blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
1e016432cc8e24b453ee9c7d8c2156c6f0dc8cbe
Python
NaviaJin/SortAlgorithm
/heap_sort.py
UTF-8
1,911
3.65625
4
[]
no_license
# ''' # 当前节点为k, # 父节点为(k-1)/2 # 左子树为2k+1 # 右子树为2k+2 # ''' def adjust_heap(arr,i): l_child = 2*i+1 r_child = 2*i+2 n = len(arr) min = i if i < int(n/2): if l_child < n and arr[min] > arr[l_child]: min = l_child if r_child < n and arr[min] > arr[r_child]: min = r_child if min != i: arr[i], arr[min] = arr[min], arr[i] adjust_heap(arr,min) def get_min(arr): n = len(arr) no_leaf =int(n/2) for i in range(0, no_leaf)[::-1]: adjust_heap(arr, i) if arr: min = arr[0] temp = arr.pop(n-1) if arr: arr[0] = temp # print(arr) return min, arr def heap_sort(arr,result): min, arr = get_min(arr) result.append(min) while arr: heap_sort(arr,result) if __name__ == '__main__': arr = [123, 312, 12, 3, 122, 313, 2, 566, 435, 23] result = [] heap_sort(arr, result) print(result) # temp = arr.pop(4) # print(temp) # print(arr) # # # #list要处理的数组,i是第几个元素,size是lists的长度 # def adjust_heap(lists, i, size): # lchild = 2 * i + 1 # rchild = 2 * i + 2 # max = i # if i < int(size / 2): # if lchild < size and lists[lchild] > lists[max]: # max = lchild # if rchild < size and lists[rchild] > lists[max]: # max = rchild # if max != i: # lists[max], lists[i] = lists[i], lists[max] # adjust_heap(lists, max, size) # # # def build_heap(lists, size): # for i in range(0, (int(size / 2)))[::-1]: # adjust_heap(lists, i, size) # # # def heap_sort(lists): # size = len(lists) # build_heap(lists, size) # for i in range(0, size)[::-1]: # lists[0], lists[i] = lists[i], lists[0] # adjust_heap(lists, 0, i) # #
true
2b0859c8d61918ed55e7f15f16cdf0634e00937b
Python
git4lhe/Lezhin_data_challenge
/haeunlee/core/transforms.py
UTF-8
1,996
2.796875
3
[]
no_license
import numpy as np from sklearn.preprocessing import ( StandardScaler, OneHotEncoder, ) from sklearn.feature_extraction.text import HashingVectorizer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import FunctionTransformer join = FunctionTransformer(' '.join, validate=True) TOKENS_ALPHANUMERIC = '[A-Za-z0-9]+(?=\\s+)' num_steps = [ ( "impute_nan_num", SimpleImputer( missing_values=np.nan, strategy="constant", fill_value=0, add_indicator=True ), ), ("standardscaler", StandardScaler()), ] cat_steps = [ ( "impute_nan_cat", SimpleImputer( missing_values=np.nan, strategy='constant', fill_value='ABCD1234', add_indicator=True ), ), # ("join", join), ("HashingVectorizer", HashingVectorizer(n_features=2 ** 5, binary = False, lowercase=False)), ] class PipelineCreator: def __init__(self, numeric_cols, str_cols, ignore = None): """ { imputation: nan/unknown -> 같은 데이터로 처리, another category standard scaler: onehotencoder: } """ self.num_steps = num_steps self.cat_steps = cat_steps self.numeric_cols = numeric_cols self.str_cols = str_cols self.final_pipe = [] def get_pipeline(self): print(f"Pipeline numerical({len(self.numeric_cols)}): {self.numeric_cols}") print(f"Pipeline string({len(self.str_cols)}): {self.str_cols}") self.final_pipe.append( ("numerical", Pipeline(self.num_steps), self.numeric_cols) ) self.final_pipe.append( ("string column transformation", Pipeline(self.cat_steps), self.str_cols) ) pipe = ColumnTransformer(self.final_pipe, remainder="drop", verbose=True) return pipe def add_pipeline(self, **step): print(step)
true
1d41db94d36ba4739835a8c56f587445135e327e
Python
s570504071/learngit
/date/date0927/crawl_liuli.py
UTF-8
3,944
2.796875
3
[]
no_license
#coding=utf-8 #琉璃神社首页 http://www.hacg.at/ #动漫页面 http://www.hacg.at/wp/category/all/anime/ import urllib2 import urllib import json import re import logging import pdb from bs4 import BeautifulSoup as bs class GetLink(object): def __init__(self): #self.url='http://www.hacg.at/wp/category/all/anime/' #self.num=num self.user_agent='Mozilla/5.0 (Window NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36' self.header={'User-Agent':self.user_agent} self.l=[] self.ani0={} def gethtml(self,u): self.ani={} #y=self.loop(num) #url_page=self.url+'page/'+str(self.num)+'/' req=urllib2.Request(u,headers=self.header) res=urllib2.urlopen(req) html=res.read().decode('utf-8') soup=bs(html,'html.parser') titles=soup.select('h1.entry-title > a') for title in titles: self.ani0[title.get_text()]=title.get('href') #用json格式输出汉字 #print json.dumps(ani).decode("unicode-escape") return self.ani0 #循环得到更多页的信息,(原先实际上只得到当前页的信息!!!) def loop(self,num): url='http://www.hacg.at/wp/category/all/anime/' for i in range(1,num): print 'downing--webpage---%s'%i url_page=url+'page/'+str(i)+'/' self.gethtml(url_page) self.ani.update(self.ani0) #print len(self.ani) return self.ani class GetL(object): def __init__(self): self.user_agent='Mozilla/5.0 (Window NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36' self.header={'User-Agent':self.user_agent} self.blue_link='' def getlink(self,link): #伪装,发送请求 req=urllib2.Request(link,headers=self.header) res=urllib2.urlopen(req) html=res.read().decode('utf-8') soup=bs(html,'html.parser') content=soup.select('div.entry-content') try: #正则表达式匹配 pattern=re.compile(r'([a-z0-9A-Z]{40}|[a-z0-9本站不提供下载A-Z]{54})</') blue_link1=pattern.findall(str(content)) #利用切片操作得到列表中的字符串或内容,可再次切片对字符串得到想要的 blue_link0=blue_link1[0][:-2] self.blue_link=r'magnet:?xt=urn:btih:'+str(blue_link0) except Exception,e: print e finally: return self.blue_link #print self.blue_link def findlink(self): #获得标题和网页链接 l=GetLink() g=l.loop(3) print len(g) b_link={} for k,v in g.iteritems(): print k #pdb.set_trace() self.getlink(v) b_link[k]=self.blue_link #print b_link print 'start' with open('b_link1.json','w') as f: f.write(str(b_link)+r'\n') print 'save down' return b_link #获取所有最新信息 def main(): print '*'*8 l=GetLink() g=l.loop(3) print g print '*'*8 #获取神秘代码 def main0(): #link='http://www.hacg.at/wp/all/anime/%e3%83%92%e3%83%88%e3%83%85%e3%83%9e%e3%83%a9%e3%82%a4%e3%83%95-%e3%83%af%e3%83%b3%e3%82%bf%e3%82%a4%e3%83%a0%e3%82%ae%e3%83%a3%e3%83%ab-%e5%89%8d%e7%b7%a8/' #link='http://www.hacg.at/wp/all/anime/%e8%87%aa%e5%ae%85%e8%ad%a6%e5%82%99%e5%93%a1-3rd%e3%83%9f%e3%83%83%e3%82%b7%e3%83%a7%e3%83%b3-%e3%83%9b%e3%82%b7%e3%82%ac%e3%83%aa%e7%88%86%e4%b9%b3%e4%ba%ba%e5%a6%bb%e3%83%bb%e7%bf%94%e5%ad%90/' #link='http://www.hacg.at/wp/all/anime/%e5%83%95%e3%81%a0%e3%81%91%e3%81%ae%e3%83%98%e3%83%b3%e3%82%bf%e3%82%a4%e3%82%ab%e3%83%8e%e3%82%b8%e3%83%a7-%e3%82%82%e3%81%a3%e3%81%a8-the-animation/' k=GetL() k.findlink() if __name__=='__main__': #main() main0()
true
dd2828173e9ba99516e67147bc939f0500f6c8b9
Python
okyanusoz/datasets
/tensorflow_datasets/core/utils/generic_path.py
UTF-8
3,599
2.65625
3
[ "Apache-2.0" ]
permissive
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pathlib-like generic abstraction.""" import os import typing from typing import Callable, Dict, Tuple, Type, Union, TypeVar from tensorflow_datasets.core.utils import gpath from tensorflow_datasets.core.utils import type_utils PathLike = type_utils.PathLike ReadOnlyPath = type_utils.ReadOnlyPath ReadWritePath = type_utils.ReadWritePath PathLikeCls = Union[Type[ReadOnlyPath], Type[ReadWritePath]] T = TypeVar('T') _PATHLIKE_CLS: Tuple[PathLikeCls, ...] = ( gpath.PosixGPath, gpath.WindowsGPath, ) _URI_PREFIXES_TO_CLS: Dict[str, PathLikeCls] = { # Even on Windows, `gs://`,... are PosixPath uri_prefix: gpath.PosixGPath for uri_prefix in gpath.URI_PREFIXES } # pylint: disable=g-wrong-blank-lines @typing.overload def register_pathlike_cls(path_cls_or_uri_prefix: str) -> Callable[[T], T]: ... @typing.overload def register_pathlike_cls(path_cls_or_uri_prefix: T) -> T: ... def register_pathlike_cls(path_cls_or_uri_prefix): """Register the class to be forwarded as-is in `as_path`. ```python @utils.register_pathlike_cls('my_path://') class MyPath(pathlib.PurePosixPath): ... my_path = tfds.core.as_path('my_path://some-path') ``` Args: path_cls_or_uri_prefix: If a uri prefix is given, then passing calling `tfds.core.as_path('prefix://path')` will call the decorated class. Returns: The decorator or decoratorated class """ global _PATHLIKE_CLS if isinstance(path_cls_or_uri_prefix, str): def register_pathlike_decorator(cls: T) -> T: _URI_PREFIXES_TO_CLS[path_cls_or_uri_prefix] = cls return register_pathlike_cls(cls) return register_pathlike_decorator else: _PATHLIKE_CLS = _PATHLIKE_CLS + (path_cls_or_uri_prefix,) return path_cls_or_uri_prefix # pylint: enable=g-wrong-blank-lines def as_path(path: PathLike) -> ReadWritePath: """Create a generic `pathlib.Path`-like abstraction. Depending on the input (e.g. `gs://`, `github://`, `ResourcePath`,...), the system (Windows, Linux,...), the function will create the right pathlib-like abstraction. Args: path: Pathlike object. Returns: path: The `pathlib.Path`-like abstraction. """ is_windows = os.name == 'nt' if isinstance(path, str): uri_splits = path.split('://', maxsplit=1) if len(uri_splits) > 1: # str is URI (e.g. `gs://`, `github://`,...) # On windows, `PosixGPath` is created for `gs://` paths return _URI_PREFIXES_TO_CLS[uri_splits[0] + '://'](path) # pytype: disable=bad-return-type elif is_windows: return gpath.WindowsGPath(path) else: return gpath.PosixGPath(path) elif isinstance(path, _PATHLIKE_CLS): return path # Forward resource path, gpath,... as-is # pytype: disable=bad-return-type elif isinstance(path, os.PathLike): # Other `os.fspath` compatible objects path_cls = gpath.WindowsGPath if is_windows else gpath.PosixGPath return path_cls(path) else: raise TypeError(f'Invalid path type: {path!r}')
true
f2ecb193d12734cb7869a628a6e6e12521e88ca3
Python
fwb04/spider
/spydersql/population.py
UTF-8
4,913
3.09375
3
[]
no_license
# -*- coding: utf-8 -*- import requests import json import time import sqlite3 from bs4 import BeautifulSoup import matplotlib.pyplot as plt # 获得时间戳 def gettime(): return int(round(time.time() * 1000)) # 爬取人口数据 def getpopulation(): # 用来自定义头部的 headers = {} # 用来传递参数的 keyvalue = {} # 目标网址 url = 'http://data.stats.gov.cn/easyquery.htm' # 头部的填充 headers['User-Agent'] = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14) ' \ 'AppleWebKit/605.1.15 (KHTML, like Gecko) ' \ 'Version/12.0 Safari/605.1.15' # 参数的填充 keyvalue['m'] = 'QueryData' keyvalue['dbcode'] = 'hgnd' keyvalue['rowcode'] = 'zb' keyvalue['colcode'] = 'sj' keyvalue['wds'] = '[]' keyvalue['dfwds'] = '[{"wdcode":"zb","valuecode":"A0301"}]' keyvalue['k1'] = str(gettime()) # 建立一个Session s = requests.session() # 在Session基础上进行一次请求 r = s.post(url, params=keyvalue, headers=headers) # 修改dfwds字段内容 keyvalue['dfwds'] = '[{"wdcode":"sj","valuecode":"LAST20"}]' # 再次进行请求 r = s.get(url, params=keyvalue, headers=headers) r.encoding = 'utf-8' # 定义人口数据存储数组 year = [] population = [] male = [] female = [] # 从json文件提取想要的数据 data = json.loads(r.text) data_one = data['returndata']['datanodes'] for value in data_one: # 提取年份和总人口 if ('A030101_sj' in value['code']): year.append(value['code'][-4:]) population.append(int(value['data']['strdata'])) # 提取男性人口 if ('A030102_sj' in value['code']): male.append(int(value['data']['strdata'])) # 提取女性人口 if ('A030103_sj' in value['code']): female.append(int(value['data']['strdata'])) # 数组逆序存放 year.reverse() population.reverse() male.reverse() female.reverse() # 连接数据库,不存在时自动创建 conn = sqlite3.connect("population.db") cur = conn.cursor() cur.execute('''CREATE TABLE IF NOT EXISTS population (year text, popu int, male int, female int)''') cur.execute('select * from population ') # 向表中插入数据 data = cur.fetchall() if data == []: for i in range(len(year)): cur.execute("INSERT INTO population VALUES ('%s','%d','%d','%d')" % (year[i], population[i], male[i], female[i])) conn.commit() cur.close() conn.close() # 作年份-人口条形图 def plot1(year, population): plt.figure(figsize=(10, 6)) ax = plt.subplot() # 创建图片区域 # Y轴坐标值范围 plt.ylim(125000, 140000) # 字体、颜色 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ax.bar(year, population, align='center', color='darkseagreen', edgecolor='white') # 在图中添加数据值 for a, b in zip(year, population): plt.text(a, b + 0.05, '%.0f' % b, ha='center', va='bottom', fontsize=11) # 设置标题、坐标轴名称 plt.xlabel(u'年份') plt.xticks(rotation=45) plt.ylabel(u'人口数/万人') plt.title(u'1999-2018年末总人口条形图') plt.show() # 作年份-男女人口占比折线图 def plot2(year, male, female): # 计算男女人口占比并存入r1,r2 r1 = [] r2 = [] for i in range(len(male)): r1.append(male[i] / (male[i] + female[i])) r2.append(female[i] / (male[i] + female[i])) plt.figure(figsize=(10, 5)) ax = plt.subplot() # 创建图片区域 plt.title("1999-2018年全国男性人口和女性人口占比变化折线图") plt.xlabel(u'年份') plt.xticks(rotation=45) plt.ylabel(u'占比') # 作出两条直线 line1, = plt.plot(year, r1) line2, = plt.plot(year, r2) for a, b in zip(year, r1): plt.text(a, b + 0.03, '%.2f' % b, ha='center', va='bottom', fontsize=9) plt.legend((line1, line2), ('男性人口占比', "女性人口占比")) # 网格线设置 plt.grid(color='whitesmoke', ls='--') plt.show() # 作图 def plotdata(): # 从数据库中读取数据 conn = sqlite3.connect("population.db") cur = conn.cursor() cur.execute('select * from population ') data = cur.fetchall() cur.close() conn.close() year = [i[0] for i in data] population = [i[1] for i in data] male = [i[2] for i in data] female = [i[3] for i in data] print(population) print(male) print(female) plot1(year, population) plot2(year, male, female) if __name__ == '__main__': # 从国家统计局获取人口数据并存入本地数据库population.db getpopulation() # 作图 plotdata()
true
bee2474a2912483eaa0632413b45efe2185c7136
Python
tathagata-raha/CP_python
/binarytree/binartree.py
UTF-8
4,325
3.09375
3
[]
no_license
class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class DiameterOfABinaryTree: def __init__(self): self.diameter = 0 def height(self,node): if node is None: return 0 lh = self.height(node.left) rh = self.height(node.right) tmp = lh + rh if self.diameter < tmp: self.diameter= tmp return 1 + max(lh,rh) def diameterOfBinaryTree(self, root: TreeNode) -> int: self.height(root) return self.diameter class BuildFromInorderAndPostorder: def build(self,sin, ein, spost, epost): if ein==sin: return None root = TreeNode(self.postorder[epost-1]) if ein-sin == 1: return root idx = self.val_idx[root.val] # print(sin, ein, spost, epost, idx) root.left = self.build(sin,idx,spost, spost+(idx-sin)) root.right = self.build(idx+1, ein, spost+(idx-sin), epost-1) return root def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode: # print(inorder, postorder) self.inorder = inorder self.postorder = postorder self.val_idx = {v:i for i,v in enumerate(inorder)} root = self.build(0,len(postorder),0,len(postorder)) return root class Solution: def build(self,sin, ein, spost, epost): if ein==sin: return None root = TreeNode(self.postorder[epost-1]) if ein-sin == 1: return root idx = self.val_idx[root.val] # print(sin, ein, spost, epost, idx) root.left = self.build(sin,idx,spost, spost+(idx-sin)) root.right = self.build(idx+1, ein, spost+(idx-sin), epost-1) return root def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode: # print(inorder, postorder) self.inorder = inorder self.postorder = postorder self.val_idx = {v:i for i,v in enumerate(inorder)} root = self.build(0,len(postorder),0,len(postorder)) return root class TreeFunctions: def inorderTraversal(self, root: TreeNode) -> List[int]: res = [] def traversal(node): if node: traversal(node.left) res.append(node.val) traversal(node.right) traversal(root) return res def preorderTraversal(self, root: TreeNode) -> List[int]: st = [] res = [] curr = root while True: while curr is not None: res.append(curr.val) st.append(curr) curr = curr.left if len(st) == 0: break curr = st.pop().right return res def postorderTraversal(self, root: TreeNode) -> List[int]: res = [] st = [] st2 = [] curr = root while True: while curr is not None: st.append([curr, 0]) curr = curr.left if len(st) == 0: return res while st[-1][1] != 0: res.append(st.pop()[0].val) if len(st) == 0: return res st[-1][1] = 1 curr = st[-1][0].right def levelOrder(self, root: TreeNode) -> List[List[int]]: q = deque() if root is None: return [] res = [] q.append((root,0)) while len(q)!=0: tmp = q.popleft() res.append((tmp[0].val, tmp[1])) if tmp[0].left is not None: q.append((tmp[0].left, tmp[1]+1)) if tmp[0].right is not None: q.append((tmp[0].right, tmp[1]+1)) d = defaultdict(list) for i in res: d[i[1]].append(i[0]) return [i for i in d.values()] def calculateDiameter(self, root): tmp = DiameterOfABinaryTree() return tmp.diameterOfBinaryTree(root) def buildfrominandpost(self, inorder: List[int], postorder: List[int]): tmp = BuildFromInorderAndPostorder() return tmp.buildTree(inorder, postorder)
true
f8af8fddcfacbdacab18b574c58d93e6d061a91f
Python
theSaab/leetcode
/good_pairs.py
UTF-8
178
3.203125
3
[]
no_license
def pairs( nums ): count = 0 for i,num in enumerate(nums): for elem in nums[i+1:]: if elem == num: count += 1 return count
true
d7a39b42fd4d4b4d816f0b58ac7de95da272b6c5
Python
ProfAvery/cpsc449
/stats/bin/stats.py
UTF-8
1,702
2.625
3
[]
no_license
#!/usr/bin/env python3 import contextlib import datetime import random import sqlite3 import faker DATABASE = './var/stats.db' SCHEMA = './share/stats.sql' NUM_STATS = 1_000_000 NUM_USERS = 100_000 YEAR = 2022 random.seed(YEAR) fake = faker.Faker() fake.seed(YEAR) with contextlib.closing(sqlite3.connect(DATABASE)) as db: with open(SCHEMA) as f: db.executescript(f.read()) for _ in range(NUM_USERS): while True: try: profile = fake.simple_profile() db.execute('INSERT INTO users(username) VALUES(:username)', profile) except sqlite3.IntegrityError: continue break db.commit() jan_1 = datetime.date(YEAR, 1, 1) today = datetime.date.today() num_days = (today - jan_1).days i = 0 while i < NUM_STATS: while True: try: user_id = random.randint(1, NUM_USERS) game_id = random.randint(1, num_days) finished = jan_1 + datetime.timedelta(random.randint(0, num_days)) # N.B. real game scores aren't uniformly distributed... guesses = random.randint(1, 6) # ... and people mostly play to win won = random.choice([False, True, True, True]) db.execute( """ INSERT INTO games(user_id, game_id, finished, guesses, won) VALUES(?, ?, ?, ?, ?) """, [user_id, game_id, finished, guesses, won] ) except sqlite3.IntegrityError: continue i += 1 break db.commit()
true
92e2c95afe386cb1346ec5881098d3fbdca69667
Python
zebravid/python-examples
/acc.py
UTF-8
771
3.4375
3
[]
no_license
class Acco: def __init__(self,filename): self.filepath=filename with open(filename,"r") as file: self.balance=int(file.read()) def withdrow(self,amount): self.balance=self.balance-amount self.commit() def deposit(self,amount): self.balance=self.balance+amount self.commit() def commit(self): with open(self.filepath,'w') as file: file.write(str(self.balance)) class Checking(Acco): """Example of inheritance and class variable and doc string""" type="checking" def __init__(self,filepath,fee): Acco.__init__(self,filepath) self.fee=fee def transfer(self,amount): self.balance=self.balance-amount- self.fee self.commit() chec=Checking("bal.txt",1) print(chec.balance) chec.withdrow(100) chec.transfer(15) print(chec.balance)
true
c0bb613bb9518444304d70fe8a1ae1b232820e96
Python
pitambar3210/exceptionhandling-assignment
/exception_handling_assignment.py
UTF-8
771
4.0625
4
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[4]: # assignment-5 # exception handling assignment # In[6]: # question-1 # write a python program to implement 5/0 and use try/except to catch exceptions # In[7]: try: a = int(input('enter the number: ')) result = 5/a print(result) except Exception as e: print(e) # In[8]: # problem-2 # implement a python program to generate all sentences where subject is in ['americans','indians'] and verb is in ['play','watch'] and the object is in ['baseball','cricket'] # In[12]: subjects = ['Americans','Indians'] verbs = ['play','watch'] objects = ['Baseball','cricket'] for i in subjects: for j in verbs: for k in objects: print(i+' '+j+' '+k,end = '\n') # In[ ]:
true
86785476e34f5161a5b43e9b7aebe20119b5dc19
Python
mmyoungman/advent-of-code
/2017/python/08b.py
UTF-8
685
2.890625
3
[]
no_license
file = open("08input.txt", 'r') list = [] while True: line = file.readline() if line == '': break line = line.rstrip('\n') list.append(line.split()) file.close() registers = {} maxReg = 0 for line in list: if line[0] not in registers: registers[line[0]] = 0 if line[4] not in registers: registers[line[4]] = 0 if eval(str(registers[line[4]]) + ' ' + line[5] + ' ' + line[6]): if line[1] == "inc": registers[line[0]] += int(line[2]) else: registers[line[0]] -= int(line[2]) if registers[max(registers, key=registers.get)] > maxReg: maxReg = registers[max(registers, key=registers.get)] print(maxReg)
true
759096c663f01bfd41420c51b89985ec50f18127
Python
BK-notburgerking/Algorithm
/Programmers/2021DevMatching_행렬테두리회전하기.py
UTF-8
1,648
2.859375
3
[]
no_license
def solution(rows, columns, queries): arr = [([0] * columns) for _ in range(rows)] for i in range(rows): for j in range(columns): arr[i][j] = (j + 1) + columns * i def move(sr, sc, er, ec): xr, xc = sr, sc # 이전좌표 ex_num = arr[xr][xc] # 이전 값 min_num = ex_num # 최소 값 for _ in range(ec - sc): # 우 nr, nc = xr, xc + 1 # 이동할 좌표 tmp = arr[nr][nc] # 다음 움직일 숫자 if tmp < min_num: min_num = tmp arr[nr][nc] = ex_num # 이동할 좌표에 이전 값 할당 xr, xc = nr, nc # 이전좌표 변경 ex_num = tmp # 이전좌표의 값 변경 for _ in range(er - sr): # 하 nr, nc = xr + 1, xc tmp = arr[nr][nc] if tmp < min_num: min_num = tmp arr[nr][nc] = ex_num xr, xc = nr, nc ex_num = tmp for _ in range(ec - sc): # 좌 nr, nc = xr, xc - 1 tmp = arr[nr][nc] if tmp < min_num: min_num = tmp arr[nr][nc] = ex_num xr, xc = nr, nc ex_num = tmp for _ in range(er - sr): # 상 nr, nc = xr - 1, xc tmp = arr[nr][nc] if tmp < min_num: min_num = tmp arr[nr][nc] = ex_num xr, xc = nr, nc ex_num = tmp return min_num ans = [] for query in queries: sr, sc, er, ec = query ans.append(move(sr - 1, sc - 1, er - 1, ec - 1)) return ans
true
d11882cc780bbcad65f1e1a4a2e777d19f438b6c
Python
BennyJane/Python_Project_Benny
/数据处理/second_获取极值.py
UTF-8
10,451
2.921875
3
[]
no_license
#!/user/bin/env Python #coding=utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtk #变量调整 #将第一段代码生成的文件路径拷贝到下方 FirstResult_filepath="E:/编程接单/2019-4-14/提取数据11.csv" #变化的比率调整 The_Limition=0.001 #最值文件保存的位置及文件名,4列,每列两个点 Final_filename="E:/编程接单/2019-4-14/Second_data02.csv" #设置图片最后储存位置 filepath="E:/编程接单/2019-4-14/Photo.png" #设置图片标题 Picture_title="Photo Title" xlabel=The_Limition #----------------------------------------------------------------------------------------------------------------------- df=pd.read_csv(FirstResult_filepath) #处理数据 end_num = df .shape[0] for i in range(0, end_num): # print(df .iloc[i, 1]) df .iloc[i, 1] = df .iloc[i, 1][0:19] # print(df) #提取单独的均值列 Mean_df=df['bid/ask_price'] # print(Mean_df.info) #求变化率 def compute(num1,num2): result=(num1-num2)/num2 return result # 构造储存的表 Left_df = pd.DataFrame(columns=['exchange_time', 'bid/ask_price']) Right_df = pd.DataFrame(columns=['exchange_time', 'bid/ask_price']) # 利用k值的奇偶性,来记录数值变化趋势 # 上一个k为奇数代表降,下一个找升;上一个k偶数代表上升,下一个要找降 k = 1 first_break_point = 0 # series 类型 end_num = Mean_df.shape[0] #从第二个数据开始读取 for i in range(1, end_num): #切片,最后一个i位不输出 Current_Process = Mean_df.iloc[:i] # Current_Process=Mean_df[:i] # print(Current_Process) first_max_price = Current_Process.max() first_min_price = Current_Process.min() #只有最值,没有索引号 last_price = Current_Process.iloc[i-1] result = compute(first_max_price, first_min_price) if result < The_Limition: continue else: first_break_point = i # >=The_Limition # 找到第一组最值 # 判断升降 if last_price == first_max_price: k = k + 1 # print(last_price, first_max_price) # 找出最小值所在的行,注意保存的先后顺序 min_id = Current_Process.idxmin() max_id = Current_Process.idxmax() # print(min_id, max_id) # 选出时间和价格,分别保存到起、终点的dataframe中,最后再考虑合并 Left_df.loc[Left_df.shape[0]] = df.iloc[min_id, 1:] # 只取出时间和价格 Right_df.loc[Right_df.shape[0]] = df.iloc[max_id, 1:] # 只取出时间和价格 # 先完成一段数据的查找 break else: # print(last_price, first_min_price) # 找出最小值所在的行,注意保存的顺序 max_id = Current_Process.idxmax() min_id = Current_Process.idxmin() print(max_id, min_id) # 选出时间和价格,分别保存到起、终点的dataframe中,最后再考虑合并 Left_df.loc[Left_df.shape[0]] = df.iloc[max_id, 1:] # 只取出时间和价格 Right_df.loc[Right_df.shape[0]] = df.iloc[min_id, 1:] # 只取出时间和价格 # 先完成一段数据的查找 break n=first_break_point j=first_break_point while True : j = j+1 if j <end_num: #先判断第一段是升 or 降 if (k % 2)==0: #上一个K为偶数,下一个找下降 #保证可以取到2个数以上 N_Process=Mean_df.iloc[n:j] # print(n,j) N_max_price = N_Process.max() N_min_price = N_Process.min() # print(type(N_Process)) # print(N_Process.index) last_price = N_Process.loc[j-1] result = compute(N_max_price, N_min_price) if result >= The_Limition: # 最后一个极值必须是最小值 if last_price == N_min_price: # print(j) k = k + 1 n = j # 找出最大值所在的行,注意保存的顺序 # print(last_price,N_max_price, N_min_price) max_id = N_Process.idxmax() min_id = j-1 # print(max_id, min_id) # 选出时间和价格,分别保存到起、终点的dataframe中,最后再考虑合并到一张表中 Left_df.loc[Left_df.shape[0]] = df.iloc[max_id, 1:] # 只取出时间和价格 Right_df.loc[Right_df.shape[0]] = df.iloc[min_id, 1:] # 只取出时间和价格 # 完成一段数据的查找 print('完成了一对极值的查找:%s' % k) else: #上一个K为奇数,下一个要找升 #保证可以取到2个数以上 N_Process=Mean_df.iloc[n:j] N_max_price=N_Process.max() N_min_price=N_Process.min() last_price=N_Process.loc[j-1] result=compute(N_max_price,N_min_price) if result >= The_Limition: #最后一个极值必须是最大值 if last_price ==N_max_price: k=k+1 n = j # print(last_price, N_min_price, N_max_price) #找出最小值所在的行,注意保存的顺序 max_id=j-1 min_id=N_Process.idxmin() # print(min_id,max_id) #选出时间和价格,分别保存到起、终点的dataframe中,最后再考虑合并到一张表中 Left_df.loc[Left_df.shape[0]] = df.iloc[min_id, 1:]#只取出时间和价格 Right_df.loc[Right_df.shape[0]] = df.iloc[max_id, 1:]#只取出时间和价格 #先完成一段数据的查找 print('完成了一对极值的查找:%s' % k) #break else: break #·························绘制图形···························· #设置图片大小,分辨率 fig = plt.figure(figsize=(20, 6), dpi=90) ax1 = fig.add_subplot(1, 1, 1) #-------------------------------------------------------------预设值 #用下标代理原始时间戳数据 idx_pxy = np.arange(df.shape[0]) print(type(idx_pxy)) #下标-时间转换func def x_fmt_func(x, pos=None): idx =np.clip(int(x+0.5), 0, df.shape[0]-1) return df['exchange_time'].iat[idx] #绘图流程 def decorateAx(ax, xs, ys, x_func): ax.plot(xs, ys, color="k", linewidth=0.3, linestyle="-") # ax.plot(ax.get_xlim(), [0,0], color="blue", linewidth=0.5, linestyle="--") if x_func: #set数据代理func ax.xaxis.set_major_formatter(mtk.FuncFormatter(x_func)) ax.grid(True) return def decorateAx02(ax, xs, ys, x_func): ax.plot(xs, ys, color="r", linewidth=1, linestyle="-") # ax.plot(ax.get_xlim(), [0,0], color="blue", linewidth=0.5, linestyle="--") if x_func: #set数据代理func ax.xaxis.set_major_formatter(mtk.FuncFormatter(x_func)) ax.grid(True) return def decorateAx03(ax, xs, ys, x_func): ax.plot(xs, ys, color="b", linewidth=1, linestyle="-") # ax.plot(ax.get_xlim(), [0,0], color="blue", linewidth=0.5, linestyle="--") if x_func: #set数据代理func ax.xaxis.set_major_formatter(mtk.FuncFormatter(x_func)) ax.grid(True) return #------------------------------------------------------------end------------------------------------------------------- #绘制所有数据的图像 decorateAx(ax1, idx_pxy, df['bid/ask_price'], x_fmt_func) #······························02···························· #绘制第二段数据图形 #排除两者不等长的情况,取较小的列 if Left_df.shape[0]!=Right_df.shape[0]: if Left_df.shape[0]>Right_df.shape[0]: nums=Right_df.shape[0] else: nums = Left_df.shape[0] else: nums=Left_df.shape[0] # 先将左右两端数据合并到一个df文件中(可以改进合并的方式) Simple_Col = pd.DataFrame(columns=['exchange_time', 'bid/ask_price']) for i in range(0, nums): Simple_Col = Simple_Col.append(Left_df.iloc[i, :], ignore_index=True) Simple_Col = Simple_Col.append(Right_df.iloc[i, :], ignore_index=True) # Simple_Col.to_csv("E:/编程接单/2019-4-14/Simple_Col.csv", index=None) end_num = Simple_Col .shape[0] for i in range(0, end_num): # print(type(Simple_Col .iloc[i, 0])) Simple_Col .iloc[i, 0] = str(Simple_Col .iloc[i, 0])[0:19] # print(Simple_Col) Simple_nums = Simple_Col.shape[0] A_list = [] B_list = [] for j in range(0, Simple_nums): # 每次读取两个数据,组成两个点 try: price_01 = Simple_Col.iloc[j, 1] price_02=Simple_Col.iloc[j+1, 1] date1 = Simple_Col.iloc[j, 0] date2 = Simple_Col.iloc[j + 1, 0] list1 = [] a = df[(df["exchange_time"] == date1)&(df['bid/ask_price'] == price_01)].index.tolist() b = df[(df["exchange_time"] == date2)&(df['bid/ask_price'] == price_02)].index.tolist() list1.append(a[0]) list1.append(b[0]) # print(list1) Indes_two = np.array(list1) list2=[] list2=[price_01,price_02] B_list=np.array(list2) # print(B_list,Indes_two,'/n') except: continue # print(A_list) if (j % 2) == 0: decorateAx02(ax1, Indes_two,B_list , x_fmt_func) else: decorateAx03(ax1, Indes_two,B_list , x_fmt_func) np.delete(B_list,(0,1),0) np.delete(Indes_two, (0, 1), 0) # 配置横坐标 plt.gcf().autofmt_xdate() # 自动旋转日期标记 plt.title(Picture_title) # plt.ylabel(r"price",fontsize=20) plt.xlabel(xlabel,fontsize=20) #图片储存 plt.savefig(filepath) plt.show() #······························end···························· #将两张表合并 Newdf=pd.concat([Left_df,Right_df],axis=1) #print(Newdf) #重新命名表的列名称 Newdf.rename(columns={'exchange_time':'extreme_point', 'bid/ask_price':'Start_price', 'exchange_time':'confirm_point','bid/ask_price':'End_price'}, inplace = True) Newdf.to_csv(Final_filename,index=None)
true
9613ef678b3d0449c4b2df72b31fcc67786c03b9
Python
carson-1999/Personal-Python-Project
/爬虫相关/carson网易云.py
UTF-8
2,782
2.765625
3
[]
no_license
import requests import os import bs4 from fake_useragent import UserAgent from selenium import webdriver from time import sleep # 随机产生请求头 ua = UserAgent(verify_ssl=False, path='fake_useragent.json') # 当前目录下 # 创建保存音乐的文件夹 path = os.path.join('网易云音乐') if not os.path.exists(path): os.mkdir(path) # 配置浏览器驱动 options = webdriver.ChromeOptions() # 关闭左上方 Chrome 正受到自动测试软件的控制的提示 # options.add_argument("--headless") options.add_experimental_option('useAutomationExtension', False) options.add_experimental_option("excludeSwitches", ['enable-automation']) name = input('请输入待下载歌名:') # 初始化browser对象 browser = webdriver.Chrome(options=options) # 获取音乐名称 id 演唱者 def get__name_id_singer(url): browser.get(url=url) browser.switch_to.frame('g_iframe') sleep(1) page_text = browser.execute_script("return document.documentElement.outerHTML") soup = bs4.BeautifulSoup(page_text, 'html.parser') music_names = soup.select("div[class='td w0'] a b") music_name = music_names[0].get("title") # 获取歌曲名 music_ids = soup.select("div[class='td w0'] a") music_id = music_ids[0].get("href") # 获取音乐链接 music_id = music_id.split('=')[-1] # 字符串切片获取id music_singers = soup.select("div[class='td w1'] a") music_singer = music_singers[0].string # 获取歌手名字 return music_name, music_id, music_singer # 下载音乐 def download_music(url, song_name, singer): headers = { "accept-encoding": "gzip", "user-agent": ua.random } response = requests.get(url=url, headers=headers) music_data = response.content music_path_name = '{}_{}演唱.mp3'.format(song_name, singer) music_path = path + '/' + music_path_name with open(music_path, 'wb') as f: f.write(music_data) print(music_path_name, '------->已下载成功!') # 主函数调用 def main(): url = 'https://music.163.com/#/search/m/?s=' + name + '&type=1' # 接收返回的音乐名称 id 演唱者 music_name, music_id, musice_singer = get__name_id_singer(url) music_url = 'http://music.163.com/song/media/outer/url?id=' + music_id + '.mp3' browser.get(url=music_url) sleep(0.5) page_text = browser.execute_script("return document.documentElement.outerHTML") soup = bs4.BeautifulSoup(page_text, 'html.parser') music_source = soup.select("video source") # 下载歌曲 source_url = music_source[0].get('src') download_music(source_url, music_name, musice_singer) if __name__ == '__main__': main() browser.quit()
true
0ce70934824ce96706f4ee53b380db9666a8d459
Python
hkchengrex/so
/drawing_cross_51455622/main.py
UTF-8
1,754
3.03125
3
[]
no_license
import cv2 import matplotlib.pyplot as plt IMG_SIZE = 224 im = cv2.cvtColor(cv2.imread('lena.jpg'), cv2.COLOR_BGR2GRAY) im = cv2.resize(im, (IMG_SIZE, IMG_SIZE)) # Your detector results detected_region = [ [(10, 20) , (80, 100)], [(50, 0) , (220, 190)], [(100, 143) , (180, 200)], [(110, 45) , (180, 150)] ] # Global states x_scale = 1.0 y_scale = 1.0 x_shift = 0 y_shift = 0 x1, y1 = 0, 0 x2, y2 = IMG_SIZE-1, IMG_SIZE-1 i = 0 for region in detected_region: i += 1 # Detection x_scale = IMG_SIZE / (x2-x1) y_scale = IMG_SIZE / (y2-y1) x_shift = x1 y_shift = y1 cur_im = cv2.resize(im[y1:y2, x1:x2], (IMG_SIZE, IMG_SIZE)) # Assuming the detector return these results cv2.rectangle(cur_im, region[0], region[1], (255)) plt.imshow(cur_im) plt.savefig('%d.png'%i, dpi=200) plt.show() # Zooming in, using part of your code context_pixels = 16 x1 = max(region[0][0] - context_pixels, 0) / x_scale + x_shift y1 = max(region[0][1] - context_pixels, 0) / y_scale + y_shift x2 = min(region[1][0] + context_pixels, IMG_SIZE) / x_scale + x_shift y2 = min(region[1][1] + context_pixels, IMG_SIZE) / y_scale + y_shift x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # Assuming the detector confirm its choice here print('Confirmed detection: ', x1, y1, x2, y2) # This time no padding x1 = detected_region[-1][0][0] / x_scale + x_shift y1 = detected_region[-1][0][1] / y_scale + y_shift x2 = detected_region[-1][1][0] / x_scale + x_shift y2 = detected_region[-1][1][1] / y_scale + y_shift x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) cv2.rectangle(im, (x1, y1), (x2, y2), (255, 0, 0)) plt.imshow(im) plt.savefig('final.png', dpi=300) plt.show()
true
b32a1c6cb78d97704ef19e57ac7f352df2675aca
Python
deanmolinaro/EpicToolbox
/python/EpicToolbox/mkdirfile.py
UTF-8
258
2.75
3
[ "MIT" ]
permissive
import os def mkdirfile(outfile): outfolder,outextension=os.path.splitext(outfile) if outextension=='': os.makedirs(outfolder,exist_ok=True) else: outfolder,_=os.path.split(outfolder) os.makedirs(outfolder,exist_ok=True)
true
8c505fa9a95d9490a1d10c92e66c0f2c6a9eac37
Python
parkwisdom/Python-Study-step3
/day01/day01-01.py
UTF-8
407
3.21875
3
[]
no_license
#퀴즈 1. 1부터 100까지 3의 배수의 합계. #클래스 선언부 #함수 선언부 #변수 선언부 start,end,hap = [0]*3 #메인 코드부 if __name__=='__main__': for i in range(1,101,1): if i%3==0: hap +=i else: pass print(hap) # s=[] # for i in range(1,101): # if i%3==0: # a=+i # s.append(a) # print(sum(s))
true
d28cded78d668322935dd6ddc47c8a278addc115
Python
lilberick/Competitive-programming
/online-judge-solutions/Codeforces/1631A.py
UTF-8
375
3.15625
3
[]
no_license
#https://codeforces.com/problemset/problem/1631/A #Lang : Python 3.8 #Time : 46 ms #Memory : 0 KB for _ in range(int(input())): n=int(input()) a,b=list(map(int,input().split()))[:n],list(map(int,input().split()))[:n] a2,b2=list(range(n)),list(range(n)) for i in range(n): a2[i],b2[i]=max(a[i],b[i]),min(a[i],b[i]) print(max(a2)*max(b2))
true
d53610caeb4a37f8846daabd7d0cb91eed3f9775
Python
PiyushChaturvedii/My-Leetcode-Solutions-Python-
/Leetcode 5/Maximize Distance to Closest Person.py
UTF-8
559
3.265625
3
[]
no_license
class Solution: def maxDistToClosest(self, seats): """ :type seats: List[int] :rtype: int """ distance=1 i=0 n=len(seats) while i<n and seats[i]==0: i+=1 distance=max(distance,i) while i<n: j=i+1 while j<n and seats[j]==0: j+=1 if j<n: distance=max(distance,(j-i)//2) else: distance=max(distance,n-1-i) i=j return distance
true
493def4a2db9dfc2476d6690ca32a793fb3a0db1
Python
tlechien/PythonCrash
/Chapter 6/6.9.py
UTF-8
598
4.53125
5
[]
no_license
""" 6-9. Favorite Places: Make a dictionary called favorite_places. Think of three names to use as keys in the dictionary, and store one to three favorite places for each person. To make this exercise a bit more interesting, ask some friends to name a few of their favorite places. Loop through the dictionary, and print each person’s name and their favorite places. """ if __name__ == '__main__': favorite_places = { "Matthias": "Paris", "Albert": "Rio", "Eric": "Rome" } print(*map(lambda x: "\n{} likes {}".format(x, favorite_places[x]), favorite_places))
true
bfbfa5820c7500639a08ce08b79d6cf54fabaa3b
Python
Saranya-sharvi/saranya-training-prgm
/exc-pgm/subclass.py
UTF-8
278
3.546875
4
[]
no_license
"""Define a class named American and its subclass NewYorker""" #parent class creation class American(object): pass #subclass creation class NewYorker(American): pass anAmerican = American() aNewYorker = NewYorker() #print result print(anAmerican) print(aNewYorker)
true
8e11e3746e769e5becab109eec2993d0b7954923
Python
ljinwoo9633/Stock-Bot
/merge.py
UTF-8
545
2.78125
3
[]
no_license
import csv resultFile = open('./mergedStock.csv', 'w', encoding='euc-kr', newline='') fileOne = open('./mergedStock1.csv', 'r', encoding='euc-kr') fileTwo = open('./mergedStock2.csv', 'r', encoding='euc-kr') readerOne = csv.reader(fileOne) readerTwo = csv.reader(fileTwo) writer = csv.writer(resultFile) index = 0 for line in readerOne: if(index == 0): pass writer.writerow(line) index = 0 for line in readerTwo: if(index == 0): pass writer.writerow(line) fileOne.close() fileTwo.close() resultFile.close()
true
b0bada48bc0e69f19660dbbfa48503799782f0eb
Python
abheeshta97/college-project
/fib_encrypt_1.py
UTF-8
3,221
3.40625
3
[]
no_license
from tkinter import Tk, messagebox import creationANDopening as note #---INITIALIZATION OF LOWER AND UPPER ASCII LIMIT ASCII_MIN = 33 ASCII_MAX = 126 #---FUNCTION TO CONVERT LIST TO STRING--- def convertToString(s): #---INITIALIZATION OF STRING--- new = "" #---TRAVERSES THE STRING--- for x in s: new += x return new #---FUNCTION TO REVERSE STRING--- def reverse_string(s): """Return a reversed copy of `s`""" chars = list(s) for i in range(len(s) // 2): tmp = chars[i] chars[i] = chars[len(s) - i - 1] chars[len(s) - i - 1] = tmp return ''.join(chars) #---FUNCTION TO ENCRYPT MESSAGE FROM FILE--- def encrypt(inputMessage): try: file_1 = open(inputMessage, "r") fileMessage = file_1.read() file_1.close() reversedMessage=[] fileMessage=fileMessage.split() for i in fileMessage: reversedChar=reverse_string(i) reversedMessage.append(reversedChar) fileMessage=reversedMessage #print('\nThe reversed Message in list format=',fileMessage) message=fileMessage dataAppend=[] #IS DEFINED TO HOLD THE ENCRYPTED MESSAGE IN LIST TYPE for word in message: counter=True n1=0 n2=1 for letter in word: loopLetter = letter if counter==True: data_num = ord(loopLetter) for num in range(0, len(word)): #LOOP TO RUN N TIMES FOR EACH CHAR for i in range(0, n2): #LOOP TO INCREMENT THE POSITION if(data_num == ASCII_MAX): data_num = ASCII_MIN #CHECKS UPPER LIMIT else: data_num += 1 data = chr(data_num) temp = n1 n1 = n2 n2 = temp + n1 counter = False n1 = 0 n2 = 1 else: data_num = ord(loopLetter) for num in range(0, len(word)): # LOOP TO RUN for j in range(0, n2): # LOOP TO DECREMENT THE POSITION if (data_num == ASCII_MIN): data_num = ASCII_MAX # CHECKS LOWER LIMIT else: data_num -= 1 data = chr(data_num) temp = n1 n1 = n2 n2 = temp + n1 counter = True n1 = 0 n2 = 1 dataAppend += data dataAppend += " " #print(dataAppend) newMessage=convertToString(dataAppend) #ENCRYPTED LIST CONVERTED TO STRING return(newMessage) except: messagebox.showwarning("ERROR", ".txt FILE REQUIRED") def encrypted(encryptedmessage): encryptedData=encrypt(encryptedmessage) messagebox.showinfo("Information", "ENTER IN THE NAME FOR FILE TO ENCRYPT ") note.save_as(encryptedData)
true
c95ce89ff463342acdabedf185c79d4a5f46bc46
Python
acad2/crypto
/designs/other/math/printnumbers.py
UTF-8
1,058
3.4375
3
[]
no_license
# every N numbers has N as a factor # 1 2 3 4 5 6 7 8 9 # 2 4 6 8 # 3 3 3 # 5 5 # 7 from crypto.utilities import prime_generator def prime_generator(): filter = dict() prime = 2 filter[2] = 4 for number in itertools.count(3): if number not in filter: filter.appen def generate_primes_until(n): for prime in prime_generator(): if prime < n: yield prime else: raise StopIteration() def print_numbers_up_to(n=30): print(' '.join(str(item) for item in range(n))) for index, p in enumerate(generate_primes_until(n)): spacing = ' ' * len(' '.join(str(item) for item in range(p))) print(spacing.join(str(item) for item in range(0, n, p))) if __name__ == "__main__": import sys with open("numbers.txt", "w") as _file: _backup = sys.stdout sys.stdout = _file print_numbers_up_to(64) _file.flush() sys.stdout = _backup
true
bd27243d1395cf33d2e7538a9e653eefb60765fe
Python
bobqywei/curiosity-driven-exploration
/icm.py
UTF-8
2,289
2.546875
3
[]
no_license
import torch import torch.nn as nn from modules import FeatureEncoderNet class ICMAgent(nn.Module): def __init__(self, action_space_size, config, device): super(ICMAgent, self).__init__() features_size = 288 # same as ActorCritic self.device = device self.ac_size = action_space_size # feature network self.extract_feats = FeatureEncoderNet( buf_size=config['parallel_envs'], ch_in=config['state_frames'], conv_out_size=features_size, lstm_hidden_size=features_size, use_lstm=False) # original paper used 256 ''' Forward Model from paper f = tf.nn.relu(linear(f, size, "f1", normalized_columns_initializer(0.01))) f = linear(f, phi1.get_shape()[1].value, "flast", normalized_columns_initializer(0.01)) ''' self.forward_model = torch.nn.Sequential( nn.Linear(features_size+action_space_size, features_size), nn.ReLU(), nn.Linear(features_size, features_size)) ''' Inverse Model from paper g = tf.nn.relu(linear(g, size, "g1", normalized_columns_initializer(0.01))) logits = linear(g, ac_space, "glast", normalized_columns_initializer(0.01)) ''' self.inverse_model = torch.nn.Sequential( nn.Linear(features_size*2, features_size), nn.ReLU(), nn.Linear(features_size, action_space_size)) def forward(self, one_hot_action, curr_state, next_state): # output will be next predicted state & action, and intrinsic reward # get features from both states (phi st and phi st+1 from paper) curr_state_features = self.extract_feats(curr_state) next_state_features = self.extract_feats(next_state) # forward model next predicted state next_pred_state_features = self.forward_model(torch.cat([one_hot_action, curr_state_features], dim=1)) pred_action_logits = self.inverse_model(torch.cat([curr_state_features, next_state_features], dim=1)) with torch.no_grad(): reward = torch.sum((next_pred_state_features-next_state_features)**2, dim=1) return reward, next_pred_state_features, pred_action_logits, next_state_features
true
e8d47ef4cae1e15485df40de60d5257dd94b59a5
Python
e-south/CS506Spring2021Repository
/Police_Budget_Overtime_Project/code/count_event_clus_desc_records.py
UTF-8
2,623
2.9375
3
[]
no_license
""" count_event_clus_desc_records.py Counts/plots number of records in each file in /event_clus_desc """ import pandas as pd import matplotlib.pyplot as plt def plot_records(): # List of cluster descriptions desc = ['BAA_BOSTON_MARATHON', 'BFS_EVENT_ACTIVITY', 'BRIGHTON_DAY_PARADE', 'CARIBBEAN_CARNIVAL', 'CHINESE_NEW_YEAR', 'DYKE_MARCH', 'EVACUATION_DAY_PARAD', 'FIRST_NIGHT', 'GREEK_INDEP_DAY_PARA', 'HAITIAN_AMER_UNITY_P', 'HALLOWEEN_COVERAGE', 'INDEPENDENCE_DAY', 'MASS_MELNEA', 'NUISANCE_PATROL', 'STATE_OF_THE_CITY_AD', 'TD_GARDEN_EVENTS'] # List counting number of records in each cluster rec = [] rec.append(pd.read_csv('../data/event_clus_desc/BAA_BOSTON_MARATHON').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/BFS_EVENT_ACTIVITY').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/BRIGHTON_DAY_PARADE').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/CARIBBEAN_CARNIVAL').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/CHINESE_NEW_YEAR').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/DYKE_MARCH').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/EVACUATION_DAY_PARAD').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/FIRST_NIGHT').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/GREEK_INDEP_DAY_PARA').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/HAITIAN_AMER_UNITY_P').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/HALLOWEEN_COVERAGE').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/INDEPENDENCE_DAY').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/MASS_MELNEA').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/NUISANCE_PATROL').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/STATE_OF_THE_CITY_AD').shape[0]) rec.append(pd.read_csv('../data/event_clus_desc/TD_GARDEN_EVENTS').shape[0]) # Store lists in dictionary, sort d = dict(zip(desc, rec)) d_sort = {k: v for k, v in sorted(d.items(), key=lambda item: item[1])} fig, axes = plt.subplots(figsize=(17, 10)) # Plot results, save to file plt.barh(list(d_sort.keys()), list(d_sort.values())) for index, value in enumerate(d_sort.values()): plt.text(value, index, str(value)) plt.title('Number of Records in Each \'event_clus_desc\' Cluster') plt.ylabel('Cluster Name') plt.xlabel('# of Records') plt.savefig("../img/count_event_clus_desc_records.png", bbox_inches='tight') plt.show() plot_records()
true
ed6ab5823065d56f7dfd2db98a1cd1033fe1a769
Python
dvandra/fabric8-analytics-nvd-toolkit
/src/toolkit/transformers/hooks.py
UTF-8
2,377
3.484375
3
[ "Apache-2.0" ]
permissive
"""This module contains the Hook class to handle pipeline hooks.""" import weakref class Hook(object): """Convenient class for handling hooks. :param key: str, unique identifier of the hook :param func: function to be called by the hook The function can not modify any items fed by its arguments. :param default_kwargs: default `func` keyword argument values Example: def foo(x, verbose=False): if verbose: print('verbosity on') return x # init with default kwargs foo_hook = Hook('foo', foo, verbose=True) # and on the call foo_hook(x=None) # prints 'verbosity on' :param reuse: whether to reuse (share) the Hook """ __INSTANCES = weakref.WeakSet() def __init__(self, key: str, func, reuse=False, **default_kwargs): """Initialize hook.""" if key in Hook.get_current_keys(): if not reuse: raise ValueError("Hook with key `%s` already exists" % key) else: # TODO: share the existing hook instead of creating a new one pass # attr initialization self._key = str(key) self._func = func self._default_kwargs = default_kwargs # add the key to the class Hook.__INSTANCES.add(self) @property def key(self): """Get hook key.""" return self._key @property def default_kwargs(self): """Get hook default keyword arguments.""" return self._default_kwargs @default_kwargs.setter def default_kwargs(self, kwargs): self._default_kwargs = kwargs def __call__(self, *args, **kwargs): """Call the hooked function.""" return self._func(*args, **kwargs) @classmethod def get_current_hooks(cls) -> list: """Return instances of this class.""" return list(cls.__INSTANCES) @classmethod def get_current_keys(cls) -> set: """Return keys to the instances of this class.""" return set([hook.key for hook in cls.__INSTANCES]) @classmethod def clear_current_instances(cls): """Clean up the references held by the class. This function is not usually called by user, mainly used for tests where cleanup is needed. """ cls.__INSTANCES.clear()
true
1dd233b59745f489fabad83100e6461141c217a1
Python
Patergia/pwp-capstones
/TomeRater/TomeRater.py
UTF-8
5,960
3.28125
3
[]
no_license
class User(object): def __init__(self, name, email): self.name = name self.email = email self.books = {} def get_email(self): return self.email def change_email(self, address): self.email = address print(self.name + "'s email address has been updated") def __repr__(self): return "User " + self.name + " at " + self.email + " has read " + str(len(self.books)) + " books." def __eq__(self, other_user): if self.name == other_user.name and self.email == other_user.email: return True else: return False def read_book(self, book, rating=None): self.books[book] = rating def get_average_rating(self): total_ratings = 0 for book in self.books.keys(): total_ratings += self.books[book] try: average_ratings = total_ratings / len(self.books.keys()) return average_ratings except ZeroDivisionError: return 0 patergia = User("Patrick Wright", "patergia@yahoo.com") #records isbn's to help ensure no duplicates all_isbn = [] class Book(object): def __init__(self, title, isbn): self.title = title self.isbn = isbn self.ratings = [] def get_title(self): return self.title def get_isbn(self): return self.isbn def set_isbn(self, new_isbn): self.isbn = new_isbn print("the ISBN of " + self.title + " has been updated.") def add_rating(self, rating): if rating >= 0 and rating <= 4: self.ratings.append(rating) else: print("Invalid Rating") def __eq__(self, other_book): if self.title == other_book.title and self.isbn == other_book.isbn: return True else: return False def get_ratings(self): return self.ratings def get_average_rating(self): total_ratings = 0 for rating in self.ratings: total_ratings += rating return total_ratings / len(self.ratings) def __hash__(self): return hash((self.title, self.isbn)) first_book = Book("How to Train Your Dragon", 112358) class Fiction(Book): def __init__(self, title, author, isbn): super().__init__(title, isbn) self.author = author def get_author(self): return self.author def __repr__(self): return self.title + " by " + self.author class Non_Fiction(Book): def __init__(self , title , subject , level, isbn): super().__init__(title, isbn) self.subject = subject self.level = level def get_subject(self): return self.subject def get_level(self): return self.level def __repr__(self): return self.title + " , a " + self.level + " manual on " + self.subject class TomeRater(): def __init__(self): self.users = {} self.books = {} def create_book(self, title, new_isbn): all_isbn.sort() for old_isbn in all_isbn: if old_isbn == new_isbn: new_isbn = all_isbn[-1] + 1 break all_isbn.append(new_isbn) return Book(title, new_isbn) def create_novel(self, title, author, new_isbn): all_isbn.sort() for old_isbn in all_isbn: if old_isbn == new_isbn: new_isbn = all_isbn[-1] + 1 break all_isbn.append(new_isbn) return Fiction(title, author, new_isbn) def create_non_fiction(self, title, subject, level, new_isbn): all_isbn.sort() for old_isbn in all_isbn: if old_isbn == new_isbn: new_isbn = all_isbn[-1] + 1 break all_isbn.append(new_isbn) return Non_Fiction(title, subject, level, new_isbn) def add_book_to_user(self, book, email, rating=None): try: self.users[email].read_book(book, rating) book.add_rating(rating) if self.books.get(book) == None: self.books[book] = 1 else: self.books[book] += 1 except KeyError: print("No user with email " + email + "!") def add_user(self, name, email, user_books=None): if email in self.users.keys(): print("This user already exists!") else: new_user = User(name, email) if user_books != None: for user_book in user_books: self.add_book_to_user(user_book, new_user.get_email()) self.users[email] = new_user def print_catalog(self): for book in self.books.keys(): print(book) def print_users(self): for address in self.users: print(self.users[address]) def get_most_read_book(self): most_read_value = 0 most_read_key = None for book in self.books.keys(): if self.books[book] > most_read_value: most_read_value = self.books[book] most_read_key = book return most_read_key def highest_rated_book(self): highest_rating = 0 highest_rated_book = None for book in self.books.keys(): if book.get_average_rating() > highest_rating: highest_rating = book.get_average_rating() highest_rated_book = book return highest_rated_book def most_positive_user(self): highest_rating = 0 most_positive_user = None for email in self.users.keys(): if self.users[email].get_average_rating() > highest_rating: highest_rating = self.users[email].get_average_rating() most_positive_user = self.users[email] return most_positive_user
true
70589b89b7ae9910315be51ad1a8c31190a8c916
Python
nekapoor7/Python-and-Django
/PythonNEW/Function/UppercaseAndLowercase.py
UTF-8
383
3.84375
4
[]
no_license
"""Write a Python function that accepts a string and calculate the number of upper case letters and lower case letters. Go to the editor Sample String : 'The quick Brow Fox' Expected Output : No. of Upper case characters : 3 No. of Lower case Characters : 12""" import re t = input() upper = re.findall(r'[A-Z]',t) lower = re.findall(r'[a-z]',t) print(len(upper)) print(len(lower))
true
d0a9081808fccdee53da61feabdeb38cf45379f8
Python
rikard-helgegren/Big_Data_ST10
/plotting boundaries/Main.py
UTF-8
2,694
2.921875
3
[]
no_license
from read_CSV import read_CSV from split_data import split_data_list from misslabel_data import misslabel_data_list from convert_data import convert_data import copy import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline def plot_decision_boundary(clf, X, Y, cmap=plt.cm.RdYlBu): h = 0.02 x_min, x_max = X[:,0].min() - 10*h, X[:,0].max() + 10*h y_min, y_max = X[:,1].min() - 10*h, X[:,1].max() + 10*h xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure(figsize=(5,5)) plt.contourf(xx, yy, Z, cmap=cmap, alpha=0.25) plt.contour(xx, yy, Z, colors='k', linewidths=0.7) plt.scatter(X[:,0], X[:,1], c=Y, cmap=cmap, edgecolors='k'); def randome_forest_classifier_crossval(train, nr_trees=20, max_depth=2): folds = 5 # Separate labels from data data = [row[:-1] for row in train] labels = [row[-1] for row in train] clf = RandomForestClassifier(n_estimators=nr_trees, max_depth=max_depth, random_state=0) scores = cross_val_score(clf, data, labels, cv=folds) mean_score = sum(scores)/len(scores) return mean_score def randome_forest_classifier_plot(train, nr_trees=20, max_depth=2): #make list to np.array train = convert_data(train) # Separate labels from data data = train[:, :4] labels = train[:, -1] #define which parameters to plot data_to_plot = data[:, [2, 3]] clf = RandomForestClassifier(n_estimators=nr_trees, max_depth=max_depth, random_state=0) clf.fit(data_to_plot, labels) scores = clf.score(data_to_plot, labels) plot_decision_boundary(clf, data_to_plot, labels) plt.draw() return scores data = read_CSV('iris.csv') #remove param descriptions data = data[1:] [train, validation]= split_data_list(data, 0.2) # Need deep coppy in order not to change in list misslabel_data=misslabel_data_list(copy.deepcopy(train), 0.2) print("Score cross validation:", randome_forest_classifier_crossval(data)) print("Score cross validation misslabeled:", randome_forest_classifier_crossval(misslabel_data)) print("Score fit:", randome_forest_classifier_plot(data)) print("Score fit misslabeled:", randome_forest_classifier_plot(misslabel_data)) plt.show()
true
e490b3bc823929801543aca2d18ea26cdff6ffd0
Python
shangguanxiaoguan/Python-
/requestsdemo/17_pytest_fixture/test_pytest_fixture.py
UTF-8
291
2.609375
3
[]
no_license
import pytest @pytest.fixture def first_fix(): return ["a"] def test_case01(first_fix): first_fix.append("b") assert first_fix == ["a", "b"] print(first_fix) if __name__ == '__main__': pytest.main(["-s"]) # 以这种方式运行,文件名必须以test_开头
true
9b0d91806c3cff5f9682da3a9f3840b913743cb4
Python
Andrey-Raspopov/PyXelate
/pyxelate.py
UTF-8
562
2.640625
3
[]
no_license
import PIL.Image as Image from imageio import imwrite from Image import PyImage from Palettes import Palettes color_palette = Palettes['bw'] if __name__ == "__main__": img = PyImage('test.png', 400, Palettes['bw']) img.load() img.pyxelate() filename_parts = img.filename.rsplit('.', 1) filename_parts[0] += '_pixelated' filename = '.'.join(filename_parts) print("Saving as", filename) imwrite(filename, img.data) img1 = Image.open(filename) img1.thumbnail((img.num_cols, img.num_rows)) img1.save(filename, 'PNG')
true
deb4052645e7300fa1d7c26c3aeee44bdee050fa
Python
BanisharifM/Problems
/Quera/3429/solution.py
UTF-8
98
3.09375
3
[]
no_license
#Yakhdar chi T=int(input()) if T>100 : print("Steam") elif T<0 : print("Ice") else : print("Water")
true
e7d7f8a90a56f05219bc6c1fd2115ed7230618df
Python
dibovdmitry/laba5
/Hard.py
UTF-8
282
3.09375
3
[ "MIT" ]
permissive
#!/usr/bin/env python 3 # -*- coding: utf-8 -*- import sys if __name__ == '__main__': p1 = input('Напишите первое предложение 1 ').split() p2 = input('Напишите второе предложение 2 ') print(*(i for i in p1 if i in p2))
true
7cd99c4fb6cd24103cea76b0a98621e9e2b5f77b
Python
Silver-L/TFRecord_example
/read_record.py
UTF-8
1,125
2.65625
3
[]
no_license
import os import tensorflow as tf import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "-1" def main(): file_name = ['./tfrecord/recordfile_{}'.format(i+1) for i in range(60)] dataset = tf.data.TFRecordDataset(file_name) dataset = dataset.map(lambda x: _parse_function(x, image_size=[28, 28]), num_parallel_calls=os.cpu_count()) dataset = dataset.shuffle(buffer_size = 10000) dataset = dataset.repeat() dataset = dataset.batch(256) iterator = dataset.make_one_shot_iterator() X = iterator.get_next() with tf.Session() as sess: mnist = sess.run(X) plt.figure(figsize=(10, 10)) plt.imshow(mnist[1], origin="upper", cmap="gray") plt.show() # # load tfrecord function def _parse_function(record, image_size=[28, 28, 1]): keys_to_features = { 'img_raw': tf.FixedLenFeature(np.prod(image_size), tf.float32), } parsed_features = tf.parse_single_example(record, keys_to_features) image = parsed_features['img_raw'] image = tf.reshape(image, image_size) return image if __name__ == '__main__': main()
true
9becbfc9c013856e9c139e316f1784a54500ae87
Python
serkanishchi/zerosleap
/zerosleap/gui/composer.py
UTF-8
7,482
2.921875
3
[]
no_license
""" Manages video reading, video processing, track processing and compose raw frames with processed data. Acts as a provider for video player. This class is a content producer for video player. And generates frames with raw and processed data. """ from threading import Thread import time from queue import Queue import numpy as np from zerosleap.comp.processor import VideoProcessor from zerosleap.gui.metaframe import MetaFrame from zerosleap.video.raeder import VideoReader class VideoComposer: def __init__(self, path, buffer_size=256, chunk_size=32): """" Initialize video composer. Args: path: Video filename path. buffer_size: chunk_size: """ self.video_reader = VideoReader(path) # Asynchronously processing raw video frames with chunks. # If the process is not complete, not blocks update loop. # This is a consumer of video_reader object. # Chunk is necessary for improving processing speed # especially at GPU. self.video_processor = VideoProcessor(9999) # Buffer for raw video frames self._buffer = [] # Buffer for the processed frames # Keeps also peaks, tracks and heatmaps (optional) self._meta_frames = Queue(maxsize=buffer_size) self._run_flag = True self._reset_buffer_flag = False self._frame_index_changed =False # Request for heatmap self._heatmaps_flag = False self._chunk_size = chunk_size self._frame_index = 0 # intialize the thread with the update function # Update function is a non blocking control loop # Except file reading self.thread = Thread(target=self.update, args=()) self.thread.daemon = True def start(self): # start a thread to read frames from the file video stream self.thread.start() return self def update(self): """Generate extended frames with raw and processed data.""" # Controller loop while self._run_flag: # If frame index changed manually and _reset_buffer_flag is set # empty the _frames queue and _buffer if self._reset_buffer_flag: with self._meta_frames.mutex: self._meta_frames.queue.clear() self._buffer = [] self._reset_buffer_flag = False # Continue to grab images until the _frames queue is full if not self._meta_frames.full(): # Prevent unnecessary index changing frame_index = None if self._frame_index_changed: frame_index = self._frame_index self._frame_index_changed = False # read the next frame from the file (grabbed, frame) = self.video_reader.read(frame_index) # If the reader reaches end of the file and # the _frames queue is empty wait for another action if not grabbed and self._buffer == []: time.sleep(0.1) continue else: self._frame_index += 1 # If frame is grabed from video reader # Add frames to the buffer for processing with chunk if grabbed: self._buffer.append(frame[:, :, :1]) result = None # If size of the buffer bigger than the chunk size # or if we reached end of the file and the size of the # buffer bigger than 0, process the frames if len(self._buffer) >= self._chunk_size or \ (not grabbed and len(self._buffer) >= 0): # Try to get processed frames from processing server result = self.video_processor.recv() # Keeps raw frames as global for adding to _frames frames = [] # If the results ready from the processing server if result is not None: result_length = len(result["peaks"]) # Take the processed raw frames frames = self._buffer[:result_length] # Remove them from the buffer. self._buffer = self._buffer[result_length:] # Try to get a chunk from buffer chunk = None # If buffer size bigger than the chunk size # Take the chunk and send it to the video processor if len(self._buffer) >= self._chunk_size: self.video_processor.send(np.stack(self._buffer[:self._chunk_size], axis=0), peaks=True, heatmaps=self._heatmaps_flag) # If the buffer size lower than the chunk size and # we reached end of the file, take the rest elif len(self._buffer) > 0 and not grabbed: self.video_processor.send(np.stack(self._buffer[:], axis=0), peaks=True, heatmaps=self._heatmaps_flag) # If there is no frame in the _buffer just continue to # wait in the loop until somebody changed the _run_flag # or changed the _frame_index. else: time.sleep(0.1) continue if result is not None: # take peaks from the result peaks = result["peaks"] heatmaps = None if "heatmaps" in result: heatmaps = result["heatmaps"] # Create Frame object for each result and add to _frames queue for i in range(len(frames)): if heatmaps is not None: frame = MetaFrame(frame=frames[i], peaks=peaks[i], heatmap=heatmaps[i]) else: frame = MetaFrame(frame=frames[i], peaks=peaks[i]) self._meta_frames.put(frame) def read(self) -> MetaFrame: """Reads next frame in _frames queue""" return self._meta_frames.get() # Change the frame_index and reset all buffers with setting _reset_buffer flag def seek(self, frame_index: int): """ Changes active _frame_index Args: frame_index: target frame index number for seeking """ # Set _frame_index self._frame_index = frame_index # Set _frame_index_changed flag self._frame_index_changed = True # Set _rest_buffer_flag self._reset_buffer_flag = True def toggle_heatmap(self): """Toggle _heatmaps_flag""" self._heatmaps_flag = not self._heatmaps_flag def stop(self): # Set _run_flag as False to exit thread loop self._run_flag = False time.sleep(1) self.video_processor.stop()
true
583ffa23a18e2dd7ac957bcb462bbc0a7e2eba75
Python
kenesbekov/PPII2021SPRING
/tsis6/13.py
UTF-8
307
3
3
[]
no_license
def pascal_triangle(n): row = [1] y = [0] # for validate working zip [1, 1, 0] + [0, 1, 1] = [1, 2, 1] # (1, 0), (1, 1), (0, 1) l l l r r r l+r l+r l+r for _ in range(n): print(row) row = [l+r for l,r in zip(row+y, y+row)] pascal_triangle(int(input()))
true
92afd13ad2744f1153e0152ef56461d45979d5a8
Python
kdm604/TIL
/알고리즘문제/말이 되고픈 원숭이.py
UTF-8
1,384
2.984375
3
[]
no_license
import sys from collections import deque # K = 0 ~ 30 , W,H = 1 ~ 200 최대 200 X 200 판 dx = [0, 0, 1, -1] dy = [1, -1, 0, 0] hdx = [-2, -2, 2, 2, -1, 1, -1, 1] hdy = [-1, 1, -1, 1, -2, -2, 2, 2] def bfs(x, y, cnt, move): global ans Q = deque() Q.append((x, y, cnt, move)) while len(Q): x, y, cnt, move = Q.popleft() if x == H-1 and y == W-1: ans = move break for d in range(4): nx = x+dx[d] ny = y+dy[d] if 0 <= nx < H and 0 <= ny < W and nxm[nx][ny] != 1: if visited[cnt][nx][ny] == 0: visited[cnt][nx][ny] = 1 Q.append((nx, ny, cnt, move+1)) if cnt > 0: for d in range(8): nx = x + hdx[d] ny = y + hdy[d] if 0 <= nx < H and 0 <= ny < W and nxm[nx][ny] != 1: if visited[cnt-1][nx][ny] == 0: visited[cnt-1][nx][ny] = 1 Q.append((nx, ny, cnt-1, move+1)) K = int(input()) W, H = map(int, input().split()) nxm = [[0 for _ in range(W)]for _ in range(H)] visited = [[[0 for _ in range(W)]for _ in range(H)]for _ in range(K+1)] ans = 987654321 for z in range(H): nxm[z] = list(map(int, input().split())) bfs(0, 0, K, 0) if ans == 987654321: print(-1) else: print(ans)
true
16ba54df176ae8b1b5bda469584f6ea1ad15c4f4
Python
Junhyun-Nam-Olin/SoftDesSp15
/proj3/word_frequency.py
UTF-8
1,991
3.09375
3
[]
no_license
def process_text(filename): """Makes histogram of text""" d = dict() fp = open(filename, 'r') for line in fp: for word in line.split(): while not (word == '' or word[0].isalpha() or word[0].isdigit()): word = word[1:] while not (word == '' or word[-1].isalpha() or word[-1].isdigit()): word = word[0:-1] word = word.lower() if word != '': d[word] = d.get(word, 0) + 1 return d def inverse_dict(d): """Reverse keys and values of dictionary""" inverse = dict() for key in d: val = d[key] if val not in inverse: inverse[val] = [key] else: inverse[val].append(key) return inverse def subtract_common(freq, freq_word): """subtrace most common 100 words from inversed dictionary""" common_freq = ['the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at' 'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her', 'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if', 'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make', 'can', 'like', 'time', 'no', 'just', 'him', 'know', 'take', 'people', 'into', 'year', 'your', 'good', 'some', 'could', 'them', 'see', 'other', 'than', 'now', 'look', 'only', 'come', 'its', 'over', 'think', 'also', 'back', 'after', 'use', 'two', 'how', 'our', 'work', 'first', 'well', 'way', 'even', 'new', 'want', 'because', 'any', 'these', 'give', 'day', 'most', 'us', 'are', 'is', 'have', 'has', 'were', 'was', 'been', 'had'] top10_freq = [] for number in freq: if freq_word[number][0] not in common_freq: top10_freq.append(number) if len(top10_freq) == 10: break top10_freq.sort() top10_freq.reverse() return top10_freq stat = process_text('alice_in_wonderland.txt') freq_word = inverse_dict(stat) freq = freq_word.keys() freq.sort() freq.reverse() top10_freq = subtract_common(freq, freq_word) for number in top10_freq: print (freq_word[number][0], number)
true
c8100ca8e45a12602154fb9d1811b78f9d7f3457
Python
lyfree132/Relation_Extraction-1
/preprocess_ace/c_relation.py
UTF-8
5,863
2.703125
3
[]
no_license
#coding:utf-8 import numpy as np class Relation: # Definition a class to turn relation mention to embedding def __init__(self): self.mention = "" # content of mention self.mention_pos = [0, 0] # bias of mention self.arg1 = "" # content of arg1 self.arg1_pos = [0, 0] # bias of arg1 self.arg2 = "" # content of arg2 self.arg2_pos = [0, 0] # bias of arg2 self.out_form = np.zeros((50, 400), dtype="float32") # embedding combined word-embedding and position embedding self.type = "" # relation of this mention self.PF = {'1': [], '2': []} # position embedding for each word self.sub_type = "" self.spilt_form = [] # embedding combined with word-embedding and position embedding and # split into three parts for our CNN architecture def show(self): print(self.arg1, self.type, self.sub_type, self.arg2) print(self.mention) def mention_clean(self): # lower-casing the sentence and removing punctuation for i in range(0, len(self.mention)): self.mention[i] = self.mention[i].lower() for mark in [',', '.', '?']: self.mention[i] = self.mention[i].replace(mark, "") def combine(self, vector, v_dim, sen_dim, pf_r1, pf_r2, pf_dim, pf_size): ''' # Combine the word-embedding and position embedding # vector ==> word2vec matrix # v_dim ==> dimension of word in vector # sen_dim ==> max length of sentence # pf_r1, pf_r2 ==> random matrix used to represent position embedding # pf_size ==> row_vector of pf_1 and pf_2 ''' for i_t in range(0, len(self.mention)): if i_t < sen_dim and self.mention[i_t] in vector: self.out_form[i_t, 0:v_dim] = vector[self.mention[i_t]] self.out_form[i_t, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i_t] + pf_size/2)] self.out_form[i_t, v_dim+pf_dim:len(self.out_form[i_t])] = pf_r2[int(self.PF['2'][i_t] + pf_size/2)] elif i_t < sen_dim: self.out_form[i_t, 0:v_dim] = 0 self.out_form[i_t, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i_t] + pf_size/2)] self.out_form[i_t, v_dim+pf_dim:len(self.out_form[i_t])] = pf_r2[int(self.PF['2'][i_t] + pf_size/2)] elif i_t >= sen_dim: break else: self.out_form[i_t, 0:len(self.out_form[i_t])] = 0 def split(self, vector, v_dim, pf_r1, pf_r2, pf_dim, pf_size): ''' # Combine the word-embedding and position embedding # vector ==> word2vec matrix # v_dim ==> dimension of word in vector # sen_dim ==> max length of sentence # pf_r1, pf_r2 ==> random matrix used to represent position embedding # pf_size ==> row_vector of pf_1 and pf_2 ''' pos1 = min(self.arg1_pos[0], self.arg2_pos[0]) pos2 = max(self.arg1_pos[0], self.arg2_pos[0]) dim = 15 temp_mat = np.zeros((dim, v_dim+pf_dim*2), dtype="float32") for i in range(0, pos1): if dim-1-i < 0: break if pos1-i >= 0 and self.mention[pos1-i] in vector: temp_mat[dim-1-i, 0:v_dim] = vector[self.mention[pos1-i]] temp_mat[dim-1-i, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][pos1-i] + pf_size/2)] temp_mat[dim-1-i, v_dim+pf_dim:len(temp_mat[dim-1-i])] = pf_r2[int(self.PF['2'][pos1-i] + pf_size/2)] elif pos1-i >= 0: temp_mat[dim-1-i, 0:v_dim] = 0 temp_mat[dim-1-i, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][pos1-i] + pf_size/2)] temp_mat[dim-1-i, v_dim+pf_dim:len(temp_mat[dim-1-i])] = pf_r2[int(self.PF['2'][pos1-i] + pf_size/2)] else: temp_mat[dim-1-i, 0:len(temp_mat[dim-1-i])] = 0 self.spilt_form.append(temp_mat) dim = 15 temp_mat = np.zeros((dim, v_dim+pf_dim*2), dtype="float32") for i in range(pos1, pos2 + 1): if i-pos1 < dim and self.mention[i] in vector: temp_mat[i-pos1, 0:v_dim] = vector[self.mention[i]] temp_mat[i-pos1, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i] + pf_size/2)] temp_mat[i-pos1, v_dim+pf_dim:len(temp_mat[i-pos1])] = pf_r2[int(self.PF['2'][i] + pf_size/2)] elif i-pos1 < dim: temp_mat[i-pos1, 0:v_dim] = 0 temp_mat[i-pos1, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i] + pf_size/2)] temp_mat[i-pos1, v_dim+pf_dim:len(temp_mat[i-pos1])] = pf_r2[int(self.PF['2'][i] + pf_size/2)] elif i-pos1 >= dim: break else: temp_mat[i-pos1, 0:len(temp_mat[i-pos1])] = 0 self.spilt_form.append(temp_mat) dim = 20 temp_mat = np.zeros((dim, v_dim+pf_dim*2), dtype="float32") for i in range(pos2 + 1, len(self.mention)): if i-pos2-1 < dim and self.mention[i] in vector: temp_mat[i-pos2-1, 0:v_dim] = vector[self.mention[i]] temp_mat[i-pos2-1, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i] + pf_size/2)] temp_mat[i-pos2-1, v_dim+pf_dim:len(temp_mat[i-pos2-1])] = pf_r2[int(self.PF['2'][i] + pf_size/2)] elif i-pos2-1 < dim: temp_mat[i-pos2-1, 0:v_dim] = 0 temp_mat[i-pos2-1, v_dim:v_dim+pf_dim] = pf_r1[int(self.PF['1'][i] + pf_size/2)] temp_mat[i-pos2-1, v_dim+pf_dim:len(temp_mat[i-pos2-1])] = pf_r2[int(self.PF['2'][i] + pf_size/2)] elif i-pos2-1 >= dim: break else: temp_mat[i-pos2-1, 0:len(temp_mat[i-pos2-1])] = 0 self.spilt_form.append(temp_mat)
true
80295d537df8a4358cd98c96e6d441f11d24f61f
Python
nandakoryaaa/pypy
/app/models/usertable.py
UTF-8
823
2.921875
3
[ "CC0-1.0" ]
permissive
from app.models.userdata import UserData class UserTable: COUNT = 10 def __init__(self, file = None): self.table = [None] * self.COUNT self.file = file for i in range(self.COUNT): self.table[i] = UserData() if file is not None: self.read() def read(self): fp = open(self.file, 'r') lines = fp.readlines() line_count = len(lines) for i in range(self.COUNT): if i == line_count: break user_data = self.table[i] user_data.from_string(lines[i]) fp.close() def write(self): fp = open(self.file, 'w') for i in range(self.COUNT): s = self.table[i].to_string() fp.write(s) fp.write("\n") fp.close() def sort(self): self.table.sort(key = lambda x: x.score, reverse = True)
true
5cf4eaf8ce8d5a1bb8f0ce325a88bd11a124e743
Python
nikhilsopori/Speech-To-Text
/Python/Speech Recognition.py
UTF-8
662
2.9375
3
[]
no_license
#Installing of the Python Package #**Note that the SpeechRecoginition will only work for Python (2,2.7,3,3.3,3.4,3.5,3.6) !pip install SpeechRecognition !pip install librosa !pip install soundfile #Import Speech Recognition Package import speech_recognition as sr import librosa import soundfile as sf import wave r = sr.Recognizer() #Librosa is Used for Converting MP3 file into wav or any audio type x,_= librosa.load('BANNERS - Start A Riot.mp3',sr=16000) sf.write('temp.wav',x,16000) audio = sr.AudioFile("temp.wav") print("......... Running ") with audio as text: text1 = r.record(text,offset=10,duration=400) print(r.recognize_google(text1))
true
d32a770ed3303fc423256a17d5e1041bb6f265da
Python
ytsmm/mybot
/tokenizer.py
UTF-8
194
3.03125
3
[]
no_license
import nltk # Разбиение на предложения и слова def tokenizer(raw): raw = raw.lower() word_tokens = nltk.word_tokenize(raw) return word_tokens
true
83e980a39c54fb2fb2d88457c7c21dff67ca43ff
Python
alanboaventura/trabalho2-ia
/caixeiroviajante/funcaoAptidao.py
UTF-8
1,424
3.359375
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy def apt_func(populacao, distanciacidades, n_rotas): # Gera a matriz 20x21 da população onde a última coluna é a cópia da primeira coluna. # A última coluna é igual a primeira pois o caixeiro viajante precisa retornar a cidade original. tour = numpy.c_[populacao, populacao[:, 0]] # Cria uma matrix 20x2 para receber a aptidão de cada cromossomo. # A primeira coluna corresponde ao índice do cromossomo na matriz de população. # A segunda coluna representa o valor de aptidão v_aptidao = numpy.zeros((20, 2), dtype=numpy.float) # Percorre o total de rotas existentes no algoritmo. Neste exemplo, cada rota representa um membro da população. for i in range(0, n_rotas): v_aptidao[i, 0] = i v_aptidao[i, 1] = 0 # Para cada cidade calcula a v_aptidaoância entre ela e a próxima cidade. for j in range(0, n_rotas): v_aptidao[i, 1] += distanciacidades[int(tour[i, j]), int(tour[i, j + 1])] # Loop para converter os índices do vetor de aptidão em inteiros. for i in range(0, n_rotas): v_aptidao[i, 0] = int(v_aptidao[i, 0]) # Utiliza a função sorted para ordenar a matriz pela segunda coluna, correspondente ao valor de aptidão. v_aptidao = sorted(v_aptidao, key=lambda x: x[1]) v_aptidao = numpy.array(v_aptidao) return v_aptidao
true
9cdde04b021695620bbbf8627c50b82a8fe412da
Python
ro13hit/Competitive
/alienpiano.py
UTF-8
551
3.0625
3
[]
no_license
def main(): n= int(input()) a = list(map(int,input().split())) b,c,cnt = 0,0,0 for i in range(n): if a[i]>a[i-1]: b+=1 c=0 if b == 4: b =0 cnt+=1 elif a[i]<a[i-1]: c+=1 b=0 if c ==4: c = 0 cnt+=1 return cnt try: for test in range(1,int(input())+1): print("Case #{}: {}".format(test,main())) except: pass
true
8818af93a371466c16b73a575ad14dd96e7dee9a
Python
xiaoheizai/python_for_leetcode
/腾讯top50/89 格雷编码.py
UTF-8
1,324
3.640625
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Apr 13、4 @author: xiaoheizai """ ''' 格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。 给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。 示例 1: 输入: 2 输出: [0,1,3,2] 解释: 00 - 0 01 - 1 11 - 3 10 - 2 对于给定的 n,其格雷编码序列并不唯一。 例如,[0,2,3,1] 也是一个有效的格雷编码序列。 00 - 0 10 - 2 11 - 3 01 - 1 示例 2: 输入: 0 输出: [0] 解释: 我们定义格雷编码序列必须以 0 开头。   给定编码总位数为 n 的格雷编码序列,其长度为 2n。当 n = 0 时,长度为 20 = 1。   因此,当 n = 0 时,其格雷编码序列为 [0]。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/gray-code 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 ''' class Solution(object): def grayCode(self, n): """ :type n: int :rtype: List[int] """ res = [0] head = 1 for i in range(n): for j in range(len(res)-1, -1, -1): res.append(res[j] + head) head <<= 1 return res
true
855271ed376161d286ef28c15247ff8609648f56
Python
Qsingle/MedicalImage
/datasets.py
UTF-8
8,327
2.515625
3
[ "MIT" ]
permissive
#-*- coding:utf8 -*- #!/usr/bin/env python ''' @Author:qiuzhongxi @Filename:datasets.py @Date:2020/3/7 @Software:PyCharm Some Dataset Class for this project ''' from torch.utils.data import Dataset import torch import cv2 from PIL import Image import numpy as np import os from matplotlib import pyplot as plt from albumentations import Compose from albumentations import HorizontalFlip,VerticalFlip,RandomGamma,RandomBrightnessContrast,PadIfNeeded,ShiftScaleRotate from albumentations import Normalize class FolderDataset(Dataset): def __init__(self, data_dir, transform=None): super(FolderDataset, self).__init__() assert os.path.exists(data_dir), "The directory {} not exists".format(data_dir) self.paths, self.ids = self.get_paths(data_dir) self.transform = transform def process(self, img, img_size=224): img = img.resize((img_size, img_size)) img = np.asarray(img) if img.ndim > 2: img = np.transpose(img, [2, 1, 0]) return img def __getitem__(self, index): path = self.paths[index] label = self.ids[index] img = Image.open(path) img = img.convert("RGB") if self.transform is not None: img = self.transform(img) return img, label img = self.process(img) return img, label def __len__(self): return len(self.paths) def show_batch(self, rows=5, cols=None): if cols is None: cols = rows total = 5 * 5 font_dict = {'fontsize': 7, 'fontweight': 2, 'verticalalignment': 'baseline', 'horizontalalignment': "center"} plt.figure(dpi=224) for i in range(total): random = np.random.randint(0, self.__len__()) plt.subplot(rows, cols, i + 1) plt.title(self.classes[self.ids[random]], fontdict=font_dict, pad=1.2) img = Image.open(self.paths[random]) img = img.resize((96, 96)) img = np.asarray(img) if img.ndim <= 2: plt.imshow(img, cmap="gray") else: plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.show() def statistic(self): counters = [] for unique in np.unique(self.ids): counters.append(np.sum(unique == self.ids)) plt.figure(dpi=224) plt.bar(range(len(counters)), counters) #plt.show() plt.savefig("out.png") def get_paths(self, data_dir): paths = [] ids = [] class_dict = dict() classes = [] cl = 0 for home, dirs, _ in os.walk(data_dir): for dir in dirs: if dir not in class_dict: classes.append(dir) class_dict[dir] = cl cl += 1 img_dir = os.listdir(os.path.join(home, dir)) for path in img_dir: if path.endswith("jpg") or path.endswith("png") or path.endswith("jpeg"): paths.append(os.path.join(home, dir, path)) id = class_dict[dir] ids.append(id) self.class_dict = class_dict self.classes = classes return paths, ids class SegPathsDataset(Dataset): def __init__(self, image_paths, label_paths, augmentation=True,img_size=256): super(SegPathsDataset,self).__init__() assert len(image_paths) == len(label_paths), "The length is not equal, len(image_paths)/len(label_paths)={}/" \ "{}".format(len(image_paths), len(label_paths)) self.image_paths = image_paths self.label_paths = label_paths self.augmentation = augmentation self.length = len(image_paths) self.img_size = img_size def __len__(self): return self.length def __getitem__(self, index): img_path = self.image_paths[index] mask_path = self.label_paths[index] if img_path.endswith(".npy"): img = np.load(img_path) else: img = cv2.imread(img_path) if mask_path.endswith(".npy"): mask = np.load(mask_path) else: mask = cv2.imread(mask_path, 0) if self.augmentation: task = [ HorizontalFlip(p=0.5), VerticalFlip(p=0.5), RandomGamma(), RandomBrightnessContrast(p=0.5), PadIfNeeded(self.img_size,self.img_size), ShiftScaleRotate(scale_limit=0.5, p=0.5), #Normalize(mean=[0.210, 0.210, 0.210], std=[0.196, 0.196, 0.196], always_apply=True) ] aug = Compose(task) aug_data = aug(image=img, mask=mask) img, mask = aug_data["image"], aug_data["mask"] img = self._normalize(img) img = cv2.resize(img,(self.img_size,self.img_size)) mask = cv2.resize(mask,(self.img_size,self.img_size)) mask = mask // 255.0 if img.ndim < 3: img = np.expand_dims(img, 0) else: img = np.transpose(img, axes=[2, 0, 1]) return torch.from_numpy(img), torch.from_numpy(mask) def _normalize(self, img): normal_img = np.clip(img, 0, 255) maxval = np.max(img) minval = np.min(img) normal_img = (img - minval) / max( maxval- minval, 1e-3) return normal_img class PathsDataset(Dataset): def __init__(self, paths:list, data_dir, classes_dict=None, ids=None,augumentation=False,img_size=224,transform=None,suffix=".png"): super(PathsDataset, self).__init__() self.filename = paths self.data_dir = data_dir self.ids = ids self.transform = transform self.length = len(self.filename) self.classes_dict = classes_dict self.augumentation = augumentation self.img_size = img_size if suffix.startswith("."): self.suffix = suffix else: self.suffix = ".{}".format(suffix) def show_batch(self, rows=5, cols=None): if cols is None: cols = rows font_dict = {'fontsize': 7, 'fontweight': 2, 'verticalalignment': 'baseline', 'horizontalalignment': "center"} plt.figure(dpi=224) for i in range(cols*rows): random = np.random.randint(0, self.length-1) path = os.path.join(self.data_dir, self.filename[random]+self.suffix) img = Image.open(path) img = np.asarray(img) plt.subplot(cols, rows, i+1) text = self.classes_dict[self.ids[random]] plt.title(text, font_dict, pad=1.2) if img.ndim <= 2: plt.imshow(img,cmap="gray") else: plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.show() def __getitem__(self, index): path = os.path.join(self.data_dir, self.filename[index]+self.suffix) label = None if self.ids is None else self.ids[index] img = Image.open(path) img = img.convert("RGB") if self.transform is not None: img = self.transform(img) else: if self.augumentation: img = np.asarray(img) task = [ HorizontalFlip(p=0.5), VerticalFlip(p=0.5), RandomGamma(), RandomBrightnessContrast(p=0.5), PadIfNeeded(self.img_size,self.img_size), ShiftScaleRotate(scale_limit=0.5, p=0.5) ] aug = Compose(task) aug_data = aug(image=img) img = aug_data["image"] #img = cv2.resize(img,(self.img_size,self.img_size)) img = Image.fromarray(img) img = self.transform(img) if label is not None: return img,label else: return img def __len__(self): return self.length if __name__ == "__main__": dataset = FolderDataset("../../data/256_ObjectCategories/") dataset.show_batch()
true
525b209c4d2485771d3a2e028db74761d73068f8
Python
RyanArnasonML/stock-analysis
/stock_analysis/candles.py
UTF-8
3,004
3.40625
3
[ "MIT" ]
permissive
import matplotlib.pyplot as plt import numpy as np import pandas as pd """This cell defineds the plot_candles function""" def plot_candles(pricing, title=None, volume_bars=False, color_function=None, technicals=None): """ Plots a candlestick chart using quantopian pricing data. Author: Daniel Treiman Args: pricing: A pandas dataframe with columns ['open_price', 'close_price', 'high', 'low', 'volume'] title: An optional title for the chart volume_bars: If True, plots volume bars color_function: A function which, given a row index and price series, returns a candle color. technicals: A list of additional data series to add to the chart. Must be the same length as pricing. """ def default_color(index, open_price, close_price, low, high): return 'r' if open_price[index] > close_price[index] else 'g' color_function = color_function or default_color technicals = technicals or [] open_price = pricing['open_price'] close_price = pricing['close_price'] low = pricing['low'] high = pricing['high'] oc_min = pd.concat([open_price, close_price], axis=1).min(axis=1) oc_max = pd.concat([open_price, close_price], axis=1).max(axis=1) if volume_bars: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3,1]},figsize=(7,7)) else: fig, ax1 = plt.subplots(1, 1) if title: ax1.set_title(title) fig.tight_layout() x = np.arange(len(pricing)) candle_colors = [color_function(i, open_price, close_price, low, high) for i in x] candles = ax1.bar(x, oc_max-oc_min, bottom=oc_min, color=candle_colors, linewidth=0) lines = ax1.vlines(x , low, high, color=candle_colors, linewidth=1) ax1.xaxis.grid(True) ax1.yaxis.grid(True) ax1.xaxis.set_tick_params(which='major', length=3.0, direction='in', top='off') ax1.set_yticklabels([]) # Assume minute frequency if first two bars are in the same day. frequency = 'minute' if (pricing.index[1] - pricing.index[0]).days == 0 else 'day' time_format = '%d-%m-%Y' if frequency == 'minute': time_format = '%H:%M' # Set X axis tick labels. #plt.xticks(x, [date.strftime(time_format) for date in pricing.index], rotation='vertical') for indicator in technicals: ax1.plot(x, indicator) if volume_bars: volume = pricing['volume'] volume_scale = None scaled_volume = volume if volume.max() > 1000000: volume_scale = 'M' scaled_volume = volume / 1000000 elif volume.max() > 1000: volume_scale = 'K' scaled_volume = volume / 1000 ax2.bar(x, scaled_volume, color=candle_colors) volume_title = 'Volume' if volume_scale: volume_title = 'Volume (%s)' % volume_scale #ax2.set_title(volume_title) ax2.xaxis.grid(True) ax2.set_yticklabels([]) ax2.set_xticklabels([]) return fig
true
acd7ce4fe5cc43a928bce0fd3154ded1c6b4990a
Python
HukLab/3d-integ-analysis
/bin/mle.py
UTF-8
8,422
2.828125
3
[]
no_license
import logging import itertools import numpy as np from scipy.optimize import minimize logging.basicConfig(level=logging.DEBUG) APPROX_ZERO = 0.0001 add_dicts = lambda a, b: dict(a.items() + b.items()) make_dict = lambda key_order, thetas: dict(zip(key_order, thetas)) def theta_to_dict(thetas, theta_key_order, theta): thetas_lookup = make_dict(theta_key_order, thetas) thetas_preset = dict((key, val) for key, val in thetas_lookup.iteritems() if val is not None) keys_left = [key for key in theta_key_order if thetas_lookup[key] is None] return add_dicts(thetas_preset, make_dict(keys_left, theta)) def generic_fit(fcn, theta_key_order, thetas_to_fit, theta_defaults, quick, ts, bins, coh, guesses=None): """ theta_key_order is e.g. ['A', 'B', 'T'] thetas_to_fit is e.g. {'A': True, 'B': False, 'T': True} theta_defaults is e.g. {'A': 1.0, 'B': 0.5, 'T': 100.0} """ fit_found = True thetas = [None if thetas_to_fit[t] else theta_defaults[t] for t in theta_key_order] ths = fcn(ts, thetas, quick=quick, guesses=guesses) if ths: th = pick_best_theta(ths) else: msg = 'No fits found. Using {0}'.format(theta_defaults) logging.warning(msg) fit_found = False th = [theta_defaults[t] for t in theta_key_order if thetas_to_fit[t]] msg = '{0}% {2}: {1}'.format(int(coh*100), th, '[current fit]') # logging.info(msg) return theta_to_dict(thetas, theta_key_order, th), th, fit_found def make_guesses(thetas, theta_key_order, guesses_lookup): thetas_lookup = make_dict(theta_key_order, thetas) guesses = [] for key in theta_key_order: if thetas_lookup[key] is None: guesses.append(guesses_lookup[key]) return list(itertools.product(*guesses)) # cartesian product def make_bounds(thetas, theta_key_order, bounds_lookup): return [bounds_lookup[key] for key, val in zip(theta_key_order, thetas) if val is None] def log_likelihood(arr, fcn, thetas): """ arr is array of [[x0, y0], [x1, y1], ...] where each yi in {0, 1} fcn if function, and will be applied to each xi thetas is tuple, a set of parameters passed to fcn along with each xi calculates the sum of the log-likelihood of arr = sum_i fcn(xi, *thetas)^(yi) * (1 - fcn(xi, *thetas))^(1-yi) """ if type(thetas) is dict: fcn_x = lambda x: fcn(x, **thetas) elif type(thetas) is list or type(thetas) is tuple: fcn_x = lambda x: fcn(x, *thetas) likelihood = lambda row: fcn_x(row[0]) if row[1] else 1-fcn_x(row[0]) log_likeli = lambda row: np.log(likelihood(row)) val = sum(map(log_likeli, arr)) return val def pick_best_theta(thetas): close_enough = lambda x,y: abs(x-y) < APPROX_ZERO min_th = min(thetas, key=lambda d: d['fun']) if len(thetas) > 1: ths = [th for th in thetas if close_enough(th['fun'], min_th['fun'])] msg = '{0} out of {1} guesses found minima of {2}'.format(len(ths), len(thetas), min_th['fun']) # logging.info(msg) return min_th['x'] def keep_solution(theta, bnds, ymin): """ theta is return value of scipy.optimize.minimize, where theta['x'] is list [t1, ...] of solution values bnds is list [(lb1, rb1), ...] of bounds for each ti in theta['x'] ymin is previously-found minimum solution returns True iff theta is a success, lower than ymin, and has solutions not near its bounds """ if not theta['success']: return False if theta['fun'] >= ymin: return False close_enough = lambda x, b: abs(x-b) < APPROX_ZERO*10 at_left_bound = lambda x, lb: close_enough(x, lb) if lb else False at_right_bound = lambda x, rb: close_enough(x, rb) if rb else False at_bounds = lambda x, (lb, rb): at_left_bound(x, lb) or at_right_bound(x, rb) return not any([at_bounds(th, bnd) for th, bnd in zip(theta['x'], bnds)]) def mle(data, log_likelihood_fcn, guesses, bounds=None, constraints=None, quick=False, method='TNC', opts=None): """ data is list [(dur, resp)] dur is float resp is bool quick is bool chooses the first solution not touching the bounds method is str bounds only for: L-BFGS-B, TNC, SLSQP constraints only for: COBYLA, SLSQP NOTE: SLSQP tends to give a lot of run-time errors... """ if len(data) == 0 or len(guesses) == 0: return [] if bounds is None: bounds = [] if constraints is None: constraints = [] if opts is None: opts = {} thetas = [] poor_thetas = [] ymin = float('inf') ymin_poor = float('inf') for guess in guesses: theta = minimize(log_likelihood_fcn, guess, method=method, bounds=bounds, constraints=constraints, options=opts) if keep_solution(theta, bounds, ymin): ymin = theta['fun'] thetas.append(theta) if quick: # logging.info(theta) return thetas msg = '{0}, {1}'.format(theta['x'], theta['fun']) # logging.info(msg) elif theta['success'] and theta['fun'] < ymin_poor: ymin_poor = theta['fun'] poor_thetas.append(theta) elif not theta['success']: pass # logging.warning('Not successful: ' + str(theta)) if len(thetas) == 0: # logging.warning('Using theta against bounds.') return poor_thetas return thetas def log_likelihood_factory(data, fcn, thetas, theta_key_order): """ I am so sorry. This whole function makes me sad. The bottom portion is what I wanted, but it is inefficient. Thus the shit below. """ presets = [x is not None for x in thetas] if len(presets) == 3: if presets == [1,0,0]: return lambda t: -log_likelihood(data, fcn, (thetas[0], t[0], t[1])) elif presets == [0,1,0]: return lambda t: -log_likelihood(data, fcn, (t[0], thetas[1], t[1])) elif presets == [0,0,1]: return lambda t: -log_likelihood(data, fcn, (t[0], t[1], thetas[2])) elif presets == [1,1,0]: return lambda t: -log_likelihood(data, fcn, (thetas[0], thetas[1], t[0])) elif presets == [1,0,1]: return lambda t: -log_likelihood(data, fcn, (thetas[0], t[0], thetas[2])) elif presets == [0,1,1]: return lambda t: -log_likelihood(data, fcn, (t[0], thetas[1], thetas[2])) elif presets == [0,0,0]: return lambda t: -log_likelihood(data, fcn, (t[0], t[1], t[2])) else: raise Exception("MLE ERROR: Internal.") elif len(presets) == 2: if presets == [1,0]: return lambda t: -log_likelihood(data, fcn, (thetas[0], t[0])) elif presets == [0,1]: return lambda t: -log_likelihood(data, fcn, (t[0], thetas[1])) elif presets == [0,0]: return lambda t: -log_likelihood(data, fcn, (t[0], t[1])) else: raise Exception("MLE ERROR: Internal.") # [1,0] or [1,1] or [0,0] elif len(presets) == 1: if presets == [1]: return lambda t: -log_likelihood(data, fcn, (thetas[0],)) elif presets == [0]: return lambda t: -log_likelihood(data, fcn, (t[0],)) else: raise Exception("MLE ERROR: Internal.") else: raise Exception("MLE ERROR: Too many parameters in fitting method.") """ This next part is much shorter than the above, but...it's slower. The lambda function has to make all those dicts on each evaluation! """ thetas_lookup = make_dict(theta_key_order, thetas) thetas_preset = dict((key, val) for key, val in thetas_lookup.iteritems() if val is not None) keys_left = [key for key in theta_key_order if thetas_lookup[key] is None] return lambda theta: -log_likelihood(data, fcn, add_dicts(thetas_preset, make_dict(keys_left, theta))) def fit_mle(data, inner_likelihood_fcn, thetas, theta_key_order, guesses_lookup, bounds_lookup, constraints, quick=False, guesses=None, method='SLSQP'): if guesses is None: guesses = make_guesses(thetas, theta_key_order, guesses_lookup) bounds = make_bounds(thetas, theta_key_order, bounds_lookup) return mle(data, log_likelihood_factory(data, inner_likelihood_fcn, thetas, theta_key_order), guesses, bounds, constraints, quick, method)
true
9994101c97c30cc222aed6aff7bec89e0e49fde2
Python
piushvaish/pythonProgrammingExcercises
/List/List.py
UTF-8
1,695
3.796875
4
[]
no_license
# ipAddress = input('please enter an ip address : ') # print(ipAddress.count('.')) # parrotList = [' non pinin',' no more',' a stiff',' bereft of live'] # # parrotList.append('Norwegian blue') # for state in parrotList: # print('The parrot is ' + state) # even = [2,4,6,8] # odd = [1,3,5,7,9] # # numbers = even + odd # #numbers.sort() # print("The numbers are {}".format(sorted(numbers))) # list1 =[] # list2 = list() # # print("List 1: {}".format(list1)) # # print("List 2: {}".format(list2)) # # if list1 == list2: # print("the lists are equal") # # print(list("the lists are equal")) # even = [2,4,6,8] # # anotherEven = list(even) # # print(anotherEven is even) # anotherEven.sort(reverse=True) # print(even) # even = [2,4,6,8] # odd = [1,3,5,7] # # numbers = [even , odd] # # for numberSet in numbers: # print(numberSet) # # for value in numberSet: # print(value) # menu = [] # menu.append(['egg','spam','bacon']) # menu.append(['egg','sausage','bacon']) # menu.append(['egg','spam']) # menu.append(['egg','bacon','spam']) # menu.append(['egg','bacon','sausage','spam']) # menu.append(['spam','bacon','sausage','spam']) # menu.append(['spa,','egg','spam','spam','bacon','spam']) # menu.append(['spam','egg','sausgae','spam']) #print(menu) # for meal in menu: # if not 'spam' in meal: # print(meal) # # for ing in meal: # print(ing) list1 = [1,2,3,4,5,6,7,8,9,10] listIterator = iter(list1) for eachNumber in range(0,len(list1)): print(next(listIterator)) # for char in string: # print(char) #my_iterator = iter(string) #print(my_iterator)# shows the object and the place in memory #print(next(my_iterator))
true
4126e0004f24474d851b694b6acb08d19c2221f1
Python
santoshghimire/typeform
/postapi/typeform.py
UTF-8
8,056
2.6875
3
[]
no_license
#!/usr/bin/env python2 import json import sys import urllib import pprint from sheets_typeform import Sheets TYPEFORM_JSON_API = 'https://api.typeform.com/v1/form/njxhSJ?key=cd3c5967bd6331d8fdbe134f81cc9accfdeecfc4' def tf_load_data(json_file_path=None, answers_json=None): ''' Row structure: B. # C. Email D. Date of birth E. Expected age of retirement F. Pension Provider // groups start G. Investment name H. Investment value I. Value date J. Annual fee on pension K. Would you like to add additional...? // group end x 5 AF. Do you have additional pensions you wish to include in the projection? AG. Pension provider // second groups AH. Investment name AI. Investment value AJ. Value date AK. Annual fee on pension AL. Would you like to add additional...? // second groups end x 5 BG. Pension fund you intend to contribute to over this time period BH. Amount you intend to contrivute to over this time period BI. Date you intend those contributions to start BJ. Annual fee on pension BK. Include my basic rate tax relief in the contribution projections BL. Please click the tick box to agree to our terms and conditions BM. Start Date (UTC) BN. Submit Date (UTC) BO. Network ID ''' def get_group_col_pos(question): if 'Investment name' in question: return 0 elif 'Investment value' in question: return 1 elif 'Value date' in question: return 2 elif 'Annual fee' in question: return 3 elif 'Would you like to' in question: return 4 else: return -1 def get_end_pos(question): if 'Pension fund you intend' in question: return 0 elif 'Amount you intend to' in question: return 1 elif 'Date you intend' in question: return 2 elif 'Annual fee on pension' in question: return 3 elif 'Include my basic rate' in question: return 4 else: return -1 if json_file_path: with open(json_file_path, 'r') as json_file: answers_json = json.load(json_file) typeform_json = get_typeform_data() answers = dict( (int(answer['field']['id']), answer) for answer in answers_json['form_response']['answers'] ) field_titles = dict( (question['field_id'], question['question']) for question in typeform_json['questions'] ) labeled_answers = dict() for question in typeform_json['questions']: t = dict() t['id'] = question['field_id'] t['other_id'] = question['id'] t['question'] = field_titles[question['field_id']] t['group'] = 0 if 'group' not in question.keys() else question['group'] if t['id'] in answers.keys(): answer = answers[t['id']] datatype = answer['type'] if datatype in ['text', 'number', 'email']: t['value'] = answer[datatype] elif datatype == 'boolean': t['value'] = int(answer[datatype]) elif datatype == 'choice': t['value'] = answer['choice']['label'] elif datatype == 'date': t['value'] = answer['text'].split('T')[0] else: t['value'] = '' labeled_answers[t['id']] = t pension_providers = sorted([ question for question in labeled_answers.values() if 'Pension' in question['question'] and 'textfield_' in question['other_id'] ], key=lambda x: x['id']) # constructing the rows: groups = sorted([ sorted([question for question in labeled_answers.values() \ if question['group'] == g ], key=lambda x: x['id']) \ for g in set( ans['group'] for ans in labeled_answers.values() \ if ans['group'] != 0 ) ], key=lambda x: x[0]['group']) investments_for_p1 = list() investments_for_p2 = list() end_ques = list() for group in groups: question = [ question['question'] for question in group if 'Would you like to ' in question['question'] ] if len(question) != 1: end_ques.append(group) continue else: question = question[0] if str(pension_providers[0]['id']) in question: investments_for_p1.append(group) elif str(pension_providers[1]['id']) in question: investments_for_p2.append(group) # pprint.PrettyPrinter().pprint([len(group) for group in investments_for_p1]) # pprint.PrettyPrinter().pprint(investments_for_p2) row = [] row.append( answers_json['form_response']['token'] ) # print( labeled_answers[20699463]['question'] ) row.append( labeled_answers[20699463]['value'] ) # email # print( labeled_answers[20699464]['question'] ) row.append( labeled_answers[20699464]['value'] ) # dob # print( labeled_answers[20699465]['question'] ) row.append( labeled_answers[20699465]['value'] ) # exp age of ret # print( pension_providers[0]['question'] ) row.append( pension_providers[0]['value'] ) # pension provider for investment_group in investments_for_p1: sub_row = [''] * 5 for question in investment_group: pos = get_group_col_pos(question['question']) if(pos == -1): continue sub_row[pos] = question['value'] row += sub_row # print( labeled_answers[20702491]['question'] ) row.append( labeled_answers[20702491]['value'] ) # next pension provider # print( pension_providers[1]['question'] ) row.append( pension_providers[1]['value'] ) # pension provider for investment_group in investments_for_p2: sub_row = [''] * 5 for question in investment_group: pos = get_group_col_pos(question['question']) if(pos == -1): continue sub_row[pos] = question['value'] row += sub_row for q in end_ques: sub_row = [''] * 5 for question in q: pos = get_end_pos(question['question']) if pos == -1: continue sub_row[pos] = question['value'] row += sub_row row.append( labeled_answers[21247735]['value'] ) # please click the tick box row.append( '' ) # start date row.append( answers_json['form_response']['submitted_at'].replace('Z','').replace('T',' ') ) # submit date row.append( answers_json['event_id'] ) # network id # sheet = Sheets(spreadsheetId = '1brAVs0c-Vzm5AEVBNaEWe3O4_9JfuIImv0XVIrbFt74', # test sheet = Sheets(spreadsheetId = '1M00WGCdkA49JbprZ631t3Dbr1tBIDvTXvLDBjEutI_A', # prod client_secret_file = 'client_secret.json', application_name = 'FinancialData', sheet_name = 'TF data') sheet.append_row(row) return len(row) def get_typeform_data(grouped = False): # try: # response = urllib.urlopen(TYPEFORM_JSON_API) # data = json.loads(response.read()) # except: # print('no internet. trying to load local file') try: with open('form_questions_data.json') as f: data = json.load(f) except: prinf('no file as well') if not grouped: return data d = dict() for question in data['questions']: if 'group' in question.keys(): if question['group'] not in d.keys(): d[question['group']] = list() d[question['group']].append(question) else: if 0 not in d.keys(): d[0] = list() d[0].append(question) return d if __name__=='__main__': if(len(sys.argv) != 2): print('Invalid usage') sys.exit(1) json_file_path = sys.argv[1] tf_load_data(json_file_path=json_file_path) # pp = pprint.PrettyPrinter() # pp.pprint(get_typeform_data(True))
true
a340bcdc4c12b705b1a52dfe508ffc84aec10083
Python
k123321141/ADLxMLDS2017
/project/mnist-cluttered/png2npz.py
UTF-8
1,950
2.625
3
[ "BSD-3-Clause" ]
permissive
import os, sys import argparse import numpy as np from scipy.ndimage import imread from os.path import join def parse(): parser = argparse.ArgumentParser(description='utils') parser.add_argument('train_dir', help='png image files directory') parser.add_argument('valid_dir', help='png image files directory') parser.add_argument('test_dir', help='png image files directory') parser.add_argument('-o','--output', default='./output.npz', help='path to save npz file.') parser.add_argument('-q','--quiet', action='store_true', default=True, help='show the log') args = parser.parse_args() return args def read_dir(dir_path): file_list = [join(dir_path, f) for f in os.listdir(dir_path) if f.endswith('.png')] #get sample info : width, height, channels sample = file_list[0] img = imread(sample) #(60, 60) assert len(img.shape) == 2 w, h = img.shape num = len(file_list) #data data_buf = [] for f in file_list: img = imread(f) assert img.shape == (w, h) img = img.reshape([1, w, h]) data_buf.append(img) #label label_buf = [] for f in file_list: name = os.path.basename(f) buf = name.split('_')[-1] #3.png label = int(buf[:-4]) label_buf.append( np.array([label]).reshape([1,1]) ) return np.vstack(data_buf), np.vstack(label_buf) def main(): args = parse() x_train, y_train = read_dir(args.train_dir) x_valid, y_valid = read_dir(args.valid_dir) x_test, y_test = read_dir(args.test_dir) print x_train.shape, y_train.shape print('start writing output file %s' % args.output) with open(args.output,'w') as output: np.savez(output, x_train=x_train, y_train=y_train, x_valid=x_valid, y_valid=y_valid, x_test=x_test, y_test=y_test) print('Done') if __name__ == '__main__': main()
true
0aa59a1e1255bd2e2dfce82226cb5fc0e0d79b0e
Python
karthikbharadwaj/CodeRepo
/Practice/leetcode/is_palindrome.py
UTF-8
355
3.34375
3
[]
no_license
__author__ = 'karthikb' class Solution: # @return a boolean def isPalindrome(self, x): x = str(x) length = len(x) i,j = 0,length-1 while i <=j: if x[i] != x[j]: return False i += 1 j -= 1 return True s = Solution() print s.isPalindrome(111111111112111)
true
416c041e0fda16d02bbd39b54dd36091e8ee1bb5
Python
IntroToCompBioLSU/week12
/assignments/ewhart1/try_except.py
UTF-8
199
3.484375
3
[]
no_license
#!/usr/bin/env python try: int = int(input("Enter a number: ")) except: print("Sorry, the instructions weren't very specific. Please enter an integer next time.") # DB: Simple, but good example!
true
3fd85b2b22357df4249f43d37d2c7bff02db36d2
Python
HaohanWang/backProjection
/CNN/optimizers.py
UTF-8
3,914
2.921875
3
[]
no_license
#!/usr/bin/env python import theano import theano.tensor as T import numpy as np __author__ = "Sandeep Subramanian" __maintainer__ = "Sandeep Subramanian" __email__ = "sandeep.subramanian@gmail.com" class Optimizer: """ Optimization methods for backpropagation """ def __init__(self): """ __TODO__ add gradient clipping """ def sgd(self, cost, params, lr=0.01): """ Stochatic Gradient Descent. """ lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) gradients = T.grad(cost, params) updates = [] for param, gradient in zip(params, gradients): updates.append((param, param - lr * gradient)) return updates def adagrad(self, cost, params, lr=0.01, epsilon=1e-6): """ Adaptive Gradient Optimization. """ lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) epsilon = theano.shared(np.float64(epsilon).astype(theano.config.floatX)) gradients = T.grad(cost, params) updates = [] for param, gradient in zip(params, gradients): accumulated_gradient = theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(np.float64), borrow=True) accumulated_gradient_new = accumulated_gradient + gradient ** 2 updates.append((accumulated_gradient, accumulated_gradient_new)) updates.append((param, param - lr * gradient / T.sqrt(accumulated_gradient_new + epsilon))) return updates def rmsprop(self, cost, params, lr=0.01, rho=0.9, epsilon=1e-6): """ RMSProp - Root Mean Square Reference - http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf """ lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) epsilon = theano.shared(np.float64(epsilon).astype(theano.config.floatX)) rho = theano.shared(np.float64(rho).astype(theano.config.floatX)) gradients = T.grad(cost, params) updates = [] for param, gradient in zip(params, gradients): accumulated_gradient = theano.shared(np.zeros_like(param.get_value(borrow=True)).astype(np.float64), borrow=True) accumulated_gradient_new = accumulated_gradient * rho + gradient ** 2 * (1 - rho) updates.append((accumulated_gradient, accumulated_gradient_new)) updates.append((param, param - lr * gradient / T.sqrt(accumulated_gradient_new + epsilon))) return updates def adam(self, cost, params, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8): """ ADAM Reference - http://arxiv.org/pdf/1412.6980v8.pdf - Page 2 """ lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) epsilon = theano.shared(np.float64(epsilon).astype(theano.config.floatX)) beta_1 = theano.shared(np.float64(beta_1).astype(theano.config.floatX)) beta_2 = theano.shared(np.float64(beta_2).astype(theano.config.floatX)) t = theano.shared(np.float64(1.0).astype(theano.config.floatX)) gradients = T.grad(cost, params) updates = [] for param, gradient in zip(params, gradients): param_value = param.get_value(borrow=True) m_tm_1 = theano.shared(np.zeros_like(param_value).astype(np.float64), borrow=True) v_tm_1 = theano.shared(np.zeros_like(param_value).astype(np.float64), borrow=True) m_t = beta_1 * m_tm_1 + (1 - beta_1) * gradient v_t = beta_2 * v_tm_1 + (1 - beta_2) * gradient ** 2 m_hat = m_t / (1 - beta_1) v_hat = v_t / (1 - beta_2) updated_param = param - (lr * m_hat) / (T.sqrt(v_hat) + epsilon) updates.append((m_tm_1, m_t)) updates.append((v_tm_1, v_t)) updates.append((param, updated_param)) updates.append((t, t + 1.0)) return updates
true
09feba41ac70cb3b8c9d7793948d70abceb2ec85
Python
Candy-YangLi/ylscript
/python/firstdemos/demo170704.py
UTF-8
99
3.71875
4
[]
no_license
g = [x * x for x in range(1,10)] g = (x * x for x in range(1,10)) for n in g: print(n,end=' ')
true
ae19bdf6504573431f7763531d18f6172642f978
Python
EruditePanda/ingestors
/ingestors/support/pdf.py
UTF-8
1,542
2.578125
3
[ "MIT" ]
permissive
import os import glob import uuid from normality import collapse_spaces # noqa from pdflib import Document from ingestors.support.temp import TempFileSupport from ingestors.support.shell import ShellSupport from ingestors.support.ocr import OCRSupport class PDFSupport(ShellSupport, TempFileSupport, OCRSupport): """Provides helpers for PDF file context extraction.""" def pdf_extract(self, pdf): """Extract pages and page text from a PDF file.""" self.result.flag(self.result.FLAG_PDF) temp_dir = self.make_empty_directory() for page in pdf: self.pdf_extract_page(temp_dir, page) def pdf_alternative_extract(self, pdf_path): self.result.emit_pdf_alternative(pdf_path) pdf = Document(pdf_path.encode('utf-8')) self.pdf_extract(pdf) def pdf_extract_page(self, temp_dir, page): """Extract the contents of a single PDF page, using OCR if need be.""" pagenum = page.page_no texts = page.lines image_path = os.path.join(temp_dir, str(uuid.uuid4())) page.extract_images(path=image_path.encode('utf-8'), prefix=b'img') for image_file in glob.glob(os.path.join(image_path, "*.png")): with open(image_file, 'rb') as fh: text = self.extract_text_from_image(fh.read()) # text = collapse_spaces(text) if text is not None: texts.append(text) text = ' \n'.join(texts).strip() self.result.emit_page(int(pagenum), text)
true
f75344e3c13c6bc297f8a5dacdd8dc4c612e3000
Python
roynwang/mbt_test
/Action.py
UTF-8
297
2.5625
3
[]
no_license
class Action(object): def __init__(self): self.name = 'test' def check(self): raise NotImplementedError() #it should return a status def transfer(self,status): raise NotImplementedError() def execute(self): raise NotImplementedError() def __str__(self): return str(self.name)
true
260757c56c34dbb3446e159e1e426ace5292d695
Python
danong/leetcode-solutions
/solutions/group_anagrams.py
UTF-8
563
3.390625
3
[]
no_license
from collections import Counter, defaultdict def counter_to_tuple(counter): chars = [0] * 26 for char, count in counter.items(): chars[ord(char) - ord('a')] = count return tuple(chars) class Solution: def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ anagrams = defaultdict(list) for word in strs: wc = Counter(word) anagrams[counter_to_tuple(wc)].append(word) return [group for group in anagrams.values()]
true
f4efab80b62284434978c0f2be11f6ca30b8097d
Python
BogiTheNinjaTester/TestAppChat
/wtform_fields.py
UTF-8
1,973
2.75
3
[]
no_license
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import InputRequired, Length, EqualTo, ValidationError from models import User from passlib.hash import pbkdf2_sha256 def invalid_credentials(form, field): ''' Method checks if credentials are valid. ''' username = form.username.data password = field.data user_object = User.query.filter_by(username=username).first() if user_object is None: raise ValidationError('Username or password is incorrect!') elif not pbkdf2_sha256.verify(password, user_object.password): raise ValidationError('Username or password is incorrect!') class RegistrationForm(FlaskForm): ''' Registration form. ''' username = StringField('username', validators= [InputRequired(message= 'Username required!'), Length(min=4, max=25, message= 'Username must be between 4 and 25 characters')]) password = PasswordField('password', validators=[InputRequired(message= 'Password required!'), Length(min=4, max=25, message= 'Password must be between 4 and 25 characters')] ) confirm_password = PasswordField('confirm_password', validators= [InputRequired(message='Password required!'), EqualTo('password', message='Password must match!')]) submit_button = SubmitField('Create') def validate_username(self, username): ''' Method which validates username field. ''' user_object = User.query.filter_by(username=username.data).first() if user_object: raise ValidationError('Username already exist! Select different username.') class LoginForm(FlaskForm): ''' Login form. ''' username = StringField('username', validators= [InputRequired(message= 'Username required!')]) password = PasswordField('password', validators=[InputRequired(message= 'Password required!'), invalid_credentials]) submit_button = SubmitField('Login')
true
a1f4885f6c7a0d69591b57947deac0af456381f6
Python
kimx3129/Simon_Data-Science
/AWSLearners/9장/dynamodb_bulk_upload.py
UTF-8
1,230
2.65625
3
[]
no_license
### 다이나모디비 실습 Lambda Function 코드 ### # 코드 - 다이나모디비 다량의 데이터 업로드 import boto3 def lambda_handler(event, context): client = boto3.resource('dynamodb') table = client.Table('aws-learner-customer-transaction-table') with table.batch_writer() as batch: batch.put_item( Item={ 'customer_id': '95IUZ', 'transaction_date': '2020-10-24', 'item_category': 'Desk', 'price': 120000 } ) batch.put_item( Item={ 'customer_id': '72MUE', 'transaction_date': '2020-10-28', 'item_category': 'Chair', 'price': 250000 } ) batch.put_item( Item={ 'customer_id': '28POR', 'transaction_date': '2020-11-05', 'item_category': 'Shampoo', 'price': 50000 } ) batch.put_item( Item={ 'customer_id': '43NCH', 'transaction_date': '2020-10-12', 'item_category': 'Pulse', 'price': 320000 } )
true
a0f40a97c162d152309cf4ed701492c810db63ef
Python
evespimrose/for_2Dgameprograming
/for_In_Class/09_10.py
UTF-8
475
2.640625
3
[]
no_license
from pico2d import * open_canvas() boy = load_image('C:/Users/Jang/Desktop/gitupload/for_In_Class/run_animation.png') gra = load_image('C:/Users/Jang/Desktop/gitupload/for_In_Class/grass.png') x = 0 frame = 0 while (x<800): clear_canvas() gra.draw(400,30) boy.clip_draw(frame*100,0,100,100,x,90) update_canvas() frame = (frame + 1) % 8 x += 5 delay(0.05) get_events() delay(5) close_canvas()
true
e80023de6facc15e97871cbe1438f0d05317e8e6
Python
fovegage/learn-python
/Pytho内建函数/进制.py
UTF-8
289
2.859375
3
[]
no_license
# -*- coding: utf-8 -*- # @Time : 2018/12/29 17:20 # @Author : fovegage # @Email : fovegage@gmail.com # @File : 进制.py # @Software: PyCharm # oct 八 bin 二 hex 十六 # oct 八进制 # return oct print(oct(6)) # bin() 二进制 # return bin print(bin(6)) # hex 16进制 print(hex(6))
true
cc8896da1a8c4d536f290c9e4c90af488c303c7f
Python
somnoynadno/shift_summer_2019
/ssrf/app/port_scan.py
UTF-8
220
2.859375
3
[]
no_license
import requests for x in range(1,65536): r = requests.get('http://127.0.0.1/get_url_requests?url=http://127.0.0.1:'+str(x)+'/') if r.status_code != 200: print("port", x, "closed"); else: print("port", x, "open");
true
0bff07bd9a2945de412a6a6c14e16e5e51a45417
Python
kushal200/python
/Basic/triangle.py
UTF-8
239
3.59375
4
[]
no_license
a=int(input("Enter the value of a:")) b=int(input("Enter the value of b:")) c=int(input("Enter the value of c:")) s=(a+b+c)/2 print("s=",s) Area_Of_Triangle=(s*(s-a)*(s-b)*(s-c))-0.5 print("The area of taingle is :%0.2f" %Area_Of_Triangle)
true
0d142dcd7bad8206fdec1dc5ca63ff4e7ac24b31
Python
williamhogman/operant
/operant/currency.py
UTF-8
1,987
3.078125
3
[ "BSD-2-Clause" ]
permissive
"""Module for currency systems. Currencies are a closely related to points, but differ in that they are often exchanged for rewards of some kind. The value of a currencies stem from what they are traded in, while points often carry some intrinsic value. A currency loses this intrinsic value because it is redeemable. """ from __future__ import (with_statement, print_function, division, absolute_import) from operant.base import Registry class Currency(object): """An instance of this class represents currency""" def __init__(self, currency_id): self.currency_id = currency_id def _add_currency_to_user(self, store, user, amount, callback): store.add_balance(user.operant_id(), self, amount, callback) def _deduct_currency_from_user(self, store, user, amount, callback): store.deduct_balance(user.operant_id(), self, amount, callback) def award(self, store, user, amount=1, callback=None): """Awards the passed in amount of this currency""" def _cb(n): store.track_event("currency.awarded." + self.currency_id, user.operant_id(), dict(amount=amount)) callback(n) self._add_currency_to_user(store, user, amount, _cb) def deduct_balance(self, store, user, amount=1, callback=None): """Deducts the passed in amount of this currency from the player""" def _cb(n): store.track_event("currency.deducted." + self.currency_id, user.operant_id(), dict(amount=amount)) callback(n) self._deduct_currency_from_user(store, user, amount, _cb) def get_balance(self, store, user, callback=None): """Gets the users balance in the passed in currency""" store.get_balance(user.operant_id(), self, callback) Currencies = Registry("currency", "currency_id") Currencies.set_str_handler(Currency) get = Currencies.get register = Currencies.register
true
90dcfc13541f244ddd3147dfbd06c67494b2ca10
Python
gixita/pulsarnews
/tests/conftest.py
UTF-8
1,465
2.578125
3
[ "MIT" ]
permissive
import pytest from app import create_app, db from app.models import User from configtest import Config @pytest.fixture(scope='module') def new_user(): user = User(username="kris", email="kris@pulsarnews.io") return user @pytest.fixture(scope='module') def test_client(): flask_app = create_app(Config) # Create a test client using the Flask application configured for testing with flask_app.test_client() as testing_client: # Establish an application context with flask_app.app_context(): yield testing_client # this is where the testing happens! @pytest.fixture(scope='module') def init_database(test_client): # Create the database and the database table db.create_all() # Insert user data user1 = User(username="info", email="info@pulsarnews.io") user2 = User(username="support", email="support@pulsarnews.io") user1.set_password("password") user2.set_password("password") db.session.add(user1) db.session.add(user2) # Commit the changes for the users db.session.commit() yield # this is where the testing happens! db.drop_all() @pytest.fixture(scope='function') def login_default_user(test_client): test_client.post('/auth/login_password', data=dict(email='info@pulsarnews.io', password='password'), follow_redirects=True) yield # this is where the testing happens! test_client.get('/auth/logout', follow_redirects=True)
true
fef6bdb68e79d6bd1508d5b78e63d56b82f85791
Python
BandiSaikumar/PythonDjangoFullStackDevolpment
/Python/PythonIntroduction/lesson2/task6/assignments.py
UTF-8
95
3.125
3
[]
no_license
a = 54.0 print("a = " + str(a)) a -= 4 print("a = " + str(a)) a += 10 print("a = " + str(a))
true
927c2f9e84a7193cb4e8e785271d6427bef23266
Python
xogxog/SWEA
/IM대비/1926.간단한369게임.py
UTF-8
345
3.28125
3
[]
no_license
N = int(input()) for i in range(1,N+1) : cnt = 0 num = i # print(num, cnt) while num>0 : if num % 10 == 3 or num % 10 == 6 or num % 10 == 9 : cnt += 1 num //= 10 # print(num,cnt) if cnt == 0 : print('{} '.format(i),end='') else : print('{} '.format('-'*cnt),end='')
true
7c68eec0d945113994ffee5d632c2d59122a3d16
Python
bitwoman/curso-em-video-python
/Curso de Python 3 - Mundo 1 - Fundamentos/#015.py
UTF-8
514
4.34375
4
[ "MIT" ]
permissive
#Exercício Python 015: Escreva um programa que pergunte a quantidade de Km percorridos por um carro alugado e a #quantidade de dias pelos quais ele foi alugado. Calcule o preço a pagar, sabendo que o carro custa R$60 por dia e R$0,15 por Km rodado. km_traveled = float(input('Enter km travaled by car: ')) days_used = int(input('Enter the days that the car was used: ')) rent_day = (days_used * 60.00) rent_km = km_traveled * 0.15 rent_total = rent_day + rent_km print('Total to pay is: R$ %.2f' %rent_total)
true
2f13946cdce3d20746e3ba8658a859583c1f6ba6
Python
05satyam/Buggy-Pinball-alpha
/Gradient Descent and Variants/GDmeasures.py
UTF-8
1,654
3.203125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from functions import * from learningRates import * import random import time times=[] a = simpleLR(0.2) #gama=0.9 gama1=0.8 gama2=0.999 e=1e-6 #standard value to avoid dividing with 0 algo_trials=100000 low=-10 high=10 for exp in range(0, algo_trials): start_time=time.time() #algorithm x = random.uniform(low, high) # initial solutions y = random.uniform(low, high) z = booth(x, y) #print("Initial guess: x =",x," y =",y," z =",z) #i=1 Dx=0 #difference between last two variable values Dy=0 Gx=0 #the matrix of the derirative Gy=0 limits=False while z>0.000001: #z>-1.913222 or z<-1.913223: Dx = gama1*Dx + (1-gama1)*booth_dx(x, y) Dy = gama1*Dy + (1-gama1)*booth_dy(x, y) Gx = gama2*Gx + (1-gama2)*booth_dx(x, y)**2 Gy = gama2*Gy + (1-gama2)*booth_dy(x, y)**2 x = x - a*Dx/(np.sqrt(Gx)+e) y = y - a*Dy/(np.sqrt(Gy)+e) z = booth(x, y) #print("Iteration ",i,": x =",x," y =",y," z =",z) #print("Learning rate is ", a) if x<low or x>high or y<low or y>high: print("Boundaries have been exceeded. Results not valid. x=",x," y=",y) limits=True break #i+=1 if limits==False: total_time=time.time()-start_time times.append(total_time) print(exp) time_average=sum(times)/len(times) print("Algorithm needed an average of ", time_average, " seconds to reach global minimum. Times stuck to local minimum.",algo_trials-len(times))
true
7c77a5d9001a9d32e62dde65c52bd78259e65c29
Python
Sanchi02/Dojo
/LeetCode/Logical/MeetingRooms.py
UTF-8
1,299
3.28125
3
[]
no_license
# Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required. # Example 1: # Input: [[0, 30],[5, 10],[15, 20]] # Output: 2 # Example 2: # Input: [[7,10],[2,4]] # Output: 1 class Solution: def minMeetingRooms(self, intervals: List[List[int]]) -> int: if(len(intervals)==0): return 0 if(len(intervals)==1): return 1 intervals = sorted(intervals, key=lambda x:x[0]) rooms = [intervals[0]] count = 1 brflag = False for i in range(1,len(intervals)): # print("rooms = {}".format(rooms)) brflag = False if(len(rooms)==0): rooms.append(intervals[i]) else: s = intervals[i][0] e = intervals[i][1] for r in rooms: if(s>=r[1]): rooms.remove(r) rooms.append(intervals[i]) brflag = True break if(brflag==False): rooms.append(intervals[i]) count += 1 return count
true
4ee2bfac8eb86c474a47637bcc31b7afa2a9810d
Python
gkupdx/CS350-Project
/_pythonCodeForTestFiles/measuringResult.py
UTF-8
4,209
3.25
3
[]
no_license
# This file measure the time of sorting experimental data using the different sorting algorithms from generateBinary import arraySetBinaryDigits from generateRandom import arraySetRandom from generateReverseSorted import arraySetRevSorted from generateSorted import arraySetFiftyUnsorted from generateSorted import arraySetTenUnSorted from generateSorted import arraySorted import time import sys import copy from heapSort import heapSort from mergeSort import mergeSort from hoarePartition import quickSortHoare from lomutoPartition import quickSortLomuto from quickSortOpenSource2 import quickSort recursion = 1000000 sys.setrecursionlimit(recursion) #this function increase the recursion limit. array = arraySetBinaryDigits #change the variable to switch to different test #array = arraySetRevSorted #comment out to use #array = arraySetRandom #comment out to use #array = arraySetFiftyUnsorted #comment out to use #array = arraySetTenUnSorted #comment out to use #array = arraySorted array1 = copy.deepcopy(array) array2 = copy.deepcopy(array) array3 = copy.deepcopy(array) array4 = copy.deepcopy(array) array5 = copy.deepcopy(array) array6 = copy.deepcopy(array) array7 = copy.deepcopy(array) array8 = copy.deepcopy(array) array9 = copy.deepcopy(array) array_set = [array,array1,array2,array3,array4,array5,array6,array7,array8,array9] array_set1 = copy.deepcopy(array_set) array_set2 = copy.deepcopy(array_set) array_set3 = copy.deepcopy(array_set) sys.setrecursionlimit(1000000) number_of_element = len(array_set) number_of_array = len(array) #set the range of the array """ print array[5] array[5] = quickSort(array[5]) #quickSortLomuto(array[3]) #quickSortHoare(array[3]) #mergeSort(array[11]) #heapSort(array[3]) print ("Sorted array is:") print (array[5]) #print sortedArray """ for j in range(0,number_of_element): for i in range (0, number_of_array): #now = datetime.datetime.now() #print the time and date for the record #print now start = time.time() #sorted(array[i]) #mergeSort(array[i]) quickSortHoare(array_set[j][i]) #quickSortLomuto(array_set[j][i]) #quickSortOpenSource(array[i]) #heapSort(array[i]) #array[i] = quickSort(array[i]) end = time.time() print (end-start) print "END" print "----------------------------------" for j in range(0,number_of_element): for i in range (0, number_of_array): #now = datetime.datetime.now() #print the time and date for the record #print now start = time.time() #sorted(array[i]) mergeSort(array_set1[j][i]) #quickSortHoare(array_set[j][i]) #quickSortLomuto(array[i]) #quickSortOpenSource(array[i]) #heapSort(array[i]) #array[i] = quickSort(array[i]) end = time.time() print (end-start) print "END" print "----------------------------------" for j in range(0,number_of_element): for i in range (0, number_of_array): #now = datetime.datetime.now() #print the time and date for the record #print now start = time.time() #sorted(array[i]) #mergeSort(array_set1[j][i]) #quickSortHoare(array_set[j][i]) #quickSortLomuto(array[i]) #quickSortOpenSource(array[i]) heapSort(array_set2[j][i]) #array[i] = quickSort(array[i]) end = time.time() print (end-start) print "END" print "----------------------------------" for j in range(0,number_of_element): for i in range (0, number_of_array): #now = datetime.datetime.now() #print the time and date for the record #print now start = time.time() #sorted(array[i]) #mergeSort(array_set1[j][i]) #quickSortHoare(array_set[j][i]) #quickSortLomuto(array[i]) #quickSortOpenSource(array[i]) #heapSort(array_set2[j][i]) array_set3[j][i] = quickSort(array_set3[j][i]) end = time.time() print len(array_set3[j][i]) print (end-start) print "END" print "----------------------------------"
true
888ea6949978849ac56d11f2d59f0dfeefd727ff
Python
FrancisFan98/algorithm-practices
/POKERS.py
UTF-8
2,433
3.359375
3
[]
no_license
#!/usr/bin/python import random, math, collections def shuffle(deck): length = len(deck) for e in range(0, length-1): swap(deck, e, random.randrange(e, length)) def swap(deck, i, j): deck[i], deck[j] = deck[j], deck[i] def test_shuffle(shuffler, deck, n = 100000): ex = (n*1.)/math.factorial(len(deck)) result = collections.defaultdict(int) for e in range(0, n): Input = list(deck) shuffler(Input) result["".join(Input)] += 1 ok = all([(0.9*ex) <= result[item] <= (1.1*ex) for item in result]) for item in result: print "%s%s%4.2f%s" % (item, " : " , result[item]*100./100000, "%") print ("ok" if ok else "***BAD***") def allMax(hands, key = None): result = [] current_max = None key = key or (lambda x:x) hand_max = None for hand in hands: if key(hand) > current_max: result = [] current_max = key(hand) hand_max = hand if key(hand) == current_max: result.append(key(hand)) return result, hand_max def hand_ranks(hand): ranks = ["--23456789TJQKA".index(r) for r,s in hand] return sorted(ranks, reverse = True) def kind(n, ranks): value = None for rank in ranks: if ranks.count(rank) == n: return rank return False def two_pair(ranks): first = kind(2, ranks) second = kind(2, list(reversed(ranks))) if first != second and first: return (first, second) return False def straight(ranks): return (len(set(ranks)) == 5 and ranks[0] - ranks[-1] == 4) def flush(hand): color = [s for r,s in hand] return len(set(color)) == 1 def card_rank(hand): ranks = hand_ranks(hand) if straight(ranks) and flush(hand): return (9, ranks[0]) elif kind(4, ranks): return (8, kind(4, ranks), kind(1, ranks)) elif kind(3, ranks) and kind(2, ranks): return (7, kind(3, ranks), kind(2, ranks)) elif flush(hand): return (6, hand) elif straight(ranks): return (5, ranks[0]) elif kind(3, ranks): return (4, kind(3, ranks), kind(1, ranks), kind(1, list(reversed(ranks)))) elif two_pair(ranks): return (3, two_pair(ranks), kind(1, ranks)) elif kind(2, ranks): return (2, ranks) else: return (1, ranks) deck = [r + s for r in "23456789TJQKA" for s in "shdc"] shuffle(deck) def deal(deck, number, n = 5): output = [] for i in range(number): output.append(deck[i*n:n*(i+1)]) return output hands = deal(deck, 5) def poker(hands): return allMax(hands, key = card_rank) print hands print poker(hands)
true
24bc5fc0cf6053fb4e69ca145ac3b3f7862aa36f
Python
trevorandersen/colour
/colour/examples/contrast/examples_contrast.py
UTF-8
3,310
2.96875
3
[ "BSD-3-Clause" ]
permissive
# -*- coding: utf-8 -*- """ Showcases contrast sensitivity computations. """ from pprint import pprint import numpy as np from scipy.optimize import fmin import colour from colour.utilities import as_float, message_box from colour.plotting import colour_style, plot_single_function message_box('Contrast Sensitivity Computations') colour_style() message_box(('Computing the contrast sensitivity for a spatial frequency "u" ' 'of 4, an angular size "X_0" of 60 and a retinal illuminance "E" ' 'of 65 using "Barten (1999)" method.')) pprint(colour.contrast_sensitivity_function(u=4, X_0=60, E=65)) pprint( colour.contrast.contrast_sensitivity_function_Barten1999( u=4, X_0=60, E=65)) print('\n') message_box(('Computing the minimum detectable contrast with the assumed ' 'conditions for UHDTV applications as given in "ITU-R BT.2246-4"' '"Figure 31" and using "Barten (1999)" method.')) settings_BT2246 = { 'k': 3.0, 'T': 0.1, 'X_max': 12, 'N_max': 15, 'n': 0.03, 'p': 1.2274 * 10 ** 6, 'phi_0': 3 * 10 ** -8, 'u_0': 7, } def maximise_spatial_frequency(L): """ Maximises the spatial frequency :math:`u` for given luminance value. Parameters ---------- L : numeric or array_like Luminance value at which to maximize the spatial frequency :math:`u`. Returns ------- numeric or ndarray Maximised spatial frequency :math:`u`. """ maximised_spatial_frequency = [] for L_v in L: X_0 = 60 d = colour.contrast.pupil_diameter_Barten1999(L_v, X_0) sigma = colour.contrast.sigma_Barten1999(0.5 / 60, 0.08 / 60, d) E = colour.contrast.retinal_illuminance_Barten1999(L_v, d, True) maximised_spatial_frequency.append( fmin(lambda x: ( -colour.contrast.contrast_sensitivity_function_Barten1999( u=x, sigma=sigma, X_0=X_0, E=E, **settings_BT2246) ), 0, disp=False)[0]) return as_float(np.array(maximised_spatial_frequency)) L = np.logspace(np.log10(0.01), np.log10(100), 100) X_0 = Y_0 = 60 d = colour.contrast.barten1999.pupil_diameter_Barten1999(L, X_0, Y_0) sigma = colour.contrast.barten1999.sigma_Barten1999(0.5 / 60, 0.08 / 60, d) E = colour.contrast.barten1999.retinal_illuminance_Barten1999(L, d) u = maximise_spatial_frequency(L) pprint(1 / colour.contrast_sensitivity_function( u=u, sigma=sigma, E=E, X_0=X_0, Y_0=Y_0, **settings_BT2246) * 2 * (1 / 1.27)) pprint(1 / colour.contrast.contrast_sensitivity_function_Barten1999( u=u, sigma=sigma, E=E, X_0=X_0, Y_0=Y_0, **settings_BT2246) * 2 * (1 / 1.27)) plot_single_function( lambda x: ( 1 / colour.contrast.contrast_sensitivity_function_Barten1999( u=u, sigma=sigma, E=E, X_0=X_0, Y_0=Y_0, **settings_BT2246) * 2 * (1 / 1.27)), samples=L, log_x=10, **{ 'title': 'Examples of HVS Minimum Detectable Contrast Characteristics', 'x_label': 'Luminance ($cd/m^2$)', 'y_label': 'Minimum Detectable Contrast', 'axes.grid.which': 'both' })
true
229e35564b9270f7cfe40a63479d391773a6efb0
Python
dashang/ga-learner-dsmp-repo
/Banking_Inference_from_Datacode.py
UTF-8
2,473
2.984375
3
[ "MIT" ]
permissive
# -------------- import pandas as pd import scipy.stats as stats import math import numpy as np import warnings warnings.filterwarnings('ignore') #Sample_Size sample_size=2000 #Z_Critical Score z_critical = stats.norm.ppf(q = 0.95) # path [File location variable] data = pd.read_csv(path) data_sample = data.sample(n=sample_size,random_state=0) sample_mean = np.mean(data_sample['installment']) sample_std = data_sample['installment'].std() margin_of_error = z_critical*sample_std/math.sqrt(sample_size) confidence_interval = (sample_mean-margin_of_error,sample_mean+margin_of_error) true_mean = np.mean(data['installment']) print(true_mean,confidence_interval) # -------------- import matplotlib.pyplot as plt import numpy as np #Different sample sizes to take sample_size=np.array([20,50,100]) #Code starts here fig,axes = plt.subplots(3,1,figsize=(10,4)) for i in range(len(sample_size)): m=[] for j in range(1000): d_sample = data.sample(n=sample_size[i]) m.append(np.mean(d_sample['installment'])) mean_series = pd.Series(m) axes[i].hist(mean_series[i],bins=10) plt.show() # -------------- #Importing header files from statsmodels.stats.weightstats import ztest #Code starts here data['int.rate'] = data['int.rate'].str.replace('%','').apply(float)/100 x1 = data[data['purpose']=='small_business']['int.rate'] value=data['int.rate'].mean() z_statistic, p_value = ztest(x1,value=value,alternative='larger') print(p_value) # -------------- #Importing header files from statsmodels.stats.weightstats import ztest #Code starts here x1 = data[data['paid.back.loan'] == 'No']['installment'] x2 = data[data['paid.back.loan']=='Yes']['installment'] z_statistic,p_value = ztest(x1,x2) print(p_value) # -------------- #Importing header files from scipy.stats import chi2_contingency #Critical value critical_value = stats.chi2.ppf(q = 0.95, # Find the critical value for 95% confidence* df = 6) # Df = number of variable categories(in purpose) - 1 #Code starts here yes = data[data['paid.back.loan']=='Yes']['purpose'].value_counts().sort_index() no = data[data['paid.back.loan']=='No']['purpose'].value_counts().sort_index() observed = pd.concat([yes.transpose(),no.transpose()],axis=1,keys=['Yes','No']) chi2,p,dof,ex = chi2_contingency(observed) print(observed) print(chi2,p,dof,ex)
true
22dbde10dd1b79866048a613616ebad1dcb3f8b2
Python
davis-lin/Python-Practices
/4.7.6.py
UTF-8
89
2.59375
3
[]
no_license
def echo(anything): 'echo returns its input argument' return anything help(echo)
true
119235e1dba8ab57283113573240a645b45b2e32
Python
LwqDeveloper/ToolShell
/selectorUnrefs/FindSelectorUnrefs.py
UTF-8
11,719
2.609375
3
[]
no_license
# coding:utf-8 import os import re import sys import getopt reserved_prefixs = ["-[", "+["] # 获取入参参数 def input_parameter(): opts, args = getopt.getopt(sys.argv[1:], '-a:-p:-w:-b:', ['app_path=', 'project_path=', 'black_list_Str', 'white_list_str']) black_list_str = '' white_list_str = '' white_list = [] black_list = [] # 入参判断 for opt_name, opt_value in opts: if opt_name in ('-a', '--app_path'): # .app文件路径 app_path = opt_value if opt_name in ('-p', '--project_path'): # 项目文件路径 project_path = opt_value if opt_name in ('-b', '--black_list_Str'): # 检测黑名单前缀,不检测谁 black_list_Str = opt_value if opt_name in ('-w', '--white_list_str'): # 检测白名单前缀,只检测谁 white_list_str = opt_value if len(black_list_str) > 0: black_list = black_list_str.split(",") if len(white_list_str) > 0: white_list = white_list_str.split(",") if len(white_list) > 0 and len(black_list) > 0: print("\033[0;31;40m白名单【-w】和黑名单【-b】不能同时存在\033[0m") exit(1) # 判断文件路径存不存在 if not os.path.exists(project_path): print("\033[0;31;40m输入的项目文件路径【-p】不存在\033[0m") exit(1) app_path = verified_app_path(app_path) if not app_path: exit('输入的app路径不存在,停止运行') return app_path, project_path, black_list, white_list def verified_app_path(path): if path.endswith('.app'): appname = path.split('/')[-1].split('.')[0] path = os.path.join(path, appname) if appname.endswith('-iPad'): path = path.replace(appname, appname[:-5]) if not os.path.isfile(path): return None if not os.popen('file -b ' + path).read().startswith('Mach-O'): return None return path # 获取protocol中所有的方法 def header_protocol_selectors(file_path): # 删除路径前后的空格 file_path = file_path.strip() if not os.path.isfile(file_path): return None protocol_sels = set() file = open(file_path, 'r') is_protocol_area = False # 开始遍历文件内容 for line in file.readlines(): # 删除注释信息 # delete description line = re.sub('\".*\"', '', line) # delete annotation line = re.sub('//.*', '', line) # 检测是否是 @protocol # match @protocol if re.compile('\s*@protocol\s*\w+').findall(line): is_protocol_area = True # match @end if re.compile('\s*@end').findall(line): is_protocol_area = False # match sel if is_protocol_area and re.compile('\s*[-|+]\s*\(').findall(line): sel_content_match_result = None # - (CGPoint)convertPoint:(CGPoint)point toCoordinateSpace:(id <UICoordinateSpace>)coordinateSpace if ':' in line: # match sel with parameters # 【"convertPoint:","toCoordinateSpace:"] sel_content_match_result = re.compile('\w+\s*:').findall(line) else: # - (void)invalidate; # match sel without parameters # invalidate; sel_content_match_result = re.compile('\w+\s*;').findall(line) if sel_content_match_result: # 方法参数拼接 # convertPoint:toCoordinateSpace: funcList = ''.join(sel_content_match_result).replace(';', '') protocol_sels.add(funcList) file.close() return protocol_sels # 获取所有protocol定义的方法 def protocol_selectors(path, project_path): print('获取所有的protocol中的方法...') header_files = set() protocol_sels = set() # 获取当前引用的系统库中的方法列表 system_base_dir = '/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk' # get system librareis lines = os.popen('otool -L ' + path).readlines() for line in lines: # 去除首尾空格 line = line.strip() # /System/Library/Frameworks/MediaPlayer.framework/MediaPlayer (compatibility version 1.0.0, current version 1.0.0) # /System/Library/Frameworks/MediaPlayer.framework/MediaPlayer # delete description, line = re.sub('\(.*\)', '', line).strip() if line.startswith('/System/Library/'): # [0:-1],获取数组的左起第一个,到倒数最后一个,不包含最后一个,[1,-1)左闭右开 library_dir = system_base_dir + '/'.join(line.split('/')[0:-1]) if os.path.isdir(library_dir): # 获取当前系统架构中所有的类 # 获取合集 header_files = header_files.union(os.popen('find %s -name \"*.h\"' % library_dir).readlines()) if not os.path.isdir(project_path): exit('Error: project path error') # 获取当前路径下面所有的.h文件路径 header_files = header_files.union(os.popen('find %s -name \"*.h\"' % project_path).readlines()) for header_path in header_files: # 获取所有查找到的文件下面的protocol方法,这些方法,不能用来统计 header_protocol_sels = header_protocol_selectors(header_path) if header_protocol_sels: protocol_sels = protocol_sels.union(header_protocol_sels) return protocol_sels def imp_selectors(path): print('获取所有的方法,除了setter and getter方法...') # return struct: {'setupHeaderShadowView':['-[TTBaseViewController setupHeaderShadowView]']} # imp 0x100001260 -[AppDelegate setWindow:] ==>> -[AppDelegate setWindow:],setWindow: re_sel_imp = re.compile('\s*imp\s*0x\w+ ([+|-]\[.+\s(.+)\])') re_properties_start = re.compile('\s*baseProperties 0x\w{9}') re_properties_end = re.compile('\w{16} 0x\w{9} _OBJC_CLASS_\$_(.+)') re_property = re.compile('\s*name\s*0x\w+ (.+)') imp_sels = {} is_properties_area = False # “otool - ov”将输出Objective - C类结构及其定义的方法。 for line in os.popen('/usr/bin/otool -oV %s' % path).xreadlines(): results = re_sel_imp.findall(line) if results: # imp 0x100001260 -[AppDelegate setWindow:] ==>> [-[AppDelegate setWindow:],setWindow:] (class_sel, sel) = results[0] if sel in imp_sels: imp_sels[sel].add(class_sel) else: imp_sels[sel] = set([class_sel]) else: # delete setter and getter methods as ivar assignment will not trigger them # 删除相关的set方法 if re_properties_start.findall(line): is_properties_area = True if re_properties_end.findall(line): is_properties_area = False if is_properties_area: property_result = re_property.findall(line) if property_result: property_name = property_result[0] if property_name and property_name in imp_sels: # properties layout in mach-o is after func imp imp_sels.pop(property_name) # 拼接set方法 setter = 'set' + property_name[0].upper() + property_name[1:] + ':' # 干掉set方法 if setter in imp_sels: imp_sels.pop(setter) return imp_sels def ref_selectors(path): print('获取所有被调用的方法...') re_selrefs = re.compile('__TEXT:__objc_methname:(.+)') ref_sels = set() lines = os.popen('/usr/bin/otool -v -s __DATA __objc_selrefs %s' % path).readlines() for line in lines: results = re_selrefs.findall(line) if results: ref_sels.add(results[0]) return ref_sels def ignore_selectors(sel): if sel == '.cxx_destruct': return True if sel == 'load': return True return False def filter_selectors(sels): filter_sels = set() for sel in sels: for prefix in reserved_prefixs: if sel.startswith(prefix): filter_sels.add(sel) return filter_sels def unref_selectors(path, project_path): # 获取所有类的protocol的方法集合 protocol_sels = protocol_selectors(path, project_path) # 获取项目所有的引用方法 ref_sels = ref_selectors(path) if len(ref_sels) == 0: exit('获取项目所有的引用方法为空....') # 获取所有的方法,除了set方法 imp_sels = imp_selectors(path) print("\n") if len(imp_sels) == 0: exit('Error: imp selectors count null') unref_sels = set() for sel in imp_sels: # 所有的方法,忽略白名单 if ignore_selectors(sel): continue # 如果当前的方法不在protocol中,也不再引用的方法中,那么认为这个方法没有被用到 # protocol sels will not apppear in selrefs section if sel not in ref_sels and sel not in protocol_sels: unref_sels = unref_sels.union(filter_selectors(imp_sels[sel])) return unref_sels # 黑白名单过滤 def filtration_list(unref_sels, black_list, white_list): # 黑名单过滤 temp_unref_sels = list(unref_sels) if len(black_list) > 0: # 如果黑名单存在,那么将在黑名单中的前缀都过滤掉 for unref_sel in temp_unref_sels: for black_prefix in black_list: class_method = "+[%s" % black_prefix instance_method = "-[%s" % black_prefix if (unref_sel.startswith(class_method) or unref_sel.startswith( instance_method)) and unref_sel in unref_sels: unref_sels.remove(unref_sel) break # 白名单过滤 temp_array = [] if len(white_list) > 0: # 如果白名单存在,只留下白名单中的部分 for unref_sel in unref_sels: for white_prefix in white_list: class_method = "+[%s" % white_prefix instance_method = "-[%s" % white_prefix if unref_sel.startswith(class_method) or unref_sel.startswith(instance_method): temp_array.append(unref_sel) break unref_sels = temp_array return unref_sels # 整理结果,写入文件 def write_to_file(unref_sels): file_name = 'selector_unrefs.txt' f = open(os.path.join(sys.path[0].strip(), file_name), 'w') unref_sels_num_str = '查找到未被使用的方法: %d个\n' % len(unref_sels) print(unref_sels_num_str) f.write(unref_sels_num_str) num = 1 for unref_sel in unref_sels: unref_sels_str = '%d : %s' % (num, unref_sel) print(unref_sels_str) f.write(unref_sels_str + '\n') num = num + 1 f.close() print('\n项目中未使用方法检测完毕,相关结果存储到当前目录 %s 中' % file_name) print('请在项目中进行二次确认后处理') if __name__ == '__main__': # 获取入参 app_path, project_path, black_list, white_list = input_parameter() # 获取未使用方法 unref_sels = unref_selectors(app_path, project_path) # 黑白名单过滤 unref_sels = filtration_list(unref_sels, black_list, white_list) # 打印写入文件 write_to_file(unref_sels)
true
72308ed09c968b3db6f38f5ca92e8814c1d32ce9
Python
VamsiMohanRamineedi/Algorithms
/538. Convert BST to Greater Tree.py
UTF-8
1,541
3.78125
4
[]
no_license
# Convert BST to Greater Tree: Time: O(n), space: O(log n) average case and O(n) worst case # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def __init__(self): self.total = 0 def convertBST(self, root): if root is not None: self.convertBST(root.right) self.total += root.val root.val = self.total self.convertBST(root.left) return root ''' class Solution: def convertBST(self, root: 'TreeNode') -> 'TreeNode': if not root: return root self.sum = 0 # to maintain sum of the nodes on the right side def helper(node): # leaf node, sum will be sum till then plus leaf node value if not node.left and not node.right: self.sum += node.val node.val = self.sum return self.sum # always traverse to the right most node in the tree, which is the largest value in BST if node.right: node.val += helper(node.right) self.sum = node.val if not node.right: node.val += self.sum if node.left: self.sum = node.val return helper(node.left) return self.sum helper(root) return root '''
true
7aa8788a240f74e05010a453615346c0eb7b1a7b
Python
mohitreddy1996/IEEE_Summer_Projects-2015
/IEEE-Applied-Python/merge_sort.py
UTF-8
563
3.015625
3
[]
no_license
import sys def merge(a,p,q,r): n1=q-p+1 n2=r-q L=[0]*(n1) R=[0]*(n2) for i in range(0,n1): L[i]=a[p+i] L.append(sys.maxint) for i in range(0,n2): R[i]=a[q+i+1] R.append(sys.maxint) w=0 e=0 for i in range(p,r+1): if L[w]<R[e]: a[i]=L[w] w=w+1 else: a[i]=R[e] e=e+1 def mergesort(a,p,r): if p<r: q=(p+r)/2 mergesort(a,p,q) mergesort(a,q+1,r) merge(a,p,q,r) data1=raw_input("Enter the array ") data1=data1.split(' ') len1=len(data1) for i in range(0,len1): data1[i]=int(data1[i]) mergesort(data1,0,len1-1) print data1
true
a5aa56d9b5a2d611c63bf64888d0b28262e406f9
Python
yiming1012/MyLeetCode
/LeetCode/递归/779. 第K个语法符号.py
UTF-8
1,153
3.703125
4
[]
no_license
""" 779. 第K个语法符号 在第一行我们写上一个 0。接下来的每一行,将前一行中的0替换为01,1替换为10。 给定行数 N 和序数 K,返回第 N 行中第 K个字符。(K从1开始) 例子: 输入: N = 1, K = 1 输出: 0 输入: N = 2, K = 1 输出: 0 输入: N = 2, K = 2 输出: 1 输入: N = 4, K = 5 输出: 1 解释: 第一行: 0 第二行: 01 第三行: 0110 第四行: 01101001 注意: N 的范围 [1, 30]. K 的范围 [1, 2^(N-1)]. 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/k-th-symbol-in-grammar 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from functools import lru_cache class Solution: def kthGrammar(self, N: int, K: int) -> int: @lru_cache(None) def dfs(n, k): if k == 1: return 0 if n == 1: return 1 if k & 1: return dfs(n - 1, (k + 1) // 2) else: return 1 - dfs(n - 1, k // 2) return dfs(N, K) if __name__ == '__main__': N, K = 2, 2 print(Solution().kthGrammar(N, K))
true
adf0c78ac09a808f316f2db05d20b38db31105cd
Python
Algolytics/dq_client
/dq/response.py
UTF-8
1,191
2.734375
3
[ "Apache-2.0" ]
permissive
# -*- coding: utf-8 -*- import json from .error import DQError class Response: def __init__(self, method, status, content): self.method = method self.status = status self.content = content def is_ok(self): return self.status and int(self.status) < 400 def json(self): return self.result def object(self): return json.loads(self.content) def __repr__(self): return "%s %s" % (self.status, self.content) class from_response(): def __init__(self, clazz=None): self.clazz = clazz def __call__(self, f): def wrapper(*args, **kwargs): response = f(*args, **kwargs) if response.status == 404: return None if not response.is_ok(): raise DQError(status=response.status, message=response.content) obj = response.object() if isinstance(obj, list): return [self.__to_object(item) for item in obj] return self.__to_object(obj) return wrapper def __to_object(self, obj): if self.clazz is None: return obj return self.clazz(**obj)
true
993fbda9136d96d97b2956c35e86932c9f24c2c9
Python
ezradiniz/blockchain-from-scratch
/blockchain.py
UTF-8
702
2.953125
3
[ "MIT" ]
permissive
from block import Block class Blockchain(object): def __init__(self): self.chain = [Block.genesis()] def add_block(self, data): block = Block.mine_block(self.chain[len(self.chain) - 1], data) self.chain.append(block) return block def is_valid_chain(self, chain): genesis = str(Block.genesis()) block_init = str(chain[0]) if genesis != block_init: return False for i in range(1, len(chain)): block = chain[i] last_block = chain[i - 1] if block.last_hash != last_block.cur_hash or block.cur_hash != Block.block_hash(block): return False return True
true
100c35d9f0d8e1acd373668aba11aca7fdd73af6
Python
amoisoo/APPJINYOUNG
/00_doc/test/soup4.py
UTF-8
3,045
2.6875
3
[]
no_license
table = """ <table align="center" class="table mb-0 table-bordered table-sm table-width-80"> <thead> <tr> <th style="width: 19.9197%;">label</th> <th style="width: 19.881%;">한국</th> <th style="width: 19.8809%;">중국</th> <th style="width: 20.0803%;">일본</th> <th style="width: 20.0000%;">인도</th> </tr> </thead> <tbody> <tr> <td style="width: 19.9197%;">10대</td> <td style="width: 19.881%;">11</td> <td style="width: 19.8809%;">21</td> <td style="width: 20.0803%;">31</td> <td style="width: 20.0000%;">41</td> </tr> <tr> <td style="width: 19.9197%;">20대</td> <td style="width: 19.881%;">12</td> <td style="width: 19.8809%;">22</td> <td style="width: 20.0803%;">32</td> <td style="width: 20.0000%;">42</td> </tr> <tr> <td style="width: 19.9197%;">30대</td> <td style="width: 19.881%;">13</td> <td style="width: 19.8809%;">23</td> <td style="width: 20.0803%;">33</td> <td style="width: 20.0000%;">43</td> </tr> <tr> <td style="width: 19.9197%;">40대</td> <td style="width: 19.881%;">14</td> <td style="width: 19.8809%;">24</td> <td style="width: 20.0803%;">34</td> <td style="width: 20.0000%;">44</td> </tr> <tr> <td style="width: 19.9197%;">50대</td> <td style="width: 19.881%;">15</td> <td style="width: 19.8809%;">25</td> <td style="width: 20.0803%;">35</td> <td style="width: 20.0000%;">45</td> </tr> </tbody> </table> <br> """ from bs4 import BeautifulSoup class TABLE: def __init__(self, url = "" ): self.DATA = BeautifulSoup(url, 'html.parser') self.getHEADER = self.DATA.table.thead.tr self.getTABLEBODY = self.DATA.table.tbody.children def getTableHEADER(self): HEADER = self.getHEADER result = [] for index, i in enumerate(HEADER): if (i.name != "th"): continue result.append( i.string ) return result def getTableBODY(self): BODY = self.getTABLEBODY result = [] for index, i in enumerate( BODY ): if ( i.name != "tr" ) : continue try: column = [] for j in i.children : if(j.name == "td"): #print(j.name, j.string) column.append( j.string ) result.append( column ) except:pass return result def get_RAW(self): result = [] result.append( self.getTableHEADER() ) result.append( self.getTableBODY() ) return result def CHART_SINGLE(self): getDATA = self.get_RAW() result = [] for index, i in enumerate(getDATA[1]): result.append( [ i[0], i[1] ] ) print(i[0], i[1]) return result def CHART_PIE(self): getDATA = self.get_RAW() for index, i in enumerate(getDATA[0]): print(i) print( getDATA[1][index] ) DATA = TABLE(table) getList = DATA.CHART_SINGLE()
true
f7a7d3f17025e29f3f032972153ebb99a6b8090f
Python
hyeyeonjung/YONI
/word.py
UTF-8
783
3.953125
4
[]
no_license
word1 = input("글자를 입력하세요.") if (len(word1)==3): while True: word2 = input("글자를 입력하세요.") if(len(word2)==3) and (word2[0]==word1[2]): print("정답입니다.") else: print("오답입니다.",word2[0],word1[2]) break else: print("오답입니다.") print("게임이 끝났습니다.") # while True: # word2 = input("글자를 입력하세요.") # if(len(word2)==3) and (word2[0]==word1[2]): # { # print("정답입니다.") # } # else: # { # print("오답입니다.") # } # break
true
35905d46f31421232959fe1b79fdd44301d1c22c
Python
thomas-rohde/Classes-Python
/exercises/exe81 - 90/exe085.py
UTF-8
275
3.328125
3
[ "MIT" ]
permissive
matriz = [[], [], []] R = list(range(0, 3)) for c in R: for i in R: matriz[c].append(int(input(f'Digite um valor para[{c}, {i}]: '))) print('-' * 30) for d in R: print('(', end=' ') for j in r: print(f'[{matriz[d][j]:^5}]', end=' ') print(')')
true
061e688a1067fdf6bd4bf4babca62e155c4947f3
Python
zhuchangzhan/SEAS
/deprecated/atmosphere_effects/mixing_ratio_generator.py
UTF-8
4,966
2.71875
3
[ "MIT" ]
permissive
#!/usr/bin/env python # # Copyright (C) 2017 - Massachusetts Institute of Technology (MIT) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ This is a logistic module that generates the mixing ratio files This module does not handle the physics and chemistry that goes into determining the actual mixing ratio of the atmosphere Currently have added constant, increasing and decreasing ratios but how do you handle some more complex variable mixing ratios? How should they be loaded and interpreted? """ import os import sys import numpy as np from SEAS_Utils import to_float from SEAS_Utils.common_utils.data_saver import check_file_exist, check_path_exist class mixing_ratio_generator(): def __init__(self, ratio_input, filler = True, filler_molecule = "N2", pressures = [100000,10000,1000,100,10,1,0.1,0.01,0.001,0.0001,0.00001], path = "../../input/atmosphere_data/Mixing_Ratio", name = "Temp.txt", overwrite = False ): self.ratio_input = ratio_input self.filler = filler self.filler_molecule = filler_molecule self.pressures = pressures self.path = path self.name = name self.overwrite = overwrite def generate(self): # create pressures self.data = [["Pressure"]] for P in self.pressures: self.data.append([str(P)]) Surface_Pressure = self.pressures[0] # add each molecules for Molecule in self.ratio_input: self.data[0].append(Molecule) Surface_Ratio = to_float(self.ratio_input[Molecule]["Surface_Ratio"]) Type = self.ratio_input[Molecule]["Type"] Transition = self.ratio_input[Molecule]["Transition"] Start_Pressure = to_float(self.ratio_input[Molecule]["Start_Pressure"]) End_Pressure = to_float(self.ratio_input[Molecule]["End_Pressure"]) End_Ratio = to_float(self.ratio_input[Molecule]["End_Ratio"]) for j,pres in enumerate(self.pressures): if Type == "constant": self.data[j+1].append(str(Surface_Ratio)) elif Type in ["decrease","increase"]: if pres >= Start_Pressure: self.data[j+1].append(str(Surface_Ratio)) elif pres <= End_Pressure: self.data[j+1].append(str(End_Ratio)) else: current = Surface_Ratio+(End_Ratio-Surface_Ratio)*(1-np.log10(pres/End_Pressure)/np.log10(Start_Pressure/End_Pressure)) self.data[j+1].append(str(current)) # assuming single filler for now if self.filler: if self.filler_molecule in self.data[0]: print "Simulation Terminated" print "Filler Molecule %s already in simulation molecules"%self.filler_molecule print "Please remove filler from list or select a new filler" sys.exit() self.data[0].append(self.filler_molecule) for k,ratio in enumerate(self.data[1:]): total_ratio = sum([float(x) for x in ratio[1:]]) if total_ratio > 100: print "Total Mixing Ratio exceed maximum, check mixing ratio generation" print self.data[0] print ratio sys.exit() self.data[k+1].append(str(100-total_ratio)) print "Mixing Ratio File Generated!" return self.data def save(self): check_path_exist(self.path) save_path = os.path.join(self.path,self.name) check_file_exist(save_path) with open(save_path,"w") as file: for i,info in enumerate(self.data): file.write(" ".join(info)) if i == len(self.data)-1: break file.write("\n") print "Mixing Ratio file saved to %s"%save_path
true
af655f62c6045848b8621c62f26802f557e63902
Python
Hamitay/MO443
/trab4/ex1.py
UTF-8
3,559
3.234375
3
[]
no_license
import numpy as np import cv2 from matplotlib import pyplot as plt # Loads the image in grayscale def load_image(): img_path = "img/bitmap.pbm" return cv2.imread(img_path, 0) def display_image(img, img_title): # Converts to unsigned 8 bit int #abs_img = cv2.convertScaleAbs(img) cv2.imwrite(f'{img_title}.jpg', img) #cv2.imshow(img_title, abs_img) def end_program(): # Cleans images cv2.waitKey(0) cv2.destroyAllWindows() def createKernel(height, width): return np.ones((height, width)) def dilate(img, kernel): return cv2.dilate(img, kernel, iterations=1) def erode(img, kernel): return cv2.erode(img, kernel, iterations=1) def close(img, kernel): return cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) def connected_component(img): return cv2.connectedComponents(img) img = load_image() display_image(img, 'Imagem Original em jpg') #Invert the image img = (255 - img) display_image(img, 'Imagem Negativada') # Step 1 kernel = createKernel(1, 100) step_1 = dilate(img, kernel) display_image(step_1, 'Passo 1 Dilatação - Elemento Estruturante 100x1') # Step 2 step_2 = erode(step_1, kernel) display_image(step_2, 'Passo 2 Erosão - Elemento Estruturante 100x1') # Step 3 kernel = createKernel(200, 1) step_3 = dilate(img, kernel) display_image(step_3, 'Passo 3 Dilatação - Elemento Estruturante 1x200') # Step 4 step_4 = erode(step_3, kernel) display_image(step_4, 'Passo 4 Erosão - Elemento Estruturante 1x200') # Step 5 step_5 = step_2 & step_4 display_image(step_5, 'Passo 5 Operação AND - Passos 2 e 4') # Step 6 kernel = createKernel(1, 30) step_6 = close(step_5, kernel) display_image(step_6, 'Passo 6 Fechamento - Passo 5') # Step 7 ret, labels = connected_component(step_6) total_size = img.size text_rectangles = [] word_rectangles = [] display_image(img, 'Componentes Conexos e suas Labels') for label in range(1,ret): mask = np.array(labels, dtype=np.uint8) # Make our connected component white mask[mask != label] = 0 mask[labels == label] = 255 #Get the rectangle and find the component in the original image contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] (x,y,w,h) = cv2.boundingRect(contours[0]) rectangle = img[y:y+h,x:x+w] # Count number of white pixels (black in original image) num_white = np.count_nonzero(rectangle == 255) ratio = num_white/(w*h) # Use empyrical ration to find word lines has_word = ratio < 0.52 and ratio > 0.1 # If it has words we separate them if has_word: text_rectangles.append((x,y,w,h)) # Count number of words # Dilate and close to aggroup the words kernel = createKernel(10, 10) step_1 = dilate(rectangle, kernel) step_2 = close(step_1, createKernel(2,2)) word_ret, word_labels = connected_component(step_2) for word_label in range(1, word_ret): word_mask = np.array(word_labels, dtype=np.uint8) word_mask[word_mask != word_label] = 0 word_mask[word_labels == word_label] = 255 #Get the rectangle and find the component in the original image word_contours = cv2.findContours(word_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1] (wx,wy,ww,wh) = cv2.boundingRect(word_contours[0]) word_rectangles.append((wx+x, wy+y, ww, wh)) for rectangle in word_rectangles: x,y,w,h = rectangle img = cv2.rectangle(img, (x,y), (x+w, y+h), (255, 255, 255), 2) display_image(img, 'Componentes Conexos de Palavras de Texto') end_program()
true
72be3a8c34b2150c044de316d99af5f41ef893fb
Python
AlvarocJesus/Exercicios_Python
/AulaTeorica/exerciciosModulos/exercicio2/pitagoras.py
UTF-8
98
2.625
3
[]
no_license
from math import sqrt def pitagoras(cateto1, cateto2): return sqrt(((cateto1**2)+(cateto2**2)))
true
e918bde3c6fa82fe08670d907c895751bebef139
Python
Todorovikj/InstagramScraper
/index.py
UTF-8
5,393
2.65625
3
[]
no_license
from selenium import webdriver from time import sleep from bs4 import BeautifulSoup import os import requests import shutil from xlsxwriter import Workbook # advice: use delays to avoid getting blocked, try torrequest for changing your IP # driver.switch_to.window(driver.window_handles[1]) changig active tab in driver chrome chromePath="D:\\neco skola i rabota\\rabota\\learning dollars\\ChromeDriver\\chromedriver" class App: def __init__(self,username='leposava10.02',password='WebScraper',targetUser='lence1970',path="D:\\neco skola i rabota\\rabota\\learning dollars\\instaScrape"): self.username=username self.password=password self.targetUser=targetUser self.path=path self.driver=webdriver.Chrome("D:\\neco skola i rabota\\rabota\\learning dollars\\ChromeDriver\\chromedriver") self.driver.get("https://instagram.com") self.error=False self.logIn() if self.error is False: self.openTargetProfile() if self.error is False: self.scrollDown() if not os.path.exists(path) and self.error is False: os.mkdir(path) if self.error is False: self.downloadImages() if self.error is False: self.getCaptions() print("Scraper has finished scraping!!!") self.driver.close() def getCaptions(self): try: file=Workbook(self.path+"\\captions.xlsx") worksheet=file.add_worksheet() sleep(2) soup=BeautifulSoup(self.driver.page_source,'lxml') allImgs=soup.find_all('div',attrs={'class':['v1Nh3','kIKUG',' _bz0w']}) for index,img in enumerate(allImgs): link="https://instagram.com"+img.a['href'] self.driver.get(link) sleep(2) #wait for content to load soup=BeautifulSoup(self.driver.page_source,'lxml') try: caption=soup.find('div',attrs={'class':'C4VMK'}).span.string except Exception: caption="No caption available" i=index+1 #because profile photo downloaded has index 0 imgTxt='image'+str(i)+'.jpg' worksheet.write(index,0,imgTxt) worksheet.write(index,1,caption) except Exception: print("getCaptions Exception") self.error=True finally: file.close() # you must close the file def downloadImages(self): try: sleep(2) soup=BeautifulSoup(self.driver.page_source,'lxml') allImgs=soup.find_all('img') print(len(allImgs)) for index,img in enumerate(allImgs): fileName="image"+str(index)+".jpg" imagePath=os.path.join(self.path,fileName) link = img['src'] response=requests.get(link,stream=True) print("downloading image:"+str(index)) try: with open(imagePath,'wb') as file: shutil.copyfileobj(response.raw,file) except Exception: self.error=True print("Error writing to disk") except Exception: self.error=True print("error while downloading") def scrollDown(self): try: sleep(2) nPosts=self.driver.find_element_by_class_name("g47SY") nPosts=str(nPosts.text).replace(',',"") #for bigger numbers nPosts=int(nPosts) self.nPosts=nPosts if(self.nPosts>12): nScrolls=int(self.nPosts/12)+3 for val in range(nScrolls): #print(val) self.driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') sleep(1) except Exception: self.error=True print("Problem with scroll down") def openTargetProfile(self): try: sleep(1) #it's better to wait 1s than having a bug searchBar=self.driver.find_element_by_xpath("//input[@placeholder='Search']") searchBar.send_keys(self.targetUser) sleep(1) #wait for results to show up targetUrl="https://instagram.com/"+self.targetUser+"/" self.driver.get(targetUrl) sleep(3) except Exception: self.error=True print("Openning profile error") def logIn(self): try: sleep(1) loginBtn=self.driver.find_element_by_link_text("Log in") loginBtn.click() sleep(3) #must sleep, because it needs some time to load the page !!! userNameTxt=self.driver.find_element_by_xpath("//input[@name='username']") passTxt=self.driver.find_element_by_xpath("//input[@name='password']") userNameTxt.send_keys(self.username) passTxt.send_keys(self.password) passTxt.submit() sleep(2) #wait page to load notNowBtn=self.driver.find_element_by_xpath("//button[@class='aOOlW HoLwm ']") # do not turn on notifications notNowBtn.click() except Exception: self.error=True print("Log in error") if __name__=='__main__': app=App()
true
24b2f1475308cfeec8c77eeda05c8697c3634196
Python
brodyzt/Testing
/Classes.py
UTF-8
350
3.125
3
[]
no_license
'''__author__ = 'brodyzt' class Car: def __init__(self): self.color = None def printColor(self): print(self.color) myCar = Car() myCar.color = "Red" myCar.printColor()''' class Test: def __init__(self): self.structure = [1,2,3,4,5] def __iter__(self): return self.structure mine = Test() print()
true
a214f79eb13e3c04080a666390e7216d23e0d9a8
Python
Raision-seudun-koulutuskuntayhtyma/Painonhallinta
/sanity2.py
UTF-8
4,499
3.34375
3
[ "CC0-1.0" ]
permissive
# Tiivistetty versio Sanity.py-modulista eli suurinpiirtein se, mitä tuhosin vahingossa def liukuluvuksi(syote): """Tarkistaa syötteen ja muuttaa sen liukuluvuksi Args: syote (string): Käyttäjän syöttämä arvo Returns: list: virhekoodi, virhesanoma ja syöte liukulukuna """ # Asetetaan palautusarvojen oletukset virhekoodi = 0 virhesanoma = 'Syöte OK' arvo = 0 # Puhdistetaan syöte ylimääräisistä merkeistä (Whitespace) syote = syote.strip() # Selvitetään sisältääko syöte mahdollisen desimaalipilkun ja korvataan se pisteellä if syote.find(',') != -1: syote = syote.replace(',', '.') # Selvitetään sisältääkö syöte desimaalipisteen ja jaetaan syöte pisteen kohdalta useammaksi merkkijonoksi if syote.find('.') != -1: osat = syote.split('.') # Selvitetään onko osia enemmän kuin 2, eli onko useita pisteitä if len(osat) > 2: virhekoodi = 1 virhesanoma = 'Syöte sisältää useita erottimia. Vain yksi arvo on sallittu' # Jos osia on 2 else: osa = str(osat[0]) # Jos ensimmäinen osa on numeerinen ts. ei sisällä muita merkkejä kuin 0...9 if osa.isnumeric(): osa = str(osat[1]) # Jos toinenkin osa on numeerinen if osa.isnumeric(): arvo = float(syote) else: virhekoodi = 4 virhesanoma = 'Desimaalierottimen jälkeen ylimääräisiä merkkejä: vain numerot ja desimaalipiste on sallittu' else: virhekoodi = 3 virhesanoma = 'Ennen desimaalierotinta ylimääräisiä merkkejä: vain numerot ja desimaalipiste on sallittu' # Tarkistetaan onko desimaaliton syöte numeerista elif syote.isnumeric(): arvo = float(syote) else: virhekoodi = 2 virhesanoma = 'Syötteessä ylimäärisiä merkkejä: vain numerot ja desimaalipiste tai pilkku on sallittu' # Muodostetaan funktion paluuarvo ja palautetaan se paluuarvo = [virhekoodi, virhesanoma, arvo] return paluuarvo # Funktio, jolla tarkistetaan, että syötetty arvo on haluttujen rajojen sisällä def rajatarkistus(arvo, alaraja, ylaraja): """Tarkistaa, että syötetty arvo on suurempi tai yhtäsuuri kuin alaraja ja pienempi tai yhtäsuuri kuin yläraja Args: arvo (float): tarkistettava arvo alaraja (float): pienin sallittu arvo ylaraja (float): suurin sallittu arvo Returns: list: virhekoodi, virheilmoitus """ # Määritellään virheiden oletusarvot virhekoodi = 0 virhesanoma = 'Arvo OK' # Arvo alle alarajan if arvo < alaraja: virhekoodi = 1 virhesanoma = 'Arvo on alle alarajan (' + str(alaraja) + ')' # Arvo yli ylärajan if arvo > ylaraja: virhekoodi = 2 virhesanoma = 'Arvo on yli ylärajan (' + str(ylaraja) + ')' # Paluuarvon määritys ja palautus paluuarvo = [virhekoodi, virhesanoma] return paluuarvo # TODO: Tähän funktio, jolla tarkistetaan, että syöte on tekstiä # Funktioiden testaus if __name__ == '__main__': # 1. Syötteen tarkistus, syöte oikein syote = '123.5' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # 2. Syötteessä desimaalipilkku, muuten oikein syote = '123,5' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # 3. Syötteessä useita osia syote = '12.3.2' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # 4. Syöttessä alussa tekstiä syote = 'paino 75.4' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # 5. Syötteen lopussa tekstiä syote = '75.4 kg' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # Syöte kokonaisuudessaan tekstiä syote = 'sataviisi' print('Syöte:', syote, 'Tulokset: ', liukuluvuksi(syote)) # Rajatarkistukset alaraja = 1 ylaraja = 3 # 1. Rajojen sisällä arvo = 1.8 print('Arvo:', arvo, 'Tulokset:', rajatarkistus(arvo, alaraja, ylaraja)) # 2. Alle alarajan arvo = 0.8 print('Arvo:', arvo, 'Tulokset:', rajatarkistus(arvo, alaraja, ylaraja)) # 3. Yli ylärajan arvo = 3.8 print('Arvo:', arvo, 'Tulokset:', rajatarkistus(arvo, alaraja, ylaraja))
true
2ca1528f4f380a64b8ff64b2e603a15b93c82b47
Python
Tatyana-jl/TrialTests
/Futurealms/test.py
UTF-8
531
3.09375
3
[]
no_license
import numpy matrica = numpy.random.random_integers(0, 9, (10,10,10)) coordinate=0 for x in range(0,len(matrica)): while coordinate==0: for y in range(0,len(matrica)): while coordinate==0: for z in range(0,len(matrica)): if matrica[x][y][z]==0: coordinate=[x,y,z] print ("N of column х:",coordinate[0]) print ("N of column y:",coordinate[1]) print ("N of column z:",coordinate[2]) print ("Intersection point",coordinate)
true
ba5f2fbf438d1a1912f56fc84ab67449674742de
Python
xiao2mo/script-python
/linelength/length.py
UTF-8
156
2.65625
3
[]
no_license
import os import sys with open(sys.argv[1]) as fin: lines = fin.readlines() lines.sort(key=lambda x:len(x)) for line in lines: print line.rstrip("\n")
true
6689b16caaab4cdee458b139be95eca903cbc7e7
Python
koushik1330/Emails_Classifications_using_ClassificationMachineLearingAlgorithms
/Emails-Classification-UsingSupervisedLeraningTechniques/4. Email Classification using Ada Boost Classifier.py
UTF-8
1,188
3.5625
4
[]
no_license
""" Using an Ada Boost Classifier to identify emails by their authors authors and labels: Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("C:\\Users\\satyam\\Desktop\\MajorProject Final\\Emails-Classification-UsingSupervisedLeraningTechniques\\") from email_preprocess import preprocess from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() # defining the classifier clf = AdaBoostClassifier(n_estimators=100, random_state=0) #predicting the time of train and testing t0 = time() clf.fit(features_train, labels_train) print("\nTraining time:", round(time()-t0, 3), "s\n") t1 = time() pred = clf.predict(features_test) print("Predicting time:", round(time()-t1, 3), "s\n") #calculating and printing the accuracy of the algorithm print("Accuracy of Ada Boost Classifier: ", accuracy_score(pred,labels_test))
true
2412217f8dbe3c5a81b25ed7083ae24a78547b89
Python
canadaduane/sydney-m4
/rtaparser.py
UTF-8
1,820
2.828125
3
[]
no_license
import csv import datetime rhCSV = csv.reader(open('RTAData.csv')) # read in the data whf = open('lcb_submit2.csv','w') # create a file where the entry will be saved wh = csv.writer(whf, lineterminator='\n'); date_format = "%Y-%m-%d %H:%M" timeStamp = ["2010-08-03 10:28","2010-08-06 18:55","2010-08-09 16:19","2010-08-12 17:22","2010-08-16 12:13","2010-08-19 17:43","2010-08-22 10:19","2010-08-26 16:16","2010-08-29 15:04","2010-09-01 09:07","2010-09-04 09:07","2010-09-07 08:37","2010-09-10 15:46","2010-09-13 18:43","2010-09-16 07:40","2010-09-20 08:46","2010-09-24 07:25","2010-09-28 08:01","2010-10-01 13:04","2010-10-05 09:22","2010-10-08 16:43","2010-10-12 18:10","2010-10-15 14:19","2010-10-19 17:16","2010-10-23 10:28","2010-10-26 19:34","2010-10-29 11:34","2010-11-03 17:49","2010-11-07 08:01"]; # an Array with the cut-off points forecastHorizon = [1,2,3,4,6,8,24,48,72,96]; # forecast horizon in multiples of 15 minutes cutoff_times = set() for t in timeStamp: cutoff_times.add(datetime.datetime.strptime(t, date_format)) header = next(rhCSV) # extract the header first wh.writerow([""] + header[1:]) for data in rhCSV: # loop through the each remaining line current_date = datetime.datetime.strptime(data[0], date_format) if current_date in cutoff_times: # for each forecast horizon write the cut-off travel # time as the forecast (the definition of Naive) for i in forecastHorizon: # calculate the prediction's datetime nextDate = current_date + datetime.timedelta(minutes=15*i) dateStr = datetime.datetime.strftime(nextDate, date_format) # write the timestamp and predictions to the first column of the CSV wh.writerow([dateStr] + data[1:]) # Done whf.close()
true
6bf32a0aca46a61ce6ad18a2cdbfc6d199710eda
Python
saratiedt/python-exercises
/semana 3/ImparPar.py
UTF-8
242
3.375
3
[]
no_license
total = [9,5,6,4,8,12,11,15,0,1,3,2] impar = [] par = [] for i in range(len(total)): if total[i] % 2 == 0: par.append(total[i]) else: impar.append(total[i]) print(f'Total: {total}') print(f'Par: {par}') print(f'Impar: {impar}')
true
a64c2f84dfa6de9294ceaf7a7d8a26e5b4ff31f6
Python
hixio-mh/PUBGMovieDelete
/Test Fragments/Menu.py
UTF-8
260
3.03125
3
[]
no_license
print("Choose and option from the following:") print("[1] Auto detect game files") print("[2] Use the location from path.txt") option = input() if int(option) == 1: print("eureka") input("Press ENTER to terminate this program") raise SystemExit(0)
true
514ed702121bed7423f64361575a3f5385320cf9
Python
hffan/yjy015_prj
/element_opt/read_sta_mag_1m.py
UTF-8
5,454
2.59375
3
[]
no_license
#--coding:utf-8-- # date: 2019-08-14 # function: read Real-time Interplanetary Magnetic Field Values sampled once per minute import os import sys import time import calendar import datetime import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates matplotlib.rcParams['xtick.direction'] = 'in' matplotlib.rcParams['ytick.direction'] = 'in' def read_data(fullpath): data={} if not os.path.exists(fullpath): return data fh=open(fullpath) for line in fh.readlines()[0:20]: print(line.strip()) fh=open(fullpath) MissingVal=-999.9 for line in fh.readlines()[20:]: lineList=list(line.strip().split()) YR=int(lineList[0]) MO=int(lineList[1]) DA=int(lineList[2]) HH=int(lineList[3][0:2]) MM=int(lineList[3][2:]) Day=int(lineList[4]) Sec=int(lineList[5]) S=int(lineList[6]) # BR=float(lineList[7])if float(lineList[7])!=MissingVal else np.nan # BT=float(lineList[8])if float(lineList[8])!=MissingVal else np.nan # BN=float(lineList[9])if float(lineList[9])!=MissingVal else np.nan # Btotal=float(lineList[10])if float(lineList[10])!=MissingVal else np.nan # lat=float(lineList[11])if float(lineList[11])!=MissingVal else np.nan # lon=float(lineList[12])if float(lineList[12])!=MissingVal else np.nan BR=float(lineList[7]) BT=float(lineList[8]) BN=float(lineList[9]) Btotal=float(lineList[10]) lat=float(lineList[11]) lon=float(lineList[12]) timeStamp=datetime.datetime(YR,MO,DA,HH,MM) strTimeStamp=timeStamp.strftime('%Y-%m-%d %H:%M') format='%s'+3*'%6d'+6*'%10.2e' # print(format%(strTimeStamp,Day,Sec,S,BR,BT,BN,Btotal,lat,lon)) # 绘图 # data[timeStamp]={ # 'S': S, # 'BR': BR, # 'BT': BT, # 'BN': BN, # 'Btotal': Btotal, # 'Lat':lat, # 'Lon':lon, # 'website':'SWPC', # 'category_abbr_en': 'SWPC_STEA_mag',} # 入库 data[strTimeStamp]={ 'S': S, 'BR': BR, 'BT': BT, 'BN': BN, 'Btotal': Btotal, 'Lat':lat, 'Lon':lon, 'website':'SWPC', 'category_abbr_en': 'SWPC_STEA_mag',} return data def plot_data(res): if data=={}: return timeStampArr=[] BxArr,ByArr,BzArr,BtArr,latArr,lonArr=[],[],[],[],[],[] for key in data.keys(): timeStamp=key BR=data[key]['BR'] Btotal=data[key]['Btotal'] BN=data[key]['BN'] Btotal=data[key]['Btotal'] timeStampArr.append(timeStamp) BxArr.append(BR) ByArr.append(Btotal) BzArr.append(BN) BtArr.append(Btotal) font={ 'family':'Times New Roman',\ 'style':'normal',\ 'weight':'normal',\ 'color':'black',\ 'size':12 } plt.figure(figsize=(8, 6), dpi=150) ax1 = plt.subplot(4,1,1) plt.plot(timeStampArr, BxArr,'-.') plt.xlim([timeStampArr[0],timeStampArr[-1]+datetime.timedelta(minutes=1)]) plt.ylim([-10,10]) plt.xlabel('UT',fontdict=font) plt.ylabel('BR',fontdict=font) plt.tick_params(labelsize=10) labels = ax1.get_xticklabels() + ax1.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] plt.title('Real-time Interplanetary Magnetic Field Values sampled once per minute',fontdict=font) plt.grid() ax1 = plt.subplot(4,1,2) plt.plot(timeStampArr, ByArr,'-.') plt.xlim([timeStampArr[0],timeStampArr[-1]+datetime.timedelta(minutes=1)]) plt.ylim([-10,10]) plt.xlabel('UT',fontdict=font) plt.ylabel('Btotal',fontdict=font) plt.tick_params(labelsize=10) labels = ax1.get_xticklabels() + ax1.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] plt.grid() ax1 = plt.subplot(4,1,3) plt.plot(timeStampArr, BzArr,'-.') plt.xlim([timeStampArr[0],timeStampArr[-1]+datetime.timedelta(minutes=1)]) plt.ylim([-10,10]) plt.xlabel('UT',fontdict=font) plt.ylabel('BN',fontdict=font) plt.tick_params(labelsize=10) labels = ax1.get_xticklabels() + ax1.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] plt.grid() ax1 = plt.subplot(4,1,4) plt.plot(timeStampArr, BtArr,'-.') plt.xlim([timeStampArr[0],timeStampArr[-1]+datetime.timedelta(minutes=1)]) plt.ylim([0,10]) plt.xlabel('UT',fontdict=font) plt.ylabel('Btotal',fontdict=font) plt.tick_params(labelsize=10) labels = ax1.get_xticklabels() + ax1.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] plt.grid() plt.savefig('sta_mag.png') plt.show() if __name__ == '__main__': # 1,获取文件全路径 cwd = os.getcwd() filename='sta_mag_1m.txt' fullpath=cwd+'/'+filename # 2,读取数据 data=read_data(fullpath) # 3,绘制图像 plot_data(data)
true
9ab297b34eeafe35a4680a37bf1ae52dbf9d35ee
Python
TARENTOO/DUB
/dub/main.py
UTF-8
1,328
2.65625
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # Módulos import sys, os sys.path.append(os.path.abspath("..")) import pygame from pygame.locals import * from dub import images from dub import objetos WIDTH = 400 HEIGHT = 128 IMAGES = os.path.abspath(".") + "\imagenes" # Constantes # Clases # --------------------------------------------------------------------- # --------------------------------------------------------------------- # Funciones # --------------------------------------------------------------------- # --------------------------------------------------------------------- def main(): screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("Dub game") background = images.load_image(IMAGES + "\mountains.png") valdemar = objetos.Player("Valdemar") clock = pygame.time.Clock() while True: time = clock.tick(60) keys = pygame.key.get_pressed() for eventos in pygame.event.get(): if eventos.type == QUIT: sys.exit(0) valdemar.gravedad(time) valdemar.actualizar(time, keys) screen.blit(background, (0, 0)) screen.blit(valdemar.image, valdemar.rect) pygame.display.flip() return 0 if __name__ == '__main__': pygame.init() main()
true