Gugu
/ml_model/sequence_cv_model.py
UTF-8
1,455
2.65625
3
[]
no_license
from ml_model.cv_model import CvModel class SequenceCvModel: def __init__(self, model_classes, params, train_x, train_y): self.model_classes = model_classes self.params = params self.dtrain = (train_x, train_y) self.models = None pass def train(self, train_params, metric): self.models = list() init_score = None for index, (m_class, param, train_param) in enumerate( zip(self.model_classes, self.params, train_params)): p = { 'init_score': init_score, } for k, v in param.items(): p[k] = v model = CvModel(self.dtrain[0], self.dtrain[1], m_class, **p) train_pred = model.train(**train_param) init_score = train_pred print('step {} train evaluate {}'.format(index, metric(self.dtrain[1], train_pred))) self.models.append(model) return init_score def predict(self, x, names=None, init_score=None): for model in self.models: init_score = model.predict(x, names=names, init_score=init_score) return init_score def get_score(self, importance_type='split'): '''gain, split''' res = dict() for model in self.models: score = model.get_score(importance_type) for k, v in score.items(): res[k] = res.get(k, 0) + v return res
true
b9b3ce7939eb1db7ae02e1aff50dfe7db527ff53
Python
liuiuge/LeetCodeSummary
/242.ValidAnagram.py
UTF-8
648
3.40625
3
[]
no_license
# -*- coding:utf8 -*- class Solution: def isAnagram(self, s: str, t: str) -> bool: if len(s) == len(t): if s == t: return True dicts, dictt = {}, {} for x in s: dicts[x] = dicts.get(x, 0) + 1 for y in t: dictt[y] = dictt.get(y, 0) + 1 for k, v in dicts.items(): if dictt.get(k) != v: return False return True return False if __name__ == "__main__": sol = Solution() print(sol.isAnagram("rat", "car")) print(sol.isAnagram("rat", "tar"))
true
0624c8ab2eb8ae31588096f88a9ba35c05dbf07d
Python
likaiguo/job-salary-prediction
/src/main/python/jobutil.py
UTF-8
2,922
2.59375
3
[]
no_license
from __future__ import print_function import math import random from pymongo import MongoClient from scipy.sparse import csr_matrix from sklearn.linear_model import Lasso, LassoLars from features import create_sparse_features class MongoSalaryDB(object): def __init__(self): connection = MongoClient() self.salary_db = connection['salary'] def __getitem__(self, key): return self.salary_db[key] def build_docfreqs(data_coll, words): doc_freqs = [ ] for word in words: entry = data_coll.find_one({ '_id': word }) try: doc_freqs.append(entry['value']) except TypeError, e: print(data_coll, word) return doc_freqs def create_reverse_data_index(data_coll, key=None, indices=None): collect_values = key is not None skip_indices = indices is None forward_index = [ ] original_values = { } for i, row in enumerate(data_coll.find()): if skip_indices or i in indices: row_id = row[u'Id'] forward_index.append(row_id) if collect_values: original_values[row_id] = row[key] forward_index.sort() reverse_index = { } values = [ ] for i, row_id in enumerate(forward_index): reverse_index[row_id] = i if collect_values: values.append(original_values[row_id]) return (forward_index, reverse_index, values) def create_reverse_index(coll, offset=0): reverse_index = { } for i, elem in enumerate(coll): reverse_index[elem] = offset + i return reverse_index def select_important_words(in_words, salary, domain, field, num_chunks, alpha): random.shuffle(in_words) chunks = split_in_chunks(in_words, num_chunks) multi_reverse_words = [ ] for chunk in chunks: multi_reverse_words.append(create_reverse_index(chunk)) _, reverse_index, y = create_reverse_data_index(salary[domain], u'SalaryNormalized') def salary_collection(name): full_name = '_'.join([ domain, field, name ]) return salary[full_name] out_words = [ ] for i, reverse_words in enumerate(multi_reverse_words): doc_freqs = build_docfreqs(salary_collection('docfreq'), chunks[i]) feature_maps = [ (salary_collection('counter'), reverse_words) ] X = create_sparse_features(reverse_index, feature_maps, doc_freqs) main_coef = select_main_coefficients(X.toarray(), y, alpha) chunk = chunks[i] for index in main_coef: out_words.append(chunk[index]) print('chunk %d: %d words' % (i, len(main_coef)), map(lambda x: chunk[x], main_coef)) return out_words def select_main_coefficients(X, values, alpha): classifier = Lasso(alpha=alpha) classifier.fit(X, values) coef = classifier.coef_ main_coef = [ i for i, value in enumerate(coef) if value != 0 ] return main_coef def split_in_chunks(arr, num_chunks): num_elems = len(arr) chunk_size, r = divmod(num_elems, num_chunks) chunks = [ ] left = 0 for i in xrange(num_chunks): stride = chunk_size + (1 if i < r else 0) right = left + stride chunk = arr[left:right] chunks.append(chunk) left = right return chunks
true
d49734d2e00443c23c40b523be33a784e6ce32b0
Python
RobertNeuzil/python-data-structures
/decorators.py
UTF-8
249
3.828125
4
[]
no_license
def mydecorater(f): def wrapper(): print ("Inside of the decorator before calling the function") f() print("Inside of the decorator after calling the function") return wrapper @mydecorater def print_name(): print ("Robert") print_name()
true
f958e1f2f99966f41d0368f7e741ceeb8c3dadd9
Python
lucasgameiroborges/Python-lista-1---CES22
/item6.py
UTF-8
767
3.578125
4
[]
no_license
import sys import math def teste_unitario(passou): linha = sys._getframe(1).f_lineno if passou: msg = "linha {0} funciona".format(linha) else: msg = "erro na linha {0}".format(linha) print(msg) def testes(): teste_unitario(is_prime(2)) teste_unitario(is_prime(3)) teste_unitario(is_prime(11)) teste_unitario(not is_prime(1)) teste_unitario(not is_prime(22)) teste_unitario(not is_prime(20000316)) def is_prime(n): a = True if n == 1: a = False else: for i in range(2, math.floor(n ** 0.5)): if n % i == 0: a = False return a testes() """ usando o teorema do numero primo, aproximadamente 5 alunos dos 100 (?) """
true
f12403dd791e99b1ae38667b649f775ebb7bdf60
Python
tedisfree/python
/compress-every-directory-into-each/compress-every-directory-into-each.py
UTF-8
769
2.640625
3
[]
no_license
import sys import os import shutil def main(): if len(sys.argv) < 3: print('argument error') exit(1) root = sys.argv[-2] hierarchy = sys.argv[-1].split(',') if os.path.exists('tmp'): shutil.rmtree('tmp') os.mkdir('tmp') cur = os.path.join('tmp') for h in hierarchy: cur = os.path.join(cur, h) os.mkdir(cur) if not os.path.exists('out'): os.mkdir('out') for d in [_ for _ in os.listdir(root) if os.path.isdir(os.path.join(root, _))]: shutil.copytree(os.path.join(root, d), os.path.join(cur, d)) shutil.make_archive(os.path.join('out', d), 'zip', 'tmp') shutil.rmtree(os.path.join(cur, d)) shutil.rmtree('tmp') if __name__ == '__main__': main()
true
0d82aec6c5e359408bce0c00b4024f09ae992f44
Python
NigrumAquila/py_checkio
/storage/mind_switcher.py
UTF-8
754
2.859375
3
[ "MIT" ]
permissive
def mind_switcher(journal): NIKOLA, SOPHIA = "nikola", "sophia" mind, log = {}, [] def swap(a, b, add_to_log=True): mind[a], mind[b] = mind.get(b, b), mind.get(a, a) if add_to_log: log.append({a, b}) for a, b in journal: swap(a, b, add_to_log=False) robots = set(mind) while robots: robot = robots.pop() robot_mind = mind[robot] if robot_mind != robot: swap(NIKOLA, robot) swap(SOPHIA, robot_mind) while mind[SOPHIA] != robot: swap(SOPHIA, mind[SOPHIA]) swap(SOPHIA, robot) swap(NIKOLA, robot_mind) if mind[NIKOLA] == SOPHIA: swap(NIKOLA, SOPHIA) return log
true
034dacb085d972648fe8605d4bacd3c037e4997a
Python
m-mcdougall/Traffic-TimeSeries-DATS6450
/Data Preprocessing.py
UTF-8
3,241
2.96875
3
[]
no_license
# -*- coding: utf-8 -*- #To be run first. import pandas as pd import os import numpy as np import matplotlib.pyplot as plt import datetime #Set working directory wd=os.path.abspath('C://Users//Mariko//Documents//GitHub//Traffic-TimeSeries-DATS6450//Data//') os.chdir(wd) pd.set_option('display.max_columns', None) #%% ## Start with loading the raw data traffic = pd.read_csv('Metro_Interstate_Traffic_Volume.csv', parse_dates=[7]) traffic=traffic.drop_duplicates() #%% #Preview the data plt.figure(figsize=[11,3]) plt.plot(traffic.date_time, traffic.traffic_volume) plt.title('Traffic Volume Visualization') plt.ylabel('Traffic Density') plt.xlabel('Time') plt.show() #%% #Isolate after the break d = datetime.datetime(2015, 6, 24) print(d) traffic_small = traffic[traffic.date_time>d].copy() plt.figure(figsize=[11,3]) plt.plot(traffic_small.date_time, traffic_small.traffic_volume) plt.title('Traffic Volume Visualization') plt.ylabel('Traffic Density') plt.xlabel('Time') plt.show() #%% #OHE on the weather_main for weather in traffic_small.weather_main.unique(): traffic_small[weather+'-OHE'] = traffic_small.weather_main traffic_small[weather+'-OHE'] = (traffic_small[weather+'-OHE']==weather)*1 #%% #Make Holiday a boolean, rather than explicitly listing the holiday traffic_small['holiday'] = traffic_small.holiday != 'None' #%% #Make a boolean if weekday traffic_small['Weekday'] = traffic_small.date_time.dt.weekday traffic_small['Weekday'] = traffic_small['Weekday'] < 5 #%% #Now, collapse by date, since if a given hour had multiple weather conditions it was added as two seperate times keepFirst=['holiday', 'temp', 'rain_1h', 'snow_1h', 'clouds_all', 'traffic_volume', 'Weekday', 'weather_main', 'weather_description'] keepSum=[ 'Clear-OHE', 'Clouds-OHE', 'Rain-OHE', 'Haze-OHE', 'Thunderstorm-OHE', 'Mist-OHE', 'Fog-OHE', 'Drizzle-OHE', 'Smoke-OHE', 'Snow-OHE', 'Squall-OHE'] #Crate the agg dictionaries keepFirst={i:'first' for i in keepFirst} keepSum={i:'sum' for i in keepSum} #Merge the two dictionaries keepFirst.update(keepSum) #Group to gather the dates and collapse the OHE into a single row traffic_small=traffic_small.groupby('date_time').agg(keepFirst).reset_index() #%% #Group some of the Weather columns traffic_small['Visibiliity-OHE'] = traffic_small['Fog-OHE'] + traffic_small['Mist-OHE'] + traffic_small['Haze-OHE'] + traffic_small['Smoke-OHE'] traffic_small['Precipitation-OHE'] = traffic_small['Thunderstorm-OHE'] + traffic_small['Mist-OHE'] + traffic_small['Drizzle-OHE'] + traffic_small['Snow-OHE'] + traffic_small['Rain-OHE'] + traffic_small['Squall-OHE'] traffic_small['Dry-OHE'] = traffic_small['Clear-OHE'] + traffic_small['Clouds-OHE'] #%% x=traffic_small.shape[0] print(f'\n\nDatapoints Before the fill: {traffic_small.shape[0]} ') #Upsample the data to fill in the missing hours #Pad to forward-fill the missing values (in a 2, NA, 5, it will fill as 2, 2, 5) traffic_small=traffic_small.set_index('date_time').resample('H').pad() print(f'Datapoints After the fill: {traffic_small.shape[0]} ') print(f'Total points added: {traffic_small.shape[0]-x} ') #%% traffic_small.to_csv('Reduced_Data.csv')
true
b0e0afe3ac87be5272f43053ef327b0fd2e629b5
Python
TorgaMnaj/collected_snipets
/multiprocessing+logging/multiprocessing_example.py
UTF-8
2,651
3.1875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # # main.py # # Copyright 2016 rob <rob@dellix> # # # import time import random import os # these imports differ between 'threading' and 'multiprocessing' gist from Queue import Empty from multiprocessing import Process, Lock, JoinableQueue def worker_job(q, process, lock, io_test=False, printing=False): ''' this function reads the queue and then starts the job which is either an IO test or (default) a for loop with some simple calcultations ''' # get the data from the queue in case it is not (can't be trusted) while not q.empty(): try: # set a timeout and catch it as this might otherwise block forever data = q.get(timeout=0.1) except Empty: print "queue is empty, will shutdown process %s" % process return # lock for better printing and I/O safe if printing: lock.acquire() print "process", process, data lock.release() # this is the place to get the work done if io_test: # write into a dummy file and remove it afterwards dummyname = "tmp/" + str(process) + ".json" with open(dummyname, "w") as f: f.write(str(data)) os.remove(dummyname) else: # just a random calcultation for i in range(1000): float(i) + random.random() * data["number"] # tell the queue that the task is done q.task_done() print "process %s finished with data: %s" % (process, data) return def main(test_length=100000): # make a queue instance q = JoinableQueue() # define how many processes should be spawned num_proccesses = 8 # make a lock instance for better printing and to make it I/O safe lock = Lock() # call the worker to do a job, in this case by sending a dict for number in range(test_length): q.put({"number": number}) # start the processes process_list = [] for process_number in range(num_proccesses): # this line differs compared to the 'threading' gist multi_process = Process(target=worker_job, args=(q, process_number, lock, )) process_list.append(multi_process) # start the worker [i.start() for i in process_list] # wait until all worker a finished [i.join() for i in process_list if i.is_alive()] # join the queue as well q.join() if __name__ == "__main__": start = time.time() main() print "\n\ntime needed multiprocessing %s seconds" % (time.time() - start)
true
dc0248a99ca20c45a14edbef272648bcd7f907e9
Python
Parassharmaa/machine-vision-challenge
/baggage-fitness-index/modules/deep_vision.py
UTF-8
4,321
2.75
3
[]
no_license
import cv2 as cv import numpy as np import json from scipy.spatial import distance as dist class DeepVision: def __init__(self, model_path, model_config, classes_path, config_file, image): with open(classes_path, 'r') as f: self.classes = [line.strip() for line in f.readlines()] self.colors = np.random.uniform( 0, 255, size=(len(self.classes), 3)) self.model_config = model_config self.model = model_path self.image = cv.imread(image) self.config_file = config_file self.scale = 0.00392 self.conf_threshold = 0.5 self.nms_threshold = 0.4 def get_output_layers(self, net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers def detect(self): net = cv.dnn.readNet(self.model, self.model_config) image = self.image Width = image.shape[1] Height = image.shape[0] scale = 0.00392 blob = cv.dnn.blobFromImage( image, self.scale, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(self.get_output_layers(net)) class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * Width) center_y = int(detection[1] * Height) w = int(detection[2] * Width) h = int(detection[3] * Height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) indices = cv.dnn.NMSBoxes( boxes, confidences, self.conf_threshold, self.nms_threshold) for i in indices: i = i[0] box = boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] class_id = class_ids[i] # get dimension of bounding box with ppm yield self.get_dimensions(box, class_id) def get_label(self, class_id): return str(self.classes[class_id]) def draw_box(self, class_id, x, y, x_plus_w, y_plus_h, dim_meta): label = self.get_label(class_id) color = self.colors[class_id] (dim_a, dim_b, tr, trbr_x, trbr_y) = dim_meta cv.rectangle(self.image, (x, y), (x_plus_w, y_plus_h), color, 2) cv.putText(self.image, "{:.1f}in".format(dim_a), (int(tr[0] - 15), int(tr[1] - 10) ), cv.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv.putText(self.image, "{:.1f}in".format(dim_b), (int(trbr_x + 10), int(trbr_y)), cv.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) ims = cv.resize(self.image, (800, 600)) cv.imshow("Image", ims) cv.waitKey() cv.destroyAllWindows() def load_file(self): data = json.load(open(self.config_file)) return data def get_dimensions(self, box, class_id): pixels_per_metric = self.load_file()["ppm"][0] (x, y, w, h) = box tl = (x, y) tr = (x+w, y) bl = (x, y+h) br = (x+w, y+h) (tltr_x, tltr_y) = self.midpoint(tl, tr) (blbr_x, blbr_y) = self.midpoint(bl, br) (tlbl_x, tlbl_y) = self.midpoint(tl, bl) (trbr_x, trbr_y) = self.midpoint(tr, br) d_a = dist.euclidean((tr[0], tr[1]), (bl[0], bl[1])) d_b = dist.euclidean((tlbl_x, tlbl_y), (trbr_x, trbr_y)) dim_a = d_a / pixels_per_metric dim_b = d_b / pixels_per_metric dim_meta = (dim_a, dim_b, tr, trbr_x, trbr_y) self.draw_box(class_id, round( x), round(y), round(x+w), round(y+h), dim_meta) return dim_a, dim_b def midpoint(self, point_a, point_b): return ((point_a[0] + point_b[0]) * 0.5, (point_a[1] + point_b[1]) * 0.5)
true
b6d089dd75a52e2cc2d4be98f97b8b18ce7379a9
Python
alyssapyon/SingHealth-SeleniumTesting
/monkey_loggedin_RUN.py
UTF-8
1,642
2.765625
3
[]
no_license
import os import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys import random from CONSTANTS import * # set wait time between testcases waitTime = 1 # file to store registered accounts filename = registeredAccounts_filepath # NEED TO EDIT THIS BASED ON WHERE YOUR CHROMEDRIVER IS PATH = chromeDriver_filepath driver = webdriver.Chrome(PATH) # run for x cycles x = 50 waittime = 1 driver.get("http://127.0.0.1:8000/logout/") # username input_username = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.NAME, "username")) ) input_username.clear() input_username.send_keys(admin_username) # password input_password = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.NAME, "password")) ) input_password.clear() input_password.send_keys(admin_password) # press enter input_password.send_keys(Keys.RETURN) def monkey(x): for i in range(x): time.sleep(waittime) links = driver.find_elements_by_tag_name("a") link = random.choice(links).get_attribute('href') if len(link) > 0: try: if (link != "http://127.0.0.1:8000/logout/"): print("visited: " + str(link)) driver.get(link) except: print("ERROR! Monkey found a problem!") print("problem link: " + str(link) + "\n") return print("monkey has finished running \n") monkey(x)
true
496bc660814daa2b3e1a54351bab00d7adfb9afe
Python
peterJbates/euler
/148/pascals.py
UTF-8
356
3.578125
4
[]
no_license
#Solution using Lucas's Theorem total = 1 def numberToBase(n, b): if n == 0: return [0] digits = [] while n: digits.append(int(n % b)+1) n //= b return digits[::-1] for n in range(1, 10**9): product = 1 string = numberToBase(n, 7) for digit in string: product *= digit total += product print (total)
true
22ff17bb33fae8a2194481849523ded66d1b5a76
Python
phobson/wqio
/wqio/samples.py
UTF-8
8,494
2.65625
3
[ "BSD-3-Clause" ]
permissive
from matplotlib import pyplot import seaborn import pandas from wqio import utils from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() class Parameter(object): def __init__(self, name, units, usingTex=False): """ Class representing a single analytical parameter (pollutant). (Input) Parameters ------------------ name : string Name of the parameter. units : string Units of measure for the parameter. usingTex : bool, optional (default = False) If True, all returned values will be optimized for inclusion in LaTeX documents. """ self._name = name self._units = units self._usingTex = usingTex @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def units(self): return self._units @units.setter def units(self, value): self._units = value @property def usingTex(self): return self._usingTex @usingTex.setter def usingTex(self, value): if value in (True, False): self._usingTex = value else: raise ValueError("`usingTex` must be of type `bool`") def paramunit(self, usecomma=False): """ Creates a string representation of the parameter and units. Parameters ---------- usecomma : bool, optional (default = False) Toggles the format of the returned string attribute. If True the returned format is "<parameter>, <unit>". Otherwise the format is "<parameter> (<unit>)". """ if usecomma: paramunit = "{0}, {1}" else: paramunit = "{0} ({1})" n = self.name u = self.units return paramunit.format(n, u) def __repr__(self): return "<wqio Parameter object> ({})".format(self.paramunit(usecomma=False)) def __str__(self): return "<wqio Parameter object> ({})".format(self.paramunit(usecomma=False)) class SampleMixin(object): def __init__( self, dataframe, starttime, samplefreq=None, endtime=None, storm=None, rescol="res", qualcol="qual", dlcol="DL", unitscol="units", ): self._wqdata = dataframe self._startime = pandas.Timestamp(starttime) self._endtime = pandas.Timestamp(endtime) self._samplefreq = samplefreq self._sample_ts = None self._label = None self._marker = None self._markersize = None self._linestyle = None self._yfactor = None self._season = utils.getSeason(self.starttime) self.storm = storm @property def season(self): return self._season @season.setter def season(self, value): self._season = value @property def wqdata(self): return self._wqdata @wqdata.setter def wqdata(self, value): self._wqdata = value @property def starttime(self): return self._startime @starttime.setter def starttime(self, value): self._startime = value @property def endtime(self): if self._endtime is None: self._endtime = self._startime return self._endtime @endtime.setter def endtime(self, value): self._endtime = value @property def samplefreq(self): return self._samplefreq @samplefreq.setter def samplefreq(self, value): self._samplefreq = value @property def linestyle(self): if self._linestyle is None: self._linestyle = "none" return self._linestyle @linestyle.setter def linestyle(self, value): self._linestyle = value @property def markersize(self): if self._markersize is None: self._markersize = 4 return self._markersize @markersize.setter def markersize(self, value): self._markersize = value @property def yfactor(self): if self._yfactor is None: self._yfactor = 0.25 return self._yfactor @yfactor.setter def yfactor(self, value): self._yfactor = value def plot_ts(self, ax, isFocus=True, asrug=False): if self.sample_ts is not None: if isFocus: alpha = 0.75 else: alpha = 0.35 ymax = ax.get_ylim()[-1] yposition = [self.yfactor * ymax] * len(self.sample_ts) timeseries = pandas.Series(yposition, index=self.sample_ts) if asrug: seaborn.rugplot(self.sample_ts, ax=ax, color="black", alpha=alpha, mew=0.75) line = pyplot.Line2D( [0, 0], [0, 0], marker="|", mew=0.75, color="black", alpha=alpha, linestyle="none", ) else: timeseries.plot( ax=ax, marker=self.marker, markersize=4, linestyle=self.linestyle, color="Black", zorder=10, label="_nolegend", alpha=alpha, mew=0.75, ) line = pyplot.Line2D( [0, 0], [0, 0], marker=self.marker, mew=0.75, color="black", alpha=alpha, linestyle="none", ) return line class CompositeSample(SampleMixin): """ Class for composite samples """ @property def label(self): if self._label is None: self._label = "Composite Sample" return self._label @label.setter def label(self, value): self._label = value @property def marker(self): if self._marker is None: self._marker = "x" return self._marker @marker.setter def marker(self, value): self._marker = value @property def sample_ts(self): if self.starttime is not None and self.endtime is not None: _sampfreq = self.samplefreq or self.endtime - self.starttime self._sample_ts = pandas.date_range( start=self.starttime, end=self.endtime, freq=_sampfreq ) return self._sample_ts class GrabSample(SampleMixin): """ Class for grab (discrete) samples """ @property def label(self): if self._label is None: self._label = "Grab Sample" return self._label @label.setter def label(self, value): self._label = value @property def marker(self): if self._marker is None: self._marker = "+" return self._marker @marker.setter def marker(self, value): self._marker = value @property def sample_ts(self): if self._sample_ts is None and self.starttime is not None: if self.endtime is None: self._sample_ts = pandas.DatetimeIndex(data=[self.starttime]) else: self._sample_ts = pandas.date_range( start=self.starttime, end=self.endtime, freq=self.endtime - self.starttime, ) return self._sample_ts _basic_doc = """ {} water quality sample Container to hold water quality results from many different pollutants collected at a single point in time. Parameters ---------- dataframe : pandas.DataFrame The water quality data. starttime : datetime-like The date and time at which the sample collection started. samplefreq : string, optional A valid pandas timeoffset string specifying the frequency with which sample aliquots are collected. endtime : datetime-like, optional The date and time at which sample collection ended. storm : wqio.Storm object, optional A Storm object (or a subclass or Storm) that triggered sample collection. rescol, qualcol, dlcol, unitscol : string, optional Strings that define the column labels for the results, qualifiers, detection limits, and units if measure, respectively. """ SampleMixin.__doc__ = _basic_doc.format("Basic") CompositeSample.__doc__ = _basic_doc.format("Composite") GrabSample.__doc__ = _basic_doc.format("Grab")
true
48d5227ccf22fbfd5f3261c97713c49a604f37e3
Python
carines/openclassroom_python
/3_poo_dev/autres/test.py
UTF-8
269
2.84375
3
[]
no_license
#!/usr/bin/env python # Coding: utf-8 from ClassTest import * francis = Personne("Dupond", "Francis", 18, "Londres") print(francis.lieu_residence) fabien = Personne("Huitelec", "Fabien", 21) print(fabien.lieu_residence) help(Personne) fabien.bla() fabien.interne()
true
39051058fc5da92c41c40a2537eca93487b9d058
Python
OpenGov/grid_walker
/gridwalker/grids.py
UTF-8
21,392
2.9375
3
[ "BSD-3-Clause" ]
permissive
import collections import numpy as np import sys from datawrap import listwrap class Grid(collections.MutableMapping): DimensionParam = collections.namedtuple('DimensionParam', ['first', 'last', 'step']) def __init__(self, grid_type, *dimensions): ''' Args: grid_type: Defines the numpy type associated with this grid. dim_ranges defines the ranges of values in each dimension for an arbitrary number of dimensions. The type can be a slice or a tuple representing the values of a slice (i.e. (-10, 10, 2) starts from -10 and goes to 10 inclusive with a step size of 2). Note that slices are normally not inclusive. ''' self.dim_ranges = [] self.dim_restrictions = [] self.dim_lengths = [] for dim in dimensions: dim_param = self._convert_dim_to_param(dim) self.dim_ranges.append(dim_param) self.dim_restrictions.append(dim_param) self.dim_lengths.append( (dim_param.last + dim_param.step - dim_param.first) / dim_param.step) # Define our grid now as a numpy array self.grid = np.zeros(self.dim_lengths, dtype=grid_type) def _convert_dim_to_param(self, dim, default_params=DimensionParam(None,None,1)): ''' Converts various dimension specifications into DimensionParam named tuple for use elsewhere in Grid ''' first = last = step = None # Short-Circuit for DimensionParams if isinstance(dim, self.DimensionParam): return dim # Check for tuple type elif isinstance(dim, tuple): if len(dim) > 3 or len(dim) < 1: raise self._bad_dim_error(dim) elif len(dim) == 1: if dim[0] < 0: first = dim[0] else: last = dim[0] elif len(dim) == 2: first, last = dim elif len(dim) == 3: first, last, step = dim # Check for slice elif isinstance(dim, slice): first = dim.start last = dim.stop step = dim.step else: first = last = dim # Ensure that we don't have None values if first == None: first = default_params.first if last == None: last = default_params.last if step == None: step = default_params.step # Check for violations if (first == None or last == None or step == None or step < 1 or last < first): raise self._bad_dim_error(dim) return self.DimensionParam(first, last, step) def _bad_dim_error(self, dim): err = "Dimension range '%s' has an invalid or length range definition" % str(dim) return ValueError(err) def _check_against_limits(self, index, dimension): ''' Checks single dimension restrictions on legal indexes. ''' restrictions = self.dim_restrictions[dimension] if isinstance(index, slice): if ((index.start != None and (index.start < restrictions.first or index.start > restrictions.last)) or (index.stop != None and (index.stop < restrictions.first or index.stop > restrictions.last)) or (index.step and index.step % restrictions.step != 0) or (index.start != None and index.stop != None and index.step > index.stop - index.start)): raise KeyError(index) else: if (index < restrictions.first or index > restrictions.last): raise KeyError(index) def _convert_to_array_index(self, index, dimension=0, depth=0): ''' Converts index values from true locations to internal data structure values. It also handles slice requests and multi-dimensional requests (including slice multi-dim). ''' drange = self.dim_ranges[dimension] restrictions = self.dim_restrictions[dimension] if listwrap.non_str_len_no_throw(index) > 0: # Don't allow searches beyond one recursion if depth > 0: raise KeyError(index) rebuilt_index = [] # Rebuild the index element by element for dim, sub_index in enumerate(index): fixed_sub = self._convert_to_array_index(sub_index, dimension+dim, depth+1) rebuilt_index.append(fixed_sub) return tuple(rebuilt_index) else: # Will raise an exception if we're out of bounds self._check_against_limits(index, dimension) if isinstance(index, slice): # Get start index if index.start != None: start = (index.start - drange.first) / drange.step else: start = 0 # Get stop index if index.stop != None: stop = (index.stop + drange.step - drange.first) / drange.step else: stop = self.dim_lengths[dimension]-1 # Get step index if index.step != None: step = index.step / drange.step else: step = None result = slice(start, stop, step) else: result = (index - drange.first) / drange.step return result def _get_single_depth(self, multi_index): ''' Helper method for determining how many single index entries there are in a particular multi-index. ''' single_depth = 0 for sub_index in multi_index: if isinstance(sub_index, slice): break single_depth += 1 return single_depth def __getitem__(self, index): ''' Getitem is rather complicated to handle the various cases of dimensional requests and slicing. All of the following are legal request types: single index: grid[0] => grid_type object (or SubGrid if not last dimension) compound index: grid[0][1] => grid_type object (or SubGrid if not last dimension) multi-index: grid[0, 1] => grid_type object (or SubGrid if not last dimension) slice: grid[0:1] => SubGrid slice with step: grid[0:10:2] => SubGrid compound slice: grid[0:10][2:8:2] => SubGrid multi-slice: grid[0:10, 2:8:2] => SubGrid compound mixed (index+slice): grid[0][2:8:2] => SubGrid multi-mixed (index+slice): grid[0, 2:8:2] => SubGrid ''' rebuilt_index = self._convert_to_array_index(index) index_len = listwrap.non_str_len_no_throw(index) # SubGrid request if (len(self.dim_ranges) - index_len > 1 or (index_len > 0 and isinstance(rebuilt_index[-1], slice)) or isinstance(rebuilt_index, slice)): # Multi-index request if index_len > 0: single_depth = self._get_single_depth(index) # Single value indices for first single_depth values if single_depth > 0: resolved_dims = rebuilt_index[:single_depth] # Cut the grid at the depth position return SubGrid(self.grid[resolved_dims], self.dim_ranges[single_depth:], self.dim_lengths[single_depth:], self.dim_restrictions[single_depth:], index[single_depth:]) # First index in multi-index is a slice else: return SubGrid(self.grid, self.dim_ranges, self.dim_lengths, self.dim_restrictions, index) # Slice request elif isinstance(rebuilt_index, slice): return SubGrid(self.grid, self.dim_ranges, self.dim_lengths, self.dim_restrictions, [index]) # Index request, but with remaining dimension restrictions # Thus still a SubGrid else: return SubGrid(self.grid[rebuilt_index], self.dim_ranges[1:], self.dim_lengths[1:], self.dim_restrictions[1:]) # Specific index for all dimensions else: return self.grid.__getitem__(rebuilt_index) def __setitem__(self, index, value): ''' Can set on ranges of values as well individual indices ''' rebuilt_index = self._convert_to_array_index(index) self.grid.__setitem__(rebuilt_index, value) def __delitem__(self, index): ''' Resets the index to 0 ==> same as __setitem__(self, index, 0) ''' self.__setitem__(index, 0) def __len__(self): ''' Gives the length of the highest dimension ''' restrict = self.dim_restrictions[0] return (restrict.last - restrict.first + restrict.step) / restrict.step def _generate_dim_range(self, dim): ''' Generates a slice of the range for a particular dimension of the grid. Thus range(self._generate_dim_range()) produces the keys over a particular range. ''' restrict = self.dim_restrictions[dim] start = restrict.first step = restrict.step stop = restrict.last+1 return slice(start, stop, step) def _generate_mapped_grid_ranges(self): ''' Generates the slice ranges of all valid keys for the grid at each dimension level. ''' mapped_grid_ranges = [] for dim in xrange(len(self.dim_restrictions)): mapped_grid_ranges.append(self._generate_dim_range(dim)) return mapped_grid_ranges def _generate_true_grid_ranges(self): true_grid_ranges = [] for dim in xrange(len(self.dim_restrictions)): restrict = self.dim_restrictions[dim] drange = self.dim_ranges[dim] start = self._convert_to_array_index(restrict.first, dim) step = restrict.step / drange.step stop = self._convert_to_array_index(restrict.last, dim)+step true_grid_ranges.append(slice(start, stop, step)) return true_grid_ranges def get_raw_data_wrapper(self): dim_ranges = self._generate_true_grid_ranges() return listwrap.FixedListSubset(self.grid, *dim_ranges) def __iter__(self): dim_slice = self._generate_dim_range(0) return xrange(dim_slice.start, dim_slice.stop, dim_slice.step).__iter__() def full_iter(self): ''' Iterates through the entire grid one cell at a time. This will touch every dimension point in the grid and returns the key associated with that iteration. ''' class Link(object): def __init__(self, cursor, next_cursor, depth, prior, next_link): self.value = cursor self.next_value = next_cursor self.depth = depth self.prior = prior self.next = next_link class GridIter(object): def __init__(self, grid): self.grid = grid self.key_grid = [] self.cursor_links = [] self.cursor = None self.current_key = None prior_cursor = None # Construct our list of cursors and slices restrictions for dim, restrict in enumerate(grid.dim_restrictions): restrict_slice = grid._generate_dim_range(dim) self.key_grid.append(restrict_slice) # Build a linked list of cursors self.cursor = Link(restrict_slice.start, restrict_slice.start+restrict_slice.step, dim, prior_cursor, None) self.cursor_links.append(self.cursor) if prior_cursor != None: prior_cursor.next = self.cursor prior_cursor = self.cursor # Set the very last cursor so that it initialized to # the correct value for beginning iteration. if self.cursor != None: self.cursor.next_value = self.cursor.value def __iter__(self): return self def next(self): # If our current cursor makes it to a None, we're done if self.cursor == None: raise StopIteration() # Set our cursor value self.cursor.value = self.cursor.next_value # Get the slice for our current dimension cursor_slice = self.key_grid[self.cursor.depth] # Grab our key if we're at the lowest level of the cursors if self.cursor.next == None: self.current_key = tuple(map(lambda c: c.value, self.cursor_links)) else: self.current_key = None # Update our value self.cursor.next_value += cursor_slice.step # Check if we've rotated through the whole dimension if self.cursor.value >= cursor_slice.stop: # Reset our dimension cursor and go back up the # cursor list by one self.cursor.next_value = cursor_slice.start self.cursor = self.cursor.prior return self.next() # Check if we have and children to iterate elif self.cursor.next != None: self.cursor = self.cursor.next return self.next() # Return the fullkey, value tuple return self.current_key return GridIter(self) def full_iter_keys(self): return self.full_iter() def full_iter_values(self): ''' Like full_iter, but return values instead of keys ''' class GridValueIter(object): def __init__(self, grid): self.grid = grid self.griditer = grid.full_iter_keys() def __iter__(self): return self def next(self): fullkey = self.griditer.next() return self.grid[fullkey] return GridValueIter(self) def full_iter_items(self): ''' Like full_iter, but return key, value pairs instead of just keys ''' class GridItemIter(object): def __init__(self, grid): self.grid = grid self.griditer = grid.full_iter_keys() def __iter__(self): return self def next(self): fullkey = self.griditer.next() return (fullkey, self.grid[fullkey]) return GridItemIter(self) def arg_max(self, grid_val_func=lambda k,v: v): ''' Allows for argument maximization across all dimensions of the data. Args: grid_val_func: The evaluator for a given cell of the grid. Evaluators should take the key tuple and value pair and return a number which scores the given cell. ''' max_arg = None max_score = -sys.maxint for key,val in self.full_iter_items(): check = grid_val_func(key, val) if (check > max_score): max_score = check max_arg = key return max_arg def arg_min(self, grid_val_func=lambda k,v: v): ''' Allows for argument minimization across all dimensions of the data. Args: grid_val_func: The evaluator for a given cell of the grid. Evaluators should take the key tuple and value pair and return a number which scores the given cell. ''' return self.arg_max(lambda k,v: -grid_val_func(k,v)) def __str__(self): ''' This can be expensive for high dimension grids. ''' mapper = self._generate_dim_range(0) if len(self) <= 100: return repr(self) else: mapitems = [(key, self[key]) for key in xrange(mapper.start, mapper.start+(100*mapper.step), mapper.step)] return str(mapitems)[:-1] + ", ... ]" def __repr__(self): ''' This can be expensive for high dimension lists. ''' mapper = self._generate_dim_range(0) mapitems = [(key, self[key]) for key in xrange(mapper.start, mapper.stop, mapper.step)] return repr(mapitems) class SubGrid(Grid): ''' Wraps the Grid object with a constructor which builds a subset of the parent grid. This should only be used by Grid objects. Edits to this grid affect the parent grid which constructed this SubGrid. ''' def __init__(self, grid, dim_ranges, dim_lengths, dim_restrictions, add_restrictions=None): self.dim_ranges = dim_ranges self.dim_lengths = dim_lengths self.dim_restrictions = dim_restrictions self.grid = grid # Do this check/assignment After the others if add_restrictions: if len(add_restrictions) > self.dim_restrictions: raise ValueError("Length of restrictions exceeds dimension limits of data") add_restrictions = self._convert_restrictions(add_restrictions) self.dim_restrictions = self._combine_restrictions(self.dim_restrictions, add_restrictions) def _convert_restrictions(self, restrictions): ''' Helper method to convert all restrictions in the input list into DimensionParam objects. ''' converted = [] for i, restrict in enumerate(restrictions): converted.append(self._convert_dim_to_param(restrict, self.dim_restrictions[i])) return converted def _combine_restrictions(self, first_restrictions, second_restrictions): ''' Combines dimensional restrictions from two sources ''' combined_params = [] for i in xrange(max(len(first_restrictions), len(second_restrictions))): first_param = first_restrictions[i] if i < len(first_restrictions) else None second_param = second_restrictions[i] if i < len(second_restrictions) else None # Check all 4 cases if first_param == None and second_param != None: combined_params.append(second_param) elif first_param != None and second_param == None: combined_params.append(first_param) elif first_param != None and second_param != None: first = max(first_param.first, second_param.first) last = min(first_param.last, second_param.last) step = max(first_param.step, second_param.step) small_step = min(first_param.step, second_param.step) if step % small_step != 0: raise ValueError("Dimension restriction step sizes are not "+ "multiples of each other ("+str(first_param.step)+ ", "+str(second_param.step)+")") param = self.DimensionParam(first, last, step) if last < first: raise ValueError("Dimension restriction is NULL set "+str(param)) combined_params.append(param) else: # This should never be reached raise ValueError("Could not combine restrictions") return combined_params class FloatGrid(Grid): ''' Defines a grid with floating values at each dimension point. ''' def __init__(self, *dimensions): Grid.__init__(self, np.float, *dimensions) class IntGrid(Grid): ''' Defines a grid with integer values at each dimension point. ''' def __init__(self, *dimensions): Grid.__init__(self, np.int, *dimensions) class ObjectGrid(Grid): ''' Defines a grid with arbitrary object values at each dimension point. ''' def __init__(self, *dimensions): Grid.__init__(self, object, *dimensions) # TODO add dimension mappers as optional argument to allow floating or string indexes
true
018723d06f0feae38f1124b1fe71ecd35ebec4f5
Python
AHowardC/python101
/cChallegeP.py
UTF-8
503
3.796875
4
[]
no_license
#is prime def is_prime(num): if num < 2: return False; else: for i in range(2, int(num**0.5 )+ 1): if (num % i == 0): return False; return True; #nthPrime number def nthPrime(n): numberofPrimes = 0; #this keeps track of the postion prime =1; #this keeps track of the postion’s number while(numberofPrimes < n): prime+=1; if(is_prime(prime)): numberofPrimes +=1; return prime print nthPrime(6);
true
39599e13627386153eb5207d19f8dac43ba77b52
Python
jamilemerlin/exercicios_python
/CursoemVideo/e088.py
UTF-8
676
3.734375
4
[]
no_license
from random import randint from time import sleep print('-*-' *15) print(' JOGO DA MEGA SENA') print('-*-' *15) lista = list() jogo = int(input('Quantos jogos você quer que eu sorteie? ')) iniciador = 0 jogos = list() while iniciador < jogo: contador = 0 while True: escolhas = randint(1, 60) if escolhas not in lista: lista.append(escolhas) contador += 1 if contador >= 6: break lista.sort() jogos.append(lista[:]) lista.clear() iniciador += 1 for numero, lista in enumerate(jogos): print(f'Jogo {numero + 1}: {lista}') sleep(0.5) print('-*-'*5, ' BOA SORTE', '-*-'*6)
true
55ab9f35f18b8dc7aa5493931bfb5d5c0ff8fc44
Python
Zernach/ML_Flask_Explainer
/app.py
UTF-8
1,241
2.578125
3
[]
no_license
from flask import Flask, render_template from data import origin_dict, dest_dict, miles_dict from joblib import load import pandas as pd app = Flask(__name__) trained_machine_learning_model = load('static/assets/pipeline_w_miles.joblib') @app.route('/') def home(): return render_template('index.html') # 4/2/40/1/16 @app.route('/generatepredictions') @app.route('/generatepredictions/<Quarter>/<Origin>/<Dest>/<NumTicketsOrdered>/<AirlineCompany>') def predict(Quarter=4, Origin=2, Dest=16, NumTicketsOrdered=1, AirlineCompany=1): try: df = pd.DataFrame({ 'Quarter': [int(Quarter)], 'Origin': [int(Origin)], 'Dest': [int(Dest)], 'Miles': [miles_dict[f"{origin_dict[int(Origin)]}>{dest_dict[int(Dest)]}"]], 'NumTicketsOrdered': [int(NumTicketsOrdered)], 'AirlineCompany': [int(AirlineCompany)] }) PricePerTicket = str(trained_machine_learning_model.predict(df)[0])[0:6] PricePerTicket = f"${PricePerTicket}" return render_template('predictions.html', pricePerTicket=PricePerTicket) except: return render_template('predictions.html', pricePerTicket='RETRY') if __name__ == '__main__': app.run()
true
fc1b06fdc64e426a4e414f6c6c1303ccb4f824a4
Python
MJohnHBerry/Python-MUD
/PythonApplication1/PythonApplication1/PythonApplication1.py
UTF-8
5,305
3.640625
4
[]
no_license
import time, random #---------------------------------------------------------------# # Classes #---------------------------------------------------------------# class Entity: def __init__ (self, name, attack, defense, speed, hp, max_hp, is_human, first_strike, is_dead, turn_ended): self.name = name self.attack = attack self.defense = defense self.speed = speed self.hp = hp self.max_hp = max_hp self.is_human = is_human self.first_strike = first_strike self.is_dead = is_dead self.turn_ended = turn_ended #---------------------------------------------------------------# # Globals #---------------------------------------------------------------# COUNT = 0 #---------------------------------------------------------------# # Enemies #---------------------------------------------------------------# global npc1 npc1 = Entity("Maximus", 10, # Attack 5, # Defense 6, # Speed 100, # HP 100, # Max HP True, # Is Human Entity bool False, # Did he win First Strike bool False, # Is Entity dead bool False) # Has Turn Ended bool #---------------------------------------------------------------# # Character Creation #---------------------------------------------------------------# def game_intro(): print("Welcome to the Battle Arena.") user_input = input("Your name, gladiator? \n") global player1 player1 = Entity(user_input, 10, # Attack 5, # Defense 5, # Speed 100, # HP 100, # Max HP True, # Is Human Entity bool False, # Did he win First Strike bool False, # Is Entity dead bool False) # Has Turn Ended bool print("Step forth, ", player1.name, ".") print(player1.name, " steps forward onto the sands of blood to face his opponent, ", npc1.name,"...") #---------------------------------------------------------------# # Actions #---------------------------------------------------------------# def skill_attack(Attacker, Defender): rand = random.randint(1, 5) Defender.hp -= Attacker.attack + rand - Defender.defense print(Attacker.name, "attacks ", Defender.name, " for ", Attacker.attack + rand - Defender.defense, "points of damage!") # Could be a separate function # def is_dead() if(Defender.hp <= 0): print(Attacker.name," has slain ",Defender.name) else: print(Defender.name, "'s HP is at ", Defender.hp) def skill_defend(defending): defending.defense + 3 global COUNT counter = COUNT print(defending.name," raises his shield to defend against the oncoming blow.\nDefense increased by 3 for 1 round.") if(COUNT == counter + 2): return speedup.defense - 3 def skill_psyche(speedup): speedup.speed + 4 global COUNT counter = COUNT if(COUNT == counter + 4): return speedup.speed - 4 #---------------------------------------------------------------# # Combat #---------------------------------------------------------------# def turn_counter(): global COUNT COUNT = COUNT + 1 print("Current combat turn: ", COUNT) def get_player_combat_choice(Attacker, Defender): user_input = input(""" (A)ttack (D)efend (P)syche Up """) if(user_input == "A"): skill_attack(Attacker, Defender) Attacker.turn_ended = True elif(user_input == "D"): skill_defend(Attacker) Attacker.turn_ended = True elif(user_input == "P"): skill_psyche(Attacker) Attacker.turn_ended = True else: print("Please choose correctly.") speed_check(Attacker, Defender) def npc_combat_choice(Attacker, Defender): rand = random.randint(1, 3) if rand == 1 : skill_attack(Defender, Attacker) Defender.turn_ended = True elif rand == 2 : skill_defend(Defender) Defender.turn_ended = True else: print(Defender.name," psyches himself up.") Defender.turn_ended = True def speed_check(Attacker, Defender): if(Attacker.speed >= Defender.speed and Attacker.turn_ended == False): get_player_combat_choice() elif(Attacker.speed <= Defender.speed and Attacker.turn_ended == False): get_p def is_dead(entity): if(entity.hp <= 0): entity.is_dead = True print("") #---------------------------------------------------------------# # Game Loop #---------------------------------------------------------------# game_intro() while(player1.hp > 1 and npc1.hp > 1): turn_counter() speed_check(player1, npc1)
true
ce42c965200ba298556e2dfba4b1a99077cc6059
Python
vkumar19/kaggle
/bike_rentals/bike_rental_rforest_2.py
UTF-8
4,507
2.875
3
[]
no_license
import pandas as pd import numpy as np def weekend(x): if x.weekday() == 5 or x.weekday() == 6: return 1 else: return 0 def year_2011(x): if x.year == 2011: return 1 else: return 0 rental_df = pd.read_csv("train.csv", parse_dates = True) test_df = pd.read_csv("test.csv", parse_dates = True) rental_df['datetime'] = pd.to_datetime(rental_df['datetime']) test_df['datetime'] = pd.to_datetime(test_df['datetime']) rental_df['date'] = rental_df.datetime.apply(lambda x: x.date()) test_df['date'] = test_df.datetime.apply(lambda x: x.date()) grp_date = rental_df.groupby('date') grp_test_date = test_df.groupby('date') def avg_temp(x): return grp_date.get_group(x)['temp'].mean() def test_avg_temp(x): return grp_test_date.get_group(x)['temp'].mean() def avg_windspeed(x): return grp_date.get_group(x)['windspeed'].mean() def test_avg_windspeed(x): return grp_test_date.get_group(x)['windspeed'].mean() def avg_humidity(x): return grp_date.get_group(x)['humidity'].mean() def test_avg_humidity(x): return grp_test_date.get_group(x)['humidity'].mean() rental_df['hour'] = rental_df.datetime.apply(lambda x: x.hour) test_df['hour'] = test_df.datetime.apply(lambda x: x.hour) rental_df['avg_temp'] = rental_df['date'].apply(lambda x: avg_temp(x)) test_df['avg_temp'] = test_df['date'].apply(lambda x: test_avg_temp(x)) rental_df['avg_wspeed'] = rental_df['date'].apply(lambda x: avg_windspeed(x)) test_df['avg_wspeed'] = test_df['date'].apply(lambda x: test_avg_windspeed(x)) rental_df['avg_humidity'] = rental_df['date'].apply(lambda x: avg_humidity(x)) test_df['avg_humidity'] = test_df['date'].apply(lambda x: test_avg_humidity(x)) rental_df['2011'] = rental_df.datetime.apply(lambda x: year_2011(x)) test_df['2011'] = test_df.datetime.apply(lambda x: year_2011(x)) df_grouped = rental_df.groupby(['hour']) df_grpd_test = test_df.groupby(['hour']) hr_cnt_holiday = [0 for i in range(0,24)] hr_cnt_workingday = [0 for i in range(0,24)] for name, group in df_grouped: norm_hr_holiday = 0 norm_hr_workingday = 0 for i in range(0,len(group.workingday)): if group.workingday.values[i] == 0: norm_hr_holiday += 1 hr_cnt_holiday[name] += group['count'].values[i] else: norm_hr_workingday += 1 hr_cnt_workingday[name] += group['count'].values[i] hr_cnt_holiday[name] /= norm_hr_holiday hr_cnt_workingday[name] /= norm_hr_workingday rental_df['count_avg_1'] = rental_df[rental_df['workingday'] == 0]['hour'].apply(lambda x: hr_cnt_holiday[x]) rental_df['count_avg_2'] = rental_df[rental_df['workingday'] == 1]['hour'].apply(lambda x: hr_cnt_workingday[x]) rental_df['count_avg'] = rental_df['count_avg_1'].fillna(0) + rental_df['count_avg_2'].fillna(0) test_df['count_avg_1'] = test_df[test_df['workingday'] == 0]['hour'].apply(lambda x: hr_cnt_holiday[x]) test_df['count_avg_2'] = test_df[test_df['workingday'] == 1]['hour'].apply(lambda x: hr_cnt_workingday[x]) test_df['count_avg'] = test_df['count_avg_1'].fillna(0) + test_df['count_avg_2'].fillna(0) ml_df = rental_df.drop(['datetime', 'casual', 'count', 'registered', 'date', 'holiday', 'count_avg_1', 'count_avg_2'], axis = 1) ml_df_test = test_df.drop(['datetime', 'date', 'holiday','count_avg_1', 'count_avg_2'], axis = 1) print ml_df.info() print ml_df_test.info() ml_df = np.array(ml_df) ml_df_test = np.array(ml_df_test) #enc = preprocessing.OneHotEncoder(categorical_features = [0, 3, 8, 9]) #enc.fit(ml_df) #temp = enc.transform(ml_df).toarray() Y = np.array(rental_df['count']) from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=500, oob_score=True) rf.fit(ml_df, Y) temp = np.log(rf.predict(ml_df)+1) - np.log(Y+1) temp = temp*temp RMSLE = np.mean(temp) RMSLE = RMSLE**0.5 count = rf.predict(ml_df_test) df_submission = pd.DataFrame(count, test_df.datetime, columns = ['count']) pd.DataFrame.to_csv(df_submission ,'randomforest_predict.csv') import matplotlib.pyplot as plt plt.figure(1) plt.plot(rf.predict(ml_df)) plt.plot(Y) plt.show() from sklearn import cross_validation from sklearn.metrics import make_scorer def my_custom_loss_func(ground_truth, predictions): diff = np.log(ground_truth+1) - np.log(predictions+1) diff = diff*diff diff = np.mean(diff) return diff my_custom_scorer = make_scorer(my_custom_loss_func, greater_is_better=False) scores = cross_validation.cross_val_score(rf, ml_df, Y, cv=5, scoring=my_custom_scorer)
true
ba30cdb6983c83f3c4724079ffd66119dc49a6b4
Python
WHJR-G8/G8-C8_SA_1.1_Pair_Template
/Template_Pair.py
UTF-8
950
4.1875
4
[]
no_license
import turtle def position(x,y,c): turtle.penup() turtle.goto(x,y) turtle.pendown() turtle.fillcolor(c) turtle.begin_fill() def draw_rect(s1,s2): for i in range(2): turtle.forward(s1) turtle.right(90) turtle.forward(s2) turtle.right(90) turtle.end_fill() #Student 1 #Call the function "position" and pass the parameters as 10, -10, "red" for i in range(3): turtle.forward(100) turtle.left(120) turtle.end_fill() #Call the function "position" and pass the parameters as 85, -40, "blue" #Call the function "draw_rect" and pass the parameters as 40, 150 #Student 2 #Call the function "position" and pass the parameters as 10, -10, "green" #Call the function "draw_rect" and pass the parameters as 100, 150 #Call the function "position" and pass the parameters as -5, -40, "blue" #Call the function "draw_rect" and pass the parameters as 40, 150 turtle.ht()
true
5cfaceb7659503dd6ad2b746df883e4716634d0b
Python
ldhonorato/PPGEC_PDI_2019.2
/Lista06/imagem01.py
UTF-8
1,278
2.59375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 1 09:54:34 2019 @author: timevisao-mk2 """ import morfologia import numpy as np #mport PIL.Image as pil import cv2 path_original = ["images/image_1a.png", "images/image_1b.png", "images/image_1c.png", "images/image_1d.png", "images/image_1e.png", "images/image_1f.png"] img_originais = [] for path in path_original: img_originais.append(cv2.imread(path, cv2.IMREAD_GRAYSCALE)) #image_1a = 0 #image_1b = 1 #image_1c = 2 #image_1d = 3 #image_1e = 4 #image_1f = 5 res_a_and_b = morfologia.opera(img_originais[0], img_originais[1], morfologia.AND, "res1_a_and_b.png") res_d_and_e = morfologia.opera(img_originais[3], img_originais[4], morfologia.AND, "res2_d_and_e.png") not_c = morfologia.opera(img_originais[2], img_originais[2], morfologia.NAND, "res3_not_c.png") res_not_c_and_res1 = morfologia.opera(res_a_and_b, not_c, morfologia.AND, "res4_not_c_and_res1.png") res_res2_xor_f = morfologia.opera(res_d_and_e, img_originais[5], morfologia.XOR, "res5_res2_xor_f.png") not_res4 = morfologia.opera(res_not_c_and_res1, res_not_c_and_res1, morfologia.NAND, "res6_not_res4.png") final = morfologia.opera(not_res4, res_res2_xor_f, morfologia.NAND, "res7_not_res4_or_res5.png")
true
57b0a47a737e25dcb1d3604b8fea448307a66669
Python
kukusiik/tour_seller
/places/models.py
UTF-8
848
2.796875
3
[]
no_license
from django.core.validators import MinValueValidator, MaxValueValidator from django.db import models class Country(models.Model): name = models.CharField(max_length=50) class Meta: verbose_name_plural = 'countries' def __str__(self): return self.name class City(models.Model): name = models.CharField(max_length=50) country = models.ForeignKey(Country) class Meta: verbose_name_plural = 'cities' def __str__(self): return u'{0},{1}'.format(self.country, self.name) class Hotel(models.Model): name = models.CharField(max_length=50) city = models.ForeignKey(City) stars = models.SmallIntegerField( validators=(MinValueValidator(1), MaxValueValidator(5)) ) def __str__(self): return u'{},{},({} stars)'.format(self.city, self.name, self.stars)
true
1dae3865fa37f3ffce3e106ea3fde6b577cf970e
Python
OneCircle1/MengProgram2
/LPA/nwxlpa.py
UTF-8
728
2.796875
3
[]
no_license
import networkx as nx import csv import matplotlib.pyplot as plt from networkx.algorithms import community import random G = nx.Graph() with open('/Users/cxy/Downloads/tgh/MengProgram2/pagerank/20180321.csv', 'r') as input_file: lines = csv.reader(input_file) for line in lines: G.add_edge(int(line[0]), int(line[1])) def label_propagation_community(G): communities_generator = list(community.label_propagation_communities(G)) m = [] for i in communities_generator: m.append(list(i)) return m g=label_propagation_community(G) for i in range(len(g)): c = lambda: random.randint(0,255) nx.draw(G, nodelist=g[i],node_color='#%02X%02X%02X'%(c(),c(),c()), node_size=1)
true
f959f6ac061054b1c95d88f9f1ea1c9ee840f0bf
Python
MachLearn-PlayGround/ml-scikit
/basics.py
UTF-8
1,618
3.875
4
[]
no_license
""" This file is a custom implementation of the Introduction to Machine Learning using Scikit-Learn Scikit data: classification: iris digits regression: boston house dataset """ from sklearn import datasets, svm def load_data(): """Use iris and digits standard datasets provided by scikit""" iris = datasets.load_iris() digits = datasets.load_digits() return iris, digits def predict_last(loaded_digits, last_predictions): """ Learn from the training data except the last the use the last to test the prediction Using the digits datasets, predict given an image, which digit it represents Image is a 8 * 8 matrix sample results 0 - 9 == digits.target Use an estimator [uses fix(x, y) and predict(T)] to classify unseen samples :return: predicted value """ # SVC implements Support Vector Classification # gamma and C are parameters of the model and in this case manually set classifier = svm.SVC(gamma=0.001, C=100.) # The estimator # Next, this estimator should be fitted/learn to/from the model # Let's use the whole dataset as a training data except the last which # we'll predict classifier.fit(loaded_digits.data[:-1], loaded_digits.target[:-1]) # predict target of last data predicted_values = classifier.predict(loaded_digits.data[-last_predictions:]) actual_values = loaded_digits.target[-last_predictions:] return predicted_values, actual_values if __name__ == "__main__": iris, digits = load_data() predicted, actual = predict_last(digits, 10) print(predicted, actual)
true
b6e16861608e4aae255a10bde7cde28d511ca091
Python
cash2one/xai
/xai/brain/wordbase/nouns/_roller.py
UTF-8
572
2.5625
3
[ "MIT" ]
permissive
#calss header class _ROLLER(): def __init__(self,): self.name = "ROLLER" self.definitions = [u'a tube-shaped object in a machine that turns over and over in order to carry things along or press them down or together: ', u'a tube-shaped device, often heated, that women use to curl their hair: ', u'a heavy machine used to make surfaces smooth and flat: ', u'a large, long wave on the sea'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
true
dab729c58960a61926b9a64c4122057ca1b899e9
Python
liwenok/ipaynow_pay_python
/ipaynowPythonSdk/ipaynow/md5Faced.py
UTF-8
774
2.671875
3
[]
no_license
# -*- coding: utf-8; mode: python; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=python:et:sw=4:ts=4:sts=4 from ipaynowPythonSdk.ipaynow import utils __all__ = ['md5calc'] try: import hashlib except ImportError: hashlib = None if not hashlib: raise ImportError( "ipaynow sdk can't import hashlib.please check if it " ) def md5calc(md5source): try: m = hashlib.md5() m.update(md5source) return m.hexdigest() except Exception as e: print(e.args) return "" if __name__ == "__main__": strout = "MD5 test string :" strtest = "" strout += strtest strmd5 = md5calc(strtest.encode('utf-8')) strout += "\nMD5 result string :" + strmd5 print(strout)
true
f0485f73589376b7c36d5fbced0880368205d8ea
Python
storytimeworks/backend
/tests/users/test_update_user.py
UTF-8
5,070
2.625
3
[]
no_license
from app import configure_test_client from flask import Flask, session import json, pytest, os, uuid @pytest.fixture def app(): application = Flask(__name__) return configure_test_client(application) def test_set_settings(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Generate random "names" to test with first_name = str(uuid.uuid4())[0:8] last_name = str(uuid.uuid4())[0:8] data = { "section": "profile", "data": { "first_name": first_name, "last_name": last_name, "username": "hello", "email": "test@test.com" } } # Set the first and last names in settings res = app.put("/users/2", data=json.dumps(data), content_type="application/json") assert res.status_code == 200 data = json.loads(res.data) # Ensure that the names were set correctly assert data["settings"]["profile"]["first_name"] == first_name assert data["settings"]["profile"]["last_name"] == last_name def test_missing_parameters(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Try to set settings without passing data res = app.put("/users/2") assert res.status_code == 400 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1114 def test_not_authenticated(app): # Create generic profile data to test with data = { "section": "profile", "data": { "first_name": "John", "last_name": "Smith" } } # Try to set the first and last names in settings res = app.put("/users/2", data=json.dumps(data), content_type="application/json") assert res.status_code == 401 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1000 def test_nonexistant_user(app): # Be an admin, who can change a different user's settings with app.session_transaction() as session: session["user_id"] = 1 # Create generic profile data to test with data = { "section": "profile", "data": { "first_name": "John", "last_name": "Smith" } } # Try to set the first and last names in settings res = app.put("/users/12094", data=json.dumps(data), content_type="application/json") assert res.status_code == 404 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1103 def test_not_authorized(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Create generic profile data to test with data = { "section": "profile", "data": { "first_name": "John", "last_name": "Smith" } } # Try to set the first and last names for a different user in settings res = app.put("/users/1", data=json.dumps(data), content_type="application/json") assert res.status_code == 403 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1115 def test_invalid_setting(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Create data for a nonexistant section data = { "section": "something", "data": { "key": "value" } } # Try to set data for an invalid section res = app.put("/users/2", data=json.dumps(data), content_type="application/json") assert res.status_code == 400 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1116 def test_invalid_username(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Create profile data with an invalid username data = { "section": "profile", "data": { "first_name": "John", "last_name": "Smith", "username": "-asdf" } } # Try setting the invalid username in settings res = app.put("/users/2", data=json.dumps(data), content_type="application/json") assert res.status_code == 400 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1107 def test_invalid_email(app): # Be a normal user for this test with app.session_transaction() as session: session["user_id"] = 2 # Create profile data with an invalid email address data = { "section": "profile", "data": { "first_name": "John", "last_name": "Smith", "email": "asdf" } } # Try setting the invalid email address in settings res = app.put("/users/2", data=json.dumps(data), content_type="application/json") assert res.status_code == 400 data = json.loads(res.data) # Ensure the error is correct assert data["code"] == 1112
true
77a5c872c62edea7877a36f330b41c3d3a5ad18e
Python
RedHenDev/python
/ursina dev/python minecraft/meshcraft current/building_system_PREP.py
UTF-8
1,407
2.734375
3
[]
no_license
""" Our building system :) 2022 Happy New Year! """ from ursina import Vec3, floor # *** Place this here, to avoid lazy import. from config import six_cube_dirs def checkBuild(_bsite,_td,_camF,_pos,_bp): # def checkBuild(_td,_bp): # Adjust build site, since build-tool-entity (bte) offset. # _bsite += Vec3(0,-0.5,0) # Store in convenient variables and floor. # Also -- increment y by 1 - since building above! # *** # _bsite = _bp # x = int(_bsite.x) # y = int(_bsite.y) # z = int(_bsite.z) dist = _bsite - _pos mouseInWorld = _pos + _camF * dist.length() # *** mouseInWorld -= _camF * 0.75 x = round(mouseInWorld.x) y = floor(mouseInWorld.y) z = round(mouseInWorld.z) # Oh, but what if we're trying to build inside bte? # Build 1 above current block! if _bsite == Vec3(x,y,z): y+=1 # *** # _bp.position=Vec3(x,y,z) # Make sure no block here already... # *** if _td.get((x,y,z))!= None and _td.get((x,y,z))[0]!='g': print("Can't build here, sorry :(") return None # If we're here, we can build. Yessssss. return Vec3(x,y,z) def gapShell(_td,_bsite): # from config import six_cube_dirs for i in range(6): p = _bsite + six_cube_dirs[i] if _td.get((floor(p.x),floor(p.y),floor(p.z))) is None: _td[(floor(p.x),floor(p.y),floor(p.z))]=['g',0]
true
ba94129cdc544cb9970245da5f7414fe81b495ba
Python
ISPritchin/Olympiad
/800/Оформлено/Место в таблице.py
UTF-8
200
2.96875
3
[]
no_license
n = int(input()) ss = [] for _ in range(n): s = sum(map(int, input().split())) ss.append(s) if _ == 0: t = s r = 1 for i in range(1, n): if ss[i] > t: r += 1 print(r)
true
e9e785c1e0404420aa8117faea8ef5f425fb70dc
Python
Damage-group/Max-Damage
/py/prob2.py
UTF-8
7,901
2.859375
3
[]
no_license
import sys from input import * from algorithms import * from measures import * import numpy import sequences def print_help(argv): print ''' TROLOLOGGER X9000 - HYPER EDITION v3.2 Usage: %s [args] Example: %s data=./data.txt meta=./meta.txt t=0.2 c=0.3 You can either edit settings.py to handle algorithms variables or use command line arguments (key=value). Command line arguments override attribute values defined in settings.py in runtime. General command line arguments are: data : data filepath. One row per transaction, items separated by whitespaces. meta : meta filepath. One row per meta_information. Informations are grouped together by id-column. strip : Only take account transactions that have more items than this. This transaction stripping is done after any meta file spesific restrictions take place. t : Minimum support for itemsets considered frequent. ie. \'0.2\' c : Minimum confidence of accepted rules. ie. \'0.1\' closed : Use closed itemsets. True/False max : Use maximal itemsets. True/False lift : use lift(interest factor) to qualify the rule IS : use IS measure to qualify the rule MI : output the mutual information of the rule CF : output the certainty factor of the rule Meta file spesific arguments: \'column=restriction\' column : Column name as spesified in settings.py META_COLUMN_NAMES. restriction : Restriction applied to this column. Only variables that pass all the restrictions are accepted as transaction items. At the moment there are two types of restrictions: exact : Take only those variables which have exactly this value in them. ie. id=100. interval : Take values which have values in the given interval. Interval is parsed by splitting the value from '-'. For example year=1999-2005 would yield closed interval [1999, 2005]. ''' % (argv[0], argv[0]) def validate_argv(argv): ''' Validate that command line arguments are in right format. ''' for x in range(1, len(argv)): arg = argv[x].split("=", 2) if arg[0] == 'help': print_help(argv) sys.exit(0) if len(arg) !=2: print "Argument \'%s\' in wrong format. Use \'key=value\'." % (arg[0]) print "For more instructions try \'%s help\'" % (argv[0]) sys.exit(0) def main(argv): validate_argv(argv) # Read command line arguments to settings. read_argv(argv) print "\n" # Read and transform data all_meta = read_meta_file() print "\n" pruned_meta = prune_variables(all_meta) print "%d variables after applying restrictions." % (len(pruned_meta)) #testInterestingSequences() seqs = transactionsFromFile(settings.DATA_FILE) fids = [var.fid for var in pruned_meta] matrix = to01Matrix(fids, transactionsFromFile(settings.DATA_FILE)) stripped_rows = [] for index, row in enumerate(matrix): if row.sum(0) > settings.STRIP: stripped_rows.append(index) matrix = matrix[stripped_rows,:] sum = numpy.sum(numpy.sum(matrix, 0), 0) print "%d transactions after removing transactions with %d <= items" % (matrix.shape[0], settings.STRIP) print "Mean of items in transcations: %f " % (float(sum) / float(matrix.shape[0])) # Calculate frequent itemsets and generate rules. frequent_itemsets = ap_frequent_itemsets(matrix, settings.FREQUENT_ITEMSET_THRESHOLD) res = [] if settings.CLOSED_ITEMSETS: frequent_itemsets = ap_closed_frequent_itemsets(frequent_itemsets) print "\n *** Closed frequent item sets with minimum support %f **** \n" % (settings.FREQUENT_ITEMSET_THRESHOLD) elif settings.MAXIMAL_ITEMSETS: frequent_itemsets = ap_max_frequent_itemsets(frequent_itemsets) print "\n *** Maximal frequent item sets with minimum support %f **** \n" % (settings.FREQUENT_ITEMSET_THRESHOLD) else: print "\n *** Frequent item sets with minimum support %f **** \n" % (settings.FREQUENT_ITEMSET_THRESHOLD) for k in frequent_itemsets: for S in frequent_itemsets[k]: res.append( (S, frequent_itemsets[k][S].frequency) ) res.sort(cmp=lambda a,b: -1 if a[1] < b[1] else 1 if a[1] > b[1] else 0) for S,f in res: print "%s (%f)" % (' '.join(["%s:%s" % (pruned_meta[j].fid, pruned_meta[j].name) for j in S]), f) #rule generation fails for closed/maximal sets due how frequency computation works. #should we generate rules for all frequent item sets only anyway? if not(settings.CLOSED_ITEMSETS or settings.MAXIMAL_ITEMSETS): print "\n *** Rules with minimum confidence %f **** \n" % (settings.RULE_MIN_CONFIDENCE) for k in xrange(2, len(frequent_itemsets)): rules = ap_rule_generation(frequent_itemsets, k, settings.RULE_MIN_CONFIDENCE) for rule in rules: print "%s --> %s %f" % (" ".join([pruned_meta[i].name for i in rule[0]]), " ".join([pruned_meta[i].name for i in rule[1]]), rule[2]) if settings.Lift: Lift_value = interest_factor(frequent_itemsets,rules) Lift_value.sort(cmp=lambda a,b: -1 if a[2] < b[2] else 1 if a[2] > b[2] else 0) print("******Interest Factor Measure result:******") for item in Lift_value: print "%s --> %s %f" % (" ".join([pruned_meta[i].name for i in item[0]]), " ".join([pruned_meta[i].name for i in item[1]]), item[2]) elif settings.IS: IS_value = IS(frequent_itemsets,rules) IS_value.sort(cmp=lambda a,b: -1 if a[2] < b[2] else 1 if a[2] > b[2] else 0) print("******IS measure result:******") for item in IS_value: print "%s --> %s %f" % (" ".join([pruned_meta[i].name for i in item[0]]), " ".join([pruned_meta[i].name for i in item[1]]), item[2]) elif settings.MutualInfo: MI_value = mutual_information(frequent_itemsets,rules) MI_value.sort(cmp=lambda a,b: -1 if a[2] < b[2] else 1 if a[2] > b[2] else 0) print("******Mutual Information Measure result:******") for item in MI_value: print "%s --> %s %f" % (" ".join([pruned_meta[i].name for i in item[0]]), " ".join([pruned_meta[i].name for i in item[1]]), item[2]) elif settings.CertaintyFactor: CF_value = mutual_information(frequent_itemsets,rules) CF_value.sort(cmp=lambda a,b: -1 if a[2] < b[2] else 1 if a[2] > b[2] else 0) print("******Certainty Factor Measure result:******") for item in CF_value: print "%s --> %s %f" % (" ".join([pruned_meta[i].name for i in item[0]]), " ".join([pruned_meta[i].name for i in item[1]]), item[2]) def testInterestingSequences(seqs): #interesting sequences #s9 = [(103,), (220,), (222,)] s9 = [(103,220), (222,)] #s10 = [(103,), (227,), (222,)] s10 = [(103,227), (222,)] #s11 = [(104,), (220,)] s11 = [(104,220)] i, j, k = 0,0,0 s9list = [] s10list = [] s11list = [] for s in seqs: if sequences.is_subsequence(s9, s): i = i+ 1 s9list.append(s) if sequences.is_subsequence(s10, s): j = j + 1 s10list.append(s) if sequences.is_subsequence(s11, s): k = k + 1 s10list.append(s) print "%d %d %d" % (i, j, k) print s9list print s10list print s11list if __name__ == '__main__': main(sys.argv)
true
4a81bbaf4124bc2aa83608251ae36bf8a886800d
Python
amilkh/haircolorGAN
/data/hair_testmode_dataset.py
UTF-8
2,515
2.921875
3
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
import os.path from data.base_dataset import BaseDataset, get_params, get_transform from data.image_folder import make_dataset from PIL import Image import torch class HairTestModeDataset(BaseDataset): """A dataset class for dataset of pairs {portrait image, target hair color}. It assumes that the directory '/path/to/data/test' contains image pairs in the form of {portrait image,color}. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_images_hair = os.path.join(opt.dataroot, opt.phase) # get the image directory self.image_hair_paths = sorted(make_dataset(self.dir_images_hair, opt.max_dataset_size)) # get image paths assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image self.transform = get_transform(opt) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - an input image B (tensor) - - a dummy tensor that is not used for test mode orig_color_A_img (tensor) - - a dummy tensor that is not used for test mode orig_color_B_img (tensor) - - a dummy tensor that is not used for test mode target_hair_color_img (tensor) - - the target hair color for the input image path (str) - - image path """ # read a image given a random integer index path = self.image_hair_paths[index] img_and_hair = Image.open(path).convert('RGB') # split img_and_hair image into two images (one of them of the target hair color) w, h = img_and_hair.size w2 = int(w / 2) img = img_and_hair.crop((0, 0, w2, h)) hair = img_and_hair.crop((w2, 0, w, h)) A = self.transform(img) target_hair_color_img = self.transform(hair) dummy = torch.zeros(1,1,1,1) return {'A': A, 'B': dummy, 'orig_color_A_img': dummy, 'orig_color_B_img': dummy, 'target_hair_color_img':target_hair_color_img, 'path': path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.image_hair_paths)
true
8d2ae4ab4efed2c72672327390fe912c63efae41
Python
irish3725/Korby
/ui.py
UTF-8
757
3.0625
3
[]
no_license
import os import final_game as game class ui: ## @param cal - calendar object that will be interated with def __init__(self, player): self.p = player ## main ui loop def run(self): # value to read input into val = '' while val != 'q' and val != 'quit' and val != 'exit': # output = self.p.location.getDirections() + '(w/a/s/d/f/r/q) > ' output = '(w/a/s/d/f/r/q) > ' val = input(output).lower() # adding an event if val == 'w' or val == 'a' or val == 's' or val == 'd' or val == 'f' or val == 'r': os.system('cls' if os.name == 'nt' else 'clear') print('\n\n' + self.p.action(val)) val = ''
true
0087d82819e5502e0d1a966508eededa72650752
Python
jingong171/jingong-homework
/马一舒/第一次作业/第一次作业 金工17-1 2017310417 马一舒/第一题.py
UTF-8
376
2.78125
3
[]
no_license
Python 3.5.3 (v3.5.3:1880cb95a742, Jan 16 2017, 15:51:26) [MSC v.1900 32 bit (Intel)] on win32 Type "copyright", "credits" or "license()" for more information. >>> w=52 >>> h=1.68 >>> t=w/h**2 >>> t 18.42403628117914 >>> if t<18: print ("低体重.") elif t<=25: print ("正常体重.") elif t<=27: print("超重体重.") elif t>27: print("肥胖.") 正常体重. >>>
true
59debff4975793203d908fe982e84f57856143a0
Python
xiaoch2004/mandarin_tone_tracker
/plotresults.py
UTF-8
4,276
2.78125
3
[]
no_license
import os import matplotlib.pyplot as plt import numpy as np import crepe from scipy.io.wavfile import read import base64 INT16_FAC = (2**15)-1 INT32_FAC = (2**31)-1 INT64_FAC = (2**63)-1 norm_fact = {'int16': INT16_FAC, 'int32': INT32_FAC, 'int64': INT64_FAC, 'float32': 1.0, 'float64': 1.0} def wavread(filename): """ Read a sound file and convert it to a normalized floating point array filename: name of file to read returns fs: sampling rate of file, x: floating point array """ if (os.path.isfile(filename) == False): # raise error if wrong input file raise ValueError("Input file is wrong") fs, x = read(filename) if (len(x.shape) != 1): # raise error if more than one channel raise ValueError("Audio file should be mono") # convert audio into floating point number in range of -1 to 1 x = np.float32(x)/norm_fact[x.dtype.name] return fs, x def processTable(table): # Abandon the low-confidence parts confidenceLevel = 0.30 target_mean = 300 table[np.where(table[:, 2] < confidenceLevel), 1] = np.nan # Abandon the low-frequency parts table[np.where(table[:, 1] < 100.0), 1] = np.nan table[np.where(table[:, 1] > 700.0), 1] = np.nan # Adjust the mean mean = np.nanmean(table[:, 1], axis=0) std = np.nanstd(table[:, 1], axis=0) diff = target_mean - mean table[:, 1] = (table[:, 1] + diff) return table def getFrameEnergy(time, x, sr): timestamps = time*sr timestamps = timestamps.astype(int) timestamps = np.append(timestamps, x.size-1) energy = [np.mean(abs(x[timestamps[i]:timestamps[i+1]])**2) for i in range(timestamps.size-1)] print(energy) return np.array(energy) def preProcess(x, sr, time, freq, confi): if (time.size != freq.size) or (time.size != confi.size): raise ValueError( 'time, frequency and confidence array sizes does not match') confidenceThreshold = 0.30 target_mean = 300 energyThreshold = 5e-4 # Abandon low energy values E = getFrameEnergy(time, x, sr) freq[np.where(E < energyThreshold)] = np.nan # Abandon low confidence values freq[np.where(confi < confidenceThreshold)] = np.nan # Abandon low frequency values freq[np.where(freq < 100.0)] = np.nan freq[np.where(freq > 700.0)] = np.nan # Adjust the mean mean = np.nanmean(freq) diff = 300 - mean freq = freq + diff return (time, freq) def plotFourFigures(paths): plotnum = 0 plt.figure() for file in paths: print(file) table = np.genfromtxt(file, delimiter=',') table = table[1:] time = table[:, 0] table = processTable(table) # if plotnum <= 4: # print(table) # print("mean:", np.nanmean(table[:, 1])) plt.subplot(2, 2, plotnum+1) plt.plot(time, table[:, 1]) plt.title(file[8:-7]) plt.xlim(time[0], time[-1]) plt.ylim(100, 600) plotnum += 1 plt.show() def wavPitchCrepeAnal(filepath): sr, x = wavread(filepath) time, frequency, confidence, activation = crepe.predict( x, sr) return (time, frequency, confidence, x, sr) def genFig(filepath): time, frequency, confidence, x, sr = wavPitchCrepeAnal(filepath) filename = os.path.basename(filepath) dirname = os.path.dirname(filepath) time, frequency = preProcess(x, sr, time, frequency, confidence) output = np.column_stack((time, frequency)) # np.savetxt('result/' + filename[:-3] + 'csv', output, delimiter=',') plt.plot(time, frequency) plt.xlim(time[0], time[-1]) plt.ylim(100, 500) plt.axis('off') plt.savefig('docs/resource/figure/'+filename[:-3] + 'png') plt.close() if __name__ == "__main__": test = False # dirname = 'docs/resource/audio/' dirname = 'audio-archive/chinesewoman1/' files = os.listdir(dirname) paths = [dirname+file for file in files] if test: dirname = 'test/' files = os.listdir(dirname) paths = [dirname+file for file in files] plotFourFigures(paths[0:4]) else: filepath = paths[1] print(filepath) for path in paths: genFig(path)
true
d2f40281ad2e5d3dbcf60e2b656ac0a5ed19cf34
Python
MRannala/Tab-removal
/Remove_Tabs.py
UTF-8
1,162
3.5
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Dec 20 11:32:57 2016 This script will allow input of a file. It then creates a secondfile where tabs have been replaced with single spaces. The new filename will be the same as the initial but with a '+' appended. @author: Magnus Rannala """ import os import sys import tkinter as tk import tkFileDialog # Open interactive window filepath = tkFileDialog.askopenfilename() filename = filepath.split('/') filename = filename[-1] # filename = "test1.txt" # Test if file name exists and exit if not if os.path.isfile(filename) == False: print " " print "No Such File in Directory! " print " " sys.exit() else: pass data_array = [] # open file for read ifile = open(filename, 'r') for line in ifile: data_array.append(line) # close input file ifile.close() # Create new file name using + appended to input filename ofilename = filename.rsplit(".")[0] + "+." + filename.rsplit(".")[1] # open output file ofile = open(ofilename, 'w') for i in range(len(data_array)): ofile.write(data_array[i].replace("\t", " ")) ofile.close()
true
6e5192545016a992d2525f9baae53d513629524b
Python
tripathyas/Online-Hackathon
/form_group.py
UTF-8
499
3.34375
3
[]
no_license
def solution(A): # write your code in Python 2.7 group = [] temp = A[0] for i in range(1, len(A)): if A[i] > A[i - 1]: group.append((A[i - 1], temp)) temp = A[i] group.append((A[-1], temp)) group.sort() print(group) for j in range(1, len(group)): item = group[j] prev = group[j - 1] if prev[1] > item[0]: return 1 return len(group) print(solution([1, 5, 4, 9, 8, 7, 14, 13, 15, 20, 25, 21]))
true
50a253a3200dd5c16f0ad68df5784cc0bf180dac
Python
michaeltnguyen/Pokedex
/database/scripts/create_pokedex_sql.py
UTF-8
14,584
2.8125
3
[]
no_license
import json import csv import sqlite3 import os # output database path = '../../app/src/main/assets/databases/pokedex.db' def create_gens(cursor): # create generations table cursor.execute('create table if not exists gens(' 'id integer primary key, ' 'name text not null unique ' ');') # add a few entries cursor.execute('insert or ignore into gens(name)' 'values ("xy"), ("oras");') def create_abilities(cursor): abilities = '../data/abilities.json' # create abilities table cursor.execute('create table if not exists abilities(' 'id integer primary key, ' 'name text not null unique, ' 'description text not null, ' 'gen_id integer not null, ' 'foreign key(gen_id) references gens(id)' ');') with open(abilities) as f: data = json.load(f) for p in data['result']: name = p['name'] description = p['description'] gen = (p['gen'],) cursor.execute('select id from gens where name=?', gen) gen_id = cursor.fetchone()[0] values = (name, description, gen_id) cursor.execute('insert or ignore into abilities(name, description, gen_id)' 'values (?,?,?);', values) def create_types(cursor): types = '../data/types.csv' cursor.execute('create table if not exists types(' 'id integer primary key, ' 'name text not null unique, ' 'grad_start_color text not null, ' 'grad_end_color text not null, ' 'border_color text not null' ');') with open(types) as f: data = csv.reader(f) next(data) #skip header row for t in data: name = t[0] grad_start_color = t[1] grad_end_color = t[2] border_color = t[3] values = (name, grad_start_color, grad_end_color, border_color) cursor.execute('insert or ignore into types(name, grad_start_color,' 'grad_end_color, border_color) ' 'values (?,?,?,?);', values) def create_items(cursor): machines = '../data/machines.csv' cursor.execute('create table if not exists machines(' 'id integer primary key, ' 'name text not null, ' 'move_id integer not null, ' 'location text not null, ' 'gen_id integer not null, ' 'youtube_id text, ' 'start_time integer, ' 'end_time integer, ' 'foreign key(gen_id) references gens(id), ' 'foreign key(move_id) references moves(id)' ');') with open(machines) as f: data = csv.reader(f) next(data) #skip header row for m in data: name = m[0] move = m[1] location = m[2] gen = m[3] youtube_id = m[4] start_time = m[5] end_time = m[6] cursor.execute('select id from moves where name=?', (move,)) move_id = cursor.fetchone()[0] cursor.execute('select id from gens where name=?', (gen,)) gen_id = cursor.fetchone()[0] values = (name, move_id, location, gen_id, youtube_id, start_time, end_time) cursor.execute('insert or ignore into machines(' 'name, move_id, location, gen_id, youtube_id, start_time, end_time)' 'values (?,?,?,?,?,?,?);', values) def create_moves(cursor): moves = '../data/moves.csv' cursor.execute('create table if not exists move_categories(' 'id integer primary key, ' 'name text not null unique);') cursor.execute('insert or ignore into move_categories(name)' 'values ("Special"), ("Physical"), ("Non-Damaging");') cursor.execute('create table if not exists moves(' 'id integer primary key, ' 'name text not null unique, ' 'type_id integer not null, ' 'accuracy integer not null, ' 'power integer not null, ' 'pp integer not null, ' 'move_category_id integer not null, ' 'description text not null, ' 'foreign key(type_id) references types(id), ' 'foreign key(move_category_id) references move_categories(id)' ');') with open(moves) as f: data = csv.reader(f) #no header row for m in data: name = m[0] move_type = m[1] accuracy = m[2] power = m[3] pp = m[4] move_category = m[5] description = m[6] cursor.execute('select id from types where name=?', (move_type,)) move_type_id = cursor.fetchone()[0] cursor.execute('select id from move_categories where name=?', (move_category,)) move_category_id = cursor.fetchone()[0] values = (name, move_type_id, accuracy, power, pp, move_category_id, description) cursor.execute('insert or ignore into moves(' 'name, type_id, accuracy, power, pp, move_category_id, description)' 'values (?,?,?,?,?,?,?);', values) def create_pokemon(cursor): pokemon = '../data/pokemon.json' oras_megas = '../data/oras_megas.csv' pokemon_level_moves = '../data/oras_level-up_moves.txt' cursor.execute('create table if not exists pokemon(' 'id integer primary key, ' 'name text unique not null, ' 'national_id integer unique not null, ' 'hp integer not null, ' 'atk integer not null, ' 'def integer not null, ' 'spatk integer not null, ' 'spdef integer not null, ' 'speed integer not null, ' 'image_resource_name text not null' ');') cursor.execute('create table if not exists pokemon_abilities(' 'id integer primary key, ' 'pokemon_id integer not null, ' 'ability_id integer not null, ' 'foreign key(pokemon_id) references pokemon(id), ' 'foreign key(ability_id) references abilities(id)' ');') cursor.execute('create table if not exists pokemon_types(' 'id integer primary key, ' 'pokemon_id integer not null, ' 'type_id integer not null, ' 'foreign key(pokemon_id) references pokemon(id), ' 'foreign key(type_id) references types(id)' ');') cursor.execute('create table if not exists pokemon_machine_moves(' 'id integer primary key, ' 'pokemon_id integer not null, ' 'machine_id integer not null, ' 'foreign key(pokemon_id) references pokemon(id), ' 'foreign key(machine_id) references machines(id)' ');') cursor.execute('create table if not exists pokemon_level_moves(' 'id integer primary key, ' 'pokemon_id integer not null, ' 'move_id integer not null, ' 'level integer not null, ' 'foreign key(pokemon_id) references pokemon(id), ' 'foreign key(move_id) references moves(id)' ');') with open(pokemon) as f: data = json.load(f) for p in data: name = p['name'].title() hp = p['hp'] national_id = p['national_id'] patk = p['attack'] pdef = p['defense'] spatk = p['sp_atk'] spdef = p['sp_def'] spe = p['speed'] if "Farfetch'D" == name: name = "Farfetch'd" #Hard-code resources for Pumpkaboo and Gourgeist sizes. if "Pumpkaboo" in name: res = 'ic_pokemon_710' elif "Gourgeist" in name: res = 'ic_pokemon_711' else: res = 'ic_pokemon_' + str(national_id) values = (name, national_id, hp, patk, pdef, spatk, spdef, spe, res) sprite_file = os.path.join('../../app/src/main/res/drawable/', res + '.png') if not os.path.isfile(sprite_file): print('WARNING: sprite does not exist for', name, national_id) cursor.execute('insert into pokemon(' 'name, national_id, hp, atk, def, spatk, spdef, speed, image_resource_name)' 'values (?,?,?,?,?,?,?,?,?);', values) cursor.execute('select id from pokemon where name=?', (name,)) pokemon_id = cursor.fetchone()[0] for a in p['abilities']: ability = (a['name'].replace('-',' ').title(),) cursor.execute('select id from abilities where name=?', ability) ability_id = cursor.fetchone()[0] values = (pokemon_id, ability_id) cursor.execute('insert or ignore into pokemon_abilities(' 'pokemon_id, ability_id)' 'values (?,?);', values) for t in p['types']: poke_type = (t['name'].title(),) cursor.execute('select id from types where name=?', poke_type) type_id = cursor.fetchone()[0] values = (pokemon_id, type_id) cursor.execute('insert or ignore into pokemon_types(' 'pokemon_id, type_id)' 'values (?,?);', values) # read in pokemon that pokeapi is missing. with open(oras_megas) as f: data = csv.reader(f) next(data) #skip header row for m in data: name = m[0] national_id = m[1] ability = m[2] type1 = m[3] type2 = m[4] hp = m[5] patk = m[6] pdef = m[7] spatk = m[8] spdef = m[9] speed = m[10] res = 'ic_pokemon_' + str(national_id) values = (name, national_id, hp, patk, pdef, spatk, spdef, spe, res) sprite_file = os.path.join('../../app/src/main/res/drawable/', res + '.png') if not os.path.isfile(sprite_file): print('WARNING: sprite does not exist for', name, national_id) cursor.execute('insert or ignore into pokemon(' 'name, national_id, hp, atk, def, spatk, spdef, speed, image_resource_name)' 'values (?,?,?,?,?,?,?,?,?);', values) cursor.execute('select id from pokemon where name=?', (name,)) pokemon_id = cursor.fetchone()[0] cursor.execute('select id from abilities where name=?', (ability,)) ability_id = cursor.fetchone()[0] values = (pokemon_id, ability_id) cursor.execute('insert or ignore into pokemon_abilities(' 'pokemon_id, ability_id)' 'values (?,?);', values) cursor.execute('select id from types where name=?', (type1,)) type_id = cursor.fetchone()[0] values = (pokemon_id, type_id) cursor.execute('insert or ignore into pokemon_types(' 'pokemon_id, type_id)' 'values (?,?);', values) if type2 is not "": cursor.execute('select id from types where name=?', (type2,)) type_id = cursor.fetchone()[0] values = (pokemon_id, type_id) cursor.execute('insert or ignore into pokemon_types(' 'pokemon_id, type_id)' 'values (?,?);', values) with open(pokemon_level_moves) as f: delim = '========' lines = f.readlines() i = 0 #really fragile parsing while i < len(lines): line = lines[i].rstrip('\n') if line == delim: #if the current line is a delimiter, the next lines are: # 1. pokemon name # 2. delimiter # 3-N. list of moves # N+1. delimiter poke_name = lines[i+1].rstrip('\n').split(' - ')[0] cursor.execute('select id from pokemon where name=?', (poke_name,)) poke_id = cursor.fetchone()[0] # Ignore 4 lines (delimiter, poke name, delimiter, count). j = i + 4 while j < len(lines) and lines[j].rstrip('\n') != delim: move_line = lines[j].rstrip('\n') split = move_line.split(':') level = split[0].split(' ')[1] move_name = split[1].lstrip() cursor.execute('select id from moves where name=?', (move_name,)) move_id = cursor.fetchone()[0] values = (poke_id, move_id, level) cursor.execute('insert into pokemon_level_moves(' 'pokemon_id, move_id, level) ' 'values(?,?,?)', values) j = j + 1 i = j else: i = i + 1 # Warn for missing movesets cursor.execute('select pokemon.name from pokemon where pokemon.id not in ' '(select pokemon_id from pokemon_level_moves);') missing = cursor.fetchall() if len(missing) > 0: print('WARNING: missing Level up sets:',cursor.fetchall()) os.remove(path) conn = sqlite3.connect(path) c = conn.cursor() create_gens(c) create_abilities(c) create_types(c) create_moves(c) create_items(c) create_pokemon(c) conn.commit()
true
a6421d6ebfa6010fabc8ecf6bd673012b9dcac24
Python
Dhanooja/SentimentalAnalysis
/CheckingSentiment.py
UTF-8
191
2.875
3
[]
no_license
from textblob import TextBlob lst=[] with open('Adverb.txt','r') as f: for i in f.readlines(): word=i.strip('\n') text=TextBlob(word) print(word,text.sentiment.polarity)
true
2af2f46a9f90e62b1be609136089f322b84c1f6e
Python
louis172000/PYTHON_2
/TP11/ex4.py
UTF-8
943
3.921875
4
[]
no_license
class duree: def __init__(self, heure, minute, seconde): self.__heure = heure self.__minute = minute self.__seconde = seconde def __str__(self): return str(self.__heure)+"h"+str(self.__minute)+"m"+str(self.__seconde)+"s" def __add__(self, autre): if isinstance(autre, duree) == True: min = 0 h = 0 seconde = self.__seconde+autre.__seconde if seconde >= 60: min += 1 seconde -= 60 min += self.__minute+autre.__minute if min >= 60: h +=1 min -= 60 h += self.__heure+autre.__heure return duree(h, min, seconde) else: print("Les 2 objets doivent être de la même classe") if __name__== '__main__': c1 = duree(5, 54, 30) c2 = duree(5, 6, 34) c3 = c1 + c2 print(c3)
true