blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
a265fa9fd39d7e2927ee0298e051f12a840d9b54
Python
galvarez6/datamining
/assignment1/understanding python /checker.py
UTF-8
2,792
3.703125
4
[]
no_license
import pandas as pd import numpy as np from sklearn.neighbors import NearestNeighbors # Create a dataframe from csv df = pd.read_csv('practice.txt', delimiter='\t') myData = df.values def minMaxVec(vec1,vec2): #for jaccard minimums=[] maximums=[] for i in range(0, len(vec1)): minimums.append(min( vec1[i] , vec2[i])) for i in range(0, len(vec1)): maximums.append(max( vec1[i] , vec2[i])) return minimums, maximums def euclid(vec1, vec2): ### Write your code here and return an appropriate value euclidean_dist = np.sqrt(np.sum((vec1-vec2)**2)) return euclidean_dist #return None def manhattan_distance(vec1, vec2): ### Write your code here and return an appropriate value man_dist = np.sum(abs(vec1-vec2)) return man_dist #return None def cosine(vec1, vec2): ### Write your code here and return an appropriate value numerator = np.dot(vec1 , vec2) denominator = np.sqrt(sum(vec1**2))* np.sqrt(sum(vec2**2)) cosinesim = numerator/denominator return cosinesim #return None def jaccard(vec1, vec2): ### Write your code here and return an appropriate value minimums, maximums = minMaxVec(vec1,vec2) jaccard = sum(minimums)/sum(maximums); return jaccard #return None def tanimoto(vec1, vec2): ### Write your code here and return an appropriate value numerator = np.dot( vec1 , vec2) denominator = (sum(vec1**2)+sum(vec2**2))-numerator tanimoto = numerator/denominator return tanimoto #return None def sortKey(item): return item[1] def knearest(vec, data, k, method): # Write code to return the indices of k nearest # neighbors of vec in data using method result = [] for row in range (0, len(data)): distance = euclid(vec, data[row]) result.append([row, distance]) sortedResult = sorted(result, key=sortKey) indicies = [] if k<len(data): for r in range(0, k): indicies.append(sortedResult[r][0]) else: indicies = [i[0] for i in sortedResult] return indicies #return None print("Euclidean distance between row 0 and 1: ", euclid(myData[0], myData[1])) print("Manhattan distance between row 0 and 1: ", manhattan_distance(myData[0], myData[1])) print("Cosine similarity between row 0 and 1: ", cosine(myData[0], myData[1])) print("Jaccard similarity between row 0 and 1: ", jaccard(myData[0], myData[1])) print("Tanimoto similarity between row 0 and 1: ", tanimoto(myData[0], myData[1])) print("***************************************") print("knn of row 100 using euclidean distance: ", knearest(myData[100], myData, k=5, method = "euclidean")) #print("knn of row 100 using manhattan distance: ", knearest(myData[100], myData, k=5, method = "manhattan"))
true
99a1d49e425ee486d3bd893841efc2732d935925
Python
Ursinus-IDS301-S2020/Week10Class
/NearestNeighbors2D_Naive.py
UTF-8
1,123
3.859375
4
[ "Apache-2.0" ]
permissive
""" The purpose of this file is to demonstrate how one might write naive code to do k-nearest neighbors by manually computing the distances from a point to a collection of points and then using argsort to find the indices of the closest points in the collection """ import matplotlib.pyplot as plt import numpy as np # Make 2 clusters. The first cluster is in the first # 100 rows, the second cluster is in the next 100 rows # centered at an offset of (10, 10) N = 100 X = np.random.randn(N*2, 2) X[100::, :] += np.array([10, 10]) q = np.array([3, 3]) # Query point # How far is the query point from every other point distances = np.zeros(N*2) for i in range(N*2): x = X[i, :] #Point under consideration is in the ith row of X distances[i] = np.sqrt(np.sum((x-q)**2)) # Find the nearest neighbor indices by using argsort n_neighbors = 10 neighbors = np.argsort(distances)[0:n_neighbors] plt.figure(figsize=(8,8)) plt.scatter(X[:, 0], X[:, 1]) plt.scatter(q[0], q[0], 40, marker='x') # Plot ten nearest neighbors print(neighbors) plt.scatter(X[neighbors, 0], X[neighbors, 1], 100, marker='*') plt.show()
true
9268c7c294a7c6e19210662d9ac256e49242e202
Python
HelloImKevo/PyAi-SelfDrivingCar
/src/app_logging.py
UTF-8
1,474
2.953125
3
[]
no_license
""" Logger object ============= Different logging levels are available: debug, info, warning, error and critical. """ import logging _level_to_tag_map = { logging.CRITICAL: 'E', logging.ERROR: 'E', logging.WARNING: 'W', logging.INFO: 'I', logging.DEBUG: 'D', logging.NOTSET: 'V', } class ConsoleFormatter(logging.Formatter): def __init__(self, message_format, timestamp_format): logging.Formatter.__init__(self, fmt=message_format, datefmt=timestamp_format) def format(self, record: logging.LogRecord): tag: str = _get_tag(record.levelno) record.levelname = tag return logging.Formatter.format(self, record) def _get_tag(log_level) -> str: if log_level in _level_to_tag_map: return _level_to_tag_map.get(log_level) else: return _level_to_tag_map.get(logging.NOTSET) def get_logger(logger_name: str) -> logging.Logger: logger = logging.getLogger(name=logger_name) logger.setLevel(level=logging.DEBUG) console_handler = logging.StreamHandler() console_handler.setLevel(level=logging.DEBUG) # 06-03 14:38:23.783/I: app.py:13 - Initializing app... formatter = ConsoleFormatter('%(asctime)s.%(msecs)d/%(levelname)s: %(filename)s:%(lineno)d - %(message)s', '%m-%d %H:%M:%S') console_handler.setFormatter(formatter) logger.addHandler(logging.NullHandler()) logger.addHandler(console_handler) return logger
true
902d87fe72769b0a52a76704ba4e94e71973ec2f
Python
ZF-1000/Python_Algos
/Урок 2. Практическое задание/task_3/task_3_1.py
UTF-8
1,285
4.15625
4
[]
no_license
""" 3. Сформировать из введенного числа обратное по порядку входящих в него цифр и вывести на экран. Например, если введено число 3486, то надо вывести число 6843. Подсказка: Используйте арифм операции для формирования числа, обратного введенному Пример: Введите число: 123 Перевернутое число: 321 ЗДЕСЬ ДОЛЖНА БЫТЬ РЕАЛИЗАЦИЯ ЧЕРЕЗ ЦИКЛ """ while True: try: NUMBER = int(input('Введите число: ')) INVERTED_NUMBER = 0 while NUMBER > 0: DIGIT = NUMBER % 10 # последняя цифра числа NUMBER = NUMBER // 10 # убираем последнюю цифру INVERTED_NUMBER = INVERTED_NUMBER * 10 # увеличиваем разядность INVERTED_NUMBER = INVERTED_NUMBER + DIGIT # добавляем очередную цифру print(f'Перевёрнутое число: {INVERTED_NUMBER}') break except ValueError: print('Некорректно введены данные!\n')
true
166cd9cd8ec24cf28414672e56d4559e2d6779c9
Python
multipitch/prog1
/squareroot.py
UTF-8
6,968
3.921875
4
[]
no_license
# squareroot.py # # contains two functions that iterate over the following function: # x_k = (1/2) * [ x_(k-1) + a / x_(k-1) ] # the first function, fsqrt, uses floating point arithmetic # the second function, dsqrt, uses specified-precision decimal arithmetic # # additionally, results using the above functions are collected and graphed # using matplotlib # # Author: Sean Tully # Date: 23 Oct 2016 # Rev: 1.0 import matplotlib.pyplot as plt import timeit from decimal import * import sys from math import log # set maximum number of iterations kmax = 100 # note there will therefore be a maximum of (kmax + 1) results, i.e. the # original guess is x_0 and the maximum final solution is x_kmax def fsqrt(a, kmax, eps=0): ''' Finds square root of a number using Babylonian Method and floating point arithmetic Keyword Arguments: a (number): number for which square root is required kmax (int) : maximum number of iterations eps (number): user-specified epsilon (default = 0) Returns: results (list) : the set of results after each iteration (including initial guess) (list of floats) conv (bool) : True if converged, False if not ''' eps_m = sys.float_info.epsilon # get value for machine epsilon xold = float(a) # take 'a' as first guess, cast as float xnew = float('nan') # initialise xnew as float, value unimportant results = [xold] # record first (k = 0) guess conv = False for k in range(1,kmax+1): # ensure max no. of iterations isn't exceeded xnew = 0.5 * (xold + a / xold) # Babylonian method results.append(xnew) # record new guess if abs(xnew - xold) <= eps + 4.0*eps_m*abs(xnew): # test for convergence conv = True # if convergence test met, set conv to true break # and break out of iterations else: # if convergence test not met: xold = xnew # update xold and iterate return results, conv # return results and conversion status def dsqrt(a, kmax, prec=getcontext().prec): ''' Finds square root of a number using Babylonian Method and fixed-precision decimal arithmetic Keyword Arguments: a (number): number for which square root is required kmax (int): maximum number of iterations prec (int): decimal precision (defaults to existing setting) Returns: results (list) : the set of results after each iteration (including initial guess) (list of Decimal objects) conv (bool) : True if converged, False if not ''' getcontext().prec = prec # set precision of Decimal objects xold = Decimal(a) # take 'a' as first guess, cast as Decimal xnew = Decimal('NaN') # initialise xnew as Decimal, value unimportant results = [xold] # record first guess conv = False for k in range(1,kmax+1): # ensure max no. of iterations isn't exceeded xnew = (xold + a / xold) / Decimal(2) # Babylonian method results.append(xnew) # record new guess if Decimal.compare(xnew,xold) == 0: # test for convergence conv = True # if convergence test met, set conv to true break # and break out of iterations else: # if convergence test not met: xold = xnew # update xold and iterate return results, conv # return results and conversion status # set a large value for 'a' a = 268435456 # (2**14)**2 xknown = 16384 # 2**14 # run floating point solver # fx = list of outputs after each iteration # fconv: True if converged, False if not fx, fconv = fsqrt(a, kmax) # run decimal solver for a range of precisions # dx = list of (list of outputs after each iteration) for range of precisions # dconv = list of convergence test outputs for each precision dx = [] dconv = [] p = [4,28,100,200,300,400] # specify precisions to use in runs for prec in p: # loop for a range of precisions spam, eggs = dsqrt(a, kmax, prec) # run decimal solver dx.append(spam) dconv.append(eggs) # plot convergence for floating point and various fixed-precision decimal runs # (plot of results as a function of number of iterations for various precisions) s = ['.b-','vg-','*r-','+c-','xm-','1y-'] # styles to use plt.plot(range(len(fx)), fx, 'ok-', label=r'$float$') # plot float results for i in range(len(p)): # plot decimal results plt.plot(range(len(dx[i])), dx[i], s[i], label=(p[i])) plt.xlabel(r'$k$',fontsize=16) # add labels plt.ylabel(r'$x_k$',fontsize=16) plt.yscale('log') plt.tick_params(axis='both', which='major', labelsize=10) # size tick labels plt.legend(title=r'$precision$',fontsize=12) plt.plot() # create plot plt.savefig("fig4.png", format="png") # export as pdf plt.close('all') # plot convergence for floating point and various fixed-precision decimal runs # (plot of number of iterations to achieve convergence as a function of # precision) kconvs = [] for x in dx: kconvs.append(len(x)-1) #plt.plot(p, kconvs, 'ob-', label=r'$decimal$') plt.plot([0,max(p)],[len(fx)-1,len(fx)-1], ',k--', label=r'$float$') plt.scatter(p, kconvs, label=r'$decimal$') plt.axis([0, max(p), 0, max(kconvs)+1]) plt.xlabel(r'$p$',fontsize=16) # add labels plt.ylabel(r'$k$',fontsize=16) plt.tick_params(axis='both', which='major', labelsize=10) # size tick labels plt.legend(title=r'$type$',fontsize=12, loc=4) plt.plot() # create plot plt.savefig("fig5.png", format="png") # export as pdf plt.close('all') # calculate relative errors fe = [] for i in range(len(fx)): fe.append(abs(fx[i] - xknown) / xknown) de = [] for i in range(len(dx)): de.append([]) for j in range(len(dx[i])): de[i].append(abs(dx[i][j] - xknown) / xknown) # plot some relative errors s = ['.b-','vg-','*r-','+c-','xm-','1y-'] # styles to use plt.plot(range(len(fe)), fe, 'ok-', label=r'$float$') # plot float results for i in range(len(p)): # plot decimal results plt.plot(range(len(de[i])), de[i], s[i], label=(p[i])) plt.xlabel(r'$k$',fontsize=16) # add labels plt.ylabel('relative error',fontsize=16) plt.yscale('log') plt.tick_params(axis='both', which='major', labelsize=10) # size tick labels plt.legend(title=r'$precision$',fontsize=12) plt.plot() # create plot plt.savefig("fig6.png", format="png") # export as pdf plt.close('all')
true
1929ba02461b965e22b433a59d73c9e78cea459a
Python
ArasBozk/Shortest-Common-Superstring
/experiment_run_time.py
UTF-8
8,596
2.9375
3
[]
no_license
import time import random import math from matplotlib import pyplot as plt from tabulate import tabulate run_size=100 def standardDeviation(results): sum = 0 mean = 0 standard_deviation = 0 for i in range(len(results)): sum += results[i] mean = sum / len(results) for j in range(len(results)): standard_deviation += pow(results[j] - mean, 2) standard_deviation = math.sqrt(standard_deviation / len(results)) return standard_deviation def standardError(standard_deviation, n): return standard_deviation / math.sqrt(n) def runningTime(running_times): totalTime = 0 for i in range(len(running_times)): totalTime += running_times[i] standard_dev = standardDeviation(running_times) N = len(running_times) m = totalTime / N t_value_90 = 1.660 t_value_95 = 1.984 standard_error = standardError(standard_dev, N) upper_mean_90 = m + t_value_90 * standard_error lower_mean_90 = m - t_value_90 * standard_error upper_mean_95 = m + t_value_95 * standard_error lower_mean_95 = m - t_value_95 * standard_error return [m, standard_dev, standard_error, lower_mean_90, upper_mean_90, lower_mean_95, upper_mean_95] def Compress2strings(ind, edges): a = edges[ind][0] b = edges[ind][1] i = len(edges) - 1 while i != -1: if edges[i][0] == a: # Remove edges start with a del edges[i] elif edges[i][1] == b: # Remove edges end with b del edges[i] elif edges[i][0] == b: # Edges which which b goes are now goes from X if edges[i][1] == a: del edges[i] else: edges[i][0] = a i = i - 1 # Edges which goes to a, now goes to this new X return def overlap(a, b): # return length of longest suffix of a which matches prefix of w start = 0 while True: start = a.find(b[0], start) if start == -1: return 0 if b.startswith(a[start:]): return len(a) - start start += 1 from itertools import permutations def FindAllOverlaps(Set): Edges = [] for a, b in permutations(range(len(Set)), 2): W = overlap(Set[a], Set[b]) if W > 0: Edges.append([a, b, W]) return Edges def SCSS(Edges): # GREEDY Total_Path_Weight = 0 while (len(Edges) != 0): # Find Longest Weight & its index maxWeight = 0 index = -1 for E in range(len(Edges)): if Edges[E][2] > maxWeight: maxWeight = Edges[E][2] index = E Total_Path_Weight += maxWeight Compress2strings(index, Edges) return Total_Path_Weight def Eliminate_Substr(SS): i = 0 while i != len(SS): t = i + 1 while t != len(SS): if (SS[t] in SS[i]): del SS[t] elif (SS[i] in SS[t]): del SS[i] i -= 1 break else: t += 1 i += 1 return def Check(Str_Set, k): Eliminate_Substr(Str_Set) Total_Len = 0 for st in Strings: Total_Len += len(st) E = FindAllOverlaps(Strings) SCSS_len = Total_Len - SCSS(E) if k >= SCSS_len: return True return False time_arr = [] size = [] stan_dev_arr = [] stan_err_arr = [] conf_lev_90 = [] conf_lev_95 = [] for i in range(20): running_times = [] for m in range(run_size): start_time = time.time() Strings = [] for x in range((i + 1) * 5): a = "{0:010b}".format(random.getrandbits(10)) Strings.append(a) no_of_strings = (i + 1) * 5 k = 6 * no_of_strings Check(Strings, k) elapsed_time = time.time() - start_time running_times.append(elapsed_time) run_time_array = runningTime(running_times) time_arr.append(run_time_array[0]) size.append(no_of_strings) stan_dev_arr.append((run_time_array[1])) stan_err_arr.append(run_time_array[2]) run_time_array[3] = "{0:.5f}".format(run_time_array[3]) run_time_array[4] = "{0:.5f}".format(run_time_array[4]) run_time_array[5] = "{0:.5f}".format(run_time_array[5]) run_time_array[6] = "{0:.5f}".format(run_time_array[6]) conf_lev_90.append(str(run_time_array[3]) + "-" + str(run_time_array[4])) conf_lev_95.append(str(run_time_array[5]) + "-" + str(run_time_array[6])) plt.plot(size, time_arr) plt.title('Mean Time Comparison Based on Array Size for ' + str(run_size) + " Runs") plt.xlabel('Array Size') plt.ylabel('Mean Time') plt.savefig('plot-array-size-'+str(run_size)+'.png', bbox_inches='tight', pad_inches=0.05) headers = ["Array Size","Mean Time", "Standard Deviation", "Standard Error", "90% Confidence Level", "95% Confidence Level"] data = [] for item in range(len(size)): data.append((size[item],time_arr[item],stan_dev_arr[item], stan_err_arr[item], conf_lev_90[item], conf_lev_95[item])) print(tabulate(data, headers=headers)) data_arr = [] for i in range(len(data)): data_arr.append(data[i]) plt.cla() plt.clf() plt.title('Mean Time Based on Array Size for ' + str(run_size) + " Runs") the_table = plt.table(cellText=data_arr, colLabels=headers, loc='center') for x in range(len(headers)): the_table.auto_set_column_width(x) the_table.auto_set_font_size(False) the_table.set_fontsize(5) the_table.scale(1, 1) # Removing ticks and spines enables you to get the figure only with table plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.tick_params(axis='y', which='both', right=False, left=False, labelleft=False) for pos in ['right','top','bottom','left']: plt.gca().spines[pos].set_visible(False) plt.savefig('table-array-size-'+str(run_size)+'.png', bbox_inches='tight', pad_inches=0.05) ##### time_arr = [] str_len = [] stan_dev_arr = [] stan_err_arr = [] conf_lev_90 = [] conf_lev_95 = [] for str_size in range(5, 105, 5): running_times_size = [] no_of_strings = 20 k = 6 * no_of_strings count = 0 for i in range(run_size): Strings = [] start_time = time.time() for x in range(20): str_shift = "{0:0" + str(str_size) + "b}" a = str_shift.format(random.getrandbits(str_size)) Strings.append(a) Check(Strings, k) elapsed_time = time.time() - start_time running_times_size.append(elapsed_time) run_time_array = runningTime(running_times_size) time_arr.append(run_time_array[0]) str_len.append(str_size) stan_dev_arr.append((run_time_array[1])) stan_err_arr.append(run_time_array[2]) run_time_array[1] = "{0:.5f}".format(run_time_array[1]) run_time_array[2] = "{0:.5f}".format(run_time_array[2]) run_time_array[3] = "{0:.5f}".format(run_time_array[3]) run_time_array[4] = "{0:.5f}".format(run_time_array[4]) run_time_array[5] = "{0:.5f}".format(run_time_array[5]) run_time_array[6] = "{0:.5f}".format(run_time_array[6]) conf_lev_90.append(str(run_time_array[3]) + "-" + str(run_time_array[4])) conf_lev_95.append(str(run_time_array[5]) + "-" + str(run_time_array[6])) plt.cla() plt.clf() plt.plot(str_len, time_arr) plt.title('Mean Time Comparison Based on String Size for ' + str(run_size) + " Runs") plt.xlabel('String size') plt.ylabel('Mean Time') plt.savefig('plot-string-size-'+str(run_size)+'.png', bbox_inches='tight', pad_inches=0.05) headers = ["String Size","Mean Time", "Standard Deviation", "Standard Error", "90% Confidence Level", "95% Confidence Level"] data = [] for m in range(len(str_len)): data.append((str_len[m],time_arr[m], stan_dev_arr[m], stan_err_arr[m], conf_lev_90[m], conf_lev_95[m])) print(tabulate(data, headers=headers)) data_arr = [] for i in range(len(str_len)): data_arr.append(data[i]) plt.cla() plt.clf() plt.title('Mean Time Based on String Size for ' + str(run_size) + " Runs") the_table = plt.table(cellText=data_arr, colLabels=headers, loc='center') for x in range(len(headers)): the_table.auto_set_column_width(x) the_table.auto_set_font_size(False) the_table.set_fontsize(5) the_table.scale(1, 1) # Removing ticks and spines enables you to get the figure only with table plt.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plt.tick_params(axis='y', which='both', right=False, left=False, labelleft=False) for pos in ['right','top','bottom','left']: plt.gca().spines[pos].set_visible(False) plt.savefig('table-string-size-'+str(run_size)+'.png', bbox_inches='tight', pad_inches=0.05)
true
1178dcf8efa461fe724fd06b894c8024fc8993f0
Python
scotta42/MachineLearningFinal
/Emotion-detection/src/writeto_file.py
UTF-8
2,060
3.265625
3
[ "MIT" ]
permissive
import csv import numpy as np # {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"} emoteCounter = [0, 0, 0, 0, 0, 0, 0] emoteLTG = [] emotion_data = "" emoteNames = ["Angry", "Disgusted", "Fearful", "Happy", "Neutral", "Sad", "Surprised"] def writeto_file(emotionData): dataResult = ""+emotionData dataResult = dataResult get_counts(emotionData) data = [] data = emotion_data.split(';') emoteCounts = "" i = 0 while i<7: emoteCounts = ("\n"+str(emoteNames[i]) + ": Number of occurrences: " + str(emoteCounter[i])+"\n") i=i+1 text_file = open("emotiondata.txt", "w") n = text_file.write(dataResult+emoteCounts) text_file.close() def get_counts(emotionData): emotion_data = emotionData data = [] data = emotion_data.split(';') for i in data: currEmote = i switch_case(currEmote) print("emote Added") def get_median(): lowestVal = "" counterLen = len(emoteCounter)-1 currIndex = j i = 0 j = i+1 lowestVal = i while i < counterLen: j = i+1 while i < counterLen: lowestVal = emoteCounter[i] if emoteCounter[j] > lowestVal: j+1 else: lowestVal = emoteCounter[j] j = counterLen i+1 emoteLTG.append(switch_case_rev(j)) i+1 print(emoteLTG) def switch_case(argument): switcher = { "Angry": emoteCounter[0]+1, "Disgusted": emoteCounter[1]+1, "Fearful": emoteCounter[2]+1, "Happy": emoteCounter[3]+1, "Neutral": emoteCounter[4]+1, "Sad": emoteCounter[5]+1, "Surprised": emoteCounter[6]+1, } def switch_case_rev(argument): switcher = { 0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised", } return switcher
true
02b4f8a9b4a4eaf1033d16fee93d87b231ca6f97
Python
WPKENAN/Junior_homework
/pr/perceptron.py
UTF-8
2,856
2.796875
3
[]
no_license
#coding:utf8 from numpy import * from matplotlib.pyplot import * from matplotlib.animation import * import sys datapath="perceptrondata.txt" data=genfromtxt(datapath,delimiter=' '); #print min(data[1,:]),max(data[1,:]) #符号函数 def sign(v): if v>0: return 1; else: return -1; def training(train_datas): weight=[1,1] bias=0; learning_rate=0.05 wb=[]; # train_num=int(raw_input("train num: ")) # print train_datas train_num=10000 for i in range(train_num): m,n=shape(train_datas); index=random.randint(0,m) # index=i%shape(train_datas)[0] train=train_datas[index,:]; # train=random.choice(train_datas); # print train x1,x2,y=train; # print index,weight[0],weight[1],bias,": ",weight[0]*x1+weight[1]*x2+bias # print " " predict=sign(weight[0]*x1+weight[1]*x2+bias) if y*predict>=0: weight[0]=weight[0]-y*learning_rate*x1; weight[1]=weight[1]-y*learning_rate*x2; bias=bias+learning_rate*y; wb+=[[weight[0],weight[1],bias]]; # print x1,x2,":",y,y*predict # print " " return weight,bias,array(wb); fig=figure(); window=fig.add_subplot(111) window.axis([min(data[:,0])-1,max(data[:,0])+1,min(data[:,1])-1,max(data[:,1])+1]) def test(data): weight,bias=training(data); while True: test_data=[]; data=raw_input("Enter data test (x1,x2):"); if data=='1':break; test_data+=[int(n) for n in data.split(',')] predict=sign(weight[0]*test_data[0]+weight[1]*test_data[1]+bias); # print predict # def picture(weight,bias): m,n=shape(data); for i in range(m): if data[i,2]>0: window.scatter(data[i,0],data[i,1],color='red'); else: window.scatter(data[i,0],data[i,1],color='black'); # x=linspace(min(data[:,0]),max(data[:,1]),1000); # window.plot(x,weight[0]/weight[1]*x-bias/weight[1]) # show() weight,bias,wb=training(data) #print shape(wb) print wb picture(weight,bias) x=linspace(min(data[:,0]),max(data[:,0]),1000); #print x #x=list(x) #print 'x',x m_wb,n_wb=shape(wb); y=[] for i in range(m_wb): if wb[i,1]==0: # y.append() continue y.append(-x*wb[i,0]/wb[i,1]-wb[i,2]/wb[i,1]) print "start" #print y y=array(y) if shape(y)[0]==0: kase=5 mid=1/2.0*(max(data[0:5,0])+min(data[kase:shape(data)[0],0])) # print min(data[1,:]),max(data[1,:]) plot([mid,mid],[min(data[:,1]),max(data[:,1])]) show() else: p=min(data[:,0]) q=max(data[:,0]) # line,=window.plot(x,y[0,:]) def update(data): line.set_xdata(linspace(p,q,1000)); line.set_ydata(data); return line # ani = FuncAnimation(fig, update, y, interval=200) plot(x,y[shape(y)[0]-1,:]) show()
true
676bfbfd315ae885de6f144b90c7b50a7e3b8f8a
Python
896385665/crabby
/day03/02-sel_form.py
UTF-8
1,981
2.640625
3
[]
no_license
from flask import Flask, render_template, request, flash from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import DataRequired, EqualTo app = Flask(__name__) app.secret_key = 'bvdhkbdvskhbvdsh' # 这个值随意输入 ''' /根节点是普通表单、 demo1是WTF表单,使用两种表单提交,验证其过程。 ''' # 表单类 class RegisterForm(FlaskForm): username = StringField('用户名:', validators=[DataRequired()]) password = PasswordField('密码:', validators=[DataRequired()]) password2 = PasswordField('确认密码:', validators=[DataRequired(), EqualTo('password', '密码填入的不一致')]) submit = SubmitField('提交') @app.route('/demo1', methods=["get", "post"]) def demo1(): regist_form = RegisterForm() if regist_form.validate_on_submit(): # 内置校验,关联RegisterForm类中的validators属性的所有验证 # 1. 取到注册所对应的数据 username = request.form.get("username") password = request.form.get("password") password2 = request.form.get('password2') # 2. 执行注册操作 print("%s %s %s" % (username, password, password2)) return "注册成功" else: if request.method == 'POST': return '获得post请求' return render_template('html/04-tempWTF.html', form=regist_form) @app.route('/', methods=['GET', 'POST']) def get_form(): if request.method == 'POST': username = request.form.get('username') password = request.form.get('password') refirmpwd = request.form.get('refirmpwd') print(username) if not all([username, password, refirmpwd]): flash('参数不完整') elif password != refirmpwd: flash('密码不一致') else: return 'success' return render_template('html/02-form.html') if __name__ == '__main__': app.run(debug=True)
true
fb81b3e016fa55268ae786478fe30168e543792e
Python
Irene-GM/02_Tick_Dynamics
/predictions_NL/plot_sites_prediction_year_gdal.py
UTF-8
1,002
2.65625
3
[]
no_license
import gdal import datetime import numpy as np import matplotlib.pyplot as plt def generate_dates(year): basedate = datetime.datetime(year, 1, 1) for x in range(0, 365): increment = basedate + datetime.timedelta(days=x) yield(increment) def format_ints(m, d): if m<10: mo = str(m).zfill(2) else: mo = str(m) if d<10: da = str(d).zfill(2) else: da = str(d) return mo, da gendates = generate_dates(2014) path_in = r"/home/irene/PycharmProjects/NL_predictors/data/versions/v8/maps_v8/2014/{0}" basename = "NL_Map_RF_NL_Prediction_{0}_{1}_{2}.tif" l = [] for date in gendates: m, d = format_ints(date.month, date.day) name = basename.format(date.year, m, d) path = path_in.format(name) print(path) tif = gdal.Open(path) data = tif.GetRasterBand(1).ReadAsArray(225, 156, 1, 1)[0][0] l.append(data) xlinspace = np.linspace(0, len(l)-1, len(l)) plt.plot(xlinspace, np.array(l), "-") plt.show()
true
d2abcff5bda672c7a96065aa5f6a67573e478539
Python
miloczek/Projekty-II-UWR
/MIA/kefa_and_park/case_of.py
UTF-8
212
3.28125
3
[]
no_license
n = int(input()) string = list(input()) pointer1 = pointer2 = 0 for char in string: if char == '0': pointer1 += 1 else: pointer2 += 1 result = min(pointer1, pointer2) print(n - (2*result))
true
f9ba7c8114d679318662905181634f8e0690b47b
Python
BenTheNetizen/StockTools
/stockscraper/models.py
UTF-8
1,160
2.75
3
[]
no_license
from django.db import models # Create your models here. from django.urls import reverse import uuid #Required for unique book instances #Counter model is used to numerate the entries in the table returned in the StockScraper tool class Counter: count = 0 def increment(self): self.count += 1 return self.count #model for blogposts class Blog(models.Model): title = models.CharField(max_length=200) summary = models.TextField(max_length=1000, help_text='Enter a brief description of the blog post') date = models.DateField() post = models.TextField(max_length=4000) class Meta: ordering = ['date'] def __str__(self): return self.title def get_absolute_url(self): return reverse('blog-detail', args=[str(self.id)]) #model for visitor count and search count class VisitorCount(models.Model): visitor_count = models.IntegerField() search_count = models.IntegerField() def increment_visitors(self): self.visitor_count += 1 return self.visitor_count def increment_searches(self): self.search_count += 1 return self.search_count
true
baffd303172949c03be1717fce93cd7f7f08fb05
Python
studybar-ykx/python
/画蛇.py
UTF-8
495
3.84375
4
[]
no_license
import turtle def drawSnake(rad, angle, len, neckrad): for i in range(len): turtle.circle(rad, angle) turtle.circle(-rad, angle) turtle.circle(rad,angle/2) turtle.fd(rad) turtle.circle(neckrad+2, 180) turtle.fd(rad*2/3) def main(): turtle.setup(1300, 800, 0, 0) pythonsize = 30 turtle.pensize(pythonsize) turtle.pencolor("blue") turtle.seth(-40) drawSnake(40, 80, 5, pythonsize/2) print(pow(2,10)) #pow(n,n)几的几次方 main()
true
8e7ce6cb7b1bc07fde63d87922ec905b607bad91
Python
twrdyyy/make-it-from-scratch
/machine_learning/batch_sampling/batch_sampling.py
UTF-8
685
3.421875
3
[ "MIT" ]
permissive
import numpy as np from typing import Generator, List # python generator that yields samples of given dataset e.g. # dataset = np.zeros((100, 10)) # for batch in sampling(dataset): # print(len(batch)) # # 32 # 32 # 32 # 4 def sampling(dataset: List, batch_size: int = 32) -> Generator: assert type(dataset) == np.array or type(dataset) == np.ndarray "we go through provided dataset and we cut it into batch_size size samples" for batch in range(0, len(dataset), batch_size): if batch + 32 < len(dataset): yield dataset[batch : batch + batch_size, ...] # yield sample else: yield dataset[batch:, ...] # yield rest of dataset
true
9868a770bd319ca21e2249165b558d1230760ffe
Python
DanP01/cp1404_practicals
/prac_02/files.py
UTF-8
496
4.25
4
[]
no_license
# 1: user_name = 'name.txt' name_file = open(user_name, 'w') enter_name = input("Please enter name: ") print(" Your name is: {} ".format(enter_name), file = name_file) name_file.close() # 2: read_name_file = open('name.txt', 'r') file_to_read = read_name_file.read().strip() read_name_file.close() print(file_to_read) # 3: in_file = open("numbers.txt", "r") first_number = int(in_file.readline()) second_number = int(in_file.readline()) in_file.close() print(first_number + second_number)
true
c1a3b1f8b0da606a1e662f1e164f2ee7bc9c2405
Python
weiting1608/Leetcode
/3 longest substring without repeating characters.py
UTF-8
2,392
3.796875
4
[]
no_license
class Solution(): def lengthOfLongestSubstring(self, s: str) -> int: # """ # Brute Force: # 1. enumerate all substring of strings; # 2. check whether the substring is not repeating; # 3. return the longest non-repeating substring # Time Complexity: O(n^3): # for each fixed substring (i to j): search all elements unique # then for each i and each j, search another round. # Space Complexity: (O(min(n,m))) # """ # str_len = len(s) # result = 0 # for i in range(str_len): # # j is not the index, but the one behind that, 'cause in def allUnique i in range(start, end) # for j in range(i+1,str_len+1): # if(self.allUnique(s,i,j)): # result = max(result, j-i) # return result # def allUnique(self, s, start, end): # set_str = set() # for i in range(start, end): # ch = s[i] # if ch in set_str: # return False # set_str.add(ch) # return True """ HashMap """ # Approach 2: hashmap dicts = {} result = start = 0 for i, value in enumerate(s): # For character already in dicts # update the start from the element behind this existing char if value in dicts: update_start = dicts[value] + 1 if update_start > start: # to make sure the start won't roll back, consider the case of "abba" start = update_start num = i - start + 1 if num > result: result = num # this step is for adding the new pairs to the dictionary. Important!!! # or to update the i for existing value. dicts[value] = i return result # Approach 3: sliding window if len(s) <= 1: return len(s) charSet = set() left, res = 0, 0 for right in range(len(s)): while s[right] in charSet: charSet.remove(s[left]) left += 1 charSet.add(s[right]) res = max(res, right - left + 1) return res sol = Solution() print(sol.lengthOfLongestSubstring("abba"))
true
ce17a065d82997b5efa6a3bad159a76b59f053d3
Python
nuke7/python
/web_request/web_req.py
UTF-8
187
2.84375
3
[]
no_license
import requests url = 'https://my-json-server.typicode.com/typicode/demo/comments' x = requests.get(url) print(x.json()) my_object = x.json() for o in my_object: print(o["id"])
true
3d08281c7373a87cb97f18f39f0595aebbd54fba
Python
AdamArena/LUNA
/Status.py
UTF-8
1,701
3.5
4
[]
no_license
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) class Status: import time def strobe(self): for _ in range(5): lst = ['s', 'c', 'r'] for i in range(3): self.update_status(lst[i]) time.sleep(0.2) def update_status(self, status): GPIO.output(self.search_LED, GPIO.LOW) GPIO.output(self.collect_LED, GPIO.LOW) GPIO.output(self.return_LED, GPIO.LOW) #s = white, c = yellow, l = green if status == 's': # s = searching GPIO.output(self.search_LED, GPIO.HIGH) elif status == 'c': # c = collecting GPIO.output(self.collect_LED, GPIO.HIGH) elif status == 'r': # r = returning GPIO.output(self.return_LED, GPIO.HIGH) def __init__(self): GPIO.setmode(GPIO.BOARD) self.search_LED = 3 self.collect_LED = 5 self.return_LED = 11 GPIO.setup(self.search_LED, GPIO.OUT) GPIO.setup(self.collect_LED, GPIO.OUT) GPIO.setup(self.return_LED, GPIO.OUT) GPIO.output(self.search_LED, GPIO.LOW) GPIO.output(self.collect_LED, GPIO.LOW) GPIO.output(self.return_LED, GPIO.LOW) if __name__ == '__main__': status = Status() lst = ['s', 'c', 'r'] while True: val = input("1-3 input is LEDs 1-3. 4 is dance for 3 seconds: ") if val in ['1', '2', '3']: status.update_status(lst[int(val)-1]) elif val == '4': status.strobe()
true
52dc68d84b80c33c9a396be673d1551ddf080578
Python
gtmanfred/Euler
/e003.py
UTF-8
605
3.171875
3
[]
no_license
from script.maths import isprime2 from script.sieve import sieve def e003(num=600851475143): p = sieve(round(num**.5)) for i in p[::-1]: if num%i:continue else:return i def Euler_3(num=600851475143): primes = [] i=2 while i <= num: if num%i ==0 and isprime2(i): num = num//i primes = primes +[i] i = 2 i+=1 return max(primes) def isprime(n): i = 2 while i<n: if n%i ==0: return False i += 1 return True if __name__=='__main__': #print(e003()) print(Euler_3())
true
7510c93759bfcd7a5bef3e28667550b7d557a7b1
Python
newrain7803/24Solver
/batch03_kelompok45.py
UTF-8
430
2.515625
3
[]
no_license
from backend import * import sys import re inFile = sys.argv[1] outFile = sys.argv[2] sol = [] with open(inFile,'r+') as i: lines = i.readline() array = [int(s) for s in lines.split() if s.isdigit()] Solve(array,sol) lines = str(array[0]) + str(sol[0]) + str(array[1]) + str(sol[1]) + str(array[2]) + str(sol[2]) + str(array[3]) + "=" + str(sol[3]) with open(outFile,'w') as o: for line in lines: o.write(line)
true
1db45f50c38a565a6d07a24276d31d4d804e9f1f
Python
Innokutman/py-learn
/alphabeticShift.py
UTF-8
383
3.09375
3
[]
no_license
# https://app.codesignal.com/arcade/intro/level-6/PWLT8GBrv9xXy4Dui def alphabeticShift(i): i=list(i) for x in range(len(i)): if i[x] == 'z': i[x] = 'a' continue i[x] = chr(ord(i[x])+1) return "".join(i) # from string import ascii_lowercase as a # def alphabeticShift(s): # return "".join([a[a.find(i)-25] for i in s])
true
7667d719bf8b6f9f801f8e4dc3e719e8ba860154
Python
Wojtbart/Python_2020
/Zestaw4/4_7.py
UTF-8
562
4.1875
4
[]
no_license
# 4.7 def flatten(sequence): flattenList = [] for item in sequence: # jezeli nie jest lista ani krotka to dodaje jako elemnty do listy, w przeciwnym wypadku dodawaj wywołania rekurencyjne if not isinstance(item, (list, tuple)): flattenList.append(item) else: flattenList += (flatten(item)) return flattenList if __name__ == "__main__": seq = [1, (2, 3), [], [4, (5, 6, 7)], 8, [9]] assert flatten(seq) == [1, 2, 3, 4, 5, 6, 7, 8, 9] print(flatten(seq)) # [1,2,3,4,5,6,7,8,9]
true
c0d201354d396bf28d777f51daf4e3fd82e98eec
Python
QitaoXu/Lintcode
/Alog/class4/exercises/queue.py
UTF-8
635
4.15625
4
[]
no_license
class MyQueue: # 队列初始化 def __init__(self): self.elements = [] # 用list存储队列元素 self.pointer = 0 # 队头位置 # 获取队列中元素个数 def size(self): return len(self.elements) - self.pointer # 判断队列是否为空 def empty(self): return self.size() == 0 # 在队尾添加一个元素 def add(self, e): self.elements.append(e) # 弹出队首元素,如果为空则返回None def poll(self): if self.empty(): return None self.pointer += 1 return self.elements[self.pointer-1]
true
e52becf0600584b5fa3f718166f6fd122c044541
Python
GoKarolis/RealEstateFinder
/get_user_input.py
UTF-8
543
2.921875
3
[]
no_license
import tkinter as tk from tkinter import simpledialog root = tk.Tk() root.withdraw() def get_prices(): min_price = simpledialog.askstring(title="Price", prompt="What's minimum price?") max_price = simpledialog.askstring(title="Price", prompt="What's maximum price?") return min_price, max_price def get_size(): min_size = simpledialog.askstring(title="Size", prompt="What's minimum size?") max_size = simpledialog.askstring(title="Size", prompt="What's maximum size?") return min_size, max_size
true
3d58c58f31a73d77109ecf8b7f7af9d5158f2b07
Python
campbead/LoZscraper
/scraper/scrapeLOZ.py
UTF-8
27,729
2.546875
3
[ "MIT" ]
permissive
from PIL import Image import pytesseract import argparse import cv2 import os import imutils import numpy as np import sqlite3 as lite import sys import time import math import csv def get_other_info(time,video): """Returns a list containing full hearts, total hearts, rubies, keys and bombs. Keyword arguments: time -- the time to query video -- the video object """ vidcap.set(cv2.CAP_PROP_POS_MSEC,time) success,image = vidcap.read() rubie_image = image[71:91,697:777] key_image = image[112:134,722:751] bomb_image = image[133:156,722:751] full_hearts, total_hearts = get_num_hearts(image) rubies = get_number_text(rubie_image,'multi') keys = get_number_text(key_image,'single') bombs = get_number_text(bomb_image,'single') output = [full_hearts, total_hearts, rubies, keys, bombs] return output def get_num_hearts(image): """Returns the number of full and total hearts. Keyword arguements: image - image of hearts region """ # definitions: lower_full = np.array([0, 15, 70]) upper_full = np.array([30, 35, 250]) lower_empty = np.array([150, 160, 220]) upper_empty = np.array([255, 255, 255]) full_heart_area_lower = 200 full_heart_area_upper = 300 half_heart_area_lower = 60 half_heart_area_upper = 100 # define heart image: hearts_image = image[98:161,967:1200] # this the heart region # initialize hearts full_hearts = 0 empty_hearts = 0 # calculate shapes in hearts image shapeMask_full = cv2.inRange(hearts_image, lower_full, upper_full) shapeMask_empty = cv2.inRange(hearts_image, lower_empty, upper_empty) # count full hearts cnts_full_hearts = cv2.findContours(shapeMask_full.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts_full_hearts = cnts_full_hearts[0] if imutils.is_cv2() else cnts_full_hearts[1] for c in cnts_full_hearts: if cv2.contourArea(c) >= full_heart_area_lower and cv2.contourArea(c) <= full_heart_area_upper: full_hearts = full_hearts +1 if cv2.contourArea(c) >= half_heart_area_lower and cv2.contourArea(c) <= half_heart_area_upper: full_hearts = full_hearts + 0.5 # count empty hearts cnts_empty_hearts = cv2.findContours(shapeMask_empty.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts_empty_hearts = cnts_empty_hearts[0] if imutils.is_cv2() else cnts_empty_hearts[1] for c in cnts_empty_hearts: if cv2.contourArea(c) >= full_heart_area_lower and cv2.contourArea(c) <= full_heart_area_upper: empty_hearts = empty_hearts +1 if cv2.contourArea(c) >= half_heart_area_lower and cv2.contourArea(c) <= half_heart_area_upper: empty_hearts = empty_hearts + 0.5 return full_hearts, empty_hearts+full_hearts def get_number_text(image_selection,flag): """Returns text in an image. Keyword arguments: image_selection -- the image to analysis flag -- a flag to denote type of text to expect """ gray = cv2.cvtColor(image_selection, cv2.COLOR_BGR2GRAY) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) if flag == 'multi': text = pytesseract.image_to_string(Image.open(filename), lang = 'eng') # options for multi character elif flag == 'single': text = pytesseract.image_to_string(Image.open(filename), lang = 'eng', config='-psm 10 -c tessedit_char_whitelist=0123456789') # options for single character elif flag == 'rubie': text = pytesseract.image_to_string(Image.open(filename), lang = 'eng', config='-psm 10 -c tessedit_char_whitelist=X0123456789') os.remove(filename) return text def write_results(con,screen_data): """Writes screen_data to database con. Keyword arguements: con -- the database connection screen_data -- the data to write """ with con: cur = con.cursor() cur.execute("INSERT INTO Screen VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?)", screen_data) def init_table(con): """Initializes the table con. Keyword arguements: con -- the database connection """ with con: cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Screen") cur.execute("CREATE TABLE Screen(Run TEXT, Run_Man INT, Abs_time REAL, Room TEXT, Full_hearts REAL, Total_hearts INT, Rubies TEXT, Keys TEXT, Bombs TEXT)") def find_start_screen(begin_time, delta_t, vidcap): """Searches vidcap for first 'OH8'screen. Returns a screen 'OH8' and time. Keyword Arguments: begin_time -- time to start the search delta_t -- time step size when searching for screen vidcap -- the video object """ not_start = True time = begin_time while not_start: time = time + delta_t screen = get_screen_at_time(time,vidcap) if screen == 'OH8': not_start= False upper_bound_time = time end_screen = screen return end_screen, upper_bound_time def get_screen_at_time(time,vidcap): """Returns Screen from a video object at a time.""" def in_overworld(image): """Returns a booleen, testing if screen is in overworld.""" gray_cut = 50 # cutoff for overworld gray # convert image to gray scale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # get average of gray scale average_gray = np.average(gray) # if average of gray scale falls within a range return true, otherwise false if average_gray > gray_cut: return True else: return False def get_screen_coords(image): """Returns a set of screen coordinates.""" cutoff_area = 20 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) thresh = cv2.threshold(blurred, 110, 255, cv2.THRESH_BINARY)[1] # find contours in the thresholded image cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] # process contours to find X,Y position of mini-map marker if len(cnts) == 1: # if only one contour exists, the return the coordinates of its centre M = cv2.moments(cnts[0]) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) else: # if centre cannot be calculated return -1 for cX, cY cX = -1 cY = -1 elif len(cnts) > 1: cnts_real = [] for cnt in cnts: #print('area:',cv2.contourArea(cnt)) if cv2.contourArea(cnt) > cutoff_area: cnts_real.append(cnt) if len(cnts_real) == 1: M = cv2.moments(cnts_real[0]) if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) else: # if centre cannot be calculated return -1 for cX, cY cX = -1 cY = -1 else: # if more than one contour is found return -2 cX = -2 cY = -2 else: # if zero are found return -3 cX = -3 cY = -3 return cX,cY vidcap.set(cv2.CAP_PROP_POS_MSEC,time) success,image = vidcap.read() image = image[70:155, 430:644] # RANGE HERE IS SET FOR MINI MAP ON SCREEN X_off = 430 Y_off = 70 pixel_cutoff = 4 overworld_X_coord = np.linspace(435.5,638,16) overworld_X_label = ('A', 'B', 'C', 'D','E', 'F', 'G', 'H', 'I','J', 'K', 'L', 'M', 'N', 'O', 'P') overworld_Y_coord = np.linspace(75,148.5,8) overworld_Y_label = ('1','2','3','4','5','6','7','8') dungeon_X_coord = np.linspace(386,683,12) dungeon_X_label = ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J','K', 'L') dungeon_Y_coord = np.linspace(73,149,8) dungeon_Y_label = ('1','2','3','4','5','6','7','8') X,Y = get_screen_coords(image) X_adj = X + X_off Y_adj = Y + Y_off if X < 0: screen = 'X' + str(X) return screen else: if in_overworld(image): closest = min(abs(np.array(overworld_X_coord - X_adj))) closest_ind = np.argmin(abs(np.array(overworld_X_coord - X_adj))) if closest < pixel_cutoff: X_L = overworld_X_label[closest_ind] else: X_L = 'X' closest = min(abs(np.array(overworld_Y_coord - Y_adj))) closest_ind = np.argmin(abs(np.array(overworld_Y_coord - Y_adj))) if closest < pixel_cutoff: Y_L = overworld_Y_label[closest_ind] else: Y_L = '0' screen = 'O' + X_L + Y_L return screen else: closest = min(abs(np.array(dungeon_X_coord - X_adj))) closest_ind = np.argmin(abs(np.array(dungeon_X_coord - X_adj))) if closest < pixel_cutoff: X_L = dungeon_X_label[closest_ind] else: X_L = 'X' closest = min(abs(np.array(dungeon_Y_coord - Y_adj))) closest_ind = np.argmin(abs(np.array(dungeon_Y_coord - Y_adj))) if closest < pixel_cutoff: Y_L = dungeon_Y_label[closest_ind] else: Y_L = '0' screen = 'D' + X_L + Y_L return screen def get_run_number(time,video): """Return a run number.""" vidcap.set(cv2.CAP_PROP_POS_MSEC,time) success,image = vidcap.read() run_image = image[312:330,254:296] return get_number_text(run_image,'multi') def load_room_list(room_list_file): """Returns list rooms from file.""" with open(room_list_file, newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') room_list = [] for row in spamreader: room_list.append(row[1]) return room_list def process_run(start_time, video, dT, run_number, master_room_list, unique_room_list, time_resolution, con): """Run the scraper.""" # some initializations kill_room = 'XXX' kill_video = False # calculate end time of video frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) fps = video.get(cv2.CAP_PROP_FPS) # there should not be two of these master_end_time = frame_count/fps *1000 master_end_time = 18280000 # set run number to one lower run_number_man = run_number -1 # get the first screen screen = get_screen_at_time(start_time,video) print(screen) # if the first screen isn't the start screen then go until you find it if screen != 'OH8': screen, known_time_in_room = find_start_screen(start_time, dT, video) print(screen,known_time_in_room) # this is the main loop. it runs until the kill_video signal is sent # this loop should run once per run while kill_video == False: verbose_list = []#['8DE41','8DE31'] #['4OI31', '4OJ31'] #['9DE41', 'OH8'] run_room_list = [master_room_list[0]] run_time_list = [] current_room = master_room_list[0] room_ind = 0 next_room_in = master_room_list[1] # get run number using tesseract run_number = get_run_number(known_time_in_room,video) print('Run: ', run_number) # run a loop until the next room is a start room or kill room while next_room_in != master_room_list[0] and next_room_in != kill_room : if room_ind == 0: # if you're in the start room, get the start time, adjust the # run number and print the run number current_room_time = find_start_time_room( video, current_room, known_time_in_room, dT, time_resolution) time = current_room_time run_number_man = run_number_man + 1 print('man run:', run_number_man) else: # if you aren't in the first room, do the normal stuff # room_A, room_B, time_A, and time_B are trackers # at this point, we know the r room_A = [master_room_list[room_ind-1]] room_B = master_room_list[room_ind] time_A = [max_time_previous] time_B = [known_time_in_room] run_count = 0 # this is a special debug mode and can be removed if any(unique_room_list[room_ind] in room for room in verbose_list): print('UNIQUE ID:',unique_room_list[room_ind]) print('RoomA:', room_A, 'RoomB:', room_B) print('TimeA:', time_A, 'TimeB:', time_B) # this the the code that finds the start time of the room current_room_time, time = \ find_start_time_room_2(video, room_A, room_B, time_A, time_B, time_resolution, run_count) # print room info print('room:',current_room,' time:',current_room_time, 'roomID:', unique_room_list[room_ind]) #append the start time of the current room to the run_time_list run_time_list.append(current_room_time) # increase our room number room_ind = room_ind + 1 # get the next room in our list and make the room selection list next_room_in = master_room_list[room_ind] rooms_list_selection = master_room_list[room_ind-1:room_ind+3] time_previous = [time] time_future =[] # This is a special mode for debuging and can probably be cut if any(unique_room_list[room_ind] in room for room in verbose_list): verbose_mode = True else: verbose_mode = False # set an internal count to 0 count = 0 # this is your search function of the next room, your looking for # the next room, any time in that room, and the next time in the # current room next_room_out, known_time_in_room, max_time_previous = \ find_time_next_room_adaptive(video,time_previous, time_future, dT, rooms_list_selection, master_end_time, time_resolution, verbose_mode, count) # this is stuff related to a debug mode and can probably be removed if any(unique_room_list[room_ind] \ in room for room in verbose_list): print('next_room_out:',next_room_out) print('next_room_in:', next_room_in) print('known_time_in_room:', known_time_in_room) print('max_time_previous:', max_time_previous) # check if the next room entered is the next on your master list if next_room_in == next_room_out: run_room_list.append(next_room_in) current_room = next_room_in else: next_room_in = next_room_out # grab all info from begining of each screen keys_list = [] bomb_list = [] rubies_list = [] full_hearts_list =[] total_hearts_list =[] print('run complete: getting room info') for time in run_time_list: # grab all the other info using a .8 s offset to give the room a # load time output = get_other_info(time+800,video) full_hearts_list.append(output[0]) total_hearts_list.append(output[1]) rubies_list.append(output[2]) keys_list.append(output[3]) bomb_list.append(output[4]) # save data to a sql if con != False: print('saving run') for index in range(0,len(run_time_list)): screen_data = [] screen_data.append(run_number) screen_data.append(run_number_man) screen_data.append(run_time_list[index]) screen_data.append(unique_room_list[index]) screen_data.append(full_hearts_list[index]) screen_data.append(total_hearts_list[index]) screen_data.append(rubies_list[index]) screen_data.append(keys_list[index]) screen_data.append(bomb_list[index]) write_results(con,screen_data) print('save complete') # check for kill room if next_room_in == kill_room: kill_video = True else: kill_video = False def find_start_time_room(video, current_room, known_time_in_room, dT, time_resolution): time = (known_time_in_room + known_time_in_room-dT)/2 new_screen = get_screen_at_time(time,video) if new_screen == current_room: dT = dT/2 known_time_in_room = time if dT < 100: dT = 100 # if the middle time is the begining screen, search the later half return find_start_time_room(video, current_room, known_time_in_room, dT,time_resolution) else: if known_time_in_room - time < time_resolution: return time else: dT = dT/2 return find_start_time_room(video, current_room, known_time_in_room, dT,time_resolution) def find_start_time_room_2(video, room_A, room_B, time_A, time_B, time_resolution, run_count): run_count = run_count +1 if any(room_B in room for room in room_A): print('ROOMS ARE SAME - BAD') if (min(time_B) - max(time_A)) < time_resolution: return min(time_B), max(time_B) else: time = (max(time_A) + min(time_B))/2 test_screen = get_screen_at_time(time,video) if any(test_screen in room for room in room_A): time_A.append(time) return find_start_time_room_2(video,room_A,room_B, time_A, time_B,time_resolution, run_count) elif test_screen == room_B: time_B.append(time) return find_start_time_room_2(video,room_A,room_B, time_A, time_B,time_resolution, run_count) else: # if you're in a room without an ID, then step backwards in TR steps until you have the original room # or you find next room. If you find next room, restart with updated times. If you get to original # room then add # are we <= TS away from room_A if (abs(max(time_A)-time) < time_resolution) or run_count > 10: room_A.append(test_screen) time_A.append(time) run_count = 0 return find_start_time_room_2(video,room_A,room_B, time_A, time_B,time_resolution, run_count) else: # if not calc array of times time_array = [time - time_resolution] array_test = min(time_array) > (max(time_A) + time_resolution) while array_test: time_array.append(min(time_array) - time_resolution) array_test = min(time_array) > max(time_A) + time_resolution test_screen_array = [] for ind_time in time_array: test_screen_ind = get_screen_at_time(ind_time,video) if any(test_screen_ind in room for room in room_A): time_A.append(ind_time) return find_start_time_room_2(video,room_A,room_B, time_A, time_B,time_resolution, run_count) max_test_screen = get_screen_at_time(max(time_array),video) time_A.append(max(time_array)) room_A.append(max_test_screen) #print('^^^') return find_start_time_room_2(video,room_A,room_B, time_A, time_B,time_resolution, run_count) def find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count): # init code previous_room = rooms_list_selection[0] next_room = rooms_list_selection[1] future_rooms = rooms_list_selection[2:4] #special code for first room looking for next room if previous_room == 'OH8': room = 'OH8' dt = 2000 time = max(time_previous) while room == 'OH8': while room == 'OH8': time = time + dt room = get_screen_at_time(time,video) if room == 'OG8': return 'OG8', time, time - dt X_time = time while room != 'OH8': if time - X_time < 2000: time = time + 200 else: time = time + dT room = get_screen_at_time(time,video) if time - X_time >= 2000: return room, time, time - dT # clean future room list if any('X-3' in future_room for future_room in future_rooms): future_rooms.remove('X-3') if any(previous_room in future_room for future_room in future_rooms): future_rooms.remove(previous_room) if verbose_mode: print('rooms_list_selection:', rooms_list_selection) if len(time_future) == 0 or count > 5: time = max(time_previous) + dT e_dT = dT else: time = (max(time_previous) + min(time_future))/2 print(time) e_dT = time - max(time_previous) if verbose_mode: print('time: ', time) # check for end time if time > master_end_time: room = 'XXX' return room, time, max(time_previous) room = get_screen_at_time(time,video) if verbose_mode: print('room:', room) if room == next_room: return room, time, max(time_previous) elif room == previous_room: time_previous.append(time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count) elif room == 'OH8': return room, time, max(time_previous) elif any(room in future_room for future_room in future_rooms): time_future.append(time) count = count + 1 if count > 6: time_previous.append(time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count) else: if next_room != 'OH8' and count < 6: count = count + 1 num_bumps = math.floor(e_dT/time_resolution) if verbose_mode: print(e_dT/time_resolution) print(e_dT % time_resolution == 0) if e_dT % time_resolution == 0: num_bumps = num_bumps - 1 bump_times =[] for bump in range(1,num_bumps+1): bump_times.append(time + bump*time_resolution) bump_times.append(time - bump*time_resolution) if verbose_mode: print('bump times:' ,bump_times) for bump_time in bump_times: screen_bump = get_screen_at_time(bump_time,video) if verbose_mode: print('bump screen: ', screen_bump, 'time', bump_time) if screen_bump == next_room: return screen_bump, bump_time, max(time_previous) elif screen_bump == previous_room: time_previous.append(bump_time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution,verbose_mode, count) elif any(screen_bump in future_room for future_room in future_rooms): time_future.append(bump_time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count) elif screen_bump == 'OH8': return screen_bump, bump_time, max(time_previous) if len(bump_times) == 0 and len(time_future) > 0: time_future =[] future_rooms =[] else: time = max(bump_times) time_previous.append(time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count) else: time_previous.append(time) return find_time_next_room_adaptive(video,time_previous, time_future,dT,rooms_list_selection,master_end_time, time_resolution, verbose_mode, count) def convert_room_list(room_list): converted_room_list = [] for room in room_list: converted_room = room[1:4] converted_room_list.append(converted_room) return converted_room_list # start clock for run timer wall_start_time = time.time() ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", required=True, help="path to the video image") ap.add_argument("--room_list", required=False, help="path to room list csv file, defaults to double hundo") ap.add_argument("--verbose", required=False, help="flag for more output", action="store_true") ap.add_argument("-t", "--start", required=False, help="start time") ap.add_argument("-d", "--delta", required=False, help="delta time") ap.add_argument("-nosave", required=False, help="don't save", action="store_true") ap.add_argument("-run", required=False, help="run number") args = vars(ap.parse_args()) video = args["video"] room_list_file = args["room_list"] verbose = args["verbose"] run_start_time = args["start"] delta_time = args["delta"] nosave = args["nosave"] run_number = args["run"] ## set default values # set this to be manually adjustable later time_resolution = 100 # set DT_i - the initial time interval for room scanning if delta_time is not None: DT_i = delta_time else: DT_i = 3000 # set run_number the run number of the first run if run_number is not None: run_number = int(run_number) else: run_number = 1 # set run_start_time the time (ms) in the video to start the scraping # this works best if this is just before the start of the first run. if run_start_time is None: run_start_time = 1 run_start_time = int(run_start_time) # load video vidcap = cv2.VideoCapture(video) # create database file filename = os.path.basename(video) data_file = os.path.splitext(filename)[0] + '.db' if nosave == False: initialize_table = not(os.path.exists(data_file)) con = lite.connect(data_file) if initialize_table: init_table(con) else: con = False # load room list, if a roomlist insn't provided, use double hundo if room_list_file is None: room_list_file = '../data/unique_room_list_double_hundo_with_index.csv' unique_room_list = load_room_list(room_list_file) room_list = convert_room_list(unique_room_list) # run the normal adaptive run process_run(run_start_time, vidcap, DT_i, run_number, room_list, unique_room_list, time_resolution, con) wall_end_time = time.time() elapsed = wall_end_time - wall_start_time print('elapsed processing time: ', elapsed)
true
53f3f67a358e59eaf7cef239ff96c12f94280ec4
Python
rahulsharma20/algorithms
/arestringcharactersunique.py
UTF-8
686
4.34375
4
[]
no_license
# Determine if a string has all unique characters def isUnique(string): hashMap = {} for char in string: if char in hashMap: return False else: hashMap[char] = True return True if __name__ == "__main__": stringWithDupes = 'somerandomstrigwithduplicates' uniqueString = 'asdfghjklqwertyuiop' if isUnique(stringWithDupes): print(stringWithDupes + " : String is unique") else: print(stringWithDupes + " : String has duplicate characters") if isUnique(uniqueString): print(uniqueString + " : String is unique") else: print(uniqueString + " : String has duplicate characters")
true
12548e3b8e0a2d8c216bae1595999e0317ea39c3
Python
rrwt/daily-coding-challenge
/daily_problems/n_queen_problem.py
UTF-8
1,728
4
4
[ "MIT" ]
permissive
""" You have an N by N board. Write a function that returns the number of possible arrangements of the board where N queens can be placed on the board without threatening each other, i.e. no two queens share the same row, column, or diagonal. """ def is_legal_move(x: int, y: int, dim: int, board: list) -> bool: """ since we know that previous rows are all occupied, we can reduce the number of checks """ for i in range(x): # check previous rows with current column if board[i][y]: return False for i, j in zip(range(x, -1, -1), range(y, -1, -1)): # check left upper if board[i][j]: return False for i, j in zip(range(x, -1, -1), range(y, dim)): # check right upper if board[i][j]: return False return True def n_queen(dim: int): """ To reduce the problem size, we always place a queen in the next row. Afterwards we decide which column to place it in. In case we know that dim is even, we can reduce the time by half because the solution will be symmetric with respect to the x axis. """ def solution(q_placed: int): nonlocal ways, board if q_placed == dim: ways += 1 else: for i in range(dim): # q_placed serves as row number too if is_legal_move(q_placed, i, dim, board): board[q_placed][i] = 1 solution(q_placed + 1) board[q_placed][i] = None # backtrack ways: int = 0 board: list = [[None] * dim for _ in range(dim)] solution(0) return ways if __name__ == "__main__": for i in range(1, 10): print(i, ":", n_queen(i))
true
98c48fc1418fd4caf77cd25a0ce58aa10008c2c8
Python
michelleweii/Leetcode
/16_剑指offer二刷/剑指 Offer 51-数组中的逆序对.py
UTF-8
2,273
3.328125
3
[]
no_license
""" hard 归并排序进阶 2021-07-21 https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/solution/jian-zhi-offer-51-shu-zu-zhong-de-ni-xu-pvn2h/ """ # https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/solution/jian-zhi-offerdi-51ti-ti-jie-gui-bing-pa-7m88/ class Solution: def reversePairs(self, nums): self.res = 0 return self.merge(nums, 0, len(nums)-1) def merge(self, nums, l, r): if l>=r:return 0 mid = (l+r)//2 res = self.merge(nums, l, mid) + self.merge(nums, mid+1, r) # a = self.merge(nums, l, mid) # b = self.merge(nums, mid+1, r) # print("a+b", a, b) i, j = l, mid+1 temp = [] while i<=mid and j<=r: if nums[i] <= nums[j]: # 如果左边<=右边,不构成逆序对 temp.append(nums[i]) i += 1 else: temp.append(nums[j]) j += 1 res += mid-i+1 temp += nums[i:mid + 1] temp += nums[j:r + 1] # 把临时数组的元素再放回去,实现原地更改 for k in range(r-l+1): nums[l+k] = temp[k] # k = l # for x in temp: # nums[k] = x # k+=1 print("temp", temp) return res # def reversePairs(self, nums): # self.tmp = [0] * len(nums) # return self.merge_sort(nums, 0, len(nums)-1) # # def merge_sort(self, nums, l, r): # # 终止条件 # if l >= r: return 0 # # 递归划分 # m = (l + r) // 2 # res = self.merge_sort(nums, l, m) + self.merge_sort(nums, m + 1, r) # # 合并阶段 # i, j = l, m + 1 # self.tmp[l:r + 1] = nums[l:r + 1] # for k in range(l, r + 1): # if i == m + 1: # nums[k] = self.tmp[j] # j += 1 # elif j == r + 1 or self.tmp[i] <= self.tmp[j]: # nums[k] = self.tmp[i] # i += 1 # else: # nums[k] = self.tmp[j] # j += 1 # res += m - i + 1 # 统计逆序对 # return res if __name__ == '__main__': nums = [7,5,6,4] print(Solution().reversePairs(nums))
true
f4fa1ab0e01b92b19f61f57f264c0462f85e10a8
Python
chrislyon/my-robot-motor-class
/first.py
UTF-8
4,356
2.796875
3
[]
no_license
#!/usr/bin/env python # -*- coding: latin-1 -*- import sys, traceback import time import datetime #import pyfirmata import pyfirmata_fake as pyfirmata # Démarrer la connection avec Arduino UNO # USB: /dev/ttyUSB0 ou /dev/ttyACM0 # UART: /dev/ttyAMA0 import pdb def log(msg): a = datetime.datetime.now() print "%s : %s" % ( a.strftime("%X"), msg) def print_error(msg): print '-'*60 print "Erreur : %s " % msg print '-'*60 traceback.print_exc(file=sys.stdout) print '-'*60 sys.exit(1) ## ----------------- ## La classe Robot ## ----------------- class Robot(object): DEF_SPEED = 50 EN_AVANT = 0 EN_ARRIERE = 1 def __init__(self, name): log("Creation du Robot : %s " % name) self.name = name self.board = None self.moteur_gauche = None self.moteur_droit = None self.direction = None self.vitesse = 0 self.isOnline = False def offline(self): log("Robot : %s : Offline" % self.name ) self.board.exit() def online(self): self.isOnline = True if not self.moteur_droit: log("Robot : %s : Moteur Droit inexistant") self.isOnline = False if not self.moteur_gauche: log("Robot : %s : Moteur gauche inexistant") self.isOnline = False if self.isOnline: log("Robot : %s : Online" % self.name ) def set_board(self): log("Init Robot : board") try: self.board = pyfirmata.Arduino('/dev/ttyACM0') self.isOnline = True except: print_error("Pb init board") def set_Moteur_Droit(self, pin_sens=0, pin_vitesse=0): if self.board: self.moteur_droit = Motor("Moteur Droit", self.board, pin_sens, pin_vitesse) else: log("Set Board First") def set_Moteur_Gauche(self, pin_sens, pin_vitesse): if self.board: self.moteur_gauche = Motor("Moteur Gauche", self.board, pin_sens, pin_vitesse) else: log("Set Board First") def stop(self): if self.isOnline: self.moteur_droit.stop() self.moteur_gauche.stop() else: log("Robot : %s is offline" % self.name) def avance(self, vitesse=DEF_SPEED): ## Les 2 moteurs même vitesse if self.isOnline: self.moteur_droit.run(vitesse, Robot.EN_AVANT) self.moteur_gauche.run(vitesse, Robot.EN_AVANT) else: log("Robot : %s is offline" % self.name) def recule(self, vitesse=DEF_SPEED): pass def droite(self): pass def gauche(self): pass def __str__(self): return """ Robot Name : {name} direction={d} vitesse={v} - Moteur droit : {m_d} - Moteur gauche : {m_g} """.format( name=self.name, d=self.direction, v=self.vitesse, m_d=self.moteur_droit, m_g=self.moteur_gauche ) class Motor(object): def __init__(self, name, board, pin_direction, pin_vitesse): self.board = board self.name = name self.d_pin = pin_direction self.s_pin = pin_vitesse self.pwm = None self.sens = None self.direction = 0 self.vitesse = 0 self.mode_test = True try: log ("Init %s : PWM : %s" % (self.name, self.s_pin)) self.pwm = self.board.get_pin("d:%s:p" % self.s_pin) log ("Init %s : DIR : %s" % (self.name, self.d_pin)) self.sens = self.board.get_pin("d:%s:o" % self.d_pin) except: print_error( "PB : Init Motor : %s " % self.name ) def _write(self): self.sens.write(self.direction) self.pwm.write(self.vitesse) def stop(self): self.vitesse = 0 self._write() def run(self, vitesse=0.5, sens=0): self.vitesse = vitesse self.direction = sens self._write() def __str__(self): return "Moteur : %s d=%s v=%s" % (self.name, self.direction, self.vitesse) log( "Debut" ) ## Creation du robot log( " Creation du robot ") R1 = Robot("R1") R1.set_board() R1.set_Moteur_Droit(pin_sens=12, pin_vitesse=3) R1.set_Moteur_Gauche(pin_sens=13,pin_vitesse=11) print R1 R1.online() R1.recule() R1.avance() R1.stop() R1.offline() log("Fin")
true
6200c87fc1c42d2c7e02fe85ea90345a8dd80ee8
Python
ivankreso/stereo-vision
/scripts/crop_images.py
UTF-8
1,418
2.5625
3
[ "BSD-3-Clause" ]
permissive
#!/usr/bin/python # Note: python3 script import os, sys, re if len(sys.argv) != 3: print("Usage:\n\t\t" + sys.argv[0] + " src_dir/ dst_dir/\n") sys.exit(1) # create output dir if not os.path.exists(sys.argv[2]): os.makedirs(sys.argv[2]) # get file list of input dir imglst = os.listdir(sys.argv[1]) # filter only appropriate images #regex = re.compile(".*\.png$", re.IGNORECASE) regex = re.compile(".*\.pgm$", re.IGNORECASE) imglst = [f for f in imglst if regex.search(f)] imglst.sort() # split images for i in range(len(imglst)): print(str(i/len(imglst)*100.0)[:5] + "%\t" + imglst[i]) #os.system("convert -crop 590x362+23+35 " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i]) # +repage to remove offset information after cropping that some formats like png and gif stores # tractor dataset #os.system("convert -crop 1183x934+49+40 +repage " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i]) os.system("convert -crop 1183x810+49+40 +repage " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i]) #os.system("convert -crop 640x426+0+0 +repage " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i]) #os.system("convert -crop 590x362+23+35 +repage " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i]) #os.system("convert -crop 590x272+0+90 +repage " + sys.argv[1] + imglst[i] + " " + sys.argv[2] + imglst[i])
true
335d7b0c4ff3450515b37068c029f6a05377e343
Python
LXZbackend/Base_python
/feiji/pygameDemo.py
UTF-8
750
3.546875
4
[]
no_license
#coding=utf-8 #导入pygame库 import pygame #向sys模块借一个exit函数用来退出程序 from sys import exit #初始化pygame,为使用硬件做准备 pygame.init() #创建了一个窗口,窗口大小和背景图片大小一样 screen = pygame.display.set_mode((600, 170), 0, 32) #设置窗口标题 pygame.display.set_caption("Hello, World!") #加载并转换图像 background = pygame.image.load('bg.jpg').convert() #游戏主循环 while True: for event in pygame.event.get(): #接收到退出事件后退出程序 if event.type == pygame.QUIT: pygame.quit() exit() #将背景图画上去 screen.blit(background, (0,0)) #刷新一下画面 pygame.display.update()
true
a011ad5d0b14e6ab0a9ff8f41cad110a92adee3b
Python
Bomullsdotten/Euler
/Even_fibonacci/test.py
UTF-8
752
3.375
3
[]
no_license
from __future__ import absolute_import import unittest class MyTestCase(unittest.TestCase): def test_fibonacci_returns_fibonacci_number_x(self): from Even_fibonacci.fibonacci import fibonacci ten_first_fib = [1,1,2,3,5,8,13,21,34,55] result = fibonacci(1) self.assertEqual(result, ten_first_fib[0]) result = fibonacci(2) self.assertEqual(result, ten_first_fib[1]) result = fibonacci(5) self.assertEqual(result, ten_first_fib[4]) def test_is_even(self): from Even_fibonacci.fibonacci import is_even result = is_even(14) self.assertTrue(result) result = is_even(13) self.assertFalse(result) if __name__ == '__main__': unittest.main()
true
8c17e2e29969e6e296c18763044eae40f64b4577
Python
xtompok/uvod-do-prg
/koch/koch.py
UTF-8
815
3.046875
3
[ "MIT" ]
permissive
from turtle import pendown,penup,goto,exitonclick from math import sqrt def koch(startx,starty,endx,endy,d): if d == 0: return dirx = endx-startx diry = endy-starty pointA = (startx + dirx/3,starty + diry/3) pointB = (startx + 2*dirx/3,starty + 2*diry/3) baseC = (startx + dirx/2, starty + diry/2) pointCx = baseC[0]-diry/3*sqrt(3)/2 pointCy = baseC[1]+dirx/3*sqrt(3)/2 goto(startx,starty) pendown() goto(pointA[0],pointA[1]) goto(pointCx,pointCy) goto(pointB[0],pointB[1]) goto(endx,endy) penup() koch(startx,starty,pointA[0],pointA[1],d-1) koch(pointA[0],pointA[1],pointCx,pointCy,d-1) koch(pointCx,pointCy,pointB[0],pointB[1],d-1) koch(pointB[0],pointB[1],endx,endy,d-1) penup() koch(-750,-500,750,-500,5) exitonclick()
true
b7a696a39a6f82f70ee23ee80b26d6a87714fe21
Python
serubirikenny/Shoppinlist2db
/r.py
UTF-8
6,627
2.546875
3
[]
no_license
from flask import Flask, render_template, url_for, request, redirect, jsonify from forms import LoginForm, SignUpForm, NewListForm,NewItemForm from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager, UserMixin, login_user, logout_user, current_user, login_required ######################### initialisation ########################## app = Flask('__name__') app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://kenny3:kenny4@localhost:5432/db_four' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) app.config['SECRET_KEY'] = 'not_really_secret' app.config['WTF_CSRF_ENABLED'] = False ####################### LOGIN & LOGOUT ############################ login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'index' @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) @app.route('/auth/login', methods=['POST']) def login(): form = LoginForm() usr = User.query.filter_by(email=str(request.form['email'])).first() if usr: if usr.password == form.password.data: login_user(usr) response = jsonify({'MSG':'Login Successful'}) response.status_code = 200 else: response = jsonify({'ERR':'Incorrect Password'}) response.status_code = 401 else: response = jsonify({'ERR': 'User does not exist'}) response.status_code = 404 return response @app.route('/auth/register', methods=['POST']) def register(): form = SignUpForm() if form.validate_on_submit(): usr = User(str(request.form['email']), str(request.form['password'])) if usr: db.session.add(usr) db.session.commit() response = jsonify({'MSG':'Success'}) response.status_code = 200 else: response = jsonify({'ERR':'User object wasnt created.'}) response.status_code = 400 else: response = jsonify({'ERR': form.errors}) response.status_code = 400 return response ####################### MODELS #################################### class User(db.Model, UserMixin): """This class represents the user table""" __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(255), unique=True) password = db.Column(db.String(16)) lists = db.relationship('ShoppingList', backref='user', lazy='dynamic') def __init__(self, email, password): self.email = email self.password = password class ShoppingList(db.Model): """This class represents the shopping_list table""" __tablename__ = 'shopping_list' id = db.Column(db.Integer, primary_key=True) list_name = db.Column(db.String(64), unique=True) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __init__(self, list_name): self.list_name = list_name @property def serialize(self): """Return object data in easily serializeable format""" return { 'list_name': self.list_name } class Item(db.Model): """This class represents the item table""" __tablename__ = 'items' item_id = db.Column(db.Integer, primary_key=True) item_name = db.Column(db.String(32)) quantity = db.Column(db.Integer) list_id = db.Column(db.Integer, db.ForeignKey('shopping_list.id'))#change to id def __init__(self, item_name, list_name, quantity=1): self.item_name = item_name self.list_name = list_name self.quantity = quantity @property def serialize(self): """Return object data in easily serializeable format""" return { 'item_name': self.list_name, 'list_id': self.list_id } ###################### views and routing functions################## @app.route('/shoppinglist', methods=['GET']) def view_all_lists(): all_sh_lists = ShoppingList.query.all() if all_sh_lists is not None: response = jsonify([obj.serialize for obj in all_sh_lists]) response.status_code = 200 else: response = jsonify({'ERR':'No lists returned.'}) response.status_code = 404 return response @app.route('/shoppinglist', methods=['POST']) def create_list(): form = NewListForm() new_list = ShoppingList(request.form['list_name']) if new_list is not None: db.session.add(new_list) db.session.commit() response = jsonify({'MSG': 'Success'}) response.status_code = 201 else: response = jsonify({'ERR':'List was not created'}) response.status_code = 400 return response @app.route('/shoppinglist/<id>', methods = ['DELETE']) def delete_list(id): del_list = ShoppingList.query.filter_by(id=id).one() if del_list is not None: db.session.delete(del_list) db.session.commit() response = jsonify({'MSG':'Success'}) response.status_code = 204 else: response = jsonify({'ERR':'Requested list was not found'}) response.status_code = 404 return response @app.route('/shoppinglist/<id>', methods=['GET']) def view_list(id): list_items = Item.query.filter_by(id=id).all() if list_items is not None: response = jsonify(list_items) response.status_code = 200 else: response = jsonify({'ERR':'List items not Found'}) response.status_code = 400 return response @app.route('/shoppinglists/<id>/item/', methods=['POST']) def add_item(id): form = NewItemForm() new_item = Item(request.form['item_name'], id) if new_item is not None: db.session.add(new_item) db.session.commit() response = jsonify({'MSG': 'Item added to list'}) response.status_code = 201 else: response.jsonify({'ERR':'Item wasnt added to list'}) response.status_code = 400 return response @app.route('/shoppinglists/<id>/items/<item_id>', methods=['DELETE']) def delete_item(id, item_id): del_item = Item.query.filter_by(id=id, item_id=item_id).one() if del_item is not None: db.session.delete(del_item) db.session.commit() response = jsonify({'MSG':'Success'}) response.status_code = 204 else: response = jsonify({'ERR':'Requested item was not found'}) response.status_code = 404 return response # ----------------------------------------------------------------------------------------------------------------------------------------------- db.create_all() if __name__ == '__main__': app.run(debug=True)
true
245998ddb1601f7a9001c10a59dd55fdb0bfc15e
Python
jaeseok4104/AI_IoT_makerthon
/RPi Timer/volunm.py
UTF-8
485
3.28125
3
[]
no_license
import tkinter window=tkinter.Tk() window.title("YUN DAE HEE") window.geometry("640x400+100+100") window.resizable(False, False) frame=tkinter.Frame(window) scrollbar=tkinter.Scrollbar(frame) scrollbar.pack(side="right", fill="y") listbox=tkinter.Listbox(frame, yscrollcommand = scrollbar.set) for line in range(1,1001): listbox.insert(line, str(line) + "/1000") listbox.pack(side="left") scrollbar["command"]=listbox.yview frame.pack() window.mainloop()
true
7a185806cc944ff566d362260de8db5d4b89754b
Python
marcussev/football-score-prediction
/tests/regression/regression_adv.py
UTF-8
1,278
2.75
3
[]
no_license
from data.datasets import StatsDatasetRegression from models.linear_regression import LinearRegression from trainer.regression_trainer import RegressionTrainer import visualizer import pandas as pd import torch # --------------------------------------------------------------------------------------------- # This file trains and tests performance of the linear regression model on the advanced dataset # --------------------------------------------------------------------------------------------- # MODEL VARIABLES MODEL = LinearRegression(18, 2) TRAINING_SET = StatsDatasetRegression(pd.read_csv("../../data/datasets/processed/adv_train_data.csv")) TESTING_SET = StatsDatasetRegression(pd.read_csv("../../data/datasets/processed/adv_test_data.csv")) EPOCHS = 500 LEARNING_RATE = 0.001 OPTIMIZER = torch.optim.SGD(MODEL.parameters(), lr=LEARNING_RATE) LOSS = torch.nn.MSELoss() if __name__ == '__main__': trainer = RegressionTrainer(MODEL, TRAINING_SET, TESTING_SET, EPOCHS, OPTIMIZER, LOSS) trainer.train() trainer.print_best_results() visualizer.plot_accuracy(trainer.epochs, trainer.val_accuracy, "../../results/graphs/accuracy/adv_reg_acc.png") visualizer.plot_loss(trainer.epochs, trainer.val_loss, "../../results/graphs/loss/adv_reg_loss.png")
true
2b37b3d1e53a2a62ef989f17d191b834744e32db
Python
balassit/improved-potato
/examples/salesforce/test.py
UTF-8
158
3.109375
3
[]
no_license
alist = [0, 1, 0, 0] blist = [0, 0, 1, 0] # b[1] = 1 # res = [0, 1, 1, 0] for i, (a, b) in enumerate(zip(alist, blist)): blist[i] = a or b print(blist)
true
daeb8496907754132fa619a20000340ac2d01149
Python
c-hurt/utility-functions
/collections/chain_iter.py
UTF-8
156
3.484375
3
[]
no_license
from itertools import * def yielding_iter(): for a in range(0,10): yield [a] for a in chain.from_iterable(yielding_iter()): print(f'{a} ')
true
758163d59d71e2c76137e99b416727cbe55550dc
Python
quique0194/UmayuxBase
/umayux_base/position.py
UTF-8
4,373
3.25
3
[]
no_license
from math import sqrt from flag_positions import flag_positions from mymath import dist, angle_to def closer_point(target_point, list_of_points): list_of_points.sort(key=lambda x: dist(x, target_point)) return list_of_points[0] def mean_points(list_of_points): ret = [0,0] for point in list_of_points: ret[0] += point[0] ret[1] += point[1] ret[0] /= len(list_of_points) ret[1] /= len(list_of_points) return ret def intersect_circles(P0, P1, r0, r1): """ Determines whether two circles collide and, if applicable, the points at which their borders intersect. Based on an algorithm described by Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/geometry/2circle/ Arguments: P0 (2-tuple): the centre point of the first circle P1 (2-tuple): the centre point of the second circle r0 (numeric): radius of the first circle r1 (numeric): radius of the second circle Returns: False if the circles do not collide True if one circle wholly contains another such that the borders do not overlap, or overlap exactly (e.g. two identical circles) An array of two complex numbers containing the intersection points if the circle's borders intersect. """ if len(P0) != 2 or len(P1) != 2: raise TypeError("P0 and P1 must be 2-tuples") d = dist(P0, P1) if d > (r0 + r1): return False elif d < abs(r0 - r1): return True elif d == 0: return True a = (r0**2 - r1**2 + d**2) / (2 * d) b = d - a temp = max(0, r0**2 - a**2) h = sqrt(temp) P2 = [0, 0] P2[0] = P0[0] + a * (P1[0] - P0[0]) / d P2[1] = P0[1] + a * (P1[1] - P0[1]) / d i1x = P2[0] + h * (P1[1] - P0[1]) / d i1y = P2[1] - h * (P1[0] - P0[0]) / d i2x = P2[0] - h * (P1[1] - P0[1]) / d i2y = P2[1] + h * (P1[0] - P0[0]) / d i1 = (i1x, i1y) i2 = (i2x, i2y) return [i1, i2] def intersect_circles_with_error(P0, P1, r0, r1): """ Call this function when you're sure that both circles intersect, but due to error variation, the intersection can be null """ if len(P0) != 2 or len(P1) != 2: raise TypeError("P0 and P1 must be 2-tuples") d = dist(P0, P1) # Make r0 <= r1 if r0 > r1: r0, r1 = r1, r0 P0, P1 = P1, P0 # Fix error if d > r0 + r1: r0 += d - (r0+r1) r0 += 0.001 # Fix to accuracy problems elif d < r1 - r0: r0 += r1 - r0 - d r0 += 0.001 # Fix to accuracy problems elif d == 0: raise Exception("This should never happen") return intersect_circles(P0, P1, r0, r1) # This is to be used out there def triangulate_position(flags, prev_position=None): if prev_position is None: print "I don't have previous position to work with" raise Exception("This should never happen") if len(flags) < 2: print "WARNING: I cannot see enough flags to determine position" return prev_position l = flags.items() l.sort(key=lambda x: x[1].distance) list_of_points = [] for i in range(len(l)): for j in range(i+1, len(l)): i1, i2 = intersect_circles_with_error(flag_positions[l[i][0]], flag_positions[l[j][0]], l[i][1].distance, l[j][1].distance) list_of_points.append(closer_point(prev_position, [i1, i2])) return mean_points(list_of_points) # This is to be used out there def calculate_orientation(flags, position): if len(flags) == 0: print "WARNING: I cannot see enough flags to determine orientation" return None l = flags.items() l.sort(key=lambda x: x[1].distance) idx = 0 ref = position while dist(position, ref) < 5 and idx < len(l): ref = flag_positions[l[idx][0]] idx += 1 return -angle_to(position, ref) - l[0][1].direction if __name__ == "__main__": ip = intersect_circles ipe = intersect_circles_with_error print "Intersection:", ip((0,0), (1, 0), 2, 2) print "Wholly inside:", ip((0,0), (1, 0), 5, 2) print "Single-point edge collision:", ip((0,0), (4, 0), 2, 2) print "No collision:", ip((0,0), (5, 0), 2, 2) print "Intersection with error:", ipe((2,0), (1,0), 2, 0.9)
true
f66c55ad2c2edd82f5d8c4e6381d990d74fb4d3d
Python
joel-reujoe/AlgosAndPrograms
/Arrays/Arrays2.py
UTF-8
588
4.03125
4
[]
no_license
## Find max and min element in Array with min comparison def getMinMax(A): max = 0 min = 0 if len(A)==1: #if there is only one element in the Array return A[0], A[0] if A[0] > A[1]: max = A[0] min = A[1] else: max = A[1] min = A[0] for i in range(2, len(A)): if A[i] < min: min = A[i] elif A[i] > max: max = A[i] return (min, max) arr = [1000, 11, 445, 1, 330, 3000] min,max = getMinMax(arr) print("Minimum element is", min) print("Maximum element is", max)
true
dd8aa62185e5b8ed893e85cc875f6231ee392b84
Python
ParadoxZW/fancy-and-tricky
/py_snippets/dud print/example.py
UTF-8
766
2.71875
3
[]
no_license
import multiprocessing as mp import os import time def main(rank, a): if rank != 0: __print = lambda *args, **kwargs: ... __builtins__['print'] = __print else: ori_print = __builtins__['print'] __print = lambda *args, **kwargs: ori_print(*args, **kwargs, flush=True) __builtins__['print'] = __print for i in range(5): time.sleep(2) print(rank, a, time.ctime()) def spawn(target, nprocs, args=(), kwargs={}): procs = [] for i in range(nprocs): p = mp.Process( target=target, args=(i, ) + args, kwargs=kwargs, daemon=True ) p.start() procs.append(p) for p in procs: p.join() if __name__ == '__main__': spawn( target=main, nprocs=4, args=('hello world!', ) ) print('done!')
true
f0c0a9c2f1365d30dc0bd77746076ef8a8c9194d
Python
TILE-repository/TILE-repository.github.io
/docs/nifties/2022/files/generate_test_report_all.py
UTF-8
11,984
3.171875
3
[ "CC-BY-3.0", "CC-BY-4.0" ]
permissive
import json import xlwt from xlwt import Workbook from lark import Lark from lark import Transformer def get_failed_testcases(filename): """ Expects filename to be a file that contains the output of a !pytest run. Returns the list of testcases that have failed. Throws FileNotFoundError exception if file does not exist. """ #1.Open the file and name the file-handle fhand fhand = open(filename, 'r') #2.Copy the content of the file in variable content content = fhand.read() #3: Close the file fhand.close() #Look for the failed test cases if not ("= FAILURES" in content): return [] #There are no failed test cases else: # Find the testcases that have failed, they # start with "testcase = " in the file lss_lines = content.splitlines() testcases = [] for l in lss_lines: if "testcase =" in l: testcases.append(l) return testcases def get_test_signature(filename): """ Given a Python file containing "@pytest.mark.parametrize", it returns a list that represents the signature of the test. If there are no pytests in the file, it returns the empty list Throws FileNotFoundError exception if file does not exist. """ #1: Open the file and name the file-handle fhand python_file = open(filename, "r") #2: Read through the file to find the line that indicates that # the test cases start (i.e. @pytest.mark.parametrize) line = python_file.readline() while not (line.startswith("@pytest.mark.parametrize") or line==''): line = python_file.readline() #3: Close the file python_file.close() #line now is the "@pytest.mark.parametrize" line #Now, we need to know what the structure of the test cases is, #i.e. how many inputs. So we first filter the characters that we do not need. filter_out = [',', "@pytest.mark.parametrize", "(", ")", "[", '"'] for f in filter_out: line = line.replace(f, "") #Then we split, such that we get a list like #['testcase', input1, ..., inputn, output] test_signature = line.split() return test_signature # Below is the grammar describing test cases. # test case lines look like: '(num, i1, i2,...,in o), #any type of comments' # - starts with ( # - ends with ), # - the first argument is a number, the ID of the test case # - after the end test case ), commenst starting with #can be discarded # - different parts of the test case are separated by ", " # - i1, i2, ..., in and o can be of any Python type (int, float, bool, strings, lists, tuples, variables, sets) # - the exercise explicity indicate that we assume there are no operators (unary, binary operators), variable names, dictionaries, function calls testcase_parser = Lark(r""" testcase : "(" DEC_NUMBER "," value ("," value)* ")" [","] [SH_COMMENT] value: list | tuple | emptyset | set | string | number | "True" -> true | "False" -> false | "None" -> none list : "[" [value ("," value)*] "]" tuple: "(" [value ("," value)*] ")" set : "{" value ("," value)* "}" emptyset: "set()" number: DEC_NUMBER | FLOAT_NUMBER string: /[ubf]?r?("(?!"").*?(?<!\\)(\\\\)*?"|'(?!'').*?(?<!\\)(\\\\)*?')/i DEC_NUMBER: /0|[1-9][\d_]*/i FLOAT_NUMBER: /((\d+\.[\d_]*|\.[\d_]+)([Ee][-+]?\d+)?|\d+([Ee][-+]?\d+))/ %import common.ESCAPED_STRING %import common.SH_COMMENT %import common.CNAME %import common.SIGNED_NUMBER %import common.WS %ignore WS """, start='testcase') # Evaluate the tree, using a Transformer. # A transformer is a class with methods corresponding to branch names. # For each branch, the appropriate method will be called with the children # of the branch as its argument, and its return value will replace the branch # in the tree. We want to transform the parse tree into a tuple containing the # test case values. class MyTransformer(Transformer): def testcase(self, items): *vs, c = items if c==None: #it means it is a comment (see SH_COMMENT), so we can discard return tuple(vs) else: return tuple(items) def SH_COMMENT(self,n): return None def value(self, items): [res] = items return res def pair(self, key_value): k, v = key_value return k, v def string(self, s): (s,) = s return s[1:-1] def number (self, n): (n,) = n return n def FLOAT_NUMBER (self, n): return float(n) def DEC_NUMBER(self, n): return int(n) def emptyset(self, items): return set() def set(self, items): res = set() for i in items: res.add(i) return res list = list tuple = tuple dict = dict none = lambda self, _: None true = lambda self, _: True false = lambda self, _: False def get_test_cases(filename): """ This function returns a list of the test cases that are defined in the file with "@pytest.mark.parametrize". If it is not a pytest file it returns the empty list Throws FileNotFoundError exception if file does not exist. """ #1: Open the file python_file = open(filename, "r") #2: Read the file until you encounter the line where the testcases # start (that is @pytest.mark.parametrize) line = python_file.readline() while not (line.startswith("@pytest.mark.parametrize") or line==''): line = python_file.readline() #read one more line, to point line to the first test case line = python_file.readline() test_cases = [] while (line.startswith("(")): #each test case starts with "(" #parse the line tc_tree = testcase_parser.parse(line) #reduce the parse tree to a tc tuple like (num, i1, i2,...,in o) tc = MyTransformer().transform(tc_tree) #add the testcase to the list of test cases test_cases.append(tc) line = python_file.readline() #go to next line in file return test_cases #3: Close the file python_file.close() def fill_excell_headers(test_signature, wb): """ # This function fills the headers of a test report with number_of_inputs input values """ #We know the structure we need to create for the excell file from the test_signature number_of_inputs = len(test_signature)-2 # add_sheet is used to create sheet for Test Report sheet = wb.add_sheet('Test Report') # add test case ID colum at 0,0 sheet.write(0, 0, 'test case ID') # add input columns for each test case input for i in range (1, number_of_inputs+1): sheet.write(0, i, 'input'+str(i)) # add input columns for the expected outcome and the result sheet.write(0, number_of_inputs+1 , 'expected outcome') sheet.write(0, number_of_inputs+2 , 'result') return sheet def generate_excell_test_report(filenameTest, filenameTestRes): """ filenameTest es el nombre de fichero .py de testing y filenameTestRes es el nombre de fichero .txt con test results """ try: test_signature = get_test_signature(filenameTest) if (test_signature == []): print("This is not a pytest file") else: test_cases = get_test_cases(filenameTest) failed_test_cases = get_failed_testcases(filenameTestRes) failed_test_cases_numbers = [] for f in failed_test_cases: failed_test_cases_numbers.append(int(f.split()[2].replace(",",""))) # Workbook is created wb = Workbook() #fill with headers for the columns sheet = fill_excell_headers(test_signature, wb) #write ID, inputs y output in excell for i in range(len(test_cases)): for j in range(len(test_cases[i])): sheet.write(i+1, j , str(test_cases[i][j])) if test_cases[i][0] in failed_test_cases_numbers: sheet.write(i+1, len(test_cases[i]) , "FAILED") else: sheet.write(i+1, len(test_cases[i]) , "PASSED") report_name = filenameTest.replace(".py", "") # Save the Workbook wb.save(report_name + 'TestReport.xls') except FileNotFoundError: print("El fichero no existe" + filenameTest + " o " + filenameTestRes) def generate_JSON_test_report(filenameTest, filenameTestRes): """ filenameTest es el nombre de fichero .py de testing y filenameTestRes es el nombre de fichero .txt con test results """ try: test_signature = get_test_signature(filenameTest) if (test_signature == []): print("This is not a pytest file") else: test_cases = get_test_cases(filenameTest) failed_test_cases = get_failed_testcases(filenameTestRes) failed_test_cases_numbers = [] for f in failed_test_cases: failed_test_cases_numbers.append(int(f.split()[2].replace(",",""))) test_cases_dicts = [] for tc in test_cases: tc_dict = {"id":tc[0]} out = tc[-1] tc_inputs = tc[1:len(tc)-1] inputs = [] for t in tc: inputs.append(t) tc_dict["inputs"]=inputs tc_dict["output esperado"]=out if tc[0] in failed_test_cases_numbers: tc_dict["resultado"]= "FAILED" else: tc_dict["resultado"]= "PASSED" test_cases_dicts.append(tc_dict) report_name = filenameTest.replace(".py", "") fhand_write = open(report_name + "test_case_report.json", "w") fhand_write.write(json.dumps(test_cases_dicts)) fhand_write.close() except FileNotFoundError: print("El fichero no existe" + filenameTest) def main(): #test the report generatiom #you need to check the output manualy as follows: # 1) see if the files were generated in the directory # 2) check the data in the files corresponds to the testcases in the .py file, # and the outputs in the .txt file file1_test = "pytests-for_testing_reports/union_test.py" file1_testres = "pytests-for_testing_reports/output_union_test.txt" file2_test = "pytests-for_testing_reports/min_max_list_test.py" file2_testres = "pytests-for_testing_reports/output_min_max_list_test.txt" file3_test = "pytests-for_testing_reports/interseccion_test.py" file3_testres = "pytests-for_testing_reports/output_interseccion_test.txt" file4_test = "pytests-for_testing_reports/filtrar_impares_test.py" file4_testres = "pytests-for_testing_reports/output_filtrar_impares_test.txt" generate_excell_test_report(file1_test, file1_testres) generate_JSON_test_report(file1_test, file1_testres) generate_excell_test_report(file2_test, file2_testres) generate_JSON_test_report(file2_test, file2_testres) generate_excell_test_report(file3_test, file3_testres) generate_JSON_test_report(file3_test, file3_testres) generate_excell_test_report(file4_test, file4_testres) generate_JSON_test_report(file4_test, file4_testres)
true
d53002cb6ff14245b7544b89f0f0e1a1730a7960
Python
cosmoglint/strings_with_turtle
/6_dot_flower.py
UTF-8
1,003
3.5625
4
[]
no_license
# flower made with dots of increasing sizes import turtle import math ts = turtle.getscreen() ts.colormode(255) t = turtle.Turtle() t.speed(0) sides = 30 turn_angle = 360/sides in_radius = 60 #initial radius of first circle def slen_rad(radius): side_len = radius * 2 * (math.sin(math.radians(180)/sides)) return side_len side_length = slen_rad(in_radius) #side length of first circle each_side = side_length for i in range(1,10): t.width(i) radius = in_radius + i*20 each_side = slen_rad(radius) t.up() t.sety(radius*(-1)) t.setx(-each_side/2) for j in range(sides): if (i%2==0): t.up() t.forward(each_side) t.left(turn_angle) t.down() t.dot() else: t.up() t.forward(each_side/2) t.down() t.dot() t.up() t.forward(each_side/2) t.left(turn_angle) t.down() turtle.exitonclick()
true
a25d67fbd5efa0aa5726f11bee1e11686ba1ee03
Python
maggieyam/LeetCode
/matrix.py
UTF-8
804
3.21875
3
[]
no_license
def rotate(self, matrix: List[List[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ size = len(matrix) offset = 0 innerSize = size while innerSize > 1: for i in range(innerSize - 1): row = offset col = i + offset before = matrix[row][col] after = matrix[col][len(matrix) - row - 1] for j in range(4): matrix[col][len(matrix) - row - 1] = before row, col = col, len(matrix) - row - 1 before = after after = matrix[col][len(matrix) - row - 1] innerSize -= 2 offset += 1 return matrix
true
9af6065e97d9b881863d0b3cce7d8cae529838e7
Python
benjaminthedev/FreeCodeCamp-Python-for-Everybody
/10-build-your-own-functions.py
UTF-8
166
3.21875
3
[]
no_license
# What will the following Python program print out?: def fred(): print("Zap") def jane(): print("ABC") jane() fred() jane() # Answer # ABC # Zap # ABC
true
6e63df8e3c42dd58e9393598f71cae2b316588a5
Python
perezperret/euler
/problem002_test.py
UTF-8
349
3.34375
3
[]
no_license
import unittest import problem002 class TestStringMethods(unittest.TestCase): def test_fibs_up_to_25(self): self.assertEqual(problem002.fib(25), [0, 1, 1, 2, 3, 5, 8, 13, 21]) def test_sum_evens(self): self.assertEqual(problem002.sumEvens([0, 1, 1, 2, 3, 5, 8, 13, 21]), 10) if __name__ == '__main__': unittest.main()
true
09e2fe98d52afa3d1dfc90755328c2614cbf0900
Python
seonukim/Study
/ML/m35_outliers.py
UTF-8
620
3.5625
4
[]
no_license
import numpy as np def outliers(data_out): quartile_1, quartile_3 = np.percentile(data_out, [25, 75]) print("1사분위 : ", quartile_1) print("3사분위 : ", quartile_3) iqr = quartile_3 - quartile_1 lower_bound = quartile_1 - (iqr * 1.5) upper_bound = quartile_3 + (iqr * 1.5) return np.where((data_out > upper_bound) | (data_out < lower_bound)) # a = np.array([1, 2, 3, 4, 10000, 6, 7, 5000, 90, 100]) # b = outliers(a) # print("이상치의 위치 : ", b) # 실습 : 행렬을 입력해서 컬럼별로 이상치 발견하는 함수를 구현하시오 # 파일명 : m36_outliers2.py
true
19451ab05d912d8ff9d2426742689561f6292302
Python
m4rdukkkkk/web_monitor
/A50_myStock.py
UTF-8
4,006
2.515625
3
[]
no_license
# ! -*- coding:utf-8 -*- # 2019.1.23 模型重新梳理,两次PL汇率换算,加上了手数的因素 import time import re import pymysql import requests from selenium import webdriver # 还是要用PhantomJS import datetime import string from math import floor total_Cash = 30000 # 是人民币 FX_price = 6.95 index_Cash_dollar = (0.3*total_Cash)/FX_price # index的人民币部位除以汇率,变成美元 stock_Cash = 0.6*total_Cash # stock部位的人民币 index_Future_N = floor(index_Cash_dollar/880) # index_leg的手数 index_cost = 10500 stock_cost = 2.40 # 2019.1.7 远兴能源——————a50指数模型测试(重新关注,有了接口) def get_index_PL(): try : driver = webdriver.Chrome() url = 'https://finance.sina.com.cn/futures/quotes/CHA50CFD.shtml' # driver = webdriver.PhantomJS(service_args=SERVICE_ARGS) driver.set_window_size(38, 12) # 设置窗口大小 driver.get(url) # time.sleep(1) html = driver.page_source # print(html) #正则还是有问题,选择了一个动态变动的颜色标记是不好的 最近浏览不是每次都有的!所以用数字的颜色取判断吧 patt = re.compile('<th>最新价:' + '.*?</th><td class=".*?">(.*?)</td>', re.S) items = re.findall(patt, html) items_int = int(items[0][:-3]) indexF_PL = (index_cost-items_int)*1*index_Future_N*FX_price #把点差,乘以1美元,乘以手数,在乘以汇率换算成人民币盈亏 indexF_PL_2 = round(indexF_PL,2) big_list.append(str(indexF_PL_2)) driver.quit() except ValueError as e: pass # 远兴能源 def get_stocks_PL(): url = 'https://www.laohu8.com/hq/s/000683' headers = {'Useragent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.0'} response = requests.get(url, headers=headers) content = response.text patt = re.compile('<td class="price">(.*?)</td>', re.S) items = re.findall(patt, content) stock_PL = ((float(items[0])-stock_cost) /stock_cost) *stock_Cash # stock的涨跌幅 乘以 stock部位的人民币 stock_PL_2 = round(stock_PL,2) big_list.append(stock_PL_2) def profilo_PL(): try: A = big_list[0] B = big_list[1] profilo_PL = float(B) + float(A) profilo_PL_2 = round(profilo_PL,2) big_list.append(profilo_PL_2) total_profit_R = profilo_PL_2/total_Cash # total_profit_R_2 = '%.2f%%' % (total_profit_R * 100) 这个是为加上 % total_profit_R_2 = round(total_profit_R,3) * 100 # 这个最简单 big_list.append(total_profit_R_2) except IndexError as e: print(e) def insertDB(content): connection = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='123456', db='web_monitor', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) cursor = connection.cursor() # 这里是判断big_list的长度,不是content字符的长度 if len(big_list) == 4: cursor.executemany('insert into A50_OneStock_PL (index_PL,stock_PL,profilo_PL,profilo_PL_R) values (%s,%s,%s,%s)', content) connection.commit() connection.close() print('向MySQL中添加数据成功!') else: print('出列啦') # # # # 尝试数据源不一定稳定,勉强可以用下 if __name__ == '__main__': i = 0 while True: i += 1 print(i) big_list = [] get_index_PL() get_stocks_PL() profilo_PL() l_tuple = tuple(big_list) content = [] content.append(l_tuple) insertDB(content) time.sleep(6) # create table A50_OneStock_PL( # id int not null primary key auto_increment, # index_PL varchar(10), # stock_PL varchar(10), # profilo_PL varchar(10), # profilo_PL_R varchar(10) # ) engine=InnoDB charset=utf8; # drop table A50_OneStock_PL;
true
33d969063a49e3989f2e96e5af6af3c1e299d77b
Python
Ordoptimus/Coding
/Problems/HRML1.py
UTF-8
236
2.859375
3
[]
no_license
a = [] a = [int(x) for x in input().split()] b = [int(y) for y in input().split()] #a = list(map(int, a)) (also learning) #b = list(map(int, b)) a.sort() b.sort() res=list(product(a, b)) res = [str(a) for a in res] print(' '.join(res))
true
17b4ba086773ba4e938b3c11a59c315da5219ff3
Python
Ch4pster/chappy-chaps
/misc experimental.py
UTF-8
389
3.8125
4
[]
no_license
def factorial(x): total = 1 while x>0: total *= x x-=1 return total """def anti_vowel(argument): text = str(argument) text.lower for x in text: if x == "a" or x == "e" or x == "i" or x == "o" or x == "u": ###if vowels = aeiou, how do you iterate through that?#### text = text - x else: () print anti_vowel(Hello)"""
true
b49a5b317244c52294a6c241ec126c5d3d0de41e
Python
kirill-kovalev/VK-feed-bot
/bot/UserList.py
UTF-8
2,035
2.859375
3
[]
no_license
import json from User import * class UserList: class UserExists(Exception): def __init__(self): return ; class UserNotExists(Exception): def __init__(self): return; userList:[User] = [] def add(self,chat_id:int , token:str ): for user in self.userList: if user.chat_id == chat_id: raise self.UserExists() return try: user = User(chat_id,token) self.userList.append(user) except Exception as exception: raise exception; def get(self,chat_id:int): for user in self.userList: if user.chat_id == chat_id: return user def remove(self,chat_id): for user in self.userList: if user.chat_id == chat_id: user.stop() self.userList.remove(user) return True raise self.UserNotExists def toJSON(self): users = [ (user.chat_id,user.token,user.last_upd_time) for user in self.userList] return json.dumps(users) def fromJSON(self,string:str): for user in self.userList: user.stop() users = json.loads(string) for user in users: try: self.userList.append(User(user[0],user[1],user[2])) except IndexError: self.userList.append(User(user[0], user[1])) except Exception: pass def save(self): try: file = open("users.json", "w+"); file.writelines(self.toJSON()) file.close(); log("saved", "") except: log("can't save"); log(traceback.format_exc()) pass def load(self): try: file = open("users.json", "r"); json = file.readlines(1)[0] self.fromJSON(json) except: trace_exc() pass; def __del__(self): for u in self.userList: u.stop() self.save()
true
70ae8b05de9d96f9e89252649d0d0d47eb3ec66a
Python
glfAdd/note
/python/004_并发/learn_multiprocessing.py
UTF-8
2,436
3.078125
3
[]
no_license
import multiprocessing import os import time import logging """ ============================ multiprocessing 当前进程 multiprocessing.current_process() 设置调试的日志 默认情况下,日志记录级别设置为NOTSET不生成任何消息 multiprocessing.log_to_stderr(logging.DEBUG) 设置调试的日志 """ """ ============================ Process 用来创建子进程 def __init__(self, group, target, name, args, kwargs, *, daemon): - target - args - kwargs - name 进程实例的别名, Process-1 - group is_alive() start() run() 去调用target指定的函数,自定义类的类中一定要实现该方法 terminate() 强制终止进程,不会进行任何清理操作。如果该进程终止前,创建了子进程,那么该子进程在其强制结束后变为僵尸进程;如果该进程还保存了一个锁那么也将不会被释放,进而导致死锁。使用时,要注意 join([timeout]) 主线程等待子线程终止。timeout为可选择超时时间;需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程 。 name str 别名 daemon bool pid int 当前进程实例的PID值 exitcode int 子进程的退出代码. None如果流程尚未终止, 负值-N表示孩子被信号N终止 authkey bytes sentinel int daemon bool 守护进程 默认情况: 在所有子进程退出之前,主程序不会退出 守护进程: - 主进程代码执行结束后就终止. - 内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to havechildren """ class MyProcess(multiprocessing.Process): def __init__(self): super(self, MyProcess).__init__() def run(self): print('My Process') def test(*args): time.sleep(2) print(multiprocessing.current_process().name) print(multiprocessing.current_process().name) print(*args, os.getpid()) if __name__ == '__main__': multiprocessing.log_to_stderr(logging.DEBUG) p = multiprocessing.Process(target=test, args=('a', 'b', 'c')) print(multiprocessing.current_process().name) print('父进程 %d' % os.getpid()) p.start() print(p.exitcode) p.join() print(p.exitcode) """ ============================ Queue 进程之间通信, 使用Queue来传递消息 """ """ ============================ Pool """
true
8a42b40ec569f48a0aa132573694cb4722ed0d03
Python
brook-hc/py-study
/004-类/031-多继承.py
UTF-8
582
3.671875
4
[]
no_license
class a(): def demo(self): print('this is a\'s demo method') def test(self): print('this is a\'s test method') class b(): def demo(self): print('this is b\'s demo method') def test(self): print('this is b\'s test method') class c(b,a): # b在a前面,所以优先搜索b。 pass d=c() print(dir(c)) # dir函数可以查看当前类自带的一些方法。 print(c.__mro__) # mro可以查询类执行代码的搜索顺序,只能用类来查,不能用实例来查,如d.__mro_是错的。 d.demo() d.test()
true
11f50e52f2f34b1fe07e396d78c7d6e6709e4a86
Python
shamoldas/pythonBasic
/DataScience/pandas/Concatenation.py
UTF-8
921
3.625
4
[]
no_license
# importing pandas module import pandas as pd # Define a dictionary containing employee data data1 = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 'Age':[27, 24, 22, 32], 'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'], 'Qualification':['Msc', 'MA', 'MCA', 'Phd']} # Define a dictionary containing employee data data2 = {'Name':['Abhi', 'Ayushi', 'Dhiraj', 'Hitesh'], 'Age':[17, 14, 12, 52], 'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'], 'Qualification':['Btech', 'B.A', 'Bcom', 'B.hons']} # Convert the dictionary into DataFrame df = pd.DataFrame(data1,index=[0, 1, 2, 3]) # Convert the dictionary into DataFrame df1 = pd.DataFrame(data2, index=[4, 5, 6, 7]) print(df, "\n\n", df1) print('Concatetion.\n') # using keys frames = [df, df1 ] res = pd.concat(frames, keys=['x', 'y']) res print(res)
true
71337899114e2a0a884ca948dcec2c2b7154bdc9
Python
ao-song/dd2424-project
/ultils.py
UTF-8
1,785
2.96875
3
[]
no_license
import numpy as np from sklearn.neighbors import NearestNeighbors def getQ(pixels): colors = np.zeros((22, 22)) for p in pixels: a, b = p colors[get_index(a), get_index(b)] = 1 return np.count_nonzero(colors) def get_index(num): return (num + 110) / 10 def get_space(): # Cifar10 occupied the full color space a = np.arange(-110, 110, 10) b = np.arange(-110, 110, 10) space = [] for i in a: for j in b: space.append([i, j]) return np.array(space) def gaussian_kernel(distance, sigma=5): a = np.exp(-np.power(distance, 2) / (2*np.power(sigma, 2))) b = np.sum(a, axis=1).reshape(-1, 1) return a / b def soft_encoding_ab(ab): n = ab.shape[0] Y = [] for i in range(n): # Flatten the a and b and construct 2d array a = ab[i, 0, :, :] b = ab[i, 1, :, :] # print(a.shape) a = a.flatten() # print(a.shape) b = b.flatten() newab = np.vstack((a, b)).T # Full color space space = get_space() # Compute soft encoding nbrs = NearestNeighbors( n_neighbors=5, algorithm='ball_tree').fit(space) distances, indices = nbrs.kneighbors(newab) # print('indices is: ' + str(indices)) # print(indices.shape) gk = gaussian_kernel(distances) # print('gk is : ' + str(gk)) # print(gk.shape) y = np.zeros((newab.shape[0], space.shape[0])) # print(y.shape) index = np.arange(newab.shape[0]).reshape(-1, 1) # print(index) y[index, indices] = gk # print(y.shape) y = y.reshape(ab[i, 0, :, :].shape[0], ab[i, 0, :, :].shape[1], space.shape[0]) Y.append(y.T) return np.stack(Y)
true
c8da1cb35f570a289c05b591baa87b479e92cb0a
Python
angelusualle/algorithms
/advanced_algs/kruskals/min_span_tree_kruskal.py
UTF-8
584
2.9375
3
[ "Apache-2.0" ]
permissive
# O(ElogE) def min_span_tree_kruskal(graph): min_tree = [] edges= [] visited = set() for k in graph: for i, pair in enumerate(graph[k]): edge = sorted([k,pair[0]]) if str(edge) not in visited: edges.append((pair[1], edge[0], edge[1])) visited.add(str(edge)) visited.clear() edges = sorted(edges, key=lambda x: x[0]) for wt, n1, n2 in edges: if n1 not in visited or n2 not in visited: min_tree.append((wt, n1, n2)) visited.add(n1) visited.add(n2) return min_tree
true
995f49ceaf9d8be5b19ef52efe582220e8d957c7
Python
skang29/GANs
/Parallel_GAN_structure/sndcgan_zgp/ops/layers/linears.py
UTF-8
1,209
2.578125
3
[ "Apache-2.0" ]
permissive
"""" Layers / linear layers under tensorflow environment. Supports NCCL multi-gpu environment. To activate the environment, use code below in your main.py. >> os.environ['nccl_multigpu_env'] = 'true' """ __version__ = "1.0.0" import os import tensorflow as tf from ..normalizations import spectral_norm NCCL_FLAG = os.environ.get('nccl_multigpu_env') def linear(input_, output_size, name='linear', bias_init=0.0, sn=False, with_w=False, tower_config=None): shape = input_.get_shape().as_list() with tf.variable_scope(name): w = tf.get_variable(name="w", shape=[shape[1], output_size], dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer(uniform=False)) b = tf.get_variable(name="b", shape=[output_size], initializer=tf.constant_initializer(bias_init)) if sn: y = tf.matmul(input_, spectral_norm(w, tower_config=tower_config)) + b else: y = tf.matmul(input_, w) + b if with_w: return y, w, b else: return y
true
3dd8a73f2209ce4987210ec2ea27a5c4ac184576
Python
emirelesg/Self-Driving-Vehicle
/src/processor.py
UTF-8
5,843
3
3
[ "MIT" ]
permissive
#!/usr/bin/python3 # -*- coding: utf-8 -*- import numpy as np import cv2 from line import Line class ImageProcessor(): """ Implements the computer vision algorithms for detecting lanes in an image. """ def __init__(self, frameDimensions, frameRate): # Define camera dimensions. self.frameDimensions = frameDimensions self.frameRate = frameRate self.w = self.frameDimensions[0] self.h = self.frameDimensions[1] # ROI dimensions in percentage. self.roiY = (0.57, 0.71) self.roiX = (0.67, 0.95) # Initialize the left and right lane classes. self.left = Line(self.frameDimensions, (0, 0, 255)) self.right = Line(self.frameDimensions, (255, 0, 0)) # Camera calibration # Scale the calibration matrix to the desired frame dimensions. self.calibrationResolution = (1280, 720) # Resolution at which the camera matrix is provided. kx = self.w / self.calibrationResolution[0] # Calculate the change in the -x axis. ky = self.h / self.calibrationResolution[1] # Calculate the change in the -y axis. cameraMatrix = np.array([ # Raw camera calibration matrix. [1.00612323e+03, 0.00000000e+00, 6.31540281e+02], [0.00000000e+00, 1.00551440e+03, 3.48207362e+02], [0.00000000e+00, 0.00000000e+00, 1.00000000e+00] ]) self.cameraMatrix = np.multiply(cameraMatrix, [ # Adjust the camera calibration matrix. [kx, 1, kx], [1, ky, ky], [1, 1, 1] ]) self.distortionCoefficients = np.array([[0.18541226, -0.32660915, 0.00088513, -0.00038131, -0.02052374]]) self.newCameraMatrix, self.roi = cv2.getOptimalNewCameraMatrix(self.cameraMatrix, self.distortionCoefficients, self.frameDimensions, 1, self.frameDimensions) self.rectifyMapX, self.rectifyMapY = cv2.initUndistortRectifyMap(self.cameraMatrix, self.distortionCoefficients, None, self.newCameraMatrix, self.frameDimensions, 5) def doBlur(self, frame, iterations, kernelSize): """ Performs a gaussian blur with the set number of iterations. """ blured = frame.copy() while iterations > 0: blured = cv2.GaussianBlur(blured, (kernelSize, kernelSize), sigmaX=0, sigmaY=0) iterations -= 1 return blured def doRegionOfInterest(self, frame): """ Obtains the region of interest from a frame. The dimensions of the ROI are set by the class properties roiX and roiY. """ y0Px = self.h * self.roiY[0] y1Px = self.h * self.roiY[1] x0Px = (1 - self.roiX[0]) * self.w / 2 x1Px = (1 - self.roiX[1]) * self.w / 2 vertices = np.array([[ (x0Px, y0Px), (x1Px, y1Px), (self.w - x1Px, y1Px), (self.w - x0Px, y0Px) ]], dtype=np.int32) mask = np.zeros_like(frame) cv2.fillPoly(mask, vertices, 255) return cv2.bitwise_and(frame, mask) def findLanes(self, frame, lines, minAngle=10, drawAll=False): """ Iterates through the results from the Hough Transform and filters the detected lines into those who belong to the left and right lane. Finally fits the data to a 1st order polynomial. """ self.left.clear() self.right.clear() if type(lines) == type(np.array([])): for line in lines: for x1, y1, x2, y2 in line: angle = np.degrees(np.arctan2(y2 - y1, x2 - x1)) if np.abs(angle) > minAngle: if angle > 0: self.right.add(x1, y1, x2, y2) if drawAll: cv2.line(frame, (x1, y1), (x2, y2), self.right.color) else: self.left.add(x1, y1, x2, y2) if drawAll: cv2.line(frame, (x1, y1), (x2, y2), self.left.color) self.left.fit() self.right.fit() return frame def drawPoly(self, frame, poly, color, width=3): """ Draws a 1-D polynomial into the frame. Uses the roiY for the -y coordinates. """ y0 = self.h * self.roiY[0] y1 = self.h * self.roiY[1] y0Px = int(y0) y1Px = int(y1) if poly: x0Px = int(poly(y0)) x1Px = int(poly(y1)) cv2.line(frame, (x0Px, y0Px), (x1Px, y1Px), color, width) else: cv2.line(frame, (0, y0Px), (0, y1Px), color, width) def process(self, frame): """ Main pipeline for detecting lanes on a frame. """ undistort = cv2.remap(frame, self.rectifyMapX, self.rectifyMapY, cv2.INTER_LINEAR) gray = cv2.cvtColor(undistort, cv2.COLOR_BGR2GRAY) grayColor = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) blured = self.doBlur(gray, iterations=3, kernelSize=7) canny = cv2.Canny(blured, threshold1=20, threshold2=40) roi = self.doRegionOfInterest(canny) houghLines = cv2.HoughLinesP( roi, rho = 1, theta = np.pi / 180, threshold = 20, lines = np.array([]), minLineLength = 5, maxLineGap = 60 ) lanes = self.findLanes(grayColor, houghLines, minAngle=10, drawAll=True) # self.drawPoly(lanes, self.left.poly, self.left.color, width=3) # self.drawPoly(lanes, self.right.poly, self.right.color, width=3) return grayColor
true
e92f66f20776176925bec09777d1ea06c1dfe3e3
Python
kiote/ebook
/api.py
UTF-8
8,757
2.671875
3
[]
no_license
# -*- coding: utf-8 -*- import re import hashlib from urllib import urlencode class Books(): books = [ { 'Фантастика': [ { 'id': 2, 'name': 'Понедельник начинается в субботу', 'author': 'Братья Стругацкие', 'descr': 'советская фантастическая классика' }, { 'id': 5, 'name': 'Корпорация "Бессмертие"', 'author': 'Робер Шекли', 'descr': 'зачетная книжень' }, ] }, { 'detective': [ { 'id': 4, 'name': 'Дуновение смерти', 'author': 'Айзек Азимов', 'descr': '''В детективном романе Айзека Азимова «Дуновение смерти» рассказывается о том, как Луис Брэйд, старший преподаватель химии Университета, обнаруживает как-то вечером в лаборатории мертвое тело своего аспиранта Ральфа Ньюфелда, который был отравлен цианидом. Было похоже на несчастный случай или на самоубийство. Лишь один Брэйд твердо стоял на своем. Это убийство! В результате своего дилетантского расследования он и сам чуть не стал жертвой...''' }, { 'id': 8, 'name': 'Закон трех отрицаний', 'author': 'Александра Маринина', 'descr': '''Насте Каменской не повезло - она попала в аварию. Скоро ее выпишут из госпиталя, но сломанная нога все болит и болит, так что Настя передвигается с большим трудом. Она решает обратиться к специалисту, использующему нетрадиционные методы лечения. Но когда Настя звонит по нужному телефону, выясняется, что этот специалист убит. А тут еще одна неприятность. После госпиталя Насте негде жить: ее квартира занята неожиданно нагрянувшими родственниками. Так Настя оказывается на даче у знакомого, где совершает лечебные прогулки и развлекает себя обсуждением с коллегами подробностей очередного громкого убийства молодой кинозвезды. И вдруг она с ужасом обнаруживает, что за ней кто-то следит...''' }, ] }, { 'single': [ { 'id': 11, 'name': 'Аксиология личностного бытия', 'author': 'В. П. Барышков', 'descr': '''В монографии исследуются онтологические основания ценностного отношения. Предмет исследования — личностное бытие как область формирования и функционирования ценностных смыслов. Рассматриваются субстациональная и коммуникативная концепции ценностного мира человека. Для научных работников, преподавателей философии и студентов вузов''' }, ] } ] current_ver = '1.0.2' def __init__(self, ver, bid = 0, isfinal = 0, pid = -1): self.ver = ver self.bid = int(bid) self.isfinal = int(isfinal) self.pid = int(pid) def check_ver(self): '''validates version''' # version does not setted at all if not self.ver: raise Exception('VER is empty', 1) matches = re.compile('^([0-9]{1})\.([0-9]{1})\.([0-9]{1})$').findall(self.ver) # version does not match pattern N.N.N if matches == []: raise Exception('VER is invaild', 2) if self.ver <> self.current_ver: raise Exception('this VER is not supported', 3) return True def book_by_id(self): '''returns book data as dictionary by book id''' res = '' b = [] for book in self.books: b.extend([book[k] for k in book.keys()]) for book_shelf in b: for one_book in book_shelf: if one_book['id'] == self.bid: res = one_book if (not isinstance(res, dict)): raise Exception('Book information error, dosen\'t exisits?', 4) return res def get_category_books(self): # show books in category if self.pid == -1: raise Exception('specify subcategory id (pid)', 5) res = '' count = 0 if self.pid>=0 and self.pid in range(len(self.books)): book = [self.books[self.pid][k] for k in self.books[self.pid].keys()] book = book[0] count = len(book) i = 0 for b in book: res += '&' + urlencode({'NAME' + str(i): b['name'], 'ID' + str(i): b['id'], }) i += 1 return res, count def get_categories(self): #show categories i = 0 categories = [k.keys() for k in self.books] #directories + books elcount = len(categories) # directoies count = elcount res = '' for category in categories: if (category[0] == 'single'): # we have single books count -= 1 else: res += '&' + urlencode({'NAME' + str(i): category[0], 'ID' + str(i): i}) i += 1 res += '&' + urlencode({'NAME' + str(i): 'Аксиология личностного бытия', 'ID' + str(i): 11}) return res, count, elcount def index(cmd = '', ver = 0, new = 0, isfinal = 0, pid = -1, bid = 0): cmd = cmd.upper() bid = int(bid) count = 0 books = Books(ver, bid, isfinal, pid) try: books.check_ver() except Exception, (error, code): return urlencode({'MESSAGE': error, 'CODE': code}) # >> LIST if cmd == 'LIST': # check isfinal if not isfinal: return urlencode({'MESSAGE': 'ISFINAL is empty', 'CODE': 6}) isfinal = int(isfinal) res = '' if isfinal == 1: res, count = books.get_category_books() return 'ELCOUNT=%d%s' % (count, res) elif isfinal == 0: res, count, elcount = books.get_categories() return 'ELCOUNT=%d&COUNT=%d%s' % (elcount, count, res) else: return urlencode({'MESSAGE': 'ISFINAL should be 1 or 0', 'CODE': 7}) # << # >> BOOK elif cmd == 'BOOK': if not bid: return urlencode({'MESSAGE': 'no book id (bid) found', 'CODE': 8}) try: res = urlencode(books.book_by_id()) except Exception, (error, code): return urlencode({'MESSAGE': error, 'CODE': code}) return 'BID=' + str(bid) + '&%s' % res # << # >> GET elif cmd == 'GET': if not bid: return urlencode({'MESSAGE': 'no book id (bid) found', 'CODE': 8}) try: res = urlencode(books.book_by_id()) except Exception, (error, code): return urlencode({'MESSAGE': error, 'CODE': code}) bidded_link = hashlib.md5(res+'salt').hexdigest() return urlencode({'http://wwww.bugtest.ru/ebook/get.py?fname': bidded_link}) # << elif cmd == 'REG': return 'LOGIN=footren&PASS=v324jzrn' else: return urlencode({'MESSAGE': 'unknown command', 'CODE': 9})
true
36f0f22798763cd59a7b981dabd4984529bb5a1d
Python
flsilves/meetme
/tests.py
UTF-8
4,814
2.53125
3
[ "MIT" ]
permissive
import unittest from flask import json import app from models import * users_url = 'http://localhost:5000/users' recordings_url = 'http://localhost:5000/recordings' json_header = {'Content-type': 'application/json'} class BasicTestCase(unittest.TestCase): def setUp(self): self.app = app.create_app() self.client = self.app.test_client() self.db = create_engine(DB_URI) Base.metadata.drop_all(self.db) Base.metadata.create_all(self.db) def tearDown(self): pass def create_user(self, name='User1', email='dummy@email.com'): data = {'name': name, 'email': email} response = self.client.post(users_url, data=json.dumps(data), headers=json_header) json_data = json.loads(response.data) code = response.status_code return json_data, code def delete_user(self, user_id): uri = users_url + '/' + str(user_id) response = self.client.delete(uri, headers=json_header) code = response.status_code return code def create_recording(self, owner_id, storage_url, password): data = {'owner_id': owner_id, 'storage_url': storage_url, 'password': password} response = self.client.post(recordings_url, data=json.dumps(data), headers=json_header) json_data = json.loads(response.data) code = response.status_code return json_data, code def delete_recording(self, recording_id): uri = recordings_url + '/' + str(recording_id) response = self.client.delete(uri, headers=json_header) code = response.status_code return code def share_recording(self, recording_id, user_id): uri = users_url + '/' + str(user_id) + '/permissions/' + str(recording_id) data = {'user_id': user_id, 'recording_id': recording_id} response = self.client.put(uri, data=json.dumps(data), headers=json_header) code = response.status_code return code def unshare_recording(self, recording_id, user_id): uri = users_url + '/' + str(user_id) + '/permissions/' + str(recording_id) data = {'user_id': user_id, 'recording_id': recording_id} response = self.client.delete(uri, data=json.dumps(data), headers=json_header) code = response.status_code return code def test_create_user(self): data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') self.assertEqual(code, 201) self.assertEqual(data['name'], 'Flavio') self.assertEqual(data['email'], 'flaviosilvestre89@gmail.com') def test_create_same_email(self): data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') self.assertEqual(code, 201) data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') self.assertEqual(code, 404) def test_create_recording(self): password = 'secret' url = 'https://s3.amazonaws.com/recording/393217' data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') flavio_id = data['id'] data, code = self.create_recording(owner_id=flavio_id, storage_url=url, password=password) self.assertEqual(code, 201) self.assertEqual(data['owner_id'], str(flavio_id)) self.assertEqual(data['storage_url'], url) self.assertEqual(data['password'], password) data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') ## try to create duplicated recording self.assertEqual(code, 404) def test_delete_user(self): data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') self.assertEqual(code, 201) self.assertEqual(data['name'], 'Flavio') self.assertEqual(data['email'], 'flaviosilvestre89@gmail.com') id = data['id'] code = self.delete_user(id) self.assertEqual(code, 204) def test_delete_recording(self): self.test_create_recording(); code = self.delete_recording('1') self.assertEqual(code, 204) def test_recording_share(self): data, code = self.create_user(name='Flavio', email='flaviosilvestre89@gmail.com') self.assertEqual(code, 201) user1_id = data['id'] data, code = self.create_user(name='FriendUser', email='sample@gmail.com') self.assertEqual(code, 201) user2_id = data['id'] data, code = self.create_recording(owner_id=user1_id, storage_url='https://s3.amazonaws.com/recording/393217', password='password') self.assertEqual(code, 201) recording_id = data['id'] code = self.share_recording(recording_id, user2_id) self.assertEqual(code, 201) code = self.unshare_recording(recording_id, user2_id) self.assertEqual(code, 204) if __name__ == '__main__': unittest.main()
true
66be5538b2ff77d8798cf097cecbed64b3a54253
Python
TheFutureJholler/TheFutureJholler.github.io
/module 13- GUI Programming with Tkinter/tkinter_canvas.py
UTF-8
1,044
3.4375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 16:57:26 2018 @author: zeba """ """ The Canvas is a rectangular area intended for drawing pictures or other complex layouts. You can place graphics, text, widgets, or frames on a Canvas.  arc . Creates an arc item. """ #import tkinter as tk #root=tk.Tk() # #c = tk.Canvas(root,bg="blue",width=500, height=500)#to draw canvas ##to draw something on canvas #coord = 10, 50, 240, 210 #arc = c.create_arc(coord, start=0, extent=150, fill="red") # #c.grid()#to place canvas #root.mainloop() ######################################################################### import tkinter as tk root=tk.Tk() c = tk.Canvas(root,bg="blue",width=500, height=500)#to draw canvas #to draw something on canvas #filename = PhotoImage(file="sunshine.gif") line = c.create_line(20,20,250,250, fill="red") oval=c.create_oval(50,50,20,20) polygon=c.create_polygon(150,250,210,310,250,250) c.grid()#to place canvas root.mainloop() #######################################################################
true
566c364c34f56910768f90e93dc3e396a35989b2
Python
AkiraMisawa/sicp_in_python
/chap1/c1_36.py
UTF-8
583
3.5
4
[]
no_license
from math import log def tolerance(): return 0.00001 def fixed_point(f,first_guess): def close_enough(v1,v2): return abs(v1-v2)<tolerance() def try_(guess): next_=f(guess) print(next_) if close_enough(guess,next_): return next_ else: return try_(next_) return try_(first_guess) def main(): fixed_point(lambda x:log(1000)/log(x),10.0) #without ave damping, 33回 print() fixed_point(lambda x:1/2*(x+log(1000)/log(x)),10.0) #with ave damping, 10回 if __name__ == '__main__': main()
true
938a4d2320a95819497437124aae9dec066e5c1c
Python
snehavaddi/DataStructures-Algorithms
/STACK_implemt_2_stacks_in_1_array.py
UTF-8
896
3.859375
4
[]
no_license
class stack: def __init__(self,n): self.size = n self.arr = [None] * n self.top1 = -1 self.top2 = self.size def push1(self,data): if self.top1 < self.top2: self.top1 = self.top1 + 1 self.arr[self.top1] = data def push2(self,data): if self.top1 < self.top2: self.top2 = self.top2 - 1 self.arr[self.top2] = data def pop1(self): if self.top1 >= 0: x = self.arr[self.top1] self.top1 = self.top1 - 1 return x def pop2(self): if self.top2 <= self.size: x = self.arr[self.top2] self.top2 = self.top2 + 1 return x s = stack(5) s.push1(10) s.push2(10) s.push1(20) s.push2(20) s.push1(30) print(s.pop1()) print(s.pop1()) print(s.pop1()) print(s.pop2()) print(s.pop2())
true
080a48762fef024ec6cc3bc35e9a32f7d404a42d
Python
gouravsb17/LJMU_Exoplanets
/code/exploratoryDataAnalysis.py
UTF-8
6,961
2.640625
3
[]
no_license
# Importing the required libraries import pandas as pd import lightkurve as lk import matplotlib.pyplot as plt import os, shutil import numpy as np from scipy.stats import skew from scipy.stats import kurtosis from tqdm import tqdm import warnings import seaborn as sns os.chdir('..') tqdm.pandas(desc="Progress: ") warnings.filterwarnings('ignore') pd.set_option('display.width', 400) pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 3000) def my_custom_corrector_func(lc_raw): # Source: https://docs.lightkurve.org/tutorials/05-advanced_patterns_binning.html # Clean outliers, but only those that are above the mean level (e.g. attributable to stellar flares or cosmic rays). lc_clean_outliers = lc_raw.remove_outliers(sigma=20, sigma_upper=4) lc_nan_normalize_flatten = lc_clean_outliers.remove_nans().normalize().flatten(window_length=101) lc_flat, trend_lc = lc_nan_normalize_flatten.flatten(return_trend=True) return lc_flat def read_kepler_data_from_external_HDD(kepler_id): res_path = 'res/kepler_ID_' + kepler_id + '/' try: # Getting from local if already present os.listdir(res_path) except: try: # Pulling from the External HDD to the temp resource folder res_path = '/Volumes/PaligraphyS/kepler_data/res/kepler_ID_' + kepler_id + '/' shutil.copytree(res_path, 'temp_res/kepler_ID_' + kepler_id + '/') res_path = 'temp_res/kepler_ID_' + kepler_id + '/' except Exception as e: if ('File exists: ' in str(e)): res_path = 'temp_res/kepler_ID_' + kepler_id + '/' else: print('Data for KIC not downloaded') return [False, np.array([])] lc_list_files = [] for lc_file in os.listdir(res_path): if ('llc.fits' in lc_file): lc_list_files.append(lk.lightcurvefile.KeplerLightCurveFile(res_path + lc_file)) lc_collection = lk.LightCurveFileCollection(lc_list_files) stitched_lc_PDCSAP = lc_collection.PDCSAP_FLUX.stitch() corrected_lc = my_custom_corrector_func(stitched_lc_PDCSAP) corrected_lc_df = corrected_lc.to_pandas() corrected_lc_df['flux'] = corrected_lc_df['flux'] - 1 # Removing the kepler data brought to the temporary directory shutil.rmtree('temp_res/kepler_ID_' + kepler_id) return [True, np.array([corrected_lc_df['time'], corrected_lc_df['flux']])] try: stats_df = pd.read_csv('planetary_data/stats_df.csv', dtype={'KIC': str}) except: stats_df = pd.DataFrame(columns=['KIC', 'flux_point_counts', 'max_flux_value', 'min_flux_value', 'avg_flux_value', 'median_flux_value', 'skewness_flux_value', 'kurtosis_flux_value', 'Q1_flux_value', 'Q3_flux_value', 'std_flux_value', 'variance_flux_value']) # Getting the kepler ID's for which we will train and test the model i = len(stats_df) # for file in tqdm(os.listdir('res/KIC_flux_graphs_80_dpi_1_size_color_b/')): # if ('.png' in file): # kepler_id = file.split('_')[-1].split('.')[0] # if (kepler_id in list(stats_df['KIC'])): # continue # try: # response_list = read_kepler_data_from_external_HDD(kepler_id) # except: # print('Error in '+str(kepler_id)) # continue # if (response_list[0]): # stats_df.loc[i] = [str(kepler_id), response_list[1].shape[1], np.max(response_list[1][1]), # np.min(response_list[1][1]), np.average(response_list[1][1]), # np.nanmedian(response_list[1][1]), skew(response_list[1][1]), # kurtosis(response_list[1][1]), np.nanquantile(response_list[1][1], 0.25), # np.nanquantile(response_list[1][1], 0.75),np.nanstd(response_list[1][1]), # np.nanvar(response_list[1][1])] # i += 1 # # if (i % 20 == 0): # stats_df.drop_duplicates('KIC', inplace=True) # stats_df.to_csv('planetary_data/stats_df.csv', sep=',', index=False) # exit() complete_kepler_df = pd.read_csv('planetary_data/planetary_data_kepler_mission.csv', sep=',', dtype={'kepid': str}) complete_kepler_df = complete_kepler_df[['kepid', 'nconfp', 'nkoi']] stats_planets_df = pd.merge(stats_df, complete_kepler_df, left_on='KIC', right_on='kepid') stats_planets_df.drop_duplicates('KIC', inplace=True) stats_planets_df.drop('kepid', inplace=True, axis=1) stats_planets_df.to_csv('planetary_data/stats_planets_df.csv', sep=',', index=False) stats_planets_df = stats_planets_df.loc[((stats_planets_df['max_flux_value']<=0.03) & (stats_planets_df['min_flux_value']>=-0.03)) | (stats_planets_df['nconfp']>0.0)] stats_planets_df['Confirmed_planets'] = [1.0 * x for x in stats_planets_df['nconfp'] > 0.0] print(stats_planets_df.groupby('Confirmed_planets').count()[['KIC']]) print(stats_planets_df.groupby(['Confirmed_planets', 'nkoi']).count()['KIC']) print(stats_planets_df.loc[(stats_planets_df['nkoi'] == 0) & (stats_planets_df['Confirmed_planets'] == 1)].sort_values('nkoi')[ ['KIC', 'nkoi', 'Confirmed_planets']]) def plot_curve(x_column, y_column, hue_column="Confirmed_planets"): graph_name = y_column + '.png' if (x_column == 'nkoi'): x_label = 'Number of Kepler object of interest' else: x_label = x_column[0].upper() + x_column[1:].replace('_', ' ') y_label = y_column[0].upper() + y_column[1:].replace('_', ' ') # Plot 1: This will show the flux point counts for both the classes sns.set_theme(style="darkgrid") g = sns.catplot(x=x_column, y=y_column, hue=hue_column, data=stats_planets_df, kind="strip", dodge=True, height=4, aspect=1.5, legend_out=False) g.despine(left=True) # title new_title = hue_column.replace('_', ' ') g._legend.set_title(new_title) # replace labels new_labels = ['0 - No exoplanet', '1 - Exoplanet Present'] for t, l in zip(g._legend.texts, new_labels): t.set_text(l) g.set(xlabel=x_label, ylabel=y_label) plt.xlim(-0.5, 7.5) plt.tight_layout() plt.savefig('EDA_images/' + graph_name) # plt.show() plt.close() y_columns = ['flux_point_counts', 'max_flux_value', 'min_flux_value', 'avg_flux_value', 'median_flux_value', 'skewness_flux_value', 'kurtosis_flux_value', 'Q1_flux_value', 'Q3_flux_value', 'std_flux_value', 'variance_flux_value'] for y_column in y_columns: plot_curve('nkoi', y_column) print(len(stats_planets_df.loc[stats_planets_df['nconfp'] > 0.0])) print(len(stats_planets_df.loc[stats_planets_df['nconfp'] == 0.0]))
true
86d139f4e6b655950b281d2cbce6f78a47e99ca9
Python
hoon4233/Algo-study
/2020_winter/2020_01_13/2146_JH.py
UTF-8
2,325
2.8125
3
[]
no_license
from collections import deque N = int(input()) mat = [ list(map(int,input().split())) for _ in range(N) ] result = 300 numbering = 1 def seperate(ori_x, ori_y): global N, mat, numbering numbering += 1 # print("first, ",ori_x, ori_y, numbering) dx, dy = [1,-1,0,0], [0,0,1,-1] visit = [ [False for _ in range(N)] for i in range(N) ] q = deque() q.append([ori_x, ori_y]) visit[ori_x][ori_y] = True mat[ori_x][ori_y] = numbering while q : for j in range(len(q)): x,y = q.popleft() for i in range(4): nx,ny = x+dx[i], y+dy[i] if nx>=0 and nx<N and ny>=0 and ny<N and visit[nx][ny] == False and mat[nx][ny] == 1 : q.append([nx, ny]) visit[nx][ny] = True mat[nx][ny] = numbering # print(nx, ny, mat[nx][ny]) # for line in mat : # print(line) # exit(0) def solution(ori_x, ori_y, my_num): global N, mat, result dx, dy = [1,-1,0,0], [0,0,1,-1] flag = True for i in range(4): nx,ny = ori_x+dx[i], ori_y+dy[i] if nx>=0 and nx<N and ny>=0 and ny<N and mat[nx][ny] != my_num : flag = False break if flag : return result visit = [ [False for _ in range(N)] for i in range(N) ] q = deque() q.append([ori_x, ori_y]) visit[ori_x][ori_y] = True depth = -1 while q : depth += 1 for j in range(len(q)): x,y = q.popleft() for i in range(4): nx,ny = x+dx[i], y+dy[i] if nx>=0 and nx<N and ny>=0 and ny<N and visit[nx][ny] == False : if mat[nx][ny] != my_num : if mat[nx][ny] != 0 : return depth else : q.append([nx, ny]) visit[nx][ny] = True return 300 for i in range(N): for j in range(N): if mat[i][j] == 1 : seperate(i,j) for i in range(N): for j in range(N): if mat[i][j] != 0 : # tmp = solution(i,j,mat[i][j]) # if (tmp < result) : # print(i,j) result = min(result, solution(i,j, mat[i][j])) print(result)
true
5b491d7531d016448829fdfbdea93bd86078b231
Python
vkuznet/WMCore
/test/python/WMCore_t/Database_t/DBFormatter_t.py
UTF-8
2,852
2.78125
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- """ _DBFormatterTest_ Unit tests for the DBFormatter class """ from __future__ import print_function import threading import unittest from builtins import str from WMCore.Database.DBFormatter import DBFormatter from WMQuality.TestInit import TestInit class DBFormatterTest(unittest.TestCase): """ _DBFormatterTest_ Unit tests for the DBFormatter class """ def setUp(self): "make a logger instance and create tables" self.testInit = TestInit(__file__) self.testInit.setLogging() self.testInit.setDatabaseConnection(destroyAllDatabase=True) self.testInit.setSchema(customModules=["WMQuality.TestDB"], useDefault=False) self.selectSQL = "SELECT * FROM test_tableb" def tearDown(self): """ Delete the databases """ self.testInit.clearDatabase() def stuffDB(self): """Populate one of the test tables""" insertSQL = "INSERT INTO test_tableb (column1, column2, column3) values (:bind1, :bind2, :bind3)" insertBinds = [{'bind1': u'value1a', 'bind2': 1, 'bind3': u'value2a'}, {'bind1': 'value1b', 'bind2': 2, 'bind3': 'value2b'}, {'bind1': b'value1c', 'bind2': 3, 'bind3': b'value2d'}] myThread = threading.currentThread() myThread.dbi.processData(insertSQL, insertBinds) def testBFormatting(self): """ Test various formats """ # fill the database with some initial data self.stuffDB() myThread = threading.currentThread() dbformatter = DBFormatter(myThread.logger, myThread.dbi) result = myThread.dbi.processData(self.selectSQL) output = dbformatter.format(result) self.assertEqual(output, [['value1a', 1, 'value2a'], ['value1b', 2, 'value2b'], ['value1c', 3, 'value2d']]) result = myThread.dbi.processData(self.selectSQL) output = dbformatter.formatOne(result) print('test1 ' + str(output)) self.assertEqual(output, ['value1a', 1, 'value2a']) result = myThread.dbi.processData(self.selectSQL) output = dbformatter.formatDict(result) self.assertEqual(output, [{'column3': 'value2a', 'column2': 1, 'column1': 'value1a'}, {'column3': 'value2b', 'column2': 2, 'column1': 'value1b'}, {'column3': 'value2d', 'column2': 3, 'column1': 'value1c'}]) result = myThread.dbi.processData(self.selectSQL) output = dbformatter.formatOneDict(result) self.assertEqual(output, {'column3': 'value2a', 'column2': 1, 'column1': 'value1a'}) if __name__ == "__main__": unittest.main()
true
1c29ad58198dbf3c0562d48c633eb57779c411c4
Python
cnk/django_test_examples
/example/tests/test_html_form.py
UTF-8
1,691
2.78125
3
[]
no_license
from django.test import TestCase, Client from ..models import Color class ExampleTestsWithDjangoClient(TestCase): def setUp(self): for color in ['blue', 'green', 'yellow', 'orange', 'red']: c = Color(name=color) c.full_clean() c.save() def test_request_without_form_data(self): client = Client() response = client.get('/') self.assertEqual(response.status_code, 200) self.assertEqual(response.context['data'], None) self.assertEqual(response.context['choices'], None) def test_request_with_form_submission(self): client = Client() response = client.post('/', {}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['data'], None) self.assertEqual(response.context['choices'], None) def test_request_with_form_submitting_one_choice(self): client = Client() response = client.post('/', {'choice': 2}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['choices'], ['2']) def test_request_with_form_submitting_three_choices_in_one_group(self): client = Client() response = client.post('/', {'choice': [2, 3, 4]}) self.assertEqual(response.status_code, 200) self.assertListEqual(response.context['choices'], ['2', '3', '4']) def test_request_with_form_submitting_choices_in_two_groups_only_sees_the_last_one(self): client = Client() response = client.post('/', {'choice': 2, 'choice': 3}) self.assertEqual(response.status_code, 200) self.assertListEqual(response.context['choices'], ['3'])
true
3c5a5ee744662c36b5197c230fb9329ac3b397ef
Python
zhijazi3/Scrapper
/webScrapper.py
UTF-8
1,483
3.171875
3
[]
no_license
from bs4 import BeautifulSoup import requests import pdb class WebScrapper: def __init__(self): self.start_url = "https://coinmarketcap.com/" self.cryptos = [] self.counter = 1 def scrape(self): self.url = self.start_url while True: # If no more new pages, exit if not self.url: break self.page = requests.get(self.url) # get formatted version of page content self.content = BeautifulSoup(self.page.content, 'html.parser') # parse content result = self.content.find_all('a', title=True) for alt in result: self.cryptos.append(alt.text) new_page = self.getNextPage() self.url = self.new_url print(self.cryptos) def getNextPage(self): # determine if a next page exists, if so return page url, else return false headerDiv = self.content.find('div', {'class': 'cmc-button-group'}) for div in headerDiv: text = div.text if "Next" in text: self.counter +=1 # page_number = [string for string in text.split() if string.isdigit()][0] self.new_url = self.start_url + str(self.counter) + '/' return self.new_url = False return if __name__ == "__main__": # run scrapper scapper = WebScrapper() scapper.scrape()
true
25c903b3b88aa55cdda5875a7afe85181932e2c7
Python
xiaoniudonghe2015/strings2xls
/xml2xls/xls2xml.py
UTF-8
4,153
2.9375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from distutils.log import Log from optparse import OptionParser import xlrd import os import time def open_excel(path): try: data = xlrd.open_workbook(path, encoding_override="utf-8") return data except Exception as ex: return ex def read_from_excel(file_path): data = open_excel(file_path) table = data.sheets()[0] keys = table.col_values(0) del keys[0] # print(keys) first_row = table.row_values(0) lan_values = {} for index in range(len(first_row)): if index <= 0: continue language_name = first_row[index] # print(language_name) values = table.col_values(index) del values[0] # print(values) lan_values[language_name] = values return keys, lan_values def write_to_xml(keys, values, file_path, language_name): fo = open(file_path, "wb") string_encoding = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<resources>\n" fo.write(bytes(string_encoding, encoding="utf-8")) for x in range(len(keys)): if values[x] is None or values[x] == '': Log().error("Language: " + language_name + " Key:" + keys[x] + " value is None. Index:" + str(x + 1)) continue key = keys[x].strip() # value = re.sub(r'(%\d\$)(@)', r'\1s', str(values[x])) value = str(values[x]) content = " <string name=\"" + key + "\">" + value + "</string>\n" fo.write(bytes(content, encoding="utf-8")) fo.write(bytes("</resources>", encoding="utf-8")) fo.close() def add_parser(): parser = OptionParser() parser.add_option("-f", "--fileDir", help="Xls files directory.", metavar="fileDir") parser.add_option("-t", "--targetDir", help="The directory where the xml files will be saved.", metavar="targetDir") (options, args) = parser.parse_args() # print("options: %s, args: %s" % (options, args)) return options def convert_to_xml(file_dir, target_dir): dest_dir = target_dir + "/xls2xml/" + time.strftime("%Y%m%d_%H%M%S") for _, _, file_names in os.walk(file_dir): xls_file_names = [fi for fi in file_names if fi.endswith(".xls") or fi.endswith(".xlsx")] for file in xls_file_names: data = xlrd.open_workbook(file_dir + "/" + file, 'utf-8') sheet = data.sheets() for table in sheet: first_row = table.row_values(0) keys = table.col_values(0) del keys[0] for index in range(len(first_row)): if index <= 0: continue language_name = first_row[index] values = table.col_values(index) del values[0] if language_name == "zh-Hans": language_name = "zh-rCN" path = dest_dir + "/values-" + language_name + "/" if language_name == 'en': path = dest_dir + "/values/" if not os.path.exists(path): os.makedirs(path) filename = 'strings.xml' write_to_xml(keys, values, path + filename, language_name) print("Convert %s successfully! you can see xml files in %s" % ( file_dir, dest_dir)) def start_convert(options): file_dir = options.fileDir target_dir = options.targetDir print("Start converting") if file_dir is None: Log().error("xls files directory can not be empty! try -h for help.") return if not os.path.exists(file_dir): Log().error("%s does not exist." % file_dir) return if target_dir is None: target_dir = os.getcwd() if not os.path.exists(target_dir): os.makedirs(target_dir) convert_to_xml(file_dir, target_dir) def main(): options = add_parser() start_convert(options) # convert_to_xml("/Users/shewenbiao/Desktop/xls2xml", os.getcwd()) main()
true
a4015e3986a892590a823be976d20e3d9786c32b
Python
martofeld/algoritmos1-ejercicios
/Guia 2/ejercicio3.py
UTF-8
259
3.21875
3
[]
no_license
import "./ejercicio2" def show_conversion_table(): print("|---------------------|") print("| farenhait | celcius |") for f in range(0, 120, 10): celcius = ejercicio2.farenhait_to_celcius(f) print("|", f, "|", celcius) print("|---------------------|")
true
37b8a619974052f07ecd165575dee6174ea41fd1
Python
NicolaRonzoni/Multivariate-Time-series-clustering
/30min data&code/clustering
UTF-8
2,678
2.90625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 13 09:49:32 2021 @author: nicolaronzoni """ #library import scipy import pandas as pd import sklearn import numpy as np pip install tslearn import tslearn #import the dataset df = pd.read_csv ('/Users/nicolaronzoni/Downloads/I35W_NB 30min 2013/S60.csv') df #normalization of the series from sklearn.preprocessing import MinMaxScaler, StandardScaler #flow flow = df.loc[:, 'Flow'] flow flow=np.array(flow) flow = flow.reshape((len(flow), 1)) # train the normalization scaler = MinMaxScaler(feature_range=(0, 1)) scaler = scaler.fit(flow) print('Min: %f, Max: %f' % (scaler.data_min_, scaler.data_max_)) normalized_flow = scaler.transform(flow) #from array to list normalized_flow=normalized_flow.tolist() len(normalized_flow) from toolz.itertoolz import sliding_window, partition #create the daily time series day_flow=list(partition(48,normalized_flow)) day_flow len(day_flow) #from list to array day_flow=np.asarray(day_flow) day_flow from tslearn.utils import to_time_series #univariate series for the flow normalized first_time_series = to_time_series(day_flow) print(first_time_series.shape) #speed speed =df.loc[:,'Speed'] speed=np.array(speed) speed= speed.reshape((len(speed), 1)) scaler = scaler.fit(speed) print('Min: %f, Max: %f' % (scaler.data_min_, scaler.data_max_)) # normalize the dataset and print the first 5 rows normalized_speed = scaler.transform(speed) normalized_speed #from array to list normalized_speed=normalized_speed.tolist() len(normalized_speed) #create daily time series day_speed=list(partition(48,normalized_speed)) day_speed len(day_speed) #from list to array day_speed=np.asarray(day_speed) day_speed #univariate series for the speed normalized second_time_series = to_time_series(day_speed) print(second_time_series.shape) second_time_series #normalized_speed= tuple(map(tuple, normalized_speed)) #creation of the multivariate time series multivariate=np.dstack((first_time_series,second_time_series)) multivariate_time_series = to_time_series(multivariate) print(multivariate_time_series.shape) #clustering from tslearn.clustering import TimeSeriesKMeans #try Euclidean softdtw dtw km_dba = TimeSeriesKMeans(n_clusters=4, metric="softdtw", max_iter=5,max_iter_barycenter=5, random_state=0).fit(multivariate_time_series) km_dba.cluster_centers_.shape km_dba.cluster_centers_ prediction=km_dba.fit_predict(multivariate_time_series,y=None) len(prediction) #visualization pip install calplot import calplot all_days = pd.date_range('1/1/2013', periods=365, freq='D') events = pd.Series(prediction, index=all_days) calplot.calplot(events)
true
1b3734fe9d2e64c72d5bdfb97d7cb012f93138f6
Python
JLtheking/cpy5python
/HCI_PrelimP1_2013/Additional Materials/1.2.py
UTF-8
683
4.125
4
[]
no_license
def bitshift(string): shiftedbit = string[0] newstring = "" for i in range(1,8): #shifts all bits forward by 1, except the eighth bit newstring += string[i] newstring += shiftedbit return newstring inputAccepted = False while not inputAccepted: string = input("Input bits to shift: ") #validate input if string == "": print("Empty input") #presence check elif len(string) != 8: print("Input must be 8-bit") #length check else: for i in range(len(string)): if string[i] != '0' and string[i] != '1': #value check print("Input can only utilise the digits 0 and 1 for bits") break else: inputAccepted = True string = bitshift(string) print(string)
true
34ed55c076b32d2a6b649118193d24e94515061f
Python
Kanevskiyoleksandr/DZ8
/Main menu.py
UTF-8
441
2.640625
3
[]
no_license
from tkinter import * root = Tk() root.geometry('580x300+100+100') mainmenu = Menu(root) root.config(menu=mainmenu) mainmenu.add_command(label='Создать запись') mainmenu.add_command(label='Найти запись') mainmenu.add_command(label='Редактировать запись') mainmenu.add_command(label='Удалить запись') mainmenu.add_command(label='Выйти из программы') root.mainloop()
true
20eae44645e7bb1d10b164388d154b7d15749fdc
Python
zenna/asl
/asl/run.py
UTF-8
1,968
3.109375
3
[]
no_license
"Get reference loss" import asl def isidle(runstate): return runstate['mode'] == "idle" def empty_runstate(): return {'observes' : {}, 'mode' : 'idle'} def set_mode(runstate, mode): runstate['mode'] = mode def mode(runstate): return runstate['mode'] def set_idle(runstate): set_mode(runstate, 'idle') def observe(value, label, runstate, log=True): if isidle(runstate): print("cant observe values without choosing mode") raise ValueError if runstate['mode'] not in runstate['observes']: runstate['observes'][runstate['mode']] = {} runstate['observes'][runstate['mode']][label] = value return value def callfuncs(functions, inputs, modes): """Execute each function and record runstate""" runstate = empty_runstate() for i, func in enumerate(functions): set_mode(runstate, modes[i]) func(*inputs[i], runstate) set_idle(runstate) return runstate def refresh_iter(dl, itr_transform=None): if itr_transform is None: return iter(dl) else: return asl.util.misc.imap(itr_transform, iter(dl)) def run_observe(functions, inputs, refresh_inputs, modes, log=True): """Run functions and accumulate observed values Args: functions: list of functions to call under different modes refresh_inputs[i](inputs[i]) should return list of inputs for functions[i] use refresh_inputs to restart iterators for example Returns: A function of no arguments that produces a ``runstate``, which accumulates information from running all the functions in ``functions`` """ inp = [refresh_inputs(inp) for inp in inputs] def runobserve(): nonlocal inp try: runstate = callfuncs(functions, inp, modes) if log: asl.log("runstate", runstate) return runstate except StopIteration: print("End of Epoch, restarting inputs") inp = [refresh_inputs(inp) for inp in inputs] return callfuncs(functions, inp, modes) return runobserve
true
ba294aa48d6c4dae2772a51140ac362fb0dca042
Python
rui233/leetcode-python
/Array and String/121-Best time to Buy and Sell Stock.py
UTF-8
264
3.359375
3
[]
no_license
class Solution(object): def maxProfit(self,prices): """ :param prices: :return: """ max_profit,min_price =0,float("inf") for price in prices: min_price = min(min_price,price) max_profit = max(max_profit,price - min_price) return max_profit
true
3309069e99ee70902cac596cd267a069c97039ad
Python
leobarrientos/wiitruck
/src/morse.py
UTF-8
2,449
3.0625
3
[]
no_license
import cwiid, time import RPi.GPIO as GPIO button_delay = 0.1 print 'Please press buttons 1 + 2 on your Wiimote now ...' time.sleep(1) # This code attempts to connect to your Wiimote and if it fails the program quits try: wii=cwiid.Wiimote() #turn on led to show connected wii.led = 1 except RuntimeError: print "Cannot connect to your Wiimote. Run again and make sure you are holding buttons 1 + 2!" quit() print 'Wiimote connection established!\n' print 'Go ahead and press some buttons\n' print 'Press PLUS and MINUS together to disconnect and quit.\n' time.sleep(3) #Now if we want to read values from the Wiimote we must turn on the reporting mode. First let's have it just report button presses wii.rpt_mode = cwiid.RPT_BTN | cwiid.RPT_ACC gpio17 = LED(17) gpio17.off() print 'Ready!!!' CODE = {' ': ' ', "'": '.----.', '(': '-.--.-', ')': '-.--.-', ',': '--..--', '-': '-....-', '.': '.-.-.-', '/': '-..-.', '0': '-----', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', ':': '---...', ';': '-.-.-.', '?': '..--..', 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '_': '..--.-'} ledPin=17 GPIO.setmode(GPIO.BCM) GPIO.setup(ledPin,GPIO.ALT0) GPIO.setclock(4,64000) def dot(): GPIO.output(ledPin,1) time.sleep(0.2) GPIO.output(ledPin,0) time.sleep(0.2) def dash(): GPIO.output(ledPin,1) time.sleep(0.5) GPIO.output(ledPin,0) time.sleep(0.2) while True: input = raw_input('What would you like to send? ') for letter in input: for symbol in CODE[letter.upper()]: if symbol == '-': dash() elif symbol == '.': dot() else: time.sleep(0.5) time.sleep(0.5)
true
57f5eeafc542339921fcd04edbeabcea8f20a51c
Python
OathKeeper723/data_report
/information_extraction/qichacha.py
UTF-8
1,999
2.734375
3
[]
no_license
# coding=utf-8 # 此程序输出来源于企查查的信息,包括:身份信息,股东信息,变更记录信息 # 以json格式输出 import docx import re import yaml import os from word_manipulation import docx_enhanced current_path = os.path.dirname(os.path.realpath(__file__)) f = open(current_path+"\\qichacha_config.yml", encoding="utf-8") config = yaml.load(f, Loader=yaml.FullLoader) f.close() def dict2list(dict): result = [] for i in dict: result.append(dict[i]) return result def recurse_dict2list(ll): if isinstance(ll, list): for i in range(len(ll)): ll[i] = recurse_dict2list(ll[i]) elif isinstance(ll, dict): ll = recurse_dict2list(dict2list(ll)) return ll # title表示表头内容,content表示需要删选的列 def get_table_content(docx_file, title, content): result = [] docx_list = docx_enhanced.docx_to_list(docx_file) for i in range(1, len(docx_list)): if isinstance(docx_list[i-1], str) and isinstance(docx_list[i], list) and config[title] in docx_list[i-1]: for j in range(1, len(docx_list[i])): temp = {} for k in range(0, len(docx_list[i][j])): if docx_list[i][0][k] in config[content]: temp[docx_list[i][0][k]] = docx_list[i][j][k] result.append(temp) return result # 提取规则 def read_docx(file_name): docx_file = docx.Document(file_name) paragraphs_content = '\n'.join([para.text for para in docx_file.paragraphs]) # 身份信息 BUSINESS_INFO = {} for i in config['identity_info']: BUSINESS_INFO[i] = re.search("%s:(.*?)\n" % i, paragraphs_content).group(1).strip() INFO_DICT = {} for info in config['info_list']: INFO_DICT[info[1]] = get_table_content(docx_file, info[0], info[1]) BUSINESS_INFO = dict2list(BUSINESS_INFO) INFO_LIST = recurse_dict2list(INFO_DICT) return BUSINESS_INFO, INFO_LIST
true
e95a63d1c83071a13f08b1fd01fa4ed83be10625
Python
Narvaliton/Learning
/Python/OpenClassrooms/methode_str.py
UTF-8
2,019
4.28125
4
[]
no_license
from random import randrange import os """Les méthodes de la classe str""" nom = "Colin" prenom = "Maxime" age = "22" #Utilisation de la fonction upper qui permet de passer une chaine de caractère en majuscule ( != lower() ) print("Tu t'appeles " + prenom + " " + nom.upper() + " et tu as " + age + " ans.") #Formater une chaine de caractère print("Tu t'appeles {1} {0} et tu as {2} ans.".format(nom.upper(), prenom, age)) #Parcours de chaine chaine = "Hello world !" print(chaine[0:5]) #Equivaut à: print(chaine[:5]) print(chaine[6:11]) print(chaine[-1]) #On veut compter le nombre de fois ou la chaine de caractère "x" est présente dans la variable "chaine" x = "l" print(chaine.count(x)) #On remplace les occurences de la chaine "x" par la chaine de caractère "y" dans la variable "chaine" y = "j" newChaine = chaine.replace(x, y) newChaine2 = chaine.replace(x,y,1)#On peut indiquer le nombre de fois qu'on remplace la chaine de caractère print(newChaine) print(newChaine2) print(chaine)#La chaine originale n'est pas modifiée #On cherche la première occurence d'une chaine de caractère dans une autre occurence = chaine.find("l") print(occurence) #On peut limiter la recherche à une partie de la chaine en spécifiant les indices ou l'on veut commencer et/ou finir la recherche occurence2 = chaine.find("l", 5, -1) print(occurence2) #On veut remplacer toutes les occurences dans une chaine de caractère par un caractère aléatoire lettres = "abcdefghijklmnopqrstuvwxyzêéèàâôî" chaine2 ="C'est fou le nombre de lettres qui se trouve dans cette chaine de caractère" newChaine2 = "" lettre = "4" while lettre not in lettres or len(lettre) != 1: lettre = input("Choisissez une lettre de l'alphabet :\n").lower() for i in range(0,len(chaine2)): if chaine2[i].lower() == lettre: newChaine2 += lettres[randrange(len(lettres))] else: newChaine2 += chaine2[i] print(newChaine2) os.system("pause")
true
4251c6d476027402bd1019cbf8965c21e61adbd3
Python
nalapati/sdc-behavioral-cloning
/models.py
UTF-8
9,270
2.671875
3
[]
no_license
"""Model definitions, construction, testing, validation, training. NOTE: We used parts of this code as a framework for the Udacity SDC Challenge 2, https://github.com/emef/sdc, however for this project I experimented with 3D convolutional networks. """ import logging import os import time # Adds functionality to work with a dataset from datasets import load_dataset from keras import backend as K from keras import metrics from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.engine.topology import Merge from keras.layers import ( Activation, BatchNormalization, Dense, Dropout, Flatten, Input, SpatialDropout2D, SpatialDropout3D, merge) from keras.layers.advanced_activations import PReLU from keras.layers.convolutional import ( AveragePooling2D, Convolution2D, Convolution3D, MaxPooling2D, MaxPooling3D) from keras.models import Model, Sequential from keras.models import load_model as keras_load_model from keras.regularizers import l2 import numpy as np import tensorflow as tf logger = logging.getLogger(__name__) class SdcModel(object): """ Contains functions to train/evaluate/save models. """ def __init__(self, model_config): """ @param model_config - dictionary containing a model configuration. """ self.model = keras_load_model(model_config['model_uri']) self.timesteps = model_config['timesteps'] def fit(self, dataset, training_args, callbacks=None): """ This method constructs a training and validation generator and calls keras model fit_generator to train the model. @param dataset - See Dataset(datasets.py) @param training_args - Dict containing training params (epochs, batch_size, pctl_sampling) @param callbacks - Any keras callbacks to use in the training process (snapshots, early exit) and so on. """ batch_size = training_args.get('batch_size', 100) epochs = training_args.get('epochs', 5) pctl_sampling = training_args.get('pctl_sampling', False) validation_size = training_args.get( 'validation_size', dataset.validation_generator( batch_size).get_size()) epoch_size = training_args.get( 'epoch_size', dataset.training_generator( batch_size).get_size()) # display model configuration self.model.summary() training_generator = dataset.training_generator(batch_size) validation_generator = dataset.validation_generator(batch_size) if self.timesteps: # Timesteps for the 3D model. training_generator = training_generator.with_timesteps( self.timesteps) validation_generator = validation_generator.with_timesteps( self.timesteps) if pctl_sampling: training_generator = training_generator.with_pctl_sampling() history = self.model.fit_generator( training_generator, validation_data=validation_generator, samples_per_epoch=epoch_size, nb_val_samples=validation_size, nb_epoch=epochs, verbose=1, callbacks=(callbacks or [])) def evaluate(self, dataset): """ @param dataset - See Dataset(dataset.py) """ generator = dataset.testing_generator(32) if self.timesteps: generator = generator.with_timesteps(self.timesteps) return std_evaluate(self, generator) def predict_on_batch(self, batch): """ @param batch - batch of input per model configuration. """ return self.model.predict_on_batch(batch) def save(self, model_path): """ @param model_path - path at which to save the model. @return - dict with a model configuration. """ save_model(self.model, model_path) return { 'model_uri': model_path } @classmethod def create(cls, creation_args): """ @param creation_args - Dict containing params with which to create a model. (input_shape, timesteps, model_uri). @return - model configuration dict to be used to construct an SDCModel. """ # Only support sequential models timesteps = creation_args['timesteps'] img_input = Input(shape=creation_args['input_shape']) layer = MaxPooling3D((1, 2, 2))(img_input) layer = Convolution3D(60, 5, 5, 5, init="he_normal", activation="relu", border_mode="same")(layer) layer = MaxPooling3D((2, 3, 3))(layer) layer = SpatialDropout3D(0.5)(layer) layer = BatchNormalization(axis=4)(layer) layer = Convolution3D(120, 3, 3, 3, init="he_normal", activation="relu", border_mode="same")(layer) layer = MaxPooling3D((2, 3, 2))(layer) layer = SpatialDropout3D(0.5)(layer) layer = BatchNormalization(axis=4)(layer) layer = Convolution3D(180, 3, 3, 3, init="he_normal", activation="relu", border_mode="same")(layer) layer = MaxPooling3D((2, 3, 2))(layer) layer = SpatialDropout3D(0.5)(layer) layer = BatchNormalization(axis=4)(layer) layer = Flatten()(layer) layer = Dense(256)(layer) layer = PReLU()(layer) layer = Dropout(0.5)(layer) layer = Dense(1, W_regularizer=l2(0.001))(layer) model = Model(input=img_input, output=layer) model.compile( loss='mean_squared_error', optimizer='adadelta', metrics=['rmse']) model.save(creation_args['model_uri']) return { 'model_uri': creation_args['model_uri'], 'timesteps': creation_args['timesteps'] } def std_evaluate(model, generator): """ Evaluates a model on the dataset represented by the generator. @param model - SDCModel @param generator - generator generating (batch_size, X, y) @return - list of mse, rmse """ size = generator.get_size() batch_size = generator.get_batch_size() n_batches = size / batch_size err_sum = 0. err_count = 0. for _ in np.arange(n_batches): X_batch, y_batch = generator.__next__() y_pred = model.predict_on_batch(X_batch) err_sum += np.sum((y_batch - y_pred) ** 2) err_count += len(y_pred) mse = err_sum / err_count return [mse, np.sqrt(mse)] def save_model(model, model_path): """ Save a keras model to a local path. @param model - keras model @param model_path - local path to write to """ try: os.makedirs(os.path.dirname(model_path)) except: pass json_string = model.to_json() model.save(model_path) with open(model_path.replace("h5", "json"), "w") as f: f.write(json_string) f.write("\n") def rmse(y_true, y_pred): """Calculates RMSE """ return K.sqrt(K.mean(K.square(y_pred - y_true))) metrics.rmse = rmse def train_model(args): """ Trains a model using the specified args. @param args - Dict (model_config, dataset_path, task_id) """ logger.info('loading model with config %s', args) model = SdcModel(args['model_config']) dataset = load_dataset(args['dataset_path']) baseline_mse = dataset.get_baseline_mse() logger.info('baseline mse: %f, baseline rmse: %f' % ( baseline_mse, np.sqrt(baseline_mse))) model_checkpoint = ModelCheckpoint( "weights.{epoch:02d}-{val_loss:.2f}.hdf5", monitor='val_loss', verbose=1, save_best_only=False, save_weights_only=False, mode='auto', period=1) earlystop = EarlyStopping(monitor="val_rmse", min_delta=0.0005, patience=12, mode="min") model.fit(dataset, args['training_args'], [earlystop, model_checkpoint]) output_model_path = os.path.join( args['model_path'], '%s.h5' % args['task_id']) output_config = model.save(output_model_path) logger.info('Wrote final model to %s', output_model_path) # assume evaluation is mse evaluation = model.evaluate(dataset) training_mse = evaluation[0] improvement = -(training_mse - baseline_mse) / baseline_mse logger.info('Evaluation: %s', evaluation) logger.info('Baseline MSE %.5f, training MSE %.5f, improvement %.2f%%', baseline_mse, training_mse, improvement * 100) logger.info('output config: %s' % output_config) def generate_id(): """ @return - a task id under which to store a model." """ return str(int(time.time())) def main(): logging.basicConfig(level=logging.INFO) train_model({ "dataset_path": "/home/nalapati/udacity/sdc/udacity-p3/datasets/dataset_32", "model_path": "/home/nalapati/udacity/sdc/udacity-p3/models", "model_config": SdcModel.create({ "input_shape": (10, 80, 320, 3), "model_uri": "/home/nalapati/models/" + generate_id() + ".h5", "timesteps": 10 }), "task_id": str(int(time.time())), "training_args": { "batch_size": 32, "epochs": 50 }, }) if __name__ == '__main__': main()
true
1f021ba4c879256feea64ba8a6a897fbfa42d872
Python
Gedevan-Aleksizde/datar
/datar/forcats/lvl_addrm.py
UTF-8
3,823
2.921875
3
[ "MIT" ]
permissive
"""Provides functions to add or remove levels""" from typing import Any, Iterable, List from pandas import Categorical from pipda import register_verb from pipda.utils import CallingEnvs from ..base import levels, union, table, intersect, setdiff from ..core.contexts import Context from ..core.types import ForcatsRegType, ForcatsType, is_scalar, is_null from .lvls import lvls_expand, lvls_union, refactor from .utils import check_factor @register_verb(ForcatsRegType, context=Context.EVAL) def fct_expand(_f: ForcatsType, *additional_levels: Any) -> Categorical: """Add additional levels to a factor Args: _f: A factor *additional_levels: Additional levels to add to the factor. Levels that already exist will be silently ignored. Returns: The factor with levels expanded """ _f = check_factor(_f) levs = levels(_f, __calling_env=CallingEnvs.REGULAR) addlevs = [] for alev in additional_levels: if is_scalar(alev): addlevs.append(alev) else: addlevs.extend(alev) new_levels = union(levs, addlevs) return lvls_expand(_f, new_levels, __calling_env=CallingEnvs.REGULAR) @register_verb(ForcatsRegType, context=Context.EVAL) def fct_explicit_na( _f: ForcatsType, na_level: Any = "(Missing)" ) -> Categorical: """Make missing values explicit This gives missing values an explicit factor level, ensuring that they appear in summaries and on plots. Args: _f: A factor na_level: Level to use for missing values. This is what NAs will be changed to. Returns: The factor with explict na_levels """ _f = check_factor(_f) # levs = levels(_f, __calling_env=CallingEnvs.REGULAR) is_missing = is_null(_f) # is_missing_level = is_null(levs) if any(is_missing): _f = fct_expand(_f, na_level) _f[is_missing] = na_level return _f # NAs cannot be a level in pandas.Categorical # if any(is_missing_level): # levs[is_missing_level] = na_level # return lvls_revalue(_f, levs) return _f @register_verb(ForcatsRegType, context=Context.EVAL) def fct_drop(_f: ForcatsType, only: Any = None) -> Categorical: """Drop unused levels Args: _f: A factor only: A character vector restricting the set of levels to be dropped. If supplied, only levels that have no entries and appear in this vector will be removed. Returns: The factor with unused levels dropped """ _f = check_factor(_f) levs = levels(_f, __calling_env=CallingEnvs.REGULAR) count = table(_f, __calling_env=CallingEnvs.REGULAR).iloc[0, :] to_drop = levs[count == 0] if only is not None and is_scalar(only): only = [only] if only is not None: to_drop = intersect(to_drop, only, __calling_env=CallingEnvs.REGULAR) return refactor( _f, new_levels=setdiff(levs, to_drop, __calling_env=CallingEnvs.REGULAR), ) @register_verb(ForcatsRegType, context=Context.EVAL) def fct_unify( # pylint: disable=invalid-name,redefined-outer-name fs: Iterable[ForcatsType], levels: Iterable = None, ) -> List[Categorical]: """Unify the levels in a list of factors Args: fs: A list of factors levels: Set of levels to apply to every factor. Default to union of all factor levels Returns: A list of factors with the levels expanded """ if levels is None: levels = lvls_union(fs) out = [] for fct in fs: fct = check_factor(fct) out.append( lvls_expand( fct, new_levels=levels, __calling_env=CallingEnvs.REGULAR, ) ) return out
true
db2064382dcd88c124b1ec09226493cb2e525e1a
Python
JanHendrikDolling/configvalidator
/test/test_timezone.py
UTF-8
1,141
2.671875
3
[ "Apache-2.0" ]
permissive
# -*- coding: utf-8 -*- """ :copyright: (c) 2015 by Jan-Hendrik Dolling. :license: Apache 2.0, see LICENSE for more details. """ try: import unittest2 as unittest except ImportError: import unittest from configvalidator.tools.timezone import TZ import datetime class MyTestCase(unittest.TestCase): def test_tzinfo_utc(self): self.assertEqual("UTC", TZ().tzname(None)) self.assertEqual(datetime.timedelta(0), TZ().utcoffset(None)) self.assertEqual(datetime.timedelta(0), TZ().dst(None)) # self.assertEqual(datetime.timedelta(hours=-10), TZ(hours=-10).utcoffset(None)) self.assertEqual(datetime.timedelta(minutes=1), TZ(minutes=1).dst(None)) self.assertEqual(datetime.timedelta(minutes=-1), TZ(minutes=-1).dst(None)) # self.assertEqual("UTC-02:39", TZ(hours=-2, minutes=-39).tzname(None)) self.assertEqual("UTC-02:39", TZ(hours=-2, minutes=39).tzname(None)) # self.assertEqual("UTC+00:39", TZ(minutes=39).tzname(None)) self.assertEqual("UTC+22:04", TZ(hours=22, minutes=4).tzname(None)) if __name__ == '__main__': unittest.main()
true
8b1210e6ec5f242bb968b8855fc6ba3803ba0a24
Python
hope7th/FluencyPython
/1703011417encode.py
UTF-8
153
2.609375
3
[]
no_license
# -*- coding:utf-8 -*- if __name__ == '__main__': for codec in ['latin_1','utf_8','utf_16']: print(codec,'El Niño'.encode(codec),sep='\t')
true
dcc4f4e6f994a3687487919d92d9c57034bbd5c1
Python
Nicolezjy/Recommend_system
/Recommendation_Item.py
UTF-8
4,068
2.90625
3
[]
no_license
# coding: utf-8 #item based CF from __future__ import division import numpy as np import scipy as sp class Item_based_CF: def __init__(self, X): self.X = X #评分表 self.mu = np.mean(self.X[:,2]) #average rating self.ItemsForUser={} #用户打过分的所有Item self.UsersForItem={} #给Item打过分的所有用户 for i in range(self.X.shape[0]): uid=self.X[i][0] #user id i_id=self.X[i][1] #item_id rat=self.X[i][2] #rating self.UsersForItem.setdefault(i_id,{}) self.ItemsForUser.setdefault(uid,{}) self.UsersForItem[i_id][uid]=rat self.ItemsForUser[uid][i_id]=rat pass n_Items = len(self.UsersForItem)+1 #数组的索引从0开始,浪费第0个元素 print(n_Items-1) self.similarity = np.zeros((n_Items, n_Items), dtype=np.float) self.similarity[:,:] = -1 #计算Item i_id1和i_id2之间的相似性 def sim_cal(self, i_id1, i_id2): if self.similarity[i_id1][i_id2]!=-1: #如果已经计算好 return self.similarity[i_id1][i_id2] si={} for user in self.UsersForItem[i_id1]: #所有对Item1打过分的的user if user in self.UsersForItem[i_id2]: #如果该用户对Item2也打过分 si[user]=1 #user为一个有效用用户 #print si n=len(si) #有效用户数,有效用户为即对Item1打过分,也对Item2打过分 if (n==0): #没有共同打过分的用户,相似度设为1.因为最低打分为1? self.similarity[i_id1][i_id2]=0 self.similarity[i_id1][i_id1]=0 return 0 #所有有效用户对Item1的打分 s1=np.array([self.UsersForItem[i_id1][u] for u in si]) #所有有效用户对Item2的打分 s2=np.array([self.UsersForItem[i_id2][u] for u in si]) sum1=np.sum(s1) sum2=np.sum(s2) sum1Sq=np.sum(s1**2) sum2Sq=np.sum(s2**2) pSum=np.sum(s1*s2) #分子 num=pSum-(sum1*sum2/n) #分母 den=np.sqrt((sum1Sq-sum1**2/n)*(sum2Sq-sum2**2/n)) if den==0: self.similarity[i_id1][i_id2]=0 self.similarity[i_id2][i_id1]=0 return 0 self.similarity[i_id1][i_id2]=num/den self.similarity[i_id2][i_id1]=num/den return num/den #预测用户uid对Item i_id的打分 def pred(self,uid,i_id): sim_accumulate=0.0 rat_acc=0.0 if(i_id == 599): print(self.UsersForItem[i_id]) for item in self.ItemsForUser[uid]: #用户uid打过分的所有Item sim = self.sim_cal(item,i_id) #该Item与i_id之间的相似度 if sim<0:continue rat_acc += sim * self.ItemsForUser[uid][item] sim_accumulate += sim if sim_accumulate==0: #no same user rated,return average rates of the data return self.mu return rat_acc/sim_accumulate #测试 def test(self,test_X): test_X=np.array(test_X) output=[] sums=0 print("the test data size is ",test_X.shape) for i in range(test_X.shape[0]): uid = test_X[i][0] #user id i_id = test_X[i][1] #item_id #设置默认值,否则用户或item没在训练集中出现时会报错 self.UsersForItem.setdefault(i_id,{}) self.ItemsForUser.setdefault(uid,{}) pre=self.pred(uid, i_id) output.append(pre) sums += (pre-test_X[i][2])**2 rmse=np.sqrt(sums/test_X.shape[0]) print("the rmse on test data is ",rmse) return output
true
e14e6c581ecf719d2bdbd801d121c53568a84601
Python
ITT-wh/NeuralNetwork
/NerualNetwork/neural_network/week2/lr_utils.py
UTF-8
2,091
2.828125
3
[ "MIT" ]
permissive
import numpy as np import h5py import matplotlib.pyplot as plot # 加载数据 def load_dataset(): train_dataset = h5py.File('../../datasets/train_catvnoncat.h5', "r") # 可以通过train_dataset.keys()查看键值的集合; [:]: 表示除当前维度以外的所有 train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # print(train_set_x_orig[24].shape) # your train set labels train_set_y_orig = np.array(train_dataset["train_set_y"][:]) test_dataset = h5py.File('../../datasets/test_catvnoncat.h5', "r") # your test set features test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set labels test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # the list of classes classes = np.array(test_dataset["list_classes"][:]) # 完善数据维度:由(209,) ---> (1, 209) train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes # 数据预处理 def pre_process_data(): # 加载数据 train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() # 数据扁平化 train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T # shapes = test_set_x_orig.shape # test_set_x_flatten = test_set_x_orig.reshape(shapes[0], shapes[1] * shapes[2] * shapes[3]).T # 与下面的形式等价, 但更贴近于理解, 即:examples_num * Vector; 转置后: 易于输入神经网络中 test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T # 标准化 train_set_x = train_set_x_flatten / 255.0 test_set_x = test_set_x_flatten / 255.0 return train_set_x, train_set_y, test_set_x, test_set_y # sigmoid 函数 def sigmoid(z): s = 1 / (1 + np.exp(-z)) return s # relu 函数 # def relu(z): # # s = np.max(0, z) # # return s # def main(): # # load_dataset() # # # main()
true
eeb00931ba248bbd9bf559f1d9b00182afbb0667
Python
FraugDib/algorithms
/money_change.py
UTF-8
4,602
3.71875
4
[]
no_license
import time def find_change(results, current_decomposition, n, denominations): """Find changes Arguments results -- accumulate result in an array. Each item is also an array current_decomposition -- decomposition of n in denominations n -- number to decompose. Does not change denominations -- array of denominations to be used for decomposition """ # Guard conditions to stop the recursion if sum(current_decomposition) == n: results.append(list(current_decomposition)) return elif sum(current_decomposition) > n: return # We first iterate through the denominations # then recursively call the function to continue # to find the remaining decomposition in denomination of n for denomination in denominations: my_current_decomposition = list(current_decomposition) my_current_decomposition.append(denomination) find_change(results, my_current_decomposition, n, denominations) return def main(): # Test 1 ############################################# expected_results =[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] test(n=10,denominations=[1], expected_results=expected_results) # Test 2 ############################################# expected_results = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 8], [1, 8, 1], [8, 1, 1]] test(n=10,denominations=[1, 8], expected_results=expected_results) # Test 3 ############################################# expected_results =[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 7], [1, 1, 7, 1], [1, 1, 8], [1, 7, 1, 1], [1, 8, 1], [7, 1, 1, 1], [8, 1, 1]] test(n=10,denominations=[1, 7, 8], expected_results=expected_results) # Test 3 ############################################# expected_results =[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 1, 1, 3, 1], [1, 1, 1, 1, 1, 3, 1, 1], [1, 1, 1, 1, 1, 5], [1, 1, 1, 1, 3, 1, 1, 1], [1, 1, 1, 1, 3, 3], [1, 1, 1, 1, 5, 1], [1, 1, 1, 3, 1, 1, 1, 1], [1, 1, 1, 3, 1, 3], [1, 1, 1, 3, 3, 1], [1, 1, 1, 5, 1, 1], [1, 1, 3, 1, 1, 1, 1, 1], [1, 1, 3, 1, 1, 3], [1, 1, 3, 1, 3, 1], [1, 1, 3, 3, 1, 1], [1, 1, 3, 5], [1, 1, 5, 1, 1, 1], [1, 1, 5, 3], [1, 3, 1, 1, 1, 1, 1, 1], [1, 3, 1, 1, 1, 3], [1, 3, 1, 1, 3, 1], [1, 3, 1, 3, 1, 1], [1, 3, 1, 5], [1, 3, 3, 1, 1, 1], [1, 3, 3, 3], [1, 3, 5, 1], [1, 5, 1, 1, 1, 1], [1, 5, 1, 3], [1, 5, 3, 1], [3, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 3], [3, 1, 1, 1, 3, 1], [3, 1, 1, 3, 1, 1], [3, 1, 1, 5], [3, 1, 3, 1, 1, 1], [3, 1, 3, 3], [3, 1, 5, 1], [3, 3, 1, 1, 1, 1], [3, 3, 1, 3], [3, 3, 3, 1], [3, 5, 1, 1], [5, 1, 1, 1, 1, 1], [5, 1, 1, 3], [5, 1, 3, 1], [5, 3, 1, 1], [5, 5]] test(n=10,denominations=[1, 3, 5], expected_results=expected_results) def test(n, denominations, expected_results): print("Testing `find_change()` for n: {}, denominations: {}".format(n, denominations)) results = [] current_decomposition = [] start = time.time() find_change(results, current_decomposition, n, denominations) end = time.time() print("Time elapsed: {}".format(end - start)) print("Results: \n{}\n".format(results)) assert (results == expected_results) main()
true
4be2e384e8ccaf17a94d4dc157c85a9c0dca7e85
Python
matk86/pymatgen
/pymatgen/core/bonds.py
UTF-8
4,070
2.90625
3
[ "MIT" ]
permissive
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import os import json import collections import warnings from pymatgen.core.periodic_table import get_el_sp """ This class implements definitions for various kinds of bonds. Typically used in Molecule analysis. """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "shyuep@gmail.com" __date__ = "Jul 26, 2012" def _load_bond_length_data(): """Loads bond length data from json file""" with open(os.path.join(os.path.dirname(__file__), "bond_lengths.json")) as f: data = collections.defaultdict(dict) for row in json.load(f): els = sorted(row['elements']) data[tuple(els)][row['bond_order']] = row['length'] return data bond_lengths = _load_bond_length_data() class CovalentBond(object): """ Defines a covalent bond between two sites. """ def __init__(self, site1, site2): """ Initializes a covalent bond between two sites. Args: site1 (Site): First site. site2 (Site): Second site. """ self.site1 = site1 self.site2 = site2 @property def length(self): """ Length of the bond. """ return self.site1.distance(self.site2) @staticmethod def is_bonded(site1, site2, tol=0.2, bond_order=None): """ Test if two sites are bonded, up to a certain limit. Args: site1 (Site): First site site2 (Site): Second site tol (float): Relative tolerance to test. Basically, the code checks if the distance between the sites is less than (1 + tol) * typical bond distances. Defaults to 0.2, i.e., 20% longer. bond_order: Bond order to test. If None, the code simply checks against all possible bond data. Defaults to None. Returns: Boolean indicating whether two sites are bonded. """ sp1 = list(site1.species_and_occu.keys())[0] sp2 = list(site2.species_and_occu.keys())[0] dist = site1.distance(site2) syms = tuple(sorted([sp1.symbol, sp2.symbol])) if syms in bond_lengths: all_lengths = bond_lengths[syms] if bond_order: return dist < (1 + tol) * all_lengths[bond_order] for v in all_lengths.values(): if dist < (1 + tol) * v: return True return False raise ValueError("No bond data for elements {} - {}".format(*syms)) def __repr__(self): return "Covalent bond between {} and {}".format(self.site1, self.site2) def __str__(self): return self.__repr__() def get_bond_length(sp1, sp2, bond_order=1): """ Get the bond length between two species. Args: sp1 (Specie): First specie. sp2 (Specie): Second specie. bond_order: For species with different possible bond orders, this allows one to obtain the bond length for a particular bond order. For example, to get the C=C bond length instead of the C-C bond length, this should be set to 2. Defaults to 1. Returns: Bond length in Angstrom. If no data is available, the sum of the atomic radii is used. """ sp1 = get_el_sp(sp1) sp2 = get_el_sp(sp2) syms = tuple(sorted([sp1.symbol, sp2.symbol])) if syms in bond_lengths: all_lengths = bond_lengths[syms] if bond_order: return all_lengths.get(bond_order) else: return all_lengths.get(1) warnings.warn("No bond lengths for %s-%s found in database. Returning sum" "of atomic radius." % (sp1, sp2)) return sp1.atomic_radius + sp2.atomic_radius
true
b701803736e2929be8efa648812df9b2d80498c9
Python
xzc5858/caigou
/plug.py
UTF-8
884
2.875
3
[]
no_license
import requests from bs4 import BeautifulSoup def request_post(url, data): try: response = requests.post(url, data) if response.status_code == 200: return response except requests.RequestException: return None def request_get(url): try: response = requests.get(url) if response.status_code == 200: return response except requests.RequestException: return None def request_getsoup(url): r = request_get(url) soup = BeautifulSoup(r.text, "html5lib") return soup def request_postsoup(url, data): r = request_post(url, data) soup = BeautifulSoup(r.text, "html5lib") return soup def request_soup(url, isGet, data): if isGet: # print('get') return request_getsoup(url) else: # print('post') return request_postsoup(url, data)
true
e164fab8ecd973f8126201010db55041988ade9b
Python
debasishdebs/parameterTesting
/Git/balanceClasses/algoScores.py
UTF-8
13,311
3.046875
3
[]
no_license
__author__ = 'Debasish' import csv import pandas as pd import numpy as np import matplotlib.pyplot as plt from ggplot import * from sklearn.metrics import * import sys f = open('output.txt', 'w') sys.stdout = f ''' Todo : Form pairs. (Error & e_5), (error & e_10), (error & e_15) and so on. Total 6 pairs will be formed of different length. Each pair ll have length same as its e_x value. Pass each list of pair together (error & e_5), (error & e_10) to pd.crosstab function after converting them to Pandas Series & Numpy.ndarray. Save each crasstab result in different list thus giving f-table for each possible case. Use each crosstab to plot ROC curve. (Part of skitlearn package) and find area under curve of each parameter. Once done, select the most optimized one.''' def plotROC(fpr, tpr, preds_auc): plt.figure() plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)'%preds_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() def getPredClsScore(dataset): e5PredCls = [] e10PredCls = [] e15PredCls = [] e20PredCls = [] e25PredCls = [] e30PredCls = [] error_list = [] for j in range(1,len(dataset[0])): e5PredCls.append(float(dataset[0][j][8])) e10PredCls.append(float(dataset[0][j][9])) e15PredCls.append(float(dataset[0][j][10])) e20PredCls.append(float(dataset[0][j][11])) e25PredCls.append(float(dataset[0][j][12])) e30PredCls.append(float(dataset[0][j][13])) error_list.append(float(dataset[0][j][1])) pred_pos_cls = {} pred_pos_cls['e_5'] = e5PredCls pred_pos_cls['e_10'] = e10PredCls pred_pos_cls['e_15'] = e15PredCls pred_pos_cls['e_20'] = e20PredCls pred_pos_cls['e_25'] = e25PredCls pred_pos_cls['e_30'] = e30PredCls return error_list, pred_pos_cls def get_algo_scores(filename): print "In Here" dataset = [None]*1 for i in range(1): fname = filename lines = csv.reader(open(fname, "rt")) lines = csv.reader(open(fname, "rt")) dataset[i] = list(lines) error_list, predsPosClsScore = getPredClsScore(dataset) dictionaries = [] for i in range(1): dictionaries = create_dicts(dataset[i]) #Dictionary[i] stores all the data in i_th.csv file #print len(dictionaries) dictL = [None]*7 for i in range(len(dictL)): #print (dictionaries[i]) #print "Length of dictionary passed ", len(dictionaries[0]) dictL[i] = dict_to_list(dictionaries) #Each row of dictL holds errors for the whole day. Either error column or e_5 column or e_10 & so on.. #print dictL[5][1] #print (dictL[1][0]) for i in range(1,len(dictL)): if i == 1: err_e5 = merge_lists(dictL[i], i, dictL[0]) elif i == 2: err_e10 = merge_lists(dictL[i], i, dictL[0]) elif i == 3: err_e15 = merge_lists(dictL[i], i, dictL[0]) elif i == 4: err_e20 = merge_lists(dictL[i], i, dictL[0]) elif i == 5: err_e25 = merge_lists(dictL[i], i, dictL[0]) elif i == 6: err_e30 = merge_lists(dictL[i], i, dictL[0]) #print err_e10 auc = {} for i in range(1, len(dictL)): if i == 1: err_list, ftr_err_list = data_crosstab(err_e5, i) preds_auc = roc_auc_score(error_list, predsPosClsScore['e_5']) auc['e_5'] = preds_auc print "AUC for e_5 :", preds_auc fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_5']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(preds_auc)) ggsave(filename='auc_e5.png', plot=plt) #plotROC(fpr, tpr, preds_auc) crosstab(err_list, ftr_err_list) elif i == 2: err_list, ftr_err_list = data_crosstab(err_e10, i) print "AUC for e_10 :", roc_auc_score(error_list, predsPosClsScore['e_10']) auc['e_10'] = roc_auc_score(error_list, predsPosClsScore['e_10']) fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_10']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(auc['e_10'])) ggsave(filename='auc_e10.png', plot=plt) #plotROC(fpr, tpr, preds_auc) crosstab(err_list, ftr_err_list) elif i == 3: err_list, ftr_err_list = data_crosstab(err_e15, i) print "AUC for e_15 :", roc_auc_score(error_list, predsPosClsScore['e_15']) auc['e_15'] = roc_auc_score(error_list, predsPosClsScore['e_15']) fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_15']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(auc['e_15'])) ggsave(filename='auc_e15.png', plot=plt) #plotROC(fpr, tpr, preds_auc) crosstab(err_list, ftr_err_list) elif i == 4: err_list, ftr_err_list = data_crosstab(err_e20, i) print "AUC for e_20 :", roc_auc_score(error_list, predsPosClsScore['e_20']) auc['e_20'] = roc_auc_score(error_list, predsPosClsScore['e_20']) fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_20']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(auc['e_20'])) ggsave(filename='auc_e20.png', plot=plt) crosstab(err_list, ftr_err_list) elif i == 5: err_list, ftr_err_list = data_crosstab(err_e25, i) print "AUC for e_25 :", roc_auc_score(error_list, predsPosClsScore['e_25']) auc['e_25'] = roc_auc_score(error_list, predsPosClsScore['e_25']) fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_25']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(auc['e_25'])) ggsave(filename='auc_e25.png', plot=plt) crosstab(err_list, ftr_err_list) elif i == 6: err_list, ftr_err_list = data_crosstab(err_e30, i) print "AUC for e_30 :", roc_auc_score(error_list, predsPosClsScore['e_30']) auc['e_30'] = roc_auc_score(error_list, predsPosClsScore['e_30']) fpr, tpr, threshold = roc_curve(error_list, predsPosClsScore['e_30']) df = pd.DataFrame(dict(fpr=fpr,tpr=tpr)) plt = ggplot(df, aes(x='fpr',y='tpr')) + geom_line() + geom_abline(linetype='dashed') +\ ggtitle("ROC Curve w/ AUC=%s" % str(auc['e_30'])) ggsave(filename='auc_e30.png', plot=plt) crosstab(err_list, ftr_err_list) # with open ('auc.txt', 'w') as fp: # for p in auc.items(): # fp.write("%s:%s\n" % p) f.close() def crosstab(err_list, ftr_err_list): plt.plot(err_list, ftr_err_list) tpr, fpr, tp, fp = precision_recall(err_list, ftr_err_list) #print "TPR : {}, FPR : {} ".format(tpr, fpr) #print "TP : {}, FP : {}".format(tp,fp) #plt.show() #print np.trapz(err_list, ftr_err_list) #print set(ftr_err_list) for i in range(len(err_list)): err_list[i] = int(err_list[i]) ftr_err_list[i] = int(ftr_err_list[i]) print "Precision Score : ",precision_score(err_list, ftr_err_list, average='binary') err_list = pd.Series(err_list) ftr_err_list = np.array(ftr_err_list) ct = pd.crosstab(err_list, ftr_err_list,rownames = ['actual'], colnames=['preds']) print "Confusion Matrix" print ct print "\n" def precision_recall(y_actual, y_pred): tp = 0 fp = 0 tn = 0 fn = 0 for i in range(len(y_actual)): if int(y_actual[i]) == int(y_pred[i]) == 1: tp+=1 elif int(y_actual[i]) == 1 and int(y_pred[i]) == 0: fn+=1 elif int(y_actual[i]) == 0 and int(y_pred[i]) == 1: fp+=1 elif int(y_actual[i]) == 0 and int(y_pred[i]) == 0: tn+=1 print "Total TP : {0}, Total TN : {1}".format(tp,tn) print "Total FP : {0}, Total FN : {1}".format(fp,fn) tpr = float(tp)/float(tp+fn) fpr = float(fp)/float(tn+fp) print "True Positive Rate : {0}, False Positive Rate : {1}.".format(tpr, fpr) return tpr, fpr, tp, fp def data_crosstab(data, x): err_list = [] future_err_list = [] #print len(data) for i in range(len(data)): err_list.append(data[i]['err']) future_err_list.append(data[i]['e_{}'.format(5*x)]) return err_list, future_err_list def merge_lists(dicts, x, dict_err): #print "Merge_lists" #print len(dicts[0]) err_e = [dict() for p in range(len(dicts[0]))] for i in range(len(dicts[0])): for j in range(len(dict_err[0])): if dict_err[0][j] == dicts[0][i]: err_e[i] = {'ts' : dicts[0][i], 'err' : dict_err[1][j], 'e_{}'.format(str(x*5)) : dicts[1][i] } break #print err_e return err_e def dict_to_list(dictionary): #Converts each list of dictionary into list where only Values are stored and keys are skipped. lDict = [[] for x in range(2)] flag = 0 for j in range(len(dictionary[0])): #print "length : ", len(dictionary[i][j]) for key, value in dictionary[0][j].iteritems(): if value!= 'timestamp' and "e" not in value: if len(value) == 1: lDict[1].append(value) else: lDict[0].append(value) #print(len(lDict[0])) return lDict def create_dicts(dataset): lDicts = [None]*7 print "Length of DS from create_dict func : ", len(dataset) for i in range(len(lDicts)): lDicts[i] = getDict(dataset, i) #lDict[i] stores either only {ts->error} dictionary, or {ts->e_5} or {ts->e_10} and so on depending on value of 'i'.. #print "lDict : ",len(lDicts[i]) return lDicts def getDict(dataset, x): #Returns a dictionary of ts->error against 'x' specified. x=0(error), x=1(e_5), x=2(e_10) & so on for a particular file. if x==0: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): inp_dict[i] = {'ts' : dataset[i][0], 'error' : dataset[i-x][x+1]} return inp_dict if x==1: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_5' : dataset[i-x][x+1]} except: continue return inp_dict if x==2: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_10' : dataset[i-x][x+1]} except: continue return inp_dict if x==3: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_15' : dataset[i-x][x+1]} except: continue return inp_dict if x==4: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_20' : dataset[i-x][x+1]} except: continue return inp_dict if x==5: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_25' : dataset[i-x][x+1]} except: continue return inp_dict if x==6: inp_dict = [dict() for i in range(len(dataset))] for i in range(len(dataset)): try: inp_dict[i] = {'ts' : dataset[i][0], 'e_30' : dataset[i-x][x+1]} except: continue return inp_dict filename = 'small_ds1_tse_temporal_lookback4_predictions_' + str(0+20) + '.csv' get_algo_scores(filename)
true
e0626d75da0973592edecbcb51f5c96331d96cdd
Python
guillaume-guerdoux/tournee_infirmiers
/tournee_infirmiers/patient/models.py
UTF-8
239
2.59375
3
[]
no_license
from django.db import models from user.models import Person class Patient(Person): information = models.CharField(max_length=255) def __str__(self): return ("{0} ".format(self.first_name) + "{0}".format(self.last_name))
true
6429ab4ee1c0f939e1f32e345a34d46df89212eb
Python
trungnq2/build-tool-script
/result.py
UTF-8
809
2.84375
3
[]
no_license
import os import json def createTxtFromJSON(): file = open("app_data.txt", "w") with open("app_data.json") as app_data: json_ = json.load(app_data) apps = json_['apps'] # sortlist = sorted(apps, key=lambda k: k['appid']) for app in apps: file.write("App: %s \n"%app['appid']) file.write("Name: %s \n"%app['zip']) file.write("\n") file.write("Version: \n" ) file.write("Environment: \n") file.write("Platform: iOS + Android \n") file.close() def write_output(file_path, data): print("Full Path %s" % os.getcwd()) print("Updating %s" % file_path) with open(file_path, 'w') as outfile: json.dump(data, outfile, indent=4) def createAppJSON(data): sortlist = sorted(data, key=lambda k: k['appid']) write_output("app_data.json", {"apps": sortlist})
true
9afe68618b90cba4799b3541cb732d5043bfd895
Python
cbbing/wealth_spider
/CollectiveIntelligence/generatefeedvector.py
UTF-8
2,009
2.953125
3
[]
no_license
#coding=utf8 import sys reload(sys) sys.setdefaultencoding('utf8') __author__ = 'cbb' import feedparser import re import jieba def get_word_counts(url): """ 返回一个RSS订阅源的标题和包含单词计数情况的字典 :param url: :return: """ #解析订阅源 d = feedparser.parse(url) wc = {} #循环遍历所有的文章条目 for e in d.entries: if 'summary' in e: summary = e.summary else: summary = e.description #提取一个单词列表 words = get_words(e.title + ' ' + summary) for word in words: wc.setdefault(word, 0) wc[word] += 1 return d.feed.title, wc def get_words(html): #去除所有HTML标记 txt = re.compile(r'<[^>]+>').sub('', html) txt = re.compile('\s').sub('', txt) #利用所有非字母字符拆分单词 #words = re.compile(r'[^A-Z^a-z]+').split(txt) #英文分词 words = jieba.cut(txt) #转化成小写形式 return [word for word in words if word !=''] # news = get_word_counts('http://news.baidu.com/n?cmd=1&class=stock&tn=rss') # print news[0], news[1] apcount = {} wordcounts = {} feedlist = [line for line in file('../Data/feedbaidu.txt', 'r')] for feedurl in feedlist: title, wc = get_word_counts(feedurl.strip()) wordcounts[title] = wc for word, count in wc.items(): apcount.setdefault(word, 0) if count > 1: apcount[word] += 1 wordlist = [] for w, bc in apcount.items(): frac = float(bc)/len(feedlist) if frac > 0.1 and frac < 0.5: wordlist.append(w) out = file('blogdata.txt', 'w') out.write('Blog') for word in wordlist: out.write('\t{}'.format(word)) out.write('\n') for blog, wc in wordcounts.items(): out.write(blog) for word in wordlist: if word in wc: out.write('\t{}'.format(wc[word])) else: out.write('\t0') out.write('\n') out.close()
true
7535bb5f0f69326b6f8de3c7ca14f0ab3e2eaf48
Python
thuuyen98/ML
/Gradient_descent.py
UTF-8
2,021
3.171875
3
[]
no_license
from sklearn.model_selection import train_test_split import numpy as np import pandas as pd dataset= pd.read_csv("/Users/macos/Downloads/filted_train.csv") dataset =dataset.fillna(dataset.mean()) dataset= dataset.replace('male', 0) dataset= dataset.replace('female', 1) features= dataset.iloc[:,1:].values labels= dataset.iloc[:,:1].values labels = np.squeeze(labels) features_train, features_valid, labels_train, labels_valid = train_test_split(features, labels, test_size = 0.20) print(features_train.shape) print(features_valid.shape) print(labels_train.shape) print(labels_valid.shape) lr = 0.0001 a = np.ones(shape=(6,1)) b = 0 def predict(x): return np.squeeze(np.matmul(x, a) + b) # Tính đạo hàm loss theo a def d_fa(X, Y, Y_pred): n = float(X.shape[0]) return (-2 / n) * np.sum(np.matmul((Y - Y_pred), X), axis=0) # Tính đạo hàm loss theo b def d_fb(X, Y, Y_pred): n = float(X.shape[0]) return (-2 / n) * np.sum(Y - Y_pred) # Cập nhật giá trị mới cho a theo đạo hàm def update_a(a, da): return a - lr * da # Cập nhật giá trị mới cho b theo đạo hàm def update_b(b, db): return b - lr * db # Gradient Descent def iris_gd(X_train, Y_train): global a, b iter_count = 0 for iter_count in range(10000): train_pred = predict(X_train) da = d_fa(X_train, Y_train, train_pred) db = d_fb(X_train, Y_train, train_pred) a = update_a(a, da) b = update_b(b, db) # Đánh giá mô hình def eval(X_test, Y_test): predictions = predict(X_test) predictions = np.round(predictions) correct_pred = np.count_nonzero(predictions == Y_test) accuracy = correct_pred / predictions.shape[0] return accuracy # Huấn luyện và đánh giá mô hình #print(features_train.shape) #print(labels_train.shape) iris_gd(features_train, labels_train) print("Ma trận trọng số a:\n", a) print("Tham số b:", b) acc = eval(features_valid, labels_valid) print("Accuracy tập test:", acc)
true
ad489844ea60ee6e9d4adc5a8a60580d9dab1362
Python
apulps/LeetCode
/tests.py
UTF-8
28,707
3.09375
3
[]
no_license
import unittest from array_problems.remove_duplicates import remove_duplicates, remove_duplicates_2 from easy_problems.two_sum import two_sum, two_sum_2 from easy_problems.reverse_integer import reverse_integer from easy_problems.running_sum import running_sum, running_sum_2, running_sum_3 from easy_problems.kids_with_candies import kids_with_candies, kids_with_candies_2 from easy_problems.shuffle import shuffle from easy_problems.num_identical_pairs import num_identical_pairs from easy_problems.defang_IP_addr import defang_IP_addr from easy_problems.num_jewels_in_stones import num_jewels_in_stones, num_jewels_in_stones_2 from easy_problems.number_of_steps import number_of_steps, number_of_steps_2 from easy_problems.shuffle_array import shuffle_array from easy_problems.smaller_numbers_than_current import smaller_numbers_than_current from easy_problems.subtract_product_and_sum import subtract_product_and_sum from easy_problems.decompress_RLE_list import decompress_RLE_list from easy_problems.max_depth import max_depth from easy_problems.create_target_array import create_target_array, create_target_array_2 from easy_problems.xor_operation import xor_operation from easy_problems.parking_system import ParkingSystem from easy_problems.reverse_string import reverse_string, reverse_string_2 from easy_problems.depth_of_binary_tree import depth_of_binary_tree from easy_problems.single_number import single_number, single_number_2 ,single_number_3, single_number_4 from easy_problems.delete_node_linked_list import delete_node_linked_list from easy_problems.reverse_linkedlist import reverse_linkedlist from easy_problems.fizz_buzz import fizz_buzz from easy_problems.majority_element import majority_element from easy_problems.sorted_array_to_BTS import sorted_array_to_BTS from easy_problems.move_zeroes import move_zeroes, move_zeroes_2 from medium_problems.subrectangle_queries import SubrectangleQueries from medium_problems.group_the_people import group_the_people from medium_problems.max_increase_keeping_skyline import max_increase_keeping_skyline from medium_problems.get_target_copy import get_target_copy from medium_problems.deepest_leaves_sum import deepest_leaves_sum from medium_problems.permute import permute, permute_2 from medium_problems.inorder_traversal import inorder_traversal, inorder_traversal_2 from assets.problems_data_structures import TreeNode, LinkedList class TestArrayProblems(unittest.TestCase): def test_remove_duplicates(self): nums = [1,1,2] result = remove_duplicates(nums) self.assertEqual(result, 2) self.assertEqual(nums, [1,2]) nums = [0,0,1,1,1,2,2,3,3,4] result = remove_duplicates(nums) self.assertEqual(result, 5) self.assertEqual(nums, [0,1,2,3,4]) nums = [1,1] result = remove_duplicates(nums) self.assertEqual(result, 1) self.assertEqual(nums, [1]) nums = [] result = remove_duplicates(nums) self.assertEqual(result, 0) def test_remove_duplicates_2(self): nums = [1,1,2] result = remove_duplicates_2(nums) self.assertEqual(result, 2) self.assertEqual(nums, [1,2]) nums = [0,0,1,1,1,2,2,3,3,4] result = remove_duplicates_2(nums) self.assertEqual(result, 5) self.assertEqual(nums, [0,1,2,3,4]) nums = [1,1] result = remove_duplicates_2(nums) self.assertEqual(result, 1) self.assertEqual(nums, [1]) class TestEasyProblems(unittest.TestCase): def test_two_sum(self): nums = [2,7,11,15] target = 9 result = two_sum(nums, target) self.assertEqual(result, [0,1]) nums = [3,2,4] target = 6 result = two_sum(nums, target) self.assertEqual(result, [1,2]) nums = [3,3] target = 6 result = two_sum(nums, target) self.assertEqual(result, [0,1]) def test_two_sum_2(self): nums = [2,7,11,15] target = 9 result = two_sum_2(nums, target) self.assertEqual(result, [0,1]) nums = [3,2,4] target = 6 result = two_sum_2(nums, target) self.assertEqual(result, [1,2]) nums = [3,3] target = 6 result = two_sum_2(nums, target) self.assertEqual(result, [0,1]) def test_reverse_integer(self): x = 123 result = reverse_integer(x) self.assertEqual(result, 321) x = -123 result = reverse_integer(x) self.assertEqual(result, -321) x = 120 result = reverse_integer(x) self.assertEqual(result, 21) x = 0 result = reverse_integer(x) self.assertEqual(result, 0) def test_running_sum(self): nums = [1,2,3,4] result = running_sum(nums) self.assertEqual(result, [1,3,6,10]) nums = [1,1,1,1,1] result = running_sum(nums) self.assertEqual(result, [1,2,3,4,5]) nums = [3,1,2,10,1] result = running_sum(nums) self.assertEqual(result, [3,4,6,16,17]) def test_running_sum_2(self): nums = [1,2,3,4] result = running_sum_2(nums) self.assertEqual(result, [1,3,6,10]) nums = [1,1,1,1,1] result = running_sum_2(nums) self.assertEqual(result, [1,2,3,4,5]) nums = [3,1,2,10,1] result = running_sum_2(nums) self.assertEqual(result, [3,4,6,16,17]) def test_running_sum_3(self): nums = [1,2,3,4] result = running_sum_3(nums) self.assertEqual(result, [1,3,6,10]) nums = [1,1,1,1,1] result = running_sum_3(nums) self.assertEqual(result, [1,2,3,4,5]) nums = [3,1,2,10,1] result = running_sum_3(nums) self.assertEqual(result, [3,4,6,16,17]) def test_kids_with_candies(self): candies = [2,3,5,1,3] extra_candies = 3 result = kids_with_candies(candies, extra_candies) self.assertEqual(result, [True,True,True,False,True]) candies = [4,2,1,1,2] extra_candies = 1 result = kids_with_candies(candies, extra_candies) self.assertEqual(result, [True,False,False,False,False]) candies = [12,1,12] extra_candies = 10 result = kids_with_candies(candies, extra_candies) self.assertEqual(result, [True,False,True]) def test_kids_with_candies_2(self): candies = [2,3,5,1,3] extra_candies = 3 result = kids_with_candies_2(candies, extra_candies) self.assertEqual(result, [True,True,True,False,True]) candies = [4,2,1,1,2] extra_candies = 1 result = kids_with_candies_2(candies, extra_candies) self.assertEqual(result, [True,False,False,False,False]) candies = [12,1,12] extra_candies = 10 result = kids_with_candies_2(candies, extra_candies) self.assertEqual(result, [True,False,True]) def test_shuffle(self): nums = [2,5,1,3,4,7] n = 3 result = shuffle(nums, n) self.assertEqual(result, [2,3,5,4,1,7]) nums = [1,2,3,4,4,3,2,1] n = 4 result = shuffle(nums, n) self.assertEqual(result, [1,4,2,3,3,2,4,1]) nums = [1,1,2,2] n = 2 result = shuffle(nums, n) self.assertEqual(result, [1,2,1,2]) def test_num_identical_pairs(self): nums = [1,2,3,1,1,3] result = num_identical_pairs(nums) self.assertEqual(result, 4) nums = [1,1,1,1] result = num_identical_pairs(nums) self.assertEqual(result, 6) nums = [1,2,3] result = num_identical_pairs(nums) self.assertEqual(result, 0) nums = [] result = num_identical_pairs(nums) self.assertEqual(result, 0) def test_defang_IP_addr(self): address = "1.1.1.1" result = defang_IP_addr(address) self.assertEqual(result, "1[.]1[.]1[.]1") address = "255.100.50.0" result = defang_IP_addr(address) self.assertEqual(result, "255[.]100[.]50[.]0") def test_num_jewels_in_stones(self): J = "aA" S = "aAAbbbb" result = num_jewels_in_stones(J, S) self.assertEqual(result, 3) J = "z" S = "ZZ" result = num_jewels_in_stones(J, S) self.assertEqual(result, 0) def test_num_jewels_in_stones_2(self): J = "aA" S = "aAAbbbb" result = num_jewels_in_stones_2(J, S) self.assertEqual(result, 3) J = "z" S = "ZZ" result = num_jewels_in_stones_2(J, S) self.assertEqual(result, 0) def test_number_of_steps(self): num = 14 result = number_of_steps(num) self.assertEqual(result, 6) num = 8 result = number_of_steps(num) self.assertEqual(result, 4) num = 123 result = number_of_steps(num) self.assertEqual(result, 12) def test_number_of_steps_2(self): num = 14 result = number_of_steps_2(num) self.assertEqual(result, 6) num = 8 result = number_of_steps_2(num) self.assertEqual(result, 4) num = 123 result = number_of_steps_2(num) self.assertEqual(result, 12) def test_shuffle_array(self): s = "aiohn" indices = [3,1,4,2,0] result = shuffle_array(s, indices) self.assertEqual(result, "nihao") s = "aaiougrt" indices = [4,0,2,6,7,3,1,5] result = shuffle_array(s, indices) self.assertEqual(result, "arigatou") s = "art" indices = [1,0,2] result = shuffle_array(s, indices) self.assertEqual(result, "rat") s = "abc" indices = [0,1,2] result = shuffle_array(s, indices) self.assertEqual(result, "abc") def test_smaller_numbers_than_current(self): nums = [8,1,2,2,3] result = smaller_numbers_than_current(nums) self.assertEqual(result, [4,0,1,1,3]) nums = [6,5,4,8] result = smaller_numbers_than_current(nums) self.assertEqual(result, [2,1,0,3]) nums = [7,7,7,7] result = smaller_numbers_than_current(nums) self.assertEqual(result, [0,0,0,0]) def test_subtract_product_and_sum(self): n = 234 result = subtract_product_and_sum(n) self.assertEqual(result, 15) n = 4421 result = subtract_product_and_sum(n) self.assertEqual(result, 21) n = 450 result = subtract_product_and_sum(n) self.assertEqual(result, -9) def test_decompress_RLE_list(self): nums = [1,2,3,4] result = decompress_RLE_list(nums) self.assertEqual(result, [2,4,4,4]) nums = [1,1,2,3] result = decompress_RLE_list(nums) self.assertEqual(result, [1,3,3]) def test_max_depth(self): s = "(1+(2*3)+((8)/4))+1" result = max_depth(s) self.assertEqual(result, 3) s = "(1)+((2))+(((3)))" result = max_depth(s) self.assertEqual(result, 3) s = "1+(2*3)/(2-1)" result = max_depth(s) self.assertEqual(result, 1) s = "1" result = max_depth(s) self.assertEqual(result, 0) def test_create_target_array(self): nums = [0,1,2,3,4] index = [0,1,2,2,1] result = create_target_array(nums, index) self.assertEqual(result, [0,4,1,3,2]) nums = [1,2,3,4,0] index = [0,1,2,3,0] result = create_target_array(nums, index) self.assertEqual(result, [0,1,2,3,4]) nums = [1] index = [0] result = create_target_array(nums, index) self.assertEqual(result, [1]) def test_create_target_array_2(self): nums = [0,1,2,3,4] index = [0,1,2,2,1] result = create_target_array_2(nums, index) self.assertEqual(result, [0,4,1,3,2]) nums = [1,2,3,4,0] index = [0,1,2,3,0] result = create_target_array_2(nums, index) self.assertEqual(result, [0,1,2,3,4]) nums = [1] index = [0] result = create_target_array_2(nums, index) self.assertEqual(result, [1]) def test_xor_operation(self): n = 5 start = 0 result = xor_operation(n, start) self.assertEqual(result, 8) n = 4 start = 3 result = xor_operation(n, start) self.assertEqual(result, 8) n = 1 start = 7 result = xor_operation(n, start) self.assertEqual(result, 7) n = 10 start = 5 result = xor_operation(n, start) self.assertEqual(result, 2) def test_parking_system(self): parking_system = ParkingSystem(1, 1, 0) self.assertTrue(parking_system.add_car(1)) self.assertTrue(parking_system.add_car(2)) self.assertFalse(parking_system.add_car(3)) self.assertFalse(parking_system.add_car(1)) parking_system = ParkingSystem(0, 0, 1) self.assertTrue(parking_system.add_car(3)) self.assertRaises(ValueError, parking_system.add_car, 4) def test_reverse_string(self): s = ['h','e','l','l','o'] reverse_string(s) self.assertEqual(s, ['o','l','l','e','h']) s = ['a','b','c','d','e'] reverse_string(s) self.assertEqual(s, ['e','d','c','b','a']) def test_reverse_string_2(self): s = ['h','e','l','l','o'] reverse_string_2(s) self.assertEqual(s, ['o','l','l','e','h']) s = ['a','b','c','d','e'] reverse_string_2(s) self.assertEqual(s, ['e','d','c','b','a']) def test_depth_of_binary_tree(self): root = TreeNode(3) root.left = TreeNode(9) root.right = TreeNode(20) root.right.left = TreeNode(15) root.right.right = TreeNode(7) result = depth_of_binary_tree(root) self.assertEqual(result, 3) root = TreeNode(8) root.left = TreeNode(6) root.right = TreeNode(10) root.right.left = TreeNode(5) root.right.right = TreeNode(15) root.left.left = TreeNode(2) root.left.right = TreeNode(7) root.left.right.left = TreeNode(4) root.left.right.right = TreeNode(21) result = depth_of_binary_tree(root) self.assertEqual(result, 4) def test_single_number(self): nums = [2,2,1] result = single_number(nums) self.assertEqual(result, 1) nums = [4,1,2,1,2] result = single_number(nums) self.assertEqual(result, 4) nums = [1] result = single_number(nums) self.assertEqual(result, 1) def test_single_number_2(self): nums = [2,2,1] result = single_number_2(nums) self.assertEqual(result, 1) nums = [4,1,2,1,2] result = single_number_2(nums) self.assertEqual(result, 4) nums = [1] result = single_number_2(nums) self.assertEqual(result, 1) def test_single_number_3(self): nums = [2,2,1] result = single_number_3(nums) self.assertEqual(result, 1) nums = [4,1,2,1,2] result = single_number_3(nums) self.assertEqual(result, 4) nums = [1] result = single_number_3(nums) self.assertEqual(result, 1) def test_single_number_4(self): nums = [2,2,1] result = single_number_4(nums) self.assertEqual(result, 1) nums = [4,1,2,1,2] result = single_number_4(nums) self.assertEqual(result, 4) nums = [1] result = single_number_4(nums) self.assertEqual(result, 1) def test_delete_node_linked_list(self): head = LinkedList(4) head.next = LinkedList(5) head.next.next = LinkedList(1) head.next.next.next = LinkedList(9) delete_node_linked_list(head) # remove 4 self.assertEqual(head.val, 5) self.assertEqual(head.next.val, 1) self.assertEqual(head.next.next.val, 9) self.assertEqual(head.next.next.next, None) head = LinkedList(4) head.next = LinkedList(5) head.next.next = LinkedList(1) head.next.next.next = LinkedList(9) delete_node_linked_list(head.next) # remove 5 self.assertEqual(head.val, 4) self.assertEqual(head.next.val, 1) self.assertEqual(head.next.next.val, 9) self.assertEqual(head.next.next.next, None) head = LinkedList(4) head.next = LinkedList(5) head.next.next = LinkedList(1) head.next.next.next = LinkedList(9) delete_node_linked_list(head.next.next) # remove 1 self.assertEqual(head.val, 4) self.assertEqual(head.next.val, 5) self.assertEqual(head.next.next.val, 9) self.assertEqual(head.next.next.next, None) def test_reverse_linkedlist(self): head = LinkedList(1) head.next = LinkedList(2) head.next.next = LinkedList(3) head.next.next.next = LinkedList(4) head.next.next.next.next = LinkedList(5) result = reverse_linkedlist(head) self.assertEqual(result.val, 5) self.assertEqual(result.next.val, 4) self.assertEqual(result.next.next.val, 3) self.assertEqual(result.next.next.next.val, 2) self.assertEqual(result.next.next.next.next.val, 1) self.assertEqual(result.next.next.next.next.next, None) head = LinkedList(6) head.next = LinkedList(1) head.next.next = LinkedList(9) result = reverse_linkedlist(head) self.assertEqual(result.val, 9) self.assertEqual(result.next.val, 1) self.assertEqual(result.next.next.val, 6) self.assertEqual(result.next.next.next, None) def test_fizz_buzz(self): n = 15 result = fizz_buzz(n) self.assertEqual(result, ["1","2","Fizz","4","Buzz","Fizz","7","8","Fizz","Buzz","11","Fizz","13","14","FizzBuzz"]) def test_majority_element(self): nums = [3,2,3] result = majority_element(nums) self.assertEqual(result, 3) nums = [2,2,1,1,1,2,2] result = majority_element(nums) self.assertEqual(result, 2) nums = [3,3,4] result = majority_element(nums) self.assertEqual(result, 3) def test_sorted_array_to_BTS(self): nums = [-10,-3,0,5,9] result = sorted_array_to_BTS(nums) self.assertEqual(result.val, 0) self.assertEqual(result.left.val, -3) self.assertEqual(result.right.val, 9) self.assertEqual(result.left.left.val, -10) self.assertEqual(result.left.right, None) self.assertEqual(result.right.left.val, 5) def test_move_zeroes(self): nums = [0,1,0,3,12] move_zeroes(nums) self.assertEqual(nums, [1,3,12,0,0]) nums = [1,2,3,4,5,0,7,8,1,0,19] move_zeroes(nums) self.assertEqual(nums, [1,2,3,4,5,7,8,1,19,0,0]) nums = [] move_zeroes(nums) self.assertEqual(nums, []) nums = [0,0,1] move_zeroes(nums) self.assertEqual(nums, [1,0,0]) def test_move_zeroes_2(self): nums = [0,1,0,3,12] move_zeroes_2(nums) self.assertEqual(nums, [1,3,12,0,0]) nums = [1,2,3,4,5,0,7,8,1,0,19] move_zeroes_2(nums) self.assertEqual(nums, [1,2,3,4,5,7,8,1,19,0,0]) nums = [] move_zeroes_2(nums) self.assertEqual(nums, []) nums = [0,0,1] move_zeroes_2(nums) self.assertEqual(nums, [1,0,0]) class TestMediumProblems(unittest.TestCase): def test_subrectangle_queries(self): subrectangle_queries = SubrectangleQueries([[1,2,1],[4,3,4],[3,2,1],[1,1,1]]) result = subrectangle_queries.get_value(2,2) self.assertEqual(result, 1) result = subrectangle_queries.get_value(1,0) self.assertEqual(result, 4) result = subrectangle_queries.get_value(3,1) self.assertEqual(result, 1) subrectangle_queries.update_subrectangle(0,0,1,2,100) result = subrectangle_queries.get_value(0,1) self.assertEqual(result, 100) subrectangle_queries.update_subrectangle(2,0,2,2,90) result = subrectangle_queries.get_value(2,1) self.assertEqual(result, 90) subrectangle_queries.update_subrectangle(3,0,3,2,80) result = subrectangle_queries.get_value(3,1) self.assertEqual(result, 80) subrectangle_queries = SubrectangleQueries([[6,9,6,1,2],[8,8,6,5,9],[7,6,10,8,2],[7,7,4,9,1]]) subrectangle_queries.update_subrectangle(1,4,2,4,5) result = subrectangle_queries.get_value(3,4) self.assertEqual(result, 1) subrectangle_queries.update_subrectangle(3,4,3,4,8) result = subrectangle_queries.get_value(2,0) self.assertEqual(result, 7) def test_subrectangle_queries_2(self): subrectangle_queries = SubrectangleQueries([[1,2,1],[4,3,4],[3,2,1],[1,1,1]]) result = subrectangle_queries.get_value(2,2) self.assertEqual(result, 1) result = subrectangle_queries.get_value(1,0) self.assertEqual(result, 4) result = subrectangle_queries.get_value(3,1) self.assertEqual(result, 1) subrectangle_queries.update_subrectangle_2(0,0,1,2,100) result = subrectangle_queries.get_value(0,1) self.assertEqual(result, 100) subrectangle_queries.update_subrectangle_2(2,0,2,2,90) result = subrectangle_queries.get_value(2,1) self.assertEqual(result, 90) subrectangle_queries.update_subrectangle_2(3,0,3,2,80) result = subrectangle_queries.get_value(3,1) self.assertEqual(result, 80) subrectangle_queries = SubrectangleQueries([[6,9,6,1,2],[8,8,6,5,9],[7,6,10,8,2],[7,7,4,9,1]]) subrectangle_queries.update_subrectangle_2(1,4,2,4,5) result = subrectangle_queries.get_value(3,4) self.assertEqual(result, 1) subrectangle_queries.update_subrectangle_2(3,4,3,4,8) result = subrectangle_queries.get_value(2,0) self.assertEqual(result, 7) def test_group_the_people(self): group_sizes = [3,3,3,3,3,1,3] result = group_the_people(group_sizes) self.assertEqual(result, [[0,1,2],[3,4,6],[5]]) group_sizes = [2,1,3,3,3,2] result = group_the_people(group_sizes) self.assertEqual(result, [[0,5],[1],[2,3,4]]) def test_max_increase_keeping_skyline(self): grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]] result = max_increase_keeping_skyline(grid) self.assertEqual(result, 35) grid = [[5,1,4],[0,2,3],[7,1,9]] result = max_increase_keeping_skyline(grid) self.assertEqual(result, 6) grid = [[1,4,2,7,9],[8,3,5,7,4],[5,9,2,3,2],[3,8,1,5,1],[6,9,2,9,0]] result = max_increase_keeping_skyline(grid) self.assertEqual(result, 79) def test_get_target_copy(self): tree = TreeNode(7) tree.right = TreeNode(3) tree.left = TreeNode(4) tree.right.right = TreeNode(19) tree.right.left = TreeNode(6) cloned = tree target = TreeNode(3) result = get_target_copy(tree, cloned, target) assert result is cloned.right tree = TreeNode(7) cloned = tree target = TreeNode(7) result = get_target_copy(tree, cloned, target) assert result is cloned tree = TreeNode(8) tree.right = TreeNode(6) tree.right.right = TreeNode(5) tree.right.right.right = TreeNode(4) tree.right.right.right.right = TreeNode(3) tree.right.right.right.right.right = TreeNode(2) tree.right.right.right.right.right.right = TreeNode(1) cloned = tree target = TreeNode(4) result = get_target_copy(tree, cloned, target) assert result is cloned.right.right.right tree = TreeNode(1) tree.right = TreeNode(3) tree.left = TreeNode(2) tree.right.right = TreeNode(7) tree.right.left = TreeNode(6) tree.left.right = TreeNode(5) tree.left.left = TreeNode(4) tree.left.left.right = TreeNode(9) tree.left.left.left = TreeNode(8) tree.left.right.left = TreeNode(10) cloned = tree target = TreeNode(5) result = get_target_copy(tree, cloned, target) assert result is cloned.left.right tree = TreeNode(1) tree.left = TreeNode(2) tree.left.left = TreeNode(3) cloned = tree target = TreeNode(2) result = get_target_copy(tree, cloned, target) assert result is cloned.left def test_deepest_leaves_sum(self): tree = TreeNode(1) tree.right = TreeNode(3) tree.left = TreeNode(2) tree.right.right = TreeNode(6) tree.left.right = TreeNode(5) tree.left.left = TreeNode(4) tree.left.left.left = TreeNode(7) tree.right.right.right = TreeNode(8) result = deepest_leaves_sum(tree) self.assertEqual(result, 15) tree = TreeNode(1) tree.right = TreeNode(3) tree.left = TreeNode(2) tree.right.right = TreeNode(6) tree.left.right = TreeNode(5) tree.left.left = TreeNode(4) result = deepest_leaves_sum(tree) self.assertEqual(result, 15) tree = TreeNode(3) tree.right = TreeNode(5) tree.left = TreeNode(2) tree.right.right = TreeNode(8) tree.left.left = TreeNode(1) result = deepest_leaves_sum(tree) self.assertEqual(result, 9) tree = None result = deepest_leaves_sum(tree) self.assertEqual(result, 0) def test_permute(self): nums = [1,2,3] result = permute(nums) self.assertIn([1,2,3], result) self.assertIn([1,3,2], result) self.assertIn([2,1,3], result) self.assertIn([2,3,1], result) self.assertIn([3,1,2], result) self.assertIn([3,2,1], result) def test_permute_2(self): nums = [1,2,3] result = permute_2(nums) self.assertIn([1,2,3], result) self.assertIn([1,3,2], result) self.assertIn([2,1,3], result) self.assertIn([2,3,1], result) self.assertIn([3,1,2], result) self.assertIn([3,2,1], result) def test_inorder_traversal(self): root = TreeNode(1) root.left = TreeNode(2) result = inorder_traversal(root) self.assertEqual(result, [2,1]) root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) root.right.left.left = TreeNode(8) root.right.right.right = TreeNode(9) result = inorder_traversal(root) self.assertEqual(result, [4,2,5,1,8,6,3,7,9]) root = TreeNode(1) root.right = TreeNode(2) root.right.left = TreeNode(3) result = inorder_traversal(root) self.assertEqual(result, [1,3,2]) root = TreeNode(1) result = inorder_traversal(root) self.assertEqual(result, [1]) root = None result = inorder_traversal(root) self.assertEqual(result, []) def test_inorder_traversal_2(self): root = TreeNode(1) root.left = TreeNode(2) result = inorder_traversal_2(root) self.assertEqual(result, [2,1]) root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) root.right.left.left = TreeNode(8) root.right.right.right = TreeNode(9) result = inorder_traversal_2(root) self.assertEqual(result, [4,2,5,1,8,6,3,7,9]) root = TreeNode(1) root.right = TreeNode(2) root.right.left = TreeNode(3) result = inorder_traversal_2(root) self.assertEqual(result, [1,3,2]) root = TreeNode(1) result = inorder_traversal_2(root) self.assertEqual(result, [1]) root = None result = inorder_traversal_2(root) self.assertEqual(result, []) if __name__ == '__main__': unittest.main()
true
a106ff3bd084218337129542f596344b29b292b9
Python
jpagani1984/Projects
/hello_flask/Understanding_routing.py
UTF-8
1,068
3.015625
3
[]
no_license
from flask import Flask app = Flask(__name__) print(__name__) @app.route('/dojo') def Dojo(): return 'Dojo' @app.route('/say/flask') def hi_flask(): return 'Hi Flask' @app.route('/say/micheal') def say_micheal(): return 'HI MICHEAL' @app.route('/say/john') def say_john(): return 'HI JOHN' @app.route('/repeat/35/hello') def say_hello(): return 'hello' *int(35) @app.route('/repeat/99/dogs') def repeat_dogs(): return 'DOGS!!' *int(99) if __name__=="__main__": app.run(debug=True)
true
c3f702bd8a29294316257b50a4c1d4a71e74706f
Python
BadrYoubiIdrissi/solvepuzzle
/puzzle.py
UTF-8
2,150
3.09375
3
[]
no_license
import os import numpy as np import utils import matplotlib.pyplot as plt import matplotlib.image as image from PIL import Image from config import SAVE_FOLDER, HEIGHT, WIDTH, N_ROW, N_COL, HEIGHT_BLOCK, WIDTH_BLOCK class Puzzle: ''' A class that defines a puzzle. It defines two kinds of images: 1. self.original_img : np.array of shape (HEIGHT, WIDTH) 2. self.cut_img : np.array of shape (N_ROW, N_COL, HEIGHT_BLOCK, WIDTH_BLOCK) Therefore, self.cut_img[i][j] represents the sub-image at the row i and the col j ''' def __init__(self, filepath): # Open image self.img_path = filepath self.original_img = Image.open(self.img_path).convert("L") # Resize image self.original_img = self.original_img.resize((WIDTH, HEIGHT)) self.original_img = np.asarray(self.original_img) # Create cut_image with shape (N_ROW, N_COL, HEIGHT_BLOCK, WIDTH_BLOCK) self.cut_img = utils.cut_image(self.original_img) def print(self): ''' Shows the whole puzzle ''' img = utils.recreate_cut_image(self.cut_img) plt.imshow(img, cmap='gray') plt.show() def print_block(self,i,j): ''' Show the block found at row i and col j with : 0 <= i <= N_ROW -1 0 <= j <= N_COL -1 ''' assert (i in range(N_ROW) and j in range(N_COL)) plt.imshow(self.cut_img[i][j], cmap='gray') plt.show() def shuffle(self): np.random.shuffle(self.cut_img.reshape(N_ROW*N_COL, HEIGHT_BLOCK, WIDTH_BLOCK)) self.cut_img.reshape(N_ROW, N_COL, HEIGHT_BLOCK, WIDTH_BLOCK) def move(self, i1, j1, i2,j2): block1 = self.cut_img[i1][j1].copy() block2 = self.cut_img[i2][j2].copy() self.cut_img[i1,j1], self.cut_img[i2,j2] = block2, block1 def save(self, filename): filepath = os.path.join(SAVE_FOLDER, filename) if not os.path.exists(filepath): to_save_img = utils.recreate_cut_image(self.cut_img) plt.imsave(filepath, utils.recreate_cut_image(self.cut_img), cmap="gray")
true
98198d78ecd24735cd6a53f5a66d09ac84f90385
Python
youngung/MK
/mk/materials/func_hard_char.py
UTF-8
1,008
2.921875
3
[]
no_license
# ### characterize hardening functions import numpy as np from scipy.optimize import curve_fit def wrapper(func,*args): """ Hardening function wrapper Arguments --------- func *args Returns ------- func(x,*args) that is a function of only strain (x). """ def f_hard_char(x): """ Argument -------- x """ return func(x,*args) return f_hard_char def main(exp_dat,f_hard,params): """ Arguments --------- exp_dat f_hard params (initial guess) """ x,y = exp_dat # bounds -- # print 'params:', params popt, pcov = curve_fit(f_hard,x,y,p0=params) return wrapper(f_hard,*popt), popt, pcov def test1(): from func_hard import func_swift popt_guess = (518.968, 0.0007648, 0.28985) ## ks, e0, n x=np.linspace(0,0.2,1000) y=func_swift(x,*popt_guess) exp_dat= (x,y) func = main(exp_dat, func_swift, popt_guess) if __name__=='__main__': test1()
true
6806bf3b66f3cdfc337230db45b469e77d4d7178
Python
cashgithubs/mypro
/py_tools/qiubai_pyqt/qb0.2/qb_ui2.pyw
UTF-8
3,943
2.65625
3
[]
no_license
# -*- coding: utf-8 -*- """ Module implementing MainWindow. """ from PyQt4.QtGui import * from PyQt4.QtCore import * import requests import threading from bs4 import BeautifulSoup import datetime from Ui_qb_ui2 import Ui_MainWindow event = threading.Event() class MainWindow(QMainWindow, Ui_MainWindow): """ Class documentation goes here. """ isinit = False def __init__(self, parent = None): """ Constructor """ QMainWindow.__init__(self, parent) self.setupUi(self) self.connect(self.listWidget.verticalScrollBar(), SIGNAL("valueChanged(int)"), self.LoadQB) def LoadQB(self, position): max_position = self.listWidget.verticalScrollBar().maximum() if self.isinit: if position < max_position: return self.isinit = True global event event.set() def ProcessGui(self, qb_content, image_content, have_img): #starttime = datetime.datetime.now() image = QImage() item_widget = QWidget() item_widget_layout = QVBoxLayout() item_widget_layout.setContentsMargins(0, 0, 0, 0) item_widget.setLayout(item_widget_layout) label = QLabel(qb_content) label.setWordWrap(True) item_widget_layout.addWidget(label) if have_img: image.loadFromData(image_content) image_label = QLabel() image_label.setPixmap(QPixmap.fromImage(image)) item_widget_layout.addWidget(image_label) item = QListWidgetItem() if have_img: item.setSizeHint(QSize(100, 500)) else: item.setSizeHint(QSize(100, 150)) self.listWidget.addItem(item) self.listWidget.setItemWidget(item, item_widget) #endtime = datetime.datetime.now() #print 'UI' #print (endtime - starttime) class ParseThread(threading.Thread, QObject): page = 1 def __init__(self): threading.Thread.__init__(self) QObject.__init__(self) def run(self): while(True): #starttime = datetime.datetime.now() global event event.wait() event.clear() url = "http://www.qiushibaike.com/week/5/page/" + str(self.page) self.page += 1 re = requests.get(url) html = BeautifulSoup(re.text) content_list = html.findAll("div", {"class":"article block untagged mb15"}) for i in range(len(content_list)): have_img = False for j in range(1, len(content_list[i].contents), 2): if content_list[i].contents[j]['class'] == ['content']: qb_content = content_list[i].contents[j].next if content_list[i].contents[j]['class'] == ['thumb']: image_url = content_list[i].contents[j].img['src'] re = requests.get(image_url) image_content = re.content have_img = True if have_img == False: image_content = '' self.emit(SIGNAL("addItem(PyQt_PyObject, PyQt_PyObject, PyQt_PyObject)"), qb_content, image_content, have_img) #endtime = datetime.datetime.now() #print 'HTML' #print (endtime - starttime) if __name__ == "__main__": import sys app = QApplication(sys.argv) ui = MainWindow() ui.setWindowIcon(QIcon('1.jpg')) ui.show() pt = ParseThread() pt.setDaemon(True) pt.start() ui.connect(pt, SIGNAL("addItem(PyQt_PyObject, PyQt_PyObject, PyQt_PyObject)"), ui.ProcessGui) ui.LoadQB(0) sys.exit(app.exec_())
true
3685c365effacfc7e64c01fd837923c46d5e4ef7
Python
florinpapa/muzee_romania
/app.py
UTF-8
8,890
2.625
3
[]
no_license
import os from flask import Flask, request, redirect from flask import render_template from re import sub, search from os import listdir from os.path import isfile, join import pickle import csv UPLOAD_FOLDER = './static/images' ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg', 'gif']) app = Flask(__name__, static_url_path='/static') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS def search_key(index, keyword): """ search museum dictionary """ #load dictionary dict_file = open('data.pkl', 'rb') dictionar = pickle.load(dict_file) dict_file.close() #load headers head_file = open('headers.hd', 'rb') header = pickle.load(head_file) head_file.close() #find keyword muzee = [] if keyword == "": for i in range(len(dictionar[header[0]])): muzee.append({'cod': dictionar[header[0]][i], 'judet': dictionar[header[2]][i].decode(encoding="UTF-8"), 'nume': dictionar[header[3]][i].decode(encoding="UTF-8"), 'lat': sub(',', '.', dictionar[header[35]][i]), 'lng': sub(',', '.', dictionar[header[36]][i])}) else: for i in range(len(dictionar[header[index]])): new_word = dictionar[header[index]][i].decode(encoding='UTF-8').lower() keyword = keyword.lower() if keyword in new_word: muzee.append({'cod': dictionar[header[0]][i], 'judet': dictionar[header[2]][i].decode(encoding="UTF-8"), 'nume': dictionar[header[3]][i].decode(encoding="UTF-8"), 'lat': sub(',', '.', dictionar[header[35]][i]), 'lng': sub(',', '.', dictionar[header[36]][i])}) return muzee @app.route('/muzee/judet/<jud>') def get_countys(jud): """intoarce toate muzeele dintr-un anumit judet""" muzee = search_key(2, jud) return render_template('lista_muzee_judet.html', muzee=muzee) @app.route('/search') def get_matches_void(): """ intoarce potrivirile gasite in numele muzeelor """ muzee = search_key(3, "") return render_template('search_result.html', muzee=muzee) @app.route('/search/<keyword>') def get_matches(keyword): """ intoarce potrivirile gasite in numele muzeelor """ muzee = search_key(3, keyword) return render_template('search_result.html', muzee=muzee) #metoda care intoarce indexul fisierului curent def get_current_index(all_files, filename): max_index = 0 for f_name in all_files: print f_name if len(f_name) > len(filename): if f_name[0:len(filename)] == filename: index = int(f_name[len(filename):len(f_name)]) if index > max_index: max_index = index return str(max_index + 1) #metoda de upload imagini @app.route('/upload/<cod>', methods=['POST', 'GET']) def upload_file(cod): if request.method == 'POST': file = request.files['file'] if file and allowed_file(file.filename): filename = cod + "_" all_files = listdir('./static/images') index = get_current_index(all_files, filename) print index + "###" filename = filename + str(index) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) return redirect("/muzee/" + cod) return ''' <!doctype html> <title>Upload new File</title> <h1>Upload new File</h1> <form action="" method=post enctype=multipart/form-data> <p><input type=file name=file> <input type=submit value=Upload> </form> ''' def getImages(code): """ get all images from /static/images associated with a code """ onlyfiles = [f for f in listdir(UPLOAD_FOLDER) if str(code) in f] return onlyfiles #afisare informatii in functie de codul entitatii @app.route("/muzee/<int:code>") def get_museum_by_code(code): #load dictionary dict_file = open('data.pkl', 'rb') dictionar = pickle.load(dict_file) dict_file.close() #load headers head_file = open('headers.hd', 'rb') header = pickle.load(head_file) head_file.close() #cautare cod try: index = dictionar[header[0]].index(str(code)) nume = dictionar[header[3]][index].decode(encoding="UTF-8") photo_query = search(r'".*"', nume) if photo_query is None: photo_query = "" else: photo_query = photo_query.group(0)[1:len(photo_query.group(0)) - 1] new_d = {'judet': dictionar[header[2]][index].decode(encoding="UTF-8"), 'de_ro': nume, 'de_en': dictionar[header[4]][index].decode(encoding="UTF-8"), 'loc': dictionar[header[5]][index].decode(encoding="UTF-8"), 'adr': dictionar[header[7]][index].decode(encoding="UTF-8"), 'tel': dictionar[header[9]][index].decode(encoding="UTF-8"), 'p_ro': dictionar[header[12]][index].decode(encoding="UTF-8"), 'p_en': dictionar[header[13]][index].decode(encoding="UTF-8"), 'desc_ro': dictionar[header[17]][index].decode(encoding="UTF-8"), 'desc_en': dictionar[header[18]][index].decode(encoding="UTF-8"), 'lat': sub(',', '.', dictionar[header[35]][index]), 'lng': sub(',', '.', dictionar[header[36]][index]), 'coord': dictionar[header[38]][index], 'photo_query': '+'.join(photo_query.split(' ')), 'program': dictionar[header[13]][index].decode(encoding="UTF-8"), 'code': code, 'pictures': getImages(code)} return render_template('muzeu.html', muzeu=new_d) except: return "Nu s-au gasit potriviri" @app.route('/adauga') def muzeu_nou(): return render_template('adauga_muzeu.html') def get_next_code(dictionar, header): maxi = 0 for w in dictionar[header[0]]: if len(w) > 0 and int(w) > maxi: maxi = int(w) return str(maxi + 1) @app.route('/adauga/<path:muzeu>', methods=['POST', 'GET']) def adauga_muzeu(muzeu): """adauga intrare noua in dictionar""" #load dictionary dict_file = open('data.pkl', 'rb') dictionar = pickle.load(dict_file) dict_file.close() #load headers head_file = open('headers.hd', 'rb') header = pickle.load(head_file) head_file.close() request.args.get('nume') #read info from form if request.method == 'GET': target_fields = {3: 'nume', 2: 'judet', 17: 'descriere', 35: 'lat', 36: 'lng'} for i in range(len(header)): if i in target_fields.keys(): dictionar[header[i]].append(request.args.get(target_fields[i])) elif i == 0: dictionar[header[i]].append(get_next_code(dictionar, header)) else: dictionar[header[i]].append("") output = open('data.pkl', 'wb') pickle.dump(dictionar, output) output.close() return redirect("/") # @app.route('/csv') # def getCSV(): # content = "" # dictionar = {} # header = [] # with open('static/date_muzee.csv', 'r') as csvfile: # count = 0 # total = "" # reader = csv.reader(csvfile, delimiter=' ', quotechar='|') # for row in reader: # content = ' '.join(row) # content_list = content.split('|') # if count == 0: # count += 1 # header += content_list # print header # for head in content_list: # dictionar[head] = [] # else: # for i in range(len(content_list)): # dictionar[header[i]].append(content_list[i]) # total += content # output = open('data.pkl', 'wb') # pickle.dump(dictionar, output) # output.close() # headers = open('headers.hd', 'wb') # pickle.dump(header, headers) # headers.close() # return "|".join(dictionar[header[3]]) @app.route('/') def toateMuzeele(): # @codul entitatii muzeale pos = 0 # @judetul pos = 2 # @numirea (romana) pos = 3 header = pickle.load(open('headers.hd', 'rb')) data = pickle.load(open('data.pkl', 'rb')) muzee = [] for i in range(len(data[header[0]])): muzee.append({'cod': data[header[0]][i], 'judet': data[header[2]][i].decode(encoding="UTF-8"), 'nume': data[header[3]][i].decode(encoding="UTF-8")}) return render_template('lista_muzee.html', muzee=muzee) if __name__ == "__main__": port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port, debug=True)
true
3cdebaa208cc02a488d23276b0b2ea8a2e8d8b15
Python
lavenblue/LSSA
/data/generate_input.py
UTF-8
4,602
2.765625
3
[]
no_license
import numpy as np import pandas as pd import copy import pickle class data_generation(): def __init__(self, type): print('init------------') self.data_type = type self.dataset = self.data_type + '/'+self.data_type + '_dataset.csv' self.train_users = [] self.train_sessions = [] # 当前的session self.train_pre_sessions = [] # 之前的session集合 self.train_long_neg = [] # 长期集合,随机采样得到的negative self.train_short_neg = [] # 短期集合,随机采样得到的negative self.test_users = [] self.test_candidate_items = [] self.test_sessions = [] self.test_pre_sessions = [] self.test_real_items = [] self.user_number = 0 self.item_number = 0 self.gen_train_test_data() train = (self.train_users, self.train_pre_sessions, self.train_sessions, self.train_long_neg, self.train_short_neg) test = (self.test_users, self.test_pre_sessions, self.test_sessions, self.test_real_items) pickle.dump(train, open(self.data_type + '/train.pkl', 'wb')) pickle.dump(test, open(self.data_type + '/test.pkl', 'wb')) def gen_train_test_data(self): self.data = pd.read_csv(self.dataset, names=['user', 'sessions'], dtype='str') is_first_line = 1 maxLen_long = 0 maxLen_short = 0 for line in self.data.values: if is_first_line: self.user_number = int(line[0]) self.item_number = int(line[1]) self.user_purchased_item = dict() # 保存每个用户购买记录,可用于train时负采样和test时剔除已打分商品 is_first_line = 0 else: user_id = int(line[0]) sessions = [i for i in line[1].split('@')] size = len(sessions) the_first_session = [int(i)+1 for i in sessions[0].split(':')] tmp = copy.deepcopy(the_first_session) self.user_purchased_item[user_id] = tmp for j in range(1, size - 1): # 每个用户的每个session在train_users中都对应着其user_id self.train_users.append(user_id) # test = sessions[j].split(':') current_session = [int(it)+1 for it in sessions[j].split(':')] self.user_purchased_item[user_id].extend(current_session) self.train_sessions.append(current_session) short_neg_items = [] for _ in range(len(current_session)-1): short_neg_items.append(self.gen_neg(user_id)) self.train_short_neg.append(short_neg_items) long_neg_items = [] for _ in range(len(self.user_purchased_item[user_id]) - 1): long_neg_items.append(self.gen_neg(user_id)) self.train_long_neg.append(long_neg_items) tmp = copy.deepcopy(self.user_purchased_item[user_id]) self.train_pre_sessions.append(tmp) if len(current_session) > maxLen_short: maxLen_short = len(current_session) # 对test的数据集也要格式化,test中每个用户都只有一个current session self.test_users.append(user_id) current_session = [int(it)+1 for it in sessions[size - 1].split(':')] item = current_session[-1] self.test_real_items.append(int(item)) current_session.remove(item) self.test_sessions.append(current_session) self.user_purchased_item[user_id].extend(current_session) self.test_pre_sessions.append(self.user_purchased_item[user_id]) if len(self.user_purchased_item[user_id]) > maxLen_long: maxLen_long = len(self.user_purchased_item[user_id]) print('maxLen_long = ', maxLen_long) print('maxLen_short = ', maxLen_short) def gen_neg(self, user_id): neg_item = np.random.randint(self.item_number) while neg_item in self.user_purchased_item[user_id]: neg_item = np.random.randint(self.item_number) return neg_item if __name__ == '__main__': type = ['gowalla'] dg = data_generation(type[0])
true
29abc544d8d847160baafd57e939a4d26d225c72
Python
Zylanx/alex-bot
/setup.py
UTF-8
845
2.546875
3
[ "MIT" ]
permissive
# creates databases in mongodb import sys def leave(str): print(str) exit(1) try: assert sys.version_info[0] == 3 and sys.version_info[1] > 5 except AssertionError: leave("you need to have python 3.6 or later.") try: import config import psycopg2 except ImportError(config): leave("you need to make a config. please see example_config.py for help.") except ImportError(psycopg2): leave("you need to install the requirements.") for i in [config.dsn, config.token]: try: assert isinstance(i, str) except AssertionError: leave("please fill in the config file.") cur = None try: cur = psycopg2.connect(config.dsn).cursor() except psycopg2.Error: leave("uh ur auth is wrong kiddo, or smthin") # build tables with open('schema.sql', 'r') as f: cur.execute(f) print("Done!")
true