blob_id
stringlengths 40
40
| language
stringclasses 1
value | repo_name
stringlengths 5
133
| path
stringlengths 2
333
| src_encoding
stringclasses 30
values | length_bytes
int64 18
5.47M
| score
float64 2.52
5.81
| int_score
int64 3
5
| detected_licenses
listlengths 0
67
| license_type
stringclasses 2
values | text
stringlengths 12
5.47M
| download_success
bool 1
class |
|---|---|---|---|---|---|---|---|---|---|---|---|
4248ae07c3fef6fe774a0a34072cfb181221b424
|
Python
|
YeungJonathan/Project_Euler
|
/14.py
|
UTF-8
| 433
| 2.921875
| 3
|
[] |
no_license
|
def collatz(num):
if num % 2 == 1:
num = 3 * num + 1
else:
num = num // 2
return num
check = {1:1}
maxValue = 1
maxNum = 1
for num in range(2,2000001):
item = num
count = 1
final = 0
while item != 1:
if item in check.keys():
count = count + check[item]
break
else:
item = collatz(item)
count = count + 1
if count > maxValue:
maxNum = num
maxValue = count
check[num] = count
print(maxNum)
| true
|
1efe56618600ecbcd0d36d9f44957671db306d27
|
Python
|
gaoyucai/Python_Project
|
/Python_day2/login.py
|
UTF-8
| 1,538
| 3.421875
| 3
|
[] |
no_license
|
# Author:GaoYuCai
#导入第三方库时,自动在里进行查找
#默认第三方库存放在site-packags中
#Python解释性语言
#数据类型初识
#1.数字
#2.type()查看数据的数据类型
#bool类型 1表示True 0 表示 False
#三元运算
#例子: result= 值1 if 条件 else 值2
#进制 二进制 八进制 十进制 十六进制
#bytes 数据类型 字节数据类型不同于字符串
#把二级制 转换成字符串 --> decode
#把字符串 转换成 二进制 --> encode
#masg="我爱北京天安门"
#print(masg.encode(encoding="utf-8"))
#print(masg.encode().decode())
names=["zhangyang","guyun","xuliangchen","shhao"]
print(names[0])
print(names[1:2])#顾头不顾尾,切片
print(names[-2:])#机器数数是从左往右数的
names.append("leihaidong")
names.insert(0,"gaoyucai")
print(names)
#name=names.pop()
#del names[2]
#name=names.remove("gaoyucai")
#print(name)
#print(names)
#count=names.index("leihaidong")
#print(names[count])
#print(names.count("gaoyucai"))
#print(names.clear())#清空列表
#names.reverse()#翻转
#names.sort(reverse=True)
#print(names)
#names.extend(name2)
#del name2
#name2=names.copy()
#print(names)
#print(name2)
#names[0]="高宇才"
#print(names)
#print(name2)#浅copy仅仅copy第一层
#name3=names[:]
#print(name3)
#import copy
#name4=copy.copy(names)
#name5=copy.deepcopy(names)
#print(names[0:-1:2])#循环跳着打印
'''三种实现浅copy的方法:
import copy
person=['name',['a',100]]
p1=copy.copy(person)
p2=person[:]
p3=list(person)
'''
| true
|
95587d872deb31cc6bf15ec5fb99d25407bc9370
|
Python
|
jonfelix1/alegov2
|
/src/main.py
|
UTF-8
| 3,175
| 2.921875
| 3
|
[] |
no_license
|
import cv2
import glob
import numpy as np
import multiprocessing
import time
from numba import jit
# import matplotlib.pyplot as plt
from tempfile import TemporaryFile
arrV = TemporaryFile()
# Operators
@jit(nopython = True)
def euclidean_distance(arrVector1, arrVector2):
# Besar dari arrVector1 dan arrVector2 harus sama
sum = 0
for i in range(len(arrVector1)):
sum += (arrVector1[i] - arrVector2[i])**2
return sum**0.5
@jit(nopython = True)
def cosine_similarity(arrVector1, arrVector2):
# Besar dari arrVector1 dan arrVector2 harus sama
v = 0
w = 0
vw = 0
for i in range(len(arrVector1)):
v += arrVector1[i]**2
w += arrVector2[i]**2
vw += arrVector1[i]*arrVector2[i]
v = v**0.5
w = w**0.5
return vw/(v*w)
# Load data agak lama gara-gara itemnya 10770
# cv2.imshow('Pic',img_database[3])
# cv2.waitKey(0)
def extract_features(image, vector_size=32):
alg = cv2.KAZE_create()
kps = alg.detect(image)
kps = sorted(kps, key = lambda x: -x.response)[:vector_size]
kps, desc = alg.compute(image, kps)
desc = desc.flatten()
needed_size = (vector_size * 64)
if (desc.size < needed_size):
desc = np.concatenate([desc, np.zeros(needed_size - desc.size)])
# except cv2.error as e:
# print (("Error: "), e)
# return None
return desc
def best10match_cosine(img, arrDescription, arrImg):
img_f = extract_features(img)
temp = []
for i in range(len(arrDescription)):
temp.append(cosine_similarity(img_f, arrDescription[i]))
cv2.imshow('AA', img)
cv2.waitKey(0)
top_10_idx = np.argsort(temp)[-10:]
for i in top_10_idx:
cv2.imshow('Pic', arrImg[i])
cv2.waitKey(0)
return
def best10match_euclid(img, arrDescription, arrImg):
img_f = extract_features(img)
temp = []
for i in range(len(arrDescription)):
temp.append(euclidean_distance(img_f, arrDescription[i]))
cv2.imshow('AA', img)
cv2.waitKey(0)
top_10_idx = np.argsort(temp)[-10:]
for i in top_10_idx:
cv2.imshow('Pic', arrImg[i])
cv2.waitKey(0)
return
def main():
img_database = []
for img in glob.glob("img/*.jpg"):
img_database.append(cv2.imread(img))
print("Image loading done")
img_description = []
for i in range(100):
img_description.append(extract_features(img_database[i]))
# for i in range(5):
# print(img_description[i])
# Save file dan load file (ntar cuman load)
np.save(arrV, img_description)
_ = arrV.seek(0)
a = np.load(arrV)
print(euclidean_distance(img_description[0], img_description[2]))
print(cosine_similarity(img_description[0], img_description[2]))
print(len(img_description[0]))
print(euclidean_distance(a[0], a[2]))
print(cosine_similarity(a[0], a[2]))
print(len(a[0]))
# Testing (contoh)
img = cv2.imread("img/Test/zendaya14.jpg")
# best10match_cosine(img,img_description,img_database)
best10match_euclid(img,img_description,img_database)
starttime = time.time()
main()
print('That took {} seconds'.format(time.time()-starttime))
| true
|
506752f0c19db816ccaa14e2d20e3e8e30dc9df0
|
Python
|
syp0000/ooowah
|
/hard.py
|
UTF-8
| 463
| 3.765625
| 4
|
[] |
no_license
|
#### input: list
#### [1,4,5,2,3,4,2,4,6,6,2,5]
#### output:
# Odd Number: 5
# Even Numnber:
####
def o(l):
even = 0
odd = 0
for x in l:
if x % 2 == 0:
even = even + 1
else:
odd = odd + 1
print("even: " + str(even))
print("odd: " + str(odd))
print("total: " + str(odd+even))
print("lengh: " + str(len(l)))
if __name__== "__main__":
lhhh = [1,4,5,2,3,4,2,4,6,6,2,5]
o(lhhh)
| true
|
74dcc17308c27ea58c66d1bf835e279a7186b704
|
Python
|
CptIdea/labs6
|
/lab9/n1.py
|
UTF-8
| 1,780
| 3.328125
| 3
|
[] |
no_license
|
import io
import PySimpleGUI as sg
def getPretty(students):
return '\n'.join([x[0] + ' - ' + ' '.join(x[1]) for x in students.items()])
def addStudent(students):
layout = [
[sg.Text("#"), sg.Input(default_text=f'{len(students) + 1}', key='num', size=(0, 10))],
[sg.Text("ФИО:"), sg.Input(key='name', size=(0, 20), default_text='Александров Александр Александрович')],
[sg.Text("Возраст:"), sg.Input(key='age', default_text='20', size=(0, 10)), sg.Text("Группа:"),
sg.Input(key='group', default_text='ВКБ12', size=(0, 10))],
[sg.Button('OK')]
]
ans_window = sg.Window(layout=layout, title='Сделай свой выбор!')
while True:
event, values = ans_window.read()
if event == sg.WINDOW_CLOSED or event == 'Назад':
ans_window.close()
return
if event == 'OK':
students[values['num']] = [values['name'],values['age'],values['group']]
break
ans_window.close()
def window():
sg.theme('LightGray1')
layout = [
[sg.Button("Вывод")],
[sg.Text("*здесь появится ответ*", key='ans', size=(70, 0))],
[sg.Button("Добавить кого-нибудь", key='add')]
]
nom_window = sg.Window(title="NomSelector3000", layout=layout)
students = {
'1': ['Иванов Иван Иванович', '23', 'ВКБ22'],
'2': ['Петров Петр Петрович', '23', 'ВКБ23'],
'3': ['Семенов Семен Семенович', '23', 'ВКБ21']
}
while True:
event, values = nom_window.read()
if event == sg.WINDOW_CLOSED or event == 'Назад':
break
if event == 'add':
addStudent(students)
nom_window['ans'].update(f'{getPretty(students)}')
| true
|
63cb632e0c3e7c6a35f43725fad0d693422c55f3
|
Python
|
crcrpar/chainer
|
/chainer/distributions/chisquare.py
|
UTF-8
| 2,110
| 2.84375
| 3
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
import numpy
import chainer
from chainer.backends import cuda
from chainer import distribution
from chainer.functions.math import digamma
from chainer.functions.math import exponential
from chainer.functions.math import lgamma
from chainer.utils import cache
class Chisquare(distribution.Distribution):
"""Chi-Square Distribution.
The probability density function of the distribution is expressed as
.. math::
p(x;k) = \\frac{1}{2^{k/2}\\Gamma(k/2)}x^{k/2-1}e^{-x/2}
Args:
k(:class:`~chainer.Variable` or :ref:`ndarray`): Parameter of
distribution.
"""
def __init__(self, k):
super(Chisquare, self).__init__()
self.__k = k
@cache.cached_property
def k(self):
return chainer.as_variable(self.__k)
@cache.cached_property
def _half_k(self):
return 0.5 * self.k
@property
def batch_shape(self):
return self.k.shape
@cache.cached_property
def entropy(self):
return (
self._half_k
+ numpy.log(2.)
+ lgamma.lgamma(self._half_k)
+ (1 - self._half_k) * digamma.digamma(self._half_k))
@property
def event_shape(self):
return ()
def log_prob(self, x):
return (
- lgamma.lgamma(self._half_k)
- self._half_k * numpy.log(2.)
+ (self._half_k - 1) * exponential.log(x)
- 0.5 * x)
@cache.cached_property
def mean(self):
return self.k
@property
def params(self):
return {'k': self.k}
def sample_n(self, n):
xp = chainer.backend.get_array_module(self.k)
if xp is cuda.cupy:
eps = xp.random.chisquare(
self.k.data, (n,)+self.k.shape, dtype=self.k.dtype)
else:
eps = xp.random.chisquare(
self.k.data, (n,)+self.k.shape).astype(self.k.dtype)
noise = chainer.Variable(eps)
return noise
@property
def support(self):
return 'positive'
@cache.cached_property
def variance(self):
return 2 * self.k
| true
|
dd43e3451ac55a5e4b6fcaab887cf2cee7a933e6
|
Python
|
hinderling/CIED
|
/library/functions.py
|
UTF-8
| 5,372
| 2.5625
| 3
|
[] |
no_license
|
from glob import glob
from os.path import basename
from PIL import Image
import numpy as np
from skimage import exposure
from skimage.filters.rank import enhance_contrast
from matplotlib import pyplot as plt
from skimage.morphology import disk, binary_opening, skeletonize
from skimage.filters.rank import mean_bilateral
from math import ceil, sqrt
from skimage.morphology import disk, binary_dilation
import csv
import math
from math import ceil, floor
import statistics
def preprocess(image):
"""
apply adaptive histgram equalization, sharpening filter may not be needed
Pixel values are now floats between 0 and 1
"""
image = exposure.equalize_adapthist(image)
return image
def show(image, title=None):
"""
Show image
:param image: numpy image
:param title: Title
:return: None
"""
plt.imshow(image)
plt.title(title)
plt.show()
return None
def showhist(image):
"""
Display histogram for image
:param image: numpy image
:return: None
"""
plt.subplot(121)
plt.imshow(image, cmap=plt.get_cmap('gray'))
plt.subplot(122)
plt.hist(image.flatten(), 256, range=(0, 1))
plt.show()
return None
def binary_filter(image, threshold=False, percentage=0.6, size=15):
"""
:param image:
:param threshold: set threshold manually
:param percentage: get brightest percentage of image
:return: biary mask
"""
if not threshold:
ord_img = np.sort(image.flatten())
value = ceil(len(ord_img) * percentage)
if value < len(ord_img):
threshold = ord_img[value]
else:
print("threshold too high")
threshold = 0.5
binary = image > threshold
binary = binary_opening(binary, selem=disk(size))
return binary
def order(blobs, tolerance = 0, blob = True):
"""
:param blobs: Result from blob detection
:return:
matrix of the format:
[[1 x1 y1]
[2 x2 y2]
[ ... ]
[12 x12 y12]
"""
chain = []
options = []
if blob:
angles_vec = angles(blobs)
start = int(angles_vec[0][0])
for i, blob in enumerate(blobs):
y, x, r = blob
if i == start:
chain.append((x, y))
else:
options.append((x, y))
else:
for i, element in enumerate(blobs):
c,x,y = element
if i == 11:
chain.append((x, y))
# elif i == 10:
else:
options.append((x, y))
all_chains = []
all_options = []
# find second point(s)
edge = 0
# ground truth
min_dist = DISTANCES[edge][0]
max_dist = DISTANCES[edge][1]
mean_dist = DISTANCES[edge][1]
for option in options:
last = chain[-1]
l = distance(last, option)
if floor(min_dist)-(mean_dist*tolerance/100) < l < ceil(max_dist)+(mean_dist*tolerance/100):
temp_chain = chain.copy()
temp_chain.append(option)
temp_options = options.copy()
temp_options.remove(option)
all_chains.append(temp_chain)
all_options.append(temp_options)
if len(all_chains) == 0:
print("Order of points could not be determined")
numbers = [x + 1 for x in range(len(chain))]
chain = np.column_stack([numbers, chain])
return chain
# else:
# chain = all_chains[0]
# numbers = [x + 1 for x in range(len(chain))]
# chain = np.column_stack([numbers, chain])
# return chain
# find 3rd - 12th points
while all_chains:
options = all_options.pop()
chain = all_chains.pop()
edge = len(chain)-1
# ground truth
min_dist = DISTANCES[edge][0]
max_dist = DISTANCES[edge][1]
mean_dist = DISTANCES[edge][2]
min_angle = DISTANCES[edge - 1][0]
max_angle = DISTANCES[edge - 1][1]
mean_angle = DISTANCES[edge - 1][2]
# comparing angles
x1, y1 = chain[-2]
x2, y2 = chain[-1]
for option in options:
x3, y3 = option
y_v1 = y2 - y1
x_v1 = x2 - x1
v1 = (x_v1, y_v1)
y_v2 = y3 - y2
x_v2 = x3 - x2
v2 = (x_v2, y_v2)
a = angle(v1, v2)
l = distance((x2, y2), option)
if floor(min_dist)-(mean_dist*tolerance/100) < l < ceil(max_dist)+(mean_dist*tolerance/100) \
and floor(min_angle)-(mean_angle*tolerance/100) < a < ceil(max_angle)+(mean_angle*tolerance/100):
temp_chain = chain.copy()
temp_options = options.copy()
temp_chain.append(option)
temp_options.remove(option)
all_chains.append(temp_chain)
all_options.append(temp_options)
if len(temp_chain) == 12:
print("success")
chain = temp_chain
numbers = [x + 1 for x in range(len(chain))]
chain = np.column_stack([numbers, chain])
return chain
print(len(all_chains))
print("Order of points could not be determined")
numbers = [x+1 for x in range(len(chain))]
chain = np.column_stack([numbers, chain])
return chain
| true
|
86f04f224946268518810a98814b83f08fe30366
|
Python
|
iqeeingh/chat
|
/r2.py
|
UTF-8
| 1,698
| 3.296875
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 13 10:39:29 2021
@author: wayne
count person speak workd number
tip: 前3 n[:3]=0~2、中間2~4 n[2:4]、結尾 n[-2:]
"""
def read_file (filename):
lines = [] #宣告清單
with open (filename , 'r', encoding = 'utf-8-sig') as f:
for line in f:
lines.append(line.strip()) #strip del /n
return lines
def convert(lines):
person = None
Allen_count = 0
Allen_Sticker_count = 0
Allen_img_count = 0
Viki_count = 0
Viki_Sticker_count = 0
Viki_img_count = 0
for line in lines:
s = line.split(' ')
time = s[0]
name = s[1]
if name == 'Allen':
if s[2] =='貼圖':
Allen_Sticker_count += 1
elif s[2] == '圖片':
Allen_img_count += 1
else:
for m in s[2:]:
Allen_count += len(m)
elif name == 'Viki':
if s[2] =='貼圖':
Viki_Sticker_count += 1
elif s[2] == '圖片':
Viki_img_count += 1
else:
for m in s[2:]:
Viki_count += len(m)
print('Allen說了', Allen_count ,'字,傳了', Allen_Sticker_count, '個貼圖,傳了',Allen_img_count, '張圖片' )
print('Viki說了', Viki_count,'字,傳了', Viki_Sticker_count, '個貼圖,傳了', Viki_img_count, '張圖片' )
def write_file(filename, lines):
with open (filename , 'w')as f:
for line in lines:
f.write(line + '\n')
def main():
lines = read_file('LINE-Viki.txt')
lines = convert(lines)
# write_file('output.txt',lines)
main()
| true
|
280aa6565176d17d77e7b89ae231b30316850f1b
|
Python
|
sandeep82945/opiniondigest
|
/src/beam_search.py
|
UTF-8
| 9,824
| 2.625
| 3
|
[
"Apache-2.0"
] |
permissive
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
class Search(object):
def __init__(self, vocab_size, pad, unk, eos):
self.pad = pad
self.unk = unk
self.eos = eos
self.vocab_size = vocab_size
self.scores_buf = None
self.indices_buf = None
self.beams_buf = None
def _init_buffers(self, t):
if self.scores_buf is None:
self.scores_buf = t.new()
self.indices_buf = torch.LongTensor().to(device=t.device)
self.beams_buf = torch.LongTensor().to(device=t.device)
def step(self, step, lprobs, scores):
"""Take a single search step.
Args:
step: the current search step, starting at 0
lprobs: (bsz x input_beam_size x vocab_size)
the model's log-probabilities over the vocabulary at the current step
scores: (bsz x input_beam_size x step)
the historical model scores of each hypothesis up to this point
Return: A tuple of (scores, indices, beams) where:
scores: (bsz x output_beam_size)
the scores of the chosen elements; output_beam_size can be
larger than input_beam_size, e.g., we may return
2*input_beam_size to account for EOS
indices: (bsz x output_beam_size)
the indices of the chosen elements
beams: (bsz x output_beam_size)
the hypothesis ids of the chosen elements, in the range [0, input_beam_size)
"""
raise NotImplementedError
def set_src_lengths(self, src_lengths):
self.src_lengths = src_lengths
class BeamSearch(Search):
def __init__(self, vocab_size, pad, unk, eos):
super().__init__(vocab_size, pad, unk, eos)
def step(self, step, lprobs, scores, output_beam_size):
super()._init_buffers(lprobs)
bsz, beam_size, vocab_size = lprobs.size()
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam
lprobs = lprobs[:, ::beam_size, :].contiguous()
else:
# make probs contain cumulative scores for each hypothesis
lprobs.add_(scores[:, :, step - 1].unsqueeze(-1))
torch.topk(
lprobs.view(bsz, -1),
k=min(
# Take the best 2 x beam_size predictions. We'll choose the first
# beam_size of these which don't predict eos to continue with.
output_beam_size * 2,
lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad
),
out=(self.scores_buf, self.indices_buf),
)
torch.div(self.indices_buf, vocab_size, out=self.beams_buf)
self.indices_buf.fmod_(vocab_size)
return self.scores_buf, self.indices_buf, self.beams_buf
class BeamSearchNMT(Search):
"""Google's Neural Machine Translation beam search implementation:
https://arxiv.org/pdf/1609.08144.pdf
"""
def __init__(self, vocab_size, pad, unk, eos, alpha=0.6):
super().__init__(vocab_size, pad, unk, eos)
self.alpha = alpha
def step(self, step, lprobs, scores, output_beam_size):
super()._init_buffers(lprobs)
bsz, beam_size, vocab_size = lprobs.size()
# Calculate
if step == 0:
# at the first step all hypotheses are equally likely, so use
# only the first beam
lprobs = lprobs[:, ::beam_size, :].contiguous()
else:
# make probs contain cumulative scores for each hypothesis
lprobs.add_(scores[:, :, step - 1].unsqueeze(-1))
# Update by length penalty
length_penalty = self._length_penalty(step)
scores = lprobs / length_penalty
torch.topk(
scores.view(bsz, -1),
k=min(
# Take the best 2 x beam_size predictions. We'll choose the first
# beam_size of these which don't predict eos to continue with.
output_beam_size * 2,
scores.view(bsz, -1).size(1) - 1, # -1 so we never select pad
),
out=(self.scores_buf, self.indices_buf),
)
torch.div(self.indices_buf, vocab_size, out=self.beams_buf)
self.indices_buf.fmod_(vocab_size)
return self.scores_buf, self.indices_buf, self.beams_buf
def _length_penalty(self, step):
"""Length penalty:
lp(Y) = ((5+|Y|)^alpha)/(5+1)^alpha
Args:
step: the current search step, starting at 0
Returns:
length_penalty: float
length penalty of current step.
"""
return ((step+1)/6.0)**self.alpha
def _coverage_penalty(self, attn):
"""Coverage penalty:
cp(X;Y) =beta * sum(log(min(attn_i_j, 1.0)))
Args:
attn: (bsz x beam_size x src_seqlen)
the total attention prob of i-th source word.
Return:
coverage_penalty: (bsz x beam_size) or 0.0
the coverage penalty for each beam.
TOOD (@xiaolan): finish implementation
"""
return 0.0
class DiverseBeamSearch(Search):
"""Diverse Beam Search.
See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
Models" for details.
We only implement the Hamming Diversity penalty here, which performed best
in the original paper.
Recommended setting in original paper:
num_groups: "Setting G=beam_size allows for the maximum exploration
of the space,"
diversity_strength: "We find a wide range of λ values (0.2 to 0.8) work well
for most tasks and datasets."
"""
def __init__(self, vocab_size, pad, unk, eos, num_groups, diversity_strength=0.5):
super().__init__(vocab_size, pad, unk, eos)
self.num_groups = num_groups
self.diversity_strength = -diversity_strength
self.diversity_buf = None
self.beam = BeamSearch(vocab_size, pad, unk, eos)
def step(self, step, lprobs, scores, output_beam_size):
super()._init_buffers(lprobs)
bsz, beam_size, vocab_size = lprobs.size()
num_groups = self.num_groups if beam_size > 1 else 1
if beam_size % num_groups != 0:
raise ValueError(
'DiverseBeamSearch requires --beam to be divisible by the number of groups'
)
# initialize diversity penalty
if self.diversity_buf is None:
self.diversity_buf = lprobs.new()
torch.zeros(lprobs[:, 0, :].size(), out=self.diversity_buf)
scores_G, indices_G, beams_G = [], [], []
for g in range(num_groups):
lprobs_g = lprobs[:, g::num_groups, :]
scores_g = scores[:, g::num_groups, :] if step > 0 else None
# apply diversity penalty
if g > 0:
lprobs_g = torch.add(lprobs_g, self.diversity_strength, self.diversity_buf.unsqueeze(1))
else:
lprobs_g = lprobs_g.contiguous()
scores_buf, indices_buf, beams_buf = self.beam.step(step, lprobs_g, scores_g, output_beam_size)
beams_buf.mul_(num_groups).add_(g)
scores_G.append(scores_buf.clone())
indices_G.append(indices_buf.clone())
beams_G.append(beams_buf.clone())
# update diversity penalty
self.diversity_buf.scatter_add_(
1,
indices_buf,
self.diversity_buf.new_ones(indices_buf.size())
)
# interleave results from different groups
self.scores_buf = torch.stack(scores_G, dim=2, out=self.scores_buf).view(bsz, -1)
self.indices_buf = torch.stack(indices_G, dim=2, out=self.indices_buf).view(bsz, -1)
self.beams_buf = torch.stack(beams_G, dim=2, out=self.beams_buf).view(bsz, -1)
return self.scores_buf, self.indices_buf, self.beams_buf
class NgramBlocking:
def __init__(self, no_repeat_ngram_size):
""" Ngram blocking: avoid generating sequences with repetitive n-grams.
"""
self.no_repeat_ngram_size = no_repeat_ngram_size
def update(self, step, sequence, lprobs):
""" Update lprobs: set token probability as -math.inf for repetitive n-grams
"""
blocked_ngrams = self._gen_blocked_ngram(sequence[:step+1])
banned_tokens = self._gen_banned_tokens(step, sequence, blocked_ngrams)
lprobs[banned_tokens] = -math.inf
return lprobs
def _gen_blocked_ngram(self, sequence):
""" Generate a dict of ngrams that already exist in previous sequence.
e.g.,
Given a sequence of: [0, 1, 2, 3, 4]
And no_repeat_ngram_size = 3,
The blocked ngrams are:
{
(0, 1): [2]
(1, 2): [3]
(2, 3): [4]
}
Modified from https://github.com/pytorch/fairseq/sequence_generator.py#L338-L450
"""
blocked_ngrams = {}
for ngram in zip(*[sequence[i:].tolist() for i in range(self.no_repeat_ngram_size)]):
blocked_ngrams[tuple(ngram[:-1])] = blocked_ngrams.get(tuple(ngram[:-1]), []) + [ngram[-1]]
return blocked_ngrams
def _gen_banned_tokens(self, step, sequence, blocked_ngrams):
""" Generate tokens that should be banned for (step+1).
"""
banned_tokens = []
if step+2-self.no_repeat_ngram_size < 0:
return banned_tokens
ngram_index = tuple(sequence[step+2-self.no_repeat_ngram_size:step+1].tolist())
return blocked_ngrams.get(ngram_index, [])
| true
|
e91fa52674ae5970108580a8359fc2f7106ffeb1
|
Python
|
hwhehr/zhouzhi
|
/zhouzhi/zhou/smt.py
|
UTF-8
| 1,045
| 2.765625
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
import smtplib
from email.mime.text import MIMEText
def send_email(msg_to,url):
smtp_ssl_port = 465
smtp_server = "smtp.qq.com"
msg_from = "549537094@qq.com"
smtp_password = "poltxmcsfqgkbcig"
subject = "周知绑定邮箱"
content=u""""
<p>用户您好,您的用户正在绑定周知邮箱,如果是您的用户请点击此链接,如果不是您的账户请不要管,如果链接无法点击清复制链接到浏览器地址栏中打开</p>
<p><a href="http://118.89.217.235:8000/">绑定我的邮箱</a></p>
<p>http://118.89.217.235:8000/%s</p>
"""%url
msg = MIMEText(content, "html", 'utf-8')
msg['Subject'] = subject
msg['From'] = "周知官方账户"
msg['To'] = msg_to
server = smtplib.SMTP_SSL(smtp_server, smtp_ssl_port)
server.login(msg_from, smtp_password)
try:
server.sendmail(msg_from, msg_to, msg.as_string())
print("发送成功")
except Exception as e:
print(e)
print("发送失败")
finally:
server.quit()
print("exit")
| true
|
bcdca92900dfc8144cdb0554321c72c52f68ba99
|
Python
|
swarajd/WebAssemblyDisassembler
|
/scripts/parsemd.py
|
UTF-8
| 378
| 2.96875
| 3
|
[] |
no_license
|
md = """| `i32.reinterpret/f32` | `0xbc` | | |
| `i64.reinterpret/f64` | `0xbd` | | |
| `f32.reinterpret/i32` | `0xbe` | | |
| `f64.reinterpret/i64` | `0xbf` | | |""".split("\n")
for line in md:
parts = line.split("|")
hex_ = parts[2].replace(' ', '').replace('`', '')
name_ = parts[1].replace(' ', '').replace('`', '')
print("\t{} : '{}',".format(hex_, name_))
| true
|
362af75df5ba55c5bda79d4443ba4ebc8bbfbaad
|
Python
|
allanedgard/Cloud-Energy-Saver
|
/header.py
|
UTF-8
| 1,640
| 2.515625
| 3
|
[
"MIT"
] |
permissive
|
#coding: utf-8
import requests, ast, os, time
def get():
domain = 'Default'
login = 'admin'
password = '123456'
project = 'admin'
headers = {'Content-Type':'application/json'}
body = """
{
"auth": {
"identity": {
"methods": [
"password"
],
"password": {
"user": {
"domain": {
"name": \""""+ domain +"""\"
},
"name": \""""+ login +"""\",
"password": \""""+ password +"""\"
}
}
},
"scope": {
"project": {
"domain": {
"name": \""""+ domain +"""\"
},
"name": \""""+ project +"""\"
}
}
}
}
"""
now = time.time() # timestamp atual
try:
modified = os.path.getmtime('token.txt') # última modificação do arquivo
except:
modified = 0 # caso o arquivo não exista, modified será zero, assim entrará no else para gerar o token
if now - modified < 3600:
file = open("token.txt", "r+")
header = file.read()
else:
r = requests.post('http://controller:5000/v3/auth/tokens', data=body, headers=headers)
token = r.headers['X-Subject-Token']
header = "{'X-Auth-Token':'"+token+"'}" # Dicionário com o Token que será utilizado no cabeçalho das consultas via API
file = open("token.txt", "w+")
file.write(header)
file.close()
header = ast.literal_eval(header) # Dicionário com o Token que será utilizado no cabeçalho das consultas via API
return header
| true
|
6f82315f7b0f0f9f5ce1a1d308b8af60500a0f77
|
Python
|
YWithT/PAT
|
/乙/1006.py
|
UTF-8
| 463
| 3.734375
| 4
|
[] |
no_license
|
def printS(x):
for i in range(0, x):
print("S", end="")
def printB(x):
for i in range(0, x):
print("B", end="")
def printG(x):
for i in range(0, x):
print(i + 1, end="")
a = input()
if len(a) == 1:
x = int(a)
printG(x)
if len(a) == 2:
S = int(a[0])
G = int(a[1])
printS(S)
printG(G)
if len(a) == 3:
B = int(a[0])
S = int(a[1])
G = int(a[2])
printB(B)
printS(S)
printG(G)
| true
|
10029dcc9bfe6b0204d932503ccc0da792eeae36
|
Python
|
gidona18/hashcode
|
/2019/main.py
|
UTF-8
| 1,815
| 3.015625
| 3
|
[
"Apache-2.0"
] |
permissive
|
from collections import namedtuple
Pic = namedtuple('Pic', ['idx','type','tags'])
def read_file(path):
lines = []
with open(path, 'r') as f:
lines = f.read().splitlines()
lines = [line.split() for line in lines[1:]]
pics = [Pic(idx, pic[0], pic[2:]) for idx, pic in enumerate(lines)]
return (pics)
def main(ipath, opath):
# Read picture tags from file.
pics = read_file(ipath)
# Sort tags.
idx = 0;
while idx < len(pics):
pics[idx] = Pic(
pics[idx].idx,
pics[idx].type,
sorted(pics[idx].tags))
idx += 1
# Sort pics by tags.
pics.sort(key=lambda p: p.tags)
lst = []
idx = 0;
while idx < len(pics):
try:
if pics[idx].type == 'H':
lst.append([pics[idx]])
elif pics[idx].type == 'V' and pics[idx+1].type == 'H':
pics[idx], pics[idx+1] = pics[idx+1], pics[idx]
lst.append([pics[idx]])
elif pics[idx].type == 'V' and pics[idx+1].type == 'V':
lst.append([pics[idx], pics[idx+1]])
idx += 1
except IndexError:
pass
idx += 1
# Write
with open(opath, 'w') as f:
f.write(str(len(lst)) + '\n')
idx = 0;
while idx < len(lst):
if lst[idx][0].type == 'H':
f.write(str(lst[idx][0].idx) + '\n')
if lst[idx][0].type == 'V':
f.write(
str(lst[idx][0].idx) + ' ' +
str(lst[idx][1].idx) + '\n')
idx += 1
main('a_example.txt', 'a_out.txt')
main('b_lovely_landscapes.txt', 'b_out.txt')
main('c_memorable_moments.txt', 'c_out.txt')
main('d_pet_pictures.txt', 'd_out.txt')
main('e_shiny_selfies.txt', 'e_out.txt')
| true
|
c342c82214c3c9086f7e24e0105731064e2ddd60
|
Python
|
Drsncnzdmr/myprojects
|
/House Pricing/data_prep.py
|
UTF-8
| 5,199
| 3.21875
| 3
|
[] |
no_license
|
# Data Preprocessing Functions
import numpy as np
import pandas as pd
from sklearn import preprocessing
def outlier_thresholds(dataframe, col_name):
# thresholdsları bulmak için yazdığımız fonksiyon.
quartile1 = dataframe[col_name].quantile(0.05)
quartile3 = dataframe[col_name].quantile(0.95)
interquantile_range = quartile3 - quartile1
up_limit = quartile3 + 1.5 * interquantile_range
low_limit = quartile3 - 1.5 * interquantile_range
return low_limit, up_limit
def check_outlier(dataframe, col_name):
# outlier olup olmadığını kontrol etme fonksiyonu
low_limit, up_limit = outlier_thresholds(dataframe, col_name)
if dataframe[(dataframe[col_name] > up_limit) | (dataframe[col_name] < low_limit)].any(axis=None):
return True
else:
return False # işlenebilir olması için return kullanıldı.
def grab_outliers(dataframe, col_name, index=False):
"""
Aykırı değerleri yakalamak için yazdık.
Aykırı değer var mı yok mu bakar. Aykırı değer varsa bunları getirir.
Aykırı değer indexlerini saklayıp saklamayacağını belirtmek için argüman verdik.
"""
low, up = outlier_thresholds(dataframe,col_name) #thresholds değerleri hesaplandı
if dataframe[((dataframe[col_name] < low) | (dataframe[col_name] > up))].shape[0] > 10: # Aykırı değer kaç tane olduğunu tutar. 10 dan büyükse aşağıda head attırdık.
print(dataframe[((dataframe[col_name] < low) | (dataframe[col_name] > up))].head())
else:
print(dataframe[((dataframe[col_name] < low) | (dataframe[col_name] > up))]) # 10 dan büyük değilse hepsini yazdır.
if index:
outlier_index = dataframe[((dataframe[col_name] < low) | (dataframe[col_name] > up))].index
return outlier_index
def remove_outlier(dataframe, col_name):
"""
Outlier thresholds ile alt üst limitleri hesaplar.
up limitten büyük low limitten küçük olmayanlara göre filtrele return et.
"""
low_limit, up_limit = outlier_thresholds(dataframe, col_name)
df_without_outliers = dataframe[~((dataframe[col_name] < low_limit) | (dataframe[col_name] > up_limit))]
return df_without_outliers
def replace_with_thresholds(dataframe, col_name):
"""
Alt sınır 0 dan büyükse alt sınır olanları alt sınır ile baskıla üst sınırdan büyük olanalrı üst limitle baskıla
Alt sınır 0 dan büyük değilse üst sınıra göre baskılama yap
"""
low_limit, up_limit = outlier_thresholds(dataframe, col_name)
if low_limit > 0:
dataframe.loc[(dataframe[col_name] < low_limit), col_name] = low_limit
dataframe.loc[(dataframe[col_name] > up_limit), col_name] = up_limit
else:
dataframe.loc[(dataframe[col_name] > up_limit), col_name] = up_limit
def missing_values_table(dataframe, na_name = False):
na_cols = [col for col in dataframe.columns if dataframe[col].isnull().sum() > 0]
n_miss = dataframe[na_cols].isnull().sum().sort_values(ascending=False)
ratio = (dataframe[na_cols].isnull().sum() / dataframe.shape[0] * 100).sort_values(ascending=False)
missing_df = pd.concat([n_miss, np.round(ratio, 2)], axis=1, keys=['n_miss', 'ratio'])
print(missing_df, end="\n")
if na_name:
return na_cols
def missing_vs_target(dataframe, target, na_columns):
temp_df = dataframe.copy()
for col in na_columns:
temp_df[col + '_NA_FLAG'] = np.where(temp_df[col].isnull(), 1, 0)
na_flags = temp_df.loc[:, temp_df.columns.str.contains("_NA_")].columns
for col in na_flags:
print(pd.DataFrame({"TARGET_MEAN": temp_df.groupby(col)[target].mean(),
"Count": temp_df.groupby(col)[target].count()}), end="\n\n\n")
def label_encoder(dataframe, binary_col):
labelencoder = preprocessing.LabelEncoder()
dataframe[binary_col] = labelencoder.fit_transform(dataframe[binary_col])
return dataframe
def one_hot_encoder(dataframe, categorical_cols, drop_first = False):
dataframe = pd.get_dummies(dataframe, columns=categorical_cols, drop_first=drop_first)
return dataframe
def rare_analyser(dataframe, target, rare_perc):
rare_columns = [col for col in dataframe.columns if dataframe[col].dtypes == 'O'
and (dataframe[col].value_counts() / len(dataframe) < rare_perc).any(axis=None)]
for col in rare_columns:
print(col, ":", len(dataframe[col].value_counts()))
print(pd.DataFrame({"COUNT": dataframe[col].value_counts(),
"RATIO": dataframe[col].value_counts() / len(dataframe),
"TARGET_MEAN": dataframe.groupby(col)[target].mean()}), end="\n\n\n")
def rare_encoder(dataframe, rare_perc):
temp_df = dataframe.copy()
rare_columns = [col for col in temp_df.columns if temp_df[col].dtypes == "O" and (temp_df[col].value_counts() / len(temp_df) < rare_perc).any(axis=None)]
for var in rare_columns:
tmp = temp_df[var].value_counts() / len(temp_df)
rare_labels = tmp[tmp < rare_perc].index
temp_df[var] = np.where(temp_df[var].isin(rare_labels), 'Rare', temp_df[var])
return temp_df
| true
|
c93f5f997bb64e55106aced7bddc85c8eecf0ca7
|
Python
|
sum008/python-backup
|
/kinematics/inverse_kinematics_3degree_of_freedom.py
|
UTF-8
| 2,920
| 3.0625
| 3
|
[] |
no_license
|
'''
Created on Jun 17, 2020
@author: Sumit
'''
import pygame as p
import math
p.init()
window=(600,600)
display=p.display.set_mode(window)
points=[[300,300],[350,300],[400,300],[450,300]]
fps=30
run=True
length=50
fix=(300,300)
count=0
while run:
display.fill((255,255,255))
for event in p.event.get():
if event.type==p.QUIT:
run=False
mouse=p.mouse.get_pos()
t=math.atan2(mouse[1]-fix[1],mouse[0]-fix[0])
print(t)
if fix[0]-3*length>mouse[0] or fix[1]-3*length>mouse[1] or fix[0]+3*length<mouse[0] or fix[1]+3*length<mouse[1]:
angle2=0
angle1=t
angle3=0
else:
l=math.sqrt((mouse[0]-fix[0])**2+(mouse[1]-fix[1])**2)
c=math.sqrt((fix[0]-points[2][0])**2+(fix[1]-points[2][1])**2)
ct=math.atan2(fix[1]-points[2][1], fix[0]-points[2][0])
if l!=0 and c!=0 :
x=(c**2+l**2-length**2)/(2*c*l)
try:
t1=math.acos(x)
except:
print(x,"ee")
t1=math.acos(x%0.017428)
y=(c**2+length**2-l**2)/(2*c*length)
try:
t2=math.acos(y)
except:
print(y,"sfs")
t2=math.acos(y%0.017428)
x1=(length**2+c**2-length**2)/(2*c*length)
try:
alpha=math.acos(x1)
except:
alpha=math.acos(int(x1))
y1=(length**2+c**2-length**2)/(2*length*c)
try:
gama=math.acos(y1)
except:
gama=math.acos(int(y1))
beta=(2*length**2-c**2)/(2*length**2)
try:
angle2=3.14-math.acos(beta)
except:
pass
angle1=t-(alpha+t1)
angle3=3.14-(gama+t2)
points[1][0]=fix[0]+int(length*math.cos(angle1))
points[1][1]=fix[1]+int(length*math.sin(angle1))
points[2][0]=points[1][0]+int(length*math.cos(angle2+angle1))
points[2][1]=points[1][1]+int(length*math.sin(angle2+angle1))
points[3][0]=points[2][0]+int(length*math.cos(angle3+angle2+angle1))
points[3][1]=points[2][1]+int(length*math.sin(angle3+angle2+angle1))
p.draw.line(display, (0,0,0),fix,(int(points[1][0]),int(points[1][1])), 1)
p.draw.circle(display, (0,0,0), (points[1][0],points[1][1]), 4, 4 )
p.draw.line(display, (0,0,0),(int(points[1][0]),int(points[1][1])),(int(points[2][0]),int(points[2][1])), 1)
p.draw.line(display, (0,0,0),(int(points[2][0]),int(points[2][1])),(int(points[3][0]),int(points[3][1])), 1)
p.display.flip()
p.time.Clock().tick(fps)
| true
|
8273924019d7f3467728ba2a1837f48fe2459f80
|
Python
|
leogiraldimg/DP1
|
/Lista03/e.py
|
UTF-8
| 111
| 3.28125
| 3
|
[] |
no_license
|
n = int(input())
result = 0
k = 0
while (k < n):
result += (k + 1) * (n - k) - k
k += 1
print(result)
| true
|
b302ba9d4aecfe9056bb7bb4ac9a766548a154a5
|
Python
|
ChenJing0204/plinth-test-suite
|
/ci_interface/if/start_remake.py
|
UTF-8
| 486
| 2.625
| 3
|
[] |
no_license
|
#! /usr/bin/env python
import os
import sys
#para [1]: the path of target table place
#get the current path
pwd = os.path.split(os.path.realpath(__file__))[0]
targetdir = sys.argv[1]
if targetdir == '':
print("target path is not provide!exit")
sys.exit(0)
os.chdir(pwd)
#cp table_remake.py to target dir
os.system('cp table_remake.py %s'%targetdir)
#mv to target dir
os.chdir(targetdir)
os.system('python table_remake.py')
os.system('rm table_remake.py')
os.chdir(pwd)
| true
|
852725042a4b88ae949fd12b7d84c97ad706d886
|
Python
|
nareshmuthyala/Assignment_2.3
|
/Assignment_2.3.py
|
UTF-8
| 68
| 3.46875
| 3
|
[] |
no_license
|
word = input("Enter the word")
print("Reverse word is :"+word[::-1])
| true
|
cd7cff504c798f28666b537cbd8191d72203e9c2
|
Python
|
markriedl/gaige
|
/rl/Controller.py
|
UTF-8
| 3,973
| 3.34375
| 3
|
[
"MIT"
] |
permissive
|
import sys
from Observation import *
from Reward import *
from Action import *
from Agent import *
from Environment import *
import numpy
# Training episodes
episodes = 500
# how often to report training results
trainingReportRate = 100
# play the interactive game?
# 0: human does not play
# 1: human plays as the bot
# 2: human plays as the enemy
play = 2
#Max reward received in any iteration
maxr = None
# Set up environment for initial training
gridEnvironment = Environment()
gridEnvironment.randomStart = False
gridEnvironment.enemyMode = 1
gridEnvironment.verbose = 0
# Set up agent
gridAgent = Agent(gridEnvironment)
gridAgent.verbose = False
# This is where learning happens
for i in range(episodes):
# Train
gridAgent.agent_reset()
gridAgent.qLearn(gridAgent.initialObs)
# Test
gridAgent.agent_reset()
gridAgent.executePolicy(gridAgent.initialObs)
# Report
totalr = gridAgent.totalReward
if maxr == None or totalr > maxr:
maxr = totalr
if i % trainingReportRate == 0:
print "iteration:", i, "total reward", totalr, "max reward:", maxr
# Reset the environment for policy execution
gridEnvironment.verbose = 1
gridEnvironment.randomStart = False
gridEnvironment.enemyMode = 1
gridAgent.verbose = True
print "Execute Policy"
gridAgent.agent_reset()
gridAgent.executePolicy(gridAgent.initialObs)
print "total reward", gridAgent.totalReward
### HOW TO PLAY
### w: up
### s: down
### a: left
### d: right
### q: smash (if playing as the bot)
### reset: start the game over
### quit: end game
if play == 1:
# Play as the bot
print "PLAY!"
gridAgent.agent_reset()
gridAgent.verbose = 0
gridEnvironment.enemyMode = 1 # change this if you want
gridEnvironment.verbose = 0
totalr = 0.0
while(True):
# print the map
gridEnvironment.printEnvironment()
print "total player reward:", totalr
# Player move
print "Move?"
move = None
x = sys.stdin.readline()
if x.strip() == "reset":
# reset the game state
gridAgent.agent_reset()
totalr = 0.0
print "PLAY!"
continue # I feel so bad about this
elif x.strip() == "quit":
# quit game
break
elif x[0] == '0' or x[0] == 'w':
#up
move = 0
elif x[0] == '1' or x[0] == 's':
#down
move = 1
elif x[0] == '2' or x[0] == 'a':
#left
move = 2
elif x[0] == '3' or x[0] == 'd':
#right
move = 3
elif x[0] == '4' or x[0] == 'q':
#smash
move = 4
act = Action()
act.actionValue = move
newobs, reward = gridEnvironment.env_step(act)
print "reward received:", reward.rewardValue
totalr = totalr + reward.rewardValue
elif play == 2:
# play as the enemy
print "PLAY!"
gridAgent.agent_reset()
gridAgent.verbose = 0
gridEnvironment.enemyMode = 4 # don't change this
gridEnvironment.verbose = 0
obs = gridAgent.copyObservation(gridAgent.initialObs)
totalr = 0.0
while(True):
# print the map
gridEnvironment.printEnvironment()
print "total bot reward:", totalr
# Enemy (player) move
print "Move?"
move = None
x = sys.stdin.readline()
if x.strip() == "reset":
# reset the game state
gridAgent.agent_reset()
obs = gridAgent.copyObservation(gridAgent.initialObs)
totalr = 0.0
print "PLAY!"
continue # I feel so bad about this
elif x.strip() == "quit":
# quit game
break
elif x[0] == '0' or x[0] == 'w':
#up
move = 0
elif x[0] == '1' or x[0] == 's':
#down
move = 1
elif x[0] == '2' or x[0] == 'a':
#left
move = 2
elif x[0] == '3' or x[0] == 'd':
#right
move = 3
gridEnvironment.nextEnemyMove = move
# execute greedy policy
act = Action()
act.actionValue = gridAgent.greedy(obs)
print "bot action:", gridEnvironment.actionToString(act.actionValue)
print "enemy action:", gridEnvironment.actionToString(move)
# bot and enemy (player) actions happen here
newobs, reward = gridEnvironment.env_step(act)
print "reward received:", reward.rewardValue
totalr = totalr + reward.rewardValue
obs = copy.deepcopy(newobs)
| true
|
c5a02aca63370575ed5463fb4c6fe4affccd6a9a
|
Python
|
fanxingzhang/leetcode-grind
|
/find-all-duplicates-in-an-array.py
|
UTF-8
| 371
| 3.03125
| 3
|
[] |
no_license
|
class Solution(object):
def findDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
ret = []
for i in range(len(nums)):
n = abs(nums[i]) - 1
if nums[n] < 0:
ret.append(n + 1)
else:
nums[n] *= -1
return ret
| true
|
9f1e4e4568d4456aa76a5e0a5b940f329d17c2fe
|
Python
|
JuBagnoli/mypythoncode
|
/isbn2.py
|
UTF-8
| 200
| 2.921875
| 3
|
[] |
no_license
|
ISBN = input("enter ISBN")
ISBN_odd = 0
ISBN_even = 0
for float in range_odd (0,10,2):
print(total(float*3))
for float in range_even (1,12,2):
print(total)
print(range_odd + range_even)/10
| true
|
3dc445bc6719b55c408e35870841035386484dc6
|
Python
|
Steven4869/Simple-Python-Projects
|
/excercise19.py
|
UTF-8
| 897
| 4.21875
| 4
|
[] |
no_license
|
#Matrix addition
rows1 = int(input("Enter the Number of rows : "))
column1 = int(input("Enter the Number of Columns: "))
rows2 = int(input("Enter the Number of rows : "))
column2 = int(input("Enter the Number of Columns: "))
if(rows1==rows2 and column1==column2):
print("Enter the elements of First Matrix:")
A = [[int(input()) for i in range(column1)] for i in range(rows1)]
print("First Matrix is: ")
for n in A:
print(n)
print("Enter the elements of Second Matrix:")
B = [[int(input()) for i in range(column2)] for i in range(rows2)]
for n in B:
print(n)
C = [[0 for i in range(column1)] for i in range(rows1)]
for i in range(rows1):
for j in range(column1):
C[i][j] = A[i][j] + B[i][j]
print("The Sum of Above two Matrices is : ")
for r in C:
print(r)
else:
print("Matrix addition cannot be done")
| true
|
9deb370637ce3bbe5d8b492843260c93b280c67d
|
Python
|
meialbiol/python-library
|
/library/forms.py
|
UTF-8
| 1,107
| 2.609375
| 3
|
[] |
no_license
|
from django import forms
from django.core.exceptions import ValidationError
from .models import Book
import datetime
class BookForm(forms.ModelForm):
class Meta:
model = Book
fields = ['author', 'title', 'description', 'isbn', 'year']
widgets = {
'description': forms.Textarea(attrs={'cols': 80, 'class': 'materialize-textarea'}),
'year': forms.NumberInput(attrs={'min': '0', 'max': '9999', 'step': '1'})
}
class RenewBookForm(forms.Form):
renewal_date = forms.DateField(help_text="Seleccione una fecha entra hoy y 4 semanas (por defecto 3 semanas)")
def clean_renewal_date(self):
data = self.cleaned_data['renewal_date']
# Chek date is not in the past
if data < datetime.date.today():
raise ValidationError(('Invalid date - renewal in past'))
# Check date is in range librarian allowed to change (+4 weeks).
if data > datetime.date.today() + datetime.timedelta(weeks=4):
raise ValidationError(('Invalid date - renewal more than 4 weeks ahead'))
return data
| true
|
46fc08b45cb95b1daa9e4db9820ddc2ef94d8c16
|
Python
|
welikepig/YahooMusic
|
/resultGet.py
|
UTF-8
| 1,390
| 2.546875
| 3
|
[] |
no_license
|
import numpy
dataDir='/Users/zhiyuanchen/Documents/python/'
file_name_test=dataDir + 'out2.txt'
output_file= dataDir + 'new1.txt'
fTest= open(file_name_test, 'r')
fOut = open(output_file, 'w')
ii=0
outstr=''
su_vec=[0]*6
pt=numpy.zeros(shape=(6,1))
for line in fTest:
arr_test=line.strip()
su_vec[ii]= float(arr_test)
ii=ii+1
#every 6 lines output once
if ii==6:
ii=0
for nn in range(0,6):
if su_vec[nn]==max(su_vec):
pt[nn,0]=1
su_vec[nn]=-2000000
break
for nn in range(0,6):
if su_vec[nn]==max(su_vec):
pt[nn,0]=1
su_vec[nn]=-2000000
break
for nn in range(0,6):
if su_vec[nn]==max(su_vec):
pt[nn,0]=1
su_vec[nn]=-2000000
break
#put the highest three value as"1"
#could be changed to lowest 3 value as"0" by change zeros martix to ones
#max function to min
for jj in range(0,6):
outstr=str(int(pt[jj,0]))
fOut.write(outstr+'\n')
outstr=''
pt=numpy.zeros(shape=(6,1))
fTest.close()
fOut.close()
| true
|
e67acca4ad9403403c223d71e7c448483faa5d8a
|
Python
|
SubhamoySengupta/iron-worker-uploads
|
/resize_watermarks/hyve/input_params.py
|
UTF-8
| 1,713
| 2.578125
| 3
|
[] |
no_license
|
import sys, json
def get_data_from_payload(code):
#return trim_payload('//hyve-users/12345/photos/__w-160-240-360-480-720-1080__/1.png')
payload_file = None
payload = None
for i in range(len(code)):
if code[i] == "-payload" and (i + 1) < len(code):
payload_file = code[i + 1]
with open(payload_file,'r') as f:
payload = json.loads(f.read())
return trim_payload(payload)
break
def get_credentials():
cred_file = open('credentials.txt', 'r')
response = {}
try:
for line in cred_file.readlines():
strings = line.split('=')
if len(strings) == 2:
response[strings[0].strip()] = strings[1].strip()
if len(response) == 0:
return False
else:
return response
except:
return None
def trim_payload(payload):
link = payload['url']
if '__w-' in link:
sys.exit(0)
link = link[2:] #remove // from front
bucket = link.split('/')[0]
output_bucket = bucket[:bucket.find('-')] + '-' + link.split('/')[1]
slug = link.split('/')[2]
Type = link.split('/')[3]
image_name = link.split('/')[4]
response = dict(
bucket = bucket,
output_bucket = output_bucket,
slug = slug,
image_name = image_name,
progressive = True,
compression = 80,
type = Type
)
#extra options
if 'progressive' in payload and type(payload['progressive']) is str:
response['progressive'] = eval_bool(payload['progressive'])
if 'compression' in payload and type(payload['compression']) is int:
response['compression'] = payload['compression']
if 'type' in payload:
response['type'] = payload['type']
return response
def eval_bool(value):
if value == 'True':
return True
else:
return False
| true
|
d56e988c97f1fb831a2cf6b8f40c31fa58a819af
|
Python
|
bpramod123/imdb_review
|
/imdb_analysis.py
|
UTF-8
| 1,730
| 3.171875
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# coding: utf-8
# In[4]:
conda install matplotlib
# In[14]:
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
df=pd.read_csv(r'C:\Users\gunda\Desktop\projs\movies.csv')
# In[8]:
df
# In[41]:
#dropping null value rows
df1 = df.dropna()
df1
# In[42]:
df1['budget']=df1['budget'].astype('int64')
df1['gross']=df1['gross'].astype('int64')
# In[43]:
df1
# In[44]:
#getting the top budget films
df.sort_values(by=['budget'],inplace=False, ascending=False)
# In[49]:
#dropping duplicates
df1.drop_duplicates(inplace=True)
# In[55]:
#scatter plot of each movie's budget vs gross
plt.scatter(x=df1['budget'], y=df1['gross'])
plt.title('budget vs gross')
plt.ylabel('budget')
plt.xlabel('gross')
plt.show()
# In[52]:
df.head()
# In[53]:
df.tail()
# In[63]:
#using seaborn bud vs gross
sns.regplot(x='budget',y='gross', data=df1)
# In[64]:
#correlation
df1.corr()
# In[65]:
df1.setindex("score")
df1
# In[67]:
df1.set_index("budget", inplace = True)
# In[68]:
df1
# In[69]:
df.corr(method='spearman')
# In[70]:
corr_mat=df1.corr(method='pearson')
sns.heatmap(corr_mat, annot=True)
plt.show()
# In[76]:
df1_numerized=df1
for col_name in df1_numerized.columns:
if(df1_numerized[col_name].dtype=='object'):
df1_numerized[col_name]=df1_numerized[col_name].astype('category')
df1_numerized[col_name]=df1_numerized[col_name].cat.codes
df1_numerized
# In[78]:
corr_mat=df1_numerized.corr(method='pearson')
sns.heatmap(corr_mat, annot=True)
plt.title("Correlation matrix")
plt.xlabel("Movie features")
plt.xlabel("Movie features")
plt.show()
# In[ ]:
| true
|
5c72412dac960bfae453a0fcbe7122b7f69a16b4
|
Python
|
jakeisnt/philosofound
|
/flaskr/queries.py
|
UTF-8
| 4,986
| 2.671875
| 3
|
[] |
no_license
|
# answer.answer_id -> [question.question_id, question.text]
# Accesses the question data associated with an Answer ID
def get_question(db, answerId):
question = db.execute(
'SELECT q.question_id, q.text'
' FROM question q JOIN answer a on(q.question_id = a.question_id)'
' WHERE a.answer_id = ?',
(answerId,)
).fetchone()
# question.question_id -> [answer_id, answer.text, num_respondents]
# retrieves all of the answers to a given question id
# excludes answers that a user has reported
def get_question_answers(db, questionId, userId):
return db.execute(
'SELECT a.answer_id, a.text'
' FROM answer a JOIN choose c on(a.answer_id = c.answer_id)'
' WHERE a.question_id = ?'
(questionId,)
).fetchall()
# question.question_id -> Number
# counts all of the answers associated with a given question
def count_answers(db, questionId):
return db.execute(
'SELECT COUNT(c.user_id) as answer_count'
' FROM answer a JOIN choose c on(a.answer_id == c.answer_id)'
' WHERE a.question_id == ?'
' GROUP BY a.answer_id',
(questionId,)
).fetchone()['answer_count']
# answer.answer_id -> Number
# counts the number of times this answer was chosen
def times_answer_chosen(db, answerId):
return db.execute(
'SELECT COUNT(user_id) as count'
' FROM choose'
' WHERE answer_id = ?',
(answerId,)
).fetchone()['count']
# answer.answer_id, demographic -> [demographic, num_responses, num_chose, percent_chose, answer_selected]
# computes user statistics by demographic information for some answer and chosen demographic
# formatting the string is fine as demographic is limited to a certain enumeration of categories
def get_demographic_info(db, answerId, demographic):
num_responses = times_answer_chosen(db, answerId)
if demographic in ["gender", "income", "party", "geography"]:
return db.execute(
'SELECT {} as demographic, ? as num_responses, COUNT(c.user_id) as num_chose, ((COUNT(c.user_id) * 100) / ?) as percent_chose, ? as answer_selected'.format(demographic) +
' FROM choose c JOIN user u on(c.user_id = u.user_id)'
' WHERE answer_id = ?'
' GROUP BY gender'
' ORDER BY gender',
(num_responses, num_responses, answerId, answerId)
).fetchall()
else:
return None
# question.question_id, answer.answer_text -> Boolean
# determines whether a question has a duplicate answer in the database
def has_duplicate_answer(db, questionId, answer_text):
return db.execute(
'SELECT *'
' FROM answer'
' WHERE answer.question_id = ? AND answer.text LIKE ?;',
(questionId, answer_text,)
).fetchone() != None
# answer.answer_id -> Boolean
# determines whether the current user has already voted for an answer
def has_duplicate_vote(db, answer_id, user_id):
return db.execute(
'SELECT *'
' FROM choose'
' WHERE answer_id == ? AND user_id == ?',
(answer_id, user_id)).fetchall() != None
# question.text -> Boolean
# determines whether a question already exists
def has_duplicate_question(db, question_text):
return db.execute(
'SELECT *'
' FROM question'
' WHERE question.text LIKE ?',
(question_text,)
).fetchone() != None
# question.question_id, user.user_id, answer.answer_text -> answer.answer_id
# creates an answer for a user and votes for that answer
# EFFECT: Creates answer and vote in database
def create_answer(db, question_id, user_id, answer_text):
# creates the answer
db.execute(
'INSERT INTO answer (text, question_id, author_id)'
' VALUES (?, ?, ?)',
(answer_text, question_id, user_id),
)
# gets the answer's id
answer_id = db.execute(
'SELECT answer.answer_id'
' FROM answer'
' WHERE answer.text = ? AND answer.question_id = ?',
(answer_text, question_id)
).fetchone()['answer_id']
# if the user has not already voted for this answer
if not has_duplicate_vote(db, answer_id, user_id):
# user automatically chooses an answer they create
db.execute(
'INSERT INTO choose (user_id, answer_id)'
' VALUES (?, ?)',
(user_id, answer_id)
)
return answer_id
# question.text, user.user_id -> question.question_id
# creates a question and returns its id
# EFFECT: creates a question in the question database
def create_question(db, question_text, user_id):
# creates a question
db.execute(
'INSERT INTO question (text, author_id)'
' VALUES (?, ?)',
(question_text, user_id),
)
# gets the id of the just-generated question
return db.execute(
'SELECT question.question_id as question_id'
' FROM question'
' WHERE question.text = ?',
(question_text,)
).fetchone()['question_id']
| true
|
c6dd4f6eaeedccd18d4018bd09419b6b258a8e40
|
Python
|
Velasko/Hackaton-da-Nasa
|
/04 - boolean.py
|
UTF-8
| 226
| 3.921875
| 4
|
[] |
no_license
|
x = 27
y = 16
#x, y = 27, 16
print("x == 47:", x == 47 )
print("x == y :", x == y)
print("x binario: ", bin(x))
print("y binario: ", bin(y))
print("x and y:", x and y, bin(x and y))
print("x or y:", x or y, bin(x or y))
| true
|
c8494cd91256c5fc78167a00d13df445837d67bf
|
Python
|
ajithkmr2/Assignments
|
/MVC/controller.py
|
UTF-8
| 426
| 2.890625
| 3
|
[] |
no_license
|
from model import Currency
import view
def showPrice(query_value):
#gets list of all Currency objects
currency_price = Currency.getCurrencyData(query_value)
#calls view
return view.showData(currency_price)
def start():
view.startView()
input_option = input('Enter [INR / EUR / CAD / AUD / JPY / ALL] :')
return showPrice(input_option)
if __name__ == "__main__":
#calls controller function
start()
| true
|
cb54d949dc8beea59ab723cd11503f61a18b57a2
|
Python
|
kh7160/algorithm
|
/BOJ/11650.py
|
UTF-8
| 150
| 3.15625
| 3
|
[] |
no_license
|
n = int(input())
num_lst = [list(map(int, input().split())) for _ in range(n)]
num_lst.sort(key=lambda x:(x[0], x[1]))
for _ in num_lst:
print(*_)
| true
|
f6cea9ee777ead2c81219d0f2536713b8e490f80
|
Python
|
nicolekenig/Search_Engine
|
/indexer.py
|
UTF-8
| 7,302
| 2.90625
| 3
|
[] |
no_license
|
import utils
from parser_module import Parse
from stemmer import Stemmer
# DO NOT MODIFY CLASS NAME
class Indexer:
# DO NOT MODIFY THIS SIGNATURE
# You can change the internal implementation as you see fit.
def __init__(self, config):
self.inverted_idx = {}
self.postingDict = {}
self.config = config
self.stemming = "n"
self.tweet_dict = {}
self.pars = Parse()
self.reversed_inverted_index = {}
# DO NOT MODIFY THIS SIGNATURE
# You can change the internal implementation as you see fit.
def add_new_doc(self, document, documents_list_length=10000):
"""
This function perform indexing process for a document object.
Saved information is captures via two dictionaries ('inverted index' and 'posting')
:param document: a document need to be indexed.
:return: -
"""
try:
document_dictionary = document.term_doc_dictionary
# self.countDoc += 1
for term in document_dictionary.keys():
if self.stemming == 'y':
my_stemmer = Stemmer()
term = my_stemmer.stem_term(term)
# Update inverted index and posting
if term not in self.inverted_idx.keys():
self.inverted_idx[term] = [1, [
(document_dictionary[term], document.tweet_id)]] # amount of doc, freq in the doc, doc id.
else:
self.inverted_idx[term][0] += 1 # amount of doc
self.inverted_idx[term][1].append((document_dictionary[term],
document.tweet_id)) # freq in the doc # doc id
if term not in self.postingDict.keys():
self.postingDict[term] = [(document.tweet_id, document_dictionary[term])]
else:
self.postingDict[term].append((document.tweet_id, document_dictionary[term]))
# self.countTweet -= 1
if document.tweet_id not in self.tweet_dict.keys():
self.tweet_dict[document.tweet_id] = [[term, document_dictionary[term]], 1,
0] # [term,freq in tweet], amount of unique terms in tweet, amount of terms in tweet
elif document_dictionary[term] > self.tweet_dict[document.tweet_id][0][
1]: # tweet exist, compering between freq in two terms
if self.tweet_dict[document.tweet_id][0][
1] == 1: # before change term check if the last term is unique
self.tweet_dict[document.tweet_id][
1] += 1 # last term is unique: add to the amount of uniqe terms in tweet
self.tweet_dict[document.tweet_id][0] = [term,
document_dictionary[term]] # change between the terms
self.tweet_dict[document.tweet_id][2] += 1
elif document_dictionary[term] == 1: # tweet exist, not most common, check if unique
self.tweet_dict[document.tweet_id][1] += 1
self.tweet_dict[document.tweet_id][2] += 1
except:
# print('problem in indexer : add_new_doc')
# print(traceback.print_exc())
pass
def rebuild_inverted_index(self):
try:
temp_dict = {}
for term, val in self.inverted_idx.items():
is_lower_letter = term.islower()
word_upper = term.upper()
word_lower = term.lower()
amount = int(val[0])
data = val[1]
if is_lower_letter and term in temp_dict: # my word is lower and lower exist in temp dict
temp_dict[term][0][0] += amount
temp_dict[term][1].extend(data)
elif is_lower_letter and word_upper in temp_dict: # my word is lower but upper is in temp dict
new_data = temp_dict[word_upper][1] + data
temp_dict[term] = [[temp_dict[word_upper][0][0] + amount], new_data] # replace
temp_dict.pop(word_upper)
elif not is_lower_letter and word_upper in temp_dict: # my word is upper and upper in temp dict
temp_dict[word_upper][0][0] += amount
temp_dict[word_upper][1].extend(data) # append
elif not is_lower_letter and word_lower in temp_dict: # my word is upper and lower in temp dict
temp_dict[word_lower][0][0] += amount
temp_dict[word_lower][1].extend(data) # append
elif is_lower_letter: # my word is lower and not exist in temp dict
temp_dict[term] = [[amount], data] # add
else: # my word is upper and not exist in temp dict
temp_dict[word_upper] = [[amount], data] # add
self.inverted_idx = temp_dict
for key, data in self.inverted_idx.items():
self.build_terms_in_tweet_doc(key, data[1])
except:
# print(traceback.print_exc())
pass
def build_terms_in_tweet_doc(self, term, data):
try:
for tuple in data:
if tuple != None:
id = tuple[1]
freq = tuple[0]
if id in self.reversed_inverted_index:
if term not in self.reversed_inverted_index[id]:
self.reversed_inverted_index[id].append((term, freq))
else:
self.reversed_inverted_index[id] = [(term, freq)]
except:
# print(traceback.print_exc())
pass
# DO NOT MODIFY THIS SIGNATURE
# You can change the internal implementation as you see fit.
def load_index(self, fn):
"""
Loads a pre-computed index (or indices) so we can answer queries.
Input:
fn - file name of pickled index.
"""
# print('Load ', fn)
# if fn[len(fn)-4:] == '.pkl':
# fn = fn[0:len(fn)-4]
fn = 'idx_bench'
inverted_index = utils.load_obj(fn)
return inverted_index
# DO NOT MODIFY THIS SIGNATURE
# You can change the internal implementation as you see fit.
def save_index(self, fn):
"""
Saves a pre-computed index (or indices) so we can save our work.
Input:
fn - file name of pickled index.
"""
utils.save_obj(self.inverted_idx, fn)
# feel free to change the signature and/or implementation of this function
# or drop altogether.
def _is_term_exist(self, term):
"""
Checks if a term exist in the dictionary.
"""
return term in self.postingDict
# feel free to change the signature and/or implementation of this function
# or drop altogether.
def get_term_posting_list(self, term):
"""
Return the posting list from the index for a term.
"""
return self.postingDict[term] if self._is_term_exist(term) else []
| true
|
26d09bb65b10dd9d9c54f759a2f433608061a91b
|
Python
|
HyunminKo/Algorithm
|
/Python-Algorithm/kakao/Round2_4.py
|
UTF-8
| 1,503
| 2.796875
| 3
|
[] |
no_license
|
N=0
M=0
matrixA = []
matrixB = []
dx = [-1,0,1,0]
dy = [0,1,0,-1]
visited = [[0 for i in range(101)] for j in range(101)]
def bfs(row,col):
global N, M, visited
visited[row][col] = 1
q = [(row,col)]
count = 0
if matrixA[row][col] != matrixB[row][col]:
count = - 1
flag = True
while q:
location = q.pop(0)
for i in range(len(dx)):
nx = location[0] + dx[i]
ny = location[1] + dy[i]
if nx < 0 or ny < 0 or nx >= N or ny >= M or visited[nx][ny] == 1 or matrixB[nx][ny] == 0:
continue
if matrixA[nx][ny] != matrixB[nx][ny]:
count = - 1
visited[nx][ny] = 1
q.append((nx,ny))
flag = False
if count == 0 and flag:
if matrixA[row][col] == matrixB[row][col]:
return 1
if count == 0:
return 1
else:
return 0
def countMatches(grid1, grid2):
global N, M,visited
N = len(grid1)
M = len(grid1[0])
result = 0
for line in grid1:
matrixA.append([int(x) for x in line])
for line in grid2:
matrixB.append([int(x) for x in line])
for row in range(N):
for col in range(M):
if matrixB[row][col] != 0:
if visited[row][col] == 0:
result += bfs(row,col)
return result
grid1= [
'0100',
'1001',
'0011',
'0011']
grid2= [
'0101',
'1001',
'0011',
'0011']
print(countMatches(grid1,grid2))
| true
|
a95fb8a6eafa736692ecb93cc01e935591017d95
|
Python
|
NearJiang/Python-route
|
/多重继承.py
|
UTF-8
| 473
| 2.890625
| 3
|
[] |
no_license
|
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 17:26:49) [MSC v.1900 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> class Base1:
def foo1(self):
print('我是foo1,我为Base1带盐')
>>> class Base2:
def foo2(self):
print('我是foo2,我为Base2带盐')
>>> class a(Base1, Base2):
pass
>>> b=a()
>>> b.foo1()
我是foo1,我为Base1带盐
>>> b.foo2()
我是foo2,我为Base2带盐
>>>
| true
|
6fae8dddf94194b28f8d4883b16af9ee778c32fd
|
Python
|
darcyknox/COSC326
|
/etude-1/etude-1.py
|
UTF-8
| 7,284
| 3.5
| 4
|
[] |
no_license
|
import re
import sys
# Etude-1 Email Addresses
# Author: Darcy Knox
# Date: March 2020
# The program takes string input(s) from the user, and determines whether the
# string is a valid email address according to the specifications outlined in
# the Etude 1 Problem Description
# Function to match the mailbox part of the address
def matchMailbox(str):
validMailboxPattern = re.compile(r'^[A-Z0-9]+([-_\.]?[A-Z0-9]+)*$', re.IGNORECASE)
match = validMailboxPattern.match(str)
return bool(match)
# Function to find an @ symbol in a string
def matchAt(str):
validAt = re.compile(r'(@|_at_)')
match = validAt.search(str)
return bool(match)
# Function to find the right-most @ symbol in a string
def findAtPos(str):
nonSymbol = str.rfind('_at_')
symbol = str.rfind('@')
if symbol > nonSymbol:
return symbol
elif (symbol < nonSymbol):
return nonSymbol
else:
return None
# Function to match the domain part of the address
def matchDomain(str):
validDomain = re.compile(r'^([A-Z0-9]+((\.)?[A-Z0-9]+)*)+(\.|_dot_)$', re.IGNORECASE)
match = validDomain.match(str)
return bool(match)
# Function to search for whether a string attempts to use an IP address
def hasIPDomain(str):
validIP = re.compile(r'\[.+\]$')
match = validIP.search(str)
return bool(match)
# Function to match a valid IP address
def matchIPDomain(str):
validIP = re.compile(r'^\[((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\]$')
match = validIP.match(str)
return bool(match)
# Function to find a valid extension at the end of a string
def matchExt(str):
validExt = re.compile(r'(co\.nz|com\.au|co\.uk|com|co\.us|co\.ca)$', re.IGNORECASE)
match = validExt.search(str)
return bool(match)
# Function to match a fully valid domain and extension
def matchDomainAndExt(str):
validDomainAndExt = re.compile(r'^([A-Z0-9]+((\.)?[A-Z0-9]+)*)+(\.|_dot_)(co\.nz|com\.au|co\.uk|com|co\.us|co\.ca)$', re.IGNORECASE)
match = validDomainAndExt.match(str)
return bool(match)
# Function to check for any whitespace within a string
def containsWhitespace(str):
whitespace = re.compile(' ')
match = whitespace.search(str)
return bool(match)
# Function to check for any invalidities
def fullMatch(str):
if containsWhitespace(str):
print (str + " <- Address contains whitespace")
return
# if a valid extension is used
# replace the _dot_ preceding the extension first
if matchExt(str):
# If extension is preceded with _dot_ it is changed to a . immediately
# Position of dot may be different depending on the extension
if (str[-3:] == "com"):
if (str[-8:-3] == "_dot_"):
str = str[:-8] + "." + str[-3:] #replace _dot_ with .
elif (str[-6:] == "com.au"):
if (str[-11:-6] == "_dot_"):
str = str[:-11] + "." + str[-6:] #replace _dot_ with .
else:
if (str[-10:-5] == "_dot_"):
str = str[:-10] + "." + str[-5:] #replace _dot_ with .
#str = str.replace('_dot_', '.')
# if there's no @ symbol
if not matchAt(str):
print (str + " <- Missing @ symbol")
return
else:
# replace the furthest right instance of _at_ with @
# all other _at_ instances are considered literal _at_
# note: _at_ is 4 chars long
if str[findAtPos(str):findAtPos(str) + 4] == "_at_":
str = str[:findAtPos(str)] + "@" + str[(findAtPos(str) + 4):]
str = str.replace('_dot_', '.')
splitAddress = re.split('(@)', str) # split at the @ symbol
# if there are more than 3 parts to the address
if len(splitAddress) > 3:
print (str + " <- Too many @ symbols")
return
# separate string into 3 parts
mailbox = splitAddress[0] # mailbox is the part before the @ symbol
atSymbol = splitAddress[1] # atSymbol is the @ symbol
domainAndExt = splitAddress[2] # domainAndExt is the part after the @symbol
# mailbox doesn't fit the regex
if not matchMailbox(mailbox):
consecutiveSeparators = re.compile(r'(\.|-|_)(\.|-|_)')
if bool(consecutiveSeparators.search(mailbox)):
print (str + " <- Mailbox contains consecutive separators") # cannot contain consecutive separators (mailbox)
return
elif len(mailbox) == 0:
print (str + " <- Missing mailbox")
return
else:
print (str + " <- Invalid mailbox")
return
if not matchDomainAndExt(domainAndExt): # if there is an error in the domain or extension
consecutiveDots = re.compile(r'(\.|_dot_)(\.|_dot_)') # looks for two dots next to eachother
if bool(consecutiveDots.search(domainAndExt)):
print (str + " <- Domain contains consecutive separators") # cannot contain consecutive separators (domain)
return
# evaluate the extension first
validExt = re.compile(r'(co\.nz|com\.au|co\.uk|com|co\.us|co\.ca)$', re.IGNORECASE)
domainAndExtSplit = re.split(validExt, domainAndExt) # split at the extension
domain = domainAndExtSplit[0] # first part is the domain
# if there is an invalid extension (extension doesn't split)
if len(domainAndExtSplit) < 2:
dotSeparator = re.compile(r'[A-Z0-9]\.[A-Z0-9]', re.IGNORECASE)
# says if there are no two characters separated by a dot, there must be a missing extension
if not hasIPDomain(domainAndExt) and not re.search(dotSeparator, domainAndExt):
print (str + " <- Missing extension")
return
elif not hasIPDomain(domainAndExt):
print (str + " <- Invalid extension")
return
elif hasIPDomain(domainAndExt) and len(domainAndExt.split('[')[0]) > 0:
print(str + " <- IP address cannot have preceeding domain")
return
elif not matchIPDomain(domain):
print (str + " <- Invalid IP address")
return
else:
ext = domainAndExtSplit[1] # second part is the extension
if domain[-1] != ".":
print (str + " <- Missing extension")
return
if not matchDomain(domain): # if the domain doesn't match the regex
if len(domain) == 0 or domain == ".": # if the domain is a dot or nothing
print (str + " <- Missing domain")
return
elif not hasIPDomain(domainAndExt): # if the domain and extension is not an IP
print (str + " <- Invalid domain") # the domain is invalid
return
# Valid email
print (str.replace('_dot_', '.').lower()) #replace the _dot_s
return
def main():
# User Input
for line in sys.stdin:
line = line.strip()
fullMatch(line)
if __name__ == "__main__":
main()
| true
|
1267e60553bc50bcf04659e3fedff549a274537f
|
Python
|
disa-mhembere/Guided-Assembler
|
/src/csc_matrix2.py
|
UTF-8
| 1,396
| 3.125
| 3
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
#!/usr/bin/python
# csc_matrix2.py
# Created by Disa Mhembere on 2013-11-21.
# Email: disa@jhu.edu
# Copyright (c) 2013. All rights reserved.
import scipy
from scipy.sparse.csc import csc_matrix
import numpy as np
from exceptions import IndexError
class csc_matrix2(csc_matrix):
"""
Sub-class of lil_matrix that allows permits popping rows off
"""
def pop_row(self, ):
if self.shape[0] == 0:
raise IndexError('Cannot pop a matrix with rows = 0')
self.rows = np.delete(self.rows, self.shape[0]-1, 0) # clean up
self.data = np.delete(self.data, self.shape[0]-1, 0) # clean up
self._shape = (self._shape[0]-1, self.shape[1])
def append_col(self, sp_mat=None, init=True):
"""
Add a column to the sparse matrix given another sp_mat to append.
Used when adding a new letter to the alphabet.
@param sp_mat: the sparse matrix to be appended to the self object
"""
self._shape = (self._shape[0], self.shape[1]+1)
if sp_mat is not None:
self[:,-1] = sp_mat
elif init:
self[self.shape[0]-1, self.shape[1]-1] = 1
def append_row(self, ):
"""
Append a row to the bottom of a lil_matrix2 object
"""
self.rows = np.append(self.rows, 0)
self.rows[-1] = []
self.data = np.append(self.data, 0)
self.data[-1] = []
self._shape = (self._shape[0]+1, self.shape[1])
# Note we never remove columns -- too expensive
| true
|
49f16a8c5eda49bb6e1d464e98bdb94d5b6d60c0
|
Python
|
MathieuSoul/PhyStat_Project
|
/Test/simulationWolrd.py
|
UTF-8
| 9,465
| 2.765625
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Éditeur de Spyder
Ceci est un script temporaire.
"""
import networkx as nx
import random
from math import sqrt
from networkx.readwrite import json_graph
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import imageio
import seaborn
import forceatlas
themeColors = {"alive": "blue", "infected": "orange", "dead": "red", "recovered": "green"}
drawgif = 1;
class Person:
idct = 1;
def __init__(self, world):
#When infected, first check if disease is already in diseases, if not, check resistances
self.infections = {}
self.id = Person.idct;
Person.idct+=1;
self.resistances = {}
self.world = world;
self.alive = 1;
self.color = themeColors["alive"]
self.recoveryRate = random.uniform(.9, .99)
self.resistance = .9
#self.resistanceCoeff = random.uniform(.5, 1)*(self.age-40)^2*(1/1600)
def infect(self, disease, wasResistant):
baseDeathTime = 32;
self.infections[disease.id] = Infection(self, disease, baseDeathTime*disease.pathogenicity, self.recoveryRate);
disease.infected+=1;
if wasResistant:
disease.resistant-=1;
else:
disease.susceptible-=1;
self.color = themeColors["infected"]
return self.infections[disease.id]
def recover(self, infection):
try:
self.infections[infection.disease.id] = 0
infection.disease.infected-=1;
infection.disease.resistant+=1;
except:
print("Infection not on list. Is this vaccination?");
self.color = themeColors["recovered"]
self.resistances[infection.disease.id] = self.resistance
def checkDisease(a, b):
newInfections = []
for diseaseid, infection in a.infections.items():
if b.infections.get(diseaseid, 0)==0 and infection!=0:
resistance = b.resistances.get(diseaseid, -1); #si la disease n'est pas dans les resistances, on l'y ajoute avec une resistance de -1
if resistance!=-1: #la disease est dans la liste des resistances, la resistance est de 0.9
test = random.uniform(0, 1)
test2 = random.uniform(0, 1)
if(test2>resistance) and (test<infection.disease.virulence):
b.infect(infection.disease, 1);
newInfections.append(infection.disease.id)
#else:
#print("individual resisted infection!")
else: #la disease n'est pas dans la liste des resistances
test = random.uniform(0, 1)
if(test<infection.disease.virulence):
b.infect(infection.disease, 0);
newInfections.append(infection.disease.id)
return newInfections
def interact(self, otherActor):
if(self.alive==1 and otherActor.alive==1):
a = Person.checkDisease(self, otherActor);
b = Person.checkDisease(otherActor, self);
'''if(len(a)>0):
print("Infections from A to B:", a)
if(len(b)>0):
print("Infections from B to A:", b)'''
def die(self, disease):
if(self.alive==1):
self.alive = 0;
disease.infected-=1;
disease.dead+=1;
self.color = themeColors["dead"]
def tick(self):
if(self.alive==1):
for diseaseid, infection in self.infections.items():
if(infection!=0):
infection.tick()
class Infection:
def __init__(self, host, disease, timeToDeath, recoveryRate):
self.host = host;
self.disease = disease;
self.timeToDeath = timeToDeath;
self.recoveryRate = recoveryRate;
self.id = disease.id;
self.recovered = 0;
def tick(self):
if not self.recovered:
self.timeToDeath-=1;
if self.timeToDeath<1:
self.host.die(self.disease)
else:
test = random.uniform(0, 1)
if(test>self.recoveryRate):
self.host.recover(self)
self.recovered = 1;
class Disease:
idct = 1;
def __init__(self, name, world, virulence, pathogenicity):
self.name = name;
self.id = Disease.idct;
Disease.idct+=1;
self.virulence = virulence; #Determines how likely the pathogen is to spread from one host to the next
self.pathogenicity = pathogenicity; #Determines how much disease the pathogen creates in the host (aka number of days w/o recovery until death)
self.susceptible = world.popsize;
self.infected = 0;
self.resistant = 0;
self.dead = 0;
self.world = world;
self.historyS = {};
self.historyI = {};
self.historyR = {}
self.historyD = {}
world.diseaseList.append(self);
#These two functions are not currently in use. They don't fit into the current model
'''def mutateVirulence(self, virulenceJitter = .05):
self.virulence = self.virulence + random.uniform(-virulenceJitter, virulenceJitter)
def mutatePathogenicity(self, pathoJitter = .1):
self.pathogenicity = self.pathogenicity + random.uniform(-pathoJitter, pathoJitter)'''
def tick(self, age):
self.historyS[age] = self.susceptible;
self.historyI[age] = self.infected;
self.historyR[age] = self.resistant;
self.historyD[age] = self.dead;
def summary(self):
historyFrame = pd.DataFrame({"1-S": self.historyS, "2-I": self.historyI, "3-R": self.historyR, "4-D": self.historyD});
historyFrame["time"] = historyFrame.index
return historyFrame;
class World:
def __init__(self, initPopulation, vaccination_percent, k, p):
self.popsize = initPopulation;
self.population = []
self.diseaseList = [];
self.age = 0;
self.vaccination_percent = vaccination_percent
for indv in range(initPopulation):
self.population.append(Person(self));
self.worldgraph = nx.newman_watts_strogatz_graph(initPopulation, k, p); #small world graph
mappin = {num: per for (num, per) in enumerate(self.population)}
nx.relabel_nodes(self.worldgraph, mappin, copy=False)
#self.nodeLayout = nx.spring_layout(self.worldgraph, scale=200, k=1/(50*sqrt(self.popsize)))
self.nodeLayout = forceatlas.forceatlas2_layout(self.worldgraph, iterations=10)
nx.set_node_attributes(self.worldgraph, 'color', themeColors["alive"])
def draw(self):
if(drawgif):
nodeColors = [x.color for x in nx.nodes(self.worldgraph)]
plt.figure(figsize=(8,6))
plt.title("Network at Age "+str(self.age))
nx.draw(self.worldgraph, pos=self.nodeLayout, node_color=nodeColors, node_size=30, hold=1)
plt.savefig("graphseries/graph"+str(self.age).zfill(4)+".png", dpi=250)
plt.close()
def tick(self):
self.age+=1;
if(self.age%4 == 0):
print("Drawing network; Age is "+str(self.age))
self.draw();
interactions = random.sample(self.worldgraph.edges(), self.popsize)
for edge in interactions:
edge[0].interact(edge[1])
for person in self.population:
person.tick();
for disease in self.diseaseList:
disease.tick(self.age)
def runSim(self, nsteps):
for i in range(nsteps):
self.tick();
def summary(self):
histories = {}
for disease in self.diseaseList:
histories[disease.name] = disease.summary();
return histories;
def main(popsize, vaccination_percent, k, p):
# os.system("rm Test/graphseries/*.png")
earth = World(popsize, vaccination_percent, k, p)
earth.tick()
flu = Disease("1918 Flu", earth, 0.8, 1);
earth.population[0].infect(flu, 0)
earth.population[1].infect(flu, 0)
for i in range(int(earth.vaccination_percent*earth.popsize)):
infection = earth.population[i+2].infect(flu, False)
earth.population[i+2].recover(infection)
earth.runSim(120)
if(drawgif):
png_dir = "graphseries"
images = []
for subdir, dirs, files in os.walk(png_dir):
for file in files:
file_path = os.path.join(subdir, file)
if file_path.endswith(".png"):
images.append(imageio.imread(file_path))
imageio.mimsave('graphseries/movie.gif', images, duration =0.3)
return(earth)
def run_simulation(popsize, vaccination_percent, k, p):
earth = main(popsize, vaccination_percent, k, p)
history = earth.summary()
for name, x in history.items():
y = pd.melt(x, id_vars="time")
print(y)
fg = seaborn.FacetGrid(data=y, hue='variable', hue_order=['1-S','2-I','3-R','4-D'], aspect=1.61)
fg.map(plt.plot, 'time', 'value').add_legend()
plt.show(block=False)
return earth, calculate_ro(earth)
def calculate_ro(earth):
listI = sorted(earth.diseaseList[0].historyI.items())
x, yI = zip(*listI)
max_index = yI.index(max(yI))
listS = sorted(earth.diseaseList[0].historyS.items())
x, yS = zip(*listS)
return 1/((1-earth.vaccination_percent)*yS[max_index])
print(run_simulation(1000, 0, 3, 0.027)[1])
| true
|
fcaab9c86cd7a73ef14ec77b38698ad894136899
|
Python
|
csc202summer19/lectures
|
/02_recursion/recursive_functions.py
|
UTF-8
| 398
| 4.0625
| 4
|
[] |
no_license
|
def power(a, n):
""" Compute a^n. """
# NOTE: a^n = a * a * a * ... * a
# a^n = a * a^(n - 1)
if n == 0:
return 1
else:
return a * power(a, n - 1)
def factorial(n):
""" Compute n!. """
# NOTE: n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1
# n! = n * (n - 1)!
if n == 0:
return 1
else:
return n * factorial(n - 1)
| true
|
5da006e536bc9c8fbc23c2ae35079caab874e3b5
|
Python
|
AlexanderHeimann-EH/Testautomation
|
/CiCDTMstudioTest/Source/Demos/pytools-186e88affa1d/pytools_186e88affa1d/Python/Tests/TestData/ProfileTest/Program.py
|
UTF-8
| 88
| 2.59375
| 3
|
[] |
no_license
|
import time
def f():
for i in xrange(10000):
time.sleep(0)
f()
| true
|
78bfe27d36067b049e6f34e0d0851dbe6c60a70d
|
Python
|
arkadiuszpasek/wuwuzela
|
/src/types/string.py
|
UTF-8
| 129
| 3.234375
| 3
|
[] |
no_license
|
class String():
def __init__(self, input):
self.value = str(input)
def __str__(self):
return self.value
| true
|
6fe31ea47a5bd68551d259c7ffe3431b52c1e0c3
|
Python
|
analyticd/FlowTradingTools
|
/testpanel.py
|
UTF-8
| 1,642
| 2.578125
| 3
|
[] |
no_license
|
import wx
class TestNoteBook(wx.Frame):
def __init__(self, parent, id, title):
wx.Frame.__init__(self, parent, id, title, size=(600, 500))
panel = wx.Panel(self)
vsizer = wx.BoxSizer(wx.VERTICAL)
toppanel = wx.Panel(panel)
bottompanel = wx.Panel(panel)
notebook = wx.Notebook(bottompanel)
posterpage = wx.Panel(notebook)
listpage = wx.Panel(notebook)
notebook.AddPage(posterpage, 'posters')
notebook.AddPage(listpage, 'list')
sizer1 = wx.BoxSizer(wx.VERTICAL)
sizer2 = wx.BoxSizer(wx.VERTICAL)
btn = wx.Button(toppanel, label="Refresh Front data")
sizer1.Add(btn,1, wx.EXPAND, 2)
txt = wx.TextCtrl(toppanel,-1,'this is a test')
sizer1.Add(txt,1, wx.EXPAND, 2)
toppanelsizer=wx.BoxSizer(wx.VERTICAL)
toppanelsizer.Add(sizer1,0, wx.ALL|wx.EXPAND, 2)
toppanelsizer.Add(sizer2,0, wx.ALL|wx.EXPAND, 2)
toppanel.SetSizer(toppanelsizer)
toppanel.Layout()
vsizer.Add(toppanel, 0.25, wx.EXPAND)
vsizer.Add(bottompanel, 1, wx.EXPAND)
#vsizer.Add(sizer1, 1, wx.EXPAND)
##### Added code (
bottompanel_sizer = wx.BoxSizer(wx.VERTICAL)
bottompanel_sizer.Add(notebook, 1, wx.EXPAND)
bottompanel.SetSizer(bottompanel_sizer)
toppanel.SetBackgroundColour('blue') # not needed, to distinguish bottompanel from toppanel
##### Added code )
panel.SetSizer(vsizer)
app = wx.App()
frame = TestNoteBook(None, -1, 'notebook')
frame.Show()
app.MainLoop()
| true
|
33eaf01f9ee0867587573eb1924f3bf73c901bb2
|
Python
|
jeromepan/Timus-Online-Judge-Solution
|
/1280.py
|
UTF-8
| 984
| 3.328125
| 3
|
[] |
no_license
|
def main():
before = [None]*(100000 + 1)
after = [None]*(100000 + 1)
orders = [None]*(1000 + 1)
numOfSubjects, numOfLimitations = input().split()
numOfSubjects = int(numOfSubjects)
numOfLimitations = int(numOfLimitations)
for indexOfLimitation in range(1, numOfLimitations+1):
before[indexOfLimitation], after[indexOfLimitation] = input().split()
before[indexOfLimitation] = int(before[indexOfLimitation])
after[indexOfLimitation] = int(after[indexOfLimitation])
subject = input().split()
for indexOfSubject in range(1, numOfSubjects+1):
orders[int(subject[indexOfSubject-1])] = indexOfSubject
isCorrect = True
for indexOfLimitation in range(1, numOfLimitations+1):
if orders[before[indexOfLimitation]] > orders[after[indexOfLimitation]]:
isCorrect = False
break
if isCorrect:
print("YES")
else:
print("NO")
if __name__ == "__main__":
main()
| true
|
555ac88ddebbdd5a5c05d65094eaf5d6eae17ee4
|
Python
|
PietroMelzi/potion
|
/potion/meta/smoothing_constants.py
|
UTF-8
| 1,326
| 2.90625
| 3
|
[
"MIT"
] |
permissive
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 12 14:09:49 2019
@author: matteo
"""
import math
def gauss_smooth_const(max_feat, std):
psi = 2 * max_feat / (math.sqrt(2 * math.pi) * std)
kappa = max_feat**2 / std**2
xi = max_feat**2 / std**2
return psi, kappa, xi
def std_smooth_const():
psi = 4 / math.sqrt(2 * math.pi * math.e)
kappa = 2
xi = 2
return psi, kappa, xi
def gibbs_smooth_const(max_feat, temp):
psi = 2 * max_feat / temp
kappa = 4 * max_feat**2 / temp**2
xi = 2 * max_feat**2 / temp**2
return psi, kappa, xi
def gauss_lip_const(max_feat, max_rew, disc, std):
lip = 2 * max_feat**2 * max_rew / (std* (1 - disc))**2 * (
1 + 2 * disc / (math.pi * (1 - disc)))
return lip
def std_lip_const(max_rew, disc):
lip = 4 * max_rew / (1 - disc)**2 * (
1 + 4 * disc / (math.pi * math.e * (1 - disc)))
return lip
def gibbs_lip_const(max_feat, max_rew, disc, temp):
lip = 2 * max_feat**2 * max_rew / (temp * (1 - disc))**2 * (
3 + 4 * disc / (1 - disc))
return lip
def pirotta_coeff(max_feat, max_rew, disc, std, action_vol):
return max_rew * max_feat**2 / ((1 - disc)**2 * std**2) * \
(action_vol / (math.sqrt(2 * math.pi) * std) + disc
/ (2 * (1 - disc)))
| true
|
dd69c5966a6c1accd15acb41fa3fa4af9895e572
|
Python
|
ProditorMagnus/WML_tree_tools
|
/py_files/wmlparser3.py
|
UTF-8
| 27,576
| 2.96875
| 3
|
[] |
no_license
|
#!/usr/bin/env python3
# encoding: utf-8
"""
This parser uses the --preprocess option of wesnoth so a working
wesnoth executable must be available at runtime if the WML to parse
contains preprocessing directives.
Pure WML can be parsed as is.
For example:
wml = ""
[unit]
id=elve
name=Elve
[abilities]
[damage]
id=Ensnare
[/dama ge]
[/abilities]
[/unit]
""
p = Parser()
cfg = p.parse_text(wml)
for unit in cfg.get_all(tag = "unit"):
print(unit.get_text_val("id"))
print(unit.get_text_val("name"))
for abilities in unit.get_all(tag = "abilitities"):
for ability in abilities.get_all(tag = ""):
print(ability.get_name())
print(ability.get_text_val("id"))
Because no preprocessing is required, we did not have to pass the
location of the wesnoth executable to Parser.
The get_all method always returns a list over matching tags or
attributes.
The get_name method can be used to get the name and the get_text_val
method can be used to query the value of an attribute.
"""
import os, glob, sys, re, subprocess, argparse, tempfile, shutil
import atexit
from typing import Union
tempdirs_to_clean = []
tmpfiles_to_clean = []
@atexit.register
def cleaner():
for temp_dir in tempdirs_to_clean:
shutil.rmtree(temp_dir, ignore_errors=True)
for temp_file in tmpfiles_to_clean:
os.remove(temp_file)
class WMLError(Exception):
"""
Catch this exception to retrieve the first error message from
the parser.
"""
def __init__(self, parser=None, message=None):
if parser:
self.line = parser.parser_line
self.wml_line = parser.last_wml_line
self.message = message
self.preprocessed = parser.preprocessed
def __str__(self):
return """WMLError:
%s %s
%s
%s
""" % (str(self.line), self.preprocessed, self.wml_line, self.message)
class StringNode:
"""
One part of an attribute's value. Because a single WML string
can be made from multiple translatable strings we model
it as a list of several StringNode each with its own text domain.
"""
def __init__(self, data: bytes):
self.textdomain = None # non-translatable by default
self.data = data
def wml(self) -> bytes:
if not self.data:
return b""
return self.data
def debug(self):
if self.textdomain:
return "_<%s>'%s'" % (self.textdomain,
self.data.decode("utf8", "ignore"))
else:
return "'%s'" % self.data.decode("utf8", "ignore")
def __str__(self):
return "StringNode({})".format(self.debug())
def __repr__(self):
return str(self)
class AttributeNode:
"""
A WML attribute. For example the "id=Elfish Archer" in:
[unit]
id=Elfish Archer
[/unit]
"""
def __init__(self, name, location=None):
self.name = name
self.location = location
self.value = [] # List of StringNode
def wml(self) -> bytes:
s = self.name + b"=\""
for v in self.value:
s += v.wml().replace(b"\"", b"\"\"")
s += b"\""
return s
def debug(self):
return self.name.decode("utf8") + "=" + " .. ".join(
[v.debug() for v in self.value])
def get_text(self, translation=None) -> str:
"""
Returns a text representation of the node's value. The
translation callback, if provided, will be called on each
partial string with the string and its corresponding textdomain
and the returned translation will be used.
"""
r = ""
for s in self.value:
ustr = s.data.decode("utf8", "ignore")
if translation:
r += translation(ustr, s.textdomain)
else:
r += ustr
return r
def get_binary(self):
"""
Returns the unmodified binary representation of the value.
"""
r = b""
for s in self.value:
r += s.data
return r
def get_name(self):
return self.name.decode("utf8")
def __str__(self):
return "AttributeNode({})".format(self.debug())
def __repr__(self):
return str(self)
class TagNode:
"""
A WML tag. For example the "unit" in this example:
[unit]
id=Elfish Archer
[/unit]
"""
def __init__(self, name, location=None):
self.name = name
self.location = location
# List of child elements, which are either of type TagNode or
# AttributeNode.
self.data = []
self.speedy_tags = {}
def wml(self) -> bytes:
"""
Returns a (binary) WML representation of the entire node.
All attribute values are enclosed in quotes and quotes are
escaped (as double quotes). Note that no other escaping is
performed (see the BinaryWML specification for additional
escaping you may require).
"""
s = b"[" + self.name + b"]\n"
for sub in self.data:
s += sub.wml() + b"\n"
s += b"[/" + self.name.lstrip(b'+') + b"]\n"
return s
def debug(self):
s = "[%s]\n" % self.name.decode("utf8")
for sub in self.data:
for subline in sub.debug().splitlines():
s += " %s\n" % subline
s += "[/%s]\n" % self.name.decode("utf8").lstrip('+')
return s
def get_all(self, **kw):
"""
This gets all child tags or child attributes of the tag.
For example:
[unit]
name=A
name=B
[attack]
[/attack]
[attack]
[/attack]
[/unit]
unit.get_all(att = "name")
will return two nodes for "name=A" and "name=B"
unit.get_all(tag = "attack")
will return two nodes for the two [attack] tags.
unit.get_all()
will return 4 nodes for all 4 sub-elements.
unit.get_all(att = "")
Will return the two attribute nodes.
unit.get_all(tag = "")
Will return the two tag nodes.
If no elements are found an empty list is returned.
"""
if len(kw) == 1 and "tag" in kw and kw["tag"]:
return self.speedy_tags.get(kw["tag"].encode("utf8"), [])
r = []
for sub in self.data:
ok = True
for k, v in list(kw.items()):
v = v.encode("utf8")
if k == "tag":
if not isinstance(sub, TagNode):
ok = False
elif v != b"" and sub.name != v:
ok = False
elif k == "att":
if not isinstance(sub, AttributeNode):
ok = False
elif v != b"" and sub.name != v:
ok = False
if ok:
r.append(sub)
return r
def get_text_val(self, name, default=None, translation=None, val=-1):
"""
Returns the value of the specified attribute. If the attribute
is given multiple times, the value number val is returned (default
behaviour being to return the last value). If the
attribute is not found, the default parameter is returned.
If a translation is specified, it should be a function which
when passed a unicode string and text-domain returns a
translation of the unicode string. The easiest way is to pass
it to gettext.translation if you have the binary message
catalogues loaded.
"""
x = self.get_all(att=name)
if not x: return default
return x[val].get_text(translation)
def get_binary(self, name, default=None):
"""
Returns the unmodified binary data for the first attribute
of the given name or the passed default value if it is not
found.
"""
x = self.get_all(att=name)
if not x: return default
return x[0].get_binary()
def append(self, node):
"""
Appends a child node (must be either a TagNode or
AttributeNode).
"""
self.data.append(node)
if isinstance(node, TagNode):
if node.name not in self.speedy_tags:
self.speedy_tags[node.name] = []
self.speedy_tags[node.name].append(node)
def get_name(self):
return self.name.decode("utf8")
def __str__(self):
return "TagNode({})".format(self.get_name())
def __repr__(self):
return str(self)
class RootNode(TagNode):
"""
The root node. There is exactly one such node.
"""
def __init__(self):
TagNode.__init__(self, None)
def debug(self):
s = ""
for sub in self.data:
for subline in sub.debug().splitlines():
s += subline + "\n"
return s
def __str__(self):
return "RootNode()"
def __repr__(self):
return str(self)
class Parser:
def __init__(self, wesnoth_exe=None, config_dir=None,
data_dir=None):
"""
wesnoth_exe - Wesnoth executable to use. This should have been
configured to use the desired data and config directories.
config_dir - The Wesnoth configuration directory, can be
None to use the wesnoth default.
data_dir - The Wesnoth data directory, can be None to use
the wesnoth default.
After parsing is done the root node of the result will be
in the root attribute.
"""
self.wesnoth_exe = wesnoth_exe
self.config_dir = None
if config_dir: self.config_dir = os.path.abspath(config_dir)
self.data_dir = None
if data_dir: self.data_dir = os.path.abspath(data_dir)
self.keep_temp_dir = None
self.temp_dir = None
self.no_preprocess = (wesnoth_exe is None)
self.preprocessed = None
self.verbose = False
self.last_wml_line = "?"
self.parser_line = 0
self.line_in_file = 42424242
self.chunk_start = "?"
def parse_file(self, path, defines="") -> RootNode:
"""
Parse the given file found under path.
"""
self.path = path
if not self.no_preprocess:
self.preprocess(defines)
return self.parse()
def parse_binary(self, binary: bytes, defines="") -> RootNode:
"""
Parse a chunk of binary WML.
"""
td, tmpfilePath = tempfile.mkstemp(prefix="wmlparser_",
suffix=".cfg")
with open(tmpfilePath, 'wb') as temp:
temp.write(binary)
os.close(td)
self.path = tmpfilePath
tmpfiles_to_clean.append(tmpfilePath)
if not self.no_preprocess:
self.preprocess(defines)
return self.parse()
def parse_text(self, text, defines="") -> RootNode:
"""
Parse a text string.
"""
return self.parse_binary(text.encode("utf8"), defines)
def preprocess(self, defines):
"""
This is called by the parse functions to preprocess the
input from a normal WML .cfg file into a preprocessed
.plain file.
"""
if self.keep_temp_dir:
output = self.keep_temp_dir
else:
output = tempfile.mkdtemp(prefix="wmlparser_")
tempdirs_to_clean.append(output)
self.temp_dir = output
commandline = [self.wesnoth_exe]
if self.data_dir:
commandline += ["--data-dir", self.data_dir]
if self.config_dir:
commandline += ["--config-dir", self.config_dir]
commandline += ["--preprocess", self.path, output]
if defines:
commandline += ["--preprocess-defines", defines]
if self.verbose:
print((" ".join(commandline)))
p = subprocess.Popen(commandline,
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
if self.verbose:
print((out + err).decode("utf8"))
self.preprocessed = output + "/" + os.path.basename(self.path) + \
".plain"
if not os.path.exists(self.preprocessed):
first_line = open(self.path).readline().strip()
raise WMLError(self, "Preprocessor error:\n" +
" ".join(commandline) + "\n" +
"First line: " + first_line + "\n" +
out.decode("utf8") +
err.decode("utf8"))
def parse_line_without_commands_loop(self, line: bytes) -> Union[None, bytes]:
"""
Once the .plain commands are handled WML lines are passed to
this.
"""
if not line: return
if line.strip():
self.skip_newlines_after_plus = False
if self.in_tag:
self.handle_tag(line)
return
if self.in_arrows:
arrows = line.find(b'>>')
if arrows >= 0:
self.in_arrows = False
self.temp_string += line[:arrows]
self.temp_string_node = StringNode(self.temp_string)
self.temp_string = b""
self.temp_key_nodes[self.commas].value.append(
self.temp_string_node)
self.in_arrows = False
return line[arrows + 2:]
else:
self.temp_string += line
return
quote = line.find(b'"')
if not self.in_string:
arrows = line.find(b'<<')
if arrows >= 0 and (quote < 0 or quote > arrows):
self.parse_line_without_commands(line[:arrows])
self.in_arrows = True
return line[arrows + 2:]
if quote >= 0:
if self.in_string:
# double quote
if quote < len(line) - 1 and line[quote + 1] == b'"'[0]:
self.temp_string += line[:quote + 1]
return line[quote + 2:]
self.temp_string += line[:quote]
self.temp_string_node = StringNode(self.temp_string)
if self.translatable:
self.temp_string_node.textdomain = self.textdomain
self.translatable = False
self.temp_string = b""
if not self.temp_key_nodes:
raise WMLError(self, "Unexpected string value.")
self.temp_key_nodes[self.commas].value.append(
self.temp_string_node)
self.in_string = False
return line[quote + 1:]
else:
self.parse_outside_strings(line[:quote])
self.in_string = True
return line[quote + 1:]
else:
if self.in_string:
self.temp_string += line
else:
self.parse_outside_strings(line)
def parse_line_without_commands(self, line):
while True:
line = self.parse_line_without_commands_loop(line)
if not line:
break
def parse_outside_strings(self, line):
"""
Parse a WML fragment outside of strings.
"""
if not line: return
if line.startswith(b"#textdomain "):
self.textdomain = line[12:].strip().decode("utf8")
return
if not self.temp_key_nodes:
line = line.lstrip()
if not line: return
# Is it a tag?
if line.startswith(b"["):
self.handle_tag(line)
# No tag, must be an attribute.
else:
self.handle_attribute(line)
else:
for i, segment in enumerate(line.split(b"+")):
segment = segment.lstrip(b" \t")
if i > 0:
# If the last segment is empty (there was a plus sign
# at the end) we need to skip newlines.
self.skip_newlines_after_plus = not segment.strip()
if not segment: continue
if segment.rstrip(b" ") == b"_":
self.translatable = True
segment = segment[1:].lstrip(b" ")
if not segment: continue
self.handle_value(segment)
def handle_tag(self, line):
end = line.find(b"]")
if end < 0:
if line.endswith(b"\n"):
raise WMLError(self, "Expected closing bracket.")
self.in_tag += line
return
tag = (self.in_tag + line[:end])[1:]
self.in_tag = b""
if tag.startswith(b"/"):
self.parent_node = self.parent_node[:-1]
elif tag.startswith(b"+") and self.parent_node and self.parent_node[-1].get_all(tag=tag[1:].decode()):
node_to_append_to = self.parent_node[-1].get_all(tag=tag[1:].decode())[-1]
self.parent_node.append(node_to_append_to)
else:
node = TagNode(tag, location=(self.line_in_file, self.chunk_start))
if self.parent_node:
self.parent_node[-1].append(node)
self.parent_node.append(node)
self.parse_outside_strings(line[end + 1:])
def handle_attribute(self, line):
assign = line.find(b"=")
remainder = None
if assign >= 0:
remainder = line[assign + 1:]
line = line[:assign]
self.commas = 0
self.temp_key_nodes = []
for att in line.split(b","):
att = att.strip()
node = AttributeNode(att, location=(self.line_in_file, self.chunk_start))
self.temp_key_nodes.append(node)
if self.parent_node:
self.parent_node[-1].append(node)
if remainder:
self.parse_outside_strings(remainder)
def handle_value(self, segment):
def add_text(segment):
segment = segment.rstrip()
if not segment: return
n = len(self.temp_key_nodes)
maxsplit = n - self.commas - 1
if maxsplit < 0: maxsplit = 0
for subsegment in segment.split(b",", maxsplit):
self.temp_string += subsegment.strip()
self.temp_string_node = StringNode(self.temp_string)
self.temp_string = b""
self.temp_key_nodes[self.commas].value.append(
self.temp_string_node)
if self.commas < n - 1:
self.commas += 1
# Finish assignment on newline, except if there is a
# plus sign before the newline.
add_text(segment)
if segment.endswith(b"\n") and not self.skip_newlines_after_plus:
self.temp_key_nodes = []
def parse(self) -> RootNode:
"""
Parse preprocessed WML into a tree of tags and attributes.
"""
# parsing state
self.temp_string = b""
self.temp_string_node = None
self.commas = 0
self.temp_key_nodes = []
self.in_string = False
self.in_arrows = False
self.textdomain = "wesnoth"
self.translatable = False
self.root = RootNode()
self.parent_node = [self.root]
self.skip_newlines_after_plus = False
self.in_tag = b""
command_marker_byte = bytes([254])
input = self.preprocessed
if not input: input = self.path
for rawline in open(input, "rb"):
compos = rawline.find(command_marker_byte)
self.parser_line += 1
# Everything from chr(254) to newline is the command.
if compos != 0:
self.line_in_file += 1
if compos >= 0:
self.parse_line_without_commands(rawline[:compos])
self.handle_command(rawline[compos + 1:-1])
else:
self.parse_line_without_commands(rawline)
if self.keep_temp_dir is None and self.temp_dir:
if self.verbose:
print(("removing " + self.temp_dir))
shutil.rmtree(self.temp_dir, ignore_errors=True)
return self.root
def handle_command(self, com):
if com.startswith(b"line "):
self.last_wml_line = com[5:]
_ = self.last_wml_line.split(b" ")
self.chunk_start = [(_[i + 1], int(_[i])) for i in range(0, len(_), 2)]
self.line_in_file = self.chunk_start[0][1]
elif com.startswith(b"textdomain "):
self.textdomain = com[11:].decode("utf8")
else:
raise WMLError(self, "Unknown parser command: " + com)
def get_all(self, **kw):
return self.root.get_all(**kw)
def get_text_val(self, name, default=None, translation=None):
return self.root.get_text_val(name, default, translation)
def jsonify(tree, verbose=False, depth=1):
"""
Convert a Parser tree into JSON
If verbose, insert a linebreak after every brace and comma (put every
item on its own line), otherwise, condense everything into a single line.
"""
import json
def node_to_dict(n):
d = {}
tags = set(x.get_name() for x in n.get_all(tag=""))
for tag in tags:
d[tag] = [node_to_dict(x) for x in n.get_all(tag=tag)]
for att in n.get_all(att=""):
d[att.get_name()] = att.get_text()
return d
print(json.dumps(node_to_dict(tree), indent=depth if verbose else None))
def xmlify(tree, verbose=False, depth=0):
import xml.etree.ElementTree as ET
def node_to_et(n):
et = ET.Element(n.get_name())
for att in n.get_all(att=""):
attel = ET.Element(att.get_name())
attel.text = att.get_text()
et.append(attel)
for tag in n.get_all(tag=""):
et.append(node_to_et(tag))
return et
ET.ElementTree(node_to_et(tree.get_all()[0])).write(
sys.stdout, encoding="unicode")
if __name__ == "__main__":
arg = argparse.ArgumentParser()
arg.add_argument("-a", "--data-dir", help="directly passed on to wesnoth.exe")
arg.add_argument("-c", "--config-dir", help="directly passed on to wesnoth.exe")
arg.add_argument("-i", "--input", help="a WML file to parse")
arg.add_argument("-k", "--keep-temp", help="specify directory where to keep temp files")
arg.add_argument("-t", "--text", help="WML text to parse")
arg.add_argument("-w", "--wesnoth", help="path to wesnoth.exe")
arg.add_argument("-d", "--defines", help="comma separated list of WML defines")
arg.add_argument("-T", "--test", action="store_true")
arg.add_argument("-j", "--to-json", action="store_true")
arg.add_argument("-v", "--verbose", action="store_true")
arg.add_argument("-x", "--to-xml", action="store_true")
args = arg.parse_args()
if not args.input and not args.text and not args.test:
sys.stderr.write("No input given. Use -h for help.\n")
sys.exit(1)
if (args.wesnoth and not os.path.exists(args.wesnoth)):
sys.stderr.write("Wesnoth executable not found.\n")
sys.exit(1)
if not args.wesnoth:
print("Warning: Without the -w option WML is not preprocessed!",
file=sys.stderr)
if args.test:
print("Running tests")
p = Parser(args.wesnoth, args.config_dir,
args.data_dir)
if args.keep_temp:
p.keep_temp_dir = args.keep_temp
if args.verbose: p.verbose = True
only = None
def test2(input, expected, note, function):
if only and note != only: return
input = input.strip()
expected = expected.strip()
p.parse_text(input)
output = function(p).strip()
if output != expected:
print("__________")
print(("FAILED " + note))
print("INPUT:")
print(input)
print("OUTPUT:")
print(output)
print("EXPECTED:")
print(expected)
print("__________")
else:
print(("PASSED " + note))
def test(input, expected, note):
test2(input, expected, note, lambda p: p.root.debug())
test(
"""
[test]
a=1
[/test]
""", """
[test]
a='1'
[/test]
""", "simple")
test(
"""
[+foo]
a=1
[/foo]
""", """
[+foo]
a='1'
[/foo]
""", "+foo without foo in toplevel")
test(
"""
[foo]
[+bar]
a=1
[/bar]
[/foo]
""", """
[foo]
[+bar]
a='1'
[/bar]
[/foo]
""", "+foo without foo in child")
test(
"""
[test]
[foo]
a=1
[/foo]
[/test]
""", """
[test]
[foo]
a='1'
[/foo]
[/test]
""", "subtag, part 1")
test(
"""
[test]
[foo]
a=1
[/foo]
[/test]
[+test]
[+foo]
[/foo]
[/test]
""", """
[test]
[foo]
a='1'
[/foo]
[/test]
""", "subtag, part 2")
test(
"""
[test]
a, b, c = 1, 2, 3
[/test]
""", """
[test]
a='1'
b='2'
c='3'
[/test]
""", "multi assign")
test(
"""
[test]
a, b = 1, 2, 3
[/test]
""", """
[test]
a='1'
b='2, 3'
[/test]
""", "multi assign 2")
test(
"""
[test]
a, b, c = 1, 2
[/test]
""", """
[test]
a='1'
b='2'
c=
[/test]
""", "multi assign 3")
test(
"""
#textdomain A
#define X
_ "abc"
#enddef
#textdomain B
[test]
x = _ "abc" + {X}
[/test]
""", """
[test]
x=_<B>'abc' .. _<A>'abc'
[/test]
""", "textdomain")
test(
"""
[test]
x,y = _1,_2
[/test]
""", """
[test]
x='_1'
y='_2'
[/test]
""", "underscores")
test(
"""
[test]
a = "a ""quoted"" word"
[/test]
""",
"""
[test]
a='a "quoted" word'
[/test]
""", "quoted")
test(
"""
[test]
code = <<
"quotes" here
""blah""
>>
[/test]
""",
"""
[test]
code='
"quotes" here
""blah""
'
[/test]
""", "quoted2")
test(
"""
foo="bar"+
"baz"
""",
"""
foo='bar' .. 'baz'
""", "multi line string")
test(
"""
#define baz
"baz"
#enddef
foo="bar"+{baz}
""",
"""
foo='bar' .. 'baz'
""", "defined multi line string")
test(
"""
foo="bar" + "baz" # blah
""",
"""
foo='bar' .. 'baz'
""", "comment after +")
test(
"""
#define baz
"baz"
#enddef
foo="bar" {baz}
""",
"""
foo='bar' .. 'baz'
""", "defined string concatenation")
test(
"""
#define A BLOCK
[{BLOCK}]
[/{BLOCK}]
#enddef
{A blah}
""",
"""
[blah]
[/blah]
""", "defined tag")
test2(
"""
[test]
a=1
b=2
a=3
b=4
[/test]
""", "3, 4", "multiatt",
lambda p:
p.get_all(tag = "test")[0].get_text_val("a") + ", " +
p.get_all(tag = "test")[0].get_text_val("b"))
sys.exit(0)
p = Parser(args.wesnoth, args.config_dir, args.data_dir)
if args.keep_temp:
p.keep_temp_dir = args.keep_temp
if args.verbose: p.verbose = True
if args.input:
p.parse_file(args.input, args.defines)
elif args.text:
p.parse_text(args.text, args.defines)
if args.to_json:
jsonify(p.root, True)
print()
elif args.to_xml:
print('<?xml version="1.0" encoding="UTF-8" ?>')
print('<root>')
xmlify(p.root, True, 1)
print('</root>')
else:
print((p.root.debug()))
| true
|
f0188e0b79e7f0c78c063117163f7fdce50986c9
|
Python
|
KristineYW/DS-Unit-3-Sprint-2-SQL-and-Databases
|
/module2-sql-for-analysis/insert_rpg_char_inv.py
|
UTF-8
| 2,719
| 3.015625
| 3
|
[
"MIT"
] |
permissive
|
import os
from dotenv import load_dotenv
import sqlite3
import psycopg2
from psycopg2.extras import execute_values
load_dotenv() # looks inside the .env file for some env vars
# passes env var values to python var
DB_HOST = os.getenv("DB_HOST", default="OOPS")
DB_NAME = os.getenv("DB_NAME", default="OOPS")
DB_USER = os.getenv("DB_USER", default="OOPS")
DB_PASSWORD = os.getenv("DB_PASSWORD", default="OOPS")
# what is the filepath to connect to our sqlite database?
DB_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "module1-introduction-to-sql", "rpg_db.sqlite3")
class SqliteService_inventory():
def __init__(self, db_filepath=DB_FILEPATH):
self.connection = sqlite3.connect(db_filepath)
self.cursor = self.connection.cursor()
def fetch_characters_inventory(self):
return self.cursor.execute("SELECT * FROM charactercreator_character_inventory;").fetchall()
class ElephantSQLService_inventory():
def __init__(self):
self.connection = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, host=DB_HOST)
self.cursor = self.connection.cursor()
def create_characters_inventory_table(self):
create_query = """
DROP TABLE IF EXISTS characters_inventory; -- allows this to be run idempotently, avoids psycopg2.errors.UniqueViolation: duplicate key value violates unique constraint "characters__inventory_pkey" DETAIL: Key (character_id)=(1) already exists.
CREATE TABLE IF NOT EXISTS characters_inventory (
id SERIAL PRIMARY KEY,
character_id INT,
item_id INT
);
"""
print(create_query)
self.cursor.execute(create_query)
self.connection.commit()
def insert_characters_inventory(self, characters_inventory):
"""
Param characters_inventory needs to be a list of tuples, each representing a row to insert (each should have each column)
"""
insertion_query = """
INSERT INTO characters_inventory (id, character_id,item_id)
VALUES %s
"""
execute_values(self.cursor, insertion_query, characters_inventory)
self.connection.commit()
if __name__ == "__main__":
#
# EXTRACT (AND MAYBE TRANSFORM IF NECESSARY)
#
sqlite_service = SqliteService_inventory()
characters_inventory = sqlite_service.fetch_characters_inventory()
print(type(characters_inventory), len(characters_inventory))
print(type(characters_inventory[0]), characters_inventory[0])
#
# LOAD
#
pg_service = ElephantSQLService_inventory()
pg_service.create_characters_inventory_table()
pg_service.insert_characters_inventory(characters_inventory)
| true
|
6a4978de579271cbac24749266e89b97e9b3afde
|
Python
|
MichelleZ/leetcode
|
/algorithms/python/countVowelsPermutation/countVowelsPermutation.py
|
UTF-8
| 616
| 3.078125
| 3
|
[] |
no_license
|
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# Source: https://leetcode.com/problems/count-vowels-permutation/
# Author: Miao Zhang
# Date: 2021-04-17
class Solution:
def countVowelPermutation(self, n: int) -> int:
kMod = 10 ** 9 + 7
a, e, i, o, u = 1, 1, 1, 1, 1
for k in range(2, n + 1):
aa = (e + i + u) % kMod
ee = (a + i) % kMod
ii = (e + o) % kMod
oo = i % kMod
uu = (i + o) % kMod
a = aa
e = ee
i = ii
o = oo
u = uu
return (a + e + i + o + u) % kMod
| true
|
f90349b5a46e46574072c30246b0cb99e23159b0
|
Python
|
emilyvroth/cs1
|
/lecture/lecture6/boolean.py
|
UTF-8
| 169
| 3.25
| 3
|
[] |
no_license
|
x = 15
y = -15
z = 32
print(x == y and y < z)
print(x == y or y < z)
print(x == abs(y) and y <z)
print(x == abs(y) or y <z)
print(not x == abs(y))
print(not x != abs(y))
| true
|
43a71c40490275763712a79f64ba54ff7af3e294
|
Python
|
mathminds/csci-utils
|
/src/csci_utils/file/tests.py
|
UTF-8
| 2,562
| 3.25
| 3
|
[] |
no_license
|
import os
from csci_utils.io.enhancedwrite import atomic_write
from csci_utils.file.parquet import (
get_parquet_column,
get_parquet_file_name,
convert_xls_to_parquet,
)
from tempfile import TemporaryDirectory
from unittest import TestCase
from pandas import DataFrame
class ParquetTests(TestCase):
def test_get_parquet_file_name_with_path(self):
"""Ensure filename changes to appropriate extension"""
filename = "/data/fakefile.txt"
self.assertEqual("/data/fakefile.parquet", get_parquet_file_name(filename))
def test_get_parquet_file_name_no_path(self):
"""Ensure filename changes to appropriate extension"""
filename = "fakefile.txt"
self.assertEqual("fakefile.parquet", get_parquet_file_name(filename))
def test_get_parquet_column(self):
"""Ensure a column can be retrieved from a parquet file"""
# create a data frame for testing
test_list = [1, 2]
test_column = "test_1"
test_dict = {test_column: test_list, "test_2": [3, 4]}
test_dict = DataFrame(data=test_dict)
# create a temporary directory and write the df as a parquet file for test
with TemporaryDirectory() as tmp:
fp = os.path.join(tmp, "test.parquet")
with atomic_write(fp, as_file=False) as pf:
test_dict.to_parquet(pf)
self.compare_columns(fp, test_column, test_list)
def test_convert_xls_to_parquet(self):
"""Ensure a Parquet file can be created from and Excel file"""
# create a data frame for testing
test_list = [1, 2]
test_column = "test_1"
test_dict = {test_column: test_list, "test_2": [3, 4]}
test_dict = DataFrame(data=test_dict)
# create a temporary directory and write the df as a parquet file for test
with TemporaryDirectory() as tmp:
fp = os.path.join(tmp, "test.xls")
with atomic_write(fp, as_file=False) as pf:
test_dict.to_excel(pf, "Sheet1")
parquet_file = convert_xls_to_parquet(fp, "Sheet1")
self.assertTrue(os.path.exists(parquet_file))
self.compare_columns(parquet_file, test_column, test_list)
def compare_columns(self, file, test_column, test_list):
column_values = get_parquet_column(file, test_column).tolist()
# compare the test list against what was retrieved from parquet file
for i, j in zip(column_values, test_list):
if i != j:
self.fail("Values do not match")
| true
|
0dbaea791805310e9b9e4dd342ab7da747f891fd
|
Python
|
lizhao0211/HtmlManipulate
|
/designer/RunMainWinHorLayout.py
|
UTF-8
| 437
| 2.53125
| 3
|
[] |
no_license
|
import sys
import MainWinHorLayout
from PyQt5.QtWidgets import QApplication, QMainWindow
if __name__ == '__main__':
# 创建QApplication类的实例
app = QApplication(sys.argv)
# 创建一个窗口
mainWindow = QMainWindow()
ui = MainWinHorLayout.UI_MainWindow
ui.setupUi(mainWindow)
mainWindow.show()
# 进入程序的主循环,并通过exit函数确保主循环安全结束
sys.exit(app.exec_())
| true
|
28a0311befca9e7db2d0d8a2ab785e71e92b7c76
|
Python
|
DoctorLai/ACM
|
/binarysearch/Candy-Race/Candy-Race.py
|
UTF-8
| 538
| 3.03125
| 3
|
[] |
no_license
|
# https://helloacm.com/teaching-kids-programming-minmax-dynamic-programming-algorithm-game-of-picking-numbers-at-two-ends/
# https://binarysearch.com/problems/Candy-Race
# HARD, DP
class Solution:
def solve(self, P):
n = len(P)
dp = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = P[i]
for i in range(n - 2, -1, -1):
for j in range(i + 1, n):
dp[i][j] = max(P[i] - dp[i + 1][j], P[j] - dp[i][j - 1])
return dp[0][-1] > 0
| true
|
ff701233d551181b183b9bc39b4f01b19d62d26e
|
Python
|
CVanchieri/CS-Unit5-HashTables
|
/applications/histo/histo.py
|
UTF-8
| 569
| 3.28125
| 3
|
[] |
no_license
|
# Your code here
import re
store = {}
def printHistogram(word, count):
print(f"{word}:{' ' * (16 - len(word))}{'#' * count}")
with open('./robin.txt', 'r') as file:
for line in file:
for word in line.split():
word = re.sub('\W+', '', word.lower())
if not word.isalpha():
continue
if word not in store:
store[word] = 1
else:
store[word] += 1
store = sorted(list(store.items()), key = lambda item: item[1], reverse = True)
for word in range(len(store) - 1):
printHistogram(store[word][0], store[word][1])
| true
|
651c15a6f7053e7fca86b5e08604d651bae6bc4d
|
Python
|
Francesco-Ghizzo/TCC
|
/Script/Console QGIS/Non Commentati/Spectral_Radiance_L5.py
|
UTF-8
| 2,220
| 2.671875
| 3
|
[] |
no_license
|
## Spectral Radiance (L) landsat 5
from qgis.core import *
from PyQt4.QtGui import QInputDialog
import os
from osgeo import gdal
def get_landsat_dir():
landsat_dir = QInputDialog.getText(None, '',
'Insira o caminho da pasta com as imagens Landsat 5:\n')[0]
return landsat_dir
def get_landsat_band(dirPath, bandNum):
bandStr = str(bandNum)
imageName = os.path.basename(dirPath) + "_B" + bandStr + ".TIF"
imagePath = dirPath + "/" + imageName
imageDict = {'fileName': imageName, 'fullPath': imagePath}
return imageDict
def spectral_radiance(bandNum, DN):
LMIN = (-1.765, -3.576, -1.502, -1.763, -0.411, 1.238, -0.137)
LMAX = (178.941, 379.055, 255.695, 242,303, 30.178, 15.600, 13.156)
L = ((LMAX[bandNum-1] - LMIN[bandNum-1])/255)*(DN) + LMIN[bandNum-1]
return L
landsat_dir_path = get_landsat_dir()
os.chdir(landsat_dir_path)
landsat_bands = [None]
for i in range(1, 8):
bandDict = get_landsat_band(landsat_dir_path, i)
landsat_bands.append(bandDict)
for i in range(1, 8):
input_dataset = gdal.Open(landsat_bands[i]['fileName'])
if input_dataset is None:
print "layer " + str(i) + " failed to load"
else:
print "layer " + str(i) + " loaded"
input_band = input_dataset.GetRasterBand(1)
gtiff_driver = gdal.GetDriverByName('GTiff')
output_filename = "Spectral Radiance_B" + str(i) + ".TIF"
output_dataset = gtiff_driver.Create(output_filename, input_band.XSize,
input_band.YSize, 1, input_band.DataType)
output_dataset.SetProjection(input_dataset.GetProjection())
output_dataset.SetGeoTransform(input_dataset.GetGeoTransform())
if output_dataset is None:
print "failed to create output layer " + str(i)
else:
print "output layer " + str(i) + " created"
input_data = input_band.ReadAsArray()
output_band = output_dataset.GetRasterBand(1)
output_band.WriteArray(spectral_radiance(i, input_data))
# if ?
# print "failed to write to output layer " + str(i)
# else:
# print "output layer " + str(i) + " written"
output_dataset.FlushCache()
| true
|
0337d9aebbaa780fd76d8c5b482d6e40e72b3e22
|
Python
|
TheTacoScott/stormcity
|
/lib/worker.py
|
UTF-8
| 2,260
| 2.59375
| 3
|
[] |
no_license
|
import threading
import time
import lib
try:
from urlparse import urlparse as urlparse
except:
from urllib.parse import urlparse
try:
import Queue as queue
except:
import queue
class Fetcher(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.stop = threading.Event()
self.status_lock = threading.Lock()
self.status = ""
self.status_time = -1
self.purge_time = 60
#shouldn't run in all threads if we ever were to have more than one, should probably be a seperate thread all-to-gether at some point
def purge_cache(self):
with lib.results_lock:
to_delete = []
for url in lib.results:
thetime = lib.results[url]["time"]
if time.time() - thetime >= self.purge_time:
to_delete.append(url)
for key in to_delete:
del lib.results[key]
def set_next_purge(self):
self.next_purge = time.time() + self.purge_time
def job_update(self,url,data):
with lib.results_lock:
lib.results[url] = {"time":time.time(),"data":data}
def set_status(self,text):
with self.status_lock:
self.status = text
self.status_time = time.time()
def get_status(self):
with self.status_lock:
return (self.status,self.status_time)
def run(self):
self.set_next_purge()
self.set_status("Worker Startup")
while not self.stop.is_set():
#purged old results
if time.time() > self.next_purge:
self.set_status("Purging Old Cache")
self.purge_cache()
self.set_next_purge()
#get a url from the queue to work on
self.set_status("Checking for work...")
try:
self.url_to_process = lib.work_q.get(block=True,timeout=0.25)
except queue.Empty:
continue
#process job here
parsed_uri = urlparse(self.url_to_process)
if parsed_uri.hostname in lib.url_handlers:
data = lib.url_handlers[parsed_uri.hostname](self.url_to_process)
else:
data = lib.url_handlers["GLOBAL"](self.url_to_process)
#add results to job dict
self.job_update(self.url_to_process,data)
self.set_status("Fetching:" + self.url_to_process)
if self.stop.is_set(): break
self.set_status("Worker Shutdown")
| true
|
49b170388d2c3c5c8b27ec98f00158a6b91fa467
|
Python
|
zhahang0/caffe-luolongqiang
|
/python/deepFashion/get_category10_images.py
|
UTF-8
| 1,712
| 2.796875
| 3
|
[
"LicenseRef-scancode-generic-cla",
"BSD-2-Clause",
"LicenseRef-scancode-public-domain",
"BSD-3-Clause"
] |
permissive
|
import numpy as np
from numpy import array
import os, sys, time, argparse, shutil
def get_category_images(input_txt, output_dir):
fi = open(input_txt, 'r')
cls_name_list = ['3-Blouse', '6-Cardigan', '11-Jacket', '16-Sweater', '17-Tank', '18-Tee', '19-Top', '32-Shorts', '33-Skirt', '41-Dress']
# output_dir = 'data/deepFashion/category_partition'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for cls_name in cls_name_list:
cls_output_dir = output_dir + '/' + cls_name
if not os.path.exists(cls_output_dir):
os.mkdir(cls_output_dir)
for i, line in enumerate(list(fi)):
line_list = line.strip().split()
img_file_name = line_list[0]
img_cls = line_list[-1]
output_file_name = output_dir + '/' + img_cls + '/' + str(i) + '.jpg'
shutil.copy(img_file_name, output_file_name)
print i, output_file_name
#end
def get_args():
parser = argparse.ArgumentParser(description='get category images')
parser.add_argument('-i', dest='input_txt',
help='train\val\test.txt', default=None, type=str)
parser.add_argument('-d', dest='output_dir',
help='output_partition_dir', default=None, type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
input_txt = args.input_txt
output_dir = args.output_dir
tic = time.clock()
print 'get partition images, begin...'
get_category_images(input_txt, output_dir)
print 'get partition images, done'
toc = time.clock()
print 'running time:{} seconds'.format(toc-tic)
| true
|
576a9b04335a2d98931fb8b9f941e88ffeb1ae38
|
Python
|
afhuertass/santander
|
/scripts/nn/model.py
|
UTF-8
| 967
| 2.53125
| 3
|
[] |
no_license
|
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import BatchNormalization
from keras.layers import Dropout
def get_model( input_features , nhidden ):
model = Sequential()
model.add( Dense( nhidden , input_dim = input_features ) )
model.add( Activation("elu" , name = "l1") )
model.add( BatchNormalization() )
model.add(Dense(nhidden))
model.add( Activation("elu" , name = "l2") )
model.add ( Dropout( 0.2 ) )
model.add( BatchNormalization() )
model.add( Dense(nhidden ) )
model.add(Activation("elu" , name = "l3") )
model.add ( Dropout( 0.2 ) )
model.add( BatchNormalization() )
model.add( Dense( nhidden ) )
model.add(Activation("elu" , name = "l4") )
model.add ( Dropout( 0.2 ) )
#model.add( BatchNormalization() )
model.add( Dense( 1 , activation="linear") )
#model.add( Activation("activation='linear'"))
#model.add( Activation("relu" , name = "output") )
return model
| true
|
eda1da79874631d55b7fda5ddf6053fd27ee5087
|
Python
|
UWPCE-PythonCert-ClassRepos/py220-online-201904-V2
|
/students/elaine_x/lesson06/assignment/src/expand_records.py
|
UTF-8
| 2,461
| 3.1875
| 3
|
[] |
no_license
|
'''
expand records to one million records and assign unique id to them
'''
import logging
import csv
import uuid
import random
#global CCNUMBER_LIST, DATA_LIST, SENTENCE_LIST
logging.basicConfig(level=logging.INFO)
LOGGER = logging.getLogger(__name__)
def read_csv(filename):
'''read data from csv'''
with open(filename) as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
old_record = []
ccnumber_list = []
date_list = []
sentence_list = []
for i, row in enumerate(reader):
lrow = list(row)
old_record.append(lrow)
#collecting data pool for expansion
if i > 1:
ccnumber_list.append(lrow[4])
date_list.append(lrow[5])
sentence_list.append(lrow[6])
#LOGGER.info('csv contains %s', new_ones)
#LOGGER.info('date_list %s', date_list)
return old_record, ccnumber_list, date_list, sentence_list
def generate(num1, num2):
'''generate up to 1,000,000 records'''
new_record = list(map(create_entry, range(num1, num2)))
#alternative way
#new_record = []
#for i in range(num1, num2): #1,000,000
#guid = str(uuid.uuid4())
#randomly select from ccnumber, date and sentence pool
#ccnumber = random.choice(ccnumber_list)
#date = random.choice(date_list)
#sentence = random.choice(sentence_list)
#row = [i, guid, i, i, ccnumber, date, sentence]
#new_record.append(row)
#LOGGER.info('expanded record is %s', new_record)
return new_record
def create_entry(index):
'''create an entry row, called by map function'''
guid = str(uuid.uuid4())
ccnumber = random.choice(CCNUMBER_LIST)
date = random.choice(DATE_LIST)
sentence = random.choice(SENTENCE_LIST)
return [index, guid, index, index, ccnumber, date, sentence]
def write_to_csv(filename, data):
'''write data to csv'''
with open(filename, 'w', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='"')
writer.writerows(data)
if __name__ == "__main__":
INPUT_FILENAME = "../data/exercise.csv"
ORIGINAL_DATA, CCNUMBER_LIST, DATE_LIST, SENTENCE_LIST = \
read_csv(INPUT_FILENAME)
EXPANDED_DATA = generate(10, 1000001)
OUTPUT_FILENAME = "../data/exercise2.csv"
DATA = ORIGINAL_DATA + EXPANDED_DATA
write_to_csv(OUTPUT_FILENAME, DATA)
| true
|
193be8f6ff7593438f3d12d8e8c480dbd33adee5
|
Python
|
waddling/adventofcode-2019
|
/day04/part1.py
|
UTF-8
| 750
| 3.6875
| 4
|
[] |
no_license
|
#!/usr/bin/env python3
import sys
def check_adjacent_digits(n):
n = str(n)
for i in range(len(n) - 1):
if int(n[i]) == int(n[i+1]):
return True
return False
def check_increasing_digits(n):
n = str(n)
for i in range(len(n) - 1):
if int(n[i]) > int(n[i+1]):
return False
return True
if __name__ == "__main__":
for line in sys.stdin:
start, end = map(int, line.strip().split('-'))
count = 0
for n in range(start, end + 1):
if not check_adjacent_digits(n):
continue
elif not check_increasing_digits(n):
continue
else:
count += 1
print(count)
| true
|
6ced24ae8c47ec64aa9cef59475582bcb49cfe84
|
Python
|
Richiewong07/Python-Exercises
|
/python-assignments/list/sum_the_numbers.py
|
UTF-8
| 288
| 4.625
| 5
|
[] |
no_license
|
# 1. Sum the Numbers
# Given an list of numbers, print their sum. When I say given something, just make something up and store it in a variable.
num_list = [1, 2, 3, 4, 5]
def sum(numbers):
total = 0
for num in numbers:
total += num
print(total)
sum(num_list)
| true
|
43486f5bf01e869830e3d47fe3774d29b2f3ecd4
|
Python
|
AK-1121/code_extraction
|
/python/python_1641.py
|
UTF-8
| 184
| 2.71875
| 3
|
[] |
no_license
|
# How can I declare a 5x5 grid of numbers in Python?
boardPieces = [["A","O","A","A", "A"],["A","O","A","A", "A"],["A","O","A","A", "A"],["A","O","A","A", "A"],["A","O","A","A", "A"]]
| true
|
931f24b9b8925a9838c52d7eca339a11f15de36e
|
Python
|
thetaprimeio/flyingking-checkers
|
/MachineLearningModules/PerformanceSystem.py
|
UTF-8
| 41,535
| 3.28125
| 3
|
[
"MIT"
] |
permissive
|
#######################################################################
# File name: PerformanceSystem.py #
# Author: PhilipBasaric #
# #
# Description: Performance System of a Checkers machine-learning AI. #
# Contains the methods that generate a game trace with move selection #
# performed by a supplied target function hypothesis. This module #
# contains the hard-coded game logic define by the game of checkers. #
# #
#######################################################################
import random, time, copy
# This is the performance system object. It is responsible for producing the game trace used by the critic module
class PerformanceSystem:
# This function performs all actions that constitute a turn
def runGame(self, gameState, v1, v2):
# Update game state attributes
gameState.info = [len(gameState.blackPieces), len(gameState.redPieces), len(gameState.blackKings), len(gameState.redKings), len(gameState.redThreat), len(gameState.blackThreat)]
self.move(gameState, v1, v2)
# If one side has no pieces, game is over
if len(gameState.redPieces) == 0 and len(gameState.redKings) == 0 or len(gameState.blackPieces) == 0 and len(gameState.blackKings) == 0:
gameState.isOver = True
# Simple function that outputs the contents of the checkers board to the console
def drawBoard(self, board):
print()
print(" ", end=" ")
for k in range(0,8):
print(k, end="")
print(" ", end="")
print("")
for i in range(0,len(board)):
print(i, end=" ")
for j in range(0,len(board)):
print(board[i][j], end=" ")
print("")
# This function performs a move for a given player
def move(self, gameState, v1, v2):
# Get set of legal moves with current board state
legalMoves = self.getLegalMoves(gameState.currentTurn, gameState.redPieces, gameState.blackPieces, gameState.redKings, gameState.blackKings, gameState.redThreat, gameState.blackThreat,
gameState.board)
# Check for stalemate
if len(legalMoves) == 0:
gameState.isOver = True
return
# Else proceed by obtaining and making the best move
else:
bestMove = self.getBestMove(gameState, legalMoves, v1, v2) # get the best move from legalMoves
self.makeMove(gameState, bestMove) # make the best move using bestMove
# This function probes every move and returns a 2D list containing the set of legal moves
def getLegalMoves(self, currentTurn, redPieces, blackPieces, redKings, blackKings, redThreat, blackThreat, board):
legalMoves = [] # array to be returned
# Call getKingMoves - logic for King function
self.getKingMoves(legalMoves, currentTurn, redPieces, blackPieces, redKings, blackKings, redThreat, blackThreat, board)
# The following code block accounts for all possible moves on the red player's side of the board
if currentTurn == "red":
for piece in redPieces:
# move UP and to the RIGHT
if (piece[0] - 1) > -1 and (piece[1] + 1) < 8: # check bounds
# Regular diagonal
if board[piece[0] - 1][piece[1] + 1] == " ":
legalMoves.append([redPieces.index(piece), piece[0]-1, piece[1]+1, -1, "regular", "None"])
# Elimination
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
# Regular Elimination
if board[piece[0] - 1][piece[1] + 1] == "b" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(blackPieces, piece[0]-1, piece[1]+1)
redThreat.append(threat)
legalMoves.append([redPieces.index(piece), piece[0]-2, piece[1]+2, threat, "regular", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] + 1] == "B" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(blackKings, piece[0]-1, piece[1]+1)
redThreat.append(threat)
legalMoves.append([redPieces.index(piece), piece[0]-2, piece[1]+2, threat, "regular", "king"])
# move UP and to the LEFT
if (piece[0] - 1) > -1 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] - 1][piece[1] - 1] == " ":
legalMoves.append([redPieces.index(piece), piece[0]-1, piece[1]-1, -1, "regular", "None"])
# Elimination
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] - 1][piece[1] - 1] == "b" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(blackPieces, piece[0]-1, piece[1]-1)
redThreat.append(threat)
legalMoves.append([redPieces.index(piece), piece[0]-2, piece[1]-2, threat, "regular", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] - 1] == "B" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(blackKings, piece[0]-1, piece[1]-1)
redThreat.append(threat)
legalMoves.append([redPieces.index(piece), piece[0]-2, piece[1]-2, threat, "regular", "king"])
# The following code block accounts for all possible moves on the black player's side of the board
elif currentTurn == "black":
for piece in blackPieces:
# move DOWN and to the RIGHT
if (piece[0] + 1) < 8 and (piece[1] + 1) < 8: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] + 1] == " ":
legalMoves.append([blackPieces.index(piece), piece[0]+1, piece[1]+1, -1, "regular", "None"])
# Elimination
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] + 1] == "r" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(redPieces, piece[0]+1, piece[1]+1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackPieces.index(piece), piece[0]+2, piece[1]+2, threat, "regular", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] + 1] == "R" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(redKings, piece[0]+1, piece[1]+1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackPieces.index(piece), piece[0]+2, piece[1]+2, threat, "regular", "king"])
# move DOWN and to the LEFT
if (piece[0] + 1) < 8 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] - 1] == " ":
legalMoves.append([blackPieces.index(piece), piece[0]+1, piece[1]-1, -1, "regular", "None"])
# Elimination
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] - 1] == "r" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(redPieces, piece[0]+1, piece[1]-1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackPieces.index(piece), piece[0]+2, piece[1]-2, threat, "regular", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] - 1] == "R" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(redKings, piece[0]+1, piece[1]-1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackPieces.index(piece), piece[0]+2, piece[1]-2, threat, "regular", "king"])
return legalMoves
# Helper function to getLegalMoves - details game code for King behaviour
def getKingMoves(self, legalMoves, currentTurn, redPieces, blackPieces, redKings, blackKings, redThreat, blackThreat, board):
# For red player
if currentTurn == "red":
for piece in redKings:
# move UP and to the RIGHT
if (piece[0] - 1) > -1 and (piece[1] + 1) < 8: # check bounds
# Regular diagonal
if board[piece[0] - 1][piece[1] + 1] == " ":
legalMoves.append([redKings.index(piece), piece[0]-1, piece[1]+1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
# Regular elimination
if board[piece[0] - 1][piece[1] + 1] == "b" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(blackPieces, piece[0]-1, piece[1]+1)
redThreat.append(threat)
legalMoves.append([redKings.index(piece), piece[0]-2, piece[1]+2, threat, "king", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] + 1] == "B" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(blackKings, piece[0]-1, piece[1]+1)
redThreat.append(threat)
legalMoves.append([redKings.index(piece), piece[0]-2, piece[1]+2, threat, "king", "king"])
# move UP and to the LEFT
if (piece[0] - 1) > -1 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] - 1][piece[1] - 1] == " ":
legalMoves.append([redKings.index(piece), piece[0]-1, piece[1]-1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] - 1][piece[1] - 1] == "b" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(blackPieces, piece[0]-1, piece[1]-1)
redThreat.append(threat)
legalMoves.append([redKings.index(piece), piece[0]-2, piece[1]-2, threat, "king", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] - 1] == "B" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(blackKings, piece[0]-1, piece[1]-1)
redThreat.append(threat)
legalMoves.append([redKings.index(piece), piece[0]-2, piece[1]-2, threat, "king", "king"])
# move DOWN and to the RIGHT
if (piece[0] + 1) < 8 and (piece[1] + 1) < 8: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] + 1] == " ":
legalMoves.append([redKings.index(piece), piece[0]+1, piece[1]+1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] + 1] == "b" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(blackPieces, piece[0]+1, piece[1]+1)
redThreat.append(threat) # add black threat
legalMoves.append([redKings.index(piece), piece[0]+2, piece[1]+2, threat, "king", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] + 1] == "B" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(blackKings, piece[0]+1, piece[1]+1)
redThreat.append(threat) # add black threat
legalMoves.append([redKings.index(piece), piece[0]+2, piece[1]+2, threat, "king", "king"])
# move DOWN and to the LEFT
if (piece[0] + 1) < 8 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] - 1] == " ":
legalMoves.append([redKings.index(piece), piece[0]+1, piece[1]-1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] - 1] == "b" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(blackPieces, piece[0]+1, piece[1]-1)
redThreat.append(threat) # add black threat
legalMoves.append([redKings.index(piece), piece[0]+2, piece[1]-2, threat, "king", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] - 1] == "B" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(blackKings, piece[0]+1, piece[1]-1)
redThreat.append(threat) # add black threat
legalMoves.append([redKings.index(piece), piece[0]+2, piece[1]-2, threat, "king", "king"])
elif currentTurn == "black":
for piece in blackKings:
# move UP and to the RIGHT
if (piece[0] - 1) > -1 and (piece[1] + 1) < 8: # check bounds
# Regular diagonal
if board[piece[0] - 1][piece[1] + 1] == " ":
legalMoves.append([blackKings.index(piece), piece[0]-1, piece[1]+1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
# Regular Elimination
if board[piece[0] - 1][piece[1] + 1] == "r" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(redPieces, piece[0]-1, piece[1]+1)
blackThreat.append(threat)
legalMoves.append([blackKings.index(piece), piece[0]-2, piece[1]+2, threat, "king", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] + 1] == "R" and board[piece[0] - 2][piece[1] + 2] == " ":
threat = self.getIndex(redKings, piece[0]-1, piece[1]+1)
blackThreat.append(threat)
legalMoves.append([blackKings.index(piece), piece[0]-2, piece[1]+2, threat, "king", "king"])
# move UP and to the LEFT
if (piece[0] - 1) > -1 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] - 1][piece[1] - 1] == " ":
legalMoves.append([blackKings.index(piece), piece[0]-1, piece[1]-1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] - 1][piece[1] - 1] == "r" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(redPieces, piece[0]-1, piece[1]-1)
blackThreat.append(threat)
legalMoves.append([blackKings.index(piece), piece[0]-2, piece[1]-2, threat, "king", "regular"])
# King Elimination
if board[piece[0] - 1][piece[1] - 1] == "R" and board[piece[0] - 2][piece[1] - 2] == " ":
threat = self.getIndex(redKings, piece[0]-1, piece[1]-1)
blackThreat.append(threat)
legalMoves.append([blackKings.index(piece), piece[0]-2, piece[1]-2, threat, "king", "king"])
# move DOWN and to the RIGHT
if (piece[0] + 1) < 8 and (piece[1] + 1) < 8: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] + 1] == " ":
legalMoves.append([blackKings.index(piece), piece[0]+1, piece[1]+1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] + 1] == "r" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(redPieces, piece[0]+1, piece[1]+1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackKings.index(piece), piece[0]+2, piece[1]+2, threat, "king", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] + 1] == "R" and board[piece[0]+2][piece[1]+2] == " ":
threat = self.getIndex(redKings, piece[0]+1, piece[1]+1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackKings.index(piece), piece[0]+2, piece[1]+2, threat, "king", "king"])
# move DOWN and to the LEFT
if (piece[0] + 1) < 8 and (piece[1] - 1) > -1: # check bounds
# Regular Diagonal
if board[piece[0] + 1][piece[1] - 1] == " ":
legalMoves.append([blackKings.index(piece), piece[0]+1, piece[1]-1, -1, "king", "None"])
# Diagonal Elimination
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
# Regular Elimination
if board[piece[0] + 1][piece[1] - 1] == "r" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(redPieces, piece[0]+1, piece[1]-1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackKings.index(piece), piece[0]+2, piece[1]-2, threat, "king", "regular"])
# King Elimination
if board[piece[0] + 1][piece[1] - 1] == "R" and board[piece[0]+2][piece[1]-2] == " ":
threat = self.getIndex(redKings, piece[0]+1, piece[1]-1)
blackThreat.append(threat) # add black threat
legalMoves.append([blackKings.index(piece), piece[0]+2, piece[1]-2, threat, "king", "king"])
# This is a helper function to getLegalMoves - It retrives the index of the piece that has been eliminated
def getIndex(self, pieces, i, j):
for piece in pieces:
if piece[0] == i and piece[1] == j:
return pieces.index(piece) # return the index of the piece that has been eliminated
return None
# This function retrives the best move from legalMoves using the target function hypothesis
def getBestMove(self, gameState, legalMoves, v1, v2):
rand = random.randint(3,4)
if rand % 2 == 0:
return legalMoves[random.randint(0,len(legalMoves)-1)]
prediction = []
bestMove = []
if len(legalMoves) == 1:
return legalMoves[0]
for move in legalMoves:
if gameState.currentTurn == "red":
prediction.append(self.getPrediction(gameState, move, v1))
elif gameState.currentTurn == "black":
prediction.append(self.getPrediction(gameState, move, v2))
maxVal = max(prediction)
for move in legalMoves:
if gameState.currentTurn == "red":
if self.getPrediction(gameState, move, v1) == maxVal:
bestMove = move
elif gameState.currentTurn == "black":
if self.getPrediction(gameState, move, v2) == maxVal:
bestMove = move
return bestMove
# This function gets the output of the target hypothesis evaluated at the game state that succeeds a given move
def getPrediction(self, gameState, move, v):
# get blackThreat and redThreat by calling the functions
if gameState.currentTurn == "red":
v4 = v[4]*self.getRedThreat(gameState, move)
v5 = v[5]*len(gameState.blackThreat)
elif gameState.currentTurn == "black":
v5 = v[5]*self.getBlackThreat(gameState, move)
v4 = v[4]*len(gameState.redThreat)
# Logic for red
if gameState.currentTurn == "red":
if move[4] == "regular":
if move[1] == 0:
v1 = v[1]*len(gameState.redPieces) - 1
v3 = v[3]*len(gameState.redKings) + 1
else:
v1 = v[1]*len(gameState.redPieces)
v3 = v[3]*len(gameState.redKings)
elif move[4] == "king":
v1 = v[1]*len(gameState.redPieces)
v3 = v[3]*len(gameState.redKings)
if move[5] == "None":
v0 = v[0]*len(gameState.blackPieces)
v2 = v[2]*len(gameState.blackKings)
elif move[5] == "regular":
v0 = v[0]*len(gameState.blackPieces) - 1
v2 = v[2]*len(gameState.blackKings)
elif move[5] == "king":
v0 = v[0]*len(gameState.blackPieces)
v2 = v[2]*len(gameState.blackKings) - 1
# Logic for black
elif gameState.currentTurn == "black":
if move[4] == "regular":
if move[1] == 0:
v1 = v[1]*len(gameState.blackPieces) - 1
v3 = v[3]*len(gameState.blackKings) + 1
else:
v1 = v[1]*len(gameState.blackPieces)
v3 = v[3]*len(gameState.blackKings)
elif move[4] == "king":
v1 = v[1]*len(gameState.blackPieces)
v3 = v[3]*len(gameState.blackKings)
if move[5] == "None":
v0 = v[0]*len(gameState.redPieces)
v2 = v[2]*len(gameState.redKings)
elif move[5] == "regular":
v0 = v[0]*len(gameState.redPieces) - 1
v2 = v[2]*len(gameState.redKings)
elif move[5] == "king":
v0 = v[0]*len(gameState.redPieces)
v2 = v[2]*len(gameState.redKings) - 1
val = v0 + v1 + v2 + v3 + v4 + v5
return val
# This function finds the number of black pieces threatned by red for a given hypothetical move
def getRedThreat(self, gameState, move):
board = gameState.board
i = move[1]
j = move[2]
redThreat = 0
# Make deep copies to avoid aliasing issues
tempRedPieces = copy.deepcopy(gameState.redPieces)
tempRedKings = copy.deepcopy(gameState.redKings)
# Make hypothetical move
if move[4] == "regular":
tempRedPieces[move[0]] = [i, j] # update location of piece
elif move[4] == "king":
tempRedKings[move[0]] = [i, j] # update location of piece
# Scan the board for threats made by regular red pieces
for piece in tempRedPieces:
# check UP and to the RIGHT
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] - 1][piece[1] + 1] == "b" and board[piece[0] - 2][piece[1] + 2] == " ":
redThreat = redThreat + 1
elif board[piece[0] - 1][piece[1] + 1] == "B" and board[piece[0] - 2][piece[1] + 2] == " ":
redThreat = redThreat + 1
# check UP and to the LEFT
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] - 1][piece[1] - 1] == "b" and board[piece[0] - 2][piece[1] - 2] == " ":
redThreat = redThreat + 1
elif board[piece[0] - 1][piece[1] - 1] == "B" and board[piece[0] - 2][piece[1] - 2] == " ":
redThreat = redThreat + 1
# Scan the board for threats made by red kings
for piece in tempRedKings:
# check UP and to the RIGHT
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] - 1][piece[1] + 1] == "b" and board[piece[0] - 2][piece[1] + 2] == " ":
redThreat = redThreat + 1
elif board[piece[0] - 1][piece[1] + 1] == "B" and board[piece[0] - 2][piece[1] + 2] == " ":
redThreat = redThreat + 1
# check UP and to the LEFT
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] - 1][piece[1] - 1] == "b" and board[piece[0] - 2][piece[1] - 2] == " ":
redThreat = redThreat + 1
elif board[piece[0] - 1][piece[1] - 1] == "B" and board[piece[0] - 2][piece[1] - 2] == " ":
redThreat = redThreat + 1
# check DOWN and to the RIGHT
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] + 1][piece[1] + 1] == "b" and board[piece[0]+2][piece[1]+2] == " ":
redThreat = redThreat + 1
elif board[piece[0] + 1][piece[1] + 1] == "B" and board[piece[0]+2][piece[1]+2] == " ":
redThreat = redThreat + 1
# check DOWN and to the LEFT
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] + 1][piece[1] - 1] == "b" and board[piece[0]+2][piece[1]-2] == " ":
redThreat = redThreat + 1
elif board[piece[0] + 1][piece[1] - 1] == "B" and board[piece[0]+2][piece[1]-2] == " ":
redThreat = redThreat + 1
return redThreat
# This function finds the number of red pieces threatned by black for a given hypothetical move
def getBlackThreat(self, gameState, move):
board = gameState.board
i = move[1]
j = move[2]
blackThreat = 0
# Make deep copies to avoid aliasing issues
tempBlackPieces = copy.deepcopy(gameState.blackPieces)
tempBlackKings = copy.deepcopy(gameState.blackKings)
# Make hypothetical move
if move[4] == "regular":
tempBlackPieces[move[0]] = [i, j] # update location of piece
elif move[4] == "king":
tempBlackKings[move[0]] = [i, j] # update location of piece
# Scan the board for threats made by regular black pieces
for piece in tempBlackPieces:
# check DOWN and to the RIGHT
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] + 1][piece[1] + 1] == "r" and board[piece[0]+2][piece[1]+2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] + 1][piece[1] + 1] == "R" and board[piece[0]+2][piece[1]+2] == " ":
blackThreat = blackThreat + 1
# check DOWN and to the LEFT
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] + 1][piece[1] - 1] == "r" and board[piece[0]+2][piece[1]-2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] + 1][piece[1] - 1] == "R" and board[piece[0]+2][piece[1]-2] == " ":
blackThreat = blackThreat + 1
# Scan the board for threats made by black kings
for piece in tempBlackKings:
# check UP and to the RIGHT
if (piece[0] - 2) > -1 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] - 1][piece[1] + 1] == "r" and board[piece[0] - 2][piece[1] + 2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] - 1][piece[1] + 1] == "R" and board[piece[0] - 2][piece[1] + 2] == " ":
blackThreat = blackThreat + 1
# check UP and to the LEFT
if (piece[0] - 2) > -1 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] - 1][piece[1] - 1] == "r" and board[piece[0] - 2][piece[1] - 2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] - 1][piece[1] - 1] == "R" and board[piece[0] - 2][piece[1] - 2] == " ":
blackThreat = blackThreat + 1
# move DOWN and to the RIGHT
if (piece[0] + 2) < 8 and (piece[1] + 2) < 8: # check double bounds
if board[piece[0] + 1][piece[1] + 1] == "r" and board[piece[0]+2][piece[1]+2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] + 1][piece[1] + 1] == "R" and board[piece[0]+2][piece[1]+2] == " ":
blackThreat = blackThreat + 1
# check DOWN and to the LEFT
if (piece[0] + 2) < 8 and (piece[1] - 2) > -1: # check double bounds
if board[piece[0] + 1][piece[1] - 1] == "r" and board[piece[0]+2][piece[1]-2] == " ":
blackThreat = blackThreat + 1
elif board[piece[0] + 1][piece[1] - 1] == "R" and board[piece[0]+2][piece[1]-2] == " ":
blackThreat = blackThreat + 1
return blackThreat
# This function makes a given move by updating the game board, the pieces lists, and removing any eliminated pieces
def makeMove(self, gameState, move):
i = move[1] # row position of target location on board
j = move[2] # column position of target location on board
if gameState.currentTurn == "red":
if move[4] == "regular":
# Regular Diagonal
if move[3] == -1:
gameState.board[i][j] = "r"
gameState.board[gameState.redPieces[move[0]][0]][gameState.redPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.redPieces[move[0]][0] = i # update row position of red piece
gameState.redPieces[move[0]][1] = j # update column position of red piece
# Elimination
elif move[3] > -1:
# Regular Elimination
if move[5] == "regular":
gameState.board[i][j] = "r"
gameState.board[gameState.redPieces[move[0]][0]][gameState.redPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.blackPieces[move[3]][0]][gameState.blackPieces[move[3]][1]] = " "
gameState.blackPieces.pop(move[3])
gameState.redPieces[move[0]][0] = i # update row position of red piece
gameState.redPieces[move[0]][1] = j # update column position of red piece
# King Elimination
elif move[5] == "king":
gameState.board[i][j] = "r"
gameState.board[gameState.redPieces[move[0]][0]][gameState.redPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.blackKings[move[3]][0]][gameState.blackKings[move[3]][1]] = " "
gameState.blackKings.pop(move[3])
gameState.redPieces[move[0]][0] = i # update row position of red piece
gameState.redPieces[move[0]][1] = j # update column position of red piece
# Promotion to king
if i == 0:
gameState.board[i][j] = "R"
gameState.redKings.append(gameState.redPieces[move[0]]) # add a new red king
gameState.redPieces.pop(move[0]) # remove the promoted piece from redPieces
if move[4] == "king":
if move[3] == -1: # No piece being eliminated
gameState.board[i][j] = "R"
gameState.board[gameState.redKings[move[0]][0]][gameState.redKings[move[0]][1]] = " " # add whitespace to previous position
gameState.redKings[move[0]][0] = i # update row position of red piece
gameState.redKings[move[0]][1] = j # update column position of red piece
else:
# Regular Elimination
if move[5] == "regular":
gameState.board[i][j] = "R"
gameState.board[gameState.redKings[move[0]][0]][gameState.redKings[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.blackPieces[move[3]][0]][gameState.blackPieces[move[3]][1]] = " "
gameState.blackPieces.pop(move[3])
gameState.redKings[move[0]][0] = i # update row position of red piece
gameState.redKings[move[0]][1] = j # update column position of red piece
# King Elimination
elif move[5] == "king":
gameState.board[i][j] = "R"
gameState.board[gameState.redKings[move[0]][0]][gameState.redKings[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.blackKings[move[3]][0]][gameState.blackKings[move[3]][1]] = " "
gameState.blackKings.pop(move[3])
gameState.redKings[move[0]][0] = i # update row position of red piece
gameState.redKings[move[0]][1] = j # update column position of red piece
gameState.currentTurn = "black"
elif gameState.currentTurn == "black":
if move[4] == "regular":
# Regular Diagonal
if move[3] == -1:
gameState.board[i][j] = "b"
gameState.board[gameState.blackPieces[move[0]][0]][gameState.blackPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.blackPieces[move[0]][0] = i # update row position of red piece
gameState.blackPieces[move[0]][1] = j # update column position of red piece
else:
# Regular Elimination
if move[5] == "regular":
gameState.board[i][j] = "b"
gameState.board[gameState.blackPieces[move[0]][0]][gameState.blackPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.redPieces[move[3]][0]][gameState.redPieces[move[3]][1]] = " "
gameState.redPieces.pop(move[3])
gameState.blackPieces[move[0]][0] = i # update row position of red piece
gameState.blackPieces[move[0]][1] = j # update column position of red piece
# King Elimination
elif move[5] == "king":
gameState.board[i][j] = "b"
gameState.board[gameState.blackPieces[move[0]][0]][gameState.blackPieces[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.redKings[move[3]][0]][gameState.redKings[move[3]][1]] = " "
gameState.redKings.pop(move[3])
gameState.blackPieces[move[0]][0] = i # update row position of red piece
gameState.blackPieces[move[0]][1] = j # update column position of red piece
# Promotion to king
if i == 7:
gameState.board[i][j] = "B"
gameState.blackKings.append(gameState.blackPieces[move[0]]) # add a new black king
gameState.blackPieces.pop(move[0]) # remove black piece
if move[4] == "king":
if move[3] == -1: # No piece being eliminated
gameState.board[i][j] = "B"
gameState.board[gameState.blackKings[move[0]][0]][gameState.blackKings[move[0]][1]] = " " # add whitespace to previous position
gameState.blackKings[move[0]][0] = i # update row position of red piece
gameState.blackKings[move[0]][1] = j # update column position of red piece
# Regular Elimination
if move[5] == "regular":
gameState.board[i][j] = "B"
gameState.board[gameState.blackKings[move[0]][0]][gameState.blackKings[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.redPieces[move[3]][0]][gameState.redPieces[move[3]][1]] = " "
gameState.redPieces.pop(move[3])
gameState.blackKings[move[0]][0] = i # update row position of red piece
gameState.blackKings[move[0]][1] = j # update column position of red piece
# King Elimination
elif move[5] == "king":
gameState.board[i][j] = "B"
gameState.board[gameState.blackKings[move[0]][0]][gameState.blackKings[move[0]][1]] = " " # add whitespace to previous position
gameState.board[gameState.redKings[move[3]][0]][gameState.redKings[move[3]][1]] = " "
gameState.redKings.pop(move[3])
gameState.blackKings[move[0]][0] = i # update row position of red piece
gameState.blackKings[move[0]][1] = j # update column position of red piece
gameState.currentTurn = "red"
# This function takes as input an initial board state and function hypothesis and produces a list containing the game trace for a given game
def getTrace(self, trainingExperiment, currentHypothesis1, currentHypothesis2):
redTraceHistory = []
blackTraceHistory = []
board = copy.deepcopy(trainingExperiment)
v1 = copy.deepcopy(currentHypothesis1)
v2 = copy.deepcopy(currentHypothesis2)
# 2D List containing red pieces and their positions on the above board
redPieces = [
[5, 1],
[5, 3],
[5, 5],
[5, 7],
[6, 0],
[6, 2],
[6, 4],
[6, 6],
[7, 1],
[7, 3],
[7, 5],
[7, 7],
]
# 2D List containing black pieces and their positions on the above board
blackPieces = [
[0, 0],
[0, 2],
[0, 4],
[0, 6],
[1, 1],
[1, 3],
[1, 5],
[1, 7],
[2, 0],
[2, 2],
[2, 4],
[2, 6],
]
redKings = [] # List of red kings is empty at game start
blackKings = [] # List of black kings is empty at game start
redThreat = [] # List of black pieces threatned by red is empty at game start
blackThreat = [] # List of red pieces threatned by black is empty at game start
currentTurn = "red" # Assume red always goes first at start of game
gameState = GameState(currentTurn, redPieces, blackPieces, redKings, blackKings, redThreat, blackThreat, board) # Instantiate the initial game state
while gameState.isOver == False: # Keep iterating until game is over
if gameState.currentTurn == "red":
redTraceHistory.append(gameState.info)
elif gameState.currentTurn == "black":
blackTraceHistory.append(gameState.info)
if len(redTraceHistory) > 10000: # Impose hard limit on number of turns
break
self.runGame(gameState, v1, v2)
if gameState.currentTurn == "red":
redTraceHistory.append(gameState.info)
elif gameState.currentTurn == "black":
blackTraceHistory.append(gameState.info)
return [redTraceHistory, blackTraceHistory]
| true
|
a5de5b8629b94bb6cc55750202e7b230c6d8d8b1
|
Python
|
IgnacioSallaberry/RICS
|
/histogramas monomeros y oligomeros.py
|
UTF-8
| 5,276
| 2.6875
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 9 20:25:06 2019
@author: Ignacio Sallaberry
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import re
guardar_imagenes = True
#==============================================================================
# Tipografía de los gráficos
#==============================================================================
plt.close('all') # amtes de graficar, cierro todos las figuras que estén abiertas
SMALL_SIZE = 54
MEDIUM_SIZE = 70
BIGGER_SIZE = 75
plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=22) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
#mpl.rcParams['axes.linewidth'] = 1 ## maneja el ancho de las lineas del recuadro de la figura
#==============================================================================
#==============================================================================
#23hs_cell4_rics_cyto_DIFFERENCE_DIFUSION
with open('C:\\Users\\ETCasa\\Desktop\\monomeros_NandB_histograma.txt') as fobj:
monomeros = fobj.read()
monomeros = re.split('\t|\n', monomeros)
monomeros.remove('X')
monomeros.remove('BarSeries1')
monomeros.remove('')
monomeros.remove('')
with open('C:\\Users\\ETCasa\\Desktop\\oligomeros_NandB_histograma.txt') as fobj:
oligomeros = fobj.read()
oligomeros = re.split('\t|\n', oligomeros)
oligomeros.remove('X')
oligomeros.remove('BarSeries1')
oligomeros.remove('')
oligomeros.remove('')
MONOMEROS_brillo=[]
MONOMEROS_pixel=[]
OLIGOMEROS_brillo=[]
OLIGOMEROS_pixel=[]
i=0
while i< len(monomeros):
MONOMEROS_brillo.append(float(monomeros [i]))
MONOMEROS_pixel.append(float(monomeros [i+1]))
OLIGOMEROS_brillo.append(float(oligomeros [i]))
OLIGOMEROS_pixel.append(float(oligomeros [i+1]))
i+=2
#==============================================================================
#==============================================================================
# CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR DE LOS DATOS y EL NÚMERO TOTAL DE CUENTAS
#==============================================================================
#
#mu_ajuste_MONOM=np.mean(MONOMEROS_brillo) # media
#sigma_ajuste_MONOM=np.std(MONOMEROS_brillo) #desviación estándar std = sqrt(mean(abs(x - x.mean())**2))
#N_ajuste_MONOM=len(MONOMEROS_pixel) # número de mediciones
#std_err_ajuste_MONOM= sigma_ajuste_MONOM / N_ajuste_MONOM # error estándar
#
#
#
#def Gaussiana(mu,sigma):
#
# x_inicial = 0
# x_final = mu+2*sigma
# x_gaussiana=np.linspace(x_inicial,x_final,num=100) # armo una lista de puntos donde quiero graficar la distribución de ajuste
#
## gaussiana3=(1/np.sqrt(2*np.pi*(sigma**2)))*np.exp((-.5)*((x_gaussiana-mu)/(sigma))**2)
# gaussiana3=np.exp((-.5)*((x_gaussiana-mu)/(sigma))**2)
#
# return (x_gaussiana,gaussiana3)
###==============================================================================
### Diferencias ajuste por Difusion
###==============================================================================
#
#plt.plot(Gaussiana(2.7,0.48)[0],
# Gaussiana(2.7,0.48)[1],
# '--', color='tomato', label='Ajuste: Difusión \n $\mu$= {:10.3E} $\\sigma$ = {:10.3E}'.format(mu_ajuste_MONOM, sigma_ajuste_MONOM)
#
# )
plt.figure(figsize=(19,12))
plt.bar(MONOMEROS_brillo, MONOMEROS_pixel,linewidth=3,log=True, color='darkcyan')
plt.xlim([0,max(OLIGOMEROS_brillo)+1])
#plt.xlim([0,max(MONOMEROS_brillo)+1])
plt.ylim([0,max(MONOMEROS_pixel)])
plt.xlabel('Brillo')
plt.ylabel('Número\n de píxeles')
plt.tick_params(which='minor', length=8, width=3.5)
plt.tick_params(which='major', length=10, width=5)
figManager = plt.get_current_fig_manager() #### esto y la linea de abajo me maximiza la ventana de la figura
figManager.window.showMaximized() #### esto y la linea de arriba me maximiza la ventana de la figura
plt.show()
if guardar_imagenes:
plt.savefig('C:\\Users\\ETCasa\\Desktop\\histograma_monomeros.svg', format='svg')
plt.figure(figsize=(19,12))
plt.bar(OLIGOMEROS_brillo, OLIGOMEROS_pixel,linewidth=3,log=True, color='darkcyan')
plt.xlabel('Brillo')
plt.ylabel('Número\n de píxeles')
plt.xlim([0,max(OLIGOMEROS_brillo)+1])
plt.ylim([0,max(MONOMEROS_pixel)])
plt.tick_params(which='minor', length=8, width=3.5)
plt.tick_params(which='major', length=10, width=5)
figManager = plt.get_current_fig_manager() #### esto y la linea de abajo me maximiza la ventana de la figura
figManager.window.showMaximized() #### esto y la linea de arriba me maximiza la ventana de la figura
plt.show()
if guardar_imagenes:
plt.savefig('C:\\Users\\ETCasa\\Desktop\\histograma_oligomeros.svg', format='svg')
| true
|
a4771a0fdfcc7fcb247892a4bda2943ca2ae1ea2
|
Python
|
ash/amazing_python3
|
/166-filter.py
|
UTF-8
| 256
| 4.625
| 5
|
[] |
no_license
|
# Using "filter" to select items
# bases on some condition
# Here's the condition:
def is_odd(x):
return x % 2
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
data = filter(is_odd, data)
# Object of the "filter" type
data = list(data) # a list again
print(data)
| true
|
cb3a778c81a05268a4a93ab4487f4f88b0fef2a8
|
Python
|
lucaspsimpson/IndividualProject
|
/python/QuadTree.py
|
UTF-8
| 3,124
| 3.21875
| 3
|
[] |
no_license
|
import numpy as np
from matplotlib import pyplot as plt
#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX. This may
# result in an error if LaTeX is not installed on your system. In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=False)
# We'll create a QuadTree class which will recursively subdivide the
# space into quadrants
class QuadTree:
"""Simple Quad-tree class"""
# class initialization function
def __init__(self, data, mins, maxs, depth=3):
self.data = np.asarray(data)
# data should be two-dimensional
#assert self.data.shape[1] == 2
if mins is None:
mins = data.min(0)
if maxs is None:
maxs = data.max(0)
self.mins = np.asarray(mins)
self.maxs = np.asarray(maxs)
self.sizes = self.maxs - self.mins
self.children = []
mids = 0.5 * (self.mins + self.maxs)
xmin, ymin = self.mins
xmax, ymax = self.maxs
xmid, ymid = mids
if depth > 0:
# split the data into four quadrants
data_q1 = data[(data[:, 0] < mids[0])
& (data[:, 1] < mids[1])]
data_q2 = data[(data[:, 0] < mids[0])
& (data[:, 1] >= mids[1])]
data_q3 = data[(data[:, 0] >= mids[0])
& (data[:, 1] < mids[1])]
data_q4 = data[(data[:, 0] >= mids[0])
& (data[:, 1] >= mids[1])]
# recursively build a quad tree on each quadrant which has data
if data_q1.shape[0] > 0:
self.children.append(QuadTree(data_q1,
[xmin, ymin], [xmid, ymid],
depth - 1))
if data_q2.shape[0] > 0:
self.children.append(QuadTree(data_q2,
[xmin, ymid], [xmid, ymax],
depth - 1))
if data_q3.shape[0] > 0:
self.children.append(QuadTree(data_q3,
[xmid, ymin], [xmax, ymid],
depth - 1))
if data_q4.shape[0] > 0:
self.children.append(QuadTree(data_q4,
[xmid, ymid], [xmax, ymax],
depth - 1))
def draw_rectangle(self, ax, depth):
"""Recursively plot a visualization of the quad tree region"""
if depth is None or depth == 0:
rect = plt.Rectangle(self.mins, *self.sizes, zorder=2,
ec='#000000', fc='none')
ax.add_patch(rect)
if depth is None or depth > 0:
for child in self.children:
child.draw_rectangle(ax, depth - 1)
| true
|
365282b11461190ca825f1143b2d17dfb13c8b4e
|
Python
|
tomato-pan/Aim_to_offer
|
/useAlgorothms/isSymmetric.py
|
UTF-8
| 1,647
| 3.796875
| 4
|
[] |
no_license
|
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
from collections import deque
class Solution:
# 递归
def isSymmetric(self, root: TreeNode) -> bool:
if root is None: return True
def is_mirror(t1, t2):
if t1 is None and t2 is None: return True
if t1 is None or t2 is None or t1.val != t2.val: return False
return is_mirror(t1.left, t2.right) and is_mirror(t1.right, t2.left)
return is_mirror(root.left,root.right)
# 迭代
def isSymmetric1(self, root: TreeNode) -> bool:
if root is None: return True
d = deque()
d.appendleft(root.left)
d.append(root.right)
while d:
left = d.popleft()
right = d.pop()
if not left and not right:continue
if not left or not right or left.val != right.val:return False
d.appendleft(left.right)
d.appendleft(left.left)
d.append(right.left)
d.append(right.right)
return True
def hasPathSum(self, root: TreeNode, targetSum: int) -> bool:
if not root:return False
if not root.left and not root.right:
return root.val==targetSum
return self.hasPathSum(root.left,targetSum-root.val) or self.hasPathSum(root.right,targetSum-root.val)
if __name__ == '__main__':
t1 = TreeNode(val=3)
t1.left = TreeNode(val=1)
t1.right = TreeNode(val=1)
s = Solution()
print(s.isSymmetric1(t1))
print(s.hasPathSum(t1,3))
| true
|
208d65cc41059e5ad3b49ca6138f1c27d1df4b44
|
Python
|
qmnguyenw/python_py4e
|
/geeksforgeeks/python/python_all/42_5.py
|
UTF-8
| 2,779
| 4.09375
| 4
|
[] |
no_license
|
Python – Remove after substring in String
Given a String, remove all characters after particular substring.
> **Input** : test_str = ‘geeksforgeeks is best for geeks’, sub_str = “for”
> **Output** : geeksforgeeks is best for
> **Explanation** : everything removed after for.
>
> **Input** : test_str = ‘geeksforgeeks is best for geeks’, sub_str = “is”
> **Output** : geeksforgeeks is
> **Explanation** : everything removed after is.
**Method #1 : Using index() + len() + slicing**
In this, we first get the index of substring to perform removal after, add to
that its length using len() and then slice off elements after that string
using slicing.
## Python3
__
__
__
__
__
__
__
# Python3 code to demonstrate working of
# Remove after substring in String
# Using index() + len() + slicing
# initializing strings
test_str = 'geeksforgeeks is best for geeks'
# printing original string
print("The original string is : " + str(test_str))
# initializing sub string
sub_str = "best"
# slicing off after length computation
res = test_str[:test_str.index(sub_str) + len(sub_str)]
# printing result
print("The string after removal : " + str(res))
---
__
__
**Output**
The original string is : geeksforgeeks is best for geeks
The string after removal : geeksforgeeks is best
**Method #2 : Using regex() ( for stripping off after numeric occurrence)**
This is solution to a slightly different problem in which the string removal
is required after numeric occurrence. We employ match operation and it retains
all before match is found.
## Python3
__
__
__
__
__
__
__
# Python3 code to demonstrate working of
# Remove after substring in String
# Using regex() ( for stripping off after numeric occurrence)
import re
# initializing strings
test_str = 'geeksforgeeks is best 4 geeks'
# printing original string
print("The original string is : " + str(test_str))
# slicing after the numeric occurrence
res = re.match(r"(.*\d+)", test_str).group()
# printing result
print("The string after removal : " + str(res))
---
__
__
**Output**
The original string is : geeksforgeeks is best 4 geeks
The string after removal : geeksforgeeks is best 4
Attention geek! Strengthen your foundations with the **Python Programming
Foundation** Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures
concepts with the **Python DS** Course.
My Personal Notes _arrow_drop_up_
Save
| true
|
40670baacf0b5f95bc382fa63657997b1e171c28
|
Python
|
MegumiDavid/python-projects
|
/turtle_python/angulos.py
|
UTF-8
| 1,080
| 3.4375
| 3
|
[] |
no_license
|
from turtle import Turtle, Screen
turtle = Turtle()
turtle.shape("turtle")
turtle.color("light salmon")
#turtle.dot(size=5)
#for c in range (50):
# turtle.pendown()
# turtle.forward(10)
# turtle.penup()
# turtle.forward(10)
#def the_beauty_of_simetric()
pen_color = ['dark orange','firebrick','medium violet red','forest green', 'medium sea green','cornflower blue','yellow','salmon','red']
i = 0
for c in range (3,11):
color = pen_color[i]
for i in range (c):
turtle.pencolor(color)
turtle.forward(100)
turtle.right(360/c)
i+=1
'''
for c in range(4):
turtle.forward(100)
turtle.right(90)
for c in range(5):
turtle.forward(100)
turtle.right(72)
for c in range(6):
turtle.forward(100)
turtle.right(60)
for c in range(7):
turtle.forward(100)
turtle.right(51.4285714286)
for c in range(8):
turtle.forward(100)
turtle.right(45)
'''
'''
jimmy_the_turtle.forward(100)
jimmy_the_turtle.right(90)
jimmy_the_turtle.forward(100)
jimmy_the_turtle.right(90)
jimmy_the_turtle.forward(100)
'''
screen = Screen()
screen.exitonclick
| true
|
57b3b7ee8abb12ededc518bfd4ee21a32f3664f1
|
Python
|
Cvmaggio/ReinforcementLearningSutton-Barto
|
/examples/Example4-9GamblersProblem.py
|
UTF-8
| 1,576
| 2.875
| 3
|
[] |
no_license
|
import numpy as np
import matplotlib.pyplot as plt
from copy import deepcopy
maxCapital = 128
theta = .00000000000001
gamma = 1
pH = .4
largestAvailableBet = {}
for s in range(0,maxCapital+1):
largestAvailableBet[s] = min(s,maxCapital-s)
V = np.zeros(maxCapital + 1)
R = np.zeros(maxCapital + 1)
V[maxCapital] = 1 #Reward for reaching terminal state
sweeps = []
sweepsmeta = []
def psrsa(pH,s,a):
if s == 0:
return {s:1}
if s == maxCapital:
return {s:1}
return {(s+a):pH,(s-a):(1-pH)}
def bellman(s,retType: bool):
bestAction = 0
maxValue = 0
for a in range(largestAvailableBet[s]+1):
probs = psrsa(pH,s,a)
value = sum((probs[k]*(R[k]+gamma*V[k])) for k in probs)
if value > maxValue+10e-16:
bestAction = a
maxValue = value
# if value >= maxValue:
# bestAction = a
# maxValue = value
if retType:
return bestAction
return maxValue
def valueIteration():
while True:
delta = 0
for s in range(1,maxCapital):
vi = V[s]
V[s] = bellman(s,False)
delta = max(delta, abs(vi-V[s]))
sweeps.append(deepcopy(V))
if delta < theta:
break
actions = [0]
for s in range(1,maxCapital):
actions.append(bellman(s,True))
return actions
if __name__ == "__main__":
actions = valueIteration()
print(actions)
plt.figure()
for sweep in sweeps:
plt.plot(sweep)
plt.figure()
plt.plot(actions,'o')
plt.show()
| true
|
fd2949b19e83963d3704256e063f532f4433639d
|
Python
|
StyvenSoft/degree-python
|
/Lesson7_ChallengeLoops/3-Greetings.py
|
UTF-8
| 296
| 4.28125
| 4
|
[
"MIT"
] |
permissive
|
#Write your function here
def add_greetings(names):
new_list = []
for name in names:
new_list.append("Hello, " + name)
return new_list
#Uncomment the line below when your function is done
print(add_greetings(["Owen", "Max", "Sophie"]))
# ['Hello, Owen', 'Hello, Max', 'Hello, Sophie']
| true
|
89fb9a8aee44e7bbeb6f36c0ed2319d4fc6d74bf
|
Python
|
IlkoAng/Python-Advanced-Softuni
|
/Exercise 4 Comprehensions/02. Words Lengths.py
|
UTF-8
| 90
| 3.75
| 4
|
[] |
no_license
|
text = input().split(", ")
print(f', '.join([f"{name} -> {len(name)}" for name in text]))
| true
|
8cacaa0353b8c4ae7a3972a3743728dd3434bdae
|
Python
|
yanigisawa/coffee-scale
|
/test_coffee_scale.py
|
UTF-8
| 3,846
| 2.71875
| 3
|
[
"MIT"
] |
permissive
|
import unittest
import coffee_scale as cs
from datetime import datetime, timedelta
class CoffeeTest(unittest.TestCase):
def setUp(self):
self.scale = cs.CoffeeScale()
def test_whenValueChangesLessThanThreshold_LogIsNotWritten(self):
self.scale._currentWeight = 20
self.scale._threshold = 5
shouldLogItem = self.scale.shouldLogWeight(21)
self.assertEquals(False, shouldLogItem)
def test_whenValueChangesGreaterThanThreshold_LogIsWritten(self):
self.scale._currentWeight = 1
self.scale._threshold = 5
shouldLogItem = self.scale.shouldLogWeight(7)
self.assertEquals(True, shouldLogItem)
def test_whenValueIsAtLowThreshold_PotHasBeenLifted(self):
potIsLifted = self.scale.potIsLifted()
self.assertEquals(True, potIsLifted)
def test_whenLoopedConfiguredTimes_PostMessageToHipchat(self):
self.scale._loopCount = 40
self.assertEquals(True, self.scale.shouldPostToHipChat())
def test_whenLoopCountNotEqualConfiguredTimes_MessageNotPostedToHipChat(self):
for i in range(40):
self.scale._loopCount = i
self.assertEquals(False, self.scale.shouldPostToHipChat())
def test_hipchatUserIsGiven_WithAMultipleOfNumberOfMugsInPot(self):
self.scale._currentWeight = 2264
self.scale._mugAmounts = self.scale.calculateMugAmounts(2380)
self.scale._potWeight = 906
self.assertEquals(5, self.scale.getAvailableMugs())
self.scale._currentWeight = 1999
self.assertEquals(4, self.scale.getAvailableMugs(), "{0} did not equal 4 mugs".format(self.scale._currentWeight))
self.scale._currentWeight = 1733
self.assertEquals(3, self.scale.getAvailableMugs())
self.scale._currentWeight = 1467
self.assertEquals(2, self.scale.getAvailableMugs())
self.scale._currentWeight = 1201
self.assertEquals(1, self.scale.getAvailableMugs())
def test_whenWeightWithin90PercentMinus10GramsOfFullMug_RegisterNextAvailableMug(self):
self.scale._currentWeight = 1164
self.scale._mugAmounts = self.scale.calculateMugAmounts(2380)
self.scale._potWeight = 906
self.assertEquals(1, self.scale.getAvailableMugs())
self.scale._currentWeight = 1430
self.assertEquals(2, self.scale.getAvailableMugs())
self.scale._currentWeight = 1696
self.assertEquals(3, self.scale.getAvailableMugs())
self.scale._currentWeight = 1962
self.assertEquals(4, self.scale.getAvailableMugs())
self.scale._currentWeight = 2228
self.assertEquals(5, self.scale.getAvailableMugs())
def test_hipChatMessage_IncludesNumberOfMugs_AndWeightOfPot(self):
self.scale._currentWeight = 1173
params = self.scale.getHipchatParameters()
totalAvailableMugs = len(self.scale._mugAmounts)
self.assertEquals("{0} / {1}".format(
self.scale.getAvailableMugs(), totalAvailableMugs), params['from'])
self.assertEquals("{0} / {1}".format(
self.scale._currentWeight, self.scale._mugAmounts[totalAvailableMugs - 1]),
params['message'])
def test_environmentVariables_AreSet(self):
self.assertTrue(self.scale.environment)
self.assertTrue(self.scale.redisMessageQueue)
def test_ledMessage_containsOnlyMugsRemaining(self):
self.scale._currentWeight = 2000
self.scale._mostRecentLiftedTime = datetime.now()
self.assertEqual("-u {0} -t 4 mugs::".format(
float(4) / 5), self.scale.getLedMessage()[1])
self.scale._currentWeight = 100
print(self.scale.getLedMessage())
self.assertTrue(self.scale.getLedMessage()[0] in self.scale._animations)
def main():
unittest.main()
if __name__ == '__main__':
main()
| true
|
b638357308fe417c8ba59736e8e9f680564435ff
|
Python
|
MikhailKaraganov/Repos1
|
/invest.py
|
UTF-8
| 265
| 3.09375
| 3
|
[] |
no_license
|
START_SUM = 400000
NDS = 0.13
RATE = 0.07
nds = START_SUM * NDS
def invest(start_sum, years):
if (years >= 1):
return start_sum + start_sum*RATE + invest(start_sum + start_sum*RATE, years - 1)
else:
return 0
print(invest(400000,30))
| true
|
b9758bd6543997fedf63ac7cc00be09d1b898f81
|
Python
|
RameshOswal/forensic-audio-analysis
|
/audio.py
|
UTF-8
| 982
| 2.71875
| 3
|
[] |
no_license
|
import librosa
import numpy as np
import matplotlib.pyplot as plt
from subprocess import run
# Parameters
sampling_rate = 44100 # All clips will be converted to this rate
duration = None # Clips will be trimmed to this length (seconds)
def import_wav(file, plot=False):
# Import raw data
try:
raw_data = librosa.load(file, sr=sampling_rate, mono=False, duration=duration)
except:
raise IOError('Give me an audio file which I can read!!')
# Only use one channel
if len(raw_data[0].shape) > 1:
raw_data = (raw_data[0][0], raw_data[1])
if plot:
plt.plot(raw_data[0])
plt.show()
return raw_data
def split_clips(file_list, location="./downloads/processed/", length="10"):
for file in file_list:
file_comp = file.split("/")
file_noext = file_comp[-1][:-4]
run(["ffmpeg", "-i", file, "-f", "segment", "-segment_time", length, "-c", "copy", location + file_noext + "_%03d.wav"])
| true
|
a4aa9255757bbf1d37bda2f9abcbe2e32cb52f49
|
Python
|
Faydiamond/tablesfrec
|
/tablefrecuency.py
|
UTF-8
| 3,732
| 3.234375
| 3
|
[] |
no_license
|
class table:
def __init__(self):
self.valores = []
self.xi =[]
self.frabsoluta= []
self.frabsolutaacum =[]
self.frerel =[]
self.frerelper =[]
self.frerelacumm =[]
self.frerelacummper =[]
self.muestra = int(input('por favor digite el numero total de datos de la muestra'))-1
#print('el valor de la muestra es: ' , self.muestra)
self.agregar_Valores()
self.mostrar_valores()
self.all_calcules()
self.frrelativee()
self.frepercent()
self.frepercentacum()
#self.Shows()
self.datfr()
self.piee()
self.barr()
def agregar_Valores(self):
self.i = 0
while (self.i<=self.muestra):
self.valor = input('por favor digite el valor ')
self.valores.append(self.valor)
self.i+=1
def mostrar_valores(self):
import collections
self.howw = collections.Counter(self.valores)
def all_calcules(self):
self.x= 0
self.frrelativa = 0
for self.xii,self.frabs in self.howw.items():
self.x = self.x + self.frabs
self.xi.append(self.xii)
self.frabsoluta.append(self.frabs)
self.frabsolutaacum.append(self.x )
def frrelativee(self):
self.frrelative = 0
self.frrelativeacum = 0
for y in self.frabsoluta:
self.frrelative = (y/(self.muestra+1))
self.frrelativeacum = self.frrelativeacum + self.frrelative
self.frerel.append(self.frrelative)
self.frerelacumm.append(self.frrelativeacum)
def frepercent(self):
for g in self.frerel:
self.frpercent = g *100
#print('geeee', self.frpercent)
self.frerelper.append(self.frpercent)
def frepercentacum(self):
for f in self.frerelacumm:
self.facuper = f * 100
self.frerelacummper.append(self.facuper)
def Shows(self):
print('total de la muestra: ' ,self.valores)
print ("xi",self.xi)
print ("frecuencia absoluta ",self.frabsoluta)
print ("frecuencia absoluta acumulada" ,self.frabsolutaacum)
print ("frecuencia relativa : " , self.frerel)
print ("frecuencia relativa en porcentaje: " , self.frerelper)
print ("frecuencia relativa acumulada : " , self.frerelacumm)
print ("frecuencia relativa acumulada en porcentaje: " , self.frerelacummper)
def datfr(self):
import pandas as pd
#import matplotlib.pyplot as plt
zippedList = list(zip(self.xi,self.frabsoluta, self.frabsolutaacum, self.frerel,self.frerelper,self.frerelacumm,self.frerelacummper))
self.table = pd.DataFrame(zippedList, columns = ['xi','FRecuencia absoluta','Frecuencia acumulada','Frecuencia relativa','Frecuencia relativa %','Frecuencia relativa acumulada','Frecuencia relativa acumulada %'], index= self.xi)
#print(zippedList)
print(self.table)
def piee(self):
import matplotlib.pyplot as plt
myl=self.table['xi']
size = self.table['Frecuencia relativa %']
fig1, ax1 = plt.subplots()
ax1.pie(size, labels=myl, autopct='%1.1f%%',
shadow=True, startangle=90)
ax1.axis('equal')
plt.show()
def barr (self):
import matplotlib.pyplot as plt
myl=self.table['xi']
size = self.table['Frecuencia relativa %']
fig, ax = plt.subplots()
ax.set_ylabel('Porcentaje')
ax.set_title('Porcentaje de frecuencia relativa')
plt.bar(myl, size)
plt.savefig('percentfrecuenciarelativa.png')
plt.show()
f=table()
| true
|
7389c8ed64825a3dfe62bd7094175ad9b341bb41
|
Python
|
bahattin-urganci/python-training
|
/tuple.py
|
UTF-8
| 1,571
| 4.28125
| 4
|
[
"MIT"
] |
permissive
|
def returntwo(v1,v2):
c1=v1**v2
c2=v2*v1
#tuple üretmek aşağıdaki kadar basit parantez içerisinde ne döndürmek istiyorsan bas geç
return (c1,c2)
values = returntwo(2,4)
print(values)
# Define shout_all with parameters word1 and word2
def shout_all(word1,word2):
# Concatenate word1 with '!!!': shout1
shout1=word1+"!!!"
# Concatenate word2 with '!!!': shout2
shout2=word2+"!!!"
# Construct a tuple with shout1 and shout2: shout_words
shout_words=(shout1,shout2)
# Return shout_words
return shout_words
# Pass 'congratulations' and 'you' to shout_all(): yell1, yell2
yell1,yell2=shout_all('congratulations','you')
# Print yell1 and yell2
print(yell1)
print(yell2)
# Define three_shouts
def three_shouts(word1, word2, word3):
"""Returns a tuple of strings
concatenated with '!!!'."""
# Define inner
def inner(word):
"""Returns a string concatenated with '!!!'."""
return word + '!!!'
# Return a tuple of strings
return (inner(word1),inner(word2),inner(word3))
# Call three_shouts() and print
print(three_shouts('a', 'b', 'c'))
# Define echo
def echo(n):
"""Return the inner_echo function."""
# Define inner_echo
def inner_echo(word1):
"""Concatenate n copies of word1."""
echo_word = word1 * n
return echo_word
# Return inner_echo
return inner_echo
# Call echo: twice
twice = echo(2)
# Call echo: thrice
thrice=echo(3)
# Call twice() and thrice() then print
print(twice('hello'), thrice('hello'))
| true
|
74d98e8359734e5ab434b63a9f396b124f42a8b6
|
Python
|
gviejo/Gohal
|
/run/Keramati/ReScience/Selection.py
|
UTF-8
| 6,365
| 2.625
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Selection.py
Class of for model selection when training
first model <- Keramati et al, 2011
Copyright (c) 2013 Guillaume VIEJO. All rights reserved.
"""
import sys
import os
import numpy as np
from fonctions import *
class Keramati():
"""Class that implement Keramati models for action selection
"""
def __init__(self, kalman,depth,phi, rau, sigma, tau):
self.kalman = kalman
self.depth = depth; self.phi = phi; self.rau = rau;self.sigma = sigma; self.tau = tau
self.actions = kalman.actions; self.states = kalman.states
self.values = createQValuesDict(kalman.states, kalman.actions)
self.rfunction = createQValuesDict(kalman.states, kalman.actions)
self.vpi = dict.fromkeys(self.states,list())
self.rrate = [0.0]
self.state = None
self.action = None
self.transition = createTransitionDict(['s0','s0','s1','s1'],
['pl','em','pl','em'],
['s1','s0','s0',None], 's0') #<====VERY BAD============== NEXT_STATE = TRANSITION[(STATE, ACTION)]
def initialize(self):
self.values = createQValuesDict(self.states, self.actions)
self.rfunction = createQValuesDict(self.states, self.actions)
self.vpi = dict.fromkeys(self.states,list())
self.rrate = [0.0]
self.state = None
self.action = None
self.transition = createTransitionDict(['s0','s0','s1','s1'],
['pl','em','pl','em'],
['s1','s0','s0',None], 's0')
def chooseAction(self, state):
self.state = state
self.kalman.predictionStep()
vpi = computeVPIValues(self.kalman.values[0][self.kalman.values[self.state]], self.kalman.covariance['cov'].diagonal()[self.kalman.values[self.state]])
for i in range(len(vpi)):
if vpi[i] >= self.rrate[-1]*self.tau:
depth = self.depth
self.values[0][self.values[(self.state, self.actions[i])]] = self.computeGoalValue(self.state, self.actions[i], depth-1)
else:
self.values[0][self.values[(self.state, self.actions[i])]] = self.kalman.values[0][self.kalman.values[(self.state,self.actions[i])]]
self.action = getBestActionSoftMax(state, self.values, self.kalman.beta)
return self.action
def updateValues(self, reward, next_state):
self.updateRewardRate(reward, delay = 0.0)
self.kalman.updatePartialValue(self.state, self.action, next_state, reward)
self.updateRewardFunction(self.state, self.action, reward)
self.updateTransitionFunction(self.state, self.action)
def updateRewardRate(self, reward, delay = 0.0):
self.rrate.append(((1-self.sigma)**(1+delay))*self.rrate[-1]+self.sigma*reward)
def updateRewardFunction(self, state, action, reward):
self.rfunction[0][self.rfunction[(state, action)]] = (1-self.rau)*self.rfunction[0][self.rfunction[(state, action)]]+self.rau*reward
def updateTransitionFunction(self, state, action):
#This is cheating since the transition is known inside the class
#Plus assuming the transition are deterministic
nextstate = self.transition[(state, action)]
for i in [nextstate]:
if i == nextstate:
self.transition[(state, action, nextstate)] = (1-self.phi)*self.transition[(state, action, nextstate)]+self.phi
else:
self.transition[(state, action, i)] = (1-self.phi)*self.transition[(state, action, i)]
def computeGoalValue(self, state, action, depth):
next_state = self.transition[(state, action)]
if next_state == None:
return self.rfunction[0][self.rfunction[(state, action)]] + self.kalman.gamma*self.transition[(state, action, next_state)]*np.max(self.kalman.values[0][self.kalman.values[self.transition[None]]])
else:
tmp = np.max([self.computeGoalValueRecursive(next_state, a, depth-1) for a in self.values[next_state]])
value = self.rfunction[0][self.rfunction[(state, action)]] + self.kalman.gamma*self.transition[(state, action, next_state)]*tmp
return value
def computeGoalValueRecursive(self, state, a, depth):
action = self.values[(state, self.values[state].index(a))]
next_state = self.transition[(state, action)]
if next_state == None:
return self.rfunction[0][self.rfunction[(state, action)]] + self.kalman.gamma*self.transition[(state, action, next_state)]*np.max(self.kalman.values[0][self.kalman.values[self.transition[None]]])
elif depth == 0:
return self.rfunction[0][self.rfunction[(state, action)]] + self.kalman.gamma*self.transition[(state, action, next_state)]*np.max(self.kalman.values[0][self.kalman.values[self.transition[None]]])
else:
tmp = np.max([self.computeGoalValueRecursive(next_state, a, depth-1) for a in self.values[next_state]])
return self.rfunction[0][self.rfunction[(state, action)]] + self.kalman.gamma*self.transition[(state, action, next_state)]*tmp
"""
def computeGoalValue(self, state, action, depth):
#Cheating again. Only one s' is assumed to simplify
nextstate = self.transition[(state, action)]
print state, action, nextstate
if nextstate == None:
ns = self.transition[None]
tmp = self.transition[(state, action, nextstate)]*np.max(self.kalman.values[0][self.kalman.values[ns]])
return self.rfunction[0][self.rfunction[(state, action)]]+self.kalman.gamma*tmp
elif depth:
tmp = self.transition[(state, action, nextstate)]*np.max([self.computeGoalValue(state, self.values[(state,a)], depth-1) for a in range(len(self.values[nextstate]))])
return self.rfunction[0][self.rfunction[(state, action)]]+self.kalman.gamma*tmp
else:
tmp = self.transition[(state, action, nextstate)]*np.max(self.kalman.values[0][self.kalman.values[nextstate]])
return self.rfunction[0][self.rfunction[(state, action)]]+self.kalman.gamma*tmp
"""
| true
|
a95896c066efac96cc2969e2ba56d97855be5958
|
Python
|
zekeriyasari/optimization
|
/optimize/tools.py
|
UTF-8
| 4,503
| 3.375
| 3
|
[] |
no_license
|
from optimize.constants import *
import numpy as np
import matplotlib.pyplot as plt
def estimate_gradient(f, x, h=DERIV_TOL):
n = x.size
df = np.zeros(n)
for k in range(n):
delta = np.zeros(n)
delta[k] = h
df[k] = (f(x + delta) - f(x - delta)) / (2 * h)
return df
def line_along(f, x, d):
def g(alpha):
return f(x + alpha * d)
def dg(alpha):
return estimate_gradient(f, x + alpha * d).dot(d)
return g, dg
def cubic_interpolation(g, dg, s=1, cubic_tol=CUBIC_TOl):
# Determine initial interval
a = 0
b = s
while not (dg(b) >= 0 and g(b) >= g(a)):
a = b
b *= 2
# Update current interval
alpha = None
while abs(a - b) > cubic_tol:
ga = g(a)
gb = g(b)
dga = dg(a)
dgb = dg(b)
z = 3 * (ga - gb) / (b - a) + dga + dgb
w = np.sqrt(z ** 2 - dga * dgb)
alpha = b - (dgb + w - z) / (dgb - dga + 2 * w) * (b - a)
if dg(alpha) >= 0 or g(alpha) >= g(a):
b = alpha
elif dg(alpha) < 0 or g(alpha) < g(a):
a = alpha
return alpha # step size
def armijo(f, x, d, dfx, sigma=SIGMA, b=B, s=S):
fx = f(x)
m = 0
while fx - f(x + b ** m * s * d) < -sigma * b ** m * s * dfx.dot(d):
m += 1
alpha = b ** m * s
return alpha # step size
def stopping_criteria(i, dfx0, dfx, max_iter=MAX_ITER, grad_tol=GRAD_TOL):
return (np.linalg.norm(dfx) / np.linalg.norm(dfx0)) > grad_tol and i < max_iter
def steepest_descent(f, df, x0, line_search='armijo'):
dfx0 = df(x0)
x = x0
dfx = df(x)
d = -dfx
i = 0
while stopping_criteria(i, dfx0, dfx):
# Determine step size
alpha = None
if line_search == 'armijo':
alpha = armijo(f, x, d, dfx)
elif line_search == 'cubic_interpolation':
g, dg = line_along(f, x, d)
alpha = cubic_interpolation(g, dg)
# Update current point
x += alpha * d
# Update iteration number
i += 1
# Update gradient and descent direction
dfx = df(x)
d = -dfx
return x, f(x), i
def test():
# Test quadratic function
def quadratic(x):
return x[0] ** 2 + x[1] ** 2 + 5.
# Test quadratic function gradient
def dquadratic(x):
return np.array([2 * x[0],
2 * x[1]])
# Test rosenbrock function
def rosenbrock(x):
return (1 - x[0]) ** 2 + 100 * (x[1] - x[0] ** 2) ** 2
# Test rosenbrock function gradient
def drosenbrock(x):
return np.array([-2 + 2 * x[0] - 400 * x[0] * (x[1] - x[0] ** 2),
200 * (x[1] - x[0] ** 2)])
# Test steepest descent
print('\nMinimizing quadratic function with armijo...')
x0 = np.array([5., 5.])
x_min, fx_min, niter = steepest_descent(quadratic, dquadratic, x0, line_search='armijo')
print('xmin: {}\nfmin: {}\nNumber of iterations: {}'.format(x_min, fx_min, niter))
# # Test quadratic function
# print('\nMinimizing quadratic function with cubic interpolation...')
# x0 = np.array([5., 5.])
# x_min, fx_min, niter = steepest_descent(quadratic, dquadratic, x0, line_search='cubic_interpolation')
# print('xmin: {}\nfmin: {}\nNumber of iterations: {}'.format(x_min, fx_min, niter))
print('\nMinimizing rosenbrock function with armijo...')
x0 = np.array([5., 5.])
x_min, fx_min, niter = steepest_descent(rosenbrock, drosenbrock, x0, line_search='armijo')
print('xmin: {}\nfmin: {}\nNumber of iterations: {}'.format(x_min, fx_min, niter))
print('\nMinimizing rosenbrock function cubic interpolation...')
x0 = np.array([5., 5.])
x_min, fx_min, niter = steepest_descent(rosenbrock, drosenbrock, x0, line_search='cubic_interpolation')
print('xmin: {}\nfmin: {}\nNumber of iterations: {}'.format(x_min, fx_min, niter))
# scipy.optimize.minimize test
print('\nMinimizing rosenbrock function with scipy.optimize.minimize...')
from scipy.optimize import minimize
res = minimize(rosenbrock, x0)
print(res)
# Test line_along by drawing curves
x0 = np.array([0., 2.])
d = np.array([1, 0])
g, dg = line_along(rosenbrock, x0, d)
t = np.arange(-2., 2., 0.01)
gt = np.zeros(t.size)
for n in range(t.size):
gt[n] = g(t[n])
plt.plot(t, gt)
plt.title('Rosenbrock function 1D curve')
plt.show()
if __name__ == '__main__':
test()
pass
| true
|
600cd78514a9e8041ca92f388b7497afa31615f7
|
Python
|
TheLordBaski/adbmirror
|
/adbmirror/glue.py
|
UTF-8
| 682
| 2.796875
| 3
|
[
"Apache-2.0"
] |
permissive
|
import threading
from multiprocessing import Pipe
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.pipe_ext, self.pipe_int = Pipe()
def read(self):
msgs = []
while self.pipe_ext.poll():
msgs.append(self.pipe_ext.recv())
return msgs
def write(self, data):
self.pipe_ext.send(data)
def internal_read(self):
msgs = []
while self.pipe_int.poll():
msgs.append(self.pipe_int.recv())
return msgs
def internal_write(self, data):
self.pipe_int.send(data)
| true
|
30b8eb26653988fc91932897cdffc697031d9f66
|
Python
|
mprinc/NLP
|
/nlangp-001-coursera/src/nlp/TaggingPreprocessing.py
|
UTF-8
| 7,721
| 2.625
| 3
|
[] |
no_license
|
import sys
import re
from collections import defaultdict
from TaggingCountsUnigram import TaggingCountsUnigram
from TaggingCountsViterbi import TaggingCountsViterbi
from nlp.TaggingCountsViterbi import TaggingCountsViterbi
def defaultTree():
return defaultdict(defaultTree);
class TaggingPreprocessing(object):
RARE_WORD = "_RARE_";
RARE_COUNT = 5;
RARE_NUMERIC = "_RARE_NUMERIC_";
RARE_ALL_NUMERIC = "_RARE_ALL_NUMERIC_";
RARE_ALL_NON_ALFANUMERIC = "_RARE_ALL_NON_ALFANUMERIC_";
RARE_ALL_CAP = "_RARE_ALL_CAP_";
RARE_LAST_CAP = "_RARE_LAST_CAP_";
RARE_FIRST_CAP = "_RARE_FIRST_CAP_";
@staticmethod
def WordNormalize(word):
#word = word.lower();
return word;
@staticmethod
def getRareWordClass(word):
rex_number = re.compile(r'\d'); # at least one numeric
rex_all_number = re.compile(r'^\s*(\d+)\s*$'); # all numeric
rex_all_non_alfanumeric = re.compile(r'[^A-Za-z\d]'); # at least one non alfanumeric
rex_all_cap = re.compile(r'^\s*([A-Z]+)\s*$'); # all capital
rex_last_cap = re.compile(r'^\s*.+[A-Z]\s*$'); # at least some non-capital, but last is capital
rex_first_cap = re.compile(r'^\s*[A-Z].+\s*$'); # at least some non-capital, but first is capital
#r'\b\S*[a-z]\S*[A-Z]\b'
rareWordClass = TaggingPreprocessing.RARE_WORD;
if(rex_all_number.search(word)):
print ("find all numeric word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_ALL_NUMERIC;
elif(rex_number.search(word)):
#print ("find numeric word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_NUMERIC;
elif(rex_all_non_alfanumeric.search(word)):
print ("find non alfanumeric word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_ALL_NON_ALFANUMERIC;
elif(rex_all_cap.search(word)):
#print ("find All Cap word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_ALL_CAP;
elif(rex_last_cap.search(word)):
#print ("find Last Cap word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_LAST_CAP;
elif(rex_first_cap.search(word)):
#print ("find First Cap word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_FIRST_CAP;
else:
#print ("findRareWords word: %s" % (word));
rareWordClass = TaggingPreprocessing.RARE_WORD;
return rareWordClass;
def __init__(self):
self.filenameIn = "";
self.filenameOut = "";
self.wordsCount = defaultTree();
self.wordsRaw = [];
self.tagsRaw = [];
self.wordsRare = defaultTree();
def load(self, filenameIn):
self.filenameIn = filenameIn
print("Preprocessing reading started ...");
self.wordsCount = defaultTree();
self.wordsRaw = [];
self.tagsRaw = [];
self.wordsRare = defaultTree();
try:
self.file = open(self.filenameIn)
except Exception:
print "[BukvikParser:parseFile]: problem opening file filenameIn = ", self.filenameIn
sys.exit(1)
lineNo = 0
# http://docs.python.org/2/library/re.html
rex_word_tag = re.compile(r'^\s*(\S+)\s+(\S*)\s*$') # word tag
for line in self.file:
lineNo=lineNo+1;
match = rex_word_tag.search(line)
if match:
var_word = match.group(1);
var_tag = match.group(2);
#preprocessing word
var_word = TaggingPreprocessing.WordNormalize(var_word);
self.wordsRaw.append(var_word);
self.tagsRaw.append(var_tag);
if(not self.wordsCount.has_key(var_word)):
self.wordsCount[var_word] = 0;
self.wordsCount[var_word] = self.wordsCount[var_word] + 1;
if(lineNo < 100):
print ("Word tag: word: %s, tag: %s, count: %d" % (var_word, var_tag, self.wordsCount[var_word]));
else:
self.wordsRaw.append("");
self.tagsRaw.append("");
print("Preprocessing reading finished ...");
def findRareWordsClasses(self, withClassess):
print("Finding rare words started ...");
wordNo = 0;
#for count, word in enumerate(self.wordsCount):
for word, count in self.wordsCount.items():
#print "findRareWords word:" + word + ", count:" + str(count)
if(count<TaggingPreprocessing.RARE_COUNT):
if(wordNo<50): print ("word: %s, count: %d" % (word, count));
if(not withClassess):
self.wordsRare[word] = TaggingPreprocessing.RARE_WORD;
else:
self.wordsRare[word] = TaggingPreprocessing.getRareWordClass(word);
wordNo = wordNo + 1;
print("Finding rare words finished ...");
def saveUnigram(self, filenameOut):
self.filenameOut = filenameOut
print("Preprocessing saving started ...");
try:
self.file = open(self.filenameOut, "w")
except Exception:
print "[BukvikParser:parseFile]: problem opening file filenameIn = ", self.filenameIn
sys.exit(1)
wordNo = 0
while wordNo < len(self.wordsRaw):
word = self.wordsRaw[wordNo];
if(self.wordsRare.has_key(word)):
self.file.write(TaggingPreprocessing.RARE_WORD);
else:
self.file.write(word);
self.file.write(" " + self.tagsRaw[wordNo] + "\n");
wordNo = wordNo+1;
self.file.close();
print("Preprocessing saving finished ...");
def saveViterbi(self, filenameOut, withClassess):
self.filenameOut = filenameOut
print("Preprocessing saving started ...");
try:
self.file = open(self.filenameOut, "w")
except Exception:
print "[BukvikParser:parseFile]: problem opening file filenameIn = ", self.filenameIn
sys.exit(1)
wordNo = 0
#newSentence = True;
#previousWord = "";
while wordNo < len(self.wordsRaw):
# We do not need to preprocess sentences since count_freqs script is doing it for us in this case
#if(newSentence):
#self.file.write(TaggingCountsViterbi.WORD_START + " " + TaggingCountsViterbi.TAG_START + "\n");
#self.file.write(TaggingCountsViterbi.WORD_START + " " + TaggingCountsViterbi.TAG_START + "\n");
#newSentence = False;
word = self.wordsRaw[wordNo];
word_final = word;
if(self.wordsRare.has_key(word)):
if(not withClassess):
word_final = self.wordsRare[word];
else:
word_final = self.getRareWordClass(word);
tag_final = self.tagsRaw[wordNo];
# We do not need to preprocess sentences since count_freqs script is doing it for us in this case
#if(previousWord == TaggingCountsViterbi.WORD_STOP_CHECK and word == ''):
#self.file.write(TaggingCountsViterbi.WORD_STOP + " " + TaggingCountsViterbi.TAG_STOP);
#self.file.write("\n");
#newSentence = True;
#else:
self.file.write(word_final + " " + tag_final + "\n");
#previousWord = word;
wordNo = wordNo+1;
self.file.close();
print("Preprocessing saving finished ...");
| true
|
a714c29fa0baeec212a0f2eed841a3b7183b1d21
|
Python
|
brunobstoll/LA-Sist-Completo
|
/LA-Intervencao/model/PreProcessamentoDB.py
|
UTF-8
| 3,762
| 2.671875
| 3
|
[] |
no_license
|
import model.dataBase as db
import model.MetaDadosDB as meta
import model.ImportacaoDB as imp
def RetornarValoresColuna(idTabela, idColuna):
tabela = imp.ObterTabela(idTabela)
coluna = meta.ObterColuna(idColuna)
sql_table = tabela.nome
if not (tabela.sql_destino == None or tabela.sql_destino == ''):
sql_table = tabela.sql_destino
sql = 'SELECT COUNT(*) AS qtd, ' + coluna.sql + ' as COL FROM "' + sql_table + '" GROUP BY COL'
#resultado = db.consultarSQL(sql)
resultado = db.consultarSQLDataFrame(sql)
return resultado
def GerarSqlQuartil(tabela, coluna, tp):
tpDisc = ''
if tp == 'E':
tpDisc = 'DISTINCT'
sqlTexto = """
SELECT *,
CASE WHEN coluna <= Q1 THEN 'Q1'
WHEN coluna <= Q2 THEN 'Q2'
WHEN coluna <= Q3 THEN 'Q3'
ELSE 'Q4'
END AS QUARTIL
FROM (
SELECT *,
(SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) AS QTD,
(SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 1), 1) Q1,
(SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 2), 1) Q2,
(SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 3), 1) Q3
FROM (
SELECT {{tpQuartil}} {{coluna}} AS coluna
FROM {{tabela}}) AS T
ORDER BY 1
) AS T
LIMIT 1"""
sqlNumero = """
SELECT *,
CASE WHEN coluna <= Q1 THEN 'Q1'
WHEN coluna <= Q2 THEN 'Q2'
WHEN coluna <= Q3 THEN 'Q3'
ELSE 'Q4'
END AS QUARTIL
FROM (
SELECT *,
(SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) AS QTD,
(SELECT {{tpQuartil}} CAST({{coluna}} AS FLOAT) FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 1), 1) Q1,
(SELECT {{tpQuartil}} CAST({{coluna}} AS FLOAT) FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 2), 1) Q2,
(SELECT {{tpQuartil}} CAST({{coluna}} AS FLOAT) FROM {{tabela}} ORDER BY 1 LIMIT (((SELECT COUNT(*) FROM (SELECT {{tpQuartil}} {{coluna}} FROM {{tabela}})) / 4) * 3), 1) Q3
FROM (
SELECT {{tpQuartil}} CAST({{coluna}} AS FLOAT) AS coluna
FROM {{tabela}}) AS T
ORDER BY 1
) AS T
LIMIT 1"""
objTabela = imp.ObterTabelaPorNome(tabela)
objColuna = meta.ObterColunaPorTabNome(objTabela.id, coluna)
if objColuna.tipo == 'N':
sql = sqlNumero.replace('{{tabela}}', tabela).replace('{{coluna}}', coluna).replace('{{tpQuartil}}', tpDisc)
else:
sql = sqlTexto.replace('{{tabela}}', tabela).replace('{{coluna}}', coluna).replace('{{tpQuartil}}', tpDisc)
resultado = db.consultarSQLDataFrame(sql)
if objColuna.tipo == 'N':
sqlResultado = 'CASE WHEN CAST(' + str(coluna) + ' AS FLOAT) <= ' + str(resultado['Q1'][0]) + ' THEN \'Q1\' WHEN CAST(' + str(coluna) + ' AS FLOAT) <= ' + str(resultado['Q2'][0]) + ' THEN \'Q2\' WHEN CAST(' + str(coluna) + ' AS FLOAT) <= ' + str(resultado['Q3'][0]) + ' THEN \'Q3\' ELSE \'Q4\' END'
else:
sqlResultado = 'CASE WHEN ' + str(coluna) + ' <= ' + str(resultado['Q1'][0]) + ' THEN \'Q1\' WHEN ' + str(coluna) + ' <= ' + str(resultado['Q2'][0]) + ' THEN \'Q2\' WHEN ' + str(coluna) + ' <= ' + str(resultado['Q3'][0]) + ' THEN \'Q3\' ELSE \'Q4\' END'
return sqlResultado
def DiscretizarCampo(idColuna, nome, expressao):
colunaDiscr = meta.ObterColuna(idColuna)
colunaDiscr.sql = expressao
meta.SalvarColuna(colunaDiscr)
| true
|
2d7bdb70a3a9cde06012f0de32bf342d2c6b2bd7
|
Python
|
kingssafy/til
|
/ps/codeforces/1144/1144B.py
|
UTF-8
| 282
| 2.78125
| 3
|
[] |
no_license
|
N = int(input())
arr = list(map(int, input().split()))
arr.sort()
flag = 1
before = N;
k = arr[-1]%2
odd = []
even = []
for a in arr:
if a % 2:
odd.append(a)
else:
even.append(a)
if len(odd) == len(even):
print(0)
else:
print(min(odd[0], even[0]))
| true
|
f4a4301af449e7d2901fea7dadfcf96f1cc596a7
|
Python
|
prashant-repo-test/python_data_science
|
/Abstract class.py
|
UTF-8
| 338
| 3.984375
| 4
|
[] |
no_license
|
from abc import ABC, abstractmethod
class Employee(ABC):
@abstractmethod
def calculate_salary(self,sal):
pass
class Developer(Employee):
def calculate_salary(self,sal):
final_salary = sal * 1.1
return final_salary
emp_1 = Developer()
print(emp_1.calculate_salary(10000))
| true
|
bb5b49e8c343e07a57ae55232a81b60729b8c6ec
|
Python
|
nwinds/jugar
|
/algo_I_py/path_compression_qu.py
|
UTF-8
| 817
| 3.5
| 4
|
[] |
no_license
|
# inspired by union find demo
identity = []
for i in range(10):
identity.append(i)
# root of number
#I made an understandable ver
def root(you):
while identity[you] != you:
dad = identity[you]
oldman = identity[dad]
identity[you] = oldman
you = identity[you]
# shorter:
#while identity[you] != you:
#identity[you] = identity[identity[you]]
#you = identity[you]
return you
def connected(a, b):
ra = root(a)
rb = root(b)
return ra == rb
def union(a, b):
ra = root(a)
rb = root(b)
if ra == rb:
return
identity[ra] = rb
print(identity)
union(1,2)
union(3,4)
union(5,6)
union(7,8)
union(7,9)
union(2,8)
union(0,5)
union(1,9)
print(identity)
print('size of connected components: %d' % len(identity))
| true
|
1b9d9991cc8596764420d5392cc85958a3b8454f
|
Python
|
SeaWar741/ITC
|
/1er_Semestre/stark.py
|
UTF-8
| 2,818
| 3.609375
| 4
|
[] |
no_license
|
clave= 23412
totaladul=0
totalnin= 0
saldotarjeta=1000
validar = int(input("ingrese clave de acceso >"))
print("Bienvenido a restaurate ABC")
while validar != 23412:
print ("Clave incorrecta")
validar = int(input("ingrese clave de acceso >"))
print("MENU PRINCIPAL")
print("Ingrese la opcion que desea")
opcion = int(input("Menu adulto (1), Menu niño(2), Realizar pago (3), Recarga de tarjeta (4), Salir(5) \n>"))
while opcion != 5:
if opcion == 1:
pregunta= "si"
while pregunta == "si":
seleccionadul= int(input("Seleccione un platillo del menu, Arroz a la mexicana $95 (1), Mole poblano $78 (2), Crema de brocoli $60 (3) \n>"))
if seleccionadul == 1:
totaladul += 95
elif seleccionadul == 2:
totaladul += 78
elif seleccionadul == 3:
totaladul += 60
pregunta=input("quieres seguir ordenando?<si><no> >")
if opcion == 2:
pregunta= "si"
while pregunta == "si":
seleccionnin= int(input("Seleccione un platillo del menu, Nugets de pollo $56 (1), Mini pizza $90 (2), Hamburguesa $60 (3) \n>"))
if seleccionnin == 1:
totalnin += 56
elif seleccionnin == 2:
totalnin += 90
elif seleccionnin == 3:
totalnin += 60
pregunta=input("quieres seguir ordenando?<si><no> >")
if opcion == 3:
propina= input("desea agregar propina? >")
if propina == "si":
porcentaje = int(input("ingrese el porcetaje de propina que desee agregar ($) >"))
if porcentaje<10:
print ("la propina debe de ser mayor al 10%")
porcentaje = int(input("ingrese el porcetaje de propina que desee agregar ($) >"))
ajuste = (porcentaje * .01) + 1
totalgeneral = (totaladul + totalnin) * ajuste
print ("el total por adultos es $:", totaladul)
print ("el total por niños es $:" , totalnin)
print ("el total general es $:" , totaladul + totalnin)
opcion=5
if opcion == 4:
optionrecargar=input ("desea recargar su tarjeta ?<si><no> >")
if optionrecargar.lower() == "si":
recarga_de_tarjeta = int(input("Ingresar cantidad ($) >"))
saldotarjeta = saldotarjeta+recarga_de_tarjeta
print("Ahora tienes: $"+str(saldotarjeta))
if opcion!=5:
opcion = int(input("Menu adulto (1), Menu niño(2), Realizar pago (3), Recarga de tarjeta (4), Salir(5) \n>"))
print("Total de adultos: ",totaladul)
print("Total de ninos: ",totalnin)
print ("el total general es $:" , totaladul + totalnin)
| true
|
b6e984fae15a2a3ae64e2823b2b3252623ac7b78
|
Python
|
deeuu/supriya
|
/supriya/ugens/Rand.py
|
UTF-8
| 450
| 2.546875
| 3
|
[
"MIT"
] |
permissive
|
import collections
from supriya import CalculationRate
from supriya.synthdefs import UGen
class Rand(UGen):
"""
A uniform random distribution.
::
>>> supriya.ugens.Rand.ir()
Rand.ir()
"""
### CLASS VARIABLES ###
__documentation_section__ = "Noise UGens"
_ordered_input_names = collections.OrderedDict([("minimum", 0.0), ("maximum", 1.0)])
_valid_calculation_rates = (CalculationRate.SCALAR,)
| true
|
2e86bd083112f6d161bc5b67dd1b1586d39c9caf
|
Python
|
SindreSvendby/pgnToFen
|
/pgnToFen.py
|
UTF-8
| 30,292
| 2.75
| 3
|
[
"MIT"
] |
permissive
|
#!/bin/python
# coding=utf8
from __future__ import print_function
from __future__ import division
from functools import partial
import math
import re
import os
class PgnToFen:
fen = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR'
whiteToMove = True
internalChessBoard = [
'R','N','B','Q','K','B','N','R',
'P','P','P','P','P','P','P','P',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'p','p','p','p','p','p','p','p',
'r','n','b','q','k','b','n','r']
enpassant = '-'
castlingRights = 'KQkq'
DEBUG = False
lastMove = 'Before first move'
fens = []
result = ''
def getFullFen(self):
return self.getFen() + ' ' + ('w ' if self.whiteToMove else 'b ') + self.enpassant + ' ' + (self.castlingRights if self.castlingRights else '-')
def getFen(self):
fenpos = ''
for n in reversed((8,16,24,32,40,48,56,64)):
emptyPosLength = 0;
for i in self.internalChessBoard[n-8:n]:
if(i is not '1'):
if(emptyPosLength is not 0):
fenpos = fenpos + str(emptyPosLength);
emptyPosLength = 0
fenpos = fenpos + i
else:
emptyPosLength = emptyPosLength + 1
if(emptyPosLength is not 0):
fenpos = fenpos + str(emptyPosLength);
fenpos = fenpos + '/'
fenpos = fenpos[:-1]
return fenpos
def printFen(self):
print(self.getFen())
def moves(self, moves):
if isinstance(moves, str):
nrReCompile = re.compile('[0-9]+\.')
transformedMoves = nrReCompile.sub('', moves)
pgnMoves = transformedMoves.replace(' ', ' ').split(' ')
result = pgnMoves[-1:][0]
if(result in ['1/2-1/2', '1-0', '0-1']):
self.result = result
pgnMoves = pgnMoves[:-1]
print('pgnMoves')
print(pgnMoves)
return self.pgnToFen(pgnMoves)
else:
return self.pgnToFen(moves)
def pgnFile(self, file):
pgnGames = {
'failed' : [],
'succeeded' : [],
}
started = False
game_info = []
pgnMoves = ''
for moves in open(file, 'rt').readlines():
if moves[:1] == '[':
#print('game_info line: ', moves)
game_info.append(moves)
continue
if moves[:2] == '1.':
started = True
if (moves == '\n' or moves == '\r\n') and started:
try:
#print('Processing ', game_info[0:6])
pgnToFen = PgnToFen()
pgnToFen.resetBoard()
fens = pgnToFen.moves(pgnMoves).getAllFens()
pgnGames['succeeded'].append((game_info, fens))
except ValueError as e:
pgnGames['failed'].append((game_info, '"' + pgnToFen.lastMove + '"', pgnToFen.getFullFen(), e))
except TypeError as e:
pgnGames['failed'].append((game_info, '"' + pgnToFen.lastMove + '"', pgnToFen.getFullFen(), e))
except IndexError as e:
raise IndexError(game_info, '"' + pgnToFen.lastMove + '"', pgnToFen.getFullFen(), e)
pgnGames['failed'].append((game_info, '"' + pgnToFen.lastMove + '"', pgnToFen.getFullFen(), e))
except ZeroDivisionError as e:
pgnGames['failed'].append((game_info, '"' + pgnToFen.lastMove + '"', pgnToFen.getFullFen(), e))
finally:
started = False
game_info = []
pgnMoves = ''
if(started):
pgnMoves = pgnMoves + ' ' + moves.replace('\n', '').replace('\r', '')
return pgnGames
def pgnToFen(self, moves):
try:
loopC = 1
for move in moves:
self.lastMove = move
self.DEBUG and print('=========')
self.DEBUG and print('Movenumber',loopC)
self.DEBUG and print('TO MOVE:', 'w' if self.whiteToMove else 'b')
self.DEBUG and print('MOVE:', move)
self.move(move)
self.DEBUG and print('after move:')
self.DEBUG and self.printBoard()
loopC = loopC + 1
self.fens.append(self.getFullFen())
self.sucess = True
return self
except ValueError:
print('Converting PGN to FEN failed.')
print('Move that failed:', self.lastMove)
self.printBoard()
print(self.getFullFen())
self.fens = []
self.sucess = False
def move(self, move):
try:
self.lastMove = move
self.handleAllmoves(move)
if(self.whiteToMove):
self.whiteToMove = False
else:
self.whiteToMove = True
return self
except ValueError:
self.DEBUG and print('Converting PGN to FEN failed.')
self.DEBUG and print('Move that failed:', self.lastMove)
self.DEBUG and self.printBoard()
self.DEBUG and print('FEN:', self.getFullFen())
def getAllFens(self):
return self.fens
def handleAllmoves(self, move):
move = move.replace('+', '')
move = move.replace('#', '')
promote = ''
if(move.find('=') > -1):
promote = move[-1]
move = move[:-2]
if(move.find('-O') != -1):
self.castelingMove(move)
return;
toPosition = move[-2:]
move = move[:-2]
if len(move) > 0:
if move[0] in ['R','N','B','Q','K']:
officer = move[0]
move = move[1:]
else:
officer = 'P'
else:
officer = 'P'
takes = False
if 'x' in move:
takes = True
move = move[:-1]
specificRow = ""
specificCol = ""
if len(move) > 0:
if move in ['1','2','3','4','5','6','7','8']:
specificRow = move
elif move in ['a','b','c','d','e','f','g','h']:
specificCol = move
elif len(move) == 2:
specificCol = move[0]
specificRow = move[1]
if(officer != 'P'):
self.enpassant = '-'
if(officer == 'N'):
self.knightMove(toPosition, specificCol, specificRow)
elif(officer == 'B'):
self.bishopMove(toPosition, specificCol, specificRow)
elif(officer == 'R'):
self.rookMove(toPosition, specificCol, specificRow)
elif(officer == 'Q'):
self.queenMove(toPosition, specificCol, specificRow)
elif(officer == 'K'):
self.kingMove(toPosition, specificCol, specificRow)
elif(officer == 'P'):
self.pawnMove(toPosition, specificCol, specificRow, takes, promote)
def castelingMove(self, move):
if(len(move) == 3): #short castling
if(self.whiteToMove):
self.internalChessBoard[7] = '1'
self.internalChessBoard[6] = 'K'
self.internalChessBoard[5] = 'R'
self.internalChessBoard[4] = '1'
self.castlingRights = self.castlingRights.replace('KQ','')
else:
self.internalChessBoard[63] = '1'
self.internalChessBoard[62] = 'k'
self.internalChessBoard[61] = 'r'
self.internalChessBoard[60] = '1'
self.castlingRights = self.castlingRights.replace('kq', '')
else: # long castling
if(self.whiteToMove):
self.internalChessBoard[0] = '1'
self.internalChessBoard[2] = 'K'
self.internalChessBoard[3] = 'R'
self.internalChessBoard[4] = '1'
self.castlingRights = self.castlingRights.replace('KQ', '')
else:
self.internalChessBoard[60] = '1'
self.internalChessBoard[59] = 'r'
self.internalChessBoard[58] = 'k'
self.internalChessBoard[56] = '1'
self.castlingRights = self.castlingRights.replace('kq', '')
def queenMove(self, move, specificCol, specificRow):
column = move[:1]
row = move[1:2]
chessBoardNumber = self.placeOnBoard(row, column)
piece = 'Q' if self.whiteToMove else 'q'
possibelPositons = [i for i, pos in enumerate(self.internalChessBoard) if pos == piece]
self.internalChessBoard[chessBoardNumber] = piece
self.validQueenMoves(possibelPositons, move, specificCol, specificRow)
def validQueenMoves(self, posistions, move, specificCol, specificRow):
newColumn = self.columnToInt(move[:1])
newRow = self.rowToInt(move[1:2])
newPos = self.placeOnBoard(newRow + 1, move[:1])
potensialPosisitionsToRemove=[]
for pos in posistions:
(existingRow, existingCol) = self.internalChessBoardPlaceToPlaceOnBoard(pos)
diffRow = int(existingRow - newRow)
diffCol = int(self.columnToInt(existingCol) - newColumn)
if diffRow == 0 or diffCol == 0 or diffRow == diffCol or -diffRow == diffCol or diffRow == -diffCol:
if not specificCol or specificCol == existingCol:
if not specificRow or (int(specificRow) -1) == int(existingRow):
xVect = 0
yVect = 0
if abs(diffRow) > abs(diffCol):
xVect = -(diffCol / abs(diffRow))
yVect = -(diffRow / abs(diffRow))
else:
xVect = -(diffCol / abs(diffCol))
yVect = -(diffRow / abs(diffCol))
checkPos = pos
nothingInBetween = True
while(checkPos != newPos):
checkPos = int(checkPos + yVect * 8 + xVect)
if(checkPos == newPos):
continue
if self.internalChessBoard[checkPos] != "1":
nothingInBetween = False
if nothingInBetween:
potensialPosisitionsToRemove.append(pos)
if len(potensialPosisitionsToRemove) == 1:
correctPos = potensialPosisitionsToRemove[0];
else:
if len(potensialPosisitionsToRemove) == 0:
raise ValueError('Cant find a valid posistion to remove', potensialPosisitionsToRemove)
notInCheckLineBindNewPos = partial(self.notInCheckLine, self.posOnBoard('K'))
correctPosToRemove = list(filter(notInCheckLineBindNewPos, potensialPosisitionsToRemove))
if len(correctPosToRemove) > 1:
raise ValueError('Several valid positions to remove from the board')
if len(correctPosToRemove) == 0:
raise ValueError('None valid positions to remove from the board')
correctPos = correctPosToRemove[0]
self.internalChessBoard[correctPos] = "1"
return
def rookMove(self, move, specificCol, specificRow):
column = move[:1]
row = move[1:2]
chessBoardNumber = self.placeOnBoard(row, column)
piece = 'R' if self.whiteToMove else 'r'
possibelPositons = [i for i, pos in enumerate(self.internalChessBoard) if pos == piece]
self.internalChessBoard[chessBoardNumber] = piece
self.validRookMoves(possibelPositons, move, specificCol, specificRow)
def validRookMoves(self, posistions, move, specificCol, specificRow):
newColumn = self.columnToInt(move[:1])
newRow = self.rowToInt(move[1:2])
newPos = self.placeOnBoard(newRow + 1, move[:1])
potensialPosisitionsToRemove=[]
if(len(posistions) == 1):
self.internalChessBoard[posistions[0]] = "1"
return
for pos in posistions:
(existingRow, existingCol) = self.internalChessBoardPlaceToPlaceOnBoard(pos)
diffRow = int(existingRow - newRow)
diffCol = int(self.columnToInt(existingCol) - newColumn)
if diffRow == 0 or diffCol == 0:
if not specificCol or specificCol == existingCol:
if not specificRow or (int(specificRow) -1) == int(existingRow):
xVect = 0
yVect = 0
if abs(diffRow) > abs(diffCol):
xVect = -(diffCol / abs(diffRow))
yVect = -(diffRow / abs(diffRow))
else:
xVect = -(diffCol / abs(diffCol))
yVect = -(diffRow / abs(diffCol))
checkPos = pos
nothingInBetween = True
while(checkPos != newPos):
checkPos = int(checkPos + yVect * 8 + xVect)
if(checkPos == newPos):
continue
if self.internalChessBoard[checkPos] != "1":
nothingInBetween = False
if nothingInBetween:
potensialPosisitionsToRemove.append(pos)
if len(potensialPosisitionsToRemove) == 1:
correctPos = potensialPosisitionsToRemove[0];
else:
if len(potensialPosisitionsToRemove) == 0:
raise ValueError('Cant find a valid posistion to remove', potensialPosisitionsToRemove)
notInCheckLineBindNewPos = partial(self.notInCheckLine, self.posOnBoard('K'))
correctPosToRemove = list(filter(notInCheckLineBindNewPos, potensialPosisitionsToRemove))
if len(correctPosToRemove) > 1:
raise ValueError('Several valid positions to remove from the board')
correctPos = correctPosToRemove[0]
if(correctPos == 0):
self.castlingRights = self.castlingRights.replace('Q', '')
elif(correctPos == 63):
self.castlingRights = self.castlingRights.replace('k', '')
elif(correctPos == 7):
self.castlingRights = self.castlingRights.replace('K', '')
elif(correctPos == (63-8)):
self.castlingRights = self.castlingRights.replace('q', '')
self.internalChessBoard[correctPos] = "1"
return
def kingMove(self, move, specificCol, specificRow):
column = move[:1]
row = move[1:2]
chessBoardNumber = self.placeOnBoard(row, column)
piece = 'K' if self.whiteToMove else 'k'
lostCastleRights = 'Q' if self.whiteToMove else 'q'
kingPos = [i for i, pos in enumerate(self.internalChessBoard) if pos == piece]
self.castlingRights = self.castlingRights.replace(piece, '')
self.castlingRights = self.castlingRights.replace(lostCastleRights, '')
self.internalChessBoard[chessBoardNumber] = piece
self.internalChessBoard[kingPos[0]] = '1'
def bishopMove(self, move, specificCol, specificRow):
column = move[:1]
row = move[1:2]
chessBoardNumber = self.placeOnBoard(row, column)
piece = 'B' if self.whiteToMove else 'b'
possibelPositons = [i for i, pos in enumerate(self.internalChessBoard) if pos == piece]
self.internalChessBoard[chessBoardNumber] = piece
self.validBishopMoves(possibelPositons, move, specificCol, specificRow)
def validBishopMoves(self, posistions, move, specificCol, specificRow):
newColumn = self.columnToInt(move[:1])
newRow = self.rowToInt(move[1:2])
newPos = self.placeOnBoard(newRow + 1, move[:1])
potensialPosisitionsToRemove = []
for pos in posistions:
(existingRow, existingCol) = self.internalChessBoardPlaceToPlaceOnBoard(pos)
diffRow = int(existingRow - newRow)
diffCol = int(self.columnToInt(existingCol) - newColumn)
if diffRow == diffCol or -diffRow == diffCol or diffRow == -diffCol:
if not specificCol or specificCol == existingCol:
if not specificRow or (int(specificRow) -1) == int(existingRow):
xVect = 0
yVect = 0
if abs(diffRow) > abs(diffCol):
xVect = -(diffCol / abs(diffRow))
yVect = -(diffRow / abs(diffRow))
else:
xVect = -(diffCol / abs(diffCol))
yVect = -(diffRow / abs(diffCol))
checkPos = pos
nothingInBetween = True
while(checkPos != newPos):
checkPos = int(checkPos + yVect * 8 + xVect)
if(checkPos == newPos):
continue
if self.internalChessBoard[checkPos] != "1":
nothingInBetween = False
if nothingInBetween:
potensialPosisitionsToRemove.append(pos)
if len(potensialPosisitionsToRemove) == 1:
correctPos = potensialPosisitionsToRemove[0];
else:
if len(potensialPosisitionsToRemove) == 0:
raise ValueError('Cant find a valid posistion to remove', potensialPosisitionsToRemove)
notInCheckLineBindNewPos = partial(self.notInCheckLine, self.posOnBoard('K'))
correctPosToRemove = list(filter(notInCheckLineBindNewPos, potensialPosisitionsToRemove))
if len(correctPosToRemove) > 1:
raise ValueError('Several valid positions to remove from the board')
correctPos = correctPosToRemove[0]
self.internalChessBoard[correctPos] = "1"
def knightMove(self, move, specificCol, specificRow):
column = move[:1]
row = move[1:2]
chessBoardNumber = self.placeOnBoard(row, column)
piece = 'N' if self.whiteToMove else 'n'
knightPositons = [i for i, pos in enumerate(self.internalChessBoard) if pos == piece]
self.internalChessBoard[chessBoardNumber] = piece
self.validKnighMoves(knightPositons, move, specificCol, specificRow)
def validKnighMoves(self, posistions, move, specificCol, specificRow):
newColumn = self.columnToInt(move[:1])
newRow = self.rowToInt(move[1:2])
potensialPosisitionsToRemove = []
for pos in posistions:
(existingRow, existingCol) = self.internalChessBoardPlaceToPlaceOnBoard(pos)
validatePos = str(int(existingRow - newRow)) + str(int(self.columnToInt(existingCol) - newColumn))
if validatePos in ['2-1','21','1-2','12','-1-2','-12','-2-1','-21']:
if not specificCol or specificCol == existingCol:
if not specificRow or (int(specificRow) -1) == int(existingRow):
potensialPosisitionsToRemove.append(pos)
if len(potensialPosisitionsToRemove) == 1:
correctPos = potensialPosisitionsToRemove[0];
else:
if len(potensialPosisitionsToRemove) == 0:
raise ValueError('Cant find a valid posistion to remove', potensialPosisitionsToRemove)
notInCheckLineBindNewPos = partial(self.notInCheckLine, self.posOnBoard('K'))
correctPosToRemove = list(filter(notInCheckLineBindNewPos, potensialPosisitionsToRemove))
if len(correctPosToRemove) > 1:
raise ValueError('Several valid positions to remove from the board')
if len(correctPosToRemove) == 0:
raise ValueError('None valid positions to remove from the board')
correctPos = correctPosToRemove[0]
self.internalChessBoard[correctPos] = "1"
return
def pawnMove(self, toPosition, specificCol, specificRow, takes, promote):
column = toPosition[:1]
row = toPosition[1:2]
prevEnpassant = self.enpassant
self.enpassant = '-'
chessBoardNumber = self.placeOnBoard(row, column)
if(promote):
piece = promote if self.whiteToMove else promote.lower()
else:
piece = 'P' if self.whiteToMove else 'p'
self.internalChessBoard[chessBoardNumber] = piece
if(takes):
removeFromRow = (int(row) - 1) if self.whiteToMove else (int(row) + 1)
posistion = self.placeOnBoard(removeFromRow, specificCol)
piece = self.internalChessBoard[posistion] = '1'
if(prevEnpassant != '-'):
enpassantPos = self.placeOnBoard(prevEnpassant[1], prevEnpassant[0])
toPositionPos = self.placeOnBoard(toPosition[1], toPosition[0])
if(prevEnpassant == toPosition):
if(self.whiteToMove == True):
self.internalChessBoard[chessBoardNumber - 8] = '1'
else:
self.internalChessBoard[chessBoardNumber + 8] = '1'
return
else:
#run piece one more time if case of promotion
piece = 'P' if self.whiteToMove else 'p'
self.updateOldLinePos(piece,chessBoardNumber, toPosition)
def updateOldLinePos(self, char, posistion, toPosition):
startPos = posistion
counter = 0;
piece = ''
step = 8
while(posistion >= 0 and posistion < 64):
if(piece == char):
if(abs(posistion - startPos) > 10):
(row, column) = self.internalChessBoardPlaceToPlaceOnBoard(startPos)
rowAdjustedByColor = -1 if self.whiteToMove else 1
enpassant = str(column) + str(int(row) + 1 + rowAdjustedByColor)
self.enpassant = enpassant
else:
self.enpassant = '-'
piece = self.internalChessBoard[posistion] = '1'
return;
else:
if(self.whiteToMove == True):
posistion = posistion - step
self.enpassant = '-'
else:
posistion = posistion + step
self.enpassant = '-'
piece = self.internalChessBoard[posistion]
def placeOnBoard(self, row, column):
# returns internalChessBoard place
return 8 * (int(row) - 1) + self.columnToInt(column);
def internalChessBoardPlaceToPlaceOnBoard(self, chessPos):
column = int(chessPos) % 8
row = math.floor(chessPos/8)
return (row, self.intToColum(column))
def rowToInt(self, n):
return int(n)-1
def columnToInt(self, char):
# TODO: char.toLowerCase???
if(char == 'a'):
return 0
elif(char == 'b'):
return 1
elif(char == 'c'):
return 2
elif(char == 'd'):
return 3
elif(char == 'e'):
return 4
elif(char == 'f'):
return 5
elif(char == 'g'):
return 6
elif(char == 'h'):
return 7
def intToColum(self, num):
# TODO: char.toLowerCase???
if(num == 0):
return 'a'
elif(num == 1):
return 'b'
elif(num == 2):
return 'c'
elif(num == 3):
return 'd'
elif(num == 4):
return 'e'
elif(num == 5):
return 'f'
elif(num == 6):
return 'g'
elif(num == 7):
return 'h'
def resetBoard(self):
self.fen = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR'
self.whiteToMove = True
self.enpassant = '-'
self.internalChessBoard = [
'R','N','B','Q','K','B','N','R',
'P','P','P','P','P','P','P','P',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1',
'p','p','p','p','p','p','p','p',
'r','n','b','q','k','b','n','r']
self.result = ''
def printBoard(self):
loop = 1
for i in self.internalChessBoard:
print(i, end=' ')
if(loop%8 == 0):
print()
loop = loop + 1
def notInCheckLine(self, kingPos, piecePos):
"""
Verifies that the piece is not standing in "line of fire" between and enemy piece and your king as the only piece
:returns: True if the piece can move
"""
return self.checkLine(kingPos, piecePos)
def checkLine(self, kingPos, piecePos):
(kingRowInt, kingColumn) = self.internalChessBoardPlaceToPlaceOnBoard(kingPos)
kingColumnInt = self.columnToInt(kingColumn)
(pieceRowInt, pieceColumn) = self.internalChessBoardPlaceToPlaceOnBoard(piecePos);
pieceColumnInt = self.columnToInt(pieceColumn)
diffRow = int(kingRowInt - pieceRowInt)
diffCol = int(kingColumnInt - pieceColumnInt)
if (abs(diffRow) != abs(diffCol)) and diffRow != 0 and diffCol != 0:
return True
if abs(diffRow) > abs(diffCol):
xVect = (diffCol / abs(diffRow))
yVect = -(diffRow / abs(diffRow))
else:
xVect = -(diffCol / abs(diffCol))
yVect = -(diffRow / abs(diffCol))
checkPos = kingPos
nothingInBetween = True
while checkPos != piecePos and (checkPos < 64 and checkPos >= 0):
checkPos = int(checkPos + yVect * 8 + xVect)
if(checkPos == piecePos):
continue
if self.internalChessBoard[checkPos] != "1":
#print('Something between king and piece, returning a false value')
# Piece between the king and the piece can not be a self-disvoery-check.
return True
#print('No piece between the king and the piece, need to verify if an enemy piece with the possibily to go that direction exist')
# No piece between the king and the piece, need to verify if an enemy piece with the possibily to go that direction exist
columnNr = (piecePos % 8)
searchRow = pieceRowInt
if(xVect == 1):
columnsLeft = 7- columnNr
else:
columnsLeft = columnNr
posInMove = (yVect * 8) + xVect
while checkPos >= 0 and checkPos < 64 and columnsLeft > -1:
columnsLeft = columnsLeft - abs(xVect)
checkPos = int(checkPos + posInMove)
currentRow = math.floor(checkPos/8)
if(checkPos < 0 or checkPos > 63):
continue
if self.internalChessBoard[checkPos] in self.getOppositePieces(["Q", "R"]) and xVect == 0:
return False
elif self.internalChessBoard[checkPos] in self.getOppositePieces(["Q", "R"]) and yVect == 0 and searchRow == currentRow:
return False
elif self.internalChessBoard[checkPos] in self.getOppositePieces(["Q", "B"]) and (abs(xVect) == abs(yVect)):
return False
elif self.internalChessBoard[checkPos] != "1":
return True
return True
def getOppositePieces(self, pieces):
""""
Takes a list of pieces and returns it in uppercase if blacks turn, or lowercase if white.
"""
return map(lambda p: p.lower() if self.whiteToMove else p.upper(), pieces)
def posOnBoard(self, piece):
"""
:param piece: a case _sensitiv_ one letter string. Valid 'K', 'Q', 'N', 'P', 'B', 'R', will be transformed to lowercase if it's black's turn to move
:return int|[int]: Returns the posistion(s) on the board for a piece, if only one pos, a int is return, else a list of int is returned
"""
correctPiece = piece if self.whiteToMove else piece.lower()
posistionsOnBoard = [i for i, pos in enumerate(self.internalChessBoard) if pos == correctPiece]
if len(posistionsOnBoard) == 1:
return posistionsOnBoard[0]
else:
return posistionsOnBoard
if __name__ == "__main__":
f = open("1999.txt", "r")
g = open("production.txt", "w")
h = open("fails.txt", "w")
for line in f:
pgnFormat = line[2:-1]
winner = line[0]
if winner == "W":
win_text = " 1 0 0"
elif winner == "R":
win_text = " 0 1 0"
elif winner == "B":
win_text = " 0 0 1"
else:
print("error")
converter = PgnToFen()
converter.resetBoard()
mid_liste = []
try:
for move in pgnFormat.split(' '):
converter.move(move)
mid_liste.append(converter.getFullFen() + win_text)
for unit in mid_liste:
g.write(unit + "\n")
except:
h.write(line)
f.close()
g.close()
h.close()
| true
|
56af3fa98729a14a6c12a805457f6f213b7ab8b1
|
Python
|
cash2one/xai
|
/xai/brain/wordbase/adjectives/_tidy.py
|
UTF-8
| 483
| 2.703125
| 3
|
[
"MIT"
] |
permissive
|
#calss header
class _TIDY():
def __init__(self,):
self.name = "TIDY"
self.definitions = [u'having everything ordered and arranged in the right place, or liking to keep things like this: ', u'(of amounts of money) large: ']
self.parents = []
self.childen = []
self.properties = []
self.jsondata = {}
self.specie = 'adjectives'
def run(self, obj1, obj2):
self.jsondata[obj2] = {}
self.jsondata[obj2]['properties'] = self.name.lower()
return self.jsondata
| true
|
1ec927e2750a3b8ac90625ff40b562f87afb7004
|
Python
|
PilKvas/BootCamp
|
/code_wars/Century From Year.py
|
UTF-8
| 268
| 2.9375
| 3
|
[] |
no_license
|
"""The first century spans from the year 1 up to and including the year 100, The second - from the year 101 up to and including the year 200, etc.
"""
def century(year):
century = year // 100
if year % 100 == 0:
return century
return century + 1
| true
|
d759340f3dc453c9cec22269f128c5971c4603f3
|
Python
|
777GE90/pokedex
|
/tests/test_server.py
|
UTF-8
| 5,348
| 2.671875
| 3
|
[] |
no_license
|
import unittest
from unittest.mock import patch
from server import app
class PokemonTests(unittest.TestCase):
def setUp(self):
app.config["TESTING"] = True
app.config["WTF_CSRF_ENABLED"] = False
self.app = app.test_client()
@patch("modules.pokeapi.PokeAPIWrapper.get_pokemon_species_by_name")
def test_pokemon_get(self, mock_get_pokemon):
"""
Assert the GET Pokemon endpoint always returns the same result as the
get_pokemon_species_by_name method
"""
result = {
"name": "mewtwo",
"habitat": "rare",
"isLegendary": True,
"description": "Some description",
}
status_code = 200
mock_get_pokemon.return_value = (result, status_code)
response = self.app.get("/pokemon/mewtwo")
self.assertEqual(response.status_code, 200)
pokemon_json = response.json
self.assertEqual(pokemon_json, result)
result = {"message": "Error: Not Found"}
status_code = 404
mock_get_pokemon.return_value = (result, status_code)
response = self.app.get("/pokemon/mewtwo")
self.assertEqual(response.status_code, 404)
pokemon_json = response.json
self.assertEqual(pokemon_json, result)
@patch(
"modules.funtranslations.FunTranslationsAPIWrapper."
"translate_shakespeare"
)
@patch("modules.funtranslations.FunTranslationsAPIWrapper.translate_yoda")
@patch("modules.pokeapi.PokeAPIWrapper.get_pokemon_species_by_name")
def test_pokemon_translated_get_bad_status(
self, mock_get_pokemon, mock_yoda, mock_shakespeare
):
"""
Tests that translation is not attempted when getting the Pokemon failed
"""
result = {"message": "Error: Not Found"}
status_code = 404
mock_get_pokemon.return_value = (result, status_code)
response = self.app.get("/pokemon/translated/mewtwo")
mock_yoda.assert_not_called()
mock_shakespeare.assert_not_called()
self.assertEqual(response.status_code, status_code)
self.assertEqual(response.json, result)
@patch(
"modules.funtranslations.FunTranslationsAPIWrapper."
"translate_shakespeare"
)
@patch("modules.funtranslations.FunTranslationsAPIWrapper.translate_yoda")
@patch("modules.pokeapi.PokeAPIWrapper.get_pokemon_species_by_name")
def test_pokemon_translated_get_correct_translator(
self, mock_get_pokemon, mock_yoda, mock_shakespeare
):
"""
Tests that the correct translator is used depending on the get_pokemon
response
"""
poke_result = {
"name": "mewtwo",
"habitat": "rare",
"isLegendary": True,
"description": "hello, world",
}
poke_status_code = 200
mock_get_pokemon.return_value = (poke_result, poke_status_code)
yoda_result = {
"translation": "Force be with you,World",
}
yoda_status_code = 200
mock_yoda.return_value = (yoda_result, yoda_status_code)
response = self.app.get("/pokemon/translated/mewtwo")
mock_yoda.assert_called()
mock_shakespeare.assert_not_called()
poke_result["description"] = yoda_result["translation"]
self.assertEqual(response.status_code, poke_status_code)
self.assertEqual(response.json, poke_result)
poke_result = {
"name": "mewtwo",
"habitat": "rare",
"isLegendary": False,
"description": "hello, world",
}
poke_status_code = 200
mock_get_pokemon.return_value = (poke_result, poke_status_code)
shakespeare_result = {
"translation": "Valorous morrow to thee, sir, ordinary",
}
shakespeare_status_code = 200
mock_shakespeare.return_value = (
shakespeare_result,
shakespeare_status_code,
)
response = self.app.get("/pokemon/translated/mewtwo")
mock_shakespeare.assert_called()
poke_result["description"] = shakespeare_result["translation"]
self.assertEqual(response.status_code, shakespeare_status_code)
self.assertEqual(response.json, poke_result)
@patch("modules.funtranslations.FunTranslationsAPIWrapper.translate_yoda")
@patch("modules.pokeapi.PokeAPIWrapper.get_pokemon_species_by_name")
def test_pokemon_translated_get_ft_failure(
self, mock_get_pokemon, mock_yoda
):
"""
Tests that the default description is returned if the Fun Translation
fails for whatever reason
"""
poke_result = {
"name": "mewtwo",
"habitat": "rare",
"isLegendary": True,
"description": "hello, world",
}
poke_status_code = 200
mock_get_pokemon.return_value = (poke_result, poke_status_code)
yoda_result = {
"message": "Error: It broke!",
}
yoda_status_code = 500
mock_yoda.return_value = (yoda_result, yoda_status_code)
response = self.app.get("/pokemon/translated/mewtwo")
mock_yoda.assert_called()
self.assertEqual(response.status_code, poke_status_code)
self.assertEqual(response.json, poke_result)
| true
|
a6ca972b598d4aad177c5874d3415cba3e79cca5
|
Python
|
adam-lim1/MarchMadnessML
|
/mmml/mmml/game_results.py
|
UTF-8
| 9,711
| 3.125
| 3
|
[] |
no_license
|
import pandas as pd
import numpy as np
import math
import sys
def win_probs(*, home_elo, road_elo, hca_elo):
"""
Home and road team win probabilities implied by Elo ratings and home court adjustment.
"""
h = math.pow(10, home_elo/400)
r = math.pow(10, road_elo/400)
a = math.pow(10, hca_elo/400)
denom = r + a*h
home_prob = a*h / denom
road_prob = r / denom
return home_prob, road_prob
def update(*, winner, home_elo, road_elo, hca_elo, k, probs=False):
"""
Update Elo ratings for a given match up.
"""
home_prob, road_prob = win_probs(home_elo=home_elo, road_elo=road_elo, hca_elo=hca_elo)
if winner[0].upper() == 'H':
home_win = 1
road_win = 0
elif winner[0].upper() in ['R', 'A', 'V']: # road, away or visitor are treated as synonyms
home_win = 0
road_win = 1
else:
raise ValueError('unrecognized winner string', winner)
new_home_elo = home_elo + k*(home_win - home_prob)
new_road_elo = road_elo + k*(road_win - road_prob)
if probs:
return new_home_elo, new_road_elo, home_prob, road_prob
else:
return new_home_elo, new_road_elo
def getNumericSeed(seed):
seed = seed[1:].lstrip("0")
if seed[-1] in ['a', 'b']:
seed = seed[:-1]
return int(seed)
def update_progress_bar(current, total):
"""
Prints progress inplace. To be used with iterative function.
:param current: numeric. Current stage
:param total: numeric. Total number of stages (end goal)
:return: None
"""
barLength = 24 # Modify this to change the length of the progress bar
progress = float(current) / float(total)
block = int(round(barLength * progress))
text = "\rProgress: [{block}]: {current} / {total}".format(
block=("=" * max((block - 1), 0) + ">" + " " * (barLength - block)), current=current, total=total)
sys.stdout.write(text)
sys.stdout.flush()
class gameResults:
def __init__(self, df):
self.df = df
def toHomeAwayFormat(self, seed=42):
"""
Takes DF of game results with WTeam/LTeam format and returns DF of game results scrambled with HomeTeam/AwayTeam format.
Adds column of AWin (binary indicator)
"""
df = self.df
np.random.seed(seed=seed)
df['rand'] = np.random.rand(df.shape[0])
df['NLoc'] = np.where(df['WLoc'] == "N", 1, 0)
df_H = df.query('WLoc == "H" or (WLoc == "N" and rand > 0.5)')
df_A = df.query('WLoc == "A" or (WLoc == "N" and rand <= 0.5)')
df_H = df_H.drop('WLoc', axis=1)
for col in list(df_H.columns).copy():
if col[0] == "W":
df_H = df_H.rename(columns={col:('H'+col[1:])})
if col[0] == "L":
df_H = df_H.rename(columns={col:('A'+col[1:])})
df_H['HWin'] = 1
df_H['AWin'] = 0
# Flip W/L to B/A for half of games
df_A = df_A.drop('WLoc', axis=1)
for col in list(df_A.columns).copy():
if col[0] == "W":
df_A = df_A.rename(columns={col:('A'+col[1:])})
if col[0] == "L":
df_A = df_A.rename(columns={col:('H'+col[1:])})
df_A['HWin'] = 0
df_A['AWin'] = 1
home_away_results = df_H.append(df_A, sort=True)
return home_away_results
def toSeasonAggFormat(self):
"""
Duplicate results from raw results DF to allow for season-aggregations. Transforms H/A view to Team/Opponent.
Each game is represented 2x in resulting DF (once in terms of Team A and once in terms of Team B)
"""
df_a = self.toHomeAwayFormat().copy()
df_b = df_a.copy()
for col in list(df_a.columns).copy():
if col[0] == "H":
df_a = df_a.rename(columns={col:(col[1:])})
if col[0] == "A":
df_a = df_a.rename(columns={col:('Opp'+col[1:])})
#df_a['Win'] = 1
for col in list(df_b.columns).copy():
if col[0] == "H":
df_b = df_b.rename(columns={col:('Opp'+col[1:])})
if col[0] == "A":
df_b = df_b.rename(columns={col:(col[1:])})
df_c = df_a.append(df_b, sort=True)
return df_c
def getSeasonStats(self):
"""
Aggregate game by game stats to the Team/Season level. Calculate various advanced stats
"""
df_season_agg = self.toSeasonAggFormat()
# Calculate Possessions for each game
df_season_agg['possessions'] = 0.5 * (df_season_agg['FGA'] + 0.475 * df_season_agg['FTA'] - df_season_agg['OR'] + df_season_agg['TO']) \
+ 0.5 * (df_season_agg['OppFGA'] + 0.475 * df_season_agg['OppFTA'] - df_season_agg['OppOR'] + df_season_agg['OppTO'])
# Aggregate to Season Summary Level
season_stats = df_season_agg.groupby(['TeamID', 'Season']).sum()
season_stats = season_stats.rename(columns={'Win':'wins'})
# Season Advanced Stats
season_stats['o_eff'] = season_stats['Score'] / season_stats['possessions'] * 100
season_stats['d_eff'] = season_stats['OppScore'] / season_stats['possessions'] * 100
season_stats['net_eff'] = season_stats['o_eff'] - season_stats['d_eff']
season_stats.drop('DayNum', axis=1, inplace=True)
season_stats.drop('OppTeamID', axis=1, inplace=True)
season_stats.drop('rand', axis=1, inplace=True)
return season_stats
def getElo(self, hca_elo=65, k=20, initial_elo=1500.0):
# Transform W/L to H/A results format
home_away_results = self.toHomeAwayFormat()
# Define Initialized Elo Dict
elo_dict = {}
for season in set(home_away_results['Season']):
HTeams = list(set(home_away_results.query('Season == {}'.format(season))['HTeamID']))
ATeams = list(set(home_away_results.query('Season == {}'.format(season))['ATeamID']))
teams_list = list(set(HTeams + ATeams))
elo_dict[season] = {j:[initial_elo] for j in teams_list}
# Ensure game results are sorted
home_away_results.sort_values(['Season', 'DayNum'], inplace=True)
# Iterate through game results, updating elo dict
current_progress = 0
for i in home_away_results.index:
update_progress_bar(current_progress, home_away_results.shape[0])
# Get TeamID's and Season
HTeamID = int(home_away_results.loc[i]['HTeamID'])
ATeamID = int(home_away_results.loc[i]['ATeamID'])
season = int(home_away_results.loc[i]['Season'])
# Determine true winner
if home_away_results.loc[i]['HWin']==1:
winner = "H"
else:
winner = "A"
# Previous Elo Scores
home_elo_initial = elo_dict[season][HTeamID][-1]
away_elo_initial = elo_dict[season][ATeamID][-1]
# Calculate Elo update, accounting for Home Court Advantage
if home_away_results.loc[i]['NLoc'] == 1:
# No home court advantage at neutral site
h_elo_update, a_elo_update = update(winner=winner, home_elo=home_elo_initial, road_elo=away_elo_initial, hca_elo=0, k=k)
else:
h_elo_update, a_elo_update = update(winner=winner, home_elo=home_elo_initial, road_elo=away_elo_initial, hca_elo=hca_elo, k=k)
# Update Elo scores in dict
elo_dict[season][HTeamID].append(h_elo_update)
elo_dict[season][ATeamID].append(a_elo_update)
current_progress = current_progress + 1
# Convert Nested elo Dict to DataFrame
elo_df = pd.DataFrame(pd.DataFrame.from_dict(elo_dict).stack(), columns=['elo'])
elo_df['last_elo'] = elo_df['elo'].apply(lambda x: x[-1])
elo_df.index.set_names(['TeamID', 'Season'], inplace=True)
return elo_df
def getBase(self):
"""
Format DataFrame for use as base of model data w/ key info only.
To be used on Tournament results
"""
home_away_results = self.toHomeAwayFormat()
base = home_away_results[['HTeamID', 'ATeamID', 'Season','DayNum','HWin', 'HScore', 'AScore']]
return base
# def getTourneySeedWinPct(self, seeds, current_season):
# tourney_results = self.df.query('Season < {}'.format(current_season))
# seeds['numeric_seed'] = seeds['Seed'].apply(lambda x: getNumericSeed(x))
# results_seeded = tourney_results.merge(seeds, left_on=['WTeamID', 'Season'], right_on=['TeamID', 'Season'], how='left')\
# .merge(seeds, left_on=['LTeamID', 'Season'], right_on=['TeamID', 'Season'], how='left', suffixes=('_W', '_L'))[['Season', 'numeric_seed_W', 'numeric_seed_L']]
# wins = results_seeded.pivot_table(index='numeric_seed_W', columns='numeric_seed_L', aggfunc=np.count_nonzero)
# results_seeded_reverse = results_seeded.copy().rename(columns={'numeric_seed_W':'numeric_seed_L1','numeric_seed_L':'numeric_seed_W1'})
# results_seeded_reverse = results_seeded_reverse.rename(columns={'numeric_seed_W1':'numeric_seed_W','numeric_seed_L1':'numeric_seed_L'})
# stacked = results_seeded[['Season', 'numeric_seed_W', 'numeric_seed_L']].append(results_seeded_reverse[['Season', 'numeric_seed_W', 'numeric_seed_L']], sort=True)
# games = stacked.pivot_table(index='numeric_seed_W', columns='numeric_seed_L', aggfunc=np.count_nonzero)
# win_pct = wins/games
# np.fill_diagonal(win_pct.values, -999)
# win_pct.fillna(-999, inplace=True)
# games.fillna(-999, inplace=True)
# return win_pct, games
| true
|
97745a79bfc41e7713cf81f5359aea1d1014b605
|
Python
|
Laxmivadekar/file
|
/from xyz file .py
|
UTF-8
| 2,601
| 3.34375
| 3
|
[] |
no_license
|
f=open('xyz.txt')
content=f.read()
print(content)
f.close()
print('_____________________________________________________________________')
#=================================================================================
# f=open('xyz.txt','r')
# f.read()
# f.close()
print('____________________________no. of charactes we want yo read_________________________________________')
f=open('xyz.txt')
content=f.read(100)
print(content)
f.close()
print('_____________________________________________________________________')
#===============================================================================
f=open('xyz.txt')
content=f.read(11)
print('1:',content)
content=f.read(1)
print('2:',content)
f.close()
print('____________________________rt-Read in text format________________________________________')
#=============================================================================
f=open('xyz.txt','rt')
content=f.read()
for line in content:
print(line)
print('______________________________rt-as it is before but one extra line after every line_______________________________________')
#===============================================================================
f=open('xyz.txt','rt')
for line in f:
print(line)
print('_________________________________rt -side by side____________________________________')
#================================================================================
f=open('xyz.txt','rt')
for line in f:
print(line,end='')
f.close()
print('_____________________________________________________________________')
#================================================================================
f=open('xyz.txt')
content=f.read(11)
print('1:',content)
content=f.read(1)
print('2:',content)
f.close()
print('_________________________Readline____________________________________________')
#================================================================================
f=open('xyz.txt','rt')
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
# f.close()
print('________________________________readlines_________________________________________________')
#=========================================================================================
f=open('xyz.txt','rt')
print(f.readlines())
print("______________________________________________________________________________")
#===========================================================================================
f=open('abc.txt','a')
a=f.write('\n**you are lucky**')
print(a)
f.close()
| true
|
448784979c9edc5a47e210b51f3eb317f81dad70
|
Python
|
rajeshpandey2053/Python_assignment_3
|
/merge_sort.py
|
UTF-8
| 939
| 3.78125
| 4
|
[] |
no_license
|
def merge(left, right, arr):
i = 0
j =0
k = 0
while ( i < len(left) and j < len(right)):
if (left[i] <= right[j]):
arr[k] = left[i]
i = i + 1
else:
arr[k] = right[j]
j = j + 1
k = k + 1
# if remaining in left
while(i < len(left)):
arr[k] = left[i]
i = i +1
k = k + 1
# if remaining in right
while(i < len(right)):
arr[k] = right[i]
i = i +1
k = k + 1
def merge_sort(arr):
if len(arr)<2:
return
mid = len(arr) // 2
left = arr[:mid]
right = arr[mid:]
merge_sort(left)
merge_sort(right)
merge(left, right,arr)
#main function
arr = list()
num = int(input("Enter the number of elements in the list"))
for _ in range(num):
arr.append(int(input("Enter item: ")))
merge_sort(arr)
print("The sorted list through merge sort is : ", arr)
| true
|
0cac4b6446a187c980d92ab66ac51b79b7317841
|
Python
|
pujanthakrar/ECON-425-Machine-Learning
|
/dataTrans.py
|
UTF-8
| 1,436
| 3.28125
| 3
|
[] |
no_license
|
import numpy as np
from pandas import read_csv
#### functions
##### Function1: import data
def download_data(fileLocation, fields):
'''
Downloads the data for this script into a pandas DataFrame. Uses columns indices provided
'''
frame = read_csv(
fileLocation,
# Specify the file encoding
# Latin-1 is common for data from US sources
encoding='latin-1',
#encoding='utf-8', # UTF-8 is also common
# Specify the separator in the data
sep=',', # comma separated values
# Ignore spaces after the separator
skipinitialspace=True,
# Generate row labels from each row number
index_col=None,
# No header names
header=None, # use the first line as headers
usecols=fields
)
# Return the entire frame
return frame
#### Function 2: transform data to numbers
def transtonumber(string,names):
output = np.zeros((1,len(string)))
for i in range(len(string)):
for j in range(len(names)):
if string[i] == names[j]:
output[0][i] = j
return output
#### Function 3: data normalization
def rescaleNormalization(dataArray):
min = dataArray.min()
denom = dataArray.max() - min
newValues = []
for x in dataArray:
newX = (x - min) / denom
newValues.append(newX)
return newValues
| true
|
1e0c2f6d0ce9a2b280b7a24ba4b8d60b78c63090
|
Python
|
dollcg24/diab_risk
|
/backend/server/apps/ml/tests.py
|
UTF-8
| 1,794
| 2.578125
| 3
|
[
"MIT"
] |
permissive
|
from django.test import TestCase
from apps.ml.registry import MLRegistry
from apps.ml.risk_classifier.random_forest import RandomForestClassifier
class MLTests(TestCase):
def test_rf_algorithm(self):
input_data = {
"gender": "f",
"age": "B",
"bmi": "overweight",
"heredity": "n",
"calorie": "y",
"sleep": "regular",
"bp": "normal",
"smoke": "y",
"alcohol": "y",
"mental": "n",
"physical": "n",
"skin": "y",
"pcos": "y"
}
my_alg = RandomForestClassifier()
response = my_alg.compute_prediction(input_data)
#self.assertEqual('OK', response['status'])
self.assertTrue('label' in response)
self.assertEqual('h', response['label'])
self.assertEqual('m', response['label'])
self.assertEqual('l', response['label'])
def test_registry(self):
registry = MLRegistry()
self.assertEqual(len(registry.endpoints), 0)
endpoint_name = "risk_classifier"
algorithm_object = RandomForestClassifier()
algorithm_name = "random forest"
algorithm_status = "production"
algorithm_version = "0.0.1"
algorithm_owner = "Piotr"
algorithm_description = "Random Forest with simple pre- and post-processing"
algorithm_code = inspect.getsource(RandomForestClassifier)
# add to registry
registry.add_algorithm(endpoint_name, algorithm_object, algorithm_name,
algorithm_status, algorithm_version, algorithm_owner,
algorithm_description, algorithm_code)
# there should be one endpoint available
self.assertEqual(len(registry.endpoints), 1)
| true
|
55993b7622919e184c954442a55898667fe06988
|
Python
|
maheel/aws-security-hub-automated-response-and-remediation
|
/source/LambdaLayers/utils.py
|
UTF-8
| 4,675
| 2.578125
| 3
|
[
"LicenseRef-scancode-unknown-license-reference",
"Apache-2.0",
"BSD-2-Clause",
"MIT"
] |
permissive
|
#!/usr/bin/python
###############################################################################
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. #
# #
# Licensed under the Apache License Version 2.0 (the "License"). You may not #
# use this file except in compliance with the License. A copy of the License #
# is located at #
# #
# http://www.apache.org/licenses/ #
# #
# or in the "license" file accompanying this file. This file is distributed #
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express #
# or implied. See the License for the specific language governing permis- #
# sions and limitations under the License. #
###############################################################################
import json
import re
from awsapi_cached_client import AWSCachedClient
class StepFunctionLambdaAnswer:
"""
Maintains a hash of AWS API Client connections by region and service
"""
status = ''
message = ''
executionid = ''
affected_object = ''
remediation_status = ''
logdata = []
def __init__(self):
"""Set message and status - minimum required fields"""
self.status = ''
self.message = ''
self.remediation_status = ''
self.logdata = []
def __str__(self):
return json.dumps(self.__dict__)
def json(self):
return self.__dict__
def update_status(self, status):
"""Set status"""
self.status = status
def update_message(self, message):
"""Set status"""
self.message = message
def update_logdata(self, logdata):
"""Set logdata (list)"""
self.logdata = logdata
def update_executionid(self, executionid):
"""Set execution id (string)"""
self.executionid = executionid
def update_affected_object(self, affected_object):
"""Set affected_object (string)"""
self.affected_object = affected_object
def update_remediation_status(self, status):
"""Set execution id (string)"""
self.remediation_status = status
def update(self, answer_data):
if "status" in answer_data:
self.update_status(answer_data['status'])
if "message" in answer_data:
self.update_message(answer_data['message'])
if "remediation_status" in answer_data:
self.update_remediation_status(answer_data['remediation_status'])
if "logdata" in answer_data:
self.update_logdata(answer_data['logdata'])
if "executionid" in answer_data:
self.update_executionid(answer_data['executionid'])
if "affected_object" in answer_data:
self.update_affected_object(answer_data['affected_object'])
def resource_from_arn(arn):
"""
Strip off the leading parts of the ARN: arn:*:*:*:*:
Return what's left. If no match, return the original predicate.
"""
arn_pattern = re.compile(r'arn\:[\w,-]+:[\w,-]+:.*:[0-9]*:(.*)')
arn_match = arn_pattern.match(arn)
answer = arn
if arn_match:
answer = arn_match.group(1)
return answer
def partition_from_region(region_name):
"""
returns the partition for a given region
Note: this should be a Boto3 function and should be deprecated once it is.
On success returns a string
On failure returns NoneType
"""
parts = region_name.split('-')
try:
if parts[0] == 'us' and parts[1] == 'gov':
return 'aws-us-gov'
elif parts[0] == 'cn':
return 'aws-cn'
else:
return 'aws'
except:
return
def publish_to_sns(topic_name, message, region=None):
"""
Post a message to an SNS topic
"""
AWS = AWSCachedClient(region) # cached client object
partition = None
if region:
partition = partition_from_region(region)
else:
partition = 'aws'
region = 'us-east-1'
topic_arn = 'arn:' + partition + ':sns:' + region + ':' + AWS.account + ':' + topic_name
json_message = json.dumps({"default":json.dumps(message)})
message_id = AWS.get_connection('sns', region).publish(
TopicArn=topic_arn,
Message=json_message,
MessageStructure='json'
).get('MessageId', 'error')
return message_id
| true
|
90bba9cc0edc8b8c652c0e9a8f567a057209605f
|
Python
|
L-avender/AID1905
|
/PycharmProjects/python_file/month2/day13/flags.py
|
UTF-8
| 378
| 3.15625
| 3
|
[] |
no_license
|
"""
flags.py
flags 扩展功能
"""
import re
s="""Hello
北京"""
#只能匹配ASCII编码
# regex=re.compile(r"\w+",flags=re.ASCII)
#不区分大小写
#regex=re.compile(r'[a-z]+',flags=re.IGNORECASE)
#可以匹配换行
#regex=re.compile(r".+",flags=re.S)
#^,$匹配每一行的开头结尾位置
regex=re.compile(r"^北京",flags=re.M)
l=regex.findall(s)
print(l)
| true
|
4c16f2c3fe79ba66b280599fb509243d5b0414b5
|
Python
|
raviverma2791747/Hacktober-DSA
|
/ELLIPSE.PY
|
UTF-8
| 1,887
| 4.125
| 4
|
[] |
no_license
|
# Mid-Point Ellipse Algorithm C019322
def midptellipse(rx, ry, xc, yc):
x = 0
y = ry
# Initial decision parameter of region 1
d1 = ((ry * ry) - (rx * rx * ry) + (0.25 * rx * rx))
dx = 2 * ry * ry * x
dy = 2 * rx * rx * y
# For region 1
while (dx < dy):
# Using 4-way symmetry
print("(", x + xc, ",", y + yc, ")")
print("(", -x + xc, ",", y + yc, ")")
print("(", x + xc, ",", -y + yc, ")")
print("(", -x + xc, ",", -y + yc, ")")
# Checking and updating value of decision parameter based on algorithm
if (d1 < 0):
x += 1
dx = dx + (2 * ry * ry)
d1 = d1 + dx + (ry * ry)
else:
x += 1
y -= 1
dx = dx + (2 * ry * ry)
dy = dy - (2 * rx * rx)
d1 = d1 + dx - dy + (ry * ry)
# Decision parameter : - region 2
d2 = (((ry * ry) * ((x + 0.5) * (x + 0.5))) + ((rx * rx) * ((y - 1) * (y - 1))) - (rx * rx * ry * ry))
# Plotting points : - region 2
while (y >= 0):
# using 4-way symmetry
print("(", x + xc, ",", y + yc, ")")
print("(", -x + xc, ",", y + yc, ")")
print("(", x + xc, ",", -y + yc, ")")
print("(", -x + xc, ",", -y + yc, ")")
# Checking and updating parameter value based on algorithm
if (d2 > 0):
y -= 1
dy = dy - (2 * rx * rx)
d2 = d2 + (rx * rx) - dy
else:
y -= 1
x += 1
dx = dx + (2 * ry * ry)
dy = dy - (2 * rx * rx)
d2 = d2 + dx - dy + (rx * rx)
if __name__ == '__main__':
x1 = int(input("Enter x1 "))
y1 = int(input("Enter y1 "))
x2 = int(input("Enter x2 "))
y2 = int(input("Enter y2 "))
midptellipse(x1, y1, x2, y2)
| true
|
2f514794f1a5dcb74aa6421f3d192276b65f6444
|
Python
|
guard1000/Everyday-coding
|
/190113_더 맵게.py
|
UTF-8
| 470
| 3.296875
| 3
|
[] |
no_license
|
import heapq
def solution(scoville, K):
answer = 0
heapq.heapify(scoville)
while len(scoville) >1:
if scoville[0] >= K:
return answer
answer += 1
tmp = scoville[0]
heapq.heappop(scoville)
tmp += (scoville[0]*2)
heapq.heappop(scoville)
heapq.heappush(scoville, tmp)
if scoville[0] > K:
return answer
else:
return -1
s=[1, 3, 2, 9, 10, 12]
k=7
print(solution(s,k))
| true
|
7156f25014ad728695f24543ba25b922ab8789ce
|
Python
|
beader/tianchi-3rd_security
|
/models/cnn.py
|
UTF-8
| 797
| 2.5625
| 3
|
[] |
no_license
|
import tensorflow as tf
from tensorflow.keras.layers import Input, MaxPool1D, Conv1D, GlobalMaxPool1D, Concatenate, Dense
def build_cnn_model(num_classes, feat_size, name='cnn'):
input_seq = Input(shape=(None, feat_size), dtype='float32')
x = MaxPool1D(5, strides=2)(input_seq)
conv1 = Conv1D(64, kernel_size=3, strides=1, activation='relu')(x)
conv1 = GlobalMaxPool1D()(conv1)
conv2 = Conv1D(64, kernel_size=5, strides=2, activation='relu')(x)
conv2 = GlobalMaxPool1D()(conv2)
conv3 = Conv1D(64, kernel_size=7, strides=3, activation='relu')(x)
conv3 = GlobalMaxPool1D()(conv3)
x = Concatenate()([conv1, conv2, conv3])
x = Dense(num_classes, activation='softmax')(x)
model = tf.keras.Model(inputs=input_seq, outputs=x, name=name)
return model
| true
|
630eb253b214d7844b49c5defc0f69f68dfb0aaf
|
Python
|
moret/sparse-rdf
|
/tests/test_path_index.py
|
UTF-8
| 1,002
| 3
| 3
|
[] |
no_license
|
from app.persistance import db
def test_exist():
from app.persistance import pi
assert pi
def test_replace_all_paths_with_two_paths():
paths = [['nod1', 'edge1', 'nod2'], ['nod2', 'edge2', 'nod3']]
db.replace_all_paths(paths)
assert 2 == db.count_paths()
def test_replace_all_paths_doesnt_change_nodes():
nodes = ['nod1', 'nod2', 'nod3']
db.replace_all_nodes(nodes)
paths = [['nod1', 'edge1', 'nod2'], ['nod2', 'edge2', 'nod3']]
db.replace_all_paths(paths)
assert 3 == db.count_nodes()
assert 2 == db.count_paths()
def test_stored_path_returns_as_list():
paths = [['nod1', 'edge1', 'nod2'], ['nod2', 'edge2', 'nod3']]
db.replace_all_paths(paths)
assert isinstance(db.get_path(1), list)
def test_stored_paths_maintains_order():
paths = [['nod1', 'edge1', 'nod2'], ['nod2', 'edge2', 'nod3']]
db.replace_all_paths(paths)
assert ['nod1', 'edge1', 'nod2'] == db.get_path(0)
assert ['nod2', 'edge2', 'nod3'] == db.get_path(1)
| true
|
985c4c9e3cb951cdc39ba58611de5fb99e598f24
|
Python
|
tylerauerbeck/poolboy
|
/operator/gpte/util.py
|
UTF-8
| 3,472
| 2.890625
| 3
|
[] |
no_license
|
import collections
import copy
import datetime
import jinja2
import json
class TimeStamp(object):
def __init__(self, set_datetime=None):
if isinstance(set_datetime, datetime.datetime):
self.datetime = set_datetime
elif isinstance(set_datetime, str):
self.datetime = datetime.datetime.strptime(set_datetime, "%Y-%m-%dT%H:%M:%SZ")
else:
self.datetime = set_datetime
def __call__(self, arg):
return TimeStamp(arg)
def __str__(self):
return self.datetime.strftime('%FT%TZ')
def add(self, interval):
if interval.endswith('d'):
self.datetime = self.datetime + datetime.timedelta(days=int(interval[0:-1]))
elif interval.endswith('h'):
self.datetime = self.datetime + datetime.timedelta(hours=int(interval[0:-1]))
elif interval.endswith('m'):
self.datetime = self.datetime + datetime.timedelta(minutes=int(interval[0:-1]))
elif interval.endswith('s'):
self.datetime = self.datetime + datetime.timedelta(seconds=int(interval[0:-1]))
else:
raise Exception("Invalid interval format %s" % (interval))
return self
@property
def utcnow(self):
return TimeStamp(datetime.datetime.utcnow())
jinja2env = jinja2.Environment(
block_start_string='{%:',
block_end_string=':%}',
comment_start_string='{#:',
comment_end_string=':#}',
variable_start_string='{{:',
variable_end_string=':}}'
)
jinja2env.filters['to_json'] = lambda x: json.dumps(x)
def dict_merge(dct, merge_dct):
""" Recursive dict merge. Inspired by :meth:``dict.update()``, instead of
updating only top-level keys, dict_merge recurses down into dicts nested
to an arbitrary depth, updating keys. The ``merge_dct`` is merged into
``dct``.
:param dct: dict onto which the merge is executed
:param merge_dct: dct merged into dct
:return: None
"""
# FIXME? What about lists within dicts? Such as container lists within a pod?
for k, v in merge_dct.items():
if k in dct \
and isinstance(dct[k], dict) \
and isinstance(merge_dct[k], collections.Mapping):
dict_merge(dct[k], merge_dct[k])
else:
dct[k] = copy.deepcopy(merge_dct[k])
def defaults_from_schema(schema):
obj = {}
for prop, property_schema in schema.get('properties', {}).items():
if 'default' in property_schema and prop not in obj:
obj[prop] = property_schema['default']
if property_schema['type'] == 'object':
defaults = defaults_from_schema(property_schema)
if defaults:
if not prop in obj:
obj[prop] = {}
dict_merge(obj[prop], defaults)
if obj:
return obj
def jinja2process(template, variables):
variables = copy.copy(variables)
variables['timestamp'] = TimeStamp()
j2template = jinja2env.from_string(template)
return j2template.render(variables)
def recursive_process_template_strings(template, variables={}):
if isinstance(template, dict):
return { k: recursive_process_template_strings(v, variables) for k, v in template.items() }
elif isinstance(template, list):
return [ recursive_process_template_strings(item) for item in template ]
elif isinstance(template, str):
return jinja2process(template, variables)
else:
return template
| true
|