blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
af2dad5cd4bc92bfcd3b5067a7117018b11e6fc3
Python
darshilthakore/catalogue-back
/catalogue/models.py
UTF-8
780
2.53125
3
[]
no_license
from django.db import models # Create your models here. class Category(models.Model): name = models.CharField(max_length=32) def __str__(self): return f"{self.name}" class Subcategory(models.Model): name = models.CharField(max_length=32) category = models.ForeignKey(Category, on_delete=models.CASCADE, related_name="subcategory") def __str__(self): return f"{self.name}" class Product(models.Model): name = models.CharField(max_length=64) category = models.ForeignKey(Category, on_delete=models.CASCADE, related_name="productcat") subcategory = models.ForeignKey(Subcategory, on_delete=models.CASCADE, related_name="productsubcat") def __str__(self): return f"{self.name} | {self.subcategory} | {self.category}"
true
59a8b41888a2e057025b4ffd683f97335ba3da7c
Python
lolamathematician/AOC_2019
/2/2.1.py
UTF-8
718
3.5625
4
[]
no_license
with open("input.txt", "r") as f: codes = [int(i) for i in f.read().split(",")] def main(): for opcode_position in range(0, len(codes)-1, 4): if codes[opcode_position] == 99: return codes[0] else: input_position_1 = codes[opcode_position+1] input_position_2 = codes[opcode_position+2] output_position = codes[opcode_position+3] if codes[opcode_position] == 1: codes[output_position] = codes[input_position_1] + codes[input_position_2] elif codes[opcode_position] == 2: codes[output_position] = codes[input_position_1] * codes[input_position_2] else: print("An error has occurred. Opcode: {}. Opcode position: {}".format(codes[output_position], output_position)) print(main())
true
bb539656cdc7eb538768299822dbd751a04d75ce
Python
voidlessVoid/advent_of_code_2020
/day_15/mischa/solution.py
UTF-8
1,426
2.859375
3
[]
no_license
import os import sys import pandas as pd import numpy as np import math import datetime import operator from copy import deepcopy from collections import Counter, ChainMap, defaultdict, deque from itertools import cycle from more_itertools import locate from functools import reduce CURRENT_DIRECTORY = os.path.dirname(__file__) os.chdir(CURRENT_DIRECTORY) def read_input_lines(): with open('input.txt', 'r') as fh: return [x.strip() for x in fh.readlines()] def read_input_text(): with open('input.txt', 'r') as fh: return fh.read().strip() data = [13,0,10,12,1,5,8] def part_a(): while len(data) != 2020: last_num = data[-1] if last_num not in data[:-1]: data.append(0) else: last_occ = list(locate(data, lambda x: x == last_num)) next_num = last_occ[-1]-last_occ[-2] data.append(next_num) print(data[-1]) part_a() data = [13,0,10,12,1,5,8] def part_b(): dict_of_nums = {13:1, 0:2, 10:3, 12:4, 1:5, 5:6, 8:7} last_num = data[-1] next_num = 0 step = len(data)+1 while len(data) != 30000000: if last_num not in dict_of_nums: next_num = 0 data.append(0) else: next_num = (step-dict_of_nums[last_num])-1 data.append(next_num) dict_of_nums[last_num]=step-1 last_num = next_num step+=1 print(next_num) part_b()
true
ecab57d896892b91b4352049e57bb4bd4b8d986e
Python
sebastiandres/mat281_2018S2
/m01_introduccion/02_data_science_toolkit/labFunctions.py
UTF-8
1,108
3.609375
4
[ "BSD-3-Clause", "MIT" ]
permissive
def tribonacci(n): if n in (1, 2, 3): return 1 else: return tribonacci(n - 1) + tribonacci(n - 2) + tribonacci(n - 3) def tallest_player(nba_player_data): height_dict = {} for player, value in nba_player_data.items(): ft, inch = value[3].split('-') tmp_height = int(ft) * 0.3048 + int(inch) * 0.0254 height_dict[player] = tmp_height height_max = max(height_dict.values()) tallest_list = [player for player in height_dict.keys() if height_dict[player] == height_max] return tallest_list def more_time_position_player(nba_player_data, position): if position not in ['F-C', 'C-F', 'C', 'G', 'F', 'G-F', 'F-G']: print('Ingrese una posición válida.') return else: time_dict = {} for player, value in nba_player_data.items(): if value[2] == position: time_dict[player] = value[1] - value[0] time_max = max(time_dict.values()) more_time_list = [player for player in time_dict.keys() if time_dict[player] == time_max] return more_time_list
true
8d24e5fda74320b877045ccc78b27c6e7de361a2
Python
xiao2912008572/Appium
/StoneUIFramework/public/common/readconfig.py
UTF-8
408
2.546875
3
[]
no_license
__author__ = 'xiaoj' import configparser class Config: def __init__(self,configPath): self.configPath = configPath def get_PATH(self,path_Section,path_NO): cf = configparser.ConfigParser() cf.read(self.configPath) # path_section填写"PATH_YUNKU" # 此处path_config = "path_001"以此类推 path = cf.get(path_Section,path_NO) return path
true
969f525ec7e65683a9abd6e9448de56a780031f7
Python
NandaGopal56/Programming
/PROGRAMMING/python practice/oops-3.py
UTF-8
355
3.421875
3
[]
no_license
class test: def m1(self): print('i am non static method') @classmethod def m2(cls): print('i am class method') @staticmethod def m3(): print('i am static method') def main(): obj=test() test.m1(obj) obj.m1() test.m2() obj.m2() test.m3() obj.m3() main()
true
f904d1b7d7b7b0e997884274f33a4918e96584ad
Python
astreltsov/firstproject
/Eric_Matthes_BOOK/DICTIONARY/poll.py
UTF-8
335
2.765625
3
[]
no_license
favorite_languages = { 'jen': 'python', 'sarah': 'c', 'edward': 'ruby', 'phil': 'python' } coders = ['jen', 'edward', 'peter'] for coder in coders: if coder in favorite_languages.keys(): print(f"{coder.title()}, thank you for taking poll!") else: print(f"{coder.title()}, need to take a poll.")
true
5ad511514dcf2df93c6c27fc7c1a9471e196fd38
Python
martintb/typyCreator
/molecules/stickyBead.py
UTF-8
788
2.609375
3
[ "MIT" ]
permissive
from molecule import molecule import numpy as np def create(*args,**kwargs): return bead(*args,**kwargs) class bead(molecule): def __init__(self, bigDiameter=1.0, bigType='A', stickyDiameter=1.0, stickyType='B', stickyBondType='bondA', stickyBondLength=1.0/3.0, ): super(bead,self).__init__() self.name='bead' self.placed=False self.natoms=2 self.positions=np.array([[0.,0.,0.],[0.,0.,stickyBondLength]]) self.types=[bigType,stickyType] self.diameters=[bigDiameter,stickyDiameter] self.bonds=[[stickyBondType, 0, 1]] self.dihedrals=[] self.angles=[] self.bodies=[-1,-1] self.beadVol=(4.0/3.0) * np.pi *(bigDiameter/2.0)**(3.0)
true
7a97aaca4afb1e5e23a19ba19307a4f8e8f4ce7e
Python
Zillow-SJ/Cluster_Zillow
/explore_final.py
UTF-8
10,683
2.734375
3
[]
no_license
import numpy as np import pandas as pd import pandas_profiling import prep import seaborn as sns from sklearn.cluster import KMeans import matplotlib.pyplot as plt # df = prep.prep_df() # df_2 = df.drop(columns = ["fips", "latitude", "longitude", "regionidcity", "regionidcounty", "regionidzip"]) # explore_df = pd.Series(df_2.corrwith(df["logerror"])) # explore_df.nlargest(n=5) # explore_df.nsmallest(n=5) # #Seeing 5 largest and 5 smallest correlations. # profile = df.profile_report() # rejected_variables = profile.get_rejected_variables(threshold=0.9) # profile # X_train, y_train, X_test, y_test = prep.get_train_test_split(df_2) # from sklearn.linear_model import LinearRegression # from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS # lm = LinearRegression() # efs = EFS(lm, min_features=4, max_features=7, \ # scoring='MSE', cv=10, n_jobs=-1) # efs.fit(X_train, y_train) # print('Best subset:', efs.best_idx_) # df_2.columns # Best Params = Bathrooms, Tax_value, lotsizesquarefeet #Scaling and refitting. # from sklearn import preprocessing # scaler = preprocessing.StandardScaler() # scaled_log = scaler.fit_transform(df_2[["logerror"]]) # df_3 = df_2[["bathrooms", "tax_value", "lotsizesquarefeet", "logerror"]] # train_2, test_2 = train_test_split(df_3, train_size = .75, random_state = 123) # X_train_2 = train_2.drop(columns=["logerror"]) # y_train_2 = train_2["logerror"] # X_test_2 = test_2.drop(columns=["logerror"]) # y_test_2 = test_2["logerror"] # reg = lm.fit() def scatter_plot(feature, target): import matplotlib.pyplot as plt plt.figure(figsize=(16,8)) plt.scatter(df_3[feature], df_3[target], c="black") plt.xlabel(f"{feature}") plt.ylabel(f"{target}") plt.show() # scatter_plot("tax_value", "logerror") # scatter_plot("bathrooms", "logerror") # scatter_plot("lotsizesquarefeet", "logerror") # scatter_plot("yearbuilt", "logerror") # funtion to cluster on y_train and merge back to train dataframe. def target_cluster(y_train,X_train,num_clusters): kmeans =KMeans(n_clusters=num_clusters) kmeans.fit(y_train) y_train['cluster'] = kmeans.predict(y_train) train = X_train.merge(y_train,left_index=True,right_index=True) return train def elbow_plot(target): ks = range(1,10) sse = [] for k in ks: kmeans = KMeans(n_clusters=k) kmeans.fit(target) # inertia: Sum of squared distances of samples to their closest cluster center. sse.append(kmeans.inertia_) print(pd.DataFrame(dict(k=ks, sse=sse))) plt.plot(ks, sse, 'bx-') plt.xlabel('k') plt.ylabel('SSE') plt.title('The Elbow Method to find the optimal k') plt.show() #function to cluster on X_train and merge back with train dataframe def x_cluster(X_train,X_test,num_clusters): kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(X_train) X_train['x_cluster'] = kmeans.predict(X_train) X_test['x_cluster'] = kmeans.predict(X_test) return X_train, X_test, kmeans def bad_dist(): import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns import prep from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error df = prep.prep_df() df["tax_per_sqft"] = df.tax_value/df.sqft train, test = prep.get_train_and_test(df) train.drop(columns=["tax_value", "sqft"], inplace=True) test.drop(columns=["tax_value", "sqft"], inplace=True) scaler = preprocessing.MinMaxScaler() train.drop(columns=["latitude", "longitude"], inplace=True) test.drop(columns=["latitude", "longitude"], inplace=True) scaled_train = scaler.fit_transform(train[["logerror"]]) scaled_test = scaler.fit_transform(test[["logerror"]]) train["logerror"] = scaled_train test["logerror"] = scaled_test X_train, y_train, X_test, y_test = prep.get_train_test_split(train, test) def uneven_dist_chart_train(): sns.distplot(y_train) plt.xlim(.4, .8) plt.suptitle("Train Logerror Distribution") plt.show() def uneven_dist_chart_test(): sns.distplot(y_test) plt.xlim(.4,.8) plt.suptitle("Test Logerror Distribution") plt.show() x = uneven_dist_chart_train() y = uneven_dist_chart_test() return x, y def logerror_outliers(): df = prep.prep_df_initial() train, test = prep.get_train_and_test(df) logerror_outliers = train[(train.logerror < -1)] logerrors_below = logerror_outliers.mean() logerrors_below = pd.DataFrame(logerrors_below) logerrors_below = logerrors_below.T logerrors_below from statistics import stdev logerrors_normal = train[(train.logerror < 0.03) | (train.logerror > -0.02)] logerrors_normal = logerrors_normal.mean() logerrors_normal = pd.DataFrame(logerrors_normal) logerrors_normal = logerrors_normal.T logerrors_normal logerror_outliers_above = train[(train.logerror > 1)] logerrors_above = logerror_outliers_above.mean() logerrors_above = pd.DataFrame(logerrors_above) logerrors_above = logerrors_above.T logerrors_above["price_sqft"] = logerrors_above.tax_value/logerrors_above.sqft logerrors_below["price_sqft"] = logerrors_below.tax_value/logerrors_below.sqft logerrors_normal["price_sqft"] = logerrors_normal.tax_value/logerrors_normal.sqft df = logerrors_above.append(logerrors_normal) df = df.append(logerrors_below) df.drop(columns='tax_per_sqft',inplace=True) df.index = ['logerrors<1', 'logerrors~0', 'logerrors>1'] return df def strat(): import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns import prep from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import StratifiedShuffleSplit import numpy as np df = prep.prep_df() df["tax_per_sqft"] = df.tax_value/df.sqft df["logbin"] = df.logerror.round(decimals=1) df = df[df.logbin != 2.8] df = df[df.logbin != -3.7] df = df[df.logbin != -4.7] df = df[df.logbin != 5.3] df.logbin.value_counts() X = df.drop(columns=["logerror"]) y = df[["logerror"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.30, random_state=42, stratify=df.logbin) train = X_train.join(y_train) test = X_test.join(y_test) def dist_chart_train(): sns.distplot(y_train) plt.suptitle("Train Logerror Distribution") plt.show() def dist_chart_test(): sns.distplot(y_test) plt.suptitle("Test Logerror Distribution") plt.show() x = dist_chart_train() y = dist_chart_test() return x, y def strat_test_train(): import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns import prep from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import StratifiedShuffleSplit import numpy as np df = prep.prep_df() df["tax_per_sqft"] = df.tax_value/df.sqft df["logbin"] = df.logerror.round(decimals=1) df = df[df.logbin != 2.8] df = df[df.logbin != -3.7] df = df[df.logbin != -4.7] df = df[df.logbin != 5.3] df.logbin.value_counts() X = df.drop(columns=["logerror"]) y = df[["logerror"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.30, random_state=42, stratify=df.logbin) train = X_train.join(y_train) test = X_test.join(y_test) return train, test def final_model(): import pandas as pd from sklearn.cluster import KMeans from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns import prep from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import StratifiedShuffleSplit import numpy as np df = prep.prep_df() df["tax_per_sqft"] = df.tax_value/df.sqft df["logbin"] = df.logerror.round(decimals=1) df = df[df.logbin != 2.8] df = df[df.logbin != -3.7] df = df[df.logbin != -4.7] df = df[df.logbin != 5.3] df.logbin.value_counts() X = df.drop(columns=["logerror"]) y = df[["logerror"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.30, random_state=42, stratify=df.logbin) train = X_train.join(y_train) test = X_test.join(y_test) train.drop(columns=["tax_value", "sqft", "logbin"], inplace=True) test.drop(columns=["tax_value", "sqft", "logbin"], inplace=True) scaler = preprocessing.MinMaxScaler() train.drop(columns=["latitude", "longitude"], inplace=True) test.drop(columns=["latitude", "longitude"], inplace=True) scaled_train = scaler.fit_transform(train[["logerror"]]) scaled_test = scaler.transform(test[["logerror"]]) train["logerror"] = scaled_train test["logerror"] = scaled_test X_train, y_train, X_test, y_test = prep.get_train_test_split(train, test) #MinMaxScale Logerror, drop lat and long, split to train and test data on logerror. lm = LinearRegression() regr = lm.fit(X_train, y_train) ypred_train = regr.predict(X_train) ypred_test = regr.predict(X_test) x = mean_squared_error(y_train, ypred_train) #output MSE for Train model is: 0.02817864224808966 y = mean_squared_error(y_test, ypred_test) print (f"MSE on Train:{x}, MSE on Test {y}") import seaborn as sns import matplotlib.pyplot as plt import numpy as np fig, axes = plt.subplots(1,1, figsize=(5,3)) axes.plot(test.logerror, y_test, "bo", label = "actuals", alpha=0.5) axes.plot(test.logerror, ypred_test, "ro", label="predictions", alpha=0.5) plt.xlabel("train.logerror") plt.ylabel("Logerror") plt.legend() plt.suptitle("Linear Regression") plt.show() fig, axes = plt.subplots(1,1, figsize=(5,3)) axes.plot(train.logerror, y_train, "bo", label = "actuals", alpha=0.5) axes.plot(train.logerror, ypred_train, "ro", label="predictions", alpha=0.5) plt.xlabel("train.logerror") plt.ylabel("Logerror") plt.legend() plt.suptitle("Linear Regression") plt.show()
true
db691d0b4552ff99d0da63fa2617f073bb265eb0
Python
StevenChen8759/DSAI_2021_HW04
/trainer.py
UTF-8
8,753
2.65625
3
[]
no_license
import time import argparse from loguru import logger import pandas as pd from utils import csvIO, modelIO from preprocessor import ( sales_feature, data_operation, data_integrator, data_cleaner, data_normalizer, ) from predictor import DTR, XGBoost, kMeans def main_old(): total_month_count = 34 item_count = 22170 shop_count = 60 logger.info("Reading dataset, file name: ./dataset/train_monthly_sales.csv") monthly_sales_train = csvIO.read_csv_to_pddf("./dataset/train_monthly_sales.csv") # print(monthly_sales_train) logger.debug(f"Expected: {total_month_count * item_count * shop_count}, Real: {len(monthly_sales_train)} ({len(monthly_sales_train) * 100 / (total_month_count * item_count * shop_count):.2f}%)") # # Do feature extraction (Deprecated) # logger.info("Do feature extraction") # feature_collection = data_operation.feature_extract(monthly_sales_train) # # Encode Data - Input with Item ID, Shop ID and Month ID (Deprecated) # logger.info("[Data Composing] Build Data for model fitting") # data_in, data_out = data_operation.compose_data(monthly_sales_train.query("item_cnt_day > 0"), feature_collection) # Filter sales < 0 # Do Time Series Data Encoding logger.info("[Time Series Data] Encode Data for model fitting") data_in, data_out = data_operation.encode_time_series_data(monthly_sales_train) # decision_tree_model = DTR.train(data_in, data_out) # modelIO.save(decision_tree_model, "dtr_8_all_ts") xgbr, xgbr_rmse = XGBoost.train(data_in, data_out.drop("shop_id", axis=1)) modelIO.save(xgbr, f"xgbRegressor_all_ts") # xgbr_list = [] # xgbr_rmse_list = [] # shop_list = range(60) # 6, 9, 12, 15, 18, 20, 22, 25, 27, 28, 31, 42, 43, 54, 55, 57 # for i in shop_list: # logger.info(f"Individual shop ID: {i}") # train_in = data_in.query(f"shop_id == {i}").reset_index(drop=True) # train_out = data_out.query(f"shop_id == {i}").reset_index(drop=True) # train_in = train_in.drop("shop_id", axis=1) # train_out = train_out.drop("shop_id", axis=1) # print(train_in) # print(train_out) # # decision_tree_model = DTR.train(data_in, data_out) # # modelIO.save(decision_tree_model, "dtr_8") # xgbr, xgbr_rmse = XGBoost.train(train_in, train_out) # xgbr_list.append(xgbr) # xgbr_rmse_list.append(xgbr_rmse) # list_avg = lambda x: sum(x) / len(x) # logger.info(f"Overall RMSE average: {list_avg(xgbr_rmse_list)}") # print(xgbr_rmse_list) # for i in range(len(xgbr_list)): # modelIO.save(xgbr_list[i], f"xgbRegressor_shop_{i}") def main(): #----------------------------------------------------------------------------------- # Phase 1. Read Data # a. Read original training data logger.info("Reading dataset, file name: ./dataset/sales_train.csv") original_train_data = csvIO.read_csv_to_pddf("./dataset/sales_train.csv") # b. Read item information - including category info logger.info("Reading dataset, file name: ./dataset/items.csv") item_info = csvIO.read_csv_to_pddf("./dataset/train_monthly_sales.csv") #----------------------------------------------------------------------------------- # Phase 2. Integrate Training Data and Do Feature Extraction # a. Integrate train data to monthly information, then join category information logger.info("Aggregate original training data to monthly sales.") agg_sales_train_data = data_integrator.integrate_monthly_sales(original_train_data) # b. Join Category Info logger.info("Join category information.") agg_sales_train_data = data_integrator.join_category_info(agg_sales_train_data, item_info) # c. Permutate agg_sales_train_data agg_sales_train_data = agg_sales_train_data[ ['date_block_num', 'shop_id', 'item_id', 'item_category_id', 'avg_sales_price', 'total_sales', 'total_record_count'] ] # d. Do statistics - Monthly sales of specific category on specific shop logger.info("Do statistics - Monthly sales of specific category on specific shop") category_sales_on_shop_per_month = sales_feature.shop_seasonal_sales_of_category(agg_sales_train_data) # e. Do statistics - Monthly sales of all item without distinguishing shop logger.info("Do statistics - Monthly sales of all item without distinguishing shop") monthly_total_item_sales = sales_feature.item_total_sales(agg_sales_train_data) logger.info("Do statistics - Monthly sales of all item category without distinguishing shop") monthly_total_item_cat_sales = sales_feature.item_category_total_sales(agg_sales_train_data) #----------------------------------------------------------------------------------- # Phase 3. Data Cleaning and Normalization # a. Clean outlier of training data logger.info("Clean Outliers of Training Data") clean_outlier_train_data = data_cleaner.remove_outlier(agg_sales_train_data) #----------------------------------------------------------------------------------- # Phase 4. k-Means clustering for extract feature of popularity logger.info("Do sales heat auto clustering") category_heat_value = kMeans.extract_sales_heat(category_sales_on_shop_per_month) csvIO.write_pd_to_csv( category_heat_value, "category_heat_value.csv", False, ) # category_heat_value = csvIO.read_csv_to_pddf( # "./output/category_heat_value.csv" # ) # print(category_heat_value) monthly_item_heat_value = kMeans.extract_monthly_item_sales_heat( monthly_total_item_sales ) csvIO.write_pd_to_csv( monthly_item_heat_value, "monthly_item_heat_value.csv", False ) # monthly_item_heat_value = csvIO.read_csv_to_pddf( # "./output/monthly_item_heat_value.csv" # ) monthly_item_cat_heat_value = kMeans.extract_monthly_item_cat_sales_heat( monthly_total_item_cat_sales ) csvIO.write_pd_to_csv( monthly_item_cat_heat_value, "monthly_item_cat_heat_value.csv", False ) # monthly_item_heat_value = csvIO.read_csv_to_pddf( # "./output/monthly_item_heat_value.csv" # ) #----------------------------------------------------------------------------------- # Phase 5. Do Input Data Normalization # Step 1. Integrate features logger.info("Join sales heat feature") train_data_with_feature = data_integrator.feature_join( clean_outlier_train_data, category_heat_value, monthly_item_heat_value, monthly_item_cat_heat_value, ) assert len(clean_outlier_train_data) == len(train_data_with_feature), "Inconsistant length of data before/after join operation" train_data_with_feature.drop( columns=[ 'cat_shop_total_sales_sum', 'monthly_total_item_sales_sum', 'monthly_total_item_cat_sales_sum', 'cat_shop_total_sales_mean', 'monthly_total_item_sales_mean', 'monthly_total_item_cat_sales_mean', # 'avg_sales_price', 'total_record_count', ], inplace=True ) # Step 2. Normalization # logger.info("Data Normalization") norm_train_data = ( data_normalizer.train_norm(train_data_with_feature) ) logger.debug("Use Original value on fitting target - total_sales") # Cancel Normalization on Output Data and Specific Columns norm_train_data["date_block_num"] = train_data_with_feature["date_block_num"] norm_train_data["total_sales"] = train_data_with_feature["total_sales"] # norm_train_data = train_data_with_feature print(norm_train_data.columns) # ts_train_data_norm = ts_train_data #----------------------------------------------------------------------------------- # Phase 6. Encode Time Series Data # Step 1. Encode all features as time series data logger.info("Encode Time Series Data") ts_train_data = data_integrator.encode_time_series_data( norm_train_data, 24, ) # Step 2. Do normalization for month ID ts_train_data["date_block_num"] = ts_train_data["date_block_num"].apply( lambda x: (x % 12) - 0 / 11 ) print(len(ts_train_data)) #----------------------------------------------------------------------------------- # Phase 7. XGBoostRegressor Training and Evaluate Performance logger.info("Fit XGBoost Regressor") xgbr = XGBoost.train(ts_train_data, 0.20) modelIO.save(xgbr, "xgbr_new_feature") #----------------------------------------------------------------------------------- # Phase 8. Do Inference Based on Training Result if __name__ == "__main__": main()
true
7c8906d675445eef4d3a953dcc28893c456b30f6
Python
riklauder/ProjectMokman
/src/astartwo.py
UTF-8
4,905
3.453125
3
[]
no_license
#Currently in use by Ghosts in ghosts.py import numpy as np import heapq class Node: """ A node class for A* Pathfinding parent is parent of the current Node position is current position of the Node in the maze g is cost from start to current Node h is heuristic based estimated cost for current Node to end Node f is total cost of present node i.e. : f = g + h """ def __init__(self, parent=None, position=None): self.parent = parent self.position = position self.g = 0 self.h = 0 self.f = 0 def __eq__(self, other): return self.position == other.position #This function return the path of the search def return_path(current_node,maze): path = [] no_rows, no_columns = np.shape(maze) # here we create the initialized result maze with -1 in every position result = [[-1 for i in range(no_columns)] for j in range(no_rows)] current = current_node while current is not None: path.append(current.position) current = current.parent # Return reversed path as we need to show from start to end path path = path[::-1] start_value = 0 # we update the path of start to end found by A-star serch with every step incremented by 1 for i in range(len(path)): result[path[i][0]][path[i][1]] = start_value start_value += 1 return result def search(maze, cost, start, end): """ currently switches start and end to optimize for ghosts path TO player :param maze: Map with walls as 1 path 0 :param cost :param start: :param end: :return: """ # Create start and end node with initized values for g, h and f start_node = Node(None, tuple(start)) start_node.g = start_node.h = start_node.f = 0 end_node = Node(None, tuple(end)) end_node.g = end_node.h = end_node.f = 0 yet_to_visit_list = [] visited_list = [] # Add the start node yet_to_visit_list.append(start_node) # SEntinel after some reasonable number of steps outer_iterations = 0 max_iterations = (len(maze) // 2) ** 10 # what squares to search - direction in this rotation move = [[-1, 0 ], # go up [ 0, -1], # go left [ 1, 0 ], # go down [ 0, 1 ]] # go right #find maze has got how many rows and columns no_rows, no_columns = np.shape(maze) # Loop until end while len(yet_to_visit_list) > 0: outer_iterations += 1 # Get the current node current_node = yet_to_visit_list[0] current_index = 0 for index, item in enumerate(yet_to_visit_list): if item.f < current_node.f: current_node = item current_index = index # return the path as is partioal solution or computation 2 high if outer_iterations > max_iterations: print ("giving up on pathfinding too many iterations") return return_path(current_node,maze) # Pop current node yet_to_visit_list.pop(current_index) visited_list.append(current_node) # goal is reached or not if current_node == end_node: return return_path(current_node,maze) # Generate children from adj squares children = [] for new_position in move: node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1]) # Make sure within range of maze if (node_position[0] > (no_rows - 1) or node_position[0] < 0 or node_position[1] > (no_columns -1) or node_position[1] < 0): continue # Verify terrain/forntier if maze[node_position[0]][node_position[1]] != 0: continue new_node = Node(current_node, node_position) children.append(new_node) # Loop through children for child in children: # child on the visited list (search visited list) if len([visited_child for visited_child in visited_list if visited_child == child]) > 0: continue # Create heiristic costs child.g = current_node.g + cost ## Heuristic costs calculated here, this is using eucledian distance child.h = (((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)) child.f = child.g + child.h # Child is already in the yet_to_visit list and g cost is already lower if len([i for i in yet_to_visit_list if child == i and child.g > i.g]) > 0: continue # Add the child to the yet_to_visit list yet_to_visit_list.append(child)
true
b4f1f4eea9ce750cde5a609c0db3196932a6e89b
Python
antoinebeck/Codingame
/Puzzles/Python/Easy/horse_racing_duals.py
UTF-8
459
3.203125
3
[]
no_license
## Array optimisation from codingame "Horse Racing Duals" puzzle ## https://www.codingame.com/training/easy/horse-racing-duals ## solution by Antoine BECK 03-15-2017 import sys import math n = int(input()) pi = [] diff = 10000000 tmp = 0 for i in range(n): pi.append(int(input())) pi.sort() # Using the sort function (optimized) for i in range(n-1): tmp = pi[i+1] - pi[i] if tmp < diff: diff = tmp if diff == 0: break print(diff)
true
3883852ad50bbb1b1279aac8f484af200ce4e7d6
Python
LuanReinheimer/Work_Space-Python
/CursoPython/Ex084 anotacoes.py
UTF-8
733
3.921875
4
[]
no_license
pessoas = [['lucas',23], ['luan',23], ['bebeto', 25]] for nome in pessoas: print(f' {nome[0]} tem {nome[1]} anos de idade. ') #----------------------------------------------------------------------------- galera = [] dado = [] totalmaior = 0 totalmenor = 0 for c in range(5): dado.append(str(input('NOME: '))) dado.append(int(input('IDADE: '))) galera.append(dado.copy()) dado.clear() print(f'A Galera da lista é {galera}') for p in galera: if p[1] >= 21: print(f'{p[0]} é maior de idade.') totalmaior = totalmaior + 1 else: print(f'{p[0]} é menor de idade') totalmenor = totalmenor = 1 print(f'Temos {totalmaior} maiores de idade e {totalmenor} menores de idade.')
true
195d7c2004dac773b8f569dcc61865a09e0edcbd
Python
mkdvice/Python-Iniciante-
/ReajusteSalarial.py
UTF-8
353
3.65625
4
[]
no_license
def salario_reajuste(salario, reajuste): # craição da função return salario * reajuste // 100 + salario #calculo do reajuste reajuste = salario_reajuste(float(input("Digite o valor do salário: ")), float(input("Digite o valor do reajuste: "))) # entrada dos valores print("Seu salário agora é R${}".format(reajuste)) # resultado do reajuste
true
2f532d4365a8dd7ad59f53cfb0a9567c4f8b96e9
Python
jfpio/TKOM-Interpreter
/interpreter/models/constants.py
UTF-8
3,285
2.890625
3
[]
no_license
from dataclasses import dataclass from enum import Enum from typing import Union, Type from interpreter.token.token_type import TokenType @dataclass class CurrencyType: name: str @dataclass class CurrencyValue(CurrencyType): value: float def __add__(self, other): return CurrencyValue(self.name, self.value + other.value) def __sub__(self, other): return CurrencyValue(self.name, self.value - other.value) def __mul__(self, other): return CurrencyValue(self.name, self.value * other) def __truediv__(self, other): return CurrencyValue(self.name, self.value / other) def __divmod__(self, other): return CurrencyValue(self.name, self.value % other) def __str__(self): return f"{self.value}{self.name}" def __int__(self): return int(self.value) def __float__(self): return self.value def __bool__(self): if self.value == 0: return False else: return True CustomTypeOfTypes = Union[Type, CurrencyType] PossibleTypes = Union[int, float, str, bool, CurrencyValue] TOKEN_TYPES_INTO_TYPES = { TokenType.INT: int, TokenType.FLOAT: float, TokenType.STRING: str, TokenType.BOOL: bool, } POSSIBLE_TOKEN_TYPES = list(TOKEN_TYPES_INTO_TYPES.keys()) + [TokenType.CURRENCY] class RelationshipOperator(Enum): EQUAL_OPERATOR = '==' NOT_EQUAL_OPERATOR = '/=' LESS_THAN_OPERATOR = '<' GREATER_THAN_OPERATOR = '>' LESS_THAN_OR_EQUAL_OPERATOR = '<=' GREATER_THAN_OPERATOR_OR_EQUAL_OPERATOR = '>=' TOKEN_TYPE_INTO_RELATIONSHIP_OPERAND = { TokenType.EQUAL_OPERATOR: RelationshipOperator.EQUAL_OPERATOR, TokenType.NOT_EQUAL_OPERATOR: RelationshipOperator.NOT_EQUAL_OPERATOR, TokenType.LESS_THAN_OPERATOR: RelationshipOperator.LESS_THAN_OPERATOR, TokenType.GREATER_THAN_OPERATOR: RelationshipOperator.GREATER_THAN_OPERATOR, TokenType.LESS_THAN_OR_EQUAL_OPERATOR: RelationshipOperator.LESS_THAN_OR_EQUAL_OPERATOR, TokenType.GREATER_THAN_OPERATOR_OR_EQUAL: RelationshipOperator.GREATER_THAN_OPERATOR_OR_EQUAL_OPERATOR } RELATIONSHIP_OPERAND_INTO_LAMBDA_EXPRESSION = { RelationshipOperator.EQUAL_OPERATOR: lambda x, y: x == y, RelationshipOperator.NOT_EQUAL_OPERATOR: lambda x, y: x != y, RelationshipOperator.LESS_THAN_OPERATOR: lambda x, y: x < y, RelationshipOperator.GREATER_THAN_OPERATOR: lambda x, y: x > y, RelationshipOperator.LESS_THAN_OR_EQUAL_OPERATOR: lambda x, y: x <= y, RelationshipOperator.GREATER_THAN_OPERATOR_OR_EQUAL_OPERATOR: lambda x, y: x >= y } class SumOperator(Enum): ADD = '+' SUB = '-' TOKEN_TYPE_INTO_SUM_OPERATOR = { TokenType.ADD_OPERATOR: SumOperator.ADD, TokenType.SUB_OPERATOR: SumOperator.SUB } class MulOperator(Enum): MUL = '*' DIV = '/' MODULO = '%' token_type_into_mul_operator = { TokenType.MUL_OPERATOR: MulOperator.MUL, TokenType.DIV_OPERATOR: MulOperator.DIV, TokenType.MODULO_OPERATOR: MulOperator.MODULO } ARITHMETIC_OPERATOR_INTO_LAMBDA_EXPRESSION = { SumOperator.ADD: lambda x, y: x + y, SumOperator.SUB: lambda x, y: x - y, MulOperator.MUL: lambda x, y: x * y, MulOperator.DIV: lambda x, y: x / y, MulOperator.MODULO: lambda x, y: x % y }
true
dbd88e6b83d319de373314f4645b7061456a49e4
Python
Satwik95/Coding-101
/LeetCode/Top 100/sub_array_sum.py
UTF-8
707
3.21875
3
[]
no_license
class Solution(object): def subarraySum(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ #return sum(sum(nums[j:i]) == k for i in range(len(nums)+1) for j in range(i)) # have to keep track of how many time a particular sub array sum has also occured, # hence we can't simply use a dp array, we have to use a hash and keep track of the count # of the sum as well cur_sum, count, dp = 0, 0, {0:1} for num in nums: cur_sum += num count += dp.get(cur_sum-k, 0) dp[cur_sum] = dp.get(cur_sum, 0) + 1 return count print(subarraySum([1,3,4,8], 7))
true
79a15354b49f44d3a715e41ad0609820e3d8a4c9
Python
dixantmittal/image-clustering-using-expectation-maximization
/exp_max.py
UTF-8
2,343
2.84375
3
[ "MIT" ]
permissive
import numpy as np from matplotlib import image import matplotlib.pyplot as plt from k_means import * import scipy.stats as st from tqdm import tqdm def initialize_params(k, d): pi = np.random.rand(k) # normalize pi pi = pi / np.sum(pi) mew = np.random.randn(k, d) * 100 # identity matrix sigma = np.identity(d) * 100 sigma = np.asarray([sigma] * k) return pi, mew, sigma def cal_expectation(data, pi, mew, sigma, k): n, d = data.shape gamma = np.zeros((k, n)) for i in range(k): gamma[i] = pi[i] * st.multivariate_normal.pdf(data, mew[i], sigma[i]) sum_gamma = np.sum(gamma, axis=0) gamma = gamma / sum_gamma return gamma def cal_maximization(data, gamma, k): n, d = data.shape Nk = np.sum(gamma, axis=1) pi = Nk / n mew = np.zeros((k, d)) for i in range(k): mew[i] = np.sum(gamma[i] * data.transpose()) / Nk[i] sigma = np.empty((k, d, d)) for i in range(k): diff = data - mew[i] sigma[i] = np.dot(gamma[i] * diff.T, diff) / Nk[i] return pi, mew, sigma def main(): img_mat = image.imread('images/zebra.jpg') k = 2 h, w, d = img_mat.shape img_mat = img_mat.reshape((h * w, d)) pi, mew, sigma = initialize_params(k, d) mew = calculate_k_means(img_mat, k) pi_old, mew_old, sigma_old = pi, mew, sigma print('starting EM') for i in tqdm(range(100)): gamma = cal_expectation(img_mat, pi, mew, sigma, k) pi, mew, sigma = cal_maximization(img_mat, gamma, k) # until convergence if np.sum((mew - mew_old) ** 2) < 1e-10: break mew_old = mew prob = np.zeros((k, h * w)) for i in range(k): prob[i] = pi[i] * st.multivariate_normal.pdf(img_mat, mew[i], sigma[i]) assignment = np.argmax(prob, axis=0) # assignment = np.asarray(np.dstack((assignment, assignment, assignment)), dtype=np.float32) / (k - 1 + 1e-20) img_mat = img_mat.reshape((h, w, d)) mask1 = np.asarray(img_mat * 255 * assignment.reshape((h, w, 1)), dtype=np.float32) plt.imshow(mask1) plt.show() assignment = -assignment + 1 mask2 = np.asarray(img_mat * 255 * assignment.reshape((h, w, 1)), dtype=np.float32) plt.imshow(mask2, cmap=plt.cm.gray) plt.show() if __name__ == '__main__': main()
true
e6a32147efb576d8b7348c2ac71009e6a2d8e49f
Python
vainotuisk/valikkursuse_materjalid
/Pygame/kliinik2.py
UTF-8
251
3.234375
3
[]
no_license
## Väino Tuisk ## Kliinik 2 - nulliga jagamine ja tulemuse täpsus jagatav = float(input("sisesta jagatav: ")) jagaja = float(input("sisesta jagaja: ")) if (jagaja == 0): print ("viga!") else: print ("Jagatis on: " + str(float(jagatav/jagaja)))
true
841f326894e90fd82ad008ca98bdbfe53315fc97
Python
Energy1190/railroads-maps
/railmap.py
UTF-8
46,249
2.703125
3
[]
no_license
import math import pickle from parserus import * from database import * class Station(): def __init__(self, tuple_obj): assert len(tuple_obj) == 9 self.name = tuple_obj[0] self.coordX = tuple_obj[-2] self.coordY = tuple_obj[-1] self.coords = (self.coordX, self.coordY) self.neighbors = [] self.neighbors_num = 0 self.neighbors_coords = [] def set_neighbors(self): x = get_one_entry('neighbors', self.name) if x: self.neighbors = list(filter(lambda x: False if x == 'NULL' else True, x[2:])) self.neighbors_num = int(x[1]) for i in self.neighbors: y = get_one_entry('stations', i, extend=True) if y: cx,cy = y[-2:] self.neighbors_coords.append((cx,cy)) def get_over_station(self, name): return get_one_entry('stations', name, fild='name', extend=True) def get_over_station_coords(self, coords): return get_one_entry('stations', coords[0], fild='coordinateX', name2=coords[1], fild2='coordinateY') def check_neighbors(self, list_obj, coords_list): def math_check(self, neighbors_coords, coords_list, coordX=self.coordX, coordY=self.coordY, result=[], count=0): count += 1 if count == 500: return result areaX = (coordX-0.00001, coordX+0.00001) areaY = (coordY-0.00001, coordY+0.00001) for i in neighbors_coords: if areaX[1] > i[0] > areaX[0] and areaY[1] > i[1] > areaY[0] and len(result) <4 and (i[0], i[1]) != self.coords: result.append(i) for i in coords_list: if areaX[1] > i[0] > areaX[0] and areaY[1] > i[1] > areaY[0] and len(result) < 4 and (i[0], i[1]) != self.coords: result.append(i) if len(result) == 4 or len(result) == len(neighbors_coords): return result else: return math_check(self, neighbors_coords, coords_list, coordX=coordX, coordY=coordY, result=result, count=count) x = [] for i in list_obj: if i in self.neighbors_coords: x.append(i) if self.neighbors_num == len(list_obj): x = [] for i in list_obj: x.append(i) print("List is: ", list_obj) self.parent = x elif self.neighbors_num != len(list_obj): alls = [] coords = [] for i in self.neighbors: x = self.get_over_station(i) if x and (x[0], x[-2], x[-1]) not in alls and (x[-2], x[-1]) not in coords: alls.append((x[0], x[-2], x[-1])) coords.append((x[-2], x[-1])) for i in list_obj: x = self.get_over_station_coords(i) if x and (x[0], x[-2], x[-1]) not in alls and (x[-2], x[-1]) not in coords: alls.append((x[0], x[-2], x[-1])) coords.append((x[-2], x[-1])) self.parent = math_check(self, coords, coords_list) # print(self.name, self.neighbors_num, x) def bild_stations(): def fail_parser(): # Почему-то не добавляется, видимо происходит ошибка из-за ссылки не на координаты, а на область. insert_to_table('stations', ('Щелково', 'Щёлково', 'NULL', 'щелково', 'http://www.openstreetmap.org/node/4085266440#map=18/55.90939/38.01063&layers=N', 'NULL','NULL', '55.9093905', '38.0087521'), size='one') # Видимо переименовано в Болдино, у станции нет координат на карте insert_to_table('stations', ('Сушнево', 'Сушнево', 'NULL', 'сушнево', 'http://www.openstreetmap.org/#map=18/55.96049/39.77948&layers=N', 'NULL','NULL', '55.96049', '39.77948'), size='one') size='many' base_len = 9 drop_table('stations') drop_table('neighbors') drop_table('error_stations') create_table('stations', params='(name TEXT, second_name TEXT, third_name TEXT, check_name TEXT, link TEXT, location TEXT, number REAL, coordinateX REAL, coordinateY REAL)') create_table('neighbors', params='(name TEXT, count REAL, neighbor1 TEXT, neighbor2 TEXT, neighbor3 TEXT, neighbor4 TEXT, neighbor5 TEXT)') create_table('error_stations', params='(name TEXT, second_name TEXT, third_name TEXT, check_name TEXT, link TEXT, location TEXT, number REAL)') for i in ['http://osm.sbin.ru/esr/region:mosobl:l', 'http://osm.sbin.ru/esr/region:ryazan:l', 'http://osm.sbin.ru/esr/region:tul:l', 'http://osm.sbin.ru/esr/region:kaluzh:l', 'http://osm.sbin.ru/esr/region:smol:l', 'http://osm.sbin.ru/esr/region:tver:l', 'http://osm.sbin.ru/esr/region:yarosl:l', 'http://osm.sbin.ru/esr/region:ivanov:l', 'http://osm.sbin.ru/esr/region:vladimir:l']: x = get_stations2(url=i) datas = list(filter(None, prepare_data(x, size=size, ver=2, base_len=base_len))) insert_to_table('stations', datas, size=size, len='({0})'.format(str('?,'*base_len)[:-1])) fail_parser() def bild_schedule(): def generation_of_dates(list_object): result = [] mouth_list = [0, 'Январь', 'Февраль', 'Март', 'Апрель', 'Май', 'Июнь', 'Июль', 'Август', 'Сентябрь', 'Октябрь', 'Ноябрь', 'Декабрь'] for i in list_object: x = i['mouth'].split(sep='(') year = x[1][:-1] if x[0] in mouth_list: mouth = mouth_list.index(x[0]) else: assert False for j in i['days']: y = (year, mouth, j) result.append(y) return result def generation_of_times(time_list): result = [] if len(time_list) != 4: return False if time_list[0] and len(time_list[0]) and ':' in time_list[0]: x = time_list[0].split(sep=':') result.append((int(x[0]), int(x[1]))) else: result.append(None) if time_list[1] and len(time_list[1]) and 'м' in time_list[1]: x = re.findall(r'(\d*)\s?ч?м?\s?(\d*)\s?м?', time_list[1]) x = x[0] if len(x) == 2 and x[1]: result.append((int(x[0]), int(x[1]))) else: result.append((None, int(x[0]))) else: result.append(None) if time_list[2] and len(time_list[2]) and ':' in time_list[2]: x = time_list[0].split(sep=':') result.append((int(x[0]), int(x[1]))) else: result.append(None) if time_list[3] and len(time_list[3]) and 'м' in time_list[3]: x = re.findall(r'(\d*)\s?ч?м?\s?(\d*)\s?м?', time_list[3]) x = x[0] if len(x) == 2 and x[1]: result.append((int(x[0]), int(x[1]))) else: result.append((None, int(x[0]))) else: result.append(None) return result drop_table('trains') drop_table('schedule') drop_table('working_days') create_table('trains', params='(number TEXT, link TEXT, departure TEXT, arrival TEXT, periodicity TEXT)') create_table('schedule', params='(train TEXT, departure TEXT, arrival TEXT, station_link TEXT, station_name TEXT, station_number REAL, coming_time BLOB,' ' waiting_time BLOB, out_time BLOB, total_time BLOB)') create_table('working_days', params='(train TEXT, departure TEXT, arrival TEXT, days BLOB)') lines, trains = get_schedule2('http://moskva.elektrichki.net/raspisanie/') trains_insert = [] schedule_insert = [] working_days_insert = [] for i in trains: i['schedule'] = get_schedule_station(i['main_link']) da = i['path'].split(sep=' → ') for j in i['schedule']: times = generation_of_times([j['coming_time'], j['waiting_time'], j['out_time'], j['total_time']]) times = list(map(pickle.dumps, times)) schedule_insert.append((i['train_number'], da[0], da[1], j['link'], j['name'], j['station_number'], times[0], times[1], times[2], times[3])) if i.get('periodicity_link'): days = get_days_of_work(i['periodicity_link']) days = generation_of_dates(days) days = pickle.dumps(days) else: days = None trains_insert.append((i['train_number'], i['main_link'], da[0], da[1], i['periodicity'])) working_days_insert.append((i['train_number'], da[0], da[1], days)) insert_to_table('trains', trains_insert, size='many', len='(?,?,?,?,?)') insert_to_table('schedule', schedule_insert, size='many', len='(?,?,?,?,?,?,?,?,?,?)') insert_to_table('working_days', working_days_insert, size='many', len='(?,?,?,?)') drop_table('lines') create_table('lines', params='(list BLOB, empty TEXT)') insert_to_table('lines', [(pickle.dumps(lines), None)], size='many', len='(?,?)') def check_regexp(name): def check(name): count = 0 x = get_one_entry('stations', name, extend=True) if x: count = 1 y = get_many_entry('stations', x[0], limit=10, fild='name') if len(y) > 1: count = len(y) x = y return (x, count) def logic(symbol, name, checks, symbol2=None): if symbol in name or symbol2 and symbol in name and symbol2 in name: x = check(checks) if x[1]: return checks return None if check(name)[1]: return check(name) tests = [] tests.append(logic('-', name, 'Аэропорт', symbol2='Внуково')) tests.append(logic('Аэропорт Внуково', name, 'Аэропорт')) tests.append(logic('Аэропорт', name, name.replace(' ', '-'))) tests.append(logic('Остановочный Пункт', name, ' '.join(name.split(sep= ' ')[0:2]).lower())) tests.append(logic('Платформа', name, ' '.join(name.split(sep=' ')[-2:]).lower(), symbol2='Км')) tests.append(logic('Пост', name, ' '.join(name.split(sep=' ')[-2:]).lower(), symbol2='Км')) tests.append(logic('1', name, name.replace(' 1', '-I'))) tests.append(logic('1', name, name.replace(' 1', '-1'))) tests.append(logic('1', name, name.replace(' 1', ' I'))) tests.append(logic('2', name, name.replace(' 2', '-II'))) tests.append(logic('2', name, name.replace(' 2', '-2'))) tests.append(logic('2', name, name.replace(' 2', ' II'))) tests.append(logic('3', name, name.replace(' 3', '-III'))) tests.append(logic('3', name, name.replace(' 3', '-3'))) tests.append(logic('3', name, name.replace(' 3', ' III'))) tests.append(logic('1', name, name.replace(' 1', ''))) tests.append(logic('2', name, name.replace(' 2', ''))) tests.append(logic('3', name, name.replace(' 3', ''))) tests.append(logic('Платформа', name, name.replace('Платформа ', ''))) tests.append(logic(' ', name, name.replace(' ', '-'))) tests.append(logic('е', name, name.replace('е', 'ё', 1))) tests.append(logic('ё', name, name.replace('ё', 'е', 1).lower())) tests.append(logic('И', name, name.replace('И', 'и').replace('М', 'м'))) tests.append(logic('и', name, name.upper())) tests.append(logic('Депо', name, 'Депо')) tests.append(logic('Березки Дачные', name, 'Берёзки-Дачные')) tests.append(logic('оо', name, name.replace('оо', 'о'))) tests.append(logic('ая', name, name.replace('ая', 'ое'))) tests.append(logic('й', name, name.replace('й', 'и'))) tests.append(logic('Пл.', name, name.replace('Пл. ', ''))) tests.append(logic('Пл.', name, ' '.join(name.split(sep=' ')[1:3]))) tests.append(logic('о.п.', name, ' '.join(name.split(sep=' ')[1:3]))) tests.append(logic(' (по треб.)', name, name.replace(' (по треб.)', ''))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[0]))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[:1]))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[:2]).lower().replace('Пл. ', ''))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[:3]).lower().replace('Пл. ', ''))) tests.append(logic('Москва ', name, name.replace('Москва ', 'Москва-Пассажирская-'))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[1:3]))) tests.append(logic('(', name, ' '.join(name.split(sep=' ')[2:4]).replace('(', '').replace(')', ''))) tests.append(logic(' Тов.', name, name.replace(' Тов.', '-II'))) tests.append(logic(' Пасс.', name, name.replace(' Пасс.', '-I'))) tests.append(logic(' Пасс.', name, name.replace(' Пасс.', '-Пассажирская'))) tests.append(logic(' Тов.', name, name.replace(' Тов.', ''))) tests.append(logic(' Пасс.', name, name.replace(' Пасс.', ''))) tests.append(logic(' Тов.', name, name.replace(' Тов.', '-Товарная'))) tests.append(logic(' Сорт.', name, name.replace(' Сорт.', '-Сотировочное'))) tests.append(logic(' Сорт.', name, name.replace(' Сорт.', '-Сотировочная'))) tests.append(logic(' Центр.', name, name.replace(' Центр.', '-Центральное'))) tests.append(logic('Москва Савёловская', name, name.replace('Москва Савёловская', 'Москва-Бутырская'))) tests.append(logic(' Белорусская', name, name.replace(' Белорусская', '-Пассажирская-Смоленская'))) tests.append(logic(' Ленинградская', name, name.replace(' Ленинградская', '-Пассажирская'))) tests.append(logic('Пос.', name, name.replace('Пос.', 'Посёлок'))) tests.append(logic('Кашира', name, name.replace('Кашира', 'Кашира-Пассажирская'))) tests.append(logic('Рязань', name, 'Рязань-I')) tests.append(logic('Бекасово Сорт.', name, 'Бекасово-Сортировочное')) tests.append(logic('Малые Вязёмы', name, 'Малая Вязёма')) tests.append(logic('Москва Сорт.', name, 'Москва-Сортировочная')) tests.append(logic('Каланчёвская', name, name.replace('Каланчёвская', 'Москва-Каланчёвская'))) tests.append(logic('К', name, name + ' I')) tests.append(logic('О', name, name + ' I')) tests.append(logic('Е', name, name + ' I')) try: tests.append(logic(' ', name, ' '.join([name.split(sep=' ')[0], name.split(sep=' ')[1].upper()]))) except: pass for i in tests: if i: return check(i) return False def build_graph(): result = [] lines_list = ['https://www.tutu.ru/06.php', 'https://www.tutu.ru/01.php', 'https://www.tutu.ru/02.php', 'https://www.tutu.ru/05.php', 'https://www.tutu.ru/04.php', 'https://www.tutu.ru/08.php', 'https://www.tutu.ru/03.php', 'https://www.tutu.ru/07.php', 'https://www.tutu.ru/09.php', 'https://www.tutu.ru/10.php'] for i in lines_list: result.append(get_line_map(i)) pickle.dump(result, map_file(action='wb',filename='graph.db')) def bild_coord_graph(): def check_duplicate_coord(obj_list, num): r = [] x = obj_list[0][-2:] r.append(x) for i in range(num): if x != obj_list[i][-2:]: r.append(obj_list[i][-2:]) return r def filter_station(): nonlocal stations for i in stations: for j in stations[i]: while stations[i].count(j) > 1: stations[i].remove(j) def pre_check_bild_stations(): nonlocal fails, stations for i in pickle.load(map_file(filename='graph.db')): for j in i: flag = False g = [] x = check_regexp(j) if x: if x[1] > 1: g = check_duplicate_coord(x[0], x[1]) if len(g) > 1: flag = True z = tuple(x[0]) if type(z[0]) == tuple: z = z[0] if not stations.get((j, z[-2:], tuple(g), flag)): stations[(j, z[-2:], tuple(g), flag)] = i[j] else: stations[(j, z[-2:], tuple(g), flag)] = stations[(j, z[-2:], tuple(g), flag)] + i[j] else: fails[j] = i[j] def correct_fail(): nonlocal fails, stations # 'Пл. Аэропорт (Внуково) (старая платф.)' - исключение, удалить нафиг try: del fails['Пл. Аэропорт (Внуково) (старая платф.)'] except: pass for i in fails: if fails[i] and len(fails[i]) == 2: for n in stations: if fails[i][0] == n[0]: stations[n].append(fails[i][1]) elif fails[i][1] == n[0]: stations[n].append(fails[i][0]) def get_graph_coord(): nonlocal stations for i in stations: for j in range(len(stations[i])): g = [] flag = False x = check_regexp(stations[i][j]) if x: if x[1] > 1: g = check_duplicate_coord(x[0], x[1]) if len(g) > 1: flag = True z = tuple(x[0]) if type(z[0]) == tuple: z = z[0] stations[i][j] = (stations[i][j], z[-2:], tuple(g), flag) else: print(stations[i][j]) fails = {} stations = {} pre_check_bild_stations() filter_station() correct_fail() get_graph_coord() pickle.dump(stations, map_file(action='wb', filename='full_map.db')) def bild_short_map(file): def build_sqad(obj, obj_list): x,y = obj for i in range(len(obj_list)): if i: l = [] a, b = obj_list[i-1] a2, b2 = obj_list[i] for j in [(min(a,a2), max(b,b2), 4), (max(a,a2), min(b,b2), 2), (min(a,a2), min(b,b2), 1), (max(a,a2), max(b,b2), 3)]: if j not in l: l.append(j) l.sort(key=lambda x:x[-1]) if l[0][0] < x < l[1][0] and l[0][1] < y < l[-1][1]: return ((obj_list[i], obj_list[i-1])) def detect_coord(coord_list, over_coord_lists): check_list = [] exit_list = [] for i in over_coord_lists: if not i[-1]: check_list.append(i[1]) if len(check_list) < 2: return (False, 0) else: result = [] for i in coord_list: x = build_sqad(i, check_list) result.append(x) for i in range(len(result)): if result[i]: exit_list.append((coord_list[i], result[i])) if exit_list and len(exit_list) == 1: return (exit_list[0][0],0) elif exit_list and len(exit_list) > 1: return (exit_list,len(exit_list)) else: return (False, 0) def recusion_build(station_dict, num=1): exit_dict = {} for i in station_dict: if i[-num]: x,y = detect_coord(i[-2], [j for j in station_dict[i]]) if x and not y: exit_dict[(i[0], x, (), False, 0)] = station_dict[i] elif y: for b in range(y): exit_dict[(i[0], x[b][0], (), False, b)] = station_dict[i] else: t = list(i) t.append(0) exit_dict[tuple(t)] = station_dict[i] else: t = list(i) t.append(0) exit_dict[tuple(t)] = station_dict[i] for i in exit_dict: for j in range(len(exit_dict[i])): for n in exit_dict: if exit_dict[i][j][0] == n[0] and not n[-2]: exit_dict[i][j] = n return exit_dict stations = pickle.load(map_file(filename=file)) short_map = recusion_build(stations) for i in short_map: remove_elems = [] obj = i[1] g = 1 t = 1 for j in range(len(short_map[i])): g = t if j: x,y = (short_map[i][j][1], short_map[i][j-1][1]) if type(x) == tuple and type(y) == tuple: t = build_sqad(obj,[x,y]) if not t and not g: remove_elems.append(short_map[i][j-1]) for j in remove_elems: short_map[i].remove(j) pickle.dump(short_map, map_file(action='wb', filename='short_map.db')) def bild_coords_map(file): def remove_exeption(exeption_name, exeption_val): nonlocal regenerate_maps nonlocal maps if regenerate_maps[exeption_name].count(exeption_val): regenerate_maps[exeption_name].remove(exeption_val) if maps.count((exeption_name, exeption_val)): maps.remove((exeption_name, exeption_val)) if regenerate_maps[exeption_val].count(exeption_name): regenerate_maps[exeption_val].remove(exeption_name) if maps.count((exeption_val, exeption_name)): maps.remove((exeption_val, exeption_name)) def check_objects(obj, obj2): def x(o): if type(o[0]) == tuple: return o[0] else: return o for i in range(10): r1 = x(obj) r2 = x(obj2) return (r1,r2) # Расстояние между станциями не должно быть слишком большим - 0.2 градусаов максимум def simple_len_check(obj, list_obj): def check_result(list_obj): r = [] for i in range(len(list_obj)): if list_obj[i] > 0.2: r.append(i) return r resultX = [] resultY = [] x,y = obj for i in list_obj: a,b = i l1 = max(a,x) - min(a,x) l2 = max(b,y) - min(b,y) resultX.append(l1) resultY.append(l2) x = check_result(resultX) y = check_result(resultY) if x or y: rem = list(set.union(set(x),set(y))) r = [] for i in rem: r.append(list_obj[i]) for i in r: list_obj.remove(i) return list_obj # Станция не может иметь больше 4 станций-соседей def simple_count_check(stations): nonlocal station_count if not station_count.get(stations): station_count[stations] = 1 else: station_count[stations] = station_count[stations] + 1 # Путь к станции не может пересекать другой путь, дважды так точно def simple_collision_check(line_obj, over_line): if line_obj[0] == over_line[0] or line_obj[0] == over_line[1]: return False elif line_obj[1] == over_line[0] or line_obj[1] == over_line[1]: return False line_obj = tuple(map(lambda x: tuple(map(lambda y: int(y * 10000000),x)), line_obj)) over_line = tuple(map(lambda x: tuple(map(lambda y: int(y * 10000000),x)), over_line)) x,y = line_obj[0] x1,y1 = line_obj[1] a,b = over_line[0] a1,b1 = over_line[1] ma = max(over_line[0][0], over_line[1][0]) mia = min(over_line[0][0], over_line[1][0]) mb = max(over_line[0][1], over_line[1][1]) mib = min(over_line[0][1], over_line[1][1]) mx = max(line_obj[0][0], line_obj[1][0]) mix = min(line_obj[0][0], line_obj[1][0]) my = max(line_obj[0][1], line_obj[1][1]) miy = min(line_obj[0][1], line_obj[1][1]) n = ((a*b1 - a1*b)*(x1-x) - (a1-a)*(x*y1 - x1*y)) / ((a1 - a)*(y-y1) - (x1-x)*(b-b1)) if mia < n < ma and mix < n < mx: check = ((y-y1)*n + (x*y1 - x1*y)) / (x1-x) if mib < -check < mb and miy < -check < my: return True stations = pickle.load(map_file(filename=file)) station_count = {} coords = {} maps = [] for i in stations: coords[i[1]] = [] for j in stations[i]: if type(j[1]) == tuple: coords[i[1]].append(j[1]) for i in coords: coords[i] = simple_len_check(i, coords[i]) for i in coords: for j in coords[i]: simple_count_check(j) for i in station_count: if station_count[i] > 4: for j in coords: for jj in coords[j]: if i == jj: coords[j].remove(jj) for i in coords: for j in coords[i]: x,y = check_objects(i,j) if (x,y) not in maps: maps.append((x,y)) collision_fails = [] for i in maps: for j in maps: if i != j: if simple_collision_check(i, j): collision_fails.append((i,j)) collision_fails_count = {} for i in collision_fails: for j in i: if collision_fails_count.get(j): collision_fails_count[j] = collision_fails_count[j] + 1 else: collision_fails_count[j] = 1 for i in collision_fails_count: if collision_fails_count[i] > 4: maps.remove(i) regenerate_maps = {} for i in maps: if not regenerate_maps.get(i[0]): regenerate_maps[i[0]] = [] if not regenerate_maps.get(i[1]): regenerate_maps[i[1]] = [] if i[1] not in regenerate_maps[i[0]]: regenerate_maps[i[0]].append(i[1]) if i[0] not in regenerate_maps[i[1]]: regenerate_maps[i[1]].append(i[0]) # Линии-паразиты: [55.7285836, 37.640936],[55.745199, 37.6893076] # [55.7045344, 37.6238334],[55.745199, 37.6893076] # [55.7237247, 37.3974261],[55.6100116, 37.2660261] exeption_list = [((55.7285836, 37.640936),(55.745199, 37.6893076)),((55.7045344, 37.6238334),(55.745199, 37.6893076)), ((55.7237247, 37.3974261),(55.6100116, 37.2660261))] for i in exeption_list: remove_exeption(i[0],i[1]) pickle.dump(regenerate_maps, map_file(action='wb', filename='coords_maps.db')) pickle.dump(maps, map_file(action='wb', filename='maps.db')) def correct_coords_map(file): def simple_len_check(obj1, obj2): x,y = obj1 x1,y1 = obj2 l1 = max(x1,x) - min(x1,x) l2 = max(y1,y) - min(y1,y) if l1 < 0.3 and l2 < 0.3: return True def return_neighbors(neighbors_list, exeption): result = [] if not neighbors_list: return False for i in neighbors_list[2:]: if i != "NULL" or i != exeption: x = get_one_entry('stations', i) if x: result.append(x) if result: return result def get_parent(): nonlocal stations, stations_end for i in stations: if len(stations[i]) <= 1: y = get_one_entry('stations', i[0], fild='coordinateX', name2=i[1], fild2='coordinateY') if len(stations[i]) == 1: e = get_one_entry('stations', stations[i][0][0], fild='coordinateX', name2=stations[i][0][1], fild2='coordinateY') if e: e = e[0] else: e = "NULL" n = get_one_entry('neighbors', y[0]) parent = return_neighbors(n, e) stations_end[y] = parent stations_end = {} stations = pickle.load(map_file(filename=file)) get_parent() for i in stations_end: for j in stations_end: if stations_end[i] == stations_end[j] and i != j and stations_end[i] and stations_end[j]: if simple_len_check(i[-2:], stations_end[j][0][-2:]): if stations_end[j][0][-2:] not in stations[i[-2:]]: stations[i[-2:]].append(stations_end[j][0][-2:]) if simple_len_check(j[-2:], stations_end[j][0][-2:]): if stations_end[j][0][-2:] not in stations[j[-2:]]: stations[j[-2:]].append(stations_end[j][0][-2:]) stations_end = {} get_parent() for i in stations_end: if not stations[i[-2:]]: stations[i[-2:]].append(stations_end[i][0][-2:]) stations_end = {} get_parent() for i in stations_end: for j in stations_end: if stations_end[j] and i[0] == stations_end[j][0][0]: if simple_len_check(i[-2:], j[-2:]): if j[-2:] not in stations[i[-2:]]: stations[i[-2:]].append(j[-2:]) if i[-2:] not in stations[j[-2:]]: stations[j[-2:]].append(i[-2:]) stations_end = {} get_parent() maps = [] for i in stations: for j in stations[i]: if (i,j) not in maps: maps.append((i,j)) pickle.dump(stations, map_file(action='wb', filename=file)) pickle.dump(maps, map_file(action='wb', filename='maps.db')) def build_stations_coord(file): addict = pickle.load(map_file(filename=file)) add = [] for i in addict: x = get_one_entry('stations', i[0], fild='coordinateX', name2=i[1], fild2='coordinateY') if x and (x[0], x[-2], x[-1]) not in add: add.append((x[0], x[-2], x[-1])) stations = [] stations_for_schedule = [] for i in get_table('schedule', fild='station_name'): if i[4] not in stations_for_schedule: stations_for_schedule.append(i[4]) for i in stations_for_schedule: x = check_regexp(i)[0] if type(x) == list: for j in check_regexp(i)[0]: if (j[0], j[-2], j[-1]) not in stations: stations.append((j[0], j[-2], j[-1])) else: if (x[0], x[-2], x[-1]) not in stations: stations.append((x[0], x[-2], x[-1])) for i in add: if i not in stations: stations.append(i) pickle.dump(stations, map_file(action='wb', filename='stations.db')) def correct_map_and_stations(file_stations, file_coordinate, file_map): stations_name = pickle.load(map_file(filename=file_stations)) stations_coords = pickle.load(map_file(filename=file_coordinate)) stations_map = pickle.load(map_file(filename=file_map)) combinate = {} removeble = [] for i in stations_name: if i[-2:] in stations_coords: combinate[i] = stations_coords[i[-2:]] removeble.append(i) for i in removeble: stations_name.remove(i) del stations_coords[i[-2:]] for i in stations_coords: for j in stations_coords[i]: if (i,j) in stations_map: stations_map.remove((i, j)) for i in stations_name: combinate[i] = [] pickle.dump(combinate, map_file(action='wb', filename='combinate_maps.db')) pickle.dump(stations_map, map_file(action='wb', filename=file_map)) def correct_checks(file): def generate_ends(): nonlocal ends, alone, combinate ends = {} alone = [] for i in combinate: if len(combinate[i]) == 1: ends[i] = combinate[i] if len(combinate[i]) == 0: alone.append(i) def ends_simple_detect(ends): def get_lines(main, parent): r = [0,0] x,y = main x1,y1 = parent mX,mY,miX,miY=(max(x,x1),max(y,y1),min(x,x1),min(y,y1)) if mX == x: r[0] = lambda main,b: True if main<b else False else: r[0] = lambda main,b: True if main>b else False if mY == y: r[1] = lambda main,b: True if main<b else False else: r[1] = lambda main,b: True if main>b else False return r def get_sqad(obj,obj2): x,y = obj x1,y1 = obj2 mX, mY, miX, miY = (max(x, x1), max(y, y1), min(x, x1), min(y, y1)) sqad = (mX, mY, miX, miY) return ((mX-miX), (mY-miY), sqad) def get_perimeter(sqad): l1 = sqad[0] - sqad[2] l2 = sqad[1] - sqad[3] return (l1,l2) def get_diag(obj,obj2): x = get_sqad(obj,obj2) l1,l2 = get_perimeter(x[-1]) line = math.sqrt(l1*l1 + l2*l2) return line def recursive(num=0.15, noconnect=False): nonlocal ends, connect endings = [] for i in ends: for j in ends: if i != j: x, y = get_lines(i[-2:], ends[i][0]) if x(i[1], j[1]) and y(i[2], j[2]): xl, yl, sqad = get_sqad(i[-2:], j[-2:]) if xl < num and yl < num and 'Москва-Пассажирская' not in i[ 0] and 'Москва-Пассажирская' not in j[0]: if 'Москва-Рижская' not in i[0] and 'Москва-Рижская' not in j[0]: if not noconnect: for n in alone: if sqad[2] < n[1] < sqad[0] and sqad[3] < n[2] < sqad[1]: if not connect.get(n): connect[n] = [i, j] else: endings.append((i,j)) if noconnect: return endings nonlocal alone,combinate while True: connect = {} recursive() if any(connect): for i in connect: l1 = get_diag(i[-2:], connect[i][0][-2:]) l2 = get_diag(i[-2:], connect[i][1][-2:]) if l1 > l2 and connect[i][1] not in combinate[i]: combinate[i].append(connect[i][1]) elif l1 < l2 and connect[i][0] not in combinate[i]: combinate[i].append(connect[i][0]) generate_ends() else: x = recursive(num=0.1,noconnect=True) for i in x: if i[1] not in combinate[i[0]]: combinate[i[0]].append(i[1]) if i[0] not in combinate[i[1]]: combinate[i[1]].append(i[0]) break combinate = pickle.load(map_file(filename=file)) maps = pickle.load(map_file(filename='maps.db')) stations = pickle.load(map_file(filename='stations.db')) maxX = max(combinate, key=lambda x:x[1] if combinate[x] else 0)[1] minX = min(combinate, key=lambda x:x[1] if combinate[x] else 1000)[1] maxY = max(combinate, key=lambda x:x[2] if combinate[x] else 0)[2] minY = min(combinate, key=lambda x:x[2] if combinate[x] else 1000)[2] sqad = (maxX, minX, maxY, minY) removeble = [] for i in combinate: if not minX < i[1] < maxX or not minY < i[2] < maxY: removeble.append(i) for i in removeble: del combinate[i] ends = {} alone = [] generate_ends() ends_simple_detect(ends) for i in combinate: for j in combinate[i]: if (i[-2:],j[-2:]) not in maps: maps.append((i[-2:],j[-2:])) pickle.dump(combinate, map_file(action='wb', filename=file)) pickle.dump(stations, map_file(action='wb', filename='stations.db')) pickle.dump(maps, map_file(action='wb', filename='maps.db')) def correct_exeptions(): def get_coord(name, count=0): nonlocal combinate, stations x = 0 for i in combinate: if i[0] == name: x = i[-2:] if not count: return x else: count -= 1 for i in stations: if i[0] == name: x = i[-2:] if not count: return x else: count -= 1 if x: return x def maps_operator(obj, operator=None): nonlocal maps if operator == 'add' and obj not in maps: maps.append(obj) elif operator == 'rem': if obj in maps: maps.remove(obj) if (obj[1], obj[0]) in maps: maps.remove((obj[1], obj[0])) def len_check(x,y): a,b = x a1,b1 = y if max(a,a1) - min(a,a1) < 0.3 and max(b,b1) - min(b,b1) < 0.3: return True def added(station_name, station_name2, combinate): x = get_coord(station_name) y = get_coord(station_name2) count = 0 while not len_check(x,y) and count < 10: count += 1 x = get_coord(station_name, count) y = get_coord(station_name2, count) if x and y: for i in combinate: if i[-2:] == x and y not in combinate[i]: combinate[i].append(y) if i[-2:] == y and x not in combinate[i]: combinate[i].append(x) maps_operator((x,y), 'add') else: print('Error') print(station_name, station_name2) print(x,y) return combinate def removed(station_name, station_name2, combinate): x = get_coord(station_name) y = get_coord(station_name2) for i in combinate: for j in range(len(combinate[i])): if len(combinate[i][j]) == 3: combinate[i][j] = combinate[i][j][-2:] if i[-2:] == x and y in combinate[i]: combinate[i].remove(y) if i[-2:] == y and x in combinate[i]: combinate[i].remove(x) maps_operator((x, y), 'rem') return combinate combinate = pickle.load(map_file(filename='combinate_maps.db')) stations = pickle.load(map_file(filename='stations.db')) maps = pickle.load(map_file(filename='maps.db')) combinate = added('Москва-Товарная-Павелецкая', 'ЗИЛ', combinate) combinate = removed('Новопеределкино', 'Ромашково', combinate) combinate = removed('Захарово', 'Сушкинская', combinate) combinate = added('Голицыно', 'Захарово', combinate) combinate = added('199 км', 'Кубинка I', combinate) combinate = added('Туманово', 'Мещёрская', combinate) combinate = added('Азарово', 'Садовая (154 км)', combinate) combinate = added('Муратовка', 'Садовая (154 км)', combinate) combinate = added('Калуга II', 'Горенская', combinate) combinate = added('Тихонова Пустынь', 'Сляднево', combinate) combinate = added('Нара', 'Зосимова Пустынь', combinate) combinate = added('Бекасово I', 'Ожигово', combinate) combinate = removed('Латышская', 'Пожитково', combinate) combinate = removed('Зосимова Пустынь', 'Пожитково', combinate) combinate = removed('Зосимова Пустынь', 'Ожигово', combinate) combinate = removed('Ожигово', 'Пожитково', combinate) combinate = removed('Зосимова Пустынь', 'Посёлок Киевский', combinate) combinate = added('Бекасово I', 'Посёлок Киевский', combinate) combinate = added('Бекасово I', 'Пожитково', combinate) combinate = added('Сандарово', 'Столбовая', combinate) combinate = added('Космос', 'Аэропорт-Домодедово', combinate) combinate = added('Ленинская', 'Домодедово', combinate) combinate = added('Лагерный', 'Рязань-II', combinate) combinate = added('Рязань-I', 'Рязань-II', combinate) combinate = added('Осаново', 'Пожога', combinate) combinate = added('Ундол', 'Сушнево', combinate) combinate = added('Металлург', 'Фрязево', combinate) combinate = added('Наугольный', '81 км', combinate) combinate = added('Бужаниново', '90 км', combinate) combinate = added('Арсаки', '90 км', combinate) combinate = added('Струнино', 'Александров', combinate) combinate = added('Струнино', 'Александров-2', combinate) combinate = added('Александров', 'Александров-2', combinate) combinate = added('Александров', 'Мошнино', combinate) combinate = added('71 км', 'Костино', combinate) combinate = removed('Жилино', 'Поваровка', combinate) combinate = removed('Депо', 'Поваровка', combinate) combinate = added('Депо', 'Жилино', combinate) combinate = removed('Поваровка', 'Берёзки-Дачные', combinate) combinate = added('Поварово I', 'Берёзки-Дачные', combinate) combinate = added('Шереметьевская', 'Аэропорт Шереметьево', combinate) combinate = added('Манихино I', '50 км', combinate) combinate = added('Ромашково', 'Рабочий Посёлок', combinate) combinate = removed('Депо', '142 км', combinate) pickle.dump(combinate, map_file(action='wb', filename='combinate_maps.db')) pickle.dump(stations, map_file(action='wb', filename='stations.db')) pickle.dump(maps, map_file(action='wb', filename='maps.db')) # --------------------------------- main function ---------------------------------------------------------------------- # Если отсутсвуют данные собирает информация о станциях, поездах и линиях из модуля parserus.py. И Выполняет их обработку # для построения карты линий и станций. Возвращает список всех необходимых к построению линий и список всех необходимых к # построению станций. Создание большого кол-ва вспомогательных файлов обусловленно большим временем исполнения операции def main(): x = os.path.dirname(os.path.abspath(__file__)) def parser_work(): if not check_exist_table('stations'): bild_stations() if not check_exist_table('trains'): bild_schedule() def maps_work(x): if not os.path.exists(os.path.join(x, 'data', 'graph.db')): build_graph() if not os.path.exists(os.path.join(x, 'data', 'full_map.db')): bild_coord_graph() if not os.path.exists(os.path.join(x, 'data', 'short_map.db')): bild_short_map('full_map.db') if not os.path.exists(os.path.join(x, 'data', 'coords_maps.db')): bild_coords_map('short_map.db') def stations_work(x): if not os.path.exists(os.path.join(x, 'data', 'stations.db')): build_stations_coord('coords_maps.db') def correction_work(x): correct_coords_map('coords_maps.db') correct_map_and_stations('stations.db', 'coords_maps.db', 'maps.db') correct_checks('combinate_maps.db') correct_exeptions() def final_correct(x): y = pickle.load(map_file(filename='combinate_maps.db')) for i in ['maps.db', 'stations.db', 'full_map.db', 'graph.db', 'short_map.db', 'coords_maps.db', 'combinate_maps.db']: map_file(filename=i).close() if os.path.exists(os.path.join(x, 'data', i)): os.remove(os.path.join(x, 'data', i)) removeble = [] for i in y: if not y[i]: removeble.append(i) for j in range(len(y[i])): if len(y[i][j]) == 3: y[i][j] = y[i][j][-2:] for i in removeble: del y[i] pickle.dump(y, map_file(action='wb', filename='fmaps.db')) def generate_maps(dict_obj): maps = [] for i in xd: for j in xd[i]: if (i[-2:], j) not in maps and (j, i[-2:]) not in maps: maps.append((i[-2:], j)) maps = list(map(list, maps)) for i in range(len(maps)): maps[i] = list(map(list, maps[i])) return maps if not os.path.exists(os.path.join(x, 'data', 'data.db')): parser_work() if not os.path.exists(os.path.join(x, 'data', 'fmaps.db')): maps_work(x) stations_work(x) correction_work(x) final_correct(x) x = map_file(filename='fmaps.db') xd = pickle.load(x) stations = [[i[0], [i[-2],i[-1]]] for i in xd] maps = generate_maps(xd) return (maps, stations) # ---------------------------------------------------------------------------------------------------------------------- main()
true
76d4e8a0c297775cece57c9453ef381abe4ab549
Python
martwo/ndhist
/test/constant_bin_width_axis_test.py
UTF-8
2,407
3.015625
3
[ "BSD-2-Clause" ]
permissive
import unittest import numpy as np import ndhist class Test(unittest.TestCase): def test_constant_bin_width_axis(self): """Tests if the constant_bin_width_axis class works properly. """ import math stop = 10 start = 0 width = 1 axis = ndhist.axes.linear(start,stop,width, label='MyLabel', name='MyAxis') def _check_axis(axis): self.assertTrue(axis.name == 'MyAxis') self.assertTrue(axis.label == 'MyLabel') # The name and label is changeable. So lets try to change it. axis.name = 'MyNewAxis' self.assertTrue(axis.name == 'MyNewAxis') axis.label = 'MyNewLabel' self.assertTrue(axis.label == 'MyNewLabel') # Change back the label and name. axis.name = 'MyAxis' self.assertTrue(axis.name == 'MyAxis') axis.label = 'MyLabel' self.assertTrue(axis.label == 'MyLabel') # The dtype of the axis is choosen automatically by the numpy.linspace # function. nbins = int(math.ceil((stop - start) / width)) + 1 edges_dtype = np.linspace(start, stop, num=nbins, endpoint=True).dtype self.assertTrue(axis.dtype == edges_dtype) self.assertTrue(axis.has_underflow_bin) self.assertTrue(axis.has_overflow_bin) self.assertFalse(axis.is_extendable) self.assertTrue(axis.nbins == 12) self.assertTrue(np.all(axis.binedges == np.array( [-np.inf,0,1,2,3,4,5,6,7,8,9,10,+np.inf] ))) self.assertTrue(np.all(axis.lower_binedges == np.array( [-np.inf,0,1,2,3,4,5,6,7,8,9,10] ))) self.assertTrue(np.all(axis.upper_binedges == np.array( [0,1,2,3,4,5,6,7,8,9,10,+np.inf] ))) self.assertTrue(np.all(axis.bincenters == np.array( [-np.inf,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,+np.inf] ))) self.assertTrue(np.all(axis.binwidths == np.array( [np.inf,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,np.inf] ))) _check_axis(axis) # Put the axis into a ndhist object and check the values again. h = ndhist.ndhist((axis,)) _check_axis(h.axes[0]) if(__name__ == "__main__"): unittest.main()
true
473c9ae4b2a8a2a10642546c1f77384ab49f2027
Python
AlvinJS/Python-practice
/caesar.py
UTF-8
445
3.84375
4
[]
no_license
# alphabet = [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z] def encrypt (text,s): result = "" for i in range (len(text)): char=text[i] if (char.isupper()): result += char((ord(char) +s - 65)%26 + 65) else: result += char((ord(char) + s-97)%26 + 97) return result word= str(input("Enter a word to encrypt: ")) s = int(input("Enter the key: ")) print("Cipher text is :" + encrypt(word, s))
true
99dbea9918329739c5a198efcab44586136770d0
Python
cris-cs/Titanic
/Main3.py
UTF-8
1,191
3.515625
4
[]
no_license
from Titanic01 import sexe, survided, name, age nbPassagers = len(sexe) def analyseTitanic(totalPassagers, sexePassager): nbSurvivants = 0 nbPassagersCritere = 0 for passager in range(nbPassagers): if survided[passager] == 1: nbSurvivants += 1 if sexe[passager] == sexePassager: nbPassagersCritere += 1 def analyseTitanic2(totalPassagers, agemin, agemax): nbSurvivants = 0 nbPassagersCritere = 0 for passager in range(nbPassagers): if survided[passager] == 1: nbSurvivants += 1 if agemax >= age[passager] >= agemin: nbPassagersCritere += 1 taux = nbPassagersCritere / nbSurvivants * 100 return taux # print(analyseTitanic(nbPassagers)) # tauxSurvie = analyseTitanic(nbPassagers) / nbPassagers * 100 # print(f'{tauxSurvie:.1f}%') print(analyseTitanic(nbPassagers, 'male')) print(analyseTitanic(nbPassagers, 'female')) print('0-19') print(analyseTitanic2(nbPassagers, 0, 19)) print('20-39') print(analyseTitanic2(nbPassagers, 20, 39)) print('40-59') print(analyseTitanic2(nbPassagers, 40, 59)) print('60->') print(analyseTitanic2(nbPassagers, 60, 100000))
true
2a93e72ffb964b6672667b3c8b6f223bc024069d
Python
mathewdgardner/sklearn-porter
/sklearn_porter/utils/Shell.py
UTF-8
607
2.84375
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import subprocess as subp class Shell(object): @staticmethod def call(command, cwd=None): if isinstance(command, str): command = command.split() if isinstance(command, list): return subp.call(command, cwd=cwd) return None @staticmethod def check_output(command, cwd=None, shell=True, stderr=subp.STDOUT): if isinstance(command, str): command = command.split() if isinstance(command, list): subp.check_output(command, shell=shell, cwd=cwd, stderr=stderr) return None
true
3e056101d6d0d12cbec35bd70a0e8e5d07629e2f
Python
messierspheroid/instruction
/D26 - NATO alphbet/pandas_for_loop.py
UTF-8
829
3.3125
3
[]
no_license
student_dict = { "student": ["Angela", "James", "Lily"], "score": [56, 76, 98], } # # looping through dictionaries # for (key, value) in student_dict.items(): # print(key) # print(value) import pandas student_data_frame = pandas.DataFrame(student_dict) # print(student_data_frame) # # loop through a data frame is not time efficient bc pandas has its own built in for loop func # for (key, value) in student_data_frame.items(): # print(key) # print(value) # # loop through rows of a data frame # for (index, row) in student_data_frame.iterrows(): # # print(index) # # this provides an overview of the DataFrame # # each row is a pandas series object # if row.student == "Angela": # print(row.score) # new_dict = {new_key: new_value for (key, value) in dict.items() if test}
true
067398217e8d02458390a83533edfadd741b6cf5
Python
mglavitsch/jumbler-python
/tests/test_jumble.py
UTF-8
1,667
2.828125
3
[ "MIT" ]
permissive
import unittest from jumblepkg.jumble import Jumbler class TestJumbler(unittest.TestCase): def test_indices(self): # print(sys.getdefaultencoding()) jumbler = Jumbler(" ") indices = jumbler.get_indices() self.assertEqual(indices, []) jumbler.text = "Zaphod Beeblebrox" indices = jumbler.get_indices() self.assertEqual(indices, [[0, 5], [7, 16]]) jumbler.text = " Zaphod __äöü___ $ Beeble123brox !?+ " indices = jumbler.get_indices() self.assertEqual(indices, [[3, 8], [12, 14], [21, 26], [30, 33]]) jumbler.text = "Arthur Dent\nFord Prefect\nTricia McMillan\nZaphod Beeblebrox" indices = jumbler.get_indices() self.assertEqual(indices, [[0, 5], [7, 10], [12, 15], [17, 23], [ 25, 30], [32, 39], [41, 46], [48, 57]]) def test_jumble(self): jumbler = Jumbler(" ") jumbled_text = jumbler.get_jumbled_text(True, 1000) self.assertEqual(jumbled_text, " ") jumbler.text = "Zaphod Beeblebrox" jumbled_text = jumbler.get_jumbled_text(True, 1000) self.assertEqual(jumbled_text, "Zohapd Bbeeboelrx") jumbler.text = " Zaphod __äöü___ $ Beeble123brox !?+ " jumbled_text = jumbler.get_jumbled_text(True, 1000) self.assertEqual( jumbled_text, " Zohapd __äöü___ $ Bbelee123borx !?+ ") jumbler.text = "Arthur Dent\nFord Prefect\nTricia McMillan\nZaphod Beeblebrox" jumbled_text = jumbler.get_jumbled_text(True, 1000) self.assertEqual( jumbled_text, "Auhrtr Dnet\nFrod Pcereft\nTciira MaiMlcln\nZoahpd Blerbboeex") if __name__ == '__main__': unittest.main()
true
343f78f1f7c9a42d18e89f618abf203cb4ee4dd3
Python
Vikas-KM/python-programming
/partial_func.py
UTF-8
112
2.796875
3
[]
no_license
from functools import partial def multiply(x, y): return x * y db1 = partial(multiply, 2) print(db1(3))
true
00f15580c91354e88e889f14c97bc492ba560d80
Python
sethhardik/face-recognition-
/train.py
UTF-8
1,462
2.734375
3
[]
no_license
import numpy as np from sklearn.model_selection import train_test_split from keras_vggface.vggface import VGGFace from keras.engine import Model from keras.layers import Input import numpy as np import keras from keras.layers import Dense # extracting file saved by data_prep.py data = np.load('face_data.npz') x , y = data['x'], data['y'] #categorical conversion of data label y = keras.utils.to_categorical(y, 6) # using transfer learning to reduce the time required to train the algo resnet = VGGFace(model='resnet50',input_shape=(224, 224, 3)) layer_name = resnet.layers[-2].name #adding our own custom layers to make the model work on our datatset out = resnet.get_layer(layer_name).output out = Dense(6,activation='softmax')(out) resnet_4 = Model(resnet.input, out) # removing last layer of the model and adding my own layer to it for layer in resnet_4.layers[:-1]: layer.trainable = False resnet_4.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) #checking the final created dataset print (resnet_4.summary()) # training the model we have created with our own dataset resnet_4.fit(x, y,batch_size=10,epochs=10,shuffle=True) #saving the trained model so that it can be used afterwards resnet_4.save("/home/hardik/Desktop/model_save_face.h5") # checking the accuracy of the model on training data only as i used a very small dataset scores = resnet_4.evaluate(x, y, verbose=1) print('Test accuracy:', scores[1])
true
b8bf56e9fd3c760a5f46de01bfecfd4baf23c1cb
Python
yszpatt/PythonStart
/pythonlearn/train/prac9.py
UTF-8
153
3.1875
3
[]
no_license
#!/usr/bin/env python # coding:utf-8 # 暂停一秒输出。 import time j = int(input("输入暂停时间:")) time.sleep(j) print("计时时间到")
true
da05558ba14a3f086a6c05fb454e7d5b3e450a57
Python
DaHuO/Supergraph
/codes/CodeJamCrawler/16_0_1/rbonvall/sheep.py
UTF-8
389
3.484375
3
[]
no_license
#!python3 def main(): T = int(input()) for t in range(T): n = int(input()) print("Case #{}: {}".format(t + 1, solve(n))) def solve(n): if n == 0: return 'INSOMNIA' digits = set(range(10)) i = 0 while digits: i += 1 m = i * n while m: digits.discard(m % 10) m //= 10 return i * n main()
true
318daa2aceee700891dff06bad61ebd07270ac47
Python
mburq/dynamic_optimization_benchmarks
/src/envs/matching/matching_env.py
UTF-8
6,226
3.3125
3
[ "MIT" ]
permissive
import networkx as nx from src.envs.matching.vertex import basic_vertex_generator from src.envs.matching.taxi_vertex import taxi_vertex_generator from src.envs.matching.kidney_vertex import unweighted_kidney_vertex_generator class matching_env(object): """ Implements a simple dynamic matching environment, where arrivals are generated by a ``vertex_generator''. Assumes that departing unmatched yields non-negative value. This allows us to remove negative-weight edges and sparsify the graph. """ def __init__(self, p): """ Input: parameter object p used for the vertex_generator """ self.vertex_generator = self.get_vertex_generator(p.vertex_generator_name, offset=p.offset, r_seed=p.r_seed, iterations=p.T, dep_rate=p.dep_rate, dep_mode=p.dep_mode) self.reset() def reset(self): """ Resets the environment to an empty graph. """ self.state = nx.Graph() # The state is a networkx graph object self.offline_graph = nx.Graph() self.present_vertices = [] # Keeps track of the offline graph. self.total_reward = 0 self.last_reward = 0 self.time = 0 # time is discrete. arriving_vertex = self.vertex_generator.new_vertex(self.time) self.arrival(arriving_vertex) return self.state def step(self, action): """ Main function of the matching environment. Input: - An action in the form of a list of pairs of vertices to be matched. It proceeds in 4 steps: - Removes matched vertices from the graph, - Computes the value of matched edges, - Computes departures among unmatched vertices, - Samples new vertex arrivals. Output: - A state in the form of a networkx graph. - The reward associated with the action. """ self.time += 1 matched_vertices = action reward = self.match(matched_vertices) self.departures(self.time) arriving_vertex = self.vertex_generator.new_vertex(self.time) self.arrival(arriving_vertex) return self.state, reward def arrival(self, new_vertex): """ Arrival of a new vertex to the system Authorizes self loops, it is up to the vertex class to declare 0 weights for self loops Edges are associated two weights: - ``true_w'' corresponds to the true value of matching that edge. - ``weight'' corresponds to an auxiliary value that a matching algorithm may use to compute perturbed max-weight-matchings. This is used by the re-optimization algorithm. """ # update state space self.state.add_node(new_vertex) for v in self.state.nodes(): match_weight = new_vertex.match_value(v) if match_weight > 0 and v != new_vertex: self.state.add_edge(new_vertex, v, weight=match_weight, true_w=match_weight) # Update offline graph self.offline_graph.add_node(new_vertex) self.present_vertices.append(new_vertex) for v in self.present_vertices: match_weight = new_vertex.match_value(v) self.offline_graph.add_edge(new_vertex, v, weight=match_weight, true_w=match_weight) def departures(self, time): """ Departure of all vertices that have been waiting too long. """ reward = 0 to_remove = [] for v in self.state.nodes(): if v.departure(time): to_remove.append(v) reward += v.unmatched_value() self.state.remove_nodes_from(to_remove) self.total_reward += reward self.last_reward += reward self.present_vertices[:] = [v for v in self.present_vertices if not v.departure(time)] return reward def match(self, matched_vertices): """ Removes the matched_vertices, and computes the reward. Input: list of vertex pairs """ reward = 0 for (v1, v2) in matched_vertices: reward += self.state[v1][v2]['true_w'] if v1 == v2: self.state.remove_node(v1) else: self.state.remove_node(v1) self.state.remove_node(v2) self.last_reward += reward self.total_reward += reward return reward def get_vertex_generator(self, arr, offset=0, r_seed=1, iterations=10000, dep_rate=10, dep_mode='deterministic'): """ Decides whether to generate vertices: - Randomly: ``basic''. - By re-sampling vertices from a dataset of kidney exchange patient-donor pairs: ``kidney_unweighted''. - By sampling from a 1-hour period of the New-York taxi dataset: ``taxi''. The departure process is stochastic, and depends on the ``dep_mode'' variable. The departure rate ``dep_rate'' corresponds to the expected waiting time of a vertex in the system. """ if arr == 'basic': return basic_vertex_generator() elif arr == 'taxi': return taxi_vertex_generator("data/taxi/rides.csv", mode="deterministic", dep_mode=dep_mode, shift_arrivals=offset, dep_rate=dep_rate) elif arr == 'kidney_unweighted': return unweighted_kidney_vertex_generator('data/kidney/', mode='random', dep_mode=dep_mode, dep_rate=dep_rate, iterations=iterations) else: assert False, "Arrival type {} not supported".format(arr)
true
f436dae491ed6cfb16212c1bbbe2e4fdb3e044be
Python
guoshan45/guoshan-pyschool
/Conditionals/02.py
UTF-8
106
2.75
3
[]
no_license
def isIsosceles(x, y, z): a = x > 0 and y > 0 and z > 0 return a and (x == y or y == z or z == x)
true
664ae376e61201be721af6804da20565b123521b
Python
rifkhan95/karsten
/generalRunFiles/MpiTest.py
UTF-8
804
2.578125
3
[ "MIT" ]
permissive
from mpi4py import MPI import numpy as np import pandas as pd def fixDataframe(array): array = comm.gather(array, root=0) array2 = np.sum(array, axis=0) return array2 comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() temp = np.zeros((30,5)) data = pd.DataFrame(temp) rows = [rank + size * i for i in range(int(30/size)+1) if comm.rank + comm.size*i < 30] for i in rows: print i j = np.ones((1,5)) temp[i,:]=i*j data.iloc[i] = i*j comm.Barrier() #print temp #print data #data = comm.gather(data.values, root=0) #data2 = np.sum(data, axis=0) #print data2 temp2 = fixDataframe(data) print temp2 #print 'before gather' #temp = comm.gather(temp,root=0) # #print temp # #if rank ==0: # temp2 = np.sum(temp,axis=0) # print 'temp2' # print temp2
true
1eb8f3e5dfa786454bd28102e444cee67605b47f
Python
mustafakadi/pr_watcher
/app/exception_definitions/reg_key_cannot_be_read_error.py
UTF-8
372
3.203125
3
[ "MIT" ]
permissive
class RegKeyCannotBeReadError(Exception): """ Custom exception definition, that will be raised in case of an error in reading process of a registry key :param msg: The custom message to be shown. """ def __init__(self, msg, key_name): super().__init__("Registry Key Cannot be Read! Msg: " + str(msg)) self.key_name = key_name
true
f3148bde324cf1c76bc36e64a4480d1bed8df230
Python
Giovanacarmazio/Projeto-operadora-e-regiao
/codigo.py
UTF-8
415
3.09375
3
[ "MIT" ]
permissive
import phonenumbers from phonenumbers import geocoder , carrier #Inserir o número com codigo do país e o ddd phoneNumer = phonenumbers.parse("+5551999999999") #Procura a operadora operadora = carrier.name_for_number(phoneNumer, 'pt-br') #Procura a regiao regiao = geocoder.description_for_number(phoneNumer, 'pt-br') #Printa os resultados print("A Operadora é: " + operadora) print("O estado é: " + regiao)
true
2f5e412ac36573c31d841d4cc80f4f29bed1a737
Python
miracleave-ltd/mirameetVol24
/src/UpdateDeleteBigQuery03.py
UTF-8
809
2.515625
3
[]
no_license
import os import OperationObject # 操作対象の設定情報取得 from google.cloud import bigquery # GCP認証設定 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = OperationObject.GOOGLE_APPLICATION_CREDENTIALS # BigQueryクライアントAPIの利用宣言 client = bigquery.Client() # 更新SQL生成 updateQuery = "UPDATE `{0}.{1}.{2}` SET mira_text = '更新' WHERE id = 2".\ format(OperationObject.project_id, OperationObject.dataset_id, OperationObject.table_id) # SQL実行 client.query(updateQuery).result() print("Updated ID=2.") # 削除SQL生成 deleteQuery = "DELETE `{0}.{1}.{2}` WHERE id = 3".\ format(OperationObject.project_id, OperationObject.dataset_id, OperationObject.table_id) # SQL実行 client.query(deleteQuery).result() print("Deleted ID=3.")
true
f4fd27a7355d5253d3208cd6f684adbf9b0a7ce0
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_199/2160.py
UTF-8
593
3.359375
3
[]
no_license
def solve(pancakes, k): n = 0 # find a pancake (-) for i in range(len(pancakes)): if pancakes[i] == '-': if i + k > len(pancakes): return None new_block = ''.join(['-' if c == '+' else '+' for p in pancakes[i:i+k] for c in p]) pancakes = pancakes[:i] + new_block + pancakes[i+k:] n += 1 return n num_cases = int(input()) for i in range(num_cases): pancakes, k = input().split(' ') k = int(k) n = solve(pancakes, k) print("Case #%d: %s" % (i+1, n if n is not None else 'IMPOSSIBLE'))
true
7a7e1da61ca78d3f132879a9f4015466ff373c8a
Python
amrayach/pml_streamlit
/app.py
UTF-8
3,536
2.5625
3
[]
no_license
from predictExplain import ModelsDeploy import numpy as np import pandas as pd import streamlit as st from spacy.tokens import Doc, Span from spacy_streamlit import visualize_ner def to_rgba(hex, val): val = int(val) * 10 val = abs(val) val = 255 if val > 255 else val hex = hex + "{:02x}".format(val) return hex deploy = ModelsDeploy() st.set_page_config(page_title='Character-Level CNN Predict & Explain:', page_icon='random', layout='wide', initial_sidebar_state='collapsed') st.title('Character-Level CNN Predict & Explain:') st.text('Select Model:') model_in = st.selectbox('Models:', ['Yelp-Review-Polarity', 'AG-News-Category-Classifier'], index=0) # widget slider for choosing number of top n important words in making decision slider_range=50 slider_start_value=5 top_n_words = 5 sentence = st.text_input('Enter Sentence:', value="Like any Barnes & Noble, it has a nice comfy cafe, and a large selection of books. The staff is very friendly and helpful. They stock a decent selection, and the prices are pretty reasonable. Obviously it's hard for them to compete with Amazon. However since all the small shop bookstores are gone, it's nice to walk into one every once in a while.") col_library = {'positive': '#FF0000', 'negative': '#0000FF'} if model_in == 'Yelp-Review-Polarity': prediction, probs, heatmap = deploy.explain(sentence, model='yelp') st.text('--------------------------------') if prediction == 0: st.text("The Prediction is Negative") else: st.text("The Prediction is Positive") st.text('--------------------------------') st.text('Class Probabilities:') dataframe = pd.DataFrame( np.array([probs]), columns=('Negative', 'Positive')) st.dataframe(dataframe.style.highlight_max(axis=0)) else: prediction, probs, heatmap = deploy.explain(sentence, model='ag_news') st.text('--------------------------------') if prediction == 0: st.text("The Prediction is World") elif prediction == 1: st.text("The Prediction is Sports") elif prediction == 2: st.text("The Prediction is Business") else: st.text("The Prediction is Sci/Tech") st.text('--------------------------------') st.text('Class Probabilities:') dataframe = pd.DataFrame( np.array([probs]), columns=('World', 'Sports', 'Business', 'Sci/Tech')) st.dataframe(dataframe.style.highlight_max(axis=0)) words = [i[0] for i in heatmap] vals = [i[1] for i in heatmap] spaces = [True] * (len(words) - 1) spaces.append(False) doc = Doc(deploy.nlp.vocab, words=words, spaces=spaces) ents = [] tags = [] for j, i in enumerate(doc): new_ent = Span(doc, j, j + 1, label=str(j)) ents.append(new_ent) tags.append(str(j)) doc.ents = [] doc.ents = ents col_library = {'positive': '#FF0000', 'negative': '#0000FF'} colors = [to_rgba(col_library['positive'], x) if x >= 0 else to_rgba(col_library['negative'], x) for x in vals] tags = tuple(list(map(lambda x: ''.join(list(map(lambda y: y.upper(), x.split('_')))), tags))) col_dict = {} for i in range(len(tags)): col_dict[tags[i]] = colors[i] for i in range(len(heatmap)): heatmap[i] += (str(i),) heatmap_neg = list(sorted(list(filter(lambda x: x[1] < 0, heatmap)), key=lambda x: x[1])) heatmap_pos = list(sorted(list(filter(lambda x: x[1] >= 0, heatmap)), key=lambda x: x[1], reverse=True)) visualize_ner(doc, labels=tags, colors=col_dict, show_table=True, title='Character2Word Attention Heatmap:')
true
380e290674a1b6fdc635af6215a6fba1ef250671
Python
CO18325/UNIVARIATE-LINEAR-REGRESSION
/script.py
UTF-8
9,231
3.546875
4
[]
no_license
import matplotlib.pyplot as plt plt.style.use('ggplot') ''' %matplotlib inline %matplotlib inline sets the backend of matplotlib to the 'inline' backend: With this backend, the output of plotting commands is displayed inline within frontends like the Jupyter notebook, directly below the code cell that produced it. The resulting plots will then also be stored in the notebook document. ''' import numpy as np import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D # THIS FUNCTION DISPLAYS THE RAW DATA GIVEN TO US # IN THE FORM OF A SCATTER PLOT # THIS WILL HELP US TO UNDERSTAND THE DATA BETTER def visualize_raw_data(data): # X-AXIS WILL CONTAIN THE POPULATION # Y-AXIS WILL CONTAIN THE PROFIT x = 'Population' y = 'Profit' title = 'POPULATION(in 10000) V/S PROFIT(in $10000)' # NOW WE CALL THE FUNCTION FROM SNS LIBRARY graph = sns.scatterplot(x=x,y=y,data=data) graph.set_title(title) # MATPLOTLIB FUNCTION TO SHOW ALL THE GRAPHS plt.show() #FUNCTION COMPUTE COST # X,y,y_pred ARE ALL MATRICES AND ALL OPERATIONS ARE MATRICE OPERATIONS # EVEN THETA IS ALSO A MATRICE #COST J(theta) IS PARAMETRIZED BY THETA MATRICE AND NOT X or y!!! def cost_function(X,y,theta): # I.E. NO. OF ENTRES IN THE DATA SET m = len(y) # THIS IS THE MATHEMATICAL DOT PRODUCT # TO OBTAIN PREDICTION WRT TO THETA AND X y_pred = X.dot(theta) # FIND THE SQUARED ERROR sq_error = (y_pred - y) ** 2 # AND THEN WE FINALLY RETURN THE COST FUNCTION CALCULATED return 1/(m * 2) * np.sum(sq_error) # GRADIENT DESCENT FUNCTION # TO CALCULATE THE MINIMUM COST # WE WILL USE AN ALGORITHM CALLED BATCH GRADIENT DESCENT # WITH EACH ITERATION IN THIS ALGO THE PARAMETERS I.E. THETA COMES CLOSER TO THEIR OPTIMAL VALUE def gradient_descent(X,y,theta,alpha,iterations): m = len(y) # WE WILL STORE THE COST FUNCTIONS CALCULATED EACH TIME HERE # THIS IS JUST TO VISUALIZE OUR CONVERGENCE TOWARDS OPTIMAL COST FUNCTION # WRT THE ITERATIONS DONE costs = [] for i in range(0,iterations): # CALCULATE THE PREDICTION WRT TO theta y_pred = X.dot(theta) # CALCULATE THE SUBMASSION PART OF THE GRADIENT DESENCT # GO BACK TO SLIDE error = np.dot(X.transpose(),(y_pred - y)) # CHANGE THE THETA FOR ACHEIVING THE OPTIMAL COST FUNCTION theta -= alpha * error * (1/m) # STORE THE COST FUNCTION OBTAINED IN OUR costs VARIABLE # FOR FUTURE VISULAIZATIONS costs.append(cost_function(X,y,theta)) # AND FINALLY RETURN THE OPTIMAL THETA FOUND # AND THE COSTS STORED OVER ITERATIONS return theta,costs # VISUALIZING THE COST FUNCTION ON A 3D GRAPH # IN THIS FUNCTION WE ARE EXPLICITLY GIVING THETA VALUES TO THE COST FUNCTION # FOR THESE THETA VALUES THE COST FUNCTION GIVES US THE COST # WHICH IS STORED IN AN ARRAY (cost_values) # THESE VALUES ARE NOW SENT TO THE graph_formation() FUNCTION # IN graph_formation() THE ARRAY OF COST STORED IS USED TO CONSTRUCT A 3D GRAPH # THE PURPOSE OF VISUALIZATION IS TO SEE HOW GRADIENT FUNCTION WILL MOVE def visualize_cost_function(X, y): # THE BELOW FUNCTION np.linespace DEFNES THAT # RETURN 100 EQUISACED VALUES B/W -10 AND 10 theta_0 = np.linspace(-10,10,100) theta_1 = np.linspace(-1,4,100) # DEFINE A MATRICE TO STORE THETA VALUES #MATRICE OF SIZE THETA_0 X THETA_1 # THIS IS DONE TO INCORPORATE EACH AND EVERY COMBINATION OF THETAS cost_values = np.zeros((len(theta_0),len(theta_1))) for i in range(len(theta_0)): for j in range(len(theta_1)): # GET CURRENT THETA VALUES specific_theta = np.array([theta_0[i], theta_1[j]]) # CALCULATE THE COST BASED ON THE ABOVE DUMMY THETA VALUES cost_values[i,j] = cost_function(X, y, specific_theta) # NOW WE CAN FORM THE GRAPH graph_formation(theta_0,theta_1,cost_values) def graph_formation(theta_0,theta_1,cost_values): fig = plt.figure(figsize=(12,8)) # DEFINIG GRAPH TYPE graph = fig.gca(projection='3d') surf = graph.plot_surface(theta_0,theta_1,cost_values,cmap='viridis') # COLORBAR OR THE LEGEND fig.colorbar(surf, shrink=0.5, aspect=5) plt.xlabel('THETA_0') plt.ylabel('THETA_1') graph.set_zlabel('J OF THETA') # TO GIVE INITIAL ANGLE TO THE GRAPH FOR BETTER VIEW graph.view_init(30,330) plt.show() # PLOT THE CONVERGENCE # IN THIS GRAPH WE ARE GOING TO PLOT J(THETA) AGAINST NO. OF ITERATIONS # THE OBJECTIVE IS TO VIEW HOW J(THETA) IS MOVING TOWARDS MINIMUM VALUE IN EACH ITERATION # THE Costs(i.e. J(THETA)) HAVE BEEN ALREADY CALCULATED USING gradient_descent FUNCTION # ARGUMENTS : Cost AND No. of Iterations def convergence_grah(costs, iterations): plt.plot(costs) plt.xlabel('ITERATIONS') plt.ylabel('J OF THETA') plt.title('COST FUNCTION VALUES VS ITERATIONS OF GRADIENT DESCENT') plt.show() # THIS FUNCTION CONSTRUCTS TH BEST FIT LINEAR REGRESSION LINE ON OUR DATA # IT USES THE FINAL VALUES OF THE THETA def regression_fit(data, theta): # FIRST WE WILL CONSTRUCT THE SCATTER PLOT WITH OUR DATA x = 'Population' y = 'Profit' title = 'REGRESSION FIT' graph = sns.scatterplot(x=x,y=y,data=data) graph.set_title(title) # NOW WE WILL OVERLAY THE REGRESSION LINE #THETA IS A 2*1 ARRAY WHICH IS NOT FIT FOR MATRIC MULTIPLICATION # SO, WE NEED TO SQUEEZE THE THETA MATRICE theta = np.squeeze(theta) # NOW THETA IS 1*2 MATRICE OR WE CAN SAY AN ARRAY # NOW GETTING THE POINTS FOR THE LINEAR REGRESSION LINE x_value = [x for x in range(5,25)] # 5-25 AS OUR POPULATION IS BETWEEN THIS RANGE y_value = [(x*theta[1] + theta[0]) for x in x_value] # PREDICTED VALUES FOR TRAINING DATA #SEABORN FUNCTION TO CONSTRUCT THE LINE sns.lineplot(x_value, y_value) plt.show() # THIS FUNCTION WILL PREDCT THE PROFIT FOR UNKNOWN POPULATION # USING THE FINAL THETA VALUES # IT ALSO TAKES THE 2*1 X MATRICE AS ARGUMENT # 2*1 MATRICE FOR SUCCESSFUL DOT PRODUCT WITH THETA def predict_data(theta, X): theta = np.squeeze(theta) #print(theta.transpose()) #print(X) y_pred = np.dot(theta.transpose(), X) return y_pred ############################################################################# def main(): # THIS IS THE SIZE OF THE WINDOW THAT WILL OPEN TO SHOW ALL THE GRAPHS plt.rcParams['figure.figsize'] = (12,8) # DATA RECEIVED # DATA RECEIVED IS M0STLY IN THE FORM OF DATA FRAME # DATA FRAME IS VERY USEFUL DATASTRUCTURE IN PANDAS LIBRARY IN TERMS OF DATA SET MANAGEMENT data = pd.read_csv('bike_sharing_data.txt') # TO PRINT FIRST FIVE ENTRIES OF THE DATASET TO UNDERSTAND THE DATA BETTER print(data.head()) #POPULATION OF CITIES IN 10000s #PROFIT IN UNITS 10000 DOLLARS #TO GET MORE INFO ABOUT THE CSV FILE:- # THIS WILL HELP US UNDERSTAND THE DATA TYPES OF THE DATA # AND ALSO CHECK IF THERE IS ANY NULL VALUES PRESENT HERE print(data.info()) #VISUALIZATION OF DATA visualize_raw_data(data) ####################################################################################### #SETTING UP REGRESSION VARIABLES: #I.E. NO. OF ENTRIES m = data.Population.values.size #X is a Matrice of 1's and the Population Column # 1's is to accomodate the Theta0 i.e. the Interept # X is a m * 2 Matrice X = np.append(np.ones((m,1)), data.Population.values.reshape(m,1), axis=1) # y is the data set of the profits. It is also m*1 Matrice y = data.Profit.values.reshape(m,1) #theta is a 2*1 Matrice #Initializing the values of theta with ZERO! # Although it is not a very good practice theta = np.zeros((2,1)) # JUST TO TEST THE COST FUNCTION print(cost_function(X, y, theta)) ####################################################################################### #LEARNING RATE alpha = 0.01 #NO. OF ITERATION FOR CONVERGENCE iterations = 2000 theta, costs = gradient_descent(X, y, theta, alpha, iterations) # TO CHECK THE VALUE OF h(x) AND FINAL VALUE OF THE THETA MATRICE print("h(x) = {} + {}x1".format(str(round(theta[0,0],2)), str(round(theta[1,0],2)))) #VISUALIZE THE COST FUNCTION WITH EXPLICIT THETA VALUES IN A 3D GRAPH visualize_cost_function(X, y) # VISUALIZE THE COST WITH RESPECT TO NUMBER OF ITERATIONS OF GRADIENT DESCENT convergence_grah(costs, iterations) # TO VISUALIZE THE REGRESSION LINE regression_fit(data, theta) print(theta) # PREDICT THE RESULTS FOR UNKNOWN VALUES input_population = float(input('ENTER THE POPULATION IN 10000: ')) # CONVERTING THE INPUT TO 2*1 MATRICE FOR DOT PRODUCT input_population_matrice = np.append( 1, input_population) #print(input_population_matrice) predicted_profit = predict_data(theta, input_population_matrice) print(predicted_profit) print('PROFIT FOR POPULATION OF {} WOULD BE Rs{}'.format(str(round(input_population*10000)), str(round(predicted_profit*1000)))) main()
true
34baa5bf047df6437a509d3617678b56fdd1ab14
Python
kymy86/machine-learning
/nb_trainer.py
UTF-8
5,026
3.234375
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/python3 import re import pickle import os from random import randrange from pathlib import Path from math import log10 from logger import Logger class Trainer(Logger): _DATASET = 'dataset/SMSSpamCollection' STOREDATA = 'dataset/MemoryTrainingData' STORETESTDATA = 'dataset/MemoryTestData' #rejection treshold _TRESHOLD = 100 # document dataset _dataset = [] # list of test data test_data = [] #occurences of each word in each document words_counter = [] # dictionary with all words in dataset and spam/ham probability dictionary = [] # tot number of spam m_spam = 0 # tot number of ham m_ham = 0 # tot number of documents m_tot = 0 n_words = 0 offset = 0 w_spam = 0 #tot number of ham w_ham = 0 def __init__(self, dataset_size=0.7): super(Trainer, self).__init__() if not self._is_memory(): self._load_data(dataset_size) self._compute_dict() self._init_params() def _load_data(self, split_ratio): """ Load the sample data to train the algorithm """ with open(self._DATASET, 'r') as dataset_filename: lines = dataset_filename.readlines() self._dataset = [line.strip("\n").split("\t") for line in lines] self._compute_train_test_dataset(split_ratio) def _compute_train_test_dataset(self, split_ratio): dataset_size = int(len(self._dataset)*split_ratio) train_set = [] test_set = list(self._dataset) while len(train_set) < dataset_size: index = randrange(len(test_set)) train_set.append(test_set.pop(index)) self._dataset = train_set self.test_data = test_set def _compute_dict(self): for document in self._dataset: words = self.get_list_words(document[1]) # count the occurences of each word in each document self.words_counter.append({i:words.count(i) for i in words}) for word in words: if word not in self.dictionary: #add words in the dictionary, by initializing them with score of 1 self.dictionary.append({'p_spam':1, 'p_ham':1, 'word':word}) def _init_params(self): #count the number of spam/ham documents for item in self._dataset: if item[0] == 'spam': self.m_spam += 1 else: self.m_ham += 1 self.m_tot = len(self._dataset) self.n_words = len(self.dictionary) self.w_spam = self.n_words self.w_ham = self.n_words # offset the rejection treshold self.offset = log10(self._TRESHOLD)+log10(self.m_ham)-log10(self.m_spam) @staticmethod def get_list_words(document): """ From the given document, create a list of allow words. Remove the single char words an the most frequent words """ regex = '(the|to|you|he|she|only|if|it|[.,#!?]|)' words = re.sub(regex, '', document, flags=re.IGNORECASE).lower().split() for word in words: if re.match('[a-z0-9]{1}', word, flags=re.IGNORECASE): words.remove(word) return words def train_agent(self): """ From the dictionary loaded, start to train the agent """ if not self._is_memory(): for idx, line in enumerate(self._dataset): #assign a score to each word if line[0] == 'spam': self._count_occurences('p_spam', idx) else: self._count_occurences('p_ham', idx) self._normalization() self._store_samples_in_memory() def _normalization(self): #normalize count to get the probabilities for word in self.dictionary: word['p_ham'] = word['p_ham']/self.w_ham word['p_spam'] = word['p_spam']/self.w_spam def _count_occurences(self, key, idx): for word in self.dictionary: if word['word'] in self.words_counter[idx]: # counter is the number of times a given word appear in the given document counter = self.words_counter[idx][word['word']] word[key] = word[key] + counter if key == 'p_spam': self.w_spam = self.w_spam + counter else: self.w_ham = self.w_ham + counter def _store_samples_in_memory(self): pickle.dump(self.dictionary, open(self.STOREDATA, 'wb')) pickle.dump(self.test_data, open(self.STORETESTDATA, 'wb')) def _is_memory(self): memory_name = Path(self.STOREDATA) return memory_name.is_file() def reset_memory(self): """ Reset memory and re-train the agent """ if self._is_memory(): os.remove(self.STOREDATA) os.remove(self.STORETESTDATA)
true
76f69e43d157bd6b7a8cfba0dbba871d90533482
Python
brandonkim0511/Python
/class/loop.py
UTF-8
1,817
3.3125
3
[]
no_license
# while 1 == 2 : print("Chaeyoung isnot the most beautiful in Twice ") # adj = ["red", "big", "tasty"] # fruits = ["apple", "banana", "cherry"] # # for x in adj: # print(x) # for y in fruits: # print(y) # number1 = [1, 2, 3, 4] # number2 = [1, 2, 3, 4] # number3 = [1, 2, 3, 4] # number4 = [1, 2, 3, 4] # # cnt = 0 # # # for a in number1: # for b in number2: # for c in number3: # for d in number4: # cnt += 1 # print(a, b, c, d, cnt) # # # print(cnt) # # # while True : # input("sdgfdf\n") # # oddNumberList = [1] # # limit = int(input(" set boundary : ")) # # while True: # nextval = (oddNumberList[len(oddNumberList)- 1] + 2) # if nextval > limit: # break # oddNumberList.append(nextval) # # print(oddNumberList) fibonacciList = [1, 1] # limit = int(input(" set boundary : ")) while True: newVal = fibonacciList[len(fibonacciList) - 1] + fibonacciList[len(fibonacciList) - 2] if newVal > limit: break fibonacciList.append(newVal) print(fibonacciList) # prepUpgraded = range(limit) # [0, 1, 2, 3, 4 , ...] # finalArr = [] # # # for x in prepUpgraded : # temp = 0 # for idx in range(prepUpgraded.index(x)): #[0,1] # temp += prepUpgraded[idx] # finalArr.append(temp) # # print(finalArr) # fibonacciListUpgraded = [] # result = 0 # # for x in fibonacciList: # print(x) # print('||||||||') # for idx in range(fibonacciList.index(x)): # print(range(fibonacciList.index(x))) # print(idx) # print(fibonacciList[idx]) # print("--------") # # result = result + x # result += fibonacciList[idx] # fibonacciListUpgraded.append(result) # # print(fibonacciListUpgraded) # # # # x = 1 # while x < 1000: # print(x) # x += x
true
ee8a8a3920b21e40d425ef7e940bb7b24835cdb4
Python
Aasthaengg/IBMdataset
/Python_codes/p03993/s210070602.py
UTF-8
445
3.078125
3
[]
no_license
import sys import collections def swap(t): if t[1] < t[0] : return (t[1],t[0]) else: return t n = int(sys.stdin.readline().rstrip()) a = [int(x) for x in sys.stdin.readline().rstrip().split()] zippeda = list(map(swap,list(zip(range(1,n+1),a)))) zippeda.sort() c = collections.Counter(zippeda) counter = 0 for a in c.most_common(): if a[1] < 2: break else: counter = counter + 1 print(counter)
true
64aeb331d52223e2b3dce26416ad6fede258ef57
Python
hacklinshell/learn-python
/进程和线程/do_threadLocal.py
UTF-8
1,144
3.75
4
[]
no_license
import threading #一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。 loca_school = threading.local() #全局变量local_school是一个ThreadLocal对象 def process_student(): std = loca_school.student # Thread对它都可以读写student属性 每个属性如local_school.student都是线程的局部变量 可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。 print('hello , %s (in %s )' % (std,threading.current_thread().name)) def prcess_thread(name): loca_school.student = name #全局变量local_school是一个dict,不但可以用local_school.student,还可以绑定其他变量,如local_school.teacher等等。 process_student() t1 = threading.Thread(target=prcess_thread,args=('Alice',),name='thread-1') t2 = threading.Thread(target=prcess_thread,args=('BOB',),name='thread-2') t1.start() t2.start() t1.join() t2.join() #hello , Alice (in thread-1 ) #hello , BOB (in thread-2 )
true
8e743394c2379246bb2b70f092802d3d23dd1709
Python
kulkarniharsha/my_code
/FAC_SVM.py
UTF-8
2,330
3.6875
4
[]
no_license
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ """Playing with Harshvardhan's SVM""" """ Lets see what we have.""" import scipy import pandas as pd import matplotlib.pyplot as plt import sklearn, sklearn.svm import random """We will import data from "final.xlsx" into the Pandas dataframe df.""" df = pd.read_excel("final.xlsx", sheetname="Sheet1", skiprows=1) """We want to use "Temperature", "pH", "CrContent", "DO" and "FluidVelocity" to predict "MassTransferCoefficient".The former we club in a list called Xvars and the latter is Yvar.""" Xvars = ["temperature","pH","CrContent","DO","FluidVelocity"] Yvar = "MassTransferCoefficient" """We will have to divide the dataset into training and validation sets. The training set is 70% of the data and the validation is the rest. We will sample randomly from the data for the training set.""" list_indices = scipy.array(list(df.index)) frac_train = 0.9 n_train = int(len(df)*frac_train) training_indices = random.sample(list(list_indices), n_train) #Sample n_train items from list_indices without replacement validation_indices = scipy.array(list(set(list_indices) - set(training_indices))) #Subtracted two sets len(validation_indices), len(training_indices) """Now that we have the indices, lets split the dataset into training and validation sections. Fit the SVM on the training section and test the fit on the validation section.""" df_training = df.iloc[training_indices] df_validation = df.iloc[validation_indices] Xvars_training = df_training[Xvars].as_matrix() Yvar_training = df_training[Yvar].as_matrix() Xvars_validation = df_validation[Xvars].as_matrix() Yvar_validation = df_validation[Yvar].as_matrix() """Now lets get the SVM """ clf = sklearn.svm.SVR(C = 100.0, gamma = 0.0009, epsilon = 0.00089, kernel='rbf') #make our SVM object. Call it whatever you want """Lets train it on the training set """ clf.fit(Xvars_training, Yvar_training) """And now lets see how well it fits.""" Yvar_pred = clf.predict(Xvars_validation) plt.plot(Yvar_validation, Yvar_pred, 'ro') plt.plot([0, max(Yvar_validation)],[0, max(Yvar_validation)], 'b') plt.show() """Let's get a correlation:""" r, p = scipy.stats.pearsonr(Yvar_validation, Yvar_pred) """Percent correlation is:""" r_sqr=r**2*100 print (r) print(r_sqr)
true
3ee525fda461634088fc291225738ac33458a6a9
Python
abu-bakarr/holbertonschool-web_back_end
/0x00-python_variable_annotations/3-to_str.py
UTF-8
171
3.40625
3
[]
no_license
#!/usr/bin/env python3 """convert to string transform to string a value """ def to_str(n: float) -> str: """takes n and returns his string form""" return str(n)
true
5040cbd883bdd87066fb9ed7aa00a4748bb6428c
Python
PaulaG9/MSFCalc
/calc/functions.py
UTF-8
756
2.8125
3
[]
no_license
import pandas as pd def getNetPatients(numpatients, duration, monincrease): if duration/30>1: final_mth_patients=numpatients+(round(duration/30)-1)*monincrease net_patients=((numpatients+final_mth_patients)*round(duration/30))/2 else: net_patients=numpatients+monincrease return net_patients def getEstimate(net_patients, duration, frequency, units, packaging, packaging_size): if packaging=='bottle': estimate=(net_patients * duration * frequency * units* 5)/packaging_size else: estimate=(net_patients * duration * frequency * units) return estimate
true
c39cc4fc83896753683d71ceb2b4c07b16d67eac
Python
JackTJC/LeetCode
/sort_alg/HeapSort.py
UTF-8
969
3.25
3
[]
no_license
from typing import List class Solution: def smallestK(self, arr: List[int], k: int) -> List[int]: # topK问题,使用堆排序解决 def adjustHead(heap, i, length): temp = heap[i] k = 2 * i + 1 while k < length: if k + 1 < length and heap[k] < heap[k + 1]: k += 1 if heap[k] > temp: heap[i] = heap[k] i = k else: break k = 2 * k + 1 heap[i] = temp # 维护一个大小为k的大顶堆 if k == 0: return [] if k >= len(arr): return arr heap = arr[:k] for i in range(int(k / 2) - 1, -1, -1): adjustHead(heap, i, k) for i in range(k, len(arr)): if arr[i] < heap[0]: heap[0] = arr[i] adjustHead(heap, 0, k) return heap
true
ed48571077750543079a11c8452aa1eb7b362d43
Python
SonicMadushi/Week-01
/codes/7.0 Numpy.py
UTF-8
333
3
3
[]
no_license
import numpy as np a=np.array(([1,2,3],[4,5,6])) #print(a.shape) b=np.ones((5,2),dtype=np.int) #b=np.zeros((5,2),dtype=np.int) #print(b) c=np.random.randint(0,5,(4,10)) #print(c) x=np.random.randint(0,10,(1000,500)) y=np.random.randint(0,10,(500,1000)) #print(x) #print(y) z=np.matmul(x,y) print(z)
true
231c588aebe7f66eae4c9556c27eccaa8fcdc46e
Python
huidou74/CMDB-01
/hc_auth/auth_data.py
UTF-8
3,998
2.890625
3
[]
no_license
#!/usr/bin/python #-*- coding:utf8 -*- #BY: H.c def menu_auth(host_obj,request): obj_all = host_obj.values('name', # 使用values()方法时,对象必须是queryset_list 'pos__name', 'pos__auth__url', # 这是 url 路径 'pos__auth__name', # 这是 对应的 名字 'pos__auth__to_display__url', # 权限对应权限的 路径 'pos__auth__to_display__name', # 权限对应权限的 名字 'pos__auth__group__name', # 权限组名 'pos__auth__group__ti__title', # 菜单名 ) menu_dict = {} # 自定义字典数据 for i in obj_all: menu_auth_dict = { # 临时字典 'url': i.get('pos__auth__url'), # 把数据库取到的值,赋给字典 'name': i.get('pos__auth__name'), 'display_url': i.get('pos__auth__to_display__url'), # to_display 里面是对应单个查询的权限名的ID, 'display_name': i.get('pos__auth__to_display__name'), # ID里面包含了 对应ID 的url + name } # {'url': '/auth/update/(\\d+)/', 'name': '编辑权限', 'display_url': '/auth/list/', 'display_name': '查询权限'} # print (i.get('pos__auth__group__ti__title'),menu_dict.keys()) # 菜单名 ( 主机 , dict_keys([]) ) if i.get('pos__auth__group__ti__title') in menu_dict.keys(): # 第一次是空字典,所以是走else if not i.get('pos__auth__to_display__name'): # 第二次 字典有值了 判断 to_display 一对多关系 # not + None 为负负得正 # 如果是空的则是母菜单,有值才是该母菜单的子菜单,层级关系 menu_dict[i.get('pos__auth__group__ti__title')]['lower'].append(menu_auth_dict) # 将字典的lower 的值, 是一个列表 [{},{},{}],往里面添加列表的值(字典) -> append(dict) else: menu_dict[i.get('pos__auth__group__ti__title')] = {} # 创建新字典格式 # {'主机': {}} menu_dict[i.get('pos__auth__group__ti__title')]['title'] = i.get('pos__auth__group__ti__title') # print (menu_dict[i.get('pos__auth__group__ti__title')]) # {'title': '主机'} # print (menu_dict[i.get('pos__auth__group__ti__title')]['title'] ) # title -> 主机 # print (i.get('pos__auth__to_display__name')) # -> None 取不到 if not i.get('pos__auth__to_display__name'): # not + None 为负负得正 menu_dict[i.get('pos__auth__group__ti__title')]['lower'] = [menu_auth_dict, ] # 创建 lower -> {'lower': [{}]} else: menu_dict[i.get('pos__auth__group__ti__title')]['lower'] = [] # i.get('pos__auth__to_display__name') 取到值了,就创建列表 # print('菜单 --- ', menu_dict) request.session['menu_dict']=menu_dict # 存入session request.session.set_expiry(0) # 意思就是关闭浏览器就清掉session, (10) 就是10秒 auth_dict = {} for i in obj_all: if i.get('pos__auth__group__name') in auth_dict.keys(): auth_dict.get(i.get('pos__auth__group__name')).get('url').append(i.get('pos__auth__url')) # 将每个url 以列表的append的方法添加进去,成为单个权限组名的 值 {'用户表':{url: ['a','b','c',]}, } else: auth_dict[i.get('pos__auth__group__name')] = {'url': [i.get('pos__auth__url'), ], } # 将 权限组名 作为 auth_dict 字典的 keys, 将对应权限组的url 作为 auth_dict 字典的 values # print('权限 --- ', auth_dict) request.session['auth_dict']=auth_dict # 存入session request.session.set_expiry(0) # 意思就是关闭浏览器就清掉session, (10) 就是10秒
true
9420cdae068bd89c05621749680673c187e4c3ef
Python
Shank2358/Loistic-Regression
/Logistic Regression/.idea/Logistic Regression.py
UTF-8
2,793
3.5625
4
[]
no_license
# -*- coding: utf-8 -*- from numpy import * from os import listdir # data=[] # label=[] def loadData(direction): print(direction) dataArray = [] labelArray = [] trainfileList = listdir(direction) m = len(trainfileList) for i in range(m): filename = trainfileList[i] fr = open('%s/%s' % (direction, filename)) for line in fr.readlines(): lineArr = line.strip().split() dataArray.append([float(lineArr[0]),float(lineArr[1])]) labelArray.append([int(lineArr[2])]) fr.close() # data=transpose(dataArray) # label = transpose(labelArray) # print(data) # print(label) return dataArray, labelArray # sigmoid(inX)函数 def sigmoid(inX): return 1.0 / (1 + exp(-inX)) # 用梯度下降法计算得到回归系数,alpha是步长,maxCycles是迭代步数。 # def gradAscent(dataArray, labelArray, alpha, maxCycles): # dataMat = mat(dataArray) # size:m*n # labelMat = mat(labelArray) # size:m*1 # m, n = shape(dataMat) # weigh = ones((n, 1)) # for i in range(maxCycles): # h = sigmoid(dataMat * weigh) # error = labelMat - h # size:m*1 # weigh = weigh + alpha * dataMat.transpose() * error # return weigh def gradAscent(dataArray, labelArray, alpha, maxCycles): dataMat = mat(dataArray) # size:m*n labelMat = mat(labelArray) # size:m*1 m, n = shape(dataMat) weigh = mat(ones((n, 1))) for i in range(maxCycles): h = sigmoid(dataMat * weigh) error = labelMat - h # size:m*1 weigh = weigh + alpha * dataMat.transpose() * error return weigh # 分类函数,根据参数weigh对测试样本进行预测,同时计算错误率 def classfy(testdir, weigh): dataArray, labelArray = loadData(testdir) dataMat = mat(dataArray) labelMat = mat(labelArray) h = sigmoid(dataMat * weigh) # size:m*1 print(h) m = len(h) error = 0.0 for i in range(m): if int(h[i]) > 0.5: print(int(labelMat[i]), 'is classfied as: 1') if int(labelMat[i]) != 1: error += 1 print('error') else: print(int(labelMat[i]), 'is classfied as: 0') if int(labelMat[i]) != 0: error += 1 print('error') print('error rate is:', '%.4f' % (error / m)) """ 用loadData函数从train里面读取训练数据,接着根据这些数据,用gradAscent函数得出参数weigh,最后就可以用拟 合参数weigh来分类了。 """ def digitRecognition(trainDir, testDir, alpha, maxCycles): data, label = loadData(trainDir) weigh = gradAscent(data, label, alpha, maxCycles) classfy(testDir, weigh) # 运行函数 digitRecognition('train', 'test', 0.01, 50)
true
47637d0ff5c637740250c1650bbafd61f4ca8192
Python
brunner-itb/masters
/classes_backup.py
UTF-8
14,160
2.546875
3
[]
no_license
class InitialCondition(Expression): def eval_cell(self, value, x, ufc_cell): value[0] = np.random.rand(1) u_D = Expression("rand()/100000", degree=1) class FEMMesh: 'A class which should be able to incorporate all meshes, created or given, and provides all necessary parameters and values' def __init__(self, Mesh, Name, Gender, Source, h_real, u_max_start, SaveFile): #createMesh = True): #if createMesh == False: #read in the given mesh self.mesh = Mesh #define name for FileName purposes self.name = Name #define the gender self.gender = Gender #get the h value self.h_real = h_real #make it a dolfin Constant: self.h = Constant(h_real) #define the u_max_start value, the max concentration of Cdc42, used for h calculation: self.u_max_start = u_max_start #create the File to save the calculated data in try: self.saveFile = File(SaveFile) except RuntimeError: self.saveFile = XDMFFile(SaveFile) self.mesh = Mesh #Make it an only surface mesh, unordered, meaning every normal vector points outwards self.boundaryMesh = BoundaryMesh(Mesh, 'exterior', False) #write it to File #self.fileName = 'mesh_%s_unordered.xml' % self.name #File(self.fileName) << self.boundaryMesh #parse it back in to extract the Orientation #self.tree = ET.parse(self.fileName) #self.triangles = self.tree.findall('mesh/cells/triangle') #order the mesh so it can be iterated over self.boundaryMesh.order() #get vertex coordinates for growing purposes self.coordinates = self.boundaryMesh.coordinates() #initialize vertex edge connectivity self.boundaryMesh.init(0,1) #splice the mesh into x splices and determine which vertex to put into which splice_ #self.classArrayHoldingSlices = meshSlicing(self, amountOfSlices) #save every cells orientation as an array self.orientation = meshClassOrientation(self, straightLengthFactor) #self.orientation = myCellOrientation(self, amountOfSlices, straightLengthFactor) #get normalvector for every cell: self.normalVectors = cellNormals(self.boundaryMesh) #get the starting rmax() (inner radius of all cells, max) value to compare against to trigger Refinement self.start_hmax = self.boundaryMesh.hmax() #create a functionSpace, for future use self.functionSpace = FunctionSpace(self.boundaryMesh, 'CG', 1) #create trial and test-functions: if activeSurfaceSource == True: self.trialFunction = interpolate(Constant(0.0), self.functionSpace) #(u) else: self.trialFunction = interpolate(u_D, self.functionSpace) #interpolate(Constant(0.0), self.functionSpace) self.testFunction = TestFunction(self.functionSpace) #(v) #create function for solutions at current time-step: (u_1_n) self.currentSolutionFunction = Function(self.functionSpace) #define the meshes Source self.source = Source #define the meshes Stimulus, refers to global parameters as of now, should be changed in the future #Element is given so dolfin evaluates the optimal quadrature degree according to the given Expression. #testStimulus is for plotting in 2D #self.stimulus = Expression('(1.0-h)*Ka/std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2) + pow(x[2] - source2, 2)) * exp(-std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2) + pow(x[2] - source2, 2))/std::sqrt(Ds/kb))',\ # element = self.functionSpace.ufl_element(), Ka = Ka, Ds = Ds, kb = kb, h=Constant(self.h_real), source0=self.source[0], source1=self.source[1], source2=self.source[2]) self.twoDStimulus = Expression('(1.0-h)*Ka/std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2)) * exp(-std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2))/std::sqrt(Ds/(kb * Ka/std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2)))))',\ element = self.functionSpace.ufl_element(), Ka = Ka, Ds = Ds, kb = kb, h=Constant(self.h_real), source0=self.source[0], source1=self.source[1]) self.stimulus = Expression('(1.0-h)*Ka/std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2) + pow(x[2] - source2, 2)) * exp(-std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2) + pow(x[2] - source2, 2))/std::sqrt(Ds/(kb * Ka/std::sqrt(pow(x[0] - source0, 2) + pow(x[1] - source1, 2) + pow(x[2] - source2, 2)))))',\ element = self.functionSpace.ufl_element(), Ka = Ka, Ds = Ds, kb = kb, h=Constant(self.h_real), source0=self.source[0], source1=self.source[1], source2=self.source[2]) #get the stimulusString, required for the user defined add function self.stimulusString = self.getStimulusString() #get the starting vertex and the corresponding cell: if activeSurfaceSource == True: self.stimulusCell = correspondingCell(self.boundaryMesh, self.coordinates[closestVertex(self.coordinates, self.source)]) #init the PDE. Rmember that the myRefinement Function creates a new PDE so PDE and after-refinement-mesh are matching. #Because of lack of better knowing it is just these lines copied. Always change both if you want to make changes! self.PDE = inner((self.currentSolutionFunction - self.trialFunction) / k, self.testFunction)*dx - Dm*inner(nabla_grad(self.trialFunction), nabla_grad(self.testFunction))*dx \ - (1.0-self.h)*(nu*k0 + (nu*K*self.trialFunction**2)/(Km**2 + self.trialFunction**2))*self.testFunction*dx + eta*self.trialFunction*self.testFunction*dx - self.stimulus*self.testFunction*dx #create a variable that saves the inital u_sum, should be assigned only at n=0 of course self.u_sum_initial = None #get the needed maps: #get a vertex to cells map, so which vertex is part of which cells self.vertex_to_cells_map = vertex_to_cells_map(self) #create array with vertices and corresponding normals: self.vertex_normal_map = vertex_normal_map(self, self.vertex_to_cells_map, self.normalVectors) #calculate the map to get the vertices to be grown. Which cell has which vertices self.cell_to_vertices_map = cell_to_vertices_map(self) #initialize the gradient, for later use self.gradient = None #calculate the startingvolumes of the cells to scale u_max later on. Since the volume is expanding more Cdc42 should be available self.startVolume = self.getVolume() #if activeSurfaceSource == False, a growthThreshold is needed self.growthThreshold = None #initialize the cellGrowthDeterminingArray, is used in the growth self.cellGrowthDeterminingArray = None #init list of vertices to Grow self.verticesToGrow = None #create CellFunction self.cell_markers_boundary = MeshFunction('bool', self.boundaryMesh, self.boundaryMesh.topology().dim(), False) #CellFunction("bool", self.boundaryMesh) #self.cell_markers_boundary.set_all(True) self.isThereRefinementNecessary = False self.hmin = self.boundaryMesh.hmin() #force on vertex: self.vertex_to_edges_map = vertex_to_edges_map(self) self.initial_cell_edges_and_opposite_angle_map = cell_edges_and_opposite_angle_map(self) #at creation these should be equal, so no need to calculate twice self.cell_edges_and_opposite_angle_map = None #self.initial_cell_edges_and_opposite_angle_map #cell_edges_and_opposite_angle_map(self) self.force_on_vertex_list = [None]*self.boundaryMesh.num_vertices() self.Estar = None self.turgor_pressure_on_vertex_list = [None]*self.boundaryMesh.num_vertices() self.cell_volumes = cell_volumes(self) #calculate the volume of the mesh def getVolume(self): return assemble(Constant(1)*Measure("dx", domain=self.boundaryMesh)) # helper function, the stimulus string is needed to add Stimuli and create fitting Expressions def getStimulusString(self): tempStimulusString = '(1.0-%s)*Ka/std::sqrt(pow(x[0] - %f, 2) + pow(x[1] - %f, 2) + pow(x[2] - %f, 2)) * exp(-std::sqrt(pow(x[0] - %f, 2) + pow(x[1] - %f, 2) + pow(x[2] - %f, 2))/std::sqrt(Ds/kb))' %(self.name ,self.source[0],self.source[1],self.source[2],self.source[0],self.source[1],self.source[2]) return tempStimulusString def getStimulusStringWithH(self): tempStimulusString = '(1.0-h)*Ka/std::sqrt(pow(x[0] - %f, 2) + pow(x[1] - %f, 2) + pow(x[2] - %f, 2)) * exp(-std::sqrt(pow(x[0] - %f, 2) + pow(x[1] - %f, 2) + pow(x[2] - %f, 2))/std::sqrt(Ds/kb))' %(self.source[0],self.source[1],self.source[2],self.source[0],self.source[1],self.source[2]) return tempStimulusString # ONLY USED TO ADD THE STIMULI, NOT THE WHOLE CLASS! def __add__(self, other): if isinstance(self, FEMMesh): if isinstance(other, FEMMesh): #print 'self and other are FEMMesh' newExpressionString = self.getStimulusString() + ' + ' + other.getStimulusString() #print(newExpressionString) #print("first source: ", self.source[:], 'second source: ', other.source[:]) kwargs = {'element' : self.functionSpace.ufl_element() ,str(self.name) : Constant(self.h_real), str(other.name) : Constant(other.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} return Expression(newExpressionString, **kwargs) elif isinstance(other, Expression): #print 'self is FEMMesh, other is Expression' newExpressionString = self.getStimulusString() kwargs = {'element' : self.functionSpace.ufl_element() ,str(self.name) : Constant(self.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} return Expression(newExpressionString, **kwargs) + other # if the other is already a Sum of two Expressions, needed an extra case: elif str(type(other)) == "<class 'ufl.algebra.Sum'>": newExpressionString = self.getStimulusString() kwargs = {'element' : self.functionSpace.ufl_element() ,str(self.name) : Constant(self.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} return Expression(newExpressionString, **kwargs) + other # elif isinstance(self, Expression): # if isinstance(other, FEMMesh): # #print 'self is Expression, other is FEMMesh' # newExpressionString = other.getStimulusString() # kwargs = {'element' : other.functionSpace.ufl_element() ,str(other.name) : Constant(other.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} # return Expression(newExpressionString, **kwargs) + self # elif isinstance(other, Expression): # #print 'self and other are Expressions' # return self + other # get the gradient of all relevant Stimuli on my mesh def getGradient(self, usedMeshesList): tempCumulatedStimuli = None for Mesh in usedMeshesList: if Mesh != self: #everyone but myself if Mesh.gender != self.gender: #everyone of the opposite gender #print self.name, self.gender,'s opposite gender:', Mesh.name, Mesh.gender if tempCumulatedStimuli == None: tempCumulatedStimuli = Mesh else: tempCumulatedStimuli = Mesh + tempCumulatedStimuli #if no other gender is detected, take your "own" stimulus. Should mean an artifical stimulus has been applied if tempCumulatedStimuli == None: tempCumulatedStimuli = self.stimulus #print tempCumulatedStimuli #check if the overloaded add function has been used, if not make an Expression: try: self.gradient = gradient(project(tempCumulatedStimuli, self.functionSpace)) return self.gradient except TypeError: if isinstance(tempCumulatedStimuli, Expression): print( 'gradient creation: tempCumulatedStimuli is an Expression') self.gradient = gradient(interpolate(tempCumulatedStimuli, self.functionSpace)) return self.gradient elif isinstance(tempCumulatedStimuli, self.__class__): print( 'gradient creation: tempCumulatedStimuli is a Sum') self.gradient = gradient(interpolate(tempCumulatedStimuli, self.functionSpace)) return self.gradient # elif isinstance(tempCumulatedStimuli, FEMMesh): #create an Expression which can be used in the gradient function. Similar to the __add__ function, just with one class # print 'gradient creation: tempCumulatedStimuli is a FEMMesh' # kwargs = {'element' : self.functionSpace.ufl_element() ,str(tempCumulatedStimuli.name) : Constant(tempCumulatedStimuli.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} # tempOnlyOneStimulusExpression = Expression(tempCumulatedStimuli.getStimulusString(), **kwargs) # self.gradient = gradient(project(tempOnlyOneStimulusExpression, self.functionSpace)) # return self.gradient return self.gradient # if there is only one Mesh for the gradient to consider: except: #kwargs = {'element' : self.functionSpace.ufl_element() ,str(tempCumulatedStimuli.name) : Constant(tempCumulatedStimuli.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} #tempOnlyOneStimulusExpression = Expression(tempCumulatedStimuli.getStimulusString(), **kwargs) self.gradient = gradient(interpolate(tempCumulatedStimuli.stimulus, self.functionSpace)) return self.gradient #if there are no activeSurfaceAreas the stimulus for each mesh has to be precalculated after initializing all meshes. #this is achieved by adding the stimuli strings of all other FEMMeshes and compiling it into an Expression def initSources(self, usedMeshesList): #i have to create a new self.stimulus which is basically all stimuli but my own added tempNewStimulusString = None for FEMMeshes in usedMeshesList: if FEMMeshes != self and FEMMeshes.gender != self.gender: if tempNewStimulusString == None: tempNewStimulusString = FEMMeshes.getStimulusStringWithH() else: tempNewStimulusString = tempNewStimulusString + ' + ' + FEMMeshes.getStimulusStringWithH() #if no other gender is detected, take your "own" stimulus. Should mean an artifical stimulus has been applied if tempNewStimulusString == None: tempNewStimulusString = self.getStimulusStringWithH() print('i am here:', tempNewStimulusString) kwargs = {'element' : self.functionSpace.ufl_element(), 'h' : Constant(self.h_real), "Ka" : Ka, 'Ds' : Ds, 'kb' : kb} self.stimulus = Expression(tempNewStimulusString, **kwargs) # used to reinitialize the PDE after initSources() was run. Updates the PDE function with the latest stimuli def initPDE(self): self.PDE = inner((self.currentSolutionFunction - self.trialFunction) / k, self.testFunction)*dx - Dm*inner(nabla_grad(self.trialFunction), nabla_grad(self.testFunction))*dx \ - (1.0-self.h)*(nu*k0 + (nu*K*self.trialFunction**2)/(Km**2 + self.trialFunction**2))*self.testFunction*dx + eta*self.trialFunction*self.testFunction*dx - self.stimulus*self.testFunction*dx
true
59388671cf47001a1cc0abb8149a42083e380ed5
Python
LangII/GoCalc
/obsolete/taxicabinflcalc.py
UTF-8
5,326
2.828125
3
[]
no_license
from kivy.app import App """ This is stupid... Not sure why, but this import line needs to be commented out if running from main_console.py. """ from gamelogic.stone import Stone # def getStoneRawInfluenceGrid(self, pos, opponent=False): def getStoneRawInfluenceGrid(pos, opponent=False, board_grid=None): board_grid = App.get_running_app().data['board'].grid # pos = [4, 4] raw_infl_max_steps = 36 raw_infl_bias = 5 raw_infl_ceiling = 10 """ Returns a list-of-lists parallel to board.grid where the individual values are floats representing the influence of an individual stone. """ if isinstance(pos, Stone): pos = pos.pos influence_grid = [] for y, row in enumerate(board_grid): influence_row = [] for x, stone in enumerate(row): # influence_grid ignores grid positions with stones (sets influence to 0). if board_grid[y][x] != None or (y == pos[0] and x == pos[1]): raw_influence = 0 else: # Total (taxicab geometry) steps from pos to [y, x]. total_steps = abs(pos[0] - y) + abs(pos[1] - x) # Invert steps to make value assignment on grid applicable. # inverted_steps = self.RAW_INFLUENCE_MAX_STEPS - total_steps inverted_steps = raw_infl_max_steps - total_steps # Apply bias (to make points closer to stone more valuable). # raw_influence = inverted_steps ** self.RAW_INFLUENCE_BIAS raw_influence = inverted_steps ** raw_infl_bias influence_row += [ raw_influence ] influence_grid += [ influence_row ] # Calculate ceiling_transition value: max_infl = max([ i for row in influence_grid for i in row ]) # ceiling_transition = self.RAW_INFLUENCE_CEILING / max_infl ceiling_transition = raw_infl_ceiling / max_infl for y in range(len(influence_grid)): for x in range(len(influence_grid[0])): # Apply ceiling_transition to each value in influence_grid. influence_grid[y][x] = influence_grid[y][x] * ceiling_transition # If calculating for opponent, make all values negative. if opponent: influence_grid[y][x] = -influence_grid[y][x] return influence_grid # def getAllStonesRawInfluenceGrid(self, opponent=False): def getAllStonesRawInfluenceGrid(opponent=False): board = App.get_running_app().data['board'] # influence_grids is a list of individual influence grids for each individual stone. if opponent: # opponent_color = 'white' if self.color == 'black' else 'black' opponent_color = 'white' influence_grids = [] # for stone in self.board.stones[opponent_color]: for stone in board.stones[opponent_color]: stone_infl = getStoneRawInfluenceGrid(stone, True) influence_grids += [ stone_infl ] else: influence_grids = [] # for stone in self.stones: for stone in board.players['black'].stones: stone_infl = getStoneRawInfluenceGrid(stone) influence_grids += [ stone_infl ] # Generate the base all_influence_grid. all_influence_grid = [] # for _ in range(self.board.size[0]): for _ in range(board.size[0]): # all_influence_grid += [[ 0 for _ in range(self.board.size[1]) ]] all_influence_grid += [[ 0 for _ in range(board.size[1]) ]] # Populate all_influence_grid with influence_grids. for y in range(len(all_influence_grid)): for x in range(len(all_influence_grid[0])): all_influence_grid[y][x] = sum([ grid[y][x] for grid in influence_grids ]) return all_influence_grid # def getWholeBoardRawInfluenceGrid(self, to_print=False): def getWholeBoardRawInfluenceGrid(to_print=False): print_justify_by = 7 print_round_dec_by = 2 board = App.get_running_app().data['board'] bot_influence = getAllStonesRawInfluenceGrid() opponent_influence = getAllStonesRawInfluenceGrid(opponent=True) # Generate the base all_influence_grid. whole_board_influence = [] for _ in range(board.size[0]): whole_board_influence += [[ 0 for _ in range(board.size[1]) ]] # Populate whole_board_influence with influence_grids. for y in range(len(whole_board_influence)): for x in range(len(whole_board_influence[0])): whole_board_influence[y][x] = bot_influence[y][x] + opponent_influence[y][x] # If requested, convert to a single pretty-print string. if to_print: to_print = [] for y, row in enumerate(whole_board_influence): new_row = [] for x, i in enumerate(row): if isinstance(board.grid[y][x], Stone): i = '(%s)' % board.grid[y][x].print_char new_row += [ i.center(print_justify_by) ] elif i > 0: i = '+%.*f' % (print_round_dec_by, i) new_row += [ i.rjust(print_justify_by) ] elif i <= 0: i = '%.*f' % (print_round_dec_by, i) new_row += [ i.rjust(print_justify_by) ] to_print += [ ' '.join(new_row) ] whole_board_influence = '\n\n'.join(to_print) return whole_board_influence
true
3655311243e4b23054ea1aaa198ef0739b1db7c8
Python
feczo/pythonclass
/2048/main_7.py
UTF-8
1,246
2.8125
3
[]
no_license
from numpy import random, array a = array([[None for i in range(4)] for i in range(4)]) def addblock(): col = random.randint(4) row = random.randint(4) if not a[row, col]: a[row, col] = 2 else: addblock() def move(way): change = False if way in ['down', 'right']: rows = list(reversed(range(1, 4))) if way in ['up', 'left']: rows = range(3) for col in range(4): for row in rows: if way == 'down': curr = (row, col) prev = (row-1, col) if way == 'up': curr = (row, col) prev = (row+1, col) if way == 'left': curr = (col, row) prev = (col, row+1) if way == 'right': curr = (col, row) prev = (col, row-1) if a[prev]: if a[prev] == a[curr]: a[curr] *= 2 a[prev] = None change = True if not a[curr]: a[curr] = a[prev] a[prev] = None change = True if change: move(way) else: addblock() addblock() addblock()
true
2be99bbb0b5e033bdb1df4cc2036d481ea8ecc9b
Python
mohan-sharan/python-programming
/List/list_1.py
UTF-8
126
3.703125
4
[]
no_license
#CREATE A LIST TO STORE ANY 5 EVEN NUMBERS evenNumbers = [2, 4, 6, 8, 10] print(evenNumbers) #OUTPUT #[2, 4, 6, 8, 10]
true
ec10969a35c55617e100cb701921e112474fe2ac
Python
jiseungshin/pm4py-source
/pm4py/log/exporter/csv.py
UTF-8
1,239
2.71875
3
[ "Apache-2.0" ]
permissive
from lxml import etree from pm4py.log import log as log_instance from pm4py.log import transform as log_transform import pandas as pd def get_dataframe_from_log(log): """ Return a Pandas dataframe from a given log Parameters ----------- log: :class:`pm4py.log.log.EventLog` Event log. Also, can take a trace log and convert it to event log Returns ----------- df Pandas dataframe """ if type(log) is log_instance.TraceLog: log = log_transform.transform_trace_log_to_event_log(log) transfLog = [dict(x) for x in log] df = pd.DataFrame.from_dict(transfLog) return df def export_log_as_string(log): """ Exports the given log to string format Parameters ----------- log: :class:`pm4py.log.log.EventLog` Event log. Also, can take a trace log and convert it to event log Returns ----------- string String representing the CSV log """ df = get_dataframe_from_log(log) return df.to_string() def export_log(log, outputFilePath): """ Exports the given log to CSV format Parameters ---------- log: :class:`pm4py.log.log.EventLog` Event log. Also, can take a trace log and convert it to event log outputFilePath: Output file path """ df = get_dataframe_from_log(log) df.to_csv(outputFilePath)
true
93258b947347cf231d5b38148090071c91a39dbf
Python
bigalex95/tkinterExamples
/tkinter/tkinterExamples/whiteboard/tm copy.py
UTF-8
4,994
3.0625
3
[]
no_license
# Easy Machine Learning & Object Detection with Teachable Machine # # Michael D'Argenio # mjdargen@gmail.com # https://dargenio.dev # https://github.com/mjdargen # Created: February 6, 2020 # Last Modified: February 6, 2020 # # This program uses Tensorflow and OpenCV to detect objects in the video # captured from your webcam. This program is meant to be used with machine # learning models generated with Teachable Machine. # # Teachable Machine is a great machine learning model trainer and generator # created by Google. You can use Teachable Machine to create models to detect # objects in images, sounds in audio, or poses in images. For more info, go to: # https://teachablemachine.withgoogle.com/ # # For this project, you will be generating a image object detection model. Go # to the website, click "Get Started" then go to "Image Project". Follow the # steps to create a model. Export the model as a "Tensorflow->Keras" model. # # To run this code in your environment, you will need to: # * Install Python 3 & library dependencies # * Follow instructions for your setup # * Export your teachable machine tensorflow keras model and unzip it. # * You need both the .h5 file and labels.txt # * Update model_path to point to location of your keras model # * Update labels_path to point to location of your labels.txt # * Adjust width and height of your webcam for your system # * Adjust frameWidth with your video feed width in pixels # * Adjust frameHeight with your video feed height in pixels # * Set your confidence threshold # * conf_threshold by default is 90 # * If video does not show up properly, use the matplotlib implementation # * Uncomment "import matplotlib...." # * Comment out "cv2.imshow" and "cv2.waitKey" lines # * Uncomment plt lines of code below # * Run "python3 tm_obj_det.py" import multiprocessing import numpy as np import cv2 import tensorflow.keras as tf import pyttsx3 import math # main line code # if statement to circumvent issue in windows if __name__ == '__main__': # read .txt file to get labels labels_path = "converted_keras/labels.txt" # open input file label.txt labelsfile = open(labels_path, 'r') # initialize classes and read in lines until there are no more classes = [] line = labelsfile.readline() while line: # retrieve just class name and append to classes classes.append(line.split(' ', 1)[1].rstrip()) line = labelsfile.readline() # close label file labelsfile.close() # load the teachable machine model model_path = 'converted_keras/keras_model.h5' model = tf.models.load_model(model_path, compile=False) # initialize webcam video object cap = cv2.VideoCapture(0) # width & height of webcam video in pixels -> adjust to your size # adjust values if you see black bars on the sides of capture window frameWidth = 1280 frameHeight = 720 # set width and height in pixels cap.set(cv2.CAP_PROP_FRAME_WIDTH, frameWidth) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, frameHeight) # enable auto gain cap.set(cv2.CAP_PROP_GAIN, 0) # keeps program running forever until ctrl+c or window is closed while True: # disable scientific notation for clarity np.set_printoptions(suppress=True) # Create the array of the right shape to feed into the keras model. # We are inputting 1x 224x224 pixel RGB image. data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # capture image check, frame = cap.read() # mirror image - mirrored by default in Teachable Machine # depending upon your computer/webcam, you may have to flip the video # frame = cv2.flip(frame, 1) # crop to square for use with TM model margin = int(((frameWidth-frameHeight)/2)) square_frame = frame[0:frameHeight, margin:margin + frameHeight] # resize to 224x224 for use with TM model resized_img = cv2.resize(square_frame, (224, 224)) # convert image color to go to model model_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB) # turn the image into a numpy array image_array = np.asarray(model_img) # normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 # load the image into the array data[0] = normalized_image_array # run the prediction predictions = model.predict(data) # confidence threshold is 90%. conf_threshold = 90 confidence = [] conf_label = "" threshold_class = "" # for each one of the classes for i in range(0, len(classes)): # scale prediction confidence to % and apppend to 1-D list confidence.append(int(predictions[0][i]*100)) print(confidence[0]) # original video feed implementation #cv2.imshow("Capturing", data) # cv2.waitKey(10)
true
d1a535bf4ab30adabce392c6fa34d16b363d1b6c
Python
namnt1410/stock_yfinance
/main.py
UTF-8
2,462
3.25
3
[]
no_license
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import yfinance as yf import pandas as pd import requests from bs4 import BeautifulSoup import plotly.graph_objects as go from plotly.subplots import make_subplots def make_graph(stock_data, revenue_data, stock): fig = make_subplots(rows=2, cols=1, shared_xaxes=True, subplot_titles=("Historical Share Price", "Historical Revenue"), vertical_spacing = .3) fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data.Date, infer_datetime_format=True), y=stock_data.Close.astype("float"), name="Share Price"), row=1, col=1) fig.add_trace(go.Scatter(x=pd.to_datetime(revenue_data.Date, infer_datetime_format=True), y=revenue_data.Revenue.astype("float"), name="Revenue"), row=2, col=1) fig.update_xaxes(title_text="Date", row=1, col=1) fig.update_xaxes(title_text="Date", row=2, col=1) fig.update_yaxes(title_text="Price ($US)", row=1, col=1) fig.update_yaxes(title_text="Revenue ($US Millions)", row=2, col=1) fig.update_layout(showlegend=False, height=900, title=stock, xaxis_rangeslider_visible=True) fig.show() def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. # Press the green button in the gutter to run the script. if __name__ == '__main__': # print_hi('PyCharm') Tesla = yf.Ticker('TSLA') tesla_data = Tesla.history(period="max") tesla_data.reset_index(inplace=True) print(tesla_data.head()) url = "https://www.macrotrends.net/stocks/charts/TSLA/tesla/revenue" html_data = requests.get(url).text soup = BeautifulSoup(html_data, "html.parser") soup.find_all('title') tesla_revenue = pd.DataFrame(columns=['Date', 'Revenue']) for row in soup.find_all("tbody")[1].find_all("tr"): col = row.find_all("td") date = col[0].text revenue = col[1].text.replace("$", "").replace(",", "") tesla_revenue = tesla_revenue.append({"Date": date, "Revenue": revenue}, ignore_index=True) tesla_revenue.dropna(inplace=True) tesla_revenue = tesla_revenue[tesla_revenue['Revenue'] != ""] print(tesla_revenue.tail()) make_graph(tesla_data, tesla_revenue, 'Tesla') # See PyCharm help at https://www.jetbrains.com/help/pycharm/
true
2bd1582de4c96c7298709790ca2f2be8e1843617
Python
madhuriagrawal/python_assignment
/ouputTask2.py
UTF-8
364
3.8125
4
[]
no_license
x=123 i = 0 count = 0 for i in x: print(i) #it will give the error :'int' object is not iterable while i < 5: print(i) i += 1 if i == 3: break else: print("error") # output will be # 0 # error # 1 # error # 2 while True: print(count) count += 1 if count >= 5: break #output will be # 0 # 1 # 2 # 3 # 4
true
886f09114d627aabfb18a6fcbdf7af8873332b03
Python
Deci-AI/super-gradients
/src/super_gradients/training/losses/cwd_loss.py
UTF-8
2,374
2.609375
3
[ "LicenseRef-scancode-proprietary-license", "Apache-2.0" ]
permissive
from typing import Optional import torch.nn as nn import torch class ChannelWiseKnowledgeDistillationLoss(nn.Module): """ Implementation of Channel-wise Knowledge distillation loss. paper: "Channel-wise Knowledge Distillation for Dense Prediction", https://arxiv.org/abs/2011.13256 Official implementation: https://github.com/irfanICMLL/TorchDistiller/tree/main/SemSeg-distill """ def __init__(self, normalization_mode: str = "channel_wise", temperature: float = 4.0, ignore_index: Optional[int] = None): """ :param normalization_mode: default is for `channel-wise` normalization as implemented in the original paper, softmax is applied upon the spatial dimensions. For vanilla normalization, to apply softmax upon the channel dimension, set this value as `spatial_wise`. :param temperature: temperature relaxation value applied upon the logits before the normalization. default value is set to `4.0` as the original implementation. """ super().__init__() self.T = temperature self.ignore_index = ignore_index self.kl_div = nn.KLDivLoss(reduction="sum" if ignore_index is None else "none") if normalization_mode not in ["channel_wise", "spatial_wise"]: raise ValueError(f"Unsupported normalization mode: {normalization_mode}") self.normalization_mode = normalization_mode def forward(self, student_preds: torch.Tensor, teacher_preds: torch.Tensor, target: Optional[torch.Tensor] = None): B, C, H, W = student_preds.size() # set the normalization axis and the averaging scalar. norm_axis = -1 if self.normalization_mode == "channel_wise" else 1 averaging_scalar = (B * C) if self.normalization_mode == "channel_wise" else (B * H * W) # Softmax normalization softmax_teacher = torch.softmax(teacher_preds.view(B, C, -1) / self.T, dim=norm_axis) log_softmax_student = torch.log_softmax(student_preds.view(B, C, -1) / self.T, dim=norm_axis) loss = self.kl_div(log_softmax_student, softmax_teacher) if self.ignore_index is not None: valid_mask = target.view(B, -1).ne(self.ignore_index).unsqueeze(1).expand_as(loss) loss = (loss * valid_mask).sum() loss = loss * (self.T**2) / averaging_scalar return loss
true
29b8be49e416f26ea2ce60edccb04068c22a0128
Python
aquinzi/tdf-actividades
/_admin-scripts/jsontocsv(activities-name).py
UTF-8
814
2.53125
3
[ "CC0-1.0" ]
permissive
''' run where the files are ''' import json import os final_file = "tipo,nombre,nombre_alt\n" for root, subFolders, files in os.walk(os.getcwd()): for filename in files: filePath = os.path.join(root, filename) if not filePath.endswith(".json") or filename.startswith("_"): continue print (" processing " + filePath) current_text = "" with open(filePath, 'r', encoding='utf-8-sig') as readme: current_text = readme.read() tmp_file = json.loads(current_text) nombre_alt = "\"\"" if "nombre_alt" in tmp_file: nombre_alt = tmp_file["nombre_alt"] final_file += tmp_file["tipo"] + "," + tmp_file["nombre"] + "," + nombre_alt + "\n" with open(os.path.join(os.getcwd(),"actividades_merged.csv"), 'w', encoding='utf-8-sig') as saveme: saveme.writelines(final_file)
true
839ca2222455c92e04d24a70d3d999f1e8f24360
Python
flipelunico/WestWorld
/Miner.py
UTF-8
3,091
2.671875
3
[]
no_license
from BaseGameEntity import BaseGameEntityClass import EntityNames from location_type import location_type from MinerOwnedStates.GoHomeAndSleepTilRested import GoHomeAndSleepTilRested class Miner(BaseGameEntityClass): ComFortLevel = 5 MaxNuggets = 3 ThirstLevel = 5 TirednessThreshold = 5 m_pCurrentState = None m_Location = None m_iGoldCarried = None m_iMoneyInBank = None m_iThirst = None m_iFatigue = None ThirstLevel = 5 TirednessThreshold = 5 MaxNuggets = 3 ComfortLevel = 5 def __init__(self, EntityNames): # super(EntityNames) global m_pCurrentState, m_Location, m_iGoldCarried, m_iMoneyInBank, m_iThirst, m_iFatigue m_Location = location_type.shack m_iGoldCarried = 0 m_iMoneyInBank = 0 m_iThirst = 0 m_iFatigue = 0 m_pCurrentState = GoHomeAndSleepTilRested.getInstance() def ChangeState(self, State): global m_pCurrentState # make sure both states are both valid before attempting to # call their methods # call the exit method of the existing state m_pCurrentState.Exit(self) # change state to the new state m_pCurrentState = State # call the entry method of the new state m_pCurrentState.Enter(self) def Update(self): global m_iThirst m_iThirst += 1 if (m_pCurrentState): m_pCurrentState.Execute(self) def AddToGoldCarried(self, val): global m_iGoldCarried m_iGoldCarried += val if (m_iGoldCarried < 0): m_iGoldCarried = 0 def AddToWealth(self, val): global m_iMoneyInBank m_iMoneyInBank += val if (m_iMoneyInBank < 0): m_iMoneyInBank = 0 def Thirsty(self): global m_iThirst global ThirstLevel ThirstLevel = 5 if (m_iThirst >= ThirstLevel): return True else: return False def Fatigued(self): global m_iFatigue, TirednessThreshold if (m_iFatigue > 5): return True else: return False def Location(self): global m_Location return m_Location def ChangeLocation(self, location_type): global m_Location m_Location = location_type def IncreaseFatigue(self): global m_iFatigue m_iFatigue += 1 def DecreaseFatigue(self): global m_iFatigue m_iFatigue -= 1 def PocketsFull(self): global m_iGoldCarried, MaxNuggets MaxNuggets = 3 if (m_iGoldCarried >= MaxNuggets): return True else: return False def GoldCarried(self): global m_iGoldCarried return m_iGoldCarried def SetGoldCarried(self, val): global m_iGoldCarried m_iGoldCarried = val def Wealth(self): global m_iMoneyInBank return m_iMoneyInBank def BuyAndDrinkAWhiskey(self): global m_iThirst, m_iMoneyInBank m_iThirst = 0 m_iMoneyInBank -= 2
true
cf0e7f4feb2924a1f252b1b4108f2ea0622d68fb
Python
sajandc/Python-Tutorial
/python8.py
UTF-8
68
2.734375
3
[]
no_license
l=[] l=[i for i in input().split(',')] l.sort() print(','.join(l))
true
213878e0b157e5dd22e6cfb6ff4407903899646c
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_135/4118.py
UTF-8
1,724
3.46875
3
[]
no_license
def get_matrix(filename): """This function reads a file and returns a matrix """ line = [] try: handler = open(filename, 'r') line = [ map(int, line.split(' ')) for line in handler] return line except Exception, e: pass def get_row(n,matrix): """this function takes row selected and the matrix and returns a list for that row """ return matrix[n-1] def find_number(ls1, ls2): count = 0 answer = 0 for i in ls1: for j in ls2: if i == j: count +=1 answer = i if answer == 0: return 'Volunteer cheated!' if count !=1: return 'Bad magician!' if answer !=0 and count==1: return answer def write_to_file(output, filename): """ """ try: handler = open(filename, 'w+') handler.write(output+"\n") handler.close() except Exception, e: pass matrix = get_matrix('list.txt') first = matrix[0] del matrix[0] counter = 0 row = [] ls = [] for i in range(0,len(matrix),5): row.append(matrix.pop(counter)) counter = counter+4 # print ls for i in range(0, len(matrix),4): ls.append(matrix[i:i+4]) def magic(first_matrix, second_matrix, row1, row2): first_list, second_list = first_matrix[row1-1], second_matrix[row2-1] return find_number(first_list, second_list) counter = 0 handler = open('output.out','w+') for i in range(0,len(ls),2): result = magic(ls[i],ls[i+1], row[i][0], row[i+1][0]) counter = counter+1 handler.write('Case #%s: %s\n'%(counter, result)) handler.close()
true
8619dae93878e0eb42da3e9658e8987a249782cf
Python
KevinZZZZ1/machinelearning
/logistic_regression.py
UTF-8
4,555
2.9375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue May 15 16:17:31 2018 斜率没有什么问题,但是偏置b始终存在问题,而且没找到 = = 补充:b不对的问题好像找到了,问题似乎是出在前期数据处理时进行的特征缩放,把特征缩放去掉之后,经过100000次的迭代得到了正确的解,至于原因还没弄清楚 @author: keivn """ import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression import scipy.optimize as op def sigmoid(x): # 定义的sigmoid函数,非线性 # 而且sigmoid函数的导数为,sigmoid(x)*(1-sigmoid(x)) y = 1/(1 + np.exp(-x)) return y def sigmoidGradient(w,x,y): n = np.shape(x)[1] # 样本点的个数 dw = (np.dot(x,(sigmoid(np.dot(w.T,x))-y).T))/n return dw def feature_scaling(x,y): #进行特征缩放 m = np.shape(x)[0] x_max = x.max(axis=1).reshape((m,1)) # 其中x.max(axis=1)返回是一个(m,)的array, x_min = x.min(axis=1).reshape((m,1)) y_max = y.max(axis=1).reshape((1,1)) y_min = y.min(axis=1).reshape((1,1)) y_ = (y - y_min)/(y_max - y_min) x_ = (x - x_min)/(x_max - x_min) return x_,y_ def gradient_descent(x,y,epsilon,learningrate=0.001): m = np.shape(x)[0] # 特征的个数(已经包括偏置b) n = np.shape(x)[1] # 样本点的个数 #将w,b都初始化为零向量和0 w = np.zeros((m,1)) #初始的costfunction的值 cost = costfunction(w,x,y) print(cost) dw = np.zeros((m,1)) #cost function对于参数w和b的偏导数 #dw = (np.dot(x,(sigmoid(np.dot(w.T,x))-y).T))/n #for i in range(n): # dw = (sigmoid(np.dot(w.T,x[:,i].reshape(m,1)))-y[:,i])*x[:,i].reshape(m,1) #dw = dw / n #print("1 dw:") #print(dw) dw = (np.dot(x,(sigmoid(np.dot(w.T,x))-y).T))/n k = 0 while(k < epsilon): w = w - learningrate*dw cost = costfunction(w,x,y) print('w:') print(w) print('dw:') print(dw) print('cost:') print(cost) k = k + 1 dw = (np.dot(x,(sigmoid(np.dot(w.T,x))-y).T))/n #dw = (np.dot(x,(y*(1-sigmoid(np.dot(w.T,x)))).T) + np.dot(x,((1-y)*sigmoid(np.dot(w.T,x))).T))/n return w def costfunction(w,x,y): # *表示对应位置每个元素间的乘积,np.dot()表示两个矩阵的乘积,axis = 0(默认)表示横向的,axis = 1表示竖向的 n = np.shape(x)[1] j = np.sum(-y*np.log(sigmoid(np.dot(w.T,x)))-(1-y)*np.log(1-sigmoid(np.dot(w.T,x)))) return j/n def loadDataSet(fileName): numFeat = len(open(fileName).readline().split(',')) - 1 x = []; y = [] fr = open(fileName) for line in fr.readlines(): lineArrX =[] lineArrY =[] curLine = line.strip().split(',') for i in range(numFeat): lineArrX.append(float(curLine[i])) lineArrY.append(float(curLine[-1])) x.append(lineArrX) y.append(lineArrY) return x,y def train(fileurl): file = fileurl x_,y_ = loadDataSet(file) x = np.array(x_).T y = np.array(y_).T bias = np.ones((1,x.shape[1])) # 处理偏置项 x = np.concatenate((x,bias)) w = gradient_descent(x,y,100000) return w x,y = loadDataSet('ex2data1.txt') m = len(x) for i in range(m): if(y[i][0]==0.0): plt.plot(x[i][0],x[i][1],'ro') if(y[i][0]==1.0): plt.plot(x[i][0],x[i][1],'go') plt.show() w1,w2,b1 = train('ex2data1.txt') w = -w1/w2 b = -b1/w2 x1 = np.linspace(30,100,90) for i in range(m): if(y[i][0]==0.0): plt.plot(x[i][0],x[i][1],'ro') if(y[i][0]==1.0): plt.plot(x[i][0],x[i][1],'go') def y1(x1): y1 = w*x1+b return y1 plt.plot(x1, y1(x1), 'r-',linewidth=1,label='f(x)') plt.show() X = np.array(x).T Y = np.array(y).T bias = np.ones((1,X.shape[1])) # 处理偏置项 X = np.concatenate((bias,X)) test_theta = np.array([[-24], [0.2], [0.2]]) cost = costfunction(test_theta, X, Y) grad = sigmoidGradient(test_theta, X, Y) print('Cost at test theta: {}'.format(cost)) print('Expected cost (approx): 0.218') print('Gradient at test theta: {}'.format(grad)) print('Expected gradients (approx): 0.043 2.566 2.647') options = {'full_output': True, 'maxiter': 400} initial_theta = np.zeros((X.shape[0],1)) theta, cost, _, _, _ = op.fmin(lambda t: costfunction(t, X, Y), initial_theta, **options)
true
958a29dccb7693995fff1a65b569c636c0eb626b
Python
nel215/color-clustering
/clustering.py
UTF-8
877
2.703125
3
[]
no_license
import argparse import numpy as np import cv2 class ColorClustering: def __init__(self): self.K = 16 def run(self, src, dst): src_img = cv2.imread(src) samples = np.float32(src_img.reshape((-1, 3))) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) attempts = 3 compactness, labels, centers = cv2.kmeans(samples, self.K, criteria, attempts, cv2.KMEANS_PP_CENTERS) centers = np.uint8(centers) dst_img = centers[labels.flatten()].reshape(src_img.shape) cv2.imwrite(dst, dst_img) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('-s', '--src', required=True) parser.add_argument('-d', '--dst', required=True) args = parser.parse_args() color_clustering = ColorClustering() color_clustering.run(args.src, args.dst)
true
c57aac802105b24c5749f46cc34ab770e50e7549
Python
jgi302/IoT
/MQTT_Coffee/coffeeGUI-BT.py
UTF-8
2,492
3.078125
3
[]
no_license
import tkinter as tk from PIL import ImageTk import socket # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- class MainWindow(): def __init__(self, main): # canvas for image self.canvas = tk.Canvas(main, width=800, height=600) self.canvas.grid(row=0, column=0) # images self.my_images = [] self.my_images.append(ImageTk.PhotoImage(file = "Coffee_1.jpg")) self.my_images.append(ImageTk.PhotoImage(file = "Coffee_2.jpg")) self.my_image_number = 0 # set first image on canvas self.image_on_canvas = self.canvas.create_image( 0, 0, anchor = tk.NW, image = self.my_images[self.my_image_number]) # button to change image and turn on/off coffee maker self.button_txt = tk.StringVar() self.button_txt.set('OFF') self.button = tk.Button(main, textvariable=self.button_txt, command=self.onButton, height= 1, width=5) self.button.place(x=375,y=500) # socket for bluetooth #self.s = socket.socket(socket.AF_BLUETOOTH, # socket.SOCK_STREAM, # socket.BTPROTO_RFCOMM) #self.s.connect(('B8:27:EB:BD:1F:E4', 3)) #self.s.send(bytes('OFF', 'UTF-8')) # ------------------------------------------------------------------------- # # ------------------------------------------------------------------------- def onButton(self): if self.my_image_number == 0: self.my_image_number = 1 self.button_txt.set('ON') # self.s.send(bytes('ON', 'UTF-8')) else: self.my_image_number = 0 self.button_txt.set('OFF') # self.s.send(bytes('OFF', 'UTF-8')) # change image self.canvas.itemconfig(self.image_on_canvas, image = self.my_images[self.my_image_number]) # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- def main(): root = tk.Tk() root.title("Coffee Maker") MainWindow(root) root.mainloop() # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- if __name__ == "__main__": main()
true
d11138f8c239b3a7700ea4ab59c96dbb3524d920
Python
btrif/Python_dev_repo
/Algorithms/backtracking/Hamiltonian Cycle.py
UTF-8
4,394
4.28125
4
[]
no_license
# Created by Bogdan Trif on 26-10-2017 , 11:24 AM. ''' https://en.wikipedia.org/wiki/Hamiltonian_path Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that there is an edge (in graph) from the last vertex to the first vertex of the Hamiltonian Path. Determine whether a given graph contains Hamiltonian Cycle or not. If it contains, then print the path. Following are the input and output of the required function. Input: A 2D array graph[V][V] where V is the number of vertices in graph and graph[V][V] is adjacency matrix representation of the graph. A value graph[i][j] is 1 if there is a direct edge from i to j, otherwise graph[i][j] is 0. Output: An array path[V] that should contain the Hamiltonian Path. path[i] should represent the ith vertex in the Hamiltonian Path. The code should also return false if there is no Hamiltonian Cycle in the graph. For example, a Hamiltonian Cycle in the following graph is {0, 1, 2, 4, 3, 0}. There are more Hamiltonian Cycles in the graph like {0, 3, 4, 2, 1, 0} (0)--(1)--(2) | / \ | | / \ | | / \ | (3)-------(4) And the following graph doesn’t contain any Hamiltonian Cycle. (0)--(1)--(2) | / \ | | / \ | | / \ | (3) (4) ''' # Python program for solution of # hamiltonian cycle problem class Graph(): def __init__(self, vertices): self.graph = [[0 for column in range(vertices)]\ for row in range(vertices)] self.V = vertices ''' Check if this vertex is an adjacent vertex of the previously added vertex and is not included in the path earlier ''' def isSafe(self, v, pos, path): # Check if current vertex and last vertex # in path are adjacent if self.graph[ path[pos-1] ][v] == 0: return False # Check if current vertex not already in path for vertex in path: if vertex == v: return False return True # A recursive utility function to solve # hamiltonian cycle problem def hamCycleUtil(self, path, pos): # base case: if all vertices are # included in the path if pos == self.V: # Last vertex must be adjacent to the # first vertex in path to make a cyle if self.graph[ path[pos-1] ][ path[0] ] == 1: return True else: return False # Try different vertices as a next candidate # in Hamiltonian Cycle. We don't try for 0 as # we included 0 as starting point in in hamCycle() for v in range(1,self.V): if self.isSafe(v, pos, path) == True: path[pos] = v if self.hamCycleUtil(path, pos+1) == True: return True # Remove current vertex if it doesn't # lead to a solution path[pos] = -1 return False def hamCycle(self): path = [-1] * self.V ''' Let us put vertex 0 as the first vertex in the path. If there is a Hamiltonian Cycle, then the path can be started from any point of the cycle as the graph is undirected ''' path[0] = 0 if self.hamCycleUtil(path,1) == False: print ("Solution does not exist\n") return False self.printSolution(path) return True def printSolution(self, path): print( "Solution Exists: Following is one Hamiltonian Cycle") for vertex in path: print( vertex,) print (path[0], "\n") # Driver Code ''' Let us create the following graph (0)--(1)--(2) | / \ | | / \ | | / \ | (3)-------(4) ''' g1 = Graph(5) g1.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1], [0, 1, 0, 0, 1,],[1, 1, 0, 0, 1], [0, 1, 1, 1, 0], ] # Print the solution g1.hamCycle(); ''' Let us create the following graph (0)--(1)--(2) | / \ | | / \ | | / \ | (3) (4) ''' g2 = Graph(5) g2.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1], [0, 1, 0, 0, 1,], [1, 1, 0, 0, 0], [0, 1, 1, 0, 0], ] # Print the solution g2.hamCycle(); # This code is contributed by Divyanshu Mehta
true
65cc9b0f1d3a313f35e277378dba4f872184c66c
Python
Etheri/bioproject_py
/unique_genes/bi_task_6.py
UTF-8
500
3.015625
3
[]
no_license
from collections import Counter def readListFF(name): # Read list of genes from file f = open(name, 'r') out = [line.strip() for line in f] return out f.close() def outInFile(name, l): # Write list of genes into file f = open(name, 'w') for index in l: f.write(index + '\n') f.close() def main(): name = 'geneList.txt' name_w = 'geneList_out.txt' outInFile(name_w, set(readListFF(name))) if __name__=='__main__': main()
true
72477ca383c50a535745f4024c41f67f33a02045
Python
VibhorKukreja/refuel
/vehicles/models.py
UTF-8
1,367
2.5625
3
[]
no_license
from django.db import models # Create your models here. VEHICLE_TYPE = ( ('BIKE', 'Bike'), ('CAR', 'Car'), ) FUEL_TYPE = ( ('PETROL', 'Petrol'), ('DIESEL', 'Diesel'), ) class Vehicle(models.Model): brand = models.CharField(max_length=255) model = models.CharField(max_length=255) registration_number = models.CharField(max_length=15) engine_capacity = models.IntegerField() user_profile = models.ForeignKey('users.UserProfile', on_delete=models.CASCADE) vehicle_type = models.CharField( max_length=10, choices=VEHICLE_TYPE, default='BIKE', ) fuel_type = models.CharField( max_length=10, choices=FUEL_TYPE, default='PETROL', ) def __str__(self): return '{} - {} - {}'.format(self.brand, self.model, self.registration_number) class Fuel(models.Model): vehicle_id = models.ForeignKey('Vehicle', on_delete=models.CASCADE) quantity = models.IntegerField() amount = models.IntegerField() transaction_date = models.DateTimeField(auto_now_add=True) fuel_type = models.CharField( max_length=10, choices=FUEL_TYPE, default='PETROL', ) autocomplete_fields = ['fuel_type'] def __str__(self): return '{} - {} - {}'.format(self.fuel_type, self.vehicle_id, self.quantity)
true
3924900e83fb73185f4af0fec5ae2b10920e9db8
Python
varanasisrikar/Programs
/Python/LinAlg_EigenValues,Vectors.py
UTF-8
337
2.96875
3
[]
no_license
import numpy as np import numpy.linalg as alg l1 = [] rows = int(input("enter rows:")) cols = int(input("enter cols:")) for i in range(rows): for j in range(cols): l1.append(int(input())) print(l1) m = np.reshape(l1, (rows, cols)) print(m) Values, Vectors = alg.eig(m) print(Values) print(Vectors[:, 0]) print(Vectors[:, 1])
true
9c4adc1944249d8c6d100fab3e090345906d93cd
Python
ngoldbaum/unyt
/unyt/exceptions.py
UTF-8
8,679
3.34375
3
[ "BSD-3-Clause" ]
permissive
""" Exception classes defined by unyt """ # ----------------------------------------------------------------------------- # Copyright (c) 2018, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the LICENSE file, distributed with this software. # ----------------------------------------------------------------------------- class UnitOperationError(ValueError): """An exception that is raised when unit operations are not allowed Example ------- >>> import unyt as u >>> 3*u.g + 4*u.m\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.UnitOperationError: The <ufunc 'add'> operator for unyt_arrays with units "g" (dimensions "(mass)") and "m" (dimensions "(length)") is not well defined. """ def __init__(self, operation, unit1, unit2=None): self.operation = operation self.unit1 = unit1 self.unit2 = unit2 ValueError.__init__(self) def __str__(self): err = ( 'The %s operator for unyt_arrays with units "%s" ' '(dimensions "%s") ' % (self.operation, self.unit1, self.unit1.dimensions) ) if self.unit2 is not None: err += f'and "{self.unit2}" (dimensions "{self.unit2.dimensions}") ' err += "is not well defined." return err class UnitConversionError(Exception): """An error raised when converting to a unit with different dimensions. Example ------- >>> import unyt as u >>> data = 3*u.g >>> data.to('m') # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.UnitConversionError: Cannot convert between 'g' (dim '(mass)') and 'm' (dim '(length)'). """ def __init__(self, unit1, dimension1, unit2, dimension2): self.unit1 = unit1 self.unit2 = unit2 self.dimension1 = dimension1 self.dimension2 = dimension2 Exception.__init__(self) def __str__(self): err = "Cannot convert between '%s' (dim '%s') and '%s' " "(dim '%s')." % ( self.unit1, self.dimension1, self.unit2, self.dimension2, ) return err class MissingMKSCurrent(Exception): """Raised when querying a unit system for MKS current dimensions Since current is a base dimension for SI or SI-like unit systems but not in CGS or CGS-like unit systems, dimensions that include the MKS current dimension (the dimension of ampere) are not representable in CGS-like unit systems. When a CGS-like unit system is queried for such a dimension, this error is raised. Example ------- >>> from unyt.unit_systems import cgs_unit_system as us >>> from unyt import ampere >>> us[ampere.dimensions]\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.MissingMKSCurrent: The cgs unit system does not have a MKS current base unit """ def __init__(self, unit_system_name): self.unit_system_name = unit_system_name def __str__(self): err = ( "The %s unit system does not have a MKS current base unit" % self.unit_system_name ) return err class MKSCGSConversionError(Exception): """Raised when conversion between MKS and CGS units cannot be performed This error is raised and caught internally and will expose itself to the user as part of a chained exception leading to a UnitConversionError. """ pass class UnitsNotReducible(Exception): """Raised when a unit cannot be safely represented in a unit system Example ------- >>> from unyt import A, cm >>> data = 12*A/cm >>> data.in_cgs()\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.UnitsNotReducible: The unit "A/cm" (dimensions "(current_mks)/(length)") cannot be reduced to an expression within the cgs system of units. """ def __init__(self, unit, units_base): self.unit = unit self.units_base = units_base Exception.__init__(self) def __str__(self): err = ( 'The unit "%s" (dimensions "%s") cannot be reduced to an ' "expression within the %s system of units." % (self.unit, self.unit.dimensions, self.units_base) ) return err class IterableUnitCoercionError(Exception): """Raised when an iterable cannot be converted to a unyt_array Example ------- >>> from unyt import g, cm, unyt_array >>> data = [2*cm, 3*g] >>> unyt_array(data)\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.IterableUnitCoercionError: Received a list or tuple of quantities with nonuniform units: [unyt_quantity(2., 'cm'), unyt_quantity(3., 'g')] """ def __init__(self, quantity_list): self.quantity_list = quantity_list def __str__(self): err = ( "Received a list or tuple of quantities with nonuniform units: " "%s" % self.quantity_list ) return err class InvalidUnitEquivalence(Exception): """Raised an equivalence does not apply to a unit conversion Example ------- >>> import unyt as u >>> data = 12*u.g >>> data.to('erg', equivalence='thermal')\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.InvalidUnitEquivalence: The unit equivalence 'thermal' does not exist for the units 'g' and 'erg'. """ def __init__(self, equiv, unit1, unit2): self.equiv = equiv self.unit1 = unit1 self.unit2 = unit2 def __str__(self): from unyt.unit_object import Unit if isinstance(self.unit2, Unit): msg = ( "The unit equivalence '%s' does not exist for the units " "'%s' and '%s'." ) else: msg = ( "The unit equivalence '%s' does not exist for units '%s' " "to convert to a new unit with dimensions '%s'." ) return msg % (self.equiv, self.unit1, self.unit2) class InvalidUnitOperation(Exception): """Raised when an operation on a unit object is not allowed Example ------- >>> from unyt import cm, g >>> cm + g # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.InvalidUnitOperation: addition with unit objects is not allowed """ pass class SymbolNotFoundError(Exception): """Raised when a unit name is not available in a unit registry Example ------- >>> from unyt.unit_registry import default_unit_registry >>> default_unit_registry['made_up_unit']\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.SymbolNotFoundError: The symbol 'made_up_unit' does not exist in this registry. """ pass class UnitParseError(Exception): """Raised when a string unit name is not parseable as a valid unit Example ------- >>> from unyt import Unit >>> Unit('hello')\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.UnitParseError: Could not find unit symbol 'hello' in the provided symbols. """ pass class IllDefinedUnitSystem(Exception): """Raised when the dimensions of the base units of a unit system are inconsistent. Example ------- >>> from unyt.unit_systems import UnitSystem >>> UnitSystem('atomic', 'nm', 'fs', 'nK', 'rad')\ # doctest: +IGNORE_EXCEPTION_DETAIL +NORMALIZE_WHITESPACE Traceback (most recent call last): ... unyt.exceptions.IllDefinedUnitSystem: Cannot create unit system with inconsistent mapping from dimensions to units. Received: OrderedDict([((length), nm), ((mass), fs), ((time), nK), ((temperature), rad), ((angle), rad), ((current_mks), A), ((luminous_intensity), cd)]) """ def __init__(self, units_map): self.units_map = units_map def __str__(self): return ( "Cannot create unit system with inconsistent mapping from " "dimensions to units. Received:\n%s" % self.units_map )
true
71dd7fbc4e7c66357b48c98b81eaa298829a5dd3
Python
kho903/python_algorithms
/programmers/level2/타겟 넘버.py
UTF-8
529
3.1875
3
[]
no_license
answer = 0 def dfs(numbers, num, target, length): global answer if length == len(numbers): if num == target: answer += 1 return else: return else: dfs(numbers, num + numbers[length], target, length + 1) dfs(numbers, num - numbers[length], target, length + 1) def solution(numbers, target): global answer dfs(numbers, numbers[0], target, 1) dfs(numbers, -numbers[0], target, 1) return answer print(solution([1, 1, 1, 1, 1], 3))
true
9b51deb8bbdf63ebbf0121ba94472e999968b61e
Python
edelcorcoran/PandS-Project-2019
/boxplot.py
UTF-8
409
3.484375
3
[]
no_license
#Boxplot Iris Dataset - looks at the 4 attributes import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #read csv file iris = pd.read_csv('iris.csv') sns.set() #Generates a Boxplot for each column [SL, SW, PL, PW) iris.boxplot() #Assign a title to the Boxplot plt.title('Iris Dataset Boxplot') #Labels the Y-axis plt.ylabel('Length in CM') #Show plot. plt.show()
true
07c1594632f5f5b3afa85e49cb319f5478ff4673
Python
modalsoul0226/LeetcodeRepo
/easy/Pascal's Triangle.py
UTF-8
1,074
3.421875
3
[]
no_license
class Solution: def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ res = [[1], [1, 1]] if numRows == 0: return [] elif numRows == 1: return [[1]] elif numRows == 2: return [[1], [1,1]] else: for i in range(3, numRows + 1, 1): temp = [1 for _ in range(i)] j = 1 for i in range(len(res[-1]) - 1): temp[j] = res[-1][i] + res[-1][i + 1] j += 1 res.append(temp) return res # Alternative solution: # class Solution: # def generate(self, numRows): # """ # :type numRows: int # :rtype: List[List[int]] # """ # res = [[1]] # for i in range(1,numRows): # res.append(list(map(lambda x, y : x + y, res[-1]+[0], [0]+res[-1]))) # return res[:numRows] if __name__ == '__main__': sol = Solution() print(sol.generate(5))
true
828069d3a9354f848d7e85862891d210faaa6600
Python
StaticNoiseLog/python
/ffhs/heron_sqrt.py
UTF-8
200
3
3
[]
no_license
epsilon = 0.0000001 x = close_history_list(input("Square root of: ")) h_previous = 1 h = 2 while abs(h - h_previous) > epsilon: h_previous = h h = (h_previous + x/h_previous)/2 print(h)
true
a23a7f3f059226b7af92f221433a7dcf057a1a1e
Python
RoboticsLabURJC/2014-pfc-JoseAntonio-Fernandez
/MapClient/tools/WayPoint.py
UTF-8
551
2.546875
3
[]
no_license
from MapClient.classes import Pose3DI class WayPoint: def __init__(self, x=0, y=0, lat=0, lon=0, h=0): self.x = x self.y = y self.h = h self.lat= lat self.lon = lon #todo mejorar para que se calculen automagicamente @staticmethod def waypoint_to_pose(self, awaypoint): pose = Pose3DI(0,0,0,0,0,0,0,0) data = pose.getPose3DData() data.x = awaypoint.lon data.y = awaypoint.lat data.h = awaypoint.h pose.setPose3DData(data) return pose
true
976ff05664c723c330b39b6888363f58be6521a2
Python
nharini27/harini
/count.py
UTF-8
75
3.53125
4
[]
no_license
num=int(input()) count=0 while(num>0): num=num//10 count+=1 print(count)
true
d24b19895a18d0307b9a191780685dd2631d1659
Python
theY4Kman/yaknowman
/yakbot/ext.py
UTF-8
1,531
2.59375
3
[ "MIT" ]
permissive
CMDNAME_ATTR = '__cmdname__' ALIASES_ATTR = '__aliases__' def command(name=None, aliases=()): """ Decorator to register a command handler in a Plugin. """ fn = None if callable(name): fn = name name = None def _command(fn): setattr(fn, CMDNAME_ATTR, fn.__name__ if name is None else name) setattr(fn, ALIASES_ATTR, aliases) return fn if fn: return _command(fn) return _command class PluginMeta(type): def __new__(cls, name, bases, attrs): plugin = type.__new__(cls, name, bases, attrs) if bases == (object,): # Skip metaclass magic for Plugin base class return plugin if plugin.name is None: setattr(plugin, 'name', name) commands = [] for name, value in attrs.iteritems(): if callable(value) and hasattr(value, CMDNAME_ATTR): cmdname = getattr(value, CMDNAME_ATTR) aliases = getattr(value, ALIASES_ATTR, ()) commands.append((cmdname, value, aliases)) plugin._commands = commands return plugin class Plugin(object): __metaclass__ = PluginMeta name = None # Populated with the class name if None private = False # Whether the plug-in should be hidden in !list _commands = None def __init__(self, yakbot, irc): self.yakbot = yakbot self.irc = irc def __hash__(self): return hash(self.name) def on_unload(self): pass
true
ff6923510ad01f8deb4170816490ecf325c54043
Python
pwdemars/projecteuler
/josh/Problems/54.py
UTF-8
2,581
2.90625
3
[]
no_license
hands_file = open('/Users/joshuajacob/Downloads/p054_poker.txt', 'r').read().split() from operator import itemgetter def num_func(num): if num == 'T': return(10) if num == 'J': return(11) if num == 'Q': return(12) if num == 'K': return(13) if num == 'A': return(14) if num == 'C': return(1) if num == 'D': return(2) if num == 'H': return(3) if num == 'S': return(4) else: return(int(num)) hands_file = [sorted([[num_func(x[0]),num_func(x[1])] for x in hands_file[5*i:5*i+5]]) for i in range(2000)] '''print(hands_file[0]) print(sorted(hands_file[0], key = itemgetter(1)))''' def frequency_checker(hand): z = [0 for m in range(14)] x = 0 while x<5: z[hand[x][0]-1] += 1 x += 1 return(z) def flush(hand): if hand[0][1] == hand[1][1] == hand[2][1] == hand[3][1] == hand[4][1]: return(True) def hand_checker(hand): freak = frequency_checker(hand) if max(freak) == 1: if hand[0][0]+4==hand[4][0] or hand[3][0]== 5 and hand[4][0]-9 == 13: if flush(hand): print(hand,'straight flush') return([8,0,0]) else: print(hand,'straight') return([4,0,0]) elif flush(hand): print(hand,'flush') return([5,0,0]) else: return([0,0,0]) elif max(freak) == 2: if freak.count(2) == 2: return([2,13-freak[::-1].index(2),freak.index(2)]) exit() else: return([1,freak.index(2),0]) elif max(freak) == 3: if freak.count(2) == 1: return([6,freak.index(3),freak.index(2)]) else: return([3,freak.index(3),0]) elif max(freak) == 4: return([7,freak.index(4),0]) a = 0 b = 0 c = 0 r = 0 while r <1999: if hand_checker(hands_file[r]) == hand_checker(hands_file[r+1]): for x in range(5): if hands_file[r][-x-1][0] > hands_file[r+1][-x-1][0]: a += 1 break elif hands_file[r][-x-1][0] < hands_file[r+1][-x-1][0]: b += 1 break elif x == 4: c += 1 print(hands_file[r], hands_file[r+1][-x][0],'happy') elif hand_checker(hands_file[r]) > hand_checker(hands_file[r+1]): a += 1 else: b += 1 r += 2
true
635cbcb9d69589f8f05c2bb703a1f90908e1a8f5
Python
gowshalinirajalingam/Advanced-regression-modeling
/House_Prices_Advanced_Regression_Techniques.py
UTF-8
15,607
2.890625
3
[]
no_license
# coding: utf-8 # In[1]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os from sklearn.preprocessing import LabelEncoder ###for encode a categorical values from sklearn.model_selection import train_test_split ## for spliting the data # from lightgbm import LGBMRegressor ## for import our model from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # Matlab-style plotting import seaborn as sns from scipy.stats import norm, skew #for some statistics # In[2]: train_dataset = pd.read_csv('G:\\sliit DS\\4th year 1st seme\\thawes kaggle\\house-prices-advanced-regression-techniques\\train.csv') test_dataset = pd.read_csv('G:\\sliit DS\\4th year 1st seme\\thawes kaggle\\house-prices-advanced-regression-techniques\\test.csv') # In[3]: train_dataset.head() # In[4]: train_dataset.shape # In[5]: train_dataset.describe() # In[6]: test_dataset.shape # In[7]: test_dataset.head() # In[8]: train_dataset.columns # In[9]: test_dataset.columns Feature Engineering # In[10]: train_dataset.dtypes # In[11]: #change salesPrice int64 type to float64 train_dataset["SalePrice"]=train_dataset["SalePrice"].astype("float64") # In[12]: test_dataset.dtypes # In[13]: #Save the 'Id' column train_ID = train_dataset['Id'] test_ID = test_dataset['Id'] # In[14]: #Now drop the 'Id' colum since it's unnecessary for the prediction process. train_dataset.drop("Id", axis = 1, inplace = True) test_dataset.drop("Id", axis = 1, inplace = True) # In[15]: #Check for null values train_dataset.isnull().sum() # In[16]: #drop major missing value columns in train_dataset train_dataset.drop("Alley", axis = 1, inplace = True) train_dataset.drop("PoolQC", axis = 1, inplace = True) train_dataset.drop("Fence", axis = 1, inplace = True) train_dataset.drop("MiscFeature", axis = 1, inplace = True) # In[17]: train_dataset.isnull().sum() # In[18]: # We have fill numerical columns misssing values with median and We will fill character missing values with most used value count col_miss_val_train = [col for col in train_dataset.columns if train_dataset[col].isnull().any()] print(col_miss_val_train) for col in col_miss_val_train: if(train_dataset[col].dtype == np.dtype('O')): train_dataset[col]=train_dataset[col].fillna(train_dataset[col].value_counts().index[0]) #replace NaN values with most frequent value else: train_dataset[col] = train_dataset[col].fillna(train_dataset[col].median()) # In[19]: test_dataset.isnull().sum() # In[20]: #drop major missing value columns in test_dataset test_dataset.drop("Alley", axis = 1, inplace = True) test_dataset.drop("PoolQC", axis = 1, inplace = True) test_dataset.drop("Fence", axis = 1, inplace = True) test_dataset.drop("MiscFeature", axis = 1, inplace = True) # In[21]: test_dataset.isnull().sum() # In[22]: # We have fill numerical columns misssing values with median and We will fill character missing values with most used value count col_miss_val_test = [col for col in test_dataset.columns if test_dataset[col].isnull().any()] print(col_miss_val_test) for col in col_miss_val_test: if(test_dataset[col].dtype == np.dtype('O')): test_dataset[col]=test_dataset[col].fillna(test_dataset[col].value_counts().index[0]) #replace NaN values with most frequent value else: test_dataset[col] = test_dataset[col].fillna(test_dataset[col].median()) # In[23]: #Outliers fig, ax = plt.subplots() ax.scatter(x = train_dataset['GrLivArea'], y = train_dataset['SalePrice']) plt.ylabel('SalePrice', fontsize=13) plt.xlabel('GrLivArea', fontsize=13) plt.show() # In[24]: #We can see at the bottom right two with extremely large GrLivArea that are of a low price. These values are huge oultliers. Therefore, we can safely delete them. #Deleting outliers train_dataset = train_dataset.drop(train_dataset[(train_dataset['GrLivArea']>4000) & (train_dataset['SalePrice']<300000)].index) # In[25]: #Check the graphic again fig, ax = plt.subplots() ax.scatter(x = train_dataset['GrLivArea'], y = train_dataset['SalePrice']) plt.ylabel('SalePrice', fontsize=13) plt.xlabel('GrLivArea', fontsize=13) plt.show() # In[26]: #Coding categorical value into numerical value.Label encoder train_dataset.select_dtypes(include=['object']) LE = LabelEncoder() for col in train_dataset.select_dtypes(include=['object']): train_dataset[col] = LE.fit_transform(train_dataset[col]) train_dataset.head() # In[27]: test_dataset.select_dtypes(include=['object']) LE = LabelEncoder() for col in test_dataset.select_dtypes(include=['object']): test_dataset[col] = LE.fit_transform(test_dataset[col]) test_dataset.head() # Target Variable # In[28]: #Check for normal distribution for y variable.Models love normal distribution. sns.distplot(train_dataset['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train_dataset['SalePrice']) print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma)) # In[29]: #Get also the QQ-plot from scipy import stats fig = plt.figure() res = stats.probplot(train_dataset['SalePrice'], plot=plt) plt.show() # In[30]: #The target variable is right skewed. As (linear) models love normally distributed data , #we need to transform this variable and make it more normally distributed # Log-transformation of the target variable #We use the numpy fuction log1p which applies log(1+x) to all elements of the column train_dataset["SalePrice"] = np.log1p(train_dataset["SalePrice"]) #Check the new distribution sns.distplot(train_dataset['SalePrice'] , fit=norm); # Get the fitted parameters used by the function (mu, sigma) = norm.fit(train_dataset['SalePrice']) print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma)) #Now plot the distribution plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #Get also the QQ-plot fig = plt.figure() res = stats.probplot(train_dataset['SalePrice'], plot=plt) plt.show() # In[31]: #Data correlation #Correlation map to see how features are correlated with SalePrice corrmat = train_dataset.corr() plt.subplots(figsize=(12,9)) sns.heatmap(corrmat, vmax=0.9, square=True) # Predictive model building # In[32]: #Split train_dataset x = train_dataset.iloc[:,0:-1] y = train_dataset.iloc[:,-1] # In[33]: #split train,test x_train , x_test , y_train , y_test = train_test_split(x , y ,test_size = 0.1,random_state = 1) # In[34]: x_train # In[35]: #Import libraries from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import mean_squared_error import xgboost as xgb import lightgbm as lgb # In[36]: #Base models #LASSO Regression # This model may be very sensitive to outliers. So we need to made it more robust on them. # For that we use the sklearn's Robustscaler() method on pipeline lasso = make_pipeline(RobustScaler(), Lasso(alpha =0.0005, random_state=1)) # Elastic Net Regression # again made robust to outliers ENet = make_pipeline(RobustScaler(), ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3)) # Kernel Ridge Regression KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5) # Gradient Boosting Regression : # With huber loss that makes it robust to outliers GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =5) # XGBoost : model_xgb = xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468, learning_rate=0.05, max_depth=3, min_child_weight=1.7817, n_estimators=2200, reg_alpha=0.4640, reg_lambda=0.8571, subsample=0.5213, silent=1, random_state =7, nthread = -1) # LightGBM : model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=5, learning_rate=0.05, n_estimators=720, max_bin = 55, bagging_fraction = 0.8, bagging_freq = 5, feature_fraction = 0.2319, feature_fraction_seed=9, bagging_seed=9, min_data_in_leaf =6, min_sum_hessian_in_leaf = 11) # => Select Best models # In[37]: #Base model scores #We use cross validation score for neg_mean_squared_error #Validation function # If y variable is continuous variable we use RMSE Measure. Not accuracy measure.accuracy score is used in classification problem n_folds = 5 # RMSLE (Root Mean Square Logaithmic Error) #This method is used for use RMSE meseare inside cross validation method def rmsle_cv(model): kf = KFold(n_folds, shuffle=True, random_state=42).get_n_splits(x_train.values) rmse= np.sqrt(-cross_val_score(model, x_train.values, y_train.values, scoring="neg_mean_squared_error", cv = kf)) return(rmse) # In[38]: score = rmsle_cv(lasso) print("Lasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # In[39]: score = rmsle_cv(ENet) print("ElasticNet score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # In[40]: # score = rmsle_cv(KRR) # print("Kernel Ridge score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # In[41]: score = rmsle_cv(GBoost) print("Gradient Boosting score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # In[42]: score = rmsle_cv(model_xgb) print("Xgboost score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # In[43]: score = rmsle_cv(model_lgb) print("LGBM score: {:.4f} ({:.4f})\n" .format(score.mean(), score.std())) # In[44]: #Average base models score class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models # we define clones of the original models to fit the data in def fit(self, X, y): self.models_ = [clone(x) for x in self.models] # Train cloned base models for model in self.models_: model.fit(X, y) return self #Now we do the predictions for cloned models and average them def predict(self, X): predictions = np.column_stack([ model.predict(X) for model in self.models_ ]) return np.mean(predictions, axis=1) averaged_models = AveragingModels(models = (ENet, GBoost, lasso, model_xgb, model_lgb)) score = rmsle_cv(averaged_models) print(" Averaged base models score: {:.4f} ({:.4f})\n".format(score.mean(), score.std())) # => Fit the model to test_dataset and make predictions # In[45]: # Ensemble Technique # Stacking # In[46]: class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, base_models, meta_model, n_folds=5): self.base_models = base_models self.meta_model = meta_model self.n_folds = n_folds # We again fit the data on clones of the original models def fit(self, X, y): self.base_models_ = [list() for x in self.base_models] self.meta_model_ = clone(self.meta_model) kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=156) # Train cloned base models then create out-of-fold predictions # that are needed to train the cloned meta-model out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models))) for i, model in enumerate(self.base_models): for train_index, holdout_index in kfold.split(X, y): instance = clone(model) self.base_models_[i].append(instance) instance.fit(X[train_index], y[train_index]) y_pred = instance.predict(X[holdout_index]) out_of_fold_predictions[holdout_index, i] = y_pred # Now train the cloned meta-model using the out-of-fold predictions as new feature self.meta_model_.fit(out_of_fold_predictions, y) return self #Do the predictions of all base models on the test data and use the averaged predictions as #meta-features for the final prediction which is done by the meta-model def predict(self, X): meta_features = np.column_stack([ np.column_stack([model.predict(X) for model in base_models]).mean(axis=1) for base_models in self.base_models_ ]) return self.meta_model_.predict(meta_features) # In[47]: # meta model is used to Use the predictions from 3) (called out-of-folds predictions) as the inputs, and the correct responses # (target variable) as the outputs to train a higher level. stacked_averaged_models = StackingAveragedModels(base_models = (ENet, GBoost, lasso, model_lgb), meta_model = model_xgb) # In[48]: # RMSLE(Root Mean Square logarithmic Error) #This method is for calculate RMSE between predicted y values and actual y values def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) # In[49]: # Stacked Regressor stacked_averaged_models.fit(x_train.values, y_train.values) stacked_x_test_pred = stacked_averaged_models.predict(x_test.values) print("RMSLE Score for Stacked Regressor :{}".format(rmsle(y_test.values, stacked_x_test_pred))) # In[50]: # XGBoost model_xgb.fit(x_train, y_train) xgb_x_test_pred = model_xgb.predict(x_test) print("RMSLE Score for XGBoost :{}".format(rmsle(y_test, xgb_x_test_pred))) # In[51]: # GradientBoost: GBoost.fit(x_train, y_train) gb_x_test_pred = GBoost.predict(x_test) print("RMSLE Score for GradientBoost :{}".format(rmsle(y_test, gb_x_test_pred))) # In[52]: stacked_test_dataset_pred = np.expm1(stacked_averaged_models.predict(test_dataset)) #np.expm1() means [(Exponential value of array element) - (1)]. # This mathematical function helps user to calculate exponential of all the elements subtracting 1 from all the input array elements. xgb_test_dataset_pred = np.expm1(model_xgb.predict(test_dataset)) gb_test_dataset_pred = np.expm1(GBoost.predict(test_dataset)) # In[53]: '''RMSE on the entire Train data when averaging''' print('RMSLE score on x_test data:') print(rmsle(y_test,stacked_x_test_pred*0.7 + xgb_x_test_pred*0.15 + gb_x_test_pred*0.15 )) # In[56]: #Weigted Average # This is an extension of the averaging method. # All models are assigned different weights defining the importance of each model for prediction. #weights have been chosen where rmse value is low on x_test data #Esemble prediction ensemble = stacked_test_dataset_pred*0.7 + xgb_test_dataset_pred*0.15 + gb_test_dataset_pred*0.15 ensemble # In[57]: sub = pd.DataFrame() sub['Id'] = test_ID sub['SalePrice'] = ensemble sub.to_csv('submission.csv',index=False)
true
d31f6836dd4cc4abbf6cee63ef4db80b569ebb67
Python
bruno-antonio-pinho/Projeto1_Kernel
/demo_selector.py
UTF-8
512
2.75
3
[]
no_license
#!/usr/bin/python3 import selectors import sys Timeout = 5 # 5 segundos # um callback para ler do fileobj def handle(fileobj): s = fileobj.readline() print('Lido:', s) sched = selectors.DefaultSelector() sched.register(sys.stdin, selectors.EVENT_READ, handle) while True: eventos = sched.select(Timeout) if not eventos: # timeout ! print(eventos) print('Timeout !') else: print(eventos) for key,mask in eventos: cb = key.data # este é o callback ! cb(key.fileobj)
true
984297216a6d99d92bf82a745db908e3dbefd396
Python
ConnorJSmith2/First-Pitch-Analyzer
/firstPitchAnalyzer.py
UTF-8
2,153
3.171875
3
[ "MIT" ]
permissive
import sys import csv import copy #If there are 2 files, return the first (command line), if none then exit def getCommandLineArg(): if (len(sys.argv) == 2): return sys.argv[1] else: print ("Error: No file inputted. \nUsage is: python firstPitchAnalyzer.py <filename.csv>") exit() def printCSV(filename): with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: print (row) def readCSV(filename): with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') FAILURES = ["GIDP", "STRIKEOUT", "OUT", "FIDP", "FC"] SUCCESSES = ["HIT", "BB"] FAILURE_DICT = { i : 0 for i in FAILURES } SUCCESS_DICT = { i : 0 for i in SUCCESSES } PITCH_DICT = {"SUCCESS": copy.deepcopy(SUCCESS_DICT), "FAILURE": copy.deepcopy(FAILURE_DICT)} firstPitchData = {"STRIKE": copy.deepcopy(PITCH_DICT), "BALL": copy.deepcopy(PITCH_DICT)} firstPitchType = None # Skips header row next(csv_reader, None) for row in csv_reader: if (row[1] == "0-0"): # Resets first pitch, useful if data incomplete and new at-bat starts before event type found firstPitchType = None continue elif (row[1] == "0-1"): firstPitchType = "STRIKE" elif (row[1] == "1-0"): firstPitchType = "BALL" if (firstPitchType and row[4]): # if event, register in dict event = row[4].upper() if (event in SUCCESSES): firstPitchData[firstPitchType]["SUCCESS"][event] += 1 elif (event in FAILURES): firstPitchData[firstPitchType]["FAILURE"][event] += 1 # At-bat event, reset first pitch firstPitchType = None return firstPitchData def anaylzeData(pitchData): pass #return dict from notes def printPitchData(atBatData): for pitchType, pitchData in atBatData.items(): print("********", pitchType, "********") for statusType, statusData in pitchData.items(): print("/", statusType, "\\") for eventType, eventData in statusData.items(): print(eventType, ": ", eventData) def main(): filename = getCommandLineArg() atBatData = readCSV(filename) printPitchData(atBatData) if __name__ == "__main__": main()
true
352348e53951c63fd7353a21cf6783b9ab4ecb7b
Python
efikalti/File-Parsing
/mapper.py
UTF-8
1,078
2.9375
3
[]
no_license
#!/usr/bin/env python import sys import re, string from operator import itemgetter reg_ex = '|' #open files file2 = open(sys.argv[1], "r") #read fields of file1 fields1 = sys.stdin.readline().strip().split(reg_ex) #read fields of file 2 fields2 = file2.readline().strip().split(reg_ex) #read every line of file2 into one variable file2_lines = file2.readlines() #parse every line of file1 num1 = 2 for line in sys.stdin: line = line.strip() #split the lines into parts parts1 = line.split(reg_ex) #parse every line of file2 num2 = 2 for line2 in file2_lines: output = '' parts2 = line2.strip().split(reg_ex) for part1 in parts1: for part2 in parts2: words = part2.strip().split(' ') for word in words: if word in part1.split(' '): output = output + word + ' ' output = re.sub(r'\W[^A-Za-z0-9|]\W', "", output) if output != '': output = output + ' | line_in_file_1: ' + str(num1) + ' | line_in_file_2: ' + str(num2) + '\n' print output num2 = num2 + 1 num1 = num1 + 1 file2.close()
true
3d83bbc502b68539559b60050f40dc64d43152af
Python
yuki-uchida/Competitive_programming
/AtcoderBeginnerContest/162/d.py
UTF-8
2,426
3.03125
3
[]
no_license
import bisect N = int(input()) # N<= 4000 6*10^10なので、削減しないとだめ S = list(input()) # Si Sj Skがどれも別のもの。ただしi<j<k # また、j-i != k-j # 1,2,3はだめ1,2,4はok # 1,3,5もだめ # この組の数を求める # count = 0 # for i in range(N): # for j in range(i + 1, N): # for k in range(j + 1, N): # if j - i != k - j: # if S[i] != S[j] and S[j] != S[k] and S[i] != S[k]: # count += 1 indexes = {'R': [], "G": [], "B": []} for i, char in enumerate(S): indexes[char].append(i + 1) # print(permutation_hash) count = 0 R_indexes_count = len(indexes['R']) G_indexes_count = len(indexes['G']) B_indexes_count = len(indexes['B']) indexes_count = {'R': R_indexes_count, 'G': G_indexes_count, 'B': B_indexes_count} # 短いやつを使うとかする?, if R_indexes_count <= G_indexes_count and R_indexes_count <= B_indexes_count: min_type = 'R' if G_indexes_count <= B_indexes_count: second_min_type = 'G' last_type = 'B' else: second_min_type = 'B' last_type = 'G' elif G_indexes_count <= R_indexes_count and G_indexes_count <= B_indexes_count: min_type = 'G' if R_indexes_count <= B_indexes_count: second_min_type = 'R' last_type = 'B' else: second_min_type = 'B' last_type = 'R' else: min_type = 'B' if G_indexes_count <= R_indexes_count: second_min_type = 'G' last_type = 'R' else: second_min_type = 'R' last_type = 'G' # print(min_type, second_min_type, last_type) for R_index in indexes[min_type]: for G_index in indexes[second_min_type]: middle_index = (R_index + G_index) / 2 remove_conut = 0 if middle_index != R_index and middle_index != G_index: if middle_index in indexes[last_type]: remove_conut += 1 div = abs(G_index - R_index) if G_index < R_index: if G_index - div in indexes[last_type]: remove_conut += 1 if R_index + div in indexes[last_type]: remove_conut += 1 else: if G_index + div in indexes[last_type]: remove_conut += 1 if R_index - div in indexes[last_type]: remove_conut += 1 count += (indexes_count[last_type] - remove_conut) print(count)
true
174632ac0ff7e15c818051c7fa0cfd0604be9b90
Python
mingxoxo/Algorithm
/baekjoon/3053.py
UTF-8
225
3.03125
3
[]
no_license
#택시 기하학 #https://www.acmicpc.net/problem/3053 import math R = int(input()) #유클리드 기하학과 맨헤튼 거리의 원은 모양이 다름 print("{:.6f}".format(R*R*math.pi)) print("{:.6f}".format(R*R*2))
true
184539ad02b03c70c9347e4f3132c05c60e6c6eb
Python
haochengz/superlists
/functional_test/base.py
UTF-8
1,288
2.515625
3
[]
no_license
from selenium import webdriver from selenium.webdriver.common.keys import Keys from django.contrib.staticfiles.testing import StaticLiveServerTestCase import time class FunctionalTest(StaticLiveServerTestCase): def setUp(self): self.browser = self.open_a_browser() def reset_browser(self): self.browser.quit() self.browser = self.open_a_browser() def open_a_browser(self): firefox_options = webdriver.FirefoxOptions() firefox_options.set_headless() browser = webdriver.Firefox(options=firefox_options) browser.implicitly_wait(3) return browser def check_for_row_of_table_contains_item(self, row_text): # html文件再如不完整将引发selenium查找节点失败的错误 time.sleep(3) table = self.browser.find_element_by_id('id_list_table') self.assertIn(row_text, "".join([row.text for row in table.find_elements_by_tag_name('tr')])) def submit_a_item_at_index_page(self, item_text): inputbox = self.get_input_box() inputbox.send_keys(item_text) inputbox.send_keys(Keys.ENTER) def get_input_box(self): return self.browser.find_element_by_id('id_text') def tearDown(self): self.browser.close()
true
f875542359851f332040d8038a8ba7ef9ea0a6cf
Python
BedirT/games-puzzles-algorithms
/old/lib/games_puzzles_algorithms/puzzles/solvable_sliding_tile_puzzle.py
UTF-8
1,587
3.171875
3
[ "MIT" ]
permissive
from games_puzzles_algorithms.puzzles.sliding_tile_puzzle import SlidingTilePuzzle from games_puzzles_algorithms.twod_array import TwoDArray import random class SolvableSlidingTilePuzzle(SlidingTilePuzzle): """A representation of a sliding tile puzzle guaranteed to be solvable.""" def __init__(self, size1=3, seed=None, size2=None): """ Initialize a rectangular sliding tile puzzle with size1 * size2 tiles. size1 gives the number of rows. The number of columns is given by size2 or size1 if size2 is None. The opptional seed argument is used to seed the random number generator for randomizing the initial puzzle layerout if it is set, so the same puzzle can be generated repeatedly by setting the same seed. """ if seed: random.seed(seed) self.size1 = size1 self.size2 = size2 if size2 is None: self.size2 = size1 self.puzzle = list(range(self.size1 * self.size2)) self.puzzle = TwoDArray((self.size1, self.size2), self.puzzle) self.num_correct_tiles = 0 for i in range(self.size1): for j in range(self.size2): if self.puzzle[(i, j)] == self.BLANK: self.blank_index = (i, j) if self.puzzle[(i, j)] == self.correct_num((i, j)): self.num_correct_tiles += 1 for i in range(self.size1 * self.size2 * 10): moves = self.valid_moves() self.apply_move(random.choice(moves))
true
757d3b358b58127d74723e996aebba19e8ce5d44
Python
varenius/oso
/VGOS/VGOS_prep.py
UTF-8
8,774
2.5625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import sys, os import datetime print("Welcome to the OTT VGOS_prep script. Please answer the following questions:") ########################### exp = input("QUESTION: Experiment, e.g. b22082 ? ").strip().lower() print("INFO: OK, try to process experiment "+exp) print() ########################### dlans = input("QUESTION: Download schedule from IVS (yes/no) ? ").strip().lower() if dlans =="yes" or dlans =="y": print("INFO: Will download schedule from IVS") dl = True else: if os.path.exists("/usr2/sched/"+exp+".skd") or os.path.exists("/usr2/sched/"+exp+".vex"): print("INFO: Will using already existing file in /usr2/sched/") dl = False else: print("ERROR: Download not requested, but no matching skd/vex file found in /usr2/sched/. Did you forget to put it here?") print("ABORTING!") sys.exit(1) print() ########################### prcs = {"1":"vo-default", "2": "vt2077-alternative", "3": "on1323", "4": "on1324", "5": "on1325", "6": "X-band from S/X R11091 (8x8 MHz overlap)", "7": "X-band from S/X RV157 (4x16 MHz overlap)", "8": "X-band from S/X T2 (8x4 MHz overlap)" } prcks = " ".join(["\n" + i+")"+prcs[i] for i in sorted(prcs.keys())]) print("INFO: Available frequency setup default PRC files are:\n{}\n".format(prcks)) prc = input("QUESTION: Please select setup using digit 1, 2, ...: ").strip().lower() selprc = prcs[prc] print("INFO: OK, selected setup is "+selprc) print() ########################### # get hostname of this FS machine, fulla or freja host = os.uname()[1] # Translate hostname to telescope 2 letter code for drudg tels = {"fulla":"oe", "freja":"ow"} tel = tels[host] ant = input("QUESTION: This is machine " + host + " so I assume you will use antenna " + tel + " (yes/no) ? ") if not (ant =="yes" or ant =="y"): tel = input("QUESTION: Then which antenna (oe/ow)? ").strip().lower() print("INFO: OK, using " + tel) print("") ########################### recs = {"fulla":"gyller","freja":"skirner"} rec = recs[host] ans = input("QUESTION: This is machine " + host + " so I assume you will use recorder " + rec + " (yes/no) ? ") if not (ans =="yes" or ans =="y"): rec = input("QUESTION: Then which recorder (gyller/skirner/kare)?").strip().lower() print("INFO: OK, using " + rec) print("") ########################### mirrorans = input("QUESTION: Mirror other station snap file - useful to tag-along Oe/Ow with a On S/X experiment - (yes/no) ? ") mirror = False if (mirrorans =="yes" or mirrorans =="y"): mirror = True tagtel = input("QUESTION: Then which antenna to mirror (normally On)? ").strip().lower() print("INFO: OK, will mirror SNP file for " + tagtel) print("") ########################### print("QUESTION: Which experiment to start after this one?") nextexp = input(" Type experiment name (e.g. b22087 without oe/ow), else leave blank: ").lower().strip() print("") ########################### a_offans = input("QUESTION: Do you want to add a antenna=off after prepant (yes/no) ? ").lower().strip() a_off = False if (a_offans =="yes" or a_offans =="y"): a_off = True print("") ########################### # PRINT SUMMARY print("") print("###########################") print("") print("YOU HAVE MADE THE FOLLOWING CHOICES:") print("Experiment: "+exp) print("Download from IVS: "+dlans) print("Frequency setup: "+selprc) print("Telescope: " + tel) print("Mirror other station snap file: " + mirrorans) if mirror: print(" ... will mirror SNP file for " + tagtel) print("Recorder: " + rec) print("Next exp after sched_end:" + nextexp) print("Put 'antenna=off' after prepant: " + a_offans) print("") print("###########################") print("") check = input("FINAL QUESTION: Ready to prepare, and possibly overwrite, experiment files for exp " + exp + ". Proceed (yes/no) ? " ).strip().lower() if not (check == "yes" or check == "y"): print("ABORTING!") sys.exit(0) ########################### # START ACTUAL SCRIPT! # Get path of script scriptpath = os.path.dirname(os.path.realpath(__file__)) if dl: # Get schedule via wget, saving it in /usr2/sched/, e.g. /usr2/sched/vt9248.skd print("INFO: Downloading sked file...") wgetcmd = "fesh -f " + exp os.system(wgetcmd) # drudg skd/vex file for SNP. if mirror: print("Mirroring, so will run DRUGG for antenna " + tagtel + " and then replace with actual antenna " + tel + " ...") drudgtel = tagtel else: drudgtel = tel print("INFO: Running DRUDG for telescope " + drudgtel + " ...") drudgcmd = "drudg /usr2/sched/" + exp + " " + drudgtel + " 3 0" os.system(drudgcmd) if mirror: movecmd = "mv /usr2/sched/" + exp + drudgtel + ".snp /usr2/sched/" + exp + tel + ".snp" os.system(movecmd) replacecmd = "sed -i 's/"+exp+","+tagtel+",/"+exp+","+tel+",/g' /usr2/sched/" + exp + tel + ".snp" os.system(replacecmd) # change setupsx to setupbb in SNP file #print("INFO: Changing setupsx to setupbb and commenting out in snp file...") sedcmd = "sed -i 's/setupsx/\"setupbb/g' /usr2/sched/"+exp+tel+".snp" os.system(sedcmd) #print("INFO: Commenting out any setupxx-calls in snp file...") sedcmd = "sed -i 's/setupxx/\"setupxx/g' /usr2/sched/"+exp+tel+".snp" os.system(sedcmd) #print("INFO: Commenting out any setup01-calls in snp file...") sedcmd = "sed -i 's/setup01/\"setup01/g' /usr2/sched/"+exp+tel+".snp" os.system(sedcmd) # copy template PRC file to /usr2/proc/expST.prc where ST is oe or ow print("INFO: Instead of drudging for PRC, copy template PRC for "+ selprc) if selprc=="vo-default": cpcmd = "cp " + scriptpath + "/PRC/VGOS_default_prc." + tel + " /usr2/proc/" + exp + tel + ".prc" # Templates below are for Ow, but Oe is identical since differences are absorbed in station.prc elif selprc=="vt2077-alternative": cpcmd = "cp " + scriptpath + "/PRC/vt2077ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="on1323": cpcmd = "cp " + scriptpath + "/PRC/on1323ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="on1324": cpcmd = "cp " + scriptpath + "/PRC/on1324ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="on1325": cpcmd = "cp " + scriptpath + "/PRC/on1325ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="X-band from S/X R11091 (8x8 MHz overlap)": cpcmd = "cp " + scriptpath + "/PRC/r11091_8x8MHz_xband_centered_32MHz_ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="X-band from S/X RV157 (4x16 MHz overlap)": cpcmd = "cp " + scriptpath + "/PRC/rv157_4x16MHz_xband_centered_32MHz_ow.prc /usr2/proc/" + exp + tel + ".prc" elif selprc=="X-band from S/X T2 (8x4 MHz overlap)": cpcmd = "cp " + scriptpath + "/PRC/t2_8x4MHz_xband_centered_32MHz_ow.prc /usr2/proc/" + exp + tel + ".prc" os.system(cpcmd) snpf = "/usr2/sched/"+exp+tel+".snp" # Store lines in array lines = [] for line in open(snpf): lines.append(line) # Find first timetag for line in lines: if line.startswith("!20"): starttime = datetime.datetime.strptime(line.strip()[1:], "%Y.%j.%H:%M:%S") break preptime = (starttime+datetime.timedelta(minutes=-10)).strftime("%Y.%j.%H:%M:%S") #print("starttime=", starttime, "preptime=", preptime) wf = open(snpf, "w") for line in lines: wf.write(line) if "Rack=DBBC" in line: #Do not set recorded here, too late, instead set in PRC, see code later in this script wf.write("prepant\n") if a_off: wf.write("antenna=off\n") wf.write("!"+preptime + "\n") wf.write("antenna=run\n") if exp.startswith("b2") or exp.startswith("c2"): #VGOSB/C session, include auto-transfer to ishioka print("INFO: This is a VGOSB or VGOSC experiment, so adding automatic data transfer to GSI after exp finish.") wf.write("sy=etransfer.py {0} gsi {1} {2}\n".format(rec, exp, tel)) if not nextexp=="": print("INFO: Adding schedule={0}{1},#1 as last line of SNP file.".format(nextexp, tel)) wf.write("schedule={0}{1},#1\n".format(nextexp, tel)) else: wf.write("antenna=off\n") wf.close() # Also edit PRC file to insert flexbuff_config command at start of exper_initi. # Previously we had this at start of SNP file, but this is after exper_initi, # so FS will set the "fb_mode" and similar commands first and THEN change # recorder, which means the recording would fail to record properly (since no mode set). prcf = "/usr2/proc/"+exp+tel+".prc" # Store lines in array plines = [] for line in open(prcf): plines.append(line) pf = open(prcf, "w") for line in plines: pf.write(line) if "define exper_initi" in line: pf.write("init_{0}\n".format(rec)) print("INFO: All done. You may want to check the resulting /usr2/sched/{0}{1}.snp and /usr2/proc/{0}{1}.prc files.".format(exp,tel))
true
67d06e23cf161abe692fae0421b02323445fe788
Python
parzibyte/crud-mysql-python
/eliminar.py
UTF-8
643
3.0625
3
[ "MIT" ]
permissive
""" Tutorial de CRUD con MySQL y Python 3 parzibyte.me/blog """ import pymysql try: conexion = pymysql.connect(host='localhost', user='root', password='', db='peliculas') try: with conexion.cursor() as cursor: consulta = "DELETE FROM peliculas WHERE anio < %s;" anio = 2000 cursor.execute(consulta, (anio)) # No olvidemos hacer commit cuando hacemos un cambio a la BD conexion.commit() finally: conexion.close() except (pymysql.err.OperationalError, pymysql.err.InternalError) as e: print("Ocurrió un error al conectar: ", e)
true
7f0c8544da84b7c67bd2a897a7911e5cb1ae4752
Python
zachselin/TrafficSim_TeamDangerous
/bufferbuildercar.py
UTF-8
3,127
2.625
3
[]
no_license
from car import Car import math import numpy as np import random import shared as g class BufferBuilder(Car): def __init__(self, sim, lane, speed, maxspeed, id, carAhead, carUpAhead, carDownAhead, laneidx, size, canvasheight, lanes, slowdown): super(BufferBuilder, self).__init__(sim, lane, speed, maxspeed, id, carAhead, carUpAhead, carDownAhead, laneidx, size, canvasheight, lanes, slowdown) self.aheadbufmin = 2 self.aheadbufmax = 8 self.accel = 0 self.delay = 1500 self.reaction = 0 self.color = g.buffercolor self.max_accel = 0.002 self.name = "bufferbuilder" def general_behavior(self): # use different acceleration functins depending on difference between v0 and vF # currenlty just linearly accelerates(or deaccelerates) to v of front car if (self.ahead != None): if(self.ahead.posx - self.posx - (self.length * 1.2) < 0): self.accel = -self.max_accel * 10 if(self.ahead.posx - self.posx - (self.length) - self.speedx < 0.05): self.accel = -self.speedx elif (self.aheadbufmax * self.length >= self.ahead.posx - self.posx): # if at max buffer prevAccel = self.accel # save previous accel # find distance between the two cars dist = self.ahead.posx - self.posx - (self.aheadbufmin * self.length) if (self.reaction == 0): #if not reacting # find accel so that after dist, this car will be matching the speed of front car safespeed = 0.000001 self.accel = (math.pow(self.ahead.speedx + safespeed, 2) - math.pow(self.speedx + safespeed, 2)) / (dist * 2) #check accel changed from + to - or vice versa if ((prevAccel < 0 and self.accel > 0) or (prevAccel > 0 and self.accel < 0)): self.accel = 0 #dont move car #self.reaction = 100 #set delay else: pass #self.reaction -= 1 if (prevAccel <= 0 and self.accel > 0 and self.speedx < 1 and self.aheadbufmin * self.length >= self.ahead.posx - self.posx): self.accel = 0 else: if (self.speedx < self.maxspeed): self.accel = self.speedx * .005 else: # front car # for delay amount of time make car come to a stop if (self.SLOWDOWN and self.delay > g.TICKS): self.accel = -self.speedx * .003 # after delay accel to maxspeed else: if (self.speedx < self.maxspeed): #self.accel = self.speedx * .003 self.accel = self.max_accel # limit accel to max self.accel = min(self.accel, self.max_accel) # update speed to reflect accel change self.speedx = self.speedx + self.accel self.speedx = min(self.inst_max, self.speedx)
true
d154f9979dfdf2994a0a8a4bc0c7e3df2f6ce289
Python
a-w/astyle
/AStyleDev/src-p/ExampleByte.py
UTF-8
11,436
2.8125
3
[ "MIT" ]
permissive
#! /usr/bin/python """ ExampleByte.py This program calls the Artistic Style DLL to format the AStyle source files. The Artistic Style DLL must be in the same directory as this script. The Artistic Style DLL must have the same bit size (32 or 64) as the Python executable. It will work with either Python version 2 or 3 (unicode). For Python 3 the files are retained in byte format and not converted to Unicode. """ # to disable the print statement and use the print() function (version 3 format) from __future__ import print_function import os import platform import sys from ctypes import * # global variables ------------------------------------------------------------ # will be updated from the platform properties by initialize_platform() __is_iron_python__ = False __is_unicode__ = False # ----------------------------------------------------------------------------- def main(): """ Main processing function. """ files = ["ASBeautifier.cpp", "ASFormatter.cpp", "astyle.h"] # options are byte code for AStyle input option_bytes = b"-A2tOP" #initialization print("ExampleByte", platform.python_implementation(), platform.python_version(), platform.architecture()[0]) initialize_platform() libc = initialize_library() version_bytes = get_astyle_version_bytes(libc) print("Artistic Style Version " + version_bytes.decode('utf-8')) # process the input files for file_path in files: file_path = get_project_directory(file_path) bytes_in = get_source_code_bytes(file_path) formatted_bytes = format_source_bytes(libc, bytes_in, option_bytes) # if an error occurs, the return is a type(None) object if type(formatted_bytes) is type(None): print("Error in formatting", file_path) os._exit(1) save_source_code_bytes(formatted_bytes, file_path) # allocated memory is deleted here, not in the allocation function del formatted_bytes print("Formatted", file_path) # ----------------------------------------------------------------------------- def format_source_bytes(libc, bytes_in, option_bytes): """ Format the bytes_in by calling the AStyle shared object (DLL). The variable bytes_in is expected to be a byte string. The return value is a byte string. If an error occurs, the return value is a NoneType object. """ astyle_main = libc.AStyleMain astyle_main.restype = c_char_p formatted_bytes = astyle_main(bytes_in, option_bytes, ERROR_HANDLER, MEMORY_ALLOCATION) return formatted_bytes # ----------------------------------------------------------------------------- def get_astyle_version_bytes(libc): """ Get the version number from the AStyle shared object (DLL). The function return value is a byte string. """ astyle_version = libc.AStyleGetVersion astyle_version.restype = c_char_p version_bytes = astyle_version() return version_bytes # ----------------------------------------------------------------------------- def get_project_directory(file_name): """ Find the directory path and prepend it to the file name. The source is expected to be in the "src-p" directory. This may need to be changed for your directory structure. """ file_path = sys.path[0] end = file_path.find("src-p") if end == -1: print("Cannot find source directory", file_path) os._exit(1) file_path = file_path[0:end] file_path = file_path + "test-data" + os.sep + file_name return file_path # ----------------------------------------------------------------------------- def get_source_code_bytes(file_path): """ Get the source code as bytes. Opening the file as binary will read it as a byte string. The return value is a byte string. """ # read the file as a byte string by declaring it as binary # version 3 will read unicode if not declared as binary try: file_in = open(file_path, 'rb') bytes_in = file_in.read() except IOError as err: # "No such file or directory: <file>" print(err) print("Cannot open", file_path) os._exit(1) file_in.close() return bytes_in # ----------------------------------------------------------------------------- def initialize_library(): """ Set the file path and load the shared object (DLL). Return the handle to the shared object (DLL). """ # change directory to the path where this script is located pydir = sys.path[0] # remove the file name for Iron Python if pydir[-3:] == ".py": pydir = os.path.dirname(sys.path[0]) os.chdir(pydir) # return the handle to the shared object if os.name == "nt": libc = load_windows_dll() else: libc = load_linux_so() return libc # ----------------------------------------------------------------------------- def initialize_platform(): """ Check the python_implementation and the python_version. Update the global variables __is_iron_python__ and __is_unicode__. """ global __is_iron_python__, __is_unicode__ if platform.python_implementation() == "CPython": if platform.python_version_tuple()[0] >= '3': __is_unicode__ = True elif platform.python_implementation() == "IronPython": __is_iron_python__ = True __is_unicode__ = True # ----------------------------------------------------------------------------- def load_linux_so(): """ Load the shared object for Linux platforms. The shared object must be in the same folder as this python script. """ shared = os.path.join(sys.path[0], "libastyle-2.06.so") # os.name does not always work for mac if sys.platform == "darwin": shared = shared.replace(".so", ".dylib") try: libc = cdll.LoadLibrary(shared) except OSError as err: # "cannot open shared object file: No such file or directory" print(err) print("Cannot find", shared) os._exit(1) return libc # ----------------------------------------------------------------------------- def load_windows_dll(): """ Load the dll for Windows platforms. The shared object must be in the same folder as this python script. An exception is handled if the dll bits do not match the Python executable bits (32 vs 64). """ dll = "AStyle-2.06.dll" try: libc = windll.LoadLibrary(dll) # exception for CPython except WindowsError as err: # print(err) print("Cannot load library", dll) if err.winerror == 126: # "The specified module could not be found" print("Cannot find", dll) elif err.winerror == 193: # "%1 is not a valid Win32 application" print("You may be mixing 32 and 64 bit code") else: print(err.strerror) os._exit(1) # exception for IronPython except OSError as err: print("Cannot load library", dll) print("If the library is available you may be mixing 32 and 64 bit code") os._exit(1) # exception for IronPython # this sometimes occurs with IronPython during debug # rerunning will probably fix except TypeError as err: print("TypeError - rerunning will probably fix") os._exit(1) return libc # ----------------------------------------------------------------------------- def save_source_code_bytes(bytes_out, file_path): """ Save the source code as bytes. The variable bytes_in is expected to be a byte string. Opening the file as binary will save it as a byte string. """ # remove old .orig, if any backup_path = file_path + ".orig" if os.path.isfile(backup_path): os.remove(backup_path) # rename original to backup os.rename(file_path, backup_path) # save the file as a byte string by opening it as binary # version 3 will attempt to write unicode if not declared as binary file_out = open(file_path, 'wb') file_out.write(bytes_out) file_out.close() # ----------------------------------------------------------------------------- # // astyle ASTYLE_LIB declarations # typedef void (STDCALL *fpError)(int, char*); // pointer to callback error handler # typedef char* (STDCALL *fpAlloc)(unsigned long); // pointer to callback memory allocation # extern "C" EXPORT char* STDCALL AStyleMain(const char*, const char*, fpError, fpAlloc); # extern "C" EXPORT const char* STDCALL AStyleGetVersion (void); # ----------------------------------------------------------------------------- # AStyle Error Handler Callback def error_handler(num, err): """ AStyle callback error handler. The return error string (err) is always byte type. It is converted to unicode for Python 3. """ print("Error in input {0}".format(num)) if __is_unicode__: err = err.decode() print(err) os._exit(1) # ----------------------------------------------------------------------------- # global to create the error handler callback function if os.name == "nt": ERROR_HANDLER_CALLBACK = WINFUNCTYPE(None, c_int, c_char_p) else: ERROR_HANDLER_CALLBACK = CFUNCTYPE(None, c_int, c_char_p) ERROR_HANDLER = ERROR_HANDLER_CALLBACK(error_handler) # global allocation variable -------------------------------------------------- # global memory allocation returned to artistic style # must be global for CPython # IronPython doesn't need global, but it doesn't hurt __allocated__ = c_char_p # ----------------------------------------------------------------------------- # AStyle Memory Allocation Callback def memory_allocation(size): """ AStyle callback memory allocation. The size to allocate is always byte type. The allocated memory MUST BE FREED by the calling function. """ # ctypes are different for CPython and IronPython global __allocated__ # ctypes for IronPython do NOT seem to be mutable # using ctype variables in IronPython results in a # "System.AccessViolationException: Attempted to read or write protected memory" # IronPython must use create_string_buffer() if __is_iron_python__: __allocated__ = create_string_buffer(size) return __allocated__ # ctypes for CPython ARE mutable and can be used for input # using create_string_buffer() in CPython results in a # "TypeError: string or integer address expected instead of c_char_Array" # CPython must use c_char_Array object else: arr_type = c_char * size # create a c_char array __allocated__ = arr_type() # create an array object return addressof(__allocated__) # ----------------------------------------------------------------------------- # global to create the memory allocation callback function if os.name == "nt": MEMORY_ALLOCATION_CALLBACK = WINFUNCTYPE(c_char_p, c_ulong) else: MEMORY_ALLOCATION_CALLBACK = CFUNCTYPE(c_char_p, c_ulong) MEMORY_ALLOCATION = MEMORY_ALLOCATION_CALLBACK(memory_allocation) # ----------------------------------------------------------------------------- # make the module executable if __name__ == "__main__": main() os._exit
true
e1753a9b57a697ecc0d4fd06df813330e9c4dbee
Python
DDDDDaryl/guidance_line_extraction
/cam_accelerate.py
UTF-8
993
3.03125
3
[]
no_license
import threading import cv2 class camCapture: def __init__(self, dev): self.Frame = 0 self.status = False self.isstop = False # 摄影机连接。 self.capture = cv2.VideoCapture(dev) # self.capture.set(3, 1280) # self.capture.set(4, 720) def isOpened(self): return self.capture.isOpened() def start(self): # 把程序放进子线程,daemon=True 表示该线程会随着主线程关闭而关闭。 print('cam started!') threading.Thread(target=self.queryframe, daemon=True, args=()).start() def stop(self): # 记得要设计停止无限循环的开关。 self.isstop = True print('cam stopped!') def getframe(self): # 当有需要影像时,再回传最新的影像。 return self.Frame def queryframe(self): while (not self.isstop): self.status, self.Frame = self.capture.read() self.capture.release()
true
874cfaaa3a2c67a0699fb8949c1e75aded0456b5
Python
kweird/githubintro
/4_Building_Tools/buildingtools.py
UTF-8
6,907
4.125
4
[ "MIT" ]
permissive
# Import the modules we use in our code import random import operator import matplotlib.pyplot import time # We set the random seed to a certain value so we have reproducable results # for testing. This can be commented out when not testing. random.seed(0) # We create a variable called start_time that stores the current time in # seconds. We do this with the intention of recording the end time when the # entire code has finished and to calculate the running time. start_time = time.time() # Set up the empty agents list agents = [] # Create variables that will determine how many agents there are, and how # many iterations or steps they move num_of_agents = 500 num_of_iterations = 3 # We create a function called distance_between to work out the distance # between any pair of [y, x] coords using Pythagoras' theorem. # We drop a dimension when passing in the pair of coords because we are only # going to pass in two separate [y, x] coords, not a list of lists containing # two sets of [y, x] coords. # e.g. we refer to agents_row_a[0] instead of agents_row_a[0][0] def distance_between(agents_row_a, agents_row_b): """ This function calculates and returns the distance between two sets of points on the x, y plane. Parameters ---------- agents_row_a : list with two elements that are numbers A list representing 2D coordinates. agents_row_b : list with two elements that are numbers A list representing 2D coordinates. Returns ------- Float Returns the calculated Pythagorean distance between two sets of points (agents_row_a and agents_row_b) on the x, y plane. """ return (((agents_row_a[0] - agents_row_b[0])**2) + \ ((agents_row_a[1] - agents_row_b[1])**2))**0.5 # We use a for loop to create the number of agents as specified in the # num_of_agents variable, still with random [y, x] coords, and append to the # initially empty agents list for i in range(num_of_agents): agents.append([random.randint(0,99),random.randint(0,99)]) # Print each agent coords individually using another for loop #for i in range(len(agents)): #print("Agent", i, "starting coords:", agents[i]) # For every iteration specified randomly move each agent in the agents list # once on the y and x axis # We generate a new random_number inside both for loops so that the probabilty # is individual for each agent during each iteration # We use the modulus operator to effectively turn our 100 x 100 environment # into a torus, where if an agent moves off either axis (either positively or # negatively) it appears at the other extreme of the axis for j in range(num_of_iterations): for i in range(num_of_agents): random_number = random.random() if random_number < 0.5: agents[i][0] = (agents[i][0] + 1) % 100 else: agents[i][0] = (agents[i][0] - 1) % 100 random_number = random.random() if random_number < 0.5: agents[i][1] = (agents[i][1] + 1) % 100 else: agents[i][1] = (agents[i][1] - 1) % 100 # These are test values to check that the Pythagorean formula below is # calculating the distance between agents correctly. Uncomment the lines # below and the answer should be 5, a well known solution that we can test. # distance = distance_between([0, 0], [4, 3]) # print(distance) # We create two variables to store the max / min distances between two agents # We manually calculate the max distance between the first two agents using # Pythagoras' theorem, and set the min distance to be the same, then we update # these values in the for loop below if any distance is greater for max # distance, or smaller for min distance # max_distance = (((agents[0][1] - agents[1][1])**2) \ # + ((agents[0][0] - agents[1][0])**2))**0.5 max_distance = distance_between(agents[0], agents[1]) min_distance = max_distance # We create a for loop to calculate the distance between every agent and every # other agent for i in agents: for j in agents: if i < j: distance = distance_between(i, j) max_distance = max(max_distance, distance) min_distance = min (min_distance, distance) #print("Distance between", i, "and", j, "is:", distance) #print("Max distance:", max_distance) #print("Min distance:", min_distance) # This is an alternative way of calculating the distance between every agent # for i in range(0, num_of_agents, 1): # for j in range(i, num_of_agents, 1): # distance = distance_between(agents[i], agents[j]) # max_distance = max(max_distance, distance) # min_distance = min (min_distance, distance) # #print("Distance between", i, "and", j, "is:", distance) # #print("Max distance:", max_distance) # #print("Min distance:", min_distance) # This line of code prints the [y, x] coords of the agent that is furthest # east (has the largest x value). It does this by comparing the second # element of each element within the agents list of lists. # print(max(agents, key=operator.itemgetter(1))) # We now create a variable with the [y, x] coords of the agent that is # furthest east, so that we can easily reference the individual coords # for use with matplotlib.pyplot.scatter most_easterly = max(agents, key=operator.itemgetter(1)) print("The coords of the most easterly agent are:", most_easterly) # most_westerly = min(agents, key=operator.itemgetter(1)) # print("The coords of the most westerly agent are:", most_westerly) # most_northerly = max(agents, key=operator.itemgetter(0)) # print("The coords of the most northerly agent are:", most_northerly) # most_southerly = min(agents, key=operator.itemgetter(0)) # print("The coords of the most southerly agent are:", most_southerly) # Using matplotlib we set the y and x axes, we scatter plot the coordinates # of our two agents onto the plot, then we show the plot matplotlib.pyplot.ylim(0, 99) matplotlib.pyplot.xlim(0, 99) # matplotlib.pyplot.scatter(agents[0][1],agents[0][0]) # matplotlib.pyplot.scatter(agents[1][1],agents[1][0]) # We are now using a for loop to scatter plot all the agents in the agents # list, no matter how many agents there are for i in range(num_of_agents): matplotlib.pyplot.scatter(agents[i][1],agents[i][0]) # We re-plot our most easterly agent, but this time we set it red for # identification. Because we plot this last it overwrites any previous colour matplotlib.pyplot.scatter(most_easterly[1], most_easterly[0], color = 'red') matplotlib.pyplot.show() # We create a variable called end_time that stores the current time in # seconds. We then subtract the end time from the starting time and print the # total running time of the code. end_time = time.time() print("Total running time = " + str(end_time - start_time) + " seconds")
true
c0d34c9d305b546ad501660f812066c5c6753bdb
Python
denizozger/coffee
/alert_slack_when_button_is_pressed.py
UTF-8
2,004
2.75
3
[]
no_license
#!/usr/bin/python # Recommended usage: $ nohup python3 this_file.py >this_file.py.log 2>&1 </dev/null & import os import requests import time from datetime import datetime import RPi.GPIO as GPIO url = os.getenv('SLACK_CHANNEL_URL') response = None GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # LED setup RED = 18 YELLOW = 23 GREEN = 24 GPIO.setup(RED, GPIO.OUT) GPIO.setup(YELLOW, GPIO.OUT) GPIO.setup(GREEN, GPIO.OUT) # Button setup ButtonPin = 25 # Set pin 25 as an input pin GPIO.setup(ButtonPin, GPIO.IN) # Buzzer setup BUZZER = 22 GPIO.setup(BUZZER, GPIO.OUT) def main(): reset_devices() GPIO.output(RED, GPIO.HIGH) # Default state is red while True: if GPIO.input(ButtonPin) == False: # If the button is pressed, ButtonPin will be "false" print('Button pressed', str(datetime.now())) GPIO.output(RED, GPIO.LOW) GPIO.output(YELLOW, GPIO.HIGH) message = { 'text': 'Ready!'} response = requests.post(url, json=message, allow_redirects=True) print(response.status_code, str(datetime.now())) if response.status_code == 200: buzz() GPIO.output(YELLOW, GPIO.LOW) GPIO.output(GREEN, GPIO.HIGH) time.sleep(5) # Coffee stays fresh for 40 minutes - I think else: GPIO.output(YELLOW, GPIO.LOW) for x in range(0, 3): GPIO.output(RED, GPIO.HIGH) buzz() time.sleep(1) GPIO.output(RED, GPIO.LOW) time.sleep(1) else: reset_devices() GPIO.output(RED, GPIO.HIGH) time.sleep(0.5) def buzz(duration: int=0.3): GPIO.output(BUZZER, GPIO.HIGH) time.sleep(duration) GPIO.output(BUZZER, GPIO.LOW) def reset_devices(): GPIO.output(BUZZER, GPIO.LOW) GPIO.output(RED, GPIO.LOW) GPIO.output(YELLOW, GPIO.LOW) GPIO.output(GREEN, GPIO.LOW) try: main() except Exception as e: print(e) GPIO.output(BUZZER, GPIO.LOW) GPIO.output(RED, GPIO.LOW) GPIO.output(YELLOW, GPIO.LOW) GPIO.output(GREEN, GPIO.LOW) GPIO.cleanup() try: sys.exit(0) except SystemExit: os._exit(0)
true
90e1c8ed8a7881304e0cde04c68732745860cb94
Python
rpw505/aoc_2020
/day_03/q1.py
UTF-8
1,769
3.421875
3
[]
no_license
from itertools import cycle from dataclasses import dataclass from pprint import pprint from typing import List from functools import reduce import operator TEST_INPUT = [ '..##.......', '#...#...#..', '.#....#..#.', '..#.#...#.#', '.#...##..#.', '..#.##.....', '.#.#.#....#', '.#........#', '#.##...#...', '#...##....#', '.#..#...#.#' ] class TreeRow: @staticmethod def from_input(lines): return [TreeRow(line) for line in lines] def __init__(self, line): #'..##.......' self.text = line.strip() self.tree_array = [t == '#' for t in self.text] def __getitem__(self, index): row = cycle(self.tree_array) if index < 0: raise IndexError() for _ in range(index): next(row) return next(row) def __repr__(self): return f'<{self.text}>' def slope(rows: List[TreeRow], x, y): max_y = len(rows) tally = 0 i = 0 for j in range(0, max_y, y): tally += rows[j][i] i += x print(f'tally ({x}, {y}): {tally}') return tally def check_slopes(rows): slopes = [ (1, 1), (3, 1), (5, 1), (7, 1), (1, 2) ] result = reduce(operator.mul, [slope(rows, *grad) for grad in slopes]) print('Check slopes: ', result) return result def tests(): print('Tests\n-----\n') rows = TreeRow.from_input(TEST_INPUT) print(rows) check_slopes(rows) def main(): print('Main\n----\n') with open("input_1.txt", 'r') as input_file: rows = TreeRow.from_input(input_file.readlines()) slope(rows, 3, 1) check_slopes(rows) if __name__ == '__main__': tests() print('') main()
true
8c61220653fa86b86cb77a37e704ea4d8be2cb61
Python
Leo-Wang-JL/force-riscv
/utils/regression/common/threads.py
UTF-8
10,681
2.546875
3
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # import threading import sys import threading import sys from threading import Thread from common.sys_utils import SysUtils from common.msg_utils import Msg class HiThread( threading.Thread ): def __init__( self, arg_options ): # the HiThread has two states state 1 has no thread loop thus there is no need for control to be halted # to allow other thread processes to continue, State 2 executes a loop until the shutdown sequence is invoked # which determines whether or not the thread a) has more work to do, or b) will wait for another process to # finished. A Thread will remain in the shutdown sequence until the terminate flag is set. When the terminate # flag is set then the thread will execute the terminate sequence. my_target = SysUtils.ifthen( arg_options.get( "noloop", False ), self.run_once, self.run_loop ) super().__init__( name = arg_options.get( "name", None ), target = my_target ) Msg.dbg( "Created Thread[%s] Processing...." % ( self.name )) # useful Thread events self.on_start = arg_options.get( "on-start" , None ) self.on_execute = arg_options.get( "on-execute" , None ) self.on_done = arg_options.get( "on-done" , None ) self.on_shutdown = arg_options.get( "on-shutdown", None ) self.on_finished = arg_options.get( "on-finished", None ) # thread flags self.shutdown = False # shutdown request has been received self.finished = False # thread has completed all work and has exited # the thread heartbeat is set to write a debug message every 30 seconds if the thread # is waiting. I do not like the term blocking because waiting is a more controlled event. # The waiting thread asks for permission to procees rather than the thread that is busy having # to create a block. Blocks are notorious for causing deadlock requiring less than a graceful # shutdown self.heartbeat_rate = arg_options.get( "heartbeat-rate", 30 ) self.sleep_period = arg_options.get( "sleep-period" , 1000 ) self.current_tick = 0 # not a good idea to use daemons as a blanket rule, makes bad designs seem to function # but there are always underlying issues with these. The daemon attribute exists in the # abstract as does the handler. Setting it here will ensure the thread acts as we expect self.daemon = arg_options.get( "daemon", False ) if arg_options.get( "active", False ): self.start_thread() # perform any remaining initialization outside the thread space # using a callback handler if initialized then starts the thread def start_thread( self ): if self.on_start is not None: self.on_start( ) self.start() # waits for the thread to exit then executes a notify callback if initialized def wait_for( self ): Msg.dbg( "Before Thread[%s] Join" % ( self.name )) self.join() Msg.dbg( "After Thread[%s] Join" % ( self.name )) # thread has finishedd its work, trigger notify thread done if self.on_finished is not None: self.on_finished( ) # general thread loop def run_loop( self ): Msg.info( "Entering HIThread[%s] Loop Processing...." % ( self.name ) ) while not self.terminated(): # initialize iteration for work performed in execute Msg.dbg( "HiThread[%s]::run_loop(1)" % ( self.name ) ) if self.on_execute is not None: Msg.dbg( "HiThread[%s]::run_loop(2)" % ( self.name ) ) self.on_execute( ) # perform the iteration work Msg.dbg( "HiThread[%s]::run_loop(3)" % ( self.name ) ) self.execute() # finish work prior the next iteratation Msg.dbg( "HiThread[%s]::run_loop(4)" % ( self.name ) ) if self.on_done is not None: Msg.dbg( "HiThread[%s]::run_loop(5)" % ( self.name ) ) self.on_done( ) Msg.dbg( "HiThread[%s]::run_loop(6)" % ( self.name ) ) Msg.info( "Leaving HIThread[%s] Loop Processing...." % ( self.name ) ) # general thread execute def run_once( self ): Msg.dbg( "Entering Thread[%s] Processing...." % ( self.name )) # initialize thread for work performed in execute if self.on_execute is not None: self.on_execute( ) # perform the thread work self.execute() # perform any remaining work prior to exit thread space if self.on_done is not None: self.on_done( ) Msg.dbg( "Leaving Thread[%s] Processing...." % ( self.name )) # returns True once Thread has exited def terminated( self ): # Msg.info( "HiThread::terminated() - self.finished: %s, self.is_alive(): %s, returns: [%s]" % (str(self.finished),str(self.is_alive())),str(self.finished or ( not self.is_alive() ))) Msg.info( "HiThread[%s]::terminated() - self.finished: %s, self.is_alive(): %s" % (self.name, str(self.finished),str(self.is_alive())) ) my_retval = self.finished or ( not self.is_alive()) Msg.info( "HiThread[%s]::terminated() - returns: [%s]" % ( self.name, str( my_retval ))) return self.finished or ( not self.is_alive() ) def heartbeat( self ): # increment the heartbeat and when debug messages are enabled then a heartbeat message will be # posted every self.heartbeat-interval ticks. Whenever the heartbeat method is called the current_tick # is updated self.current_tick += 1 if not bool( self.current_tick % self.heartbeat_rate ): Msg.dbg( "HiThread[%s] Still Working" % ( self.name ) ) # the sleep in SysUtils uses milliseconds as does the rest of the computing world instead of # fractions of a second. Thus this will pause this thread for 10 seconds allowing the process # thread some processor time SysUtils.sleep(self.sleep_period) return False def trigger_shutdown( self ): Msg.dbg( "HiThread[%s]::trigger_shutdown() - enter " % ( self.name )) if self.on_shutdown is not None: self.on_shutdown(self) else: self.shutdown = True Msg.dbg( "HiThread[%s]::trigger_shutdown() - exit " % ( self.name )) def execute( self ): raise NotImplementedError( "Thread::execute() must be implemented" ) class HiOldThread( threading.Thread ): def __init__( self, arg_create_active = False ): super().__init__( name = "HiThread-01" ) # Ensure that all threads are killed when master thread is exited for any reason by marking it as a daemon self.daemon = True if arg_create_active: self.start() #pass def run( self ): pass def HeartBeat( self ): # Enable this if it's a good idea to have a periodic printing heartbeat #Msg.dbg("[Thread %s]: Heartbeat" % (self.threadName)) pass class HiEvent( threading.Event ): def __init__( self, arg_options ): super().__init__() # default to return immediately self.timeout = arg_options.get( "timeout" , None ) self.before_signal = arg_options.get( "before-sig" , None ) # use this to perform some action prior to setting event self.after_signal = arg_options.get( "after-sig" , None ) # use this to perform some action after to setting event self.before_unsignal = arg_options.get( "before-unsig" , None ) # use this to perform some action prior to unsetting event self.after_unsignal = arg_options.get( "after-unsig" , None ) # use this to perform some action after to unsetting event def Signal( self, arg_sender = None ): # perform any activities prior to notification, this could include finishing some work # that could make the system unstable. This is a callback that is part of the dictionary # used to initialize if self.before_signal is not None: self.before_signal( arg_stat ) # signal the event self.set() # perform any activities once notification has been dispatched, this can be used to notify the caller the even has # been signaled # This is a callback that is part of the dictionary used to initialize if self.after_signal is not None: self.after_signal( arg_stat ) def Unsignal( self, arg_sender = None ): # perform any activities prior to notification the event has been cleared and will block, this could include initializing to # prevent system instability. This is a callback that is part of the dictionary used to initialize the Event if self.before_unsignal is not None: self.before_unsignal( self ) self.clear( ) if self.after_unsignal is not None: self.after_unsignal( self ) def Signaled( self, arg_sender = None ): return self.isSet() def Reset( self, arg_sender = None ): self.clear() ## {{{{ TTTTTTTT OOOOOO DDDDDD OOOOOO }}}} ## {{ TTTTTTTT OOOOOOOO DDDDDDD OOOOOOOO }} ## {{ TT OO OO DD DDD OO OO }} ## {{ TT OO OO DD DD OO OO }} ## {{ TT OO OO DD DDD OO OO }} ## {{ TT OOOOOOOO DDDDDDD OOOOOOOO }} ## {{{{ TT OOOOOO DDDDDD OOOOOO }}}} ## ## GET RID OF THIS INSANITY, replace with proper thread management # This event is signalled when all the worker threads are completed. workers_done_event = HiEvent({}) # Summary thread signals master thread that it's done summary_done_event = HiEvent({}) class HiSemaphore( threading.Semaphore ): def test( self ): my_lock = threading.Lock() # class HiMutex( threading.Lock ): # def test( self ): # pass # # # class HiCriticalSection( threading.Lock ): # pass # #
true
5236846a1e7234ed817ca17e9086eb7f3a0df9f0
Python
zxqfengdi/graduation-project
/project_code/camera.py
UTF-8
3,707
2.578125
3
[]
no_license
# coding:utf-8 """ @author: fengdi @file: camera.py @time: 2018-04-21 22:12 """ import cv2 import face_recognition class CameraRecognize(object): def __init__(self): super().__init__() def camera_recognize(self): video_capture = cv2.VideoCapture(1) jobs_image = face_recognition.load_image_file("/media/fengdi/数据/graduation-project/facedata/jobs.png") curry_image = face_recognition.load_image_file("/media/fengdi/数据/graduation-project/facedata/curry.jpg") putin_image = face_recognition.load_image_file("/media/fengdi/数据/graduation-project/facedata/putin.jpeg") # xidada_image = face_recognition.load_image_file("/media/fengdi/数据/graduation-project/facedata/xidada.jpg") # jobs_image = face_recognition.load_image_file(r"E:\graduation-project\facedata\jobs.png") # curry_image = face_recognition.load_image_file(r"E:\graduation-project\facedata\curry.jpg") # putin_image = face_recognition.load_image_file(r"E:\graduation-project\facedata\putin.jpeg") # xidada_image = face_recognition.load_image_file(r"E:\graduation-project\facedata\xidada.jpg") jobs_face_encoding = face_recognition.face_encodings(jobs_image)[0] curry_face_encoding = face_recognition.face_encodings(curry_image)[0] putin_encoding = face_recognition.face_encodings(putin_image)[0] # xidada_encoding = face_recognition.face_encodings(xidada_image)[0] known_face_encodings = [jobs_face_encoding, curry_face_encoding, putin_encoding] known_face_names = ["jobs", "curry", "putin"] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while video_capture.isOpened(): ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations( rgb_small_frame) face_encodings = face_recognition.face_encodings( rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces( known_face_encodings, face_encoding) name = "unknown" if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip( face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 start = (left, top) end = (right, bottom) color = (0, 255, 0) thickness = 1 cv2.rectangle(frame, start, end, color, thickness) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (128, 128, 128), cv2.FILLED) font = cv2.FONT_HERSHEY_COMPLEX cv2.putText(frame, name, (left + 30, bottom - 10), font, 1.0, (0, 0, 0), 1) cv2.imshow('camera', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() if __name__ == "__main__": camera = CameraRecognize() camera.camera_recognize()
true
0574e1aadc0b48372a74e9b11afa6588dd8130a2
Python
arnavdas88/qiskit_helper_functions
/qcg/Dynamics/quantum_dynamics.py
UTF-8
4,783
3.125
3
[ "MIT" ]
permissive
from qiskit import QuantumCircuit, QuantumRegister import sys import math import numpy as np class Dynamics: """ Class to implement the simulation of quantum dynamics as described in Section 4.7 of Nielsen & Chuang (Quantum computation and quantum information (10th anniv. version), 2010.) A circuit implementing the quantum simulation can be generated for a given problem Hamiltonian parameterized by calling the gen_circuit() method. Attributes ---------- H : ?? The given Hamiltonian whose dynamics we want to simulate barriers : bool should barriers be included in the generated circuit measure : bool should a ClassicalRegister and measurements be added to the circuit regname : str optional string to name the quantum and classical registers. This allows for the easy concatenation of multiple QuantumCircuits. qr : QuantumRegister Qiskit QuantumRegister holding all of the quantum bits circ : QuantumCircuit Qiskit QuantumCircuit that represents the uccsd circuit """ def __init__(self, H, barriers=False, measure=False, regname=None): # Hamiltonian self.H = H # set flags for circuit generation self.barriers = barriers self.nq = self.get_num_qubits() # create a QuantumCircuit object if regname is None: self.qr = QuantumRegister(self.nq) else: self.qr = QuantumRegister(self.nq, name=regname) self.circ = QuantumCircuit(self.qr) # Create and add an ancilla register to the circuit self.ancQ = QuantumRegister(1, 'ancQ') self.circ.add_register(self.ancQ) def get_num_qubits(self): """ Given the problem Hamiltonian, return the appropriate number of qubits needed to simulate its dynamics. This number does not include the single ancilla qubit that is added to the circuit. """ numq = 0 for term in self.H: if len(term) > numq: numq = len(term) return numq def compute_to_Z_basis(self, pauli_str): """ Take the given pauli_str of the form ABCD and apply operations to the circuit which will take it from the ABCD basis to the ZZZZ basis Parameters ---------- pauli_str : str string of the form 'p1p2p3...pN' where pK is a Pauli matrix """ for i, pauli in enumerate(pauli_str): if pauli is 'X': self.circ.h(self.qr[i]) elif pauli is 'Y': self.circ.h(self.qr[i]) self.circ.s(self.qr[i]) def uncompute_to_Z_basis(self, pauli_str): """ Take the given pauli_str of the form ABCD and apply operations to the circuit which will take it from the ZZZZ basis to the ABCD basis Parameters ---------- pauli_str : str string of the form 'p1p2p3...pN' where pK is a Pauli matrix """ for i, pauli in enumerate(pauli_str): if pauli is 'X': self.circ.h(self.qr[i]) elif pauli is 'Y': self.circ.sdg(self.qr[i]) self.circ.h(self.qr[i]) def apply_phase_shift(self, delta_t): """ Simulate the evolution of exp(-i(dt)Z) """ # apply CNOT ladder -> compute parity for i in range(self.nq): self.circ.cx(self.qr[i], self.ancQ[0]) # apply phase shift to the ancilla # rz applies the unitary: exp(-i*theta*Z/2) self.circ.rz(2*delta_t, self.ancQ[0]) # apply CNOT ladder -> uncompute parity for i in range(self.nq-1, -1, -1): self.circ.cx(self.qr[i], self.ancQ[0]) def gen_circuit(self): """ Create a circuit implementing the quantum dynamics simulation Returns ------- QuantumCircuit QuantumCircuit object of size nq with no ClassicalRegister and no measurements """ # generate a naive version of a simulation circuit for term in self.H: self.compute_to_Z_basis(term) if self.barriers: self.circ.barrier() self.apply_phase_shift(1) if self.barriers: self.circ.barrier() self.uncompute_to_Z_basis(term) if self.barriers: self.circ.barrier() # generate a commutation aware version of a simulation circuit # simulate all commuting terms simulataneously by using 1 ancilla per # term that will encode the phase shift based on the parity of the term. return self.circ
true
6a974c556298f24c8f03c12e19bafea5271b40a5
Python
iradukundas/TFT-WebScrapper
/main.py
UTF-8
5,599
2.53125
3
[]
no_license
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from discord.ext import commands from discord import Color import discord import os #Setting up for webscrapping driver = webdriver.Chrome(executable_path = "/app/.chromedriver/bin/chromedriver") #discord side Client = commands.Bot(command_prefix = '!') @Client.event async def on_ready(): print("We have logged in as {0.user}".format(Client)) #an event is a piece of code that runs when a bot detects certain activity driver.get("https://lolchess.gg") @Client.command() async def check(ctx, *, username): channel = Client.get_channel(778311945476374570) try: #webscraping driver.find_element_by_xpath('//*[@id="gnb-search-box"]/form/input').clear() sBox = driver.find_element_by_xpath('//*[@id="gnb-search-box"]/form/input') #looking for search box based on the xpath(obtained via inspect). stored in searchBox variable sBox.send_keys(username) #entering something in the box searchButton = driver.find_element_by_xpath('/html/body/div[1]/header/div[3]/div/form/button') searchButton.click() #clicking the search button #changing colors for various elements on the website script = 'document.getElementsByClassName("profile__tier")[0].style.backgroundColor = "#2f3136";' #top part of stats script2 = 'document.getElementsByClassName("profile__tier__stats")[0].style.backgroundColor = "#2f3136";' #bottom part of stats script3 = 'document.getElementsByClassName("profile__tier__stats")[0].style.color = "#FFFFFF";' #text color script4 = 'document.getElementsByClassName("profile__tier")[0].style.border = "1px solid #2f3136";' #border color script5 = 'document.getElementsByClassName("profile__tier__info")[0].style.color = "#FFFFFF";' #LP Color script6 = 'for (i = 0; i < 5; i++) {document.getElementsByClassName("profile__tier__stat__text")[i].style.color = "#FFFFFF";}' #"top" color script7 = 'for (i = 0; i < 3; i++) {document.getElementsByClassName("profile__tier__stat__value float-right")[i].style.color = "#FFFFFF"};' #"top" color script8 = 'document.getElementsByClassName("text-dark-gray d-none d-md-block")[0].style.color = "#FFFFFF";' #Tier Color script9 = 'document.getElementsByClassName("top-percent")[0].style.color = "#FFFFFF";' #top % color script10 = 'document.getElementsByClassName("rank-region")[0].style.color = "#FFFFFF";' #rank region color #executing all the scripts driver.execute_script(script) driver.execute_script(script2) driver.execute_script(script3) driver.execute_script(script4) driver.execute_script(script5) driver.execute_script(script6) driver.execute_script(script7) driver.execute_script(script8) driver.execute_script(script9) driver.execute_script(script10) #taking screenshot on the stats page profileTierInfo = driver.find_element_by_class_name('profile__tier') profileTierInfo.screenshot('./stats.png') #locating player icon the page profileIcon = driver.find_element_by_class_name('profile__icon').find_element_by_tag_name('img').get_attribute('src') #embed embed = discord.Embed() file = discord.File('./stats.png') embed.set_image(url = "attachment://stats.png" ) embed.set_author(name = username, icon_url = profileIcon) embed.set_footer(text ='src: lolchess.gg') await ctx.send(embed = embed, file = file) driver.get("https://lolchess.gg") except Exception as E: print(E) #printing the exception notFound = discord.Embed(title = '{} not found. Checking spelling and try again'.format(username)) await ctx.send(embed=notFound) driver.get("https://lolchess.gg") @Client.command() async def lb(ctx): ranks = driver.find_elements_by_class_name('rank') ranksT = '' for rank in ranks: ranksT += rank.text + '\n' summoners = driver.find_elements_by_class_name('summoner') summonersT = '' for summoner in summoners: summonersT += summoner.text + '\n' regions = driver.find_elements_by_class_name('region') regionsT = '' for region in regions: regionsT += region.text + '\n' tiers = driver.find_elements_by_class_name('tier') tiersT = '' for tier in tiers: tiersT += tier.text + '\n' #not yet added lps = driver.find_elements_by_class_name('lp') lpsT = '' for lp in lps: lpsT += lp.text + '\n' winrates = driver.find_elements_by_class_name('winrate') winratesT = '' for winrate in winrates: winratesT += winrate.text + '\n' wins = driver.find_elements_by_class_name('wins') winsT = '' for win in wins: winsT += win.text + '\n' losses = driver.find_elements_by_class_name('losses') lossesT = '' for loss in losses: lossesT += loss.text + '\n' embed = discord.Embed(title = 'Leaderboard Data') embed.add_field(name = '#', value = ranksT , inline=True) embed.add_field(name = 'Location', value = regionsT, inline=True) embed.add_field(name = 'Name', value = summonersT, inline=True) await ctx.send(embed = embed) driver.get("https://lolchess.gg") Client.run('') # git add ., git commit -m "msg", git push heroku <--- for changes #heroku logs -a discord-tft-stats --tail
true
50a745345dae7439ae93218a26aa9c44562698d2
Python
Eulleraang12/Inspection-robot
/Move/movimentação.py
UTF-8
2,338
2.984375
3
[]
no_license
import RPi.GPIO as GPIO import time from MotorDireito import * from MotorEsquerdo import * from multiprocessing import Process GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) def frente(tempo, voltas): for i in range(voltas): for j in passo: GPIO.output(bobinas1[0],int(j[0])) GPIO.output(bobinas1[1],int(j[1])) GPIO.output(bobinas1[2],int(j[2])) GPIO.output(bobinas1[3],int(j[3])) GPIO.output(bobinas2[0],int(j[0])) GPIO.output(bobinas2[1],int(j[1])) GPIO.output(bobinas2[2],int(j[2])) GPIO.output(bobinas2[3],int(j[3])) time.sleep(tempo/1000) def re(tempo, voltas): for i in range(voltas): for j in passo_inversa: GPIO.output(bobinas1[0],int(j[0])) GPIO.output(bobinas1[1],int(j[1])) GPIO.output(bobinas1[2],int(j[2])) GPIO.output(bobinas1[3],int(j[3])) GPIO.output(bobinas2[0],int(j[0])) GPIO.output(bobinas2[1],int(j[1])) GPIO.output(bobinas2[2],int(j[2])) GPIO.output(bobinas2[3],int(j[3])) time.sleep(tempo/1000) while True: try: direcao = str(input("f -> Frente ou r -> Ré e c -> Curva: ")) if direcao == 'f': tempo = int(input("Intervalo de passo (2 ms recomendado): ")) voltas = 50* int(input("Quantas voltas? ")) frente(tempo, voltas) if direcao == 'r': tempo = int(input("Intervalo de passo (2 ms recomendado): ")) voltas = 50* int(input("Quantas voltas? ")) re(tempo, voltas) if direcao == 'c': direita = int(input("Intervalo de passo do motor DIREITO (2 ms recomendado): ")) esquerda = int(input("Intervalo de passo do motor ESQUERDO (2 ms recomendado): ")) voltas= 50* int(input("Quantas voltas motor? ")) processo_d = Process(target=motor_direita, args=(direita,voltas)) processo_e = Process(target=motor_esquerda, args=(esquerda,voltas)) processo_d.start() processo_e.start() # processo_d.join() #espera o termino do programa # processo_e.join() except KeyboardInterrupt: GPIO.cleanup()
true
43b76ff31f463de16f07ff768d7341bdb608a53c
Python
WZQ1397/kickstart
/my220927-2.py
UTF-8
3,110
2.859375
3
[]
no_license
# Author: Zach.Wang # Module: fileEnc.py import pickle from sys import argv from datetime import datetime filename=None class initFileName(object): def __init__(self,filename=filename) -> None: self.__filename = filename def get_filename(self) -> str: return "".join(self.__filename.split('.')[:-1]) def get_extension(self) -> str: return self.__filename.split('.')[-1] def gen_time_subfix(self) -> str: return datetime.strftime(datetime.now(),"%Y-%m-%d-%H-%M-%S") def gen_pickle_file_name(self) -> str: return f"{self.get_filename()}.pickle" def gen_save_file_name(self) -> str: return f"{self.get_filename()}." \ f"{self.gen_time_subfix()}." \ f"{self.get_extension()}" class genEncFile(object): def __init__(self,filename=filename) -> None: self.__filename = filename self.__FileNameOps = initFileName(self.__filename) self.__pickleFile = self.__FileNameOps.gen_pickle_file_name() self.__saveFile = self.__FileNameOps.gen_save_file_name() def picklize_file(self) -> None: with open(self.__filename, "rb") as fread,\ open(self.__pickleFile, 'wb') as fpickle: print(f"{self.__filename} ==> {self.__pickleFile}") for data in fread.readlines(): pickle.dump(data,fpickle, pickle.HIGHEST_PROTOCOL) def unpack_file(self,filename:str=None,extension: str = None) -> None: if filename is not None: self.__pickleFile = filename if extension is not None: self.__saveFile = f"{self.__saveFile}.{extension}" with open(self.__saveFile, "wb") as fsave,\ open(self.__pickleFile, 'rb') as fpickle: print(f"{self.__pickleFile} ==> {self.__saveFile}") while True: try: item=pickle.load(fpickle) fsave.write(item) except EOFError as _: break class Pic2Base64: # Author: Zach.Wang # Module: Pic2Base64.py import base64 def __init__(self,binfilename=None): self.filename= "MicrosoftTeams-image.png" self.savebinfile=filename+".new.txt" self.savepicfile=filename+".new.png" # saveFiletoBase64() readBase64code(binfilename) def saveFiletoBase64(self,onScr: bool = True): with open(self.filename, "rb") as fread, open(self.savebinfile,"wb") as fsave: data = base64.b64encode(fread.read()) fsave.write(data) if onScr: print(data) def readBase64code(self,savebinfile=savebinfile): with open(self.savebinfile, "rb") as fread, open(self.savepicfile,"wb") as fsave: data = base64.b64decode(fread.read()) fsave.write(data) if __name__ == "__main__": while filename is None: filename = argv[1] else: while filename is None: filename = input("Input A filename: ") fileOps = genEncFile(filename) # fileOps.picklize_file() fileOps.unpack_file(filename,"7z")
true