blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
bfc9e074c0972cbde593666e2d08a3a0d32ede2e
Python
luizfirmino/python-labs
/Python II/Assignment 4/210426_Filho_Luiz_q6.py
UTF-8
2,303
3.78125
4
[]
no_license
#!/usr/bin/env python3 # Assignment 4 - Q6 # Author: Luiz Firmino # Scope # In the accounts.txt file: # update the name 'Zoltar' to 'Robert' # create a tempfile with the new data # remove accounts.txt file from the directory # rename the tempfile to a new file called myaccounts.txt import os from os import path # CONST CONST_WORKING_DIR = os.path.dirname(os.path.abspath(__file__)) CONST_ACCOUNTS_FILE = "accounts.txt" CONST_TEMP_FILE ="_temp.txt" def renameFile(filePath, newName): if path.exists(filePath): os.rename(filePath, newName) else: print("Cannot rename it! File or path does not exist\n") def deleteFile(filePath): if path.exists(filePath): os.remove(filePath) else: print("Cannot delete! File or path does not exist\n") def main(): # check if accounts file exists if path.exists(os.path.join(CONST_WORKING_DIR, CONST_ACCOUNTS_FILE)): print(CONST_ACCOUNTS_FILE, "exists") # open Accounts.txt file f = open(os.path.join(CONST_WORKING_DIR, CONST_ACCOUNTS_FILE), "r") print(CONST_ACCOUNTS_FILE, "opened") # open temp file f_temp = open(os.path.join(CONST_WORKING_DIR, CONST_TEMP_FILE), "w") print(CONST_TEMP_FILE, "created") file1 = f.read().split("\n") for line in file1: if "Zoltar" in line: data = line.replace('Zoltar', 'Robert') print(line, " replaced by ", data) f_temp.write(data + '\n') print(data, " written in", CONST_TEMP_FILE) else: f_temp.write(line + '\n') print(line, " written in", CONST_TEMP_FILE) # close files f.close() print(CONST_ACCOUNTS_FILE, "closed") f_temp.close() print(CONST_TEMP_FILE, "closed") # delete file Accounts.txt deleteFile(os.path.join(CONST_WORKING_DIR, CONST_ACCOUNTS_FILE)) print(CONST_ACCOUNTS_FILE, "deleted") # rename temp file renameFile(os.path.join(CONST_WORKING_DIR, CONST_TEMP_FILE), "myaccounts.txt") print(CONST_TEMP_FILE, "rename to", "myaccounts.txt") else: print("File", CONST_ACCOUNTS_FILE, "does not exist!") if __name__ == "__main__": main()
true
00a858882440a44a7e5ffaace7db2e414ad7020b
Python
zachwill/cookiecutter-scrapy
/{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/pipelines.py
UTF-8
840
2.78125
3
[]
no_license
""" Save ModelItem's to a local SQLite database. """ from collections import defaultdict from peewee import chunked from {{cookiecutter.repo_name}}.items import ModelItem class ModelPipeline(object): "The pipeline stores scraped data in a database." def open_spider(self, spider): self.models = defaultdict(list) def close_spider(self, spider): if len(self.models): for model_name, list_of_models in self.models.items(): model = list_of_models[0].model for batch in chunked(list_of_models, 25): model.insert_many(batch).on_conflict_replace().execute() def process_item(self, item, spider): if isinstance(item, ModelItem): model_name = type(item) self.models[model_name].append(item) return item
true
955c1ef179e3b8ab274f94fc55e3cca2d281eba2
Python
bianchimro/genepi
/genepi/tests/unit_tests/ga_test.py
UTF-8
4,563
2.640625
3
[]
no_license
import os import unittest from genepi.core.ga import GeneticAlgorithm from genepi.core.gene import IntGene from genepi.core.protogene import ProtoGene from genepi.core.protogenome import ProtoGenome from genepi.core.population import POPULATION_DEFAULT_SIZE from genepi.core.stopcriteria import convergence_stop, raw_score_stop from genepi.cache.base import NoCache from genepi.storage.sqlite import SqliteStorage def fitness_evaluator(genome): v = genome.get_value('a') return v class GeneticAlgorithmTest(unittest.TestCase): def setUp(self): self.protogene_a = ProtoGene(IntGene, 'a', min_value=0, max_value=100) self.protogenome = ProtoGenome([self.protogene_a]) def tearDown(self): pass def test_init(self): algo = GeneticAlgorithm(self.protogenome, fitness_evaluator, cache_instance=NoCache()) assert algo.population.size == POPULATION_DEFAULT_SIZE def test_initialize(self): algo = GeneticAlgorithm(self.protogenome, fitness_evaluator) algo.initialize() def test_should_terminate(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=100, value=1) protogenome = ProtoGenome([protogene], mutation_probability=1) algo = GeneticAlgorithm(protogenome, fitness_evaluator, termination_criteria=convergence_stop) algo.initialize() for individual in algo.population.individuals: individual.score = 1 for x in range(11): stats = {'min_score' : 0} algo.population_stats.append(stats) algo.generation = 10 st = algo.should_terminate() assert st == True algo.generation = 1 st = algo.should_terminate() assert st == False def test_evaluate_population(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=100) protogenome = ProtoGenome([protogene]) algo = GeneticAlgorithm(protogenome, fitness_evaluator, termination_criteria=convergence_stop) algo.initialize() algo.evaluate_population() for individual in algo.population.individuals: assert individual.score == fitness_evaluator(individual) def test_best_individual(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=100) protogenome = ProtoGenome([protogene]) algo = GeneticAlgorithm(protogenome, fitness_evaluator, termination_criteria=convergence_stop) algo.initialize() for i, individual in enumerate(algo.population.individuals): individual.set_value('a', i) algo.evaluate_population() bi = algo.best_individual() assert bi.score == 0 def test_evolve_population(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=10) protogenome = ProtoGenome([protogene]) algo = GeneticAlgorithm(protogenome, fitness_evaluator, termination_criteria=convergence_stop) algo.initialize() algo.evaluate_population() g1 = algo.generation algo.evolve_population() g2 = algo.generation assert g1 == 0 and g2 == 1 def test_evolve(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=10) protogenome = ProtoGenome([protogene], mutation_probability=0.1) algo = GeneticAlgorithm( protogenome, fitness_evaluator, termination_criteria=[raw_score_stop,convergence_stop], termination_criteria_options = [{'stop_score':0}] ) algo.evolve() def test_evolve_storage(self): storage_instance = SqliteStorage("test.sqlite") protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=10) protogenome = ProtoGenome([protogene], mutation_probability=0.1) algo = GeneticAlgorithm(protogenome, fitness_evaluator, termination_criteria=convergence_stop, storage_instance=storage_instance) algo.evolve() def test_evolve_2(self): protogene = ProtoGene(IntGene, 'a', min_value=0, max_value=100) protogenome = ProtoGenome([protogene], mutation_probability=0.1) algo = GeneticAlgorithm( protogenome, fitness_evaluator, termination_criteria=[raw_score_stop,convergence_stop], termination_criteria_options = [{'stop_score':0},{'num_generations':20}] ) algo.evolve()
true
7fe18b72b214b314ef9865d166236751a3d901e1
Python
suchita-25/ameritradestockdata
/streamingdatatodb.py
UTF-8
2,475
2.84375
3
[]
no_license
""" This program gets the streaming Data from TD Ameritrade and store in Timescale DB """ import asyncio import psycopg2 from tda.auth import easy_client from tda.streaming import StreamClient import pandas as pd import config CONN = psycopg2.connect(host=config.DB_HOST, database=config.DB_NAME, user=config.DB_USER, password=config.DB_PASS) CURSOR = CONN.cursor() CLIENT = easy_client( api_key=config.api_key, redirect_uri=config.redirect_uri, token_path=config.token_path) STREAM_CLIENT = StreamClient(CLIENT, account_id=config.account_id) def order_book_handler(msg): """ This is the Message Handler, and store streaming Data in Timescale DB """ count = len(msg['content']) CONN.commit() try: for i in range(count): dict2 = {**msg['content'][i]} # print(dict2) cols = dict2.keys() cols_str = ','.join(cols) vals = [dict2[k] for k in cols] # print("Vals", vals) vals_str = ','.join(["%s" for j in range(len(vals))]) sql_str = """INSERT INTO stocksdata({0},{1}) VALUES ({2}, {3})""" \ .format('timestamp', cols_str, msg['timestamp'], vals_str) # print(sql_str) CURSOR.execute(sql_str, vals) except KeyboardInterrupt: print('Halted') CONN.commit() CONN.commit() async def read_stream(): """ This method reads the input csv file and creates the streaming connection to TD Ameritrade. """ await STREAM_CLIENT.login() await STREAM_CLIENT.quality_of_service(StreamClient.QOSLevel.EXPRESS) # Always add handlers before subscribing because many streams start sending # data immediately after success, and messages with no handlers are dropped. # stream_client.add_nasdaq_book_handler( # lambda msg: print(json.dumps(msg, indent=4))) # await stream_client.nasdaq_book_subs(['GOOG']) #Nasdaq # await stream_client.listed_book_subs(['GOOG']) #NYSE Bid & ASk ftp1 = pd.read_csv(config.ticker_path, usecols=['Symbol']) list1 = ftp1.Symbol.to_list() print(list1) await STREAM_CLIENT.level_one_equity_subs(list1) STREAM_CLIENT.add_level_one_equity_handler(order_book_handler) # stream_client.add_listed_book_handler(order_book_handler) while True: await STREAM_CLIENT.handle_message() asyncio.run(read_stream())
true
4f6f43c5d2160af6aaa98cfe9a42ccbe0990aa9b
Python
ucfilho/Metodos_Numericos_2021
/GaussSeidel.py
UTF-8
1,356
3.046875
3
[]
no_license
import numpy as np ############################################################ ## Implementation of the Gauss Seidel algorithm ## A matrix of the linear system ## f right hand side ## x0 initial guess of the solution ############################################################ def gauss_seidel(A,f,x0,ITER_MAX = 100, tol = 1E-8,_debug_=1): # size of the system n = A.shape[0] # initialize the residual res = np.linalg.norm(f-np.dot(A,x0)) # init the new vector x_new = np.zeros(n) # copy the guess x = np.array(x0,copy=True) # init niter niter = 0 # loop over the while (res>tol) and (niter<ITER_MAX): # loop over all the lines for i in range(n): # initialize the sums sum1, sum2 = 0.0, 0.0 # loop over the line elements for j in range(n): # if j<i we use the new values if j<i: sum1 += A[i,j]*x_new[j] # else we use the old ones elif j>i: sum2 += A[i,j]*x[j] # we store the new values x_new[i] = (f[i]-sum1-sum2)/A[i,i] # change the old solution to the new one x = x_new # compute the new residual res = np.linalg.norm(f-np.dot(A,x)) # increment niter niter += 1 # print the final status of the algorithm if niter == ITER_MAX: info = 0 else: info = 1 return x,info, niter
true
c7f0e21f583b94220ac49a3392e331392e45ed3e
Python
Premnath08/GUVI-Python-Class
/Problems/Hangman Game.py
UTF-8
644
3.640625
4
[]
no_license
import random country=["india","australia","america","brazil","england"] place=random.choice(country) a=input("Play Game!!! Press Enter ") count=0 i='' letter='' length=len(place) while(count<5): chance=0 char=input("\nEnter letter : ") letter=char+letter for i in place: if i in letter: print(i,end=" ") else: print(end=" _ ") chance=chance+1 if chance==0: print("\nWin") print("Word:",place) break if char not in place: print("Try Again") count=count+1 if count==10: print("Lost")
true
a19b4d0aa690fb5dfe0c6e3d0241d3bbf2783c1c
Python
vshmyhlo/similarity-learning
/transforms.py
UTF-8
192
2.875
3
[]
no_license
class CheckSize(object): def __init__(self, size): self.size = size def __call__(self, input): assert input.size == (self.size[1], self.size[0]) return input
true
93f85345856800abd360daf4a6237a8e01d9abc8
Python
jcass8695/Interview-Prep
/middle_elem_ll.py
UTF-8
1,113
4.03125
4
[]
no_license
class Node: def __init__(self, val): self.val = val self.next = None class LL: def __init__(self): self.head = None self.tail = None def insert_node(self, val): new_node = Node(val) if self.head is None: self.head = new_node if self.tail != None: self.tail.next = new_node self.tail = new_node def find_middle_elem(self): lag = self.head curr = self.head lag_index = 0 curr_index = 0 while curr: if lag_index < curr_index // 2: lag = lag.next lag_index += 1 curr = curr.next curr_index += 1 return lag.val def print_list(self): curr = self.head while curr: print(curr.val) curr = curr.next if __name__ == '__main__': linked_list = LL() linked_list.insert_node(1) linked_list.insert_node(2) linked_list.insert_node(3) linked_list.insert_node(4) linked_list.insert_node(5) print(linked_list.find_middle_elem())
true
c6d3a2c9f4d525bd2f3fab16cea0eb7bc78f4850
Python
hakbailey/advent-of-code-2020
/05/05a.py
UTF-8
564
2.96875
3
[]
no_license
import math file = "day-5-input.txt" ids = [] def pick_half(half, r): dist = (r[1] - r[0])/2 if half == "F" or half == "L": r[1] = r[1] - math.floor(dist) else: r[0] = r[0] + math.ceil(dist) return r with open(file, "r") as f: passes = f.readlines() for p in passes: p = p.rstrip() row = [0, 127] col = [0, 7] for c in p[:7]: row = pick_half(c, row) for c in p[7:]: col = pick_half(c, col) id = row[0] * 8 + col[0] ids.append(id) print(row[0], col[0], id) print(max(ids))
true
7d16d3875ff5144360ab6c4f66a9385802862152
Python
rjairath/python-algos
/graphs/graphRepresentUsingLL.py
UTF-8
2,199
3.96875
4
[]
no_license
class Node: def __init__(self, value): self.value = value self.next = None class Graph: def __init__(self, vertexCount): self.vertexCount = vertexCount self.adjList = [None] * self.vertexCount self.visitedArray = [False] * self.vertexCount def addEdge(self, from_val, to_val): if self.adjList[from_val] is None: from_node = Node(from_val) self.adjList[from_val] = from_node to_node = Node(to_val) # insert at the head of LL as it is an O(1) operation # to_node.next = self.adjList[from_val] # self.adjList[from_val] = to_node # try inserting at end now temp = self.adjList[from_val] while(temp.next): temp = temp.next temp.next = to_node def printGraph(self): for i in range(self.vertexCount): temp = self.adjList[i] print('vertex ', i, ': ', end="") while(temp): print(temp.value, end="->") temp = temp.next print() def DFS(self, start_node_num): start_node = self.adjList[start_node_num] if self.visitedArray[start_node_num] == True: return self.visitedArray[start_node_num] = True print(start_node_num) temp = start_node.next while(temp): # print(temp.value, 'val.......') self.DFS(temp.value) temp = temp.next def BFS(self, start_node_num): start_node = self.adjList[start_node_num] queue = [start_node_num] self.visitedArray[start_node_num] = True while(len(queue) > 0): # item is a number item = queue.pop(0) print(item) temp = self.adjList[item] temp = temp.next while(temp): if self.visitedArray[temp.value] == False: queue.append(temp.value) self.visitedArray[temp.value] = True temp = temp.next g = Graph(4) g.addEdge(0, 1) g.addEdge(0, 2) g.addEdge(1, 2) g.addEdge(2, 0) g.addEdge(2, 3) g.addEdge(3, 3) g.printGraph() print('BFS: ') g.BFS(2)
true
fd6e860e285e45d7d414f84cec5c685d1cabdf5f
Python
yuceltoluyag/pythondersnotlarim
/lessons3/ders5.py
UTF-8
162
2.625
3
[]
no_license
import requests import json result = requests.get("https://jsonplaceholder.typicode.com/todos") result = json.loads(result.text) for i in result: print(i)
true
87c046f5d40eb789739a416830da332c3931736e
Python
sourcery-ai-bot/library-python
/concepts/strings/multi_line_string.py
UTF-8
278
4.25
4
[]
no_license
text_str = "multi-line text string" str_method = "Python's f strings" my_string = ( f"This is an example of a {text_str} with interpolated variables " + f"displayed within placeholders using {str_method} method." ) # Prints entire string on one line. print(my_string)
true
7f827eb4bcfcb878d5ae5fe5dbae08868a36609a
Python
nasigh/assignment-2
/rock, paper,scissor.py
UTF-8
1,218
3.515625
4
[]
no_license
import random user=0 computer=0 print ("*lets play game*","\U0001F60E") print ("you have 5 set to play whith computer") print ("if you are ready choose 1 and if you are not choose 2") print ("1-yes","2-no") agreement = input("tel me:") if agreement == '1': for i in range(1,6): print("round:" ,+i ) print("computer:",+computer) print("user:", +user) gamelist = ["1-rock","2-paper","3-scissor"] for x in gamelist: print(x) ch = input ("enter your choice:") pc = random.randint(1,3) print("pc number:",+pc) if pc==ch : print("equal") elif pc==1 and ch=='2': user += 1 elif pc==1 and ch=='3': computer += 1 elif pc==2 and ch=='1': computer += 1 elif pc==2 and ch=='3': user += 1 elif pc==3 and ch=='1': user += 1 elif pc==3 and ch=='2': computer += 1 else: if computer == user: print("equal") elif computer > user: print("computer won") elif user > computer: print ("user won") elif agreement == '2' : print("good bye")
true
e5fc2c080258694dba1686fe9a6cff537793068e
Python
Tech4AfricaRHoK/Education
/backend/learnervoice/teacherfeedback/serializers.py
UTF-8
2,333
2.734375
3
[ "MIT" ]
permissive
""" Serializers for the teacher feedback API. """ from teacherfeedback.models import Profile from rest_framework import serializers class TeacherSubjectSerializer(serializers.Serializer): """ Allows us to serialize/deserialize the grades/subjects that a teacher teaches. """ grade = serializers.IntegerField(required=True, min_value=1, max_value=12) subject = serializers.CharField(required=True, max_length=255) class UserSerializer(serializers.Serializer): """ Serializer for the different types of users. """ id = serializers.IntegerField(read_only=True) name = serializers.CharField(required=True, max_length=255) surname = serializers.CharField(required=True, max_length=255) mobile = serializers.CharField(required=False, allow_null=True, max_length=100) password = serializers.CharField(max_length=255, required=False, allow_null=True) profile_type = serializers.ChoiceField(choices=Profile.TYPES, default=Profile.STUDENT) email = serializers.EmailField(required=False, max_length=255, allow_null=True) # for when we're creating a teacher - we need a subject list of what they teach subjects = serializers.ListField( child=TeacherSubjectSerializer(), required=False, allow_null=True ) # for when we're creating a student and/or teacher - the pk of the school school_id = serializers.IntegerField(required=False, allow_null=True) # for when we're creating students grade = serializers.IntegerField(required=False, allow_null=True, min_value=1, max_value=12) def validate(self, data): """ Checks if the data we've received is actually valid. """ # if we're adding a student here if data['profile_type'] == Profile.STUDENT: if 'mobile' not in data or \ 'password' not in data or \ 'school' not in data or \ 'grade' not in data: raise serializers.ValidationError("Missing field(s) in incoming request") elif data['profile_type'] == Profile.TEACHER: if 'mobile' in data: if 'password' not in data or 'subjects' not in data: raise serializers.ValidationError("Missing field(s) in incoming request") return data
true
59e25c37fca73f8aa794124e6ea43010ff5d860c
Python
HenryPaik1/WalmartDemandForecast
/utils.py
UTF-8
9,092
2.796875
3
[]
no_license
import warnings import pandas as pd import numpy as np import pickle import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt from sklearn.decomposition import PCA from pmdarima.arima import auto_arima from dateutil.relativedelta import relativedelta from datetime import * from dateutil import rrule from slacker import Slacker warnings.filterwarnings('ignore') def init_df(df, test): """ return: df, test """ print('loading data'+ '...') #df_train = df.groupby(['Store', 'Date']).agg(np.mean).drop(columns=['Dept', 'IsHoliday']) #df_t = df_train.unstack().T df['Date'] = pd.to_datetime(df['Date']) test['Date'] = pd.to_datetime(test['Date']) #test.drop(columns='IsHoliday', inplace=True) test['Weekly_Sales'] = 0 df['check'] = df.apply(lambda x: str(x['Store']) + '_' + str(x['Dept']), axis=1) test['check'] = test.apply(lambda x: str(x['Store']) + '_' + str(x['Dept']), axis=1) print('loading data'+ '...' * 2) def supplement_data(df, test, store, dept): """ - Add the ID which is in test but not in train - Fill df with weekly_sales of consecutive date to meet consistency """ df_s = pd.DataFrame({'Store': store, 'Dept': dept, 'Date': all_date, 'Weekly_Sales': 0, 'check': str(store) + '_' + str(dept)}) return df_s # make complete data all_date = df['Date'].unique() all_test_check = test['check'].unique() all_train_check = df['check'].unique() check_tag = np.where(~np.isin(all_test_check, all_train_check))[0] need_to_add = all_test_check[check_tag] print('loading data'+ '...' * 3) for tag in need_to_add: store = int(tag.split('_')[0]) dept = int(tag.split('_')[1]) df = df.append(supplement_data(df, test, store, dept), ignore_index=True).fillna(0) return df, test def get_value(data, store=1, dept=1): """ return values of specific store and dept """ c = data["Store"] == store c2 = data["Dept"] == dept return data[c&c2].reset_index(drop=True) def pivot_df(df, dept=1): """ pivot dataframe and fillna(0) """ c = df['Dept'] == dept df_pivot = df[c].pivot(index='Date', columns='Store', values='Weekly_Sales').fillna(0) start = df_pivot.index[0] end = df_pivot.index[-1] idx = pd.DatetimeIndex(start=start, end=end, freq='W-FRI') df_pivot = df_pivot.merge(pd.DataFrame(idx).rename(columns={0:'Date'}), how='outer', on='Date').fillna(0) df_pivot = df_pivot.sort_index() return df_pivot.set_index('Date') def reframe_df(previous_df, processed_data): """ convert array to pivot_table """ idx = previous_df.index col = previous_df.columns df = pd.DataFrame(data=processed_data, index=idx, columns=col) return df def pca_decomposition(data, dept, n_components=12): """ PCA deomposition according to the Dept """ try: df_svd = pivot_df(data, dept) pca = PCA(n_components=n_components) df_low = pca.fit_transform(df_svd) df_inverse = pca.inverse_transform(df_low) # re-frame df_inverse = reframe_df(previous_df=df_svd, processed_data=df_inverse) return df_inverse except: # if pca fail, return pivot_df(data, dept) def get_fcst_len(store, dept, data, data_test): """ Get the length of periods to forecast """ def weeks_between(start_date, end_date): weeks = rrule.rrule(rrule.WEEKLY, dtstart=start_date, until=end_date) return weeks.count() c = data_test['Store'] == store c2 = data_test['Dept'] == dept start = pivot_df(data, dept).index[-1] + relativedelta(weeks=1) end = data_test[c&c2]['Date'].iloc[-1] fcst_len = weeks_between(start, end) return fcst_len def custom_seasonal_adjust(denoise): """ - Average sales of each week num - It is used to do diff to adjust seasonality """ df_adjust = pd.DataFrame() df_adjust[0] = denoise.values df_adjust[1] = denoise.shift(-52).values df_adjust[2] = denoise.shift(-104).values seasonality = df_adjust.mean(axis=1)[:52] start_idx = denoise.index[0] df_seasonality = seasonality.append(seasonality, ignore_index=True).append(seasonality[:39], ignore_index=True) idx = pd.DatetimeIndex(start=start_idx, freq='W-FRI', periods=len(df_seasonality)) df_seasonality.index = idx seasonal_adjust = (denoise - df_seasonality).dropna() df_seasonality = df_seasonality.reset_index().\ assign(week_num = lambda x: x['index'].dt.week).\ drop_duplicates('week_num').\ drop(columns='index').rename(columns={0:'Weekly_Sales'}) return df_seasonality, seasonal_adjust def fill_test_form(data, data_test, fcst, store, dept): """ fill test form with fcst data """ c = data_test['Store'] == store c2 = data_test['Dept'] == dept fcst = pd.DataFrame(fcst).rename(columns={0: 'Weekly_Sales'}) try: fcst_for_test = data_test[c&c2].set_index('Date').join(fcst, on='Date', how='left', lsuffix='_0', rsuffix='_1').drop(columns='Weekly_Sales_0').Weekly_Sales_1 except: start = pivot_df(data, dept).index[-1] + relativedelta(weeks=1) idx = pd.DatetimeIndex(start=start, periods=len(fcst), freq='W-FRI') fcst.index = idx fcst_for_test = data_test[c&c2].set_index('Date').join(fcst, on='Date', how='left', lsuffix='_0', rsuffix='_1').drop(columns='Weekly_Sales_0').Weekly_Sales_1 data_test.loc[c&c2,'Weekly_Sales'] = fcst_for_test.values c = np.where(data_test['Weekly_Sales'] > 0)[0] return data_test def send_message(arg, name, store=False, fail=False): """ send slack message of the result of modeling """ with open('token.pkl', 'rb') as f: token = pickle.load(f) slack = Slacker(token) attachments_dict = dict() attachments_dict['pretext'] = name if store: if fail: text = '! fail: store {}'.format(arg) else: text = 'store {} success'.format(arg) else: if fail: text = '! fail: dept {}'.format(arg) else: text = 'dept {} success'.format(arg) attachments_dict['text'] = text slack.chat.post_message('#random', text=None, attachments=[attachments_dict]) def send_text(name, text): with open('token.pkl', 'rb') as f: token = pickle.load(f) slack = Slacker(token) attachments_dict = dict() attachments_dict['pretext'] = name attachments_dict['text'] = text slack.chat.post_message('#random', text=None, attachments=[attachments_dict]) # submission related code below: def make_Id_check(df): """ make 'check' columns: 'store_dept' - eg. store1 dept1 = '1_1' """ df['check'] = df.apply(lambda x: str(x['Store']) + '_' + str(x['Dept']), axis=1) df = df.drop(columns=['Store', 'Dept']) return df def fill_test(answer_filename): name = answer_filename # get answer csv ans = pd.read_csv(name) try: ans['Date'] = pd.to_datetime(ans['Date']) except: ans = ans.rename(columns={'index':'Date'}) ans['Date'] = pd.to_datetime(ans['Date']) ans = make_Id_check(ans) # get test form test = pd.read_csv('test.csv') test['Date'] = pd.to_datetime(test['Date']) test = test.drop(columns=['IsHoliday']) test = make_Id_check(test) # fill test form test = test.merge(ans, how='left', on=['check', 'Date']).fillna(0) return test def shift_2_5(sub): def modify_sub(sub): sub['Date'] = sub['Id'].apply(lambda x: x.split('_')[2]) sub['check'] = sub['Id'].apply(lambda x: x.split('_')[0] + '_' + x.split('_')[1]) sub['Date'] = pd.to_datetime(sub['Date']) sub['Week_num'] = sub['Date'].dt.week return sub # prepare apply shift to submission file modified_df = modify_sub(sub) c52 = modified_df['Week_num'] == 52 c51 = modified_df['Week_num'] == 51 len_ = len(modified_df['check'].unique()) len_ = int(len_ * 0.1) print('total number of IDs: ', len_); i = 0; for Id in modified_df['check'].unique(): i += 1 if not i % len_: print('complete: ', int(i / (len_ * 10) * 100), '%') c = modified_df['check'] == Id try: val1 = modified_df.loc[c&c51].Weekly_Sales.values[0] * (2.5/7) val2 = modified_df.loc[c&c52].Weekly_Sales.values[0] * (2.5/7) modified_df.loc[c&c51, 'Weekly_Sales'] = modified_df.loc[c&c51, 'Weekly_Sales'] - val1 + val2 modified_df.loc[c&c52, 'Weekly_Sales'] = modified_df.loc[c&c52, 'Weekly_Sales'] - val2 + val1 except: pass return modified_df.drop(columns=['Date', 'check', 'Week_num'])
true
d01b339c724d084d417837fe3de6a41269cc98f5
Python
tylerharter/caraza-harter-com
/tyler/cs301/fall18/materials3/code/lec-08-loops/code06_simple_loop.py
UTF-8
165
4.0625
4
[]
no_license
num = input('Enter a number: ') num = int(num) counter = 1 while counter <= num: print(counter) counter += 1 print('counter =', counter) print('Goodbye!')
true
236d584a47acc264236ef5c2573449ceab09956b
Python
Rayan-arch/flask_api
/api/repositories.py
UTF-8
3,074
2.609375
3
[]
no_license
from db import get_connection from psycopg2 import extras from auth import User class AuthorsRepository: def __init__(self): self.connection = get_connection() self.cursor = self.connection.cursor(cursor_factory=extras.RealDictCursor) def check_exists(self, author_id): self.cursor.execute('SELECT id, first_name, last_name FROM authors WHERE id = %s;', (author_id,)) return self.cursor.fetchone() def get_authors(self): self.cursor.execute('SELECT id, first_name, last_name FROM authors;') return self.cursor.fetchall() def add_author(self, *args): self.cursor.execute('INSERT INTO authors (first_name, last_name) VALUES (%s,%s) RETURNING id;', args) data = self.cursor.fetchone() self.connection.commit() return data['id'] def delete_author(self, id): self.cursor.execute('DELETE FROM authors WHERE id=%s', (id,)) self.connection.commit() class BooksRepository: def __init__(self): self.connection = get_connection() self.cursor = self.connection.cursor(cursor_factory=extras.RealDictCursor) def check_exists(self, id): self.cursor.execute('SELECT id, title, description FROM books WHERE id=%s;', (id,)) return self.cursor.fetchone() def get_books(self): self.cursor.execute('SELECT id, title, author_id, description FROM books;') return self.cursor def add_one(self, *args): self.cursor.execute('INSERT INTO books (title, author_id, description) VALUES (%s,%s,%s) RETURNING id;', args) book_id = self.cursor.fetchone() self.connection.commit() return book_id['id'] def delete_books(self, book_id): self.cursor.execute('DELETE FROM books WHERE id=%s', (book_id,)) self.connection.commit() class UsersRepository: def __init__(self): self.connection = get_connection() self.cursor = self.connection.cursor(cursor_factory=extras.RealDictCursor) def map_row_to_user(self, row): user = User() if row is not None: user.id = row['id'] user.username = row['user_name'] user.password = row['password'] else: user.id = None user.username = None user.password = None return user def get_by_id(self, user_id): self.cursor.execute('SELECT id, user_name, password FROM users WHERE id=%s', (user_id)) return self.map_row_to_user( self.cursor.fetchone() ) def get_by_username(self, username): self.cursor.execute('SELECT id, user_name, password FROM users WHERE user_name=%s;', (username,)) return self.map_row_to_user( self.cursor.fetchone() ) def save_new(self, username, password): self.cursor.execute('INSERT INTO users(user_name,password) VALUES (%s,%s) RETURNING id;', (username, password)) user_id = self.cursor.fetchone() self.connection.commit() return user_id['id']
true
dc4898d454a7f19d817c95cc0f578e385c97c4f0
Python
ademmy/Academic-Performance-in-Maths
/math_students.py
UTF-8
6,764
2.796875
3
[]
no_license
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, VotingClassifier, BaggingClassifier from sklearn.metrics import accuracy_score import warnings warnings.filterwarnings('ignore') sns.set_style('darkgrid') df_math = pd.read_csv("student-mat.csv", sep=";", names=['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3']) # data exploration maths = df_math.drop(index=0, axis=0) print() print('the data for the people offering maths') print(maths.head()) # maths print('the info from maths', '\n', maths.info()) print('the description from maths', '\n', maths.describe()) print(maths.isnull().sum().sort_values(ascending=False)) print() for cols in maths.columns: pass # print(maths[cols].value_counts()) # print() # print('Checking for missing values') # print(maths.isnull().sum().sort_values()) # print(maths.columns) cols = ['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 'studytime', 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3'] # for i in cols: # plt.figure(figsize=(8, 8)) # sns.countplot(maths[i], palette=sns.color_palette("cubehelix")) # plt.show() df = maths.copy() int_features = ['age', 'Fedu', 'failures', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G1', 'G2', 'G3', 'freetime', 'goout', 'health', 'Medu', 'studytime', 'traveltime'] print(len(int_features)) for vals in int_features: df[vals] = df[vals].astype(int) print('the number of numerical features we have in this dataset is set at', df.info()) # df['G1'] = df['G1'].astype(int) # df['G2'] = df['G2'].astype(int) # df['G3'] = df['G3'].astype(int) # df['age'] = df['age'].astype(int) score_map = {0: 'Below Average', 1: 'Below Average', 2: 'Below Average', 3: 'Below Average', 4: 'Below Average', 5: 'Below Average', 6: 'Below Average', 7: 'Below Average', 8: 'Below Average', 9: 'Below Average', 10: 'Average', 11: 'Above Average', 12: 'Above Average', 13: 'Above Average', 14: 'Above Average', 15: 'Above Average', 16: 'Above Average', 17: 'Above Average', 18: 'Above Average', 19: 'Above Average', 20: 'Above Average', } print() # for cols in df.columns: # if df[cols].dtypes == 'object': # cat_cols = cols cat_cols = df.select_dtypes(exclude=int) print() num_cols = df.select_dtypes(include=int) # explore the numerical side of things df_corr = num_cols.corr() print(df_corr['G3'].sort_values(ascending=False)) # for i in df_corr.columns: # plt.figure(figsize=(8, 8)) # sns.regplot(x=df_corr['G3'], y=df_corr[i]) # plt.show() for cols in num_cols.columns: print(num_cols[cols].value_counts()) print() print(df['G3'].value_counts()) print() print(df['G2'].value_counts()) data = df.copy() data['G1'] = data['G1'].map(score_map) data['G2'] = data['G2'].map(score_map) data['G3'] = data['G3'].map(score_map) print(data['G2'].unique()) print() print(data['G1'].unique()) print() print(data['G3'].unique()) print(data.isnull().sum().sort_values(ascending=False)) # for cols in cat_cols: # plt.figure(figsize=(8, 8)) # sns.countplot(cat_cols[cols], hue=data['G3'], palette=sns.color_palette("cubehelix")) # plt.show() # Categorical Features print(cat_cols.columns) cat_list = ['school', 'sex', 'address', 'famsize', 'Pstatus', 'Mjob', 'Fjob', 'reason', 'guardian', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic'] lb = LabelEncoder() data['G1'] = lb.fit_transform(data['G1']) data['G2'] = lb.fit_transform(data['G2']) data['G3'] = lb.fit_transform(data['G3']) print(data['G1'].value_counts()) print() for cols in cat_cols: cat_cols[cols] = lb.fit_transform(cat_cols[cols]) print(cat_cols.info()) # merging the two data frames together full_df = pd.concat([cat_cols, data], axis=1) print(type(full_df)) print() # separate the target from the data label = full_df['G3'] df_ = full_df.drop('G3', axis='columns') print(label.head()) print(df_.info()) x_train, x_test, y_train, y_test = train_test_split(df_, label, test_size=0.3, random_state=41) print('the length of the train data is', len(x_train)) print() print('the length of the test data is', len(x_test)) log_reg = LogisticRegression() log_reg.fit(x_train, y_train) print() print('the accuracy of logistic regression is set at') print(log_reg.score(x_train, y_train)) prediction = log_reg.predict(x_test) print() print('the accuracy score of the test data for logistic regression is set at') print(accuracy_score(y_test, prediction)) print() print('Next up is the Support Vector Machines') svc = SVC() svc.fit(x_train, y_train) print('the train accuracy for SVC is set at') print(svc.score(x_train, y_train)) svc_prediction = svc.predict(x_test) print() print('the accuracy for the test is set at') print(accuracy_score(y_test, svc_prediction)) print() print('Random Forest') rfc = RandomForestClassifier() rfc.fit(x_train, y_train) print() print('The train accuracy is set at') print(rfc.score(x_train, y_train)) print('the test accuracy is ste at') rfc_prediction = rfc.predict(x_test) print(accuracy_score(y_test, rfc_prediction)) print() print('Decision Trees') dsc = DecisionTreeClassifier() dsc.fit(x_train, y_train) print('the train accuracy of decision tree is set at') print(dsc.score(x_train, y_train)) print() print('the test accuracy is set at') dsc_prediction = dsc.predict(x_test) print(accuracy_score(y_test, dsc_prediction))
true
4fe959e6fe0d46326bce7ab9fce381fba5a763bd
Python
bozege/Functions.py
/karatsuba.py
UTF-8
982
3.125
3
[]
no_license
#This function returns the product of given parameters using karatsuba algorithm. def karatsuba(n,m): strn = str(n) strm = str(m) if len(strn)%2 != 0: strn = "0" + strn if len(strm)%2 != 0: strm = "0" + strm nhalf1 = "" nhalf2 = "" mhalf1 = "" mhalf2 = "" A = 0 B = 0 C = 0 for i in range (int(len(strn))): if len(nhalf1) < len(strn)/2: nhalf1 += strn[i] else: nhalf2 += strn[i] for i in range (int(len(strm))): if len(mhalf1) < len(strm)/2: mhalf1 += strm[i] else: mhalf2 += strm[i] A = (int(nhalf1)*int(mhalf1)) #* ((10**(int(len(nhalf1))))**2) B = (int(nhalf2)*int(mhalf2)) C = (int(nhalf1) + int(nhalf2)) * (int(mhalf1) + int(mhalf2)) result = (A * ((10**(int(len(nhalf1))))**2)) + ((C - (A + B)) * (10**(int(len(nhalf1))))) + B return result
true
f125902465661669acaa2b8a303a9d86cc95946a
Python
timkl/alexa-runlog
/alexa-runlog.py
UTF-8
2,386
2.53125
3
[]
no_license
import logging import csv from datetime import datetime, timedelta from flask import Flask, render_template from flask_ask import Ask, question, statement app = Flask(__name__) ask = Ask(app, "/") log = logging.getLogger() log.addHandler(logging.StreamHandler()) log.setLevel(logging.DEBUG) logging.getLogger('flask_ask').setLevel(logging.DEBUG) @ask.launch def launch(): welcome_msg = render_template('welcome') return question(welcome_msg) @ask.intent("DurationIntent", convert={'duration': 'timedelta'}) def log_minutes(duration): s = duration.total_seconds() hours, remainder = divmod(s, 3600) minutes, seconds = divmod(remainder, 60) minutes = int(minutes) seconds = int(seconds) logged_msg = render_template('run_logged', minutes=minutes, seconds=seconds) personal_best_msg = render_template('personal_best', minutes=minutes, seconds=seconds) personal_worst_msg = render_template('personal_worst', minutes=minutes, seconds=seconds) # Parse CSV file and get the personal best/worst. get_data = open('data.csv', 'r') reader = csv.reader(get_data) run_results = (filter(None, sum(list(reader), []))) pb = min(run_results) pb_ = datetime.strptime(pb, "%H:%M:%S") personal_best = timedelta(hours=pb_.hour, minutes=pb_.minute, seconds=pb_.second) pw = max(run_results) pw_ = datetime.strptime(pw, "%H:%M:%S") personal_worst = timedelta(hours=pw_.hour, minutes=pw_.minute, seconds=pw_.second) get_data.close() # Write duration to CSV file write_data = open('data.csv', 'a') write_data.write("{0},\n".format(duration)) write_data.close() # Determine what message to play if(personal_best > duration): return statement(personal_best_msg) if(personal_worst < duration): return statement(personal_worst_msg) else: return statement(logged_msg) @ask.session_ended def session_ended(): log.debug("Session ended!") return "", 200 if __name__ == '__main__': app.run(debug=True)
true
28b4fcc999f1c39a48845e8d62848ccce787fb6b
Python
Evgeny-Ivanov/mathcup_server
/answers/services.py
UTF-8
461
3.015625
3
[]
no_license
class СheckAnswersService(object): @staticmethod def normalize_answer(answer): answer = answer.strip() answer = answer.lower() answer = answer.replace(',', '.') return answer @staticmethod def check_answer(user_answer): answer1 = СheckAnswersService.normalize_answer(user_answer.answer) answer2 = СheckAnswersService.normalize_answer(user_answer.task.answer) return answer1 == answer2
true
aade309916bde2e10cf786c0267fcb981891531b
Python
pooja1909/ai-ml-projects-data-science
/project-iris-dataset/final/q4/node.py
UTF-8
448
2.703125
3
[]
no_license
#The class is just used to simply store each node. class decisionnode: def __init__(self,col=-1,value=None,results=None,tb=None,fb=None): self.col=col # column index of criteria being tested self.value=value # vlaue necessary to get a true result self.results=results # dict of results for a branch, None for everything except endpoints self.tb=tb # true decision nodes self.fb=fb # false decision nodes
true
50fdcb058fe2c5ff11277ac97b4fda2f8bb2c72a
Python
fenrrir/pug-pb-17032018
/descriptors/descr1.py
UTF-8
715
3.484375
3
[]
no_license
class selfclsmethod(object): # um novo tipo de método pro python # o método irá receber automaticamente a instância e a classe atual def __init__(self, method): self.method = method def __get__(self, obj, type): def new_method( *args, **kwargs ): return self.method( obj, type, *args, **kwargs) return new_method class Exemplo: @selfclsmethod def test(self, cls): return self, cls @classmethod def test_class(cls): return cls def test(): exm = Exemplo() assert exm.test_class() == Exemplo assert exm.test() == (exm, Exemplo) if __name__ == '__main__': test()
true
c6e88925309196a3436ad6121900e3c70fc23b99
Python
FerCremonez/College-1st-semester-
/lista3e6.py
UTF-8
552
3.765625
4
[]
no_license
import math print('informe os coeficientes de uma equação de 2º grau:') a=float(input('a=')) b=float(input('b=')) c=float(input('c=')) if a==0: print('não é uma equação de 2º grau ') else: delta=b**2 -4*a*c if delta<0: print('Não existe raiz real') else: if delta==0: x=(-b)/2*a print('raiz= {}. raiz unica') else: x1= (-b+math.sqrt(delta))/(2*a) x2= (-b-math.sqrt(delta))/(2*a) print('raízes x1={} e x2={}'.format(x1,x2))
true
aa4d2632eb4dda1dc7a0d7be9665bc99fb0927a2
Python
sungminoh/algorithms
/leetcode/solved/2432_Number_of_Zero-Filled_Subarrays/solution.py
UTF-8
1,749
3.671875
4
[]
no_license
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 sungminoh <smoh2044@gmail.com> # # Distributed under terms of the MIT license. """ Given an integer array nums, return the number of subarrays filled with 0. A subarray is a contiguous non-empty sequence of elements within an array. Example 1: Input: nums = [1,3,0,0,2,0,0,4] Output: 6 Explanation: There are 4 occurrences of [0] as a subarray. There are 2 occurrences of [0,0] as a subarray. There is no occurrence of a subarray with a size more than 2 filled with 0. Therefore, we return 6. Example 2: Input: nums = [0,0,0,2,0,0] Output: 9 Explanation: There are 5 occurrences of [0] as a subarray. There are 3 occurrences of [0,0] as a subarray. There is 1 occurrence of [0,0,0] as a subarray. There is no occurrence of a subarray with a size more than 3 filled with 0. Therefore, we return 9. Example 3: Input: nums = [2,10,2019] Output: 0 Explanation: There is no subarray filled with 0. Therefore, we return 0. Constraints: 1 <= nums.length <= 105 -109 <= nums[i] <= 109 """ from typing import List import pytest import sys class Solution: def zeroFilledSubarray(self, nums: List[int]) -> int: ret = 0 zero_cnt = 0 for n in nums: if n != 0: ret += zero_cnt * (zero_cnt+1) // 2 zero_cnt = 0 else: zero_cnt += 1 ret += zero_cnt * (zero_cnt+1) // 2 return ret @pytest.mark.parametrize('args', [ (([1,3,0,0,2,0,0,4], 6)), (([0,0,0,2,0,0], 9)), (([2,10,2019], 0)), ]) def test(args): assert args[-1] == Solution().zeroFilledSubarray(*args[:-1]) if __name__ == '__main__': sys.exit(pytest.main(["-s", "-v"] + sys.argv))
true
fb7c5588b97591642ee14751e6e81ae880c33195
Python
wanghongjuan/intel-iot-refkit
/meta-iotqa/lib/oeqa/runtime/nodejs/ocfdemoapp/led.py
UTF-8
3,238
2.640625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import os import sys import time import subprocess from uiautomator import device as d from oeqa.oetest import oeRuntimeTest sys.path.append(os.path.dirname(__file__)) from appmgr import AppMgr import data_settings class CordovaPluginOCFDemoAppLedTest(oeRuntimeTest): '''Automatize the Cordova plugin OCF demo app tests like checking if the resources are found, and resource information is readonly. ''' pkg_id = 'com.example.CordovaPluginOcfDemo' led_item = None device_found = False resource_found = False details_btn = None id_item = None led_value_item = None led_value = None appmgr = AppMgr() @classmethod def setUpClass(cls): ''' Launch the app and find the OCF resources. ''' cls.appmgr.kill_app(cls.pkg_id) cls.appmgr.launch_app(cls.pkg_id) time.sleep(data_settings.app_launch_and_wait) def init_led_sensor(self): ''' Go to the detailed page of the OCF resource. ''' self.led_item = d(className='android.view.View', descriptionContains='Path: /a/led') self.led_item.click() time.sleep(1) self.details_btn = d(className='android.widget.Button') self.id_item = d(className='android.view.View', descriptionStartsWith='id') self.led_value_item = d(className='android.view.View', index=14).child(className='android.view.View', index=1) self.led_value = self.led_value_item.description def test_led_resource_found(self): '''Check if the led resources can be found.''' self.appmgr.go_to_resources_for_ocfdemo() time.sleep(data_settings.app_found_res_and_wait) self.resource_found = d.exists(className='android.view.View', descriptionContains='/a/led') self.assertTrue(self.resource_found, 'The led resource is not found.') def test_led_resource_has_properties(self): '''Check if the led resource has properties like id and value.''' self.init_led_sensor() self.assertEqual(len(self.details_btn), 2) self.assertEqual(self.id_item.description.split(':')[-1].strip(), 'led', 'Id of led resource not found.') self.assertEqual(self.led_value, 'false', 'Initial led value is not false!') def test_led_z_device_found(self): ''''Check if the OCF device can be found.''' self.appmgr.go_to_devices_for_ocfdemo() time.sleep(data_settings.app_found_dev_and_wait) self.device_found = d.exists(descriptionContains='UUID') self.device_found = self.device_found and d.exists(descriptionContains='URL') self.device_found = self.device_found and d.exists(descriptionContains='Name') self.device_found = self.device_found and d.exists(descriptionContains='Data models') self.device_found = self.device_found and d.exists(descriptionContains='Core spec version') self.device_found = self.device_found and d.exists(descriptionContains='Role') self.assertTrue(self.device_found, 'OCF device is not found.') @classmethod def tearDownClass(cls): '''Terminate the app.''' cls.appmgr.kill_app(cls.pkg_id)
true
ea8ecf1081db1f353e4e19aea0daa212b9dd77c0
Python
mateusgruener/cursopython
/Aulas/1/funcoes.py
UTF-8
176
3.0625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Mar 15 17:20:09 2021 @author: Usuario """ def importada(x): importada=x**2 return importada print(importada(8))
true
31627118778e05e3ecf828ec2fe7b939a0b91eb7
Python
junbinding/algorithm-notes
/recs.construct-binary-tree-from-preorder-and-inorder-traversal.py
UTF-8
980
4.15625
4
[]
no_license
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: """ 105. 从前序与中序遍历序列构造二叉树 https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/ 根据一棵树的前序遍历与中序遍历构造二叉树。 前序遍历 preorder = [3,9,20,15,7],根 + 左 + 右 中序遍历 inorder = [9,3,15,20,7],左 + 根 + 右 """ def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: if not preorder or not inorder: return # 找到根节点 root = TreeNode(preorder[0]) # 从中序列表中,通过根节点分割左右子树 idx = inorder.index(preorder[0]) root.left = self.buildTree(preorder[1:idx+1], inorder[:idx]) root.right = self.buildTree(preorder[1+idx:], inorder[idx+1:]) return root
true
ce237ad7a825624bb9184006e2d229269e8c80f2
Python
sqlconsult/byte
/Python/binaryTree.py
UTF-8
1,998
3.4375
3
[]
no_license
import math import sys #import pyodbc import datetime class Node: def __init__(self, data): self.left = None self.right = None self.data = data class Tree: def __init__(self): self.root = None def insert(self, root, data): #print('data=', data) if self.root == None: #print(' self.root == None') self.root = Node(data) elif root == None: #print(' root == None') root = Node(data) else: if data <= root.data: #print(' data <= root.data') root.left = self.insert(root.left, data) elif data > root.data: #print(' data > root.data') root.right = self.insert(root.right, data) return root def inorder(self, root): if root == None: return self.inorder(root.left) print(root.data) self.inorder(root.right) def findNode(self, node, val): if node is None: return False elif val == node.data: return True elif val < node.data: return self.findNode(node.left, val) else: return self.findNode(node.right, val) # Define a main() function def main(): tree = Tree() tree.insert(tree.root, 8) tree.insert(tree.root, 3) tree.insert(tree.root, 10) tree.insert(tree.root, 1) tree.insert(tree.root, 6) tree.insert(tree.root, 4) tree.insert(tree.root, 7) tree.insert(tree.root, 14) tree.insert(tree.root, 13) tree.inorder(tree.root) findVal = tree.findNode(tree.root, 5) print('5', findVal) findVal = tree.findNode(tree.root, 6) print('6', findVal) # This is the standard boilerplate that calls main() function if __name__ == '__main__': main()
true
13996dc2d1c7c901a0b084c59c60e1c4a4a0c211
Python
muralidhar8190/Royal
/if.py
UTF-8
102
2.984375
3
[]
no_license
inp=[] if len(inp)==0: inp.append(10) print("i am inside if condition") print(inp)
true
52779a40c092d18ee9d80296d1a87d88b2339bfe
Python
GLAMOS/dataflow
/dataflow/DataReaders/DatabaseReaders/VolumeChangeReader.py
UTF-8
3,656
2.96875
3
[ "MIT" ]
permissive
''' Created on 12.07.2018 @author: yvo ''' from dataflow.DataReaders.DatabaseReaders.GlamosDatabaseReader import GlamosDatabaseReader from dataflow.DataObjects.VolumeChange import VolumeChange from dataflow.DataObjects.Enumerations.HeightCaptureMethodEnumeration import HeightCaptureMethodEnum from dataflow.DataObjects.Enumerations.VolumeChangeEnumerations import AnalysisMethodEnum import uuid class VolumeChangeReader(GlamosDatabaseReader): ''' Reader object to retrieve volume change data stored in the GLAMOS PostGIS database. Attributes: _TABLE_VOLUME_CHANGE str Absolute name of the table or view to retrieve the volume-change data from (<schema>.<table | view>). ''' _TABLE_VOLUME_CHANGE = "volume_change.vw_volume_change" def __init__(self, accessConfigurationFullFileName): ''' Constructor @type accessConfigurationFullFileName: string @param accessConfigurationFullFileName: Path to the private database access configuration file. ''' super().__init__(accessConfigurationFullFileName) def getData(self, glacier): ''' Retrieves all volume change measurement of the given glacier. As identification of the glacier, the uuid-based primary key of the glacier will be used. The measurements are stored in the volumeChange dictionary of the glacier instance. @type glacier: DataObject.Glacier.Glacier @param glacier: Glacier of which the time series of volume changes has to be retrieved. ''' statement = "SELECT * FROM {0} WHERE pk_glacier = '{1}';".format(self._TABLE_VOLUME_CHANGE, glacier.pk) results = super().retriveData(statement) for result in results: glacier.addVolumeChange(self._recordToObject(result)) def _recordToObject(self, dbRecord): ''' Converts a single record of the database into a glacier object. @type dbRecord: list @param dbRecord: List with all values of one database record. @rtype: DataObjects.VolumeChange.VolumeChange @return: VolumeChange object of the database record. ''' # Converting the PostgreSQL data types into Python data types. pk = uuid.UUID(dbRecord[0]) dateFrom = dbRecord[11] dateFromQuality = None dateTo = dbRecord[12] dateToQuality = None areaFrom = float(dbRecord[13]) areaTo = float(dbRecord[14]) heightCaptureMethodFrom = HeightCaptureMethodEnum(int(dbRecord[5])) heightCaptureMethodTo = HeightCaptureMethodEnum(int(dbRecord[7])) analysisMethod = AnalysisMethodEnum(int(dbRecord[9])) elevationMaximumFrom = float(dbRecord[15]) elevationMinimumFrom = float(dbRecord[16]) elevationMaximumTo = float(dbRecord[17]) elevationMinimumTo = float(dbRecord[18]) volumeChange = float(dbRecord[20]) heightChangeMean = float(dbRecord[19]) return VolumeChange( pk, dateFrom, dateFromQuality, dateTo, dateToQuality, areaFrom, areaTo, heightCaptureMethodFrom, heightCaptureMethodTo, analysisMethod, elevationMaximumFrom, elevationMinimumFrom, elevationMaximumTo, elevationMinimumTo, volumeChange, heightChangeMean)
true
49cfc313ff708e8f868ade60e91b20cccece3200
Python
karishmachawla4/PersonalDevelopment
/WordCounter.py
UTF-8
406
4.0625
4
[]
no_license
# Count words in sentence def wordCounter(string): print("Enter string: ") counts = {} words = string.split() # print(string) for word in words: if str.capitalize(word) in counts: counts[str.capitalize(word)] += 1 else: counts[str.capitalize(word)] = 1 return counts print(wordCounter('My Name is Akshay Kamra and I am the first of my name'))
true
d90cf9e2a902c2799e38c256fbbb3555f203044b
Python
khushigupta515/contentaggregator
/webscrapingfinal.py
UTF-8
3,525
2.984375
3
[]
no_license
import requests from bs4 import BeautifulSoup import sqlite3 import schedule import time import smtplib, ssl conn = sqlite3.connect('scraping.db') global finalstr="" def scrapequotes(): conn.execute('''CREATE TABLE if not exists tablenew (counter int,date text)''') count=0 finalstr="" for j in range(3): url = "http://quotes.toscrape.com/tag/love/page/{}/".format(j) stuff = requests.get(url) soup = BeautifulSoup(stuff.content) firstQuote = soup.findAll("span",attrs={"class","text"}) for i in range(len(firstQuote)): count+=1 k=firstQuote[i].text ar=[count,k] conn.execute("INSERT INTO tablenew VALUES (?,?)",ar) print("LOVE QUOTES FROM quotes.toscrape.com") for row in conn.execute('SELECT * FROM tablenew'): print(row) finalstr=finalstr+"\n"+row[1] conn.commit() global finalstr2="" def scrapeBooks(url,count=1,urlNum=1): conn.execute('''CREATE TABLE if not exists table2 (data1 text,data2 text)''') bookInfo = requests.get(url) soup2 = BeautifulSoup(bookInfo.content) anotherSoup = soup2.findAll("li",attrs={"class", "col-xs-6 col-sm-4 col-md-3 col-lg-3"}) for i in range(len(anotherSoup)): print(count,')', 'Title: ', anotherSoup[i].h3.a['title']) print(' Price:',anotherSoup[i].find('p',attrs='price_color').text) print() title1=anotherSoup[i].h3.a['title'] price1=anotherSoup[i].find('p',attrs='price_color').text ar=[title1,price1] conn.execute("INSERT INTO table2 VALUES (?,?)",ar) finalstr2=finalstr2+title1+price1+"\n" conn.commit() count+=1 if(len(soup2.findAll('li',attrs={'class','next'}))==1): if urlNum>1: url="http://books.toscrape.com/catalogue/"+soup2.findAll('li',attrs={'class','next'})[0].a['href'] print('---- URL Being Scraped ---- ') print(url) print('--------------------------') print() scrapeBooks(url,count,urlNum) else: url="http://books.toscrape.com/"+soup2.findAll('li',attrs={'class','next'})[0].a['href'] print('---- URL Being Scraped ---- ') print(url) print('---------------------------') print() urlNum+=1 scrapeBooks(url,count,urlNum) def sendingdatabasethroughmail(): port = 465 # For SSL smtp_server = "smtp.gmail.com" mailid=input("Enter e-mail id\n") sender_email = "khushigupta515@gmail.com" # Enter your address receiver_email = mailid # Enter receiver address password = input("Type your password and press enter: ") message = """\ Subject: Hi there This message is sent from Python."""+finalstr+finalstr2 context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, message) scrapequotes() url = "http://books.toscrape.com/" scrapeBooks(url) sendingdatabasethroughmail() lambda : scrapeBooks(url) schedule.every().day.at("00:00").do(scrapequotes) schedule.every().day.at("00:00").do(lambda : scrapeBooks(url)) while True: schedule.run_pending() time.sleep(1) conn.close()
true
a9ad3e6e260d1689cf6378c257606a1fd67a85fe
Python
financo/learn-ml
/04-kNN/02-kNN-in-scikit-learn/kNN_function/kNN.py
UTF-8
1,293
2.890625
3
[]
no_license
import numpy as np from math import sqrt from collections import Counter def kNN_classify(k, X_train, y_train, x): assert 1 <= k <= X_train.shape[0], "k must be valid" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train" assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train" distance = [sqrt(sum((x_train - x) ** 2)) for x_train in X_train] most_common = Counter(y_train[np.argsort(distance)[:k]]).most_common(1) predict = most_common[0][0] return predict if __name__ == '__main__': raw_data_X = [[3.393533211, 2.331273381], [3.110073483, 1.781539638], [1.343808831, 3.368360954], [3.582294042, 4.679179110], [2.280362439, 2.866990263], [7.423436942, 4.696522875], [5.745051997, 3.533989803], [9.172168622, 2.511101045], [7.792783481, 3.424088941], [7.939820817, 0.791637231] ] raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] X_train = np.array(raw_data_X) y_train = np.array(raw_data_y) x = np.array([8.093607318, 3.365731514]) print(kNN_classify(6, X_train, y_train, x))
true
19edfbb154a0a62b5aefc94544372ec3a9a2472b
Python
cyy-hub/InterviewCoding
/cyy_xiecheng_1.py
UTF-8
863
2.9375
3
[]
no_license
import sys str1 = sys.stdin.readline().strip() str2 = sys.stdin.readline().strip() def find_b(string): char_dict = {} for char in string: if not char_dict.get(char): char_dict[char] = 1 else: char_dict[char] += 1 small_num = len(string)+1 for key in char_dict: small_num = min(small_num, char_dict[key]) for key in char_dict: char_dict[key] /= small_num need_dit = {} match = 0 b = "" for char in string: if not need_dit.get(char): need_dit[char] = 1 else: need_dit[char] += 1 if need_dit[char] == char_dict[char]: match +=1 b+=char if match == len(char_dict): break return b b1 = find_b(str1) b2 = find_b(str2) if b1 == b2: print(b1) else: print("")
true
0f436a7c18600670ab489534e16fa7d7fa09b349
Python
wkwkgg/atcoder
/abc/problems150/142/c.py
UTF-8
184
2.828125
3
[]
no_license
N = int(input()) A = list(map(int, input().split())) xs = [] for i in range(N): xs.append((i+1, A[i])) xs = sorted(xs, key=lambda x: x[1]) print(" ".join(str(x[0]) for x in xs))
true
95a2b5ab5823c267a7e9e41600da87c8eaffdf62
Python
1horstmann/Calculo-Numerico
/main.py
UTF-8
1,013
3.15625
3
[]
no_license
import classes # Definição de dados x = [2.5 ,3.9 ,2.9, 2.4, 2.9, 0.8, 9.1, 0.8, 0.7, 7.9, 1.8, 1.9, 0.8, 6.5, 1.6, 5.8, 1.3, 1.2, 2.7] #Definindo os dados da variável independente y = [211, 167, 131, 191, 220, 297, 7, 211, 300, 107, 167, 266, 227, 86, 207, 115, 285, 199, 172] #Definindo os dados da variável dependente # Chamando a classe a = classes.AjustamentoDeCurvas(x,y) # Utilizando a classe a.calculo_r() #calculando o valor de r a.calculo_r2() #calculando o valor de r^2 a.ajustamento_linear() #calculando o ajustamento linear a.ajustamento_quadratico() #calculando o ajustamento quadrático a.ajustamento_exponencial() #calculando o ajustamento exponencial a.ajustamento_hiperbolico() #calculando o ajustamento hiperbólico a.ajustamento_loglog() #calculando o ajustamento log log a.melhor_expressão_ajustamento(mostrar=True) #verificando qual é o melhor ajustamento a.calculo_ajustamento(x=10,ajustamento='Linear') #calculando um valor de y, dado um valor de x em determinado ajustamento
true
9c7891985ca22558d166c96bdbe9884b36ddd039
Python
hunseok329/programmers
/소수 찾기.py
UTF-8
468
3
3
[]
no_license
from itertools import permutations def solution(numbers): sumP = [] count = 0 for s in range(1, len(numbers)+1): p = list(permutations(numbers, s)) for num in set(p): sumP.append(int(''.join(num))) sumP = set(sumP) for w in sumP: if w == 1 or w == 0: continue for n in range(2, w//2+1): if w % n == 0: break else: count += 1 return count
true
8b6f6a40755e49c97a993cd35334d7072a139024
Python
liyi0206/leetcode-python
/170 two sum III - data structure design.py
UTF-8
954
4.09375
4
[]
no_license
class TwoSum(object): # Trade off in this problem should be considered # if need to add fast, use array to hold numbers # if need to find fast,use hashmap to hold numbers def __init__(self): """ initialize your data structure here """ self.mp={} def add(self, number): """ Add the number to an internal data structure. :rtype: nothing """ if number in self.mp: self.mp[number]+=1 else: self.mp[number]=1 def find(self, value): """ Find if there exists any pair of numbers which sum is equal to the value. :type value: int :rtype: bool """ for i in self.mp: j = value-i if i==j and self.mp[i]>1 or i!=j and j in self.mp: return True return False twoSum = TwoSum() twoSum.add(1) twoSum.add(3) twoSum.add(5) print twoSum.find(4) #True print twoSum.find(7) #False
true
70d117ddf2073c55e469ab7eed808662db6e5ad1
Python
nashtash/python_covid19_nrw
/get_data_rki_ndr_districts.py
UTF-8
2,554
2.609375
3
[]
no_license
from functools import lru_cache from io import BytesIO import requests import pandas as pd from utils.storage import upload_dataframe url = 'https://ndrdata-corona-datastore.storage.googleapis.com/rki_api/current_cases_regions.csv' @lru_cache def get_data(): # Download website response = requests.get(url) assert bool(response), 'Laden der RKI-NDR-Daten fehlgeschlagen' # Parse into data frame df = pd.read_csv(BytesIO(response.content)) return df, response def clear_data(): df, response = get_data() # Clean up data here grouped = df[df['IdLandkreis'] != 11000].groupby('Bundesland').sum() def sum_of(column): return grouped[column]['Berlin'] population = 3644826 berlin = { 'IdLandkreis': 11000, 'Bundesland': 'Berlin', 'IdBundesland': 11, 'Landkreis': 'Berlin', 'Faelle': sum_of('Faelle'), 'FaelleDelta': sum_of('FaelleDelta'), 'Todesfaelle': sum_of('Todesfaelle'), 'TodesfaelleDelta': sum_of('TodesfaelleDelta'), 'Genesen': sum_of('Genesen'), 'GenesenDelta': sum_of('GenesenDelta'), 'population': population, 'Inzidenz': sum_of('Faelle') / population * 100_000, 'Todesrate': sum_of('Todesfaelle') / population * 100_000, 'NeueFaelleLetzte7Tage': sum_of('NeueFaelleLetzte7Tage'), 'InzidenzLetzte7Tage': sum_of('NeueFaelleLetzte7Tage') / population * 100_000, } # Drop old Berlin rows and add new one df = df[df['Bundesland'] != 'Berlin'] df = df.append(berlin, ignore_index=True).sort_values(by='IdLandkreis') df['IdLandkreis'] = df['IdLandkreis'].astype('int') df['IdBundesland'] = df['IdBundesland'].astype('int') df['Faelle'] = df['Faelle'].astype('int') df['FaelleDelta'] = df['FaelleDelta'].astype('int') df['Todesfaelle'] = df['Todesfaelle'].astype('int') df['TodesfaelleDelta'] = df['TodesfaelleDelta'].astype('int') df['Genesen'] = df['Genesen'].astype('int') df['GenesenDelta'] = df['GenesenDelta'].astype('int') df['population'] = df['population'].astype('int') df['NeueFaelleLetzte7Tage'] = df['NeueFaelleLetzte7Tage'].astype('int') df = df.rename(columns={"IdLandkreis": "ID"}) return df def write_data_rki_ndr_districts(): df = clear_data() filename = 'rki_ndr_districts.csv' upload_dataframe(df, filename) # If the file is executed directly, print cleaned data if __name__ == '__main__': df = clear_data() print(df) # print(df.to_csv(index=False))
true
10ccb3f85e2814f6f6c75376b259ec518bac1daa
Python
ppitu/Python
/Studia/Cwiczenia/Zestaw4/zadanie2.py
UTF-8
756
4.15625
4
[]
no_license
#Zadanie 3.5 def rysuj(n): string = '|' + '....|' * n + '\n' string += str(0) for x in range(n): string += str(x + 1).rjust(5) return string print("Zadanie 3.5:") dlugosc = input('Podaj dlugosc: ') dlugosc = int(dlugosc) print(rysuj(dlugosc)) #Zadanie 3.6 def pobierz_liczbe(string): number = input(string) try: number = int(number) except ValueError: print('Nie podano liczby') else: return number def rysuj1(): string = '' wiersz = pobierz_liczbe('Podaj ile wierszy: ') kolumny = pobierz_liczbe('Podaj ile kolumn: ') for x in range(wiersz): string += '+' + '----+' * (kolumny) + '\n' + '|' + ' |' * (kolumny) + '\n' string += '+' + '----+' * (kolumny) + '\n' return string print("Zadanie 3.6:") print(rysuj1())
true
8639ffb6f43df4d6c8a92fb805982a3b1d92fe16
Python
kelvin926/korea_univ_python_1
/210516과제/210516_과제.py
UTF-8
12,088
3.84375
4
[]
no_license
# 2021271424 장현서 - 파이썬 과제 210516 제출. github: @kelvin926 ########################################################################################################## ''' <2번> - 양의 정수 중에서 자신과 1로만 나누어지는 수를 소수라고 한다. N이 주어지면 N보다 작은 소수를 찾는 프로그램을 작성하시오 ''' ''' # 2번 코드 N = int(input("양의 정수 값 N을 입력 : ")) sosu = [] for i in range(2, N + 1): is_Sosu = 1 for j in range(2, ((i // 2) + 1)): if i % j == 0: is_Sosu = 0 break if is_Sosu == 1: sosu.append(i) print(sosu) ''' ##################################################################################################### ''' <4번> - 우유병이 있다. 이 병에 담긴 물을 똑같은 양으로 나누어 몇명이 마실 수 있는지 궁금하다. N명이 마시려면 몇 병이 필요한지도 궁금하다. 병의 크기와 잔의 용량은 가변적이라고 가정하자. 어떤 길이 정보가 필요한지를 파악하여 물의 부피와 물 잔의 개수 등을 계산하는 프로그램을 작성하시오 ''' ''' # 4번 코드 w = float(input("가로 길이는? :" )) d = float(input("세로 길이는? :" )) h = float(input("높이 길이는? :" )) v = w*d*h p = int(input("몇 사람이 나눠마실 예정? : ")) print("1병기준으로, {}명이 {}ml씩 나눠 마실 수 있습니다.".format(p, v//p)) need_p = int(input("사람 수는? : ")) cup = float(input("잔의 크기는? (ml) : ")) if (need_p*cup) <= v: print("{}명이 가득 채운 잔으로 1인 1잔을 마신다고 하였을 때, 1병이 필요합니다.".format(need_p)) else: i=2 while True: if(need_p*cup) <= (i*v): break else: i+=1 print("{}명이 가득 채운 잔으로 1인 1잔을 마신다고 하였을 때, {}병이 필요합니다.".format(need_p, i)) ''' ##################################################################################################### ''' <6번> - 원소 기호는 화학 원소를 나타내는 기호이다. 라틴어나 그리스어로 된 원소 이름의 첫 글자를 대문자로 나타내고, 첫 글자가 같을 때는 중간 글자를 택하여 첫 글자 다음 소문자로 나타낸다. 원소는 수소(H), 탄소(C), 질소(N) 등을 포함한 92개이고, 나머지는 인공적으로 만들어졌다. 반복적으로 원소 이름과 원소 기호 맞히기를 연습할 수 있는 퀴즈 프로그램을 딕셔너리를 이용하여 프로그래밍하시오. 이 때, 원소 기호 입력, 수정, 삭제 기능을 프로그래밍하시오. ''' ''' import random element = [{'한글':'수소','기호':'H'}, {'한글':'헬륨','기호':'He'}, {'한글':'리튬','기호':'Li'}, {'한글':'베릴륨','기호':'Be'}, {'한글':'붕소','기호':'B'}, {'한글':'탄소','기호':'C'},{'한글':'질소','기호':'N'},{'한글':'산소','기호':'O'},{'한글':'플루오린','기호':'F'},{'한글':'네온','기호':'Ne'}, {'한글':'나트룸','기호':'Na'},{'한글':'마그네슘','기호':'Mg'}, {'한글':'알루미늄','기호':'Al'}, {'한글':'규소','기호':'Si'},{'한글':'인','기호':'P'}, {'한글':'황','기호':'S'},{'한글':'염소','기호':'Cl'},{'한글':'아르곤','기호':'Ar'},{'한글':'칼륨','기호':'K'},{'한글':'칼슘','기호':'Ca'}, {'한글':'스칸듐','기호':'Sc'},{'한글':'타이타늄','기호':'Ti'},{'한글':'바나듐','기호': 'V'},{'한글':'크로뮴','기호': 'Cr'}, {'한글':'망가니즈','기호':'Mn'}, {'한글':'철','기호':'Fe'},{'한글':'코발트','기호':'Co'},{'한글':'니켈','기호':'Ni'},{'한글':'구리','기호':'Cu'},{'한글':'아연','기호':'Zn'}, {'한글':'갈륨','기호':'Ga'},{'한글':'저마늄','기호':'Ge'}, {'한글':'비소','기호':'As'}, {'한글':'샐래늄','기호':'Se'}, {'한글':'브로민','기호':'Br'}, {'한글':'크립톤','기호':'Kr'},{'한글':'루비듐','기호':'Rb'},{'한글':'스트론튬','기호':'Sr'},{'한글':'이트륨','기호':'Y'},{'한글':'지르코늄','기호':'Zr'}, {'한글':'나이오븀','기호':'Nb'},{'한글':'몰리브데넘','기호':'Mo'},{'한글':'테크네듐','기호':'Tc'},{'한글':'루테늄','기호':'Ru'},{'한글':'루듐','기호':'Rh'}, {'한글':'팔라듐','기호':'Pd'},{'한글':'은','기호':'Ag'}, {'한글':'카드뮴','기호':'Cd'}, {'한글':'인듐','기호':'In'}, {'한글':'주석','기호':'Sn'}, {'한글':'안티모니','기호':'Sb'},{'한글':'텔루륨','기호':'Te'}, {'한글':'아이오딘','기호':'I'},{'한글':'제논','기호':'Xe'},{'한글':'세슘','기호':'Cs'}, {'한글':'바륨','기호':'Ba'},{'한글':'란타넘','기호':'La'},{'한글':'세륨','기호':'Ce'},{'한글':'프라세오디뮴','기호':'Pr'}, {'한글':'네오디뮴','기호':'Nd'}, {'한글':'프로메튬','기호':'Pm'}, {'한글':'사마륨','기호':'Sm'},{'한글':'유로퓸','기호':'Eu'},{'한글':'가돌리늄','기호':'Gd'}, {'한글':'터븀','기호':'Tb'}, {'한글':'디스프로슘','기호':'Dy'}, {'한글':'홀뮴','기호':'Ho'}, {'한글':'어븀','기호':'Er'}, {'한글':'툴륨','기호':'Tm'}, {'한글':'이터븀','기호':'Yb'}, {'한글':'루테튬','기호':'Lu'},{'한글':'하프늄','기호':'Hf'},{'한글':'탄탈럼','기호':'Ta'},{'한글':'텅스텐','기호':'W'},{'한글':'레븀','기호':'Re'}, {'한글':'오스뮴','기호':'Os'},{'한글':'이라듐','기호':'Ir'},{'한글':'백금','기호':'Pt'},{'한글':'금','기호':'Au'},{'한글':'수은','기호':'Hg'},{'한글':'딜륨','기호':'Tl'}, {'한글':'납','기호':'Pb'},{'한글':'비스무트','기호':'Bi'}, {'한글':'폴로늄','기호':'Po'},{'한글':'아스타틴','기호':'At'},{'한글':'라돈','기호':'Rn'}, {'한글':'프랑슘','기호':'Fr'},{'한글':'라듐','기호':'Ra'},{'한글':'악티늄','기호':'Ac'},{'한글':'토륨','기호':'Th'},{'한글':'프로트악티늄','기호':'Pa'}, {'한글':'우라늄','기호':'U'}, {'한글':'넵투늄','기호':'Np'},{'한글':'플루토늄','기호':'Pu'},{'한글':'아메리슘','기호':'Am'}, {'한글':'퀴륨','기호':'Cm'}, {'한글':'버클륨','기호':'Bk'},{'한글':'캘리포늄','기호':'Cf'},{'한글':'아인슈타이늄','기호':'Es'}, {'한글':'페르뮴','기호':'Fm'}, {'한글':'멘델레븀','기호':'Md'}, {'한글':'노벨륨','기호':'No'}, {'한글':'로렌슘','기호':'Lr'},{'한글':'러더포듐','기호':'Rf'}, {'한글':'더브늄','기호':'Db'},{'한글':'시보귬','기호':'Sg'}, {'한글':'보륨','기호':'Bh'},{'한글':'하슘','기호':'Hs'},{'한글':'마이트너륨','기호':'Mt'},{'한글':'다름슈타튬','기호':'Ds'},{'한글':'뢴트게늄','기호':'Rg'}, {'한글':'코르페르니슘','기호':'Cn'},{'한글':'니호늄','기호':'Nh'},{'한글':'플레로븀','기호':'Fl'},{'한글':'모스코븀','기호':'Mc'},{'한글':'리버모륨','기호':'Lv'}, {'한글':'테네신','기호':'Ts'},{'한글':'오가네손','기호':'Og'}] while True: print("=========현재 입력된 원소들=======") print(element) print("========================================================================================") print("1. 원소 기호 맞히기 게임\n2. 원소 기호 입력\n3. 원소 기호 수정\n4. 원소 기호 삭제\n5. 그만하기") select_num = int(input("수행할 기능을 선택해주세요(1,2,3,4,5번) : ")) if select_num == 1: #게임 while True: question = element[random.randint(0,92)] answer = input("{}의 원소 기호는? : ".format(question['한글'])) if answer == question['기호']: print("정답입니다!") else: print("오답입니다!") question = element[random.randint(0,92)] answer = input("{}의 한글 이름은? : ".format(question['기호'])) if answer == question['한글']: print("정답입니다!") else: print("오답입니다!") keep_going = int(input("더 하시겠으면 1을, 그만하고 싶으시면 0을 입력해주세요 : ")) if keep_going == 1: continue elif keep_going == 0: break else: print("오류! 정확한 값을 입력해주세요.") print("초기 화면으로 돌아갑니다.") continue elif select_num == 2: #입력 korean_element = input("추가 할 원소의 한글 이름은? : ") english_element = input("추가 할 원소의 기호는? : ") element.append({'한글':korean_element,'기호':english_element}) print("추가 완료!") print("초기 화면으로 돌아갑니다.") continue elif select_num == 3: #수정 remake_num = int(input("원소의 한글 이름을 수정하시려면 1번을, 원소 기호를 수정하시려면 2번을 입력해주세요 : ")) if remake_num == 1: remake_element = input("수정 할 원소의 한글 이름을 입력해주세요. : ") for i in range(0, len(element)): confirm_list = element[i-1] if remake_element == confirm_list['한글']: remake_korean = input("수정할 한글 이름을 입력해주세요 : ") element[i-1] = {'한글':remake_korean,'기호':confirm_list['기호']} print("수정 완료!") print("초기 화면으로 돌아갑니다.") continue elif remake_num == 2: remake_element = input("수정 할 원소의 기호를 입력해주세요. : ") for i in range(0, len(element)): confirm_list = element[i-1] if remake_element == confirm_list['기호']: remake_giho = input("수정할 기호를 입력해주세요 : ") element[i-1] = {'한글':confirm_list['한글'],'기호':remake_giho} print("수정 완료!") print("초기 화면으로 돌아갑니다.") continue else: print("오류! 정확한 값을 입력해주세요.") print("초기 화면으로 돌아갑니다.") continue elif select_num == 4: #삭제 del_element = input("삭제 할 원소의 한글 이름을 입력해주세요. : ") for i in range(0, len(element)): confirm_list = element[i-1] if del_element == confirm_list['한글']: del element[i-1] print("삭제 완료!") print("초기 화면으로 돌아갑니다.") continue elif select_num == 5: #종료 break else: print("오류! 1~4 사이의 값을 입력해주세요!") ''' ######################################################################################################## ''' <7번> - 재미있는 주사위 게임 프로그램 ~~ ''' ''' # 7번 코드 import random lose_list = [2, 4, 6, 8] re_list = [3, 5, 9, 10, 11, 12] while True: print("주사위 굴러가유~") a1 = random.randint(1,6) a2 = random.randint(1,6) a_sum = a1 + a2 print(a1, a2) if a_sum == 7: print("플레이어 승리!") break elif a_sum in lose_list: print("플레이어 패배!") break elif a_sum in re_list: print("다시 던집니다!") b1 = random.randint(1,6) b2 = random.randint(1,6) b_sum = b1 + b2 print(b1, b2) if a_sum == b_sum: print("플레이어 승리!") break else: print("처음부터 주사위를 다시 던집니다!") continue ''' #############################################################################################
true
0b772bee8c68261a45a16c1e6345d0719d474f7f
Python
UsacDmitriy/first
/base_types/useful_operator.py
UTF-8
229
3.703125
4
[]
no_license
# print(list(range(1,123,3))) # for i in range(1,123,3): # print(i) my_string = 'abfgsde' for key, letter in enumerate(my_string): print(str(letter) + " " + str(key)) from random import randint print(randint(12,123))
true
0bd2f22cf2bb0ff3d804c4bb44d2a3be029e6b52
Python
amey-joshi/am
/optim/or-tools/cp/cryptarithmetic.py
UTF-8
1,711
3.203125
3
[]
no_license
#!/bin/python from ortools.sat.python import cp_model # Is there an assignment of digits to the letter such that the equation # CP + IS + FUN = TRUE is true? line = 'CP + IS + FUN = TRUE' chars = set(c for c in line if c.isalpha()) base = 10 # We are looking at decimals if len(chars) > base: print('No assignment is possible') exit(0) model = cp_model.CpModel() # Decision variables c = model.NewIntVar(1, base - 1, 'C') p = model.NewIntVar(0, base - 1, 'P') i = model.NewIntVar(1, base - 1, 'I') s = model.NewIntVar(0, base - 1, 'S') f = model.NewIntVar(1, base - 1, 'F') u = model.NewIntVar(0, base - 1, 'U') n = model.NewIntVar(0, base - 1, 'N') t = model.NewIntVar(1, base - 1, 'T') r = model.NewIntVar(0, base - 1, 'R') e = model.NewIntVar(0, base - 1, 'E') allVars = [c, p, i, s, f, u, n, t, r, e] # All letters need to be assigned a different number. model.AddAllDifferent(allVars) # Add the constraint in the line model.Add(c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e) solver = cp_model.CpSolver() class SolutionPrinter(cp_model.CpSolverSolutionCallback): def __init__(self, variables): cp_model.CpSolverSolutionCallback.__init__(self) self._variables = variables self._solnCount = 0 def on_solution_callback(self): self._solnCount += 1 for v in self._variables: print(f'{v}={self.Value(v)}', end=' ') print() def solution_count(self): return self._solnCount solutionPrinter = SolutionPrinter(allVars) status = solver.SearchForAllSolutions(model, solutionPrinter) print(f'status = {solver.StatusName(status)}')
true
93bf07247949ba45904ecc8bd455dc3316f98cd7
Python
zhongh/ampo-ink
/scripts/read_inks.py
UTF-8
3,803
2.84375
3
[ "MIT" ]
permissive
__author__ = 'Hao' import openpyxl import json from string import Template # Initialize the inks list inks = { "DI_Water": { "filepath": "../data/Inkjet Printing Process File Repository/Droplet Ejection/DI Water Ink-A/Fluid Properties-DI Water.xlsx" }, "Fifty_Glycerol": { "filepath": "../data/Inkjet Printing Process File Repository/Droplet Ejection/50 Glycerol Ink-A/Fluid Properties-50 Glycerol.xlsx" }, "Eighty_Glycerol": { "filepath": "../data/Inkjet Printing Process File Repository/Droplet Ejection/80 Glycerol Ink-A/Fluid Properties-80 Glycerol.xlsx" }, "TangoBlack": { "filepath": "../data/Inkjet Printing Process File Repository/Droplet Ejection/TangoBlack Ink-A/Fluid Properties-TangoBlack.xlsx" }, "VeroClear": { "filepath": "../data/Inkjet Printing Process File Repository/Droplet Ejection/VeroClear Ink-A/Fluid Properties-VeroClear.xlsx" } } # Helper function def process_empty_values(x): try: return float(x) except: return "" # Keys to use in constructing inks dictionary and template matching dictionary d_keys = ["ink_id", "ink_label", "density", "dynamic_viscosity", "color", "surface_tension"] # Populate inks list for ink in inks: wb = openpyxl.load_workbook(inks[ink]["filepath"], data_only=True) sheet = wb.active inks[ink]["ink_id"] = ink inks[ink]["ink_label"] = sheet["B1"].value inks[ink]["density"] = process_empty_values(sheet["B2"].value) inks[ink]["dynamic_viscosity"] = process_empty_values(sheet["B3"].value) inks[ink]["surface_tension"] = process_empty_values(sheet["B4"].value) inks[ink]["color"] = sheet["B5"].value prefix_ampo = "https://tw.rpi.edu/web/project/ampo-ink#" tt = """### https://tw.rpi.edu/web/project/ampo-ink#${ink_id} :${ink_id} rdf:type :Ink ; rdfs:label "${ink_label}"^^xsd:string ; ampo:hasAttribute [ rdf:type :Ink_Density ; rdfs:label "Density"^^xsd:string ; qudt:quantityValue [ rdf:type qudt:QuantityValue ; qudt:numericValue "${density}"^^xsd:double ; qudt:unit qudt-unit:KilogramPerCubicMeter ] ] , [ rdf:type :Ink_DynamicViscosity ; rdfs:label "Dynamic Viscosity"^^xsd:string ; qudt:quantityValue [ rdf:type qudt:QuantityValue ; qudt:numericValue "${dynamic_viscosity}"^^xsd:double ; qudt:unit qudt-unit:PascalSecond ] ] , [ rdf:type :Ink_Color ; rdfs:label "Color"^^xsd:string ; ampo:descriptiveValue "${color}"^^xsd:string ] , [ rdf:type :Ink_SurfaceTension ; rdfs:label "Surface Tension"^^xsd:string ; qudt:quantityValue [ rdf:type qudt:QuantityValue ; qudt:numericValue "${surface_tension}"^^xsd:double ; qudt:unit qudt-unit:NewtonPerMeter ] ] . """ f = open("../output/inks.ttl", "w+") for ink in inks: t = Template(tt) d = {key: inks[ink][key] for key in d_keys} # print(t.substitute(d)) f.write(t.substitute(d) + "\n\n\n") f.close() print("All inks read.")
true
dc9d0274ab7646eccc4b3ee613918f1d96f4eb0f
Python
bk-anupam/PatientClinicProximityFinderPublic
/src/PatientClinicProximityFinder.py
UTF-8
21,299
2.734375
3
[]
no_license
import pandas as pd from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim import os.path from functools import partial import json import logging.config import yaml import pygtrie import requests from retry import retry from geolib import geohash from geopy.exc import GeocoderServiceError, GeopyError import math with open(r"./../config/logging_config.yml", 'r') as config: config = yaml.safe_load(config) logging.config.dictConfig(config) logger = logging.getLogger(__name__) with open("./../config/app_config.json", "r") as config: app_config = json.load(config) country_codes = app_config["country_code"] retry_count = int(app_config["retry_count"]) delay = int(app_config["delay"]) backoff = int(app_config["backoff"]) # These two setting are used to generate proximity geo hashes within a specific radius and specific precision # proximity radius is in meters proximity_radius = float(app_config["proximity_radius"]) # No of digits in the generated proximity hash geohash_precision = int(app_config["geohash_precision"]) def in_circle_check(latitude, longitude, centre_lat, centre_lon, radius): x_diff = longitude - centre_lon y_diff = latitude - centre_lat if math.pow(x_diff, 2) + math.pow(y_diff, 2) <= math.pow(radius, 2): return True return False def get_centroid(latitude, longitude, height, width): y_cen = latitude + (height / 2) x_cen = longitude + (width / 2) return x_cen, y_cen def convert_to_latlon(y, x, latitude, longitude): pi = 3.14159265359 r_earth = 6371000 lat_diff = (y / r_earth) * (180 / pi) lon_diff = (x / r_earth) * (180 / pi) / math.cos(latitude * pi/180) final_lat = latitude+lat_diff final_lon = longitude+lon_diff return final_lat, final_lon def create_geohash(latitude, longitude, radius, precision): """ Generates a list of geohashes within the specified radius (in meters) of a geolocation with specified precision :param latitude: location latitude :param longitude: location longitude :param radius: proximity radius in meters :param precision: No of digits in the generated proximity hash :return: comma separated string of geohashes """ x = 0.0 y = 0.0 points = [] geohashes = [] grid_width = [5009400.0, 1252300.0, 156500.0, 39100.0, 4900.0, 1200.0, 152.9, 38.2, 4.8, 1.2, 0.149, 0.0370] grid_height = [4992600.0, 624100.0, 156000.0, 19500.0, 4900.0, 609.4, 152.4, 19.0, 4.8, 0.595, 0.149, 0.0199] height = (grid_height[precision - 1])/2 width = (grid_width[precision-1])/2 lat_moves = int(math.ceil(radius / height)) #4 lon_moves = int(math.ceil(radius / width)) #2 for i in range(0, lat_moves): temp_lat = y + height*i for j in range(0,lon_moves): temp_lon = x + width*j if in_circle_check(temp_lat, temp_lon, y, x, radius): x_cen, y_cen = get_centroid(temp_lat, temp_lon, height, width) lat, lon = convert_to_latlon(y_cen, x_cen, latitude, longitude) points += [[lat, lon]] lat, lon = convert_to_latlon(-y_cen, x_cen, latitude, longitude) points += [[lat, lon]] lat, lon = convert_to_latlon(y_cen, -x_cen, latitude, longitude) points += [[lat, lon]] lat, lon = convert_to_latlon(-y_cen, -x_cen, latitude, longitude) points += [[lat, lon]] for point in points: geohashes += [geohash.encode(point[0], point[1], precision)] return ','.join(set(geohashes)) # Twp way dictionary mapping column names in csv (or dataframe) to search criteria column names # and vice versa (for nominatim API) def get_pat_col_searchcol_map(): pat_map = {"Postal Code": "postalcode", "FSA": "postalcode", "postalcode": "Postal Code", "Address": "street", "street": "Address", "City": "city", "city": "City", "Province": "state", "state": "Province"} return pat_map def get_clinic_col_searchcol_map(): clinic_map = {"Postal Code": "postalcode", "FSA": "postalcode", "postalcode": "Postal Code", "Clinic Address": "street", "street": "Clinic Address", "Clinic City": "city", "city": "Clinic City", "Province": "state", "state": "Province"} return clinic_map def address_postalcode_search(geocode, search_params, initial_call=False): """ Makes a call to Nominatim api using address and postal code as search criteria :param geocode: geopy RateLimiter object to do throttled search using Nominatim api :param search_params: Dictionary with search criteria :param initial_call: bool value indicating if this is the first call to the method :return: geopy.location.Location object or None if no search result found """ address = search_params["street"] postal_code = search_params["postalcode"] if "postalcode" in search_params.keys() else "" if not initial_call: if not address: return None # remove the last word from address address_tokens = address.split(" ")[0:-1] address = " ".join(address_tokens) if len(address_tokens) > 0 else "" search_params["street"] = address if postal_code: search_params.pop("postalcode") locations = geocode(search_params) search_params["postalcode"] = postal_code if locations is not None and len(locations) > 0 and postal_code: # if address or one of its substrings returns a location, check if adding postalcode search criteria # refines the search refined_locations = geocode(search_params) if refined_locations is not None and len(refined_locations) > 0: return refined_locations[0] else: return locations[0] if locations is None and search_params["street"]: return address_postalcode_search(geocode, search_params) else: return None def no_address_search(geocode, search_params): """ This method is called when address and postal code combination yields no search results. The search criteria used are postal_code and fsa combination followed by only fsa. As last resort only fixed search criteria of province and city is used. :param geocode: geopy RateLimiter object to do throttled search using Nominatim api :param search_params: Dictionary with search criteria :return: geopy.location.Location object or None if no search result found """ locations = geocode(search_params) if locations is None: return None elif len(locations) > 0: return locations[0] @retry((GeopyError, GeocoderServiceError), tries=retry_count, delay=delay, backoff=backoff, logger=logger) def get_geocode(type, geocode, df_row, fixed_search_cols, var_search_cols=[], initialCall=False): """ Gets the geocode for either a clinic or a patient record :param type: string "patient" or "clinic" :param geocode: geopy RateLimiter object to do throttled search using Nominatim api :param df_row: dataframe row (from patient or clinic dataframe) :param fixed_search_cols: list of search columns used as search criteria in all searches (Province and City) :param var_search_cols: list of lists containing column names for more precise search :param initialCall: bool value indicating if this is the first call to the method :return: pandas series object containing 'Geo_Cols', 'Geo_Code' and 'Geo_Hash' """ var_search_cols = get_var_search_cols(initialCall, type, var_search_cols) prefix = 'Pat_' if type.lower() == 'patient' else 'Clinic_' id_col = "ID" if type.lower() == 'patient' else 'Clinic ID' col_searchcol_map = get_pat_col_searchcol_map() if type.lower() == 'patient' else get_clinic_col_searchcol_map() id = df_row[id_col] col_labels = [prefix+x for x in ['Geo_Cols', 'Geo_Code', 'Geo_Hash']] search_params = get_search_params(df_row, fixed_search_cols, var_search_cols, col_searchcol_map, type, id) if "street" in search_params.keys(): location = address_postalcode_search(geocode, search_params, True) else: location = no_address_search(geocode, search_params) if location is not None: search_cols = ",".join(["FSA" if "FSA" in var_search_cols else col_searchcol_map[key] for key in search_params.keys()]) lat = location.latitude lon = location.longitude logger.info(f"For {type}ID: {id} with {search_params} => latitude = {lat}, longitude = {lon}") loc_geohash = geohash.encode(lat, lon, 12) return pd.Series([search_cols, (lat, lon), loc_geohash], index=col_labels) elif len(var_search_cols) > 0 and location is None: # Remove the most precise search criteria which is at the top of search criteria stack var_search_cols.pop() return get_geocode(type, geocode, df_row, fixed_search_cols, var_search_cols=var_search_cols) else: # Neither variable nor fixed search criteria yield a geocode return pd.Series([None, (None, None), None], index=col_labels) def get_var_search_cols(initialCall, type, var_search_cols): """ Initialize a list of lists containing column names for more precise search :param initialCall: bool value indicating if this is the first call to the method :param type: string "patient" or "clinic" :param var_search_cols: list of lists containing column names for more precise search :return: list of lists containing column names for more precise search """ if initialCall and type.lower() == 'clinic': var_search_cols = [["FSA"], ["Postal Code"], ["Postal Code", "Clinic Address"]] elif initialCall and type.lower() == 'patient': var_search_cols = [["FSA"], ["Postal Code"], ["Postal Code", "Address"]] return var_search_cols def get_search_params(df_row, fixed_search_cols, var_search_cols, col_searchcol_map, type, id): """ Creates a dictionary of search parameters using both fixed and precise search criteria :param df_row: dataframe row :param fixed_search_cols: list of search columns used as search criteria in all searches (Province and City) :param var_search_cols: list of lists containing column names for more precise search :param col_searchcol_map: Dictionary mapping column names in csv (or dataframe) to search criteria column names and vice versa (for nominatim API) :param type: string "patient" or "clinic" :param id: id of the dataframe row :return: dictionary with search parameters """ if len(var_search_cols) == 0: var_search_params = [] logger.critical(f"Exhausted all variable geocode search criteria for {type}id: {id}. No geocode found. " f"Geocode will be returned on the basis of fixed search cols") else: var_search_params = [(col_searchcol_map[df_col], df_row[df_col]) for df_col in var_search_cols[-1]] fixed_search_params = [(col_searchcol_map[df_col], df_row[df_col]) for df_col in fixed_search_cols] search_params = dict(var_search_params + fixed_search_params) return search_params def get_clinic_geocode(geolocator, df_clinics): """ Get the geocode for a clinic record :param geolocator: geopy RateLimiter object to do throttled search using Nominatim api :param df_clinics: clinics dataframe :return: clinics dataframe with Clinic_Geo_Cols, Clinic_Geo_Code and Clinic_Geo_Hash columns """ fixed_search_cols = ["Province", "Clinic City"] df_clinics_geocode = df_clinics.apply( lambda row: get_geocode("clinic", geolocator, row, fixed_search_cols, initialCall=True), axis=1) return pd.concat([df_clinics, df_clinics_geocode], axis=1) def get_patient_geocode(geolocator, df_patients): """ Get the geocode for a patient record :param geolocator: geopy RateLimiter object to do throttled search using Nominatim api :param df_patients: clinics dataframe :return: patients dataframe with Pat_Geo_Cols, Pat_Geo_Code and Pat_Geo_Hash columns """ fixed_search_cols = ["Province", "City"] df_patients_geocode = df_patients.apply( lambda row: get_geocode("patient", geolocator, row, fixed_search_cols, initialCall=True), axis=1) return pd.concat([df_patients, df_patients_geocode], axis=1) def get_geohash_nearby_clinics(pat_geohash, clinic_geohash_trie): """ Perform a string prefix search to find clinic with geohashes that match a substring of patient geohash :param pat_geohash: one of patient's location geohash :param clinic_geohash_trie: Trie containing all clinic geohashes :return: list of matching geohashes """ if not pat_geohash: return None try: nearest_clinics = clinic_geohash_trie.keys(pat_geohash) except KeyError: pat_geohash = pat_geohash[0:-1] return get_geohash_nearby_clinics(pat_geohash, clinic_geohash_trie) if nearest_clinics is None or len(nearest_clinics) == 0: pat_geohash = pat_geohash[0:-1] return get_geohash_nearby_clinics(pat_geohash, clinic_geohash_trie) else: return nearest_clinics def get_pat_nearby_clinics(pat_gh, gh_to_match, clinic_gh_trie): """ Perform a string prefix search to find clinic with geohashes that match a substring of one of the patient geohash search set :param pat_gh: patient's geohash :param gh_to_match: set containing geohashes within a proximity radius of patient's geohash as well as the patient's 8 immediate neighbour geohashes :param clinic_gh_trie: Trie containing all clinic geohashes :return: list of matching clinic geohashes """ pat_nearby_clinics = set() gh_to_match.append(pat_gh) for gh in gh_to_match: gh_nearby_clinic = get_geohash_nearby_clinics(gh, clinic_gh_trie) if gh_nearby_clinic is not None: pat_nearby_clinics.update(gh_nearby_clinic) logger.info(f"For patient geohash = {pat_gh} nearby clinics geohashes are = {pat_nearby_clinics}") return pat_nearby_clinics @retry(requests.exceptions.ConnectionError, tries=retry_count, delay=delay, backoff=backoff, logger=logger) def get_osrm_clinic_travel_distance(df_pat_row, df_clinic_row): """ Get the shortest travel distance between a patient's and a clinic's geolocation using OSRM api :param df_pat_row: row of patient dataframe :param df_clinic_row: row of clinic dataframe :return: travel distance in km """ pat_lat, pat_lon = df_pat_row["Pat_Geo_Code"] clinic_lat, clinic_lon = df_clinic_row["Clinic_Geo_Code"] # call the OSRM API r = requests.get(f"http://router.project-osrm.org/route/v1/car/{pat_lon},{pat_lat};" f"{clinic_lon},{clinic_lat}?overview=false""") # then you load the response using the json library # by default you get only one alternative so you access 0-th element of the `routes` routes = json.loads(r.content) fastest_route = routes.get("routes")[0] travel_distance = float(fastest_route["distance"] / 1000) logger.info(f"Travel distance between patient id = {df_pat_row['ID']} with geohash = {df_pat_row['Pat_Geo_Hash']}" f" and clinic id = {df_clinic_row['Clinic ID']} with geohash = {df_clinic_row['Clinic_Geo_Hash']}" f" is => {travel_distance}") return travel_distance def get_pat_nearest_clinic(df_pat_row, df_clinics, clinic_gh_trie): """ For a patient record finds the clinic with shortest travel distance :param df_pat_row: row of patient dataframe :param df_clinics: clinic dataframe :param clinic_gh_trie: Trie containing all clinic geohashes :return: pandas series object with columns in output.csv """ pat_gh = df_pat_row["Pat_Geo_Hash"] # To handle the edge case of a when proximity searches are done near the Greenwich Meridian or the equator, # because in those points the MSB of x and y will be 0 or 1, so their geohashes won't share a common prefix. # To work around this we get the neighbours of a location's geohash and proximity search will then need to # find a list of geohashes that are prefixed by the original location and the neighbour's geohash pat_gh_neighbors = list(geohash.neighbours(pat_gh)) pat_lat, pat_lon = df_pat_row["Pat_Geo_Code"] # list of geohashes that are with in a specific radius of the patient location. To handle the edge case # of a location being on the boundary of a geohash bounding box, we need to broaden the geohash # search space gh_in_search_radius = create_geohash(pat_lat, pat_lon, proximity_radius, geohash_precision).split(",") gh_to_match = pat_gh_neighbors + gh_in_search_radius pat_nearby_clinics = get_pat_nearby_clinics(pat_gh, gh_to_match, clinic_gh_trie) # Filter the clinic dataframe using nearby clinic geohashes df_clinics_nearby = df_clinics[df_clinics["Clinic_Geo_Hash"].isin(pat_nearby_clinics)] # From the nearby clinics use the shortest travel distance ( google maps ) or shortest travel time criteria # ( OSRM for open street maps ) to find the closest clinic df_clinics_nearby["Clinic_Pat_Dist"] = df_clinics_nearby.apply( lambda row: get_osrm_clinic_travel_distance(df_pat_row, row), axis=1 ) # select the clinic row with shortest travel distance min_distance = df_clinics_nearby["Clinic_Pat_Dist"].min() df_nearest_clinic = df_clinics_nearby.loc[df_clinics_nearby["Clinic_Pat_Dist"] == min_distance] nearest_clinic = df_nearest_clinic.iloc[0] # join the patient row with selected clinic row to return a series object result_cols = ["Patient_ID", "Pat_Geo_Cols", "Pat_Geo_Code", "Pat_Address", "Pat_Postal_Code", "Pat_FSA", "Nearest_Clinic_ID", "Clinic_Geo_Cols", "Clinic_Geo_Code", "Clinic_Address", "Clinic_Postal Code", "Clinic_FSA", "Clinic_Distance"] nearest_result = pd.Series([df_pat_row["ID"], df_pat_row["Pat_Geo_Cols"], df_pat_row["Pat_Geo_Code"], df_pat_row["Address"], df_pat_row["Postal Code"], df_pat_row["FSA"], nearest_clinic["Clinic ID"], nearest_clinic["Clinic_Geo_Cols"], nearest_clinic["Clinic_Geo_Code"], nearest_clinic["Clinic Address"], nearest_clinic["Postal Code"], nearest_clinic["FSA"], nearest_clinic["Clinic_Pat_Dist"]],index=result_cols) return nearest_result def get_nearest_clinics(df_patients, df_clinics): """ For each patient record find the clinic with shortest travel distance :param df_patients: patient dataframe :param df_clinics: clinic dataframe :return: dataframe with patient and nearest clinic data """ # Trie to hold the geohashes of all the clinics. clinic_geohash_trie = pygtrie.CharTrie() df_clinics_with_geohash = df_clinics[df_clinics.Clinic_Geo_Hash.notnull()] for clinic_gh in df_clinics_with_geohash["Clinic_Geo_Hash"]: clinic_geohash_trie[clinic_gh] = 1 df_pat_nearest_clinic = df_patients[df_patients.Pat_Geo_Hash.notnull()].apply( lambda row: get_pat_nearest_clinic(row, df_clinics, clinic_geohash_trie), axis=1 ) return df_pat_nearest_clinic def process_clinic_data(geocode): df_clinics = pd.read_csv('./data/clinics.csv') df_clinics = get_clinic_geocode(geocode, df_clinics) df_clinics.to_pickle("./data/clinics_with_geocode.pkl") return df_clinics def process_patients_data(geocode): df_patients = pd.read_csv('./data/patients.csv') df_patients = get_patient_geocode(geocode, df_patients) df_patients.to_pickle("./data/patients_with_geocode.pkl") return df_patients df_clinics = None df_patients = None geolocator = Nominatim(user_agent="test-app", timeout=5) # Country = Canada is a fixed search criteria. We are only interested in locations in Canada geocode_partial = partial(geolocator.geocode, exactly_one=False, country_codes=country_codes) geocode = RateLimiter(geocode_partial, min_delay_seconds=1) if os.path.isfile("./data/clinics_with_geocode.pkl"): df_clinics = pd.read_pickle("./data/clinics_with_geocode.pkl") else: df_clinics = process_clinic_data(geocode) if os.path.isfile("./data/patients_with_geocode.pkl"): df_patients = pd.read_pickle("./data/patients_with_geocode.pkl") else: df_patients = process_patients_data(geocode) print(df_clinics.to_string()) print("==========================================================================") print(df_patients.to_string()) df_pat_nearest_clinic = get_nearest_clinics(df_patients, df_clinics) print("==========================================================================") print(df_pat_nearest_clinic.to_string()) df_pat_nearest_clinic.to_csv("./output/output.csv") print("")
true
5cc858373c9fd680456327f7344f6c132c979c3f
Python
langtodu/learn
/algorithm/prime.py
UTF-8
1,533
2.890625
3
[]
no_license
# -*- coding: utf-8 -*- import numpy as np class Prim(object): def __init__(self, graph=None, outset=0): self.graph = np.array(graph) self.outset = outset self.selectd_point = [self.outset] self.selectd_edge = [[self.outset, self.outset]] self.all_points = self.graph.shape[1] self.all_edges = self.graph.shape[0] print "init" print self.graph def edged(self): print "edge" while len(self.selectd_point) != self.all_points: # select_point = [] # select_edge = [] record_edge = [] min = 66 for i in self.selectd_point: for j in range(self.all_points): num = self.graph[i][j] if (num < min) and (num != 0) and ((i not in self.selectd_point) or (j not in self.selectd_point)): min = num record_edge = [i, j] self.selectd_point.append(record_edge[1]) self.selectd_edge.append(record_edge) print self.selectd_point, self.selectd_edge print self.selectd_point, self.selectd_edge if __name__ == "__main__": graphs = [[0, 7, 0, 5, 0, 0, 0], [7, 0, 8, 9, 7, 0, 0], [0, 8, 0, 0, 5, 0, 0], [5, 9, 0, 0, 15, 6, 0], [0, 7, 5, 15, 0, 8, 9], [0, 0, 0, 6, 8, 0, 11], [0, 0, 0, 0, 9, 11, 0] ] a = Prim(graph=graphs, outset=0) a.edged()
true
8c4ed9f5961ae0333decc36d25e9d10e11d241ee
Python
MauricioD13/Proyecto1_Codigos
/Python/grafica_procesamiento.py
UTF-8
4,459
2.828125
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import sys import math import statistics import mplcursors def graphics(nombres_archivo,separator,number_separator,organization,name,x_label,y_label,samples,axis): files=[] legend_names=[] temp=[] colors=["g","r","b","c","m","k"] for i in range(len(nombres_archivo)): temp=nombres_archivo[i].split("/") temp=temp[len(temp)-1].split(".") legend_names.append(temp[0]) for i in range(len(nombres_archivo)): archivo=open(nombres_archivo[i],"r") files.append(archivo) x_array=[] y_array=[] for file in files: guardar(file,x_array,y_array,number_separator,separator) columns=[] per_graph=[] columns, per_graph=graphics_organization(organization,per_graph,columns) lengths=[] for i in x_array: lengths.append(len(i)) min_samples=min(lengths) if(int(samples)<min_samples): min_samples=int(samples) if(len(columns)==1): fig, ax=plt.subplots() for i in range(per_graph[0]): ax.plot(x_array[i][0:min_samples],y_array[i][0:min_samples],colors[i],label=legend_names[i]) # Plot some data on the axes. ax.grid(True) ax.set_ylabel(y_label,fontsize=16) ax.set_xlabel(x_label,fontsize=16) ax.set_title(name,fontsize=16) if(axis=="logaritmico"): ax.semilogx() #ax.set(ylim=(0,1000)) plt.legend(loc='upper right') mplcursors.cursor(multiple=True).connect("add", lambda sel: sel.annotation.draggable(False)) plt.show() else: fig, ax=plt.subplots(1,len(columns)) k=0 for j in range(0,len(columns)): for i in range(per_graph[j]): ax[j].plot(x_array[k][0:100],y_array[k][0:min_samples],colors[i],label=legend_names[i]) # Plot some data on the axes. ax[j].grid(True) ax[j].set_ylabel(y_label,fontsize=16) ax[j].set_xlabel(x_label,fontsize=16) ax[j].set_title(name,fontsize=16) if(axis=="logaritmico"): ax[j].semilogx() k+=1 plt.legend(loc='upper right') mplcursors.cursor(multiple=True).connect("add", lambda sel: sel.annotation.draggable(False)) plt.show() def guardar(archivo,x_array,y_array,number_separator,separator): labels=[] temp_x=[] temp_y=[] if(separator=="tab"): separator="\t" labels=archivo.readline().split(separator) #labels[1]=labels[1].replace("\n","") if(number_separator==","): for line in archivo: linea=line.split(separator) temp=linea[0].split(",") try: temp_x.append(float(temp[0]+"."+temp[1])) temp=linea[1].split(",") temp_y.append(float(temp[0]+"."+temp[1])) except: continue x_array.append(np.array(temp_x)) y_array.append(np.array(temp_y)) if(number_separator=="."): for line in archivo: linea=line.split(separator) temp_x.append(float(linea[0])) temp_y.append(float(linea[1])) x_array.append(np.array(temp_x)) y_array.append(np.array(temp_y)) def graphics_organization(organization,per_graph,columns): columns=organization.split(";") x=[] for i in columns: x=i.split(",") per_graph.append(len(x)) return columns, per_graph
true
ca0f2214145296312a8098fe371e38202bd03ac0
Python
KujouNozom/LeetCode
/python/2021_01/Question0239.py
UTF-8
1,622
3.796875
4
[]
no_license
# 239. 滑动窗口最大值 # # 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 # 返回滑动窗口中的最大值。 # # 示例 1: # 输入:nums = [1,3,-1,-3,5,3,6,7], k = 3 # 输出:[3,3,5,5,6,7] # 解释: # 滑动窗口的位置 最大值 # --------------- ----- # [1 3 -1] -3 5 3 6 7 3 # 1 [3 -1 -3] 5 3 6 7 3 # 1 3 [-1 -3 5] 3 6 7 5 # 1 3 -1 [-3 5 3] 6 7 5 # 1 3 -1 -3 [5 3 6] 7 6 # 1 3 -1 -3 5 [3 6 7] 7 # # 示例 2: # 输入:nums = [1], k = 1 # 输出:[1] # # 示例 3: # 输入:nums = [1,-1], k = 1 # 输出:[1,-1] # # 示例 4: # 输入:nums = [9,11], k = 2 # 输出:[11] # # 示例 5: # 输入:nums = [4,-2], k = 2 # 输出:[4] # # 提示: # 1 <= nums.length <= 105 # -104 <= nums[i] <= 104 # 1 <= k <= nums.length import collections from typing import List class Solution: def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]: n = len(nums) q = collections.deque() for i in range(k): while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) ans = [nums[q[0]]] for i in range(k, n): while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) while q[0] <= i - k: q.popleft() ans.append(nums[q[0]]) return ans
true
7f1552e819abc71af3f1c2b7f923d5f7ea458942
Python
olisim/eks
/eks/eks.py
UTF-8
3,277
2.890625
3
[]
no_license
import socket, threading, time class EKSResponse: def __init__(self, command, status, payload): self.command = command self.status = status self.payload = payload def __eq__(self, other): if other == None: return False return self.command == other.command \ and self.status == other.status \ and self.payload == other.payload class EKSConnector(object): def __init__ (self, host, port=2444, timeout=5): self.host = host self.port = port self.poll_interval = 1 self.socket_timeout = timeout def __poll(self): last_response = None while self.polling_enabled: self.read_key_state(self.callback) time.sleep(self.poll_interval) def __send_to_socket(self, msg): bytes_sent = self.eks_socket.send(msg) return bytes_sent def __read_from_socket(self): chunks = [] bytes_recd = 0 msglen = 123 command = '' status = -1 start = 0 length = 0 while bytes_recd < msglen: chunk = self.eks_socket.recv(1) if chunk == '': raise RuntimeError("socket connection broken") chunks.append(chunk.encode("hex")) if bytes_recd == 0: msglen = ord(chunk) if bytes_recd == 1: command += chunk if bytes_recd == 2: command += chunk if bytes_recd == 6: status = ord(chunk) bytes_recd = bytes_recd + len(chunk) payload = ''.join(chunks[8:len(chunks)]) return EKSResponse(command, status, payload) def read_key_state(self, callback): self.eks_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.eks_socket.settimeout(self.socket_timeout) self.eks_socket.connect((self.host, self.port)) response = self.__read_from_socket() self.__handle_response(response, callback) if response.command == "Ek" and response.status == 1: self.__send_to_socket("\x07TL\x01\x01\x73\x09") response = self.__read_from_socket() self.__handle_response(response, callback) self.eks_socket.close() return response def start_listening(self, callback, interval=1): self.polling_enabled = True self.callback = callback self.poll_interval = interval self.__poll() def stop_listening(self): self.polling_enabled = False def __handle_response(self, response, callback): if response.command == "Ek": if response.status == 1: callback.did_insert_key() elif response.status == 2: callback.did_remove_key() elif response.status == 3: raise RuntimeError elif response.command == "RL": callback.did_read_key(response.payload) class EKSCallback: #abstract def did_insert_key(self): raise NotImplementedError def did_remove_key(self): raise NotImplementedError def did_read_key(self, data): raise NotImplementedError
true
cc8a0817d942735491475dea340e9148e7a55d99
Python
preintercede/ds-a
/ch1/is_Unique.py
UTF-8
542
3.390625
3
[]
no_license
# def isUnique(string): # letters = {} # for letter in string: # if letter in letters: # return False # letters[letter] = True # return True def isUnique(string): letters = {} for letter in string: if letter in letters: return False letters[letter] = True return True print(isUnique('abc')) print(isUnique('abcdc')) print(isUnique('abcdefghijklmnopqrstuvwxyz')) print(isUnique('abcdefghijklmnopqrstuvwxyzz')) print(isUnique('dsfadsfas')) print(isUnique(''))
true
1dfb960ce024c875fb45d3596a3c5df12850b5ab
Python
yo-han/HandleBar
/lib/guessit/language.py
UTF-8
13,698
2.59375
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # # GuessIt - A library for guessing information from filenames # Copyright (c) 2011 Nicolas Wack <wackou@gmail.com> # # GuessIt is free software; you can redistribute it and/or modify it under # the terms of the Lesser GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # GuessIt is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Lesser GNU General Public License for more details. # # You should have received a copy of the Lesser GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from __future__ import unicode_literals from guessit import UnicodeMixin, base_text_type, u, s from guessit.fileutils import load_file_in_same_dir from guessit.country import Country import re import logging __all__ = [ 'is_iso_language', 'is_language', 'lang_set', 'Language', 'ALL_LANGUAGES', 'ALL_LANGUAGES_NAMES', 'UNDETERMINED', 'search_language', 'guess_language' ] log = logging.getLogger(__name__) # downloaded from http://www.loc.gov/standards/iso639-2/ISO-639-2_utf-8.txt # # Description of the fields: # "An alpha-3 (bibliographic) code, an alpha-3 (terminologic) code (when given), # an alpha-2 code (when given), an English name, and a French name of a language # are all separated by pipe (|) characters." _iso639_contents = load_file_in_same_dir(__file__, 'ISO-639-2_utf-8.txt') # drop the BOM from the beginning of the file _iso639_contents = _iso639_contents[1:] language_matrix = [ l.strip().split('|') for l in _iso639_contents.strip().split('\n') ] # update information in the language matrix language_matrix += [['mol', '', 'mo', 'Moldavian', 'moldave'], ['ass', '', '', 'Assyrian', 'assyrien']] for lang in language_matrix: # remove unused languages that shadow other common ones with a non-official form if (lang[2] == 'se' or # Northern Sami shadows Swedish lang[2] == 'br'): # Breton shadows Brazilian lang[2] = '' # add missing information if lang[0] == 'und': lang[2] = 'un' if lang[0] == 'srp': lang[1] = 'scc' # from OpenSubtitles lng3 = frozenset(l[0] for l in language_matrix if l[0]) lng3term = frozenset(l[1] for l in language_matrix if l[1]) lng2 = frozenset(l[2] for l in language_matrix if l[2]) lng_en_name = frozenset(lng for l in language_matrix for lng in l[3].lower().split('; ') if lng) lng_fr_name = frozenset(lng for l in language_matrix for lng in l[4].lower().split('; ') if lng) lng_all_names = lng3 | lng3term | lng2 | lng_en_name | lng_fr_name lng3_to_lng3term = dict((l[0], l[1]) for l in language_matrix if l[1]) lng3term_to_lng3 = dict((l[1], l[0]) for l in language_matrix if l[1]) lng3_to_lng2 = dict((l[0], l[2]) for l in language_matrix if l[2]) lng2_to_lng3 = dict((l[2], l[0]) for l in language_matrix if l[2]) # we only return the first given english name, hoping it is the most used one lng3_to_lng_en_name = dict((l[0], l[3].split('; ')[0]) for l in language_matrix if l[3]) lng_en_name_to_lng3 = dict((en_name.lower(), l[0]) for l in language_matrix if l[3] for en_name in l[3].split('; ')) # we only return the first given french name, hoping it is the most used one lng3_to_lng_fr_name = dict((l[0], l[4].split('; ')[0]) for l in language_matrix if l[4]) lng_fr_name_to_lng3 = dict((fr_name.lower(), l[0]) for l in language_matrix if l[4] for fr_name in l[4].split('; ')) # contains a list of exceptions: strings that should be parsed as a language # but which are not in an ISO form lng_exceptions = { 'unknown': ('und', None), 'inconnu': ('und', None), 'unk': ('und', None), 'un': ('und', None), 'gr': ('gre', None), 'greek': ('gre', None), 'esp': ('spa', None), 'español': ('spa', None), 'se': ('swe', None), 'po': ('pt', 'br'), 'pb': ('pt', 'br'), 'pob': ('pt', 'br'), 'br': ('pt', 'br'), 'brazilian': ('pt', 'br'), 'català': ('cat', None), 'cz': ('cze', None), 'ua': ('ukr', None), 'cn': ('chi', None), 'chs': ('chi', None), 'jp': ('jpn', None), 'scr': ('hrv', None) } def is_iso_language(language): return language.lower() in lng_all_names def is_language(language): return is_iso_language(language) or language in lng_exceptions def lang_set(languages, strict=False): """Return a set of guessit.Language created from their given string representation. if strict is True, then this will raise an exception if any language could not be identified. """ return set(Language(l, strict=strict) for l in languages) class Language(UnicodeMixin): """This class represents a human language. You can initialize it with pretty much anything, as it knows conversion from ISO-639 2-letter and 3-letter codes, English and French names. You can also distinguish languages for specific countries, such as Portuguese and Brazilian Portuguese. There are various properties on the language object that give you the representation of the language for a specific usage, such as .alpha3 to get the ISO 3-letter code, or .opensubtitles to get the OpenSubtitles language code. >>> Language('fr') Language(French) >>> s(Language('eng').french_name) 'anglais' >>> s(Language('pt(br)').country.english_name) 'Brazil' >>> s(Language('Español (Latinoamérica)').country.english_name) 'Latin America' >>> Language('Spanish (Latin America)') == Language('Español (Latinoamérica)') True >>> s(Language('zz', strict=False).english_name) 'Undetermined' >>> s(Language('pt(br)').opensubtitles) 'pob' """ _with_country_regexp = re.compile('(.*)\((.*)\)') _with_country_regexp2 = re.compile('(.*)-(.*)') def __init__(self, language, country=None, strict=False, scheme=None): language = u(language.strip().lower()) with_country = (Language._with_country_regexp.match(language) or Language._with_country_regexp2.match(language)) if with_country: self.lang = Language(with_country.group(1)).lang self.country = Country(with_country.group(2)) return self.lang = None self.country = Country(country) if country else None # first look for scheme specific languages if scheme == 'opensubtitles': if language == 'br': self.lang = 'bre' return elif language == 'se': self.lang = 'sme' return elif scheme is not None: log.warning('Unrecognized scheme: "%s" - Proceeding with standard one' % scheme) # look for ISO language codes if len(language) == 2: self.lang = lng2_to_lng3.get(language) elif len(language) == 3: self.lang = (language if language in lng3 else lng3term_to_lng3.get(language)) else: self.lang = (lng_en_name_to_lng3.get(language) or lng_fr_name_to_lng3.get(language)) # general language exceptions if self.lang is None and language in lng_exceptions: lang, country = lng_exceptions[language] self.lang = Language(lang).alpha3 self.country = Country(country) if country else None msg = 'The given string "%s" could not be identified as a language' % language if self.lang is None and strict: raise ValueError(msg) if self.lang is None: #log.debug(msg) self.lang = 'und' @property def alpha2(self): return lng3_to_lng2[self.lang] @property def alpha3(self): return self.lang @property def alpha3term(self): return lng3_to_lng3term[self.lang] @property def english_name(self): return lng3_to_lng_en_name[self.lang] @property def french_name(self): return lng3_to_lng_fr_name[self.lang] @property def opensubtitles(self): if self.lang == 'por' and self.country and self.country.alpha2 == 'br': return 'pob' elif self.lang in ['gre', 'srp']: return self.alpha3term return self.alpha3 @property def tmdb(self): if self.country: return '%s-%s' % (self.alpha2, self.country.alpha2.upper()) return self.alpha2 def __hash__(self): return hash(self.lang) def __eq__(self, other): if isinstance(other, Language): return self.lang == other.lang if isinstance(other, base_text_type): try: return self == Language(other) except ValueError: return False return False def __ne__(self, other): return not self == other def __nonzero__(self): return self.lang != 'und' def __unicode__(self): if self.country: return '%s(%s)' % (self.english_name, self.country.alpha2) else: return self.english_name def __repr__(self): if self.country: return 'Language(%s, country=%s)' % (self.english_name, self.country) else: return 'Language(%s)' % self.english_name UNDETERMINED = Language('und') ALL_LANGUAGES = frozenset(Language(lng) for lng in lng_all_names) - frozenset([UNDETERMINED]) ALL_LANGUAGES_NAMES = lng_all_names def search_language(string, lang_filter=None): """Looks for language patterns, and if found return the language object, its group span and an associated confidence. you can specify a list of allowed languages using the lang_filter argument, as in lang_filter = [ 'fr', 'eng', 'spanish' ] >>> search_language('movie [en].avi') (Language(English), (7, 9), 0.8) >>> search_language('the zen fat cat and the gay mad men got a new fan', lang_filter = ['en', 'fr', 'es']) (None, None, None) """ # list of common words which could be interpreted as languages, but which # are far too common to be able to say they represent a language in the # middle of a string (where they most likely carry their commmon meaning) lng_common_words = frozenset([ # english words 'is', 'it', 'am', 'mad', 'men', 'man', 'run', 'sin', 'st', 'to', 'no', 'non', 'war', 'min', 'new', 'car', 'day', 'bad', 'bat', 'fan', 'fry', 'cop', 'zen', 'gay', 'fat', 'cherokee', 'got', 'an', 'as', 'cat', 'her', 'be', 'hat', 'sun', 'may', 'my', 'mr', # french words 'bas', 'de', 'le', 'son', 'vo', 'vf', 'ne', 'ca', 'ce', 'et', 'que', 'mal', 'est', 'vol', 'or', 'mon', 'se', # spanish words 'la', 'el', 'del', 'por', 'mar', # other 'ind', 'arw', 'ts', 'ii', 'bin', 'chan', 'ss', 'san', 'oss', 'iii', 'vi', 'ben' ]) sep = r'[](){} \._-+' if lang_filter: lang_filter = lang_set(lang_filter) slow = ' %s ' % string.lower() confidence = 1.0 # for all of them for lang in lng_all_names: if lang in lng_common_words: continue pos = slow.find(lang) if pos != -1: end = pos + len(lang) # make sure our word is always surrounded by separators if slow[pos - 1] not in sep or slow[end] not in sep: continue language = Language(slow[pos:end]) if lang_filter and language not in lang_filter: continue # only allow those languages that have a 2-letter code, those who # don't are too esoteric and probably false matches if language.lang not in lng3_to_lng2: continue # confidence depends on lng2, lng3, english name, ... if len(lang) == 2: confidence = 0.8 elif len(lang) == 3: confidence = 0.9 else: # Note: we could either be really confident that we found a # language or assume that full language names are too # common words confidence = 0.3 # going with the low-confidence route here return language, (pos - 1, end - 1), confidence return None, None, None def guess_language(text): """Guess the language in which a body of text is written. This uses the external guess-language python module, and will fail and return Language(Undetermined) if it is not installed. """ try: from guess_language import guessLanguage return Language(guessLanguage(text)) except ImportError: log.error('Cannot detect the language of the given text body, missing dependency: guess-language') log.error('Please install it from PyPI, by doing eg: pip install guess-language') return UNDETERMINED
true
42f8b8f56618f8f70dd04ab2b4e822a904acf812
Python
ashwins-code/neural-network-library
/framework/tensor.py
UTF-8
5,661
3.0625
3
[]
no_license
import numpy as np class Tensor(object): """Tensor class""" def __init__(self, value): self.value = np.array(value) if self.value.ndim < 2: while self.value.ndim < 2: self.value = np.expand_dims(self.value, axis=0) self.parents = [] self.backward = None self.visited_parents = set() self.path_cache = {} self.ones = np.ones(self.value.shape) def has_path(self, tensor): if self == tensor: return True queue = self.parents.copy() while queue != []: current_tensor = queue[0] queue = queue[1:] if current_tensor == tensor: self.path_cache[tensor] = True return True queue = queue + current_tensor.parents return False def gradient(self, tensor, ignore_visited=True): current_tensor = self grad = Tensor(self.ones) while current_tensor != tensor: if current_tensor.parents[0].has_path(tensor) and ((current_tensor.parents[0] not in current_tensor.visited_parents and ignore_visited == False) or ignore_visited): grad = current_tensor.backward(current_tensor.parents[0], current_tensor.parents, grad) if ignore_visited: current_tensor.visited_parents = set() current_tensor.visited_parents.add(current_tensor.parents[0]) current_tensor = current_tensor.parents[0] elif current_tensor.parents[1].has_path(tensor) and ((current_tensor.parents[1] not in current_tensor.visited_parents and ignore_visited == False) or ignore_visited): grad = current_tensor.backward(current_tensor.parents[1], current_tensor.parents, grad) if ignore_visited: current_tensor.visited_parents = set() current_tensor.visited_parents.add(current_tensor.parents[1]) current_tensor = current_tensor.parents[1] else: return Tensor([[0]]) grad = add(grad, self.gradient(tensor, ignore_visited=False)) for i,d in enumerate(tensor.value.shape): if d == 1: grad.value = np.sum(grad.value, axis=i, keepdims=True) return grad def __str__(self): return f"Tensor(value={self.value})" def __add__(self, other): return add(self, other) def __sub__(self, other): return sub(self, other) def __mul__(self, other): return mul(self, other) def __truediv__(self, other): return div(self, other) def __matmul__(self, other): return matmul(self, other) def __pow__(self, other): return pow(self, other) @staticmethod def randn(*args): value = np.random.randn(*args) return Tensor(value) def dispose(self): del self def add(t1, t2): if type(t1) != Tensor: t1 = Tensor(t1) if type(t2) != Tensor: t2 = Tensor(t2) t = Tensor(t1.value + t2.value) t.parents = [t1, t2] def add_backward(v, parents, grad): local_grad = 0 local_grad = int(v == parents[0]) + int(v == parents[1]) grad.value = grad.value * local_grad return grad t.backward = add_backward return t def sub(t1, t2): if type(t1) != Tensor: t1 = Tensor(t1) if type(t2) != Tensor: t2 = Tensor(t2) t = Tensor(t1.value - t2.value) t.parents = [t1, t2] def sub_backward(v, parents, grad): local_grad = 0 local_grad = int(v == parents[0]) + int(v == parents[1]) * -1 grad.value = grad.value * local_grad return grad t.backward = sub_backward return t def mul(t1, t2): if type(t1) != Tensor: t1 = Tensor(t1) if type(t2) != Tensor: t2 = Tensor(t2) t = Tensor(t1.value * t2.value) t.parents = [t1, t2] def mul_backward(v, parents, grad): local_grad = 0 if v == parents[0]: local_grad += parents[1].value if v == parents[1]: local_grad += parents[0].value grad.value = grad.value * local_grad return grad t.backward = mul_backward return t def div(t1, t2): if type(t1) != Tensor: t1 = Tensor(t1) if type(t2) != Tensor: t2 = Tensor(t2) t = Tensor(t1.value + t2.value) t.parents = [t1, t2] def div_backward(v, parents, grad): local_grad = 0 if v == parents[0]: local_grad += 1 / parents[1].value if v == parents[1]: local_grad += -(parents[0] / (parents[1] ** 2)) grad.value = grad.value * local_grad return grad t.backward = div_backward return t def matmul(t1, t2): t = Tensor(t1.value.dot(t2.value)) t.parents = [t1, t2] def matmul_backward(v, parents, grad): local_grad = 0 if v == parents[0]: local_grad = np.dot(grad.value, parents[1].value.T) elif v == parents[1]: local_grad = np.dot(parents[0].value.T, grad.value) grad.value = local_grad return grad t.backward = matmul_backward return t def pow(t1, t2): t = Tensor(t1.value ** t2.value) t.parents = [t1, t2] def pow_backward(v, parents, grad): local_grad = 0 if v == parents[0]: local_grad = t2.value * (t1.value ** (np.subtract(t2.value, 1))) grad.value = local_grad return grad t.backward = pow_backward return t
true
dfac8853b44f5073a714f67b0931627b13570974
Python
verzep/MLDS
/tools.py
UTF-8
1,653
3.421875
3
[]
no_license
import numpy as np def _MFNN_t(X, Y, n): ''' Compute the Mutual False Nearest Neighbors for time intex n. The data should be given as matrices where the first dimension is time s.t X[t] is a point in space. :param X: A matrix with dimension (time_steps, X_space_dimension) :param Y: A matrix with dimension (time_steps, Y_space_dimension) :param n: The time index at which you want to compute the MFNN :return: the MFNN(n) ''' x_n = X[n] y_n = Y[n] # find the NN of the drive n_NND = np.argpartition(np.linalg.norm(X - x_n, axis=1), 1)[1] x_n_NND = X[n_NND] y_n_NND = Y[n_NND] # find the NN of the responde n_NNR = np.argpartition(np.linalg.norm(Y - y_n, axis=1), 1)[1] x_n_NNR = X[n_NNR] y_n_NNR = Y[n_NNR] R = (np.linalg.norm(y_n - y_n_NND) * np.linalg.norm(x_n - x_n_NNR) / (np.linalg.norm(x_n - x_n_NND) * np.linalg.norm(y_n - y_n_NNR)) ) return R def MFNN(X, Y, transient_length=None): ''' Compute the Mutual False Nearest Neighbors doing the temporal average. :param X: A matrix with dimension ( X_space_dimension, time_steps) :param Y: A matrix with dimension ( Y_space_dimension, time_steps) :param transient_length: the number of initial point to discard. If None, the 10% will be discarded. :return: MFNN ''' data = [] stop = X.shape[1] if transient_length is None: start = stop // 10 else: start = transient_length for i in range(start, stop): # Note that `_MFNN_t` uses the transpose data matrix!!! data.append(_MFNN_t(X.T, Y.T, i)) return data
true
bab4728695e18fb72cb3e9006dcad6dd210be7db
Python
maizijun/study
/leetcode/#461 hanming-dis.py
UTF-8
319
3.265625
3
[]
no_license
class Solution: def hammingDistance(self, x, y): ## &是按位且逻辑运算符 ## |是按位或逻辑运算符 ## ^是按位异或逻辑运算符 return bin(x^y)[2:].count('1') # print(list(bin(11))[2:],list(bin(31))[2:]) a = Solution() print(a.hammingDistance(11,14))
true
14b51fc25473660a4799ee07e23f31594db29358
Python
Divisekara/Python-Codes-First-sem
/Project Euler Problems/03/project euler 3(This is my method).py
ISO-8859-3
5,661
4
4
[]
no_license
# -*- coding: cp1252 -*- """ The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ? """ x=600851475143 i=2 while x!=1: while x%i==0: x=x/i print i,' and ' , x i=i+1 print 'The biggest prime factor is' ,i-1 """ The answer is 6857 """ """ from itertools import * firstPrimeGen = lambda magicnum: ifilter(lambda x: magicnum%x==0, chain((i for i in [2]),count(3,2))) def mainIter(magicnum): while magicnum > 1: n = firstPrimeGen(magicnum).next() yield n magicnum /= n print max(list(mainIter(600851475143))) """ """ sayi = 600851475143 asalBolen = 2 while sayi != 1: if sayi%asalBolen == 0: sayi /=asalBolen else: asalBolen+=1 continue print("En byk asal blen =",asalBolen) """ """ number = 600851475143 x = 0 prime = 0 check = 1 loop = True while loop == True: x = x + 1 if (number / x + 0.0) % 1 == 0.0: print(x) prime = x check = check * x if check == number: loop = False if x >= (number / 2): loop = False print("") print("The biggest prime factor equals " + str(prime)) """ """ #find the divisors in the form of a list divisors=[] n = 600851475143 i=1 while i<=n: if n%i==0: n/=i divisors.append(i) i+=1 #find the list of prime divisors pm=[] for x in divisors: list=[] for i in range(2,int(sqrt(n))+1): while x%i==0 and len(list)<2: list.append(i) if len(list)==0: pm.append(x) #Find the max prime max(pm) """ """ list1 = [] for n in range (2,600851475143): if 600851475143%n == 0: list1.append(n) print(list1) """ """ In Python3: def problem3(num): list_num = [] for i in range(2,math.floor(math.sqrt(num))+1): while num % i == 0: list_num.append(i) num /= i print(max(list_num)) problem3(600851475143) """ """ umber = 600851475143 for prime in range(2,600851475143): if (number %prime == 0): number = number/prime print(prime) elif (number == 1.0): break """ """ from math import sqrt def isPrimer(num): k = 0 for i in range(2, num + 1): if num % i == 0: k += 1 if k == 1: return 'Yes' def largerPrimer(num): listP = [] for i in range(int(sqrt(num)), 1, -1): if num % i == 0 and isPrimer(i) == 'Yes': listP += [i] return listP[0] print('The largest prime factor of the number 600851475143: \n' + str(largerPrimer(600851475143))) """ """ import math def MaxPrime(Prime): isPrime=lambda x: all(x % i != 0 for i in range(int(x**0.5)+1)[2:]) for i in range(int(math.sqrt(Prime)),0,-1): if(Prime%i==0): if(isPrime(i)): return i """ """ class prime_generator(): ''' prime_generator(num) -> generator Returns a generator that generates prime numbers up to num. ''' def __init__(self, num): self.current_primes = set([]) self.maximum = num self.working_num = 2 def __iter__(self): return self def next(self): self.working_num += 1 while not is_prime(self.working_num): if self.working_num in self.current_primes: return self.working_num self.working_num += 1 self.current_primes.add(self.working_num) return self.working_num def is_prime(num): ''' is_prime(int) -> bool Finds if a number is a prime number. ''' x = 3 while x < num: if num % x == 0: return False x += 2 return True def largest_prime(num): ''' largest_prime(int) -> int Returns the largest prime that a number is divisible by. ''' x = num largest = 1 while True: primes = prime_generator(x) for prime in primes: if x == prime: return x if not x % prime: x = x / prime largest = prime break if prime > x: break return largest print largest_prime(600851475143) """ """ My inefficient solution(8 minutes). If anyone know a way of optimize this solution, could help me? Thanks in advance. import math from time import * #Encontrar los numeros primos hasta un valor dado def numPrimos(tope): primos = [2] for num in range(3, tope+1, 2): aux = (num-1)/2 if not any(num%x == 0 for x in primos): primos.append(num) return primos def factPrimos(num): raizCuad = int(round(math.sqrt(num))) primosHastaNum = numPrimos(raizCuad) for primo in primosHastaNum[::-1]: if num%primo == 0: return primo tiempoIni = time() print (factPrimos(600851475143)) tiempoFin = time() print (tiempoFin-tiempoIni) #8 minutes!!!! """ """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True n = 1 while n <= 600851475143: if 600851475143 % n == 0: if isPrime(n) == True: print n n += 2 """ """ def factor(n): from math import sqrt Factor=list() while n%2==0: Factor.append(2) n=n//2 factor=3 maxfactor=sqrt(n) while n>1 and factor<=maxfactor: while n%factor==0: Factor.append(factor) n=n//factor maxfactor=sqrt(n) factor+=2 else: if n!=1: Factor.append(n) return Factor print(factor(600851475143)[-1]) """ """ number = 600851475143 def is_prime_number(x): for j in range(2,i): isPrime = True if i%j == 0: isPrime = False break return isPrime for i in xrange(2,number): if number%i == 0 and is_prime_number(i) == True: print i """
true
6ae18b6337ef835d0e12be8aed60c28ca20ce9f6
Python
eryilmazysf/assignments-
/odev.py
UTF-8
223
2.71875
3
[]
no_license
x="ProgramlamaÖdeviİleriSeviyeVeriYapılarıveObjeleripynb" f=dict() for karakter in x: if (karakter in f): f[karakter]+=1 else: f[karakter]=1 for i,j in f.items(): print (i,":",j )
true
3df815dd1ce62f4dec3d91101fcce3f5925bb3d3
Python
OmarMWarraich/Assignments
/05-Days_Between_Date.py
UTF-8
416
4.0625
4
[]
no_license
# Ai Assignment 05 - calculate number of days between two dates import datetime date1 = input("Enter First Date [DD/MM/YYYY] : ") date2 = input("Enter Second Date [DD/MM/YYYY] : ") d1, m1, y1 = map(int, date1.split('/')) d2, m2, y2 = map(int, date2.split('/')) date1 = datetime.date(y1, m1, d1) date2 = datetime.date(y2, m2, d2) period = date2 - date1 print("Number of Days................ : ",period.days)
true
453f3ce9dfa7aa5cdb50893082c007684ad768ec
Python
TPiazza21/Thesis
/linreg.py
UTF-8
687
3.078125
3
[]
no_license
# for vanilla linear regression. This is the nonprivate version import numpy as np def linreg(X,y,epsilon,delta): [n,d] = X.shape XTy = X.T.dot(y) # identity matrix added for numerical stability --> WHICH CHANGES IT TO RIDGE WITH LAMBDA=1 XTX = (X.T).dot(X) + np.eye(d) theta_hat = np.linalg.inv(XTX).dot(XTy) return theta_hat def ridgereg(X,y, epsilon, delta, lamb): [n,d] = X.shape XTy = X.T.dot(y) # maybe be careful about how you sometimes have lamb = 1 for the linear regression part, so maybe add 1 to lambda, if being consistent XTX = (X.T).dot(X) + lamb * np.eye(d) theta_hat = np.linalg.inv(XTX).dot(XTy) return theta_hat
true
6845144bc64a215fb56d00d1634f521636ba3a90
Python
macabeus/IA
/MINIMAX/TicTacToe.py
UTF-8
6,562
3.390625
3
[]
no_license
import numpy as np import copy class AIplayer: def __init__(self, board, my_mark, opponent_mark): self.board = board class MinMaxPlay(AIplayer): def __init__(self, board, my_mark, opponent_mark): super(MinMaxPlay, self).__init__(board, my_mark, opponent_mark) self.my_mark = my_mark self.opponent_mark = opponent_mark def searchEmptyPlaces(self, board): empty_places = [] for row in range(3): for col in range(3): if board.checkEmpty(row, col): empty_places.append((row, col)) return empty_places def minmax(self, board, my_turn, depth): scores = {} empty_places = self.searchEmptyPlaces(board) for place in empty_places: row, col = place[0], place[1] virt_board = copy.deepcopy(board) if my_turn: virt_board.setMark(row, col, self.my_mark) else: virt_board.setMark(row, col, self.opponent_mark) score = self.score(virt_board, my_turn, depth) if score is not None: scores[(row, col)] = score else: score = self.minmax(virt_board, not my_turn, depth + 1)[0] scores[(row, col)] = score # print "scores:", scores # debug print if my_turn: return (max(scores.values()), max(scores, key=(lambda x: scores[x]))) else: return (min(scores.values()), min(scores, key=(lambda x: scores[x]))) def getInput(self): board = copy.deepcopy(self.board) # virtual board ret = self.minmax(board, True, 0) print() return ret[1] def score(self, board, my_turn, depth): goal_flg = board.checkGoal() if goal_flg == 1: if my_turn: return 10 - depth else: # opponent wins return depth - 10 elif goal_flg == -1: # draw return 0 # un-finished case else: return None class Board: def __init__(self, initial_turn=True): self.spaces = np.array([[" ", " ", " "], [" ", " ", " "], [" ", " ", " "]]) self.cnt_mark = 0 def reset(self): self.spaces = np.array([[" ", " ", " "], [" ", " ", " "], [" ", " ", " "]]) self.cnt_mark = 0 def checkEmpty(self, row, col): if self.spaces[row][col] == " ": return True else: return False def checkInput(self, row, col): if (not row in [0, 1, 2]) or (not col in [0, 1, 2]): return (False, "incorrect input, over/under range.") elif not self.checkEmpty(row, col): return (False, "incorrect input, it have been placed.") else: return (True, "") def setMark(self, row, col, mark): self.spaces[row][col] = mark self.cnt_mark += 1 # 0: not finish, 1:finish, a user win -1: draw def checkGoal(self): if self.checkGoalOnRow() or self.checkGoalOnColumn() or \ self.checkGoalOnDiagonal(): return 1 elif self.cnt_mark == 9: return -1 else: return 0 def checkGoalOnRow(self): for row in range(3): if not self.spaces[row][0] == " " and \ self.spaces[row][0] == self.spaces[row][1] == self.spaces[row][2]: return True return False def checkGoalOnColumn(self): for col in range(3): if not self.spaces[0][col] == " " and \ self.spaces[0][col] == self.spaces[1][col] == self.spaces[2][col]: return True return False def checkGoalOnDiagonal(self): if not self.spaces[1][1] == " ": if self.spaces[0][0] == self.spaces[1][1] == self.spaces[2][2]: return True if self.spaces[0][2] == self.spaces[1][1] == self.spaces[2][0]: return True return False # CUI def dump(self): print("-------------") for row in range(3): print('|', end='') for col in range(3): print(self.spaces[row][col], end='|',) print("\n-------------") class TicTacToe: def __init__(self, initial_turn=True): self.board = Board() self.board.reset() self.initial_turn = initial_turn self.player_mark, self.ai_mark = None, None self.ai = None def setAI(self, mode, my_mark, opponent_mark): if mode == 'minmax': self.ai = MinMaxPlay(self.board, my_mark, opponent_mark) else: print("Unknown ai mode is input.") exit() self.ai_mark = my_mark def setPlayerMark(self, mark): self.player_mark = mark def resetBoard(self): self.board.reset() def getInputFromStdin(self): print("It's your turn, please input the next position. ie 0 0.") while True: user_input = input().split() if len(user_input) != 2: print("incorrect input, incorrect input size.") continue elif not user_input[0].isdigit() or not user_input[1].isdigit(): print("incorrect input, not integer input.") continue row, col = map(int, user_input) ret = self.board.checkInput(row, col) if ret[0]: return row, col else: print(ret[1]) continue def play(self): player_turn = self.initial_turn # if true: player, false: ai while True: if player_turn: row, col = self.getInputFromStdin() self.board.setMark(row, col, self.player_mark) else: # ai turn row, col = self.ai.getInput() print(row, col, "is input.") self.board.setMark(row, col, self.ai_mark) self.board.dump() flg = self.board.checkGoal() if flg == 1: # one of the player win if player_turn: print("You win") else: print("You loose") break elif flg == -1: print("Draw") break player_turn = not player_turn if __name__ == '__main__': game = TicTacToe(True) game.setPlayerMark('o') game.setAI("minmax", 'x', 'o') game.play()
true
3e5b9ff16ca688047db0973d5022bf5f56b3c9bb
Python
Guiller1999/CursoPython
/BBDD/Prueba.py
UTF-8
1,813
3.578125
4
[]
no_license
import sqlite3 def create_connection(): try: connection = sqlite3.connect("Test.db") return connection except Exception as e: print(e.__str__()) def create_table(connection, cursor): cursor = connection.cursor() cursor.execute( "CREATE TABLE IF NOT EXISTS USUARIOS" + "(Nombre VARCHAR(20), Apellido VARCHAR(20), Edad INTEGER)" ) connection.commit() #cursor.close() def insert_data(connection, cursor, name, last_name, years): data_user = [name, last_name, years] cursor = connection.cursor() cursor.execute( "INSERT INTO USUARIOS VALUES(?, ?, ?)", data_user ) connection.commit() #cursor.close() def get_data(connection, cursor): cursor = connection.cursor() rows = cursor.execute("SELECT * FROM USUARIOS") connection.commit() #cursor.close() return rows.fetchall() connection = create_connection() cursor = connection.cursor() create_table(connection, cursor) answer = "s" while(answer != "n" and answer != "N"): name = input(">> Ingrese nombre: ") last_name = input(">> Ingrese apellido: ") years = input(">> Ingrese edad: ") insert_data(connection, cursor, name, last_name, years) print("------------------------------------------------\n") answer = input(">> Ingresar otro usuario. Presione S(si) / N(no)....") print("\n------------------------------------------------\n") rows = get_data(connection, cursor) print("\n------------------------------------------------\n") print("\t\t MOSTRANDO DATOS \n") for row in rows: print(f" >> Nombre: {row[0]}") print(f" >> Apellido: {row[1]}") print(f" >> Edad: {row[2]}") print("_______________________________________________________\n") cursor.close() connection.close()
true
56531a6da673657546d71bd35c0c91c9a7cc6a39
Python
deadiladefiatri/Deadila-Defiatri_I0320023_Aditya-Mahendra_Tugas5
/I0320023_Deadila Defiatri_Soal2.py
UTF-8
664
3.6875
4
[]
no_license
#Grading Nilai Nama = str(input('Nama Lengkap : ')) Nilai = int(input('Nilai Anda skala 1-100: ')) info = 'Halo ' + Nama + '!' + ' Nilai anda setelah dikonversi adalah ' #memeriksa nilai if Nilai <= 100 and Nilai >= 85: print(info + 'A') elif Nilai <= 84 and Nilai >= 80: print(info + 'A-') elif Nilai <=79 and Nilai >= 75: print(info + 'B+') elif Nilai <= 74 and Nilai >= 70: print(info + 'B') elif Nilai <=69 and Nilai >= 65: print(info + 'C+') elif Nilai <= 64 and Nilai >= 60: print(info + 'C') elif Nilai <=59 and Nilai >= 0: print(info + 'E') else: print('Halo' + '' + Nama + '!' + 'Nilai kamu tidak dapat dikonversi')
true
031478efa49a6b7e2311da9f24d23bcbb3f0bdf7
Python
reon/SmartCardDecoder
/t1ApduDecoder.py
UTF-8
5,278
2.625
3
[]
no_license
########################################################## # t1ApduDecoder.py # Author : Bondhan Novandy # Date : 15-16 May 2011 # # License : Creative Commons Attribution-ShareAlike 3.0 Unported License. # http://creativecommons.org/licenses/by-sa/3.0/ # Publish : http://bondhan.web.id (For education purpose only) # Version : v0.1 # # Fixes : 16 May 2011, Initial release # # ########################################################## import sys import re # Constants T1_ERR_MSG = {} T1_ERR_MSG[0x500] = 'T1 stream bytes are invalid, the length is not even!' T1_ERR_MSG[0x501] = 'T1 stream bytes are invalid. Unknown chars found!' T1_ERR_MSG[0x502] = 'Incomplete T1 stream bytes' T1_ERR_MSG[0x503] = 'T1 stream bytes are more than 32 bytes' T1_ERR_MSG[0x504] = 'Unknown bytes found after EDC' def pause(): raw_input('press Enter to continue..') # This function will check if the stream bytes are belong # to I, R or S block and describe the entities for each component def decodeT1(streamBytes): # if contains besides alphabet or numbers pattern = '[^a-fA-F0-9]' strBytes = ''.join(streamBytes) print '_________________T=1__APDU_________________' print 'T1 = '+strBytes print lRet = 0 if (len(strBytes) % 2) != 0: return T1_ERR_MSG[0x500] elif len(re.findall(pattern, strBytes)) != 0: return T1_ERR_MSG[0x501] # Prologue # Consists of NAD | PCB | LEN # NAD byte = 0 if byte+2 > len(strBytes): return T1_ERR_MSG[0x502] NAD_MSB = (strBytes[byte:(byte+1)]).upper() NAD_LSB = (strBytes[(byte+1):(byte+2)]).upper() NAD = NAD_MSB+NAD_LSB print 'NAD = '+ NAD if NAD == '00': print ' -> NAD is ignored' elif NAD == 'FF': print ' -> NAD is invalid' NAD_MSB_INT = int(NAD_MSB, 16) NAD_LSB_INT = int(NAD_LSB, 16) print ' -> SAD (Source Address) '+ str(NAD_LSB_INT & 0b0111) print ' -> DAD (Destination Address) '+ str(NAD_MSB_INT & 0b0111) # PCB byte += 2 if byte+2 > len(strBytes): return T1_ERR_MSG[0x502] PCB_MSB = (strBytes[byte:(byte+1)]).upper() PCB_LSB = (strBytes[(byte+1):(byte+2)]).upper() PCB = PCB_MSB+PCB_LSB print 'PCB = '+ PCB PCB_INT = int(PCB, 16) PCB_MSB_INT = int(PCB_MSB,16) PCB_LSB_INT = int(PCB_LSB,16) if (PCB_MSB_INT & 0b1000) == 0: print ' -> I Block Identifier' if (PCB_MSB_INT & 0b0100) != 0: print ' -> N(S) = 1' else: print ' -> N(S) = 0' if (PCB_MSB_INT & 0b0010) != 0: print ' -> M = 1 (Chaining on progress)' else: print ' -> M = 0' elif (PCB_MSB_INT & 0b1100) == 0b1000: print ' -> R Block Identifier' if (PCB_MSB_INT & 0b0001) == 0b0001: print ' -> N(R) = 1' else: print ' -> N(R) = 0' if PCB_LSB_INT == 0x00: print ' -> No Error' elif PCB_LSB_INT == 0x01: print ' -> EDC or parity error' elif PCB_LSB_INT == 0x02: print ' -> Other Error' elif (PCB_MSB_INT & 0b1100) == 0b1100: print ' -> S Block Identifier' if (PCB_INT & 0xFF) == 0b11000000: print ' -> Resync Request (only from terminal)' elif (PCB_INT & 0xFF) == 0b11100000: print ' -> Resync Response (only from smart card)' elif (PCB_INT & 0xFF) == 0b11000001: print ' -> Request change to information field size' elif (PCB_INT & 0xFF) == 0b11100001: print ' -> Response to Request change to information field size' elif (PCB_INT & 0xFF) == 0b11000010: print ' -> Request Abort' elif (PCB_INT & 0xFF) == 0b11100010: print ' -> Response to Abort Request' elif (PCB_INT & 0xFF) == 0b11000011: print ' -> Request waiting time extension (only from smart card)' elif (PCB_INT & 0xFF) == 0b11100011: print ' -> Response to waiting time extension (only from terminal)' elif (PCB_INT & 0xFF) == 0b11100100: print ' -> Vpp Error Response (only from smart card)' # LEN byte += 2 if byte+2 > len(strBytes): return T1_ERR_MSG[0x502] LEN_MSB = (strBytes[byte:(byte+1)]).upper() LEN_LSB = (strBytes[(byte+1):(byte+2)]).upper() LEN = LEN_MSB+LEN_LSB print 'LEN = '+ LEN intLen = int(''.join(LEN), 16) print ' -> Inf Length = (Dec) ' + str(intLen) # INF byte += 2 if byte+intLen > len(strBytes): return T1_ERR_MSG[0x502] if intLen > 0: print 'INF = '+strBytes[byte:(byte+(intLen*2))] else: print 'INF = No INF' # EDC byte += (intLen*2) if byte+2 > len(strBytes): return T1_ERR_MSG[0x502] EDC_MSB = (strBytes[byte:(byte+1)]).upper() EDC_LSB = (strBytes[(byte+1):(byte+2)]).upper() EDC = EDC_MSB+EDC_LSB print 'EDC = '+ EDC xored = 0 for i in range (2, len(strBytes)-2, 2): var = (strBytes[i]+strBytes[i+1]) xored ^= int(var, 16) #print var + '->' + str(xored) print ' -> Calculated EDC: (Dec) '+str(xored)+' or '+str(hex(xored)) if xored == int(EDC,16): print ' -> EDC Sequence is valid!' else: print ' -> EDC Sequence is invalid!' byte += 2 if byte < len(strBytes): print 'UNKNOWN = '+ strBytes[byte:len(strBytes)] return T1_ERR_MSG[0x504] return lRet ## Main function if __name__ == '__main__': streamBytes = '' if len(sys.argv) < 2: streamBytes = raw_input('Enter the T1 stream bytes> ') streamBytes = streamBytes.split() else: streamBytes = sys.argv[1:] # Let's decode it lRet = decodeT1(streamBytes) if ( lRet != 0 ): print print 'Error Message: ' print lRet
true
4f9510c7c5d00bd358bf0080f0675ba0f88658fc
Python
lazaropd/ai-residency
/Módulo 2 - Data Analysis/Curso 5 - Classificação/analise_residuos.py
UTF-8
2,642
3.140625
3
[]
no_license
import numpy as np import pandas as pd from scipy import stats import matplotlib.pyplot as plt from sklearn.metrics import r2_score def calc_rss(residuo): return float(((residuo) ** 2).sum()) def calc_r2(y, y_hat): return r2_score(y_hat, y) def analise_residuos(y, y_hat, graph=False): """sendo conhecidos y (pandas column) e y_hat (numpy array Nx1)""" size = len(y_hat) if isinstance(y, pd.DataFrame): y = np.array(y.values.ravel()) y_hat = np.array(y_hat) res = y - y_hat obs = np.arange(1, size+1) # mostra resumo estatístico do desempenho do modelo print('***********************************************') print('Número de observações: ', size) print('RSS: %.2f'%calc_rss(res)) print('R2: %.2f'%calc_r2(y, y_hat)) print('***********************************************\n') if graph: # configuração do gráfico para análise de resíduos fig, ax = plt.subplots(2, 2, figsize=(16,8)) fig.suptitle('Análise de Resíduos', fontsize=20) plt.subplots_adjust(hspace=0.3, wspace=0.3) # análise do resíduo pela ordem das observações, avaliar se o resíduo tem comportamento estável ax[0][0].scatter(obs, res, marker='o', c= 'r', alpha=0.8, edgecolors='none') ax[0][0].plot(obs, res, c= 'k', lw=0.5, alpha=0.8) ax[0][0].plot([0, size], [0, 0], c='k') ax[0][0].set_title('Resíduos', size=16) # teste de normalidade do resíduo, um modelo bem ajustado deve ter um resíduo totalmente estocástico e normal a, result = stats.probplot(res, plot=ax[0][1], dist='norm') # teste estatístico se o resíduo segue uma distribuição normal _, p = stats.normaltest(res) ax[0][1].text(-2, 0.8*res.max(), 'r=%.2f\np-value=%.4f'%(result[2], p)) ax[0][1].set_title('Normalidade (pp-plot)', size=16) # verificação se a premissa de homoscedicidade está sendo atendida (variância do resíduo constante para todo o domínio) ax[1][0].scatter(y_hat, res, marker='o', c= 'r', alpha=0.8, edgecolors='none') ax[1][0].plot([0, y_hat.max()], [0, 0], c='k') ax[1][0].set_title('Resíduos vs Ajustado', size=16) # distribuição dos resíduos, aferição visual, verificar se os resíduos formam uma normal (gaussiana) ax[1][1].hist(res, density=True, facecolor='b', alpha=0.5, edgecolor='gray') rv = stats.norm(res.mean(), res.std()) x = np.linspace(res.min(), res.max(), 100) h = plt.plot(x, rv.pdf(x), c='b', lw=2) ax[1][1].set_title('Histograma', size=16) plt.show()
true
081b1cd807565906c2400487a95edec7a15225dc
Python
YoungBear/LearningNotesYsx
/python/code/collections_learn.py
UTF-8
844
3.578125
4
[]
no_license
#!/usr/local/bin/python3 # -*- coding: utf-8 -*- from collections import namedtuple # namedtuple Point = namedtuple('Poine', ['x', 'y']) p = Point(1, 2) print(p.x) print(p.y) print(isinstance(p, Point)) print(isinstance(p, tuple)) # deque 双向列表 from collections import deque q = deque(['a', 'b', 'c']) q.append('x') q.appendleft('y') print(q) # defaultdict from collections import defaultdict dd = defaultdict(lambda: 'N/A') dd['key1'] = 'abc' print(dd['key1']) print(dd['key2']) # OrderedDict from collections import OrderedDict d = dict([('a', 1), ('b', 2), ('c', 3)]) print(d) od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) print(od) od = OrderedDict() od['z'] = 1 od['y'] = 2 od['x'] = 3 print(list(od.keys())) # Counter from collections import Counter c = Counter() for ch in 'programming': c[ch] = c[ch] + 1 print(c)
true
d76a972aa48d071093e9efc1b8f35951b98d3864
Python
vipinvkmenon/canddatastructures_python
/chapter11/example3.py
UTF-8
167
3.671875
4
[]
no_license
#Chapter 11.3 #Register Variables def main(): i = 0 for i in range(2): print("Value of i is " + str(i)) main() # Main function entry
true
b0bae682bdda8b4bbbdf052d0f0542eaaf2da794
Python
apatel16/Deep_Learning_Projects
/Neural_Style_Transfer.py
UTF-8
6,267
2.65625
3
[]
no_license
import numpy as np from keras.preprocessing.image import load_img, img_to_array from keras.applications import vgg19 from keras.preprocessing import image #from google.colab import files #uploaded = files.upload() target_image_path = 'portrait.jpg' style_reference_image_path = 'transfer_style_reference.jpg' width, height = load_img(target_image_path).size print(width, height) img_height = 400 img_width = int(width * img_height / height) print(img_height, img_width) def preprocess_image(image_path): img = load_img(image_path, target_size=(img_height, img_width)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg19.preprocess_input(img) return img def deprocess_image(x): # zero-centering by removing the mean pixel value from ImageNet # this reverses a transformation done by vgg19.preprocess_input x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.680 # Convergs image from 'BGR' to 'RGB', this is also part of vgg19.preprocess_input reversal process x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x from keras import backend as K target_image = K.constant(preprocess_image(target_image_path)) style_reference_image = K.constant(preprocess_image(style_reference_image_path)) # placeholder that will contain the generated image combination_image = K.placeholder((1, img_height, img_width, 3)) # combines the three images in a single batch input_tensor = K.concatenate([target_image, style_reference_image, combination_image], axis=0) # builds the VGG19 network with the batch of three images as input. # the model will be loaded with pretrained imagenet weights model = vgg19.VGG19(input_tensor=input_tensor, weights='imagenet', include_top=False) print('Model loaded.') def content_loss(base, combination): return K.sum(K.square(combination - base)) def gram_matrix(x): features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram def style_loss(style, combination): S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_height * img_width return K.sum(K.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2)) def total_variation_loss(x): a = K.square( x[:, :img_height - 1, :img_width - 1, :] - x[:, 1:, :img_width - 1, :]) b = K.square( x[:, :img_height - 1, :img_width - 1, :] - x[:, :img_height - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # dictionary that maps layer names to activation tensors outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) # layer used for content losst content_layer = 'block5_conv2' # layers used for style loss style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] # weights in the weighted average total_variation_weight = 1e-4 style_weight = 1.0 content_weight = 0.025 # define loss by adding all components to this scalar variable loss = K.variable(0.0) layer_features = outputs_dict[content_layer] target_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss = loss + (content_weight * content_loss(target_image_features, combination_features)) # adds a style loss component for each target layer for layer_name in style_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss += (style_weight / len(style_layers)) * sl # adds the total variation loss loss = loss + (total_variation_weight * total_variation_loss(combination_image)) # gets the gradients of the generated image with regard # to the loss grads = K.gradients(loss, combination_image)[0] # function to fetch the values of the current loss and the # current gadients fetch_loss_and_grads = K.function([combination_image], [loss, grads]) # this class wraps fetch_loss_and_grads # in a way that lets you retrieve the losses and # gradients via two separate mthod calls, which is # required by the SciPy optimizer you'll use class Evaluator(object): def __init__(self): self.loss_value = None self.grad_values = None def loss(self, x): assert self.loss_value is None x = x.reshape((1, img_height, img_width, 3)) outs = fetch_loss_and_grads([x]) loss_value = outs[0] grad_values = outs[1].flatten().astype('float64') self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() from scipy.optimize import fmin_l_bfgs_b from scipy.misc import imsave import time result_prefix = 'my_result' iterations = 25 # this is the initial state: the target image x = preprocess_image(target_image_path) # you flatten image because L-BFGS can only process flat vectors x = x.flatten() # run L-BFGS optimization ove rthe pixels of the # generated image to minimize the neural style # loss. NOTE: we pass the function to evaluate # the loss and gradients as two separate args for i in range(iterations): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x, fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) img = x.copy().reshape((img_height, img_width, 3)) img = deprocess_image(img) fname = result_prefix + '_at_iteration_%d.png' % i imsave(fname, img) print('Image saved as', fname) end_time = time.time() print('Iteration %d completed in %ds' % (i, end_time - start_time))
true
24e040f1ff8a9db830ed8f00f2615fba21dae4e3
Python
Stark101001/Snake-Game
/game_py.py
UTF-8
4,319
3.421875
3
[]
no_license
import pygame import random pygame.init() # =======Color Codes====== black = (0, 0, 0) white = (255, 255, 255) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) # ========Title========== title = "Snake Game" pygame.display.set_caption(title) #============Adding Game Icon========= gameIcon = pygame.image.load('snake.png') pygame.display.set_icon(gameIcon) # =====Creating Display============= scr_width = 800 scr_height = 600 screen = pygame.display.set_mode((scr_width, scr_height)) # ========Image Load=========== bg_img = pygame.image.load('bg.jpg').convert() # =======Clock Function ========= FPS = 10 clk = pygame.time.Clock() # ========Font Import====== font = pygame.font.SysFont("Times new Roman", 34) def Snake(React, snakelist): for XnY in snakelist: pygame.draw.rect(screen, red, [XnY[0], XnY[1], React, React]) def End_text(msg, color): scr_text = font.render(msg, True, color) screen.blit(scr_text, [scr_width - 790, scr_height - 400]) def Loop(): # ==========Snake Position========== start_x = int(scr_width / 2) start_y = int(scr_height / 2) # ======= Updation into Movement ==== React = 20 update_x = 0 update_y = 0 # ======= Snake List=========== snakeList = [] snakeLength = 1 # =====Creating Food ============ rFoodX = round(random.randrange(0, scr_width - React) / 20) * 20 rFoodY = round(random.randrange(0, scr_height - React) / 20) * 20 # =====Event Handling=========== Game_quit = False Game_over = False while not Game_quit: while Game_over == True: screen.fill(black) End_text("Game Over Press\n 'Space' To Retry Press\n 'Esc' To Quit", white) pygame.display.flip() for event in pygame.event.get(): if event.type == pygame.QUIT: # Call Quit Event Game_quit = True # Quit game Game_over = False # Game End if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: Game_quit = True Game_over = False if event.key == pygame.K_SPACE: Loop() for event in pygame.event.get(): # import All Event By Get method if event.type == pygame.QUIT: # Call Quit Event Game_quit = True # Quit game # Event Handling ======================= if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: update_x = -React update_y = 0 if event.key == pygame.K_RIGHT: update_x = +React update_y = 0 if event.key == pygame.K_UP: update_y = -React update_x = 0 if event.key == pygame.K_DOWN: update_y = +React update_x = 0 # If Snake Touch Boundary Then game is over Logic ========== if start_x >= scr_width or start_x < 0 or start_y >= scr_height or start_y < 0: Game_over = True start_y += update_y start_x += update_x screen.blit(bg_img, [0, 0]) # image load method pygame.draw.rect(screen, blue, [rFoodX, rFoodY, React, React]) # draw rectangle as Snake Food pygame.draw.rect(screen, black, [0, 0, scr_width, scr_height], 10) # draw rectangle as boundary snakHead = [start_x, start_y] snakeList.append(snakHead) if len(snakeList) > snakeLength: del (snakeList[0]) for eachsegment in snakeList[:-1]: if eachsegment == snakHead: # Game_over = True pass Snake(React, snakeList) # Calling Snake Function pygame.display.update() if start_x == rFoodX and start_y == rFoodY: # Conditiion Apply Snake Hover to Food rFoodX = round(random.randrange(0, scr_width - React) / 20) * 20 # Snake food Position Correct rFoodY = round(random.randrange(0, scr_height - React) / 20) * 20 # Snake food Position Correct snakeLength += 1 # Increase Snake Length clk.tick(FPS) # Snake movement Frame Per Seconds (FPS) Loop()
true
721ae487dc8476085bde8a3bd5c8fe5bfc170cfd
Python
vbloise3/cleanJson
/KinesisClient.py
UTF-8
1,612
2.671875
3
[]
no_license
import boto3 import json import time # define your stream name kpl_stream = 'kinesis-kpl-demo2' # create the Kinesis service reference for your region kinesis_client = boto3.client('kinesis', region_name='us-west-2') # get the description of your Kinesis Data Stream response = kinesis_client.describe_stream(StreamName=kpl_stream) # use the Kinesis Data Stream description to get the shard ID shard_id = response['StreamDescription']['Shards'][0]['ShardId'] # create your shard iterator shard_iterator = kinesis_client.get_shard_iterator(StreamName=kpl_stream, ShardId=shard_id, ShardIteratorType='LATEST') shard_iterator = shard_iterator['ShardIterator'] # retrieve your first Kinesis Data Streams record record_response = kinesis_client.get_records(ShardIterator=shard_iterator, Limit=2) # loop until you have recieved all of the Kinesis Data Streams records while 'NextShardIterator' in record_response: record_response = kinesis_client.get_records(ShardIterator=record_response['NextShardIterator'], Limit=2) # add your deaggregation logic here # where you will deaggregate the user records from each Kinesis Data Streams record # you will then perform actions on your user records, such as storing them on S3, or copying them to a Redshift table print (record_response, "\n") # wait for 1 second before retrieving the next Kinesis Data Streams record time.sleep(1)
true
5ef286e16d65714f66510eacc7bed4253c55381e
Python
pmackenz/PyPCFD
/src/Main.py
UTF-8
3,068
2.515625
3
[]
no_license
''' Created on Nov 21, 2015 @author: pmackenz ''' from Domain import * import subprocess import ButcherTableau as integrator from math import floor from Mappings import * def Main(): # defne the Reynolds number Re = 1000 Re = 1 # set sliding velocity velocity = 1.0 # mass density of the fluid density = 1000. # set side-length of the analysis domain edgeDomain = 1. # set the number of cells per edge numCellsPerEdge = 16 numCellsPerEdge = 8 numCellsPerEdge = 4 #numCellsPerEdge = 2 # viscosity of the fluid viscosity = density * velocity * edgeDomain / Re # create an analysis domain domain = Domain(edgeDomain, edgeDomain, numCellsPerEdge, numCellsPerEdge, mappingFunction=IdentityMap()) #domain = Domain(edgeDomain, edgeDomain, numCellsPerEdge, numCellsPerEdge, mappingFunction=FineEdgeMap()) domain.createParticles(2,2) # configure the analysis type doInit = False solveVstar = True solveP = True solveVtilde = True solveVenhanced = False updatePosition = True updateStress = False addTransient = True domain.setAnalysis(doInit, solveVstar, solveP, solveVtilde, solveVenhanced, updatePosition, updateStress, addTransient) domain.setParameters(Re, density, velocity) domain.setInitialState() CFL = 1.0 dt = domain.getTimeStep(CFL) print(u"CFL=1 equals to \u0394t={:f}".format(dt)) print(domain) # define load history and print interval dt1 = 0.01000 target1 = 0.1 dt2 = 0.1 target2 = 1.0 # ************* don't mess with stuff below ************* domain.particleTrace(True) # defining plot settings domain.setPlotInterval(dt1) # defining output settings domain.setWriteInterval(-1) # initializing starting time time = 0.0 # run first segment #domain.setTimeIntegrator(integrator.ExplicitEuler()) domain.setTimeIntegrator(integrator.RungeKutta4()) domain.plotParticleTrace('tracePlot{:04d}.png'.format(floor(time*100))) dt = dt1 while (time+dt <= target1 + 0.1 * dt): time += dt domain.runAnalysis(time) domain.plotParticleTrace('tracePlot{:04d}.png'.format(floor(time*100))) # run second segment domain.setTimeIntegrator(integrator.RungeKutta4()) dt = dt2 while (time + dt <= target2 + 0.1 * dt): time += dt domain.runAnalysis(time) if (time % 1.0 < 0.5*dt): # write 1.0 sec duration trace plots domain.plotParticleTrace('tracePlot{:04d}.png'.format(floor(time*100))) domain.particleTrace(False) # this wipes old trace domain.particleTrace(True) # this restarts trace # generate the animation subprocess.run('./makeAnim.sh') if __name__ == '__main__': Main()
true
7eae5de424681c8c4b850d7e0701f5978ca3a2b4
Python
komalupatil/Leetcode_Solutions
/Easy/Average Salary Excluding the Minimum and Maximum Salary.py
UTF-8
640
4.46875
4
[]
no_license
#Leetcode 1491. Average Salary Excluding the Minimum and Maximum Salary class Solution1: def average(self, salary: List[int]) -> float: salary.sort() total = 0 for i in range(1, len(salary)-1): total += salary[i] return total/(len(salary)-2) class Solution2: def average(self, salary: List[int]) -> float: minS = float('inf') maxS = float('-inf') total = 0 for i in range(len(salary)): total += salary[i] minS = min(minS, salary[i]) maxS = max(maxS, salary[i]) return (total-minS-maxS)/(len(salary)-2)
true
ddacfab2e966ad2ef562f9aeb783192c145f3e44
Python
goohooh/fastcampus_wps1
/KimHanwool/5th_week_Algorithm/1373.py
UTF-8
524
3.71875
4
[]
no_license
""" 2진수 8진수 문제집 시간 제한 메모리 제한 제출 정답 맞은 사람 정답 비율 1 초 128 MB 2448 742 569 36.662% 문제 2진수가 주어졌을 때, 8진수로 변환하는 프로그램을 작성하시오. 입력 첫째 줄에 2진수가 주어진다. 주어지는 수의 길이는 1,000,000을 넘지 않는다. 출력 첫째 줄에 주어진 수를 8진수로 변환하여 출력한다. 예제 입력 복사 11001100 예제 출력 복사 314 """ n = input() n1 = int(n, 2) print(oct(n1)[2:])
true
fc784517da0e3d8e19e53cc7c19890c52a0765f8
Python
Anirud2002/flappybird
/game.py
UTF-8
4,225
2.84375
3
[]
no_license
import pygame, random pygame.init() pygame.display.set_caption("Flappy Bird - Anirud") pygame.display.set_icon(pygame.image.load("assets/bluebird-midflap.png")) game_font = pygame.font.Font("04B_19.TTF", 30) score = 0 high_score = 0 screen = pygame.display.set_mode((376, 624)) clock = pygame.time.Clock() # game variables gravity = 0.25 bird_movement = 0 game_active = True bg_surface = pygame.image.load("assets/background-day.png").convert() bg_surface = pygame.transform.scale(bg_surface, (376, 624)) floor_surface = pygame.image.load("assets/base.png").convert() floor_surface = pygame.transform.scale(floor_surface, (376, 100)) floor_x_pos = 0 bird_surface = pygame.image.load("assets/bluebird-midflap.png").convert_alpha() bird_rect = bird_surface.get_rect(center=(80, 272)) pipe_surface = pygame.image.load("assets/pipe-green.png").convert() pipe_surface = pygame.transform.scale(pipe_surface, (60, 400)) pipe_list = [] SPAWNPIPE = pygame.USEREVENT pygame.time.set_timer(SPAWNPIPE, 1200) pipe_height = [250, 350, 400, 470] def draw_floor(): screen.blit(floor_surface, (floor_x_pos, 524)) screen.blit(floor_surface, (floor_x_pos + 376, 524)) def create_pipe(): random_pipe_pos = random.choice(pipe_height) bottom_pipe = pipe_surface.get_rect(midtop=(588, random_pipe_pos)) top_pipe = pipe_surface.get_rect(midbottom=(588, random_pipe_pos - 150)) return bottom_pipe, top_pipe # it returns tuple def move_pipes(pipes): for pipe in pipes: pipe.centerx -= 2 return pipes def draw_pipes(pipes): for pipe in pipes: if pipe.bottom >= 524: screen.blit(pipe_surface, pipe) else: flip_pipe = pygame.transform.flip(pipe_surface, False, True) screen.blit(flip_pipe, pipe) def check_collision(pipes): for pipe in pipes: if bird_rect.colliderect(pipe): return False if bird_rect.top <= -10 or bird_rect.bottom >= 524: return False return True def rotate_bird(bird): new_bird = pygame.transform.rotozoom(bird, -bird_movement * 3, 1) return new_bird def score_display(game_state): if game_state == "main_text": score_surface = game_font.render(str(int(score)), True, (255, 255, 255)) score_rect = score_surface.get_rect(center=(188, 70)) screen.blit(score_surface, score_rect) if game_state == "game_over": score_surface = game_font.render(str(int(score)), True, (255, 255, 255)) score_rect = score_surface.get_rect(center=(188, 70)) screen.blit(score_surface, score_rect) high_score_surface = game_font.render(f"High Score: {int(high_score)}", True, (255, 255, 255)) high_score_rect = score_surface.get_rect(center=(88, 470)) screen.blit(high_score_surface, high_score_rect) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: bird_movement = 0 bird_movement -= 7 if event.key == pygame.K_SPACE and not game_active: game_active = True pipe_list.clear() bird_rect.center = (80, 200) bird_movement = 0 score = 0 if event.type == SPAWNPIPE: pipe_list.extend(create_pipe()) screen.blit(bg_surface, (0, 0)) if game_active: # bird bird_movement += gravity bird_rect.centery += bird_movement rotated_bird = rotate_bird(bird_surface) screen.blit(rotated_bird, bird_rect) game_active = check_collision(pipe_list) # pipes pipe_list = move_pipes(pipe_list) draw_pipes(pipe_list) score += 0.01 score_display("main_text") else: score_display("game_over") high_score = score # floor floor_x_pos -= 1 draw_floor() if floor_x_pos <= -376: floor_x_pos = 0 pygame.display.update() clock.tick(120)
true
68e08f904a2de45b90dab3de7f13d65a64f9708b
Python
AakashOfficial/ChallengeTests
/challenge_23/python/slandau3/BTtoLLs.py
UTF-8
2,462
4.125
4
[ "MIT" ]
permissive
#!/usr/bin/env python3 import random from collections import deque """ Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth (e.g., if you have a tree with depth D,you'll have D linked lists). """ class Node: def __init__(self, data, left=None, right=None): self.data = data self.left = left self.right = right def __repr__(self): return str(self.data) class NodeLL: def __init__(self, data, next=None): self.data = data self.next = next def __repr__(self): return self.data class LinkedList: def __init__(self): self.head = None def insert(self, data): temp = self.head if self.head is None: self.head = NodeLL(data) return while temp.next is not None: temp = temp.next temp.next = NodeLL(data) def printAll(self): temp = self.head while temp is not None: print(str(temp.data)) temp = temp.next class BinaryTree: def __init__(self, data=None): self.root = Node(data) def insert(self, data): self.root = self.__insert(data, self.root) def __insert(self, data, root): if root is None: return Node(data) elif root.data < data: root.right = self.__insert(data, root.right) else: root.left = self.__insert(data, root.left) return root def createTree(): bt = BinaryTree(50) for _ in range(100): bt.insert(random.randint(0,1000)) return bt def list_linkify(btree): # Need to do a level order traversal currentLevel = deque() nextLevel = deque() linked_lists = [LinkedList()] currentLevel.append(btree.root) while len(currentLevel) != 0: current = currentLevel.pop() linked_lists[-1].insert(current.data) if current.left is not None: nextLevel.append(current.left) if current.right is not None: nextLevel.append(current.right) if len(currentLevel) == 0: if len(nextLevel) == 0: # if there is nothing in the next leevl. We are done break currentLevel = nextLevel.copy() nextLevel = deque() linked_lists.append(LinkedList()) return linked_lists bt = createTree() l = list_linkify(bt) for i in l: i.printAll() print()
true
03a0633453d3d803ab304b9c5ede2046edafa661
Python
jwyx3/practices
/leetcode/binary-search/bs-answer/arranging-coins.py
UTF-8
553
3.25
3
[]
no_license
# 二分答案看是否能找到总数<n的最大答案 class Solution(object): def arrangeCoins(self, n): """ :type n: int :rtype: int """ start, end = 0, n while start + 1 < end: mid = (start + end) / 2 total = self.get_total(mid) if total <= n: start = mid else: end = mid - 1 if self.get_total(end) <= n: return end return start def get_total(self, x): return (1 + x) * x / 2
true
52ebd873eb6120b7d2bc5a1050d94b4343524353
Python
keltecc/ructf-2019-olymp-quals
/tasks/forensics-300/decoder.py
UTF-8
819
3.28125
3
[]
no_license
#!/usr/bin/python3 import sys from PIL import Image def sum_pixels(img, x, y, area): result = 0 for dx in range(area): for dy in range(area): result += img.getpixel((x + dx, y + dy)) return result // 255 def decode_image(img): area = 2 correct = [0, area ** 2] result = Image.new('1', (img.width // area, img.height // area)) for x in range(result.width): for y in range(result.height): color = 255 if sum_pixels(img, x*area, y*area, area) in correct else 0 result.putpixel((x, y), color) return result def main(): if len(sys.argv) < 2: print('usage: {} <image.png>'.format(sys.argv[0])) sys.exit(1) image = Image.open(sys.argv[1]) decode_image(image).show() if __name__ == '__main__': main()
true
09a82fb190ee3bdcfeb9d2ee3a43273f50e0e60b
Python
BoobooWei/python-cx_Oracle
/samples/tutorial/solutions/soda.py
UTF-8
1,538
2.65625
3
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
#------------------------------------------------------------------------------ # soda.py (Section 11.2) #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. #------------------------------------------------------------------------------ from __future__ import print_function import cx_Oracle import db_config con = cx_Oracle.connect(db_config.user, db_config.pw, db_config.dsn) soda = con.getSodaDatabase() collection = soda.createCollection("friends") content = {'name': 'Jared', 'age': 35, 'address': {'city': 'Melbourne'}} doc = collection.insertOneAndGet(content) key = doc.key doc = collection.find().key(key).getOne() content = doc.getContent() print('Retrieved SODA document dictionary is:') print(content) myDocs = [ {'name': 'Gerald', 'age': 21, 'address': {'city': 'London'}}, {'name': 'David', 'age': 28, 'address': {'city': 'Melbourne'}}, {'name': 'Shawn', 'age': 20, 'address': {'city': 'San Francisco'}} ] collection.insertMany(myDocs) filterSpec = { "address.city": "Melbourne" } myDocuments = collection.find().filter(filterSpec).getDocuments() print('Melbourne people:') for doc in myDocuments: print(doc.getContent()["name"]) filterSpec = {'age': {'$lt': 25}} myDocuments = collection.find().filter(filterSpec).getDocuments() print('Young people:') for doc in myDocuments: print(doc.getContent()["name"])
true
b9f6ca8c3db77fd61971d2aec34f78f8ae200818
Python
franklingg/LittleGames
/JotunsPath/Content/Assets.py
UTF-8
1,407
2.546875
3
[]
no_license
import pygame.font import pygame.image from Content import Path class Color(object): black = (0, 0, 0) light_black = (50, 51, 51) light_grey = (153, 150, 165) pearl = (208, 240, 192) sky_blue = (93, 142, 193) dark_blue = (24, 48, 100) light_green = (140, 204, 76) jade = (0, 168, 107) forest_green = (40, 78, 56) brown = (75, 83, 32) beige = (138, 154, 91) test = (198, 139, 78) def icon(): return pygame.image.load(Path.icon) def create_font(font, size): if font == "karma": return pygame.font.Font(Path.font_karma, size) elif font == "fonBold": return pygame.font.Font(Path.font_fonBold, size) elif font == "papercut": return pygame.font.Font(Path.font_papercut, size) def home_background(): return pygame.image.load(Path.home_background) def home_button_image(): return pygame.image.load(Path.home_button) def level_one(): return pygame.image.load(Path.level_one) def char_idle(): return (pygame.image.load(Path.char_idle), 4) def char_run(): return (pygame.image.load(Path.char_run), 6) def char_attack(): return (pygame.image.load(Path.char_attack), 6) def char_airattack(): return (pygame.image.load(Path.char_airattack), 7) def char_jump(): return (pygame.image.load(Path.char_jump), 2) def char_crouch(): return (pygame.image.load(Path.char_crouch), 4)
true
23a966f9a2beb45c9c296f71a391110f8b9e1140
Python
anthonyozerov/log
/code.py
UTF-8
9,897
2.515625
3
[]
no_license
#imports from datetime import date, timedelta, datetime from dateutil.parser import parse import sys from netCDF4 import Dataset from ftplib import FTP import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches #used to create legends in plots from mpl_toolkits.basemap import Basemap #import data log_pd = pd.read_csv("/home/aozerov/Dropbox/programming/jupyter/log_analysis/log_analysis_db3.csv") #delete unneeded columns coldel = ['Unnamed: 8'] log_pd = log_pd.drop(columns = coldel) #remove empty rows log_pd = log_pd[np.isfinite(log_pd['spentint'])] #sleep pie chart sleeps = [] for i in range (0, log_pd.shape[0]): if (log_pd.iloc[i]['Activity'] == 'sleep'): sleeps.append([log_pd.iloc[i]['spentint'],log_pd.iloc[i]['detail']]) npsleeps = np.array(sleeps) unique, counts = np.unique(npsleeps[:,1], return_counts=True) print(np.asarray((unique, counts)).T) labels = ['Alarm','No alarm', 'No data'] sizes = [113,60,19] colors = ['lightcoral', 'yellowgreen', 'lightgray'] plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', shadow=False, startangle=180) plt.axis('equal') plt.savefig("sleepalarmprops.png", dpi=300, transparent=True) plt.show() #sleep histogram (note: this code is quite poor, the code for the transit histogram is much better) alarmweights = np.ones_like(alarmsleeplengths) / (len(alarmsleeplengths)) noalarmweights = np.ones_like(noalarmsleeplengths) / (len(noalarmsleeplengths)) nodataweights = np.ones_like(nodatasleeplengths) / (len(nodatasleeplengths)) red_patch = mpatches.Patch(color='red', label='Alarm') green_patch = mpatches.Patch(color='green', label='No alarm') blue_patch = mpatches.Patch(color='blue', label='No data') plt.legend(handles=[red_patch,green_patch,blue_patch],prop={'size':10}) plt.hist(alarmsleeplengths, bins=binslocs,alpha=0.5, color = 'red', weights = alarmweights * 113/189) # last part adjusts for probability of alarm so that it reflects probability of that length of sleep and an alarm plt.hist(noalarmsleeplengths, bins=binslocs,alpha=0.5, color = 'green', weights = noalarmweights * 60/189) plt.hist(nodatasleeplengths, bins=binslocs,alpha=0.5, color = 'blue', weights = nodataweights * 19/189) plt.savefig("sleepalarms.png", dpi=300, transparent=True) plt.show() #transit pie chart relocations = [] for i in range (0, log_pd.shape[0]): if (log_pd.iloc[i]['Activity'] == 'relocation'): relocations.append([log_pd.iloc[i]['spentint'],log_pd.iloc[i]['detail']]) nprelocations = np.array(relocations) labels = ['Car','Ferry', 'Plane','Public Transit','Schoolbus','Taxi','Walk'] sizes = counts cmap = plt.get_cmap('Pastel2') colors = cmap(np.linspace(0, 1, len(labels))) plt.pie(sizes, labels=None, colors=colors, autopct=None, shadow=False, startangle=150, rotatelabels=True) legends = [] for i in range (0, len(labels)): new_patch = mpatches.Patch(color=colors[i], label=labels[i]) legends.append(new_patch) plt.axis('equal') plt.legend(handles=legends, prop={'size':10}) plt.savefig("relocations.png", dpi=300, transparent=True) plt.show() #transit histogram binslocs = [] for i in range (0, 40): binslocs.append(i*0.075) weights=[] binned=[] colorarray=[] for i in range (0, len(unique)): transportlengths = [] for k in range(0, log_pd.shape[0]): if (log_pd.iloc[k]['Activity'] == 'relocation' and log_pd.iloc[k]['detail'] == unique[i]): transportlengths.append(log_pd.iloc[k]['spentint'] * 24) transportweights = np.ones_like(transportlengths) / (len(transportlengths)) binned.append(transportlengths) weights.append(transportweights * sizes[i]/sum(sizes)) colorarray.append(colors[i]) # plt.hist(transportlengths, bins=binslocs,alpha=0.5, color = colors[i], weights = transportweights * sizes[i]/sum(sizes)) plt.hist(binned, bins=binslocs, color = colorarray, weights = weights, stacked=True) plt.savefig("relocations_hist.png", dpi=300, transparent=True) plt.show() #adjusted transit pie chart relocations = [] for i in range (0, log_pd.shape[0]): if (log_pd.iloc[i]['Activity'] == 'relocation'): relocations.append(log_pd.iloc[i]['detail']) nprelocations = np.array(relocations) unique = np.unique(nprelocations) relocationsums = [] for i in range (0, len(unique)): relocationsum = 0 for k in range (0, log_pd.shape[0]): if (log_pd.iloc[k]['detail'] == unique[i]): relocationsum += (log_pd.iloc[k]['spentint']) relocationsums.append(relocationsum) labels = ['Car','Ferry', 'Plane','Public Transit','Schoolbus','Taxi','Walk'] sizes = relocationsums cmap = plt.get_cmap('Pastel2') colors = cmap(np.linspace(0, 1, len(unique))) plt.pie(sizes, labels=labels, colors=colors, autopct=None, shadow=False, startangle=150, rotatelabels=True, pctdistance = 0.8,) legends = [] for i in range (0, len(labels)): new_patch = mpatches.Patch(color=colors[i], label=labels[i]) legends.append(new_patch) plt.axis('equal') #plt.legend(handles=legends, prop={'size':10}) plt.savefig("relocationsadjusted.png", dpi=300, transparent=True, bbox_inches="tight") plt.show() #cumulative sums of some school-related activities activities = ['class','schoolwork','colappwork','work','ec','test'] labels = [] labeldict = {} cmap = plt.get_cmap('Pastel2') colors = cmap(np.linspace(0, 1, len(activities))) plt.figure(dpi=600) for i in range (0, len(activities)): new_patch = mpatches.Patch(color=colors[i], label=activities[i]) labels.append(new_patch) x = [datetime(2018,4,18,19,2,0)] y = [0] for k in range (0, log_pd.shape[0]-1): if (log_pd.iloc[k]['Activity'] == activities[i] or log_pd.iloc[k]['by;with;for;about'] == activities[i] or log_pd.iloc[k]['detail'] == activities[i]): datetimestr = log_pd.iloc[k]['Start date/time (UTC)'] datetimeobj = parse(datetimestr) x.append(datetimeobj) y.append(0) datetimestr = log_pd.iloc[k+1]['Start date/time (UTC)'] datetimeobj = parse(datetimestr) x.append(datetimeobj) y.append(log_pd.iloc[k]['spentint'].astype(np.float)) x.append(datetime(2018,10,20,16,54,38)) ycumsum = np.array(y).cumsum() yprop = [] for k in range (0, len(ycumsum)): yprop.append(ycumsum[k]/ycumsum[len(ycumsum)-1]) yprop.append(1) plt.plot(x,yprop,'-',color = colors[i], linewidth = 1) plt.legend(handles=labels, prop={'size':6}) x = [(parse(log_pd.iloc[0]['Start date/time (UTC)'])),(parse(log_pd.iloc[log_pd.shape[0]-1]['Start date/time (UTC)']))] y = [0,1] plt.plot(x, y,'--',linewidth = 0.5, color = "black") plt.axvline(x=datetime(2018,6,20,8,45,16), linestyle='--', ymin=0, ymax = 1, linewidth=1, color='black') plt.axvline(x=datetime(2018,8,21,5,18,56), linestyle='--', ymin=0, ymax = 1, linewidth=1, color='black') plt.suptitle('Cumulative sums') plt.savefig("schoolworkcumsums.png", dpi=300, transparent=True) plt.show() #cumulative sums of some non-school-related activities activities = ['sleep','food','hygiene','log','language','relocation',';raina','vg'] labels = [] labeldict = {} cmap = plt.get_cmap('Pastel2') colors = cmap(np.linspace(0, 1, len(activities))) plt.figure(dpi=600) for i in range (0, len(activities)): labeldictkey = activities[i] new_patch = mpatches.Patch(color=colors[i], label=activities[i]) labels.append(new_patch) x = [datetime(2018,4,18,19,2,0)] y = [0] for k in range (0, log_pd.shape[0]-1): if (log_pd.iloc[k]['Activity'] == activities[i] or log_pd.iloc[k]['by;with;for;about'] == activities[i]): datetimestr = log_pd.iloc[k]['Start date/time (UTC)'] datetimeobj = parse(datetimestr) x.append(datetimeobj) y.append(0) datetimestr = log_pd.iloc[k+1]['Start date/time (UTC)'] datetimeobj = parse(datetimestr) x.append(datetimeobj) y.append(log_pd.iloc[k]['spentint'].astype(np.float)) x.append(parse(log_pd.iloc[log_pd.shape[0]-1]['Start date/time (UTC)'])) ycumsum = np.array(y).cumsum() yprop = [] for k in range (0, len(ycumsum)): yprop.append(ycumsum[k]/ycumsum[len(ycumsum)-1]) yprop.append(1) plt.plot(x,yprop,'-',color = colors[i], linewidth = 1) plt.legend(handles=labels, prop={'size':6}) x = [(parse(log_pd.iloc[0]['Start date/time (UTC)'])),(parse(log_pd.iloc[log_pd.shape[0]-1]['Start date/time (UTC)']))] y = [0,1] plt.plot(x, y,'--',linewidth = 0.5, color = "black") plt.axvline(x=datetime(2018,6,20,8,45,16), linestyle='--', ymin=0, ymax = 1, linewidth=1, color='black') plt.axvline(x=datetime(2018,8,21,5,18,56), linestyle='--', ymin=0, ymax = 1, linewidth=1, color='black') plt.suptitle('Cumulative sums') plt.savefig("nonschoolcumsums.png", dpi=300, transparent=True) plt.show() #orhographic globe projection map = Basemap(projection='ortho',lat_0=45,lon_0=-20,resolution='l') map.drawcoastlines(linewidth=0.25) map.drawcountries(linewidth=0.25) map.fillcontinents(color='palegreen',lake_color='lightblue', alpha = 0.5) map.drawmapboundary(fill_color='lightblue') map.drawmeridians(np.arange(0,360,30)) map.drawparallels(np.arange(-90,90,30)) msklon = 37.6 msklat = 55.75 map.drawgreatcircle(-74,40.75,msklon,msklat,linewidth=0.5,color='red') #ny-msk map.drawgreatcircle(24.93,60.169,msklon,msklat,linewidth=0.5,color='red') #hel-msk map.drawgreatcircle(16.372,48.208,msklon,msklat,linewidth=0.5,color='red') #vienna-msk map.drawgreatcircle(17.106,48.148,16.372,48.208,linewidth=0.5,color='red') #bratislava-vienna map.drawgreatcircle(-74,40.75,-74.8478298,46.2229071,linewidth=0.5,color='red') #ny-laclabelle map.drawgreatcircle(-74,40.75,-75.16379,39.952,linewidth=0.5,color='red') #ny-philadelphia plt.savefig("map.png", dpi=300, transparent=True) plt.show()
true
ee77e0d077296be4710a32a4558f8e4d87991f23
Python
tlcs11/Gold_Challenge
/ch4/komodo_insurance.py
UTF-8
786
3.28125
3
[]
no_license
badges = {} #string for a key and empty list for input while True: print("1 to make badge", "3 to print all badges", "2 to edit a badge") op = input("> ") if op == "1": b_id = int(input("enter en id:")) add_door = input("Add a door to badge Y or N: ") badges.update({b_id:[]}) input("Add a door to badge Y or N: ") if add_door in ["Y", "y"]: b_doors = input("Door Num: " ) badges[b_id].append(b_doors) if op == "2": b_id = int(input("Enter badge id:")) remove_door = input("ARE YOU SURE YOU WOULD LIKE TO REMOVE ACCESS?") badges.update({b_id:[NONE]}) elif op == "3": print(badges) elif op == "4": exit()
true
4c75e8100a6ecc25dd3acfb6ecb6c9d429bcf011
Python
rjmarshall17/trees
/hacker_rank_height_of_a_binary_tree.py
UTF-8
3,919
4.0625
4
[]
no_license
#!/usr/bin/env python3 import os """ The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height 2: 4 / \ / \ 2 6 / \ / \ 1 3 5 7 Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary tree. Note -The Height of binary tree with single node is taken as zero. Input Format The first line contains an integer n, the number of nodes in the tree. Next line contains n space separated integer where i-th integer denotes node[i].data. Note: Node values are inserted into a binary search tree before a reference to the tree's root node is passed to your function. In a binary search tree, all nodes on the left branch of a node are less than the node value. All values on the right branch are greater than the node value. Constraints 1 <= node.data[i] <= 20 1 <= n <= 20 Output Format Your function should return a single integer denoting the height of the binary tree. Sample Input 3 / \ / \ 2 5 / / \ 1 4 6 \ 7 Sample Output 3 Explanation The longest root-to-leaf path is shown below: 3 / \ <-- / \ <-- 2 5 <-- / / \ <-- 1 4 6 <-- \ <-- 7 <-- There are 4 nodes in this path that are connected by 3 edges, meaning our binary tree's height = 3. """ class Node: def __init__(self, info): self.info = info self.left = None self.right = None def __str__(self): return str(self.info) class BinarySearchTree: def __init__(self): self.root = None def create(self, val): if self.root is None: self.root = Node(val) else: current = self.root while True: if val < current.info: if current.left: current = current.left else: current.left = Node(val) break elif val > current.info: if current.right: current = current.right else: current.right = Node(val) break else: break def height(root): def __height__(current_node, current_height): if current_node is None: return current_height left_height = __height__(current_node.left, current_height + 1) right_height = __height__(current_node.right, current_height + 1) return max(left_height, right_height) return __height__(root,-1) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') expected_output = os.environ['OUTPUT_PATH'].replace('output', 'expected_output') tree = BinarySearchTree() t = int(input()) arr = list(map(int, input().split())) for i in range(t): tree.create(arr[i]) results = height(tree.root) fptr.write(str(results)) fptr.write('\n') fptr.close() expected_results = open(expected_output, 'r').read().rstrip() # print(" Output: >>%s<< %s" % (str(results), type(results))) # print("Expected output: >>%s<< %s" % (str(expected_results), type(expected_results))) assert str(results) == str(expected_results) print("Tests passed for: %s" % os.environ['OUTPUT_PATH'])
true
211db5bf8a870187431457805d2d7be898a47a5f
Python
jiyatu/dropoutconnect
/utils.py
UTF-8
12,042
3.296875
3
[]
no_license
""" Source Code for Homework 3 of ECBM E6040, Spring 2016, Columbia University This code contains implementation of several utility funtions for the homework. Instructor: Prof. Aurel A. Lazar This code is based on [1] http://deeplearning.net/tutorial/logreg.html """ import os import sys import numpy import scipy.io import theano import theano.tensor as T import cPickle, gzip, bz2 import copy from numpy import linspace def shared_dataset(data_xy, borrow=True): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') def random_crop_image(image, crop_size, seed): ''' given the image and final size after random cropping, returns the cropped image :type image: numpy.array (2D) :the image to be cropped :type crop_size: tuple or list :the size of the image after cropping ''' img_size = image.shape u_end = img_size[0] - crop_size[0] l_end = img_size[1] - crop_size[1] rng = numpy.random.RandomState(seed) top = rng.random_integers(0, u_end) left = rng.random_integers(0, l_end) img_cropped = image[top:(top + crop_size[0]), left:(left + crop_size[1])] return img_cropped def training_data_shuffle(img_matrix): ''' Given 2D matrix of data, where rows are individual examples, shuffles the order of rows ''' numpy.random.shuffle(img_matrix) def flip_img_horiz(img_matrix): ''' Given 2D image matrix, flips the image horizontally :type img_matrix: numpy.array :image matrix values ''' return numpy.fliplr(img_matrix) def image_rescale_down(img_matrix, final_size): ''' Given 2D image matrix, 'rescales' by subsampling ''' img_shape = img_matrix.shape assert(final_size[0] < img_shape[0] & final_size[1] < img_shape[1]) range1 = linspace(0, img_shape[0], final_size[0]).astype(int).tolist() range2 = linspace(0, img_shape[1], final_size[1]).astype(int).tolist() image2 = img_matrix[range1] return image2[:, range2] def image_rotate(img_matrix, seed): ''' Given 2D image matrix, rotates 90 deg counterclockwise random # of times ''' return numpy.rot90(img_matrix, k = seed) def subtract_per_pixel_mean(img_matrix): ''' Given 2D matrix with each row a flattened image, subtracts the per pixel mean from all the rows :type img_matrix: numpy.array :image matrix values ''' row_mean = numpy.mean(img_matrix, 0) img_matrix = img_matrix - row_mean return img_matrix def preprocess_data(dataset, source,crop=False,rotate=False,scaling= False): rng = numpy.random.RandomState(99) data_shape = dataset.shape if source == 'MNIST': #size normalized to 20 x 20 dataset = dataset.reshape(data_shape[0], 28, 28) final = dataset if crop == True: final = numpy.empty((data_shape[0], 24, 24)) for i in range(data_shape[0]): seed = rng.random_integers(0, 100) if crop == True: final[i,:,:] = random_crop_image(dataset[i,:,:], (24, 24), seed) if rotate == True: final[i,:,:] = image_rotate(final[i,:,:],seed) # final[i,:,:] = image_rescale_down(dataset[i,:,:], (20, 20)) if crop == True: final = final.reshape(data_shape[0], 24*24) else: final = final.reshape(data_shape[0],28*28) elif source == 'CIFAR-10': #reshape to (n_examples, 3, 32, 32) dataset = dataset.reshape(data_shape[0], 3, 32, 32) #randomly crop to 24 x 24, randomly do horizontal flip final = numpy.empty((data_shape[0], 3, 24, 24)) for i in range(data_shape): for j in range(3): seed = rng.random_integers(0, 100) final[i,j,:,:] = random_crop_image(dataset[i,j,:,:], (24, 24), seed) seed = rng.random_integers(0, 1) if seed == 0: final[i,j,:,:] = flip_img_horiz(final[i,j,:,:]) final = final.reshape(data_shape[0], 3*24*24) elif source == 'SVHN': #reshape to (n_examples, 3, 32, 32) dataset = dataset.reshape(data_shape[0], 3, 32, 32) #randomly crop to 28 x 28, rotate, 'scale' by 85% final = numpy.empty((data_shape[0], 3, 28, 28)) for i in range(data_shape): for j in range(3): seed = rng.random_integers(0, 100) final[i,j,:,:] = random_crop_image(dataset[i,j,:,:], (28, 28), seed) seed = rng.random_integers(1, 4) final[i,j,:,:] = image_rotate(final[i,j,:,:], seed) final[i,j,:,:] = image_rescale_down(final[i,j,:,:], (24, 24)) final = final.reshape(data_shape[0], 3*28*28) elif source == 'NORB': #downsample from 108 x 108 to 48 x 48 (FXN NOT DONE YET), rotate, scale (FXN NOT DONE YET) pass return final def load_data(ds_rate, theano_shared, source,crop = False, rotate = False,scaling = False): ''' Loads the dataset according to the source :type ds_rate: float :param ds_rate: downsample rate; should be larger than 1, if provided. :type theano_shared: boolean :param theano_shared: If true, the function returns the dataset as Theano shared variables. Otherwise, the function returns raw data. ''' if ds_rate is not None: assert(ds_rate > 1.) if source == 'SVHN': # copied from implementation in previous homework assignment train_set = scipy.io.loadmat('data/train_32x32_SVHN.mat') test_set = scipy.io.loadmat('data/test_32x32_SVHN.mat') # Convert data format from (3, 32, 32, n_samples) to (n_samples, 3*32*32) # Also normalizes data matrix from range [1, 255] to [0, 1] by dividing by 255 # SVHN data is 3-channels (R, G, B) def convert_data_format(data): X = data['X'].transpose(2,0,1,3) X = numpy.reshape(data['X'], (numpy.prod(data['X'].shape[:-1]), data['X'].shape[-1]), order='C').T / 255. y = data['y'].flatten() y[y == 10] = 0 return (X,y) train_set = convert_data_format(train_set) test_set = convert_data_format(test_set) # Downsample the training dataset if specified train_set_len = len(train_set[1]) if ds_rate is not None: train_set_len = int(train_set_len // ds_rate) train_set = [x[:train_set_len] for x in train_set] # Extract validation dataset from train dataset valid_set = [x[-(train_set_len//10):] for x in train_set] train_set = [x[:-(train_set_len//10)] for x in train_set] elif source == 'MNIST': # see http://deeplearning.net/tutorial/gettingstarted.html for details # 1 black/white channel only, each image is 1D ndarray w/28x28 values in [0,1] f = gzip.open('data/mnist.pkl.gz', 'rb') train_set, valid_set, test_set = cPickle.load(f) train_set = list(train_set) valid_set = list(valid_set) test_set = list(test_set) # Downsample the training dataset if specified train_set_len = len(train_set[1]) if ds_rate is not None: train_set_len = int(train_set_len // ds_rate) train_set = [x[:train_set_len] for x in train_set] print 'crop :',crop,'rotate :',rotate train_set[0] = preprocess_data(train_set[0],'MNIST',crop= crop,rotate= rotate,scaling = scaling) valid_set[0] = preprocess_data(valid_set[0],'MNIST',crop= crop,rotate= rotate,scaling = scaling) test_set[0] = preprocess_data(test_set[0],'MNIST',crop= crop,rotate= rotate,scaling = scaling) elif source == 'CIFAR-10': # see https://www.cs.toronto.edu/~kriz/cifar.html for details # images stored as R,R,...,R, G,G,...,G, B,B,...,B filenames = ['data/data_batch_1', 'data/data_batch_2', 'data/data_batch_3', 'data/data_batch_4', 'data/data_batch_5', 'data/test_batch'] i = 0 for item in filenames: i += 1 fo = open(item, 'rb') dict = cPickle.load(fo) fo.close() # normalize to [0,1] range data_array = dict['data']/255. label_array = dict['labels'] if i == 1: train_set = [data_array, label_array] elif i <= 5: train_set[0] = numpy.concatenate((train_set[0], data_array)) train_set[1] = numpy.concatenate((train_set[1], label_array)) else: test_set = [data_array, label_array] # Downsample the training dataset if specified train_set_len = len(train_set[1]) if ds_rate is not None: train_set_len = int(train_set_len // ds_rate) train_set = [x[:train_set_len] for x in train_set] # Extract validation dataset from train dataset valid_set = [x[-(train_set_len//10):] for x in train_set] train_set = [x[:-(train_set_len//10)] for x in train_set] elif source == 'NORB': # see http://www.cs.nyu.edu/~ylclab/data/norb-v1.0-small/ for details # labels are in {0, 1, 2, 3, 4} train_set_x = scipy.io.loadmat('data/smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat') test_set_x = scipy.io.loadmat('data/smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat') train_set_y = scipy.io.loadmat('data/smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat') test_set_y = scipy.io.loadmat('data/smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat') else: print('Invalid dataset!') exit() # train_set, valid_set, test_set format: tuple(input, target) # input is a numpy.ndarray of 2 dimensions (a matrix) # where each row corresponds to an example. target is a # numpy.ndarray of 1 dimension (vector) that has the same length as # the number of rows in the input. It should give the target # to the example with the same index in the input. if theano_shared: test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)] else: rval = [train_set, valid_set, test_set] return rval
true
a36eb95ef4dc832403fc94c9aad907b04bbc2721
Python
fmidev/stac-builder
/stac_builder/catalog_builder.py
UTF-8
13,541
2.875
3
[]
no_license
import json import os from dateutil import rrule from datetime import datetime, timedelta from calendar import monthrange from dateutil.relativedelta import relativedelta import copy import helpers as h # import help functions from helpers.py def dataset_collection_builder(conf): ''' Function reads items of a dataset and builds a dataset collection. Finds start- and enddate, extent (bbox) and available bands of dataset collection. Input: configuration file of dataset. Output: dataset collection object. ''' dataset_collection_object = { "extent": { "spatial": { "bbox": None }, "temporal": { "interval": None } }, "summaries": { "datetime": { "minimum": None, "maximum": None }, "bands": [] }, "links": [ { "rel": "self", "href": conf["destination"]["catalogBaseUrl"] + conf["datasetId"] + ".json" } ] } min_time = datetime.max max_time = datetime.min coords = [] existing_bands = [] itemsDestination = conf["destination"]["localItemPath"] if "selectItemsMatching" in conf["dataset"]: dest = list(conf["dataset"]["selectItemsMatching"].keys())[0] val = conf["dataset"]["selectItemsMatching"]["properties.orbit"] print("Choosing items where", dest, "has the value", val) for entry in os.scandir(itemsDestination): item_path = open(entry.path) item = json.load(item_path) # Processing for S1 asc/desc catalogs if "selectItemsMatching" in conf["dataset"]: dest = list(conf["dataset"]["selectItemsMatching"].keys())[0] val = conf["dataset"]["selectItemsMatching"]["properties.orbit"] compare_val = copy.deepcopy(item) dest_list = dest.split(".") for key in dest_list: try: compare_val = compare_val[key] except: print("Error:", key, "is missing in item", item["id"]) continue if compare_val == val: pass # Continue with processing if rule is true else: continue # Find biggest starttime and smallest endtime of all items time = item["properties"]["datetime"] starttime = item["properties"]["start_datetime"] endtime = item["properties"]["end_datetime"] min_time, max_time = h.FindMinMaxTime(time, starttime, endtime, min_time, max_time) # Collect all coordinate points to a list polygon_coordinates = item["geometry"]["coordinates"] for coord_list in polygon_coordinates: for coordinate in coord_list: coords.append(coordinate) # Write available bands to collection object bands = list(item["assets"].keys()) for band in bands: if band not in existing_bands: existing_bands.append(band) dataset_collection_object["summaries"]["bands"].append({"name": band}) bbox = h.GetBoundingBox(coords) # Find bounding box # Update object values dataset_collection_object["extent"]["spatial"]["bbox"] = [bbox] dataset_collection_object["extent"]["temporal"]["interval"] = [[min_time.isoformat(timespec='seconds') + 'Z' , max_time.isoformat(timespec='seconds') + 'Z']] dataset_collection_object["summaries"]["datetime"]["minimum"] = min_time.isoformat(timespec='seconds') + 'Z' dataset_collection_object["summaries"]["datetime"]["maximum"] = max_time.isoformat(timespec='seconds') + 'Z' # Merge with template dataset_template = conf["dataset"]["template"] dataset_collection_object_merged = h.merge(dict(dataset_template), dataset_collection_object) return dataset_collection_object_merged def dataset_time_collection_step1(conf, dataset_collection_object): ''' Function builds a first draft of dataset-time collection based on datasets start and endtime. Input: configuration file and dataset collection of a dataset. Output: First version of dataset-time collection. The dataset-time collection is completed in step 2. ''' dataset_time_collection_list = [] dataset_time_collection_template = { "extent": { "spatial": { "bbox": None }, "temporal": { "interval": None } }, "summaries": { "datetime": { "minimum": None, "maximum": None }, "bands": [] }, "links": [ ] } collection_starttime_str = dataset_collection_object["summaries"]["datetime"]["minimum"] collection_starttime = datetime.strptime(collection_starttime_str, '%Y-%m-%dT%H:%M:%SZ') collection_endtime_str = dataset_collection_object["summaries"]["datetime"]["maximum"] collection_endtime = datetime.strptime(collection_endtime_str, '%Y-%m-%dT%H:%M:%SZ') # Create empty dataset-time objects based on timeframe timeFrame = conf["dataset-time"]["timeFrame"] if timeFrame == "week": rule = rrule.WEEKLY collection_starttime_iter = collection_starttime - timedelta(days=collection_starttime.weekday()) #first day of week collection_starttime_iter = collection_starttime_iter.replace(hour=0, minute=0, second=0) collection_endtime_iter = collection_endtime + timedelta(days=6) # last day of week elif timeFrame == "month": rule = rrule.MONTHLY collection_starttime_iter = collection_starttime.replace(day=1) # first day of month collection_starttime_iter = collection_starttime_iter.replace(hour=0, minute=0, second=0) collection_endtime_iter = collection_endtime.replace(day = monthrange(collection_endtime.year, collection_endtime.month)[1]) elif timeFrame == "year": rule = rrule.YEARLY collection_starttime_iter = datetime(collection_starttime.year, 1, 1) # first day of year collection_endtime_iter = datetime(collection_endtime.year, 12, 31) # last day of year else: raise ValueError("Unrecognized time frame in configuration file") # Add dataset-time collections to list, when iterating over time frame for dt in rrule.rrule(rule, dtstart=collection_starttime_iter, until=collection_endtime_iter): if timeFrame == "week": id = conf["datasetId"] +"_"+ str(dt.year) +"-"+ '{:02d}'.format(dt.month) +"-"+ '{:02d}'.format(dt.day) end = dt + timedelta(days=6) # last day of week elif timeFrame == "month": id = conf["datasetId"] +"_"+ str(dt.year) +"-"+ '{:02d}'.format(dt.month) end = dt.replace(day = monthrange(dt.year, dt.month)[1]) # last day of month else: # if timeFrame == "year" id = conf["datasetId"] +"_"+ str(dt.year) end = dt + relativedelta(years=+1, days=-1) # last day of year # Update dataset-time object dataset_time_collection_new = copy.deepcopy(dataset_time_collection_template) dataset_time_collection_new["id"] = id dataset_time_collection_new["summaries"]["datetime"]["minimum"] = dt dataset_time_collection_new["summaries"]["datetime"]["maximum"] = end dataset_time_collection_new["extent"]["temporal"]["interval"] = [[dt, end]] link = conf["destination"]["catalogBaseUrl"] + id + ".json" dataset_time_collection_new["links"].append({"rel": "self", "href": link}) # Merge with template dataset_time_template = copy.deepcopy(conf["dataset-time"]["template"]) dataset_time_object_merged = h.merge(dict(dataset_time_template), dataset_time_collection_new) dataset_time_collection_list.append(dataset_time_object_merged) return dataset_time_collection_list def dataset_time_collection_step2(conf, dataset_time_collection_list, dataset_collection_object): ''' Loops over dataset's items and adds them to correct dataset-time collection objects. Writes dataset-time collections to given location. Input: configuration file of dataset, dataset-time collection list, dataset collection object. Output: dataset collection object. ''' itemsDestination = conf["destination"]["localItemPath"] # Loop over "empty" dataset-time collections for dataset_time_collection in dataset_time_collection_list: dataset_start = dataset_time_collection["summaries"]["datetime"]["minimum"] dataset_end = dataset_time_collection["summaries"]["datetime"]["maximum"] min_time = datetime.max max_time = datetime.min bands = [] coords = [] # Loop over items for entry in os.scandir(itemsDestination): item_path = open(entry.path) item = json.load(item_path) # Processing for S1 asc/desc catalogs if "selectItemsMatching" in conf["dataset"]: dest = list(conf["dataset"]["selectItemsMatching"].keys())[0] val = conf["dataset"]["selectItemsMatching"]["properties.orbit"] compare_val = copy.deepcopy(item) dest_list = dest.split(".") for key in dest_list: try: compare_val = compare_val[key] except: print("Error:", key, "is missing in item", item["id"]) continue if compare_val == val: pass # Continue with processing if rule is true else: continue assets = list(item["assets"].keys()) item_start_str = item["properties"]["start_datetime"] item_end_str = item["properties"]["end_datetime"] item_date_str = item["properties"]["datetime"] if item_start_str: item_start = datetime.strptime(item_start_str, '%Y-%m-%dT%H:%M:%SZ') item_end = datetime.strptime(item_end_str, '%Y-%m-%dT%H:%M:%SZ') elif item_date_str: item_start = datetime.strptime(item["properties"]["datetime"], '%Y-%m-%dT%H:%M:%SZ') item_end = item_start else: print("Error. All timestamps are None.") item_coords = item["geometry"]["coordinates"] # Add item to dataset-time collection if item_end >= dataset_start and item_start <= dataset_end: for i in item["links"]: if "self" in str(i): item_link = i["href"] dataset_time_collection["links"].append({'rel': 'item', 'href': item_link, 'time': {'time_start': item_start.isoformat(timespec='seconds') + 'Z', 'time_end': item_end.isoformat(timespec='seconds') + 'Z'}}) min_time, max_time, bands, coords = h.UpdateDatasetTime(item_start, item_end, min_time, max_time, assets, bands, item_coords, coords) else: continue # item does not fit this dataset-time collection if len(dataset_time_collection["links"]) > 2: # check if any items have been added to collection # Update dataset-time collection's min and max time dataset_time_collection["summaries"]["datetime"]["minimum"] = min_time.isoformat(timespec='seconds') + 'Z' dataset_time_collection["summaries"]["datetime"]["maximum"] = max_time.isoformat(timespec='seconds') + 'Z' dataset_time_collection["extent"]["temporal"]["interval"] = [[min_time.isoformat(timespec='seconds') + 'Z', max_time.isoformat(timespec='seconds') + 'Z']] # Add info of available bands for band in bands: dataset_time_collection["summaries"]["bands"].append({"name": band}) bbox_collection = h.GetBoundingBox(coords) # Get bbox of items in collection dataset_time_collection["extent"]["spatial"]["bbox"] = bbox_collection id = dataset_time_collection["id"] path = conf["destination"]["localCatalogPath"] + id + ".json" # Write to location with open(path, 'w') as outfile: json.dump(dataset_time_collection, outfile) # Update dataset collection for i in dataset_time_collection["links"]: if "self" in str(i): child_link = i["href"] dataset_collection_object["links"].append({'rel': 'child', 'href': child_link, 'time':{'time_start': dataset_start.isoformat(timespec='seconds') + 'Z', 'time_end': dataset_end.isoformat(timespec='seconds') + 'Z'}}) return dataset_collection_object def main(conf): dataset_collection_object = dataset_collection_builder(conf) dataset_time_collection_list = dataset_time_collection_step1(conf, dataset_collection_object) dataset_collection_object = dataset_time_collection_step2(conf, dataset_time_collection_list, dataset_collection_object) # Write dataset -collection object path = conf["destination"]["localCatalogPath"] + dataset_collection_object["id"] + ".json" with open(path, 'w') as outfile: json.dump(dataset_collection_object, outfile)
true
1c98bfe8a8634a3f40d67dda486ed1628373065b
Python
andrejmoltok/13d_rendszeruz_2020
/szotarak.py
UTF-8
1,540
3.625
4
[]
no_license
import random as rnd #Szótár adatszerkezet # A szótár adatszerkezet kulcs-érték párokat tárol. A kulcs csak egyszer szerepelhet a szótárban. magassagok={} # Értékek megadása magassagok['Zoltán']=175 magassagok['Imre']=188 magassagok['Ágnes']=171 magassagok['Jolán']=166 #Hozzáférés egy értékhez print(magassagok['Zoltán']) print(magassagok['Ágnes']) #Kulcsok kiíratása print(magassagok.keys()) print(magassagok.values()) print(magassagok.items()) # Kiíratás for ciklussal for i in magassagok: print(i+","+str(magassagok[i])) for i in magassagok.keys(): print(i) #kulcshoz tartozó érték módósítása magassagok['Zoltán']=195 #kiíratás az elemek(items) alapján for i,j in magassagok.items(): print("Kulcs:{},érték:{}".format(i,j)) # elemek törlése magassagok.pop('Zoltán') print(magassagok.items()) #utolsó elem törlése magassagok.popitem() print(magassagok.items()) magassagok.clear() print(magassagok.items()) nevek=["Tamás","Jolán","Elek","Imre","Róbert","Mihály","Anita","Zoltán"] szamok=[12,120,44,55,66,77,88,99,66] legm=list(filter(lambda x:x==max(x.mag),szamok)) print("legm:"+str(legm)) soknev=[] elemszam=1000 for i in range(0,elemszam): soknev.append(nevek[rnd.randint(0,len(nevek)-1)]) print(soknev) # Jelenítsük meg, hogy az egyes nevek hányszor szerepelnek a szótárban nevgyujt={} for i in soknev: if i in nevgyujt: nevgyujt[i]+=1 else: nevgyujt[i]=1 for i,j in nevgyujt.items(): print("{}:{}".format(i,j))
true
88e9c9243dc3a940bcd183e7e07b9986e9d999af
Python
sinnuswong/learnpy
/su.py
UTF-8
268
3.515625
4
[]
no_license
from math import sqrt def f(a): n=int(a**0.5) for i in range(2,n+1): if a%i==0:return False else:return True a=int(input("please input a:")) for i in range(2,a): if f(i): print(i,end=' ')
true
61c25c44871a6bf8599ec788d2480f8eb54ab293
Python
net-lisias-ksph/KerbinSideGAP
/geometry.py
UTF-8
4,978
3.3125
3
[]
no_license
from math import sqrt, sin, cos, tan, asin, acos, pi KERBIN_RADIUS = 600.0 MAX_ROUTE_STEP = 25.0 class Vector(object): DIMENSION_ERROR = 'Can not combine Vectors with different dimensions' @classmethod def cross(cls, fst, sec): assert len(fst) == len(sec), Vector.DIMENSION_ERROR if len(fst) == 2: return (fst[0] * sec[1] - sec[0] * fst[1]) if len(fst) == 3: return cls( fst[1] * sec[2] - sec[1] * fst[2], fst[2] * sec[0] - sec[2] * fst[0], fst[0] * sec[1] - sec[0] * fst[1], ) raise NotImplementedError @classmethod def normalize(cls, obj): normalizator = 1.0 / abs(obj) return cls(coord * normalizator for coord in obj) def __init__(self, *args): if len(args) == 1: args = list(args[0]) self.data = tuple(args) def __len__(self): return len(self.data) def __iter__(self): return iter(self.data) def __getitem__(self, key): return self.data[key] def __eq__(self, other): return self.data == other.data def __add__(self, other): if isinstance(other, self.__class__): assert len(self) == len(other), Vector.DIMENSION_ERROR return self.__class__(pair[0] + pair[1] for pair in zip(self, other)) raise NotImplementedError def __mul__(self, other): if isinstance(other, self.__class__): assert len(self) == len(other), Vector.DIMENSION_ERROR return sum(pair[0] * pair[1] for pair in zip(self, other)) return self.__class__(coord * other for coord in self) def __neg__(self): return self * -1 def __sub__(self, other): return self + (-other) def __rmul__(self, other): return self * other def __abs__(self): return sqrt(self * self) def __repr__(self): return self.__class__.__name__ + repr(self.data) def svg_form(self): return ','.join(str(round(coord, 2)) for coord in self.data) def deg_to_rad(deg): return pi * deg / 180 def rad_to_deg(rad): return 180 * rad / pi def bound(func, arg): """Applies arc function (acos or asin) with correct bounds.""" return func(max(-1, min(1, arg))) def point_on_sphere(pt): """Returns point on a sphere given by angle coordinates.""" theta, phi = map(deg_to_rad, pt[:2]) return Vector(cos(phi) * cos(theta), sin(phi) * cos(theta), sin(theta)) def angles_from_sphere(pt): """Returns angle coordinates of the point on a sphere.""" theta = bound(asin, pt[2]) phi = bound(acos, pt[0] / cos(theta)) if pt[1] * cos(theta) < 0: phi = -phi return map(rad_to_deg, (theta, phi)) def chord_to_tangent(pt1, pt2): """ Returns the tangent vector for sphere in the direction of the given chord. """ chord = pt2 - pt1 coef = chord * pt1 tang_dir = chord - coef * pt1 return Vector.normalize(tang_dir) def step_to(pt1, pt2, dist): """ Returns point lying on the line along the surface from the first point to the second, with specified distance from the first point (in kilometres). """ pt1 = point_on_sphere(pt1) pt2 = point_on_sphere(pt2) if abs(dist) + MAX_ROUTE_STEP > KERBIN_RADIUS * pi / 2: raise ValueError( 'Too big distance {}, can not provide acceptable accuracy'.format(dist) + ' (consider dividing step into several parts)' ) tang_distance = tan(dist / KERBIN_RADIUS) pt = Vector.normalize(pt1 + chord_to_tangent(pt1, pt2) * tang_distance) return angles_from_sphere(pt) def distance(pt1, pt2): """Calculates distance between points along the surface.""" pt1 = map(deg_to_rad, pt1[:2]) pt2 = map(deg_to_rad, pt2[:2]) ang_cos = sin(pt1[0]) * sin(pt2[0]) + cos(pt1[0]) * cos(pt2[0]) * cos(pt1[1] - pt2[1]) return KERBIN_RADIUS * bound(acos, ang_cos) def make_route_points(pt1, pt2, include_first=True, include_last=True): """ Yields evenly distributed points lying not too far from each other on the line along the surface from the first point to the second. """ dist = distance(pt1, pt2) steps = int(dist / MAX_ROUTE_STEP + 0.95) step = dist / steps if include_first: yield pt1 for _ in xrange(steps - 1): pt1 = step_to(pt1, pt2, step) yield pt1 if include_last: yield pt2 def heading(pt1, pt2): """ Returns heading at the first point of the direction from the first point to the second. """ pt1 = point_on_sphere(pt1) pt2 = point_on_sphere(pt2) dir_tang = chord_to_tangent(pt1, pt2) north_pole = point_on_sphere((90, 0)) pole_tang = chord_to_tangent(pt1, north_pole) heading = rad_to_deg(bound(acos, dir_tang * pole_tang)) if pt1 * Vector.cross(dir_tang, pole_tang) < 0: return 360 - heading return heading
true
fbed05440f6898ee3ce6d121bda76df0a3644d45
Python
RsTaK/password-manager
/python/interaction.py
UTF-8
1,424
2.84375
3
[ "MIT" ]
permissive
import backend_logic print('='*30) print('Welcome to this Password Manager') if input('Type 1 to continue'): pass_manager_obj = backend_logic.pass_manager('pass_manager.db') print('='*30) print('These are the options available') print('st -> Store Password') print('ge -> Get Password') print('vw -> View Records') print('dl -> Delete Record') response = input('Choose your options: ') if response == 'st': service, username = input('Enter Service and Username here: ').split() key = pass_manager_obj.store_password(service, username) print('Your Encrypted password for service {} with username {} : {}'.format(service, username, key)) if response == 'ge': service, username = input('Enter Service and Username here: ').split() password = pass_manager_obj.get_password(service, username) if password: print('Your Encrypted password for service {} with username {} : {}'.format(service, username, password)) else: print('Record for service {} and username{} not found'.format(service, username)) if response == 'vw': for keys in pass_manager_obj.get_table(): print(keys) if response == 'dl': service, username = input('Enter Service and Username here: ').split() res = pass_manager_obj.delete_row(service, username) print(res) else: print('Try Again Later On') ''' Todo : 1.Collision Control 2.Multiple User Access '''
true
37ab6a660b6870ac76437d36aab77ea98e7982d7
Python
zanghu/gitbook_notebook
/assets/code/python_code/python_md5/cal_md5.py
UTF-8
853
3.109375
3
[ "MIT" ]
permissive
import hashlib def md5_by_line(pth): """""" m = hashlib.md5() with open(file_path,'rb') as f: #以二进制读的方式打开文件 for line in f: #每次传入一"行" m.update(line) #md5值更新 md5_value = m.hexdigest() #进制转化 print(md5_value) def md5_by_chunk(file): md5_value=hashlib.md5() with open(file,'rb') as f: while True: data_flow=f.read(8096) #每次读入8089kb进入内存 if not data_flow: #读取完后返回空值,False break md5_value.update(data_flow) print(md5_value.hexdigest()) if __name__ == '__main__': #md5_by_chunk('/home/zanghu/123.jpg') md5_by_chunk("/home/zanghu/pylearn2_data/stl10_matlab/unlabeled.mat")
true
16f0d3815bfeba90a3c9b16750c6669d07cc3b63
Python
nanthony21/PWSCalibrationSuite
/src/pws_calibration_suite/application/_ui/scorevisualizer.py
UTF-8
4,122
2.53125
3
[]
no_license
from PyQt5 import QtCore from PyQt5.QtCore import QTimer from PyQt5.QtWidgets import QWidget, QGridLayout, QFormLayout, QDoubleSpinBox, QSlider import matplotlib.pyplot as plt import pandas as pd import numpy as np from matplotlib.backends.backend_qt5 import NavigationToolbar2QT from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg class RadarPlot(QWidget): """ Creates a Radar plot from the values in a pandas series. Args: data: A `Series` containing values for a number of different parameters. """ def __init__(self, parent: QWidget, data: pd.Series): super().__init__(parent=parent) interactive = False if plt.isinteractive(): interactive = True plt.ioff() fig, ax = plt.subplots(subplot_kw={'polar': True}) self._ax = ax if interactive: plt.ion() # Set back to interactive if it originally was. fig.suptitle("Calibration Results") self._canv = FigureCanvasQTAgg(figure=fig) self._canv.setFocusPolicy(QtCore.Qt.ClickFocus) self._canv.setFocus() self._bar = NavigationToolbar2QT(self._canv, self) self._optionsPane = OptionDialog(self._ax, self._canv, self) # self._optionsButton = QPushButton("Options", self) # self._optionsButton.released.connect(self._optionsDlg) l = QGridLayout() l.addWidget(self._canv, 0, 0) l.addWidget(self._bar, 1, 0) l.addWidget(self._optionsPane, 0, 1) # l.addWidget(self._optionsButton, 1, 1) self.setLayout(l) self.setData(ax, data) @staticmethod def setData(ax: plt.Axes, data: pd.Series): assert isinstance(data, pd.Series), f"`data` must be a Pandas Series, not: {type(data)}" # number of variable categories = list(data.index) N = len(categories) # What will be the angle of each axis in the plot? (we divide the plot / number of variable) angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] # If you want the first axis to be on top: ax.set_theta_offset(np.pi / 2) ax.set_theta_direction(-1) # Draw one axe per variable + add labels labels yet plt.xticks(angles[:-1], categories, color='grey', size=8) # Draw ylabels ax.set_rlabel_position(0) rMax = max(data) # if rMax is None else rMax ax.set_ylim(0, rMax) # Ind1 values = data.values.flatten().tolist() values += values[:1] ax.plot(angles, values, color='blue', linewidth=2, linestyle='solid') ax.fill(angles, values, color='blue', alpha=0.4) def _optionsDlg(self): dlg = OptionDialog(self._ax, self._canv, self) dlg.exec() class OptionDialog(QWidget): def __init__(self, ax: plt.Axes, canv: plt.FigureCanvasBase, parent: QWidget): super().__init__(parent)#, flags=QtCore.Qt.FramelessWindowHint) self._ax = ax self._canv = canv self._timer = QTimer(self) self._timer.setInterval(10) self._timer.setSingleShot(False) self._timer.timeout.connect(self._evalTimer) self._timer.start() self.slider = QSlider(QtCore.Qt.Horizontal, self) self.slider.sliderReleased.connect(lambda: self.slider.setValue(0)) self.slider.setMinimum(-10) self.slider.setMaximum(10) self.sliderVal = self._ax.get_ylim()[1] self.radiusBox = QDoubleSpinBox(self) self.radiusBox.setValue(self.sliderVal) self.radiusBox.valueChanged.connect(self._valChanged) l = QFormLayout() l.addRow(self.slider) l.addRow("Radius: ", self.radiusBox) self.setLayout(l) def _valChanged(self, value: float): self._ax.set_ylim(0, value) self._canv.draw_idle() def _evalTimer(self): value = self.slider.value() # Convert value neg = -1 if value < 0 else 1 value = neg * (2**(abs(value)/10) - 1) val = self._ax.get_ylim()[1] + value self.radiusBox.setValue(val)
true
1bf8cc44e7f21e7a35602d49821e479de982099c
Python
jumbokh/MCSH-Class
/Python-src/connect.py
UTF-8
394
2.546875
3
[]
no_license
import network import time import ubinascii SSID='CHT-10-5' KEY='0953313123' sta = network.WLAN(network.STA_IF) print(sta.active(True)) print(sta.active()) sta.connect(SSID,KEY) mac = ubinascii.hexlify(sta.config('mac'),':').decode() print(mac) print(sta.ifconfig()) print(sta.isconnected()) for i in range(20): time.sleep(0.5) if sta.isconnected(): break print(sta.ifconfig())
true
48279d1deed992e09e67174f7130470009d821db
Python
shredderzwj/NLP-work-commit
/lesson01/waduanzi/waduanzi/spiders/duanzi.py
UTF-8
2,285
2.671875
3
[]
no_license
# -*- coding: utf-8 -*- import scrapy from waduanzi.items import WaduanziItem from urllib.parse import urlparse class DuanziSpider(scrapy.Spider): name = 'duanzi' allowed_domains = ['www.waduanzi.com'] start_urls = [ 'http://www.waduanzi.com/joke/page/1', 'http://www.waduanzi.com/joke/page/300', 'http://www.waduanzi.com/joke/page/600', 'http://www.waduanzi.com/joke/page/900', 'http://www.waduanzi.com/joke/page/1200', 'http://www.waduanzi.com/joke/page/1500', 'http://www.waduanzi.com/joke/page/1800', 'http://www.waduanzi.com/joke/page/2100', ] def parse(self, response): item = WaduanziItem() divs = response.xpath('//div[@class="panel panel20 post-item post-box"]') for div in divs: try: title = div.xpath('.//a[@class="cd-title-link"]/@title').extract_first() url = div.xpath('.//a[@class="cd-title-link"]/@href').extract_first() id = url.split('/')[-1] content = div.xpath('.//div[@class="item-content"]/text()').extract_first() content = content.replace('\n', '').replace('\t', '').replace(' ', '') likes = int(div.xpath('.//a[@data-score="1"]/text()').extract_first().strip()) unlikes = int(div.xpath('.//a[@data-score="-1"]/text()').extract_first().strip()) item['id'] = id item['url'] = url item['title'] = title item['content'] = content item['likes'] = likes item['unlikes'] = unlikes yield item except: pass # 翻页 root_url = "%s://%s" % (urlparse(response.url)[0], urlparse(response.url)[1]) next_url_path = response.xpath('//ul[@id="yw1"]//li[@class="next"]//a/@href').extract_first() if next_url_path is not None: next_num = next_url_path.split('/')[-1] if next_num not in ['300', '600', '900', '1200', '1500', '1800', '2100']: next_url = root_url + next_url_path yield scrapy.Request(next_url, callback=self.parse) print(next_num)
true
3d56e16b2b949c62182caa88e1a47645b8c89714
Python
andreydymko/Yandex-song-title-to-file
/sources/nativeApp/Get_Song_Title_To_File.py
UTF-8
3,772
2.515625
3
[]
no_license
#!/usr/bin/env python import sys import json import struct import os import sys import logging import unicodedata logging.basicConfig(filename=os.path.dirname(os.path.realpath(sys.argv[0])) + "\latest_error.txt", level=logging.DEBUG, format='%(asctime)s, %(levelname)-8s [%(filename)s:%(module)s:%(funcName)s:%(lineno)d] %(message)s') logger = logging.getLogger(__name__) try: # Python 3.x version # Read a message from stdin and decode it. def getMessage(): try: rawLength = sys.stdin.buffer.read(4) if len(rawLength) == 0: return json.loads('null') #sys.exit(0) messageLength = struct.unpack('@I', rawLength)[0] message = sys.stdin.buffer.read(messageLength).decode('utf-8') except Exception as e: logger.error(e) message = 'error' return json.loads(message) # Encode a message for transmission, # given its content. def encodeMessage(messageContent): try: encodedContent = json.dumps(messageContent).encode('utf-8') encodedLength = struct.pack('@I', len(encodedContent)) except Exception as e: logger.error(e) encodedContent = json.dumps("Error encoding symbol.").encode('utf-8') encodedLength = struct.pack('@I', len(encodedContent)) return {'length': encodedLength, 'content': encodedContent} # Send an encoded message to stdout def sendMessage(encodedMessage): try: sys.stdout.buffer.write(encodedMessage['length']) sys.stdout.buffer.write(encodedMessage['content']) sys.stdout.buffer.flush() except Exception as e: logger.error(e) # Write message to file def writeMessage(message): try: path = os.path.dirname(os.path.realpath(sys.argv[0])) + "\currentSong.txt" file = open(path, "w+") file.write(message) sendMessage(encodeMessage("written 3 " + message)) file.close() except Exception as e: logger.error(e) while True: receivedMessage = getMessage() writeMessage(unicodedata.normalize('NFKD', receivedMessage)) except AttributeError: # Python 2.x version (if sys.stdin.buffer is not defined) # Read a message from stdin and decode it. def getMessage(): rawLength = sys.stdin.read(4) if len(rawLength) == 0: sys.exit(0) messageLength = struct.unpack('@I', rawLength)[0] message = sys.stdin.read(messageLength) return json.loads(message) # Encode a message for transmission, # given its content. def encodeMessage(messageContent): try: encodedContent = json.dumps(messageContent).encode('utf-8') encodedLength = struct.pack('@I', len(encodedContent)) except UnicodeError as e: encodedContent = json.dumps("Error encoding symbol.").encode('utf-8') encodedLength = struct.pack('@I', len(encodedContent)) return {'length': encodedLength, 'content': encodedContent} # Send an encoded message to stdout def sendMessage(encodedMessage): sys.stdout.write(encodedMessage['length']) sys.stdout.write(encodedMessage['content']) sys.stdout.flush() # Write message to file def writeMessage(message): path = os.path.dirname(os.path.realpath(sys.argv[0])) + "\currentSong.txt" file = open(path, "w+") file.write(message) sendMessage(encodeMessage("writed 2 " + message)) file.close() while True: receivedMessage = getMessage() writeMessage(receivedMessage)
true
599f8e86baf4334711acf7498ed693bc0da8932d
Python
kalkidan999/AirBnB_clone
/tests/test_models/test_user.py
UTF-8
837
2.53125
3
[]
no_license
#!/usr/bin/python3 """Test User""" import unittest from models.base_model import BaseModel from models.city import City from models.place import Place from models.amenity import Amenity from models.state import State from models.review import Review from models.user import User class Testuser(unittest.TestCase): """unit test""" def test_User(self): """ Test Class Use """ my_user = User() self.assertTrue(hasattr(my_user, "first_name")) self.assertEqual(my_user.first_name, "") self.assertTrue(hasattr(my_user, "last_name")) self.assertEqual(my_user.last_name, "") self.assertTrue(hasattr(my_user, "email")) self.assertEqual(my_user.email, "") self.assertTrue(hasattr(my_user, "password")) self.assertEqual(my_user.password, "")
true
52a13fc816e63739dc3be544d7f04f321ba72191
Python
LvXueshuai/Python1
/1.py
UTF-8
103
3
3
[]
no_license
import hashlib obj = hashlib.md5() obj.update("hello".encode("utf8")) print(obj.hexdigest())
true
47ef1b2789a22ae49370aeaadae20dd24f8ae11e
Python
iisdd/Courses
/python_fishc/35.0.py
UTF-8
834
3.09375
3
[ "MIT" ]
permissive
import easygui as g import sys while 1: g.msgbox("嗨,欢迎进入第一个界面小游戏^_^") msg ="请问你希望在鱼C工作室学习到什么知识呢?" title = "小游戏互动" choices = ["谈恋爱", "编程", "OOXX", "琴棋书画"] choice = g.choicebox(msg, title, choices) # 注意,msgbox的参数是一个字符串 # 如果用户选择Cancel,该函数返回None g.msgbox("你的选择是: " + str(choice), "结果") msg = "你希望重新开始小游戏吗?" title = "请选择" # 弹出一个Continue/Cancel对话框 if g.ccbox(msg, title): pass # 如果用户选择Continue else: sys.exit(0) # 如果用户选择Cancel
true
4298c8440889801d92b55a59bdf9b3fc9fe5a34b
Python
rajatmann100/rosalind-bioinformatics-stronghold
/p9-long.py
UTF-8
360
2.953125
3
[]
no_license
########## BASE FASTA CODE - START ########## from lib.FastaReader import FASTA file = open("./data/data.txt", "r") input_str = file.read() gene_arr = input_str.split(">") gene_arr = gene_arr[1:] ########## BASE FASTA CODE - END ########## def processDNA(c, dna): print(c, dna) for g in gene_arr: fs = FASTA(g) processDNA(fs.code(), fs.dna())
true
4f519d52864a0277db94c8743ddcd63e17cc0d27
Python
arnoldliaoILMN/LaunchSpace
/bin/Tracker.py
UTF-8
4,070
2.609375
3
[]
no_license
""" Tracks the status of apps. Designed to be run on a cron, but can be run manually for debugging purposes. """ import os import sys import logging from collections import defaultdict # Add relative path libraries SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.abspath(os.path.sep.join([SCRIPT_DIR, "..", "lib"]))) import Repository import AppServices import SampleServices import ConfigurationServices if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='update status of sample/apps') parser.add_argument('-i', '--id', type=str, dest="id", help='update just a specific SampleApp id') parser.add_argument('-s', '--safe', dest="safe", default=False, action="store_true", help='safe mode - say what you would do without doing it') parser.add_argument('-l', '--logtostdout', dest="logtostdout", default=False, action="store_true", help="log to stdout instead of default log file") parser.add_argument("-L", "--loglevel", dest="loglevel", default="INFO", help="loglevel, default INFO. Choose from WARNING, INFO, DEBUG") args = parser.parse_args() if args.safe or args.logtostdout: logging.basicConfig(level=args.loglevel, format=ConfigurationServices.GetConfig("LogFormat")) else: logfile = ConfigurationServices.GetConfig("TRACKER_LOG_FILE") if not os.access(os.path.dirname(logfile), os.W_OK): print "log directory: %s does not exist or is not writeable" % (logfile) sys.exit(1) logging.basicConfig(filename=logfile, level=args.loglevel, format=ConfigurationServices.GetConfig("LogFormat")) #logging.basicConfig(level=args.loglevel) pl = logging.getLogger("peewee") pl.setLevel(logging.INFO) logging.debug("Starting tracker") if args.id: sampleApps = [ Repository.GetSampleAppByID(opts.id) ] else: # get all the SampleApps with statuses that the Tracker will be able to update # these represent "live" statuses on BaseSpace constraints = { "status" : [ "submitted", "pending", "running" ] } sampleApps = Repository.GetSampleAppByConstraints(constraints) logging.debug("Working on %i samples" % len(sampleApps)) # there's quite a lot code shared here with QCChecker.py, to iterate over SampleApps and update them # record what transitions we make (state -> state for each SampleApp) so we can report at the end # all SampleApps will end up in either "qc-failed" or "qc-passed" states transitions = defaultdict(list) for sampleApp in sampleApps: # unpack the SampleApp a little sampleName = Repository.SampleAppToSampleName(sampleApp) appName = Repository.SampleAppToAppName(sampleApp) sampleAppId = Repository.SampleAppToBaseSpaceId(sampleApp) logging.debug("working on: %s %s" % (sampleName, appName)) if not sampleAppId: logging.warn("No BaseSpace Id for SampleApp: %s" % Repository.SampleAppSummary(sampleApp)) continue # get the new status newstatus = AppServices.GetAppStatus(sampleAppId) if args.safe: logging.info("would update %s to: %s" % (Repository.SampleAppSummary(sampleApp), newstatus)) else: # record the transition and update in the db transition = (Repository.SampleAppToStatus(sampleApp), newstatus) Repository.SetSampleAppStatus(sampleApp, newstatus) transitions[transition].append(sampleAppId) # log how many of each transition we've made. If the number is low enough, report which apps have had each transition type for transition in sorted(transitions): if len(transitions[transition]) > 40: logging.info("%s : %i" % (transition, len(transitions[transition]))) else: logging.info( "%s : %i (%s)" % ( transition, len(transitions[transition]), ", ".join([str(x) for x in transitions[transition]]))) logging.debug("Finished tracker")
true
ce1a80431fdddd39527aeb86b43117bd894135aa
Python
fsoubelet/PyhDToolkit
/pyhdtoolkit/cpymadtools/coupling.py
UTF-8
14,126
2.53125
3
[ "MIT" ]
permissive
""" .. _cpymadtools-coupling: Betatron Coupling Utilities --------------------------- Module with functions to perform ``MAD-X`` actions through a `~cpymad.madx.Madx` object, that retate to betatron coupling in the machine. """ from typing import Dict, Sequence, Tuple import numpy as np import tfs from cpymad.madx import Madx from loguru import logger from optics_functions.coupling import check_resonance_relation, closest_tune_approach, coupling_via_cmatrix from scipy import stats from pyhdtoolkit.cpymadtools.constants import MONITOR_TWISS_COLUMNS from pyhdtoolkit.cpymadtools.lhc import get_lhc_tune_and_chroma_knobs from pyhdtoolkit.cpymadtools.matching import match_tunes_and_chromaticities from pyhdtoolkit.cpymadtools.twiss import get_pattern_twiss, get_twiss_tfs # ----- General Use ----- # def get_closest_tune_approach( madx: Madx, /, accelerator: str = None, sequence: str = None, varied_knobs: Sequence[str] = None, telescopic_squeeze: bool = True, run3: bool = False, explicit_targets: Tuple[float, float] = None, step: float = 1e-7, calls: int = 100, tolerance: float = 1e-21, ) -> float: """ .. versionadded:: 0.16.0 Provided with an active `~cpymad.madx.Madx` object, tries to match the tunes to their mid-fractional tunes, a.k.a tries to get them together. The difference between the final reached fractional tunes is the closest tune approach. This should not have any effect on the user's simulation, as the varied knobs are restored to their previous values after performing the CTA. This uses `~.tune.match_tunes_and_chromaticities` under the hood. .. note:: This assumes the sequence has previously been matched to the user's desired working point, as if not explicitely given, the appropriate targets will be determined from the ``MAD-X`` internal tables. Args: madx (cpymad.madx.Madx): an instanciated `~cpymad.madx.Madx` object. Positional only. accelerator (Optional[str]): name of the accelerator, used to determmine knobs if *variables* is not given. Automatic determination will only work for `LHC` and `HLLHC`. sequence (str): name of the sequence you want to activate for the tune matching. varied_knobs (Sequence[str]): the variables names to ``VARY`` in the ``MAD-X`` ``MATCH`` routine. An input could be ``["kqf", "ksd", "kqf", "kqd"]`` as they are common names used for quadrupole and sextupole strengths (focusing / defocusing) in most examples. telescopic_squeeze (bool): ``LHC`` specific. If set to `True`, uses the ``(HL)LHC`` knobs for Telescopic Squeeze configuration. Defaults to `True` since `v0.9.0`. run3 (bool): if set to `True`, uses the `LHC` Run 3 `*_op` knobs. Defaults to `False`. explicit_targets (Tuple[float, float]): if given, will be used as matching targets for `(Qx, Qy)`. Otherwise, the target is determined as the middle of the current fractional tunes. Defaults to `None`. step (float): step size to use when varying knobs. calls (int): max number of varying calls to perform. tolerance (float): tolerance for successfull matching. Returns: The closest tune approach, in absolute value. Example: .. code-block:: python # Say we have set the LHC coupling knobs to 1e-3 dqmin = get_closest_tune_approach( madx, "lhc", # will find the knobs automatically sequence="lhcb1", telescopic_squeeze=True, # influences the knobs definition run3=True, # influences the knobs definition (LHC Run 3) ) # returns 0.001 """ if accelerator and not varied_knobs: logger.trace(f"Getting knobs from default {accelerator.upper()} values") lhc_knobs = get_lhc_tune_and_chroma_knobs( accelerator=accelerator, beam=int(sequence[-1]), telescopic_squeeze=telescopic_squeeze, run3=run3 ) tune_knobs, _ = lhc_knobs[:2], lhc_knobs[2:] # first two for tune & last two for chroma, not used logger.debug("Running TWISS to update SUMM and TWISS tables") madx.command.twiss() logger.debug("Saving knob values to restore after closest tune approach") varied_knobs = varied_knobs or tune_knobs # if accelerator was given we've extracted this already saved_knobs: Dict[str, float] = {knob: madx.globals[knob] for knob in varied_knobs} logger.trace(f"Saved knobs are {saved_knobs}") if explicit_targets: q1, q2 = explicit_targets # the integer part is used later on else: logger.trace("Retrieving tunes and chromaticities from internal tables") q1, q2 = madx.table.summ.q1[0], madx.table.summ.q2[0] logger.trace(f"Retrieved values are q1 = {q1}, q2 = {q2}") logger.trace("Determining target tunes for closest approach") middle_of_fractional_tunes = (_fractional_tune(q1) + _fractional_tune(q2)) / 2 qx_target = int(q1) + middle_of_fractional_tunes qy_target = int(q2) + middle_of_fractional_tunes logger.debug(f"Targeting tunes Qx = {qx_target} | Qy = {qy_target}") logger.debug("Performing closest tune approach routine, matching should fail at DeltaQ = dqmin") match_tunes_and_chromaticities( madx, accelerator, sequence, q1_target=qx_target, q2_target=qy_target, varied_knobs=varied_knobs, telescopic_squeeze=telescopic_squeeze, run3=run3, step=step, calls=calls, tolerance=tolerance, ) logger.debug("Retrieving tune separation from internal tables") dqmin = madx.table.summ.q1[0] - madx.table.summ.q2[0] - (int(q1) - int(q2)) cminus = abs(dqmin) logger.debug(f"Matching got to a Closest Tune Approach of {cminus:.5f}") logger.debug("Restoring saved knobs") with madx.batch(): madx.globals.update(saved_knobs) madx.command.twiss() # make sure TWISS and SUMM tables are returned to their original state return cminus def get_cminus_from_coupling_rdts( madx: Madx, /, patterns: Sequence[str] = [""], method: str = "teapot", qx: float = None, qy: float = None, filtering: float = 0, ) -> float: """ .. versionadded:: 0.20.0 Computes and returns the :math:`|C^{-}|` from the machine's coupling RDTs. The closest tune approach is computed thanks to functionality from `optics_functions.coupling`. .. hint:: A quick estimate of the :math:`|C^{-}|` is available in ``MAD-X`` as the ``dqmin`` variable in the ``SUMM`` table. However this estimate is not accurate in all situations, and is the norm of a complex vector which is not approriate for comparisons or for normalizations, which is the use-case of this functions. .. note:: If using the “calaga”, “teapot”, “teapot_franchi” or “franchi” method, then the returned value will be a real number. Args: madx (cpymad.madx.Madx): an instanciated `~cpymad.madx.Madx` object. Positional only. patterns (Sequence[str]): the different patterns (such as ``MQX`` or ``BPM``) of elements to use when computing the coupling RDTs. Defaults to `[""]` which will select and use all elements in the ``TWISS`` outputs. method (str): the method to use for the calculation of the :math:`C^{-}`. Defaults to `teapot`, which is the default of `~optics_functions.coupling.closest_tune_approach`. qx (float): the horizontal tune. Defaults to `None`, in which case the value will be taken from the ``SUMM`` table. qy (float): the vertical tune. Defaults to `None`, in which case the value will be taken from the ``SUMM`` table. filtering (float): If non-zero value is given, applies outlier filtering of BPMs based on the abs. value of the coupling RTDs before computing the :math:`C^{-}`. The given value corresponds to the std. dev. :math:`\\sigma` outside of which to filter out a BPM. Defaults to 0, which means no filtering. Returns: The calculated :math:`|C^{-}|` value. Examples: To compute the :math:`|C^{-}|` taking in consideration all elements in the sequence: .. code-block:: python complex_cminus = get_cminus_from_coupling_rdts(madx) To simulate the calculation from a measurement, with RDTs computed at BPMs only: .. code-block:: python complex_cminus = get_cminus_from_coupling_rdts(madx, patterns=["^BPM.*B[12]$"]) """ logger.debug("Getting coupling RDTs at selected elements thoughout the machine") twiss_with_rdts = get_pattern_twiss(madx, patterns=patterns, columns=MONITOR_TWISS_COLUMNS) twiss_with_rdts.columns = twiss_with_rdts.columns.str.upper() # optics_functions needs capitalized names twiss_with_rdts[["F1001", "F1010"]] = coupling_via_cmatrix(twiss_with_rdts, output=["rdts"]) # Get tunes values from SUMM table if not provided qx = qx or madx.table.summ.q1[0] qy = qy or madx.table.summ.q2[0] # Do this following line here as if done above, merging model erases headers logger.debug("Filtering out BPMs that do not respect the resonance relation") twiss_with_rdts.headers["LENGTH"] = 26659 # LHC length, will be needed later twiss_with_rdts = check_resonance_relation(twiss_with_rdts, to_nan=True).dropna() if filtering: logger.debug(f"Filtering out BPMs with RDTs outside of {filtering:f} std. dev.") twiss_with_rdts = _filter_outlier_bpms_from_coupling_rdts(twiss_with_rdts, filtering) # Now we do the closest tune approach calculation -> adds DELTAQMIN column to df logger.debug(f"Calculating CTA via optics_functions, with method '{method}'") dqmin_df = closest_tune_approach(twiss_with_rdts, qx=qx, qy=qy, method=method) # If we use a method that returns complex values, we have to average on the abs of these values!! if method not in ["calaga", "teapot", "teapot_franchi", "franchi"]: logger.debug(f"Taking module of values, as method '{method}' returns complex values") dqmin_df = dqmin_df.abs() # Now we can take the mean of the DELTAQMIN column return dqmin_df.DELTAQMIN.mean() def match_no_coupling_through_ripkens( madx: Madx, /, sequence: str = None, location: str = None, vary_knobs: Sequence[str] = None ) -> None: """ .. versionadded:: 0.16.0 Matching routine to get cross-term Ripken parameters :math:`\\beta_{12}` and :math:`\\beta_{21}` to be 0 at a given location. Args: madx (cpymad.madx.Madx): an instanciated `~cpymad.madx.Madx` object. Positional only. sequence (str): name of the sequence to activate for the matching. location (str): the name of the element at which one wants the cross-term Ripkens to be 0. vary_knobs (Sequence[str]): the variables names to ``VARY`` in the ``MAD-X`` routine. Example: .. code-block:: python match_no_coupling_through_ripkens( madx, sequence="lhcb1", location="IP5", vary_knobs=["kqsx.3l5", "kqsx.3r5"] ) """ logger.debug(f"Matching Ripken parameters for no coupling at location {location}") logger.debug("Creating macro to update Ripkens") madx.input("do_ripken: macro = {twiss, ripken=True;}") # cpymad needs .input for macros logger.debug("Matching Parameters") madx.command.match(sequence=sequence, use_macro=True) for knob in vary_knobs: madx.command.vary(name=knob) madx.command.use_macro(name="do_ripken") madx.input(f"constraint, expr=table(twiss, {location}, beta12)=0") # need input else includes " and fails madx.input(f"constraint, expr=table(twiss, {location}, beta21)=0") # need input else includes " and fails madx.command.lmdif(calls=500, tolerance=1e-21) madx.command.endmatch() def get_coupling_rdts(madx: Madx, /, **kwargs) -> tfs.TfsDataFrame: """ .. versionadded:: 0.20.0 Computed the coupling Resonance Driving Terms (RDTs) :math:`f_{1001}` and :math:`f_{1010}` at all elements in the currently active sequence from a ``TWISS`` call. Args: madx (cpymad.madx.Madx): an instanciated `~cpymad.madx.Madx` object. Positional only. **kwargs: any keyword argument will be transmitted to the ``TWISS`` command in ``MAD-X``. Returns: A `~tfs.TfsDataFrame` with columns of the ``TWISS`` table, and two complex columns for the ``F1001`` and ``f1010`` RDTs. Example: .. code-block:: python twiss_rdts = get_coupling_rdts(madx) """ twiss_tfs = get_twiss_tfs(madx, **kwargs) twiss_tfs[["F1001", "F1010"]] = coupling_via_cmatrix(twiss_tfs, output=["rdts"]) return twiss_tfs # ----- Helpers ----- # def _fractional_tune(tune: float) -> float: """ Returns only the fractional part *tune*. Args: tune (float): tune value. Returns: The fractional part. Example: .. code-block:: python _fractional_tune(62.31) ## returns 0.31 """ return tune - int(tune) # ok since int truncates to lower integer def _filter_outlier_bpms_from_coupling_rdts(twiss_df: tfs.TfsDataFrame, stdev: float = 3) -> tfs.TfsDataFrame: """Only keep BPMs for which the abs. value of coupling RDTs is no further than `stdev` sigma from its mean.Example: .. note:: This expects the `twiss_df` to have ``F1001`` and ``F1010`` complex columns. """ logger.debug("Filtering out outlier BPMs based on coupling RDTs") df = twiss_df.copy(deep=True) df = df[np.abs(stats.zscore(df.F1001.abs())) < stdev] df = df[np.abs(stats.zscore(df.F1010.abs())) < stdev] removed = len(twiss_df) - len(df) if removed > 0: logger.debug(f"{removed} BPMs removed due to outlier coupling RDTs") return df
true
0d42135d9faa594df5a3ce416cac23db310555ac
Python
des-learning/struktur-data
/src/06/test_slice.py
UTF-8
1,591
3.65625
4
[]
no_license
import unittest from doublylinkedlist import DoublyLinkedList def reduce(function, iterable, start): result = start for i in iterable: result = function(result, i) return result def equalList(list1, list2): pairs = zip(list1, list2) sameItem = lambda x, y: x and (y[0] == y[1]) return (len(list1) == len(list2) and reduce(sameItem, pairs, True)) def setupList(): l = DoublyLinkedList() data = [0, 7, 5, 3, 8, 2, 9, 1, 9, 4] for i in data: l.add(i) return l, data class TestSlice(unittest.TestCase): def test_slice(self): l, data = setupList() self.assertTrue(equalList(l.asList(), data)) self.assertTrue(equalList(l.slice(0, len(l)).asList(), data)) self.assertTrue(equalList(l.slice(0, 1).asList(), data[0:1])) self.assertTrue(equalList(l.slice(0, 5).asList(), data[0:5])) self.assertTrue(equalList(l.slice(5, len(l)).asList(), data[5:])) def test_slice_negative(self): l, data = setupList() self.assertTrue(equalList(l.slice(0, -1).asList(), data[0:-1])) self.assertTrue(equalList(l.slice(5, -3).asList(), data[5:-3])) self.assertTrue(equalList(l.slice(-3, -1).asList(), data[-3:-1])) self.assertTrue(equalList(l.slice(0, -5).asList(), data[0:-5])) def test_invalid_slice(self): l, data = setupList() self.assertTrue(equalList(l.slice(100, 200).asList(), [])) self.assertTrue(equalList(l.slice(-1, -3).asList(), [])) self.assertTrue(equalList(l.slice(0, len(l)+1).asList(), []))
true
cc2a5515dc53319c287948841ed71a96fa07b353
Python
Johnny-kiv/Python
/напоминальщик/time 3.py
UTF-8
1,467
3.34375
3
[]
no_license
#Это напоминальщик #версия 2 #Автор: johnny-kiv #Подключаем модули tkinter, time и дополнительный модуль messagebox from tkinter import* from tkinter import messagebox import time root=Tk() #Подключаем виджет Canvas c=Canvas(root,bg="grey",width=800,height=600) c.pack() a2=IntVar() b2=IntVar() c2=IntVar() def begin(): if a2==0: a4=20*60 if b2==0: b4=20*60 else: a4=a2*60 b4=b2*60 r=0 c.create_text(500,50,text="Работаем",fill="green") for r in range(c2): time.sleep(b4) messagebox.showinfo("Отдыхаем") time.sleep(a4) messagebox.showinfo("Работаем") a2l=Label(text="Введите минуты работы: ") a2l.grid(row=0,column=0,sticky="w") a2e=Entry(textvariable=a2) a2e.grid(row=0,column=1,sticky="e") b2l=Label(text="Введите минуты отдыха: ") a2l.grid(row=1,column=0,sticky="w") b2e=Entry(textvariable=b2) b2e.grid(row=1,column=1,sticky="e") с2l=Label(text="Введите сколько раз вы будете работать или отдыхать: ") с2l.grid(row=2,column=0,sticky="w") с2e=Entry(textvariable=c2) с2e.grid(row=2,column=1,sticky="e") btn=Button(text="Начать",command=begin) btn.grid(row=3,column=0,sticky="w") a2l.pack() a2e.pack() b2l.pack() b2e.pack() c2l.pack() c2e.pack() btn.pack() root.mainloop()
true