blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
0aeb4c0f3c5d7bce7dfd338337afb5ed89f67e14
Python
adilsonLuz/OficinaPython
/O2-Ex-027.py
UTF-8
203
3.1875
3
[]
no_license
lista = [ "b", "d", "c", "a", "z", "f", "x", "a", "a"] print("\n lista ") print(lista) print("\n quantidade de a: ") print(lista.count("a")) print("\n quantidade de z: ") print(lista.count("z"))
true
ea408204a993c32cae3bdbfb5ae3687e9a77f7e6
Python
YanisAhdjoudj/Regression_Lineaire_Scratch
/1_Programs/1_linear_regression_main.py
UTF-8
2,351
2.671875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Nov 14 22:04:19 2021 @author: yanis """ import os from datetime import date from datetime import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from scipy.special import ndtri # Main class : Linear_Regression # Main methods : fit # : Predict # Additional classes : # Plots # class Linear_Regression: def __init__(self,data,varX,varY,intercept=True): """ Parameters ---------- intercept : TYPE, optional DESCRIPTION. The default is True. Returns ------- None. """ self.coef_=None self.intercept_= None self.data=data self.varX=varX self.varY=varY self.intercept=intercept Nobs=len(X) X=X.to_numpy() tX=X.transpose() Y=Data[varY].to_numpy() Px=X.dot((np.linalg.inv(tX.dot(X)))).dot(tX) Mx=np.identity(Nobs)-Px if Const==True: df_model=np.size(X,1)-1 else: df_model= np.size(X,1) df_resid=Nobs-np.size(X,1) def __repr__(self): return " This programm provide a Linear regression model" def data_preparation(self): # adding a intercept to the data if needed if self.intercept==True: try: self.data.insert(0,"const",1) except: pass self.varX.insert(0,"const") self.X=self.data[self.varX] else: self.X=self.data[self.varX] return self.X def fit(self,Estimation="AL",Nb_ite=100000,Learning_rate=0.001,Precision=0.0000000000001): # Tree type of fitting methods : # Classical econometric approach I : Least squared # Classical econometric approach II : Log likelihood # Statistical learning approach : Lost function # For the Log likelihood and the lost function methods # two optimisation methods can be used : # gradiant descent and newpthon raphston if LR= Linear_Regression() print(LR)
true
be611f2c6b48375e50441995aadf1d37be4bc778
Python
AndreaPicasso/NLFF
/model/benchmark/rule_classifier.py
UTF-8
6,660
2.5625
3
[]
no_license
import pandas as pd import numpy as np import tensorflow as tf import math from datetime import datetime, timedelta from sklearn import preprocessing from sklearn.metrics import confusion_matrix from math import sqrt import matplotlib.pyplot as plt #tf.logging.set_verbosity(tf.logging.INFO) skip_vector_dim = 7 n_y = 1 #Numero di output, Per ora sali / scendi poi metteremo neutrale def sign(x): if x >= 0: return 1 elif x < 0: #return -1 return 0 class Data(): X = [] Y = [] def get_train_test_set(test_percentage=0.3): idx_split = math.floor(len(Data.pos)*(1-test_percentage)) train_pos = Data.pos[:idx_split] train_neg = Data.neg[:idx_split] train_y = Data.Y[:idx_split] test_pos = Data.pos[idx_split:] test_neg = Data.neg[idx_split:] test_y = Data.Y[idx_split:] return (train_pos, train_neg, train_y), (test_pos, test_neg, test_y) def load_data(ticker='AAPL', momentum_window=30, newsTimeToMarket =0, X_window_average=40, set_verbosity=True): X_path = '../tensorflow_model/for_server/SentimentSingleNewsFullNoNorm/'+str(ticker)+'.csv' Y_path = '../tensorflow_model/for_server/DataSetIndexes/indexes'+str(ticker)+'.csv' x = pd.read_csv(X_path) x.drop('Unnamed: 0', axis=1, inplace=True) x = x.rename(index=str, columns={"initTime": "PUBLICATION_DATE"}) x = x.sort_values(by=['PUBLICATION_DATE']) x = x.reset_index(drop=True) y = pd.read_csv(Y_path) for i, row in x.iterrows(): x.at[i,'PUBLICATION_DATE'] =datetime.strptime(x['PUBLICATION_DATE'][i], '%Y-%m-%d %H:%M:%S') + timedelta(hours=newsTimeToMarket) momentum_window = 30 y = y.rename(index=str, columns={"Unnamed: 0": "DATE"}) for i, row in y.iterrows(): y['DATE'].at[i] = datetime.strptime(y['DATE'][i], '%Y-%m-%d %H:%M:%S') z = list() for i in range(0,y.shape[0]-momentum_window): z.append((y['close'][i] - y['close'][i-momentum_window])/y['close'][i]) y = y.reset_index(drop=True) y.drop(np.arange(y.shape[0]-momentum_window, y.shape[0]), inplace=True) y = y.reset_index(drop=True) y['labels'] = [sign(entry) for entry in z] min_max_scaler = preprocessing.MinMaxScaler() initDate = max(y['DATE'][0], x['PUBLICATION_DATE'][0]) finalDate = min(y['DATE'][len(y)-1], x['PUBLICATION_DATE'][len(x)-1]) i = 0 j = 0 close = [] labels = [] pos = [] neg = [] dates = [] # ALLINEAMENTO INIZIO while(y['DATE'][j] < initDate): j+=1 while(x['PUBLICATION_DATE'][i] < initDate): i+=1 while(x['PUBLICATION_DATE'][i] < finalDate and y['DATE'][j] < finalDate ): timeSlotPos = list() timeSlotNeg = list() while(i<len(x)-1 and y['DATE'][j] > x['PUBLICATION_DATE'][i]): timeSlotPos.append(x['POSITIVE'][i]) timeSlotNeg.append(x['NEGATIVE'][i]) i+=1 if(len(timeSlotPos)==0): timeSlotPos.append(0) timeSlotNeg.append(0) pos.append(np.mean(np.asarray(timeSlotPos), axis=0)) neg.append(np.mean(np.asarray(timeSlotNeg), axis=0)) close.append(y['close'][j]) labels.append(y['labels'][j]) dates.append(str(y['DATE'][j].year)+'/'+str(y['DATE'][j].month)) j+=1 pos = np.convolve(np.asarray(pos), np.repeat(1.0, X_window_average)/X_window_average, 'same') neg = np.convolve(np.asarray(neg), np.repeat(1.0, X_window_average)/X_window_average, 'same') Data.pos = pos Data.neg = neg Data.Y = labels class ModelSelection(): def modelSelectionFixedTTM(ticker='AAPL'): print('\n\n\n==================== '+str(ticker)+' ==================== \n\n\n') test_accs = [] MCCs = [] MCCsReal = [] TP = [] TN = [] FP = [] FN = [] Ttm_range = [0, 7, 14, 21,28, 35, 70, 105, 210] for ttm in Ttm_range: Data.load_data(ticker=ticker, momentum_window=30, newsTimeToMarket =ttm, X_window_average=30, set_verbosity=False) (train_pos, train_neg, train_y), (test_pos, test_neg, test_y) = Data.get_train_test_set() # best_MCC = 0 # best_b = 0 # for bias in np.linspace(-1,1,20): # yhat = list() # for i in range(len(train_y)): # yhat.append(1 if train_pos[i]+bias >= train_neg[i] else 0) # cm = confusion_matrix(train_y, yhat) # tn, fp, fn, tp = cm.ravel() # denom = (tp+fp)*(tp+fn)*(tn+fp)*(tn+fn) # curr_MCC = 0 if denom== 0 else (tp*tn -fp*fn)/sqrt(denom) # if(curr_MCC > best_MCC): # best_MCC = curr_MCC # best_b = bias # bias = best_b bias = np.mean(train_neg) - np.mean(train_pos) yhat = list() for i in range(len(test_y)): yhat.append(1 if test_pos[i]+bias >= test_neg[i] else 0) cm = confusion_matrix(test_y, yhat) tn, fp, fn, tp = cm.ravel() denom = (tp+fp)*(tp+fn)*(tn+fp)*(tn+fn) MCCsReal.append(0 if denom== 0 else (tp*tn -fp*fn)/sqrt(denom) ) TP.append(tp) TN.append(tn) FN.append(fn) FP.append(fp) test_accs.append((tp+tn)/(tp+tn+fp+fn)) if(tp + fp == 0): tp = 1 if(tp + fn == 0): tp = 1 if(tn + fp == 0): tn = 1 if(tn + fn == 0): tn = 1 MCCs.append((tp*tn -fp*fn)/sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))) #print(ticker) #print('best b: '+str(bias)) #print('Ttm_range, '+str(Ttm_range)) print('test acc,'+str(ticker)+', '+str(test_accs)) #print('MCC,'+str(ticker)+', '+str(MCCs)) print('MCC_R,'+str(ticker)+', '+str(MCCsReal)) print('TN,'+str(ticker)+', '+str(TN)) print('FP,'+str(ticker)+', '+str(FP)) print('FN,'+str(ticker)+', '+str(FN)) print('TP,'+str(ticker)+', '+str(TP)) tickers = ['AAPL','AMZN','GOOGL','MSFT','FB','INTC','CSCO','CMCSA','NVDA','NFLX'] for tic in tickers: ModelSelection.modelSelectionFixedTTM(ticker=tic)
true
bad4cb76164639622428588b9e0f90b6566b7de7
Python
RasmusSpangsberg/TankGame
/TankGame.py
UTF-8
4,768
3.5625
4
[]
no_license
import pygame from math import pi, sqrt pygame.init() display_width = 800 display_height = 600 game_display = pygame.display.set_mode((display_width, display_height)) clock = pygame.time.Clock() class Tank: def __init__(self, pos_x, pos_y, width, height, color, is_enemy=False): self.pos_x = pos_x self.pos_y = pos_y self.width = width self.height = height self.color = color self.is_enemy = is_enemy def draw(self, mouse_x=None, mouse_y=None): rect_top_x = self.pos_x + int(self.width/2) rect_top_y = self.pos_y + 5 pygame.draw.rect(game_display, self.color, [self.pos_x, self.pos_y, self.width, self.height]) pygame.draw.circle(game_display, self.color, [rect_top_x, rect_top_y], 30) if self.is_enemy: pygame.draw.line(game_display, self.color, [rect_top_x, rect_top_y], [rect_top_x - 50, rect_top_y - 50], 5) else: # if not enemy, make the cursor follow the mouse x = mouse_x - rect_top_x y = display_height - mouse_y - (display_height - rect_top_y) barrel_len = 50 mouse_vector_len = sqrt(x**2 + y**2) barrel_unit_vector = [x/mouse_vector_len, y/mouse_vector_len] barrel_vector = [barrel_unit_vector[0] * barrel_len + rect_top_x, (display_height - barrel_unit_vector[1] * barrel_len) - (display_height - rect_top_y)] start_pos = [rect_top_x, rect_top_y] pygame.draw.line(game_display, RED, start_pos, barrel_vector, 5) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) BLACK = (0, 0, 0) WHITE = (255, 255, 255) enemy_x = 650 enemy_y = 500 enemy_width = 100 enemy_height = 50 enemy = Tank(enemy_x, enemy_y, enemy_width, enemy_height, RED, is_enemy=True) player_x = 50 player_y = 500 player_width = 100 player_height = 50 player = Tank(player_x, player_y, player_width, player_height, GREEN) player_top_x = player_x + int(player_width/2) player_top_y = player_y + 5 class Projectile: def __init__(self, x, y, radius, color, mouse_x, mouse_y): self.pos_x = x self.pos_y = y self.radius = radius self.color = color self.delta_time = 1/60 self.mass = 50.0 self.g = 9.82 self.velocity_x = mouse_x - player_top_x self.velocity_y = display_height - mouse_y - (display_height - player_top_y) def draw(self): pygame.draw.circle(game_display, self.color, [self.pos_x, self.pos_y], self.radius) def update(self): self.pos_x += int(self.velocity_x * self.delta_time) self.pos_y -= int(self.velocity_y * self.delta_time) # velocity_x only gets affected by wind/friction self.velocity_x -= 1 self.velocity_y -= (self.mass * self.g) * self.delta_time def collided(self, obj): # parentheses for easier reading if (self.pos_x + self.radius) >= (obj.pos_x) and (self.pos_x - self.radius) <= (obj.pos_x + obj.width): if (self.pos_y + self.radius) >= (obj.pos_y) and (self.pos_y - self.radius) <= (obj.pos_y + obj.height): return True return False ball_x = 100 ball_y = 500 ball_radius = 20 balls = [] enemies_hit = 0 enemies_missed = 0 fire = False game_exit = False arc_enabled = False cheat_code_str = "" myfont = pygame.font.SysFont("Comic Sans MS", 30) # variables used to calculate the arc delta_time = 1/60 mass = 50.0 g = 9.82 while not game_exit: game_display.fill(BLACK) mouse_x, mouse_y = pygame.mouse.get_pos() for event in pygame.event.get(): if event.type == pygame.QUIT: game_exit = True if event.type == pygame.KEYDOWN: cheat_code_str += pygame.key.name(event.key) if cheat_code_str == "hi": arc_enabled = True if event.type == pygame.MOUSEBUTTONDOWN: balls.append(Projectile(ball_x, ball_y, ball_radius, BLUE, mouse_x, mouse_y)) if arc_enabled: pos_x = ball_x pos_y = ball_y velocity_x = mouse_x - player_top_x velocity_y = (display_height - mouse_y) - (display_height - player_top_y) for i in range(100): pos_x += int(velocity_x * delta_time) pos_y -= int(velocity_y * delta_time) # velocity_x only gets affected by wind/friction velocity_x -= 1 velocity_y -= (mass * g) * delta_time if i % 8 == 0: pygame.draw.circle(game_display, BLUE, [pos_x, pos_y], 5) for ball in balls: ball.update() ball.draw() if ball.pos_y >= display_height + ball_radius: balls.remove(ball) enemies_missed += 1 if ball.collided(enemy): balls.remove(ball) enemies_hit += 1 enemies_hit_str = "Enemies hit: " + str(enemies_hit) enemies_missed_str = "Enemies missed: " + str(enemies_missed) enemies_hit_surface = myfont.render(enemies_hit_str, False, WHITE) enemies_missed_surface = myfont.render(enemies_missed_str, False, WHITE) game_display.blit(enemies_hit_surface, (0, 0)) game_display.blit(enemies_missed_surface, (0, 30)) enemy.draw() player.draw(mouse_x, mouse_y) pygame.display.update() clock.tick(60) pygame.quit()
true
52aeb42fe1d034e8bc6db2f7ea134aad44ce451f
Python
bradywatkinson/2041ass1
/myTests/sub3.py
UTF-8
855
3.78125
4
[]
no_license
#!/bin/usr/python -w import sys # Finding squares x = 2 print "Squares between 4 and 256" while x < 101: x = x ** 2 print x for i in range(2): print i #print a checker board thing print print "Checkers!" sys.stdout.write("Enter a number plz: ") s = int(int(int(sys.stdin.readline()))) for x in range(s): for y in range(s): if (x+y) % 2 == 1: sys.stdout.write("*") else: sys.stdout.write("o") print q = "101" print "Values of q is", int(q) print "201 looks like", int("201") sys.stdout.write("\n"); print "Halfing from 100" x = 100 while 1: print x; x = x >> 1 if x < 10: break print print "Its foobar!" for x in range(10): if x%2==0 and x %3==0: print "Foobar is", x elif x % 2 == 0: print "Foo is", x elif x % 3 == 0: print "Bar is", x else: print x, "is not foo or bar!"
true
6fdbbe35bbb281dd95d6bd1fc86c37d7c3c01e8a
Python
sebaslherrera/algorithmic-toolbox
/week3_greedy_algorithms/7_maximum_salary/largest_number.py
UTF-8
564
4
4
[ "MIT" ]
permissive
#Uses python3 def isGreaterOrEqual(a, b): """Compare the two options and choose best permutation""" ab = str(a) + str(b) ba = str(b) + str(a) if ab > ba: return a else: return b def largest_number(a): ans = '' while a: maxDigit = 0 for digit in a: maxDigit = isGreaterOrEqual(digit, maxDigit) ans += maxDigit a.remove(maxDigit) return ans if __name__ == '__main__': n = int(input()) a = list(map(str, input().split())) print(largest_number(a))
true
7ad5d8573273b71b40b29cc67555c1e08a5a2d9a
Python
Doreen162/Python-Exercises
/Import math.py
UTF-8
140
3.578125
4
[]
no_license
# Variables to be use a = 8 b = 2 c = 1 d = 4 # Equation to solve x x = math.sqrt(a - 3) / (b * b + c * c + d * d) # Answer to x print(x)
true
62da70ddf65942fed3274efd34af62c200119d41
Python
FrostyX/fedora-infra-ansible
/roles/modernpaste/files/paste-info.py
UTF-8
458
2.734375
3
[]
no_license
#!/usr/bin/env python import sys sys.path.append('/usr/share/modern-paste/app') import modern_paste from util.cryptography import get_decid from database.paste import get_paste_by_id paste_id = get_decid(sys.argv[1]) paste = get_paste_by_id(paste_id) print('Decrypted ID: ' + str(paste_id)) print('Title : ' + paste.title) print('Language : ' + paste.language) print('Views : ' + str(paste.views)) print('Contents : \n' + paste.contents)
true
9ecfc948dad462445bf740f4a2ba63b249a17e14
Python
ongaaron96/kattis-solutions
/python3/1_4-apaxiaaans.py
UTF-8
147
3.8125
4
[]
no_license
name = input() prev_char = result = '' for char in name: if char == prev_char: continue result += char prev_char = char print(result)
true
c841fab634b2bafa92c00ab19dec4838feb99c33
Python
NEWPLAN/mars_torch
/Network/critic.py
UTF-8
1,081
2.78125
3
[]
no_license
import torch import torch.nn as nn import torch.nn.functional as F class Critic(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Critic, self).__init__() self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.linear3 = nn.Linear(hidden_size, output_size) def forward(self, s, a): x = torch.cat([s, a], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x class CriticNet(nn.Module): def __init__(self, state_dim, action_dim): super(CriticNet, self).__init__() self.linear1 = nn.Linear(state_dim, 128) self.linear2 = nn.Linear(128, 32) self.linear3 = nn.Linear(32 + action_dim, 64) self.linear4 = nn.Linear(64, 1) def forward(self, s, a): x = F.relu(self.linear1(s)) x = F.relu(self.linear2(x)) x = torch.cat([x, a], 1) x = F.relu(self.linear3(x)) x = F.relu(self.linear4(x)) return x
true
1afd3222471e9553b92214e4a0b31701cdb91b8d
Python
estroud1991/Python-Examples
/guassianFilterGenerator 2.py
UTF-8
1,820
3.171875
3
[]
no_license
import math import numpy as np import cv2 def generateGuass(): sigma = float(input("Please enter your sigma/variance: ")) size = int(input("Please enter the size of the guassian filter, must be odd: ")) x = int((size-1)/2) valueList = [] for i in range(-x,x+1,1): for j in range(-x,x+1,1): #using formula to calulate value for filter value = (1/(2*math.pi*(sigma**2)))*(math.exp(-(((i**2)+(j**2))/(2*(sigma**2))))) valueList.append(value) scaler = valueList[0] filterMat = np.zeros([size,size, 3],dtype = float) index = 0 for i in range(size): for j in range(size): filterMat[i][j] = valueList[index], valueList[index], valueList[index] index+=1 return filterMat def applyFilter(image, filterMat): padding = (len(filterMat)-1)//2 iRow = len(image) iCol = len(image[0]) #Adds border that is equal to the padding in order to get the corner pixels to correct values image = cv2.copyMakeBorder(image, padding, padding, padding, padding, cv2.BORDER_REPLICATE) processedImage = np.zeros((iRow, iCol), dtype="float32") for i in range(padding, iRow+padding): for j in range(padding, iCol+padding): #Getting portion of image for convolution, summing the multiplied values, setting new image values iBlock = image[i - padding:i + padding + 1, j - padding: j + padding + 1] iSum = (iBlock * filterMat).sum() processedImage[i - padding, j - padding] = iSum return processedImage image = cv2.imread("cat.png") cv2.imshow("orig",image/255.0) for i in range(3): filterMat = generateGuass() newImage = applyFilter(image, filterMat) cv2.imshow("New" + str(i), newImage/255.0)
true
54cc45c52157b696ca2598e53160c60c892e34ea
Python
dionvargas/TCCII
/Software Pi/util.py
UTF-8
6,404
2.671875
3
[]
no_license
import cv2 import numpy as np import json import os from PIL import Image, ImageTk def removeReflexos(frame): image_in = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Load the glared image h, s, v = cv2.split(cv2.cvtColor(image_in, cv2.COLOR_RGB2HSV)) # split into HSV components ret, th = cv2.threshold(h, 20, 255, cv2.THRESH_BINARY_INV) disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (13, 13)) mascara = cv2.dilate(th.astype(np.uint8), disk) corrected = cv2.inpaint(image_in, mascara, 10, cv2.INPAINT_TELEA) return corrected def findIris(frame, posH, posV, line=8): matriz = frame original = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # converte para escala de cinza posCart = (posH**2+posV**2)**(1/2) # Filtro de média para remover ruídos suavizada = cv2.medianBlur(original, 15) cimg = matriz.copy() circles = cv2.HoughCircles(suavizada, cv2.HOUGH_GRADIENT, 1, 100, param1=40, param2=30, minRadius=100, maxRadius=400) if(circles is not None): circles = np.int16(np.around(circles)) maiorRaio = 0 pupila = None distancia = 0 for i in circles[0, :]: disCar = abs(posCart - (i[0] ** 2 + i[1] ** 2) ** (1 / 2)) if(posH == 0 and posV == 0): if (i[2] > maiorRaio and i[2] > 100 and i[2] < 220): maiorRaio = i[2] distancia = disCar pupila = i else: if (distancia > disCar and i[2] > 100 and i[2] < 220): maiorRaio = i[2] distancia = disCar pupila = i if(pupila is not None): # draw the outer circle cv2.circle(cimg, (pupila[0], pupila[1]), pupila[2], (0, 255, 0), line) # draw the center of the circle cv2.circle(cimg, (pupila[0], pupila[1]), 2, (0, 0, 255), line) area = float(np.pi * pupila[2]**2) circularidade = 1 centroX = pupila[0] centroY = pupila[1] angulo = 0 final = cimg.copy() else: area = 0 circularidade = 0 centroX = 0 centroY = 0 angulo = 0 final = matriz.copy() else: area = 0 circularidade = 0 centroX = 0 centroY = 0 angulo = 0 final = matriz.copy() return area, circularidade, centroX, centroY, angulo, final def findPupila(frame, line=5): matriz = frame image_in = cv2.cvtColor(matriz, cv2.COLOR_BGR2RGB) # Load the glared image h, s, v = cv2.split(cv2.cvtColor(image_in, cv2.COLOR_RGB2HSV)) # split into HSV components ret, s = cv2.threshold(s, 20, 255, cv2.THRESH_BINARY) ret, reflexos = cv2.threshold(h, 10, 255, cv2.THRESH_BINARY_INV) s = cv2.add(s, reflexos) disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (50, 50)) s = cv2.morphologyEx(s, cv2.MORPH_CLOSE, disk) elementReflexos = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) s = cv2.morphologyEx(s, cv2.MORPH_OPEN, elementReflexos) # Calculando a circularidade modo = cv2.RETR_TREE metodo = cv2.CHAIN_APPROX_SIMPLE contornos, hierarquia = cv2.findContours(s, modo, metodo) maiorArea = 0 circularidade = 0 area = 0 pupila = None for c in contornos: if (int(len(c) > 5)): area = cv2.contourArea(c) perimetro = cv2.arcLength(c, True) circularidade = (4 * np.pi * area) / (perimetro * perimetro) if ((area > maiorArea) and (circularidade > 0.50) and (area > 3000) and (area < 7000)): maiorArea = area pupila = c else: print("Elipse muito pequena") final = matriz.copy() width, height = final.shape[:2] if (pupila is None): centroX = 0 centroY = 0 else: ellipse = cv2.fitEllipse(pupila) cv2.ellipse(final, ellipse, (0, 0, 255), line) centroX = int(ellipse[0][0]) centroY = int(ellipse[0][1]) # linha horizontal cv2.line(final, (centroX, 0), (centroX, width), (0, 0, 255), line) # linha vertical cv2.line(final, (0, centroY), (height, centroY), (0, 0, 255), line) angulo = 1 return area, circularidade, centroX, centroY, angulo, final def convertToExibe(frame, x=0, y=0): if ((x == 0) or (y == 0)): y = np.size(frame, 0) x = np.size(frame, 1) frame = cv2.resize(frame, (int(x), int(y))) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = ImageTk.PhotoImage(image=Image.fromarray(frame)) return frame def setPaciente(paciente): diretorio = os.getcwd() + "/pacientes/" + paciente["nome"] with open(diretorio + '/paciente.json', 'w') as outfile: json.dump(paciente, outfile) def getPaciente(nomePaciente): global paciente diretorio = os.getcwd() + "/pacientes/" + nomePaciente + '/paciente.json' with open(diretorio) as json_file: paciente = json.load(json_file) return paciente def setExame(exame, dir): with open(dir + '/anamnese.json', 'w') as outfile: json.dump(exame, outfile) def getExame(dir): global exame dir = dir + '/anamnese.json' with open(dir) as json_file: exame = json.load(json_file) return exame def getConfig(): global config with open('configs.json') as json_file: config = json.load(json_file) return config def setConfig(config): with open('configs.json', 'w') as outfile: json.dump(config, outfile) def getExam(): global exam with open('exam.json') as json_file: exam = json.load(json_file) return exam def setExam(exam): with open('exam.json', 'w') as outfile: json.dump(exam, outfile) def setDados(location, dados): with open(location + 'dados.json', 'w') as outfile: json.dump(dados, outfile) def getDados(location): global dados with open(location+'/dados.json') as json_file: dados = json.load(json_file) return dados def validateInt(value): try: v = int(value) return True except ValueError: return False def validateFloat(value): try: v = float(value) return value except ValueError: return None
true
16c9b3c13109619e80fb37eea9d02583a5ae963f
Python
clean-exe/coctail-monaco
/main.py
UTF-8
5,024
3.75
4
[ "MIT" ]
permissive
#!/usr/bin/python3 import random """ This is a simple program that simulate a coctail monaco game. Enter a list of players, and the program will get 1 out per time. """ # global person_id class Person: """Simple person class with First and Second name.""" def __init__(self, uid, first_name, family_name): self.first_name = first_name self.family_name = family_name def print(self): print(self.first_name, self.family_name) class Game: """docstring for Game""" person_id = 0 bid_id = 0 def __init__(self, ): self.bids = [] self.persons = [] self.persons_out = {} def add_person(self, first_name, family_name): self.person_id += 1 person = Person(self.person_id, first_name, family_name) self.persons.append(person) print("Person added : %s %s %s" %(self.person_id, first_name, family_name)) def get_person(self, first_name=None, family_name=None): results1 = [] results2 = [] if first_name is not None: results1 = [x for x in self.persons if x.first_name == first_name] if family_name is not None: results2 = [x for x in self.persons if x.family_name == family_name] results = results1 + results2 if len(results) == 0: print("no results found") return None if len(results) == 1: return results[0] if len(results) > 1: print("too many results refine search") return None def add_bid(self, ): self.bid_id += 1 person1_name = input("Enter the name of the first person >>" ) person1_family_name = input("Enter the family name of the first person >>") person1 = self.get_person(first_name=person1_name, family_name=person1_family_name) person2_name = input("Enter the name of the second person >>") person2_family_name = input("Enter the family name of the second person >>") person2 = self.get_person(first_name=person2_name, family_name=person2_family_name) amount = float(input("What is the amount? >>")) bid = Bid(self.bid_id, person1, person2, amount) self.bids.append(bid) print("Bid added between %s %s and %s %s of %s$" %(person1.first_name, person1.family_name, person2.first_name, person2.family_name, amount)) def shuffle_persons(self): random.shuffle(self.persons) def get_one(self, position): the_one = self.persons.pop(0) self.persons_out[position] = the_one the_one.print() def play(self): for k in range(len(self.persons)): value = input("Ready to pick one person? >>") self.get_one(k+1) # print(self.persons_out) def print_persons_out(self): count = 0 for key in self.persons_out: print("%3s %s %s" %(key, self.persons_out[key].first_name, self.persons_out[key].family_name)) if not ((count+1) % 5): print(" ") count += 1 class Bid: """docstring for Bid""" def __init__(self, uid, person1, person2, amount): self.person1 = person1 self.person2 = person2 self.amount = amount def add(self, person1, person2, amount): self.person1 = person1 self.person2 = person2 self.amount = amount class Editor(Game): def __init__(self): game = Game() game.add_person('Peter', 'Quill') game.add_person('Yondu', 'Udonta') game.add_person('Gamora') game.add_person('Korath') game.add_person('Rocket') game.add_person('Groot') game.add_person('Drax') self.menu_map = { "bid": game.add_bid(), "test": self.test, "change": self.change, "quit": self.quit, } def test(self): if self.is_permitted("test program"): print("Testing program now...") def change(self): if self.is_permitted("change program"): print("Changing program now...") def quit(self): raise SystemExit() def menu(self): try: answer = "" while True: print( """ Please enter a command: \tbid\tAdd bid \ttest\tTest the program \tchange\tChange the program \tquit\tQuit """ ) answer = input("enter a command: ").lower() try: print("ok") func = self.menu_map[answer] except KeyError: print("{} is not a valid option".format(answer)) else: func() finally: print("Thank you for testing the auth module") if __name__ == "__main__": Editor().menu() game.add_bid() game.shuffle_persons() game.play() game.print_persons_out()
true
a3d47f333bb0f79164b2df4c670ccdfc5480d6e5
Python
Iceman1590/AT-TVectorAirgig
/Project Files/Basic Navigation/Distance2.py
UTF-8
691
2.578125
3
[ "Apache-2.0" ]
permissive
import anki_vector from anki_vector.util import degrees, distance_mm, speed_mmps import time args = anki_vector.util.parse_command_args() with anki_vector.Robot() as robot: for _ in range(10): if robot.proximity.last_sensor_reading: distance = robot.proximity.last_sensor_reading.distance prox = distance.distance_mm print("=====================================================================") print(prox) print("=====================================================================") time.sleep(1.0) if ((prox) < 100.0): robot.behavior.turn_in_place(degrees(-90)) else: robot.behavior.drive_straight(distance_mm(50), speed_mmps(100))
true
4b55ba88e94c14aada58799d9ea2e6db07c59836
Python
pixelsomatic/python-notes
/teste_operador.py
UTF-8
618
4.46875
4
[]
no_license
import math # Anterior e Sucessor num = int(input('Digita um número aí: ')) ant = num - 1 suc = num + 1 print('O número antes de {} é {} e o depois dele é {}'.format(num, ant, suc)) # Dobro, Triplo e Raiz quadrada n = int(input('Manda um número: ')) d = n * 2 t = n * 3 r = math.sqrt(n) # print('O dobro de {} é {}'.format(n, d)) # print('O triplo de {} é {}'.format(n, t)) # print('A raiz quadrada de {} é {:.3f}'.format(n, r)) print('O dobro de {} vale {}.'.format(n, (n*2))) print('O triplo de {} vale {}. \n A raiz quadrada de {} vale {:.2f}'.format(n, (n*3), n, pow(n, (1/2)))) #pow(base, expoente)
true
1bbf880bcd02e5634b53fe4ef7952cca15022580
Python
recepsirin/djforeingkeys
/src/cars/models.py
UTF-8
1,799
2.53125
3
[]
no_license
from django.conf import settings from django.contrib.auth import get_user_model from django.db import models # Create your models here. User = settings.AUTH_USER_MODEL # 'auth.User' def set_delete_user(): user_inner = get_user_model() return user_inner.objects.get_or_create(username='deleted')[0] # get_or_create --> (obj, bool) def limit_car_choices_to(): # return {'is_staff': True} Q = models.Q return Q(username__icontains='x') | Q(username__icontains='e') class Car(models.Model): user = models.ForeignKey(User, on_delete=models.SET(set_delete_user), limit_choices_to=limit_car_choices_to ) updated_by = models.ForeignKey(User, related_name='updated_car_user', null=True, blank=True) # on_delete=models.SET_NULL, null=True # on_delete=models.SET_DEFAULT, default=1 # user = models.ForeignKey(User) # drivers = models.ManyToManyField(User) # first_owner = models.OneToOneField(User) # passengers = models.ManyToManyField(User) name = models.CharField(max_length=120) def __str__(self): return self.name # ForeignKey = ManyToOneField() # Many users can have any car, car can only have one user # car_obj = Car.objects.first() # car_obj.user # notation here # # User = car_obj.user.__class__ # # abc = User.objects.all().last() # filter queryset # # # below query sets are doing same thing # user_cars = abc.car_set.all() # reverse relationship # user_cars_qs = Car.objects.filter(user=abc) # forward relationship # # # class Comment(models.Model): # user = models.ForeignKey(User) # content = models.CharField(max_length=120) # # # comments = abc.comment_set.all() # comments_qs = Comment.objects.filter(user=abc)
true
54656694fcf829a734f32fc3d6b81c60dddb2647
Python
gscho74/ImageProcessing
/중간고사/Ex3.py
UTF-8
1,995
2.828125
3
[]
no_license
import numpy as np from scipy import signal, misc import matplotlib.pyplot as plt from scipy import ndimage from mpl_toolkits.mplot3d import Axes3D sigma = 30 x=np.arange(-128,127,1.0) y=np.arange(-128,127,1.0) X,Y=np.meshgrid(x,y) s=1/(np.pi*pow(sigma,4)) a=-(pow(X,2)+pow(Y,2))/(2*pow(sigma,2)) g=-s*(1+a)*np.exp(a) #a plt.imshow(g) plt.gray() plt.title('LoG(x,y)') plt.axis('off') plt.show() #b fig=plt.figure() ax=Axes3D(fig) ax.plot_surface(X,Y,g) plt.show() #c #9*9 LoG 필터 def LoG_FIlter(sigma,Filter_Size): g = np.zeros(shape=(Filter_Size,Filter_Size), dtype=np.float) for y in range(-4,5): for x in range(-4,5): s=1/(np.pi*pow(sigma,4)) a=-(pow(x,2)+pow(y,2))/(2*pow(sigma,2)) p=-s*(1+a)*np.exp(a) g[y+4,x+4]=p return g Filter_Size = 9 print(LoG_FIlter(0.8,Filter_Size)) #d def im_filtering(im, Filter, FilterSize): row, col = im.shape padding=int(FilterSize/2) Image_Buffer = np.zeros(shape=(row+2*padding,col+2*padding), dtype=np.uint8) Image_Buffer[padding:row+padding, padding:col+padding] = im[:,:] Image_New = np.zeros(shape=(row,col), dtype=np.uint8) for y in range(padding,row+padding): for x in range(padding,col+padding): buff = Image_Buffer[y-padding:y+padding+1,x-padding:x+padding+1] pixel = np.sum(buff * Filter) pixel = np.uint8(np.where(pixel>255,255,np.where(pixel<0,0,pixel))) Image_New[y-padding,x-padding] = pixel return Image_New lena = misc.imread('image/lena_256.bmp') filtering_img = im_filtering(lena, LoG_FIlter(0.8,Filter_Size), Filter_Size) # 이미지 출력 함수 def image_print(img, title, print_num, current_num): plt.subplot(print_num[0],print_num[1],current_num) plt.title(title) plt.gray() plt.imshow(img) plt.axis('off') print_num = [1,2] image_print(lena, "InputImage", print_num, 1) image_print(filtering_img, "Log Filtering Image", print_num, 2) plt.show()
true
1f1e90bfc00e17f42c9ad4a4e6b88ff6ea6b0a19
Python
sauln/pyjanitor
/tests/io/test_read_csvs.py
UTF-8
3,953
3.109375
3
[ "MIT" ]
permissive
import glob import os import pandas as pd import pytest from janitor import io CSV_FILE_PATH = "my_test_csv_for_read_csvs_{}.csv" def create_csv_file(number_of_files, col_names=None): for i in range(number_of_files): filename = CSV_FILE_PATH.format(i) df = pd.DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) df.to_csv(filename, index=False) def remove_csv_files(): # Get a list of all the file paths matching pattern in specified directory fileList = glob.glob(CSV_FILE_PATH.format("*")) # Iterate over the list of filepaths & remove each file. for filePath in fileList: os.remove(filePath) @pytest.mark.functions def test_read_csvs_one_csv_path(): # Setup # When a CSV file with 3 cols and 4 rows is on disk number_of_files = 1 create_csv_file(number_of_files) # If the csv file is read into DataFrame df = io.read_csvs(CSV_FILE_PATH.format("*")) # Then the dataframe has 3 cols and 4 rows try: assert len(df.columns) == 3 assert len(df) == 4 finally: # Cleanup remove_csv_files() @pytest.mark.functions def test_read_csvs_zero_csv_path(): # Setup # When no CSV files are on disk # When reading files the functions raises ValueError. try: io.read_csvs("nofilesondisk.csv") raise Exception except ValueError: pass finally: remove_csv_files() @pytest.mark.functions def test_read_csvs_three_csv_path(): # Setup # When a CSV file with 3 cols and 4 rows is on disk number_of_files = 3 create_csv_file(number_of_files) # If the csv file is read into DataFrame df = io.read_csvs(CSV_FILE_PATH.format("*")) # Then the dataframe has 3 cols and 12 rows try: assert len(df.columns) == 3 assert len(df) == 4 * number_of_files finally: # Cleanup remove_csv_files() @pytest.mark.functions def test_read_csvs_three_separated_csv_path(): # Setup # When a CSV file with 3 cols and 4 rows is on disk number_of_files = 3 create_csv_file(number_of_files) # If the csv file is read into DataFrame dfs_dict = io.read_csvs(CSV_FILE_PATH.format("*"), separate_df=True) # Then the dataframe list has 3 dataframes try: assert len(dfs_dict) == number_of_files for df in dfs_dict.values(): # noqa: PD011 assert len(df) == 4 assert len(df.columns) == 3 finally: # Cleanup remove_csv_files() @pytest.mark.functions def test_read_csvs_two_unmatching_csv_files(): # Setup # When two csv files do not have same column names df = pd.DataFrame( [[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["a", "b", "c"] ) df.to_csv(CSV_FILE_PATH.format(0), index=False) df = pd.DataFrame( [[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["d", "e", "f"] ) df.to_csv(CSV_FILE_PATH.format(1), index=False) # If the csv files are read into DataFrame try: io.read_csvs(CSV_FILE_PATH.format("*")) # if read does read the unmatching files give an error raise ValueError except ValueError: # If the read raises an exception it is ok pass finally: remove_csv_files() @pytest.mark.functions def test_read_csvs_lists(): # Setup # When a CSV file with 3 cols and 4 rows is on disk number_of_files = 3 create_csv_file(number_of_files) csvs_list = [CSV_FILE_PATH.format(i) for i in range(number_of_files)] # If the list of csv files is read into DataFrame dfs_list = io.read_csvs(files_path=csvs_list, separate_df=True) # Then the dataframe list has 3 dataframes try: assert len(dfs_list) == number_of_files for df in dfs_list.values(): # noqa: PD011 assert len(df) == 4 assert len(df.columns) == 3 finally: # Cleanup remove_csv_files()
true
833c5c511902809b809cd9e409968122089f8171
Python
danielobmann/desyre
/imports/util.py
UTF-8
3,215
2.78125
3
[]
no_license
import os import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import * class Util: def __init__(self): pass @staticmethod def cosine_decay(epoch, total, initial=1e-3): return initial / 2. * (1 + np.cos(np.pi * epoch / total)) @staticmethod def project(x): return np.clip(x, 0, 1) @staticmethod def psnr(y_true, y_pred): return tf.image.psnr(y_true, y_pred, max_val=1.0) @staticmethod def nmse(y_true, y_pred): m = tf.reduce_mean(tf.squared_difference(y_true, y_pred)) n = tf.reduce_mean(tf.squared_difference(y_true, 0)) return m / n @staticmethod def psnr_numpy(x, xhat, maxvalue=1.): return 10 * np.log10(maxvalue / np.mean((x - xhat) ** 2)) @staticmethod def nmse_numpy(x, x_hat): error = np.mean((x - x_hat) ** 2) normalizer = np.mean(x ** 2) return error / normalizer @staticmethod def _mark_inset(parent_axes, inset_axes, **kwargs): # This code is copied from the matplotlib source code and slightly modified. # This is done to avoid the 'connection lines'. rect = TransformedBbox(inset_axes.viewLim, parent_axes.transData) if 'fill' in kwargs: pp = BboxPatch(rect, **kwargs) else: fill = bool({'fc', 'facecolor', 'color'}.intersection(kwargs)) pp = BboxPatch(rect, fill=fill, **kwargs) parent_axes.add_patch(pp) p1 = BboxConnector(inset_axes.bbox, rect, loc1=1, **kwargs) p1.set_clip_on(False) p2 = BboxConnector(inset_axes.bbox, rect, loc1=1, **kwargs) p2.set_clip_on(False) return pp, p1, p2 def zoomed_plot(self, x, xlim, ylim, zoom=2, text=None, textloc=[], fsize=18, cmap='bone'): # This function allows one to create plots with "zoomed in" windows. # The rectangle where one desires to zoom in is given using the xlim and ylim arguments. # xlim and ylim should contain pixel values, e.g. if we haven an image of size 512 x 512 then # xlim = [100, 150] and ylim = [100, 150] shows a zoomed in version of the pixels at locations in xlim and ylim. color = 'orange' fig, ax = plt.subplots() ax.imshow(np.flipud(x), cmap=cmap, vmin=0.0, vmax=1.0, origin="lower") ax.axis('off') axins = zoomed_inset_axes(ax, zoom, loc=4) axins.set_xlim(xlim[0], xlim[1]) axins.set_ylim(ylim[0], ylim[1]) self._mark_inset(ax, axins, fc='none', ec=color) axins.imshow(np.flipud(x), cmap=cmap, vmin=0.0, vmax=1.0, origin="lower") axins.patch.set_edgecolor(color) axins.patch.set_linewidth('3') axins.set_xticks([], []) axins.set_yticks([], []) # axins.axis('off') if not (text is None): ax.text(textloc[0], textloc[1], text, color=color, fontdict={'size': fsize}, transform=ax.transAxes) pass @staticmethod def setup_path(path, verbose=0): if not os.path.exists(path): os.mkdir(path) if verbose: print("Created new path %s." % path)
true
e8e361978849a99143b5fec93063b920de2ba0f5
Python
andrezzadede/Curso_Python_Guanabara_Mundo_1
/Exercicios/1Exercicio.py
UTF-8
244
3.390625
3
[ "MIT" ]
permissive
print ('Script Aula 1 - Desafio 1') print ('Crie um script python que leia o nome de uma pessoa e mostra uma mensagemde boas vindas de acordo com o valor digitado') nome = input ('Qual seu nome?') print ('Seja bem vindo gafanhoto', nome)
true
6a2e32d90d8c3127007d8bbd935e043ddca0ef06
Python
JoaoPedroBarros/exercicios-antigos-de-python
/Exercícios/Exercícios Mundo 1/ex009.py
UTF-8
488
3.46875
3
[ "MIT" ]
permissive
i = int(input('Digite um número:')) print('A tabuada de {} é a seguinte:'.format(i)) print('\033[1;40m{}\033[m'.format(i*1)) print('\033[1;41m{}\033[m'.format(i*2)) print('\033[1;42m{}\033[m'.format(i*3)) print('\033[1;43m{}\033[m'.format(i*4)) print('\033[1;44m{}\033[m'.format(i*5)) print('\033[1;45m{}\033[m'.format(i*6)) print('\033[1;46m{}\033[m'.format(i*7)) print('\033[1;47m{}\033[m'.format(i*8)) print('\033[1;40m{}\033[m'.format(i*9)) print('\033[1;41m{}\033[m'.format(i*10))
true
0693d7d9c6d8cefafed41398c30c25afbef91a8a
Python
sophiepopow/ASD-AGH
/Graphs/TopologicalSorting.py
UTF-8
635
3.859375
4
[]
no_license
#Algorytm z wykorzystaniem DFS def topologicalDFS(graph, vertex,visited, sortedNodesStack): visited[vertex] = True for neighbour in graph[vertex]: if not visited[neighbour]: topologicalDFS(graph,neighbour, visited, sortedNodesStack) sortedNodesStack.insert(0,vertex) def topologicalSort(graph): sortedNodesStack = [] visited = [False]*len(graph) for vertex in range(len(graph)): if not visited[vertex]: topologicalDFS(graph, vertex,visited,sortedNodesStack) return sortedNodesStack graph = [[2], [0,2], [], [0,1,4], [1,2], [0,4]] print(topologicalSort(graph))
true
507f9fbc65f16fc67fd844fde94824b571dca09b
Python
hyoseok-bang/leetcode
/215_kth_largest_element_in_an_array.py
UTF-8
801
3.4375
3
[]
no_license
class Solution(object): def findklargest_push(self, nums, k): # Use heappush heap = [] for n in nums: heapq.heappush(heap, -n) for _ in range(1,k): heapq.heappop(heap) return -heapq.heappop(heap) def findklargest_heapify(self, nums, k): # Use heapify heapq.heapify(nums) for _ in range(len(nums) - k): # Since heapq module is min-heap, pop n-kth element form the heap heapq.heappop(nums) return heapq.heappop(nums) def findklargest_nlargest(self, nums, k): # Return 1 ~ k largest values from the array nums return heapq.nlargest(k, nums)[-1] def findklargest_sort(self, nums, k): return sorted(nums, reverse=True)[k-1]
true
219360782b0d3e3910a10f7739c1249858025b7d
Python
jiravani/PythonProjects
/Project/driverscanner/Volume.py
UTF-8
708
3.078125
3
[]
no_license
class Volume: total_volumes = 0 file_system = "" def __init__(self, name, volume_name): self.name = name self.volume_name = volume_name Volume.total_volumes += 1 print self.name + " " + "{:>10}".format(volume_name) def get_volume_name(self): print self.volume_name def set_file_system(self, file_system): Volume.file_system = file_system def get_file_system(self): return Volume.file_system def get_total_volumes(self): return Volume.total_volumes get_total_volume = staticmethod(get_total_volumes) get_file_system = staticmethod(get_file_system) set_file_system = staticmethod(set_file_system)
true
c9749a5159200f24aefcdc763978539476a4fddd
Python
torebre/essentia_test
/python/MicrophoneInput.py
UTF-8
827
2.546875
3
[]
no_license
import pyaudio import wave CHUNK = 256 FORMAT = pyaudio.paInt16 CHANNELS = 2 RATE = 44100 RECORD_SECONDS = 10 WAVE_OUTPUT_FILENAME = 'output3.wav' p = pyaudio.PyAudio() print("Default input: ", p.get_default_input_device_info()) stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, input_device_index=20, frames_per_buffer=CHUNK) print("Recording") frames = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) print("Finished") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(''.join(frames)) wf.close()
true
da87090e80b9157e9de7272813d053a5049715d2
Python
meera-ramesh19/codewars
/homework/pycaptestanswers/pycaptest.py
UTF-8
1,169
4.3125
4
[]
no_license
print(2 ** 3 ** 2 ** 1) a = 0 b = a ** 0 if b < a + 1: c = 1 elif b == 1: c = 2 else: c = 3 print(a + b + c) for i in range(1, 4, 2): print("*") # Example 2 for i in range(1, 4, 2): print("*", end="") for i in range(1, 4, 2): print("*", end="**") print("\n") for i in range(1, 4, 2): print("*", end="**") print("***") s = "Hello, Python!" print(len(s),s[-14:15]) lst = [[c for c in range(r)] for r in range(3)] print(lst) for x in lst: for y in x: if y < 2: print('*', end='') def fun(a, b=0, c=5, d=1): return a ** b ** c print(fun(b=2, a=2, c=3)) # Example 1 x = 1 y = 0 z = x % y print(z) # Example 2 x = 1 y = 0 z = x / y print(z) x = 0 try: print(x) print(1 / x) except ZeroDivisionError: print("ERROR MESSAGE") finally: print(x + 1) print(x + 2) """ class A: def a(self): print("A", end='') class B(A): def a(self): print("B", end='') class C(B): def b(self): print("B", end='') a = A() b = B() c = C() a.a() b.a() c.b() try: print("Hello") raise Exception print(1/0) except Exception as e: print(e) """
true
0820faa61dad8e69bb8e390ed1c38aae10641949
Python
nthiery/sage-semigroups
/sage_semigroups/monoids/free_partially_commutative_left_regular_band.py
UTF-8
13,659
2.6875
3
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
r""" Free partially commutative left regular band EXAMPLES:: sage: import sage_semigroups Loading sage-semigroups and patching its features into Sage's library: ... """ from functools import reduce from sage.structure.unique_representation import UniqueRepresentation from sage.structure.parent import Parent from sage.structure.element_wrapper import ElementWrapper from sage.misc.cachefunc import cached_method from sage.graphs.graph import Graph from sage.graphs.digraph import DiGraph class FreePartiallyCommutativeLeftRegularBand(UniqueRepresentation, Parent): r""" TESTS:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: n = 6 sage: C = graphs.CycleGraph(n) sage: M = FreePartiallyCommutativeLeftRegularBand(C) sage: M.cardinality() 721 """ @staticmethod def __classcall__(cls, graph): r""" Normalize the input: convert vertices to instances of ``str`` and delete edge labels. """ if isinstance(graph, Graph): graph = graph.relabel(str, inplace=False) vertices = tuple(graph.vertices()) edges = tuple((u, v) for (u, v, l) in graph.edges()) elif isinstance(graph, tuple) and len(graph) == 2: vertices, edges = graph else: raise ValueError("incorrect input to __classcall__") return super(FreePartiallyCommutativeLeftRegularBand, cls).__classcall__(cls, (vertices, edges)) def __init__(self, args): r""" The free partially commutative left regular band associated to the (undirected) graph ``graph``. This is the left regular band generated by the vertices of the graph and relations `xy = yx` for every edge `(x,y)` of the graph. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({0:[],1:[],2:[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G); S Free partially commutative left regular band on Graph on 3 vertices sage: K = graphs.CompleteGraph(4) sage: S = FreePartiallyCommutativeLeftRegularBand(K); S Free partially commutative left regular band on Graph on 4 vertices sage: TestSuite(S).run(skip=["_test_elements", "_test_pickling"]) """ (vertices, edges) = args graph = Graph() graph.add_vertices(vertices) graph.add_edges(edges) self._graph = graph from sage_semigroups.categories.finite_left_regular_bands import FiniteLeftRegularBands Parent.__init__(self, category=FiniteLeftRegularBands().FinitelyGenerated()) def __iter__(self): from sage.combinat.backtrack import TransitiveIdeal return TransitiveIdeal(self.succ_generators(side="right"), [self.one()]).__iter__() def associated_graph(self): return self._graph def _repr_(self): return "Free partially commutative left regular band on %s" % (repr(self.associated_graph()),) @cached_method def one(self): r""" Returns the one of the monoid, as per :meth:`Monoids.ParentMethods.one`. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: S.one() '' """ return self("") @cached_method def semigroup_generators(self): r""" Returns the generators of the semigroup. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: S.semigroup_generators() Family ('a', 'b', 'c', 'd') """ from sage.sets.family import Family return Family([self(i) for i in self.associated_graph().vertices()]) def an_element(self): r""" Returns an element of the semigroup. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: S.an_element() 'a' sage: K = graphs.CompleteGraph(3) sage: S = FreePartiallyCommutativeLeftRegularBand(K) sage: S.an_element() '0' """ return self.semigroup_generators()[0] def product(self, x, y): r""" Returns the product of two elements of the semigroup. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: S('a') * S('b') 'ab' sage: S('a') * S('b') * S('a') 'ab' sage: S('a') * S('a') 'a' """ return self._cached_product(x.value, y.value) @cached_method def _cached_product(self, x, y): r""" Returns the product of two elements of the semigroup. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: S('a') * S('b') 'ab' sage: S('a') * S('b') * S('a') 'ab' sage: S('a') * S('a') 'a' """ xy = x + ''.join(c for c in y if c not in x) return self.normal_form(xy) @cached_method def normal_form(self, w): r""" Map a word to its Foata-Cartier normal form. TESTS:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G); S Free partially commutative left regular band on Graph on 4 vertices sage: S.normal_form(S('cdab')) 'cbda' sage: S.normal_form(S('dab')) 'bda' """ return self.element_class(self, self._normalize_word(w)) def _normalize_word(self, w): if isinstance(w, self.element_class): w = w.value F = self.vertex_sequence(w) return ''.join(''.join(sorted(Fj)) for Fj in F) def vertex_sequence(self, w): r""" Return the Foata-Cartier *V-sequence* for the word `w`. It is uniquely defined. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: n = 4 sage: C = graphs.CycleGraph(n) sage: M = FreePartiallyCommutativeLeftRegularBand(C) sage: M.vertex_sequence('0123') ({'1', '0'}, {'3', '2'}) """ if isinstance(w, self.element_class): w = w.value return reduce(self._vertex_sequence_action_by_letter, w, ()) def _vertex_sequence_action_by_letter(self, F, z): r""" DEFINITION: Suppose `F = (F_0, \dots, F_r)`. (1) If `z` is connected to `F_r`, then `F \cdot z = (F_0, \dots, F_r, \{z\})`. (2) Otherwise, let `j` be the smallest index such that `z` is not connected to any set `F_j, F_{j+1}, \dots, F_r`, and define `F \cdot z = (F_0, \dots, F_{j-1}, F_j \cup \{z\}, F_{j+1}, \dots)`. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: n = 4 sage: C = graphs.CycleGraph(n) sage: M = FreePartiallyCommutativeLeftRegularBand(C) sage: M.vertex_sequence('0123') ({'1', '0'}, {'3', '2'}) sage: F = () sage: for z in '0123': ....: F = M._vertex_sequence_action_by_letter(F, z) ....: print map(sorted, F) [['0']] [['0', '1']] [['0', '1'], ['2']] [['0', '1'], ['2', '3']] """ from sage.sets.set import Set if len(F) == 0: return (Set([z]),) j = len(F) - 1 while j >= 0: if self._is_connected(z, F[j]): break else: j -= 1 if j + 1 == len(F): return F + (Set([z]),) else: return F[:j + 1] + (F[j + 1].union(Set([z])),) + F[j + 2:] def _is_connected(self, z, F_j): r""" Return whether `z` is connected to the set `F_j`. """ return z in F_j or any(not self._graph.has_edge(x, z) for x in F_j) def _element_constructor_(self, x): if isinstance(x, str): return self.normal_form(x) else: return super(FreePartiallyCommutativeLeftRegularBand, self)._element_constructor_(x) def quiver_v2(self): # if hasattr(self, "_quiver_cache"): # return self._quiver_cache from sage.combinat.subset import Subsets from sage.graphs.digraph import DiGraph Q = DiGraph(multiedges=True) Q.add_vertices(self.j_transversal()) g = self.associated_graph() for U in Subsets(g.vertices()): for W in Subsets(U): h = g.subgraph(U.difference(W)) n = h.connected_components_number() - 1 if n > 0: u = self.j_class_representative(self.j_class_index(self(''.join(U)))) w = self.j_class_representative(self.j_class_index(self(''.join(W)))) for i in range(n): Q.add_edge(w, u, i) return Q # miscellaneous methods def iter_from_free_lrb(self): r""" Iterate through elements of the semigroup by projection elements of the free left regular band on the given generators. """ from free_left_regular_band import FreeLeftRegularBand F = FreeLeftRegularBand(alphabet=tuple(x.value for x in self.semigroup_generators())) seen = {} for w in F: x = self.normal_form(w) if x not in seen: seen[x] = True yield x def induced_orientation(self, w): r""" The induced subgraph of the complement of the underlying graph with an orientation determined by `w`: an edge `(x,y)` is directed from `x` to `y` if `x` comes before `y` in `w`. EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G); S Free partially commutative left regular band on Graph on 4 vertices sage: w = S('cdab') sage: H = S.induced_orientation(w) sage: H.vertices() ['a', 'b', 'c', 'd'] sage: H.edges() [('c', 'a', None), ('c', 'b', None), ('c', 'd', None), ('d', 'a', None)] sage: w = S('dab') sage: H = S.induced_orientation(w) sage: H.vertices() ['a', 'b', 'd'] sage: H.edges() [('d', 'a', None)] """ pos = {wi: i for i, wi in enumerate(w.value)} D = DiGraph() D.add_vertices(pos) for (u, v, l) in self.associated_graph().complement().edges(): if u in pos and v in pos: if pos[u] < pos[v]: D.add_edge(u, v) else: D.add_edge(v, u) return D class Element (ElementWrapper): wrapped_class = str __lt__ = ElementWrapper._lt_by_value def __eq__(self, other): r""" EXAMPLES:: sage: from sage_semigroups.monoids.free_partially_commutative_left_regular_band import FreePartiallyCommutativeLeftRegularBand sage: G = Graph({'a':['b'],'b':['d'],'c':[],'d':[]}) sage: S = FreePartiallyCommutativeLeftRegularBand(G) sage: w, u = S('cdab'), S('cbda') sage: w == w True sage: u == u True sage: w == u True sage: a, b = S('dab'), S('dba') sage: a == b True sage: a == w False """ return (self.__class__ is other.__class__ and self.parent() == other.parent() and self.value == other.value) def length(self): return len(self.value) FPCLRB = FreePartiallyCommutativeLeftRegularBand
true
6e453f8488772fb30e002a5ba1e321c5c874d470
Python
hyunjun/practice
/python/problem-string/determine_if_string_halves_are_alike.py
UTF-8
1,237
3.953125
4
[]
no_license
# https://leetcode.com/problems/determine-if-string-halves-are-alike class Solution: # runtime: 36 ms, 65.55% # memory: 14.3 MB, 68.01% def halvesAreAlike0(self, s: str) -> bool: m, s, vowels, c = len(s) // 2, s.lower(), set(['a', 'e', 'i', 'o', 'u']), 0 for i in range(m): if s[i] in vowels: c += 1 for i in range(m, len(s)): if s[i] in vowels: c -= 1 return c == 0 # lower()를 사용하지 않고 vowels에서 대소문자 모두 처리 # runtime: 32 ms, 85.83% # memory Usage: 14.5 MB, 9.61% def halvesAreAlike(self, s: str) -> bool: m, vowels, c = len(s) // 2, set(['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']), 0 for i in range(m): if s[i] in vowels: c += 1 for i in range(m, len(s)): if s[i] in vowels: c -= 1 return c == 0 solution = Solution() data = [("book", True), ("textbook", False), ("MerryChristmas", False), ("AbCdEfGh", True), ] for s, expect in data: real = solution.halvesAreAlike(s) print(f'{s} expect {expect} real {real} result {expect == real}')
true
b8b5345bea1566f1420fecca0ba76c194ac9ba3b
Python
fox-io/udemy-100-days-of-python
/day_018.py
UTF-8
1,999
3.734375
4
[]
no_license
""" ----- Day 18 Project: Turtle ----- (c)2021 John Mann <gitlab.fox-io@foxdata.io> """ from turtle import Turtle, Screen import random # Shapes with 3-10 sides, random colors # def main(): # t = Turtle() # for sides in range(3, 11): # t.color((random.random(), random.random(), random.random())) # for _ in range(0, sides): # t.forward(100) # t.right(360/sides) # # screen = Screen() # screen.exitonclick() # # Random Walk # def main(): # t = Turtle() # t.width(5) # t.speed(0) # # # Do 100 walks # for walk_num in range(200): # # # Face random direction # turns = random.randint(1, 4) # # print(f"{walk_num}/100: Turning {turns} times.") # for _ in range(turns): # t.right(90) # # # Pick random color # t.color((random.random(), random.random(), random.random())) # # # Draw walk # t.forward(20) # # s = Screen() # s.exitonclick() # # Spirograph # def main(): # t = Turtle() # t.speed(0) # # # Make 36 circles, 10 degrees # for deg in range(0, 360, 5): # t.color((random.random(), random.random(), random.random())) # t.setheading(float(deg)) # t.circle(100) # # s = Screen() # s.exitonclick() # Hirst Painting def main(): start_row = 300 start_col = 300 circle_size = 10 circle_distance = 40 t = Turtle() t.speed(0) for row in range(10): for col in range(10): t.penup() t.goto(((row + 1) * circle_distance) - start_row, ((col + 1) * circle_distance) - start_col) r_color = (random.random(), random.random(), random.random()) t.color(r_color) t.fillcolor(r_color) t.setheading(180.0) t.pendown() t.begin_fill() t.circle(circle_size) t.end_fill() t.penup() s = Screen() s.exitonclick() if __name__ == "__main__": main()
true
601683f955403de094466e36cbd659e9e15a09a3
Python
mahagony/Pi-DigiAMP
/iqmute.py
UTF-8
1,153
2.8125
3
[]
no_license
#!/usr/bin/env python3 import sys, os import argparse import pigpio class IQaudIO: def __init__(self): self.port = 22 self.pi = pigpio.pi() self.pi.set_mode(self.port, pigpio.OUTPUT) def output(self, value): self.pi.write(self.port, value) def mute(self): self.output(0) def unmute(self): self.output(1) def show(self): if self.pi.read(self.port): print("Pi-DigiAMP+ is in UNMUTE state") else: print("PI-DigiAMP+ is in MUTE state") if __name__ == '__main__': parser = argparse.ArgumentParser(description="mute/unmute IQAudIO Pi-DigiAMP+") parser.add_argument("--mute", action="store_true", help="mute Pi-DigiAMP") parser.add_argument("--unmute", action="store_true", help="unmute Pi-DigiAMP") parser.add_argument("--show", action="store_true", help="show status") args = parser.parse_args() if args.show: IQaudIO().show() exit() if args.unmute: IQaudIO().unmute() exit() if args.mute: IQaudIO().mute() exit() else: IQaudIO().show() exit()
true
be86b8c745f240cba43fd5306935b6573cb58b9f
Python
awesomepotato2016/applied-cs
/Lab03.py
UTF-8
1,887
3.421875
3
[]
no_license
#Name: Karthik and Vivian #Date: 10/04/2019 from random import random inp = int(raw_input("Enter 1 or 2: ")) # 1 gives the percent of Trials where First Step matches Final Direction # 2 gives the percent of Trials where First Edge matches Final Direction if inp == 1: matchnum = [] for n in range(1,26): matches = 0 for trial in range(10000): m = 2*n +1 j = n+1 steps = 0 while 1<=j<=m: r = random() if r < 0.5: j+=1 else: j-=1 if steps==0: veryFirstStep=(j-(n+1)) steps += 1 if veryFirstStep== 1 and j==m+1: matches+=1 if veryFirstStep==-1 and j==0: matches+=1 matchnum.append((100.0*matches)/10000) md = open('matchdirection.txt','w') for i in range(1,26): md.write(str(i) + " "+str(matchnum[i-1]) + '\n') md.close() print 'Option 1 selected' elif inp== 2: matchnum = [] for n in range(1,26): matches = 0 for trial in range(10000): m = 2*n +1 j = n+1 times = 0 while 1<=j<=m: r = random() if r < 0.5: j+=1 else: j-=1 if (j==m or j ==1) and (times == 0): firstEdge = j times += 1 if firstEdge == m and j==m+1: matches+=1 if firstEdge==1 and j==0: matches+=1 matchnum.append((100.0*matches)/10000) md = open('matchEdge.txt','w') for i in range(1,26): md.write(str(i) + " "+str(matchnum[i-1]) + '\n') md.close() print 'Option 2 selected'
true
c551cb75cf1efb226c4570332abb6293a331ddea
Python
sjlee4108/robot-deliverer
/scripts/deleted.py
UTF-8
3,141
3
3
[]
no_license
# IGNORE: deleted files # updates robot packages and weight accordingly def add_package(self, package): # adds package to robot and adds to robot weight self.robot_packages.add(package) self.robot_weight += self.package2weight[package] def remove_package(self, package): # removes package from robot and decreases robot weight self.robot_packages.remove(package) self.robot_weight -= self.package2weight[package] # picks up packages from warehouse and updates information accordingly def pickup(self, packages): # store pertinent information to undo later if needed warehouse = self.robot_location picked_packages = set() # add packages to robot, remove from warehouse for package in packages: self.add_package(package) self.warehouse2packages[warehouse].remove(package) picked_packages.add(package) return warehouse, picked_packages # moves robot to specified location and updates information accordingly def travel(self, location): # store pertinent information to undo later if needed prev_location = self.robot_location dropped_packages = set() self.robot_location = location if self.robot_location in self.recipient2packages: # assumes that robot drops off all packages that can be dropped off if travelling to recipient packages_to_drop = self.recipient2packages[location] for package in packages_to_drop: # drops off package if robot is carrying if package in self.robot_packages: self.remove_package(package) dropped_packages.add(package) return prev_location, dropped_packages # undoes travel to new location def undo_travel(self, old_location, dropped_packages): # change location self.robot_location = old_location # robot "picks up" packages from where it dropped them off for package in dropped_packages: self.add_package(package) # undoes package pickup from warehouse def undo_pickup(self, warehouse, packages): # add packages back to warehouse and remove from robot for package in packages: self.warehouse2packages[warehouse].add(package) self.remove_package(package) # pushes specified action def push_action(self, action, parameter): if action == PICKUP: location, packages = self.pickup(parameter) else: location, packages = self.travel(parameter) return location, packages # pops (undoes) specified action def pop_action(self, action, location, packages): if action == PICKUP: self.undo_pickup(location, packages) else: self.undo_travel(location, packages)
true
1465d4630d106f306cf54fb7958fc7cbada3fd15
Python
tnyng/dnn
/sheet1/layers.py
UTF-8
738
3.109375
3
[]
no_license
import numpy class Sequential: def __init__(self,layers): self.layers = layers def forward(self,Q): for l in self.layers: Q = l.forward(Q) return Q def backward(self,DQ): for l in self.layers[::-1]: DQ = l.backward(DQ) return DQ class Linear: def __init__(self,W,B): self.W,self.B = W,B def forward(self,A): self.A = A*1; return A.dot(self.W)+self.B def backward(self,DZ): self.DW = numpy.dot(self.A.T,DZ)/len(self.A) self.DB = DZ.mean(axis=0) return DZ.dot(self.W.T) class Tanh: def forward(self,Z): self.A = numpy.tanh(Z); return self.A def backward(self,DA): return DA*(1-self.A**2)
true
4f861ef88bd341e90107ee10438395d4d0620548
Python
sebbacon/bbc-radio-schedules
/bbcradio/cli.py
UTF-8
2,415
3.0625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # encoding: utf-8 """ bbcradio.cli ------------ This module implements a CLI using the unofficial bbcradio API. Copyright (c) 2021 Steven Maude Licensed under the MIT License, see LICENSE. """ import argparse import sys import bbcradio import requests def list_stations(): """Retrieves a list of radio stations and prints them. Arguments: None. Returns: None. """ stations = bbcradio.Stations() for name, url in stations.urls.items(): print(f"{name} {url}") def retrieve_schedule(station_name, date): """Retrieves and prints a schedule for a station on a given date. Arguments: station_name: string, radio station name. date: string, date in YYYY-MM-DD format. Returns: None. """ stations = bbcradio.Stations() station = stations.select(station_name) schedule = bbcradio.Schedule(station, date) try: schedule.programmes except (requests.exceptions.HTTPError, ValueError): print(f"Unable to retrieve schedule for {station_name} on {date}.") sys.exit(1) print(f"Schedule for {schedule.station.name} on {schedule.date}") for programme in schedule.programmes: p = programme.info print("*") print(p["start_date"]) print( "|".join( [ p["series_name"] or "<No series name found>", p["name"] or "<No programme name found>", p["description"] or "<No programme description found>", ] ) ) print(p["url"]) def main(): parser = argparse.ArgumentParser(prog="bbcradio_cli") subparsers = parser.add_subparsers( dest="subparser_name", help="sub-command help" ) subparsers.add_parser("stations", help="list stations") schedule_parser = subparsers.add_parser( "schedule", help="retrieve a schedule" ) schedule_parser.add_argument( "station_name", help="name of a station, e.g. BBC Radio 1", type=str ) schedule_parser.add_argument( "date", help="date in YYYY-MM-DD format", type=str ) args = parser.parse_args() if args.subparser_name == "stations": list_stations() elif args.subparser_name == "schedule": retrieve_schedule(args.station_name, args.date) if __name__ == "__main__": main()
true
fc39cfc2ced142c49d507c0608f794e035a50215
Python
haohaiwei/hhw
/code/python/pygame/game_functions.py
UTF-8
1,785
2.984375
3
[]
no_license
import sys import pygame from bullet import Bullet '''def check_events(): for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit()''' '''def check_events(ship): for event in pygame.event.get(): if pygame.KEYDOWN==event.type: if event.key == pygame.K_RIGHT: ship.moving_right = True elif event.type == pygame.KEYUP: if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False''' def check_keydown_events(event, ai_settings, screen, ship,bullets): if event.key == pygame.K_d: ship.moving_right = True elif event.key == pygame.K_a: ship.moving_left = True elif event.key ==pygame.K_s: new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet) def check_keyup_events(event, ship): if event.key == pygame.K_d: ship.moving_right = False elif event.key == pygame.K_a: ship.moving_left = False def check_events(ai_settings,screen,ship,bullets): for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: check_keydown_events(event, ai_settings,screen,ship,bullets) elif event.type == pygame.KEYUP: check_keyup_events(event, ship) def update_bullets(bullets): bullets.update() for bullet in bullets.copy(): if bullet.rect.bottom <= 0: bullets.remove(bullet) def update_screen(ai_settings,screen, ship,bullets): screen.fill(ai_settings.bg_color) for bullet in bullets.sprites(): bullet.draw_bullet() ship.blitme() pygame.display.flip()
true
f2dbcd98c9e4a15391c836cb89422e6b7e7108f7
Python
franciscoquinones/Python
/clase4/clase/main.py
UTF-8
492
2.875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sat Dec 17 16:52:09 2016 @author: Josue """ #Importar archivos py nos permite,emplear o reutilizar #las posibles funciones o clases import texto import saludo import primo #Instanciamos del modulo texto la clase saludo juan=texto.saludo() #condicion que nos permite ejecutar instrucciones #siempre que inicialicemos el mismo archivo #No funciona cuando es importado por otro archivo.py if __name__=="__main__": print "yo"
true
2917236c53af22dd621316f71d969a1af9f8ab25
Python
skylin008/uPython-switch-control
/relay.py
UTF-8
1,109
2.75
3
[ "MIT" ]
permissive
# Micropython PIR Switch Control # Erni Tron ernitron@gmail.com # Copyright (c) 2016 import time from machine import Pin # The Relay Switch Class class Relay(): # D8 GPIO15 Pin(15) # D5 GPIO14 Pin(14) # D0 GPIO0 Pin(0) def __init__(self, p=14, sensor='relay', place='nowhere', server=''): self.pin = Pin(p, Pin.OUT) self.pin.value(0) self.status = 0 self.count = 0 self.sensor = sensor self.place = place self.server = server def get(self): return self.status def set(self, position): if position != self.status: self.pin.value(position) self.status = position self.count += 1 return (self.status, self.count) def toggle(self): self.set(1 - self.status) def status(self): T = {} T['place'] = self.place T['server'] = self.server T['switch'] = self.status T['temp'] = str(self.status) T['count'] = self.count T['sensor'] = self.sensor T['date'] = time.time() return T # Initialize relay = None
true
a3de0405b680edc6c64ee56b8945e0253681d762
Python
alisonkozol/CellProfiler
/cellprofiler/modules/loaddata.py
UTF-8
67,790
3.3125
3
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
'''<b>Load Data</b> loads text or numerical data to be associated with images, and can also load images specified by file names. <hr> This module loads a file that supplies text or numerical data associated with the images to be processed, e.g., sample names, plate names, well identifiers, or even a list of image filenames to be processed in the analysis run. <p><i>Disclaimer:</i> Please note that the Input modues (i.e., <b>Images</b>, <b>Metadata</b>, <b>NamesAndTypes</b> and <b>Groups</b>) largely supercedes this module. However, old pipelines loaded into CellProfiler that contain this module will provide the option of preserving them; these pipelines will operate exactly as before.</p> <p>The module currently reads files in CSV (comma-separated values) format. These files can be produced by saving a spreadsheet from Excel as "Windows Comma Separated Values" file format. The lines of the file represent the rows, and each field in a row is separated by a comma. Text values may be optionally enclosed by double quotes. The <b>LoadData</b> module uses the first row of the file as a header. The fields in this row provide the labels for each column of data. Subsequent rows provide the values for each image cycle.<p> <p>There are many reasons why you might want to prepare a CSV file and load it via <b>LoadData</b>. Below, we describe how the column nomenclature allows for special functionality for some downstream modules: <ul> <li><i>Columns with any name:</i> Any data loaded via <b>LoadData</b> will be exported as a per-image measurement along with CellProfiler-calculated data. This is a convenient way for you to add data from your own sources to the files exported by CellProfiler.</li> <li><i>Columns whose name begins with Image_FileName or Image_PathName:</i> A column whose name begins with "Image_FileName" or "Image_PathName" can be used to supply the file name and path name (relative to the base folder) of an image that you want to load. The image's name within CellProfiler appears afterward. For instance, "Image_FileName_CY3" would supply the file name for the CY3-stained image, and choosing the <i>Load images based on this data?</i> option allows the CY3 images to be selected later in the pipeline. "Image_PathName_CY3" would supply the path names for the CY3-stained images. The path name column is optional; if all image files are in the base folder, this column is not needed.</li> <li><i>Columns whose name begins with Image_ObjectsFileName or Image_ObjectsPathName:</i> The behavior of these columns is identical to that of "Image_FileName" or "Image_PathName" except that it is used to specify an image that you want to load as objects. </li> <li><i>Columns whose name begins with Metadata:</i> A column whose name begins with "Metadata" can be used to group or associate files loaded by <b>LoadData</b>. <p>For instance, an experiment might require that images created on the same day use an illumination correction function calculated from all images from that day, and furthermore, that the date be captured in the file names for the individual image sets and in a CSV file specifying the illumination correction functions. <p>In this case, if the illumination correction images are loaded with the <b>LoadData</b> module, the file should have a "Metadata_Date" column which contains the date metadata tags. Similarly, if the individual images are loaded using the <b>LoadImages</b> module, <b>LoadImages</b> should be set to extract the <Date> metadata tag from the file names (see <b>LoadImages</b> for more details on how to do so). The pipeline will then match the individual image with their corresponding illumination correction functions based on matching "Metadata_Date" tags. This is useful if the same data is associated with several images (for example, multiple images obtained from a single well).</li> <li><i>Columns whose name begins with Series or Frame:</i> A columns whose name begins with "Series" or "Frame" refers to CSVs containing information about image stacks or movies. The name of the image within CellProfiler appears afterward an underscore character. For example, "Frame_DNA" would supply the frame number for the movie/image stack file specified by the "Image_FileName_DNA" and "Image_PathName_DNA" columns. <p>Using a CSV for loading frames and/or series from an movie/image stack allows you more flexibility in assembling image sets for operations that would difficult or impossible using the Input modules alone. For example, if you wanted to analyze a movie of 1,000 frames by computing the difference between frames, you could create two image columns in a CSV, one for loading frames 1,2,...,999, and the other for loading frames 2,3,...,1000. In this case, CellProfiler would load the frame and its predecessor for each cycle and <b>ImageMath</b> could be used to create the differece image for downstream use.</p> </li> <li><i>Columns that contain dose-response or positive/negative control information:</i> The <b>CalculateStatistics</b> module can calculate metrics of assay quality for an experiment if provided with information about which images represent positive and negative controls and/or what dose of treatment has been used for which images. This information is provided to <b>CalculateStatistics</b> via the <b>LoadData</b> module, using particular formats described in the help for <b>CalculateStatistics</b>. Again, using <b>LoadData</b> is useful if the same data is associated with several images (for example, multiple images obtained from a single well).</li> </ul> <h5>Example CSV file:</h5> <tt><table border="0"> <tr><td>Image_FileName_FITC,</td><td>Image_PathName_FITC,</td><td>Metadata_Plate,</td><td>Titration_NaCl_uM</td></tr><br> <tr><td>"04923_d1.tif",</td><td>"2009-07-08",</td><td>"P-12345",</td><td>750</td></tr> <tr><td>"51265_d1.tif",</td><td>"2009-07-09",</td><td>"P-12345",</td><td>2750</td></tr> </table></tt> After the first row of header information (the column names), the first image-specific row specifies the file, "2009-07-08/04923_d1.tif" for the FITC image (2009-07-08 is the name of the subfolder that contains the image, relative to the Default Input Folder). The plate metadata is "P-12345" and the NaCl titration used in the well is 750 uM. The second image-specific row has the values "2009-07-09/51265_d1.tif", "P-12345" and 2750 uM. The NaCl titration for the image is available for modules that use numeric metadata, such as <b>CalculateStatistics</b>; "Titration" will be the category and "NaCl_uM" will be the measurement. <h5>Using metadata in LoadData</h5> <p>If you would like to use the metadata-specific settings, please see <i>Help > General help > Using metadata in CellProfiler</i> for more details on metadata usage and syntax. Briefly, <b>LoadData</b> can use metadata provided by the input CSV file for grouping similar images together for the analysis run and for metadata-specfic options in other modules; see the settings help for <i>Group images by metadata</i> and, if that setting is selected, <i>Select metadata tags for grouping</i> for details.</p> <h6>Using MetaXpress-acquired images in CellProfiler</h6> <p>To produce a CSV file containing image location and metadata from a <a href= "http://www.moleculardevices.com/Products/Software/High-Content-Analysis/MetaXpress.html">MetaXpress</a> imaging run, do the following: <ul> <li>Collect image locations from all files that match the string <i>.tif</i> in the desired image folder, one row per image.</li> <li>Split up the image pathname and filename into separate data columns for <b>LoadData</b> to read.</li> <li>Remove data rows corresponding to: <ul> <li>Thumbnail images (do not contain imaging data)</li> <li>Duplicate images (will cause metadata mismatching)</li> <li>Corrupt files (will cause failure on image loading) </li> </ul></li> <li>The image data table may be linked to metadata contained in plate maps. These plate maps should be stored as flat files, and may be updated periodically via queries to a laboratory information management system (LIMS) database. </li> <li>The complete image location and metadata is written to a CSV file where the headers can easily be formatted to match <b>LoadData</b>'s input requirements (see column descriptions above). Single plates split across multiple directories (which often occurs in MetaXpress) are written to separate files and then merged, thereby removing the discontinuity.</li> </ul> For a GUI-based approach to performing this task, we suggest using <a href="http://accelrys.com/products/pipeline-pilot/">Pipeline Pilot</a>. <p>For more details on configuring CellProfiler (and LoadData in particular) for a LIMS environment, please see our <a href="https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment">wiki</a> on the subject.</p> <h4>Available measurements</h4> <ul> <li><i>Pathname, Filename:</i> The full path and the filename of each image, if image loading was requested by the user.</li> <li>Per-image information obtained from the input file provided by the user.</li> <li><i>Scaling:</i> The maximum possible intensity value for the image format.</li> <li><i>Height, Width:</i> The height and width of the current image.</li> </ul> See also the <b>Input</b> modules, <b>LoadImages</b> and <b>CalculateStatistics</b>. ''' import csv import hashlib import logging import os import sys import numpy as np logger = logging.getLogger(__name__) try: from cStringIO import StringIO except: from StringIO import StringIO import matplotlib.mlab import cellprofiler.cpmodule as cpm import cellprofiler.objects as cpo import cellprofiler.measurements as cpmeas import cellprofiler.settings as cps from cellprofiler.settings import YES, NO import cellprofiler.preferences as cpprefs import identify as I from cellprofiler.modules.loadimages import LoadImagesImageProvider from cellprofiler.modules.loadimages import C_FILE_NAME, C_PATH_NAME, C_URL from cellprofiler.modules.loadimages import C_SERIES, C_FRAME from cellprofiler.modules.loadimages import C_OBJECTS_FILE_NAME from cellprofiler.modules.loadimages import C_OBJECTS_PATH_NAME from cellprofiler.modules.loadimages import C_OBJECTS_URL from cellprofiler.measurements import C_OBJECTS_SERIES, C_OBJECTS_FRAME from cellprofiler.modules.loadimages import C_MD5_DIGEST, C_SCALING from cellprofiler.modules.loadimages import C_HEIGHT, C_WIDTH from cellprofiler.modules.loadimages import bad_sizes_warning from cellprofiler.modules.loadimages import convert_image_to_objects from cellprofiler.modules.loadimages import pathname2url, url2pathname from cellprofiler.preferences import standardize_default_folder_names, \ DEFAULT_INPUT_FOLDER_NAME, DEFAULT_OUTPUT_FOLDER_NAME, NO_FOLDER_NAME, \ ABSOLUTE_FOLDER_NAME, IO_FOLDER_CHOICE_HELP_TEXT IMAGE_CATEGORIES = (C_URL, C_FILE_NAME, C_PATH_NAME) OBJECTS_CATEGORIES = (C_OBJECTS_URL, C_OBJECTS_FILE_NAME, C_OBJECTS_PATH_NAME) DIR_NONE = 'None' DIR_OTHER = 'Elsewhere...' DIR_ALL = [DEFAULT_INPUT_FOLDER_NAME, DEFAULT_OUTPUT_FOLDER_NAME, NO_FOLDER_NAME, ABSOLUTE_FOLDER_NAME] '''Reserve extra space in pathnames for batch processing name rewrites''' PATH_PADDING = 20 '''Cache of header columns for files''' header_cache = {} ################################################################### # # Helper functions for the header columns, Image_FileName_<image-name> # and Image_PathName_<image-name> # # These need to be converted to FileName_<image-name> and # PathName_<image-name> internally. ################################################################### def header_to_column(field): '''Convert the field name in the header to a column name This function converts Image_FileName to FileName and Image_PathName to PathName so that the output column names in the database will be Image_FileName and Image_PathName ''' for name in (C_PATH_NAME, C_FILE_NAME, C_URL, C_OBJECTS_FILE_NAME, C_OBJECTS_PATH_NAME, C_OBJECTS_URL): if field.startswith(cpmeas.IMAGE + '_' + name + '_'): return field[len(cpmeas.IMAGE) + 1:] return field def is_path_name_feature(feature): '''Return true if the feature name is a path name''' return feature.startswith(C_PATH_NAME + '_') def is_file_name_feature(feature): '''Return true if the feature name is a file name''' return feature.startswith(C_FILE_NAME + '_') def is_url_name_feature(feature): return feature.startswith(C_URL + "_") def is_objects_path_name_feature(feature): '''Return true if the feature name is the path to a labels file''' return feature.startswith(C_OBJECTS_PATH_NAME + "_") def is_objects_file_name_feature(feature): '''Return true if the feature name is a labels file name''' return feature.startswith(C_OBJECTS_FILE_NAME + "_") def is_objects_url_name_feature(feature): return feature.startswith(C_OBJECTS_URL + "_") def get_image_name(feature): '''Extract the image name from a feature name''' if is_path_name_feature(feature): return feature[len(C_PATH_NAME + '_'):] if is_file_name_feature(feature): return feature[len(C_FILE_NAME + '_'):] if is_url_name_feature(feature): return feature[len(C_URL + '_'):] raise ValueError('"%s" is not a path feature or file name feature' % feature) def get_objects_name(feature): '''Extract the objects name from a feature name''' if is_objects_path_name_feature(feature): return feature[len(C_OBJECTS_PATH_NAME + "_"):] if is_objects_file_name_feature(feature): return feature[len(C_OBJECTS_FILE_NAME + "_"):] if is_objects_url_name_feature(feature): return feature[len(C_OBJECTS_URL + "_"):] raise ValueError('"%s" is not a objects path feature or file name feature' % feature) def make_path_name_feature(image): '''Return the path name feature, given an image name The path name feature is the name of the measurement that stores the image's path name. ''' return C_PATH_NAME + '_' + image def make_file_name_feature(image): '''Return the file name feature, given an image name The file name feature is the name of the measurement that stores the image's file name. ''' return C_FILE_NAME + '_' + image def make_objects_path_name_feature(objects_name): '''Return the path name feature, given an object name The path name feature is the name of the measurement that stores the objects file path name. ''' return C_OBJECTS_PATH_NAME + '_' + objects_name def make_objects_file_name_feature(objects_name): '''Return the file name feature, given an object name The file name feature is the name of the measurement that stores the objects file name. ''' return C_OBJECTS_FILE_NAME + '_' + objects_name class LoadData(cpm.CPModule): module_name = "LoadData" category = 'File Processing' variable_revision_number = 6 def create_settings(self): self.csv_directory = cps.DirectoryPath( "Input data file location", allow_metadata=False, support_urls=True, doc="""Select the folder containing the CSV file to be loaded. %(IO_FOLDER_CHOICE_HELP_TEXT)s <p>An additional option is the following: <ul> <li><i>URL</i>: Use the path part of a URL. For instance, an example .CSV file is hosted at <i>http://cellprofiler.org/svnmirror/ExampleImages/ExampleSBSImages/1049_Metadata.csv</i> To access this file, you would choose <i>URL</i> and enter <i>http://cellprofiler.org/svnmirror/ExampleImages/ExampleSBSImages</i> as the path location.</li> </ul></p>""" % globals()) def get_directory_fn(): '''Get the directory for the CSV file name''' return self.csv_directory.get_absolute_path() def set_directory_fn(path): dir_choice, custom_path = self.csv_directory.get_parts_from_path(path) self.csv_directory.join_parts(dir_choice, custom_path) self.csv_file_name = cps.FilenameText( "Name of the file", cps.NONE, doc=""" Provide the file name of the CSV file containing the data.""", get_directory_fn=get_directory_fn, set_directory_fn=set_directory_fn, browse_msg="Choose CSV file", exts=[("Data file (*.csv)", "*.csv"), ("All files (*.*)", "*.*")] ) self.browse_csv_button = cps.DoSomething( "Press to view CSV file contents", "View...", self.browse_csv) self.wants_images = cps.Binary("Load images based on this data?", True, doc=""" Select <i>%(YES)s</i> to have <b>LoadData</b> load images using the <i>Image_FileName</i> field and the <i>Image_PathName</i> fields (the latter is optional).""" % globals()) self.rescale = cps.Binary( "Rescale intensities?", True, doc=""" This option determines whether image metadata should be used to rescale the image's intensities. Some image formats save the maximum possible intensity value along with the pixel data. For instance, a microscope might acquire images using a 12-bit A/D converter which outputs intensity values between zero and 4095, but stores the values in a field that can take values up to 65535. <p>Select <i>%(YES)s</i> to rescale the image intensity so that saturated values are rescaled to 1.0 by dividing all pixels in the image by the maximum possible intensity value. </p> <p>Select <i>%(NO)s</i> to ignore the image metadata and rescale the image to 0 &ndash; 1.0 by dividing by 255 or 65535, depending on the number of bits used to store the image.</p>""" % globals()) self.image_directory = cps.DirectoryPath( "Base image location", dir_choices=DIR_ALL, allow_metadata=False, doc=""" The parent (base) folder where images are located. If images are contained in subfolders, then the file you load with this module should contain a column with path names relative to the base image folder (see the general help for this module for more details). You can choose among the following options: <ul> <li><i>Default Input Folder:</i> Use the Default Input Folder.</li> <li><i>Default Output Folder:</i> Use the Default Output Folder.</li> <li><i>None:</i> You have an <i>Image_PathName</i> field that supplies an absolute path.</li> <li><i>Elsewhere...</i>: Use a particular folder you specify.</li> </ul>""") self.wants_image_groupings = cps.Binary( "Group images by metadata?", False, doc=""" Select <i>%(YES)s</i> to break the image sets in an experiment into groups that can be processed by different nodes on a computing cluster. Each set of files that share your selected metadata tags will be processed together. See <b>CreateBatchFiles</b> for details on submitting a CellProfiler pipeline to a computing cluster for processing.""" % globals()) self.metadata_fields = cps.MultiChoice( "Select metadata tags for grouping", None, doc=""" <i>(Used only if images are to be grouped by metadata)</i><br> Select the tags by which you want to group the image files here. You can select multiple tags. For example, if a set of images had metadata for "Run", "Plate", "Well", and "Site", selecting <i>Run</i> and <i>Plate</i> will create groups containing images that share the same [<i>Run</i>,<i>Plate</i>] pair of tags.""") self.wants_rows = cps.Binary( "Process just a range of rows?", False, doc=""" Select <i>%(YES)s</i> if you want to process a subset of the rows in the CSV file. Rows are numbered starting at 1 (but do not count the header line). <b>LoadData</b> will process up to and including the end row.""" % globals()) self.row_range = cps.IntegerRange( "Rows to process", (1, 100000), 1, doc=""" <i>(Used only if a range of rows is to be specified)</i><br> Enter the row numbers of the first and last row to be processed.""") def do_reload(): global header_cache header_cache = {} try: self.open_csv() except: pass self.clear_cache_button = cps.DoSomething( "Reload cached information", "Reload", do_reload, doc=""" Press this button to reload header information saved inside CellProfiler. <b>LoadData</b> caches information about your .csv file in its memory for efficiency. The information is reloaded if a modification is detected. <b>LoadData</b> might fail to detect a modification on a file accessed over the network and will fail to detect modifications on files accessed through HTTP or FTP. In this case, you will have to use this button to reload the header information after changing the file. <p>This button will never destroy any information on disk. It is always safe to press it.</p> """) def settings(self): return [self.csv_directory, self.csv_file_name, self.wants_images, self.image_directory, self.wants_rows, self.row_range, self.wants_image_groupings, self.metadata_fields, self.rescale] def validate_module(self, pipeline): csv_path = self.csv_path if self.csv_directory.dir_choice != cps.URL_FOLDER_NAME: if not os.path.isfile(csv_path): raise cps.ValidationError("No such CSV file: %s" % csv_path, self.csv_file_name) try: self.open_csv() except IOError, e: import errno if e.errno == errno.EWOULDBLOCK: raise cps.ValidationError("Another program (Excel?) is locking the CSV file %s." % self.csv_path, self.csv_file_name) else: raise cps.ValidationError("Could not open CSV file %s (error: %s)" % (self.csv_path, e), self.csv_file_name) try: self.get_header() except Exception, e: raise cps.ValidationError( "The CSV file, %s, is not in the proper format. See this module's help for details on CSV format. (error: %s)" % (self.csv_path, e), self.csv_file_name) def validate_module_warnings(self, pipeline): '''Check for potentially dangerous settings The best practice is to have a single LoadImages or LoadData module. ''' from cellprofiler.modules.loadimages import LoadImages for module in pipeline.modules(): if id(module) == id(self): return if isinstance(module, LoadData): raise cps.ValidationError( "Your pipeline has two or more LoadData modules.\n" "The best practice is to have only one LoadData module.\n" "Consider combining the CSV files from all of your\n" "LoadData modules into one and using only a single\n" "LoadData module", self.csv_file_name) if isinstance(module, LoadImages): raise cps.ValidationError( "Your pipeline has a LoadImages and LoadData module.\n" "The best practice is to have only a single LoadImages\n" "or LoadData module. This LoadData module will match its\n" "metadata against that of the previous LoadImages module\n" "in an attempt to reconcile the two modules' image\n" "set lists and this can result in image sets with\n" "missing images or metadata.", self.csv_file_name) # check that user has selected fields for grouping if grouping is turned on if self.wants_image_groupings.value and (len(self.metadata_fields.selections) == 0): raise cps.ValidationError("Group images by metadata is True, but no metadata " "tags have been chosen for grouping.", self.metadata_fields) def visible_settings(self): result = [self.csv_directory, self.csv_file_name, self.browse_csv_button] if self.csv_directory.dir_choice == cps.URL_FOLDER_NAME: result += [self.clear_cache_button] self.csv_file_name.text = "URL of the file" self.csv_file_name.set_browsable(False) else: self.csv_file_name.text = "Name of the file" self.csv_file_name.set_browsable(True) result += [self.wants_images] if self.wants_images.value: result += [self.rescale, self.image_directory, self.wants_image_groupings] if self.wants_image_groupings.value: result += [self.metadata_fields] try: fields = [field[len("Metadata_"):] for field in self.get_header() if field.startswith("Metadata_")] if self.has_synthetic_well_metadata(): fields += [cpmeas.FTR_WELL] self.metadata_fields.choices = fields except: self.metadata_fields.choices = ["No CSV file"] result += [self.wants_rows] if self.wants_rows.value: result += [self.row_range] return result def convert(self): data = matplotlib.mlab.csv2rec(self.csv_path) src_dsc = data['source_description'] def uniquewaves(seq): output = [] for x in seq: if x not in output: output.append(x) return output waves = uniquewaves(src_dsc) pathname = [] filename = [] wave_pnames = [] wave_fnames = [] for i in range(len(waves)): mask = data['source_description'] == waves[i] pathname.append(data[mask]['file_path']) filename.append(data[mask]['file_name']) wave_pnames.append('PathName_%s' % (waves[i].strip('"'))) wave_fnames.append('FileName_%s' % (waves[i].strip('"'))) for i in range(len(waves)): if len(filename[i]) != len(filename[0]): raise RuntimeError("Image %s has %d files, but image %s has %d files" % (wave_fnames[i], len(filename[i]), wave_fnames[0], len(filename[0]))) def metadatacols(header): output = [] for h in header: if not h.startswith('file_'): if isinstance(h, unicode): output.append(h.encode("utf-8")) else: output.append(h) return output def data_for_one_wave(data): mask = data['source_description'] == waves[0] data_onewave = data[mask] return data_onewave header = data.dtype.names metadata_names = metadatacols(header) data_onewave = data_for_one_wave(data) strdate = [] for date in data_onewave['date_created']: strdate += [str(date)] metadata_names.remove('source_description') metadata_names.remove('date_created') data_onewave_nofilepaths = matplotlib.mlab.rec_keep_fields(data_onewave, metadata_names) metadata_names = ['Metadata_' + m for m in metadata_names] data_onewave_nofilepaths.dtype.names = metadata_names final_data = data_onewave_nofilepaths final_data = matplotlib.mlab.rec_append_fields(final_data, 'Metadata_date_created', strdate) for i in range(len(waves)): final_data = matplotlib.mlab.rec_append_fields(final_data, wave_pnames[i], pathname[i]) final_data = matplotlib.mlab.rec_append_fields(final_data, wave_fnames[i], filename[i]) return final_data @property def csv_path(self): '''The path and file name of the CSV file to be loaded''' if cpprefs.get_data_file() is not None: return cpprefs.get_data_file() if self.csv_directory.dir_choice == cps.URL_FOLDER_NAME: return self.csv_file_name.value path = self.csv_directory.get_absolute_path() return os.path.join(path, self.csv_file_name.value) @property def image_path(self): return self.image_directory.get_absolute_path() @property def legacy_field_key(self): '''The key to use to retrieve the metadata from the image set list''' return 'LoadTextMetadata_%d' % self.module_num def get_cache_info(self): '''Get the cached information for the data file''' global header_cache entry = header_cache.get(self.csv_path, dict(ctime=0)) if cpprefs.is_url_path(self.csv_path): if not header_cache.has_key(self.csv_path): header_cache[self.csv_path] = entry return entry ctime = os.stat(self.csv_path).st_ctime if ctime > entry["ctime"]: entry = header_cache[self.csv_path] = {} entry["ctime"] = ctime return entry def open_csv(self, do_not_cache=False): '''Open the csv file or URL, returning a file descriptor''' global header_cache if cpprefs.is_url_path(self.csv_path): if not header_cache.has_key(self.csv_path): header_cache[self.csv_path] = {} entry = header_cache[self.csv_path] if entry.has_key("URLEXCEPTION"): raise entry["URLEXCEPTION"] if entry.has_key("URLDATA"): fd = StringIO(entry["URLDATA"]) else: if do_not_cache: raise RuntimeError('Need to fetch URL manually.') import urllib2 try: url_fd = urllib2.urlopen(self.csv_path) except Exception, e: entry["URLEXCEPTION"] = e raise e fd = StringIO() while True: text = url_fd.read() if len(text) == 0: break fd.write(text) fd.seek(0) entry["URLDATA"] = fd.getvalue() return fd else: return open(self.csv_path, 'rb') def browse_csv(self): import wx from cellprofiler.gui import get_cp_icon try: fd = self.open_csv() except: wx.MessageBox("Could not read %s" % self.csv_path) return reader = csv.reader(fd) header = reader.next() frame = wx.Frame(wx.GetApp().frame, title=self.csv_path) sizer = wx.BoxSizer(wx.VERTICAL) frame.SetSizer(sizer) list_ctl = wx.ListCtrl(frame, style=wx.LC_REPORT) sizer.Add(list_ctl, 1, wx.EXPAND) for i, field in enumerate(header): list_ctl.InsertColumn(i, field) for line in reader: list_ctl.Append([unicode(s, 'utf8') if isinstance(s, str) else s for s in line[:len(header)]]) frame.SetMinSize((640, 480)) frame.SetIcon(get_cp_icon()) frame.Fit() frame.Show() def get_header(self, do_not_cache=False): '''Read the header fields from the csv file Open the csv file indicated by the settings and read the fields of its first line. These should be the measurement columns. ''' entry = self.get_cache_info() if entry.has_key("header"): return entry["header"] fd = self.open_csv(do_not_cache=do_not_cache) reader = csv.reader(fd) header = reader.next() fd.close() if header[0].startswith('ELN_RUN_ID'): try: data = self.convert() except Exception, e: raise RuntimeError("%s" % e) header = data.dtype.names entry["header"] = [header_to_column(column) for column in header] return entry["header"] def get_image_names(self, do_not_cache=False): header = self.get_header(do_not_cache=do_not_cache) image_names = set([ get_image_name(field) for field in header if is_file_name_feature(field) or is_url_name_feature(field)]) return list(image_names) def get_object_names(self, do_not_cache=False): header = self.get_header(do_not_cache=do_not_cache) object_names = set([get_objects_name(field) for field in header if is_objects_file_name_feature(field) or is_objects_url_name_feature(field)]) return list(object_names) def other_providers(self, group): '''Get name providers from the CSV header''' if group == 'imagegroup' and self.wants_images.value: try: # do not load URLs automatically return self.get_image_names(do_not_cache=True) except Exception, e: return [] elif group == 'objectgroup' and self.wants_images: try: # do not load URLs automatically return self.get_object_names(do_not_cache=True) except Exception, e: return [] return [] def is_image_from_file(self, image_name): '''Return True if LoadData provides the given image name''' providers = self.other_providers('imagegroup') return image_name in providers def is_load_module(self): '''LoadData can make image sets so it's a load module''' return True def prepare_run(self, workspace): pipeline = workspace.pipeline m = workspace.measurements assert isinstance(m, cpmeas.Measurements) '''Load the CSV file at the outset and populate the image set list''' if pipeline.in_batch_mode(): return True fd = self.open_csv() reader = csv.reader(fd) header = [header_to_column(column) for column in reader.next()] if header[0].startswith('ELN_RUN_ID'): reader = self.convert() header = list(reader.dtype.names) if self.wants_rows.value: # skip initial rows rows = [] for idx, row in enumerate(reader): if idx + 1 < self.row_range.min: continue if idx + 1 > self.row_range.max: break if len(row) == 0: continue row = [unicode(s, 'utf8') if isinstance(s, str) else s for s in row] if len(row) != len(header): raise ValueError("Row # %d has the wrong number of elements: %d. Expected %d" % (i, len(row), len(header))) rows.append(row) else: rows = [[unicode(s, 'utf8') if isinstance(s, str) else s for s in row] for row in reader if len(row) > 0] fd.close() # # Check for correct # of columns # n_fields = len(header) for i, row in enumerate(rows): if len(row) < n_fields: text = ('Error on line %d of %s.\n' '\n"%s"\n' '%d rows found, expected %d') % ( i + 2, self.csv_file_name.value, ','.join(row), len(row), n_fields) raise ValueError(text) elif len(row) > n_fields: del row[n_fields:] # # Find the metadata, object_name and image_name columns # metadata_columns = {} object_columns = {} image_columns = {} well_row_column = well_column_column = well_well_column = None for i, column in enumerate(header): if column.find("_") == -1: category = "" feature = column else: category, feature = column.split("_", 1) if category in IMAGE_CATEGORIES: if not image_columns.has_key(feature): image_columns[feature] = [] image_columns[feature].append(i) elif category in OBJECTS_CATEGORIES: if not object_columns.has_key(feature): object_columns[feature] = [] object_columns[feature].append(i) else: metadata_columns[column] = i if category == cpmeas.C_METADATA: if feature.lower() == cpmeas.FTR_WELL.lower(): well_well_column = i elif cpmeas.is_well_row_token(feature): well_row_column = i elif cpmeas.is_well_column_token(feature): well_column_column = i if (well_row_column is not None and well_column_column is not None and well_well_column is None): # add a synthetic well column metadata_columns[cpmeas.M_WELL] = len(header) header.append(cpmeas.M_WELL) for row in rows: row.append(row[well_row_column] + row[well_column_column]) if self.wants_images: # # Add synthetic object and image columns # if self.image_directory.dir_choice == cps.NO_FOLDER_NAME: path_base = "" else: path_base = self.image_path for d, url_category, file_name_category, path_name_category in ( (image_columns, C_URL, C_FILE_NAME, C_PATH_NAME), (object_columns, C_OBJECTS_URL, C_OBJECTS_FILE_NAME, C_OBJECTS_PATH_NAME)): for name in d.keys(): url_column = file_name_column = path_name_column = None for k in d[name]: if header[k].startswith(url_category): url_column = k elif header[k].startswith(file_name_category): file_name_column = k elif header[k].startswith(path_name_category): path_name_column = k if url_column is None: if file_name_column is None: raise ValueError( ("LoadData needs a %s_%s column to match the " "%s_%s column") % (file_name_category, name, path_name_category, name)) # # Add URL column # d[name].append(len(header)) url_feature = "_".join((url_category, name)) header.append(url_feature) for row in rows: if path_name_column is None: fullname = os.path.join(path_base, row[file_name_column]) else: row_path_name = os.path.join( path_base, row[path_name_column]) fullname = os.path.join( row_path_name, row[file_name_column]) row[path_name_column] = row_path_name url = pathname2url(fullname) row.append(url) if path_name_column is None: # # Add path column # d[name].append(len(header)) path_feature = "_".join((path_name_category, name)) header.append(path_feature) for row in rows: row.append(path_base) elif path_name_column is None and file_name_column is None: # # If the .csv just has URLs, break the URL into # path and file names # path_feature = "_".join((path_name_category, name)) path_name_column = len(header) header.append(path_feature) file_name_feature = "_".join((file_name_category, name)) file_name_column = len(header) header.append(file_name_feature) for row in rows: url = row[url_column] idx = url.rfind("/") if idx == -1: idx = url.rfind(":") if idx == -1: row += ["", url] else: row += [url[:(idx + 1)], url[(idx + 1):]] else: row += [url[:idx], url[(idx + 1):]] column_type = {} for column in self.get_measurement_columns(pipeline): column_type[column[1]] = column[2] previous_column_types = dict([ (c[1], c[2]) for c in pipeline.get_measurement_columns(self) if c[0] == cpmeas.IMAGE]) # # Arrange the metadata into columns # columns = {} for index, feature in enumerate(header): c = [] columns[feature] = c for row in rows: value = row[index] if column_type.has_key(feature): datatype = column_type[feature] else: datatype = previous_column_types[feature] if datatype == cpmeas.COLTYPE_INTEGER: value = int(value) elif datatype == cpmeas.COLTYPE_FLOAT: value = float(value) c.append(value) if len(metadata_columns) > 0: # Reorder the rows by matching metadata against previous metadata # (for instance, to assign metadata values to images from # loadimages) # image_numbers = m.match_metadata( metadata_columns.keys(), [columns[k] for k in metadata_columns.keys()]) image_numbers = np.array(image_numbers, int).flatten() max_image_number = np.max(image_numbers) new_columns = {} for key, values in columns.iteritems(): new_values = [None] * max_image_number for image_number, value in zip(image_numbers, values): new_values[image_number - 1] = value new_columns[key] = new_values columns = new_columns for feature, values in columns.iteritems(): m.add_all_measurements(cpmeas.IMAGE, feature, values) if self.wants_image_groupings and \ len(self.metadata_fields.selections) > 0: keys = ["_".join((cpmeas.C_METADATA, k)) for k in self.metadata_fields.selections] m.set_grouping_tags(keys) return True def prepare_to_create_batch(self, workspace, fn_alter_path): '''Prepare to create a batch file This function is called when CellProfiler is about to create a file for batch processing. It will pickle the image set list's "legacy_fields" dictionary. This callback lets a module prepare for saving. pipeline - the pipeline to be saved image_set_list - the image set list to be saved fn_alter_path - this is a function that takes a pathname on the local host and returns a pathname on the remote host. It handles issues such as replacing backslashes and mapping mountpoints. It should be called for every pathname stored in the settings or legacy fields. ''' if self.wants_images: m = workspace.measurements assert isinstance(m, cpmeas.Measurements) image_numbers = m.get_image_numbers() all_image_features = m.get_feature_names(cpmeas.IMAGE) for url_category, file_category, path_category, names in ( (C_URL, C_FILE_NAME, C_PATH_NAME, self.get_image_names()), (C_OBJECTS_URL, C_OBJECTS_FILE_NAME, C_OBJECTS_PATH_NAME, self.get_object_names())): for name in names: url_feature = "_".join((url_category, name)) path_feature = "_".join((path_category, name)) if path_feature not in all_image_features: path_feature = None file_feature = "_".join((file_category, name)) if file_feature not in all_image_features: file_feature = None urls = m.get_measurement(cpmeas.IMAGE, url_feature, image_set_number=image_numbers) for image_number, url in zip(image_numbers, urls): url = url.encode("utf-8") if url.lower().startswith("file:"): fullname = url2pathname(url) fullname = fn_alter_path(fullname) path, filename = os.path.split(fullname) url = unicode(pathname2url(fullname), "utf-8") m.add_measurement(cpmeas.IMAGE, url_feature, url, image_set_number=image_number) if file_feature is not None: m.add_measurement( cpmeas.IMAGE, file_feature, filename, image_set_number=image_number) if path_feature is not None: m.add_measurement( cpmeas.IMAGE, path_feature, path, image_set_number=image_number) self.csv_directory.alter_for_create_batch_files(fn_alter_path) self.image_directory.alter_for_create_batch_files(fn_alter_path) return True def fetch_provider(self, name, measurements, is_image_name=True): path_base = self.image_path if is_image_name: url_feature = C_URL + "_" + name series_feature = C_SERIES + "_" + name frame_feature = C_FRAME + "_" + name else: url_feature = C_OBJECTS_URL + "_" + name series_feature = C_OBJECTS_SERIES + "_" + name frame_feature = C_OBJECTS_FRAME + "_" + name url = measurements.get_measurement(cpmeas.IMAGE, url_feature) url = url.encode('utf-8') full_filename = url2pathname(url) path, filename = os.path.split(full_filename) if measurements.has_feature(cpmeas.IMAGE, series_feature): series = measurements[cpmeas.IMAGE, series_feature] else: series = None if measurements.has_feature(cpmeas.IMAGE, frame_feature): frame = measurements[cpmeas.IMAGE, frame_feature] else: frame = None return LoadImagesImageProvider( name, path, filename, rescale=self.rescale.value and is_image_name, series=series, index=frame) def run(self, workspace): '''Populate the images and objects''' m = workspace.measurements assert isinstance(m, cpmeas.Measurements) image_set = workspace.image_set object_set = workspace.object_set statistics = [] features = [x[1] for x in self.get_measurement_columns(workspace.pipeline) if x[0] == cpmeas.IMAGE] if self.wants_images: # # Load the image. Calculate the MD5 hash of every image # image_size = None for image_name in self.other_providers('imagegroup'): provider = self.fetch_provider(image_name, m) image_set.get_providers().append(provider) image = image_set.get_image(image_name) pixel_data = image.pixel_data m.add_image_measurement("_".join((C_MD5_DIGEST, image_name)), provider.get_md5_hash(m)) m.add_image_measurement("_".join((C_SCALING, image_name)), image.scale) m.add_image_measurement("_".join((C_HEIGHT, image_name)), int(pixel_data.shape[0])) m.add_image_measurement("_".join((C_WIDTH, image_name)), int(pixel_data.shape[1])) if image_size is None: image_size = tuple(pixel_data.shape[:2]) first_filename = image.file_name elif tuple(pixel_data.shape[:2]) != image_size: warning = bad_sizes_warning(image_size, first_filename, pixel_data.shape, image.file_name) if self.show_window: workspace.display_data.warning = warning else: print warning # # Process any object tags # objects_names = self.get_object_names() for objects_name in objects_names: provider = self.fetch_provider( objects_name, m, is_image_name=False) image = provider.provide_image(workspace.image_set) pixel_data = convert_image_to_objects(image.pixel_data) o = cpo.Objects() o.segmented = pixel_data object_set.add_objects(o, objects_name) I.add_object_count_measurements(m, objects_name, o.count) I.add_object_location_measurements(m, objects_name, pixel_data) for feature_name in sorted(features): value = m.get_measurement(cpmeas.IMAGE, feature_name) statistics.append((feature_name, value)) if self.show_window: workspace.display_data.statistics = statistics def display(self, workspace, figure): if hasattr(workspace.display_data, "warning"): from cellprofiler.gui.errordialog import show_warning show_warning("Images have different sizes", workspace.display_data.warning, cpprefs.get_show_report_bad_sizes_dlg, cpprefs.set_show_report_bad_sizes_dlg) figure.set_subplots((1, 1)) figure.subplot_table(0, 0, workspace.display_data.statistics) def get_groupings(self, workspace): '''Return the image groupings of the image sets See CPModule for documentation ''' if (self.wants_images.value and self.wants_image_groupings.value and len(self.metadata_fields.selections) > 0): keys = ["_".join((cpmeas.C_METADATA, k)) for k in self.metadata_fields.selections] if len(keys) == 0: return None m = workspace.measurements assert isinstance(m, cpmeas.Measurements) return keys, m.get_groupings(keys) return None def get_measurement_columns(self, pipeline): '''Return column definitions for measurements output by this module''' entry = None try: entry = self.get_cache_info() if entry.has_key("measurement_columns"): return entry["measurement_columns"] fd = self.open_csv() reader = csv.reader(fd) header = [header_to_column(x) for x in reader.next()] if header[0].startswith('ELN_RUN_ID'): reader = self.convert() header = reader.dtype.names except: if entry is not None: entry["measurement_columns"] = [] return [] previous_columns = pipeline.get_measurement_columns(self) previous_fields = set([x[1] for x in previous_columns if x[0] == cpmeas.IMAGE]) already_output = [x in previous_fields for x in header] coltypes = [cpmeas.COLTYPE_INTEGER] * len(header) # # Make sure the well_column column type is a string # for i in range(len(header)): if (header[i].startswith(cpmeas.C_METADATA + "_") and cpmeas.is_well_column_token(header[i].split("_")[1])): coltypes[i] = cpmeas.COLTYPE_VARCHAR if any([header[i].startswith(x) for x in (C_PATH_NAME, C_FILE_NAME, C_OBJECTS_FILE_NAME, C_OBJECTS_PATH_NAME, C_URL, C_OBJECTS_URL)]): coltypes[i] = cpmeas.COLTYPE_VARCHAR collen = [0] * len(header) key_is_path_or_file_name = [ (key.startswith(C_PATH_NAME) or key.startswith(C_FILE_NAME) or key.startswith(C_OBJECTS_FILE_NAME) or key.startswith(C_OBJECTS_PATH_NAME)) for key in header] key_is_path_or_url = [ (key.startswith(C_PATH_NAME) or key.startswith(C_OBJECTS_PATH_NAME) or key.startswith(C_URL) or key.startswith(C_OBJECTS_URL)) for key in header] for row in reader: if len(row) > len(header): row = row[:len(header)] for index, field in enumerate(row): if already_output[index]: continue if (not self.wants_images) and key_is_path_or_file_name[index]: continue try: len_field = len(field) except TypeError: field = str(field) len_field = len(field) if key_is_path_or_url[index]: # Account for possible rewrite of the pathname # in batch data len_field = max(cpmeas.PATH_NAME_LENGTH, len_field + PATH_PADDING) if coltypes[index] != cpmeas.COLTYPE_VARCHAR: ldtype = get_loaddata_type(field) if coltypes[index] == cpmeas.COLTYPE_INTEGER: coltypes[index] = ldtype elif (coltypes[index] == cpmeas.COLTYPE_FLOAT and ldtype != cpmeas.COLTYPE_INTEGER): coltypes[index] = ldtype if collen[index] < len(field): collen[index] = len(field) for index in range(len(header)): if coltypes[index] == cpmeas.COLTYPE_VARCHAR: coltypes[index] = cpmeas.COLTYPE_VARCHAR_FORMAT % collen[index] image_names = self.other_providers('imagegroup') result = [(cpmeas.IMAGE, colname, coltype) for colname, coltype in zip(header, coltypes) if colname not in previous_fields] if self.wants_images: for feature, coltype in ( (C_URL, cpmeas.COLTYPE_VARCHAR_PATH_NAME), (C_PATH_NAME, cpmeas.COLTYPE_VARCHAR_PATH_NAME), (C_FILE_NAME, cpmeas.COLTYPE_VARCHAR_FILE_NAME), (C_MD5_DIGEST, cpmeas.COLTYPE_VARCHAR_FORMAT % 32), (C_SCALING, cpmeas.COLTYPE_FLOAT), (C_HEIGHT, cpmeas.COLTYPE_INTEGER), (C_WIDTH, cpmeas.COLTYPE_INTEGER)): for image_name in image_names: measurement = feature + '_' + image_name if not any([measurement == c[1] for c in result]): result.append((cpmeas.IMAGE, measurement, coltype)) # # Add the object features # for object_name in self.get_object_names(): result += I.get_object_measurement_columns(object_name) for feature, coltype in ( (C_OBJECTS_URL, cpmeas.COLTYPE_VARCHAR_PATH_NAME), (C_OBJECTS_PATH_NAME, cpmeas.COLTYPE_VARCHAR_PATH_NAME), (C_OBJECTS_FILE_NAME, cpmeas.COLTYPE_VARCHAR_FILE_NAME)): mname = C_OBJECTS_URL + "_" + object_name result.append((cpmeas.IMAGE, mname, coltype)) # # Try to make a well column out of well row and well column # well_column = None well_row_column = None well_col_column = None for column in result: if not column[1].startswith(cpmeas.C_METADATA + "_"): continue category, feature = column[1].split('_', 1) if cpmeas.is_well_column_token(feature): well_col_column = column elif cpmeas.is_well_row_token(feature): well_row_column = column elif feature.lower() == cpmeas.FTR_WELL.lower(): well_column = column if (well_column is None and well_row_column is not None and well_col_column is not None): length = cpmeas.get_length_from_varchar(well_row_column[2]) length += cpmeas.get_length_from_varchar(well_col_column[2]) result += [(cpmeas.IMAGE, '_'.join((cpmeas.C_METADATA, cpmeas.FTR_WELL)), cpmeas.COLTYPE_VARCHAR_FORMAT % length)] entry["measurement_columns"] = result return result def has_synthetic_well_metadata(self): '''Determine if we should synthesize a well metadata feature ''' fields = self.get_header() has_well_col = False has_well_row = False for field in fields: if not field.startswith(cpmeas.C_METADATA + "_"): continue category, feature = field.split('_', 1) if cpmeas.is_well_column_token(feature): has_well_col = True elif cpmeas.is_well_row_token(feature): has_well_row = True elif feature.lower() == cpmeas.FTR_WELL.lower(): return False return has_well_col and has_well_row def get_categories(self, pipeline, object_name): try: columns = self.get_measurement_columns(pipeline) result = set([column[1].split('_')[0] for column in columns if column[0] == object_name]) return list(result) except: return [] def get_measurements(self, pipeline, object_name, category): columns = self.get_measurement_columns(pipeline) return [feature for c, feature in [column[1].split('_', 1) for column in columns if column[0] == object_name and column[1].startswith(category + "_")]] def change_causes_prepare_run(self, setting): '''Check to see if changing the given setting means you have to restart Some settings, esp in modules like LoadImages, affect more than the current image set when changed. For instance, if you change the name specification for files, you have to reload your image_set_list. Override this and return True if changing the given setting means that you'll have to do "prepare_run". ''' if self.wants_images or setting == self.wants_images: return True return False def upgrade_settings(self, setting_values, variable_revision_number, module_name, from_matlab): DIR_DEFAULT_IMAGE = 'Default input folder' DIR_DEFAULT_OUTPUT = 'Default Output Folder' if from_matlab and variable_revision_number == 2: logging.warning( "Warning: the format and purpose of LoadText " "has changed substantially.") text_file_name = setting_values[0] field_name = setting_values[1] path_name = setting_values[2] if path_name == '.': path_choice = DIR_DEFAULT_IMAGE elif path_name == '&': path_choice = DIR_DEFAULT_OUTPUT else: path_choice = DIR_OTHER setting_values = [path_choice, path_name, text_file_name, cps.NO, DIR_DEFAULT_IMAGE, '.', cps.NO, "1,100000"] from_matlab = False variable_revision_number = 1 module_name = self.module_name if (not from_matlab) and variable_revision_number == 1: setting_values = setting_values + [cps.NO, ""] variable_revision_number = 2 if variable_revision_number == 2 and (not from_matlab): if setting_values[0].startswith("Default Image"): setting_values = [DIR_DEFAULT_IMAGE] + setting_values[1:] elif setting_values[0].startswith("Default Output"): setting_values = [DIR_DEFAULT_OUTPUT] + setting_values[1:] if setting_values[4].startswith("Default Image"): setting_values = (setting_values[:4] + [DIR_DEFAULT_IMAGE] + setting_values[5:]) elif setting_values[4].startswith("Default Output"): setting_values = (setting_values[:4] + [DIR_DEFAULT_OUTPUT] + setting_values[5:]) variable_revision_number = 3 if variable_revision_number == 3 and (not from_matlab): module_name = self.module_name if variable_revision_number == 3 and (not from_matlab): # directory choice, custom directory merged # input_directory_choice, custom_input_directory merged csv_directory_choice, csv_custom_directory, \ csv_file_name, wants_images, image_directory_choice, \ image_custom_directory, wants_rows, \ row_range, wants_image_groupings, \ metadata_fields = setting_values csv_directory = cps.DirectoryPath.static_join_string( csv_directory_choice, csv_custom_directory) image_directory = cps.DirectoryPath.static_join_string( image_directory_choice, image_custom_directory) setting_values = [ csv_directory, csv_file_name, wants_images, image_directory, wants_rows, row_range, wants_image_groupings, metadata_fields] variable_revision_number = 4 # Standardize input/output directory name references setting_values = list(setting_values) for index in (0, 3): setting_values[index] = cps.DirectoryPath.upgrade_setting( setting_values[index]) if variable_revision_number == 4 and (not from_matlab): csv_directory, csv_file_name, wants_images, \ image_directory, wants_rows, row_range, wants_image_groupings, \ metadata_fields = setting_values dir_choice, custom_dir = cps.DirectoryPath.split_string(csv_directory) if dir_choice == cps.URL_FOLDER_NAME: csv_file_name = custom_dir + '/' + csv_file_name csv_directory = cps.DirectoryPath.static_join_string(dir_choice, '') setting_values = [ csv_directory, csv_file_name, wants_images, image_directory, wants_rows, row_range, wants_image_groupings, metadata_fields] variable_revision_number = 5 if variable_revision_number == 5 and (not from_matlab): # Added rescaling option setting_values = setting_values + [cps.YES] variable_revision_number = 6 return setting_values, variable_revision_number, from_matlab LoadText = LoadData def best_cast(sequence, coltype=None): '''Return the best cast (integer, float or string) of the sequence sequence - a sequence of strings Try casting all elements to integer and float, returning a numpy array of values. If all fail, return a numpy array of strings. ''' if (isinstance(coltype, (str, unicode)) and coltype.startswith(cpmeas.COLTYPE_VARCHAR)): # Cast columns already defined as strings as same return np.array(sequence) def fn(x, y): if cpmeas.COLTYPE_VARCHAR in (x, y): return cpmeas.COLTYPE_VARCHAR if cpmeas.COLTYPE_FLOAT in (x, y): return cpmeas.COLTYPE_FLOAT return cpmeas.COLTYPE_INTEGER ldtype = reduce(fn, [get_loaddata_type(x) for x in sequence], cpmeas.COLTYPE_INTEGER) if ldtype == cpmeas.COLTYPE_VARCHAR: return np.array(sequence) elif ldtype == cpmeas.COLTYPE_FLOAT: return np.array(sequence, np.float64) else: return np.array(sequence, np.int32) int32_max = np.iinfo(np.int32).max int32_min = np.iinfo(np.int32).min def get_loaddata_type(x): '''Return the type to use to represent x If x is a 32-bit integer, return cpmeas.COLTYPE_INTEGER. If x cannot be represented in 32 bits but is an integer, return cpmeas.COLTYPE_VARCHAR If x can be represented as a float, return COLTYPE_FLOAT ''' global int32_max, int32_min try: iv = int(x) if iv > int32_max: return cpmeas.COLTYPE_VARCHAR if iv < int32_min: return cpmeas.COLTYPE_VARCHAR return cpmeas.COLTYPE_INTEGER except: try: fv = float(x) return cpmeas.COLTYPE_FLOAT except: return cpmeas.COLTYPE_VARCHAR
true
9d2a97330a0eca83f1a863dc9cd560042391433e
Python
Erik0x42/Netscape-Bookmarks-File-Parser
/NetscapeBookmarksFileParser/__init__.py
UTF-8
5,577
3.078125
3
[ "MIT" ]
permissive
from dataclasses import dataclass non_parsed = dict() # lines not parsed @dataclass class BookmarkItem: """ Represents an item in the bookmarks. An item can be a folder or an shortcut (can be feed or web slice too, but it's rare nowadays). """ num: int = 0 # the position of the item in the folder it's in add_date_unix: int = 0 # the creation date of the item in unix time last_modified_unix: int = 0 # the creation date of the item in unix time parent = None # the parent folder of the item. Just the root folder have this equal None name: str = '' # name of the item @dataclass class BookmarkFolder(BookmarkItem): """ Represents a folder in the bookmarks """ personal_toolbar: bool = False # true if the folder is the bookmarks toolbar items = None # list that contains all items inside this folder children = None # list that contains all subfolders inside this folder shortcuts = None # list that contains all shortcuts inside this folder def __post_init__(self): self.items = [] self.children = [] self.shortcuts = [] def sync_items(self, recursive=True): """ sync the folder item list with children and shortcut lists. The item list is cleaned and populated with the items from children and shortcut lists :param recursive: if subfolders should have their items synced too :return: nothing """ self.items = [] self.items.extend(self.children) self.items.extend(self.shortcuts) if recursive: for child in self.children: child.sync_items() def split_items(self, recursive=True): """ splits the items list into children and shortcuts :param self: folder to have items splitted :param recursive: if subfolders should have their items splitted too :return: nothing """ for item in self.items: if isinstance(item, BookmarkShortcut): self.shortcuts.append(item) elif isinstance(item, BookmarkFolder): self.children.append(item) if recursive: item.split_items() def sort_items(self, recursive=True): """ sort the items list by the num of each item. split_items() is ran before sorting happens :param recursive: if subfolders will have their items sorted too :return: nothing """ def sort_by_number(e): return e.num self.items.sort(key=sort_by_number) self.children.sort(key=sort_by_number) self.shortcuts.sort(key=sort_by_number) self.split_items(recursive) if recursive: for child in self.children: child.sort_items() def sort_children_and_shortcuts(self, recursive=True): """ sort the children and shortcuts lists by the num of each item. sync_items() is ran before sorting happens :param recursive: if subfolders will have their children and shortcuts sorted too :return: nothing """ def sort_by_number(e): return e.num self.children.sort(key=sort_by_number) self.shortcuts.sort(key=sort_by_number) self.sync_items(recursive) if recursive: for child in self.children: child.sort_children_and_shortcuts() @dataclass class BookmarkShortcut(BookmarkItem): """ Represents a shortcut in the bookmarks """ href: str = "" # link to the web page (or anything alike) of the shortcut last_visit_unix: int = 0 # date when the web paged was last visited, in unix time private: int = 0 # equals to the PRIVATE attribute tags = None # tags of this shortcut, if present icon_url_fake: bool = False # true if the ICON_URI attribute start with fake-favicon-uri. icon_url: str = "" # the favicon url if icon_url_fake is false and the attribute ICON_URI is present icon_base64: str = "" # the favicon encoded in base64. Commonly is a png image. The string here can be really big feed: bool = False # true if the attribute FEED is present. Legacy support for feeds web_slice: bool = False # true if the attribute WEBSLICE is present. Legacy support for web slices comment: str = "" # comment of the shortcut if present def __post_init__(self): self.tags = [] @dataclass class BookmarkFeed(BookmarkShortcut): """ Represents a Feed in the bookmarks """ feed: bool = True feed_url: str = "" # feed url @dataclass class BookmarkWebSlice(BookmarkShortcut): """ Represents an Web Slice in the bookmarks """ web_slice: bool = True is_live_preview: bool = False # value of the attribute ISLIVEPREVIEW preview_size: str = "" # value of the attribute PREVIEWSIZE. class NetscapeBookmarksFile(object): """ Represents the Netscape Bookmark File """ def __init__(self, bookmarks=""): self.html: str = "" if hasattr(bookmarks, 'read'): self.html = bookmarks.read() elif isinstance(bookmarks, str): self.html = bookmarks self.doc_type = "" self.http_equiv_meta = "" self.content_meta = "" self.title = "" self.bookmarks = BookmarkFolder() global non_parsed self.non_parsed = non_parsed def __str__(self): return "NetscapeBookmarkFile(bookmarks: {0})".format(str(self.bookmarks))
true
5d281540d41f3f9f3a073db55f0bb2441f363951
Python
yongtal/CS6381
/project/Top_method/mr_mapworker.py
UTF-8
5,565
3.140625
3
[]
no_license
#!/usr/bin/python # # Vanderbilt University, Computer Science # CS4287-5287: Principles of Cloud Computing # Author: Aniruddha Gokhale # Created: Nov 2016 # # # Purpose: # This code runs the wordcount map task. It runs inside the worker process. Since the # worker gets commands from a master and sends result back to the master, we use # ZeroMQ as a way to get this communication part done. import os import sys import time import re import zmq import json import argparse # argument parser # @NOTE@: You will need to make appropriate changes # to this logic. You can maintain the overall structure # but the logic of the map function has to change to # suit the needs of the assignment # # I do not think you need to change the class variables # but you may need additional ones. The key change # will be in do_work # ------------------------------------------------ # Main map worker class class MR_Map (): """ The map worker class """ def __init__ (self, args): """ constructor """ self.id = args.id self.master_ip = args.masterip self.master_port = args.masterport self.receiver = None # connection to master self.sender = None # connection to map barrier #------------------------------------------ def init_worker (self): """ Word count map worker initialization """ print "initializing map worker with id: ", self.id, " in directory: ", os.getcwd () context = zmq.Context() # Socket to receive messages on. Worker uses PULL from the master self.receiver = context.socket(zmq.PULL) connect_addr = "tcp://"+ self.master_ip + ":" + str(self.master_port) print "Using PULL, map worker connecting to ", connect_addr self.receiver.connect(connect_addr) # Socket to send messages to. In our case, the map worker will push an event # to the map barrier indicating two things. # First, it tells that it is up and running. # Second, it tells it has completed the map task. # Note that the port number of the map barrier is 2 more than the # port of the master self.sender = context.socket(zmq.PUSH) connect_addr = "tcp://" + self.master_ip + ":" + str(self.master_port+2) print "Using PUSH, map worker connecting to barrier at ", connect_addr self.sender.connect(connect_addr) # now send an ACK to the barrier to let it know that we are up self.sender.send(b'0') #------------------------------------------ def do_work (self): """ Word count map function """ print "starting work: map worker with id: ", self.id # recall that the master broadcasts the map or reduce message via the PUSH. # It can be received by both the map and reduce workers. So it is the job of # the map and reduce worker to make sure the message was meant for it. # Else ignore it. # In our case, we do only one task and our job in life is done :-) json_obj = self.receiver.recv_json() print "received message = ", json.dumps(json_obj) # now parse the json object and do the work # We use our id to index into the array of workers in the received message to # find the position in the file we want to read from datafile = open(json_obj['datafile'],'r') datafile.seek(json_obj['start'], 0) content = datafile.read (json_obj['size']) datafile.close() # Each map task saves its intermediate results in a file map_file = open("Map"+str(self.id)+".csv", "w") letters = (re.sub(r'[^a-zA-Z]+', '', content)).lower() for ch in letters: map_file.write (ch + ", 1\n") map_file.close() # trigger the map barrier by sending a dummy byte self.sender.send (b'0') # Question: why here it send twice?? (once in init_worker) print "map worker with ID: ", self.id, " exiting" ################################## # Command line parsing ################################## def parseCmdLineArgs (): # parse the command line parser = argparse.ArgumentParser () # add positional arguments in that order parser.add_argument ("id", type=int, help="worker number") parser.add_argument ("masterip", help="IP addr of master") parser.add_argument ("masterport", type=int, help="Port number of master") # parse the args args = parser.parse_args () return args #--------------------------------------------------------------------------------------------------------------- # main function def main (): """ Main program for Map worker """ print "MapReduce Map Worker program" parsed_args = parseCmdLineArgs () # now invoke the mapreduce framework. Notice we have slightly changed the way the # constructor works and the arguments it takes. mapobj = MR_Map(parsed_args) # this is a hack for the purposes of coordination. We need to have the servers # ready for us to connect. So sleep for a few secs to make sure the push and sink # servers are up. time.sleep (2) # initialize the map worker network connections mapobj.init_worker () # invoke the map process mapobj.do_work () #---------------------------------------------- if __name__ == '__main__': main ()
true
5a44cf718a1037c61af7ff6d7c178ceed4c87c18
Python
XuShaoming/CompVision_ImageProc
/project1/code/mycv.py
UTF-8
487
3.53125
4
[]
no_license
def resize_shrink(matrix, fx, fy): """ Purpose: shrink a matrix given fx and fy. Input: fx: resize on column fy: resize on row Output: shrink matrix list """ fx_inv = int(1 / fx) fy_inv = int(1 / fy) res = [] for i in range(0, len(matrix), fy_inv): res_row = [] for j in range(0, len(matrix[i]), fx_inv): res_row.append(matrix[i][j]) res.append(res_row) return res
true
f4de79a5d92973ae9c2985a277467e12681e1e17
Python
arwaahmedf/tasks
/mass.py
UTF-8
613
2.75
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[5]: from pyopenms import * seq = AASequence.fromString("VAKA") V_weight=seq.getMonoWeight() A_weight=seq.getMonoWeight() K_weight=seq.getMonoWeight() A_weight=seq.getMonoWeight() print("Monoisotopic mass of peptide [V] is ",V_weight) print("Monoisotopic mass of peptide [A] is ",A_weight) print("Monoisotopic mass of peptide [K] is ",K_weight) print("Monoisotopic mass of peptide [A] is ",A_weight) print ("The piptide", str(seq), "consists of the following amino acids:") for aa in seq: print(aa.getName(), ":", aa.getMonoWeight()) # In[ ]: # In[ ]:
true
4b49ae86aec50a383ed20bb3ba56bb5107f58f90
Python
18bcs6526/Python
/fbbonaci.py
UTF-8
113
3.546875
4
[]
no_license
a=0 b=1 x=int (input("enter the number")) print('0') for i in range (0,x): c=a+b a=b b=c print(c)
true
93a5205b2167481c4725605629813b2c04fa2821
Python
realpython/materials
/python-311/units.py
UTF-8
714
3.015625
3
[ "MIT" ]
permissive
import pathlib import tomllib with pathlib.Path("units.toml").open(mode="rb") as file: base_units = tomllib.load(file) units = {} for unit, unit_info in base_units.items(): units[unit] = unit_info for alias in unit_info["aliases"]: units[alias] = unit_info def to_baseunit(value, from_unit): from_info = units[from_unit] if "multiplier" not in from_info: return ( value, from_info["label"]["singular" if value == 1 else "plural"], ) return to_baseunit(value * from_info["multiplier"], from_info["to_unit"]) print(to_baseunit(7, "s")) print(to_baseunit(3.11, "minutes")) print(to_baseunit(14, "days")) print(to_baseunit(1 / 12, "yr"))
true
de4cd82d9d1402b819fe0bbfa234f1ebc62d3e60
Python
Fredy/UCSP-Bioinspirada
/lab_3/lab_3.py
UTF-8
5,823
2.984375
3
[ "MIT" ]
permissive
"""Lab 3: Genetic Algorithms""" from random import random, randrange, sample, choice from sys import argv from copy import deepcopy from math import sin, sqrt import numpy as np from fitness import calc_fitnesses, linear_normalization from operators import crossovers, mutation from selection import selections, elitism from representation import Cromosome from charts import draw_chart def canonical(optfunc, population_len, limits, precisions, epochs, crossover, selection, mutation, pc, pm, use_elitism, use_normalization, minv=None, maxv=None, save_bests=False, save_pops=False): if use_normalization and (minv is None or maxv is None): raise TypeError( 'If use_normalization is true, minv and maxv must be specified' ) bests = [] if save_bests else None pops = [] if save_pops else None population = np.array([Cromosome(limits, precisions) for i in range(population_len)]) fitnesses = calc_fitnesses(population, optfunc) if use_normalization: normalized = linear_normalization(fitnesses, minv, maxv) population = population[[i[0] for i in normalized]] fitnesses = [i[1] for i in normalized] if save_bests: idx = np.argmax(fitnesses) bests.append(population[idx].get_real_val()) if save_pops: pops.append([c.get_real_val() for c in population]) for i in range(epochs - 1): new_pop = selection(population, fitnesses) if use_elitism: prev_best = elitism(population, fitnesses) operate(new_pop, crossover, mutation, pc, pm) fitnesses = calc_fitnesses(new_pop, optfunc) if use_elitism: idx = randrange(len(new_pop)) new_pop[idx] = deepcopy(prev_best[0]) fitnesses[idx] = prev_best[1] if use_normalization: normalized = linear_normalization(fitnesses, minv, maxv) population = deepcopy(new_pop[[i[0] for i in normalized]]) fitnesses = [i[1] for i in normalized] else: population = new_pop if save_bests: idx = np.argmax(fitnesses) bests.append(population[idx].get_real_val()) if save_pops: pops.append([c.get_real_val() for c in population]) return population, bests, pops def operate(population, crossover, mutation, pc, pm): length = len(population) for i in range(length): if random() < pc: samp = sample(list(population), 2) bin_reprs = [i.bin_value for i in samp] crossover(bin_reprs[0], bin_reprs[1]) if random() < pm: bin_rep = choice(population).bin_value mutation(bin_rep) def optfunc(x): # −100 ≤ x1 ≤ 100 # −100 ≤ x2 ≤ 100 xsqr = x[0] ** 2 + x[1] ** 2 tmp1 = sin(sqrt(xsqr))**2 - 0.5 tmp2 = (1 + 0.001 * (xsqr)) ** 2 return 0.5 - tmp1 / tmp2 if __name__ == "__main__": if len(argv) < 10: print( 'Usage python lab_3.py population_length epochs experiments crossover selection pc pm use_elitism use_norm', '- population_length: length of the population', '- epochs: number of epochs', '- experiments: number of experiments', '- crossover: one of {}'.format(list(crossovers.keys())), '- selection: one of {}'.format(list(selections.keys())), '- pc: cross probability', '- pm: mutation probaility', '- use_elitism: true or false', '- use_norm: true or false', '- if use_norm is true: two extra params must be specified: vmin and vmax', sep='\n' ) exit() population_len = int(argv[1]) epochs = int(argv[2]) experiments = int(argv[3]) crossover = argv[4] selection = argv[5] pc = float(argv[6]) pm = float(argv[7]) use_elitism = argv[8] == 'true' use_norm = argv[9] == 'true' minv = None maxv = None if use_norm: if len(argv) < 12: print('If use_norm is true: two extra params must be specified: minv and maxv') exit() minv = float(argv[10]) maxv = float(argv[11]) crossover_func = crossovers[crossover] selection_func = selections[selection] bests_fitnesses = np.zeros(epochs) population_fitnesses = np.zeros(epochs) for i in range(experiments): res, bests, pops = canonical( optfunc=optfunc, population_len=population_len, limits=((-100, 100), (-100, 100)), precisions=(6, 6), epochs=epochs, crossover=crossover_func, selection=selection_func, mutation=mutation, pc=pc, pm=pc, use_elitism=use_elitism, use_normalization=use_norm, minv=minv, maxv=maxv, save_bests=True, save_pops=True ) fitnesses = calc_fitnesses(bests, optfunc) bests_fitnesses += fitnesses population_f = [] for i in pops: tmp = np.average(calc_fitnesses(i, optfunc)) population_f.append(tmp) population_fitnesses += population_f res_fit = calc_fitnesses(res, optfunc) for r, f in zip(res, res_fit): print(r.get_real_val(), ' : ', f) print('------') bests_fitnesses /= experiments population_fitnesses /= experiments draw_chart(bests_fitnesses, population_fitnesses, '{} {} pc: {} pm: {} E: {} N: {}'.format( selection, crossover, pc, pm, use_elitism, use_norm)) res_fitnesses = calc_fitnesses(res, optfunc) best_idx = np.argmax(res_fitnesses) print(res[best_idx].get_real_val(), ' -> ', res_fitnesses[best_idx]) print(bests_fitnesses)
true
7ba8324637b222baa4334489f68834cfc5e13076
Python
alejandrosd/Ejercicio-Fibonacci
/fibonacci.py
UTF-8
805
3.609375
4
[]
no_license
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: Estudiantes # # Created: 13/10/2017 # Copyright: (c) Estudiantes 2017 # Licence: <your licence> #------------------------------------------------------------------------------- def fibonacci(num): u=0 pu=1 n=num num=num-1 for i in range(0,num+1): r=u+pu pu=u u=r return r; def Rfibonacci(num): if(num>2): return Rfibonacci(num-1)+Rfibonacci(num-2) else: return 1 def main(): pass num=int(input( "Ingresar Numero Positivo \n") ) if num==0: print ("Promedio Indeterminado") else: print ("Fibonacci= ", fibonacci(num)) if __name__ == '__main__': main()
true
37a4e03e010ad6ecdc7f3442300e84abd9b77cd4
Python
Thelordofdream/Deep-Learning
/mnist in Attensive Reader/application.py
UTF-8
1,856
2.515625
3
[]
no_license
# coding=utf-8 import os os.chdir("../") import tensorflow as tf import model import matplotlib.pyplot as plt import numpy as np from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=True) def predict(model, pred_num, sess): saver = tf.train.Saver() correct = 0 row = int((pred_num - 1) / 5) + 1 fig, ax = plt.subplots(5, 3 * row) for i in range(pred_num): batch_x, batch_y = mnist.train.next_batch(model.batch_size) batch_x = batch_x.reshape((model.batch_size, model.steps, model.inputs)) saver.restore(sess, "./mnist in Attensive Reader/model/model.ckpt") pred, attention = sess.run([tf.argmax(model.output, 1), model.s], feed_dict={model.q: batch_x, model.a:batch_x, model.keep_prob_q: 1.0, model.keep_prob_a: 1.0}) label = sess.run(tf.argmax(batch_y, 1)) print "Sample %d------\nprediction %s\nreal label %s" % (i + 1, pred, label) draw(i, ax, batch_x, attention) if pred == label: correct += 1 print "predict accuracy %g" % (correct * 1.0/ pred_num) plt.show() def draw(num, ax, image, attention): origin = np.array(image[0].reshape([28, 28]) * 255, dtype="uint8") ax[num % 5, int(num / 5) * 3].imshow(origin, cmap='gray') max = np.max(attention) attention /= max att = range(0, 28) for i in range(28): origin[i] = origin[i] * attention[0][i][0] att[27 - i] = attention[0][i][0] ax[num % 5, int(num / 5) * 3 + 1].imshow(origin, cmap='gray') ax[num % 5, int(num / 5) * 3 + 2].barh(range(0, 28), att) if __name__ == "__main__": my_network = model.Attensive_Reader(name="mnist", batch_size=1) pred_num = 15 init = tf.global_variables_initializer() with tf.Session() as sess: predict(my_network, pred_num, sess)
true
7f3f3f4e692bb307bdda07260475f8581e4946c6
Python
byAbaddon/Book-Introduction-to-Programming-with----JavaScript____and____Python
/Pyrhon - Introduction to Programming/8.2. Exam Preparation - Part II/06. Letters Combinations.py
UTF-8
362
3.25
3
[]
no_license
n1, n2, n3 = [ord(input()) for _ in range(3)] res = '' count = 0 for i in range(n1, n2 + 1): for j in range(n1,n2 + 1): for k in range(n1,n2 + 1): if i != n3 and j != n3 and k != n3: res += chr(i) + chr(j) +chr(k) + ' ' count+= 1 print(f'{res}{count}') ''' a c b #aaa aac aca acc caa cac cca ccc 8 '''
true
27a1a22845aeedddb72639fd27c3af0fc662def0
Python
chriskaravel/Python_Machine_Learning_Flight_Delay_Prediction
/test.py
UTF-8
2,981
3.15625
3
[]
no_license
import pandas as pd import numpy as np import sklearn from sklearn import linear_model from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics import matplotlib.pyplot as plt from matplotlib import style import pickle ## NOTE : This is an example of delay prediction with pd.DataFrames # load the data from the csv file.if our data is seperated by semicolons we need to do sep=";" data = pd.read_csv("Lots_of_flight_data1.csv") data = data[["CRS_DEP_TIME","DEP_TIME","DEP_DELAY","CRS_ARR_TIME","ARR_TIME","ARR_DELAY","CRS_ELAPSED_TIME","ACTUAL_ELAPSED_TIME","AIR_TIME","DISTANCE"]] # data with no NaN values data_no_nulls = data.dropna() # X is our features we use to try and do our prediction X = data_no_nulls.loc[:,["CRS_DEP_TIME","DEP_TIME","DEP_DELAY","CRS_ARR_TIME","ARR_TIME","CRS_ELAPSED_TIME","ACTUAL_ELAPSED_TIME","AIR_TIME","DISTANCE"]] # y is the value we try to predict y = data_no_nulls.loc[:,["ARR_DELAY"]] x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3) # TRAIN MODEL MULTIPLE TIMES FOR BEST SCORE best=0 for x in range(10): x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3) regressor = LinearRegression() # train the model using the training data regressor.fit(x_train, y_train) acc = regressor.score(x_test, y_test) predictions = regressor.predict(x_test) # print("accuracy: \n", acc) # print("r^2: \n", metrics.r2_score(y_test, predictions)) if acc > best: best=acc # save our model with pickle # you save model if u have hundreds of thousand data you dont want to retrain the model every time # so you save that model if it has a good accuracy with open("flight_model.pickle", 'wb') as f: pickle.dump(regressor, f) #you load your saved model pickle_in = open("flight_model.pickle","rb") regressor=pickle.load(pickle_in) # load the data from the csv file data = pd.read_csv("Lots_of_flight_data2.csv") data = data[["CRS_DEP_TIME","DEP_TIME","DEP_DELAY","CRS_ARR_TIME","ARR_TIME","ARR_DELAY","CRS_ELAPSED_TIME","ACTUAL_ELAPSED_TIME","AIR_TIME","DISTANCE"]] # data with no NaN values data_no_nulls = data.dropna() # X is our features we use to try and do our prediction X = data_no_nulls.loc[:,["CRS_DEP_TIME","DEP_TIME","DEP_DELAY","CRS_ARR_TIME","ARR_TIME","CRS_ELAPSED_TIME","ACTUAL_ELAPSED_TIME","AIR_TIME","DISTANCE"]] # y is the value we try to predict y = data_no_nulls.loc[:,["ARR_DELAY"]] predictions = regressor.predict(X) predictions_df = pd.DataFrame(predictions) predictions_df.columns=['Predicted Delay'] # Reset the index values to the second dataframe appends properly y_test_df = pd.DataFrame(y).reset_index(drop=True) #Concat the two dataframes merged_df = pd.concat([predictions_df, y_test_df],axis=1) #show all rows pd.set_option('display.max_rows', None) print(merged_df)
true
019be973d4ab6a70b82605be50b437ff701425df
Python
Nom0ri/Pyton_snake_game
/pyton.py
UTF-8
3,714
3.3125
3
[]
no_license
import pygame import time import random pygame.init() white = (255, 255, 255) black = (0, 0, 0) red = (255, 0, 0) #window size win_y = 600 win_x = 800 window=pygame.display.set_mode((win_x,win_y)) pygame.display.update() pygame.display.set_caption('Pyton by Nomori') snek_size = 10 clock = pygame.time.Clock() font_style = pygame.font.SysFont("comicsansms", 40) score_style = pygame.font.SysFont("comicsansms", 35) def show_score(score): value = score_style.render("Score: " + str(score), True, white) window.blit(value, [0, 0]) def snek(snek_size, snek_list): for x in snek_list: pygame.draw.rect(window, white, [x[0], x[1], snek_size, snek_size]) def message(msg,color): text = font_style.render(msg, True, color) window.blit(text, [win_x/4,win_y/2]) def game(): #Main game function game_over = False game_close = False x1 = win_x/2 y1 = win_y/2 x1_upd = 0 y1_upd = 0 foodx = round(random.randrange(0, win_x - snek_size) / 10.0) * 10.0 foody = round(random.randrange(0, win_y - snek_size) / 10.0) * 10.0 snek_list=[] snek_len=1 while not game_over: while game_close == True: window.fill(black) message("Q - exit or E - try again", white) show_score(snek_len-1) pygame.display.update() for event in pygame.event.get(): if event.type==pygame.QUIT: #React to close button game_over = True game_close = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: game_over = True game_close = False if event.key == pygame.K_e: game() for event in pygame.event.get(): if event.type==pygame.QUIT: #React to close button game_over=True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT or event.key == pygame.K_a: x1_upd = -snek_size y1_upd = 0 elif event.key == pygame.K_RIGHT or event.key == pygame.K_d: x1_upd = snek_size y1_upd = 0 elif event.key == pygame.K_UP or event.key == pygame.K_w: y1_upd = -snek_size x1_upd = 0 elif event.key == pygame.K_DOWN or event.key == pygame.K_s: y1_upd = snek_size x1_upd = 0 if x1 >= win_x or x1 < 0 or y1 >= win_y or y1 < 0: game_close = True x1 += x1_upd y1 += y1_upd window.fill(black) #set snake speed speed = 15 clock = pygame.time.Clock() clock.tick(speed) pygame.draw.rect(window, red, [foodx, foody, snek_size, snek_size]) snek_head = [] snek_head.append(x1) snek_head.append(y1) snek_list.append(snek_head) if len(snek_list) > snek_len: del snek_list[0] for x in snek_list[:-1]: if x == snek_head: game_close = True snek(snek_size, snek_list) show_score(snek_len-1) pygame.display.update() if x1 == foodx and y1 == foody: foodx = round(random.randrange(0, win_x - snek_size) / 10.0) * 10.0 foody = round(random.randrange(0, win_y - snek_size) / 10.0) * 10.0 snek_len += 1 pygame.display.update() pygame.quit() quit() game()
true
6aa7f2a8eafa6415c6bf5b86d62bf55d4360388f
Python
Masum-Osman/pythonista
/ZKM/ds2/tree.py
UTF-8
188
3
3
[]
no_license
class TreeNode: def __init__(self, val): self.left = None self.right = None self.val = val class BinaryTree: def __init__(self): super().__init__()
true
f5705678ce0a8401ab438f1a49c68e1d4ec79ff3
Python
AdamJozwiak/PBL_Endless_Project
/Executable/convert-unity.py
UTF-8
2,084
2.859375
3
[]
no_license
# Imports import sys import pathlib # Read program arguments arguments = None if len(sys.argv) == 1: arguments = ["."] else: arguments = sys.argv[1:] # Transform arguments into paths input_paths = [pathlib.Path(argument) for argument in arguments] # Make a list of all files to convert filenames = [] for input_path in input_paths: if input_path.is_dir(): for extension in ["*.unity", "*.prefab", "*.mat"]: filenames += [str(path) for path in input_path.rglob(extension)] else: filenames.append(str(input_path)) # Convert files for filename in filenames: # Read file's contents input_lines = [] with open(filename, "r") as input_file: input_lines = [line for line in input_file] # Overwrite contents in-place with converted version with open(filename, "w") as output_file: for i in range(len(input_lines)): # Print conversion status print( "|", round((i * 10) / len(input_lines)) * "-", (10 - round((i * 10) / len(input_lines))) * " ", "| ", filename, sep="", end="\r", ) # Remove "stripped" keyword if input_lines[i].find("---") != -1: stripped_location = input_lines[i].find("stripped") if stripped_location != -1: input_lines[i] = input_lines[i][:stripped_location].strip() + "\n" # Write corrected line output_file.write(input_lines[i]) # Skip this line if conversion is not applicable if ( i < 1 or i >= len(input_lines) - 1 or input_lines[i - 1].find("---") == -1 or input_lines[i + 1].find(" id: ") != -1 ): continue # Add a new line with identifier output_file.write( " id: " + input_lines[i - 1][input_lines[i - 1].find("&") + 1 :] ) # Print new line print()
true
38402d4c2a9a8605fba48e9049aed69a5f7b14ee
Python
serban-hartular/OnlineParser
/cgi-bin/gram/rule_builder.py
UTF-8
5,768
2.703125
3
[]
no_license
# format: # "VP[mod=Ind head=verb] -> subj:NP[nr=@ pers=@ case=N] , verb:V" import re from constraints import Constraint, OverwriteConstraint from nodes import Monomial from rules import * DEFAULT_ERROR_SCORE = 1.0 EQUALS = '=' OVERWRITE = '~' NONE_NOT_OK = '==' def constraint_from_string(string : str, l_deprel:str = None) -> Constraint: """ string format 'cas=N' or 'num=@' or 'gen=subj.gen' or 'num = verb.num' @ will be replaced with the lval over-write rule: num/3 means is_bare will be yes no matter what it was before, no error""" if EQUALS in string: separator = EQUALS elif OVERWRITE in string: separator = OVERWRITE else: raise Exception('Invalid constraint %s, no separator' % string) is_none_ok = (NONE_NOT_OK not in string) string = string.replace(NONE_NOT_OK, EQUALS) is_overwrite = (separator == OVERWRITE) (lstr, rstr) = string.split(separator) lstr = lstr.strip() rstr = rstr.strip() if rstr[-1] == '!': # mandatory condition score = float('Inf') rstr = rstr[:-1] elif '?' in rstr: (rstr, score) = rstr.split('?') score = float(score) if score else 0.5 else: score = DEFAULT_ERROR_SCORE # do lexp lstr = lstr.split('.') # split by period -- ie, subj.gen lexp = [l_deprel] if l_deprel else [] lexp = lexp + lstr # for item in lstr: # lexp.append(item) # do rexp rexpr = [] if rstr == '@': rexpr = lstr elif '.' in rstr: rstr = rstr.split('.') for item in rstr: rexpr.append(item) else: # plain string rexpr = rstr if is_overwrite: return OverwriteConstraint(lexp, rexpr) else: return Constraint(lexp, rexpr, score, is_none_ok) def constraint_list_from_string(string : str, l_deprel:str = None): # string will look like 'case=2 num=q gen = bizzarre ' # to make whitespace a separator, replace ' = ' with '=' string = re.sub('\s*=\s*', '=', string) string = string.strip() strings = string.split() # whitespace return [constraint_from_string(s, l_deprel) for s in strings] def type_and_constraint_list_from_string(string:str, l_deprel:str = None) -> tuple: # string has form 'NP[case=Nom nr=@ pers=@]' string = string.strip() if '[' not in string: # it's a singleton if ' ' in string: # bad raise Exception('Bad name ' + string) return(string, []) try: (name, constraint_string) = string.split('[') except: raise Exception('Error splitting ' + string) if constraint_string[-1] != ']': raise Exception('%s lacks ]', string) constraint_string = constraint_string[:-1] # elim last char constraints = constraint_list_from_string(constraint_string, l_deprel) return (name.strip(), constraints) def deprel_type_from_string(string: str) -> tuple: string = string.strip() try: (deprel, type_string) = string.split(':') except: raise Exception('Missing deprel:item in item %s' % string ) deprel = deprel.strip() (type_name, constraints) = type_and_constraint_list_from_string(type_string, deprel) return (deprel, type_name, constraints) def _get_head_phrase(parent_constraints : list, head_str = 'head') -> str: head_name = '' for constraint in parent_constraints: if constraint.lexpr == [head_str]: # this is a constraint of form 'head=blah' head_name = constraint.rexpr # ie, blah break if head_name: parent_constraints.remove(constraint) return head_name def _get_type_constraint(deprel:str, type_name : str, error_score = float('inf')) -> Constraint: if deprel: return Constraint([deprel, Monomial.CATEGORY], type_name, error_score) else: return Constraint([Monomial.CATEGORY], type_name, error_score) def rule_from_string(string: str, head_separator = '->', append_separator = '+=', child_separator = ',') -> Rule: # "VP[mod=Ind head=verb] -> subj:NP[nr=@ pers=@ case=N] , verb:V" # VP += iobj:NP[case=Dat] separator = None for s in [head_separator, append_separator]: if s in string: separator = s break if not separator: raise Exception('No valid rule separator found in %s' % string) try: (parent, children) = string.split(separator) except: raise Exception('Error splitting "%s" by %s' % (string, separator)) parent = parent.strip() (parent_name, constraints) = type_and_constraint_list_from_string(parent) # get head_name from constraint eg "head=verb". fn removes this constraint if found head_name = _get_head_phrase(constraints) if separator == append_separator and head_name: raise Exception('Cannot append and set phrase head in rule %s' % string) deprel_list = list() for child_str in children.split(child_separator): child_str = child_str.strip() (deprel, type_name, child_constraints) = deprel_type_from_string(child_str) deprel_list.append(deprel) constraints.insert(0, _get_type_constraint(deprel, type_name)) # add constraint that child is of type eg 'NP' constraints = constraints + child_constraints if head_name: return Headed_Rule(parent_name, deprel_list, head_name, None, constraints, string) elif separator == append_separator: deprel_list.insert(0, AppendRule.SELF) # insert 'self' deprel constraints.insert(0, _get_type_constraint('', parent_name)) # add constraint that child is of type eg 'NP' return AppendRule(parent_name, deprel_list, constraints, string) else: return Rule(parent_name, deprel_list, constraints, string)
true
1b9f2a27b6962d0fd61d0037e0e87abef01ef3b2
Python
sevenhe716/LeetCode
/HashTable/q049_group_anagrams.py
UTF-8
2,069
3.609375
4
[]
no_license
# Time: O(n) # Space: O(1) # 解题思路: # 一种思路是利用位置无关的特性,如sum,利用hash做初选,然后再用Counter再次分类 # 另一种思路则是利用hash一步到位,但是需要5*26个bit的大整型,且每个字母个数不能大于32个 # 优化思路:其实无需生成hash,字符串本身可以作为key,利用map来分组 class Solution: def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ import itertools from operator import itemgetter hashs = [0] * len(strs) lst = [] for i, s in enumerate(strs): for c in s: hashs[i] += 1 << (ord(c) - ord('a')) * 5 lst.append({'hash': hashs[i], 'value': s}) lst.sort(key=itemgetter('hash')) # lst.sort(lambda x : x['hash']) lstg = itertools.groupby(lst, itemgetter('hash')) ans = [] for key, group in lstg: ans.append([g['value'] for g in group]) return ans class Solution1(object): # Categorize by Sorted String def groupAnagrams1(self, strs): import collections ans = collections.defaultdict(list) for s in strs: ans[tuple(sorted(s))].append(s) return ans.values() # Categorize by Count def groupAnagrams(self, strs): import collections ans = collections.defaultdict(list) for s in strs: count = [0] * 26 for c in s: count[ord(c) - ord('a')] += 1 ans[tuple(count)].append(s) return list(ans.values()) class SolutionF: def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ d = {} for s in strs: ss = ''.join(sorted(s)) if ss not in d: d[ss] = [s] else: d[ss].append(s) ans = [] for key in d: ans.append(d[key]) return ans
true
8875eb68f04d67372b4e7956d6826fcbab4e6c25
Python
ymink716/PS
/BOJ/BaaarkingDog/0x11_그리디/2847.py
UTF-8
462
3.296875
3
[]
no_license
# 게임을 만든 동준이 # https://www.acmicpc.net/problem/2847 n = int(input()) scores = [] for _ in range(n): scores.append(int(input())) answer = 0 # 뒤에서 부터 순회 for i in range(n - 1, 0, -1): # i -1 점수 >= i 점수 if scores[i - 1] >= scores[i]: cnt = scores[i - 1] - scores[i] + 1 # 이 구간에서 감소 횟수 scores[i - 1] -= cnt # i -1 점수를 cnt 만큼 감소 answer += cnt print(answer)
true
60f37cbb20cb76ef905068fa06d64ce8d6b7870c
Python
Aasthaengg/IBMdataset
/Python_codes/p03096/s312768742.py
UTF-8
455
2.703125
3
[]
no_license
#!/usr/bin/python3 # -*- coding:utf-8 -*- def main(): MAX = 10**9 + 7 n = int(input()) lc = [int(input()) for _ in range(n)] dp = [0] * (n) last_is = [-1]*(2*10**5+1) dp[0] = 1 last_is[lc[0]] = 0 for i,c in enumerate(lc[1:], 1): last_i = last_is[c] dp[i] = dp[i-1] if last_i != -1 and last_i != i-1: dp[i] += dp[last_i] dp[i] %= MAX last_is[c] = i print(dp[-1]) if __name__=='__main__': main()
true
c902b835a7454f4aed41e0312545d9517f603c22
Python
axxsxbxx/SSAFY5-Algorithm
/week2_3_23/BOJ_2212_수빈.py
UTF-8
1,841
3.46875
3
[]
no_license
''' 2212. 센서 한국도로공사는 고속도로의 유비쿼터스화를 위해 고속도로 위에 N개의 센서를 설치하였다. 문제는 이 센서들이 수집한 자료들을 모으고 분석할 몇 개의 집중국을 세우는 일인데, 예산상의 문제로, 고속도로 위에 최대 K개의 집중국을 세울 수 있다고 한다. 각 집중국은 센서의 수신 가능 영역을 조절할 수 있다. 집중국의 수신 가능 영역은 고속도로 상에서 연결된 구간으로 나타나게 된다. N개의 센서가 적어도 하나의 집중국과는 통신이 가능해야 하며, 집중국의 유지비 문제로 인해 각 집중국의 수신 가능 영역의 길이의 합을 최소화해야 한다. 편의를 위해 고속도로는 평면상의 직선이라고 가정하고, 센서들은 이 직선 위의 한 기점인 원점으로부터의 정수 거리의 위치에 놓여 있다고 하자. 따라서, 각 센서의 좌표는 정수 하나로 표현된다. 이 상황에서 각 집중국의 수신 가능영역의 거리의 합의 최솟값을 구하는 프로그램을 작성하시오. 단, 집중국의 수신 가능영역의 길이는 0 이상이며 모든 센서의 좌표가 다를 필요는 없다. ''' import sys input = sys.stdin.readline # 센서의 개수 N N = int(input()) # 집중국의 개수 K K = int(input()) # 센서의 좌표 sensors = list(map(int, input().split())) sensors.sort() # 센서 간의 거리 배열 sensor_dist = [] for i in range(N-1): sensor_dist.append(sensors[i+1] - sensors[i]) # 센서 간의 거리가 먼 순서대로 끊어가면서 범위를 설정하면 된다. sensor_dist.sort() if sensor_dist: for _ in range(K-1): sensor_dist.pop() print(sum(sensor_dist)) else: print(0) ''' [입력] 6 2 1 6 9 3 6 7 [출력] 5 '''
true
fa0e09eac4d6132f18ad7a0081ba5e5e1638c099
Python
pythoncpp/Python01
/day_16/page9.py
UTF-8
302
2.5625
3
[]
no_license
import pandas as pd df = pd.read_csv('/Volumes/Data/Sunbeam/2019/August/workshops/Python01/day_16/temp.csv') print(df.describe()) print() print(df.info()) print() df['expected'] = df.high + 10 print(df.info()) df.to_csv('/Volumes/Data/Sunbeam/2019/August/workshops/Python01/day_16/temp_modified.csv')
true
448c31c7098f97ae049fa600938578b69f0a148c
Python
shwang0416/Jungle_week03
/basic/BFS/BOJ2589_보물섬.py
UTF-8
1,331
3.140625
3
[]
no_license
# [백준] https://www.acmicpc.net/problem/2589 보물섬 # L과 다른 L사이의 최단거리중 가장 먼 거리 찾기 # BFS로 풀기 import sys # input sys.stdin = open('BOJ2589.txt') row, col = list(map(int, sys.stdin.readline().split())) visited = [[0]*col for _ in range(row)] board = [] #0으로 초기화 된 row ,col 모두 N까지 존재하는 이차원 리스트 cnt = 0 max_value = 0 dx = [-1, 1, 0, 0] dy = [0, 0, -1, 1] for i in range(row): for j in range(col): tmp = sys.stdin.readline().strip() tmp = list(tmp) board.append(tmp) que = [] def bfs(y, x): global cnt que.append([y,x]) visited = [[0] * col for _ in range(row)] visited[y][x] = 1 while len(que) != 0: y, x = que.pop(0) for i in range(4): cx = x + dx[i] cy = y + dy[i] if cy >= 0 and cy < row and cx >= 0 and cx < col: if board[cy][cx] == 'L' and visited[cy][cx] == 0: que.append([cy, cx]) visited[cy][cx] = visited[y][x] + 1 cnt = max(cnt, visited[cy][cx]) return cnt for i in range(row): for j in range(col): if board[i][j] == 'L': cnt = bfs(i, j) max_value = max(max_value, cnt) cnt = 0 print(max_value-1)
true
846221564fb045b2dcd32c13dc7e854e6175d6ce
Python
Aasthaengg/IBMdataset
/Python_codes/p03101/s270242628.py
UTF-8
502
2.625
3
[]
no_license
# 2019-11-12 22:11:12(JST) import sys # import collections # import math # from string import ascii_lowercase, ascii_uppercase, digits # from bisect import bisect_left as bi_l, bisect_right as bi_r # import itertools # from functools import reduce # import operator as op # from scipy.misc import comb # float # import numpy as np def main(): H, W, h, w = [int(x) for x in sys.stdin.read().split()] ans = H * W - (h * W + (H - h) * w) print(ans) if __name__ == "__main__": main()
true
71dd56564d52c8db6fd528314ed89a72e7d262bb
Python
WEgeophysics/watex
/examples/view/plot_phase_tensor_2d.py
UTF-8
818
3.015625
3
[ "BSD-3-Clause" ]
permissive
""" ================================================ Plot two dimensional phase tensors ================================================ gives a quick visualization of phase tensors at the component 'yx' """ # Author: L.Kouadio # Licence: BSD-3-clause #%% from watex.view.plot import TPlot from watex.datasets import load_edis # get some 12 samples of EDI for demo edi_data = load_edis (return_data =True, samples =12) # customize plot by adding plot_kws plot_kws = dict( ylabel = '$Log_{10}Frequency [Hz]$', xlabel = '$Distance(m)$', cb_label= '$Phase [\degree]$' , fig_size =(6, 3), font_size =7., ) t= TPlot(component='yx', **plot_kws).fit(edi_data) # plot recovery2d using the log10 resistivity t.plot_tensor2d( tensor ='phase', to_log10=True)
true
2f9a3b9601fb412d48077089653c820f2327cbd2
Python
michaelwozniak/web_scraping
/project_selenium/justjoinit_scraper.py
UTF-8
14,543
2.90625
3
[]
no_license
from selenium import webdriver from selenium.webdriver.common.keys import Keys #selenium features for keys from keyboard from selenium.webdriver import ActionChains #selenium features for mouse movements from selenium.webdriver.common.by import By #selenium features By from selenium.webdriver.support.ui import WebDriverWait #selenium features for waiting from selenium.webdriver.support import expected_conditions as EC #selenium features for waiting import time import datetime import os from os import path import pandas as pd import matplotlib.pyplot as plt #plots import logging #library for logging import re def clean_html(raw_html): """Function removing html tags from string Args: String with html code Returns: Cleaned string """ cleanr = re.compile('<.*?>') cleantext = re.sub(cleanr, '', raw_html) return cleantext ##################################################### Author: Michał Wrzesiński ############################################################ class Scraper(): log_file_name = "logs/log_" + str(datetime.datetime.now()).replace(":","_").replace("-","_").replace(" ","_") + ".txt" #name for log file logging.basicConfig( filename=log_file_name, format='%(levelname)s: %(message)s', level=logging.INFO ) # logging configuration; logs are available in logs folder logger=logging.getLogger() logger.setLevel(logging.DEBUG) # declaring options def __init__(self, headless_mode = True): self.headless_mode = headless_mode # path of geckodriver gecko_path = path.join(os.path.dirname(os.path.abspath('__file__')), 'geckodriver') url = 'https://justjoin.it/' options = webdriver.firefox.options.Options() # headless mode depending on the initial choice of user if headless_mode == True: options.headless = True else: options.headless = False self.driver = webdriver.Firefox(options = options, executable_path = gecko_path) self.driver.get(url) """Constructor - declaration of scraper configuration""" print("==========================================") print("Please, configure scraper!") print("==========================================") # Page limit handling pages_100_bool = input("Do you want to set the page limit to 100? [T/F]: \t") in {"T","True","TRUE","Y","yes","YES"} if pages_100_bool == True: self.number = 100 else: self.number = 999999 element = WebDriverWait(self.driver, 10).until(EC.presence_of_element_located((By.XPATH, '//div[@class="css-son5n9"][text() = "offers with salary"]'))) element.click() # Salary choice handling salary_expectations_bool = input("Do you want to provide boundaries of salary (logical alternative) [T/F]: \t") \ in {"T","True","TRUE","Y","yes","YES"} if salary_expectations_bool == True: self.salary() # Location choice handling self.localization_choice_bool = input("Do you want to choose location of offer?: \t") \ in {"T","True","TRUE",'Y',"yes","YES"} if self.localization_choice_bool == True: self.location() # Location # - if user chose location from all available - website will filter it, # - if not - website close the window with cities and there will be prompt in console that: 'There is no such location. You will have offers with all possibile cities.' def location(self): element = WebDriverWait(self.driver, 5).until(EC.presence_of_element_located((By.XPATH, '//span[@class="MuiButton-label"][text() = "Location"]'))) element.click() # user input self.choose_location = input("Please type, Which city are you interested in?: 'Białystok', 'Bielsko-Biała', 'Bydgoszcz', 'Częstochowa', 'Gliwice', 'Katowice', 'Kielce', 'Kraków', 'Lublin', 'Olsztyn', 'Opole', 'Poznań', 'Rzeszów', 'Szczecin', 'Toruń', 'Trójmiasto', 'Warszawa', 'Wrocław', 'Zielona Góra', 'Łódź': \t") if (self.choose_location in ['Białystok', 'Bielsko-Biała', 'Bydgoszcz', 'Częstochowa', 'Gliwice', 'Katowice', 'Kielce', 'Kraków', 'Lublin', 'Olsztyn', 'Opole', 'Poznań', 'Rzeszów', 'Szczecin', 'Toruń', 'Trójmiasto', 'Warszawa', 'Wrocław', 'Zielona Góra', 'Łódź']): element = WebDriverWait(self.driver, 5).until(EC.presence_of_element_located((By.XPATH, f'//span[@class="MuiButton-label"][text() = "{self.choose_location}"]'))) element.click() else: print('There is no such location. You will have offers with all possibile cities.') element = WebDriverWait(self.driver, 5).until(EC.presence_of_element_located((By.XPATH, '//button[@class="MuiButtonBase-root MuiIconButton-root css-tze5xj"]'))) element.click() # Salary # This part goes on ActionChains from Selenium # Scraper click on point on site and move to the desired position: # Clicking on the element finding by xpath --> move_by_offset with formula: (11 * min_salary / 1000, 0 for minimum) and (11 * (max_salary - 50000) / 1000, 0 form maximum) # Multiplying by 11 and dividing by 1000 due to default settings on site (with horizontal slider) # for example: 0 is default minimum salary expectations: if user enter 10000 - scraper will move point from 0 to 10000 horizontally [swipe from left to right] # in the same way it works for maximum salary expectations -> from 50000 to exemplary 30000 [swipe from right to left] def salary(self): element = WebDriverWait(self.driver, 5).until(EC.presence_of_element_located((By.XPATH, '//span[text() = "More filters"]'))) element.click() # user inputs min_salary = int(input('Choose minimum salary expectations:\n')) max_salary = int(input('Choose maximum salary expectations:\n')) en = self.driver.find_element_by_xpath('//span[@class="MuiSlider-thumb MuiSlider-thumbColorSecondary"][@data-index="0"]') # swipe horizontal slider due to user input (left-hand edge) move_left = ActionChains(self.driver) move_left.click_and_hold(en).move_by_offset(11 * min_salary / 1000, 0).release().perform() en = self.driver.find_element_by_xpath('//span[@class="MuiSlider-thumb MuiSlider-thumbColorSecondary"][@data-index="1"]') # swipe horizontal slider due to user input (right-hand edge) move_right = ActionChains(self.driver) move_right.click_and_hold(en).move_by_offset(11 * (max_salary - 50000) / 1000, 0).release().perform() element = WebDriverWait(self.driver, 5).until(EC.presence_of_element_located((By.XPATH, '//span[@class="MuiButton-label"][text() = "Show offers"]'))) element.click() # Offers # This part involves gathering links to pages # It is possible due to while loop (links are appended till desired number of pages or to the bottom of the website) # Loop for 2 lists: elements and location is necessery because of default settings of page: # When there are only few offers from chosen city, website displays some offers from other cities # Then, due to location list - we are certain that we gather links only for desired city # Page Down key is necessery for scrolling down - after each iteration # gathering links to list # checking if there are no duplicates - if yes, loop ignores those links # checking if there new links - if no new links -> bottom of the page -> end of appending links def offers(self): # crating list of links of offers to further scraping links = [] # while loop to reach destined number of pages while(len(links) < self.number): # lists of elements and locations before 'Page Down' elements = self.driver.find_elements_by_css_selector("a.css-18rtd1e") locations = self.driver.find_elements_by_xpath("//div[@class='css-1ihx907']") # checking length of links before loop check_before = len(links) # for loop for elements and location for element, location in zip(elements, locations): if (self.localization_choice_bool == True and self.choose_location in ['Białystok', 'Bielsko-Biała', 'Bydgoszcz', 'Częstochowa', 'Gliwice', 'Katowice', 'Kielce', 'Kraków', 'Lublin', 'Olsztyn', 'Opole', 'Poznań', 'Rzeszów', 'Szczecin', 'Toruń', 'Trójmiasto', 'Warszawa', 'Wrocław', 'Zielona Góra', 'Łódź']): # solving problem with displaying offers for other cities if(location.text == self.choose_location): link = element.get_attribute("href") # if link exists in list of links - continue if(link in links): continue else: # append links links.append(link) # if length of links is >= predefined number of pages - break if (len(links)>= self.number): break else: break else: link = element.get_attribute("href") # if link exists in list of links - continue if(link in links): continue else: # append links links.append(link) # if length of links is >= predefined number of pages - break if (len(links)>= self.number): break # checking length of links after loop check_after = len(links) # press 'Page Down' key to get next list of offers elements[-1].send_keys(Keys.PAGE_DOWN) time.sleep(5) # if length of links after loop and before loop are the same - bottom of the page - break the loop # if not - continue if check_before == check_after: break else: continue return links ########################################## End of Michał Wrzesiński part ############################################## ########################################## Author: Rafał Rysiejko #################################################### def link_opener(self): #Call offers method to fetch url links to filtered offers. links = self.offers() #Create placeholders for output offer_link_list=[] offer_title_list=[] company_name_list=[] company_size_list=[] empoyment_type_list=[] experience_lvl_list=[] salary_list=[] place_list=[] tech_stack_list=[] company_page_list=[] direct_apply_list=[] offer_description_list=[] #Iterate through each offer link. for link in links: #Call driver to open a given url. self.driver.get(link) #Scrape appropreiate items from oppened site. offer_link = link offer_title = self.driver.find_element_by_xpath("//span[@class='css-1v15eia']").text company_name = self.driver.find_element_by_xpath("//a[@class='css-l4opor']").text company_size = self.driver.find_element_by_xpath("//div[2]/div[@class='css-1ji7bvd']").text empoyment_type = self.driver.find_element_by_xpath("//div[3]/div[@class='css-1ji7bvd']").text experience_lvl = self.driver.find_element_by_xpath("//div[4]/div[@class='css-1ji7bvd']").text salary = self.driver.find_element_by_xpath("//span[@class='css-8cywu8']").text place = self.driver.find_element_by_xpath("//div[@class='css-1d6wmgf']").text tech_stack = [{i.text:j.text} for i,j in zip (self.driver.find_elements_by_xpath("//div[@class='css-1eroaug']"),self.driver.find_elements_by_xpath("//div[@class='css-19mz16e']"))] direct_apply = True if len(self.driver.find_element_by_xpath("//button[@class='MuiButtonBase-root MuiButton-root MuiButton-text css-im43rs']").text) !=0 else False company_page = self.driver.find_element_by_xpath("//a[@class='css-l4opor']").get_attribute("href") offer_description = clean_html(self.driver.find_element_by_xpath("//div[@class='css-u2qsbz']").text) #Append newly scrapped elements to their corresponding lists offer_link_list.append(offer_link) offer_title_list.append(offer_title) company_name_list.append(company_name) company_size_list.append(company_size) empoyment_type_list.append(empoyment_type) experience_lvl_list.append(experience_lvl) salary_list.append(salary) place_list.append(place) tech_stack_list.append(tech_stack) company_page_list.append(company_page) direct_apply_list.append(direct_apply) offer_description_list.append(offer_description) #Save output to a Pandas data.frame object. output = pd.DataFrame(list(zip(offer_link_list, offer_title_list, company_name_list, company_size_list, empoyment_type_list, experience_lvl_list, salary_list, place_list, tech_stack_list, direct_apply_list, company_page_list, offer_description_list)), columns=['offer_link', 'offer_title', 'company_name','company_size','empoyment_type','experience_lvl','salary','place','tech_stack','direct_apply','company_page','offer_description_list']) #Return data.frame obejct return output # Destructor def __del__(self): self.driver.quit() if __name__ == '__main__': c = Scraper() links = c.link_opener() links.to_csv('output.csv', encoding='utf-8') c.__del__()
true
bd4fb09616d5b2f891e555952362f8cbc9bfbfc0
Python
MarinaFirefly/Python_homeworks
/6/homework6/lists_max.py
UTF-8
1,246
4.40625
4
[]
no_license
#function find_max_dif finds the maximal difference between elements of 2 lists and returns its length and which elements have the maximal difference. #list should have same length. In other way function zip will take the shortest list as a basis list1 = [12,34,565] list2 = [123123,67,78,12444] str1 = "Is this the real life?" str2 = "Is this just fantazy?" list3 = str1.split(" ") list4 = str2.split(" ") #function find_max_dif takes 2 lists as parameters def find_max_dif(l1,l2): #check that both arguments are lists. Otherwise functions returns message "At least one of the arguments isn't list!" if type(l1) != list or type(l2) != list: return (print("At least one of the arguments isn't list!")) else: new_list = [] for i, j in zip(l1,l2): #add differences in length of elements to new_list. Values in the list is always positive because abs() is used new_list.append(abs(len(str(i)) - len(str(j)))) #return string containing maximal value from new_list and its possition in the list starting from 0 return print("Maximal difference in length is " + str(max(new_list)) + " between " + str(new_list.index((max(new_list)))) + " elements!") find_max_dif(list1,list2) find_max_dif(list3,list4) find_max_dif("sad",list4)
true
b7ed99236f1c1295efa83737369ee5ca156a9e95
Python
ChristoffenOSWorks/PandaCat
/cairo_coordinates.py
UTF-8
652
3.296875
3
[]
no_license
number_of_times = int(raw_input("Please enter the number of pairs you want drawn")) time_current = 0 while (time_current < number_of_times): print " Please enter X value of the first pair" point_x1 = float(raw_input(" >> ")) print " Please enter Y value of the first pair" point_y1 = float(raw_input(" >> ")) time_current += 1 with open('out.txt', 'a') as f: print >> f, "cairo_line_to(cr, " + str(point_x1) + ", " + str(point_y1) + ");" print >> f, "cairo_close_path(cr);" f.close() print "cairo_line_to(cr, " + str(point_x1) + ", " + str(point_y1) + ");" print "cairo_close_path(cr);"
true
17c3962d6d0e8688d9f700acc2f436612548ccd1
Python
CaioOliveiraOFC/Sockets-em-python
/TCPServer.py
UTF-8
2,213
3.46875
3
[]
no_license
#!/usr/bin/env python3.9 #Importando o módulo socket e o módulo time from socket import * from time import sleep #Atribuir a porta ao servidor e criar o socket serverPort = 12000 print('Esse servidor usará a porta {} para conexão'.format(serverPort)) sleep(5) print('Criando o socket que utilizarei para essa aplicação...') serverSocket = socket(AF_INET, SOCK_STREAM) sleep(10) #Atribuir um IP e uma porta ao socket '' significa que o kernel vai atribuir o IP para nós (Vai utilizar o IP local se testar na mesma máquina) print('Amarrando o meu endereço de IP e a porta para o socket que acabei de criar...') serverSocket.bind(('', serverPort)) sleep(10) print('Estou pronto e esperando conexões...') print('Já pode abrir o arquivo TCPClient.py') # O servidor está esperando pela conexão, esse .listen(1) escuta e 1 é o numero máximo de conexões em fila' serverSocket.listen(1) #Após a escuta ele vai entrar num loop infinito, há maneiras de interromper esse lopp, mas nesse caso eu vou deixar infinito. while True: # OBS: TEMOS UMA PARTICULARIDADE AQUI (TCP), NOSSO SOCKET serverSocket É APENAS UMA ENTRADA PARA A CONEXÃO, ELE QUE FAZ O HANDSHAKE; # connectionSocket e addr vão herdar os parâmetros que o método .accept() passar para eles respectivamente (ler a documentação) # Quando o cliente bate na porta '.listen()' ele passa direto para esse looping que cria uma conexão somente para o cliente que está tentando conectar, é assim que conseguimos várias conexões no servidor TCP. connectionSocket, addr = serverSocket.accept() print('Criei o Socket temporário que vou usar para falar com o cliente: {}, esse é o socket que usaremos para trocar informações'.format(addr)) # Aqui funciona como o outro código msg = connectionSocket.recv(1024) print('Recebi o pacote...') sleep(5) msg = msg.decode() print('Decodifiquei o pacote...') sleep(5) msg = msg.upper() print('Transfomei a mensagme em upper case...') sleep(5) print('Me preparando para enviar a mensagem...') sleep(10) connectionSocket.send(msg.encode()) print('Mensagem ENVIADA!!') #fecha a conexão connectionSocket.close()
true
80f46d0a286a5bdf17869a03588d9af89a7840f4
Python
MudretsovaSV/Python
/footbolGurls10to12.py
WINDOWS-1251
328
4.125
4
[]
no_license
gender=raw_input(" - m f? (m-, f-) ") if gender=="m": print " ." elif gender=="f": age=float(raw_input(" ? ")) if 10<=age<=12: print " " else: print " "
true
cd8de4d800845e6fccbd1315dd01c51fe672f42b
Python
parthjalan37/Timetable-Generation
/main_gui.py
UTF-8
3,752
2.796875
3
[ "MIT" ]
permissive
from tkinter import * from new_main import semaphore_algo window = Tk() window.title("Timetable Generation OS Project") class ProvideException(object): def __init__(self, func): self._func = func def __call__(self, *args): try: return self._func(*args) except ValueError: text7 = Label(window, text="Please enter integer values only") text7.grid(row=7, column=0) except KeyboardInterrupt: text7 = Label(window, text="You hit a interrupt key like ' ctrl+c' or 'ctrl+v'. Please rerun the code.") text7.grid(row=7, column=0) @ProvideException def set_values(): list_1 = [label3_1.get(), label3_2.get(), label3_3.get(), label3_4.get()] #Batch 1 list_2 = [label4_1.get(), label4_2.get(), label4_3.get(), label4_4.get()] #Batch 2 list_3 = [label5_1.get(), label5_2.get(), label5_3.get(), label5_4.get()] #Batch 3 list_4 = [label6_1.get(), label6_2.get(), label6_3.get(), label6_4.get()] #Batch 4 final_list = [list_1, list_2, list_3, list_4] print(list_1) print(list_2) print(list_3) print(list_4) print(final_list) fac_list_1 = [] # Number of lectures by each batch fac_list_2 = [] fac_list_3 = [] fac_list_4 = [] for faculty_no in range(0, 4): x = int(final_list[faculty_no][0]) for hour_cnt in range(0, x): fac_list_1.append(faculty_no) x1 = int(final_list[faculty_no][1]) for hour_cnt in range(0, x1): fac_list_2.append(faculty_no) x2 = int(final_list[faculty_no][2]) for hour_cnt in range(0, x2): fac_list_3.append(faculty_no) x3 = int(final_list[faculty_no][3]) for hour_cnt in range(0, x3): fac_list_4.append(faculty_no) print(fac_list_1) print(fac_list_2) print(fac_list_3) print(fac_list_4) semaphore_algo(fac_list_1, fac_list_2, fac_list_3, fac_list_4) text1 = Label(window, text="Enter the faculty hours required for each branch") text1.grid(row=0) text2 = Label(window, text="Branch Name") text2_1 = Label(window, text="Faculty 1") text2_2 = Label(window, text="Faculty 2") text2_3 = Label(window, text="Faculty 3") text2_4 = Label(window, text="Faculty 4") text2.grid(row=1, column=0) text2_1.grid(row=1, column=1) text2_2.grid(row=1, column=2) text2_3.grid(row=1, column=3) text2_4.grid(row=1, column=4) text3 = Label(window, text="B.Tech CS") label3_1 = Entry(window) label3_2 = Entry(window) label3_3 = Entry(window) label3_4 = Entry(window) text3.grid(row=2, column=0) label3_1.grid(row=2, column=1) label3_2.grid(row=2, column=2) label3_3.grid(row=2, column=3) label3_4.grid(row=2, column=4) text4 = Label(window, text="B.Tech IT") label4_1 = Entry(window) label4_2 = Entry(window) label4_3 = Entry(window) label4_4 = Entry(window) text4.grid(row=3, column=0) label4_1.grid(row=3, column=1) label4_2.grid(row=3, column=2) label4_3.grid(row=3, column=3) label4_4.grid(row=3, column=4) text5 = Label(window, text="MBA.Tech CS") label5_1 = Entry(window) label5_2 = Entry(window) label5_3 = Entry(window) label5_4 = Entry(window) text5.grid(row=4, column=0) label5_1.grid(row=4, column=1) label5_2.grid(row=4, column=2) label5_3.grid(row=4, column=3) label5_4.grid(row=4, column=4) text6 = Label(window, text="MBA.Tech IT") label6_1 = Entry(window) label6_2 = Entry(window) label6_3 = Entry(window) label6_4 = Entry(window) text6.grid(row=5, column=0) label6_1.grid(row=5, column=1) label6_2.grid(row=5, column=2) label6_3.grid(row=5, column=3) label6_4.grid(row=5, column=4) button1 = Button(window, text="Submit Request", command=set_values) button1.grid(row=6, column=2) window.mainloop()
true
8a49e0a6498a8fc3b7b5b968e06e16e63e3ecef9
Python
Skillz619/CS-180
/Python/Roman-decimal.py
UTF-8
646
4.0625
4
[]
no_license
#This program converts roman numerals to decimal integers # using python dictonaries x ={"I":1,"V":5,"X":10,"L":50,"C":100,"D":500,"M":1000} value = input("Enter a roman numberal: ") value = value.upper() total= int total=0 try: for i in range(len(value)): if i+1<len(value): if( x[value[i]]>=x[value[i+1]]): #if second value is greater then we add total+=x[value[i]] elif i+1==len(value): total+=x[value[i]] else: total-=x[value[i]] #if second value is small we substract except: print("Your input was wrong") print(total)
true
cb0403875926fa9d7ca383eb6f74cb94d4703d3a
Python
stanpython/Python-Scripts
/SSP_createAppendix.py
UTF-8
3,368
2.78125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Jan 27 15:36:17 2020 @author: stanleyhuang2 """ import pandas as pd import numpy as np import datetime as dt import tkinter as tk from tkinter import filedialog root= tk.Tk() canvas1 = tk.Canvas(root, width = 200, height = 200, bg = 'lightblue1') canvas1.pack() def getExcel (): global df import_file_path = filedialog.askopenfilename() df = pd.read_excel (import_file_path) root.destroy() if __name__ == '__main__': browseButton_Excel = tk.Button(root, text='Click to select Data Collection (Cleaned) file', wraplength=80, command=getExcel, bg='green', fg='white', font=('helvetica', 12, 'bold')) canvas1.create_window(100, 100, window=browseButton_Excel) root.mainloop() root2= tk.Tk() canvas1 = tk.Canvas(root2, width = 200, height = 200, bg = 'lightblue1') canvas1.pack() def getExcel (): global df2 import_file_path = filedialog.askopenfilename() df2 = pd.read_excel (import_file_path) root2.destroy() browseButton_Excel = tk.Button(root2, text='Click to select Application Findings (Cleaned) file', wraplength=90, command=getExcel, bg='red', fg='white', font=('helvetica', 12, 'bold')) canvas1.create_window(100, 100, window=browseButton_Excel) root.mainloop() #df = pd.read_excel('data_collection-cleaned.xlsx') #df2 = pd.read_excel('app_findings-cleaned.xlsx') str = ['No'] high = ['High'] #Create result sets for different columns needed for appendix result = df[['PPA Record', 'Name of the Application', 'Business Group', 'Hosting Location', 'Last/Latest Test Date', 'Comments for delay/non compliance', 'In Compliance (Yes/No)', 'CTO']] result2 = df2[['Finding ID', 'Helper - Project Name', 'Finding', 'Risk Rating', 'Practice', 'Open Date', 'Days Open', 'CTO', 'Response']] result3 = df2[['Pre - Production Application', 'Finding ID', 'Helper - Project Name', 'Finding', 'Risk Rating', 'Group Name','Business Owner','Risk Acceptance Reasoning', 'Response', 'Open Date']] #Filter the dataframes above not_compliant = result[result['In Compliance (Yes/No)'].isin(str)] high = result2[(result2['Risk Rating']=='High') & (result2['Response']=='Remediate Risk') & (result2['Helper - Project Name']!='KPMG Foundation')] med = result2[(result2['Risk Rating']=='Medium') & (result2['Response']=='Remediate Risk') & (result2['Helper - Project Name']!='KPMG Foundation')] acceptrisk = result3[(result3['Response']=='Accept Risk') & (result3['Helper - Project Name']!='KPMG Foundation')] #Sort each sheet high = high.sort_values(by='Days Open', ascending=False) med = med.sort_values(by='Days Open', ascending=False) acceptrisk = acceptrisk.sort_values('Risk Rating') #Reset index column (A) not_compliant.reset_index(inplace=True, drop=True) not_compliant.index += 1 high.reset_index(inplace=True, drop=True) high.index += 1 med.reset_index(inplace=True, drop=True) med.index += 1 acceptrisk.reset_index(inplace=True, drop=True) acceptrisk.index += 1 #Export to excel writer = pd.ExcelWriter(dt.datetime.today().strftime("%Y%m%d") + '_appendix.xlsx', engine = 'openpyxl') not_compliant.to_excel(writer, sheet_name = 'Not Compliant', index=True) high.to_excel(writer, sheet_name = 'Very high & High') med.to_excel(writer, sheet_name = 'Medium') acceptrisk.to_excel(writer, sheet_name = 'Risk Accepted') writer.save() writer.close()
true
33457d93ff9148c9cbb56b2b172de14f2ad05398
Python
gspetillo/pythagorean-calculator-api
/main.py
UTF-8
2,939
2.90625
3
[ "MIT" ]
permissive
from flask import Flask, request from flask_restful import Resource , Api import math app = Flask(__name__) api = Api(app) class Hypotenuse(Resource): def get(self): args = request.args if('sideA' in args and 'sideB' in args): sideA = float(args['sideA']) sideB = float(args['sideB']) hypotenuse = math.sqrt( pow(sideA,2) + pow(sideB,2) ) return { 'status': 200, 'data': hypotenuse },200 else: return { 'status': 422, 'data': 'Invalid parameters' },422 class Side(Resource): def get(self): args = request.args if('side' in args and 'hypotenuse' in args): side = float(args['side']) hypotenuse = float(args['hypotenuse']) if(hypotenuse>side): side = math.sqrt(pow(hypotenuse,2) - pow(side,2)) return { 'status': 200, 'data': side },200 else: return { 'status': 200, 'data': 'Hypotenuse can\'t be greater than side' },200 else: return { 'status': 422, 'data': 'Invalid parameters' },422 class PythagorasCalculator(Resource): def get(self): return { 'about':'Welcome to PythagorasCalculator API', 'description': 'Use routes to return values of hypotenuse or side', 'routes': { '/hypotenuse': [{ 'methods':[ 'GET' ], 'args':{ 'sideA':{ 'type': 'float', 'required': True }, 'sideB':{ 'type': 'float', 'required': True }, }, }], '/side': [{ 'methods':[ 'GET' ], 'args':{ 'side':{ 'type': 'float', 'required': True }, 'hypotenuse':{ 'type': 'float', 'required': True }, } }], } } api.add_resource(PythagorasCalculator, '/') api.add_resource(Hypotenuse, '/hypotenuse') api.add_resource(Side, '/side') if __name__ == '__main__': app.run(threaded=True, port=5000)
true
cf5f6732ae47ffcbe551c023de903ee45b152439
Python
RPGroup-PBoC/human_impacts
/code/figures/barnyard_number/cattle_production.py
UTF-8
2,584
2.9375
3
[ "MIT", "CC-BY-4.0" ]
permissive
#%% import numpy as np import pandas as pd import matplotlib.pyplot as plt import anthro.io import anthro.viz colors = anthro.viz.plotting_style() # Load the FAO data data = pd.read_csv('../../../data/agriculture/FAOSTAT_livestock_product_produced/processed/FAOSTAT_livestock_and_product.csv') cattle = data[data['category']=='cattle'] cattle.drop(columns=['category'], inplace=True) # Compute the total and append. tot = cattle.groupby(['year']).sum().reset_index() tot['subcategory'] = 'total' merged = pd.concat([cattle, tot], sort=False) # Rescale the units to the estimate unit. merged['kg_mass'] = merged['mass_produced_Mt'].values * 1E9 / 1E11 #%% fig, ax = plt.subplots(1, 1, figsize=(3, 1.7)) ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) ax.set_xlim([1961, 2018]) ax.set_ylim([0, 10.5]) ax.set_yticks([0, 2, 4, 6, 8, 10]) ax.set_xlabel('year', fontsize=6) ax.set_ylabel('mass of cattle product [10$^{11}$ kg]', fontsize=6) beef = merged[merged['subcategory']=='beef'] dairy = merged[merged['subcategory']=='dairy (milk)'] total = merged[merged['subcategory']=='total'] ax.hlines(10, 1961, 2018, 'k', linestyle='--', lw=0.75, label='estimate') ax.plot(beef['year'], beef['kg_mass'], '-o', ms=1, lw=0.5, label='beef', color=colors['red']) ax.plot(dairy['year'], dairy['kg_mass'], '-o', ms=1, lw=0.5, label='dairy (milk)', color='white') ax.plot(total['year'], total['kg_mass'], '-o', ms=1, lw=0.5, label='total', color=colors['dark_green']) ax.legend(fontsize=6, handlelength=0.75, loc='upper left') plt.savefig('../../../figures/barnyard_number/cattle_product_mass.svg') # %% # load the data of livestock populations and examine only cattle livestock_pop = pd.read_csv('../../../data/agriculture/FAOSTAT_livestock_population/processed/FAOSTAT_Livestock_population.csv') cattle = livestock_pop[livestock_pop['animal']=='cattle'] # Adjust the units cattle['pop_bhd'] = cattle['population_Mhd'] * 1E6 / 1E9 fig, ax = plt.subplots(1, 1, figsize=(3, 2)) ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) ax.set_xlabel('year', fontsize=6) ax.set_ylabel('standing population [billions]', fontsize=6) ax.set_ylim([0, 2]) ax.set_yticks([0.0, 0.5, 1.0, 1.5, 2]) ax.set_xlim([1961, 2018]) ax.hlines(1.3, 1961, 2018, 'k', linestyle='--', lw=0.75, label='estimate') ax.plot(cattle['year'], cattle['pop_bhd'], '-o', color=colors['blue'], ms=1, lw=0.5, label='total population') ax.legend(fontsize=6) plt.savefig('../../../figures/barnyard_number/cattle_population.svg') # %%
true
088c777c0bdf812d69fb45b3f08a37a932a5622a
Python
sdvillal/happysad
/happysad.py
UTF-8
13,389
2.921875
3
[ "BSD-3-Clause" ]
permissive
# coding=utf-8 """ Black magic metaprogramming to redefine descriptors in python instances. You should never lie, avoid to use this if possible. When using it, you should really understand what you are doing. You will probably also need paracetamol. These patched objects have two personalities, or more concretely, two classes. One is their original class, when exposing it objects are "sad". The other one is an instance specific subclass, when exposing it objects are "happy". (just funny API) TODO... write proper doc and tests Pickling -------- Mixing liars dark magic with object serialization / pickling is not a good idea. You can either use dill or temporarilly pickle using >>> import pickle >>> inst = 2 >>> with forget_synthetic_class(inst): ... pickle.dumps(inst) In our use case, serialization was handled by pickle only after storing the important stuff in a dictionary. Using these functions you can control access to members of objects when you do not want to, or cannot, touch their code, and overriding or simple attribute setting would not be enough. We use this magic at loopbio to modify the behavior of layers in deep neural networks from (heavily designed) frameworks, hoping for minimal maintenance costs on our side. Thanks to them we are able to correct performance deficits and bugs in these frameworks. """ from __future__ import print_function, division from contextlib import contextmanager __author__ = 'Santi Villalba' __version__ = '0.1.0' __license__ = '3-clause BSD' __all__ = ['happy', 'make_happy', 'maybe_happy', 'sad', 'make_sad', 'saddest', 'RetrievableDescriptor', 'MemberView', 'ControlledSetter', 'take_happy_pills', 'create_with_joy'] # --- Synthetic/Original classes swapping # noinspection PyProtectedMember def _original_class(inst): """Returns `inst` original class, without any class swapping.""" try: return inst._Xoriginal_classX except AttributeError: return inst.__class__ # noinspection PyProtectedMember def _synthetic_class(inst): """Returns `inst` synthetic class (can be None), without any swapping.""" try: return inst._Xsynthetic_classX except AttributeError: return None def _bookkept_attrs(inst): """Returns the dictionary of synthetic class bookkept attributes.""" return _synthetic_class(inst).bookeeping def _delete_old_attrs(inst): """Deletes the synthetic class bookkept attributes from the instance.""" if inst.__class__ == _original_class(inst): bookkept = _bookkept_attrs(inst) for attr in bookkept: try: bookkept[attr] = getattr(inst, attr) delattr(inst, attr) except AttributeError: pass def _set_synthetic(inst): """ Mutates the instance to be of the synthetic class. Takes care of storing away the bookkept attributes. """ _delete_old_attrs(inst) inst.__class__ = _synthetic_class(inst) def _reset_old_attrs(inst): """Sets the synthetic class bookkept attributes in the instance.""" if inst.__class__ == _original_class(inst): for attr, val in _bookkept_attrs(inst).items(): setattr(inst, attr, val) def _set_original(inst): """ Mutates the instance to be of the original class. Takes care of restoring the bookkept attributes. """ inst.__class__ = _original_class(inst) _reset_old_attrs(inst) def _create_synthetic_class(cls): """Creates a synthetic subclass of cls, adding a few attributes.""" # Python 2, old style classes support if not isinstance(cls, type): cls = type(cls.__name__, (cls, object), {}) # Create the subclass return type(cls.__name__, (cls,), {'XsyntheticX': True, 'bookeeping': {}}) # noinspection PyProtectedMember,PyTypeChecker def force_synthetic_class(inst): """ Derives a synthetic class from `inst` class and assigns it to `inst.__class__`. If inst already has a synthetic class in `inst._Xsynthetic_classX`, it is used instead of creating a new one. In this way any manipulation to the instance class will be local to `inst`. The original class can be retrieved by `inst._Xoriginal_classX`. The synthetic class has provision for storing old values in the original instance by providing a "bookeeping" dictionary. It can be used to provide "undo" / "redo" abilities to other monkey-patching pals. Parameters ---------- inst : object Any object we want to make its class local to. Returns ------- The synthetic class of the object (i.e. its current class, for fluency). """ if not hasattr(inst, '_Xsynthetic_classX'): inst._Xsynthetic_classX = _create_synthetic_class(type(inst)) inst._Xoriginal_classX = inst.__class__ inst.__class__ = inst._Xsynthetic_classX _set_synthetic(inst) return inst.__class__ def maybe_synthetic_class(inst): """ Attributes inst to its synthetic class if it exists, otherwise does nothing. Returns the current class for the instance for fluency. """ try: _set_synthetic(inst) except AttributeError: pass return inst.__class__ def force_original_class(inst): """ Forces an instance to use its original class. See `force_synthetic_class`. Returns the current class for the instance for fluency. """ try: _set_original(inst) except AttributeError: pass return inst.__class__ def forget_synthetic_class(inst): try: force_original_class(inst) delattr(inst, '_Xsynthetic_classX') except AttributeError: pass return inst.__class__ def _original_class_contextmanager_factory(forget): """ Generate context managers for setting the original class. If forget is False, `force_original_class` is called, simply ensuring the object is of the original class in the context. If forget is True, `forget_synthetic_class` is called, ensuring the object is of the original class in the context and temporarily removing the synthetic class attribute. This is specially useful to ensure (de)serialization does not fail because of the generated classes. """ to_original = force_original_class if not forget else forget_synthetic_class @contextmanager def cm(inst, *insts): insts = (inst,) + insts current_classes = [inst.__class__ for inst in insts] synth_classes = [_synthetic_class(inst) for inst in insts] if len(insts) == 1: yield to_original(insts[0]) else: yield tuple(to_original(inst) for inst in insts) for current_class, synth_class, inst in zip(current_classes, synth_classes, insts): if synth_class is not None: inst._Xsynthetic_classX = synth_class if current_class == _synthetic_class(inst): force_synthetic_class(inst) cm.__name__ = 'original_class' if not forget else 'no_synthetic_class' cm.__doc__ = ('Call `%s` in a context manager.' % ('force_original_class' if not forget else 'forget_synthetic_class')) return cm original_class = _original_class_contextmanager_factory(forget=False) no_synthetic_class = _original_class_contextmanager_factory(forget=True) @contextmanager def synthetic_class(inst, *insts): """Call `force_synthetic_class` in a context manager.""" insts = (inst,) + insts classes = [inst.__class__ for inst in insts] if len(insts) == 1: yield force_synthetic_class(insts[0]) else: yield tuple(force_synthetic_class(inst) for inst in insts) for cls, inst in zip(classes, insts): if cls == _original_class(inst): force_original_class(inst) # --- Descriptors class RetrievableDescriptor(object): """ An abstract descriptor which allows to retrieve itself and control setting policies. Ideally, you will need to override `_get_hook` and `set_hook` in subclasses. Parameters ---------- on_set: one of ('pass', 'fail', 'set') What to do with the descriptor when set is called. If pass: do nothing If fail: raise an exception If set: call hook method _set_hook() """ def __init__(self, on_set='pass'): super(RetrievableDescriptor, self).__init__() valid_on_set = 'pass', 'fail', 'set' if on_set not in valid_on_set: raise ValueError('on_set must be one of %r' % (valid_on_set,)) self.on_set = on_set def __get__(self, instance, owner): # Allow to access the descriptor itself via the class if instance is None: return self return self._get_hook(instance, owner) def _get_hook(self, instance, owner): """Actual implementation of __get__ when it is called on the instance, instead of on the class.""" raise NotImplementedError() def __set__(self, instance, value): if self.on_set == 'fail': raise Exception('Trying to set a read only constant') elif self.on_set == 'set': self._set_hook(instance, value) def _set_hook(self, instance, value): """Actual implementation of __set__ when `self.on_set == 'set'`.""" raise NotImplementedError() class MemberView(RetrievableDescriptor): """A descriptor that acts as a view to another object member.""" def __init__(self, viewed_object, parameter, on_set='pass'): super(MemberView, self).__init__(on_set=on_set) self.viewed_object = viewed_object self.parameter = parameter def _get_hook(self, _, owner): return getattr(self.viewed_object, self.parameter) def _set_hook(self, _, value): setattr(self.viewed_object, self.parameter, value) class ControlledSetter(RetrievableDescriptor): """A descriptor that can (dis)allow setting and always returns a private variable.""" def __init__(self, val=None, on_set='pass'): super(ControlledSetter, self).__init__(on_set=on_set) self.val = val def _get_hook(self, *_): return self.val def _set_hook(self, _, value): self.val = value # Some useful descriptors AlwaysNone = ControlledSetter(val=None, on_set='pass') StrictAlwaysNone = ControlledSetter(val=None, on_set='fail') def add_descriptors(inst, bookkeep_attrs=False, **descriptors): """ Adds descriptors to an object instance class. `inst' is forced to have a local synthetic class first, so the original class is untouched (see `force_synthetic_class`). As a side effect, inst is mutated to be of the synthetic class. Any attribute already in the instance will be deleted. They can be saved by setting `save_old` to True. In this case, they will be restablished and deleted each time `force_synthetic_class` and `force_original_class` are used to cycle through inst synthetic and original classes. Returns inst itself for fluency. Examples -------- >>> class Mango(object): ... def __init__(self, price=2): ... super(Mango, self).__init__() ... self.price = price >>> mango = Mango() >>> mango.price 2 >>> mango = add_descriptors(mango, bookkeep_attrs=True, price=ControlledSetter(5)) >>> mango.price 5 >>> mango.price = 7 >>> mango.price 5 >>> mango = add_descriptors(mango, price=ControlledSetter(5, on_set='fail')) >>> mango.price = 7 Traceback (most recent call last): ... Exception: Trying to set a read only constant >>> with sad(mango): ... print('Old original price:', mango.price) ... mango.price = 2.5 ... print('New original price:', mango.price) Old original price: 2 New original price: 2.5 >>> mango.price 5 >>> with sad(mango): ... print('Old original price:', mango.price) Old original price: 2.5 >>> with happy(mango): ... mango.price 5 """ cls = force_synthetic_class(inst) for name, descriptor in descriptors.items(): try: if bookkeep_attrs: _bookkept_attrs(inst)[name] = getattr(inst, name) delattr(inst, name) except AttributeError: pass setattr(cls, name, descriptor) return inst def class_with_descriptors(cls, **descriptors): """Creates a subclass from cls and adds some descriptors to it.""" # Derive a new class, with the given descriptors cls = _create_synthetic_class(cls) for name, descriptor in descriptors.items(): setattr(cls, name, descriptor) return cls def intercept_creation(cls, descriptors, *args, **kwargs): """Intercepts attribute access upon instance creation.""" synthetic = class_with_descriptors(cls, **descriptors) inst = synthetic(*args, **kwargs) inst._Xsynthetic_classX = synthetic inst._Xoriginal_classX = cls return inst # --- Happy/Sad API make_happy = force_synthetic_class happy = synthetic_class maybe_happy = maybe_synthetic_class make_sad = force_original_class sad = original_class make_saddest = forget_synthetic_class saddest = no_synthetic_class take_happy_pills = add_descriptors create_with_joy = intercept_creation
true
f3b355274d540c8887235e4fad86109dfe6885d0
Python
robotics-4-all/tektrain-robot-sw
/tests/test_mc23x17.py
UTF-8
838
2.578125
3
[ "MIT" ]
permissive
import unittest import time from pidevices.mcp23x17 import MCP23x17 class TestMCP23x17(unittest.TestCase): def test_get_chunk(self): device = MCP23x17() address, number = device._get_chunk_number("A_2") self.assertEqual(address, "A", "It should be A") self.assertEqual(number, 2, "It should be 2") with self.assertRaises(TypeError): device._get_chunk_number(12) with self.assertRaises(TypeError): device._get_chunk_number("A_c") with self.assertRaises(ValueError): device._get_chunk_number("A_12") with self.assertRaises(ValueError): device._get_chunk_number("C_12") with self.assertRaises(ValueError): device._get_chunk_number("a_12") if __name__ == "__main__": unittest.main()
true
bf795532c68fb7fac905aff571fa2314e110cda6
Python
Code-Wen/LeetCode_Notes
/179.largest-number.py
UTF-8
1,031
3.203125
3
[]
no_license
# # @lc app=leetcode id=179 lang=python3 # # [179] Largest Number # # https://leetcode.com/problems/largest-number/description/ # # algorithms # Medium (29.09%) # Likes: 2333 # Dislikes: 260 # Total Accepted: 205.8K # Total Submissions: 698.5K # Testcase Example: '[10,2]' # # Given a list of non negative integers, arrange them such that they form the # largest number. # # Example 1: # # # Input: [10,2] # Output: "210" # # Example 2: # # # Input: [3,30,34,5,9] # Output: "9534330" # # # Note: The result may be very large, so you need to return a string instead of # an integer. # # # @lc code=start class Solution: def largestNumber(self, nums: List[int]) -> str: nums = [str(n) for n in nums] for i in range(1, len(nums)): j = i - 1 while j >= 0 and int(nums[j+1]+nums[j]) > int(nums[j]+nums[j+1]): nums[j+1], nums[j] = nums[j], nums[j+1] j -= 1 res = ''.join(nums) return res if res[0]!='0' else '0' # @lc code=end
true
ba5eacc413a99891ff57c20905da7d7b780910a8
Python
nick0121/python_practice
/Part_2/practice_game/rocket.py
UTF-8
1,733
2.953125
3
[]
no_license
import sys import pygame as pg from setting import Settings from ship import Ship class Rocket: def __init__(self): pg.init() self.settings = Settings() self.screen = pg.display.set_mode((1200, 800)) self.screen_width = self.screen.get_rect().width self.screen_height = self.screen.get_rect().height pg.display.set_caption('Rocket') self.ship = Ship(self) def run_game(self): while True: self.check_events() self.screen.fill((230, 230, 230)) self.ship.update() self.ship.blit_me() pg.display.flip() def check_events(self): for event in pg.event.get(): if event.type == pg.QUIT: sys.exit() elif event.type == pg.KEYDOWN: if event.key == pg.K_RIGHT: self.ship.moving_right = True elif event.key == pg.K_LEFT: self.ship.moving_left = True elif event.key == pg.K_UP: self.ship.moving_up = True elif event.key == pg.K_DOWN: self.ship.moving_down = True elif event.type == pg.KEYUP: if event.key == pg.K_RIGHT: self.ship.moving_right = False elif event.key == pg.K_LEFT: self.ship.moving_left = False elif event.key == pg.K_UP: self.ship.moving_up = False elif event.key == pg.K_DOWN: self.ship.moving_down = False if __name__ == '__main__': ai = Rocket() ai.run_game()
true
06497822c9674420ce2d8344c4dc6d1d8a004db7
Python
GJAI-School/GJAI-Algorithm
/queue.py
UTF-8
924
3.265625
3
[]
no_license
# import sys # input = sys.stdin.readline def process_queue(queue_list, f_idx, r_idx, command): cmd = command[0] if cmd == "push": queue_list[r_idx] = command[1] r_idx += 1 elif cmd == "pop": if f_idx == r_idx: print(-1) else: print(queue_list[f_idx]) f_idx += 1 elif cmd == "size": print(r_idx-f_idx) elif cmd == "empty": print(int(r_idx == f_idx)) elif cmd == "front": if f_idx == r_idx: print(-1) else: print(queue_list[f_idx]) elif cmd == "back": if f_idx == r_idx: print(-1) else: print(queue_list[r_idx-1]) return [f_idx, r_idx] n = int(input()) queue_list = [0 for _ in range(n)] f_idx = 0 r_idx = 0 for _ in range(n): command = input().split() f_idx, r_idx = process_queue(queue_list, f_idx, r_idx, command)
true
37cb2b15dbd6fc6aaf55c4ebe741234df2db895b
Python
JosephLevinthal/Research-projects
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/223/users/4178/codes/1644_1055.py
UTF-8
197
3.3125
3
[]
no_license
from math import * v = float(input("Velocidade inicial: ")) a = float(input("Angulo do vetor: ")) g = float(input("Aceleracao da gravidade: ")) xx= radians(a) r = (v)**2 * (sin(2*a))/g print(r)
true
18a1542e93eada0c053812c564b227b3adc27e2f
Python
mohsr/scribe
/scribe
UTF-8
1,117
2.96875
3
[]
no_license
#!/usr/bin/env python3 import datetime import os import sys # Write a message to a given filepath and a backup path def scribe(text, path, backup_path): # Gather formatted time string time = datetime.datetime.now().strftime("%I:%M%p on %A, %B %d, %Y") text = "-----\n" + time + ":\n" + text.strip() + "\n" # Write the data and backup if requested with open(path, "a+") as file: file.write(text) print("scribe wrote to %s" % path) if backup_path: with open(backup_path, "a+") as file: file.write(text) print("scribe wrote to %s" % backup_path) if __name__ == "__main__": # If SCRIBE_PATH is not set, default to ~/scribe.txt path = os.environ.get('SCRIBE_PATH') if path is None: path = os.path.expanduser("~") + "/scribe.txt" backup_path = os.environ.get('SCRIBE_BACKUP') # Launch in interactive mode or argument mode if len(sys.argv) == 1: sys.stdout.write("> ") sys.stdout.flush() scribe(sys.stdin.read(), path, backup_path) else: scribe(sys.argv[1], path, backup_path)
true
9c16315b47e948422470420209c0cb3d885ddad8
Python
asishraz/banka_sir_notes
/ch_3/44.py
UTF-8
745
4.4375
4
[]
no_license
#wap to print the perfect numbers between A and B # A = int(input("enter the number: ")) # B = int(input("enter the number: ")) # N = int(input("enter the range: ")) ''' 6 => 1+2+3 = 6(sum of factors equals the number) ''' # fact = 0 # for i in range(1,N): # if N%i == 0: # fact += i # if fact == N: # print(str(N) + " is a perfect number") def perfect_number(a,b): fact_a = 0 fact_b = 0 for j in range(1,a): if a%j == 0: fact_a += j for k in range(1,b): if b%k == 0: fact_b += k if fact_a == a: print(str(a) + " is a perfect number") elif fact_b == b: print(str(b) + " is a perfect number") var = perfect_number(2,10) print(var)
true
67aa63d55fff88acaaf853e654ed8eda1923bf05
Python
kmad1729/python_notes
/gen_progs/are_anagram.py
UTF-8
432
3.53125
4
[ "Unlicense" ]
permissive
#!/usr/bin/env python3 from collections import Counter def are_anagrams(*args): 'return True if args are anagrams' if len(args) < 2: raise TypeError("expected 2 or more arguments") c = Counter(args[0]) return all(c == Counter(a) for a in args[1:]) arg1 = "appel apple aplep leapp".split() #print("check if {} are anagrams".format(arg1)) print("are_anagrams {} ? {} ".format(arg1, are_anagrams(*arg1)))
true
20e62a735a45f7765cfff19b8b6329875edd8616
Python
kansald006/GoogleSearch
/CSVSeabrn.py
UTF-8
798
2.984375
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df=pd.read_csv("Fulldata.csv") # print(df) # print(df.head(5)) # # plt.figure(figsize=(30,20)) # # plt.savefig("") # # sns.countplot(y=df.Nationality, palette="Set2") # plt.show() # # plt.figure(figsize=(30, 20)) # sns.countplot(x="Age", palette="Set2") a=0.5 b=1 c=1.5 d=2 e=3 df['GK_Shot-Stopper']=(a*df.GK_Positioning+b*df.GK_Diving+c*df.GK_Kicking+d*df.GK_Handling+e*df.GK_Reflexes) print(df['GK_Shot-Stopper']) sortedDF= df.sort_values('GK_Shot-Stopper') top5=sortedDF.tail(5) print(top5) X=np.array(list(top5['Name'])) Y=np.array(list(top5['GK_Shot-Stopper'])) # df1=df[['GK_Handling','GK_Diving']] # print(df1) sns.barplot(X, Y, palette="colorblind") plt.ylabel("Shot Stopper Score") plt.show()
true
0ff8a8c9c4b7a51c42534985a91581b58cb55fe7
Python
damanraaj/SummerGeeks2020SDE
/summergeeks2020assignment/way2smsApiCreateSenderId.py
UTF-8
740
2.8125
3
[ "MIT" ]
permissive
import requests import json URL = 'https://www.way2sms.com/api/v1/createSenderId' # post request def sendPostRequest(reqUrl, apiKey, secretKey, useType, senderId): req_params = { 'apikey':apiKey, 'secret':secretKey, 'usetype':useType, 'senderid':senderId } return requests.post(reqUrl, req_params) # get response print("Enter API Key : ",end="") APIKEY=input() print("Enter Secret Key : ",end="") SECRET=input() print('Enter Sender ID : ',end="") SENDERID=input() response = sendPostRequest(URL, APIKEY, SECRET, 'prod', SENDERID) """ Note:- you must provide apikey, secretkey, usetype and senderid values and then requst to api """ # print response if you want print (response.text)
true
3b072685303cecf675253495f3881b7ab391c10b
Python
Mestway/falx-artifact
/artifact/output/plot_script_1.py
UTF-8
3,456
2.921875
3
[ "BSD-2-Clause" ]
permissive
import argparse import json import os import pandas as pd from pprint import pprint import numpy as np import sys # default directories OUTPUT_DIR = os.path.join(".") MAX_TIME = 600 def parse_log_content(exp_id, data_id, lines): """parse a log file""" status = { "exp_id": exp_id, "data_id": data_id, "num_candidates": [], "table_prog": None, "vis_spec": None, "time": MAX_TIME } for i, l in enumerate(lines): if l.startswith("# candidates before getting the correct solution: "): status["num_candidates"].append(int(l.split(":")[-1].strip()) + 1) if l.startswith("# time used (s): "): status["time"] = float(l.split(":")[-1].strip()) if l.startswith("# table_prog:") and len(lines) > i + 1: #status["table_prog"] = lines[i + 1] pass if l.startswith("# vis_spec:") and len(lines) > i + 1: #status["vis_spec"] = lines[i + 1] pass status["solved"] = False if status["time"] >= MAX_TIME else True status["num_explored"] = sum(status["num_candidates"]) status.pop("num_candidates") return status def read_log_result_list(log_dir_list, titles=None): all_result = [] for i, log_dir in enumerate(log_dir_list): for fname in os.listdir(log_dir): if not fname.endswith(".log"): continue fpath = os.path.join(log_dir, fname) title = log_dir if titles is None else titles[i] with open(fpath) as f: status = parse_log_content(title, fname.split(".")[0], f.readlines()) all_result.append(status) all_result.sort(key=lambda x:x["time"]) return all_result def plot_solving_time(log_dir): log_dir_list = [log_dir] titiles = log_dir_list all_result = read_log_result_list(log_dir_list, titiles) plot_data = [] for i in [1, 10, 60, 600]: cnt = {} for r in all_result: if r["exp_id"] not in cnt: cnt[r["exp_id"]] = 0 if r["solved"] and r["time"] > 0 and r["time"] < i: cnt[r["exp_id"]] += 1 for exp_id in cnt: plot_data.append({"time": i, "cnt": cnt[exp_id], "exp_id": exp_id }) print("---") for d in plot_data: print(" # caes solved within {} second(s): {}".format(d["time"], d["cnt"])) def plot_num_candidates(log_dir): log_dir_list = [log_dir] titles = [log_dir] all_result = read_log_result_list(log_dir_list, titles) df = pd.DataFrame.from_dict(all_result) df = df[df["solved"] == True] for t in titles: cases_solved_within_top_5 = [] print("{}".format(t)) dft = df[df["exp_id"]==t] #print("# cases solved within top 5:") #print(list(dft[dft["num_explored"] <= 5]["data_id"])) print(" # cases solved solved within top 1: {}".format(len(dft[dft["num_explored"] <= 1]))) print(" # cases solved solved within top 5: {}".format(len(dft[dft["num_explored"] <= 3]))) print(" # cases solved solved within top 10: {}".format(len(dft[dft["num_explored"] <= 5]))) print(" # cases solved within time limit: {}".format(len(dft))) if __name__ == '__main__': # python plot_script_1.py exp_falx_4 exp_falx_6 exp_falx_8 num_arguments = len(sys.argv) - 1 plot_num_candidates(sys.argv[1]) plot_solving_time(sys.argv[1])
true
36f489aceeb26414dadc7591b9b3fc4c39af5e1c
Python
LoganW94/Text-Adventure
/player.py
UTF-8
480
3.4375
3
[]
no_license
class Player: __inventory = {"picture": "In the Picture there is a Boy and a Girl. They are sitting on a park bench on a sunny fall day", "sword": "A cheap sword. Probably a toy" } __credits = 0 __name = "" __location = 0 def __init__(self): self.__name = "Default" def printInventory(self): for i in self.__inventory: print(i) def printCredits(self): print("You have %d credits" % self.__credits) def loadPlayer(self): print("loading")
true
aff5f763746e306b276398d72dd19d1d1eecc5f2
Python
ppilcher22/PythonBeginnerProjects
/__pycache__/OOP-_Tutorials/OOP_Tut_1.py
UTF-8
389
3.8125
4
[]
no_license
class Person(object): def __init__(self, name, age): self.name = name self.age = age class Child(Person): def __init__(self, name, age, mother, father): super().__init__(name, age) self.mother = mother self.father = father pers1 = Person('Homer', 33) kid = Child('Charlie', 7, 'Mum', 'Papa') print(pers1.name) print(kid.father, kid.name)
true
7e5b49671f642e0e55dec89347259790c02d9895
Python
lookfiresu123/Interacive_python
/dollors_cents.py
UTF-8
1,565
3.890625
4
[]
no_license
""" # string literals s1 = "chensu's funny" s2 = 'chensu"s funny' # print s1 # print s2 # print s1 + s2 print s1[0] print len(s1) # [0th, 7th), just like [0th, 6th] print s1[0:7] print s1[:10] s1 = "0123456789" il = int(s1[:10]) print il + 1000000 """ # import module import simpleguitk as simplegui # initialize globals value = 3.12 # define helper functions which consist of event handlers # handle single quantity def convert_units(val, name): result = str(val) + " " + name if val > 1: result += "s" return result # convert xx.yy to xx dollars and yy cents def convert(val): # split into dollars and cents dollars = int(val) cents = int(round(100 * (val - dollars))) # convert to strings dollars_string = convert_units(dollars, "dollar") cents_string = convert_units(cents, "cent") # return composite string if dollars == 0 and cents == 0: return "broke!" elif dollars != 0 and cents == 0: return dollars_string elif dollars == 0 and cents != 0: return cents_string else: return dollars_string + " and " + cents_string; # define event handlers # define draw handler def draw(canvas): canvas.draw_text(convert(value), [50, 100], 20, "White") # define an input field handler def input_handler(text): global value value = float(text) # create frame frame = simplegui.create_frame("Converter", 400, 200) # register event handlers into frame frame.set_draw_handler(draw) frame.add_input("Input", input_handler, 100) # start frame frame.start()
true
6e09253ba6d311233470a1bbd07d5ebe8c1547e8
Python
Recursing/SlidingPuzzleSolver
/klotski.py
UTF-8
4,599
2.96875
3
[]
no_license
from sliding_game import SlidingGame import board_utils class Klotski(SlidingGame): def __init__( self, width=4, height=5, start_board=(2, 6, 6, 2, 3, 6, 6, 3, 2, 4, 5, 2, 3, 1, 1, 3, 1, 0, 0, 1), goals=(17, 18), ): super().__init__(width, height, start_board) self.goals = goals def move(self, board, spaces, space, target): other_space = spaces[0] if spaces[0] != space else spaces[1] assert board[other_space] == board[space] == 0 cell_type = board[target] if cell_type == 1: # small square return board_utils.swap(board, target, space), (target, other_space) ABOVE = -self.width BELOW = self.width LEFT = -1 RIGHT = +1 if cell_type == 2: # upper part of vertical rectangle if target - space == BELOW: return ( board_utils.rotate(board, space, target, target + BELOW), (target + BELOW, other_space), ) elif other_space - space == BELOW: return ( board_utils.double_swap( board, space, other_space, target, target + BELOW ), (target, target + BELOW), ) elif cell_type == 3: # lower part of vertical rectangle assert board[target + ABOVE] == 2 if target - space == ABOVE: return ( board_utils.rotate(board, space, target, target + ABOVE), (target + ABOVE, other_space), ) elif other_space - space == ABOVE: return ( board_utils.double_swap( board, space, other_space, target, target + ABOVE ), (target, target + ABOVE), ) elif cell_type == 4: # left part of horizontal rectangle assert board[target + RIGHT] == 5 if target - space == RIGHT: return ( board_utils.rotate(board, space, target, target + RIGHT), (target + RIGHT, other_space), ) elif other_space - space == RIGHT: return ( board_utils.double_swap( board, space, other_space, target, target + RIGHT ), (target, target + RIGHT), ) elif cell_type == 5: # right part of horizontal rectangle assert board[target + LEFT] == 4 if target - space == LEFT: return ( board_utils.rotate(board, space, target, target + LEFT), (target + LEFT, other_space), ) elif other_space - space == LEFT: return ( board_utils.double_swap( board, space, other_space, target, target + LEFT ), (target, target + LEFT), ) elif cell_type == 6: # any part of big square direction = target - space if ( 0 <= other_space + direction < self.width * self.height and board[other_space + direction] == 6 ): new_board = board_utils.double_swap( board, space, other_space, space + direction * 2, other_space + direction * 2, ) return new_board, (space + direction * 2, other_space + direction * 2) def is_goal(self, board): return all(board[goal] == 6 for goal in self.goals) def pretty_print(self, boards): print("-" * (self.width * 2)) ENDC = "\x1b[0m" colors = [ "", "\x1b[0;30;41m", "\x1b[0;30;42m", "\x1b[0;30;42m", "\x1b[0;30;42m", "\x1b[0;30;42m", "\x1b[1;37;43m", "\x1b[0;30;40m", ] for line_num in range(self.height): lines = [ board[line_num * self.width : (line_num + 1) * self.width] for board in boards ] print( " ".join( "".join( "{}{} {}".format(colors[value], value, ENDC) for value in line ) for line in lines ) )
true
494e06ffde26eb30016899083aa4a3101f69fbe7
Python
egyptai/Python
/calculation20210531.py
UTF-8
202
3.265625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon May 31 22:53:46 2021 @author: dms10 """ print("7+4 = ", 7+4) print("7*4 = ", 7*4) print("7/4 = ", 7/4) print("2**3 = ", 2**3) print("5%3 = ", 5%3)
true
998ad791113fc9afb6256ae1ee8eccc59c2884da
Python
bhuynh1103/breakout
/ball.py
UTF-8
1,712
3.125
3
[]
no_license
from pygame.draw import * from constants import * from random import uniform class Ball: def __init__(self): self.w = screenSize * .02 self.x = screenSize // 2 - self.w // 2 self.y = self.x + GUISize self.speed = 7.5 self.xspeed = 0 self.yspeed = -1 self.released = False def draw(self, window): rect(window, gray(150), (self.x, self.y, self.w, self.w)) if not self.released: line(window, white, (self.x + self.w // 2, self.y - self.w), (self.x + self.w // 2, self.y + self.w // 2), 1) def move(self, paddle): if not self.released: self.x = paddle.x + paddle.w // 2 - self.w // 2 self.y = paddle.y - self.w * 1.5 else: self.x += self.xspeed * self.speed self.y += self.yspeed * self.speed def edgeBounce(self): if self.x < 0 or self.x + self.w > screenSize: self.xspeed *= -1 elif self.y < GUISize: # or self.y + self.w > screenSize + GUISize: self.yspeed *= - 1 def bounce(self, xspeed): self.xspeed = xspeed self.yspeed = -1 def collide(self, other): myTop = self.y myRight = self.x + self.w myBottom = self.y + self.w myLeft = self.x otherTop = other.y otherRight = other.x + other.w otherBottom = other.y + other.h otherLeft = other.x if myTop > otherBottom: return False elif myRight < otherLeft: return False elif myBottom < otherTop: return False elif myLeft > otherRight: return False else: return True
true
614cdf6267889af4860b8dd5201743c1ad92dbb5
Python
K-Phoen/runner
/scripts/runner-edit
UTF-8
1,090
2.6875
3
[ "MIT" ]
permissive
#!/usr/bin/env python import argparse from runner import dump_to_file, parse_from_file, TimeEditor def configure_common_args(parser): parser.add_argument( '-i', '--input', type=str, required=True, help='File to read from.', ) parser.add_argument( '-o', '--output', type=str, required=True, help='File to write the output to.', ) def parse_args(): parser = argparse.ArgumentParser( description='Edit FIT and TCX files' ) # add editors parsers subparsers = parser.add_subparsers() # time editor time_parser = subparsers.add_parser('time', help='Edit time entries') configure_common_args(time_parser) TimeEditor.configure_args_parser(time_parser) return parser.parse_args() def main(): options = parse_args() editor = options.editor() # read the original file activity = parse_from_file(options.input) # edit the activity editor.edit(activity, options) # write the edited activity dump_to_file(activity, options.output) if __name__ == '__main__': main()
true
44f23ea333e54c7dd788deb063a2a3d380180972
Python
mariuscmorar/AutomationScripts
/IP_Processing/validateIP.py
UTF-8
192
2.953125
3
[]
no_license
import socket original_list = [ip.strip() for ip in open('ip_list.csv', 'r').readlines()] i=0 for a in original_list: i+=1 try: socket.inet_aton(a) except socket.error: print(i," ",a)
true
e168de7292c77ac1acaf49d219555613f8fe7188
Python
SushilPudke/PythonTest
/demopattern.py
UTF-8
95
2.828125
3
[]
no_license
# demo pattern for r in range(6) : for c in range(r): print(r,end=" ") print()
true
9e05a85e6fcd808ed99bb3b9ff30e71ef4741191
Python
thc2125/csclassifier
/test/test_utils.py
UTF-8
3,122
2.765625
3
[]
no_license
#!/usr/bin/python3 import unittest import csv import numpy as np import random import utils from collections import defaultdict from collections import Counter from pathlib import Path word_col = 1 dl = ',' class UtilsTestCase(unittest.TestCase): def setUp(self): self.corpora_filenames = ['Corpus_corpus_de+ar.csv', 'Corpus_corpus_fr+ar.csv'] pass def tearDown(self): pass ''' def test_randomly_read_CS_Langs_Corpus_comb(self): train_corpus = Corpus_CS_Langs(train=True) test_corpus = Corpus_CS_Langs() comb_corpus = Corpus_CS_Langs() for corpus in self.corpora_filepaths: utils.randomly_read_Corpus_CS_Langs(corpus, train_corpus, test_corpus) temp_corpus = Corpus_CS_Langs() temp_corpus.read_corpus(corpus, dl=',') comb_corpus += temp_corpus self.assertEqual(len(train_corpus.sentences) + len(test_corpus.sentences), len(comb_corpus.sentences)) def test_randomly_read_CS_Langs_Corpus_split(self): train_corpus = Corpus_CS_Langs(train=True) test_corpus = Corpus_CS_Langs() for corpus in self.corpora_filepaths: utils.randomly_read_Corpus_CS_Langs(corpus, train_corpus, test_corpus) self.assertAlmostEqual(len(train_corpus.sentences) , 9, delta=2) self.assertAlmostEqual(len(test_corpus.sentences) , 1, delta=2) ''' def test_deduce_cs_langs_str(self): expected_langs = ('en', 'es') test_langs = utils.deduce_cs_langs('test_corpus_name_en+es') self.assertEqual(expected_langs, test_langs) def test_deduce_cs_langs_filenames0(self): expected_langs = ('de','ar') test_langs = utils.deduce_cs_langs(self.corpora_filenames[0]) self.assertEqual(expected_langs, test_langs) def test_deduce_cs_langs_filenames1(self): expected_langs = ('fr','ar') test_langs = utils.deduce_cs_langs(self.corpora_filenames[1]) self.assertEqual(expected_langs, test_langs) ''' def test_randomly_split_corpus_len_sentences(self): train_corpus, test_corpus = self.corpus1.randomly_split_corpus() self.assertEqual(len(self.corpus1.sentences), len(train_corpus.sentences) + len(test_corpus.sentences)) def test_randomly_split_corpus_len_labels(self): train_corpus, test_corpus = self.corpus1.randomly_split_corpus() print(len(train_corpus.labels)) print(len(test_corpus.labels)) self.assertEqual(len(self.corpus1.labels), len(train_corpus.labels) + len(test_corpus.labels)) def test_randomly_split_corpus_reconstitute_labels(self): train_corpus, test_corpus = self.corpus1.randomly_split_corpus() self.assertEqual(sorted(self.corpus1.labels), sorted(train_corpus.labels + test_corpus.labels)) def test_randomly_split_corpus_reconstitute_sentences(self): train_corpus, test_corpus = self.corpus1.randomly_split_corpus() self.assertEqual(sorted(self.corpus1.sentences), sorted(train_corpus.sentences + test_corpus.sentences)) '''
true
fffbd0a25b0fa49b398b67ad3d9b820afcb4ad22
Python
cfc424/NGS
/binTranscriptome.py
UTF-8
4,295
2.53125
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- #from __future__ import division, with_statement ''' Copyright 2013, 陈同 (chentong_biology@163.com). =========================================================== ''' __author__ = 'chentong & ct586[9]' __author_email__ = 'chentong_biology@163.com' #========================================================= ''' Functionla description This is designed to bin transcriptome for coverage analysis. Input file: chr18 36526168 36526187 NM_001081365_31.UTR5 0 + chr18 36552962 36553024 NM_001081365_31.UTR3 0 + chr17 26012444 26012474 NM_026686_32.UTR5 0 + chr17 26013942 26014108 NM_026686_32.UTR3 0 + chr18 36526187 36526395 NM_001081365_31.Coding_exon.1 0 + chr18 36552849 36552962 NM_001081365_31.Coding_exon.2 0 + chr17 26012474 26012671 NM_026686_32.Coding_exon.1 0 + chr17 26012904 26013067 NM_026686_32.Coding_exon.2 0 + chr17 26013164 26013224 NM_026686_32.Coding_exon.3 0 + chr17 26013439 26013507 NM_026686_32.Coding_exon.4 0 + chr17 26013605 26013684 NM_026686_32.Coding_exon.5 0 + chr17 26013894 26013942 NM_026686_32.Coding_exon.6 0 + Output file: 1. ''' import sys import os from time import localtime, strftime timeformat = "%Y-%m-%d %H:%M:%S" from optparse import OptionParser as OP def cmdparameter(argv): if len(argv) == 1: cmd = 'python ' + argv[0] + ' -h' os.system(cmd) sys.exit(1) desc = "" usages = "%prog -i file" parser = OP(usage=usages) parser.add_option("-i", "--input-file", dest="filein", metavar="FILEIN", help="Usually a bed file containing UTR5, \ Coding exon or UTR3.") parser.add_option("-l", "--length-of-bin", dest="len_bin", default=25, metavar=25, help="The length of bins you expected. \ Not exactly but roughly the numbner given here. The program will pick \ a suitable number to avoid very small length for last bin.") parser.add_option("-v", "--verbose", dest="verbose", default=0, help="Show process information") parser.add_option("-d", "--debug", dest="debug", default=False, help="Debug the program") (options, args) = parser.parse_args(argv[1:]) assert options.filein != None, "A filename needed for -i" return (options, args) #-------------------------------------------------------------------- def main(): options, args = cmdparameter(sys.argv) #----------------------------------- file = options.filein verbose = options.verbose debug = options.debug len_bin = int(options.len_bin) #----------------------------------- if file == '-': fh = sys.stdin else: fh = open(file) #-------------------------------- for line in fh: lineL = line.split() start = int(lineL[1]) end = int(lineL[2]) name = lineL[3] len_r = end - start time = len_r / len_bin #for regions with length smaller than expected bin if time == 0: lineL[3] = '__'.join([name, '1', '1']) print '\t'.join(lineL) continue real_len = len_r / time for i in range(time): lineL[1] = str(start + i * real_len) if i+1 == time: lineL[2] = str(end) else: lineL[2] = str(start + (i+1) * real_len) lineL[3] = '__'.join([name, str(time), str(i+1)]) print '\t'.join(lineL) #----------The last one--------------- #-------------END reading file---------- #----close file handle for files----- if file != '-': fh.close() #-----------end close fh----------- if verbose: print >>sys.stderr,\ "--Successful %s" % strftime(timeformat, localtime()) if __name__ == '__main__': startTime = strftime(timeformat, localtime()) main() endTime = strftime(timeformat, localtime()) fh = open('python.log', 'a') print >>fh, "%s\n\tRun time : %s - %s " % \ (' '.join(sys.argv), startTime, endTime) fh.close()
true
75af6f3bc0a69a6276ed0148b693d992758a7d5c
Python
sm7eca/dmr-dreambox
/eim-service/docker/eim-core/src/db/mongodb.py
UTF-8
8,681
2.578125
3
[]
no_license
import os import sys import re from urllib.parse import quote_plus from pymongo import MongoClient from pymongo.database import Database from pymongo.errors import ConnectionFailure from pymongo.collection import Collection from common.logger import get_logger from common.definitions import Repeater, RepeaterItem, DmrUser from typing import List, Optional, Dict from pydantic import BaseModel from datetime import datetime logger = get_logger("mongodb", log_level=os.getenv("EIM_LOG_LEVEL", "INFO")) class MongoDbError(BaseException): def __init__(self, msg): self.msg = msg class MongoDB: def __init__(self, db_name: str = "eim"): """Instantiate a DB entity""" self._repeater_log = {} if "EIM_DB_USER" not in os.environ.keys(): raise MongoDbError("missing ENV variable EIM_DB_USER") if "EIM_DB_PASSWORD" not in os.environ.keys(): raise MongoDbError("missing ENV variable EIM_DB_PASSWORD") if "EIM_DB_HOST" not in os.environ.keys(): raise MongoDbError("missing ENV variable EIM_DB_HOST") if "EIM_DB_PORT" not in os.environ.keys(): raise MongoDbError("missing ENV variable EIM_DB_PORT") user = quote_plus(os.getenv("EIM_DB_USER")) password = quote_plus(os.getenv("EIM_DB_PASSWORD")) host = os.getenv("EIM_DB_HOST") port = os.getenv("EIM_DB_PORT") uri = f"mongodb://{user}:{password}@{host}:{port}/?authSource=admin" client = MongoClient(uri) # ensure that we have connectivity try: client.admin.command("ismaster") except ConnectionFailure as ex: sys.exit(f"Failed to connect to MongoDB at {host}:{port} => {ex}") logger.info(f"successfully connected to MongoDB at {host}:{port}") self._db = Database(client, name=db_name) @staticmethod def _translate_db_2_repeater(db_entry: Dict) -> Repeater: r_object = { "dmr_id": db_entry["repeaterid"], "tx": float(db_entry["tx"]) * 1e6, "rx": float(db_entry["rx"]) * 1e6, "cc": int(db_entry["colorcode"]), "max_ts": 0, "name": db_entry["callsign"], "location": f"{db_entry['lng']},{db_entry['lat']}", "city": db_entry.get("city", "unknown") or "unknown", "num_tg": 0 } r = Repeater(**r_object) logger.debug(f"item translated: {repr(r)}") return r @staticmethod def _translate_db_2_repeater_item(db_entry: Dict) -> RepeaterItem: """ Translate into a shorter Repeater Item, the data can be reused in order to make additional calls retrieving detailed information using the unique DMR ID. """ ri_object = { "dmr_id": db_entry["repeaterid"], "tx": float(db_entry["tx"]) * 1e6, "rx": float(db_entry["rx"]) * 1e6, "cc": int(db_entry["colorcode"]), "name": db_entry["callsign"], "location": f"{db_entry['lng']},{db_entry['lat']}", "city": db_entry.get("city", "unknown") or "unknown" } ri = RepeaterItem(**ri_object) logger.debug(f"RepeaterItem translated: {repr(ri)}") return ri @staticmethod def _translate_user_2_dmr_user(user_entry: Dict) -> DmrUser: """ Translate a user object received from DB into DmrUser """ user = DmrUser(**user_entry) return user def get_repeater_by_master(self, master_id: int) -> Optional[List[RepeaterItem]]: """ Return a list of Repeater objects for a given master ID. :param master_id: DMR master ID :return: List[Repeater] """ col = self._db.get_collection("repeater") timestamp_1week_ago = int(datetime.now().timestamp()) - 604800 # try to find all repeater (status == 3) for a given master, updated 24 hours ago query = { "lastKnownMaster": str(master_id), "status": "3", "last_updated_ts": {"$gt": timestamp_1week_ago} } docs = col.find(filter=query, limit=0).sort("callsign") logger.debug(f"received {docs.count()} repeater from DB") list_repeater = [self._translate_db_2_repeater_item(record) for record in docs] return list_repeater def get_repeater_by_callsign(self, call_sign) -> Optional[List[RepeaterItem]]: col = self._db.get_collection("repeater") timestamp_1week_ago = int(datetime.now().timestamp()) - 604800 query = { "status": "3", "callsign": {"$regex": re.escape(call_sign)}, "last_updated_ts": {"$gt": timestamp_1week_ago} } docs = col.find(filter=query, limit=0).sort("callsign") logger.debug(f"received {docs.count()} repeater for callsign={call_sign} from DB") list_repeater = [self._translate_db_2_repeater_item(record) for record in docs] return list_repeater def get_repeater_by_dmrid(self, dmr_id: int) -> Optional[List[Repeater]]: """ Here we are looking for a detailed list for each repeater, including talk groups. The talk groups are fetched using additional request towards the RestAPI and cached in the database """ col = self._db.get_collection("repeater") # we are looking for both repeater ("3") and hotspots ("4") query = { "status": {"$in": ["3", "4"]}, "repeaterid": str(dmr_id) } logger.debug(f"query: {repr(query)}") docs = col.find(filter=query, limit=0) logger.debug(f"received {docs.count()} repeater for repeater_id={dmr_id} from DB") list_repeater = [self._translate_db_2_repeater(record) for record in docs] return list_repeater def get_hotspot(self, call_sign: str) -> Optional[List[RepeaterItem]]: """ Return a list of Repeater for a given callsign - filter for status == 4 - no filter for updated recently """ logger.debug(f"==> Received hotspot request, callsign: {call_sign}") timestamp_24_hours_ago = int(datetime.now().timestamp()) - 86400 col = self._db.get_collection("repeater") query = { "callsign": call_sign, "status": "4" } docs = col.find(filter=query, limit=0).sort("repeaterid") logger.debug(f"received {docs.count()} hotspots from DB") list_hotspots = [] for record in docs: list_hotspots.append(self._translate_db_2_repeater_item(record)) return list_hotspots def count_docs(self, collection: str) -> int: """ Return the number of documents for a given collection - throw an exception if collection doesn't exist """ if collection not in self._db.list_collection_names(): return 0 col: Collection = self._db.get_collection(collection) num_docs = col.count_documents(filter={}) return num_docs def get_repeater_by_location(self, long: float, lat: float, distance_km: int) -> Optional[List[RepeaterItem]]: """ Based on valid location data received from BM, query for 2d near-maxDistance """ col: Collection = self._db.get_collection("repeater") timestamp_1week_ago = int(datetime.now().timestamp()) - 604800 query = { "status": "3", "loc_valid": True, "loc": {"$near": {"$geometry": {"type": "Point", "coordinates": [long, lat]}, "$maxDistance": distance_km * 1000}}, "last_updated_ts": {"$gt": timestamp_1week_ago} } docs = col.find(filter=query, limit=0) logger.debug(f"received {docs.count()} repeater for {[long, lat]}, distance: {distance_km} km") list_repeater = [] for record in docs: list_repeater.append(self._translate_db_2_repeater_item(record)) return list_repeater def get_user_by_dmrid(self, dmr_id: int) -> Optional[DmrUser]: logger.debug(f"find user for ID: {dmr_id}") col: Collection = self._db.get_collection("dmr_user") num_users: int = col.count_documents(filter={}) logger.debug(f"found {num_users} in collection {col.name}") query = { "dmr_id": dmr_id } doc = col.find_one(filter=query) if not doc: logger.debug(f"no doc found for {dmr_id}") return None else: return self._translate_user_2_dmr_user(doc)
true
7474799f69aaf16b33205db0333b97449d294140
Python
lianxiaolei/Ginormica
/tech/algo/arrays/image_rotation.py
UTF-8
535
3.046875
3
[]
no_license
#!/usr/bin/python # -*- coding: utf-8 -*- def image_rotation(a): n = len(a) for i in range(n - 1): for j in range(i + 1, n): tmp = a[i, j] a[i, j] = a[j, i] a[j, i] = tmp for i in range(n): for j in range(n / 2): tmp = a[i, j] a[i, j] = a[i, n - 1 - j] a[i, n - 1 - j] = tmp return a rotate_image_awsome = lambda a: zip(*a[::-1]) if __name__ == '__main__': import numpy as np a = np.linspace(1, 16, 16).reshape(4, 4)
true
9d6d6073e3abfcb9887cbb2d0c6fa138aa0057ad
Python
justinorjt/bnb-blog-flask
/scrapeKitCollections.py
UTF-8
1,144
2.609375
3
[]
no_license
# Pull in Kit Collections from bs4 import BeautifulSoup as bsoup from html.parser import HTMLParser import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import selenium def getKits(): config = selenium.webdriver.ChromeOptions() config.add_argument('headless') browser = webdriver.Chrome(options=config) theUrl = 'https://kit.co/rakidzich' browser.get(theUrl) # get the html and the link # wait = browser.execute_script("window.scrollTo(0, document.body.scrollHeight);var lenOfPage=document.body.scrollHeight;return document.body.innerHTML;") # time.sleep(.7) try: WebDriverWait(browser, 5).until( EC.presence_of_element_located((By.CSS_SELECTOR, "collection-card")) ) page = browser.page_source finally: browser.quit() soup = bsoup(page, 'html.parser') cards = soup.find_all('a', attrs={'class':'collection-card'}) kits = [] for card in cards: link = card.get('href') kits.append({"link":link}) # print (kits) return kits # getKits()
true
f5ec3c3722f5b8869b42a41613ebbcb2bd0001d6
Python
abcapo/um-programacion-i-2020
/58089-CAPO-AGUSTINA/TP1/8.py
UTF-8
545
3.84375
4
[]
no_license
class Curso(): def __init__(self): self.materias = ["Matemáticas", "Física", "Química", "Historia", "Lengua"] self.notas = [] def ingreso(self): for i in range(5): print("Ingrese la nota de "+self.materias[i]+":") self.notas.append(input()) return(self.notas) def imprimir(self): self.ingreso() for j in range(5): print(self.materias[j] + self.notas[j]) def main(): N = Curso() N.imprimir() if __name__ == "__main__": main()
true
74403ae7661fe5f815f6209a4fd6a4763b7331c5
Python
guidolingip1/Project-Euler
/4.py
UTF-8
476
3.671875
4
[]
no_license
#Find the largest palindrome made from the product of two 3-digit numbers. def reverte(numero): revertido = 0 while (numero > 0): resto = numero % 10 revertido = (revertido * 10) + resto numero = numero // 10 return revertido maior = 0 for i in range (999,1,-1): for j in range (999,1,-1): soma = i*j x = soma if reverte(soma) == soma: if soma > maior: maior = soma print(maior)
true
218574330e73907e99908832de3b3e37cad9424f
Python
Nam-Seung-Woo/tensorflow_practice
/준표문제.py
UTF-8
520
2.9375
3
[]
no_license
import tensorflow as tf x_value=[1,2,3,4,5,6,7,8,9,10] y_value=[3,5,7,9,11,13,15,17,19,21] W=tf.Variable(tf.random_normal([1])) b=tf.Variable(tf.random_normal([1])) hypothesis=x_value*W+b cost=tf.reduce_mean(tf.square(hypothesis-y_value)) optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01) train=optimizer.minimize(cost) sess=tf.Session() sess.run(tf.global_variables_initializer()) for i in range(20001): sess.run(train) if i%100==0: print(i, sess.run(cost), sess.run(W), sess.run(b))
true