blob_id
stringlengths 40
40
| language
stringclasses 1
value | repo_name
stringlengths 5
133
| path
stringlengths 2
333
| src_encoding
stringclasses 30
values | length_bytes
int64 18
5.47M
| score
float64 2.52
5.81
| int_score
int64 3
5
| detected_licenses
listlengths 0
67
| license_type
stringclasses 2
values | text
stringlengths 12
5.47M
| download_success
bool 1
class |
|---|---|---|---|---|---|---|---|---|---|---|---|
79a1048e696bcf2331711d32b09d8dd009c014f7
|
Python
|
jasonwyse2/marketmaker
|
/marketmaker/Sqlite3.py
|
UTF-8
| 7,760
| 2.671875
| 3
|
[] |
no_license
|
import sqlite3
from marketmaker.tool import get_local_datetime
import pandas as pd
class Sqlite3:
tableName = 'bitasset_order'
def __init__(self, dataFile=None):
if dataFile is None:
self.conn = sqlite3.connect(":memory:")
else:
try:
self.conn = sqlite3.connect(dataFile,check_same_thread=False)
except sqlite3.Error as e:
print("连接sqlite数据库失败:", e.args[0])
self.create_table()
def getcursor(self):
return self.conn.cursor()
def drop(self, table):
'''
if the table exist,please be carefull
'''
if table is not None and table != '':
cu = self.getcursor()
sql = 'DROP TABLE IF EXISTS ' + table
try:
cu.execute(sql)
except sqlite3.Error as why:
print("delete table failed:", why.args[0])
return
self.conn.commit()
print("delete table successful!")
cu.close()
else:
print("table does not exist!")
def create_table(self,):
'''
create databaseOperation table
:param sql:
:return:
'''
tableName = self.tableName
sql = 'create table if not exists '+tableName+' (' \
'userId Int,' \
'orderId CHAR(100),' \
'datetime CHAR(50)' \
')'
if sql is not None and sql != '':
cu = self.getcursor()
try:
cu.execute(sql)
except sqlite3.Error as why:
print("create table failed:", why.args[0])
return
self.conn.commit()
print("create table successful!")
cu.close()
else:
print("sql is empty or None")
def insert(self, userId,orderId):
'''
insert data to the table
:param sql:
:param data:
:return:
'''
datetime = get_local_datetime()
sql = 'INSERT INTO ' + self.tableName + '(userId,orderId,datetime) values (?,?,?)'
if sql is not None and sql != '':
if orderId !='':
cu = self.getcursor()
try:
# for orderId in orderId_list:
cu.execute(sql, [userId,orderId,datetime]) #if 'd' is an element, you should use [d]
self.conn.commit()
except sqlite3.Error as why:
print("insert data failed:", why.args[0])
cu.close()
else:
print("sql is empty or None")
def fetch_specific_num(self,userId, num,sql=''):
'''
query all data
:param sql:
:return:
'''
if sql == '':
sql = 'SELECT orderId FROM ' + self.tableName +' where userId=? order by datetime limit ?'
if sql is not None and sql != '':
cu = self.getcursor()
content = None
try:
cu.execute(sql,[userId,num])
content = cu.fetchall()
except sqlite3.Error as why:
print("fetchall data failed:", why.args[0])
cu.close()
return content
else:
print("sql is empty or None")
def fetch_by_userId(self,userId, num,sql=''):
'''
query all data
:param sql:
:return:
'''
if sql == '':
sql = 'SELECT * FROM ' + self.tableName +' where userId=? order by orderId limit ?'
if sql is not None and sql != '':
cu = self.getcursor()
content = None
try:
cu.execute(sql,[userId,num])
content = cu.fetchall()
except sqlite3.Error as why:
print("fetchall data failed:", why.args[0])
cu.close()
return content
else:
print("sql is empty or None")
def fetchall(self, sql=''):
'''
query all data
:param sql:
:return:
'''
if sql=='':
# sql = 'SELECT * FROM ' + self.tableName+ ' order by orderId'
sql = 'SELECT * FROM ' + self.tableName
if sql is not None and sql != '':
cu = self.getcursor()
content = None
try:
cu.execute(sql)
content = cu.fetchall()
except sqlite3.Error as why:
print("fetchall data failed:", why.args[0])
cu.close()
return content
else:
print("sql is empty or None")
def update(self, sql, data):
'''
update the data
:param sql:
:param data:
:return:
'''
if sql is not None and sql != '':
if data is not None:
cu = self.getcursor()
try:
for d in data:
cu.execute(sql, d)
self.conn.commit()
except sqlite3.Error as why:
print("update data failed:", why.args[0])
cu.close()
else:
print ("sql is empty or None")
def delete(self, sql, data=None):
'''
delete the data
:param sql:
:param data:
:return:
'''
if sql is not None and sql != '':
cu = self.getcursor()
if data is not None:
try:
for d in data:
cu.execute(sql, d)
self.conn.commit()
except sqlite3.Error as why:
print("delete data failed:", why.args[0])
else:
try:
cu.execute(sql)
self.conn.commit()
except sqlite3.Error as why:
print ("delete data failed:", why.args[0])
cu.close()
else:
print ("sql is empty or None")
def delete_by_userId_orderIdlist(self, userId, orderId_list):
sql = 'delete from ' + self.tableName + ' where userId=? and orderId= ?'
for i in range(len(orderId_list)):
cu = self.getcursor()
try:
cu.execute(sql, [userId, orderId_list[i]])
self.conn.commit()
except sqlite3.Error as why:
print("delete data failed:", why.args[0])
def delete_all(self,):
sql = 'delete from '+self.tableName
cu = self.getcursor()
cu.execute(sql)
self.conn.commit()
cu.close()
def __del__(self):
self.conn.close()
if __name__ == "__main__":
# sql3 = Sqlite3(dataFile='/mnt/data/bitasset/bitasset.sqlite')
sql3 = Sqlite3(dataFile="/mnt/data/bitasset/bitasset.sqlite")
# userId = 123
# orderId_list = ['33444','2234']
# datetime = '3232-23-23 12:34:23'
# sql3.insert(userId,orderId_list,datetime)
res = sql3.fetchall()
# res = sql3.fetch_specific_num(userId=666849,num=10)
df = pd.DataFrame(res)
print(df)
print('fetch number',len(res))
# print('before delete',res)
# sql3.delete_orders_by_userIdOrderId(userId=userId, orderId_list=['33444'])
# res = sql3.fetchall()
# print('after delete',res)
| true
|
0aee5db8462a9f50bb266c894f0028cc3e72e015
|
Python
|
JohanCamiloL/general-algorithms
|
/linear-search/python/linear-search.py
|
UTF-8
| 507
| 4.53125
| 5
|
[] |
no_license
|
def linearSearch(array, value):
"""
Linear search algorithm implementation.
Parameters
----------
array: list
List of elements where search will be made.
value: int
Value to be searched.
Return
------
int
Element index on array, if not found returns -1.
"""
for i in range(len(array)):
if array[i] == value:
return i
return -1
array = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
value = 5
print(linearSearch(array, value))
| true
|
2c020bac5633736175928bfe17fed75cb945abf6
|
Python
|
esuteau/car_behavioral_cloning
|
/model.py
|
UTF-8
| 6,803
| 2.859375
| 3
|
[] |
no_license
|
import csv
import os
import cv2
import numpy as np
import sklearn
import random
from keras.models import Sequential
from keras.layers import Flatten, Dense, Activation, Dropout
from keras.layers import Convolution2D, Cropping2D
from keras.layers.pooling import MaxPooling2D
from keras.layers.core import Lambda
from keras.preprocessing.image import img_to_array, load_img
import matplotlib.pyplot as plt
def ReadCsvLogFile(csv_path):
"""Read the CSV driving log created from the Udacity Simulator."""
samples = []
with open(csv_path) as csvfile:
reader = csv.reader(csvfile)
header = reader
for idx, line in enumerate(reader):
if idx > 0:
samples.append(line)
return samples
def GetImageShape():
return (160, 320, 3)
def PlotDataForDebugging(image_folder, samples):
"""Plot data for the debuggin"""
nb_samples = len(samples)
col_names = ['center', 'left', 'right']
random.shuffle(samples)
images = []
for n in range(0, 2):
batch_sample = samples[n]
for col, camera in enumerate(col_names):
# Parse Windows/Linux Filenames
split_char = '/'
if '\\' in batch_sample[col]:
split_char = '\\'
img_name = batch_sample[col].split(split_char)[-1]
# Load Image
image = cv2.imread(image_folder + img_name)
images.append(image)
# PLot Original Images
plt.figure()
for n_image, image in enumerate(images):
plt.subplot(2, 3, n_image+1)
plt.axis("off")
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Flip if necessary Original Images
plt.figure()
images_flip = []
for n_image, image in enumerate(images):
# Apply Horizontal Flip Randomly on the data.
# Reverse the steering angle in this case
flip_img = random.random() > 0.5
if flip_img:
image = cv2.flip(image, 1)
images_flip.append(image)
plt.subplot(2, 3, n_image+1)
plt.axis("off")
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Crop Images
plt.figure()
for n_image, image in enumerate(images_flip):
# Simulate cropping, just for the writeup
image_cropped = image[65:135,:,:]
plt.subplot(2, 3, n_image+1)
plt.axis("off")
plt.imshow(cv2.cvtColor(image_cropped, cv2.COLOR_BGR2RGB))
# Show all figures
plt.show()
def GetDataFromGenerator(image_folder, samples, batch_size=36):
"""Returns batches of center, left and right camera images using a generator.
Randomly flips the images horizontally to remove steering bias and generalize the data."""
nb_samples = len(samples)
col_names = ['center', 'left', 'right']
angle_correction = 0.15
camera_correction = {'center': 0, 'left': angle_correction, 'right': -angle_correction}
batch_size_triplet = batch_size // 3
while 1:
random.shuffle(samples)
for offset in range(0, nb_samples, batch_size_triplet):
batch_samples = samples[offset:offset+batch_size_triplet]
images, angles = [], []
for batch_sample in batch_samples:
for col, camera in enumerate(col_names):
# Parse Windows/Linux Filenames
split_char = '/'
if '\\' in batch_sample[col]:
split_char = '\\'
img_name = batch_sample[col].split(split_char)[-1]
# Load Image
image = load_img(image_folder + img_name)
image = img_to_array(image)
# Apply Steering Correction
steering_center = float(batch_sample[3])
steering = steering_center + camera_correction[camera]
# Apply Horizontal Flip Randomly on the data.
# Reverse the steering angle in this case
if random.random() > 0.5:
steering = -1*steering
image = cv2.flip(image, 1)
# Add image and angle to dataset
images.append(image)
angles.append(steering)
X_train = np.array(images)
y_train = np.array(angles)
yield sklearn.utils.shuffle(X_train, y_train)
def NormalizeImage(image):
"""Image Normalization"""
return image / 255.0 - 0.5
def BuildModel(image_shape):
"""Neural Net Model based on Nvidia's model in https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/"""
model = Sequential()
model.add(Lambda(NormalizeImage, input_shape=image_shape))
model.add(Cropping2D(cropping=((65,25), (0,0))))
model.add(Convolution2D(24,5,5,subsample=(2,2),activation="relu", input_shape=image_shape))
model.add(Convolution2D(36,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(48,5,5,subsample=(2,2),activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Convolution2D(64,3,3,activation="relu"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
return model
if __name__ == "__main__":
from sklearn.model_selection import train_test_split
print("--------------------------------------------")
print("Project 3 - Behavioral Cloning")
print("--------------------------------------------")
csv_path = '../data/combined/driving_log.csv'
image_folder = '../data/combined/IMG/'
print("Loading Images from dataset")
samples = ReadCsvLogFile(csv_path)
train_samples, validation_samples = train_test_split(samples, test_size=0.2)
img_shape = GetImageShape()
print('Nb training samples: {}'.format(len(train_samples)))
print('Nb validation samples: {}'.format(len(validation_samples)))
print('Image Size: {}'.format(img_shape))
# For Debug only
#train_data = PlotDataForDebugging(image_folder, train_samples)
# Hyper Parameters:
batch_size = 36
# Create Generators
train_generator = GetDataFromGenerator(image_folder, train_samples, batch_size=batch_size)
validation_generator = GetDataFromGenerator(image_folder, validation_samples, batch_size=batch_size)
# Build Model
print("Building the model")
model = BuildModel(img_shape)
# Train
print("Starting Training")
model.compile(loss='mse', optimizer='adam')
model.fit_generator(train_generator, samples_per_epoch=len(train_samples),
validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=3)
# Save
print("Saving Model")
model.save('model.h5')
| true
|
cc901426651f5ae9f0e55986ee168e6593dcf900
|
Python
|
MrDetectiv/fb-labs-2020
|
/cp_4/cp-4_Litvinchuk_FB-81/main.py
|
UTF-8
| 4,924
| 3.203125
| 3
|
[] |
no_license
|
import random
def gen_random(a,b):
return random.randint(a,b)
def euclid_NSD(a,b):
if a == 0:
x, y = (0, 1)
return b, x, y
d, x1, y1 = euclid_NSD(b % a, a)
x = y1 - (b // a) * x1
y = x1
return d, x, y
def NSD(a,b):
r = euclid_NSD(a,b)
return r[0]
def mod_pow(x, a, m):
bin_nums = [int(n) for n in bin(a)[2:] ]
r = 1
for n in bin_nums:
r = r ** 2 % m
r = r * (x ** n) % m
return r
def obernenyu(x,m):
r = euclid_NSD(x,m)
if r[0]==1:
if x<=m: return r[1]
if x>m: return r[2]
else: return None
def miller_rabin_iter(t, x):
if NSD(t, x) != 1:
return False
d = t - 1
while d % 2 == 0:
d //= 2
if (m := mod_pow(x, d, t)) == 1 or m == t - 1:
return True
while d < t - 1:
iter_result = mod_pow(x, d, t)
if iter_result == t - 1:
return True
if iter_result == 1:
return False
d *= 2
return False
def Miller_Rabin_test(p):
k=40
for i in range(0, k):
x = gen_random(2, p - 1)
if not miller_rabin_iter(p, x):
return False
else:
return True
def gen_prime(l):
min = 2**(l-1)+1
max = 2**l-1
while True:
x = gen_random(min,max)
for i in range(0,(max-x+(1-x%2))//2):
if x % 2 == 0:
x+=1
if small_div_test(x):
if Miller_Rabin_test(x):
return x
x+=2
def small_div_test(n):
primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
53,59,61,67,71,73,79,83,89,97,101,103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157,
163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359, 367,
373, 379, 383, 389, 397, 401, 409, 419, 421,
431, 433, 439, 443, 449, 457, 461, 463, 467,
479, 487, 491, 499, 503]
for i in primes:
if n%i==0 and n//i!=1: return False
return True
def Gen_Pair_of_Keys(l):
p = gen_prime(l)
print(f"P = {p}")
q = gen_prime(l)
while p == q:
q = gen_prime(l)
print(f"Q = {q}")
n = p*q
phi_n = (p-1)*(q-1)
e = gen_random(2,phi_n-1)
while NSD(e,phi_n)!=1:
e = gen_random(2,phi_n-1)
d = obernenyu(e,phi_n)
if d < 0:
d = d + phi_n
open_key = [e,n]
private_key = [d,n]
return [open_key,private_key]
def Encrypt(M,open_key):
return pow(M,open_key[0],open_key[1])
def Decrypt(M,private_key):
return pow(M,private_key[0],private_key[1])
def Sign(M,private_key):
s = Encrypt(M,private_key)
s_m = [M,s]
return s_m
def Verify(s_m,open_key):
if s_m[0] == pow(s_m[1],open_key[0],open_key[1]):
return True
else: return False
def SendKey(M,private_key_A,open_key_B):
e_m = Encrypt(M,open_key_B)
s = Sign(M,private_key_A)
e_s = Encrypt(s[1],open_key_B)
return [e_m, e_s]
def ReceiveKey(M,private_key_B,open_key_A):
e_m = M[0]
e_s = M[1]
m = Decrypt(e_m,private_key_B)
s = Decrypt(e_s,private_key_B)
if Verify([m,s],open_key_A):
return m
else:
return None
print('ABONENT A:')
A = Gen_Pair_of_Keys(256)
print(f"E = {A[0][0]}")
print(f"D = {A[1][0]}")
print(f"N = {A[0][1]}\n")
print('ABONENT B:')
B = Gen_Pair_of_Keys(256)
print(f"E = {B[0][0]}")
print(f"D = {B[1][0]}")
print(f"N = {B[0][1]}\n")
mess = gen_prime(255)
print(f"MESSAGE = {mess}")
d_mess=Encrypt(mess,A[0])
print(f"ENCRYPTED MESSAGE WITH A PUB KEY = {d_mess}")
print(f"DECRYPTED MESSAGE WITH A PRIV KEY = {Decrypt(d_mess,A[1])}")
d_mess=Encrypt(mess,B[0])
print(f"ENCRYPTED MESSAGE WITH B PUB KEY = {d_mess}")
print(f"DECRYPTED MESSAGE WITH B PRIV KEY = {Decrypt(d_mess,B[1])}\n")
print('SIGN WITH A PRIVATE KEY:')
s=Sign(mess,A[1])
print(f"MESSAGE = {s[0]}")
print(f"SIGNATURE = {s[1]}")
print(f"VERIFIED: {Verify(s,A[0])}\n")
print('SENDKEY, RECEIVEKEY PROTOCOL (A TO B):')
k = gen_prime(255)
print(f"SHARED KEY = {k}")
m=SendKey(k,A[1],B[0])
print(f"ENCRYPTED MESSAGE = {m[0]}")
print(f"SIGNATURE = {m[1]}")
print(f"KEY = {ReceiveKey(m,B[1],A[0])}\n\n")
print('SENDKEY, RECEIVEKEY PROTOCOL (A TO SERVER):')
n=int("0xD75B159AD05869959926A0BE751038E07C93B6FB11AF6BE21C1F24D7EE120B7D",16)
e = int("0x10001",16)
print(f"SERVER E = {e}")
print(f"SERVER N = {n}")
k = gen_prime(255)
print(f"SHARED KEY = {k}")
m = SendKey(k, A[1], [e,n])
print(f"ENCRYPTED MESSAGE = {m[0]}")
print(f"SIGNATURE = {m[1]}\n")
URL = 'http://asymcryptwebservice.appspot.com/rsa/receiveKey?key={}&signature={}&modulus={}&publicExponent={}'.format(hex(m[0])[2:], hex(m[1])[2:], hex(A[0][1])[2:], hex(A[0][0])[2:])
print(URL)
| true
|
6ddf77a12196ce4589777bb113385173f2c982a5
|
Python
|
adm1n123/FoodOn_LOVE_model
|
/word2vec.py
|
UTF-8
| 5,802
| 2.734375
| 3
|
[] |
no_license
|
"""
Download glove word embeddings and convert then to get word2vec embeddings.
"""
import io
import requests
import zipfile
import numpy as np
import pandas as pd
from gensim.models import Word2Vec, KeyedVectors
from gensim.models.word2vec_inner import REAL
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models.callbacks import CallbackAny2Vec
import matplotlib.pylab as plt
class WordEmbeddings:
def __init__(self):
self.file_dir = 'data/pretrain/'
self.glove_files = ['glove.6B.50d.txt', 'glove.6B.100d.txt', 'glove.6B.200d.txt', 'glove.6B.300d.txt']
self.word2vec_files = ['word2vec.6B.50d.txt', 'word2vec.6B.100d.txt', 'word2vec.6B.200d.txt', 'word2vec.6B.300d.txt']
for i in range(len(self.glove_files)):
self.glove_files[i] = self.file_dir+self.glove_files[i]
self.word2vec_files[i] = self.file_dir+self.word2vec_files[i]
# for training word embeddings
self.summary_preprocessed_file = 'output/wikipedia_preprocessed.txt'
self.summary_prep_col = 'summary_preprocessed'
def download_glove(self):
glove_zip_url = "http://nlp.stanford.edu/data/glove.6B.zip"
r = requests.get(glove_zip_url)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall(self.file_dir)
return None
def convert_glove_to_word2vec(self):
for g_file, w_file in zip(self.glove_files, self.word2vec_files):
glove2word2vec(g_file, w_file)
return None
def get_pretrain_vectors(self):
# self.download_glove() # uncomment if glove vectors are not downloaded.
self.convert_glove_to_word2vec()
return None
def train_embeddings(self):
df_summary = pd.read_csv(self.summary_preprocessed_file, sep='\t')
df_summary.fillna('', inplace=True)
df_summary = df_summary[df_summary[self.summary_prep_col] != '']
sents = df_summary[self.summary_prep_col].tolist()
sents = [sent.split() for sent in sents]
print(f'Total sentences in wiki corpus: {len(sents)}')
we_trainer = Word2vecTrainer()
we_trainer.train(sents, self.word2vec_files[-1]) # using 300d word2vec file as pretrained vectors.
we_trainer.save_model()
we_trainer.save_vectors()
we_trainer.save_loss()
return None
class Word2vecTrainer:
def __init__(self):
self.callback = CallbackOnEpoch()
self.model = None
self.epochs = 100
self.vector_size = 300
self.window = 10
self.min_count = 1
self.workers = 16
self.vectors_save_file = 'data/model/word2vec_trained.txt'
self.model_save_file = 'data/model/word2vec_model.model'
self.loss_save_file = 'data/model/train_loss.pdf'
def train(self, sentences, pretrained_file=None): # retraining of pretrained vectors is not possible in gensim 4 word2vec model.
self.model = Word2Vec(
vector_size=self.vector_size,
window=self.window,
min_count=self.min_count,
workers=self.workers)
self.model.build_vocab(sentences) # initially update=False. words satisfying criteria added to vocab not all.
total_sents = self.model.corpus_count
self.model.wv.vectors_lockf = np.ones(len(self.model.wv), dtype=REAL) # gensim 4. BUG. initialize array manually for lock.
if pretrained_file:
vocab = self.model.wv.key_to_index.keys()
pretrained_vocab = KeyedVectors.load_word2vec_format(pretrained_file).key_to_index.keys()
common_words = list(set(vocab) & set(pretrained_vocab))
print('Intersecting %d common vocabularies for transfer learning', len(common_words))
# self.model.build_vocab([pretrained_vocab], update=True, min_count=1) # update=True: add new words and initialize their vectors, min_count=1: include every word because pretrained_vocab is list of unique words
self.model.wv.intersect_word2vec_format(pretrained_file, lockf=1.0) # intersecting word vectors are replaced by pretrained vectors. lockf=1 means allow imported vectors to be trained. lockf=0 imported vectors are not trained.
# TODO: before training on wiki train on brown etc. corpus and some food related corpus.
# TODO: lock vectors then train and then unlock(load again) and train so that remaining vectors are trained according to pretrained and then every vectors trained.
self.model.train(
sentences,
total_examples=total_sents,
epochs=self.epochs,
compute_loss=True,
callbacks=[self.callback])
def save_model(self):
self.model.save(self.model_save_file)
def save_vectors(self):
self.model.wv.save_word2vec_format(self.vectors_save_file)
def save_loss(self):
lists = sorted(self.callback.loss.items()) # sorted by key, return a list of tuples
x, y = zip(*lists) # unpack a list of pairs into two tuples
plt.plot(x, y)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.savefig(self.loss_save_file)
class CallbackOnEpoch(CallbackAny2Vec):
def __init__(self):
self.epoch = 0
self.loss = {}
self.previous_loss = 0
def on_epoch_end(self, model):
loss = model.get_latest_training_loss()
if self.epoch == 0:
actual_loss = loss
else:
actual_loss = loss - self.previous_loss
print('Loss after epoch %d: %d', self.epoch, actual_loss)
self.loss[self.epoch] = actual_loss
self.previous_loss = loss
self.epoch += 1
if __name__ == '__main__':
we = WordEmbeddings()
# we.get_pretrain_vectors()
we.train_embeddings()
| true
|
efcec9948b66df86eb3c892a3c53c1208ccd3d1c
|
Python
|
sumonkhan79/DataScience-Random
|
/assignment1.py
|
UTF-8
| 134
| 3.265625
| 3
|
[] |
no_license
|
def profit(revenue, expense):
profit_made= revenue-expense
return profit_made
profit_2018 = profit(100, 90)
print(profit_2018)
| true
|
0b6e59dc34a33b978dbcf8b8704dd35cdf33c4d7
|
Python
|
nch101/thesis-traffic-signal-control
|
/projectTS/modeControl/automaticFlexibleTime.py
|
UTF-8
| 1,093
| 2.53125
| 3
|
[] |
no_license
|
# ** automatic control mode **
# * Author: Nguyen Cong Huy *
# ****************************
# - *- coding: utf- 8 - *-
import projectTS.vals as vals
def automaticFlexibleTime():
for index in range(0, vals.nTrafficLights):
if index%2:
setTimeLight(vals.timeGreenFlexibleNS, vals.timeGreenFlexibleWS, index)
else:
setTimeLight(vals.timeGreenFlexibleWS, vals.timeGreenFlexibleNS, index)
def setTimeLight(timeGreen, timeGreenForTimeRed, index):
if ((vals.timeLight[index] == -1) and \
(vals.lightStatus[index] == 'red')):
vals.timeLight[index] = timeGreen
vals.lightStatus[index] = 'green'
elif ((vals.timeLight[index] == -1) and \
(vals.lightStatus[index] == 'yellow')):
vals.timeLight[index] = timeGreenForTimeRed + vals.timeYellow[index] + 2*vals.delta + 3
vals.lightStatus[index] = 'red'
elif ((vals.timeLight[index] == -1) and \
(vals.lightStatus[index] == 'green')):
vals.timeLight[index] = vals.timeYellow[index]
vals.lightStatus[index] = 'yellow'
else:
pass
| true
|
edb490956711249067a6d71d5e5d45e3477d4596
|
Python
|
evyadai/GSR
|
/InstancePieceWiseLinear.py
|
UTF-8
| 14,028
| 2.765625
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 26 19:11:00 2016
@author: Evyatar
"""
from math import *
import numpy as np
np.random.seed(1)
import scipy
from Instance import *
from Linear import *
from PieceWiseLinear import *
import matplotlib
import matplotlib.mlab as mlab
# insert "%matplotlib tk"
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pickle
from matplotlib import cm
class InstancePieceWiseLinear(Instance):
def __init__(self, fr, fb, c):
self.fr = fr
self.fb = fb
self.c = np.float64(c)
self.times = fr.times
self.norm_cost, self.norm_time = 1.0, 1.0
if self.fr[1] == self.fb[1] == 1:
self.norm = True
else:
self.norm = False
def __str__(self):
s = ""
for t, lr, lb in zip(self.times, self.fr.lins, self.fb.lins):
s = s + "Time>= " + str(t) + ": Rent: " + str(lr) + " Buy: " + str(lb) + "\n"
return s
def intersection(self):
eps_num = 1e-10
for i, t in enumerate(self.times):
int_t = div(self.fb.lins[i].offset - self.fr.lins[i].offset, self.fr.lins[i].slope - self.fb.lins[i].slope)
if i < (len(self.times) - 1):
if int_t >= t and int_t <= self.times[i + 1]:
return int_t
elif int_t + eps_num >= t:
return int_t
def normalize(self):
# we need to init new instance and return this
intersect = self.intersection()
if intersect is None:
return
val_inter = self.fr[intersect]
# print intersect,val_inter
# all slopes need to be updated (*intersections/val_intersect)
# all times need to be updated (/intersection)
# all offsets need to be updated (/val_inter)
normTimes = [t / intersect for t in self.times]
diagLinn = Linear(1.0, 0.0)
normFr = [Linear(l.slope * intersect / val_inter, l.offset / val_inter) for l in self.fr.lins]
normFb = [Linear(l.slope * intersect / val_inter, l.offset / val_inter) for l in self.fb.lins]
for ind in range(len(normTimes)):
next_t = normTimes[ind + 1] if ind < len(normTimes) - 1 else np.inf
if 1. > normTimes[ind] and 1. <= next_t:
ind_intersect = ind + 1
if 1.0 not in self.times:
normTimes.insert(ind_intersect, 1.0)
normFr.insert(ind_intersect, normFr[ind_intersect - 1])
normFb.insert(ind_intersect, normFb[ind_intersect - 1])
normed = InstancePieceWiseLinear(PieceWiseLinear(normFr, normTimes), PieceWiseLinear(normFb, normTimes),
self.c / val_inter)
normed.norm = True
normed.norm_time = intersect
normed.norm_cost = val_inter
return normed
def plot(self, num_fig=1):
t_max = self.times[-1] * 2.0
tt = self.times[:]
tt.append(t_max)
cost_r = [self.fr[t] for t in tt]
cost_b = [self.fb[t] for t in tt]
xx = [t for t in tt]
plt.figure(num_fig)
plt.clf()
plt.hold(True)
plt.plot(xx, cost_r, 'r',linewidth=2)
plt.plot(xx, cost_b, 'b',linewidth=2)
plt.axis([0.0, xx[-1] * 1.0, 0.0, 1.1 * max(np.max(cost_r), np.max(cost_b))])
fs = 36
plt.xlabel("Time", fontsize=fs)
plt.ylabel("Cost", fontsize=fs)
# print cost_b,xx
return plt
def plot_q(self, eps, norm=True, num_fig=1):
cr, q, T = self.approxOptStr(eps)
Q = np.cumsum(q)
if norm:
xx = [t * self.norm_time for t in T]
Q = Q * self.norm_cost
else:
xx = T[:]
plt.figure(num_fig)
plt.hold(True)
plt.title("Instance")
plt.plot(xx, Q, 'g')
plt.legend(["Rent", "buy", "Probabilty"], loc=0)
plt.xlabel("Time")
plt.ylabel("Cost (Probabilty)")
plt.text(xx[-2], self.norm_cost, "Probabilty 1.0")
plt.text(xx[-2], 0.5 * self.norm_cost, "Probabilty 0.5")
plt.show()
print "plot_q", xx, Q
def cr_z(self, z):
if z == 0:
return self.fb.lins[0].offset / self.fr.lins[0].offset
elif z == np.inf:
if self.fr.lins[-1].slope == self.fb.lins[-1].slope:
return self.fr[np.inf] / self.fb[np.inf]
return self.fr.lins[-1].slope / self.fb.lins[-1].slope
else:
raise Exception("Error in InstnacePieceWiseLinear.cr_z")
def cr_0(self):
return div(self.fb.lins[0].offset, self.fr.lins[0].offset)
def cr_inf(self):
return div(self.fr.lins[-1].slope, self.fb.lins[-1].slope) if self.fr.lins[-1].slope > 0 else self.fr(
self.times[-1] + 10) / self.fb(self.times[-1] + 10)
def cr_inf_overall(self):
ts = self.times
max_ts = np.max([self.fr(t)/self.fb(t) for t in ts])
max_inf = self.cr_inf()
return np.max([max_ts,max_inf])
def zm(self):
pass
def cr_zm(self):
return h(self.zm())
# todo - g in linear g(z)=max fr/fb(y) (y>z)
def g(self, z):
pass
# todo -h(z)= (fr(z)+c)/fb(z)
def h(self, z):
pass
# we iterate on all the lines and find if there is inersection between h and g
# if there is we find the exact intersection
# otherwise we return inf
def intersection_time(self):
# print "inter"
for ind, t in enumerate(self.times):
if t >= 1:
# at point 1 g<h and then g always up
# we need to divide to 2 parts:
# 1.h decrese or not up - then we need only to look on the start and end
# 2.h increase - then we need to solve
# TODO - try to checjk sopes or use ratio
g1 = self.fr[t] / self.fb[t]
h1 = (self.fr[t] + self.c) / self.fb[t]
if ind == len(self.times) - 1:
next_t = np.inf
g2_n, g2_d = self.fr[next_t], self.fb[next_t]
if g2_d == np.inf:
g2 = div(self.fr.lins[ind].slope, self.fb.lins[ind].slope)
else:
g2 = div(g2_n, g2_d)
h2_n, h2_d = self.fr[next_t] + self.c, self.fb[next_t]
if h2_d == np.inf:
h2 = div(self.fr.lins[ind].slope, self.fb.lins[ind].slope)
else:
h2 = div(h2_n, h2_d)
else:
next_t = self.times[ind + 1]
g2 = self.fr[next_t] / self.fb[next_t]
h2 = (self.fr[next_t] + self.c) / self.fb[next_t]
# print "inter",ind,g1,g2,h1,h2
# TODO - find intersection better (maybe the intersection function will do this)
# if max(g1,g2) >=min(h1,h2):
if True:
# we have here intersection - what is the solve?
# if g1<=g2 then the function is monotone - simple solve
if g1 < g2:
# we need to find zs:
roots_intersection = ratio_intersection(self.fr.lins[ind], self.fb.lins[ind],
self.fr.lins[ind] + self.c, self.fb.lins[ind])
if g1 >= g2:
# then the function is const
roots_intersection = ratio_intersection(Linear(0, g1), Linear(0, 1.0),
self.fr.lins[ind] + self.c, self.fb.lins[ind])
inds = np.where((roots_intersection >= t) & (roots_intersection <= next_t))[0]
if inds.size > 0:
return roots_intersection[inds[0]]
else:
pass
return float("inf")
def middle_time_cr(self):
z_s = self.intersection_time()
# print "z_s at z_m",z_s
# the competitve is always h(z) - we need to find the maximum
cr_m = (self.fr[1] + self.c) / self.fb[1]
z_m = 1.0
# because at each interval h always goes
for ind, t in enumerate(self.times):
if t >= 1 and t <= z_s:
ht = (self.fr(t) + self.c) / self.fb(t)
if ht < cr_m:
z_m = t
cr_m = ht
# print "iter at z_m",ind,t,ht,cr_m
# at the end we need to check z_s or np.inf
if t < z_s:
t = z_s
ht = self.cr_inf() if z_s == np.inf else (self.fr(t) + self.c) / self.fb(t)
if ht < cr_m:
z_m = t
cr_m = ht
# print "last iter at z_m",ht,cr_m,self.cr_inf() if z_s==np.inf else (self.fr(t)+self.c)/self.fb(t),z_s==np.inf,self.fr(t),self.c,self.fb(t),t
# print "middle_time_cr",(z_m,cr_m)
return (z_m, cr_m)
"""
if ind==len(self.times)-1:
next_t=min(np.inf,z_s)
h2_n,h2_d = self.fr[next_t]+self.c,self.fb[next_t]
if h2_d==np.inf:
h2=div(self.fr.lins[ind].slope,self.fb.lins[ind].slope)
else:
h2=div(h2_n,h2_d)
else:
next_t=min(self.times[ind+1],z_s)
h2 = (self.fr[next_t]+self.c)/self.fb[next_t]
if cr_m > min(h1,h2):
cr_m = min(h1,h2)
if h1<=h2:
z_m=self.times[ind]
else:
z_m=next_t
return (z_m,cr_m)
"""
def middle_time(self):
return self.middle_time_cr()[0]
# todo
def between(self, t, ind):
if ind == len(self.times) - 1:
if t >= self.times[ind]:
return True
elif (t >= self.times[ind]) and (t <= self.times[ind + 1]):
return True
return False
def calc_t1(self, eps):
# t1
# f_{r}(z)+c =(1+eps)(f_{rb}(0) +c+f_b(z)
# frb(t1)-eps*f_b(t1)=(1+eps)f_{rb}(0)+eps*c
# t1 = min(np.float64(1.0),)
for ind in range(len(self.times)):
if self.times[ind] >= 1.0:
return 1.0
else:
lin = self.fr.lins[ind] - self.fb.lins[ind] * (1.0 + eps)
t1_candidate = lin.inverse((1 + eps) * self.f_rb(0.0) + eps * self.c)
if (t1_candidate >= self.times[ind]) and (t1_candidate <= self.times[ind + 1]):
return min(np.float64(1.0), t1_candidate)
# todo
# fix situation when the ratio raise
def calc_t_N_minus_1(self, eps):
global lin
# t_{N-1}\gets \min\{f_{r}^{-1}(c/ \epsilon) ,\min\{x:x\geq 1,\forall y\geq x,\frac{f_r(x)}{f_b(x)}\geq (1+\epsilon)\frac{f_r(y)}{f_b(y)} \}\} $
if (self.c <= self.fr[1.0] * eps):
return 1.0
val1 = max(1.0, self.fr.inverse(self.c / eps))
maxRatio = self.cr_inf()
# print self.fr.lins[-1],val1,self.c/eps
# print maxRatio/(1+eps),self.fr.inverse(self.c/eps)
# print "val1",val1
if maxRatio < np.inf:
maxRatioLin = [maxLin(self.fr.lins[ind - 1], self.fb.lins[ind - 1], self.times[ind - 1], self.times[ind])[0]
for ind in range(1, len(self.times))]
maxRatioLin.append(maxLin(self.fr.lins[-1], self.fb.lins[-1], self.times[-1], np.inf)[0])
# print maxRatioLin,maxLin(self.fr.lins[-1],self.fb.lins[-1],self.times[-1],np.inf)
# fr = maxRatio/(1+eps) *fb
# print "max Ratios",maxRatioLin
for ind in range(len(self.times)):
if self.times[ind] < 1.0:
continue
# TODO - if ratio is down we need to consider from (ind+1) else ind
maxRatio = max(maxRatioLin[ind:])
# print ind,maxRatio,self.times[ind],eps
lin_cond = self.fr.lins[ind] - self.fb.lins[ind] * (maxRatio / (1 + eps))
val2_candidate = lin_cond.inverse(0.0) # this is the point where the ratio is fine
if (val2_candidate < self.times[ind]) and (
self.fr[self.times[ind]] / self.fb[self.times[ind]] >= maxRatio / (1 + eps)):
# this case when the candidate is out of range (and we take the start of the range)
# print "oor",val2_candidate,self.times[ind],maxRatio,self.fr.lins[ind],self.fb.lins[ind]
val2_candidate = self.times[ind]
# print self.between(val2_candidate,ind)
if self.between(val2_candidate,
ind): # (val2_candidate>=self.times[ind]) and (val2_candidate<= self.times[ind+1]) :
val2_cand_ratio = self.fr[val2_candidate] / self.fb[val2_candidate]
if (val2_cand_ratio + 1e-5 >= (maxRatio / (1 + eps))):
# print "return",ind,min(val1,val2_candidate),val2_cand_ratio,maxRatio/(1+eps),val1,val2_candidate
# print self.fr[50]/self.fb[50]
return min(val1, val2_candidate)
return val1
def valid(self):
if min([self.times[1:][j] - self.times[:-1][j] for j in range(len(self.times) - 1)]) < 0.:
return False
if min([min(self.fr.lins[i].slope, self.fb.lins[i].slope) for i in range(len(self.times))]) < 0:
return False
return True
| true
|
22421d0a55124e1ffe0095490d42f73d826ef6ff
|
Python
|
ShivamRohilllaa/python-basics
|
/20) List and functions.py
|
UTF-8
| 236
| 4.09375
| 4
|
[] |
no_license
|
# Its starts with 0
grocery = ["Shivam", "rohilla", "text1", "text2" ]
#print(grocery[1])
#print(grocery[1] + grocery[2])
#Sort the list means arrange the list in ascending order
list = [1, 2, 88, 23, 56 ]
list.sort()
print(list)
| true
|
02475b83a369c1a8eb50cc392360cbf585d401fb
|
Python
|
FHArchive/StegStash
|
/stegstash/lsb.py
|
UTF-8
| 3,338
| 2.984375
| 3
|
[
"MIT"
] |
permissive
|
""" common lsb functions """
from random import SystemRandom
from stegstash.utils import toBin, toFile, getMap, otp
class LSB:
"""Perform lsb encoding and decoding on an array
"""
def __init__(self, array, pointer=0, data=None):
self.array = array
self.arrayLen = len(array)
self.pointer = pointer
self.data = toBin(data)
def setLsb(self, bit):
""" set lsb """
if self.pointer >= self.arrayLen:
return
self.array[self.pointer] = (self.array[self.pointer] & (2**16 - 2)) + bit
self.pointer += 1
def getLsb(self):
""" get lsb """
if self.pointer >= self.arrayLen:
return 0
bit = self.array[self.pointer] & 1
self.pointer += 1
return bit
def setLsb8(self, byte):
""" set lsb8 """
for shift in range(8):
self.setLsb(byte >> shift & 1) # Little endian
def getLsb8(self):
""" get lsb8 """
byte = 0
for shift in range(8):
byte += self.getLsb() << shift # Little endian
return byte, byte == 0
def setLsb8C(self, char):
""" set lsb8 char"""
return self.setLsb8(ord(char))
def getLsb8C(self):
""" get lsb8 char """
byte, nullByte = self.getLsb8()
return chr(byte), nullByte
def simpleDecode(self, zeroTerm=True, file=None):
""" decode a flat array with no encryption
Args:
zeroTerm (boolean, optional): stop decoding on \x00 (NUL). Defaults to True.
file (<file>, optional): file pointer. Defaults to None.
"""
data = []
for _char in range(self.arrayLen // 8):
char, zero = self.getLsb8()
if zero and zeroTerm:
break
data.append(char)
result = bytes(data)
return toFile(result, file) if file else result
def simpleEncode(self):
""" encode a flat array with no encryption """
for char in self.data:
if self.pointer >= self.arrayLen - 8:
break
self.setLsb8(char)
self.setLsb8(0) # Null terminate the string
return self.array
def decode(self, mapSeed, password="", zeroTerm=True, file=None):
"""decode data from an array using lsb steganography
Args:
mapSeed (string): seed to generate the lsb map
password (str, optional): password to encrypt the data with. Defaults to "".
zeroTerm (boolean, optional): stop decoding on \x00 (NUL). Defaults to True.
file (<file>, optional): file pointer. Defaults to None.
Returns:
bytes: data from the image
"""
lsbMap = getMap(self.array, mapSeed)
data = []
while self.pointer in range(self.arrayLen):
byte = 0
shift = 0
while shift < 8:
if lsbMap[self.pointer] > 0:
bit = self.getLsb() # Little endian
byte += bit << shift
shift += 1
else:
self.pointer += 1 # Increment pointer anyway
if byte == 0 and zeroTerm:
break
data.append(byte)
result = otp(bytes(data), password, False)
return toFile(result, file) if file else result
def encode(self, mapSeed, password=""):
"""encode an array with data using lsb steganography
Args:
mapSeed (string): seed to generate the lsb map
password (str, optional): password to encrypt the data with. Defaults to "".
"""
data = otp(self.data, password) + b"\x00"
lsbMap = getMap(self.array, mapSeed)
systemRandom = SystemRandom()
for char in data:
shift = 0
while shift < 8:
if lsbMap[self.pointer] > 0:
self.setLsb(char >> shift & 1)
shift += 1
else:
self.setLsb(systemRandom.randint(0, 1))
return self.array
| true
|
9ba4a88d011864adb52140144afc41bc18aebc1d
|
Python
|
beeware/toga
|
/gtk/tests/widgets/utils.py
|
UTF-8
| 1,014
| 2.6875
| 3
|
[
"BSD-3-Clause"
] |
permissive
|
class TreeModelListener:
"""useful to access paths and iterators from signals."""
def __init__(self, store=None):
self.changed_path = None
self.changed_it = None
self.inserted_path = None
self.inserted_it = None
self.deleted_path = None
if store is not None:
self.connect(store)
def on_change(self, model, path, it):
self.changed_path = path
self.changed_it = it
def on_inserted(self, model, path, it):
self.inserted_path = path
self.inserted_it = it
def on_deleted(self, model, path):
self.deleted_path = path
def connect(self, store):
store.connect("row-changed", self.on_change)
store.connect("row-inserted", self.on_inserted)
store.connect("row-deleted", self.on_deleted)
def clear(self):
self.changed_path = None
self.changed_it = None
self.inserted_path = None
self.inserted_it = None
self.deleted_path = None
| true
|
98d5caf14526d3ce3dde7f979a9170cea12aac6b
|
Python
|
hemae/neural_networks
|
/add_ex1_grad_des.py
|
UTF-8
| 1,431
| 3.140625
| 3
|
[] |
no_license
|
import numpy as np
import matplotlib.pyplot as plt
import time
def f(x):
return x * x - 5 * x + 5
def df(x):
return 2 * x - 5
N = 100 # число итераций
xn = 0 # начальное значение x
lmd = 0.8 # шаг сходимости (коэффициент)
x_plt = np.arange(0, 5.0, 0.1)
f_plt = [f(x) for x in x_plt]
plt.ion() # включаем интерактивный режим
fig, ax = plt.subplots() # создаем окно и оси для графика
ax.grid(True) # отображаем сетку на графике (осях)
ax.plot(x_plt, f_plt) # отображаем начальный график на осях
point = ax.scatter(xn, f(xn), c='r') # отображаем начальную точку на графике
mn = 100
for i in range(N):
lmd = 1 / (min(i + 1, mn))
xn = xn - lmd * np.sign(df(xn)) # изменяем аргумент согласно алгоритму град.спуска
point.set_offsets([xn, f(xn)]) # обновляем положение точки
# перерисовываем график при задержке 20 мс
fig.canvas.draw()
fig.canvas.flush_events()
time.sleep(0.002)
plt.ioff() # выключаем интерактивный режим
print(xn)
ax.scatter(xn, f(xn), c='g') # отрисовываем конечное положение точки
plt.show()
| true
|
da0c4a75a88d1030e14d01006201711eaf476552
|
Python
|
VimalanKM/Tic-Tac_Toe-GAME
|
/playing_tictactoe.py
|
UTF-8
| 1,989
| 3.53125
| 4
|
[
"Apache-2.0"
] |
permissive
|
import random
import numpy as np
#random.seed(1)
def create_board():
return np.zeros((3,3),dtype=int)
def place(board,player,position):
board[position]=player
def possibilities(board):
indi=np.where(board==0)
return (list(zip(indi[0],indi[1])))
def random_place(board,player):
availablepos=possibilities(board)
if len(availablepos)!=0:
place(board,player,random.choice(availablepos))
def row_win(board,player):
flag=0
for i in range(3):
flag=0
for j in range(3):
if board[i][j]==player:
flag+=1
if flag==3:
return True
return False
def col_win(board,player):
for i in range(3):
flag=0
for j in range(3):
if board[j][i]==player:
flag+=1
if flag==3:
return True
return False
def diag_win(board,player):
flag1,flag2=0,0
for i in range(3):
if board[i][i]==player:
flag1+=1
if board[i][3-i-1]==player:
flag2+=1
if flag1==3 or flag2==3:
return True
return False
def evaluate(board):
winner = 0
for player in [1, 2]:
# add your code here!
if(row_win(board,player) or col_win(board,player) or diag_win(board,player)):
winner = player
pass
if np.all(board != 0) and winner == 0:
winner = -1
return winner
def play_game():
board=create_board()
player=1
while(np.any(board==0)):
random_place(board,player)
eval=evaluate(board)
if eval!=0:
return eval
else:
if player==1:
player=2
else:
player=1
results=[]
count=0
for i in range(1000):
temp=play_game()
results.append(temp)
if temp==1:
count+=1
print("Winners:",results)
print("Number of times player1 won:",count)
| true
|
aabffba1d6138ad6cac53beaa334e752ddf0294b
|
Python
|
VishnuK11/Computer_Vision
|
/16 Face Train.py
|
UTF-8
| 1,497
| 3.078125
| 3
|
[
"MIT"
] |
permissive
|
'''
Face Recogition Training
Create a list of images to train
Detect a R.O.I - Region of Interest
Train it
Save classififier, features and labels
'''
import os
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
dir_path = os.getcwd()+'/data/images/'
dir_face = os.getcwd()+'/data/face_recognition/'
dir_train = os.getcwd()+'/data/face_recognition/train/'
people =['Dicaprio','Tom','Natalie','Scarlett','Saoirse','Will','Beyonce']
features = []
labels = []
haar_cascade = cv.CascadeClassifier(dir_face+'face.xml')
def create_train():
for person in people:
path = os.path.join(dir_train,person)
label = people.index(person)
for img in os.listdir(path):
img_path=os.path.join(path,img)
img_array = cv.imread(img_path)
gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
faces_rect = haar_cascade.detectMultiScale(gray,scaleFactor = 1.1, minNeighbors = 8)
for (x,y,w,h) in faces_rect:
faces_roi = gray[y:y+h,x:x+w]
cv.imshow('Print',faces_roi)
cv.waitKey(20)
features.append(faces_roi)
labels.append(label)
create_train()
# cv.waitKey(0)
print(len(features),len(labels))
features = np.array(features,dtype='object')
labels = np.array(labels)
face_recognizer = cv.face.LBPHFaceRecognizer_create()
# Train the recognizer on the feature list and labels list
face_recognizer.train(features,labels)
face_recognizer.save(dir_face+'face_trained.yml')
np.save(dir_face+'features.npy',features)
np.save(dir_face+'labels.npy',labels)
| true
|
db7d8834d7518aa59f52f7e83e90c8212717722a
|
Python
|
ppershing/skripta-fmfi
|
/krypto2/utility/13_kryptoanalyza/linear.py
|
UTF-8
| 6,516
| 3.125
| 3
|
[] |
no_license
|
#!/usr/bin/python
# coding=utf-8
from cipher import *;
def LAT(inputs, outputs):
return int(round(sum(map(lambda x:
(-1)**(parityOf(x & inputs) ^
parityOf(Sbox(x) & outputs)),
range(16)
))))
def get_LAT_color(value):
value = max(0.75 -abs( value) / 10.0 ,0);
return "\\color[rgb]{%f,%f,%f}" % (value,value,value)
def GenerateLinearApproximationTable(f):
# {{{
print >>f, "\\begin{table}[H]"
print >>f, "\\begin{tabular}{" + 17*"r|" + "}"
for i in range(16):
print >>f, "&{\\bf %2d}" % i
print >>f, "\\\\ \\hline"
for i in range(KEY_MAX):
print >>f, "{\\bf %2d}" % i
for j in range(KEY_MAX):
print >>f, " &{%s %3d}" % (get_LAT_color(LAT(i,j)), LAT(i,j))
print >>f, "\\\\ \hline"
print >>f, "\\end{tabular}"
print >>f, "\\caption{Lineárna aproximačná tabuľka pre S-box}";
print >>f, "\\label{tab:lat}"
print >>f, "\\end{table}"
# }}}
def AnalyzeLinearApproximations(f, linear_combination):
# {{{
total_balance = [];
print >>f, "\\begin{itemize}"
for round in range(3):
inputs = linear_combination[round];
if (round>0):
inputs = map(ShufflePosition, inputs);
outputs = linear_combination[round+1];
in_array = [(x in inputs) for x in range(TOTAL_KEY_SIZE)]
out_array = [(x in outputs) for x in range(TOTAL_KEY_SIZE)]
balance = []
for sbox in range(SBOX_COUNT):
in_tmp = BitsToHalfByte(in_array[sbox*4: sbox*4+4])
out_tmp = BitsToHalfByte(out_array[sbox*4: sbox*4+4])
balance += [LAT(in_tmp, out_tmp)/2.0/KEY_MAX];
b = reduce(mul, balance)*8.0;
total_balance += [b]
print >>f, "\\item {\\bf %d. kolo:}" % (round+1)
print >>f, "Použijeme lineárnu aproximáciu"
print >>f, "\\begin{equation*}"
print >>f, "(",
print >>f, " \\oplus ".join(["x_{%d,%d}" % (round+1,x)
for x in inputs]) ,
print >>f, " ) \n \\oplus (",
print >>f, " \\oplus ".join(["key_{%d,%d}" %(round+1,x)
for x in inputs]),
print >>f, ") \n \\approx (",
print >>f, " \\oplus ".join(["y_{%d,%d}" % (round+1,x)
for x in outputs]),
print >>f, ")"
print >>f, "\\end{equation*}"
print >>f, "ktorá má balancie po jednotlivých S-boxoch $"
print >>f, ",\ ".join(["%s" % x for x in balance])
print >>f, "$ čo podľa piling-up lemy dáva pravdepodobnosť "
print >>f, "$1/2 + 2^3*(" ,
print >>f, ")*(".join(["%s" %x for x in balance]) ,
print >>f, ")=", (0.5 + b), "$. "
print >>f, "Výsledná balancia je $%s$." % b
print >>f, ""
print >>f, "\\item {\\bf Spolu:} ",
print >>f, "Máme lineárnu kombináciu "
print >>f, "\\begin{equation*}"
print >>f, "\\begin{split}"
print >>f, "(",
print >>f, " \\oplus ".join(["in_{%s}" %x for x in linear_combination[0]]),
print >>f, ")"
for r in range(3):
print >>f, " & \\\\\n \\phantom{x} \\oplus (",
print >>f, " \\oplus ".join(["key_{%s,%s}" % (r+1, o) for o in
sorted([(o if (r == 0) else ShufflePosition(o))
for o in linear_combination[r] ])]),
print >>f, ")"
print >>f, " & \\approx ("
print >>f, " \\oplus ".join([ "key_{%s,%s}" % (4,o) for o in
sorted(map(ShufflePosition,linear_combination[3]))])
print >>f, " ) \\\\\n & \\phantom{\\approx} \\oplus ("
print >>f, " \\oplus ".join(map(lambda x: "out_{%s}" % x,
linear_combination[3]))
print >>f, ")",
print >>f, "\\end{split}"
print >>f, "\\end{equation*}"
print >>f, "Podľa piling-up lemy máme balanciu $4*" ,
print >>f, "*".join(map(lambda x: "%s" %x, total_balance)) ,
print >>f, "~= %.4f $." % (reduce(mul, total_balance)*4)
print >>f, "\\end{itemize}"
# }}}
def AttackUsingLATHelper(f, linear_combination, keys, iterations):
# {{{
plaintext = [[random.randint(0, 1) for j in range(TOTAL_KEY_SIZE)]
for i in range(iterations)];
ciphertext = [Cipher(plaintext[i], keys) for i in range(iterations)]
linear_in = linear_combination[0];
linear_out = map(ShufflePosition, linear_combination[3])
in_array = [x in linear_in for x in range(TOTAL_KEY_SIZE)]
out_array = [x in linear_out for x in range(TOTAL_KEY_SIZE)]
sboxes = dict([ (x/4,0) for x in linear_out]).keys()
matching_key = [0 for i in range(TOTAL_KEY_MAX)]
for i in range(iterations):
for boxkey in range(KEY_MAX ** len(sboxes)):
lastkey = [0 for x in range(TOTAL_KEY_SIZE)]
boxkey_tmp = IntToBits(boxkey, KEY_SIZE*len(sboxes))
for x in range(len(sboxes)):
lastkey[4*sboxes[x]:4*sboxes[x]+4] = boxkey_tmp[x*4: x*4+4]
ct = InverseLastRound(ciphertext[i], lastkey)
pt = plaintext[i]
l1 = parityOf(BitsToInt(pt) & BitsToInt(in_array))
l2 = parityOf(BitsToInt(ct) & BitsToInt(out_array))
if not (l1^l2):
matching_key[BitsToInt(lastkey)] = matching_key[BitsToInt(lastkey)] + 1
good_keys = []
for i in range(TOTAL_KEY_MAX):
if matching_key[i]:
good_keys.append(i);
best = sorted([ (abs(matching_key[i] / 1.0 / iterations - 0.5), i) for i in good_keys], reverse=True)
print >>f, " \\subtable[$key_5=%04x$]{" % BitsToInt(keys[4])
print >>f, " \\begin{tabular}{cc}"
for (p,i) in best[0:10]:
print >>f, " %.4f & %s \\\\" % (p, MaskedHex(i, sboxes))
print >>f, " \\end{tabular}";
print >>f, " }"
# }}}
def AttackUsingLAT(f, path):
# {{{
key1 = IntToBits(0xfa3f, TOTAL_KEY_SIZE);
key2 = IntToBits(0x0f39, TOTAL_KEY_SIZE);
key3 = IntToBits(0x8db3, TOTAL_KEY_SIZE);
key4 = IntToBits(0xf9b1, TOTAL_KEY_SIZE);
print >>f, "\\begin{table}[h]"
print >>f, " \\centering"
key5 = IntToBits(random.randint(0, TOTAL_KEY_MAX), TOTAL_KEY_SIZE);
keys = [key1,key2,key3,key4,key5];
AttackUsingLATHelper(f, path, keys, 1000)
key5 = IntToBits(random.randint(0, TOTAL_KEY_MAX), TOTAL_KEY_SIZE);
keys = [key1,key2,key3,key4,key5];
AttackUsingLATHelper(f, path, keys, 1000)
print >>f, "\\end{table}"
# }}}
| true
|
7afda2050a995a0990b4b756c81a06bfb8976577
|
Python
|
sonkarsr/IPNV
|
/circles.py
|
UTF-8
| 159
| 2.609375
| 3
|
[] |
no_license
|
image = np.zeros((512,512,3), np.uint8)
cv2.circle(image, (350, 350), 100, (15,75,50), -1)
cv2.imshow("Circle", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
| true
|
b98ea54e836635b150df9e96322b4be1bdfba2bf
|
Python
|
deepset-ai/haystack
|
/haystack/utils/preprocessing.py
|
UTF-8
| 8,303
| 2.953125
| 3
|
[
"Apache-2.0"
] |
permissive
|
from typing import Callable, Dict, List, Optional
import re
import logging
from pathlib import Path
from haystack.schema import Document
logger = logging.getLogger(__name__)
def convert_files_to_docs(
dir_path: str,
clean_func: Optional[Callable] = None,
split_paragraphs: bool = False,
encoding: Optional[str] = None,
id_hash_keys: Optional[List[str]] = None,
) -> List[Document]:
"""
Convert all files(.txt, .pdf, .docx) in the sub-directories of the given path to Documents that can be written to a
Document Store.
:param dir_path: The path of the directory containing the Files.
:param clean_func: A custom cleaning function that gets applied to each Document (input: str, output: str).
:param split_paragraphs: Whether to split text by paragraph.
:param encoding: Character encoding to use when converting pdf documents.
:param id_hash_keys: A list of Document attribute names from which the Document ID should be hashed from.
Useful for generating unique IDs even if the Document contents are identical.
To ensure you don't have duplicate Documents in your Document Store if texts are
not unique, you can modify the metadata and pass [`"content"`, `"meta"`] to this field.
If you do this, the Document ID will be generated by using the content and the defined metadata.
"""
# Importing top-level causes a circular import
from haystack.nodes.file_converter import BaseConverter, DocxToTextConverter, PDFToTextConverter, TextConverter
file_paths = [p for p in Path(dir_path).glob("**/*")]
allowed_suffixes = [".pdf", ".txt", ".docx"]
suffix2converter: Dict[str, BaseConverter] = {}
suffix2paths: Dict[str, List[Path]] = {}
for path in file_paths:
file_suffix = path.suffix.lower()
if file_suffix in allowed_suffixes:
if file_suffix not in suffix2paths:
suffix2paths[file_suffix] = []
suffix2paths[file_suffix].append(path)
elif not path.is_dir():
logger.warning(
"Skipped file %s as type %s is not supported here. "
"See haystack.file_converter for support of more file types",
path,
file_suffix,
)
# No need to initialize converter if file type not present
for file_suffix in suffix2paths.keys():
if file_suffix == ".pdf":
suffix2converter[file_suffix] = PDFToTextConverter()
if file_suffix == ".txt":
suffix2converter[file_suffix] = TextConverter()
if file_suffix == ".docx":
suffix2converter[file_suffix] = DocxToTextConverter()
documents = []
for suffix, paths in suffix2paths.items():
for path in paths:
logger.info("Converting %s", path)
# PDFToTextConverter, TextConverter, and DocxToTextConverter return a list containing a single Document
document = suffix2converter[suffix].convert(
file_path=path, meta=None, encoding=encoding, id_hash_keys=id_hash_keys
)[0]
text = document.content
if clean_func:
text = clean_func(text)
if split_paragraphs:
for para in text.split("\n\n"):
if not para.strip(): # skip empty paragraphs
continue
documents.append(Document(content=para, meta={"name": path.name}, id_hash_keys=id_hash_keys))
else:
documents.append(Document(content=text, meta={"name": path.name}, id_hash_keys=id_hash_keys))
return documents
def tika_convert_files_to_docs(
dir_path: str,
clean_func: Optional[Callable] = None,
split_paragraphs: bool = False,
merge_short: bool = True,
merge_lowercase: bool = True,
id_hash_keys: Optional[List[str]] = None,
) -> List[Document]:
"""
Convert all files (.txt, .pdf) in the sub-directories of the given path to Documents that can be written to a
Document Store.
:param merge_lowercase: Whether to convert merged paragraphs to lowercase.
:param merge_short: Whether to allow merging of short paragraphs
:param dir_path: The path to the directory containing the files.
:param clean_func: A custom cleaning function that gets applied to each doc (input: str, output:str).
:param split_paragraphs: Whether to split text by paragraphs.
:param id_hash_keys: A list of Document attribute names from which the Document ID should be hashed from.
Useful for generating unique IDs even if the Document contents are identical.
To ensure you don't have duplicate Documents in your Document Store if texts are
not unique, you can modify the metadata and pass [`"content"`, `"meta"`] to this field.
If you do this, the Document ID will be generated by using the content and the defined metadata.
"""
try:
from haystack.nodes.file_converter import TikaConverter
except Exception as ex:
logger.error("Tika not installed. Please install tika and try again. Error: %s", ex)
raise ex
converter = TikaConverter()
paths = [p for p in Path(dir_path).glob("**/*")]
allowed_suffixes = [".pdf", ".txt"]
file_paths: List[Path] = []
for path in paths:
file_suffix = path.suffix.lower()
if file_suffix in allowed_suffixes:
file_paths.append(path)
elif not path.is_dir():
logger.warning(
"Skipped file %s as type %s is not supported here. "
"See haystack.file_converter for support of more file types",
path,
file_suffix,
)
documents = []
for path in file_paths:
logger.info("Converting %s", path)
# TikaConverter returns a list containing a single Document
document = converter.convert(path)[0]
meta = document.meta or {}
meta["name"] = path.name
text = document.content
pages = text.split("\f")
if split_paragraphs:
if pages:
paras = pages[0].split("\n\n")
# pop the last paragraph from the first page
last_para = paras.pop(-1) if paras else ""
for page in pages[1:]:
page_paras = page.split("\n\n")
# merge the last paragraph in previous page to the first paragraph in this page
if page_paras:
page_paras[0] = last_para + " " + page_paras[0]
last_para = page_paras.pop(-1)
paras += page_paras
if last_para:
paras.append(last_para)
if paras:
last_para = ""
for para in paras:
para = para.strip()
if not para:
continue
# this paragraph is less than 10 characters or 2 words
para_is_short = len(para) < 10 or len(re.findall(r"\s+", para)) < 2
# this paragraph starts with a lower case and last paragraph does not end with a punctuation
para_is_lowercase = (
para and para[0].islower() and last_para and last_para[-1] not in r'.?!"\'\]\)'
)
# merge paragraphs to improve qa
if (merge_short and para_is_short) or (merge_lowercase and para_is_lowercase):
last_para += " " + para
else:
if last_para:
documents.append(Document(content=last_para, meta=meta, id_hash_keys=id_hash_keys))
last_para = para
# don't forget the last one
if last_para:
documents.append(Document(content=last_para, meta=meta, id_hash_keys=id_hash_keys))
else:
if clean_func:
text = clean_func(text)
documents.append(Document(content=text, meta=meta, id_hash_keys=id_hash_keys))
return documents
| true
|
7d99f880d77a194488849bc0735d34e33d53e5a8
|
Python
|
shg9411/algo
|
/algo_py/boj/bj1275.py
|
UTF-8
| 1,226
| 2.875
| 3
|
[] |
no_license
|
import math
import sys
input = sys.stdin.readline
def init(arr, tree, node, s, e):
#print(node, s, e)
if s == e:
tree[node] = arr[s]
return tree[node]
m = (s+e)//2
tree[node] = init(arr, tree, node*2, s, m) + \
init(arr, tree, node*2+1, m+1, e)
return tree[node]
def update(tree, node, s, e, idx, diff):
if not s <= idx <= e:
return
tree[node] += diff
if s != e:
mid = (s+e)//2
update(tree, node*2, s, mid, idx, diff)
update(tree, node*2+1, mid+1, e, idx, diff)
def getValue(tree, node, s, e, left, right):
if left > e or right < s:
return 0
if left <= s and e <= right:
return tree[node]
mid = (s+e)//2
return getValue(tree, node*2, s, mid, left, right)+getValue(tree, node*2+1, mid+1, e, left, right)
n, q = map(int, input().split())
arr = list(map(int, input().split()))
tree = [0 for _ in range(2**(math.ceil(math.log2(n)+1)))]
init(arr, tree, 1, 0, n-1)
# print(tree)
for _ in range(q):
x, y, a, b = map(int, input().split())
if x > y:
x, y = y, x
print(getValue(tree, 1, 0, n-1, x-1, y-1))
diff = b-arr[a-1]
arr[a-1] = b
update(tree, 1, 0, n-1, a-1, diff)
| true
|
d38ac3d576b17ea97f435453bb296a2897c34490
|
Python
|
VladyslavHnatchenko/python_magic_methods
|
/next_methods.py
|
UTF-8
| 4,032
| 4.03125
| 4
|
[] |
no_license
|
from os.path import join
class FileObject:
""" The wrapper for the file object to ensure that the file will be closed upon deletion."""
def __init__(self, filepath='~', filename='sample.txt'):
# Open file filename in read and write mode
self.file = open(join(filepath, filename), 'r+')
def __del__(self):
self.file.close()
del self.file
class Word(str):
""" The class for word s that defines a comparison by word length."""
def __new__(cls, word):
# We have to use __new__, since the type of str is immutable
# and we need to initialize it earlier (when creating)
if ' ' in word:
print("Value contains spaces. Trancating to first space.")
word = word[:word.index(' ')] # Now Word is all characters up to first space
return str.__new__(cls, word)
def __gt__(self, other):
return len(self) > len(other)
def __lt__(self, other):
return len(self) < len(other)
def __ge__(self, other):
return len(self) >= len(other)
def __le__(self, other):
return len(self) <= len(other)
def __setattr__(self, key, value):
self.name = value
"""
This's a recursion, because whenever any attribute is assigned a value,
__setattr__() is called. That is, in fact, is equivalent to
self.__setattr__('name', value).
Since the method calls itself, the recursion will continue indefinitely,
until everything falls
"""
def __setattr__(self, name, value):
self.__dict__[name] = value
"""
Assignment of class variables to the dictionary.
Further definition of arbitrary behavior.
"""
class AccessCounter(object):
"""
The class that contains the value attribute and implements an access counter for it.
The counter is incremented every time the value changes.
"""
def __int__(self, val):
super(AccessCounter, self).__setattr__('counter', 0)
super(AccessCounter, self).__setattr__('value', val)
def __setattr__(self, name, value):
if name == 'value':
super(AccessCounter, self).__setattr__('counter', self.counter + 1)
# We won't make any condition here.
# If you want to prevent other attributes from being modified,
# throw an AttributeError(name) exception.
super(AccessCounter, self).__setattr__(name, value)
def __delattr__(self, name):
if name == 'value':
super(AccessCounter, self).__setattr__('counter', self.counter + 1)
super(AccessCounter, self).__delattr__(name)
class FunctionalList:
"""
Class wrapper over the list with some functional magic added:
head, tail, last, drop, take.
"""
def __init__(self, values=None):
if values is None:
self.values = []
else:
self.values = values
def __len__(self):
return len(self.values)
def __getitem__(self, key):
# if the value or key type is incorrect, the list throw an exception
return self.values[key]
def __setitem__(self, key, value):
self.values[key] = value
def __delitem__(self, key):
del self.values[key]
def __iter__(self):
return iter(self.values)
def __reversed__(self):
return FunctionalList(reversed(self.values))
def append(self, value):
self.values.append(value)
def head(self):
# return first element
return self.values[0]
def tail(self):
# return all elements except 1st
return self.values[1:]
def init(self):
# return all elements except the last
return self.values[:-1]
def last(self):
# return the last element
return self.values[-1]
def drop(self, n):
# all elements except n first elements
return self.values[n:]
def take(self, n):
# first n elements
return self.values[:n]
| true
|
620040475e190de356d58aee06a85a60cdca0160
|
Python
|
n-simplex/Personal
|
/Image Processing/CircleMap.py
|
UTF-8
| 2,642
| 2.921875
| 3
|
[] |
no_license
|
import random
import math
import turtle
import winsound
import smtplib
import os
import time
import colorsys
global password
password = input('Enter password: ')
os.system('cls')
for i in range(0,100):
print('\n')
def email():
addr = 'iskym9@gmail.com'
msg = "\r\n".join([
"From: iskym9@gmail.com",
"To: iskym9@gmail.com",
"Subject: COMPUTED!",
'',
'['+time.strftime('%H')+':'+time.strftime('%M')+':'+time.strftime('%S')+']'
])
server = smtplib.SMTP('smtp.gmail.com:587')
server.ehlo()
server.starttls()
server.login(addr,password)
server.sendmail(addr, addr, msg)
server.quit()
def circle(maxit, k, O, samplen, epsilon):
l = []
for j in range(0, samplen):
stheta = random.uniform(0,1)
ntheta = stheta
for i in range(0, maxit):
ntheta = ntheta+O-(k/(2*math.pi))*math.sin(2*math.pi*ntheta)
ntheta %= 1
if abs(ntheta-stheta) <= epsilon:
time = i
break
elif i == maxit-1:
time = maxit
break
l.append(time)
return (sum(l)/len(l))
def colour(cyc):
if cyc <= 10:
return 'black'
if cyc > 10 and cyc <= 50:
return 'indigo'
if cyc > 50 and cyc <= 100:
return 'blue'
if cyc > 100 and cyc <= 140:
return 'green'
if cyc > 140 and cyc <= 200:
return 'yellow'
if cyc > 200 and cyc <= 250:
return 'orange'
if cyc > 250:
return 'red'
def rerange(n,olrange,nerange):
if n > olrange[1] or n < olrange[0]:
return 'ERROR: n not within OLD RANGE'
else:
olperc = (n-olrange[0])/(olrange[1]-olrange[0])
return nerange[0]+olperc*(nerange[1]-nerange[0])
def circlemap(maxit, krange, Orange, samples, epsilon, width, height):
for y in range(-int(height/2), int(height/2)):
for x in range(-int(width/2), int(width/2)):
currentk = rerange(y+(height/2),[0,height],krange)
currentO = rerange(x+(width/2),[0,width],Orange)
cycle = circle(maxit, currentk, currentO, samples, epsilon)
turtle.up()
turtle.goto(x-1,y)
turtle.down()
if cycle == 250:
turtle.color('black')
else:
turtle.color(colorsys.hsv_to_rgb((cycle/250)**0.5,(cycle/250)**0.08,1))
turtle.forward(1)
turtle.tracer(0,0)
circlemap(250, [0, 2*math.pi], [0, 1], 500, 0.001, 500, 500)
turtle.ht()
turtle.update()
winsound.Beep(10000,1000)
email()
| true
|
1373c94e96ebe2eaa9e386857230558ba703098d
|
Python
|
arushibutan11/ASA
|
/ASA/loki.py
|
UTF-8
| 2,230
| 2.578125
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import serial
import time
from pynmea import nmea
from django.shortcuts import render
import string
import math
def loki(bound_lat, bound_lon, bound_radius):
#Calculate Current Coordinates
port = serial.Serial("/dev/ttyAMA0",9600, timeout=3.0)
gpgga = nmea.GPGGA()
gprmc = nmea.GPRMC()
while True:
rcvd = port.readline()
if rcvd[0:6] == '$GPRMC':
gprmc.parse(rcvd)
if gprmc.data_validity == 'V':
print "No Location Found"
else:
gprmc.parse(rcvd)
latitude = gprmc.lat
try:
latitude = float(latitude)
except ValueError:
print "Lat Value Error" + latitude
lat_direction = gprmc.lat_dir
try:
longitude = float(gprmc.lon)
except ValueError:
print "Longitude Value Error" + longitude
lon_direction = gprmc.lon_dir
gps_time = float(gprmc.timestamp)
gps_hour = int(gps_time/10000.0)
gps_min = gps_time%10000.0
gps_sec = gps_min%100.0
gps_min = int(gps_min/100.0)
gps_sec = int(gps_sec)
lat_deg = int(latitude/100.0)
lat_min = latitude - (lat_deg*100)
lat_dec_deg = lat_deg + (lat_min/60)
lon_deg = int(longitude/100.0)
lon_min = longitude - (lon_deg*100)
lon_dec_deg = lon_deg + (lon_min/60)
lon_sec = lon_min%100.0
lon_min = int(lon_min/100.0)
print "Time: "+str(gps_hour)+":"+str(gps_min)+":"+str(gps_sec)
print "Latitude: " + str(lat_dec_deg) + str(lat_direction)
print "Longitude: " + str(lon_dec_deg) + str(lon_direction)
#Calculate dist between bound_coord and current location
latitude = 28.664227
longitude = 77.232989
earth_radius = 6371*1000
dLat = (latitude - bound_lat)*math.pi/180
dLon = (longitude - bound_lon)*math.pi/180
latitude = latitude*math.pi/180
bound_lat = bound_lat*math.pi/180
val = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLon/2)*math.sin(dLon/2)*math.cos(bound_lat)*math.cos(latitude)
ang = 2*math.atan2(math.sqrt(val), math.sqrt(1-val))
distance = earth_radius*ang
if distance>bound_radius:
print "Patient Lost"
#Send Push Noti and Location
else:
print "Patient Found"
#Send Location
| true
|
9d471e893b97b10e565de25ab89d6f8bf64b76e7
|
Python
|
jlopez1328/Python
|
/Ejercicios_conceptos_basicos/cambio_moneda.py
|
UTF-8
| 147
| 3.25
| 3
|
[] |
no_license
|
dolares = float(input ("Digite la cantidad dolares \n"))
vdolares = 3981
cop = dolares * vdolares
print("Total de cantidad de dolares a COP", cop)
| true
|
0a1d027425c6d39ee76e58c1e067b814b8ef418f
|
Python
|
Hsuxu/vision
|
/torchvision/prototype/transforms/_presets.py
|
UTF-8
| 2,764
| 2.765625
| 3
|
[
"BSD-3-Clause",
"CC-BY-NC-4.0"
] |
permissive
|
"""
This file is part of the private API. Please do not use directly these classes as they will be modified on
future versions without warning. The classes should be accessed only via the transforms argument of Weights.
"""
from typing import List, Optional, Tuple, Union
import PIL.Image
import torch
from torch import Tensor
from . import functional as F, InterpolationMode
__all__ = ["StereoMatching"]
class StereoMatching(torch.nn.Module):
def __init__(
self,
*,
use_gray_scale: bool = False,
resize_size: Optional[Tuple[int, ...]],
mean: Tuple[float, ...] = (0.5, 0.5, 0.5),
std: Tuple[float, ...] = (0.5, 0.5, 0.5),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> None:
super().__init__()
# pacify mypy
self.resize_size: Union[None, List]
if resize_size is not None:
self.resize_size = list(resize_size)
else:
self.resize_size = None
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation
self.use_gray_scale = use_gray_scale
def forward(self, left_image: Tensor, right_image: Tensor) -> Tuple[Tensor, Tensor]:
def _process_image(img: PIL.Image.Image) -> Tensor:
if self.resize_size is not None:
img = F.resize(img, self.resize_size, interpolation=self.interpolation)
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
if self.use_gray_scale is True:
img = F.rgb_to_grayscale(img)
img = F.convert_image_dtype(img, torch.float)
img = F.normalize(img, mean=self.mean, std=self.std)
img = img.contiguous()
return img
left_image = _process_image(left_image)
right_image = _process_image(right_image)
return left_image, right_image
def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string
def describe(self) -> str:
return (
"Accepts ``PIL.Image``, batched ``(B, C, H, W)`` and single ``(C, H, W)`` image ``torch.Tensor`` objects. "
f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. "
f"Finally the values are first rescaled to ``[0.0, 1.0]`` and then normalized using ``mean={self.mean}`` and "
f"``std={self.std}``."
)
| true
|
6cc32fa383273440fa56b4a4af0190bcccc47240
|
Python
|
dgoyard/caps-clindmri
|
/clindmri/plot/polar.py
|
UTF-8
| 3,771
| 2.75
| 3
|
[] |
no_license
|
##########################################################################
# NSAp - Copyright (C) CEA, 2013 - 2016
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################
# System import
import numpy as np
import json
import os
import matplotlib.pyplot as plt
def polarplot(individual_stats, cohort_stats, snapfile, name=None):
""" Display a polar plot with some summary values (statistics)
Parameters
----------
individual_stats, cohort_stats: dict (mandatory)
structure describing the measure by regions on the cohort and
on the individual.
snapfile: str (mandatory)
the name of the generated polar snap.
name: str (optional, default None)
the name of the polar plot.
"""
fig = plt.figure(figsize=(45, 18))
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
color_ok = 1
color_out = 255
sigma_thr = 2
nb_cols = 4
nb_rows = len(individual_stats) / nb_cols
if len(individual_stats) % nb_cols != 0:
nb_rows += 1
# Go through measure
nb_subplots = 0
for measure_name, measure_item in individual_stats.items():
# Calculate evenly-spaced axis angles
nb_regions = len(measure_item)
angle = np.linspace(0, 2 * np.pi, nb_regions, endpoint=False)
# Rotate theta such that the first axis is at the top
angle += np.pi/2
angle = angle.tolist()
angle.append(angle[0])
# Create plor subplot for the measure
nb_subplots += 1
ax = fig.add_subplot(nb_rows, nb_cols, nb_subplots, projection="polar")
ax.set_title(measure_name, weight="bold", size="medium",
position=(0.5, 1.1),
horizontalalignment="center",
verticalalignment="center")
# Go through regions
_data = []
_color = []
_bound_max = [sigma_thr + 3, ] * (len(measure_item) + 1)
_bound_min = [3 - sigma_thr, ] * (len(measure_item) + 1)
_mean = [3, ] * (len(measure_item) + 1)
_regions = []
for region_name, indstats in measure_item.items():
indmeasure = indstats["m"]
stats = cohort_stats[measure_name][region_name]
if stats["s"] == 0:
normalize_value = 0
else:
normalize_value = (indmeasure - stats["m"]) / stats["s"] + 3
if normalize_value < 0:
normalize_value = 0
_data.append(normalize_value)
if normalize_value > sigma_thr + 3 or normalize_value < 3 - sigma_thr:
_color.append(color_out)
else:
_color.append(color_ok)
_regions.append(region_name)
_data.append(_data[0])
_color.append(_color[0])
# Create a polar subplot
plt.scatter(angle, _data, c=_color, s=100, cmap=plt.cm.bwr)
plt.plot(angle, _bound_max, "r")
plt.plot(angle, _bound_min, "r")
plt.plot(angle, _mean, "g--", linewidth=2)
ax.fill(angle, _data, facecolor="b", alpha=0.25)
ax.set_thetagrids(np.degrees(angle), _regions, fontsize="small")
ax.set_yticks(range(0, 6, 1))
ax.set_yticklabels([r"-3$\sigma$", r"-2$\sigma$", r"-$\sigma$",
r"$\mu$", r"+$\sigma$", r"+2$\sigma$",
r"+3$\sigma$"])
# Set figure title
plt.figtext(0.5, 0.965, name or "", ha="center", color="black",
weight="bold", size="large")
plt.savefig(snapfile)
| true
|
f89a1f3985043c1aeb2490457ab83c9567c88801
|
Python
|
cloud76508/Group_Learning
|
/single_digit/DeepLearning/show_images.py
|
UTF-8
| 371
| 2.625
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 26 13:02:36 2021
@author: ASUS
"""
import matplotlib.pyplot as plt
import load_mat_single_digit as load_data
[x_train, y_train, x_val, y_val, x_test, y_test] = load_data.load_data(2)
# pick a sample to plot
sample = 5
image = x_train[sample]
# plot the sample
#fig = plt.figure
plt.imshow(image, cmap='gray')
#plt.show()
| true
|
f6f891f0ff70200667c4c1613e1ba2789aa32b45
|
Python
|
LiXin-Ren/Algorithm_Examination
|
/8.25头条笔试/5yueshuChaxun.py
|
UTF-8
| 827
| 3.234375
| 3
|
[] |
no_license
|
"""
已知一些形如"y = 4 - x"的约束条件,查询形如y-x的值
输入:
第一行为两个整数n,m,表示有n个已知的约束条件,有m个查询
接下来n行,形如"y = k - x",表示约束条件y = k - x,其中等号和剑豪前后一定有空格。y和x是变量名,由英文小写字母组成,长度不超过4
k是一个偶数(注意可能为负,负数的负号后没有空格)
接下来m行,形如"y-x",表示查询y-x的值。其中减号前后一定有空格。y与x是变量名,规则同上。输入数据保证不会产生冲突,不会无解。
输出:
对于每个查询,输出一个整数,表示y-x的值
若输入数据不足以推导出结果,则输出"cannot_answer"
示例:
input:
3 2
a = 0 - b
b = 2 - c
c = 4 - d
b - d
b - c
输出:
-3
cannot_answer
"""
| true
|
cf50a7876274ab66ed66d22a5ef821383aeb04e9
|
Python
|
adafruit/circuitpython
|
/tests/micropython/viper_types.py
|
UTF-8
| 412
| 3.765625
| 4
|
[
"MIT",
"GPL-1.0-or-later"
] |
permissive
|
# test various type conversions
import micropython
# converting incoming arg to bool
@micropython.viper
def f1(x: bool):
print(x)
f1(0)
f1(1)
f1([])
f1([1])
# taking and returning a bool
@micropython.viper
def f2(x: bool) -> bool:
return x
print(f2([]))
print(f2([1]))
# converting to bool within function
@micropython.viper
def f3(x) -> bool:
return bool(x)
print(f3([]))
print(f3(-1))
| true
|
31ebd5a93b402261842eb0ba828c6a4be8f116e0
|
Python
|
meshidenn/nlp100
|
/chap_3/23.py
|
UTF-8
| 402
| 3.046875
| 3
|
[] |
no_license
|
import re
f = open('jawiki-england.txt','r')
g = open('jawiki-england-level-name.txt','w')
section = re.compile(r"=(=+)(.+)=\1")
for line in f:
m = re.match(section, line)
if m:
level = int(line.count('=')/2 - 1)
# name = re.sub("=",'', m.group(1))
print('%s,level:%d' % (m.group(2),level))
g.write('%s,level:%d\n' % (name,level))
f.close()
g.close()
| true
|
a552f1c68ee863da2db2b1cb17b5da54662f433e
|
Python
|
SuguruChhaya/SA-Volume-calculator
|
/final akashi project.py
|
UTF-8
| 7,440
| 3.0625
| 3
|
[] |
no_license
|
import math
from tkinter import *
from PIL import Image, ImageTk
root = Tk()
class Sphere():
def framework(self, root):
root.title("SA/V calculator")
# * Images
self.sphere_image = ImageTk.PhotoImage(Image.open('Sphere.png'))
self.pyramid_image = ImageTk.PhotoImage(Image.open('pyramid.png'))
self.cylinder_image = ImageTk.PhotoImage(Image.open('cylinder.png'))
# * Basic
self.image_label = Label(root, image=self.sphere_image)
self.image_label.grid(row=1, column=1, columnspan=2)
self.title = Label(root, text="Sphere")
self.title.grid(row=0, column=1, columnspan=2)
# *Side Buttons
self.next = Button(
root, text=">>", command=lambda: SquarePyramid.framework(self, root))
self.next.grid(row=1, column=3)
self.back = Button(root, text="<<", state=DISABLED)
self.back.grid(row=1, column=0)
# *Radius
self.radius_frame = LabelFrame(root)
self.radius_label = Label(self.radius_frame, text="Radius: ")
self.radius_label.grid(row=0, column=0)
self.radius_entry = Entry(self.radius_frame)
self.radius_entry.grid(row=0, column=1)
self.radius_frame.grid(row=2, column=1, columnspan=2)
# *Side
self.side_frame = LabelFrame(root)
self.side_label = Label(self.side_frame, text="Base\nlength: ")
self.side_label.grid(row=0, column=0)
self.side_entry = Entry(self.side_frame)
self.side_entry.grid(row=0, column=1)
# self.side_frame.grid(row=3, column=1, columnspan=2)
# *Height
self.height_frame = LabelFrame(root)
self.height_label = Label(self.height_frame, text="Height: ")
self.height_label.grid(row=0, column=0)
self.height_entry = Entry(self.height_frame)
self.height_entry.grid(row=0, column=1)
# self.height_frame.grid(row=4, column=1, columnspan=2)
# *SA
self.sa_frame = LabelFrame(root)
self.sa_button = Button(self.sa_frame, text="Calculate \nSurface Area",
padx=5, command=lambda: Sphere.sa_calculator(self))
self.sa_button.grid(row=0, column=0)
self.sa_label = Label(self.sa_frame, text="")
self.sa_label.grid(row=1, column=0)
self.sa_frame.grid(row=5, column=1, sticky=E)
# *Volume
self.v_frame = LabelFrame(root)
self.v_button = Button(self.v_frame, text="Calculate\nVolume",
padx=8, command=lambda: Sphere.v_calculator(self))
self.v_button.grid(row=0, column=0)
self.v_label = Label(self.v_frame, text="")
self.v_label.grid(row=1, column=0)
self.v_frame.grid(row=5, column=2, sticky=W)
def sa_calculator(self):
try:
radius = float(self.radius_entry.get())
sa = str(round(4 * math.pi * radius ** 2, 5))
except ValueError:
sa = ""
self.sa_label.config(text=sa)
def v_calculator(self):
try:
radius = float(self.radius_entry.get())
v = str(round(4 * math.pi * radius ** 3 / 3, 5))
except ValueError:
v = ""
self.v_label.config(text=v)
def all_forget(self):
self.radius_entry.delete(0, "end")
self.height_entry.delete(0, "end")
self.side_entry.delete(0, "end")
self.title.grid_forget()
self.image_label.grid_forget()
self.next.grid_forget()
self.back.grid_forget()
self.radius_frame.grid_forget()
self.height_frame.grid_forget()
self.side_frame.grid_forget()
self.sa_label.config(text="")
self.sa_label.config(text="")
return Sphere.framework(self, root)
def reset(self):
#!This clears the entry
self.radius_entry.delete(0, "end")
self.height_entry.delete(0, "end")
self.side_entry.delete(0, "end")
self.sa_label.config(text="")
self.v_label.config(text="")
class SquarePyramid(Sphere):
def framework(self, root):
# * Reset answers using inheritance
SquarePyramid.reset(self)
# * Basic
self.image_label.config(image=self.pyramid_image)
self.title.config(text="Square Pyramid")
# *Side Buttons
self.next.config(
state=NORMAL, command=lambda: Cylinder.framework(self, root))
self.back.config(
state=NORMAL, command=lambda: Sphere.all_forget(self))
# *Radius
self.radius_frame.grid_forget()
# * Side
self.side_frame.grid(row=3, column=1, columnspan=2)
# *Height
self.height_frame.grid(row=4, column=1, columnspan=2)
# * Calculate
self.sa_button.config(
command=lambda: SquarePyramid.sa_calculator(self))
self.v_button.config(command=lambda: SquarePyramid.v_calculator(self))
#!I have to define a new definition or else it will use the one from Sphere
def sa_calculator(self):
try:
side = float(self.side_entry.get())
height = float(self.height_entry.get())
base_area = side ** 2
slant_height = math.sqrt(((side / 2) ** 2) + (height ** 2))
side_area = side * slant_height / 2 * 4
sa = str(round(base_area + side_area, 5))
except ValueError:
sa = ""
self.sa_label.config(text=sa)
def v_calculator(self):
try:
side = float(self.side_entry.get())
height = float(self.height_entry.get())
v = str(round(1 / 3 * side ** 2 * height, 5))
except ValueError:
v = ""
self.v_label.config(text=v)
class Cylinder(SquarePyramid):
# def __init__(self, root):
#SquarePyramid.__init__(self, root)
def framework(self, root):
# * Reset answer
Cylinder.reset(self)
# *Basic
self.image_label.config(image=self.cylinder_image)
self.title.config(text="Cylinder")
# *Side Buttons
self.next.config(state=DISABLED)
self.back.config(command=lambda: SquarePyramid.framework(self, root))
# *Base length
self.side_frame.grid_forget()
# *Radius
self.radius_frame.grid(row=3, column=1, columnspan=2)
# *SA/V
self.sa_button.config(command=lambda: Cylinder.sa_calculator(self))
self.v_button.config(command=lambda: Cylinder.v_calculator(self))
def sa_calculator(self):
try:
radius = float(self.radius_entry.get())
height = float(self.height_entry.get())
base_area = math.pi * radius ** 2 * 2
side_area = 2 * math.pi * radius * height
sa = str(round(base_area + side_area, 5))
except ValueError:
sa = ""
self.sa_label.config(text=sa)
def v_calculator(self):
try:
radius = float(self.radius_entry.get())
height = float(self.height_entry.get())
v = str(round(math.pi * radius ** 2 * height, 5))
except ValueError:
v = ""
self.v_label.config(text=v)
a = Sphere()
a.framework(root)
root.mainloop()
| true
|
b3a493071051fedc8352267aabb6455096ba77d6
|
Python
|
chopper6/MPRI_community_detection
|
/page_rank.py
|
UTF-8
| 1,435
| 2.59375
| 3
|
[] |
no_license
|
import random as rd
from util import *
import numpy as np
def surf(G,params):
# where G should be a networkx DiGraph
# initialized with: node['rank'] = 0 for all nodes
# and seed should be a set of nodes
damping = params['damping']
seeds = G.graph['seeds']
node = rd.choice(seeds) #start_node
num_dead_ends = 0
for i in range(params['iters']):
G.nodes[node]['rank'] += 1
out_edges = list(G.out_edges(node))
# note: did not trim dead-ends, since still want to rank them
# side-effect: this effectively increases the damping param
if out_edges == [] or rd.random() < damping: #i.e dead-end or randomly chose to restart
node = rd.choice(seeds)
if out_edges == []:
num_dead_ends += 1
else:
next_edge = rd.choice(out_edges)
node = next_edge[1]
nodes = np.array(G.nodes())
orig_ranks = np.array([G.nodes[nodes[i]]['rank'] for i in rng(nodes)])
temp = orig_ranks.argsort()
top_k_nodes = nodes[temp[:params['community_size']]]
ranks = np.empty_like(temp)
ranks[temp] = np.arange(len(orig_ranks))
minn = []
for i in rng(nodes):
if ranks[i]!=0:
minn+=[ranks[i]]
minn = min(minn)
for i in rng(nodes):
if ranks[i]==0:
ranks[i]=minn
G.nodes[nodes[i]]['cardinal_rank'] = 1/ranks[i]
#max_rank = max([G.nodes[node]['rank'] for node in G.nodes()])
#for node in G.nodes():
#G.nodes[node]['rank'] /= params['iters']
# G.nodes[node]['rank'] /= max_rank
return top_k_nodes
| true
|
b70599474775b42171be1f6ddc2e109f1f78fc14
|
Python
|
PBDCA/changaizakhtar
|
/testListCalculater.py
|
UTF-8
| 1,915
| 2.78125
| 3
|
[] |
no_license
|
import unittest
from ListCalculater import (addMap,addReduce,addfilter,SubtractMap,SubtractReduce,MultiplyMap,MultiplyReduce,divideMap,divideReduce
,ExponentMap,ExponentReduce,MaxMap,MinReduce,SquareMap)
class TestCalculator(unittest.TestCase):
def testAddMap(self):
self.assertEqual([8,0],addMap([4,0],[4,0]))
self.assertEqual([-8,0],addMap([-4,0],[-4,0]))
self.assertEqual([0,0],addMap([4,0],[-4,0]))
def testaddReduce(self):
self.assertEqual(3,addReduce([1,2]))
self.assertEqual(-4,addReduce([-2,-2]))
def testaddfilter(self):
self.assertEqual([4],addfilter([1,3,4,5]))
def testSubtractmap(self):
self.assertEqual([0,1],SubtractMap([2,5],[2,4]))
self.assertEqual([4,3],SubtractMap([2,5],[-2,2]))
self.assertEqual([4,0],SubtractMap([2,0],[-2,0]))
def testSubtractReduce(self):
self.assertEqual(0,SubtractReduce([2,2]))
self.assertEqual(6,SubtractReduce([4,-2]))
def testMultiplyMap(self):
self.assertEqual([4,20],MultiplyMap([2,5],[2,4]))
self.assertEqual([-4,10],MultiplyMap([2,5],[-2,2]))
def testMultiplyReduce(self):
self.assertEqual(4,MultiplyReduce([2,2]))
self.assertEqual(-8,MultiplyReduce([4,-2]))
def testDivisonMap(self):
self.assertEqual([1,5],divideMap([2,10],[2,2]))
self.assertEqual([-1,2],divideMap([2,-6],[-2,-3]))
def testDivisonReduce(self):
self.assertEqual(1,divideReduce([2,2]))
self.assertEqual(-2,divideReduce([4,-2]))
def testExpontMap(self):
self.assertEqual([4,625],ExponentMap([2,5],[2,4]))
def testExpontReduce(self):
self.assertEqual(4,ExponentReduce([2,2]))
def testMaxMap(self):
self.assertEqual([2,4],MaxMap([2,3],[1,4]))
def testMinReduce(self):
self.assertEqual(2,MinReduce([2,3]))
def testsequarMap(self):
self.assertEqual([4,16],SquareMap([2,4]))
if __name__=='__main__':
unittest.main()
| true
|
23fd4ab94deed973cc038549505f525d6ab9cec5
|
Python
|
sergeyerr/DCHelper_1.0
|
/DCPlatform/ActiveHelper/MethodsSuggester.py
|
UTF-8
| 6,993
| 2.640625
| 3
|
[] |
no_license
|
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import NearestNeighbors
from pymfe.mfe import MFE
from openml.tasks import TaskType
import pandas as pd
def get_features(task: TaskType, cached_metafeatures: pd.DataFrame, target: str = None):
"""
Возвращает метапризнаки данного датасета
task: TaskType: Тип решаемой задачи машинного обучения
cached_metafeatures: pd.DataFrame: заранее предпосчитанные признаки датасета
target: str: при наличии, целевая колонка в датасете для решаемой задачи
"""
categorical_barrier = 20
features = {}
is_superv = task == TaskType.SUPERVISED_CLASSIFICATION or TaskType.SUPERVISED_REGRESSION
if is_superv and not target:
raise Exception("not target for supervised task")
if task == TaskType.SUPERVISED_CLASSIFICATION:
if len(pd.unique(cached_metafeatures[target])) > categorical_barrier:
raise Exception('too many values for classification')
features['MajorityClassSize'] = cached_metafeatures.groupby(target).count().max()[0]
features['MinorityClassSize'] = cached_metafeatures.groupby(target).count().min()[0]
features['NumberOfClasses'] = len(cached_metafeatures[target].unique())
if task == TaskType.SUPERVISED_REGRESSION:
if cached_metafeatures[target].dtype != 'float64' and \
cached_metafeatures[target].dtype != 'int64' and \
cached_metafeatures[target].dtype != 'float32' and cached_metafeatures[target].dtype != 'int32':
raise Exception('target is not numeric attribute')
features['target_max'] = cached_metafeatures[target].max()
features['target_min'] = cached_metafeatures[target].min()
features['targets_q_0.25'] = cached_metafeatures[target].quantile(0.25)
features['targets_q_0.5'] = cached_metafeatures[target].quantile(0.5)
features['targets_q_0.75'] = cached_metafeatures[target].quantile(0.75)
features['targets_skewness'] = cached_metafeatures[target].skew()
features['targets_kurtosis'] = cached_metafeatures[target].kurt()
if is_superv:
cached_metafeatures = cached_metafeatures.copy().drop([target], axis=1)
features['NumberOfBinaryFeatures'] = len([col for col in cached_metafeatures if
cached_metafeatures[col].dropna().value_counts().index.isin([0, 1]).all()])
features['NumberOfFeatures'] = len(cached_metafeatures.columns) - 1 if is_superv else 0
features['NumberOfInstances'] = len(cached_metafeatures)
features['NumberOfInstancesWithMissingValues'] = cached_metafeatures.shape[0] - cached_metafeatures.dropna().shape[0]
features['NumberOfNumericFeatures'] = len(
cached_metafeatures.select_dtypes(include=['float64', 'int64', 'float32', 'int32']).columns)
# MFE фичи подсчитываются в дата-сервисе
# mfe = MFE('all')
# mfe.fit(data.values)
# ft = mfe.extract()
# for k, v in zip(ft[0], ft[1]):
# features[k] = v
return features
# запуски с OpenML
runs = pd.read_csv('ActiveHelper/all_you_need_runs.csv')
class_features = pd.read_csv('ActiveHelper/classification_data.csv')
reg_features = pd.read_csv('ActiveHelper/regression_data.csv')
class_scaler = StandardScaler()
reg_scaler = StandardScaler()
class_features = class_features[class_features['var_mean'] < class_features['var_mean'].quantile(0.8)]
class_features_ = class_scaler.fit_transform(class_features.drop(['did'], axis=1))
reg_features = reg_features[reg_features['var_mean'] < reg_features['var_mean'].quantile(0.8)]
reg_features_ = reg_scaler.fit_transform(reg_features.drop(['did'], axis=1))
class_features[class_features.drop(['did'], axis=1).columns] = class_features_
reg_features[reg_features.drop(['did'], axis=1).columns] = reg_features_
def suggest_methods(task: TaskType, dataset: pd.DataFrame, data_metafeatures : dict, target : str = None) -> list:
"""
Предлагает методы решения задачи МО для данного датасета
task: TaskType: задача машинного обучения
dataset: pd.DataFrame: датасет
data_metafeatures: dict: предподсчитанные метапризнаки датасета
target: str: целевая колонка
"""
def place(x):
x['place'] = range(1, len(x) + 1)
return x
target_features = pd.DataFrame([{**get_features(task, dataset, target), **data_metafeatures}]).dropna(axis=1)
print(target_features)
comparison_metric = {TaskType.SUPERVISED_CLASSIFICATION: 'area_under_roc_curve',
TaskType.SUPERVISED_REGRESSION: 'mean_absolute_error'}
if task == TaskType.CLUSTERING:
raise Exception('alarm')
if task == TaskType.SUPERVISED_CLASSIFICATION:
data_features = class_features
data = data_features[target_features.columns]
class_scaler.fit(data)
target_features_ = class_scaler.transform(target_features)
elif task == TaskType.SUPERVISED_REGRESSION:
data_features = reg_features
data = data_features[target_features.columns]
reg_scaler.fit(data)
target_features_ = reg_scaler.transform(target_features)
else:
raise Exception('alarm')
target_features[:] = target_features_
# target_features = target_features.dropna(axis=1)
data.loc[:, 'did'] = data_features['did']
neigh = NearestNeighbors(n_neighbors=len(data) // 3)
data = data.dropna()
neigh.fit(data.drop(['did'], axis=1))
dist, ind = neigh.kneighbors(target_features)
ind = ind.reshape(-1)
dist = dist.reshape(-1)
dists_frame = pd.DataFrame()
dists_frame['did'] = data.iloc[ind, :]['did']
dists_frame['dist'] = dist
req_runs = runs[runs['did'].isin(data.iloc[ind, :]['did'])].copy()
tmp = req_runs[req_runs[comparison_metric[task]].notna()].groupby(['task_id', 'name'])
tmp = tmp.apply(lambda x: x.sort_values(ascending=False, by='area_under_roc_curve'))
# выбираем самые лучшие попытки
tmp = tmp.reset_index(drop=True).groupby(['task_id', 'name']).first().reset_index()
# сортируем алгосы по крутости в рамках задачи
tmp = tmp.groupby(['task_id']).apply(
lambda x: x.sort_values(ascending=False, by=comparison_metric[task])).reset_index(drop=True)
# места по крутости на задаче
tmp = tmp.groupby(['task_id']).apply(lambda x: place(x))
tmp = tmp.join(dists_frame.set_index('did'), on='did')
tmp['weighted_place'] = tmp['place'] * tmp['dist']
tmp = tmp.groupby(['name'])['weighted_place'].mean().dropna()
tmp = tmp.sort_values()
return list(zip(tmp.index, list(tmp)))
| true
|
f7720ada6d8384b5dfa20c205c6dfbd4b809f7d3
|
Python
|
tanhaipeng/XAPM
|
/ext-src/local_debug.py
|
UTF-8
| 2,149
| 2.78125
| 3
|
[
"Apache-2.0"
] |
permissive
|
# -*- coding: utf-8 -*-
"""
Created on 2017-12-27 12:46
@summary: XAPM Extension Log Parse Agent
@author: tanhp@outlook.com
"""
import json
LOG_FILE = "/tmp/trace.log"
def parse_log(path):
"""
parse trace log
:param path:
:return:
"""
trace_list = []
trace_one = []
with open(path) as file:
while True:
line = file.readline()
if not line:
break
line = line.strip("\n")
if not line:
continue
info = line.split("\t")
if len(info) == 2:
if info[1] == "xapm_trace_start":
trace_one = []
elif info[1] == "xapm_trace_end":
trace_list.append(map_trace(trace_one))
else:
if info[1].isdigit():
trace_one.append(info[1])
else:
trace_one.append(line)
return trace_list
def map_trace(trace):
"""
map trace
:param trace:
:return:
"""
sorts = []
stack = []
result = []
for idx, val in enumerate(trace):
if not val.isdigit():
stack.append(json.dumps({val: idx}))
else:
sorts.append({
stack.pop(): int(val)
})
sorts.sort(cmp=cmp_trace)
for elem in sorts:
key = elem.keys()[0]
val = elem.values()[0]
result.append(split_detail(json.loads(key).keys()[0]) + "\t" + str(val) + "ms")
return result
def split_detail(detail):
"""
split detail
:param detail:
:return:
"""
info_list = detail.split("*")
if len(info_list) >= 2:
return "\t".join(info_list)
return ""
def cmp_trace(x, y):
"""
compare trace
:param x:
:param y:
:return:
"""
jx = x.keys()[0]
jy = y.keys()[0]
return json.loads(jx).values()[0] - json.loads(jy).values()[0]
if __name__ == "__main__":
traces = parse_log(LOG_FILE)
for elem in traces:
print "xapm_trace_start"
for tmp in elem:
print tmp
print "xapm_trace_end\n"
| true
|
5d7bf10b0521a99a96f2082d6886bef153a1a1ab
|
Python
|
burtr/reu-cfs
|
/reu-cfs-2018/svn/simple/separated-int.py
|
UTF-8
| 1,235
| 3.6875
| 4
|
[] |
no_license
|
import numpy as np
# a program to find two integers with a given difference, given
# a set of integers
# hint: first sort the set of integers. then maintain two indices, i <= j,
# as j moves forward the gap between l[i] and l[j] increases, and as
# i moves forward the gap between l[i] and l[j] decreases.
# now search by moving either i or j forward according to whether the
# gap is more or less than the desired difference
def separated_int(l,dist):
# given a list of integers l, and a distance, dist
# find two numbers l[i], l[j] with l[i]-l[j]==d,
# or return None
l_s = sorted(l)
i, j = 0 , 0
while j<len(l):
# complete
return (0,0) # this is an example, and to get it to compile
return None
### test program ###
HI_INT = 100
def make_random_list(n):
return [ np.random.randint(HI_INT) for i in range(n) ]
def test_separated_int(t):
tl = [2,6,9,5,11]
for i in [1,2,3]:
int_pair = separated_int(tl,i)
if (int_pair[1]-int_pair[0]) != i:
return False
for i in range(t):
tl = make_random_list(20)
int_pair = separated_int(tl,4)
if int_pair:
if (int_pair[1]-int_pair[0]) != 4:
return False
return True
if test_separated_int(10):
print ("Success")
else:
print ("Test failed")
| true
|
9a76fbe3e67feb68bc1d0636c32c6effb901374c
|
Python
|
8140171224/python3-learning
|
/ex4.1.py
|
UTF-8
| 388
| 4.15625
| 4
|
[] |
no_license
|
# The range() Function Few example.
for i in range(6):
print(i)
# below line '\n' means new lines
print('\n')
#range(5, 10)
for i in range(5, 10):
print(i)
# below line '\n' means new lines
print('\n')
#range(0, 20, 2)
for i in range(0, 22, 2):
print(i)
# below line '\n' means new lines
print('\n')
#range(-20, -200, -30)
for i in range(-20, -100, -30):
print(i)
| true
|
8476664887edd2bb96d287263c5555b7c439f733
|
Python
|
ryfeus/lambda-packs
|
/LightGBM_sklearn_scipy_numpy/source/sklearn/utils/tests/test_fixes.py
|
UTF-8
| 695
| 2.671875
| 3
|
[
"MIT"
] |
permissive
|
# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Justin Vincent
# Lars Buitinck
# License: BSD 3 clause
import pickle
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.fixes import divide
from sklearn.utils.fixes import MaskedArray
def test_divide():
assert_equal(divide(.6, 1), .600000000000)
def test_masked_array_obj_dtype_pickleable():
marr = MaskedArray([1, None, 'a'], dtype=object)
for mask in (True, False, [0, 1, 0]):
marr.mask = mask
marr_pickled = pickle.loads(pickle.dumps(marr))
assert_array_equal(marr.data, marr_pickled.data)
assert_array_equal(marr.mask, marr_pickled.mask)
| true
|
70a004ef6282c6cdd923e7897660d142e1eb5324
|
Python
|
Ouack23/FdL_Karna
|
/games/simon.py
|
UTF-8
| 3,886
| 3.078125
| 3
|
[] |
no_license
|
import logging, DMX, random, time, sys
from collections import OrderedDict
from array import array
from game import Game
def get_mode_list():
return ["RPI", "PC"]
class Simon(Game):
def __init__(self, mode="PC"):
Game.__init__(self, "Simon")
if mode in get_mode_list():
self.mode = mode
else:
logging.error("This mode (" + str(mode) + ") isn't supported")
sys.exit(0)
self.mode = mode
self.universe = 0
self.duration = 1
self.channels = 4
self._DMX = DMX.DMX(self.universe, self.duration, self.channels)
self.seq = []
self.fail = False
self.input_seq = ""
self.dmx_color1 = array('B', [255, 0, 0, 0])
self.dmx_color2 = array('B', [0, 255, 0, 0])
self.dmx_color3 = array('B', [0, 0, 255, 0])
self.dmx_color4 = array('B', [255, 255, 0, 0])
self.dmx_colors = dict(r=self.dmx_color1, g=self.dmx_color2, b=self.dmx_color3, y=self.dmx_color4)
if self.mode == "RPI":
gpio_dict = dict(r=22, g=27, b=4, y=17)
self.pins = None
self.build_pins(gpio_dict)
logging.debug("Successfully instantiated SIMON game ! :)")
def run(self):
if self.mode == "PC":
logging.info("Running Simon game")
self.seq.append(self.dmx_colors.keys()[random.randrange(0, self.channels - 1)])
while not self.fail:
for i in range(len(self.seq)):
if self.mode == "RPI":
self.pins.set_color_and_black(self.seq[i], self.duration)
self._DMX.send_dmx_and_black(self.dmx_colors[self.seq[i]])
if self.mode == "PC":
self.input_seq = raw_input("Type color sequence and press enter : ").lower()[:len(self.seq)]
for j in range(len(self.input_seq)):
if self.input_seq[i] != self.seq[i]:
self.fail = True
elif self.mode == "RPI":
for i in range(len(self.seq)):
go_next = False
while not self.fail and not go_next:
for j in range(self.channels):
if self.pins.is_pressed(self.pins.get_keys()[j]):
if self.pins.get_keys()[j] == self.seq[i]:
logging.info("Good input !!" + str(self.pins.get_values()[j]))
go_next = True
while self.pins.is_pressed(self.pins.get_keys()[j]):
pass
break
else:
logging.info("Bad input !!" + str(self.pins.get_values()[j]))
self.fail = True
break
if self.fail:
break
if not self.fail:
self.seq.append(self.dmx_colors.keys()[random.randrange(0, self.channels - 1)])
logging.debug("Good sequence, appending a new color : " + str(self.seq))
logging.info("That wasn't the right sequence, I am restarting the game !")
self.stop()
def build_pins(self, gpio_dict):
tmp = OrderedDict()
import pins
if len(gpio_dict) != len(self.dmx_colors):
logging.error("GPIO array and DMX colors don't have the same size !")
sys.exit(0)
for i in gpio_dict.keys():
if not tmp.has_key(i):
tmp[i] = gpio_dict.get(i)
self.pins = pins.Pins(tmp)
def stop(self):
self.reset()
time.sleep(5)
self.run()
def reset(self):
self.seq = []
self.fail = False
self.input_seq = ""
| true
|
1c2896e74136b561bb786f0bc67da46dcea77b44
|
Python
|
wieczorekm/xml2json
|
/src/lexer.py
|
UTF-8
| 4,993
| 3.09375
| 3
|
[] |
no_license
|
from src.tokens import *
WHITESPACES = (' ', '\t', '\n')
class Lexer:
def __init__(self, source):
self.source = source
self.cursor = 0
def get_next_token(self):
self._shift_cursor_igonoring_whitespaces()
if self.cursor == len(self.source):
return EndOfTextToken()
try:
return self._do_get_next_token()
except IndexError:
self._throw_unexpected_token_exception()
def get_text_until_open_of_tag(self):
text = ""
while self.source[self.cursor] != '<':
text += self.source[self.cursor]
self.cursor += 1
return text
# also returns read whitespaces as they may be necessary for parser
def is_next_nonempty_char_an_open_of_tag(self):
buffer = ""
while self.source[self.cursor] in WHITESPACES:
buffer += self.source[self.cursor]
self.cursor += 1
return self.source[self.cursor] == "<", buffer
def get_comment(self):
comment_body = ""
while self.source[self.cursor:self.cursor+3] != "-->":
comment_body += self.source[self.cursor]
self.cursor += 1
return comment_body
def get_current_cursor_pos(self):
return self.cursor
def _do_get_next_token(self):
if self.source[self.cursor] == "<":
return self._do_get_open_token()
elif self.source[self.cursor] == "/":
return self._do_get_close_with_slash_token()
elif self.source[self.cursor] == "?":
return self._do_get_close_prolog_token()
elif self.source[self.cursor] == ">":
return self._do_get_close_token()
elif self.source[self.cursor] == "=":
return self._do_get_equals_token()
elif self.source[self.cursor] == '"':
return self._do_get_double_quoted_id_token()
elif self.source[self.cursor] == "\'":
return self._do_get_single_quoted_id_token()
elif self.source[self.cursor] == "-":
return self._do_get_close_of_comment_tag()
else:
return self._do_get_id_token()
def _do_get_open_token(self):
if self.cursor == len(self.source) - 1 or self.source[self.cursor + 1] not in ["/", "?", "!"]:
self.cursor += 1
return OpenOfTagToken()
elif self.source[self.cursor + 1] == "?":
self.cursor += 2
return OpenOfPrologTagToken()
elif self.source[self.cursor + 1 : self.cursor+4] == "!--":
self.cursor += 4
return OpenOfCommentTagToken()
else:
self.cursor += 2
return OpenOfTagWithSlashToken()
def _do_get_close_with_slash_token(self):
if self.source[self.cursor + 1] == ">":
self.cursor += 2
return CloseOfTagWithSlashToken()
else:
self._throw_unexpected_token_exception()
def _do_get_close_prolog_token(self):
if self.source[self.cursor + 1] == ">":
self.cursor += 2
return CloseOfPrologTagToken()
else:
self._throw_unexpected_token_exception()
def _do_get_close_token(self):
self.cursor += 1
return CloseOfTagToken()
def _do_get_equals_token(self):
self.cursor += 1
return EqualsToken()
def _do_get_id_token(self):
return IdToken(self._read_id_from_input())
def _do_get_double_quoted_id_token(self):
return QuotedIdToken(self._read_quoted_id_from_input_until_char("\""))
def _do_get_single_quoted_id_token(self):
return QuotedIdToken(self._read_quoted_id_from_input_until_char("\'"))
def _do_get_close_of_comment_tag(self):
if self.source[self.cursor + 1:self.cursor + 3] == "->":
self.cursor += 3
return CloseOfCommentTagToken()
else:
self._throw_unexpected_token_exception()
def _read_id_from_input(self):
id = ""
while self.source[self.cursor] not in WHITESPACES and self.source[self.cursor] not in [">", "/", "="]:
id += self.source[self.cursor]
self.cursor += 1
return id
def _read_quoted_id_from_input_until_char(self, char):
quoted_id = ""
self.cursor += 1
while self.source[self.cursor] != char:
quoted_id += self.source[self.cursor]
self.cursor += 1
self.cursor += 1
return quoted_id
def _throw_unexpected_token_exception(self):
print("[LEXER] Unexpected end of text near " + str(self.cursor) + " char")
raise LexerException("Unexpected end of text")
def _shift_cursor_igonoring_whitespaces(self):
while self.cursor < len(self.source) and self.source[self.cursor] in WHITESPACES:
self.cursor += 1
class LexerException(Exception):
def __init__(self, message):
super(LexerException, self).__init__()
self.message = message
| true
|
bac13d240d03a8d6fec788b95c8e2df3f785ce7a
|
Python
|
whitedevil369/Wautomsg-b0t
|
/Wautomsg-b0t.py
|
UTF-8
| 6,318
| 3.015625
| 3
|
[] |
no_license
|
import pyautogui
import time
import sys
from pyfiglet import Figlet
import argparse
#from positionfinder import positions
#from pynput.mouse import Listener
parser = argparse.ArgumentParser()
parser.add_argument("-s","--senderNumber", help="Enter your whatsapp number in the format <country_code><your_number> without starting with +/0 and without any spaces in between")
parser.add_argument("-r","--recipientFile", help="Enter the path of the .txt file containing the list of recipient phone numbers in the same format as the sender number")
parser.add_argument("-m","--mode", help="Set the mode of entry of the messege (file/cli)")
parser.add_argument("-f","--fileMessege", help="enter the path of file containing the messege")
args = parser.parse_args()
def br():
pyautogui.hotkey('shift', 'enter')
def exit_timer():
t=0
cl=3
print("Quitting in 3 seconds...")
time.sleep(1)
for t in range(0,3):
print(cl)
time.sleep(1)
t=t+1
cl=cl-1
print("Quiting...")
def alert():
t=0
cl=3
print("ALERT! The b0t will start in 3 seconds.")
time.sleep(1)
for t in range(0,3):
print(cl)
time.sleep(1)
t=t+1
cl=cl-1
print("b0t STARTED...")
'''
def on_click(x, y, button, pressed):
if pressed:
global pos_x
pos_x = x
global pos_y
pos_y = y
if not pressed:
return False
'''
def home():
f1 = Figlet(font='rounded')
f2 = Figlet(font='digital')
print ("Name: Wautomsg-b0t")
print ("version: 1.0")
print ("@whitedevil369")
print (f1.renderText('Wautomsg-b0t'))
print (f2.renderText("Made by Poornesh Adhithya"))
print ("\nWELCOME TO Wautomsg-b0t\nWautomsg-b0t is a WHATSAPP MASS/BULK MESSAGE SENDER\n(WITHOUT SAVING THE PHONE NUMBERS IN CONTACTS)\n")
input("\nPRESS ENTER TO CONTINUE.\n\nb0t:~#> ")
home()
if(args.senderNumber==None):
print ("\nENTER SENDER PHONE NUMBER: ")
print ("format: <country_code><phone_number> (without + or 00 or spaces)")
print ("Eg. 911234567890\nWhere 91 is the Country Code and 1234567890 is phone number")
sender_ph = input("\nb0t:~#> ")
print("\n")
else:
sender_ph = args.senderNumber
if not sender_ph.isdigit() or '\n' in sender_ph:
print("PHONE NUMBER SHOULD CONTAIN ONLY DIGITS")
exit_timer()
exit()
if(args.recipientFile==None):
print ("\nENTER THE SOURCE LOCATION OF THE PHONE NUMBERS LIST: ")
print ("Eg. /root/Desktop/contacts.txt\nIf it exists in the same dirctory of the file then,\nEg. contacts.txt")
src = input("\nb0t:~#> ")
print("\n")
else:
src = args.recipientFile
try:
phone_file=open(src)
phone=phone_file.readlines()
except:
print("RECIPIENT FILE DOESN'T EXIST!")
exit_timer()
exit()
if not src.endswith('.txt'):
print("ONLY .txt FILE FORMAT IS ACCEPTED")
exit_timer()
exit()
counter=0
for p in phone:
x=p.split('\n')
p=x[0]
if p and p.isdigit():
counter += 1
else:
print("PHONE NUMBERS SHOULD CONTAIN ONLY DIGITS")
exit_timer()
exit()
if(args.mode == None):
print ("\nENTER YOUR MODE OF MESSAGING (cli/file): ")
print ("cli to enter Message in the terminal.\nfile to import the location of the file")
c = input("\nb0t:~#> ")
print("\n")
else:
c = args.mode
if c=='file':
if(args.fileMessege==None):
print ("\nENTER THE SOURCE LOCATION OF THE MESSAGE: ")
print ("Eg. /root/Desktop/samplemsg.txt\nIf it exists in the same dirctory of the file then,\nEg. samplemsg.txt")
loc = input("\nb0t:~#> ")
else:
loc = args.fileMessege
if not loc.endswith('.txt'):
print("ONLY .txt FILE FORMAT IS ACCEPTED")
exit_timer()
exit()
try:
msg_file=open(loc)
msg=msg_file.readlines()
message=''
except:
print("FILE DOESN'T EXIST!")
exit_timer()
exit()
elif c=='cli':
print ("\nTYPE THE MESSAGE: ")
print ("Once you are done, Press ENTER and then Ctrl+D to end the Message")
print ("\nb0t:~#> ")
message=sys.stdin.read()
msg=''
m=''
else:
print("INVALID CHOICE!")
exit_timer()
exit()
'''
print("Place your mouse pointer on the text of latest/recent message from the WhatsApp chatbox and click on it")
print("(Eg. place your mouse pointer on the text of 'Hi' message which was entered earlier during the setup phase)")
input("\nPRESS ENTER AND THEN CLICK THE MESSAGE. AFTER CLICKING IT PRESS ENTER AGAIN! (MAKE SURE TO CLICK AFTER 3 Seconds)\n\nb0t:~#> ")
with Listener(
on_click=on_click,
) as listener:
listener.join()
'''
#<----------------------------------------------------->
#positions
pos_x = 1441 # value of x in positionfinder.py
pos_y = 959 # value of y in positionfinder.py
#THIS IS FOR 1600x900 RESOLUTION, VALUES MAY CHANGE ACCORDING TO YOUR PCs RESOLUTION. (use positionfinder.py tool to find your mouse position)
#Change These Values Before Executing
#<----------------------------------------------------->
input("\nPRESS Enter To Start The b0t and then Switch to WhatsApp Web.\n\nb0t:~#> ")
print("\nYou have 5 seconds to switch to WhatsApp Web.....")
time.sleep(5)
print("Switch to WhatsApp Web, Your running out of time...\n")
alert()
time.sleep(1)
pyautogui.typewrite('Wa.me/'+sender_ph)
pyautogui.press('enter')
position = pos_x,pos_y
pyautogui.click(position)
time.sleep(1)
pyautogui.press('esc')
time.sleep(2)
pyautogui.press('esc')
time.sleep(1)
pyautogui.typewrite('Test Message')
pyautogui.press('enter')
i=0
try:
for number in phone:
time.sleep(2)
pyautogui.typewrite('Wa.me/'+number)
pyautogui.press('enter')
pyautogui.click(position)
time.sleep(1)
pyautogui.press('esc')
time.sleep(2)
pyautogui.press('esc')
time.sleep(1)
#pyautogui.typewrite('Write Something')
#br() #Use This to go to new line without sending the message
for m in msg:
pyautogui.typewrite(m)
pyautogui.typewrite(message)
time.sleep(1)
pyautogui.press('enter')
time.sleep(3)
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.typewrite(sender_ph)
pyautogui.press('enter')
i=i+1
print ("Message has been sent to "+str(i)+" of "+str(counter)+" Recipients")
time.sleep(2)
pyautogui.typewrite("Messages Sent Successfully!")
br()
pyautogui.typewrite("Thank-You! See You Next Time.")
br()
pyautogui.typewrite("Good Bye!")
pyautogui.press('enter')
print ("\nMessages Sent Successfully!")
print("\nHOPE THIS TOOL HELPED YOU!\nTHANKS FOR USING THIS TOOL.")
except:
print("\nProcess Terminating...")
msg_file.close()
phone_file.close()
exit()
| true
|
afe44b29090b5738ab4e21893297b6663b95e6f4
|
Python
|
Quantumgame/dronestorm
|
/dronestorm/data_util.py
|
UTF-8
| 12,631
| 2.859375
| 3
|
[] |
no_license
|
"""Defines utilities for processing data"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from scipy.signal import convolve
from scipy.io.wavfile import read as wav_read
from scipy.io.wavfile import write as wav_write
AUDIO_SAMPLE_RATE = 44100 # standard 44.1kHz recording rate
AUDIO_SAMPLE_DT = 1./AUDIO_SAMPLE_RATE
def _load_spike_data(fname_spikes):
"""Utility function to load in spike data
Parameters
----------
fname_spikes: string
input spike data text filename
first column is sim time
second column is real time
subsequent columns are each neuron's spikes as would be recorded in the nengo simulator
"""
file_data = np.loadtxt(fname_spikes)
sim_time = file_data[:, 0]
real_time = file_data[:, 1]
spk_data_raw = file_data[:, 2:]
return sim_time, real_time, spk_data_raw
def _filter_nrn_idx_yticks(yticks, n_neurons):
"""Removes non-integer and out-of-range ticks"""
tol = 0.001
ret_ticks = []
for ytick in yticks:
ret_tick = int(np.round(ytick))
if abs(ret_tick - ytick) < tol and ytick >=0 and ytick < n_neurons:
ret_ticks += [ret_tick]
return ret_ticks
def animate_spike_raster(
fname_spikes, fname_movie_out, nrn_idx=None, time_mode="real",
time_stop=None, time_window=1.0, fps=30):
"""Generate a movie from the spike raster
Parameters
----------
fname_spikes: string
input spike data text filename
first column is sim time
second column is real time
subsequent columns are each neuron's spikes as would be recorded in the nengo simulator
fname_movie_out: string
if string, filename of output movie
nrn_idx: list-like or none
indices of neurons to use to generate wav file
if None, uses all neurons, one per wav file channel
time_mode: "real" or "sim"
Whether to use the spike's real or simulation time
time_stop: float or None
if float, movie ends time_window after time_stop
if None, movie ends after time_window past last spike
time_window: float
Size of time window over which to view spikes
fps: int
frames per second
"""
sim_time, real_time, spk_data_raw = _load_spike_data(fname_spikes)
if nrn_idx is not None:
spk_data_raw = spk_data_raw[:, nrn_idx]
n_samples, n_neurons = spk_data_raw.shape
if time_mode == "real":
time = real_time
elif time_mode == "sim":
time = sim_time
spk_times = []
for nrn_idx in range(n_neurons):
spk_idx = np.nonzero(spk_data_raw[:, nrn_idx])[0]
spk_times.append(time[spk_idx])
fig = plt.figure()
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
ax = fig.add_subplot(111)
y_range = 0.8
last_spk_time = 0.
for nrn_idx in range(n_neurons):
y_mid = nrn_idx
y_min = y_mid - y_range/2.
y_max = y_mid + y_range/2.
spk_idx = np.nonzero(spk_data_raw[:, nrn_idx])[0]
spk_times = time[spk_idx]
last_spk_time = np.max(spk_times.tolist() + [last_spk_time])
ax.vlines(spk_times, y_min, y_max, colors[nrn_idx%len(colors)])
ax.set_ylim(-y_range/1.5, n_neurons-1+y_range/1.5)
ax.set_title("Spike Raster")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Neuron Index")
ax.set_yticks(_filter_nrn_idx_yticks(ax.get_yticks(), n_neurons))
time_start = -time_window
if time_stop is None:
time_stop = last_spk_time+time_window
else:
time_stop = time_stop+time_window
animation_time_total = time_stop - time_start - time_window
animation_dt = 1./fps
n_frames = int(np.round(animation_time_total*fps))
moviewriter = animation.FFMpegWriter(fps=fps)
with moviewriter.saving(fig, fname_movie_out, dpi=100):
for frame_idx in range(n_frames):
time_since_start = frame_idx*animation_dt
ax.set_xlim(time_start+time_since_start, time_start+time_since_start+time_window)
moviewriter.grab_frame()
def animate_tuning(
fname_tuning_data, fname_input_data, fname_movie_out, input_data_col=2,
time_mode="real", fps=30,
label=True, xlabel="Input"):
"""Generate a movie from the spike raster
Parameters
----------
fname_tuning: string
tuning data filename
first column is the input stimulus used to generate the tuning data
remaining columns are the tuning data
fname_input_data: string
input data filename
first column is sim time
first column is real time
subsequent columns are each inputs dimension
fname_movie_out: string
if string, filename of output movie
nrn_idx: list-like or none
indices of neurons to use to generate wav file
if None, uses all neurons, one per wav file channel
time_mode: "real" or "sim"
Whether to use the spike's real or simulation time
fps: int
frames per second
label: boolean
whether or not to label the tuning curves and display a legend
xlabel: string
x axis label
"""
fig, ax = plot_tuning(fname_tuning_data, show=False, label=label, xlabel=xlabel)
ylim = ax.get_ylim()
file_data = np.loadtxt(fname_input_data)
sim_time = file_data[:, 0]
real_time = file_data[:, 1]
input_data = file_data[:, input_data_col]
if time_mode == "real":
time = real_time
elif time_mode == "sim":
time = sim_time
n_frames = int(np.round(time[-1]*fps))
time_idx = 0
len_time = len(time)
in_dat_line = ax.plot(
[input_data[time_idx], input_data[time_idx]],
[ylim[0], ylim[1]], 'r:')[0]
ax.set_ylim(ylim)
moviewriter = animation.FFMpegWriter(fps=fps)
with moviewriter.saving(fig, fname_movie_out, dpi=100):
for frame_idx in range(n_frames):
curr_time = frame_idx / fps
moved = False
while time[time_idx] <= curr_time:
time_idx += 1
moved = True
if moved:
time_idx -= 1
if time_idx < len_time:
in_dat_line.set_data(
[input_data[time_idx], input_data[time_idx]], [ylim[0], ylim[1]])
moviewriter.grab_frame()
def make_spike_wav(
fname_spikes, fname_wav, nrn_idx=None,
time_mode = "real",
fname_spike_kernel=None, wav_dtype=np.int32,
plot=False):
"""Create a wav audio file from the spike data
Parameters
----------
fname_spikes: string
input spike data text filename
first column is time
subsequent columns are each neuron's spikes as would be recorded in the nengo simulator
fname_wav: string
filename of output wav data
nrn_idx: list-like or none
indices of neurons to use to generate wav file
if None, uses all neurons, one per wav file channel
time_mode: "real" or "sim"
Whether to use the spike's real or simulation time
fname_spike_kernel: string or None
if string, wav file name of kernel to convolve spikes with to generate different sounds
wav_dtype: numpy dtype
data type to be used in the wav file
"""
assert isinstance(fname_spikes, str)
assert isinstance(fname_wav, str)
assert time_mode in ["real", "sim"]
sim_time, measured_time, spk_data_raw = _load_spike_data(fname_spikes)
if nrn_idx is not None:
spk_data_raw = spk_data_raw[:, nrn_idx]
n_samples, n_neurons = spk_data_raw.shape
if time_mode == "real":
time = measured_time
elif time_mode == "sim":
time = sim_time
n_resamples = int(np.ceil(time[-1]*AUDIO_SAMPLE_RATE))
spk_data = np.zeros((n_resamples, n_neurons))
for nrn_idx in range(n_neurons):
spk_idx = np.nonzero(spk_data_raw[:, nrn_idx])[0]
spk_times = time[spk_idx]
spk_resampled_idx = np.round(spk_times * AUDIO_SAMPLE_RATE).astype(int)
spk_data[spk_resampled_idx, nrn_idx] = AUDIO_SAMPLE_RATE # impulse as 1/dt
if fname_spike_kernel is not None:
assert isinstance(fname_spike_kernel, str)
spike_kernel_sample_rate, spk_kernel_data = wav_read(fname_spike_kernel)
assert spike_kernel_sample_rate == AUDIO_SAMPLE_RATE, (
"spike_kernel wav file sample rate must match AUDIO_SAMPLE_RATE")
assert len(spk_kernel_data.shape) == 1, "spike_kernel wav data must have a single channel"
spk_kernel_data = spk_kernel_data
shift_idx = np.argmax(np.abs(spk_kernel_data)) # find peak of kernel for later alignment
spk_data_preconv = spk_data.copy()
spk_data_postconv = np.zeros((spk_data.shape[0]+len(spk_kernel_data)-1, n_neurons))
for nrn_idx in range(n_neurons):
spk_data_postconv[:, nrn_idx] = convolve(
spk_data[:, nrn_idx], spk_kernel_data, mode="full")
spk_data = spk_data_postconv
spk_data = spk_data[shift_idx:] # align with original waveform
spk_data = spk_data[:n_resamples] # clip to original length
np.clip(spk_data, np.iinfo(wav_dtype).min, np.iinfo(wav_dtype).max, spk_data)
spk_data = spk_data.astype(wav_dtype)
wav_write(fname_wav, AUDIO_SAMPLE_RATE, spk_data)
if plot:
spk_data_fig = plt.figure()
time_resampled = np.arange(n_resamples)*AUDIO_SAMPLE_DT
if fname_spike_kernel is not None:
ax = spk_data_fig.add_subplot(211)
ax.plot(time_resampled, spk_data_preconv)
ax.set_ylabel("raw spike waveform")
ax.set_title("spike waveforms")
ax = spk_data_fig.add_subplot(212, sharex=ax)
ax.plot(time_resampled, spk_data)
ax.set_ylabel("filtered spike waveform")
ax.set_xlabel("time (s)")
time_kernel = np.arange(len(spk_kernel_data))*AUDIO_SAMPLE_DT
spk_kernel_fig = plt.figure()
ax = spk_kernel_fig.add_subplot(111)
ax.plot(time_kernel, spk_kernel_data)
ax.set_title("spike kernel waveform")
ax.set_xlabel("time (s)")
else:
ax = spk_data_fig.add_subplot(111)
ax.plot(spk_data)
plt.show()
def plot_timing(fname_spikes, fname_plot_out=None):
"""Plot the simulation timing data"""
file_data = np.loadtxt('spikes.txt')
sim_time = file_data[:, 0]
measured_time = file_data[:, 1]
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(211)
ax.plot(measured_time, label="measured")
ax.plot(sim_time, label="simulation")
ax.legend(loc="lower right")
ax.set_ylabel('cumulative time (s)')
ax.set_title("Simulation Timing")
ax = fig.add_subplot(212, sharex=ax)
ax.plot(np.diff(measured_time), label="measured")
ax.plot(np.diff(sim_time), label="simulation")
ax.legend(loc="upper right")
ax.set_ylabel('delta t (s)')
ax.set_xlabel('Simulation step index')
if fname_plot_out is not None:
assert isinstance(fname_plot_out, str)
plt.savefig(fname_plot_out)
else:
plt.show()
def plot_tuning(
fname_tuning_data, fname_plot_out=None, show=True, label=False, xlabel="Input", **kwargs):
"""Plot the tuning data
Returns the figure and axis handle of the plot
Parameters
----------
fname_tuning_data: string
input tuning data filename
first column is the input stimulus used to generate the tuning data
remaining columns are the tuning data
show: boolean
whether or not to show the plot
label: boolean
whether or not to label the tuning curves and display a legend
xlabel: string
x axis label
fname_plot_out: string or None
filename to save the plot to if not None
if None, shows the plot live
Remaining keywords will be passed along to matplotlib for plotting
"""
file_data = np.loadtxt(fname_tuning_data)
stim = file_data[:, 0]
tuning = file_data[:, 1:]
fig = plt.figure()
ax = fig.add_subplot(111)
if label:
for nrn_idx in range(tuning.shape[1]):
ax.plot(stim, tuning[:, nrn_idx], label="Neuron %d"%nrn_idx, **kwargs)
ax.legend(loc="best")
else:
ax.plot(stim, tuning, **kwargs)
ax.set_xlabel(xlabel)
ax.set_ylabel('Spike Rate (Hz)')
ax.set_title("Tuning Curves")
if fname_plot_out is not None:
assert isinstance(fname_plot_out, str)
plt.savefig(fname_plot_out)
if show:
plt.show()
return fig, ax
| true
|
0ae04e76f4e09aaae0fc631dfadfdeb6bbc5266a
|
Python
|
mdaif/rock-paper-scissors
|
/rock_paper_scissors.py
|
UTF-8
| 1,965
| 2.65625
| 3
|
[
"Apache-2.0"
] |
permissive
|
import argparse
import logging.config
from components import ConsoleUserChoice, ConsoleResultHandler
from constants import SUPPORTED_GAME_FLAVORS
from engine import Engine
def get_game_rules(flavor):
return SUPPORTED_GAME_FLAVORS[flavor][0]()
def get_game_description(flavor):
return SUPPORTED_GAME_FLAVORS[flavor][1]
def get_supported_flavors_choices():
return list(SUPPORTED_GAME_FLAVORS.keys())
def get_supported_flavors_descriptions():
return "".join([val[1] for val in SUPPORTED_GAME_FLAVORS.values()])
def _configure_logging():
configs = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'local': {
'format': '%(asctime)s %(message)s',
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'formatter': 'local',
},
},
'loggers': {
'': {
'handlers': ['console'],
'level': 'DEBUG',
}
}
}
logging.config.dictConfig(configs)
def main(rounds: int, flavor: str):
flavor_rules = get_game_rules(flavor)
engine = Engine(
rounds=rounds,
game_rules=flavor_rules,
user_choice=ConsoleUserChoice(),
result_handler=ConsoleResultHandler(),
)
engine.play_n_rounds(rounds)
print('That was fun ! bye !')
if __name__ == '__main__':
_configure_logging()
parser = argparse.ArgumentParser(
description='Play a game of Rock-Paper-Scissors')
parser.add_argument(
'--rounds', type=int, help='Number of rounds to play', required=True)
parser.add_argument(
'--flavor', default=get_supported_flavors_choices()[0],
help=f'Game flavors: {get_supported_flavors_descriptions()}',
choices=get_supported_flavors_choices(),
)
args = parser.parse_args()
main(args.rounds, args.flavor)
| true
|
5209b6201b59d86ec998a28a58184183ad14c925
|
Python
|
yiming1012/MyLeetCode
|
/LeetCode/双指针(two points)/面试题 16.06. 最小差.py
|
UTF-8
| 1,585
| 3.953125
| 4
|
[] |
no_license
|
"""
面试题 16.06. 最小差
给定两个整数数组a和b,计算具有最小差绝对值的一对数值(每个数组中取一个值),并返回该对数值的差
示例:
输入:{1, 3, 15, 11, 2}, {23, 127, 235, 19, 8}
输出:3,即数值对(11, 8)
提示:
1 <= a.length, b.length <= 100000
-2147483648 <= a[i], b[i] <= 2147483647
正确结果在区间 [0, 2147483647] 内
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/smallest-difference-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
"""
from typing import List
class Solution:
def smallestDifference(self, a: List[int], b: List[int]) -> int:
"""
思路:双指针
1. 先对两个数组排序
2. 再利用双指针交替计算最小值
@param a:
@param b:
@return:
"""
a.sort()
b.sort()
m, n = len(a), len(b)
res = float('inf')
i, j = 0, 0
while i < m and j < n:
res = min(res, abs(a[i] - b[j]))
if a[i] < b[j]:
i += 1
else:
j += 1
return res
if __name__ == '__main__':
a = [1, 3, 15, 11, 2]
b = [23, 127, 235, 19, 8]
print(Solution().smallestDifference(a, b))
import bisect
a = [1, 4, 6, 8, 12]
position1 = bisect.bisect(a, 13)
position2 = bisect.bisect_left(a, 13)
position3 = bisect.bisect_right(a, 13)
print(position1)
print(position2)
print(position3)
print(inf)
| true
|
62df48bd12e12aab9c901efcf91fcd0b5b237356
|
Python
|
nicovandenhooff/project-euler
|
/solutions/p17.py
|
UTF-8
| 4,278
| 4.4375
| 4
|
[] |
no_license
|
# Project Euler: Problem 17
# Large sum
# Author: Nico Van den Hooff
# Github: https://github.com/nicovandenhooff/project-euler
# Problem: https://projecteuler.net/problem=17
# Note: This could likely be done with a combinatorics solution,
# but I decided to brute force it for fun so that I could
# practice working with logic and strings.
# dictionary of numbers and words needed to represent
# the first 1000 numbers in words
numbers = {
1: "one",
2: "two",
3: "three",
4: "four",
5: "five",
6: "six",
7: "seven",
8: "eight",
9: "nine",
10: "ten",
11: "eleven",
12: "twelve",
13: "thirteen",
14: "fourteen",
15: "fifteen",
16: "sixteen",
17: "seventeen",
18: "eighteen",
19: "nineteen",
20: "twenty",
30: "thirty",
40: "forty",
50: "fifty",
60: "sixty",
70: "seventy",
80: "eighty",
90: "ninety",
100: "hundred",
1000: "thousand",
}
def num_digits(n):
"""Counts the number of digits in a number.
Parameters
----------
n : int
The number.
Returns
-------
int
The number of digits.
"""
return len(str(n))
def extract_digits(n):
"""Simple function to return a tuple of digits for each
digit in a number.
Parameters
----------
n : int
The number, for example 793.
Returns
-------
tuple of int
Tuple of digits, for example (7, 9, 3)
"""
return tuple(int(digit) for digit in str(n))
def string_words(start, stop):
"""Converts a range of numbers from 1 up to 1000 from numbers
to their string equivalent.
Parameters
----------
start : int
The starting value, must be >= 1.
stop : int
The ending value, must be <= 1000.
Returns
-------
words: list of str
A list of string representations of each number.
"""
# the word list
words = []
for i in range(start, stop):
digit_string = ""
# if between 1-20 append dictionary value
if i in range(1, 21):
words.append(numbers[i])
# two digit numbers
elif num_digits(i) == 2:
# extract individual digits
first, second = extract_digits(i)
# if second digit is zero append dictionary value
if second == 0:
words.append(numbers[i])
# othewise append two digit string representation
else:
digit_string += numbers[first * 10]
digit_string += numbers[second]
words.append(digit_string)
# three digit numbers
elif num_digits(i) == 3:
# extract individual digits
first, second, third = extract_digits(i)
# "num" + "hundred"
digit_string += numbers[first]
digit_string += numbers[100]
# if second, third, digits are zero append result
if second == 0 and third == 0:
words.append(digit_string)
# if second is zero, append "and" + respective number
elif second == 0:
digit_string += "and"
digit_string += numbers[third]
words.append(digit_string)
# if second is one, append "and" + respective teens number
elif second == 1:
digit_string += "and"
digit_string += numbers[third + 10]
words.append(digit_string)
# if second not zero but third is append "and" and multiple of 10
elif second != 0 and third == 0:
digit_string += "and"
digit_string += numbers[second * 10]
words.append(digit_string)
# otherwise append three digit string representation
else:
digit_string += "and"
digit_string += numbers[second * 10]
digit_string += numbers[third]
words.append(digit_string)
# four digit numbers - got lazy here lol
else:
digit_string += numbers[1]
digit_string += numbers[1000]
words.append(digit_string)
return words
print(len("".join(string_words(1, 1001))))
| true
|
88527352a81581adb60af798afdc751adda3caaa
|
Python
|
khammernik/medutils
|
/medutils/optimization/base_optimizer.py
|
UTF-8
| 992
| 2.546875
| 3
|
[
"Apache-2.0"
] |
permissive
|
"""
This file is part of medutils.
Copyright (C) 2023 Kerstin Hammernik <k dot hammernik at tum dot de>
I31 - Technical University of Munich
https://www.kiinformatik.mri.tum.de/de/hammernik-kerstin
"""
import numpy as np
class BaseOptimizer(object):
def __init__(self, mode, lambd, beta=None, tau=None):
self.mode = mode
self.lambd = lambd
self.beta = beta
self.tau = tau
if self.mode == '1d':
self.ndim = 1
elif self.mode == '2d':
self.ndim = 2
elif self.mode in ['2dt', '3d']:
self.ndim = 3
elif self.mode in ['3dt', '4d']:
self.ndim = 4
else:
raise ValueError(f'ndim for mode {mode} not defined')
def solve(self, f, max_iter):
raise NotImplementedError
class BaseReconOptimizer(BaseOptimizer):
def __init__(self, A, AH, mode, lambd, beta=None, tau=None):
self.A = A
self.AH = AH
super().__init__(mode, lambd, beta, tau)
| true
|
ce6d068438d20162b81b7de12f78acae1fdc521b
|
Python
|
Drymander/Halo-5-Visualizaing-Skill-and-Predicting-Match-Outcomes
|
/unused files/get_player_list.py
|
UTF-8
| 520
| 3.4375
| 3
|
[] |
no_license
|
# Function to combine all gamertags from the match and prepare them in string
# format for the next API call
def get_player_list(df):
# Create list from our df['Gamertag'] column and remove the brackets
player_list = str(list(df['Gamertag']))[1:-1]
# Format string for API
player_list = player_list.replace(', ',',')
player_list = player_list.replace("'",'')
player_list = player_list.replace(' ','+')
# Return in one full string
return player_list
# get_player_list(df)
| true
|
a23f6d1656ceab873cc19921fd9e82ba44339a20
|
Python
|
Aasthaengg/IBMdataset
|
/Python_codes/p02844/s351087158.py
|
UTF-8
| 525
| 2.5625
| 3
|
[] |
no_license
|
N=int(input())
S=input()
code=list(set(list(S)))
ans=0
for i in code:
for j in code:
for k in code:
count=0
for s in S:
if count==0:
if s==i:
count+=1
elif count==1:
if s==j:
count+=1
elif count==2:
if s==k:
count+=1
if count==3:
ans+=1
break
print(ans)
| true
|
9a5c641985c8fd840d5c600c2185b7984dd7a60e
|
Python
|
yejiin/Python-Study
|
/algorithm/Programmers/Lv1/체육복.py
|
UTF-8
| 403
| 2.65625
| 3
|
[] |
no_license
|
def solution(n, lost, reserve):
answer = 0
data = [1] * (n + 2)
for i in lost:
if i in reserve:
reserve.remove(i)
else:
data[i] = 0
reserve.sort()
for i in reserve:
if data[i - 1] == 0:
data[i - 1] = 1
elif data[i + 1] == 0:
data[i + 1] = 1
answer = n - data.count(0)
return answer
| true
|
efea7190b02bc29602a44598b380a25cd9817d22
|
Python
|
dr-dos-ok/Code_Jam_Webscraper
|
/solutions_python/Problem_135/3229.py
|
UTF-8
| 536
| 3.15625
| 3
|
[] |
no_license
|
def solve(ix):
R0 = int(raw_input().strip())
M0 = [map(int, raw_input().strip().split()) for _ in range(4)]
R1 = int(raw_input().strip())
M1 = [map(int, raw_input().strip().split()) for _ in range(4)]
intersect = list(set(M0[R0-1]) & set(M1[R1-1]))
if len(intersect) == 1:
ans = intersect[0]
elif len(intersect) > 1:
ans = "Bad magician!"
else:
ans = "Volunteer cheated!"
print 'Case #%d: %s' % (ix, ans)
N = int(raw_input())
for ix in range(N):
solve(ix+1)
| true
|
b1cc81a37c30396f46397a7b505c9e34a9d568f0
|
Python
|
EoinDavey/Competitive
|
/AdventOfCode2020/d11.py
|
UTF-8
| 1,702
| 3.28125
| 3
|
[] |
no_license
|
import sys
from collections import defaultdict
def lines():
return [line.strip() for line in sys.stdin]
mvs = [(0, 1), (1, 0), (0, -1), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
ogboard = [list(x) for x in lines()]
H = len(ogboard)
W = len(ogboard[0])
def valid(x, y):
return 0 <= x < H and 0 <= y < W
def newState(x, y, board, grph, lim):
cnt = sum([board[nx][ny] == '#' for nx, ny in grph[x, y]])
if board[x][y] == 'L' and cnt == 0:
return '#'
if board[x][y] == '#' and cnt >= lim:
return 'L'
return board[x][y]
def solve(grph, lim):
board = [x.copy() for x in ogboard]
while True:
mut = False
newboard = [x.copy() for x in board]
for x in range(H):
for y in range(W):
if board[x][y] == '.':
continue
old = board[x][y]
new = newState(x, y, board, grph, lim)
if old != new:
mut = True
newboard[x][y] = new
board = newboard
if not mut:
break
return sum([x.count('#') for x in board])
def partA():
grph = defaultdict(list)
for x in range(H):
for y in range(W):
if ogboard[x][y] == '.':
continue
for dx, dy in mvs:
nx, ny = x + dx, y + dy
if not valid(nx, ny):
continue
grph[x, y].append((nx, ny))
print(solve(grph, 4))
def partB():
grph = defaultdict(list)
for x in range(H):
for y in range(W):
if ogboard[x][y] == '.':
continue
for dx, dy in mvs:
nx, ny = x + dx, y + dy
while valid(nx, ny):
if ogboard[nx][ny] != '.':
grph[x, y].append((nx, ny))
break
nx += dx
ny += dy
print(solve(grph, 5))
partA()
partB()
| true
|
d96d1f1113343f658eb39be0d5db2c59bd0f2072
|
Python
|
ahmed3moustafa/COVID-19-CNN
|
/audio_convolutional.py
|
UTF-8
| 4,399
| 3.015625
| 3
|
[] |
no_license
|
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
import matplotlib.pyplot as plt
DATASET_PATH = "data.json"
def load_data(dataset_path):
with open(dataset_path, "r") as fp:
data = json.load(fp)
# convert json to numpy array
inputs = np.array(data["mfcc"])
targets = np.array(data["labels"])
print(inputs)
print(targets)
return inputs, targets
def plot_history(history):
"""Plots accuracy/loss for training/validation set as a function of the epochs
:param history: Training history of model
:return:
"""
fig, axs = plt.subplots(2)
# create accuracy sublpot
axs[0].plot(history.history["accuracy"], label="train accuracy")
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy eval")
# create error sublpot
axs[1].plot(history.history["loss"], label="train error")
axs[1].plot(history.history["val_loss"], label="test error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
def prepare_datasets(test_size, validation_size):
x, y = load_data(DATASET_PATH)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=test_size)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
X_train = X_train[..., np.newaxis]
X_validation = X_validation[..., np.newaxis]
X_test = X_test[..., np.newaxis]
return X_train, X_validation, X_test, y_train, y_validation, y_test
# noinspection PyCallByClass
def build_model(input_shape):
model = keras.Sequential()
# 1st layer
model.add(keras.layers.Conv2D(32, (3, 3), activation = 'relu', input_shape = input_shape))
model.add(keras.layers.MaxPool2D((3, 3), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 2nd layer
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu'))
model.add(keras.layers.MaxPool2D((3, 3), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 3rd layer
model.add(keras.layers.Conv2D(32, (2, 2), activation='relu'))
model.add(keras.layers.MaxPool2D((2, 2), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# flatten
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dropout(0.3))
# output layer
model.add(keras.layers.Dense(2, activation='softmax'))
return model
def predict(model, X, y):
# add a dimension to input data for sample - model.predict() expects a 4d array in this case
X = X[np.newaxis, ...] # array shape (1, 130, 13, 1)
# perform prediction
prediction = model.predict(X)
# get index with max value
predicted_index = np.argmax(prediction, axis=1)
print("Target: {}, Predicted label: {}".format(y, predicted_index))
if __name__ == "__main__":
# create train, validation, test sets
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.2, 0.2)
# build cnn net
input_shape = (X_train.shape[1], X_train.shape[2], X_train.shape[3])
model = build_model(input_shape)
# compile the cnn
optimizer = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=['accuracy'])
# train
history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=5, epochs=1000)
# plot accuracy/error for training and validation
plot_history(history)
# evaluation
test_error, test_accuracy = model.evaluate(X_test, y_test, verbose=1)
print("Accuracy on the test is: {}".format(test_accuracy))
model.save("audio_model")
# predict
predict(model, X_test[5], y_test[5])
predict(model, X_test[2], y_test[2])
predict(model, X_test[7], y_test[7])
predict(model, X_test[12], y_test[12])
predict(model, X_test[10], y_test[10])
predict(model, X_test[1], y_test[1])
| true
|
7ac1c19b8a2fba92213269cd683e407fa69924a4
|
Python
|
BastianRamos/proyectoGrupo3
|
/webprocess/core/models.py
|
UTF-8
| 2,967
| 2.625
| 3
|
[] |
no_license
|
from django.db import models
# Create your models here.
#Declaramos una clase por cada tabla de nuestro modelo de datos.
#Django genera una ID automatica y autoincrementable para cada tabla.
#python manage.py makemigrations <--- Lee el archivo models y crea una migración.
#python manage.py migrate <--- Toma las migraciones pendientes y las enlaza con la base de datos.
#python manage.py createsuperuser <--- Creamos un super usuario para la administración del sitio con Django.
class UnidadInterna(models.Model):
nombre = models.CharField(max_length=50)
descripcion = models.CharField(max_length=300)
def __str__(self):
return self.nombre
# LIST PARA ROL DE EMPLEADO
rol_funcionarios = [ # Creamos una lista para almacenar en tuplas las opciones de ROL de la tabla Empleado
(1, 'Funcionario Gerente'), # Accedemos al elemento a traves del index
(2, 'Funcionario Jefe'),
(3, 'Funcionario Subordinado'),
(4, 'Diseñador de Procesos')
]
class Empleado(models.Model):
rut = models.CharField(max_length=10, unique=True)
nombre = models.CharField(max_length=20)
apellido = models.CharField(max_length=20)
correo = models.CharField(max_length=50)
telefono = models.IntegerField()
rol = models.IntegerField( # Se visualiza como un Select en Django
null=False, blank=False,
choices=rol_funcionarios # Indicamos que las opciones del Select estan en la lista rol_funcionarios
)
unidadInterna = models.ForeignKey(UnidadInterna, on_delete=models.PROTECT, verbose_name='Unidad Interna')
def __str__(self):
string = self.nombre + " " + self.apellido
return string
class Usuario(models.Model):
nombre = models.CharField(max_length=15)
password = models.CharField(max_length=10, verbose_name="Contraseña") # En Django se visualizara como Contraseña en vez de password
empleado = models.ForeignKey(Empleado, on_delete=models.PROTECT)
def __str__(self):
return self.nombre
# LIST PARA ESTADO DE TAREA
estado_tarea = [
(1, 'En Desarrollo'),
(2, 'Completada'),
(3, 'Atrasada')
]
class Tarea(models.Model):
nombre = models.CharField(max_length=50)
plazo = models.DateField()
descripcion = models.CharField(max_length=300)
estado = models.IntegerField(
null=False, blank=False,
choices=estado_tarea
)
responsable = models.ForeignKey(Empleado, on_delete=models.PROTECT)
def __str__(self):
return self.nombre
class FlujoTarea(models.Model):
nombre = models.CharField(max_length=100)
descripcion = models.CharField(max_length=500)
responsable = models.ForeignKey(Empleado, on_delete=models.PROTECT)
def __str__(self):
return self.nombre
class Notificacion(models.Model):
asunto = models.CharField(max_length=300)
descripcion = models.CharField(max_length=300)
fecha = models.DateField()
def __str__(self):
return self.asunto
| true
|
fa4253ee4c4ce5dc9a005f6da1ddd6ee81141a8c
|
Python
|
paulywog13/web-scraping-challenge
|
/Mission_to_Mars/app.py
|
UTF-8
| 1,441
| 2.625
| 3
|
[] |
no_license
|
from flask import Flask, render_template, redirect
from flask_pymongo import PyMongo
import mars_facts
import mars_news
import mars_space_images
import mars_hemispheres
# Create an instance of Flask
app = Flask(__name__)
# Use PyMongo to establish Mongo connection
mongo = PyMongo(app, uri="mongodb://localhost:27017/mars_app")
# Route to render index.html template using data from Mongo
@app.route("/")
def home():
# Find one record of data from the mongo database
mars_data=mongo.db.mars_facts_html.find_one()
print(mars_data)
# Return template and data
return render_template("index.html", mars_mission=mars_data)
# Route that will trigger the scrape function
@app.route("/scrape")
def scrape():
# Run the scrape function and save the results to variables
mars_mission = mongo.db.mars_facts_html
mars_new_news = mars_news.scrape_info()
mars_info = mars_facts.scrape_info()
mars_hemis = mars_hemispheres.scrape_info()
mars_img = mars_space_images.scrape_info()
data = {
"news_title": mars_new_news["latest_title"],
"news_teaser": mars_new_news["latest_teaser"],
"mars_facts": mars_info,
"featured_image": mars_img["featured_image"],
"mars_hemispheres": mars_hemis
}
mars_mission.update({}, data, upsert=True)
# Redirect back to home page
return redirect("/")
if __name__ == "__main__":
app.run(debug=True)
| true
|
d5b98c2eb6e28755c8cfc6903ec1f269fbe93002
|
Python
|
thdk0302/Python-Libraries
|
/lib/log.py
|
UTF-8
| 1,162
| 2.875
| 3
|
[
"MIT"
] |
permissive
|
# -*- coding: utf-8 -*-
def write(text=' '):
import datetime, os
time = datetime.datetime.today()
path = "./log/new/" + time.strftime("%Y//%m//%d")
if not os.path.exists(path):
os.makedirs(path)
f = open(time.strftime("./log/new/%Y/%m/%d/%H:%M.log"), 'a')
f.write(text)
f.close()
def wprint(text=' '):
import datetime
time = datetime.datetime.today()
write("[" + time.strftime("%H:%M.%S") + "] " + text + "と出力しました\n")
print(text)
def wprintf(text=' '):
import datetime, sys
time = datetime.datetime.today()
write("[" + time.strftime("%H:%M.%S") + "] " + text + "と出力しました\n")
sys.stdout.write("\r" + text)
sys.stdout.flush()
def archive():
import shutil, os
if not os.path.exists("./log/archive/old.zip"):
shutil.make_archive('./log/archive/old', 'zip', root_dir='./log/', base_dir='./new/')
write("ログファイルを圧縮しました")
else:
os.remove("./log/archive/old.zip")
shutil.make_archive('./log/archive/old', 'zip', root_dir='./log/', base_dir='./new/')
write("ログファイルを圧縮しました")
| true
|
e044f3ddb82eda1edfeb7984f1ebc514cc38e0d1
|
Python
|
roblevy/async-and-sync
|
/test.py
|
UTF-8
| 1,981
| 3.359375
| 3
|
[] |
no_license
|
""" See https://stackoverflow.com/questions/58564687/test-if-coroutine-was-awaited-or-not/58567980#58567980 """
import asyncio
import pytest
from functools import wraps
class Wrapper:
def __init__(self, _func, *args, **kwargs):
self._conn = None
self._func = _func
self.args = args
self.kwargs = kwargs
async def __aenter__(self):
self._conn = await self._func(*self.args, **self.kwargs)
return self._conn
async def __aexit__(self, *_):
await self._conn.close()
def __await__(self):
return self._func(
*self.args, **self.kwargs
).__await__() # https://stackoverflow.com/a/33420721/1113207
def connection_context_manager(func):
@wraps(func)
def wrapper(*args, **kwargs):
return Wrapper(func, *args, **kwargs)
return wrapper
@connection_context_manager
async def connect(uri):
"""
I don't want to touch this function, other than to
decorate it with `@connection_context_manager`
"""
class Connection:
def __init__(self, uri):
self.uri = uri
self.open = True
print("Connected ", self.uri)
async def close(self):
await asyncio.sleep(0.3)
self.open = False
print(f"Connection {self.uri} closed")
await asyncio.sleep(0.3)
return Connection(uri)
@pytest.mark.asyncio
async def test_connect_normally():
connect_is_coroutine = asyncio.iscoroutine(connect)
no_context = await connect("without context")
# Now it's open
assert no_context.open
await no_context.close()
# Now it's closed
assert not no_context.open
@pytest.mark.asyncio
async def test_connect_with_context_manager():
async with connect("with context uri") as no_context:
# Now it's open
assert no_context.open
# Now it's closed
assert not no_context.open
if __name__ == "__main__":
asyncio.run(test_connect())
| true
|
bc2dd63977be08619068c82a91ed65db0463b8dd
|
Python
|
gupy-io/mentoria-python
|
/palestras-conversas/testador_de_codigo/testa_v1.py
|
UTF-8
| 1,899
| 2.8125
| 3
|
[
"MIT"
] |
permissive
|
import importlib
import inspect
import sys
import os
import re
from collections import defaultdict
from pathlib import Path
from pprint import pprint
def testa_v1_coletador(pasta):
testes = []
lista_nome_dos_testes = []
for arquivo_de_teste in Path(pasta).glob("teste_*.py"):
modulo_de_testes = importlib.import_module(
re.sub(".py", "", re.sub(os.sep, "." , str(arquivo_de_teste)))
)
testes_encontrados =[
teste
for nome, teste in inspect.getmembers(modulo_de_testes)
if nome.startswith("teste_") and callable(teste)
]
lista_nome_dos_testes = [teste.__name__ for teste in testes_encontrados]
testes.append((arquivo_de_teste, testes_encontrados))
return testes, lista_nome_dos_testes
def executa_teste(pasta):
resultados = []
testes_encontrados, _ = testa_v1_coletador(pasta)
for modulo, testes in testes_encontrados:
for teste in testes:
resultado_de_um_teste = {"modulo": modulo, "nome": teste.__name__}
try:
teste()
except AssertionError:
resultado_de_um_teste["estado"] = "falhou"
else:
resultado_de_um_teste["estado"] = "passou"
resultados.append(resultado_de_um_teste)
return resultados
def rodar_os_teste(pasta="./testes"):
falhas: int = 0
sucesso: int = 0
for res in executa_teste(pasta):
pprint(f"> {res['modulo']}:{res['nome']} - {res['estado']}")
pprint(f"{'---'*20}")
if res["estado"] == 'falhou':
falhas += 1
if res["estado"] == "passou" :
sucesso += 1
pprint(f"numero de testes coletados {falhas + sucesso}")
if falhas > 0:
pprint(f"ERROOOOOOOUUU ARRUMA ESSE TESTE AI IRMAO")
sys.exit(1)
if __name__ == "__main__":
rodar_os_teste()
| true
|
8e2edca4c167da0f3bc013f0d25653c32f4141e2
|
Python
|
Rallkus/DjangoRestFrameworkReactMobX
|
/backend/conduit/apps/contact/serializers.py
|
UTF-8
| 1,454
| 2.78125
| 3
|
[] |
no_license
|
from rest_framework import serializers
class ContactSerializer(serializers.Serializer):
email = serializers.CharField(max_length=255)
subject = serializers.CharField(max_length=255)
message = serializers.CharField(max_length=255)
def validate(self, data):
print "*************"
print data
email = data.get('email', None)
subject = data.get('subject', None)
message = data.get('message', None)
print subject
# As mentioned above, an email is required. Raise an exception if an
# email is not provided.
if email is None:
raise serializers.ValidationError(
'A valid email address is required'
)
# As mentioned above, a password is required. Raise an exception if a
# password is not provided.
if subject is None:
raise serializers.ValidationError(
'A subject is required'
)
if message is None:
raise serializers.ValidationError(
'A message is required and has to be at least 20 characters long'
)
# The `validate` method should return a dictionary of validated data.
# This is the data that is passed to the `create` and `update` methods
# that we will see later on.
return {
'email': email,
'subject': subject,
'message': message
}
| true
|
f67614a4024c7dc5698881c7b2332ea05ffeea08
|
Python
|
JasonYG/capital-one-technical-assessment
|
/main.py
|
UTF-8
| 2,577
| 3.375
| 3
|
[] |
no_license
|
# Capital One Technical Assessment
# Created by Jason Guo
#
# This program, alongside the AnalyzeCode class, was my interpretation of
# the Capital One technical assessment.
#
# In the context of automation and continuous deployment, this program
# was written to take in the source code files as command-line arguments.
# You may supply in an arbitrary number of source code files as arguments,
# in the form of file paths.
#
# In the spirit of modularity, I've added a 'programming languages schema',
# which defines the programming language and its commenting syntax. This program
# is thus easily scalable to allow for different programming languages.
#
# The format is:
# file_extension,single_line_comment,begin_multi_line_comment,end_multi_line_comment
# e.g. .java,//,/*,*/
#
# (See supported_languages.csv as an example)
#
# To run the program:
# python main.py [source code file names] schema_file
#
# An example command would be:
# python main.py sample.html sample.java sample.js sample.js supported_languages.csv
# For command-line arguments
import argparse
from AnalyzeCode import AnalyzeCode
# Instantiate argument parser
parser = argparse.ArgumentParser(description='Analyze some source files')
parser.add_argument('file_names', metavar='file_name', type=str, nargs='*', help='the file names of the source code files')
parser.add_argument('supported_languages', metavar='comment_schema', type=str, help='the supported programming languages and their commenting syntax')
args = parser.parse_args()
# Check for valid supported languages file
try:
open(args.supported_languages)
except:
print("Invalid supported languages schema file")
quit()
# Process each source code file
for file_name in args.file_names:
print(f'##### {file_name.upper()} #####')
# Instantiate AnalyzeCode object for code parsing
analyzer = AnalyzeCode(file_name, args.supported_languages)
try:
analyzer.parse_file()
except:
# If either the file can't be found, or if it's not defined in the supported languages
print("Invalid source file\n")
continue
# Output
print(f'Total # of lines: {analyzer.total_lines()}')
print(f'Total # of comment lines: {analyzer.comment_lines()}')
print(f'Total # of single line comments: {analyzer.single_line_comments()}')
print(f'Total # of comment lines within within block comments: {analyzer.comments_in_blocks()}')
print(f'Total # of block line comments: {analyzer.block_comments()}')
print(f'Total # of TODO\'s: {analyzer.count_todos()}\n')
| true
|
4ab3521ac08a91d547c109b962b0fde47bb84762
|
Python
|
cosmos454b/notebooks
|
/DataPreprocessing.py
|
UTF-8
| 1,733
| 3.359375
| 3
|
[] |
no_license
|
### Common Steps to preprocess data for machine learning
### Import Libraries
import numpy as np
import pandas as pd
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder,LabelEncoder
from sklearn.model_selection import train_test_split
### Import Dataset
data = pd.read_csv("mpg.csv", na_values=['na']);
#dataLines = []
#with open ("mpg.csv", "r") as dataFile:
# fileContents = dataFile.read().split("\n");
# for line in fileContents:
# dataLines.append(line)
#data = pd.DataFrame(dataLines)
# Subset raw data to get dataframe
df = data.iloc[:,0:]
####Inorder to drop missing values, do this on the main dataframe.
df = df.dropna(axis=0)
###### SECTION 2 : GENERATE FEATURE MATRIX
# Subset feature matrix with dependent variable
X = df[['cylinders','displacement','horsepower','weight','acceleration']]
### Cleanse feature matrix
X=X.apply(pd.to_numeric,errors='coerce')
### Fill missing data
imputer = Imputer(missing_values="NaN",strategy="mean",axis=0)
X=imputer.fit_transform(X)
y = df[['mpg']].values
### Encode Categorical Data
#labelEncoder_X = LabelEncoder()
#X[:,3] = labelEncoder_X.fit_transform(X[:,3])
#onehotEncoder = OneHotEncoder(categorical_features=[3])
#X = onehotEncoder.fit_transform(X).toarray()
#### Split data into train and test
X_train,X_test,Y_train,Y_test = train_test_split(X,y,test_size=0.2,random_state=0)
### Standardize features scale. SCale both x and y, expect if y is categorical
Xscaler = StandardScaler()
X_train = Xscaler.fit_transform(X_train)
X_test = Xscaler.transform(X_test)
Yscaler = StandardScaler()
X_train = Yscaler.fit_transform(X_train)
X_test = Yscaler.transform(X_test)
| true
|
84199e8ae8b5f443ea8980ae788a5804502095c3
|
Python
|
johSchm/bayesLearner
|
/src/fileParser.py
|
UTF-8
| 712
| 3.375
| 3
|
[] |
no_license
|
# parser for any file
# read file and save output in 2D array
# @return: 2D array
def readFile(filePath):
with open(filePath, 'r') as file:
line_array = file.read().splitlines()
cell_array = [line.split() for line in line_array]
file.close()
return cell_array
# store data in file
def writeFile(filePath, data, append=False):
if not append:
with open(filePath, 'w+') as file:
for element in data:
file.write(str(element) + '\t')
else:
with open(filePath, 'a+') as file:
file.write('\n')
for element in data:
file.write(str(element) + '\t')
file.close()
| true
|
83633a9b08c6289af0f0436bdedc7cb63ec982d6
|
Python
|
Wizmann/ACM-ICPC
|
/Leetcode/Algorithm/python/3000/02278-Percentage of Letter in String.py
|
UTF-8
| 150
| 3.109375
| 3
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
class Solution(object):
def percentageLetter(self, s, letter):
n = len(s)
c = s.count(letter)
return 100 * c / n
| true
|
4d8e9110fb18849031778092648c6bf9634df4bf
|
Python
|
jlongtine/cfn-python-lint
|
/test/module/conditions/test_condition.py
|
UTF-8
| 11,902
| 2.5625
| 3
|
[
"MIT-0"
] |
permissive
|
"""
Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from cfnlint import conditions
from testlib.testcase import BaseTestCase
class TestCondition(BaseTestCase):
""" Test Good Condition """
def test_basic_condition(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'myCondition': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
}
}
}
result = conditions.Condition(template, 'myCondition')
self.assertTrue(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1'}))
self.assertFalse(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1'}))
def test_basic_condition_w_int(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'myCondition1': {
'Fn::Equals': [{'Ref': 'myParameter'}, 1]
},
'myCondition2': {
'Fn::Equals': [1, {'Ref': 'myParameter'}]
}
}
}
result = conditions.Condition(template, 'myCondition1')
self.assertFalse(result.test({'410f41081170ebc3bc99d8f424ad8e01633f444a': '2'}))
self.assertTrue(result.test({'410f41081170ebc3bc99d8f424ad8e01633f444a': '1'}))
result = conditions.Condition(template, 'myCondition2')
self.assertFalse(result.test({'410f41081170ebc3bc99d8f424ad8e01633f444a': '2'}))
self.assertTrue(result.test({'410f41081170ebc3bc99d8f424ad8e01633f444a': '1'}))
def test_not_condition(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'myCondition': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
},
'notCondition': {'Fn::Not': [{'Condition': 'myCondition'}]}
}
}
result = conditions.Condition(template, 'notCondition')
self.assertFalse(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1'}))
self.assertTrue(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1'}))
def test_or_condition(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'condition1': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
},
'condition2': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-west-1']
},
'orCondition': {'Fn::Or': [{'Condition': 'condition1'}, {'Condition': 'condition2'}]}
}
}
result = conditions.Condition(template, 'orCondition')
self.assertTrue(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1'}))
self.assertTrue(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1'}))
self.assertFalse(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-2'}))
def test_direct_condition(self):
""" Test direction condition"""
template = {
'Conditions': {
'condition1': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
},
'directcondition': {'Condition': 'condition1'}
}
}
result = conditions.Condition(template, 'directcondition')
self.assertTrue(
result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1'}))
self.assertFalse(
result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1'}))
def test_and_condition(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'condition1': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
},
'condition2': {
'Fn::Equals': [{'Ref': 'myEnvironment'}, 'prod']
},
'andCondition': {'Fn::And': [{'Condition': 'condition1'}, {'Condition': 'condition2'}]}
}
}
result = conditions.Condition(template, 'andCondition')
self.assertTrue(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'prod'}))
self.assertFalse(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'dev'}))
self.assertFalse(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'prod'}))
def test_two_function_condition(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'myCondition': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, {'Ref': 'PrimaryRegion'}]
}
}
}
result = conditions.Condition(template, 'myCondition')
self.assertFalse(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1'}))
self.assertTrue(result.test({'36305712594f5e76fbcbbe2f82cd3f850f6018e9': '36cf15035d5be0f36e03d67b66cddb6081f5855d'}))
def test_empty_string_in_equals(self):
""" Empty String in Condition """
template = {
'Conditions': {
'isSet': {'Fn::Equals': [{'Ref': 'myEnvironment'}, '']}
},
'Resources': {}
}
result = conditions.Condition(template, 'isSet')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNotNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {'d60d12101638186a2c742b772ec8e69b3e2382b9': {''}})
class TestBadConditions(BaseTestCase):
"""Test Badly Formmated Condition """
def test_bad_format_condition(self):
""" Badly formmated Condition """
template = {
'Conditions': {
'isProduction': [{'Fn::Equals': [{'Ref:' 'myEnvironment'}, 'prod']}]
},
'Resources': {}
}
result = conditions.Condition(template, 'isProduction')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {})
def test_bad_format_condition_2(self):
""" Badly formmated Condition """
template = {
'Conditions': {
'isProduction': {'Fn::Equals': [[{'Ref:' 'myEnvironment'}], 'prod']}
},
'Resources': {}
}
result = conditions.Condition(template, 'isProduction')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {})
def test_bad_format_condition_3(self):
""" Badly formmated Condition """
template = {
'Conditions': {
'isProduction': {'Fn::Equals': [{'Ref': 'myEnvironment', 'Ref1': 'myEnvironment'}, 'prod']}
},
'Resources': {}
}
result = conditions.Condition(template, 'isProduction')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {})
def test_bad_format_condition_bad_equals_dict(self):
""" Badly formmated Condition """
template = {
'Conditions': {
'isProduction': {'Fn::Equals': {'Ref': 'myEnvironment', 'Value': 'prod'}}
},
'Resources': {}
}
result = conditions.Condition(template, 'isProduction')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {})
def test_bad_format_condition_bad_equals_size(self):
""" Badly formmated Condition """
template = {
'Conditions': {
'isProduction': {'Fn::Equals': [{'Ref': 'myEnvironment'}, 'Value', 'prod']}
},
'Resources': {}
}
result = conditions.Condition(template, 'isProduction')
self.assertEqual(result.And, []) # No And
self.assertEqual(result.Or, []) # No Or
self.assertEqual(result.Not, []) # No Not
self.assertIsNone(result.Equals)
self.assertEqual(result.Influenced_Equals, {})
def test_nested_conditions(self):
""" Test getting a condition setup """
template = {
'Conditions': {
'condition1': {
'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-east-1']
},
'condition2': {
'Fn::Equals': [{'Ref': 'myEnvironment'}, 'prod']
},
'orCondition': {'Fn::Or': [
{'Fn::And': [{'Condition': 'condition1'}, {'Condition': 'condition2'}]},
{'Fn::Or': [
{'Fn::Equals': [{'Ref': 'AWS::Region'}, 'us-west-2']},
{'Fn::Equals': [{'Ref': 'AWS::Region'}, 'eu-north-1']},
]}
]}
}
}
result = conditions.Condition(template, 'orCondition')
self.assertEqual(
result.Influenced_Equals,
{
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': {'us-east-1', 'us-west-2', 'eu-north-1'},
'd60d12101638186a2c742b772ec8e69b3e2382b9': {'prod'}
}
)
self.assertTrue(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'prod'}))
self.assertFalse(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-east-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'dev'}))
self.assertFalse(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-1',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'prod'}))
self.assertTrue(
result.test({
'36305712594f5e76fbcbbe2f82cd3f850f6018e9': 'us-west-2',
'd60d12101638186a2c742b772ec8e69b3e2382b9': 'dev'}))
| true
|
dca4c5d9009525d9c67d864514a7d16a16e20db4
|
Python
|
sstuteja/UDACITY_CARND
|
/Term1/Project5/lesson_functions.py
|
UTF-8
| 11,751
| 2.71875
| 3
|
[] |
no_license
|
import matplotlib.image as mpimg
import numpy as np
import cv2
from skimage.feature import hog
###############################################################################
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
###############################################################################
# Define a function to compute binned color features
def bin_spatial(img, size=(32, 32)):
# Use cv2.resize().ravel() to create the feature vector
features = cv2.resize(img, size).ravel()
# Return the feature vector
return features
###############################################################################
# Define a function to compute color histogram features
# NEED TO CHANGE bins_range if reading .png files with mpimg!
def color_hist(img, nbins=32, bins_range=(0, 256)):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:,:,1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:,:,2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
###############################################################################
# Define a function to extract features from a list of images
# Have this function call bin_spatial() and color_hist()
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, orient=9,
pix_per_cell=8, cell_per_block=2, \
spatial_feat=True, hist_feat=True, hog_feat=True, \
hog_channel='ALL'):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in imgs:
file_features = []
# Read in each one by one
image = cv2.imread(file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(image)
if spatial_feat == True:
spatial_features = bin_spatial(feature_image, size=spatial_size)
file_features.append(spatial_features)
if hist_feat == True:
# Apply color_hist()
hist_features = color_hist(feature_image, nbins=hist_bins)
file_features.append(hist_features)
if hog_feat == True:
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(get_hog_features(feature_image[:,:,channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# Append the new feature vector to the features list
file_features.append(hog_features)
features.append(np.concatenate(file_features))
# Return list of feature vectors
return features
###############################################################################
# Define a function to draw bounding boxes
def draw_boxes(img, bboxes, color=(0, 0, 255), thick=6):
# Make a copy of the image
imcopy = np.copy(img)
# Iterate through the bounding boxes
for bbox in bboxes:
# Draw a rectangle given bbox coordinates
cv2.rectangle(imcopy, bbox[0], bbox[1], color, thick)
# Return the image copy with boxes drawn
return imcopy
###############################################################################
# HOG Subsampling Window Search
def find_cars(img, ystart, ystop, svc, X_scaler, orient, pix_per_cell, cell_per_block, spatial_size, hist_bins, scale=1, color_space='RGB', \
spatial_feat=True, hist_feat=True, hog_feat=True, \
hog_channel='ALL'):
#img = img.astype(np.float32)/255
img_tosearch = img[ystart:ystop, :, :]
#ctrans_tosearch = np.copy(img_tosearch)
if color_space != 'RGB':
if color_space == 'HSV':
ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
ctrans_tosearch = cv2.cvtColor(img_tosearch, cv2.COLOR_RGB2YCrCb)
else:
ctrans_tosearch = np.copy(img_tosearch)
if scale != 1:
ctrans_tosearch = cv2.resize(ctrans_tosearch, (0, 0), fx=1/scale, fy=1/scale)
chlist = [ctrans_tosearch[:, :, 0], ctrans_tosearch[:, :, 1], ctrans_tosearch[:, :, 2]]
# Define blocks and steps
nxblocks = (chlist[0].shape[1]//pix_per_cell) - 1
nyblocks = (chlist[0].shape[0]//pix_per_cell) - 1
#nfeat_per_block = orient * cell_per_block**2
window = 64
cells_per_step = 2
nblocks_per_window = (window//pix_per_cell) - 1
nxsteps = (nxblocks - nblocks_per_window) // cells_per_step
nysteps = (nyblocks - nblocks_per_window) // cells_per_step
#Compute individual HOG features for the entire image
if hog_channel == 'ALL':
hoglist = [get_hog_features(chlist[0], orient, pix_per_cell, cell_per_block, feature_vec=False), \
get_hog_features(chlist[1], orient, pix_per_cell, cell_per_block, feature_vec=False), \
get_hog_features(chlist[2], orient, pix_per_cell, cell_per_block, feature_vec=False)]
else:
hoglist = [get_hog_features(chlist[hog_channel], orient, pix_per_cell, cell_per_block, feature_vec=False)]
bbox_list = []
for xb in range(nxsteps):
for yb in range(nysteps):
xpos = xb * cells_per_step
ypos = yb * cells_per_step
feature_list = []
xleft = xpos*pix_per_cell
ytop = ypos*pix_per_cell
#Extract the image patch
subimg = cv2.resize(ctrans_tosearch[ytop:ytop+window, xleft:xleft+window], (64, 64))
#Get color features
if spatial_feat == True:
spatial_features = bin_spatial(subimg, size=spatial_size)
feature_list.append(np.hstack(spatial_features))
if hist_feat == True:
hist_features = color_hist(subimg, nbins=hist_bins)
feature_list.append(np.hstack(hist_features))
# Extract HOG for this patch
if hog_feat == True:
if hog_channel == 'ALL':
hog_feat_list = [hoglist[0][ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel(), \
hoglist[1][ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel(), \
hoglist[2][ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()]
else:
hog_feat_list = [hoglist[hog_channel][ypos:ypos+nblocks_per_window, xpos:xpos+nblocks_per_window].ravel()]
feature_list.append(np.hstack(hog_feat_list))
#Scale features and make a prediction
#These features need to be the same features that were used to train the classifier
test_features = X_scaler.transform(np.hstack(feature_list).reshape(1, -1).astype(np.float64))
test_prediction = svc.predict(test_features)
if test_prediction == 1:
xbox_left = np.int(xleft * scale)
ytop_draw = np.int(ytop * scale)
win_draw = np.int(window * scale)
thisTopLeft = (xbox_left, ytop_draw+ystart)
thisBottomRight = (xbox_left+win_draw, ytop_draw+win_draw+ystart)
bbox_list.append((thisTopLeft, thisBottomRight))
return bbox_list
###############################################################################
def add_heat(heatmap, bbox_list):
#Iterate through list of boxes
for box in bbox_list:
# Add +=1 for all pixels inside each bbox
# Each box takes the form ((x1, y1), (x2, y2))
heatmap[box[0][1]:box[1][1], box[0][0]:box[1][0]] += 1
return heatmap
###############################################################################
def apply_heatmap_threshold(heatmap, threshold):
#Zero out pixels below the threshold
heatmap[heatmap <= threshold] = 0
return heatmap
###############################################################################
def draw_labeled_bboxes(img, labels):
# Iterate through all detected cars
for car_number in range(1, labels[1]+1):
# Find pixels with each car_number label value
nonzero = (labels[0] == car_number).nonzero()
# Identify x and y values of those pixels
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Define a bounding box based on min/max x and y
bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
# Draw the box on the image
cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6)
# Return the image
return img
| true
|
e1272331e5405e263242cf3240f971ed4e08f8c5
|
Python
|
arifikhsan/python-dicoding
|
/conditional/else.py
|
UTF-8
| 346
| 3.703125
| 4
|
[] |
no_license
|
amount = int(input("Enter amount: "))
if amount < 1000:
discount = amount * 0.05
print("Discount", discount)
else:
discount = amount * 0.10
print("Discount", discount)
print ("Net payable:",amount-discount)
a = 8
if a % 2 == 0:
print('bilangan {} adalah genap'.format(a))
else:
print('bilangan {} adalah ganjil'.format(a))
| true
|
be94469be48faa8f5c0d91484d8bd7da17757bf7
|
Python
|
MehdiJenab/first_spark_code
|
/q5_b.py
|
UTF-8
| 1,384
| 2.734375
| 3
|
[
"MIT"
] |
permissive
|
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
spark = SparkSession.builder.master("local[1]") \
.appName("Q5_a") \
.getOrCreate()
spark.sparkContext.setLogLevel("WARN") # to turn off annoying INFO log printed out on terminal
schema_user = StructType([\
StructField("userid", IntegerType(), True),\
StructField("age", IntegerType(), True),\
StructField("gender", StringType(), True),\
StructField("occupation", StringType(), True),\
StructField("zipcode", IntegerType(), True)])
df_uuser = spark.read.format("csv").option("delimiter", "|").option("header","false").schema(schema_user).load("u.user")
df_uuser.createOrReplaceTempView('user')
schema_data = StructType([\
StructField("userid", IntegerType(), True),\
StructField("itemid", IntegerType(), True),\
StructField("rating", IntegerType(), True),\
StructField("time", IntegerType(), True)])
df_uuser = spark.read.format("csv").option("delimiter", "\t").option("header","false").schema(schema_data).load("u.data")
df_uuser.createOrReplaceTempView('data')
df2= spark.sql("""SELECT DISTINCT (u.occupation), COUNT(d.userid)
AS count from user AS u, data as d
WHERE u.userid = d.userid AND u.occupation <> "other" AND u.occupation <> "none"
GROUP BY occupation
ORDER BY count DESC""")
df2.show()
print (df2.collect())
| true
|
324d30f70d167c4246d31e8ea65f64b0c7fa7800
|
Python
|
Kawser-nerd/CLCDSA
|
/Source Codes/AtCoder/abc041/D/4201470.py
|
UTF-8
| 940
| 2.6875
| 3
|
[] |
no_license
|
# coding:utf-8
import sys
from collections import deque, defaultdict
INF = float('inf')
MOD = 10 ** 9 + 7
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def LI_(): return [int(x) - 1 for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def II(): return int(sys.stdin.readline())
def SI(): return input()
n, m = LI()
G = [[] for _ in range(n)]
for _ in range(m):
x, y = LI_()
G[x].append(y)
# dp[????S]: S??????????????????
dp = [0] * (1 << n)
dp[0] = 1
for s in range(1 << n):
for i in range(n):
if s >> i & 1 == 0:
continue
# S - {v}
others = s ^ (1 << i)
for to in G[i]:
# ???????v??S - {v}????????
# -> ??v???????
if others & (1 << to):
break
else:
# v????????
dp[s] += dp[others]
print(dp[-1])
| true
|
00598b57b0319a972a8fe8b6a7fa4342c5351b5e
|
Python
|
Minta-Ra/wk02_d2_Pet_Shop_Classes_Lab
|
/classes/customer.py
|
UTF-8
| 703
| 4
| 4
|
[] |
no_license
|
class Customer:
def __init__(self, name, cash):
# Instance variables / properties
self.name = name
self.cash = cash
# Add list of pets to the customer
self.pets = []
def reduce_cash(self, amount):
self.cash -= amount
def pet_count(self):
# Return the length of the list
return len(self.pets)
def add_pet(self, pet):
self.pets.append(pet)
def get_total_value_of_pets(self):
total = 0
# loop through the list
for pet in self.pets:
# We get pet price from Pet class self.price
# .price is a property on the pet
total += pet.price
return total
| true
|
0ed33339265c6172eca4fc241f204de42ef655dd
|
Python
|
bertdecoensel/noysim
|
/noysim/emission.py
|
UTF-8
| 42,011
| 2.8125
| 3
|
[
"MIT",
"LicenseRef-scancode-free-unknown"
] |
permissive
|
# Noysim -- Noise simulation tools for Aimsun.
# Copyright (c) 2010-2011 by Bert De Coensel, Ghent University & Griffith University.
#
# Noise emission model functions and classes
import warnings
import random
import numpy
import pylab
from geo import Point, Direction, asPoint, asDirection
from acoustics import LOWDB, fromdB, TertsBandSpectrum
import numeric
#---------------------------------------------------------------------------------------------------
# Basic classes
#---------------------------------------------------------------------------------------------------
class Vehicle(object):
""" base class defining a vehicle, containing all properties that could have an influence on noise emissions """
def __init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc, maxspeed, maxdecel, maxaccel,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
object.__init__(self)
# unique vehicle ID
self._vid = vid
# size properties
self._length = length # in m
self._width = width # in m
self._height = height # in m
self._weight = weight # in kg
# emission related properties
self._cat = cat # emission category (usually an integer), to be interpreted by the emission models
self._axles = axles # integer, number of axles of vehicle
self._doublemount = doublemount # boolean, true for double-mounted tires (for trucks)
self._studs = studs # boolean, true if the vehicle has winter tires
self._fuel = fuel # the type of fuel the vehicle uses (string, e.g. 'petrol', 'diesel', 'electric')
self._cc = cc # the cilinder capacity (cc)
# kinematic properties
self._maxspeed = maxspeed # in km/h
self._maxdecel = maxdecel # in m/s^2 (negative value)
self._maxaccel = maxaccel # in m/s^2
# dynamic properties
self._position = position # position Point(x,y,z) - center of bottom plane - in m
self._direction = direction # Direction(bearing,gradient) of the vehicle, in degrees (0-360)
self._speed = speed # velocity (km/h)
self._acceleration = acceleration # acceleration (m/s^2)
def vid(self):
return self._vid
def length(self):
return self._length
def width(self):
return self._width
def height(self):
return self._height
def weight(self):
return self._weight
def cat(self):
return self._cat
def axles(self):
return self._axles
def doublemount(self):
return self._doublemount
def studs(self):
return self._studs
def fuel(self):
return self._fuel
def cc(self):
return self._cc
def maxspeed(self):
return self._maxspeed
def maxdecel(self):
return self._maxdecel
def maxaccel(self):
return self._maxaccel
def position(self):
return self._position
def direction(self):
return self._direction
def speed(self):
return self._speed
def acceleration(self):
return self._acceleration
def __str__(self):
""" return a string representation of the vehicle """
s = '[ID %s: %.1fx%.1fx%.1fm, %dkg, ' % (str(self.vid()), self.length(), self.width(), self.height(), int(self.weight()))
s += 'c=%s, ax=%d, dm=%s, ' % (str(self.cat()), self.axles(), str(self.doublemount()))
s += 'stud=%s, %s, %dcc,' % (str(self.studs()), self.fuel(), int(self.cc()))
s += '\n max=(%.1f,%.1f,%.1f), ' % (self.maxspeed(), self.maxdecel(), self.maxaccel())
s += 'p=%s, d=%s, v=%.1f, a=%.1f]' % (str(self.position()), str(self.direction()), self.speed(), self.acceleration())
return s
def copy(self, cls = None):
""" create a copy of the vehicle """
if cls == None:
cls = Vehicle
return cls(vid = self._vid, length = self._length, width = self._width, height = self._height, weight = self._weight,
cat = self._cat, axles = self._axles, doublemount = self._doublemount, studs = self._studs, fuel = self._fuel,
cc = self._cc, maxspeed = self._maxspeed, maxdecel = self._maxdecel, maxaccel = self._maxaccel,
position = self._position.copy(), direction = self._direction.copy(), speed = self._speed, acceleration = self._acceleration)
def move(self, dx = 0.0, dy = 0.0, dz = 0.0):
""" move the location of the vehicle """
self._position.x += dx
self._position.y += dy
self._position.z += dz
class Roadsurface(object):
""" base class defining a road surface, containing all properties that could have an influence on noise emissions """
def __init__(self, cat, temperature, chipsize, age, wet, tc):
object.__init__(self)
self._cat = cat # surface category, to be interpreted by the various emission models
self._temperature = temperature # temperature of air above road surface (degrees celsius)
self._chipsize = chipsize # road surface chip size (in mm)
self._age = age # road surface age (in years)
self._wet = wet # boolean, true if the surface is wet
self._tc = tc # road surface temperature coefficient (in dB/degree)
def cat(self):
return self._cat
def temperature(self):
return self._temperature
def chipsize(self):
return self._chipsize
def age(self):
return self._age
def wet(self):
return self._wet
def tc(self):
return self._tc
def __str__(self):
""" return a string representation of the road surface """
s = '[c=%s, t=%.1fC, chip=%dmm, ' % (str(self.cat()), self.temperature(), int(self.chipsize()))
s += 'age=%dy, wet=%s, tc=%.2f]' % (int(self.age()), str(self.wet()), self.tc())
return s
class Source(object):
""" base source class, which serves as the output of an emission model """
def __init__(self, position, direction, emission, directivity = lambda theta, phi, f: 0.0):
object.__init__(self)
self.position = position # Point(x,y,z) in m
self.direction = direction # Direction(bearing,gradient) of the source, in degrees (0-360)
self.emission = emission # source emission spectrum
self.directivity = directivity # function (or function object) for the directivity pattern of the source
# (correction on source power level as a function of theta, phi and frequency)
def __str__(self):
""" return a string representation of the source """
# only prints the A-weighted level
return '[p=%s, d=%s, e=%.2f dBA]' % (str(self.position), str(self.direction), self.emission.laeq())
def copy(self):
""" return a copy of the source """
return Source(position = self.position.copy(),
direction = self.direction.copy(),
emission = self.emission.copy(),
directivity = self.directivity)
class EmissionModel(object):
""" base emission model interface - to be filled in by derived classes """
def __init__(self):
object.__init__(self)
def __str__(self):
""" return a string representation of the emission model """
return '[EmissionModel]'
def categoryNames(self):
""" return a list with the names of the vehicle categories that the model supports """
raise NotImplementedError
def sources(self, vehicle, road):
""" calculate the list of emission sources associated with the given vehicle and road surface """
raise NotImplementedError
def emission(self, vehicle, road):
""" shorthand function, calculating the total emission associated with the given vehicle and road surface """
raise NotImplementedError
class Viewport(object):
""" viewport function object, acting as a vehicle filter
should return True for each vehicle that has to be taken into account in subsequent processing
"""
def __init__(self):
object.__init__(self)
def __str__(self):
""" return a string representation of the viewport """
return '[Viewport]'
def __call__(self, vehicle):
""" should return True only if the vehicle has to be taken into account """
return True # the default is to consider all vehicles
#---------------------------------------------------------------------------------------------------
# Specialized vehicle and road surface classes
#---------------------------------------------------------------------------------------------------
# The constants in these predefined classes were taken from the Queensland vehicles defined in the Griffith Univ. Aimsun file,
# with missing values (e.g. weight or cc) filled in by best guess (these additional values do not have an influence on noise anyhow)
class QLDCar(Vehicle):
""" Queensland car (CAR_QLD) with default values for all parameters (Imagine category 1) """
def __init__(self, vid = 0, length = 4.0, width = 2.0, height = 1.5, weight = 800.0,
cat = 1, axles = 2, doublemount = False, studs = False, fuel = 'petrol', cc = 1600,
maxspeed = 110.0, maxdecel = -6.5, maxaccel = 2.8,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDCar)
class QLDVan(Vehicle):
""" Queensland van (HV) with default values for all parameters (Imagine category 1) """
def __init__(self, vid = 0, length = 7.0, width = 2.0, height = 2.0, weight = 2000.0,
cat = 1, axles = 2, doublemount = False, studs = False, fuel = 'petrol', cc = 2500,
maxspeed = 110.0, maxdecel = -5.0, maxaccel = 2.5,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDVan)
class QLDLightTruck(Vehicle):
""" Queensland light truck (LT) with default values for all parameters (Imagine category 2) """
def __init__(self, vid = 0, length = 12.0, width = 2.5, height = 2.5, weight = 5000.0,
cat = 2, axles = 2, doublemount = True, studs = False, fuel = 'petrol', cc = 4000,
maxspeed = 110.0, maxdecel = -3.0, maxaccel = 1.5,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDLightTruck)
class QLDSemiTrailer(Vehicle):
""" Queensland semi-trailer (ST) with default values for all parameters (Imagine category 3) """
def __init__(self, vid = 0, length = 19.0, width = 2.5, height = 3.0, weight = 10000.0,
cat = 3, axles = 4, doublemount = True, studs = False, fuel = 'petrol', cc = 5000,
maxspeed = 110.0, maxdecel = -2.9, maxaccel = 1.0,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDSemiTrailer)
class QLDBDouble(Vehicle):
""" Queensland B-Double heavy vehicle (BD) with default values for all parameters (Imagine category 3) """
def __init__(self, vid = 0, length = 25.0, width = 2.5, height = 3.5, weight = 30000.0,
cat = 3, axles = 4, doublemount = True, studs = False, fuel = 'petrol', cc = 8000,
maxspeed = 110.0, maxdecel = -2.75, maxaccel = 0.8,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDBDouble)
class QLDMotorcycle(Vehicle):
""" Queensland motorcycle with default values for all parameters (Imagine category 4b - here 5) """
def __init__(self, vid = 0, length = 1.5, width = 0.5, height = 1.5, weight = 200.0,
cat = 5, axles = 2, doublemount = False, studs = False, fuel = 'petrol', cc = 1000,
maxspeed = 110.0, maxdecel = -6.0, maxaccel = 4.0,
position = Point(0.0,0.0,0.0), direction = Direction(0.0,0.0), speed = 0.0, acceleration = 0.0):
Vehicle.__init__(self, vid, length, width, height, weight, cat, axles, doublemount, studs, fuel, cc,
maxspeed, maxdecel, maxaccel, position, direction, speed, acceleration)
def copy(self):
return Vehicle.copy(self, cls = QLDMotorcycle)
class ReferenceRoadsurface(Roadsurface):
""" Harmonoise/Imagine reference road surface """
def __init__(self, cat = 'REF', temperature = 20.0, chipsize = 11.0, age = 2.0, wet = False, tc = 0.08):
Roadsurface.__init__(self, cat, temperature, chipsize, age, wet, tc)
#---------------------------------------------------------------------------------------------------
# Specialized viewport classes
#---------------------------------------------------------------------------------------------------
class RectangularViewport(Viewport):
""" viewport that takes into account the vehicles that are situated in a rectangular area """
def __init__(self, minx, miny, maxx, maxy):
Viewport.__init__(self)
(self.minx, self.miny, self.maxx, self.maxy) = (minx, miny, maxx, maxy)
def __str__(self):
""" return a string representation of the viewport """
return '[RectangularViewport (%s, %s, %s, %s)]' % (self.minx, self.miny, self.maxx, self.maxy)
def __call__(self, vehicle):
""" check if the vehicle is situated inside the rectangular area """
p = vehicle.position()
if (self.minx <= p.x) and (p.x <= self.maxx) and (self.miny <= p.y) and (p.y <= self.maxy):
return True
return False
# TODO:
# - define the class below
# - uncomment the line in Configuration.viewport so it is used
# class DynamicViewport(RectangularViewport):
# """ special case of a rectangular viewport, for which the dimensions are automatically tailored
# to give optimal tradeoff between speed and accuracy, based on various network and receiver properties
# """
# def __init__(self):
# # perform calculations for minx, miny, maxx, maxy
# # finally create the viewport
# RectangularViewport.__init__(minx, miny, maxx, maxy)
#---------------------------------------------------------------------------------------------------
# Imagine road traffic noise emission model
#---------------------------------------------------------------------------------------------------
# model constants (LOWDB is used to fill in the values that are not supplied by Imagine, i.e. at 20 Hz and at 12kHz and above)
IMAGINE = {# Light motor vehicles
1: {'AR': numpy.asarray([LOWDB, 69.9, 69.9, 69.9, 74.9, 74.9, 74.9, 79.3, 82.0, 81.2, 80.9, 78.9, 78.8, 80.5, 85.0, 87.9,
90.9, 93.3, 92.8, 91.5, 88.5, 84.9, 81.8, 78.7, 74.9, 71.8, 69.1, 65.6,LOWDB,LOWDB,LOWDB]),
'BR': numpy.asarray([ 0.0, 33.0, 33.0, 33.0, 30.0, 30.0, 30.0, 41.0, 41.2, 42.3, 41.8, 38.6, 35.5, 32.9, 25.0, 25.0,
27.0, 33.4, 36.7, 37.0, 37.5, 37.5, 38.6, 39.6, 40.0, 39.9, 40.2, 40.3, 0.0, 0.0, 0.0]),
'AP': numpy.asarray([LOWDB, 87.0, 87.0, 87.0, 87.9, 90.8, 89.9, 86.9, 82.6, 81.9, 82.3, 83.9, 83.3, 82.4, 80.6, 80.2,
77.8, 78.0, 81.4, 82.3, 82.6, 81.5, 80.2, 78.5, 75.6, 73.3, 71.0, 68.1,LOWDB,LOWDB,LOWDB]),
'BP': numpy.asarray([ 0.0, 0.0, 0.0, 0.0, 0.0, -3.0, 0.0, 8.0, 6.0, 6.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0,
8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 0.0, 0.0, 0.0]),
'CP': numpy.asarray([ 0.0, 4.0, 4.0, 4.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 4.0, 4.0, 4.0, 4.0, 4.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 0.0, 0.0, 0.0])},
# Medium heavy vehicles:
2: {'AR': numpy.asarray([LOWDB, 76.5, 76.5, 76.5, 78.5, 79.5, 79.5, 82.5, 84.3, 84.7, 84.3, 87.4, 87.8, 89.8, 91.6, 93.5,
94.6, 92.4, 89.6, 88.1, 85.9, 82.7, 80.7, 78.8, 76.8, 76.7, 75.7, 74.5,LOWDB,LOWDB,LOWDB]),
'BR': numpy.asarray([ 0.0, 33.0, 33.0, 33.0, 30.0, 30.0, 30.0, 32.9, 35.9, 38.1, 36.5, 33.5, 30.6, 27.7, 21.9, 23.8,
28.4, 31.1, 35.4, 35.9, 36.7, 36.3, 37.7, 38.5, 39.8, 39.9, 40.2, 40.3, 0.0, 0.0, 0.0]),
'AP': numpy.asarray([LOWDB, 93.9, 93.9, 94.1, 95.0, 97.3, 96.1, 92.5, 91.9, 90.4, 93.4, 94.4, 94.2, 93.0, 90.8, 92.1,
92.5, 94.1, 94.5, 92.4, 90.1, 87.6, 85.8, 83.8, 81.4, 80.0, 77.2, 75.4,LOWDB,LOWDB,LOWDB]),
'BP': numpy.asarray([ 0.0, 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 5.0, 5.5, 6.0, 6.5, 6.5, 6.5, 6.5, 6.5,
6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 0.0, 0.0, 0.0]),
'CP': numpy.asarray([ 0.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 5.0, 5.0, 5.0, 5.0, 5.0,
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 0.0, 0.0, 0.0])},
# Heavy vehicles
3: {'AR': numpy.asarray([LOWDB, 79.5, 79.5, 79.5, 81.5, 82.5, 82.5, 85.5, 87.3, 87.7, 87.3, 89.5, 90.5, 93.8, 95.9, 97.3,
98.0, 95.6, 93.2, 91.9, 88.9, 85.5, 84.1, 82.2, 79.8, 78.6, 77.5, 76.8,LOWDB,LOWDB,LOWDB]),
'BR': numpy.asarray([ 0.0, 33.0, 33.0, 33.0, 30.0, 30.0, 30.0, 31.4, 32.8, 36.0, 34.6, 32.7, 29.3, 26.4, 24.2, 25.9,
30.4, 32.3, 36.5, 36.8, 38.0, 36.8, 38.5, 38.9, 38.5, 40.2, 40.8, 41.0, 0.0, 0.0, 0.0]),
'AP': numpy.asarray([LOWDB, 95.7, 94.9, 94.1, 96.8,101.8, 98.6, 95.5, 96.2, 95.7, 97.2, 96.3, 97.2, 95.8, 95.9, 96.8,
95.1, 95.8, 95.0, 92.7, 91.2, 88.7, 87.6, 87.2, 84.2, 82.7, 79.7, 77.6,LOWDB,LOWDB,LOWDB]),
'BP': numpy.asarray([ 0.0, 0.0, 0.0, 0.0, -4.0, 0.0, 4.0, 3.0, 3.0, 3.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0,
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 0.0, 0.0, 0.0]),
'CP': numpy.asarray([ 0.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 5.0, 5.0, 5.0, 5.0, 5.0,
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 0.0, 0.0, 0.0])},
# Powered two-wheelers 4a (mopeds < 50cc)
4: {'AR': LOWDB*numpy.ones(31),
'BR': numpy.zeros(31),
'AP': numpy.asarray([LOWDB, 88.7, 87.6, 85.5, 85.8, 81.5, 80.7, 82.0, 85.6, 81.6, 81.4, 85.5, 86.3, 87.9, 88.7, 89.9,
91.8, 91.2, 92.4, 95.0, 94.1, 92.9, 90.4, 89.1, 87.4, 84.9, 84.4, 82.2,LOWDB,LOWDB,LOWDB]),
'BP': numpy.asarray([ 0.0, -2.2, -0.1, 1.7, 5.9, 1.9, 3.3, 0.9, 17.3, 14.5, 5.0, 14.6, 9.9, 9.7, 12.7, 12.3,
13.9, 16.6, 17.2, 17.9, 19.3, 20.6, 19.9, 20.8, 20.5, 21.0, 21.0, 19.3, 0.0, 0.0, 0.0]),
'CP': numpy.asarray([ 0.0, 4.0, 4.0, 4.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 4.0, 4.0, 4.0, 4.0, 4.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 0.0, 0.0, 0.0])},
# Powered two-wheelers 4b (motorcycles > 50cc)
5: {'AR': LOWDB*numpy.ones(31),
'BR': numpy.zeros(31),
'AP': numpy.asarray([LOWDB, 90.8, 88.9, 89.2, 90.5, 89.2, 90.7, 93.2, 93.2, 90.0, 88.4, 87.6, 87.7, 87.0, 87.4, 89.4,
89.9, 90.1, 89.7, 89.8, 88.2, 86.5, 85.8, 85.1, 85.1, 82.7, 81.7, 80.4,LOWDB,LOWDB,LOWDB]),
'BP': numpy.asarray([ 0.0, 2.1, 3.1, 1.2, 2.3, 2.8, 4.2, 6.2, 4.8, 7.3, 11.3, 10.6, 13.9, 13.5, 11.0, 10.8,
11.4, 11.4, 11.7, 13.4, 11.6, 12.2, 10.9, 10.5, 12.0, 12.0, 12.0, 12.0, 0.0, 0.0, 0.0]),
'CP': numpy.asarray([ 0.0, 4.0, 4.0, 4.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 4.0, 4.0, 4.0, 4.0, 4.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 0.0, 0.0, 0.0])}}
# correction values for studded tires
STUDS = {'A': numpy.asarray([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 1.4, 1.5, 0.9, 1.2, 1.5, 1.9, 1.8,
0.8, 0.5, 0.2, -0.2, -0.4, 0.5, 0.8, 0.9, 2.1, 5.0, 7.3, 10.0, 0.0, 0.0, 0.0]),
'B': numpy.asarray([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.1, -6.0, -8.5, -4.1, 1.7, 0.6, -4.6, -3.9,
-2.7, -4.2,-11.7,-11.7,-14.9,-17.6,-21.8,-21.6,-19.2,-14.6, -9.9,-10.2, 0.0, 0.0, 0.0])}
class ImagineDirectivity(object):
""" function object implementing the Harmonoise/Imagine directivity pattern
once an object of this class is created, it behaves like a function (thanks to the '__call__' method)
"""
def __init__(self, cat, h):
""" create the directivity function, for the given vehicle category and source height """
object.__init__(self)
self.cat = cat # vehicle category
self.h = h # source height
def __call__(self, theta, phi, f):
""" return the directivity correction for the given angles, at the given frequency """
# theta: horizontal angle between travelling direction of vehicle and reciever (0 degrees means receiver in front of vehicle)
# phi: vertical angle between travelling direction of vehicle and receiver (0 degrees means receiver in front of vehicle)
# NOTE: for readability reasons, other symbols are used than in the Imagine document
# restrict the angles to the correct range
while theta < 0.0:
theta += 360.0
while theta > 360.0:
theta -= 360.0
while phi < -180.0:
phi += 360.0
while phi > 180.0:
phi -= 360.0
# enforce horizontal and vertical symmetry
if theta > 180.0:
theta = 360.0 - theta
if phi < 0.0:
phi = -phi
if phi > 90.0:
phi = 180.0 - phi
# calculate shorthands
thetaRad = (numpy.pi/180.0)*theta
phiRad = (numpy.pi/180.0)*phi
pi2theta = numpy.pi/2.0 - thetaRad
sinpi2theta = numpy.sin(pi2theta)
sqrtcosphi = numpy.sqrt(numpy.cos(phiRad))
# calculate horizontal directivity (formulas from Harmonoise model, depending on source height, independent of vehicle category)
if self.h == 0.01:
# horn effect, only for certain frequency range
if (1600.0 <= f) and (f <= 6300.0):
horizontal = (-1.5 + 2.5*abs(sinpi2theta)) * sqrtcosphi
else:
horizontal = 0.0
elif self.h == 0.30:
horizontal = 0.0
elif self.h == 0.75:
# screening by the body of the heavy vehicle
horizontal = (1.546*(pi2theta**3) - 1.425*(pi2theta**2) + 0.22*pi2theta + 0.6) * sqrtcosphi
else:
raise Exception('no directivity defined for sources at height %.2f' % self.h)
# calculate vertical directivity (approximations from Imagine model, depending on vehicle category, independent of source height)
if self.cat == 1:
vertical = -abs(phi/20.0) # phi in degrees
elif self.cat in (2, 3):
vertical = -abs(phi/30.0)
else:
vertical = 0.0 # no corrections for categories 4 and 5
return horizontal + vertical
class ImagineModel(EmissionModel):
""" Imagine road traffic noise emission model """
def __init__(self):
EmissionModel.__init__(self)
# parameters
self.vref = 70.0
self.vinterval = (0.1, 160.0)
# flags for applying different types of corrections - to be adjusted after object creation if necessary
self.correction = {'acceleration': True, 'gradient': False, 'temperature': False,
'surface': False, 'wetness': False, 'axles': True, 'fleet': False}
self.fleet = {'diesel': 19.0, 'tirewidth': 187.0, 'vans': 10.5, 'iress': (1.0, 35.0), 'studs': False}
def __str__(self):
""" return a string representation of the emission model """
return '[Imagine emission model]'
def categoryNames(self):
return ['Light', 'Medium', 'Heavy', 'Moped', 'Motorcycle']
def rollingNoise(self, vehicle, road):
# calculate base rolling noise
v = numpy.clip(vehicle.speed(), *self.vinterval)
z = IMAGINE[vehicle.cat()]['AR'] + IMAGINE[vehicle.cat()]['BR']*numpy.log10(v/self.vref)
# apply corrections
if self.correction['temperature'] == True:
z += self.temperatureCorrection(vehicle, road)
if self.correction['surface'] == True:
z += self.surfaceCorrection(vehicle, road)
if self.correction['wetness'] == True:
z += self.wetnessCorrection(vehicle, road)
if self.correction['axles'] == True:
z += self.axlesCorrection(vehicle, road)
if self.correction['fleet'] == True:
z += self.fleetCorrectionRolling(vehicle, road)
return z
def propulsionNoise(self, vehicle, road):
# calculate base propulsion noise
v = numpy.clip(vehicle.speed(), *self.vinterval)
z = IMAGINE[vehicle.cat()]['AP'] + IMAGINE[vehicle.cat()]['BP']*((v - self.vref)/self.vref)
# apply corrections
if self.correction['acceleration'] == True:
z += self.accelerationCorrection(vehicle, road)
if self.correction['gradient'] == True:
z += self.gradientCorrection(vehicle, road)
if self.correction['fleet'] == True:
z += self.fleetCorrectionPropulsion(vehicle, road)
return z
def accelerationCorrection(self, vehicle, road):
# restrict acceleration
maxaccel = {1: 2.0, 2: 1.0, 3: 1.0, 4: 4.0, 5: 4.0}[vehicle.cat()]
a = numpy.clip(vehicle.acceleration(), -1.0, maxaccel)
return IMAGINE[vehicle.cat()]['CP'] * a
def gradientCorrection(self, vehicle, road):
# calculate gradient as a percentage
alpha = 100.0*numpy.tan(asDirection(vehicle.direction()).gradientRadians())
cp = IMAGINE[vehicle.cat()]['CP']
g = 9.81
if vehicle.cat() in [1, 4, 5]:
if alpha >= -2.0:
return cp * g * (alpha/100.0)
if (-8.0 < alpha) and (alpha < -2.0):
return cp * g * (-2.0/100.0)
if alpha <= -8.0:
return -cp * g * ((alpha + 10.0)/100.0)
if vehicle.cat() in [2, 3]:
if alpha >= -2.0:
return cp * g * (alpha/100.0)
if alpha < -2.0:
return -cp * g * ((alpha + 4.0)/100.0)
raise Exception('Imagine model: condition for gradient correction not found')
def temperatureCorrection(self, vehicle, road):
factor = {1: 1.0, 2: 0.5, 3: 0.5, 4: 1.0, 5: 1.0}[vehicle.cat()] # half temperature coefficient for cats 2 and 3
return factor * road.tc() * (20.0 - road.temperature())
def surfaceCorrection(self, vehicle, road):
""" corrections for road surfaces belonging to the reference cluster (DAC and SMA) """
# check for vehicle type and surface type
if vehicle.cat() in [2, 3]:
return 0.0 # no correction for heavy vehicles
if not (road.cat() in ['REF', 'DAC', 'SMA']):
return 0.0 # surface not in reference cluster
chipsize = numpy.clip(road.chipsize(), 8.0, 16.0)
# surface chipsize and type correction
z = 0.25*(chipsize - 11.0)
z += {'REF': 0.0, 'DAC': -0.3, 'SMA': 0.3}[road.cat()]
return z
def wetnessCorrection(self, vehicle, road):
# check for vehicle type and wetness
if not (road.wet() and (vehicle.cat() == 1)):
return 0.0
# retrieve applicable model constants
v = numpy.clip(vehicle.speed(), *self.vinterval)
return max(0.0, 15.0*numpy.log10(numpy.asarray(FTERTS)) - 12.0*numpy.log10(v/self.vref) - 48.0)
def axlesCorrection(self, vehicle, road):
if not (vehicle.cat() == 3):
return 0.0 # correction only for heavy trucks
if not vehicle.doublemount():
return 6.8*numpy.log10(vehicle.axles()/4.0)
else:
return 9.1*numpy.log10(vehicle.axles()/4.0) + 0.8
def fleetCorrectionRolling(self, vehicle, road):
z = 0.0
# correction for tire width
if vehicle.cat() == 1:
z += 0.04 * (self.fleet['tirewidth'] - 187.0)
# correction for percentage of delivery vans
if vehicle.cat() == 1:
z += 1.0 * (self.fleet['vans'] - 10.5)/100.0
# correction for winter/studded tires
if (self.fleet['studs'] == True) and (vehicle.cat() == 1):
v = numpy.clip(vehicle.speed(), 50.0, 90.0)
z += STUDS['A'] + STUDS['B']*numpy.log10(v/self.vref)
return z
def fleetCorrectionPropulsion(self, vehicle, road):
z = 0.0
# correction for percentage of diesel vehicles
if vehicle.cat() == 1:
z += 3.0 * (self.fleet['diesel'] - 19.0)/100.0
# correction for percentage of delivery vans
if vehicle.cat() == 1:
z += 5.0 * (self.fleet['vans'] - 10.5)/100.0
# correction for illegal replacement exhaust silencer systems (IRESS)
if vehicle.cat() in [1, 2, 3]:
piress = (self.fleet['iress'][0] - 1.0)/100.0
else:
piress = (self.fleet['iress'][1] - 35.0)/100.0
z += (29.0 * piress) - (24.0 * piress**2)
return z
def sources(self, vehicle, road = ReferenceRoadsurface()):
# calculate position of sources
pos = vehicle.position()
h = {1: (0.01, 0.30), 2: (0.01, 0.75), 3: (0.01, 0.75), 4: (0.30, 0.30), 5: (0.30, 0.30)}[vehicle.cat()]
lopos = Point(pos[0], pos[1], pos[2] + h[0])
hipos = Point(pos[0], pos[1], pos[2] + h[1])
# calculate rolling and propulsion noise
r = fromdB(self.rollingNoise(vehicle, road))
p = fromdB(self.propulsionNoise(vehicle, road))
# calculate low and high noise
lonoise = 10.0*numpy.log10(0.8*r + 0.2*p)
hinoise = 10.0*numpy.log10(0.2*r + 0.8*p)
# construct sources
return [Source(position = lopos,
direction = asDirection(vehicle.direction()),
emission = TertsBandSpectrum(lonoise),
directivity = ImagineDirectivity(cat = vehicle.cat(), h = h[0])),
Source(position = hipos,
direction = asDirection(vehicle.direction()),
emission = TertsBandSpectrum(hinoise),
directivity = ImagineDirectivity(cat = vehicle.cat(), h = h[1]))]
def emission(self, vehicle, road = ReferenceRoadsurface()):
""" return the total emission as a single spectrum, assuming that all is emitted by the same source """
return TertsBandSpectrum(10.0*numpy.log10(fromdB(self.rollingNoise(vehicle,road)) + fromdB(self.propulsionNoise(vehicle,road))))
#---------------------------------------------------------------------------------------------------
# Random corrected road traffic noise emission models
#---------------------------------------------------------------------------------------------------
class ImagineCorrectionModel(ImagineModel):
""" Road traffic noise emission model with random corrections on the emissions
This model uses the Imagine model as a base, but adds a random (frequency-independent) sound power level correction
to each vehicle, in order to model a realistic distribution of louder/quiter vehicles within the same emission class.
"""
def __init__(self, seed = None):
ImagineModel.__init__(self)
numeric.seed(seed)
self.corrections = {} # dict with a random correction for each vehicle, filled during simulation
self.generators = {} # dict with correction generators for each vehicle category, to be filled in by subclasses
def __str__(self):
""" return a string representation of the emission model """
return '[Random correction emission model]'
def getCorrection(self, vehicle):
""" return the correction for a given vehicle """
(vid, cat) = (vehicle.vid(), vehicle.cat())
if vid in self.corrections:
# vehicle was encountered before, so use the same correction
corr = self.corrections[vid]
else:
# new vehicle, so calculate a new correction and save it
corr = self.generators[cat].generate()
self.corrections[vid] = corr
return corr
def sources(self, vehicle, road = ReferenceRoadsurface()):
""" overload the ImagineModel implementation """
# calculate the sources using the Imagine model
result = ImagineModel.sources(self, vehicle, road)
# get the sound power level correction and apply it to the sources
corr = self.getCorrection(vehicle)
for source in result:
source.emission.correct(corr)
return result
def emission(self, vehicle, road = ReferenceRoadsurface()):
""" overload the ImagineModel implementation """
# calculate the emission using the Imagine model
result = ImagineModel.emission(self, vehicle, road)
# get the sound power level correction and apply it to the emission
corr = self.getCorrection(vehicle)
result.correct(corr)
return result
class SkewedNormalImagineCorrectionModel(ImagineCorrectionModel):
""" Emission model that samples random corrections from a skewed normal distribution """
def __init__(self, stdev = (0.0,0.0,0.0,0.0,0.0), skew = (0.0,0.0,0.0,0.0,0.0), seed = None):
ImagineCorrectionModel.__init__(self, seed=seed)
assert (len(stdev) == 5) and (len(skew) == 5)
for i in range(5):
self.generators[i+1] = numeric.SkewedNormalCorrectionGenerator(stdev = stdev[i], skew = skew[i])
def __str__(self):
""" return a string representation of the emission model """
return '[Skewed normal correction emission model]'
# Distributions of sound power levels from Australian study
# (Brown & Tomerini, Road & Transport Research, 20(3):50-63, 2011)
AUSTDIST = {1: numpy.asarray([89, 188, 207, 386, 438, 437, 556, 596, 821, 797, 905, 1099, 1369, 1567, 1727, 2184, 2674, 3426, 3502, 3522, 3123, 2455, 1696, 1238, 832, 468, 362, 286, 195, 126, 74, 77, 32, 34, 14, 14, 11, 6, 6, 4, 5, 6, 3, 2, 5, 8, 0, 0, 0, 0, 0], dtype=float),
2: numpy.asarray([4, 8, 12, 27, 33, 39, 36, 55, 55, 67, 82, 70, 103, 87, 91, 94, 152, 258, 301, 369, 459, 568, 687, 622, 574, 486, 344, 296, 241, 168, 134, 80, 61, 50, 34, 28, 21, 12, 4, 4, 2, 1, 5, 0, 2, 3, 0, 0, 0, 0, 0], dtype=float),
3: numpy.asarray([14, 120, 81, 194, 307, 277, 306, 319, 328, 345, 404, 436, 488, 456, 507, 514, 473, 584, 611, 668, 679, 711, 919, 1083, 1430, 1662, 2007, 2018, 1872, 1696, 1268, 935, 547, 378, 261, 197, 102, 77, 60, 40, 24, 32, 22, 11, 13, 16, 1, 0, 0, 0, 2], dtype=float),
4: numpy.asarray([0, 0, 2, 5, 8, 5, 9, 8, 9, 19, 22, 24, 20, 32, 34, 48, 54, 58, 78, 74, 72, 70, 50, 52, 34, 33, 43, 26, 21, 13, 14, 14, 4, 3, 5, 4, 5, 2, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], dtype=float),
5: numpy.asarray([0, 0, 2, 5, 8, 5, 9, 8, 9, 19, 22, 24, 20, 32, 34, 48, 54, 58, 78, 74, 72, 70, 50, 52, 34, 33, 43, 26, 21, 13, 14, 14, 4, 3, 5, 4, 5, 2, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0], dtype=float)}
class DistributionImagineCorrectionModel(ImagineCorrectionModel):
""" Emission model that samples random corrections from a predefined distribution """
def __init__(self, corrdist = AUSTDIST, seed = None, zeropoint='meanEn'):
# corrdist = dict with correction distributions (in bins of 1dB) for each Imagine vehicle class
ImagineCorrectionModel.__init__(self, seed=seed)
for cat, values in corrdist.iteritems():
self.generators[cat] = numeric.TabulatedCorrectionGenerator(values = values, dx = 1.0, zeropoint=zeropoint)
def __str__(self):
""" return a string representation of the emission model """
return '[Distribution correction emission model]'
#---------------------------------------------------------------------------------------------------
# Lookup table road traffic noise emission model
#---------------------------------------------------------------------------------------------------
# TODO: Implement lookup table model, for which the following has to be done
# - create a class LookupModel, that is a subclass from ImagineModel, and overload the 'sources' and 'emission' methods
# (same way as the DistributionModel class above); a subclass from the Imagine model is necessary because the Lookup model
# may use the shape of the emission spectrum as from the Imagine model
# - add necessary values to the default configuration (CFGEMODEL, see above) and create a new default configuration file,
# by running this script from the command line with the flag MAIN_CONFIG set to True
# - update the method 'Configuration.emodel' (see below) such that a LookupModel object is created when appropriate
#---------------------------------------------------------------------------------------------------
# Test code
#---------------------------------------------------------------------------------------------------
if __name__ == '__main__':
# test emission correction generator
if 1:
vClass = 3
pylab.figure()
g = numeric.TabulatedCorrectionGenerator(values = AUSTDIST[vClass], zeropoint='meanEn')
g.plotData() # measured distribution
g.plot() # fitted distribution
# plot of Imagine emission spectrum at different vehicle speeds
if 0:
road = ReferenceRoadsurface()
model = ImagineModel()
cat = 1
pylab.figure()
speeds = [30, 40, 50, 60, 70, 80, 90, 100, 110, 120]
markers = ['circle grey', 'diamond black', 'square white', 'triangle grey', 'circle black',
'diamond white', 'square grey', 'triangle black', 'circle white', 'diamond grey']
for v, m in zip(speeds, markers):
model.emission(QLDCar(cat = cat, speed = v, acceleration = 0.0)).plot(m = m, interval = (60.0, 110.0))
pylab.legend([('%d km/h' % v) for v in speeds])
pylab.title('Imagine emission spectrum at different vehicle speeds')
# reproduction of Figure 25 of Imagine report (emission spectra for rolling and propulsion noise, and total emission spectrum)
if 0:
road = ReferenceRoadsurface()
model = ImagineModel()
vList = {1: range(10, 161), 2: range(10, 101), 3: range(10, 101)}
yRange = {1: (70, 115), 2: (75, 115), 3: (75, 115)}
pylab.figure()
for cat in [1, 2, 3]:
p = [TertsBandSpectrum(model.propulsionNoise(QLDCar(cat = cat, speed = v, acceleration = 0.0), road)).laeq() for v in vList[cat]]
r = [TertsBandSpectrum(model.rollingNoise(QLDCar(cat = cat, speed = v, acceleration = 0.0), road)).laeq() for v in vList[cat]]
e = [model.emission(QLDCar(cat = cat, speed = v, acceleration = 0.0)).laeq() for v in vList[cat]]
pylab.subplot(2, 2, cat)
pylab.plot(vList[cat], p)
pylab.plot(vList[cat], r)
pylab.plot(vList[cat], e)
# adjust y-axis
a = pylab.axis()
pylab.axis([a[0], a[1], yRange[cat][0], yRange[cat][1]])
# reproduction of Figure 5.32 of Harmonoise report (directivity functions for source heights 0.1m and 0.75m)
if 0:
cat = 1 # vehicle category of interest
f = 2000.0 # frequency of interest
thetas = numpy.arange(0.0, 180.0)
pylab.figure()
for h in [0.01, 0.75]:
func = [ImagineDirectivity(cat = cat, h = h)(theta = theta, phi = 0.0, f = f) for theta in thetas]
pylab.plot((numpy.pi/180.0)*thetas, func)
# adjust y-axis
a = pylab.axis()
pylab.axis([0.0, 3.5, -10.0, 4.0])
# draw grid
pylab.gca().xaxis.grid(color='gray', linestyle='dashed')
pylab.gca().yaxis.grid(color='gray', linestyle='dashed')
# plot of Harmonoise/Imagine directivity patterns as polar plot
if 0:
warnings.simplefilter('ignore', UserWarning)
cat = 1
f = 2000.0
pylab.figure()
iplot = 0
for h in [0.01, 0.30, 0.75]:
for phi in [0.0, 30.0, 60.0, 90.0]:
directivity = ImagineDirectivity(cat = cat, h = h)
thetas = numpy.arange(0.0, 360.0)
Lcorrs = [directivity(theta = theta, phi = phi, f = f) for theta in thetas] # level corrections
iplot += 1
pylab.subplot(3, 4, iplot, polar = True)
pylab.polar((numpy.pi/180.0)*thetas, numpy.zeros(360), color = 'black', linestyle = '--') # draw the zero line
pylab.polar((numpy.pi/180.0)*thetas, Lcorrs)
pylab.ylim(-10.0, 4.0)
try:
pylab.show()
except:
pass
| true
|
cb085cce2d89348e57220c30a0f9afa88fa52f3e
|
Python
|
lpenzey/gilded_rose
|
/test_gilded_rose.py
|
UTF-8
| 3,558
| 2.953125
| 3
|
[] |
no_license
|
import unittest
from gilded_rose import Item, GildedRose, ItemType
class GildedRoseTest(unittest.TestCase):
def test_quality_decreases_by_1(self):
items = [Item("foo", 2, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(9, items[0].quality)
def test_sell_by_decreases_by_1(self):
items = [Item("foo", 2, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(9, items[0].quality)
def test_quality_degrades_2x_after_sell_by_date_passes(self):
items = [Item("foo", 0, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(8, items[0].quality)
def test_quality_is_never_negative(self):
items = [Item("foo", 0, 0)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(0, items[0].quality)
def test_brie_increases_in_quality(self):
items = [Item("Aged Brie", 5, 49)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(50, items[0].quality)
def test_quality_never_exceeds_50(self):
items = [Item("Aged Brie", 0, 50)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(50, items[0].quality)
def test_sulfurus_quality_remains_at_80(self):
items = [Item("Sulfuras, Hand of Ragnaros", 10, 80)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(80, items[0].quality)
def test_backstagepass_increases_in_quality_by_1(self):
items = [Item("Backstage passes to a TAFKAL80ETC concert", 15, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(11, items[0].quality)
def test_backstagepass_increases_by_2_when_between_5_and_10_days_left(self):
items = [Item("Backstage passes to a TAFKAL80ETC concert", 10, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(12, items[0].quality)
def test_backstagepass_increases_by_3_when_less_than_6_days_left(self):
items = [Item("Backstage passes to a TAFKAL80ETC concert", 5, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(13, items[0].quality)
def test_backstagepass_is_worthless_after_sell_by_date(self):
items = [Item("Backstage passes to a TAFKAL80ETC concert", 0, 40)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(0, items[0].quality)
def test_conjured_items_quality_decrease_by_2(self):
items = [Item("Conjured", 10, 10)]
gilded_rose = GildedRose(items)
gilded_rose.update_quality()
self.assertEquals(8, items[0].quality)
def test_item_type_assigns_a_category(self):
new_item = [ItemType("foo", 2, 10, "conjured")]
#gilded_rose = GildedRose(items)
#gilded_rose.update_quality()
self.assertEquals("conjured", new_item[0].category)
def test_item_type_inherits_from_type(self):
new_item = [ItemType("foo", 2, 10, "conjured")]
#gilded_rose = GildedRose(items)
#gilded_rose.update_quality()
self.assertEquals("foo", new_item[0].name)
if __name__ == '__main__':
unittest.main()
| true
|
c461975f6f755f2e1d3b496ba7a9b172899b543c
|
Python
|
csjxsw/MyPythonProject
|
/leetcode/1_twosum/twosum.py
|
UTF-8
| 653
| 3.40625
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# coding=utf-8
class Solution:
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
dict = {}
numslen = len(nums)
for index in range(numslen):
num = nums[index]
if num in dict:
return [dict.get(num), index]
else:
dict[target-num] = index
if __name__ == '__main__':
#print ("------begin--------")
s = Solution()
num = [2, 7, 11, 15]
target = 18
reults = s.twoSum(num, target)
print reults
#print ("------end--------")
| true
|
be13f080f60a978d901545289a1caaac6de9f9be
|
Python
|
ATNF/yandasoft
|
/tests/data/simulation/synthregression/facetingtest.py
|
UTF-8
| 3,316
| 2.625
| 3
|
[
"MIT"
] |
permissive
|
# regression tests of faceting
# some fixed parameters are given in wtermtest_template.in
from synthprogrunner import *
def analyseResult(spr):
'''
spr - synthesis program runner (to run imageStats)
throws exceptions if something is wrong, otherwise just
returns
'''
src_offset = 0.006/math.pi*180.
psf_peak=[-172.5,-45]
true_peak=sinProjection(psf_peak,src_offset,src_offset)
stats = spr.imageStats('image.field1.restored')
print("Statistics for restored image: ",stats)
disterr = getDistance(stats,true_peak[0],true_peak[1])*3600.
if disterr > 8:
raise RuntimeError("Offset between true and expected position exceeds 1 cell size (8 arcsec), d=%f, true_peak=%s" % (disterr,true_peak))
if abs(stats['peak']-1.)>0.3:
raise RuntimeError("Peak flux in the image is notably different from 1 Jy, F=%f" % stats['peak'])
stats = spr.imageStats('image.field1.facet.0.1')
print("Statistics for modelimage: ",stats)
disterr = getDistance(stats,true_peak[0],true_peak[1])*3600.
if disterr > 8:
raise RuntimeError("Offset between true and expected position exceeds 1 cell size (8 arcsec), d=%f, true_peak=%s" % (disterr,true_peak))
stats = spr.imageStats('psf.field1.facet.0.1')
print("Statistics for psf image: ",stats)
# 256 is facetstep of 512 divided by 2, cell is 4 arcsec
facet_offset = 4.*256./3600.
facet_psf_peak = sinProjection(psf_peak,facet_offset,facet_offset)
disterr = getDistance(stats,facet_psf_peak[0],facet_psf_peak[1])*3600.
if disterr > 8:
raise RuntimeError("Offset between true and expected position exceeds 1 cell size (8 arcsec), d=%f, true_peak=%s" % (disterr,true_peak))
stats = spr.imageStats('psf.image.field1.facet.0.1')
print("Statistics for preconditioned psf image: ",stats)
disterr = getDistance(stats,facet_psf_peak[0],facet_psf_peak[1])*3600.
if disterr > 8:
raise RuntimeError("Offset between true and expected position exceeds 1 cell size (8 arcsec), d=%f, true_peak=%s" % (disterr,true_peak))
if abs(stats['peak']-1.)>0.01:
raise RuntimeError("Peak flux in the preconditioned psf image is notably different from 1.0, F=%f" % stats['peak'])
stats = spr.imageStats('weights.field1.facet.0.1')
print("Statistics for weight image: ",stats)
if abs(stats['rms']-stats['peak'])>0.1 or abs(stats['rms']-stats['median'])>0.1 or abs(stats['peak']-stats['median'])>0.1:
raise RuntimeError("Weight image is expected to be constant for SphFunc gridder")
stats = spr.imageStats('residual.field1.facet.0.1')
print("Statistics for residual image: ",stats)
if stats['rms']>0.01 or abs(stats['median'])>0.0001:
raise RuntimeError("Residual image has too high rms or median. Please verify")
spr = SynthesisProgramRunner(template_parset = 'facetingtest_template.in')
spr.runSimulator()
print("Testing faceting with overlap")
spr.addToParset("Cimager.Images.shape = [1024,1024]")
spr.addToParset("Cimager.Images.image.field1.facetstep = 512")
spr.runImager()
analyseResult(spr)
print("Testing faceting with padding")
spr.initParset()
spr.addToParset("Cimager.Images.shape = [512,512]")
spr.addToParset("Cimager.gridder.padding = 2")
spr.runImager()
analyseResult(spr)
#clean up
import os
os.system("rm -rf *field1* temp_parset.in")
| true
|
571a6bd975a54dc8fabeb8e4fc54d254544b6d7e
|
Python
|
AdamantLife/aldb2
|
/aldb2/SeasonCharts/sql.py
|
UTF-8
| 2,930
| 2.828125
| 3
|
[] |
no_license
|
## This Module
from aldb2.Core.sql import util
from aldb2 import SeasonCharts
from aldb2.SeasonCharts import gammut
def gammut_main(connection, season = None, year = None, output = gammut.DEFAULTOUTPUT):
""" Runs gammut's main function and then imports the results into the database. """
gammut.main(season = season, year = year, output = output)
shows = SeasonCharts.load_serialized(output)
def checktitle(title):
""" subfunction for checking titles """
matches = getshowbytitle(connection,title = title)
matches = [mat for mat in matches if mat['season'] == season and mat['year'] == year]
## This is a little obnoxious, but we'll just have to assume we're only going to get one match at this point
if matches: return matches[0]
for show in shows:
match = None
for title in [show.japanese_title,show.romaji_title,show.english_title]+show.additional_titles:
match = checktitle(title)
## If we found a title, we can stop
if match: break
if not match:
## If no match, we add to database
addshow(show)
else:
## Otherwise, we update
updatebyshow(connection, match['scshowid'],show)
################ SeasonCharts_Shows
@util.row_factory_saver
def getshowbytitle(connection, title):
""" Gets shows with a matching title """
liketitle = f"%{title}%"
shows = connection.execute("""
SELECT scshowid,animeseasonid,season,year,japanesetitle,romajititle,englishtitle,additionaltitles,medium,continuing,summary
FROM "SeasonCharts_shows"
WHERE japanesetitle =:title OR romajititle =:title OR englishtitle =:title OR additionaltitles LIKE :liketitle;""",dict(title = title, liketitle = liketitle)).fetchall()
if not shows: return
return [{"scshowid":show[0],"animeseasonid":show[1],"season":show[2],"year":show[3],"japanesetitle":show[4],
"romajititle":show[5],"englishtitle":show[6],"additionaltitles":show[7],"medium":show[8],"continuing":show[9],"summary":show[10]}
for show in shows]
def addshow(connection,show):
""" Adds a show object to the database """
connection.execute("""
INSERT INTO "SeasonCharts_shows"
(season,year,japanesetitle,romajititle,englishtitle,additionaltitles,medium,continuing,summary)
VALUES (:season,:year,:japanese_title,:romaji_title,:english_title:additionaltitles,:medium,:continuing,:summary);""",
dict(season = show.season, year = show.year, japanese_title = show.japanese_title, english_title = show.english_title, additionaltitles = ", ".join(show.additional_titles),
medium = show.medium, continuing = int(show.continuing), summary = show.summary))
def updatebyshow(connection,showid,show):
""" Uses a show object to update a database entry """
connection.execute("""
UPDATE "SeasonCharts_shows"
SET
WHERE scshowid = :scshowid
""")
| true
|
792b0dff03d4e404dd1dbf6d541b01dd74f46ed3
|
Python
|
omkarmoghe/Scurvy
|
/MainMenu.py
|
UTF-8
| 4,924
| 3.1875
| 3
|
[] |
no_license
|
from Globals import *
# This represents a selectable item in the menu.
class MenuItem(pygame.font.Font):
def __init__(self, text, index, count, func):
pygame.font.Font.__init__(self, menu_font, menu_item_font_size)
self.text = text
self.font_size = menu_item_font_size
self.font_color = WHITE
self.label = self.render(self.text, True, self.font_color)
self.rect = self.label.get_rect()
pos_x = (WIDTH / 2) - (self.rect.width / 2)
pos_y = 200 + ((HEIGHT - 220) / count) * index
self.rect.x = pos_x
self.rect.y = pos_y
self.func = func
def is_mouse_selection(self, (pos_x, pos_y)):
return self.rect.collidepoint(pos_x, pos_y)
def set_selected(self, selected):
if selected:
self.font_color = BLACK
else:
self.font_color = WHITE
self.label = self.render(self.text, True, self.font_color)
class GameMenu():
def __init__(self, items):
self.bg_color = BLACK
self.clock = pygame.time.Clock()
self.items = []
count = len(items)
for index, item in enumerate(items):
menu_item = MenuItem(item, index, count, items[item])
self.items.append(menu_item)
self.mouse_is_visible = True
self.cur_item = None
def set_mouse_visibility(self):
if self.mouse_is_visible:
pygame.mouse.set_visible(True)
else:
pygame.mouse.set_visible(False)
def set_keyboard_selection(self, key):
for item in self.items:
# Return all to neutral
item.set_selected(False)
if self.cur_item is None:
self.cur_item = 0
else:
# Find the chosen item
if key == pygame.K_UP and \
self.cur_item > 0:
self.cur_item -= 1
elif key == pygame.K_UP and \
self.cur_item == 0:
self.cur_item = len(self.items) - 1
elif key == pygame.K_DOWN and \
self.cur_item < len(self.items) - 1:
self.cur_item += 1
elif key == pygame.K_DOWN and \
self.cur_item == len(self.items) - 1:
self.cur_item = 0
self.items[self.cur_item].set_selected(True)
# Finally check if Enter or Space is pressed
if key == pygame.K_SPACE or key == pygame.K_RETURN:
pygame.mouse.set_visible(True)
self.items[self.cur_item].func()
pygame.display.set_caption(application_name)
# If escape, quit.
if key == pygame.K_ESCAPE:
quit()
def run(self):
mainloop = True
menu_background = pygame.image.load(menu_background_image)
menu_background_rect = menu_background.get_rect()
title_label = pygame.font.Font(menu_font, 100).render('{0}'.format(application_name), True, WHITE)
title_rect = title_label.get_rect()
title_rect.centerx = WIDTH * 1 / 2
title_rect.centery = HEIGHT * 1 / 5
boat_image = classic_ship_location + "PlayerShip337.5.png" # TODO: Make boat animation
boat = pygame.image.load(boat_image)
boat = pygame.transform.scale(boat, (menu_ship_scale, menu_ship_scale))
boat_rect = boat.get_rect()
boat_rect.centerx = WIDTH * 4 / 5
boat_rect.centery = HEIGHT * 2 / 5
while mainloop:
m_pos = pygame.mouse.get_pos()
for event in pygame.event.get():
if event.type == pygame.QUIT:
mainloop = False
if event.type == pygame.KEYDOWN:
self.mouse_is_visible = False
self.set_keyboard_selection(event.key)
if event.type == pygame.MOUSEBUTTONUP and event.button == LEFT:
for item in self.items:
if item.is_mouse_selection(m_pos):
item.func()
pygame.display.set_caption(application_name)
if pygame.mouse.get_rel() != (0, 0):
self.mouse_is_visible = True
self.cur_item = None
self.set_mouse_visibility()
# Redraw the background
screen.blit(menu_background, menu_background_rect)
screen.blit(title_label, title_rect)
screen.blit(boat, boat_rect)
for item in self.items:
if self.mouse_is_visible:
set_mouse_selection(item, m_pos)
screen.blit(item.label, item.rect)
pygame.display.flip()
def set_mouse_selection(item, m_pos):
"""Marks the MenuItem the mouse cursor hovers on."""
if item.is_mouse_selection(m_pos):
item.set_selected(True)
else:
item.set_selected(False)
# item.set_italic(False)
| true
|
ca0f3a35fcd4fdc3ecbaa05a9af4e96cd2d38fe4
|
Python
|
Jacobo-Arias/Sistemas-Distribuidos
|
/servidores/socket_server1.py
|
UTF-8
| 588
| 3.0625
| 3
|
[] |
no_license
|
import socket
import time
mi_socket = socket.socket()
mi_socket.bind(('localhost',8000))
mi_socket.listen(1)
conexion, addr = mi_socket.accept()
print('Nueva conexion establecida')
print (addr)
solinombre = "Digame su nombre"
conexion.send(solinombre.encode("ascii"))
peticion = conexion.recv(1024)
decodpeticion = peticion.decode("ascii")
hora = time.strftime("%X")
fecha = time.strftime("%x")
envio = 'Hola '+ str(decodpeticion)+' usted ha ingresado el '+str(fecha)+' a las '+str(hora)
conexion.send(envio.encode("ascii"))
conexion.close()
mi_socket.close()
| true
|
722e465c200d8ca25e8a379f97408eb1ae04f839
|
Python
|
natdjaja/qbb2019-answers
|
/day4-homework/timecourse.py
|
UTF-8
| 2,217
| 2.84375
| 3
|
[] |
no_license
|
#!/usr/bin/env python3
"""
Usage ./02-timecourse.py <t_name> <samples.csv>, <FPKMs>
Create a timecourse of a given transcript for females
./timecourse.py FBtr0331261 ~/qbb2019/data/samples.csv all.csv
"""
import sys
import pandas as pd
import matplotlib.pyplot as plt
import os
def get_fpkm_data(fpkms,columns):
fpkms = fpkms.drop(fpkms.columns[list(columns)],axis=1)
fpkms = fpkms.drop(columns="gene_name")
return fpkms
def get_replicate_fpkm_data(ctab_data_dir,metadata_file,sex_):
fpkm = [ ]
for i, line in enumerate(open(metadata_file)):
if i == 0:
continue
fields = line.split(",")
srr_id = fields[0]
sex = fields[1]
if sex != sex_:
continue
stage = fields[2]
ctab_path = os.path.join(ctab_data_dir, srr_id,
"t_data.ctab")
# print(ctab_path)
df = pd.read_csv(ctab_path, sep="\t",
index_col="t_name")
fpkm.append(df.loc["FBtr0331261","FPKM"])
return fpkm
t_name = sys.argv[1] # tname
samples = pd.read_csv(sys.argv[2])# samples csv
fpkm_file = sys.argv[3] #all csv
df = pd.read_csv(fpkm_file, index_col="t_name")
fpkms1 = get_fpkm_data(df,range(9,17))
fpkms2 = get_fpkm_data(df,range(1,9))
samples = pd.read_csv(sys.argv[2]) #samples csv
#fpkms = pd.read_csv(sys.argv[3], index_col="t_name")
my_data = (fpkms1.loc[t_name,:])
my_data2 = (fpkms2.loc[t_name,:])
male_rep_data = get_replicate_fpkm_data(sys.argv[5],sys.argv[4],"male")
female_rep_data = get_replicate_fpkm_data(sys.argv[5],sys.argv[4],"female")
print(male_rep_data)
print(female_rep_data)
fig, ax = plt.subplots()
ax.plot(range(8),my_data, color="blue", label='male')
ax.plot(range(8),my_data2, color="red", label='female')
ax.plot(range(4,8),male_rep_data,'x', color="blue")
ax.plot(range(4,8),female_rep_data,'x', color="red")
ax.set_title("Sxl")
ax.set_xlabel("Developmental Expression")
ax.set_xticks([0,1,2,3,4,5,6,7])
ax.set_xticklabels(['10', '11', '12', '13', '14A', '14B', '14C', '14D'], rotation=90)
ax.set_ylabel("mRNA Abundance (FPKM)")
plt.legend(loc='upper left')
plt.show()
fig.savefig("timecourse.png")
plt.close(fig)
| true
|
3fc51c0ec0b7f745d73fc906984bb7390db97e68
|
Python
|
anuchakradhar/python_starter
|
/variables.py
|
UTF-8
| 614
| 4.40625
| 4
|
[] |
no_license
|
# A variable is a container for a value, which can be of various types
'''
This is a
multiline comment
or docstring (used to define a functions purpose)
can be single or double quotes
'''
"""
VARIABLE RULES:
- Variable names are case sensitive (name and NAME are different variables)
- Must start with a letter or an underscore
- Can have numbers but can not start with one
"""
X = 1 #int
y = 2.5 #float
name = 'Anu' #Str
is_Alive = True #bool
#Multiple Assignment
x, y, name, is_Alive = (1, 2.5, 'Anu', True)
print("Hello World")
print(x, y, name, is_Alive)
| true
|
0c602cc27ac7276daef098d7813e9e7a108557d8
|
Python
|
chongminggao/WeChat_Big_Data_Challenge_DeepCTR-Torch_baseline_zsx
|
/mmoe1.py
|
UTF-8
| 5,498
| 2.640625
| 3
|
[] |
no_license
|
import torch
import torch.nn as nn
from deepctr_torch.models.basemodel import BaseModel
from deepctr_torch.inputs import combined_dnn_input
from deepctr_torch.layers import DNN, PredictionLayer
class MMOELayer(nn.Module):
def __init__(self, input_dim, num_tasks, num_experts, output_dim, device, seed=6666):
super(MMOELayer, self).__init__()
self.num_experts = num_experts
self.num_tasks = num_tasks
self.output_dim = output_dim
self.seed = seed
w = torch.Tensor(torch.rand(input_dim, self.num_experts * self.output_dim))
torch.nn.init.normal_(w)
self.expert_kernel = nn.Parameter(w).to(device)
self.gate_kernels = []
for i in range(self.num_tasks):
w = torch.Tensor(torch.rand(input_dim, self.num_experts))
torch.nn.init.normal_(w)
self.gate_kernels.append(nn.Parameter(w).to(device))
def forward(self, inputs):
outputs = []
expert_out = torch.mm(inputs, self.expert_kernel)
expert_out = torch.reshape(expert_out, (-1, self.output_dim, self.num_experts))
for i in range(self.num_tasks):
gate_out = torch.mm(inputs, self.gate_kernels[i])
gate_out = torch.nn.functional.softmax(gate_out, dim=1)
gate_out = torch.unsqueeze(gate_out, dim=1).repeat(1, self.output_dim, 1)
output = torch.sum(torch.mul(expert_out, gate_out), dim=2)
outputs.append(output)
return outputs
class MMOE(BaseModel):
"""Instantiates the Multi-gate Mixture-of-Experts architecture.
:param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
:param num_tasks: integer, number of tasks, equal to number of outputs, must be greater than 1.
:param tasks: list of str, indicating the loss of each tasks, ``"binary"`` for binary logloss, ``"regression"`` for regression loss. e.g. ['binary', 'regression']
:param num_experts: integer, number of experts.
:param expert_dim: integer, the hidden units of each expert.
:param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of shared-bottom DNN
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param l2_reg_dnn: float. L2 regularizer strength applied to DNN
:param init_std: float,to use as the initialize std of embedding vector
:param task_dnn_units: list,list of positive integer or empty list, the layer number and units in each layer of task-specific DNN
:param seed: integer ,to use as random seed.
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param dnn_activation: Activation function to use in DNN
:param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in DNN
:param device: str, ``"cpu"`` or ``"cuda:0"``
:return: A PyTorch model instance.
"""
def __init__(self, dnn_feature_columns, num_tasks, tasks, num_experts=4, expert_dim=8, dnn_hidden_units=(128, 128),
l2_reg_embedding=1e-5, l2_reg_dnn=0, init_std=0.0001, task_dnn_units=None, seed=1024, dnn_dropout=0,
dnn_activation='relu', dnn_use_bn=False, device='cpu'):
super(MMOE, self).__init__(linear_feature_columns=[], dnn_feature_columns=dnn_feature_columns,
l2_reg_embedding=l2_reg_embedding, seed=seed, device=device)
if num_tasks <= 1:
raise ValueError("num_tasks must be greater than 1")
if len(tasks) != num_tasks:
raise ValueError("num_tasks must be equal to the length of tasks")
for task in tasks:
if task not in ['binary', 'regression']:
raise ValueError("task must be binary or regression, {} is illegal".format(task))
self.tasks = tasks
self.task_dnn_units = task_dnn_units
self.dnn = DNN(self.compute_input_dim(dnn_feature_columns), dnn_hidden_units,
activation=dnn_activation, l2_reg=l2_reg_dnn, dropout_rate=dnn_dropout, use_bn=dnn_use_bn,
init_std=init_std, device=device)
self.mmoe_layer = MMOELayer(dnn_hidden_units[-1], num_tasks, num_experts, expert_dim, device)
if task_dnn_units is not None:
self.task_dnn = nn.ModuleList([DNN(expert_dim, dnn_hidden_units) for _ in range(num_tasks)])
self.tower_network = nn.ModuleList([nn.Linear(expert_dim, 1, bias=False) for _ in range(num_tasks)])
self.out = nn.ModuleList([PredictionLayer(task) for task in self.tasks])
self.to(device)
def forward(self, X):
sparse_embedding_list, dense_value_list = self.input_from_feature_columns(X, self.dnn_feature_columns,
self.embedding_dict)
dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
dnn_output = self.dnn(dnn_input)
mmoe_outs = self.mmoe_layer(dnn_output)
if self.task_dnn_units is not None:
mmoe_outs = [self.task_dnn[i](mmoe_out) for i, mmoe_out in enumerate(mmoe_outs)]
task_outputs = []
for i, mmoe_out in enumerate(mmoe_outs):
logit = self.tower_network[i](mmoe_out)
output = self.out[i](logit)
task_outputs.append(output)
task_outputs = torch.cat(task_outputs, -1)
return task_outputs
| true
|
aae019536a269639765ec5d75a9f2bd1555bafa8
|
Python
|
FaustinCarter/Labber_Drivers
|
/MagCycle_Relay/MagCycle_Relay.py
|
UTF-8
| 2,559
| 2.796875
| 3
|
[] |
no_license
|
import numpy as np
import PyDAQmx as mx
import InstrumentDriver
class Driver(InstrumentDriver.InstrumentWorker):
def performSetValue(self, quant, value, sweepRate=0.0, options={}):
"""Create task, set value, close task."""
if quant.name == 'Relay Position':
if value == 'Mag Cycle':
channel = 'ADR_DIO/port2/line6'
elif value == 'Regulate':
channel = 'ADR_DIO/port2/line7'
else:
assert False, "Error, bad value"
#Create a new task
writeChan = mx.Task()
writeChan.CreateDOChan(channel, '', mx.DAQmx_Val_ChanPerLine)
setVal0 = np.array([0], dtype=np.uint8)
setVal1 = np.array([1], dtype=np.uint8)
sampsPer = mx.int32()
#Send a 100 ms pulse to the appropriate channel (0 is on)
writeChan.WriteDigitalLines(1, mx.bool32(True), 0, mx.DAQmx_Val_GroupByScanNumber, setVal0, mx.byref(sampsPer), None)
self.wait(0.1)
#Set it back to low (1 is off)
writeChan.WriteDigitalLines(1, mx.bool32(True), 0, mx.DAQmx_Val_GroupByScanNumber, setVal1, mx.byref(sampsPer), None)
#Memory Management!
writeChan.ClearTask()
else:
assert False, "Requesting unknown quantity"
return value
def performGetValue(self, quant, options={}):
"""Create task, get value, close task."""
if quant.name == 'Relay Position':
#Create some values to put things in
retVal = np.zeros(2, dtype=np.uint8)
sampsPer = mx.int32()
numBytesPer = mx.int32()
#Create a new task
readChan = mx.Task()
readChan.CreateDIChan('ADR_DIO/port2/line4:5', '', mx.DAQmx_Val_ChanPerLine)
#This does the measurement and updates the values created above
readChan.ReadDigitalLines(1, 0, mx.DAQmx_Val_GroupByScanNumber, retVal, 2, mx.byref(sampsPer), mx.byref(numBytesPer), None)
#Memory management!
readChan.ClearTask()
assert not all(retVal) and any(retVal), "Both channels should not be the same!"
if all(retVal == [0,1]):
value = "Mag Cycle"
elif all(retVal == [1,0]):
value = "Regulate"
else:
assert False, "Error: unexpected value returned "+repr(retVal)
else:
assert False, "Error: Unknown quantity"
return value
| true
|
696bffa941af936e86c3115b1495c4ef30fdf6f6
|
Python
|
Harrisonyong/ChartRoom-For-Python
|
/chartroom_service.py
|
UTF-8
| 1,938
| 2.96875
| 3
|
[] |
no_license
|
"""
author:harrisonyong
email:122023352@qq.com
time:2020-08-20
env:python3.6
socket and epoll
"""
from socket import *
from select import *
HOST = "0.0.0.0"
POST = 8000
ADDR = (HOST, POST)
# 服务端套接字启动,采用epoll方法进行监听
sockfd = socket()
sockfd.setblocking(False)
sockfd.bind(ADDR)
sockfd.listen(5)
# epoll方法监听
ep = epoll()
ep.register(sockfd)
map = {sockfd.fileno():sockfd}
usr = {}
# 循环监听客户端连接进行处理
class Chart():
def __init__(self,connfd,addre,name = None):
self.connfd = connfd
self.addre = addre
self.name = name
def join(self,index):
if index[0] == "NAME":
for n in usr.values():
if n.name == index[1]:
self.connfd.send(b"Fail")
return
else:
self.name = index[1]
self.connfd.send(b"ok")
def start(self):
while True:
data = self.connfd.recv(1024*10).decode()
index = data.split(" ",1)
print(index)
self.join(index)
def main():
# 循环监听触发事件
while True:
events = ep.poll()
for fileno,event in events:
# 判断连接事件
if map[fileno] == sockfd:
connfd,addre = sockfd.accept()
print("connect is",addre)
connfd.setblocking(False)
ep.register(connfd)
map[connfd.fileno()] = connfd
# 存储连接客户端对象,对象中包含客户端信息和客户端使用方法
usr[connfd.fileno()] = Chart(connfd,addre)
else:
# 如果客户端连接,启动客户端处理类进行处理
try:
usr[fileno].start()
except BlockingIOError:
continue
if __name__ == '__main__':
main()
| true
|
53266a4b26a11989a673f1af69e628616d3fe09d
|
Python
|
Ampersandnz/UnifyIdCodingChallenge
|
/GenerateImage.py
|
UTF-8
| 3,518
| 3.03125
| 3
|
[] |
no_license
|
from urllib import request, parse
from urllib.error import HTTPError, URLError
from socket import timeout
from PIL import Image
# HTTP request timeout, in seconds.
TIMEOUT = 300
# Can request a maximum of 10,000 numbers at a time via the API, so loop and split the request until we have enough
MAX_NUMBERS_IN_REQUEST = 10000
WIDTH = 128
HEIGHT = 128
class APIRequest:
def __init__(self, base_url, params):
self.base_url = base_url
self.params = params
def get_url(self):
return self.base_url + '?' + parse.urlencode(self.params)
def main():
# Random.org's API has a quota of how much data you're allowed to use. If exceeded, all requests will return 503
if check_quota():
print('Quota is fine, proceeding with image generation')
generate_random_image(WIDTH, HEIGHT)
else:
print('Quota exceeded, not sending a request')
def generate_random_image(width, height):
print('Generating a random image of size ' + str(width) + 'x' + str(height))
num_pixels = width * height
# Generate three random values per pixel in the image
raw_values = generate_int_values(0, 255, num_pixels * 3)
# Split the response array into three equal sets
r_values = raw_values[:num_pixels]
g_values = raw_values[num_pixels:num_pixels * 2]
b_values = raw_values[num_pixels * 2:]
image = Image.new('RGB', (width, height))
raw_pixels = image.load()
n = 0
# Iterate over all pixels in the image, setting their RGB values
for i in range(image.size[0]):
for j in range(image.size[1]):
raw_pixels[i, j] = (r_values[n], g_values[n], b_values[n]) #TODO: Add alpha channel?
n += 1
# Display the generated image and write it to a file on disk
image.show()
image.save('Output.bmp', 'bmp')
def generate_int_values(rand_min, rand_max, num_to_generate):
output = ''
while num_to_generate != 0:
num_to_request = num_to_generate if num_to_generate < MAX_NUMBERS_IN_REQUEST else MAX_NUMBERS_IN_REQUEST
print('Requesting ' + str(num_to_request) + ' random integers')
response = send_request(APIRequest('https://www.random.org/integers/',
{'min': str(rand_min),
'max': str(rand_max),
'num': str(num_to_request),
'col': '1',
'format': 'plain',
'base': '10',
'rnd': 'new'}))
output = output + ' ' + response
num_to_generate -= num_to_request
return list(map(int, output.split()))
# Returns the count of how many bits I'm still allowed to request today
def check_quota():
response = send_request(APIRequest('https://www.random.org/quota/', {'format': 'plain'}))
decoded = int(response)
return decoded > 0
# Considered doing this asynchronously, but there's no point at the moment
# since the tool can't do anything until it hears back anyway
def send_request(req):
try:
return request.urlopen(req.get_url(), timeout=TIMEOUT).read().decode('utf-8')
except (HTTPError, URLError) as error:
print('Request for ' + req.get_url() + ' caused an error!\n' + str(error))
except timeout:
print('Request for ' + req.get_url() + ' timed out!')
if __name__ == '__main__':
main()
| true
|
f07cd2a623d18d6fdeedb91c03cc832d928d7483
|
Python
|
anshajk/covid-vaccinations
|
/vaccinations.py
|
UTF-8
| 1,940
| 2.890625
| 3
|
[
"MIT"
] |
permissive
|
import streamlit as st
import urllib
import pandas as pd
import altair as alt
def get_vaccination_data():
DATA_URL = "https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv"
df = pd.read_csv(DATA_URL)
df["date"] = pd.to_datetime(df["date"])
df["date"] = df["date"].dt.date
return df
st.title("Covid19 vaccination and infection data")
try:
df = get_vaccination_data()
selected_locations = st.multiselect(
"Select countries", df["location"].unique().tolist(), default=["India"],
)
if len(selected_locations) > 5:
st.warning(
"Please select a maximum of 5 locations while comparing to see the results clearly"
)
df = df[df["location"].isin(selected_locations)]
daily_vaccination_chart = (
alt.Chart(df)
.mark_line()
.encode(
x=alt.X("date:T", axis=alt.Axis(title="Date")),
y=alt.X("daily_vaccinations:Q", axis=alt.Axis(title="Daily vaccinations")),
tooltip=["date", "daily_vaccinations"],
color="location",
)
.interactive()
.properties(width=800, height=400)
)
st.header("Daily covid19 vaccination count")
st.write(daily_vaccination_chart)
daily_vaccination_chart = (
alt.Chart(df)
.mark_line()
.encode(
x=alt.X("date:T", axis=alt.Axis(title="Date")),
y=alt.X("daily_vaccinations:Q", axis=alt.Axis(title="Daily vaccinations")),
tooltip=["date", "daily_vaccinations"],
color="location",
)
.interactive()
.properties(width=800, height=400)
)
except urllib.error.URLError as e:
st.error(
"""
**This demo requires internet access.**
Connection error: %s
"""
% e.reason
)
st.text("Data courtesy: Our world in data - https://ourworldindata.org/coronavirus")
| true
|
30e3ba6f1dc61c7816386bd7d896ec5ad5cac528
|
Python
|
Sorade/Forest_level_Potion
|
/classes.py
|
UTF-8
| 79,910
| 2.953125
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 23 10:35:10 2016
@author: Julien
"""
import pygame, sys, random
import functions as fn
import variables as var
from pygame.locals import *
import itertools
import numpy as np
from operator import attrgetter
'''shadow casting imports'''
import PAdLib.shadow as shadow
import PAdLib.occluder as occluder
class spritesheet(object):
def __init__(self, filename):
try:
self.sheet = pygame.image.load(filename).convert_alpha()
except pygame.error, message:
print 'Unable to load spritesheet image:', filename
raise SystemExit, message
# Load a specific image from a specific rectangle
def image_at(self, rectangle, colorkey = None):
"Loads image from x,y,x+offset,y+offset"
rect = pygame.Rect(rectangle)
image = pygame.Surface(rect.size).convert()
image.set_colorkey((0,0,0))
image.blit(self.sheet, (0, 0), rect)
#var.screen.blit(self.sheet, (0,0), rect)
# if colorkey is not None:
# if colorkey is -1:
# colorkey = image.get_at((0,0))
# image.set_colorkey(colorkey, pygame.RLEACCEL)
return image
# Load a whole bunch of images and return them as a list
def images_at(self, rects, colorkey = None):
"Loads multiple images, supply a list of coordinates"
return [self.image_at(rect, colorkey) for rect in rects]
# Load a whole strip of images
# def load_strip(self, rect, image_count, colorkey = None):
# "Loads a strip of images and returns them as a list"
# tups = [(rect[0]+rect[2]*x, rect[1], rect[2], rect[3])
# for x in range(image_count)]
# return self.images_at(tups, colorkey)
def load_strip(self,spacing, rect, image_count, colorkey = None):
"Loads a strip of images and returns them as a list"
# tups = [(rect[0]+rect[2]*x, rect[1], rect[2], rect[3])
# for x in range(image_count)]:
tups = []
for x in range(image_count):
if x != 0:
tups += [(rect[0]+(rect[2]+spacing)*x, rect[1], rect[2], rect[3])]
else:
tups += [(rect[0]+rect[2]*x, rect[1], rect[2], rect[3])]
return self.images_at(tups, colorkey)
class SpriteStripAnim(object):
"""sprite strip animator
This class provides an iterator (iter() and next() methods), and a
__add__() method for joining strips which comes in handy when a
strip wraps to the next row.
"""
def __init__(self, filename, spacing, rect, count, colorkey=None, loop=False, frames=1):
"""construct a SpriteStripAnim
filename, rect, count, and colorkey are the same arguments used
by spritesheet.load_strip.
loop is a boolean that, when True, causes the next() method to
loop. If False, the terminal case raises StopIteration.
frames is the number of ticks to return the same image before
the iterator advances to the next image.
"""
#self.filename = filename
#ss = spritesheet(filename)
ss = filename
self.images = ss.load_strip(spacing, rect, count, colorkey)
self.i = 0
self.loop = loop
self.frames = frames
self.f = frames
def iter(self):
self.i = 0
self.f = self.frames
return self
def next(self):
if self.i >= len(self.images):
if not self.loop:
raise StopIteration
else:
self.i = 0
image = self.images[self.i]
self.f -= 1
if self.f == 0:
self.i += 1
self.f = self.frames
return image
def __add__(self, ss):
self.images.extend(ss.images)
return self
class Level(object):
def __init__(self, lvl_num):
var.current_level = self
var.level_list.append(self)
self.do_once = True
self.lvl_num = lvl_num
self.run = False
#create sprite groups
self.player_list = pygame.sprite.Group()
self.char_list = pygame.sprite.Group()
self.ennemi_list = pygame.sprite.Group()
self.item_list = pygame.sprite.Group()
self.building_list = pygame.sprite.Group()
self.projectile_list = pygame.sprite.Group()
self.projectile_ennemy_list = pygame.sprite.Group()
self.all_sprites_list = pygame.sprite.Group()
self.deleted_list = pygame.sprite.Group()
self.dead_sprites_list = pygame.sprite.Group()
self.message_list = pygame.sprite.Group()
self.to_blit_list = pygame.sprite.Group()
self.sprite_group_list = []
self.sprite_group_list.extend([self.player_list,self.char_list, self.projectile_list, self.dead_sprites_list, self.ennemi_list, self.item_list,self.building_list, self.all_sprites_list, self.to_blit_list, self.deleted_list])
def assign_occluders(self,iterator):
'''assigning occluders to shadow sources'''
'''get's all the occluders in the level'''
lvl_occluders = [o.occlude for o in self.building_list if isinstance(o,Building)]
'''loops through all shadow object in the level and set the lvl_occluders to it'''
for light in [x for x in iterator if isinstance(x, Illuminator)]:
light.source.set_occluders(lvl_occluders)
def assign_radius(self,iterator):
for light in [x for x in iterator if isinstance(x, Illuminator)]:
light.source.set_radius(float(light.radius))
def go_to(self,new_lvl, pair):
'''change level'''
new_level = var.level_list[new_lvl-1]
paired_portal_list = [y for y in [x for x in new_level.all_sprites_list if isinstance (x,Level_Change)] if y.pair == pair]
if len(paired_portal_list) > 0:
player = [x for x in self.player_list][0]
self.run = False
player.level = new_level
new_level.run = True
var.current_level = new_level
dest_port = random.choice(paired_portal_list) #select a random destination amongst the paired portals
refx = dest_port.rect.bottomright[0]-var.screenWIDTH/2
refy = dest_port.rect.bottomright[1]+50-var.screenHEIGHT/2
for sprite in new_level.all_sprites_list:
sprite.rect = sprite.rect.move(-refx,-refy)
new_level.scroll_map.rect = new_level.scroll_map.rect.move(-refx,-refy)
player.rect.center = (var.screenWIDTH/2,var.screenHEIGHT/2)
player.dest = player.rect.topleft
def execute(self):
var.current_level = self
[x for x in self.player_list][0].level = self
[x for x in self.player_list][0].check_lvlup()
#random obstacles
def add_obstacles(self,int,obs_list):
count = 0
while count < 75:
choice = random.choice(obs_list)
choice = choice if random.randint(0,1) == 1 else pygame.transform.flip(choice, True, False)
w = Building('obstacles',0,choice,random.randint(25,1800),random.randint(75,1800),1000)
old_rect = w.rect
w.rect = w.rect.inflate(150,150)
test = pygame.sprite.spritecollideany(w, self.all_sprites_list, collided = None)
if test is None:
w.rect = old_rect
self.building_list.add(w)
self.all_sprites_list.add(w)
count += 1
#Random ennemies
def add_ennemies(self,int,list):
count = 0
while count < 10: #number of wanted enemies
o = random.choice(list)(random.randint(450,1500),random.randint(450,1000))
if random.randint(0,1) == 1:
o.equipement.contents.append(Potion(random.randint(7,10),random.randint(-10,20)))
test = pygame.sprite.spritecollideany(o, self.all_sprites_list, collided = None)
if test is None:
count += 1
self.char_list.add(o)
self.ennemi_list.add(o)
self.all_sprites_list.add(o)
for item in o.equipement.contents: self.all_sprites_list.add(item)
for item in o.inventory.contents: self.all_sprites_list.add(item)
#random objects
def add_chests(self,int,chest,obj):
count = 0
while count < int:
collides = False
chest_contents = []
for n in range(0,random.randint(1,3)):
chest_contents.append(random.choice(obj))
pos = Rect(random.randint(50,var.background.get_rect()[2]),random.randint(80,var.background.get_rect()[3]),var.chest_img.get_rect().width,var.chest_img.get_rect().height)
w = chest(0,0, chest_contents)
w.rect = pos
for c in self.all_sprites_list:
if isinstance(c,chest) and w.rect.colliderect((c.rect.inflate(750,750))) == True:
collides = True
break
test = pygame.sprite.spritecollideany(w, self.all_sprites_list, collided = None)
if test is None and collides == False:
self.building_list.add(w)
self.all_sprites_list.add(w)
for item in w.inventory.contents:
self.all_sprites_list.add(item)
count +=1
class StatsMenu(Level):
def __init__(self):
self.run = False
self.rain_y = -600
self.do_once = True
def execute(self,new_level,character):
if character.level.run == True:
character.level.run = False
self.run = True
while self.run == True:
if self.do_once == True:
self.do_once = False
exit_reset = False
validate_but = Button('Validate', 50,550,75,50)
x, y = 50, 50
accessible_list = []
unaccessible_list = []
ini_skill_num = 0
for skill in character.skills:
'''makes the button and binds the skill to it'''
b = Button(skill.name, x,y,75,50)
y += 50
if y >= 400:
x+= 120
y = 50
b.binded = skill
is_accessible = True
'''check if skills requiers other skills
if it does, checks if the player has the skills,
if he does the skill remains accessible,
otherwise it become unaccessible'''
if skill.has == True:
#player already has the skill and can't remove it
is_accessible = False
b.selected = True
b.txt_color = (0,200,0)
ini_skill_num += 1
elif skill.pre_req is not None:
for v in skill.pre_req:
ls = [s for s in character.skills if isinstance(s,type(v))]
if ls[0].has == False:#player doesn't possess the skill
is_accessible = False
break
'''based on wether the skill is accessible or not
assigns it to a list'''
if is_accessible == True:
accessible_list.append(b)
else: #if unaccessible
unaccessible_list.append(b)
if skill.has == False:
b.txt_color = (120,120,120)
for event in pygame.event.get(): #setting up quit
if event.type == QUIT:
pygame.quit()
sys.exit()
print 'has quit'
'''Background of menu'''
var.screen.blit(var.inv_bg,(0,0))
'''compute number of selected buttons'''
num_selected = len([skill for skill in character.skills if skill.has == True])
'''Menu buttons'''
for b in itertools.chain(accessible_list,unaccessible_list):
if character.level_up_pts > 0 and (b in accessible_list) == True:
b.check_select()
if num_selected-ini_skill_num >= character.level_up_pts:
b.txt_color = (0,0,0)
b.selected = False
#extracts the skills from the Character wich match the binded item
gen = (s for s in character.skills if isinstance(s,type(b.binded)))
if b.selected == True:
for x in gen:
x.has = True
else:
for x in gen:
x.has = False
b.display()
#new for loop needed to blit over labels
for b in itertools.chain(accessible_list,unaccessible_list):
if pygame.mouse.get_pressed()[2] == False and b.rect.collidepoint(pygame.mouse.get_pos()):
b.binded.tooltip(b.rect.topright)
validate_but.check_select()
validate_but.display()
'''skill details'''
m_pos = pygame.mouse.get_pos()
r_click = pygame.mouse.get_pressed()[2]
for b in itertools.chain(accessible_list,unaccessible_list):
if b.rect.collidepoint(m_pos) and r_click == True:
'''blits a semi-transparent overlay over the menu'''
alpha_overlay = var.inv_bg
alpha_overlay.set_alpha(200)
var.screen.blit(alpha_overlay,(0,0))
'''Gets the lists of aval and amont skills of the
right clicked skill'''
aval_ls = fn.get_skills_aval(character.skills,b)
if b.binded.pre_req is not None:
amount_ls = b.binded.pre_req
else:
amount_ls = []
'''displays the skills amount aval'''
fn.display_x(amount_ls, Button, var.screenHEIGHT/3)
fn.display_x(aval_ls, Button, var.screenHEIGHT/3*2)
main_but = Button(b.binded.name,var.screenWIDTH/2-b.rect.width/2,var.screenHEIGHT/2,0,0)
main_but.display()
break
if validate_but.selected == True:
self.do_once = True
if ini_skill_num < num_selected:
character.level_up_pts -= (num_selected-ini_skill_num)
if pygame.key.get_pressed()[pygame.K_s] == False:
exit_reset = True
if exit_reset == True and pygame.key.get_pressed()[pygame.K_s] == True:
self.run = False
self.do_once = True
if ini_skill_num < num_selected:
character.level_up_pts -= (num_selected-ini_skill_num)
new_level.run = True
new_level.do_once = True
print 'leave menu'
pygame.display.update()
class Lifebar(object):
def __init__(self,character):
'''make black circle mask'''
mask = pygame.Surface((156,165))
mask.fill((255,255,255))
# circle(Surface, color, pos, radius, width=0)
pygame.draw.circle(mask, (0,0,0), mask.get_rect().center, 82,0)
mask.set_colorkey((255,255,255))
mask_h = 165-int(character.hp*165.0/character.hp_max)
'''get the hud'''
var.screen.blit(var.hp_hud,(0,var.screenHEIGHT-188)) #188 is the height of the hud image
var.screen.blit(mask,(0+112,var.screenHEIGHT-188+8),(0,0,mask.get_rect().width,mask_h))#144,2 are the x and y of the mask compared to the hud
var.screen.blit(var.hp_partial_hud,(0,var.screenHEIGHT-188)) #188 is the height of the hud image
class HUDbar(object):
def __init__(self,character):
'''get the hud'''
image = var.bar_hud
rect = image.get_rect()
rect.midbottom = (var.screenWIDTH/2,var.screenHEIGHT)
image = image
rect = rect
'''checks for weapons to display'''
weapon = max([y for y in character.equipement.contents if isinstance (y,Weapon)], key=attrgetter('dmg'))
'''blits bar'''
var.screen.blit(image,rect.topleft)
'''blits weapon onto bar'''
icon_slot_center = (306+31,6+30)
icon_slot_blit_pos = fn.tulpe_scale(icon_slot_center,(-weapon.icon.get_rect().height/2,-weapon.icon.get_rect().width/2))
var.screen.blit(weapon.icon,fn.tulpe_scale(rect.topleft,icon_slot_blit_pos))
class MySprite(pygame.sprite.Sprite):
def __init__(self,image,x,y):
# Call the parent class (Sprite) constructor
super(MySprite, self).__init__()
self.image = image
self.rect = self.image.get_rect().move(x, y) #initial placement
self.top_cp = (self.rect[0]+self.rect[2]/2,self.rect[1])
self.bot_cp = (self.top_cp[0],self.rect[1]+self.rect[3])
self.left_cp = (self.rect[0],self.rect[1]+self.rect[3]/2)
self.right_cp = (self.left_cp[0]+self.rect[2],self.left_cp[1])
self.center = self.rect.center
self.pos = self.rect.topleft
self.blit_order = 1
self.level = var.current_level #Level(1)#level to which sprite belongs
self.blit_order = 0
def pop_around(self,item,xzone,yzone):
collides = True
while collides == True:
item.rect = Rect((random.randint(self.rect.x-xzone,self.rect.x+self.rect.width+xzone),random.randint(self.rect.y-yzone,self.rect.y+self.rect.height+yzone)),(item.rect.width,item.rect.height))
for c in self.level.all_sprites_list:
if c.rect.inflate(-5,-5).collidepoint(item.rect.center) == False and self.rect.inflate(xzone,yzone).contains(item.rect) == True:
collides = False
break
return item.rect
def highlight(self):
pygame.draw.circle(var.screen, (255,0,0,80), self.rect.center, 20, 0)
def delete(self):
for group in self.level.sprite_group_list: #removes sprites from all groups
if self in group:
group.remove(self)
print 'sprite deleted'
print self.level.item_list
self.level.deleted_list.add(self) #adds the sprite to deleted list
class Character(MySprite):
def __init__(self, hp, walk_images, attack_images, speed, x, y, CC, CT):
self.walk_images = walk_images
self.attack_images = attack_images
self.image_list = self.attack_images[0]
self.image = self.image_list[0]
self.dead_image = var.dead_ennemi if random.randint(0,1) == 0 else pygame.transform.flip(var.dead_ennemi, True, False)
# Call the parent class (Sprite) constructor
super(Character, self).__init__(self.image,x,y)
self.speed = int(speed)
self.hp_max = hp
self.hp = hp
self.dest = (self.rect[0],self.rect[1])
self.move_speed = self.speed
self.inventory = Inventory()
self.equipement = Inventory()
'''Experience'''
self.xp = 0
self.lvlup_threshold = 100
self.totalxp = 0
self.xp_reward = 100
self.skill_lvl = 1
self.level_up_pts = 0
'''stats'''
self.stats_menu = StatsMenu()
self.skills = [Sniper(),
Fast_shooter(),
Power_shot(),
Power_blow(),
Ambidextrous(),
Duelist(),
Chain_attack()]
self.CC = CC
self.CT = CT
self.attack_time = pygame.time.Clock()
self.attack_time_left = 0
self.attack_speed = 750
self.flee_test = True
self.E = 35
self.F = 30
'''anim timer'''
self.anim_time = pygame.time.Clock()
self.anim_time_left = 0
self.anim_speed = 100
self.anim_counter = 0
self.orientation = 0
self.has_attack = False
self.anim_shot = False
'''setting dest timer'''
self.dest_time = pygame.time.Clock()
self.dest_time_left = 0
self.dest_speed = 2000
'''Mvt timer'''
self.mvt_time = pygame.time.Clock()
self.mvt_time_left = 0
self.mvt_speed = int(1000/(var.FPS*0.7))
self.is_moving = False
'''inventory opening attributes'''
self.do_once = True
self.buttons_list = []
self.selected_button = 0
self.selected = False
self.start_pos = (0,0)
self.inventory_opened = False
self.m_down = False
self.m_up = True
self.inv_time = pygame.time.Clock()
self.inv_time_left = 0
self.inv_delay = 400
@property
def skill_lvl(self):
return self._skill_lvl
@skill_lvl.setter
def skill_lvl(self, skill_lvl):
self.lvlup_threshold = (skill_lvl)*100+(skill_lvl)**3
self.totalxp += self.xp
self.xp = 0
self._skill_lvl = skill_lvl
def check_lvlup(self):
dxp = self.xp - self.lvlup_threshold
if dxp >= 0:
self.skill_lvl += 1
self.xp = dxp #to transfer excess xp
self.level_up_pts += 1
print 'Reached Level {}'.format(self.skill_lvl)
def merge_ammo(self):
self.inventory.combine_ammo() #merges all the ammo in the inventory only
'''merges the ammo from inv with equipped ammo'''
inv_projs = [x for x in self.inventory.contents if isinstance (x,Projectile)]
equiped = [y for y in self.equipement.contents if isinstance (y,Projectile)]
if len(equiped) > 0:
equiped = equiped[0]
for proj in inv_projs:
if type(equiped) == type(proj):
equiped.ammo += proj.ammo
self.inventory.contents.remove(proj)
# equiped.name = '{} {}'.format(equiped.ammo,equiped.raw_name)
def anim_move(self):
#updates anim timer
self.anim_time.tick()
self.anim_time_left += self.anim_time.get_time()
#checks which anim to display based on the direction and if sprite is moving and alive
if self.anim_time_left >= self.anim_speed and self.is_alive() == True: #checks time to animate
if self.orientation >= 140 and self.orientation <= 220: #checks orientation
if self.anim_counter >= 4:
self.anim_counter = 0
self.image = self.image_list[self.anim_counter]
if self.pos == self.rect.topleft:# and self.has_attack == False:
self.image = self.image_list[0]
elif self.orientation >= 220 and self.orientation <= 320: #checks orientation
if self.anim_counter >= 4:
self.anim_counter = 0
self.image =self.image_list[self.anim_counter+4]
if self.pos == self.rect.topleft:# and self.has_attack == False:
self.image = self.image_list[4]
elif self.orientation >= 320 or self.orientation <= 40: #checks orientation
if self.anim_counter >= 4:
self.anim_counter = 0
self.image = self.image_list[self.anim_counter+8]
if self.pos == self.rect.topleft:# and self.has_attack == False:
self.image = self.image_list[8]
elif self.orientation >= 40 and self.orientation <= 140: #checks orientation
if self.anim_counter >= 4:
self.anim_counter = 0
self.image = self.image_list[self.anim_counter+12]
if self.pos == self.rect.topleft:# and self.has_attack == False:
self.image = self.image_list[12]
self.anim_time_left = 0
self.anim_counter += 1
def get_dest(self):
self.dest = pygame.mouse.get_pos() #mouse position tracker
new_x = self.dest[0]-self.image.get_rect()[2] #adds offset to center player
new_y = self.dest[1]-self.image.get_rect()[3] #adds offset to center player
self.dest = (new_x,new_y)
xp = self.rect.x
yp = self.rect.y
#print xp,yp
xm = self.dest[0]
ym = self.dest[1]
var.dx = xm-xp
var.dy= ym-yp
def get_offset(self):
speed = self.speed #player's speed
xp = self.rect.x#(var.screenWIDTH/2)-(self.image.get_rect()[2]/2.)
yp = self.rect.y#(var.screenHEIGHT/2)-(self.image.get_rect()[3]/2.)
#print xp,yp
xm = self.dest[0]
ym = self.dest[1]
dx = float(xm-xp)
dy = float(ym-yp)
#dist = (var.dx**2+var.dy**2)**0.5 #get lenght to travel
#calculates angle and sets quadrant
if dx == 0 or dy == 0:
angle_rad = 0#np.pi/2
if dx == 0 and ym > yp:
xoffset = 0
yoffset = -speed
self.orientation = 180
elif dx == 0 and ym < yp:
xoffset = 0
yoffset = speed
self.orientation = 0
elif dy == 0 and xm > xp:
xoffset = 0
yoffset = -speed
self.orientation = 90
elif dy == 0 and xm < xp:
xoffset = 0
yoffset = speed
self.orientation = 270
else:
xoffset, yoffset = 0,0
self.orientation = 180
elif xm > xp and ym > yp:
angle_rad = np.arctan((abs(dy)/abs(dx)))
xoffset = -np.cos(angle_rad)*speed
yoffset = -np.sin(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+90
elif xm < xp and ym > yp:
angle_rad = np.arctan((abs(dx)/abs(dy)))
xoffset = np.sin(angle_rad)*speed
yoffset = -np.cos(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+180
elif xm < xp and ym < yp:
angle_rad = np.arctan((abs(dy)/abs(dx)))
xoffset = np.cos(angle_rad)*speed
yoffset = np.sin(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+270
else:# xm > xp and ym < yp:
angle_rad = np.arctan((abs(dx)/abs(dy)))
xoffset = -np.sin(angle_rad)*speed
yoffset = np.cos(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)
var.xoffset = int(xoffset)
var.yoffset = int(yoffset)
if var.dx <= 3 and var.dx >= -3:
var.dx = 0
var.xoffset = 0
if var.dy <= 3 and var.dy >= -3:
var.dy = 0
var.yoffset = 0
if var.has_shot == True:
var.dy, var.dx = 0,0
var.yoffset, var.xoffset = 0,0
var.has_shot = False
self.anim_shot = True
def open_inventory(self):
while self.inventory_opened == True:
var.screen.blit(self.inventory.inv_bg, self.inventory.inv_bg.get_rect())
if self.do_once == True:
exitenable = False
self.merge_ammo()
self.inventory.create(self,10,10,0,50)
self.equipement.create(self,var.screenWIDTH/2+50,10,0,50)
self.dropbut = Button('discard', 50,450,50,20)
self.do_once = False
for b in self.buttons_list:
b.display()
self.dropbut.display()
for event in pygame.event.get(): #setting up quit
if event.type == QUIT:
pygame.quit()
sys.exit()
if event.type == MOUSEBUTTONDOWN:
self.m_down = True
self.m_up = False
if event.type == MOUSEBUTTONUP:
self.m_up = True
self.m_down = False
#print 'mouse up'
if self.selected == False and self.m_down == True:
for b in self.buttons_list:
if b.rect.collidepoint(pygame.mouse.get_pos()):
self.selected = True
self.selected_button = self.buttons_list.index(b)
self.start_pos = pygame.mouse.get_pos()
x,y = pygame.mouse.get_pos()
if self.selected == True and self.m_down == True:
width = self.buttons_list[self.selected_button].rect.width
height = self.buttons_list[self.selected_button].rect.height
self.buttons_list[self.selected_button].rect = Rect(x-width/2,y-height/2,self.buttons_list[self.selected_button].rect[2],self.buttons_list[self.selected_button].rect[3])
if self.m_up == True:
if self.selected == True:
if self.start_pos[0]<var.screenWIDTH/2:
'''performing actions on inventory items'''
if isinstance(self.inventory.contents[self.selected_button], Potion):
self.inventory.contents[self.selected_button].drink(self)
print 'attempts potion drinking from inv'
if self.buttons_list[self.selected_button].rect.colliderect(self.dropbut.rect) and self.start_pos[0]<var.screenWIDTH/2: #removes item from inv
print 'removing inv item'
self.inventory.contents[self.selected_button].rect[0] = self.rect.move(random.randint(0,20)+5,0)[0]
self.inventory.contents[self.selected_button].rect[1] = self.rect.move(0,random.randint(0,20)+10)[1]
self.level.deleted_list.remove(self.buttons_list[self.selected_button]) #put's sprite back in game
self.level.item_list.add(self.inventory.contents[self.selected_button]) #add's sprite back to item list for it to behave as item in game
self.inventory.drop(self.inventory.contents[self.selected_button],self) #removes item in player's iventory located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button)
elif self.buttons_list[self.selected_button].rect.colliderect(self.dropbut.rect) and self.start_pos[0]>var.screenWIDTH/2: #remove item from equipemnt
print 'removing eq item'
self.level.deleted_list.remove(self.buttons_list[self.selected_button]) #put's sprite back in game
self.level.item_list.add(self.equipement.contents[self.selected_button-len(self.buttons_list)]) #add's sprite back to item list for it to behave as item in game
self.equipement.contents[self.selected_button-len(self.buttons_list)].rect[0] = self.rect.move(random.randint(0,20)+5,0)[0]
self.equipement.contents[self.selected_button-len(self.buttons_list)].rect[1] = self.rect.move(0,random.randint(0,20)+10)[1]
self.equipement.drop(self.equipement.contents[self.selected_button-len(self.buttons_list)],self) #removes item in player's iventory located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button)
elif self.start_pos[0]>var.screenWIDTH/2 and self.buttons_list[self.selected_button].rect[0]<var.screenWIDTH/2 and len(self.inventory.contents) < 32: #moving item from equipement to inv
print 'moving from eq to inv'
self.inventory.add(self.equipement.contents[self.selected_button-len(self.buttons_list)],self) #add's item to inv
self.equipement.contents.pop(self.selected_button-len(self.buttons_list)) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button) #remove's the item from it's button list position
elif self.start_pos[0]<var.screenWIDTH/2 and self.buttons_list[self.selected_button].rect[0]>var.screenWIDTH/2: #moving item from inv to eq
print 'moving from inv to eq'
if isinstance(self.inventory.contents[self.selected_button],Armor): #checks if item is an armor
x = [item for item in self.equipement.contents if isinstance(item,Armor) == True] #creates a list of all armor items already in the equipment
already_has = False # assumes the player doesn't have any of that armor category
for armor in x: #checks if the item to be added is already contained in the equipment
if isinstance(armor,Helm)==True and isinstance(self.inventory.contents[self.selected_button],Helm) == True:
print 'already has helm'
already_has = True
break
elif isinstance(armor,Torso_armor)==True and isinstance(self.inventory.contents[self.selected_button],Torso_armor) == True:
print 'already has torso'
already_has = True
break
if len(x) != 2 and already_has == False: # if the total number of armor items in the equipment is less than 2 and the player doesn't have one of the type it is added to the equ and removed from the inv
print 'armor piece added to eq'
self.equipement.contents.append(self.inventory.contents[self.selected_button]) #add's item to inv
self.inventory.contents.pop(self.selected_button) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button) #remove's the item from it's button list position
elif isinstance(self.inventory.contents[self.selected_button],Weapon): #checks if item is an armor
x = [item for item in self.equipement.contents if isinstance(item,Weapon) == True] #creates a list of all weapon items already in the equipment
already_has = False
for weapon in x:
if weapon.wield == 'two_handed':
already_has = True # doesn't actually have it but can't have more than one 2 handed weapon
print 'Already has a two-handed weapon'
if self.inventory.contents[self.selected_button].wield == 'two_handed' and weapon.wield == 'one_handed':
already_has = True # doesn't actually have it but can't have more than one 2 handed weapon
print 'Can t have both a two and one handed weapon'
if len(x) != 2 and already_has == False:
print 'weapon added to eq'
self.equipement.contents.append(self.inventory.contents[self.selected_button]) #add's item to eq
self.inventory.contents.pop(self.selected_button) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button) #remove's the item from it's button list position
elif already_has == True:
'''send item in eq to inv'''
if self.inventory.contents[self.selected_button].wield == 'two_handed':
for item in x: #removes all weapons in eq
self.inventory.contents.append(item) #add's item to inv
self.equipement.contents.remove(item) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
else: #i.e. one handed
self.inventory.contents.append(x[0]) #add's item to inv
self.equipement.contents.remove(x[0]) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
'''adds item to eq'''
self.equipement.contents.append(self.inventory.contents[self.selected_button]) #add's item to eq
self.inventory.contents.pop(self.selected_button) #removes item in player's inv located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button) #remove's the item from it's button list position
elif isinstance(self.inventory.contents[self.selected_button],Projectile): #checks if item is a projectile
x = [item for item in self.equipement.contents if isinstance(item,Projectile) == True] #creates a list of all projectile items already in the equipment
if len(x) == 0:
print 'projectile added to eq'
self.equipement.contents.append(self.inventory.contents[self.selected_button]) #add's item to inv
self.inventory.contents.pop(self.selected_button) #removes item in player's equipment located at the index specified by the position of the button corresponding to this item in the button list
self.buttons_list.pop(self.selected_button) #remove's the item from it's button list position
self.buttons_list = [] #clears buttonlist
self.inventory.create(self,10,10,0,50) #resets buttons and button list
self.equipement.create(self,var.screenWIDTH/2+50,10,0,50)
self.selected = False
'''displaying tooltips'''
if pygame.mouse.get_pressed()[2] == True:
for b in self.buttons_list:
if b.rect.collidepoint(pygame.mouse.get_pos()):
b.binded.tooltip(b.rect.topright)
for msg in self.level.message_list:
msg.show()
pygame.display.update()
if pygame.key.get_pressed()[pygame.K_i] == False:
exitenable = True
if exitenable == True and pygame.key.get_pressed()[pygame.K_i]:
self.buttons_list = [] #clear's buttons list
self.do_once = True # to insure buttons are populated again at next inventory opening
self.inventory_opened = False
self.level.do_once = True
def offset(self,):
if (var.dx == 0 and var.dy == 0) == False:
self.rect = self.rect.move(var.xoffset,var.yoffset)
def is_alive(self):
if self.hp > 0:
return True
else:
self.kill()
self.level.dead_sprites_list.add(self) #adds the character to the deleted sprite list
self.level.all_sprites_list.add(self)
self.image = self.dead_image
return False
def weapon_xchange(self,type_a,type_b): #attempt_exchange(char,item_a,item_b,inv_a,inv_b):
inv_ls = [x for x in [y for y in self.inventory.contents if isinstance (y,Weapon)] if x.type == type_a]
eq_ls = [p for p in [m for m in self.equipement.contents if isinstance (m,Weapon)] if p.type == type_b]
if len(inv_ls) > 0 and len(eq_ls) > 0:
inv_item = max([x for x in [y for y in self.inventory.contents if isinstance (y,Weapon)] if x.type == type_a], key=attrgetter('dmg'))
eq_item = max([p for p in [m for m in self.equipement.contents if isinstance (m,Weapon)] if p.type == type_b], key=attrgetter('dmg'))
if inv_item.wield == 'two_handed':
'''removes all weapons from eq to inv'''
[fn.move_item(self,j,self.equipement.contents,self.inventory.contents) for j in self.equipement.contents if isinstance (j,Weapon)]
fn.move_item(self,inv_item,self.inventory.contents,self.equipement.contents)
else:
print 'before',eq_item,self.inventory.contents
fn.exchange_item(self,inv_item,eq_item,self.inventory.contents,self.equipement.contents)
print 'after',eq_item,self.inventory.contents
#return False
def attack(self, Character, cat):
self.attack_time.tick()
self.attack_time_left += self.attack_time.get_time()
if self.attack_time_left >= self.attack_speed: # needs to be added as a variable
self.has_attack = False #to prevent endless animation
if cat == 'CC' and Character.is_alive() == True and self.is_alive() == True:
self.has_attack = True
test = random.randint(1,100) <= self.CC
if test == True:
dmg = sum([x.random_dmg() for x in self.equipement.contents if isinstance(x, Weapon) == True]) #sum of the values of all weapons in equipement
arm = sum([x.arm for x in Character.equipement.contents if isinstance(x, Armor) == True]) #sum of the values of all weapons in equipement
if (dmg+self.F/10)-(arm+Character.E/10) < 0:
dmg = 0
else:
dmg = (dmg+self.F/10)-(arm+Character.E/10)
Character.hp -= dmg
print 'mob deals {} dmg'.format(dmg)
self.attack_time_left = 0
return True
elif cat == 'CT' and Character.is_alive() == True and self.is_alive() == True and len([y for y in [x for x in self.equipement.contents if isinstance (x,Projectile)] if y.ammo > 0]) > 0:#checks clicks ennemi and has ammo
self.has_attack = True
'''creates an instance by getting the type of the proj in eq'''
proj_used = type([y for y in [x for x in self.equipement.contents if isinstance (x,Projectile)] if y.ammo > 0][0])(0)
for proj in [x for x in self.equipement.contents if isinstance (x,Projectile)]:
if proj.ammo > 0:
proj.ammo -= 1
break
wep_used = [x for x in [y for y in self.equipement.contents if isinstance (y,Weapon)] if x.type == 'CT'][0]
proj_used.dmg += wep_used.dmg
proj_used.fire(self,(var.screenWIDTH/2,var.screenHEIGHT/2),self.level.projectile_ennemy_list) #in this function the pojectile level attribute needs to be already set
self.attack_time_left = 0
return True
def set_rand_dest(self):
dest_rect = self.rect.inflate(200,200)
self.dest = (random.randint(dest_rect[0],dest_rect[0]+dest_rect[2]),random.randint(dest_rect[1],dest_rect[1]+dest_rect[3]))
def set_charge_dest(self,charge_target):
'''Charge destination randomly changed to allow the seek behaviour
due to the move_collision function'''
self.dest = charge_target.rect.x+random.randint(-10,10),charge_target.rect.y+random.randint(-10,10)
def set_flee_dest(self,attacker):
'''sends the char away from the attack at speed'''
flee_dist = 1000
if self.rect.inflate(400,400).colliderect(attacker.rect):
if self.rect.centerx > attacker.rect.centerx\
and self.rect.centery > attacker.rect.centery:
self.dest = (self.rect.x+flee_dist,self.rect.y+flee_dist)
if self.rect.centerx < attacker.rect.centerx\
and self.rect.centery > attacker.rect.centery:
self.dest = (self.rect.x-flee_dist,self.rect.y+flee_dist)
if self.rect.centerx < attacker.rect.centerx\
and self.rect.centery < attacker.rect.centery:
self.dest = (self.rect.x-flee_dist,self.rect.y-flee_dist)
if self.rect.centerx > attacker.rect.centerx\
and self.rect.centery < attacker.rect.centery:
self.dest = (self.rect.x+flee_dist,self.rect.y-flee_dist)
print 'has fled'
def behaviour(self,Character):
'''Managing Attack AI'''
CT_eq = [x for x in [y for y in self.equipement.contents if isinstance (y,Weapon)] if x.type == 'CT']
CT_inv = [x for x in [y for y in self.inventory.contents if isinstance (y,Weapon)] if x.type == 'CT']
CT_list = CT_eq + CT_inv
has_CT = False
if len(CT_list) > 0:
has_CT = True
range_CT = max(CT_list, key=attrgetter('dmg')).range
CC_eq = [x for x in [y for y in self.equipement.contents if isinstance (y,Weapon)] if x.type == 'CC']
CC_inv =[x for x in [y for y in self.inventory.contents if isinstance (y,Weapon)] if x.type == 'CC']
CC_list = CC_eq + CC_inv
has_CC = False
if len(CC_list) > 0:
has_CC = True
range_CC = max(CC_list, key=attrgetter('dmg')).range
if has_CC and Character.rect.colliderect(self.rect.inflate(range_CC,range_CC)):
if len(CC_eq) == 0:
self.weapon_xchange('CC','CT')
self.attack(Character, 'CC')
elif has_CT and self.rect.inflate(range_CT,range_CT).colliderect(Character.rect) \
and self.rect.inflate(275,275).colliderect(Character.rect) == False \
and fn.in_sight(self,Character, range_CT, self.level.building_list):
if len(CT_eq) == 0:
self.weapon_xchange('CT','CC')
self.attack(Character, 'CT')
if self.has_attack == True:
self.dest = self.rect.topleft
'''managing fleeing AI'''
if self.hp <= 5:
if self.flee_test == True:
self.flee_test = False
if self.speed < 5:
self.speed *= 5
self.set_flee_dest(Character)
elif self.hp > 5 and self.flee_test == False:
self.flee_test = True
'''Managing movement AI'''
self.dest_time.tick()
self.dest_time_left += self.dest_time.get_time()
if self.dest_time_left >= self.dest_speed and self.has_attack == False: # checks if time to set new dest
self.dest_time_left = 0 #resets timer
if has_CC and self.rect.inflate(250,250).colliderect(Character.rect) == True:
if self.speed < 2:
self.speed *= 2
self.set_charge_dest(Character)
elif self.rect.inflate(500,500).colliderect(Character.rect) == True:
if self.speed > int(48.0/(var.FPS*0.7)):
self.speed = int(48.0/(var.FPS*0.7))
my_list = [self.set_charge_dest(Character),self.set_charge_dest(Character),self.set_charge_dest(Character),self.set_rand_dest()]
random.choice(my_list)
else:
if self.speed > int(48.0/(var.FPS*0.7)):
self.speed = int(48.0/(var.FPS*0.7))
self.set_rand_dest()
def move_collision(self,EW,SN):
test_rect = Rect(self.rect.midleft,(self.rect.width,self.rect.height/2))
for obstacle in itertools.chain.from_iterable([self.level.building_list,self.level.player_list]):
if test_rect.colliderect(obstacle.rect.inflate(-obstacle.rect.width/10,-obstacle.rect.height/10)) == True:#len([x for x in char_col_points if obstacle.rect.collidepoint(x)]) >= 1:
if EW == True:
if self.dest[1] > self.rect.y:
mvt = self.speed
else:
mvt = -self.speed
self.rect = self.rect.move(-self.move_speed,mvt)
elif SN == True:
if self.dest[0] > self.rect.x:
mvt = self.speed
else:
mvt = -self.speed
self.rect = self.rect.move(mvt,-self.move_speed)
break
def move_NS(self):
self.rect = self.rect.move(0, self.move_speed)
# Check for Collisions
self.move_collision(False,True)
def move_EW(self):
self.rect = self.rect.move(self.move_speed,0)
# Check for Collisions
self.move_collision(True,False)
def move(self):#,mouse_pos, screen, background
#updates mvt timer
self.mvt_time.tick()
self.mvt_time_left += self.mvt_time.get_time()
if self.mvt_time_left >= self.mvt_speed:# checks time to animate
if self.pos != self.dest: # cheks pos animate
self.is_moving = True
self.mvt_time_left = 0
if self.dest[0] > self.rect[0]: #move E
self.move_speed = self.speed
self.move_EW() #moves player
self.orientation = 90
if self.dest[0] < self.rect[0]: #move W
self.move_speed = -self.speed
self.move_EW() #moves player
self.orientation = 270
if self.dest[1] < self.rect[1]:
self.move_speed = -self.speed
self.move_NS() #moves player
self.orientation = 0
if self.dest[1] > self.rect[1]:
self.move_speed = self.speed
self.move_NS() #moves player
self.orientation = 180
if self.rect.collidepoint(self.dest): #check position reset
self.pos = self.rect.topleft
else:
self.anim_time_left = 0
self.is_moving = False
def loot(self,Character):
if self.rect.collidepoint(pygame.mouse.get_pos()) == True and Character.rect.colliderect(self.rect.inflate(5,5)) == True:
has_looted = False
for inv in [self.inventory.contents,self.equipement.contents]:
if len(inv) >= 1:
has_looted = True
for item in inv:
self.pop_around(item, 50,50)
self.level.item_list.add(item) #add's sprite back to item list for it to behave as item in game
inv.remove(item) #removes item from chest
if has_looted == False:
w = 150
h = 30
msg = Message('Nothing to loot !!',500, 0,0,w,h)
msg.image = pygame.transform.scale(msg.image, (w, h))
msg.rect.center = (var.screenWIDTH/2,25)
self.level.message_list.add(msg)
class Button(pygame.sprite.Sprite):
def __init__(self, text, x,y,w,h ):
super(Button, self).__init__()
self.text = text
self.image = var.but_bg
self.text_pos = ((x+w/2),(y+h/2))
self.rect2 = 0
self.txt_color = (50,40,10)
#self.surface = pygame.draw.rect(var.screen, self.color , self.rect)
self.smallText = pygame.font.SysFont('initial', 18, bold=True, italic=False)
self.textSurf = self.smallText.render(self.text, True, self.txt_color)
self.rect2 = self.textSurf.get_rect()
self.rect2.center = self.text_pos
self.image = pygame.transform.scale(self.image, (int(self.rect2.width*1.5),int(self.rect2.height*3)))
self.rect = Rect(x,y,self.image.get_rect().width,self.image.get_rect().height)
self.selected = False
self.m_released = True
self.binded = None
def check_select(self):
m_pos = pygame.mouse.get_pos()
over_but = self.rect.collidepoint(m_pos)
if pygame.mouse.get_pressed()[0] ==1 and over_but == 1 and self.selected == False and self.m_released == True:
self.selected = True
self.txt_color = (0,200,0)
self.m_released = False
elif pygame.mouse.get_pressed()[0] == 1 and over_but == 1 and self.selected == True and self.m_released == True:
self.selected = False
self.txt_color = (0,0,0)
self.m_released = False
if pygame.mouse.get_pressed()[0] == 0:
self.m_released = True
def display(self):
'''needed to update color'''
self.textSurf = self.smallText.render(self.text, True, self.txt_color)
var.screen.blit(self.image,self.rect)
var.screen.blit(self.textSurf, Rect(self.rect[0]+(self.rect.centerx-self.rect[0])*0.4,self.rect[1]+self.rect[3]/4,self.rect[2],self.rect[3])) #Rect(self.rect[0]+self.rect[2]/8,self.rect[1]+20,self.rect[2],self.rect[3])
class Message(Button):
def __init__(self, text, display_time, x,y,w,h ):
super(Message, self).__init__(text, x,y,w,h)
self.display_time = pygame.time.Clock()
self.display_time_to = display_time
def show(self):
self.display_time.tick()
self.display_time_to -= self.display_time.get_time()
if (self.display_time_to <= 0) == False:
self.display()
class Inventory(object):
def __init__(self):
self.contents = []
self.inv_bg = var.inv_bg
def combine_ammo(self):
all_projectiles = [x for x in self.contents if isinstance (x,Projectile)]
for item in all_projectiles:
temp_projectiles = all_projectiles
temp_projectiles.remove(item)
other_projectiles = temp_projectiles
print other_projectiles
for other in other_projectiles:
if type(item) == type(other):
item.ammo += other.ammo
self.contents.remove(other)
# item.name = '{} {}'.format(item.ammo,item.raw_name)
def add(self, item, character):
if len(self.contents) < 32:
item.kill()#remove's item from all groups
character.level.all_sprites_list.add(item)
self.contents.append(item)
item.check_pickdrop(character)
item.inv_pos = len(self.contents)
def drop(self, item, character):
try:
self.contents.remove(item)
item.check_pickdrop(character)
item.kill()#remove's item from all groups
character.level.all_sprites_list.add(item)
character.level.item_list.add(item)
except:
print 'item not in inventory'
def create(self,Character,x,y, dx, dy):
xstart = x
ystart = y
for i in range(0,len(self.contents)):
b = Button(self.contents[i].name,x,y,100,50)
b.binded = self.contents[i]
if i == 7:
x = xstart+110
y = ystart-50
if i == 15:
x = xstart+220
y = ystart-50
if i == 23:
x = xstart+330
y = ystart-50
x += dx
y += dy
Character.buttons_list.append(b)
class Item(MySprite):
def __init__(self, name, value, image, x, y):
# Call the parent class (Sprite) constructor
super(Item, self).__init__(image, x, y)
self.name = name
self.value = value
self.inv_pos = -1
def offset(self):
if (var.dx == 0 and var.dy == 0) == False:
self.rect = self.rect.move(var.xoffset,var.yoffset)
def check_pickdrop(self,character):
pass
def use(self,player): #needs to be ckecked when E key is down AKA object mode
if self.rect.inflate(10,10).collidepoint(pygame.mouse.get_pos()) and player.rect.inflate(10,10).colliderect(self.rect) and pygame.key.get_pressed()[pygame.K_e]:
player.inventory.add(self, player)
self.delete() #sends to deleted_sprite_list
#needs a description attr and icon attr
def tooltip(self,pos):
if pos[1] > var.screenHEIGHT-var.screenHEIGHT/3:
pos = fn.tulpe_scale(pos,(10,-var.screenHEIGHT/3+5))
else:
pos = fn.tulpe_scale(pos,(10,5))
txtrect = pygame.Rect(pos, (35*6,int(len(self.description)/35.0*20))) #35 is number of character per line and 10 estimated char height and 5 estimated char width
'''drawing bg'''
bg = pygame.transform.smoothscale(var.but_bg, (txtrect.width+5, txtrect.height+self.icon.get_rect().height+15))
var.screen.blit(bg, fn.tulpe_scale((txtrect.left, txtrect.top),(-5,-5)))
'''drawing icon'''
var.screen.blit(self.icon, fn.tulpe_scale(txtrect.topleft,(0,txtrect.height+5)))
'''drawing text'''
fontobject = pygame.font.SysFont('initial', 15, bold=True, italic=False)
fn.drawText(var.screen, self.description, (50,40,10), txtrect, fontobject, aa=False, bkg=None)
class No_item(object): #creates a blank item
def __init__(self):
self.name = 'none'
def d10(int):
rng = range(0,int)
total = 0
for x in rng:
total += random.randint(0,10)
return total
class Weapon(Item):
def __init__(self, name, value, image, icon, x, y, dmg, dmg_modif):
super(Weapon, self).__init__(name, value, image, x, y)
self.dmg_modif = dmg_modif
self.dmg = dmg
self.icon = icon
self.icon.set_colorkey(None)
def random_dmg(self):
attack_dmg = self.dmg+d10(self.dmg_modif)
return attack_dmg
class Armor(Item):
def __init__(self, name, value, image, icon, x, y, arm):
super(Armor, self).__init__(name, value, image, x, y)
self.arm = arm
self.icon = icon
self.icon.set_colorkey(None)
class Helm(Armor):
def __init__(self): #name, value, image, x, y, dmg
self.name = 'Helm'
self.value = 10
self.arm = 2
self.image = var.helm_img
self.icon = var.weapon_icons.image_at(pygame.Rect(2,600,56,56))
self.description = 'A helmet offering protection of 2.'
super(Helm, self).__init__(self.name, self.value, self.image, self.icon, 200, 150, self.arm)
class Torso_armor(Armor):
def __init__(self,name,value,image,icon,arm): #name, value, image, x, y, dmg
self.name = name
self.value = value
self.arm = arm
self.description = 'A chest armor offering protection of {}.'.format(arm)
super(Torso_armor, self).__init__(self.name, self.value, image,icon, 200, 150, self.arm)
class Illuminator(Item):
def __init__(self, name, value, image, radius):
self.radius = radius
super(Illuminator, self).__init__(name, value, image, 150, 225)
self.source = shadow.Shadow()
self.source.set_radius(self.radius)
self.falloff = var.surf_falloff
self.mask = 0
self.pos = 0
self.is_carried = False
self.is_lit = True
self.carrier = None
self.m_released = False
def onoff(self):
if pygame.key.get_pressed()[pygame.K_o] and self.is_lit == False and self.m_released:
self.is_lit = True
self.m_released = False
if pygame.key.get_pressed()[pygame.K_o] and self.is_lit == True and self.m_released:
self.is_lit = False
self.m_released = False
if pygame.key.get_pressed()[pygame.K_o] == False:
self.m_released = True
def set_carrier(self,character):
if self.is_carried == False:
self.carrier = character
'''will only work for the player at the screen center'''
self.rect.center = character.rect.center
self.blit_order = -1
self.is_carried = True
else:
self.carrier = None
self.blit_order = 0
self.is_carried = False
def check_pickdrop(self,character):
self.set_carrier(character)
class Potion(Item):
def __init__(self, value, regen):
if regen == 0:
regen = 1
if random.randint(0,4) != 0:
if 0 < regen <= 4:
self.name = 'Weak Health Potion'
elif 4 < regen <= 7:
self.name = 'Health Potion'
elif 7 < regen <= 10:
self.name = 'Strong Health Potion'
elif 10 < regen:
self.name = 'Health Elixir'
elif regen < 0:
self.name = 'Poison'
else:
self.name = 'Unknown potion'
if 'Health' in self.name:
self.image = var.health_potion_img
self.icon = var.weapon_icons.image_at(pygame.Rect(182,600,56,56))
self.description = 'An revigorating potion.'
elif self.name == 'Poison':
self.image = var.poison_potion_img
self.icon = var.weapon_icons.image_at(pygame.Rect(242,600,56,56))
self.description = 'A maleficiant poison.'
else:
self.image = var.unknown_potion_img
self.icon = var.weapon_icons.image_at(pygame.Rect(302,600,56,56))
self.description = 'A potion with unknown effect to you.'
super(Potion, self).__init__(self.name, value, self.image, 150, 225)
self.regen = regen
self.confirm = False
self.timer = pygame.time.Clock()
self.timer_left = 0
self.reset_time = 10000 #10 seconds
self.icon.set_colorkey(None)
def drink(self,Character):
if Character.hp < Character.hp_max:
self.timer.tick()
self.timer_left += self.timer.get_time()
print self.timer_left
if self.timer_left >= self.reset_time: # check if confirm needs to be rest
self.confirm = False
print 'confirm reset'
if self.confirm == False:
w = 150
h = 30
msg = Message('Clic again to drink', 2000, 0,0,w,h)
msg.image = pygame.transform.scale(msg.image, (w, h))
msg.rect.center = (var.screenWIDTH/2,25)
self.level.message_list.add(msg)
self.confirm = True
self.timer_left = 0
elif self.confirm == True and self.timer_left > 100:
Character.hp = min([Character.hp + self.regen,Character.hp_max])
Character.inventory.drop(self,Character)#contents.remove(self)
self.kill()
print 'potion restores hp to {}'.format(Character.hp)
class Building(Item):
def __init__(self, name, value, image, x, y, hp):
super(Building, self).__init__(name, value, image, x, y)
self.hp = hp
'''might need to define occluder points as [x,y] lists'''
self.occlude = occluder.Occluder([self.rect.topleft,
self.rect.topright,
self.rect.bottomright,
self.rect.bottomleft])
class Projectile(Item):
def __init__(self, name, value, image, x, y, speed, dmg, dmg_modif, ammo, range_):
super(Projectile, self).__init__(name, value, image, x, y)
self.dest = (self.rect[0],self.rect[1])
self.speed = speed
self.dmg_modif = dmg_modif
self.dmg = dmg
self.orientation = 0
self.range = range_
self.ammo = ammo
self.icon = var.weapon_icons.image_at(pygame.Rect(362,600,56,56))
self.icon.set_colorkey(None)
self.description = 'A set of {}. Damage of {}d10+{}.'.format(self.name,self.dmg_modif,self.dmg)
@property
def ammo(self):
return self._ammo
@ammo.setter
def ammo(self, ammo):
raw_name = ''.join([i for i in self.name if not i.isdigit()])
self.name = str(ammo) + raw_name
self.description = 'A set of {}. Damage of 1d10+1. Range of 400+2d10'.format(self.name)
self._ammo = ammo
def random_dmg(self):
attack_dmg = self.dmg+d10(self.dmg_modif)
return attack_dmg
def fire(self,shooter, target_pos, dest_list):
self.rect.center = shooter.rect.center#place's the projectile at shooter's position
self.dest = target_pos#pygame.mouse.get_pos() #set's destination, will need to be offset
self.dmg = int(shooter.F/10.0)
self.image = var.arrow_img
dest_list.add(self) #for player firing : self.level.projectile_list, for mobs self.level.projectile_ennemy_list
var.has_shot = True
def hit_test(self,character):
test = pygame.sprite.spritecollideany(self, self.level.building_list, collided = None)
if self.rect.colliderect(character.rect.inflate(-character.rect.width/4,-character.rect.height/4)) == True:
arm = sum([x.arm for x in character.equipement.contents if isinstance(x, Armor) == True]) #sum of the values of all weapons in equipement
dmg = self.random_dmg() - (character.E/10+arm)
if dmg < 0:
dmg = 0
character.hp -= dmg
self.kill()
print 'has hit ! and dealt = {}'.format(dmg)
elif test is not None:
if test.rect.collidepoint(self.rect.center):
self.kill()
def move(self):
if self.rect.inflate(2,5).collidepoint(self.dest) == True:
self.kill()
m_pos = self.dest
speed = float(self.speed)
xp = self.rect[0]-self.rect[2]
yp = self.rect[1]-self.rect[3]
xm = m_pos[0]-self.rect[2]
ym = m_pos[1]-self.rect[3]
dx = xm-xp
dy = ym-yp
#dist = (dx**2+dy**2)**0.5 #get lenght to travel
#calculates angle and sets quadrant
if dx == 0 or dy == 0:
angle_rad = 0#np.pi/2
if dx == 0 and ym > yp:
xoffset = 0
yoffset = -speed
self.orientation = 180
elif dx == 0 and ym < yp:
xoffset = 0
yoffset = speed
self.orientation = 0
elif dy == 0 and xm > xp:
xoffset = 0
yoffset = -speed
self.orientation = 90
elif dy == 0 and xm < xp:
xoffset = 0
yoffset = speed
self.orientation = 270
else:
xoffset, yoffset = 0,0
self.orientation = 180
elif xm > xp and ym > yp:
angle_rad = np.arctan((abs(dy)/abs(dx)))
xoffset = -np.cos(angle_rad)*speed
yoffset = -np.sin(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+90
elif xm < xp and ym > yp:
angle_rad = np.arctan((abs(dx)/abs(dy)))
xoffset = np.sin(angle_rad)*speed
yoffset = -np.cos(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+180
elif xm < xp and ym < yp:
angle_rad = np.arctan((abs(dy)/abs(dx)))
xoffset = np.cos(angle_rad)*speed
yoffset = np.sin(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)+270
else:# xm > xp and ym < yp:
angle_rad = np.arctan((abs(dx)/abs(dy)))
xoffset = -np.sin(angle_rad)*speed
yoffset = np.cos(angle_rad)*speed
self.orientation = angle_rad*(180.0/np.pi)
self.image = pygame.transform.rotate(var.arrow_img, -self.orientation)
self.rect = self.rect.move(-xoffset,-yoffset)
self.dest = (self.dest[0]-xoffset+var.xoffset,self.dest[1]-yoffset+var.yoffset)
class Level_Change(Building):
def __init__(self, name, image, x, y, image_list, pair):
self.hp = 1000
self.value = 1000
self.image_list = image_list
self.pair = pair
super(Level_Change, self).__init__(name, self.value, image, x, y, self.hp)
'''anim timer'''
self.anim_time = pygame.time.Clock()
self.anim_time_left = 0
self.anim_speed = 1000/len(self.image_list)
self.anim_counter = 0
def anim(self):
#updates anim timer
self.anim_time.tick()
self.anim_time_left += self.anim_time.get_time()
#checks which anim to display based on the direction and if sprite is moving and alive
if self.anim_time_left >= self.anim_speed: #checks time to animate
if self.anim_counter >= len(self.image_list):
self.anim_counter = 0
self.image = self.image_list[self.anim_counter]
self.anim_time_left = 0
self.anim_counter += 1
def activate(self,char,new_level):
self.anim()
if char.rect.collidepoint(self.rect.midbottom):
self.level.go_to(new_level, self.pair)
class Portal(Level_Change):
def __init__(self, x, y, pair):
self.name = 'Portal'
self.image_list = var.portal_images
self.image = self.image_list[0]
super(Portal,self).__init__(self.name,self.image,x,y, self.image_list, pair)
class Night_Mask(object):
def __init__(self):
self.surf_lighting = pygame.Surface((var.screenWIDTH,var.screenHEIGHT)) #Screenwidth and height
self.light_sources = []
'''setting initial alpha and colorkey'''
#self.surf_lighting.set_colorkey((255,255,255))
#self.surf_lighting.set_alpha(0)
self.alpha = 0
'''Day time timer'''
self.day_timer = pygame.time.Clock()
self.day_time = 0
self.day_end = 2*60000#1440000
self.day_switch = self.day_end/2 #12 minutes
'''Shadow timer'''
self.Shadow_timer = pygame.time.Clock()
self.Shadow_time = 0
self.Shadow_end = 25
@property
def alpha(self):
return self._alpha
@alpha.setter
def alpha(self, alpha):
self.surf_lighting.set_alpha(int(alpha))
self._alpha = alpha
def day_update(self,a_max):
alfa = float(a_max)
self.day_timer.tick()
self.day_time += self.day_timer.get_time()
if self.day_time <= self.day_switch: # checks if the time of day has been reached
self.alpha = (alfa/self.day_switch)*self.day_time
elif self.day_time >= self.day_end:
self.day_time = 0
else:
self.alpha = alfa+(alfa/self.day_switch)*(self.day_switch-self.day_time)
def apply_shadows(self, lights_ls, building_list, character):
self.Shadow_timer.tick()
self.Shadow_time += self.Shadow_timer.get_time()
if self.Shadow_time >= self.Shadow_end:
self.Shadow_time = 0
# Ambient light
self.surf_lighting.fill((self.alpha,self.alpha,self.alpha))
#import blursurf, and tulpescale locally for speed
blursurf = fn.blurSurf
ts = fn.tulpe_scale
if self.alpha <= 120:
#get occluders in view#
visible_occluders = [x for x in building_list if var.screen.get_rect().colliderect(x.rect)]
for build in visible_occluders:
temp_rect = pygame.Rect(0,0,build.rect.width/2,build.rect.height/2)
temp_rect.center = build.rect.center
build.occlude = occluder.Occluder([temp_rect.topleft,
ts(temp_rect.midtop,(0,-5)),
temp_rect.topright,
ts(temp_rect.midright,(5,0)),
temp_rect.bottomright,
ts(temp_rect.midbottom,(0,-5)),
temp_rect.bottomleft,
ts(temp_rect.midleft,(-5,0))])
for light in itertools.chain((x for x in lights_ls if var.screen.get_rect().collidepoint(x.rect.center) and x.is_lit == True)\
,(y for y in character.inventory.contents if isinstance(y, Illuminator) and y.is_lit == True)):
light.source.set_occluders((z.occlude for z in visible_occluders))
#needed to set the light position from the game position to the
#library needs
if light.carrier != None:
light.rect.center = light.carrier.rect.center
light.source.set_light_position(light.rect.center)
light.mask, light.pos = light.source.get_mask_and_position(False)
# resizes the falloff to match the mask dimensions
light.falloff = pygame.transform.scale(var.surf_falloff, (light.mask.get_width(), light.mask.get_height()))
#blits falloff to mask
light.mask.blit(light.falloff,(0,0),special_flags=BLEND_MULT)
#Add the contribution from the shadowed light source
self.surf_lighting.blit(light.mask,light.pos,special_flags=BLEND_MAX)
self.surf_lighting = blursurf(self.surf_lighting,4)
class Skill(object):
def __init__(self,name,has,pre_req,icon,description):
self.name = name
self.has = has
self.pre_req = pre_req
self.icon = icon
self.description = description
def tooltip(self,pos):
if pos[1] > var.screenHEIGHT-var.screenHEIGHT/3:
pos = fn.tulpe_scale(pos,(10,-var.screenHEIGHT/3+5))
else:
pos = fn.tulpe_scale(pos,(10,5))
txtrect = pygame.Rect(pos, (35*6,int(len(self.description)/35.0*20))) #35 is number of character per line and 10 estimated char height and 5 estimated char width
'''drawing bg'''
bg = pygame.transform.smoothscale(var.but_bg, (txtrect.width+5, txtrect.height+self.icon.get_rect().height+15))
var.screen.blit(bg, fn.tulpe_scale((txtrect.left, txtrect.top),(-5,-5)))
'''drawing icon'''
var.screen.blit(self.icon, fn.tulpe_scale(txtrect.topleft,(0,txtrect.height+5)))
'''drawing text'''
fontobject = pygame.font.SysFont('initial', 15, bold=True, italic=False)
fn.drawText(var.screen, self.description, (50,40,10), txtrect, fontobject, aa=False, bkg=None)
class Sniper(Skill):
def __init__(self):
self.description = '-1 to target armor when shooting'
super(Sniper, self).__init__('Sniper',False,None,var.skill_icons.image_at(pygame.Rect(57,485,56,56)),self.description)
self.icon.set_colorkey(None)
class Fast_shooter(Skill):
def __init__(self):
self.description = 'Shooting frequency +1/3'
super(Fast_shooter, self).__init__('Fast Shooter',False,[Sniper()],var.skill_icons.image_at(pygame.Rect(340,542,56,56)),self.description)
self.icon.set_colorkey(None)
class Power_shot(Skill):
def __init__(self):
self.description = '+1 to damage when shooting'
super(Power_shot, self).__init__('Power Shot',False,[Sniper(),Fast_shooter()],var.skill_icons.image_at(pygame.Rect(57,541,56,56)),self.description)
self.icon.set_colorkey(None)
class Power_blow(Skill):
def __init__(self):
self.description = '+1 to damage in close quarter combat'
super(Power_blow, self).__init__('Power Blow',False,None,var.skill_icons.image_at(pygame.Rect(114,706,56,56)),self.description)
self.icon.set_colorkey(None)
class Ambidextrous(Skill):
def __init__(self):
self.description = 'Adds the damage of two single hand weapons'
super(Ambidextrous, self).__init__('Ambidextrous',False,None,var.skill_icons.image_at(pygame.Rect(340,705,56,56)),self.description)
self.icon.set_colorkey(None)
class Duelist(Skill):
def __init__(self):
self.description = 'Damage x2 when attacking a single ennemy in close combat'
super(Duelist, self).__init__('Duelist',False,[Ambidextrous()],var.skill_icons.image_at(pygame.Rect(340,649,56,56)),self.description)
self.icon.set_colorkey(None)
class Chain_attack(Skill):
def __init__(self):
self.description = 'Close combat attack frequency +1/3'
super(Chain_attack, self).__init__('Chain attack',False,[Ambidextrous(), Duelist()],var.skill_icons.image_at(pygame.Rect(542,2,56,56)),self.description)
self.icon.set_colorkey(None)
| true
|
0b84b7629762e05900e859f4543d9030adbdc17e
|
Python
|
ryan0583/AOC-2019
|
/Day 19/day19.py
|
UTF-8
| 2,936
| 3.578125
| 4
|
[] |
no_license
|
from Utils.graphics_panel import GraphicsPanel
from Utils.intcode_computer import IntcodeComputer
from Utils.point import Point
def part1():
panel = GraphicsPanel.create_empty_panel(50, 50)
panel.init_canvas()
count = 0
computer = IntcodeComputer([], None, False)
filename = "input.txt"
ints = list(map(int, open(filename, "r").read().split(",")))
for x in range(0, 50):
for y in range(0, 50):
computer.reset(ints)
computer.inputs = [x, y]
computer.process()
computer.append_input(x)
computer.append_input(y)
output = computer.process()
if output == 1:
count += 1
panel.update_canvas(Point(x, y), "red")
panel.paint_canvas()
panel.paint_canvas()
print(count)
input("press any key")
def print_stuff(start_x, start_y):
dim = 100
panel = GraphicsPanel.create_empty_panel(dim, dim)
panel.init_canvas()
computer = IntcodeComputer([], None, False)
filename = "input.txt"
ints = list(map(int, open(filename, "r").read().split(",")))
panel.reset()
for x in range(start_x, start_x + dim):
print("col " + str(x - start_x))
for y in range(start_y, start_y + dim):
computer.reset(ints)
computer.inputs = [x, y]
output = computer.process()
if output == 1:
panel.update_canvas_with_offset(Point(x, y), "red", -start_x, -start_y)
panel.paint_canvas()
else:
print("Output not 1 for point " + str(x) + ", " + str(y))
input("press any key")
def part2():
def count_beam_squares(_x, _y_start, _y_end):
_count = 0
y = _y_start
_first_y = None
_last_y = None
found_beam = False
while True:
computer.reset(ints)
computer.inputs = [_x, y]
output = computer.process()
if output == 1:
_count += 1
found_beam = True
_first_y = y
elif found_beam:
_last_y = y - 1
break
y += 1
if _y_end is not None and y > _y_end:
break
return _count, _first_y, _last_y
computer = IntcodeComputer([], None, False)
filename = "input.txt"
ints = list(map(int, open(filename, "r").read().split(",")))
x = 1330
y_start = 400
while True:
count1, first_y1, last_y1 = count_beam_squares(x, y_start, None)
count2, first_y2, last_y2 = count_beam_squares(x + 99, last_y1 - 99, last_y1)
print("col = " + str(x))
print(count1)
print(last_y1 - 99)
print(count2)
print(first_y2)
if count2 == 100:
print("FOUND!!!")
break
x += 1
# part1()
# part2()
print_stuff(1353, 764)
| true
|
4941a40661163242b46b72a90281b5561626b062
|
Python
|
dalaAM/month-01
|
/day08_all/day08/demo03.py
|
UTF-8
| 451
| 4.4375
| 4
|
[] |
no_license
|
"""
将下列代码,定义为函数.
for r in range(2): # 行数 0 1
for c in range(5): # 列数 01234 01234
print("老王", end=" ")
print() # 换行
"""
def print_table(data, r_count, c_count):
for r in range(r_count): # 行数
for c in range(c_count): # 列数
print(data, end=" ")
print() # 换行
print_table("老王", 2, 5)
print_table("老崔", 6, 3)
| true
|
69d7097a364b14a4a72eb9c5f70b5a2579c12d4f
|
Python
|
arnoldvc/Leccion1
|
/Leccion05/Set.py
|
UTF-8
| 565
| 3.546875
| 4
|
[] |
no_license
|
# set
planetas = {'Marte', 'Júpiter', 'Venus'}
print(planetas)
#largo
print(len(planetas))
# revisar si un elemento está presente
print('Marte' in planetas)
# agregar un elemento
planetas.add('Tierra')
print( planetas)
#no se pueden duplicar elementos
planetas.add('Tierra')
print(planetas)
# eliminar elemento posiblemente arrojando un error
planetas.remove('Tierra')
print(planetas)
# eliminar elemento sin arrojar error
planetas.discard('Júpiters')
print(planetas)
# limpiar set
planetas.clear()
print(planetas)
# eliminar el set
#del planetas
print(planetas)
| true
|
a83fef96227c6603600885b11a88c2834283c00f
|
Python
|
SHDeseo/SHDeseo.github.io
|
/python/dss.py
|
UTF-8
| 169
| 3.53125
| 4
|
[
"MIT"
] |
permissive
|
for i in range (1, 30+1):
if i % 15 == 0 :
print("Fizzbuzz")
elif i % 3 == 0 :
print("Fizz")
elif i % 5 --0 :
print("Buzz")
else:
print(i)
print("Done!")
| true
|
16ed911423db22c35eaa0e2fdbf82b2c8972395b
|
Python
|
timparkin/timparkingallery
|
/share/pollen/pyport/relation.py
|
UTF-8
| 659
| 2.8125
| 3
|
[] |
no_license
|
'''
Relation types
'''
class Relation(object):
def __init__(self, entity_class_name, join_attrs):
self.entity_class_name = entity_class_name
if not isinstance(join_attrs, (list, tuple)):
join_attrs = (join_attrs,)
self.join_attrs = join_attrs
class ToOneRelation(Relation):
pass
class OneToOne(ToOneRelation):
pass
class ToManyRelation(Relation):
def __init__(self, entity_class_name, join_attrs, order=None):
Relation.__init__(self, entity_class_name, join_attrs)
self.order = order
class OneToMany(ToManyRelation):
pass
class ManyToMany(ToManyRelation):
pass
| true
|
a2c0f85b06650894db8bf75b1b2a64ed08f3f813
|
Python
|
hhaggan/python-azure-datalake-gen2-api
|
/pyadlgen2/azuredatalakegen2.py
|
UTF-8
| 9,126
| 3.171875
| 3
|
[
"MIT"
] |
permissive
|
"""TODO Fill in the module description
"""
# ---------------------------------------------------------------------
# LIBRARIES
# External Libraries
import pathlib
from requests.exceptions import HTTPError
# Internal Libraries
from pyadlgen2.helpers.adlgen2restapiwrapper import ADLGen2RestApiWrapper
# ---------------------------------------------------------------------
class AzureDataLakeGen2():
"""TODO Fill in the class description."""
def __init__(self, storage_account_name, storage_account_key):
self.__storage_account_name = storage_account_name
self.__storage_account_key = storage_account_key
self.__azure_datalake_rest_api_wrapper = ADLGen2RestApiWrapper(storage_account_name, storage_account_key)
def path_exists(self, path):
"""Checks if a given path exists in the datalake.
Parameters
----------
path : str
Absolute path that has to be checked.
The first element represents the filesystem (a.k.a container)
where the file is stored.
We can thus see the path as:
/{filesystem}/{path}
*{path}* is optional.
`path` can point to either a folder or a file, it
doesn't matter.
Returns
-------
bool
True if `path` exists, False otherwise.
Raises
------
HTTPError
If the call to the REST API fails for some reasons.
"""
path = pathlib.PurePosixPath(path)
if not path.is_absolute():
raise ValueError('The param [path] must be an absolute path. Value passed:\n{}'.format(path))
datalake_filesystem = path.parts[1]
datalake_path = path.relative_to(path.parts[0]+path.parts[1]) \
if path.relative_to(path.parts[0]+path.parts[1]) != pathlib.PurePosixPath('.') \
else None
try:
self.__azure_datalake_rest_api_wrapper.path_list(
filesystem = datalake_filesystem
, recursive = False
, directory = datalake_path
)
return True
except HTTPError as e:
if str(e).startswith('404 Client Error: The specified path does not exist.'):
return False
else:
raise e
def path_get_properties(self, path):
r"""Get the properties of the specified path.
Parameters
----------
path : str
Absolute path of which we want the properties.
The first element represents the filesystem (a.k.a container)
where files are stored.
We can thus see the path as:
/{filesystem}/{folder1}/.../{folderN}[/{filename}]
Returns
-------
dict
Returns a dict containing the properties of the
specified path.
Raises
------
ValueError
If the specified `path` is not an absolute path.
FileNotFoundError
If the specified `path` does not exist.
"""
path = pathlib.PurePosixPath(path)
if not path.is_absolute():
raise ValueError('The param [path] must be an absolute path. Value passed:\n{}'.format(path))
datalake_filesystem = path.parts[1]
datalake_path = path.relative_to(path.parts[0]+path.parts[1]) \
if path.relative_to(path.parts[0]+path.parts[1]) != pathlib.PurePosixPath('.') \
else None
if not self.path_exists(path):
raise FileNotFoundError('The specified path does not exist.\n{}'.format(path))
response = self.__azure_datalake_rest_api_wrapper.path_get_properties(
filesystem = datalake_filesystem
, path = datalake_path
, upn = True
, action = 'getStatus'
)
return response
def path_is_directory(self, path):
r"""Checks if `path` exists and is a directory.
Parameters
----------
path : str
Absolute path which we want to check.
The first element represents the filesystem (a.k.a container)
where files are stored.
We can thus see the path as:
/{filesystem}/{folder1}/.../{folderN}[/{filename}]
Returns
-------
bool
Returns True if `path` exists and is a directory, False otherwise.
Raises
------
ValueError
If the specified `path` is not an absolute path.
"""
path = pathlib.PurePosixPath(path)
if not path.is_absolute():
raise ValueError('The param [path] must be an absolute path. Value passed:\n{}'.format(path))
datalake_filesystem = path.parts[1]
datalake_path = path.relative_to(path.parts[0]+path.parts[1]) \
if path.relative_to(path.parts[0]+path.parts[1]) != pathlib.PurePosixPath('.') \
else None
if not self.path_exists(path):
return False
if self.path_get_properties(path)['x-ms-resource-type'] == 'directory':
return True
else:
return False
def path_is_file(self, path):
r"""Checks if `path` exists and is a file.
Parameters
----------
path : str
Absolute path which we want to check.
The first element represents the filesystem (a.k.a container)
where files are stored.
We can thus see the path as:
/{filesystem}/{folder1}/.../{folderN}[/{filename}]
Returns
-------
bool
Returns True if `path` exists and is a file, False otherwise.
Raises
------
ValueError
If the specified `path` is not an absolute path.
"""
path = pathlib.PurePosixPath(path)
if not path.is_absolute():
raise ValueError('The param [path] must be an absolute path. Value passed:\n{}'.format(path))
datalake_filesystem = path.parts[1]
datalake_path = path.relative_to(path.parts[0]+path.parts[1]) \
if path.relative_to(path.parts[0]+path.parts[1]) != pathlib.PurePosixPath('.') \
else None
if not self.path_exists(path):
return False
if self.path_get_properties(path)['x-ms-resource-type'] == 'file':
return True
else:
return False
def file_create(self, file_path, file_data, file_properties, overwrite_if_exists = False):
r"""Create a file at the specified path with the specified data.
Parameters
----------
file_path : str
Absolute path where the file has to be created.
The first element represents the filesystem (a.k.a container)
where the file is stored.
The last part of the path represents the name of the file.
We can thus see the path as:
/{filesystem}/{folder1}/.../{folderN}/{filename}
file_data :
The data that will be written inside the file.
file_properties : dict, OrderedDict
The properties that will be set for the new file.
overwrite_if_exists: bool, optional
If True and the specified `file_path` already exists,
will overwrite the existing data and properties.
Returns
-------
bool
Returns True if execution succeed, raises an exception
otherwise.
Raises
------
FileExistsError
If the specified `file_path` already exists and
`overwrite_if_exists` is False.
"""
file_path = pathlib.PurePosixPath(file_path)
if not file_path.is_absolute():
raise ValueError('The param [file_path] must be an absolute path. Value passed:\n{}'.format(file_path))
if self.path_exists(file_path):
if not overwrite_if_exists:
raise FileExistsError('The specified file_path already exists and the param [overwrite_if_exists] is set to False.\n{}'.format(file_path))
if not self.path_is_file(file_path):
raise ValueError('The specified file_path already exists and is not a file.\n{}'.format(file_path))
# The creation of a file with the specified properties requires different
# calls of the API. The steps are:
# * create an empty file
# * update the created with the actual data
# * flush the data
# * set the properties
datalake_filesystem = file_path.parts[1]
datalake_file_path = file_path.relative_to(file_path.parts[0]+file_path.parts[1]) \
if file_path.relative_to(file_path.parts[0]+file_path.parts[1]) != pathlib.PurePosixPath('.') \
else None
response = self.__azure_datalake_rest_api_wrapper.path_create(
filesystem = datalake_filesystem
, path = datalake_file_path
, resource = 'file'
, request_headers={
'Content-Encoding' : 'utf-8'
, 'x-ms-content-type' : 'text/plain'
}
)
response = self.__azure_datalake_rest_api_wrapper.path_update(
filesystem = datalake_filesystem
, path = datalake_file_path
, action = 'append'
, position = str(0)
, request_headers = {
'Content-Type' : 'text/plain'
, 'x-ms-content-type' : 'text/plain'
, 'Content-Length' : str(len(file_data.encode('utf-8')))
}
, data_to_append = file_data
)
print(response)
response = self.__azure_datalake_rest_api_wrapper.path_update(
filesystem = datalake_filesystem
, path = datalake_file_path
, action = 'flush'
, close = 'true'
, position = str(len(file_data.encode('utf-8')))
, request_headers = {
'Content-Length' : str(0)
, 'x-ms-content-type' : 'text/plain'
}
)
# TODO Set Properties
return response
def file_delete(self):
"""TODO Fill in the method description"""
raise NotImplementedError()
def file_read(self):
"""TODO Fill in the method description"""
raise NotImplementedError()
def file_update(self):
"""TODO Fill in the method description"""
raise NotImplementedError()
def file_set_properties(self):
"""TODO Fill in the method description"""
raise NotImplementedError()
def read_file(self, filepath):
response = self.__azure_datalake_rest_api_wrapper.path_read(
filesystem = 'raw-temporary'
, path = 'test.csv'
)
return response
| true
|
c1c75ec7c540c414aa3f0bdce45a3365f62e8719
|
Python
|
alabiansolution/python1901
|
/day3/class/constructor.py
|
UTF-8
| 168
| 3.359375
| 3
|
[] |
no_license
|
class Fish:
def __init__(self):
print("This is a constructor")
def swiming(self):
print("This fish can swim")
shark = Fish()
shark.swiming()
| true
|
b56a48ee23445b3204aebac6e958ae9ab1e53c4a
|
Python
|
yuyaxiong/interveiw_algorithm
|
/LeetCode/二叉堆/703.py
|
UTF-8
| 886
| 3.859375
| 4
|
[] |
no_license
|
# 703. 数据流中的第 K 大元素
from typing import List
import heapq
class KthLargest:
def __init__(self, k: int, nums: List[int]):
class SmallHeap:
def __init__(self, k):
self.k = k
self.small_heap = []
def add(self, val):
if len(self.small_heap) == k:
top_val = heapq.heappop(self.small_heap)
heapq.heappush(self.small_heap, max(val, top_val))
else:
heapq.heappush(self.small_heap, val)
return self.small_heap[0]
self.s_heap = SmallHeap(k)
for n in nums:
self.s_heap.add(n)
def add(self, val: int) -> int:
return self.s_heap.add(val)
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)
| true
|
7c282ff812a40ea9ca89b1d484965d62ec380ed1
|
Python
|
erigler-usgs/pyLTR
|
/pyLTR/math/integrate_test.py
|
UTF-8
| 1,517
| 2.671875
| 3
|
[] |
no_license
|
from . import integrate
import pyLTR.Models.MIX
import datetime
import numpy
import unittest
class TestIntegrate(unittest.TestCase):
def setUp(self):
# Test runner (nosetests) may fail without this silly try/except block:
try:
data = pyLTR.Models.MIX('examples/data/models', 'LMs_UTIO')
except TypeError:
data = pyLTR.Models.MIX.MIX('examples/data/models', 'LMs_UTIO')
self.x=data.read('Grid X', datetime.datetime(year=2008, month=1, day=1, hour=4, minute=0, second=0))
self.y=data.read('Grid Y', datetime.datetime(year=2008, month=1, day=1, hour=4, minute=0, second=0))
# Remove singularity
self.x[:,0] = 0.0
self.y[:,0] = 0.0
def testAreaCircle(self):
""" Compute area of a circle in a 2d plane. """
analyticArea = numpy.pi * (self.y.max()**2)
areaCircle = integrate.calcFaceAreas(self.x, self.y, numpy.zeros(self.x.shape))
self.assertAlmostEqual(analyticArea, areaCircle.sum(), delta=1e-4)
def testAreaDisk(self):
""" Compute area of a disk on the surface of a sphere. """
analyticArea=2.0*numpy.pi*(1.0-numpy.cos(44.0*numpy.pi/180.0))
# Assume we're working with a unit sphere
z = numpy.sqrt(1.0-(self.x**2)-(self.y**2))
areaSphere = integrate.calcFaceAreas(self.x,self.y,z)
self.assertAlmostEqual(analyticArea, areaSphere.sum(), delta=1e-3)
if __name__ == "__main__":
unittest.main()
| true
|
a66cf8964e5a94decbaa8704a09a2970f4a6e35f
|
Python
|
TheSiggs/Automation-Scripts
|
/starbound auto clicker.py
|
UTF-8
| 621
| 3.234375
| 3
|
[] |
no_license
|
import pyautogui as gui
import time
from random import randint
# Basic Commands
def click(x, y): gui.click(x, y)
def wait(t): time.sleep(t)
def find_location():
while True:
time.sleep(1)
x, y = gui.position()
print("X:", x, "Y:", y, "RGB:", gui.screenshot().getpixel(gui.position()))
if x == 0 and y == 0:
break
def main():
while True:
wait(1)
gui.rightClick(698, 217)
wait(0.1)
gui.rightClick(698, 217)
wait(1)
gui.press('1')
wait(1)
gui.press('esc')
# X: 698 Y: 217
main()
# find_location()
| true
|
68e5be4e83ddf4e9fac588c320be4f34cbf03dc9
|
Python
|
chirag-parmar/Cryptopals
|
/Set 1/hex2base64.py
|
UTF-8
| 147
| 2.671875
| 3
|
[] |
no_license
|
import sys
argv = sys.argv[1:]
for hexStrings in argv:
print(hexStrings.decode("hex") + '\n' + hexStrings.decode("hex").encode("base64") + '\n')
| true
|
3332e1aa34530af16fb3e93e4f18e1d7557eb589
|
Python
|
ZoltanSzeman/jumpup
|
/settings.py
|
UTF-8
| 661
| 2.8125
| 3
|
[] |
no_license
|
# Created by Zoltan Szeman
# 2020-05-28
import pygame
class Settings():
"""An object for the basic game settings."""
def __init__(self):
# screen settings
self.size = (700, 600)
self.color = 0, 0, 0
# ball movement settings
self.jump_speed = 1200.0
self.gravity = 2000.0
self.x_speed = 3
self.fps = 120
self.bounc_factor = 0.3
#platform size, movement and color settings
self.plat_w_min = 30
self.plat_w_max = 150
self.plat_h = 10
self.plat_no = 10
self.plat_vel = 1.0
self.brown = (255, 255, 0)
| true
|
86083e9f48b3e38cd54efffa124d7e17bfe17cb3
|
Python
|
Yavor16/Space-Shooter-Game
|
/src/Enemy.py
|
UTF-8
| 3,669
| 3.359375
| 3
|
[] |
no_license
|
import math
import pygame
import random
from EnemyBullet import EnemyBullet as EnemyBull
class EnemyShip(pygame.sprite.Sprite):
def __init__(self, screen, player, damage):
super().__init__()
self.screen = screen
self.x = random.randint(1, 765)
self.y = -30
self.player = player
self.direction = random.randint(0, 1)
self.updirection = random.randint(0,1)
self.image = pygame.image.load("./images/enemy.png")
self.image = pygame.transform.scale(self.image, ((32, 32)))
self.startLocation = (self.x, self.y)
self.rect = self.image.get_rect(center = (self.x, self.y))
self.enemyBullet = EnemyBull(screen=self.screen, player=player, location=(self.rect.x, self.rect.y), damage=10)
self.damage = damage
self.maxHealth = 30
self.health = 30
self.score = 1
def __del__(self):
self.screen = None
self.image = None
def LeftandRightEnemyMovement(self):
if self.x > 30 and self.x < 765:
self.x = (self.x + 0.1, self.x - 0.1)[self.direction == 1]
else:
if self.x <= 30:
self.x += 0.1
elif self.x >= 765:
self.x -= 0.1
self.direction = (0, 1)[self.direction == 0]
def UpandDownEnemyMovement(self):
if self.y > 30 and self.y < 400:
self.y = (self.y + 0.1, self.y - 0.1)[self.updirection == 0]
else:
if self.y <= 30:
self.y += 0.1
elif self.y >= 400:
self.y -= 0.1
self.updirection = (0, 1)[self.updirection == 0]
def EnemyMovementAndRotation(self):
randomDistanceForX = random.randint(300, 500)
randomDistanceForY = random.randint(300, 700)
if abs(self.startLocation[0] - self.x) >= randomDistanceForX:
self.direction = (0, 1)[self.direction == 0]
if abs(self.startLocation[1] - self.y) >= randomDistanceForY:
self.updirection = (0, 1)[self.updirection == 0]
self.UpandDownEnemyMovement()
self.LeftandRightEnemyMovement()
self.RotateEnemy()
def RotateEnemy(self):
enemy_rect = self.image.get_rect(center = (self.x, self.y))
mx, my = self.player.GetPosition()
dx, dy = mx - enemy_rect.centerx, my - enemy_rect.centery
angle = math.degrees(math.atan2(-dy, dx)) - 90
rot_image = pygame.transform.rotate(self.image, angle)
rot_image_rect = rot_image.get_rect(center = enemy_rect.center)
self.screen.blit(rot_image, rot_image_rect.center)
def EnemyShoot(self):
try:
if self.enemyBullet.y <= 0 or self.enemyBullet.y >= 600 or self.enemyBullet.x >= 800 or self.enemyBullet.x <= 0:
del self.enemyBullet
else:
self.enemyBullet.MoveBullet()
distance = math.sqrt((math.pow(self.enemyBullet.x - self.player.x, 2)) + (math.pow(self.enemyBullet.y - self.player.y, 2)))
if distance < 27:
self.player.health-=self.damage
del self.enemyBullet
except:
self.enemyBullet = EnemyBull(screen=self.screen, player=self.player, location=(self.x, self.y), damage=10)
def HealthBar(self):
pygame.draw.rect(self.screen, (255, 0, 0), (self.x , self.y - 15, self.maxHealth, 10))
pygame.draw.rect(self.screen, (0, 255, 0), (self.x , self.y - 15, self.health, 10))
def AllEnemyEvents(self):
self.HealthBar()
self.EnemyMovementAndRotation()
self.EnemyShoot()
| true
|
f4ec6b9da608e8b895c94d4ed35747fab7397a6e
|
Python
|
padelstein/ZolaPOM
|
/UnitTesting/zola_testing/homepage_links/bottom_twitter.py
|
UTF-8
| 917
| 2.5625
| 3
|
[] |
no_license
|
'''
Created on Jul 16, 2013
@author: emma
'''
import unittest #imports unit test/ability to run as pyunit test
from UnitTesting.page_objects.webdriver_wrapper import webdriver_wrapper
from UnitTesting.page_objects.homepage import homepage
class bottom_twitter_icon(unittest.TestCase):
def bottom_twitter_icon_test(self, webd_wrap):
page_homepage = homepage(webd_wrap)
page_homepage.get_page()
page_homepage.click_twitter_icon()
webd_wrap.switch_window()
webd_wrap.check_url('https://twitter.com/zolabooks')
webd_wrap.close_the_browser()
def test_bottom_twitter_icon(self): #running x as a unit test
for browser in webdriver_wrapper._browsers:
self.bottom_twitter_icon_test(webdriver_wrapper(browser))
print "Module Complete", __name__
if __name__ == "__main__":
unittest.main()
| true
|
dc934fb4f9f7664c06b73ab49ac842697f0316a8
|
Python
|
ealgera/challenges
|
/06/usertweet.py
|
UTF-8
| 307
| 3.046875
| 3
|
[] |
no_license
|
class UserTweet:
def __init__(self, n, sn, t):
self.name = n
self.screenname = sn
self.tweet = t
#self.tweet_parsed = []
def print_Tweet(self):
print(f"Naam : {self.name}")
print(f"Screen: {self.screenname}")
print(f"Tweet : {self.tweet}")
| true
|
2a816e766c0a8694856407ff9d675585c134b6e3
|
Python
|
mehanig/can-scrapers
|
/can_tools/scrapers/official/NM/nm_vaccine.py
|
UTF-8
| 3,977
| 2.765625
| 3
|
[
"MIT"
] |
permissive
|
import pandas as pd
import requests
import us
from can_tools.scrapers import variables
from can_tools.scrapers.base import CMU
from can_tools.scrapers.official.base import StateDashboard
from can_tools.scrapers.util import requests_retry_session
class NewMexicoBase(StateDashboard):
state_fips = int(us.states.lookup("New Mexico").fips)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.session = requests_retry_session()
class NewMexicoVaccineCounty(NewMexicoBase):
"""
Fetch county level Covid-19 vaccination data from official state of New Mexico REST APIs
"""
source = "https://cvvaccine.nmhealth.org/public-dashboard.html"
source_name = "New Mexico Department of Health"
has_location = False
location_type = "county"
def fetch(self) -> requests.Response:
# Set url of downloadable dataset
url = "https://cvvaccine.nmhealth.org/api/GetCounties"
request = self.session.get(url)
if not request.ok:
message = f"Could not request data from {url}"
raise ValueError(message)
return request.json()
def normalize(self, data) -> pd.DataFrame:
# Read data into data frame
key = "data"
if key not in data:
raise ValueError(f"Expected to find {key} in JSON response")
df = pd.DataFrame(data[key])
# Determine what columns to keep
cols_to_keep = [
"county",
"date",
"modernaShipped",
"pfizerShipped",
"dosesAdministered",
"totalShipped",
"partiallyVaccinated",
"fullyVaccinated",
"percentPartiallyVaccinated",
"percentFullyVaccinated",
]
# Drop extraneous columns
df = df.loc[:, cols_to_keep]
# Rename columns
df = df.rename(columns={"date": "dt", "county": "location_name"})
# Convert date time column to a datetime
df = df.assign(dt=lambda x: pd.to_datetime(x["dt"]))
# Create dictionary for columns to map
crename = {
"modernaShipped": CMU(
category="moderna_vaccine_distributed",
measurement="cumulative",
unit="doses",
),
"pfizerShipped": CMU(
category="pfizer_vaccine_distributed",
measurement="cumulative",
unit="doses",
),
"dosesAdministered": CMU(
category="total_vaccine_doses_administered",
measurement="cumulative",
unit="doses",
),
"totalShipped": CMU(
category="total_vaccine_distributed",
measurement="cumulative",
unit="doses",
),
"partiallyVaccinated": variables.INITIATING_VACCINATIONS_ALL,
"fullyVaccinated": variables.FULLY_VACCINATED_ALL,
"percentPartiallyVaccinated": variables.PERCENTAGE_PEOPLE_INITIATING_VACCINE,
"percentFullyVaccinated": variables.PERCENTAGE_PEOPLE_COMPLETING_VACCINE,
}
# Move things into long format
df = df.melt(
id_vars=["dt", "location_name"], value_vars=crename.keys()
).dropna()
# Determine the category of each observation
df = self.extract_CMU(df, crename)
# Determine what columns to keep
cols_to_keep = [
"dt",
"location_name",
"category",
"measurement",
"unit",
"age",
"race",
"ethnicity",
"sex",
"value",
]
# Drop extraneous columns
out = df.loc[:, cols_to_keep]
# Convert value columns
out["value"] = out["value"].astype(int)
# Add rows that don't change
out["vintage"] = self._retrieve_vintage()
return out
| true
|
e7661bb06e8c128503c9539442a6541d5b4616b1
|
Python
|
GreatTwang/lccc_solution
|
/Python/Array(value)/Single Number.py
|
UTF-8
| 357
| 3.265625
| 3
|
[] |
no_license
|
#Given a non-empty array of integers, every element appears twice except for one. Find that single one.
class Solution:
def singleNumber(self, nums: List[int]) -> int:
a=0
for each in nums:
a^=each
return a
class Solution:
def singleNumber(self, nums: List[int]) -> int:
return 2*sum(set(nums))-sum(nums)
| true
|
5cb25eb90d21b5703b843116087acf1d3af36951
|
Python
|
canwhite/QCPySignInTest
|
/guest/sign/models.py
|
UTF-8
| 1,278
| 2.875
| 3
|
[] |
no_license
|
from django.db import models
# Create your models here.
#发布会表
class Event(models.Model):
"""docstring for Event"""
#发布会标题
name = models.CharField(max_length = 100)
#参加人数
limit = models.IntegerField()
#状态
status = models.BooleanField()
#地址
address = models.CharField(max_length = 200)
#发布会时间
start_time = models.DateTimeField('events time')
#创建时间(自动获取当前时间)
create_time = models.DateTimeField(auto_now = True)
#__str__()方法告诉python如何将对象以str的方式显示出来
def __str__(self):
return self.name
#嘉宾表
class Guest(models.Model):
"""docstring for Guest"""
#关联发布会id
#创建一个外键,通过它可以获取发布会表
event = models.ForeignKey(Event)
#姓名
realname = models.CharField(max_length = 64)
#手机号
phone = models.CharField(max_length = 16)
#邮箱
email = models.EmailField()
#签到状态
sign = models.BooleanField()
#创建时间(自动获取当前时间)
create_time = models.DateTimeField(auto_now = True)
class Meta:
"""docstring for Meta"""
unique_together = ("event","phone")
#用于告诉python如何将对象以str的形式显示出来
def __str__(self):
return self.realname
| true
|
607173b874cbab75cfee259b202ceec5b0d2571b
|
Python
|
kenie/myTest
|
/100/example_089.py
|
UTF-8
| 706
| 3.78125
| 4
|
[] |
no_license
|
#!/usr/bin/env python
#-*- coding:UTF-8 -*-
'''题目:某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下:
每位数字都加上5,然后用和除以10的余数代替该数字,再将第一位和第四位交换,第二位和第三位交换。'''
from sys import stdout
if __name__ == "__main__":
s = int(raw_input("Enter a 4 digit number:"))
a = []
a.append(s%10)
a.append(s%100/10)
a.append(s%1000/100)
a.append(s/1000)
for i in range(4):
a[i] += 5
a[i] %=10
for i in range(2):
a[i],a[3 - i] = a[3 - i],a[i]
for i in range(3,-1,-1):
stdout.write(str(a[i]))
| true
|