blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
ff202ee5660531d20bc6e051b67a155b979d24a2
Python
pikestefan/AdventofCode2020
/day21.py
UTF-8
3,163
3.234375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Dec 28 04:29:48 2020 @author: Lucio """ import re def find_intersection(allergen, food_list, allergen_list): ingredients_per_allergen = [] for ingredients, allergen_in_food in zip( food_list, allergen_list ): if allergen in allergen_in_food: ingredients_per_allergen.append(set(ingredients)) intersection_per_allergen = set.intersection( * ingredients_per_allergen ) return intersection_per_allergen def remove_from_list_of_lists(element, list_of_lists): new_list = [] for row in list_of_lists: new_row = [ item for item in row if item != element ] new_list.append(new_row) return new_list with open('inputs/day21.txt') as file: food_list = [] allergen_list = [] for line in file.readlines(): line = line.strip().split(' (') ingredients = line[0].split(' ') allergens = line[-1].replace('contains ','').replace(')','') allergens = allergens.split(', ') food_list.append( ingredients ) allergen_list.append( allergens ) flattened_allergens = [] for listy in allergen_list: flattened_allergens += listy flattened_ingredients = [] for listy in food_list: flattened_ingredients += listy unique_allergens = list(dict.fromkeys(flattened_allergens)) unique_ingredients = list(dict.fromkeys(flattened_ingredients)) ### Part 1 intersection_foods = [] for allergen in unique_allergens: all_intersec = find_intersection(allergen, food_list, allergen_list) intersection_foods.append(all_intersec) food_w_allergens = set.union( *intersection_foods ) without_allergens = [ingredient for ingredient in unique_ingredients if not ingredient in food_w_allergens] no_allergen_counter = 0 for ingredient in flattened_ingredients: if ingredient in without_allergens: no_allergen_counter += 1 print(no_allergen_counter) ### Part 2 food_list_for_id = food_list[:] #First remove the ingredients without allergens for no_allergen in without_allergens: food_list_for_id = remove_from_list_of_lists(no_allergen, food_list_for_id) # Now, identify the allergens identified_foods = {} allergens_to_identify = unique_allergens[:] ii = 0 while len(allergens_to_identify) > 0: ii %= len(allergens_to_identify) allergen = allergens_to_identify[ii] intersy = find_intersection(allergen, food_list_for_id, allergen_list) if len(intersy) == 1: identified_food = list(intersy)[0] identified_foods[allergen] = identified_food food_list_for_id = remove_from_list_of_lists(identified_food, food_list_for_id) allergens_to_identify.remove(allergen) ii += 1 sorted_allergen = [] sorted_ingredient = [] for allergen, ingredient in sorted(identified_foods.items()): sorted_allergen.append(allergen) sorted_ingredient.append(ingredient) print(','.join(sorted_ingredient))
true
76f898dcfb4c21a7665fe655c1beb39c6c239bdb
Python
boppreh/cryptopals-challenge
/Set 2 - Block crypto/10 - Implement CBC mode.py
UTF-8
384
2.796875
3
[]
no_license
from utils import * key = b'YELLOW SUBMARINE' plaintext = b'beatles' * 10 assert aes_ecb_decrypt(key, aes_ecb_encrypt(key, plaintext)) == plaintext ciphertext = from_base64(read('10.txt')) plaintext = aes_cbc_decrypt(key, ciphertext, iv=b'\x00'*AES.BLOCK_SIZE) assert plaintext.startswith(b"I'm back and I'm ringin' the bell") assert plaintext.endswith(b"Play that funky music \n")
true
cb57d9bebf8046139e557d61edac3ee5b5c9caa6
Python
osantana19/Temperature_Monitor
/dht11.py
UTF-8
6,954
2.875
3
[]
no_license
#!/usr/bin/python #-------------------------------------- # ___ ___ _ ____ # / _ \/ _ \(_) __/__ __ __ # / , _/ ___/ /\ \/ _ \/ // / # /_/|_/_/ /_/___/ .__/\_, / # /_/ /___/ # # dht11.py # Basic example script to read DHT11 sensor using # Adafruit DHT library: # https://github.com/adafruit/Adafruit_Python_DHT # # Based on examples by Tony DiCola # # Author : Matt Hawkins # Date : 04/09/2017 # # http://www.raspberrypi-spy.co.uk/tag/dht11/ # #-------------------------------------- #Didn't want to remove credit from the guy above who created the base of the code that I expanded on incase you guys want to check out the original #Created this code to check the temperature and send out emails/text alerts when over a certain amount of degrees #There is a cronjob that runs this script everyday at 5:01pm after everyone leaves for the day #The script is designed to run for 23 hours and 58 minutes #To view the cronjob type crontab -l #To change the cronjob settings type crontab -e and change the one corresponding to this file #Use the website: https://crontab.guru/ to help when changing the time for the cron schedule #For anything else cronjob related resort to this article: https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/ import os import re import Adafruit_DHT import time import threading from datetime import datetime import smtplib, ssl # Set sensor type : Options are DHT11,DHT22 or AM2302 sensor = Adafruit_DHT.DHT22 # Set GPIO sensor is connected to. gpio = 17 #Set date and time now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M") #method for opening and writing to a file def tempfile(): f = open("temperature.txt",'a+') for i in range (2): f.write(str) SMTP_PORT = 587 # For SSL SMTP_SERVER = "smtp.gmail.com" # Enter type of email server run GMAIL_USERNAME = "noreply@easternia.com" # Enter your address GMAIL_PASSWORD = "newaccount12" # Enter your password class Emailer: def sendmail(self, recipient, subject, content): #Create Headers headers = ["From: " + GMAIL_USERNAME, "Subject: " + subject, "To: " + recipient, "MIME-Version: 1.0", "Content-Type: text/html"] headers = "\r\n".join(headers) #Connect to Gmail Server session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) session.ehlo() session.starttls() session.ehlo() #Login to Gmail session.login(GMAIL_USERNAME, GMAIL_PASSWORD) #Send Email & Exit session.sendmail(GMAIL_USERNAME, recipient, headers + "\r\n\r\n" + content) session.quit # Sets up where to send Emails sender = Emailer() sendTo = 'it@easternia.com' #It email chain sendTo2 = '3392292459@vtext.com' #Oliver sendTo3 = '3392224287@vtext.com' #Steve sendTo4 = '6175195579@vtext.com' #Chris sendTo5 = '7814241042@vtext.com' #Bob # Sets up the email subject and contents emailSubject = "Waltham Server Rooms Hot" emailContent = "This is a test of my Email of temperature alerts" emailSubject2 = "Temperature Gauge Offline!!" emailContent2 = "Temperature gauge has been knocked offline. Failed to get reading." # Sets the maximum temperature for room before Alerts are sent out tempmax = (75.9) #Change value to set temperature # Creates a function called run_check to be called upon and executed to send the emails/texts out def run_check(): humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio) #Assigns humidty and temperature output to respective variables temperature = float(temperature * 1.8 + 32) #Changes the temperature value from celsius to farenheit now = datetime.now() #Assigns the date and time to variable now dt_string = now.strftime("%m/%d/%Y %H:%M") #Formats the now variable and assigns to a new variable dt_string if humidity is not None and temperature is not None: #if statement to make sure sensor is working print('Temp={0:0.1f} Humidity={1:0.1f}% '.format(temperature, humidity),dt_string) #Placed this here for testing purposes prints out if works if temperature > float(tempmax): #If the temperature is over the amount set in tempmax it will send emails/texts # Sends an email to the "sendTo" address with the specified "emailSubject" as the subject and "emailContent" as the email content. sender.sendmail(sendTo, emailSubject, emailContent) sender.sendmail(sendTo2, emailSubject, emailContent) sender.sendmail(sendTo3, emailSubject, emailContent) sender.sendmail(sendTo4, emailSubject, emailContent) sender.sendmail(sendTo5, emailSubject, emailContent) print ('fire sent') else: print ('ok') else: sender.sendmail(sendTo, emailSubject2, emailContent2) #Sends out the notice that the reader is down to IT email print('Failed to get reading. Try again!') #Sets the counter values for the loops counter2 = (5) #This counter is set to 29 because the counter2 if statement is triggered once it hits 30. it then takes an hour with this setup to trigger again counter = (0) #For the while loop so our main loop keeps going for 23 hrs and 58min because the sleep time is set to 2 minutes and runs 719 times while counter < 143: #runs the runcheck command and sends out emails and texts alerts #Needed to run temperature check seperate to save it to temp1 variable humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio) temperature = float(temperature * 1.8 + 32) now = datetime.now() dt_string = now.strftime("%m/%d/%Y %H:%M") #Saves Temperature to a variable temp1 = ('Temp={0:0.1f} Humidity={1:0.1f}% '.format(temperature, humidity),dt_string) #Turns temperature output into a string temp2 = (str(temp1)) #expression to remove weird characters from string temp3 = re.sub("'|\(|\)|,", '', temp2) print(temp3) f = open("temperature.txt",'a+') f.write(temp3) f.write("\r\n") f.close() if temperature > float(tempmax): print('fire') counter2 = counter2 + 1 counter = counter + 1 else: counter = counter + 1 if counter2 >= (6): emailContent = "Waltham server room temperature is high, the current temp is: " + str(int(temperature)) + " degrees" run_check() counter2 = (0) else: print ('ok') time.sleep(599) #Amount of seconds before the code runs again print ('finished') #humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio) # Reading the DHT11 is very sensitive to timings and occasionally # the Pi might fail to get a valid reading. So check if readings are valid. #if humidity is not None and temperature is not None: #print('Temp={0:0.1f}*C Humidity={1:0.1f}%'.format(temperature, humidity)) #else: #print('Failed to get reading. Try again!')
true
46e0585bcfab64ac677ad3576c28f2b3cc798f7e
Python
JGuymont/ift2015
/3_tree/Tree.py
UTF-8
3,536
3.625
4
[]
no_license
from ListQueue import ListQueue #ADT Tree (Classe de base) class Tree: #inner class Position class Position: def element( self ): pass def __eq__( self, other ): pass def __ne__( self, other): return not( self == other ) # retourne la racine def root( self ): pass def _validate(self, p): if not isinstance(p, self.Position): raise TypeError('p must be proper Position type') if p._container is not self: raise ValueError('p does not belong to this container') if p._node._parent is p._node: raise ValueError('p is no longer valid') return p._node def _make_position(self, node): return self.Position(self, node) if node is not None else None # retourne le parent d'une Position def parent( self, p ): pass # retourne le nombre d'enfants d'une Position def num_children( self, p ): pass # retourne les enfants d'une Position def children( self, p ): pass # retourne le nombre de noeuds def __len__( self ): pass # demande si une Position est la racine def is_root( self, p ): return self.root() == p # demande si une Position est une feuille def is_leaf( self, p ): return self.num_children( p ) == 0 # demande si un arbre est vide def is_empty( self ): return len( self ) == 0 # retourne la profondeur d'une Position def depth( self, p ): # retourne le nombre d'ancêtres d'une Position if self.is_root( p ): return 0 else: return 1 + self.depth(self.parent()) # retourne la hauteur d'une Position avec depth (non efficace) def height1( self, p ): # retourne la profondeur maximum des feuilles sous une Position # positions n'est pas implanté et se fait en O(n) return max( self.depth( p ) for p in self.positions() if self.is_leaf( p )) # retourne la hauteur d'une Position en descendant l'arbre (efficace) def height( self, p ): # retourne la hauteur d'un sous-arbre à une Position if self.is_leaf( p ): return 0 else: return 1 + max( self.height( c ) for c in self.children( p ) ) # imprime le sous-arbre dont la racine est la Position p # utilise un parcours préfixé def preorder_print( self, p, indent = "" ): # on traite le noeud courant print( indent + str( p ) ) # et par la suite les enfants, récursivement for c in self.children( p ): self.preorder_print( c, indent + " " ) # imprime le sous-arbre dont la racine est la Position p # utilise un parcours postfixé def postorder_print( self, p ): # on traite les enfants for c in self.children( p ): self.postorder_print( c ) # et par la suite le parent print( p ) # imprime le sous-arbre dont la racine est la Position p # utilise un parcours en largeur, utilisant une File def breadth_first_print( self, p ): Q = ListQueue() # on enqueue la Position p Q.enqueue( p ) # tant qu'il y a des noeuds dans la File while not Q.is_empty(): # prendre le suivant et le traiter q = Q.dequeue() print( q ) # enqueuer les enfants du noeud traité for c in self.children( q ): Q.enqueue( c )
true
8981873d26ecc3c8d66ba3a1ffa04589564c9f10
Python
sergiorgiraldo/Python-lang
/sqlite/hello.py
UTF-8
403
3.078125
3
[]
no_license
#!/usr/bin/python import sqlite3 conn = sqlite3.connect('foo.sqlite.db') print('Opened database successfully') conn.execute('insert into DEPTO (name) values ("john doe") ' ) conn.commit() print('Insert executed sucessfully') cursor = conn.execute("SELECT id, name from DEPTO") for row in cursor: print("ID = ", row[0]) print("NAME = ", row[1]) print('Operation done successfully') conn.close()
true
65776a0e91197d9370861498746b0f8b061f5255
Python
lizzij/EI
/El_compiled.py
UTF-8
4,357
2.796875
3
[]
no_license
########## All URLs ############ demo = 'https://scratch.mit.edu/projects/151017985/#fullscreen' cY = 'https://scratch.mit.edu/projects/151030464/#fullscreen' cG = 'https://scratch.mit.edu/projects/151031590/#fullscreen' cR = 'https://scratch.mit.edu/projects/151031688/#fullscreen' eY = 'https://scratch.mit.edu/projects/151034263/#fullscreen' eG = 'https://scratch.mit.edu/projects/151034195/#fullscreen' eR = 'https://scratch.mit.edu/projects/151034096/#fullscreen' YGR = 'https://scratch.mit.edu/projects/151027157/#fullscreen' YRG = 'https://scratch.mit.edu/projects/151028622/#fullscreen' GRY = 'https://scratch.mit.edu/projects/151036783/#fullscreen' GYR = 'https://scratch.mit.edu/projects/151029293/#fullscreen' RYG = 'https://scratch.mit.edu/projects/151029942/#fullscreen' RGY = 'https://scratch.mit.edu/projects/151036611/#fullscreen' RG_Y = 'https://scratch.mit.edu/projects/151030159/#fullscreen' GR_Y = 'https://scratch.mit.edu/projects/151034348/#fullscreen' RY_G = 'https://scratch.mit.edu/projects/151036192/#fullscreen' YR_G = 'https://scratch.mit.edu/projects/151035899/#fullscreen' GY_R = 'https://scratch.mit.edu/projects/151036247/#fullscreen' YG_R = 'https://scratch.mit.edu/projects/151036340/#fullscreen' ########## DEMO ############ # open browser import webbrowser webbrowser.open_new(demo) # randomize lightbulb order import random light = ['Y', 'G', 'R'] random.shuffle(light) print("This is the demo order: " + str(light)) ########## PRACTICE ############ # open pratice trials in the order of YR_G, GYR, cG, eR import webbrowser, os webbrowser.open('file://' + os.path.realpath('EI_practices.html')) ############# TEST ########### # original puzzles (9, 12, 27), i.e. set A - 1, 3, 5: (YGR, cY), (YGR, GR_Y), (eY, RY_G) # answer: G, Y, G # exchange G with R # new puzzles, i.e., set B - 2, 4, 6: (YRG, cY), (YRG, RG_Y), (eY, GY_R) # answer: R, Y, R # two equivalent problem sets ## set A: puzzle 1, 3, 5 testPair_A = [(YGR, cY), (YGR, GR_Y), (eY, RY_G)] puzzle_A = [1, 3, 5] correctIV_A = ['G', 'Y', 'G'] ## set B: puzzle 2, 4, 6 testPair_B = [(YRG, cY), (YRG, RG_Y), (eY, GY_R)] puzzle_B = [2, 4, 6] correctIV_B = ['R', 'Y', 'R'] # scramble problem order within set ## set A orderTest_A = list(zip(testPair_A, puzzle_A, correctIV_A)) random.shuffle(orderTest_A) testPair_A, puzzle_A, correctIV_A = zip(*orderTest_A) ## set B orderTest_B = list(zip(testPair_B, puzzle_B, correctIV_B)) random.shuffle(orderTest_B) testPair_B, puzzle_B, correctIV_B = zip(*orderTest_B) ## randomize the order of the two sets counterbalance = random.choice([1,2]) if counterbalance == 1: setAB = "A"; testPair = testPair_A + testPair_B puzzle = puzzle_A + puzzle_B correctIV = correctIV_A + correctIV_B else: setAB = "B"; testPair = testPair_B + testPair_A puzzle = puzzle_B + puzzle_A correctIV = correctIV_B + correctIV_A print ("Set " + setAB + " comes first") ## print puzzle order print("Prepare these pictures: " + str(puzzle)) # randomly choose a graph as the correct answer for each pair testAnswer = [0, 0, 0, 0, 0, 0] j = 0 while j < 6: testAnswer[j] = random.choice(testPair[j]) j += 1 # and open the corresponding URLs k = 0 while k < 6: webbrowser.open_new(testAnswer[k]) k += 1 # which picture comes first in a pair? choices= [(1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)] choiceOrder=[0,0,0,0,0,0] l = 0 while l < 6: choiceOrder[l] = random.choice(choices[l]) l += 1 print("First choice to show in each puzzle: " + str(choiceOrder)) # print correct answers print("Correct intervention for each puzzle: " + str(correctIV)) ########## update EI temp google sheet with exp set-up ############ # https://docs.google.com/spreadsheets/d/1gyluz7Whrr3KHMEmoGBosAV59_CDIm48DF90d6LghU4/edit?usp=sharing # coding: utf-8 import gspread from oauth2client.service_account import ServiceAccountCredentials scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_name('EI_clientSecret.json', scope) ra = gspread.authorize(credentials) sheet = ra.open('EI temp').sheet1 sheet.update_cell(2, 1, str(light)) sheet.update_cell(2, 3, str(setAB)) sheet.update_cell(2, 4, str(puzzle)) sheet.update_cell(2, 5, str(choiceOrder)) sheet.update_cell(2, 6, str(correctIV))
true
b727f008e43f3adbd2083ad0e4277acd311f416d
Python
ShakteeSamant/my_program
/prime_numbers.py
UTF-8
814
4.3125
4
[]
no_license
# Write a program to check given number is prime number or not. num = int(input('Enter the number: ')) count = 0 for i in range(2,num+1): if num % i == 0: count += 1 if count == 1: print ('Prime number') else: print('Not Prime') # prime numbers between the range of 100 numbers for num in range(101): count = 0 for i in range(2,num+1): if num % i == 0: count += 1 if count == 1: print (i) # WAP to find prime numbers between two numbers. def prime(l, u): for num in range(l, u+1): count = 0 for i in range(2,num+1): if num % i == 0: count += 1 if count == 1: print (num) low = int(input('Enter the lower number: ')) upp = int(input('Enter the upper number: ')) prime(low,upp)
true
9d3341269579686bfd7907d22ed30826c8cb9e68
Python
hatimabualrub/COVID-Tracker
/ContryScreen.py
UTF-8
6,311
2.640625
3
[]
no_license
import pandas as pd from tkinter import * from Components import header, footer from requestData import requestGlobalData, requestContryData from figures import generateLinePlot def countryScreen(master): try: CountryWindow = Toplevel(master) CountryWindow.title("Country Statistics") CountryWindow.configure(background='gray90') CountryWindow.state('zoomed') CountryWindow.iconbitmap('./icon.ico') header(CountryWindow) title = Label(CountryWindow, text="Country Statistics", font="Helvetica 28 bold", fg='#009933', bg='gray90') title.configure(anchor=NW, pady=10) title.pack() countriesData = requestGlobalData() countriesDF = pd.DataFrame(countriesData) countries = countriesDF['Country'].tolist() tkvar= StringVar(CountryWindow) tkvar.set('Select') noInput = Label(CountryWindow, text="Please Select A Country", width=200, font="Helvetica 40", fg='#B00000', bg='gray90') noInput.configure(anchor="center", pady=150) noInput.pack() menuLabel = Label(CountryWindow, text="Select Country:", font="Helvetica 18", fg='gray18') menuLabel.place(x=1010, y=610, anchor="nw") menu = OptionMenu(CountryWindow, tkvar, *countries) menu.config( width=15, height=2) menu.place(x=1200, y=600, anchor="nw") def onClick(): if not(tkvar.get() == 'Select'): noInput.destroy() data = requestContryData(tkvar.get()) df = pd.DataFrame(data) df.Date = df.Date.str.split('T') df.Date = df.Date.str[0] countryName = df['Country'][0] def activeBtnHandler(): generateLinePlot(df, 'Active', countryName) def confirmedBtnHandler(): generateLinePlot(df, 'Confirmed', countryName) def recoveredBtnHandler(): generateLinePlot(df, 'Recovered', countryName) def deathsBtnHandler(): generateLinePlot(df, 'Deaths', countryName) def generalBtnHandler(): generateLinePlot(df, ['Confirmed','Deaths', 'Recovered', 'Active'], countryName) title['text'] = countryName+ ' Statistics' ActiveLabel = Label(CountryWindow, text='Active Cases:', font="Helvetica 14 bold", fg='#009933', bg='gray90') ActiveLabel.configure(anchor="center") ActiveLabel.place(x=100, y=150) ActiveValue = Label(CountryWindow, text=df.Active.iloc[-1], font="Helvetica 14", fg='gray18', bg='gray90', width=9) ActiveValue.configure(anchor="center") ActiveValue.place(x=250, y=150) ConfirmedLabel = Label(CountryWindow, text='Confirmed Cases:', font="Helvetica 14 bold", fg='#009933', bg='gray90') ConfirmedLabel.configure(anchor="center") ConfirmedLabel.place(x=390, y=150) ConfirmedValue = Label(CountryWindow, text=df.Confirmed.iloc[-1], font="Helvetica 14", fg='gray18', bg='gray90', width=9) ConfirmedValue.configure(anchor="center") ConfirmedValue.place(x=580, y=150) RecoveredLabel = Label(CountryWindow, text='Recovered Cases:', font="Helvetica 14 bold", fg='#009933', bg='gray90') RecoveredLabel.configure(anchor="center") RecoveredLabel.place(x=730, y=150) RecoveredValue = Label(CountryWindow, text=df.Recovered.iloc[-1], font="Helvetica 14", fg='gray18', bg='gray90', width=9) RecoveredValue.configure(anchor="center") RecoveredValue.place(x=920, y=150) DeathsLabel = Label(CountryWindow, text='Death Cases:', font="Helvetica 14 bold", fg='#009933', bg='gray90') DeathsLabel.configure(anchor="center") DeathsLabel.place(x=1060, y=150) DeathsValue = Label(CountryWindow, text=df.Deaths.iloc[-1], font="Helvetica 14", fg='gray18', bg='gray90', width=9) DeathsValue.configure(anchor="center") DeathsValue.place(x=1200, y=150) btnActive = Button(CountryWindow, text="Active Figure", command= activeBtnHandler, font="Helvetica 12 bold", bg='#D8D8D8', fg='#009933', width=18) btnActive.place(x=120, y=200, anchor="nw") btnConfirmed = Button(CountryWindow, text="Confirmed Figure", command=confirmedBtnHandler, font="Helvetica 12 bold", bg='#D8D8D8', fg='#009933', width=18) btnConfirmed.place(x=440, y=200, anchor="nw") btnRecovered= Button(CountryWindow, text="Recovered Figure", command=recoveredBtnHandler, font="Helvetica 12 bold", bg='#D8D8D8', fg='#009933', width=18) btnRecovered.place(x=760, y=200, anchor="nw") btnDeaths= Button(CountryWindow, text="Deaths Figure", command=deathsBtnHandler, font="Helvetica 12 bold", bg='#D8D8D8', fg='#009933', width=18) btnDeaths.place(x=1070, y=200, anchor="nw") btnGeneral= Button(CountryWindow, text="General Statistics Figure", command=generalBtnHandler, font="Helvetica 16 bold", bg='#009933', fg='white', width=26, height=1) btnGeneral.place(x=530, y=320, anchor="nw") btnOK = Button(CountryWindow, text="OK", command=onClick, font="Helvetica 9 bold", bg='#009933', fg='white', height=2) btnOK.place(x=1330, y=603,anchor="nw") footer(CountryWindow) except: CountryWindow.destroy()
true
17345168004530c2d51c48189d29333629abf197
Python
lucgiffon/psm-nets
/code/data/make_dataset.py
UTF-8
2,625
2.53125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Functions for downloading data set. """ import tempfile import urllib.request import click import logging from pathlib import Path from dotenv import find_dotenv, load_dotenv import os import numpy as np import scipy.io as sio from palmnet.data import Mnist, Cifar10, Cifar100 from skluc.utils.osutils import read_matfile, download_file from skluc.utils import logger def load_svhn_data(): data_root_url = "http://ufldl.stanford.edu/housenumbers/" data_leaf_values = { "train": "train_32x32.mat", "test": "test_32x32.mat", } data_arrays = {} with tempfile.TemporaryDirectory() as d_tmp: for leaf_name, leaf in data_leaf_values.items(): leaf_url = data_root_url + leaf matfile_path = download_file(leaf_url, d_tmp, leaf) data_arrays[leaf_name] = read_matfile(matfile_path) return data_arrays["train"], data_arrays["test"] def _download_single_dataset(output_dirpath, dataname): if MAP_NAME_CLASSES_PRESENCE[dataname]: (x_train, y_train), (x_test, y_test) = MAP_NAME_DATASET[dataname]() map_savez = {"x_train": x_train, "y_train": y_train, "x_test": x_test, "y_test": y_test } else: X = MAP_NAME_DATASET[dataname]() map_savez = {"x_train": X} output_path = project_dir / output_dirpath / dataname logger.info(f"Save {dataname} to {output_path}") np.savez(output_path, **map_savez) @click.command() @click.argument('dataset', default="all") @click.argument('output_dirpath', type=click.Path()) def main(output_dirpath, dataset): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ _download_single_dataset(output_dirpath, dataset) MAP_NAME_DATASET = { "svhn": load_svhn_data, "cifar100": Cifar100.load_data, "cifar10": Cifar10.load_data, "mnist": Mnist.load_data, } MAP_NAME_CLASSES_PRESENCE = { "svhn": True, "cifar100": True, "cifar10": True, "mnist": True, } if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) # not used in this stub but often useful for finding various files project_dir = Path(__file__).resolve().parents[2] # find .env automagically by walking up directories until it's found, then # load up the .env entries as environment variables load_dotenv(find_dotenv()) main()
true
1746a52075b2869f9f6326cf8073ff683c181894
Python
JustinBis/UCF-COP-3223
/Programs - Python/diapers.py
UTF-8
802
3.9375
4
[]
no_license
####################### # Diaper Money # # By Justin Bisignano # # 8/29/2012 # ####################### # Constants DAYS_PER_MONTH = 30 CALS_PER_LB = 3500 CALSLOST_PER_BEER = 20 DOZEN = 12 # Get inputs diapercost = float(input("What is the cost of a dozen diapers?\n")) diapersperday = int(input("How many diapers does the baby go through a day?\n")) beercost = float(input("What is the cost of a single beer?\n")) # Calculations diaperspend = diapercost/DOZEN*DAYS_PER_MONTH*diapersperday fewerbeers = diaperspend//beercost lbslost = fewerbeers*CALSLOST_PER_BEER/CALS_PER_LB # Print outputs print('You will spend $'+str(diaperspend),'on diapers in a month.') print('You will drink',int(fewerbeers),'fewer beers in a month.') print('As a result, you will loose',lbslost,'pounds in a month.')
true
38a7317f60fae41ee02e201888527b564924ddf3
Python
sebischair/ThesaurusLabelPropagation
/src/baselines/helpers.py
UTF-8
1,309
2.546875
3
[ "MIT" ]
permissive
from os.path import join import numpy as np import pandas as pd def get_train_test(path): train = pd.read_table( join(path, "y_train.txt"), sep=" ", dtype={"synset": np.int32}, index_col=0)["synset"] test = pd.read_table( join(path, "y_test.txt"), sep=" ", dtype={"synset": np.int32}, index_col=0)["synset"] return train, test def df_evaluation_init(index, train, pred, test): df_predicted = pd.DataFrame(index=index).rename_axis("word") df_predicted = df_predicted.join(train, how="left").fillna(-1).rename(columns={"synset": "y_train"}) df_predicted = df_predicted.assign(y_pred=pred["synset"]) df_predicted = df_predicted.assign(y_conf=pred["current_max_similarity"]) df_predicted = df_predicted.assign(y_top3_classes=[[-1, -1, -1]] * len(df_predicted)) df_evaluation = df_predicted.join(test, how="left") df_evaluation.rename(columns={"synset": "y_test"}, inplace=True) return df_evaluation def apply_synset_prediction_if_more_similar(pred, synset_id, predictions): for (word, similarity) in predictions: if pred.loc[word].current_max_similarity < similarity: pred.loc[word, "synset"] = synset_id pred.loc[word, "current_max_similarity"] = similarity
true
f9b85fdba98cdcdfd0a1b3aa90eadf523b7c7e3c
Python
kns94/coding-practice
/russianDoll_dp.py
UTF-8
2,407
3.015625
3
[]
no_license
"""The russian doll algorithm""" import operator class Solution(object): def maxEnvelopes(self, envelopes): """ :type envelopes: List[List[int]] :rtype: int """ """If no nodes are present""" if len(envelopes) == 0: return 0 sorted_envelopes = [] envelopes = sorted(envelopes, key = operator.itemgetter(1)) for i in range(len(envelopes)): sorted_envelopes.append([envelopes[i][0], envelopes[i][1], i]) lis = [] sorted_envelopes = sorted(sorted_envelopes, key = operator.itemgetter(0)) lis.append(sorted_envelopes[0]) print(envelopes) print(sorted_envelopes) for i in range(1, len(sorted_envelopes)): if sorted_envelopes[i][2] > lis[-1][2]: if sorted_envelopes[i][0] > lis[-1][0]: #Extend if sorted_envelopes[i][1] > lis[-1][1]: lis.append(sorted_envelopes[i]) else: #Discard if sorted_envelopes[i][0] > lis[-2][0] and sorted_envelopes[i][1] > lis[-2][1]: lis = lis[:-1] lis.append(sorted_envelopes[i]) else: if sorted_envelopes[i][1] > lis[-1][1]: lis.append(sorted_envelopes[i]) print(lis) return len(lis) input = [[2,100],[3,200],[4,300],[5,500],[5,400],[5,250],[6,370],[6,360],[7,380]] #input = [[2,1],[4,1],[6,2],[8,3],[10,5],[12,8],[14,13],[16,21],[18,34],[20,55]] #input = [[30,50],[12,2],[3,4],[12,15]] #input = [[15,22],[8,34],[44,40],[9,17],[43,23],[4,7],[20,8],[30,46],[39,36],[45,14],[24,19],[24,36],[31,34],[32,19],[29,13],[16,48],[8,36],[44,2],[11,5],[2,50],[29,6],[18,38],[15,49],[22,37],[6,20],[25,11],[1,50],[19,40],[45,35],[37,21],[4,29],[40,5],[4,49],[1,45],[14,32],[14,37],[23,22],[31,21],[2,36],[43,4],[21,32],[41,2],[44,32],[36,20],[22,45],[3,41],[44,29],[29,33],[42,2],[38,17],[43,26],[30,15],[28,12],[33,30],[49,7],[8,14],[1,9],[41,25],[7,15],[26,32],[11,33],[12,45],[33,7],[16,34],[39,1],[20,49],[50,45],[14,29],[50,41],[1,45],[14,43],[49,20],[41,37],[43,22],[45,19],[20,21],[28,19],[2,1],[7,49],[3,3],[49,48],[34,35],[10,2]] print(Solution().maxEnvelopes(input))
true
a346864f1325ffe55c6667399cf122f364d003ce
Python
MoAshraf601/recommending-meals-for-diabetes-graduation-project-
/visuals.py
UTF-8
2,500
3.078125
3
[]
no_license
########################################### # Suppress matplotlib user warnings # Necessary for newer version of matplotlib import warnings warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib") # # Display inline matplotlib plots with IPython from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') ########################################### import itertools import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from time import time sns.set() def plot_histogram(df, features, preprocessed=False): fig = plt.figure(figsize=(20,10)) for i, feature in enumerate(features, 1): ax = fig.add_subplot(2, 3, i) if(preprocessed): ax.hist(df[feature], bins=30, range=(0, 1)) else: ax.hist(df[feature], bins=50, range=(0, 1000)) ax.set_title('%s feature histogram' %feature) fig.suptitle("Histogram viasuals", fontsize = 16, y = 1.03) fig.tight_layout() def plot_box_plot(df, features): fig = plt.figure(figsize=(20,10)) for i, feature in enumerate(features, 1): ax = fig.add_subplot(2, 3, i) sns.boxplot(data=df[feature]) ax.set_title('%s feature box plot' %feature) fig.suptitle("Box plot viasuals", fontsize = 16, y = 1.03) fig.tight_layout() def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()
true
d0531284e28a070f411678838ec5c03381d991c7
Python
icdatanalysis/MachineLearning-Python-2020.1
/classification/random_forest/eval_random_forest.py
UTF-8
2,650
3.25
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Nov 27 12:55:37 2019 @author: Jairo Souza """ # Importando os pacotes from sklearn.metrics import f1_score, recall_score, accuracy_score, precision_score import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier # Importando os dados # Os dados contém informações relacionadas a empresas indianas coletadas por auditores com o objetivo de construir um modelo para realizar tarefas # de classificação de empresas suspeitas. Os atributos estão relacionados a métricas de auditorias como: scores, riscos, etc. df = pd.read_csv('data/audit_risk.csv') # Descrevendo o dataset df.info() df.describe() # Visualizando o dataset df.head(5) # Deletando coluna de localização: df = df.drop('LOCATION_ID', axis=1) # Analisando se existem valores nulos: df[df.isnull().values.any(axis=1)] # Preechendo os valores nulos com a mediana: df = df.fillna(df.median()) # Definindo as variáveis dependentes/independentes. X = df.iloc[:, :17].values y = df.iloc[:, -1].values # Criando os subconjuntos de treinamento e testes X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Criando o dicionário contendo todos os classificadores estimators = {'Decision Tree': DecisionTreeClassifier(criterion = 'entropy', random_state = 0), 'KNN': KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2), 'Random Forest': RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0), 'SVC': SVC(kernel = 'rbf', random_state = 0)} # Criando dataframe que irá guardar os resultados finais dos classificadores df_results = pd.DataFrame(columns=['clf', 'acc', 'prec', 'rec', 'f1'], index=None) # Percorrendo os classificadores for name, estim in estimators.items(): # print("Treinando Estimador {0}: ".format(name)) # Treinando os classificadores com Conjunto de Treinamento estim.fit(X_train, y_train) # Prevendo os resultados do modelo criado com o conjunto de testes y_pred = estim.predict(X_test) # Armazenando as métricas de cada classificador em um dataframe df_results.loc[len(df_results), :] = [name, accuracy_score(y_test, y_pred), precision_score (y_test, y_pred, average = 'macro'), recall_score(y_test, y_pred, average = 'macro'), f1_score(y_test, y_pred, average = 'macro')] # Exibindo os resultados finais df_results
true
8cf5754f83491bd33107247a47521eae2b2b9ceb
Python
AyodejiAfolabi/pythoncodes
/getUserInput.py
UTF-8
5,614
3.953125
4
[]
no_license
# salary=input("please input your salary") # bonus=input('please input your bonus') # payCheck=float(salary)+float(bonus) # print(payCheck*5) # print('{0:d}+{1:d}'.format(salary,bonus)) # Trying to get and display todays dates # import datetime # currentTime=datetime.date.today() # print(currentTime.strftime('%d,%b,%Y')) if 5>2: #do Not put space between your 5 and 2; print("Five is greater than two!") #you can know the type of data you are working with # number=34 # print(number) # compl=-2+5j # newcompl=4j # print(compl*newcompl) #string operations in Python # word="Mkhitaryan Roma" # print(word[9:12]) # print(word.strip()) # print(word.__len__()) # print(len(word)) # If statement with OR and 'AND' # if 3<5 and 2==8: # print('Yes') if 3<5 or 2==8: print('YEP') # print(word.split('a ')) # PYTHON OPERATORS data=18 data=data|6 # print(data/3) print(data) # and, or, is, not, is not. STATEMENT is PYTHON a=6 b=6 print(a is not b) #Arrays are of 4 types in Python # 1. List # A List is a type of array that is ordered and changeable # e.g thislist=list(('Mango','PawPaw','Oranges','Tangerine','Cashew','Coconut')) # print(len(thislist)) # myList=['Apple','dinosaur','Cyrup','Ball'] # thislist.append('Tangerine') # print(thislist) # x=(thislist.count('Tangerine')) # print(x) # def myFunc(e): # return len(e) # myList.sort(reverse=False) # print(myList) # Dictionaries diction={ } diction['eyes']=2 diction['nose']=2 diction['sex']='Male' diction['hair']='infinity' del diction['hair'] print(diction) # TUPLE TYPE OF ARRAY (UNCHANGEABLE) thistuple=tuple(("Banana","orange","cocnjut","lemon","lime")) print(thistuple[1]) print(thistuple) #SET TYPE OF ARRAY (UNORDERED UNINDEXED) thisset=set(("OYO","Ibadan","kogi","lokoja","Kwara")) thisset.add('Borno') thisset.remove('OYO') print(thisset) print(len(thisset)) # DICTIONARY TYPE OF ARRAY INDEXED UNORDERED CHANGEABLE dicti={ "banana":"yellow", "egg":"Brown" } dicti['name']="Fruit" print(dicti) #PYthon Conditions a=44 b=54 if a>b : print('a is greater than b') elif a==b: print('a is equal to b') else: print('b is greater than a') # print(i) # a=10 # while a<20: # if a==15: # break # a+=1 # print(a) # nam=input('Please input your name ') # age=input('pleae type you age ') # town=input('where are you from ') # myDiction={'name':nam, # 'age':age, # "city":town # } # print(myDiction) # if name=='Giroud': # print('Benz is better than you') # FOr Loop in PYthon array=['david','oba','buzzy','tchilas','tobi'] for x in array: if x=='buzzy': print('Its your birthday dude') break print(x) for x in range(0,10,2): print(x) # for x in array: # if x=='buzzy': # break # print('Its your birthday dude') # print(x) # def tri_recursion(k): # if(k>0): # result = k+tri_recursion(k-1) # print(result) # else: # result = 0 # return result # print("\n\nRecursion Example Results") # tri_recursion(5) def func(e=2): print(2+e) func(6) # DEfault function parameters def check(country='Nigeria'): print("I'm from "+country) check('Britain') check() # Return values def ret(x=8): return x*5 print(ret()) # LANMBDA function lamn=lambda i: i*2 print(lamn(2)) lamn2=lambda x,y,z: (x+y)/z print(lamn2(2,6,4)) def my(x): return 8*3 print(my(6)) # def myfunc(n): # return lambda i: i*n # doubler = myfunc(2) # tripler = myfunc(3) # val = 11 # print(i) # print("Doubled: " + str(doubler(val)) + ". Tripled: " + str(tripler(val))) def fun(n): return lambda i: i*n double = fun(4) print(double(3)) def myfunc(n): return lambda i: i*n doubler = myfunc(2) print(doubler(6)) # Classes and Objects class turtl: def __init__(self,age,name): self.name=name self.age=age def par(sel): print('Hello Mr.'+sel.name) p2=turtl(14,'KLI') p2.par() class joy: def __init__(self,name,age): self.name=name self.age=age def par(self): print('Hello '+self.name) p1=joy('Adeola',344) p1.par() import mymodule mymodule.hel('Jonathan') # p1=turtl(12,'TY') # print(p1.age) # print(p1.name) # print(p1) myName='Faithful' class lautech: def __init__(self,name='Daniel',age=35): self.name=name self.age=age def prince(self): print('Hello '+self.name) print("I'm {0:d} years old".format(self.age)) faith=lautech(myName,22) faith.prince() Tolu=lautech('Tchu',22) Tolu.age=21 # Tolu.prince() Tolu.prince() tayo=lautech() tayo.prince() def mul(x,y): return x*y ret=mul(3,2) print(ret) import mults as mul print(mul.multiply(2,10)) squa=mul.square(7) name=mul.person1['name'] nose=mul.person1['nose'] print(squa) print('my name is '+name+' and I have {0:d} nose'.format(nose)) multsDir=dir(mul) print(multsDir) import platform as pt dit=dir(pt) print(dit) div=pt.system() from mults import set2019 as glorius leng=len(glorius) bestPlayer=glorius[leng-1] print(bestPlayer+' is the best player in our set') trial=0 def game(k=5): k=k-1 guess=int(input('Try your luck and win $100,000 by guessing a number between 1 and 10 Guess Here: ')) import random as rd numb=rd.randint(0,10) print('The computer guessed:',numb) if guess==numb: print("SO lucky you have a great guessing power and you've won the Cash price ") elif guess-numb==1 or guess-numb==2 or guess-numb==-1 or guess-numb==-2 : print(k) print('{0:d} trials more'.format(k)) print('So close try again bruhhhhhhhhhhhhhhhh') game(k) elif (k==0): print('SORRY GAMEOVER') else: print('{0:d} trials more'.format(k)) print('Try again') game(k) game()
true
4f0ab635cd8520f8e4ddcf629cb71216a019a0fd
Python
MahmoudHegazi/excel_api
/my_first_AI.py
UTF-8
2,922
2.859375
3
[]
no_license
# Data Preprocessing Template # Importing the libraries import numpy as np import excel import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split import pandas as pd from tablib import Dataset import numpy as np import matplotlib.pyplot as plt # Importing the dataset dataset = pd.read_csv('Data.xlsx', error_bad_lines=False) #X = dataset.iloc[:, :-1].values #y = dataset.iloc[:, -1].values #dates_row = dataset.loc[4, :] #xt = pd.Series(dates_row).values nx = pd.read_excel('Data.xlsx') lf = pd.DataFrame(nx) table_names = [] #df = pd.DataFrame(nx, columns= ['Name', 'P Number', 'age', 'love','python']) for d in lf: table_names.append(d) df = pd.DataFrame(nx, columns= table_names) min_length = len(df[table_names]) #print len(df[table_names]) for i in table_names: for xxx in range(min_length): print(df[i][xxx]) Names = [] pNumbers = [] age = [] love = [] python = [] filtered_names = [] filtered_pNumbers = [] filtered_age = [] filtered_love = [] filtered_python = [] def show_table(names, numbers, ages, loves, pythons): for i in range(len(names)): print names[i] + " | " + numbers[i] + " | " + ages[i] + " | " + loves[i] + " | " + pythons[i] print "---------------------------------------------------------------" for i in range(len(df['Name'])): #print df['Name'][i] Names.append(df['Name'][i]) pNumbers.append(df['P Number'][i]) age.append(df['age'][i]) love.append(df['love'][i]) python.append(df['python'][i]) print "Append to database one row values using forloop" for x in range(len(Names)): name = str(Names[x]) pr = str(pNumbers[x]) m_age = str(age[x]) m_love = str(love[x]) m_python = str(python[x]) #filter if name == 'nan': name = '------' filtered_names.append(name) else: filtered_names.append(name) if pr == 'nan': pr = '------' filtered_pNumbers.append(pr) else: filtered_pNumbers.append(pr) if m_age == 'nan': m_age = '------' filtered_age.append(m_age) else: filtered_age.append(m_age) if m_love == 'nan': m_love = '------' filtered_love.append(m_love) else: filtered_love.append(m_love) if m_python == 'nan': m_python = '------' filtered_python.append(m_python) else: filtered_python.append(pr) def runner(): show_table(filtered_names, filtered_pNumbers, filtered_age, filtered_love, filtered_python) runner() #print df.iloc[0] #print df['Name'] # Splitting the dataset into the Training set and Test set #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
true
c6e68bac35e4ec7dd7880e504d02e518493e73d7
Python
tracyqan/TBSpider
/process.py
UTF-8
4,127
3.015625
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: tracyqan time:2018/12/19 import pandas as pd import pyecharts from wordcloud import WordCloud import jieba import re import matplotlib.pyplot as plt def make_cloud(data): print('开始绘制商品信息词云') name = ''.join(list(data['name'])) word = re.sub(r'&lt;spanclass=H&gt;|&lt;/span&gt;', '', name) words = ' '.join(jieba.cut(word)) w = WordCloud( font_path= 'simhei.ttf', width=800, height=400, mask=plt.imread('mask.jpg') ) w.generate(words) filename = 'wordcloud.png' w.to_file(filename) print('图表已保存至{}'.format(filename)) def create_bar(data): """ 绘制价格与出售数量的关系图 """ print('开始绘制价格与出售数量的关系图') # 1元以下的销售量 count_1 = data[data['price']<=1]['saleCount'].sum() # 1元-3元的销售量 count_2 = data[(data['price']>1) & (data['price']<=3)]['saleCount'].sum() # 3元-5元的销售量 count_3 = data[(data['price'] > 3) & (data['price'] <= 5)]['saleCount'].sum() # 5元-7元的销售量 count_4 = data[(data['price'] > 5) & (data['price'] <= 7)]['saleCount'].sum() # 7元-9元的销售量 count_5 = data[(data['price'] > 7) & (data['price'] <= 9)]['saleCount'].sum() # 9元-12元的销售量 count_6 = data[(data['price'] > 9) & (data['price'] <= 12)]['saleCount'].sum() # 12元-15元的销售量 count_7 = data[(data['price'] > 12) & (data['price'] <= 15)]['saleCount'].sum() # 15元以上的销售量 count_8 = data[data['price'] > 15]['saleCount'].sum() title = '圣诞商品价格与出售数量的关系图' x = ['1元以下', '1元-3元', '3元-5元', '5元-7元', '7元-9元', '9元-12元', '12元-15元', '15元以上'] y = [count_1, count_2, count_3, count_4, count_5, count_6, count_7, count_8] bar = pyecharts.Bar() bar.add(title, x, y, mark_point=['max', 'min', 'average']) bar.render(title+'.html') print('图表已保存至{}.html'.format(title)) def make_bar(data): """ 绘制折扣与出售数量的关系图 """ print('开始绘制折扣与出售数量的关系图') discount = [x/y if y!=0 else 0 for x,y in zip(data['realPrice'], data['price'] )] data['discount'] = discount # 打不折销售量 count_1 = data[data['discount'] == 0]['saleCount'].sum() # 0-2折销售量 count_2 = data[(data['discount'] > 0) & (data['discount'] <= 0.2)]['saleCount'].sum() # 2-4折销售量 count_3 = data[(data['discount'] > 0.2) & (data['discount'] <= 0.4)]['saleCount'].sum() # 4-6折销售量 count_4 = data[(data['discount'] > 0.4) & (data['discount'] <= 0.6)]['saleCount'].sum() # 6-8折销售量 count_5 = data[(data['discount'] > 0.6) & (data['discount'] <= 0.8)]['saleCount'].sum() # 8折以上销售量 count_6 = data[data['discount'] > 0.8]['saleCount'].sum() title = '圣诞商品折扣与出售数量的关系图' x = ['打不折', '0-2折', '2-4折', '4-6折', '6-8折', '8折以'] y = [count_1, count_2, count_3, count_4, count_5, count_6] bar = pyecharts.Bar() bar.add(title, x, y, mark_point=['max', 'min', 'average']) bar.render(title+'.html') print('图表已保存至{}.html'.format(title)) def create_map(data): print('开始绘制全国销售量示例图') countrys = [x.split(' ')[0] for x in data['place']] data['countrys'] = countrys countrys_set = list(set(countrys)) values = [] title = '全国销售量示例图' for i in countrys_set: values.append(data[data['countrys'] == i]['saleCount'].sum()) map = pyecharts.Map(title, width=800, height=400) map.add('', countrys_set, values, maptype='china', is_visualmap=True, visual_text_color="#000") map.render(title+'.html') print('图表已保存至{}.html'.format(title)) def main(): filename = 'goods.csv' data = pd.read_csv(filename) make_cloud(data) #create_bar(data) #make_bar(data) #create_map(data) if __name__ == '__main__': main()
true
d6215f5163adbe5da5f0351bd37eeb8bf3265b87
Python
Nicolas-31/IKT441_DataMining_2018
/CNN - Convolutional Neural Network/main.py
UTF-8
1,513
2.65625
3
[]
no_license
import pickle from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D import keras import numpy as np batch_size = 25 num_classes = 2 epochs = 10 #(x_train, y_train),(x_test, y_test) = pickle.load(open('female.p', 'rb')) (x_train, y_train),(x_test, y_test) = pickle.load(open('male.p', 'rb')) def reshape(x): x = np.asarray(x) x = x.astype('float32') return x/255 x_train = reshape(x_train) x_test = reshape(x_test) y_train = np.asarray(y_train) y_test = np.asarray(y_test) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(8, 3, activation='relu', input_shape=np.shape(x_train)[1:])) model.add(Conv2D(16, 3, activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(24, 3, activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, 3, activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(128,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='sigmoid')) model.summary() model.compile( loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,verbose=2,validation_data=(x_test,y_test)) score = model.evaluate(x_test,y_test,verbose=2)
true
048c67bbfc1879a4fab26b3a14139c65d9d3b0c8
Python
simonfong6/service-manager
/examples/launch/launch_async.py
UTF-8
2,877
2.9375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 """ Service launcher """ from subprocess import Popen from subprocess import PIPE from shlex import split from typing import List def run(command): cmd_seq = split(command) proc = Popen(cmd_seq, stdout=PIPE, stdin=PIPE, universal_newlines=True) return proc def ask(): out = run('python3 ask.py') while out.poll() is None: msg = input("Need input: ") output, errors = out.communicate(msg) print(output, end='') print(out.poll()) def kill_procs(procs: List[Popen]): for proc in procs: proc.kill() def forever(num_procs: int = 2): procs = [] for _ in range(num_procs): proc = run('python3 forever.py') procs.append(proc) indexes = list(range(num_procs)) index_options = ','.join(indexes) while True: proc_index = input(f"Choose proc [{index_options}]: ") proc_index = int(proc_index) if proc_index == -1: break print(f"Chosen proc({proc_index})") proc = procs[proc_index] msg = input("Input for proc: ") output, errors = proc.communicate(msg) print(f"Output from proc({proc_index})") print(output) def ask_forever(): out = run('python3 forever.py') while out.poll() is None: msg = input("Need input: ") output, errors = out.communicate(msg) print((output,errors), end='') print(out.poll()) def run_no_in(command, log_file_name): cmd_seq = split(command) log_file = open(log_file_name, 'w+') proc = Popen(cmd_seq, stdout=log_file) return proc def servers(num_procs: int = 2): procs = [] for index in range(num_procs): port = 8000 + index logfile_name = f'server_{index}.log' proc = run_no_in(f'python3 server.py --port {port} --log_file {logfile_name}', logfile_name) procs.append(proc) indexes = list(range(num_procs)) index_options = ','.join([str(index) for index in indexes]) while True: proc_index = input(f"Choose proc [{index_options}]: ") proc_index = int(proc_index) if proc_index == -1: break print(f"Chosen proc({proc_index})") proc = procs[proc_index] msg = input("Command for proc: ") if msg == 'pid': pid = proc.pid print(f"PID: {pid}") elif msg == 'kill': print(f"Killing proc({proc_index})") proc.kill() elif msg == 'quit': print("Killing processes...") kill_procs(procs) else: print("Invalid command, skipping...") continue def main(args): servers() if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() args = parser.parse_args() main(args)
true
02709c674dc39b165c103ff0b6902ed3d032432a
Python
Brac24/GameOfLife
/board/board_creator.py
UTF-8
1,334
3.90625
4
[]
no_license
import random from cell.cell import Cell def randomstate(rows, cols): #list comprehension to generate a list of lists with random 1's and 0's #We can think of this nested list comprehension in terms of nested for loops #In nested for loops the inner loop can be considered the column and the outer loop the row #Same applies here where the inner list comprehension referes to the column and the outer refers to the row board = [[1 if random.random() >= .94 else 0 for col in range(cols)] for row in range(rows)] return board def render(board): rows = len(board) cols = len(board[0]) for row in range(rows): line = '' for col in range(cols): if board[row][col] is 1: line += 'c' else: line += ' ' print(line) def render_world(cell_board): rows = len(cell_board) cols = len(cell_board[0]) board_display = '' for row in range(rows): line = '' for col in range(cols): cell = cell_board[row][col] if cell.alive: line += '0' else: line += ' ' board_display += line + '\n' print(board_display) if __name__ == '__main__': board_random = randomstate(10,70) render(board_random)
true
f32cc91b0c158aaeefd2a019c606107f5632a70c
Python
Billuc/3DEngine
/viewer.py
UTF-8
9,549
3.703125
4
[]
no_license
from node import NamedNode3D from matrix import Matrix from math import cos, sin, pi, tan, atan # Object corresponding to a set of points and data to transform them class Viewer(): def __init__(self, p_width, p_height, p_v_fov = pi/2, p_radius = 10): # Width and height of display self.width = float(p_width) self.height = float(p_height) # Fields of view (vertical and horizontal) self.v_fov = float(p_v_fov) self.h_fov = 2 * atan( tan(self.v_fov / 2) * p_width / p_height ) # Distance between the origin and the "camera" self.radius = float(p_radius) # The transformation matrix (rotations) # The zz element is -1 because the vertical axis on displays is towards the bottom self.transformation_matrix = Matrix( 1,0,0,0, 0,1,0,0, 0,0,-1,0, 0,0,0,1 ) # Arrays containing the original nodes, their transformed and projected nodes self.nodes = [] self.transformed_nodes = [] self.nodes_2d = [] # Method to add a new node def add_node(self, node): if self.find(node.name) is None: self.nodes.append(node) else: raise BaseException("A node with this name already exists") # Calculating the intersection of the screen plan and the line passing through the camera and the transformed node # Plan's equation : x = 0 (the constant doesn't really matter as long as it is lower than self.radius; 0 is just convenient) # Line's equation : (x,y,z) = (camera pos) + t * ((transformed node) - (camera pos)) # Camera position = (self.radius, 0, 0) def transform_to_2d(self, node): # To avoid dividing by 0 # Basically, if the transformed node is at the same x as the camera, we won't add the node if (node.x / node.w) == self.radius: t = 0 else: # Solving t = - self.radius / ( (node.x / node.w) - self.radius ) # If we are in front of the camera, the node is added if t > 0: # Calculating the relative coordinates on the screen y = ( t * node.y / node.w ) / ( 2 * self.radius * tan(self.h_fov / 2.) ) + 1 / 2. z = ( t * node.z / node.w ) / ( 2 * self.radius * tan(self.v_fov / 2.) ) + 1 / 2. distance = ( (node.x / node.w) - self.radius )**2 + (node.y / node.w)**2 + (node.z / node.w)**2 distance = distance**(1/2.) # Creating the projected node (with absolute coordinates) # We add the distance to camera in the z coordinate node_2d = NamedNode3D(self.width * y, self.height * z, distance, 1, node.name) return node_2d else: return None # From a 3D node calculate the transformed point then the 2D node def calc_one_node(self, node): # Calculating the transformed node by multiplying the transform matrix by the node tranformed = self.transformation_matrix.multiply_by_node(node) # Calculating the 2d coordinates on the screen return self.transform_to_2d(tranformed) # Method that transforms and projects the nodes def calc_nodes_2d(self): self.nodes_2d = [] # Looping through all the nodes for n in self.nodes: node_2d = self.calc_one_node(n) if node_2d is not None: # Looking for the index to insert the node to (ordered by distance decreasing) index = 0 while index < len(self.nodes_2d) and self.nodes_2d[index].z > node_2d.z: index += 1 # Adding the node self.nodes_2d.insert(index, node_2d) # Rotating the view horizontally (around the z-axis) # Updating the transform matrix def rotate_horizontally(self, angle, is_radians = True): # If the angle is in degrees, we convert it to radians if not is_radians: angle = angle * pi / 180 # Updating the transform matrix (rotating it by multiplicating by the rotation matrix) self.transformation_matrix = get_rot_z_matrix(angle).multiply(self.transformation_matrix) # Rotating the view vertically (around the y-axis) # Updating the transform matrix def rotate_vertically(self, angle, is_radians = False): # If the angle is in degrees, we convert it to radians if not is_radians: angle = angle * pi / 180 # Updating the transform matrix (rotating it by multiplicating by the rotation matrix) self.transformation_matrix = get_rot_y_matrix(angle).multiply(self.transformation_matrix) # Rotating the camera horizontally (around the z-axis) # Updating the transform matrix def rotate_camera_horizontally(self, angle, is_radians = True): # If the angle is in degrees, we convert it to radians if not is_radians: angle = angle * pi / 180 # Updating the transform matrix self.transformation_matrix = get_translate_x_matrix(-self.radius).multiply(self.transformation_matrix) self.transformation_matrix = get_rot_z_matrix(angle).multiply(self.transformation_matrix) self.transformation_matrix = get_translate_x_matrix(self.radius).multiply(self.transformation_matrix) # Rotating the camera vertically (around the y-axis) # Updating the transform matrix def rotate_camera_vertically(self, angle, is_radians = False): # If the angle is in degrees, we convert it to radians if not is_radians: angle = angle * pi / 180 # Updating the transform matrix self.transformation_matrix = get_translate_x_matrix(-self.radius).multiply(self.transformation_matrix) self.transformation_matrix = get_rot_y_matrix(angle).multiply(self.transformation_matrix) self.transformation_matrix = get_translate_x_matrix(self.radius).multiply(self.transformation_matrix) # Translating the view horizontally (y-axis) # Updating the transform matrix def translate_horizontally(self, distance): # Updating the transform matrix (translating it by multiplicating by the translation matrix) self.transformation_matrix = get_translate_y_matrix(distance).multiply(self.transformation_matrix) # Translating the view vertically (z-axis) # Updating the transform matrix def translate_vertically(self, distance): # Updating the transform matrix (translating it by multiplicating by the translation matrix) self.transformation_matrix = get_translate_z_matrix(distance).multiply(self.transformation_matrix) # Zooming out by increasing the distance between the camera and the origin def increase_radius(self, delta): self.radius += delta # Zooming out by increasing the distance between the camera and the origin def decrease_radius(self, delta): if self.radius - delta <= 1: self.radius = 1 else: self.radius -= delta # Updating width and height and horizontal field of view # Used when resize def update_dimensions(self, p_width, p_height): self.width = float(p_width) self.height = float(p_height) self.h_fov = 2 * atan( tan(self.v_fov / 2) * p_width / p_height ) # Returns to the original view by resetting the transform matrix def reset_transform_matrix(self): self.transformation_matrix = Matrix( 1,0,0,0, 0,1,0,0, 0,0,-1,0, 0,0,0,1 ) # Returns the calculated node corresponding to the given name def find(self, pname): for node in self.nodes_2d: if node.name == pname: return node return None # Function to get the transform matrix of a rotation around the x-axis def get_rot_x_matrix(angle): return Matrix( 1, 0, 0, 0, 0, cos(angle), -sin(angle), 0, 0, sin(angle), cos(angle), 0, 0, 0, 0, 1 ) # Function to get the transform matrix of a rotation around the y-axis def get_rot_y_matrix(angle): return Matrix( cos(angle), 0, sin(angle), 0, 0, 1, 0, 0, -sin(angle), 0, cos(angle), 0, 0, 0, 0, 1 ) # Function to get the transform matrix of a rotation around the z-axis def get_rot_z_matrix(angle): return Matrix( cos(angle), -sin(angle), 0, 0, sin(angle), cos(angle), 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ) # Function to get the transform matrix of a rotation around the x-axis def get_translate_x_matrix(distance): return Matrix( 1, 0, 0, distance, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ) # Function to get the transform matrix of a rotation around the y-axis def get_translate_y_matrix(distance): return Matrix( 1, 0, 0, 0, 0, 1, 0, distance, 0, 0, 1, 0, 0, 0, 0, 1 ) # Function to get the transform matrix of a rotation around the z-axis def get_translate_z_matrix(distance): return Matrix( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, distance, 0, 0, 0, 1 )
true
60b2cf2d2e7b229dab63d551ac8205d3c067e6d1
Python
samanthaalcantara/codingbat2
/warm-2/array_count9.py
UTF-8
226
3.046875
3
[]
no_license
""" Date: 06 07 2020 Author: Samantha Alcantara Question: Given an array of ints, return the number of 9's in the array. """ #Answer def array_count9(nums): for element in nums[:4]: if element == 9: return True return False
true
d3089247e2bd44d22f2b8e14d264da4142822d44
Python
dektox/btc_trade
/threading_test.py
UTF-8
1,857
2.703125
3
[]
no_license
import threading import requests import time from csv import reader class Parser(threading.Thread): def __init__(self, pair): super(Parser, self).__init__() self.daemon = True self.pair = pair def run(self): header = ['pub_date', 'amnt_base', 'amnt_trade', 'id', 'price', 'type', 'user'] prev_ids = [] with open('{}.csv'.format(self.pair), 'r') as file: order_ids = reader(file, delimiter=';') for order_id in order_ids: if order_id[3] != 'id': prev_ids.append(int(order_id[3])) while True: try: resp = requests.get(url='https://btc-trade.com.ua/api/deals/{}'.format(self.pair)) resp = resp.json() offers_loaded = 0 csv = open(file='{}.csv'.format(self.pair), mode='a+', encoding='cp1251') for offer in resp: if offer['id'] not in prev_ids: offers_loaded = offers_loaded + 1 prev_ids.append(offer['id']) for key in header: csv.write(str(offer[key]) + ';') csv.write('\n') csv.close() print('{} {} Loaded {} new offers'.format(self.pair, time.ctime(), offers_loaded)) except KeyboardInterrupt: break except Exception as ex: with open('errors_{}.log'.format(self.pair), 'a+', encoding='utf8') as log_file: log_file.write(str(ex) + '\n') time.sleep(5) else: time.sleep(2) def main(): p1 = Parser('btc_uah') p2 = Parser('krb_uah') p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': main()
true
ca0c47286a9566b1ea2315497c36684221c0a425
Python
brendenlake/capture-tablet
/objects/viz_objects.py
UTF-8
919
2.65625
3
[]
no_license
import glob import re import os import matplotlib.pyplot as plt import math from PIL import Image # # Display all the instances of each object type # # output : files in folder imgs_by_type # # dirs = ['balloon','bowlingpin','butterfly','horseshoe'] dirs = ['car','butterfly','horse','airplane'] imgs_by_type = 'objects_by_type' # directory to store aggregated images if not os.path.exists(imgs_by_type): os.makedirs(imgs_by_type) for d in dirs: mydir = d + '_shadow' if os.path.exists(d): fns = glob.glob(mydir+'/*.png') plt.figure(1,figsize=(30,30)) plt.clf() nrow = math.ceil(math.sqrt(len(fns))) for s,fn in enumerate(fns): plt.subplot(nrow, nrow, s+1) IMG = Image.open(fn).convert('LA') plt.imshow(IMG) frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) plt.title(str(s+1)) plt.savefig(imgs_by_type + '/' + d + '.pdf')
true
e3c6172b06294cd0fa89ff7037801ef55525cd79
Python
weningerleon/InformationContent_HCP
/dataloader.py
UTF-8
6,235
2.578125
3
[]
no_license
################################################################################ # Copyright (C) 2021 by RWTH Aachen University # # License: # # # # This software is dual-licensed under: # # • Commercial license (please contact: lfb@lfb.rwth-aachen.de) # # • AGPL (GNU Affero General Public License) open source license # ################################################################################ # Author: Leon Weninger # ################################################################################ ################################################################################ import settings from os.path import join as opj import numpy as np import pandas as pd import nibabel as nib #%% Diffusion Connectivity Matrices def get_dCM(subject, parcellation, zero_diagonal=True, symmetric=True): dcm_path = opj(settings.image_dir_sc, subject + "_" + parcellation + "_matrix.npy") dcm = np.load(dcm_path) if symmetric and zero_diagonal: dcm = np.triu(dcm, k=1) dcm = dcm + dcm.transpose() elif zero_diagonal: # set diagonal elements to zero s = dcm.shape dcm = dcm.flatten() dcm[0::s[0]+1] = 0 dcm = dcm.reshape(s) else: raise Exception("Not implemented!!!") dcm = dcm / np.sum(np.abs(dcm)) return dcm # return complete fMRI timeseries data # LR/RL gets concatenated for phase_encoding="both" def get_fMRI_ts_unclipped(subject, parcellation, task, phase_encoding="LR"): if task == "REST": ts1 = get_fMRI_ts_unclipped(subject, parcellation, "REST1", phase_encoding) ts2 = get_fMRI_ts_unclipped(subject, parcellation, "REST2", phase_encoding) return np.concatenate((ts1, ts2), axis=1) if phase_encoding == "both": ts1 = get_fMRI_ts_unclipped(subject, parcellation, task, phase_encoding="LR") ts2 = get_fMRI_ts_unclipped(subject, parcellation, task, phase_encoding="RL") return np.concatenate((ts1, ts2), axis=1) assert parcellation in ("yeo_100", "yeo_400"), "wrong parcellation" assert task in settings.datasets, "wrong task" assert phase_encoding in ("LR", "RL"), "wrong phase encoding" file = parcellation + "_" + subject + "_" + task + "_" + phase_encoding + "_ts.npy" ts_path = opj(settings.image_dir_ts, file) ts = np.load(ts_path) # demean ts, sometimes there was a slight offset ts = ts - np.mean(ts, axis=1, keepdims=True) return ts # return complete fMRI timeseries data, clipped according to REST1 distribution def get_fMRI_dict(subject, parcellation, phase_encoding, clipped=True): data = {} for t in settings.datasets: ts = get_fMRI_ts_unclipped(subject, parcellation, t, phase_encoding=phase_encoding) data[t] = ts if clipped: for i in range(data["REST1"].shape[0]): thr_p = min(data["REST1"][i, :].max(), data["REST1"][i, :].std() * 4) thr_n = max(data["REST1"][i, :].min(), -data["REST1"][i, :].std() * 4) for t in settings.datasets: data[t][i, :] = np.clip(data[t][i, :], thr_n, thr_p) return data # Get all fMRI timeseries, stored in a dictionary def get_fMRI_ts_clipped(subject, parcellation, task, phase_encoding="LR"): ts = get_fMRI_ts_unclipped(subject, parcellation, task, phase_encoding=phase_encoding) rest1_data = get_fMRI_ts_unclipped(subject, parcellation, task, phase_encoding=phase_encoding) for i in range(rest1_data.shape[0]): thr_p = min(rest1_data[i, :].max(), rest1_data[i, :].std() * 4) thr_n = max(rest1_data[i, :].min(), -rest1_data[i, :].std() * 4) for t in settings.datasets: ts[i, :] = np.clip(ts[i, :], thr_n, thr_p) return ts def get_atlas(parcellation): dir = opj(settings.image_dir_base, "Schaefer2018_LocalGlobal", "Parcellations", "MNI") if parcellation == "yeo_100": path = opj(dir, "Schaefer2018_100Parcels_17Networks_order_FSLMNI152_1mm.nii.gz") elif parcellation == "yeo_400": path = opj(dir, "Schaefer2018_400Parcels_17Networks_order_FSLMNI152_1mm.nii.gz") else: raise Exception("sorry, not implemented") atlas = nib.load(path) return atlas.get_fdata(), atlas.affine def get_mni152(): path = opj(settings.image_dir_base, "mni_icbm152_nlin_sym_09a", "mni_icbm152_t1_tal_nlin_sym_09a.nii") atlas = nib.load(path) return atlas.get_fdata() # returns a random matrix with the same degree, weight, and strength distribution def randomMatrix(w, iter=100): n = w.shape[0] w0 = w.copy() for i in range(iter): p = np.random.permutation(n) if np.random.uniform()<0.5: w0 = w0[:,p] w0 = w0[p,:] else: w0 = w0[p,:] w0 = w0[:,p] return w0 # Splits the fixation / initation blocks from the t-fMRI time series def remove_fixblocks(data, task_name, tr=0.72): switcher = { "WM": [(0, 8), (64, 79), (135, 150), (206, 221), (277, 291)], "GAMBLING": [(0, 8), (36, 51), (79, 94), (122, 137), (165, 180)], "MOTOR": [(0, 8)], "LANGUAGE": [(0, 8)], "SOCIAL": [(0, 8), (31, 46), (69, 84), (107, 122), (145, 160), (183, 198)], "RELATIONAL": [(0, 8), (44, 60), (98, 114), (150, 166)], "EMOTION": [(0, 8)], } fix_blocks = switcher[task_name] istask = np.ones(data.shape[-1]).astype(np.bool) for block in fix_blocks: start = np.int(np.rint(block[0] / tr)) end = np.int(np.rint(block[1] / tr)) istask[start:end] = False if settings.pe == "both": for block in fix_blocks: start = np.int(np.rint(block[0] / tr) + data.shape[-1] / 2) end = np.int(np.rint(block[1] / tr) + data.shape[-1] / 2) istask[start:end] = False if len(data.shape)==1: data = np.expand_dims(data, axis=0) onlytask = data[:,istask] onlyfix = data[:,~istask] return onlytask, onlyfix
true
618bfa17f16a648edff7fada3951f6b3922f9c7a
Python
l33tdaima/l33tdaima
/pr1029m/two_city_sched_cost.py
UTF-8
1,334
3.328125
3
[ "MIT" ]
permissive
from functools import reduce class Solution: def twoCitySchedCostV1(self, costs: list[list[int]]) -> int: N = len(costs) // 2 costs_by_diff = sorted(costs, key=lambda c: c[0] - c[1]) return sum([a for a, _ in costs_by_diff[:N]]) + sum( [b for _, b in costs_by_diff[-N:]] ) def twoCitySchedCostV2(self, costs: list[list[int]]) -> int: N = len(costs) // 2 costs_by_diff = sorted(costs, key=lambda c: c[0] - c[1]) cost_a = reduce(lambda a, v: a + v[0], costs_by_diff[:N], 0) return reduce(lambda a, v: a + v[1], costs_by_diff[-N:], cost_a) # TESTS for costs, expected in [ ([[10, 20], [30, 200]], 50), ([[10, 20], [30, 200], [400, 50], [30, 20]], 110), ( [ [259, 770], [448, 54], [926, 667], [184, 139], [840, 118], [577, 469], ], 1859, ), ( [ [515, 563], [451, 713], [537, 709], [343, 819], [855, 779], [457, 60], [650, 359], [631, 42], ], 3086, ), ]: sol = Solution() actual = sol.twoCitySchedCostV1(costs) print("The minimum cost to fly in", costs, "->", actual) assert actual == expected
true
198b55e9dab45e2e45c4e75909c767ad764b062f
Python
Flouzr/Dijkstra-Bellman-Ford
/graph.py
UTF-8
15,821
3.609375
4
[]
no_license
from collections import deque import math import random from disjointsets import DisjointSets from pq import PQ from timeit import timeit # Programming Assignment 3 # (5) After doing steps 1 through 4 below (look for relevant comments), return up here. # Given the output of steps 3 and 4, how does the runtime of Dijkstra's algorithm compare to Bellman-Ford? # Does graph density affect performance? Does size of the graph otherwise affect performance? # Is Dijkstra always faster than Bellman-Ford? If not, when is Bellman-Ford faster? def generate_random_weighted_digraph(v,e,min_w,max_w) : """Generates and returns a random weighted directed graph with v vertices and e different edges. Keyword arguments: v - number of vertices e - number of edges min_w - minimum weight max_w - maximum weight """ # ensure all vertices reachable from 0 temp = [ x for x in range(1,v) ] random.shuffle(temp) temp.append(0) temp.reverse() edges = [ (temp[random.randrange(0,i)],temp[i]) for i in range(1,v) ] # if desired number of edges greater than length of current edge list, then add more edges if e > len(edges) : edgeSet = { x for x in edges } notYetUsedEdges = [ (x,y) for x in range(v) for y in range(v) if x != y and (x,y) not in edgeSet ] random.shuffle(notYetUsedEdges) count = e - len(edges) count = min(count, len(notYetUsedEdges)) for i in range(count) : edges.append(notYetUsedEdges.pop()) # generate random edge weights weights = [ random.randint(min_w, max_w) for x in range(len(edges)) ] # construct a Digraph with the lists of edges and weights generated G = Digraph(v, edges, weights) return G def time_shortest_path_algs() : """Generates a table of timing results comparing two versions of Dijkstra's algorithm.""" g1632 = generate_random_weighted_digraph(16, 32, 1, 10) g1660 = generate_random_weighted_digraph(16, 60, 1, 10) g16240 = generate_random_weighted_digraph(16, 240, 1, 10) g64128 = generate_random_weighted_digraph(64, 128, 1, 10) g64672 = generate_random_weighted_digraph(64, 672, 1, 10) g644032 = generate_random_weighted_digraph(64, 4032, 1, 10) g256512 = generate_random_weighted_digraph(256, 512, 1, 10) g2568160 = generate_random_weighted_digraph(256, 8160, 1, 10) g25665280 = generate_random_weighted_digraph(256, 65280, 1, 10) df = "%.7f" print('%0s %10s %8s %8s' % ("Algorithm", "Vertices", "Edges", "Time")) print('—' *43) print("%0s %5s %10s %15s" % ("Dijkstra ", "16", "32", df % (timeit(lambda:g1632.dijkstra(0), number=10000)/10000))) print("%0s %6s %10s %15s" % ("Bellman ", "16", "32", df % (timeit(lambda:g1632.bellman_ford(0), number=10000)/10000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "16", "60", df % (timeit(lambda:g1660.dijkstra(0), number=10000)/10000))) print("%0s %6s %10s %15s" % ("Bellman ", "16", "60", df % (timeit(lambda:g1660.bellman_ford(0), number=10000)/10000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "16", "240", df % (timeit(lambda:g16240.dijkstra(0), number=10000)/10000))) print("%0s %6s %10s %15s" % ("Bellman ", "16", "240", df % (timeit(lambda:g16240.bellman_ford(0), number=10000)/10000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "64", "128", df % (timeit(lambda:g64128.dijkstra(0), number=10000)/10000))) print("%0s %6s %10s %15s" % ("Bellman ", "64", "128", df % (timeit(lambda:g64128.bellman_ford(0), number=10000)/10000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "64", "672", df % (timeit(lambda:g64672.dijkstra(0), number=10000)/10000))) print("%0s %6s %10s %15s" % ("Bellman ", "64", "672", df % (timeit(lambda:g64672.bellman_ford(0), number=10000)/10000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "64", "4032", df % (timeit(lambda:g644032.dijkstra(0), number=1000)/1000))) print("%0s %6s %10s %15s" % ("Bellman ", "64", "4032", df % (timeit(lambda:g644032.bellman_ford(0), number=1000)/1000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "256", "6512", "%.7f" % (timeit(lambda:g256512.dijkstra(0), number=1000)/1000))) print("%0s %6s %10s %15s" % ("Bellman ", "256", "6512", "%.7f" % (timeit(lambda:g256512.bellman_ford(0), number=1000)/1000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "256", "8160", "%.7f" % (timeit(lambda:g2568160.dijkstra(0), number=1000)/1000))) print("%0s %6s %10s %15s" % ("Bellman ", "256", "8160", "%.7f" % (timeit(lambda:g2568160.bellman_ford(0), number=1000)/1000))) print("%0s %5s %10s %15s" % ("Dijkstra ", "256", "65280", "%.7f" % (timeit(lambda:g25665280.dijkstra(0), number=2)/2))) print("%0s %6s %10s %15s" % ("Bellman ", "256", "65280", "%.7f" % (timeit(lambda:g25665280.bellman_ford(0), number=2)/2))) class Graph : """Graph represented with adjacency lists.""" __slots__ = ['_adj'] def __init__(self, v=10, edges=[], weights=[]) : """Initializes a graph with a specified number of vertices. Keyword arguments: v - number of vertices edges - any iterable of ordered pairs indicating the edges weights - (optional) list of weights, same length as edges list """ self._adj = [ _AdjacencyList() for i in range(v) ] i=0 hasWeights = len(edges)==len(weights) for a, b in edges : if hasWeights : self.add_edge(a,b,weights[i]) i = i + 1 else : self.add_edge(a, b) def add_edge(self, a, b, w=None) : """Adds an edge to the graph. Keyword arguments: a - first end point b - second end point w - weight for the edge (optional) """ self._adj[a].add(b, w) self._adj[b].add(a, w) def num_vertices(self) : """Gets number of vertices of graph.""" return len(self._adj) def degree(self, vertex) : """Gets degree of specified vertex. Keyword arguments: vertex - integer id of vertex """ return self._adj[vertex]._size def bfs(self, s) : """Performs a BFS of the graph from a specified starting vertex. Returns a list of objects, one per vertex, containing the vertex's distance from s in attribute d, and vertex id of its predecessor in attribute pred. Keyword arguments: s - the integer id of the starting vertex. """ class VertexData : __slots__ = [ 'd', 'pred' ] def __init__(self) : self.d = math.inf self.pred = None vertices = [VertexData() for i in range(len(self._adj))] vertices[s].d = 0 q = deque([s]) while len(q) > 0 : u = q.popleft() for v in self._adj[u] : if vertices[v].d == math.inf : vertices[v].d = vertices[u].d + 1 vertices[v].pred = u q.append(v) return vertices def dfs(self) : """Performs a DFS of the graph. Returns a list of objects, one per vertex, containing the vertex's discovery time (d), finish time (f), and predecessor in the depth first forest produced by the search (pred). """ class VertexData : __slots__ = [ 'd', 'f', 'pred' ] def __init__(self) : self.d = 0 self.pred = None vertices = [VertexData() for i in range(len(self._adj))] time = 0 def dfs_visit(u) : nonlocal time nonlocal vertices time = time + 1 vertices[u].d = time for v in self._adj[u] : if vertices[v].d == 0 : vertices[v].pred = u dfs_visit(v) time = time + 1 vertices[u].f = time for u in range(len(vertices)) : if vertices[u].d == 0 : dfs_visit(u) return vertices def print_graph(self, with_weights=False) : """Prints the graph.""" for v, vList in enumerate(self._adj) : print(v, end=" -> ") if with_weights : for u, w in vList.__iter__(True) : print(u, "(" + str(w) + ")", end="\t") else : for u in vList : print(u, end="\t") print() def get_edge_list(self, with_weights=False) : """Returns a list of the edges of the graph as a list of tuples. Default is of the form [ (a, b), (c, d), ... ] where a, b, c, d, etc are vertex ids. If with_weights is True, the generated list includes the weights in the following form [ ((a, b), w1), ((c, d), w2), ... ] where w1, w2, etc are the edge weights. Keyword arguments: with_weights -- True to include weights """ edges = [] for v, vList in enumerate(self._adj) : if with_weights : for u, w in vList.__iter__(True) : edges.append(((v,u),w)) else : for u in vList : edges.append((v,u)) return edges def mst_kruskal(self) : """Returns the set of edges in some minimum spanning tree (MST) of the graph, computed using Kruskal's algorithm. """ A = set() forest = DisjointSets(len(self._adj)) edges = self.get_edge_list(True) edges.sort(key=lambda x : x[1]) for e, w in edges : if forest.find_set(e[0]) != forest.find_set(e[1]) : A.add(e) #A = A | {e} forest.union(e[0],e[1]) return A def mst_prim(self, r=0) : """Returns the set of edges in some minimum spanning tree (MST) of the graph, computed using Prim's algorithm. Keyword arguments: r - vertex id to designate as the root (default is 0). """ parent = [ None for x in range(len(self._adj))] Q = PQ() Q.add(r, 0) for u in range(len(self._adj)) : if u != r : Q.add(u, math.inf) while not Q.is_empty() : u = Q.extract_min() for v, w in self._adj[u].__iter__(True) : if Q.contains(v) and w < Q.get_priority(v) : parent[v] = u Q.change_priority(v, w) A = set() for v, u in enumerate(parent) : if u != None : A.add((u,v)) #A = A | {(u,v)} return A class Digraph(Graph) : def __init__(self, v=10, edges=[], weights=[]) : super(Digraph, self).__init__(v, edges, weights) def add_edge(self, a, b, w=None) : self._adj[a].add(b, w) def bellman_ford(self,s) : """Bellman Ford Algorithm for single source shortest path. Keyword Arguments: s - The source vertex. """ class VertexData: __slots__ = ['d', 'pred'] def __init__(self): self.d = math.inf self.pred = None vertices = [VertexData() for i in range(len(self._adj))] vertices[s].d = 0 list_tuples = [] def relax(u, v, w): if vertices[v].d > vertices[u].d + w: vertices[v].d = vertices[u].d + w vertices[v].pred = vertices[u] for u in range(len(vertices)): for v, w in self._adj[u].__iter__(True): relax(u, v, w) for u in range(len(vertices)): for v, w in self._adj[u].__iter__(True): if vertices[v].d > vertices[u].d + w: return list_tuples for u in range(len(vertices)): if vertices[u].pred is not None: list_tuples.append((u, vertices[u].d, vertices.index(vertices[u].pred))) else: list_tuples.append((u, vertices[u].d, None)) return list_tuples def dijkstra(self,s) : """Dijkstra's Algorithm using a binary heap as the PQ. Keyword Arguments: s - The source vertex. """ class VertexData: __slots__ = ['d', 'pred'] def __init__(self): self.d = math.inf self.pred = None vertices = [VertexData() for i in range(len(self._adj))] vertices[s].d = 0 Q = PQ() S = [] list = [] vertices[s].d = 0 Q.add(s, 0) for u in range(len(self._adj)): if u != s: Q.add(u, math.inf) while not Q.is_empty(): u = Q.extract_min() S.append(u) for v, w in self._adj[u].__iter__(True): if (vertices[u].d + w) < vertices[v].d: vertices[v].pred = u vertices[v].d = (vertices[u].d + w) for v in S: list.append((v, vertices[v].d, vertices[v].pred)) return list class _AdjacencyList : __slots__ = [ '_first', '_last', '_size'] def __init__(self) : self._first = self._last = None self._size = 0 def add(self, node, w=None) : if self._first == None : self._first = self._last = _AdjListNode(node, w) else : self._last._next = _AdjListNode(node, w) self._last = self._last._next self._size = self._size + 1 def __iter__(self, weighted=False): if weighted : return _AdjListIterWithWeights(self) else : return _AdjListIter(self) class _AdjListNode : __slots__ = [ '_next', '_data', '_w' ] def __init__(self, data, w=None) : self._next = None self._data = data self._w = w class _AdjListIter : __slots__ = [ '_next', '_num_calls' ] def __init__(self, adj_list) : self._next = adj_list._first self._num_calls = adj_list._size def __iter__(self) : return self def __next__(self) : if self._num_calls == 0 : raise StopIteration self._num_calls = self._num_calls - 1 data = self._next._data self._next = self._next._next return data class _AdjListIterWithWeights : __slots__ = [ '_next', '_num_calls' ] def __init__(self, adj_list) : self._next = adj_list._first self._num_calls = adj_list._size def __iter__(self) : return self def __next__(self) : if self._num_calls == 0 : raise StopIteration self._num_calls = self._num_calls - 1 data = self._next._data w = self._next._w self._next = self._next._next return data, w if __name__ == "__main__" : # here is where you will implement any code necessary to confirm that your # methods work correctly. # Code in this if block will only run if you run this module, and not if you load this module with # an import for use by another module. # (4) Call your time_shortest_path_algs() function here to output the results of step 3. time_shortest_path_algs()
true
ac87a744954656024b8eef031b28a389c1c24a97
Python
Shah-Shishir/URI-Solutions
/1079 - Weighted Averages.py
UTF-8
158
3.59375
4
[ "Apache-2.0" ]
permissive
tc = int(input()) for pos in range (1,tc+1): a,b,c = input().split() a,b,c = [float(a),float(b),float(c)] print("%0.1f" %((a*2+b*3+c*5)/10))
true
38ca6ac0a5e6bbc2d9697475fba9b629e4f9fe99
Python
hsyeon4001/algorithm_records
/Python/boj/grade3.py
UTF-8
1,314
3.21875
3
[]
no_license
# 2739번 a = int(input("")) for i in range(1, 10): print(a, '*', i, '=', a * i) # 10950번 len = int(input("")) for i in range(len): a, b = map(int, input("").split(" ")) print(a+b) # 8393번 n = int(input("")) list = [] for i in range(1, n+1): list.append(i) print(sum(list)) # 15552번 import sys len = int(input()) for i in range(len): a, b = map(int, sys.stdin.readline().split()) print(a + b) # 2741번 n = int(input()) for i in range(1, n+1): print(i) # 2742번 n = int(input()) for i in range(n, 0, -1): print(i) # 11021번 import sys len = int(input()) for i in range(1, len+1): a, b = map(int, sys.stdin.readline().split()) print("Case #{}: {}".format(i, a+b)) # 11022번 import sys len = int(input()) for i in range(1, len+1): a, b = map(int, sys.stdin.readline().split()) print("Case #{}: {} + {} = {}".format(i, a, b, a+b)) # 2438번 len = int(input()) for i in range(1, len+1): print("*" * i) # 2439번 len = int(input()) for i in range(1, len+1): print(' '*(len - i) + '*'*i) # 10871번 a = list(map(int, input().split())) arr = list(map(int, input().split())) answer = [] for ele in arr: if a[1] > ele: answer.append(str(ele)) print(" ".join(answer))
true
20a1ea85261737bebc169f9179f6da7bacd2515f
Python
atulanandnitt/questionsBank
/basicDataStructure/array_list/extra/KthChar_InStr.py
UTF-8
1,145
3.484375
3
[]
no_license
#https://practice.geeksforgeeks.org/problems/find-k-th-character-in-string/0/?ref=self def binaryFun(m): val="" while m >1: val += str(m % 2) #print("val is :",val) #print("m is ",m) m=m // 2 val += str(m % 2) return val def sol(m,k,n): bin_m= binaryFun(m) str1=bin(m) bin_m=str1[2:] print(bin_m) #m=11 print("binary val is :",bin(m)[2:]) print("decimal val is ",int(bin(m),2)) #print("decimal val is ",'1111'.fromBinaryToInt()) #new_bin_m="" temp="" for _ in range(n): for item in bin_m: if item == '1': temp +='10' elif item =='0': temp +='01' bin_m = temp temp="" #print(bin_m) return bin_m[k] print(" {} is mt name","atul") print("%s %s is my full name" %("Atul"," Anand")) t=1#int(input()) for _ in range(t): m,k,n=42,47,8#map(int,input().strip().split()) #m,k,n=32,17,9#map(int,input().strip().split()) #m,k,n=11,6,4#map(int,input().strip().split()) print("sol is ",sol(m,k,n))
true
084d83b9d8c3fc3c6d6493bf19e27f30893802c1
Python
real-ariful/Bangla-Digit-Recognition
/morpht.py
UTF-8
3,121
3.21875
3
[]
no_license
# Morphological Transformations #%% # Erosion is where we will "erode" the edges #Dilation-does the opposite import cv2 import numpy as np cap = cv2.VideoCapture(0) while(1): _, frame = cap.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) lower_red = np.array([30,150,50]) upper_red = np.array([255,255,180]) mask = cv2.inRange(hsv, lower_red, upper_red) res = cv2.bitwise_and(frame,frame, mask= mask) kernel = np.ones((5,5),np.uint8) erosion = cv2.erode(mask,kernel,iterations = 1) dilation = cv2.dilate(mask,kernel,iterations = 1) cv2.imshow('Original',frame) cv2.imshow('Mask',mask) cv2.imshow('Erosion',erosion) cv2.imshow('Dilation',dilation) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release() #%% Opening and Closing import cv2 import numpy as np cap = cv2.VideoCapture(0) while(1): _, frame = cap.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #hav hue a value lower_red = np.array([30,150,50]) upper_red = np.array([255,255,180]) mask = cv2.inRange(hsv, lower_red, upper_red) res = cv2.bitwise_and(frame,frame, mask= mask) kernel = np.ones((5,5),np.uint8) erosion = cv2.erode(mask,kernel,iterations = 1) dilation = cv2.dilate(mask,kernel,iterations = 1) opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) cv2.imshow('Original',frame) cv2.imshow('Mask',mask) cv2.imshow('Erosion',erosion) cv2.imshow('Dilation',dilation) cv2.imshow('opening',opening) cv2.imshow('closing',closing) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release() #%% tophat and blackhat #not required but can be used if project requirement import cv2 import numpy as np cap = cv2.VideoCapture(0) while(1): _, frame = cap.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #hav hue a value lower_red = np.array([30,150,50]) upper_red = np.array([255,255,180]) mask = cv2.inRange(hsv, lower_red, upper_red) res = cv2.bitwise_and(frame,frame, mask= mask) kernel = np.ones((5,5),np.uint8) erosion = cv2.erode(mask,kernel,iterations = 1) dilation = cv2.dilate(mask,kernel,iterations = 1) opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) cv2.imshow('Original',frame) cv2.imshow('Mask',mask) cv2.imshow('Erosion',erosion) cv2.imshow('Dilation',dilation) cv2.imshow('opening',opening) cv2.imshow('closing',closing) # It is the difference between input image and Opening of the image #cv2.imshow('Tophat',tophat) # It is the difference between the closing of the input image and input image. #cv2.imshow('Blackhat',blackhat) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release()
true
aba2d55aeb1e2171447b23cfe44d9b6d511eb981
Python
andrewdonato/cityscape
/cityscape_with_classes/cityscape_with_classes.pyde
UTF-8
5,455
2.734375
3
[]
no_license
import math streets = [] curbs = [] buildings = [] mapWidth = None mapHeight = None mapDepth = None mapTop = None mapBottom = None mapleft = None mapRight = None tileWall = 600 desiredStreets = [ (1*tileWall/8, 0*tileWall/8, 0, 1*tileWall/8, 8*tileWall/8, 0), (0*tileWall/8, 4*tileWall/8, 0, 4*tileWall/8, 4*tileWall/8, 0), (4*tileWall/8, 4*tileWall/8, 0, 8*tileWall/8, 8*tileWall/8, 0), (2*tileWall/8, 0*tileWall/8, 0, 2*tileWall/8, 8*tileWall/8, 0), (3*tileWall/8, 0*tileWall/8, 0, 3*tileWall/8, 8*tileWall/8, 0), (0*tileWall/8, 5*tileWall/8, 0, 3*tileWall/8, 5*tileWall/8, 0), (0*tileWall/8, 6*tileWall/8, 0, 6*tileWall/8, 6*tileWall/8, 0), (0*tileWall/8, 7*tileWall/8, 0, 3*tileWall/8, 7*tileWall/8, 0), (0*tileWall/8, 2*tileWall/8, 0, 8*tileWall/8, 2*tileWall/8, 0), (4*tileWall/8, 2*tileWall/8, 0, 8*tileWall/8, 6*tileWall/8, 0), (4*tileWall/8, 0*tileWall/8, 0, 4*tileWall/8, 2*tileWall/8, 0), (5*tileWall/8, 2*tileWall/8, 0, 8*tileWall/8, 5*tileWall/8, 0), (5*tileWall/8, 3*tileWall/8, 0, 8*tileWall/8, 3*tileWall/8, 0), (6*tileWall/8, 4*tileWall/8, 0, 8*tileWall/8, 4*tileWall/8, 0), (6*tileWall/8, 2*tileWall/8, 0, 8*tileWall/8, 4*tileWall/8, 0), (4*tileWall/8, 1*tileWall/8, 0, 1*tileWall/8, 1*tileWall/8, 0), (5*tileWall/8, 2*tileWall/8, 0, 5*tileWall/8, 0*tileWall/8, 0), (6*tileWall/8, 2*tileWall/8, 0, 6*tileWall/8, 0*tileWall/8, 0), (5*tileWall/8, 1*tileWall/8, 0, 8*tileWall/8, 1*tileWall/8, 0), (5*tileWall/8, 3*tileWall/8, 0, 4*tileWall/8, 4*tileWall/8, 0),] def setup(): global mapTop, mapBottom, mapleft, mapRight, streets, curbs, buildings size(601, 601, P3D) mapWidth = width mapHeight = height mapDepth = height mapTop = None mapBottom = None mapleft = None mapRight = None for i in range(0, len(desiredStreets)): streetLine = desiredStreets[i] createStreet(streetLine[0], streetLine[1], streetLine[2], streetLine[3], streetLine[4], streetLine[5], i, 30, "both", "two-way") # for street in streets: # if street.visited == False: # street.findIntersections() for street in streets: street.drawStreet() # print streets[0].streetWidth # print streets[0].buildingOrientation # print streets[0].directionality # def createStreet(xStart, yStart, zStart, xEnd, yEnd, zEnd, index, streetWidth=30, buildingOrientation="both", directionality="two-way"): def createStreet(xStart, yStart, zStart, xEnd, yEnd, zEnd, index, streetWidth, buildingOrientation, directionality): global streets newStreet = Street(xStart, yStart, zStart, xEnd, yEnd, zEnd, index, streetWidth, buildingOrientation, directionality) streets.append(newStreet) class Street: # def __init__(self, xStart, yStart, zStart, xEnd, yEnd, zEnd, streetCreationIndex, streetWidth, buildingOrientation = "both", directionality = "two-way"): def __init__(self, xStart, yStart, zStart, xEnd, yEnd, zEnd, streetCreationIndex, streetWidth, buildingOrientation, directionality): self.xStart = xStart self.yStart = yStart self.zStart = zStart self.xEnd = xEnd self.yEnd = yEnd self.zEnd = zEnd self.streetIndex = streetCreationIndex self.streetWidth = streetWidth self.buildingOrientation = buildingOrientation self.curbs = [] self.intersections = [] self.intersectsWith = [] self.angle = None self.directionality = directionality # self.visited = False self.lookedForIntersections = False def createCurbs(self): pass def connectStreet(self, street): pass def getBuildings(self): pass def findIntersections(self, streets): pass def findCorners(self): pass def findAngle(self): pass def findVelocity(self): pass def drawStreet(self): line(self.xStart, self.yStart, self.zStart, self.xEnd, self.yEnd, self.zEnd) class Curb: def __init__(self, xStart, yStart, zStart, xEnd, yEnd, zEnd, buildingOrientation, curbCreationIndex, streetIndex): self.xStart = xStart self.yStart = yStart self.zStart = zStart self.xEnd = xEnd self.yEnd = yEnd self.zEnd = zEnd self.buildingOrientation = buildingOrientation self.curbIndex = curbCreationIndex self.streetIndex = streetIndex self.buildings = [] self.angle = None def createBuildings(self): pass def findAngle(self): pass class Intersection: def __init__(self, streets, intersectionCreationIndex): self.streets = [] self.intersectionIndex = intersectionCreationIndex self.address = [] # def findAddress(): # pass class Building: def __init__(self, xCoordinate, yCoordinate, zCoordinate, xSize, ySize, zSize, buildingCreationIndex, curbIndex, streetIndex): self.x = xCoordinate self.y = yCoordinate self.z = zCoordinate self.xSize = xSize self.ySize = ySize self.zSize = zSize self.buildingIndex = buildingCreationIndex self.address = [xCoordinate, yCoordinate, zCoordinate] self.curbIndex = curbIndex self.streetIndex = streetIndex
true
2ccd11d88e4d9b1307a9c915a09326e70d141a9c
Python
snack-boomz/Treehouse-Python-Unit3-OOP-PhraseHunter-Game
/phrasehunter/game.py
UTF-8
5,800
3.828125
4
[]
no_license
import random from phrasehunter.phrase import Phrase class Game(): def __init__(self): self.missed = 0 # -- https://randomwordgenerator.com/ -- self.phrases = [Phrase("hello world"), Phrase("Amazing pie"), Phrase("Black cat"), Phrase("Sparkling water"), Phrase("large chair")] self.active_phrase = None self.guesses = [] def start(self): # Calls the welcome method, creates the game loop, calls the get_guess method, adds the user's guess to guesses, # increments the number of missed by one if the guess is incorrect, calls the game_over method. # Upon new game, reset values self.guesses = [] self.active_phrase = None self.missed = 0 self.welcome() random_phrase = self.get_random_phrase() new_phrase = random_phrase new_phrase.active_phrase = random_phrase while True: new_phrase.display() if new_phrase.check_complete(): print("\nYou won! You have guessed the phrase!") # Referenced from Unit 1 Project loop = 1 while loop: play_again = input("Would you like to play again? (Y/N): ") play_again = play_again.upper() if play_again == 'Y': return play_again elif play_again == 'N': print("Be seeing you!") quit() else: print("Please enter Y or N.") user_guess = self.get_guess() self.guesses.append(user_guess) print("Current guesses: ", self.guesses, "\n") if new_phrase.check_letter(user_guess) == False: self.missed += 1 print("\nIncorrect!") print("Incorrect Guesses: ", self.missed, "\n") if self.missed == 5: if self.game_over() == True: loop = 1 while loop: play_again = input("Would you like to play again? (Y/N): ") play_again = play_again.upper() if play_again == 'Y': return play_again elif play_again == 'N': print("Be seeing you!") quit() else: print("Please enter Y or N.") def get_random_phrase(self): # this method randomly retrieves one of the phrases stored in the phrases list and returns it. return random.choice(self.phrases) def welcome(self): print(""" ╭━━━╮╱╱╱╭╮╭╮╱╱╱╱╱╱╱╱╭━━━━╮╱╱╱╱╭╮╱╱╱╭╮╱╱╱╱╱╱╱╱╱╱╱╱╱╱╭╮╱╭╮╱╱╱╭╮╱╭━━━╮ ┃╭━╮┃╱╱╭╯╰┫┃╱╱╱╱╱╱╱╱┃╭╮╭╮┃╱╱╱╱┃┃╱╱╱┃┃╱╱╱╱╱╱╱╱╱╱╱╱╱╱┃┃╱┃┃╱╱╭╯╰╮┃╭━╮┃ ┃╰━╯┣╮╱┣╮╭┫╰━┳━━┳━╮╱╰╯┃┃┣┻━┳━━┫╰━┳━╯┣━━┳━━┳━┳━━┳━━╮┃┃╱┃┣━╮┣╮╭╯╰╯╭╯┃ ┃╭━━┫┃╱┃┃┃┃╭╮┃╭╮┃╭╮╮╱╱┃┃┃┃━┫╭━┫╭╮┃╭╮┃┃━┫╭╮┃╭┫┃━┫┃━┫┃┃╱┃┃╭╮╋┫┃╱╭╮╰╮┃ ┃┃╱╱┃╰━╯┃╰┫┃┃┃╰╯┃┃┃┃╱╱┃┃┃┃━┫╰━┫┃┃┃╰╯┃┃━┫╰╯┃┃┃┃━┫┃━┫┃╰━╯┃┃┃┃┃╰╮┃╰━╯┃ ╰╯╱╱╰━╮╭┻━┻╯╰┻━━┻╯╰╯╱╱╰╯╰━━┻━━┻╯╰┻━━┻━━┻━╮┣╯╰━━┻━━╯╰━━━┻╯╰┻┻━╯╰━━━╯ ╱╱╱╱╭━╯┃╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╭━╯┃ ╱╱╱╱╰━━╯╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╱╰━━╯ """, "\n") print("== Welcome to Phrase Hunters. ==\n") def get_guess(self): guessing = True while guessing: # referenced from Unit 1 Project try: user_guess = input("\n\nGuess a letter: ").lower() if len(user_guess) > 1: raise ValueError("Your guess guess is longer than a single letter. Please enter a single letter.") elif user_guess.isalpha() == False: raise ValueError("Your guess is not a string/character. Please enter a string character.") for character in self.guesses: if character == user_guess: raise ValueError("You've already guessed this character, try another character.") # raise # except except ValueError as err: print("That guess is not valid. Please enter a valid guess.") print("Error: {}".format(err)) else: return user_guess def game_over(self): print("Game over. You have failed humanity.") return True
true
201a551e189a1a911a0a1b00f18bbb5b755b56a8
Python
Anvi2520/Python-programming-Lab
/factr.py
UTF-8
183
3.859375
4
[]
no_license
def fact(x): if x==1: return 1 else: return x*fact(x-1) n = int(input("Enter the number-")) f=fact(n); print("The factorial of the given number:\n",f)
true
f2640b96fab090bda53ff61bdc47fd21845c5d57
Python
talitz/digital-humanities-course-assignments
/Q3/main.py
UTF-8
4,593
2.75
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- ###### global imports ###### import re from lxml import etree import xml.etree.ElementTree as ET from xml.etree.ElementTree import Element, SubElement, Comment, tostring import datetime from xml.etree import ElementTree ###### classes ###### class TaggedWords(object): """docstring for words""" def __init__(self, word , ner): self.word = word self.ner = ner class BiblElement(object): """docstring for words""" def __init__(self, str): help = str.split('. ') self.firstname = help[0].split(', ')[1].decode('utf-8') self.surename = help[0].split(', ')[0].decode('utf-8') self.title = help[1].decode('utf-8') self.publisher = help[2].decode('utf-8') self.date = help[3].decode('utf-8') self.pages = help[4].decode('utf-8') ###### functions ###### def prettify(): from bs4 import BeautifulSoup x = open("Q4.XML","rb") print(BeautifulSoup(x, "xml").prettify()) def split_file_to_tagged_sentences(filename): file = open(filename, 'rb') seperated_text = file.read().split('\n') ret = [[]] index = 0 for line in seperated_text: if len(line) == 0: index = index +1 ret.append([]) else: ret[index].append(line) return [x for x in ret if len(x) != 0] def split_to_words(string): return string.split(' ') def get_ner_only(elm): return elm[-1].replace('\t','').replace('null','') def get_place_in_setence_only(elm): return elm[0].replace('\t','').replace('null','') def get_word_only(elm): return elm[3].replace('\t','').replace('null','') def ner_tag_to_tei_tag(elm): ners = ['I_LOC','I_PERS','I_ORG','I_DATE'] tei = ['placeName','placeName','orgName','date'] return tei[ners.index(elm)] def get_dic_of_word_and_ner(list): dic = {} for x in list: if x.ner and x.ner[:2] != 'I_': continue; if x.word in dic and x.ner[:2] == 'I_': dic[x.word].append(x.ner) elif x.ner[:2] == 'I_': dic[x.word] = [x.ner] return dic def seperate_file_to_paragraph(filename): file = open(filename,"rb") text = file.read().split('\n') return [p for p in text if len(p) > 3] def get_bibl_of_lex(lex): return lex[-2].split(';') def get_all_brackets(string): return re.findall(r'"(.*?)"',string) def tag_word(word,tag): return '<' + tag + '> ' + word + ' </' + tag + '>' def create_paragraph(string,dic): xml_string = '<p> ' + string + ' </p>' ret_string = '' for word in xml_string.split(' '): if word.replace('.','').replace(',', '').replace('?', '') in dic: ret_string = ret_string + tag_word(word,ner_tag_to_tei_tag(dic[word.replace('.','').replace(',','')][0])) + ' ' else: ret_string = ret_string + word + ' ' root = etree.fromstring(ret_string) ET.ElementTree(root).write("Q3.XML",encoding="UTF-8",xml_declaration=True) tree = etree.parse("Q4.XML") tree.write("Q4.XML", pretty_print=True, encoding='utf-8') def create_xml_bibl_element(bibl): top2 = Element('xml') top = Element('bibl') persName = SubElement(top, 'persName') forename = SubElement(persName, 'forename') surename = SubElement(persName, 'surename') forename.text = bibl.firstname surename.text = bibl.surename title = SubElement(top, 'title') title.text = bibl.title publisher = SubElement(top, 'publisher') publisher.text = bibl.publisher date = SubElement(top, 'date') date.text = bibl.date biblScope = SubElement(top, 'biblScope') biblScope.set('unit','page') biblScope.text = bibl.pages.replace('.','') top2.append(top) ET.ElementTree(top2).write("Q3.XML",encoding="UTF-8",xml_declaration=True) tree = etree.parse("Q3.XML") tree.write("Q3.XML", pretty_print=True, encoding='utf-8') def get_gender(filename): string = open(filename,'rb').read() if 'נולד ' in string: return 'male' elif 'נולדה ' in string: return 'female' else: return 'unknown' #print get_gender('lex2.txt') ###### main ###### """ list_of_tuples = [] tagged_sentences = split_file_to_tagged_sentences('output.txt') for sentence in tagged_sentences: for parsed_word in sentence: list_of_tuples.append(TaggedWords(get_word_only(split_to_words(parsed_word)) , get_ner_only(split_to_words(parsed_word)))) dic = get_dic_of_word_and_ner(list_of_tuples) lex = seperate_file_to_paragraph("lex2.txt") create_paragraph(lex[4],dic) """ #for x in get_bibl_of_lex(lex): # create_xml_bibl_element(BiblElement(x)) """ for word in lex[5].split(' '): print word if word.replace('.','').replace(',', '').replace('?', '') in dic: print dic[word.replace('.','').replace(',','')] , word """ """ print "###" for x in lex: for z in get_all_brackets(x): print z """ """ """ """ """
true
570c56df3601ab353abe9b2094212ce08ba8beab
Python
sandance/Algorithms
/Graphs/walking.py
UTF-8
395
3.125
3
[]
no_license
# Walk Function will traverse a single connected component( assuming the graph is connected) # To Find all the components , you need to wrap it in over the nodes # # def walk(G,s,S=set()): # Walk the Graph from node s P,Q = dict(), set() P[s] = None Q.add(s) while Q: u=Q.pop() #Pick one, arbitarily for v in G[u].difference(P,S): # new nodes Q.add(v) P[v]=u return P
true
ebce54f9544768a1cd5b60c96e3ffabb8a3a4c52
Python
sofiazenzola/Python-INFO1-CE9990
/NYC_Water_Consumption.py
UTF-8
1,050
3.734375
4
[]
no_license
""" NycWaterConsumption.py Reads csv from NYC Open Data URL Puts fields in a list of strings Outputs the water consumption per capita (gallons per person per day) for a given year """ import sys import csv import urllib.request year=input("Select a year from 1979-2016: ") url = "https://data.cityofnewyork.us/api/views/ia2d-e54m/rows.csv" \ "?accessType=DOWNLOAD" try: lines = urllib.request.urlopen(url) except urllib.error.URLError as error: print("urllib.error.URLError", error) sys.exit(1) hopLines = [] for line in lines: try: s = line.decode("utf-8") except UnicodeError as unicodeError: print(unicodeError) sys.exit(1) r = csv.reader([s]) #[s] is a list containing one string fields = next(r) #fields is a list of strings if fields[0] == year: hopLines.append(fields) lines.close() for line in hopLines: print("In", line[0], "the water consumputer per capita was", line[3], "gallons per person per day") sys.exit(0)
true
fb50223586a5e6fd1738ff17590431323eb08005
Python
FeminaAnsar/luminarpython
/datastrctr/queue.py
UTF-8
883
4.0625
4
[]
no_license
size=int(input("Enter the size : ")) queue=[] rear=0 front=0 n=1 def insertion(): global rear global front if rear<size: item=int(input("Enter the element : ")) queue.insert(rear,item) rear+=1 else: print(rear) print("Queue is full...!!!") def deletion(): global rear global front #rear-=1 if(rear==front): print("Queue is empty..!!") else: print(queue[front],"Deleted...!!") front+=1 def display(): for i in range(front,rear): print(queue[i]) while(n!=0): option=int(input("Enter the Task : 1)INSERT 2)DELETE 3)DISPLAY ")) if(option==1): insertion() elif(option==2): deletion() elif(option==3): display() else: print("Invalid option entered...!!!!") n=int(input("EXIT==press'0' CONTINUE==press any key"))
true
86271b342c796035e040806d66ae130f036ba33c
Python
eishagoel15/GettingStartedAWS-2021
/myLambdaDemo/app.py
UTF-8
840
2.5625
3
[]
no_license
import tempfile import boto3 from PIL import Image from chalice import Chalice app = Chalice(app_name='chalice_image_thumbnails-2', debug=True) s3_client = boto3.client('s3') input_bucket = "demo-bucket-input-2021" output_bucket = "demo-bucket-output-2021" @app.on_s3_event(bucket=input_bucket) def resize_image(event): app.log.debug(f'Resizing the image from s3://{event.bucket}/{event.key}') with tempfile.NamedTemporaryFile('w') as f: s3_client.download_file(event.bucket, event.key, f.name) resized_file = f.name + '.thumbnail.jpg' with Image.open(f.name) as image: image.thumbnail((256,256)) image.save(resized_file) s3_client.upload_file( Filename=resized_file, Bucket=output_bucket, Key=resized_file.rsplit("/", 1)[-1] )
true
627a281f65eaa02fd071340367a27da649867c55
Python
wsfjonah/data_science
/test/reporting_test/service/echarts/test_heatmap.py
UTF-8
629
2.65625
3
[]
no_license
import random from example.commons import Faker from pyecharts import options as opts from pyecharts.charts import HeatMap def heatmap_base() -> HeatMap: value = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)] print(Faker.clock) print(Faker.week) print(value) c = ( HeatMap() .add_xaxis(Faker.clock) .add_yaxis("series", Faker.week, value) .set_global_opts(title_opts=opts.TitleOpts(title="HeatMap-基本示例"), visualmap_opts=opts.VisualMapOpts(), ) ) return c if __name__ == "__main__": heatmap_base().render("heatMap.html")
true
2ea732b1eeb0afbb231ab7f32ff024c08a105b98
Python
shwetgarg/algorithms
/Trees/tree.py
UTF-8
1,972
3.34375
3
[]
no_license
import sys from collections import deque class Tree: def __init__(self, v, l=None, r=None): self.v = v self.l = l self.r = r def print_inorder_traversal(self): if self is None: return if self.l is not None: self.l.print_inorder_traversal() print self.v if self.r is not None: self.r.print_inorder_traversal() def get_inorder_traversal(self): if not self: return if self.l: for node in self.l.get_inorder_traversal(): yield node yield self if self.r: for node in self.r.get_inorder_traversal(): yield node def get_preorder_traversal(self): if not self: return yield self if self.l: for node in self.l.get_preorder_traversal(): yield node if self.r: for node in self.r.get_preorder_traversal(): yield node def get_level_order_traversal(self): if not self: return level = 0 this_level_queue = deque([self]) while this_level_queue: next_level_queue = [] level += 1 yield level for node in this_level_queue: yield node if node.l: next_level_queue.append(node.l) if node.r: next_level_queue.append(node.r) this_level_queue = next_level_queue def copy_tree(self): if self is None: return left = self.l.copy_tree() if (self.l is not None) else None right = self.r.copy_tree() if (self.r is not None) else None return Tree(self.v, left, right)
true
eed167750babc9c50cf99a1f852fa827caeea8ac
Python
sharat7j/python-project
/findSumzero.py
UTF-8
302
3.28125
3
[]
no_license
def find_zero_sum(arr): H = {} sum = 0 for i in xrange(len(arr)): sum += arr[i] if sum in H.keys(): print "Find the first sub-array with zero sum:" print arr[H[sum]+1:i+1] return True else: H[sum] = i return False
true
7d5a93c52fabf4f246fa9676bb76e55a350afe78
Python
mahespunshi/maheshpunshi
/linear serach.py
UTF-8
734
4.46875
4
[]
no_license
# search a value from list, binary search is faster than linear search pos = -1 def search(): # i = 0 # while i < len(list): # if list[i] == n: # globals()['pos'] = i # return True; # i = i + 1 # return False; # above example is a while loop, let's do in for loop, we don't increment in for loop # for i in list: # if i == n: # globals()['pos'] = i # return True # another method in for loop for i in range(len(a)): if a[i] == n: globals()['pos'] = i return True return False a = [5,8,4,6,9,2] # search any number n = 8 if search(): print("Found at", pos + 1) else: print("Not Found")
true
1f5296a74ae813492a98fc70321b8fa576a3f529
Python
NoJeong/TID
/doit_python/02. 기초문법/19단_곱셈표.py
UTF-8
84
3.6875
4
[]
no_license
for i in range(1,20): for j in range(1,20): print(f'{i} x {j} = {j*i}')
true
d86e3b799515707ad3a38b7f57ed855d9c822dd5
Python
bravoo84/AI_Workshop
/trialPy.py
UTF-8
117
3.96875
4
[]
no_license
var=input("Enter a string:") for letter in var: if(letter==''): continue else: print(letter)
true
5a148b51a3e9f93a92131176da93be1452b81e87
Python
steven85048/Networks_Client_Server
/messaging_system/client/client_setup.py
UTF-8
3,176
2.609375
3
[]
no_license
import socket import sys import threading import traceback from messaging_system.client.config import client_config from messaging_system.client.input_handler import InputHandler from messaging_system.client.response_handler import ResponseHandler from messaging_system.client.state_transition_manager import StateTransitionManager from messaging_system.client.exceptions import MalformedRequestException, MalformedUserInputException import messaging_system.socket_holder class ClientSetup: def __init__(self): self.udp_ip = client_config['SERVER_IP_ADDR'] self.port = client_config['UDP_PORT'] self.state_transition_manager = StateTransitionManager() self.input_handler = InputHandler(self.state_transition_manager) self.response_handler = ResponseHandler(self.state_transition_manager) self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(client_config['SOCKET_TIMEOUT']) self.sock.bind((self.udp_ip, self.port)) messaging_system.socket_holder.socket = self.sock # Starts two threads: # (a) User_input_thread continually listens for user input and handles # (b) Server_response_thread continually listens for messages from server and handles def start_client(self): self.user_input_thread = threading.Thread(name = 'user_input_thread', target = self._user_input_thread, args = ( ) ) self.user_input_thread.start() self.server_response_thread = threading.Thread(name = 'server_response_thread', target = self._server_response_thread, args = ( ) ) self.server_response_thread.start() self.user_input_thread.join() self.server_response_thread.join() def _user_input_thread(self): while( True ): try: exc_info = None user_input = input() self.input_handler.handle_input(user_input) except MalformedUserInputException as err: print("Malformed input: {}".format(str(err))) print("Enter another input") except MalformedRequestException as err: print("Error in processing request: {}".format(str(err))) self.state_transition_manager.reset() except Exception as err: exc_info = sys.exc_info() finally: if( not exc_info is None ): traceback.print_exception(*exc_info) def _server_response_thread(self): while( True ): try: exc_info = None data, addr = self.sock.recvfrom(client_config['BUFFER_MAX_SIZE']) self.response_handler.handle_response(data) except MalformedRequestException as err: print("Error in processing request: {}".format(str(err))) self.state_transition_manager.reset() except Exception as err: exc_info = sys.exc_info() finally: if( not exc_info is None ): traceback.print_exception(*exc_info)
true
7086248555aeb4bf66ab6b7ee0c4ab77c761086a
Python
ZoranPandovski/al-go-rithms
/games/Python/Pong Game/scoreboard.py
UTF-8
690
3.484375
3
[ "CC0-1.0" ]
permissive
from turtle import Turtle class ScoreBoard(Turtle): def __init__(self): super().__init__() self.penup() self.color("white") self.hideturtle() self.l_score=0 self.r_score=0 self.update_scoreboard() def update_scoreboard(self): self.clear() self.goto(-90,200) self.write(self.l_score,align="center",font=("Courier",70,"normal")) self.goto(90,200) self.write(self.r_score,align="center",font=("Courier",70,"normal")) def l_point(self): self.l_score += 1 self.update_scoreboard() def r_point(self): self.r_score += 1 self.update_scoreboard()
true
1696a0dc00f8511341c8cd17ceb100e7e08e7859
Python
neerajrp1999/library-Management
/BookDetails.py
UTF-8
5,379
2.625
3
[]
no_license
import pyodbc from tkinter import * import tkinter from tkinter import messagebox import HomePage cnxn = pyodbc.connect("Driver={SQL Server};" "Server=.\;" "Database=tester;" "Trusted_Connection=yes;") cursor = cnxn.cursor() def ClearList(Bookid,Bookname,Authername,NoOfBookAvilable,NoOfBook): Bookid.delete(0, tkinter.END) Bookname.delete(0, tkinter.END) Authername.delete(0, tkinter.END) NoOfBookAvilable.delete(0, tkinter.END) NoOfBook.delete(0, tkinter.END) def Page(r): r.destroy() root=Tk() root.title("Book Details") root.geometry("650x550") Label(root, text="Book Details",fg='red', font=("Helvetica", 16)).pack() Label(root, text="",fg='red', font=("Helvetica", 16)).pack() ra = PanedWindow() var = IntVar() R1 = Radiobutton(ra, text="Book ID", variable=var, value=1) R2 = Radiobutton(ra, text="Book Name", variable=var, value=2) R3 = Radiobutton(ra, text="Auther Name", variable=var, value=3) search_entry = Entry(ra) b1=Button(ra, text="Search", height=1,command=lambda:Search_query(var,search_entry)) b2=Button(ra, text="Refresh", height=1,command=lambda:AllData()) b3=Button(ra, text="GO Back", height=1,command=lambda:GoBack(root)) ra.add(R1) ra.add(R2) ra.add(R3) ra.add(search_entry) ra.add(b1) ra.add(b2) ra.add(b3) ra.pack() var.set(1) head = PanedWindow() l1=Label(head,text="Book ID\t\t ",fg='blue') l2=Label(head,text=" Book Name \t",fg='blue') l3=Label(head,text=" Auther Name\t",fg='blue') l4=Label(head,text="\tNumber Of Books\t",fg='blue') l5=Label(head,text="Number Of Books Avilable",fg='blue') head.add(l1) head.add(l2) head.add(l3) head.add(l4) head.add(l5) head.pack() m1 = PanedWindow() scrollbar = Scrollbar(root) Bookid = Listbox(m1) Bookname = Listbox(m1) Authername = Listbox(m1) NoOfBook = Listbox(m1) NoOfBookAvilable = Listbox(m1) def AllData(): ClearList(Bookid,Bookname,Authername,NoOfBookAvilable,NoOfBook) cursor.execute('SELECT * FROM BookDetail ORDER BY BookId DESC') for row in cursor: Bookid.insert(0, row[0]) Bookname.insert(0, str(row[1]).strip()) Authername.insert(0, str(row[4]).strip()) NoOfBook.insert(0, row[2]) NoOfBookAvilable.insert(0, row[3]) def yview(*args): Bookid.yview(*args) Bookname.yview(*args) Authername.yview(*args) NoOfBook.yview(*args) NoOfBookAvilable.yview(*args) try: AllData() except: print("Database connection problem!!!") Bookid.config(yscrollcommand = scrollbar.set) Bookname.config(yscrollcommand = scrollbar.set) Authername.config(yscrollcommand = scrollbar.set) NoOfBook.config(yscrollcommand = scrollbar.set) NoOfBookAvilable.config(yscrollcommand = scrollbar.set) m1.add(Bookid) m1.add(Bookname) m1.add(Authername) m1.add(NoOfBook) m1.add(NoOfBookAvilable) scrollbar.config(command =yview) scrollbar.pack(side=RIGHT, fill=Y) m1.pack(side=LEFT, fill=Y) def Search_query(var,search_entry): varNo=var.get() if(len(search_entry.get())==0): messagebox.showerror("Error", "Enter something first") return if(varNo==1): try: toSearch=int(search_entry.get()) except: messagebox.showerror("Error", "Enter number only") return ClearList(Bookid,Bookname,Authername,NoOfBookAvilable,NoOfBook) cursor.execute("SELECT * FROM BookDetail WHERE BookId= ? ORDER BY BookId DESC",(toSearch)) for row in cursor: Bookid.insert(0, row[0]) Bookname.insert(0, str(row[1]).strip()) Authername.insert(0, str(row[4]).strip()) NoOfBook.insert(0, row[2]) NoOfBookAvilable.insert(0, row[3]) if(varNo==2): toSearch='%'+search_entry.get()+'%' ClearList(Bookid,Bookname,Authername,NoOfBookAvilable,NoOfBook) cursor.execute("SELECT * FROM BookDetail WHERE BookName LIKE '%s' ORDER BY BookId DESC"%toSearch) for row in cursor: Bookid.insert(0, row[0]) Bookname.insert(0, str(row[1]).strip()) Authername.insert(0, str(row[4]).strip()) NoOfBook.insert(0, row[2]) NoOfBookAvilable.insert(0, row[3]) if(varNo==3): toSearch='%'+search_entry.get()+'%' ClearList(Bookid,Bookname,Authername,NoOfBookAvilable,NoOfBook) cursor.execute("SELECT * FROM BookDetail WHERE AuthorName LIKE '%s' ORDER BY BookId DESC"%toSearch) print(toSearch) for row in cursor: Bookid.insert(0, row[0]) Bookname.insert(0, str(row[1]).strip()) Authername.insert(0, str(row[4]).strip()) NoOfBook.insert(0, row[2]) NoOfBookAvilable.insert(0, row[3]) root.mainloop() def GoBack(root): HomePage.Page(root)
true
478c19b2bc96038e528fff2c4727fd3be00034ff
Python
PatrickMugayaJoel/SendIt
/app/utilities/utils.py
UTF-8
176
2.96875
3
[]
no_license
def serialize(objt): return objt.__dict__ def serialize_list(mylist): listtwo = [] for item in mylist: listtwo.append(serialize(item)) return listtwo
true
b2a82713f65464456ccee312b7150fbaa6bc7c99
Python
ido10en/http_server_finaly
/http_server_shell.py
UTF-8
7,240
2.75
3
[]
no_license
import socket import os # constants IP = '127.0.0.1' PORT = 8090 SOCKET_TIMEOUT = 5.0 # the time the server waits before raising error if there is no Get #Get data from file def get_file_data(file_root): file_data = open(file_root, 'rb') data = file_data.read() file_data.close() return data def create_file(file_name, client_socket): """create a file using the data recieved from client Args: file_name (str) client_socket ([type]): the connection with the client """ file_path = "webroot\\imgs\\" + file_name with open(file_path, 'wb') as image: data = 4096 * 'i' print("file opened") #run until reading all of the data while len(data) == 4096: print("recieving data...") data = client_socket.recv(4096) image.write(data) print("file recieved") #Get content type def get_content_type(type): contents = {"html": "text/html; charset=utf-8", "txt": "text/html; charset=utf-8", "jpg": "image/jpeg", "js": "text/javascript; charset=UTF-8", "css": "text/css", "ico": "image/x-icon", "gif": "image/gif"} return contents[type] #Check the required resource, generate proper HTTP response and send to client def handle_client_request(file_name, client_socket): http_header = "HTTP/1.1" data = "" if "image?" in file_name: image_name = file_name.split('=')[1] url = "webroot\\imgs\\" + image_name + '.jpg' with open(url, 'rb') as hamutzi: data = hamutzi.read() status = " 200 OK\r\nContent-Length: " + str(os.path.getsize(url)) + "\r\nContent-Type: " + "image/jpeg" + "\r\n\r\n" #if one of the functions was called elif "calculate-next?" in file_name: num_sent = int(file_name.split('=')[-1]) num_to_send = num_sent + 1 status = " 200 OK\r\nContent-Length: " + str(len(str(num_to_send))) + "\r\nContent-Type: text/plain\r\n\r\n" + str(num_to_send) elif "calculate-area?" in file_name: parts = file_name.split('=') width = int(parts[-1]) length = int(parts[-2].split('&')[0]) area = (length * width) / 2 status = " 200 OK\r\nContent-Length: " + str(len(str(area))) + "\r\nContent-Type: text/plain\r\n\r\n" + str(area) else: directory = 'webroot\\' DEFAULT_URL = directory + "index.html" if file_name == '': # in case no specific file was requested url = DEFAULT_URL file_name = 'index.html' else: url = directory + file_name # generating the url if os.path.isfile(url):# if the requested file exists print(url) response_dict = {"index.html": "ok", "css\\doremon.css": "ok", "js\\box.js": "ok", "js\\jquery.min.js": "ok", "js\\submit.js": "ok", "imgs\\abstract.jpg": "ok", "imgs\\favicon.ico": "ok", "imgs\\loading.gif": "ok", "imgs\\1546435417505.jpg" : "ok", "ido.html": "forbidden", "index1.html": "moved"} if response_dict[file_name] == "ok": file_type = url.split(".")[-1] status = " 200 OK\r\nContent-Length: " + str(os.path.getsize(url)) + "\r\nContent-Type: " + get_content_type(file_type) + "\r\n\r\n" data = get_file_data(url) print(data) elif response_dict[file_name] == "forbidden": status = " 403 Forbidden" elif response_dict[file_name] == "moved": status = " 302 Temprarily Moved\r\nLocation: index.html" else:# if the request was not understood status = " 500 Internal Server Error" http_header += status print(http_header) print("the file name is " + file_name) # generating the response properly if not isinstance(data, bytes): data = data.encode() http_header = http_header.encode() http_response = http_header + data print(http_response) client_socket.send(http_response) #saving an image the client sent and generating propet HTTP response def handle_post_request(request, client_socket): str_request = str(request) #if the client sent post request if "upload?" in str_request: image_name = str_request.split(' ')[1].split("file-name=")[1] print("the image name is: " + image_name) create_file(image_name, client_socket) status = " 200 OK\r\nContent-Length: " + "20" + "\r\nContent-Type: text/plain\r\n\r\n" + "successfuly uploaded" client_socket.send(("HTTP/1.1" + status).encode()) #Check if request is a valid HTTP request and returns TRUE / FALSE and the requested file name def validate_http_request(request): web_root = request.decode().split(r'\r\n')[0].split(' ')[1][1:]# take the requested file name if '/' in web_root: web_root = web_root.replace('/', '\\') decoded_request = str(request.decode())# it been received binary #ensure the request is valid if decoded_request[0:3] != 'GET': return False, web_root if decoded_request[3] != ' ': return False, web_root if "HTTP/1.1" not in decoded_request: return False, web_root return True, web_root # checks if the request is a valid post request and return true or false def validate_post_request(request): if request[0:4].decode() == 'POST': return True return False #Handles client requests: verifies client's requests are legal HTTP, calls function to handle the requests def handle_client(client_socket): print('Client connected') client_request = client_socket.recv(4096)# receiving the data the client sent print(client_request) valid_post = validate_post_request(client_request) if valid_post: print('Got a valid POST request') handle_post_request(client_request, client_socket) else: valid_http, file_name = validate_http_request(client_request)# valid the request if valid_http:# the request is valid print('Got a valid HTTP request') handle_client_request(file_name, client_socket) else: print('Error: Not a valid request') print('Closing connection') client_socket.close() #main function - Open a socket and loop forever while waiting for clients def main(): server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)# defining the socket server_socket.bind((IP, PORT))# setting the current ip and port server_socket.listen()# the time it listen to client until closing the socket print("Listening for connections on port %d" % PORT) while True: client_socket, client_address = server_socket.accept()# accept the request print('New connection received') # client_socket.settimeout(SOCKET_TIMEOUT)# defining the time until the socket will be shut down handle_client(client_socket) if __name__ == "__main__": # Call the main handler function main()
true
2796b8183e65f9f9693d1cb5121571f95cec187b
Python
luigirizzo/netmap
/extra/python/pktman.py
UTF-8
9,231
2.703125
3
[ "BSD-2-Clause" ]
permissive
#!/usr/bin/env python # # Packet generator written in Python, providing functionalities # similar to the netmap pkt-gen written in C # # Author: Vincenzo Maffione # import netmap # our module import time # time measurements import select # poll() import argparse # program argument parsing import multiprocessing # thread management import re # import scapy suppressing the initial WARNING message import logging logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import Ether, IP, UDP # packet forgery def help_quit(parser): print("") parser.print_help() quit() def build_packet(args, parser): src = args.src.split(':') dst = args.dst.split(':') # create the payload base = "Hello from Python" header_len = 14 + 20 + 8 data = base * ((args.length-header_len)/len(base) + 1) data = data[0:args.length-header_len] scap = Ether(src = args.srcmac, dst = args.dstmac) scap = scap / IP(src = src[0], dst = dst[0]) scap = scap / UDP(sport = int(src[1]), dport = int(dst[1])) scap = scap / data try: # checksum is computed when calling str(scap), e.g. when the packet is # assembled ret = str(scap) except: print("Packet parameters are invalid\n") help_quit(parser) if args.dump: scap.show2() return ret def transmit(idx, ifname, args, parser, queue): # use nm_open() to open the netmap device and register an interface # using an extended interface name nmd = netmap.NetmapDesc(ifname) time.sleep(args.wait_link) # build the packet that will be transmitted pkt = build_packet(args, parser) # fill in the netmap slots and netmap buffers for tx ring 0 txr = nmd.transmit_rings[idx] num_slots = txr.num_slots for i in range(num_slots): txr.slots[i].buf[0:len(pkt)] = pkt txr.slots[i].len = len(pkt) # transmit at maximum speed until Ctr-C is pressed cnt = 0 # packet counter batch = args.batch poller = select.poll() poller.register(nmd.getfd(), select.POLLOUT) t_start = time.time() try: cur = txr.cur while 1: ready_list = poller.poll(2) if len(ready_list) == 0: print("Timeout occurred") break; n = txr.tail - cur # avail if n < 0: n += num_slots if n > batch: n = batch cur += n if cur >= num_slots: cur -= num_slots txr.cur = txr.head = cur # lazy update txr.cur and txr.head nmd.txsync() cnt += n except KeyboardInterrupt: # report the result to the main process queue.put([cnt, time.time() - t_start]) pass def receive(idx, ifname, args, parser, queue): # use nm_open() to open the netmap device and register an interface # using an extended interface name nmd = netmap.NetmapDesc(ifname) time.sleep(args.wait_link) # select the right ring rxr = nmd.receive_rings[idx] num_slots = rxr.num_slots cnt = 0 # packet counter poller = select.poll() poller.register(nmd.getfd(), select.POLLIN) # wait for the first packet try: poller.poll() except KeyboardInterrupt: # report the result to the main process queue.put([cnt, None]) return # receive (throwing away everything) until Ctr-C is pressed t_start = time.time() try: cur = rxr.cur while 1: ready_list = poller.poll() if len(ready_list) == 0: print("Timeout occurred") break; n = rxr.tail - cur # avail if n < 0: n += num_slots cur += n if cur >= num_slots: cur -= num_slots rxr.cur = rxr.head = cur # lazy update rxr.cur and rxr.head cnt += n except KeyboardInterrupt: # report the result to the main process queue.put([cnt, time.time() - t_start]) pass ############################## MAIN ########################### if __name__ == '__main__': # functions implemented by this program handler = dict(); handler['tx'] = transmit handler['rx'] = receive # program arguments parser = argparse.ArgumentParser(description = 'Send or receive packets using the netmap API') parser.add_argument('-i', '--interface', help = 'the interface to register with netmap; ' 'can be in the form netmap:<OSNAME>[<EXT>] or <VALENAME>[<EXT>], where ' 'OSNAME is the O.S. name for a network interface (e.g. "eth0"), ' '<VALENAME> is a valid VALE port name (e.g. "vale18:2") and <EXT> is an ' 'optional extension suffix, specified using the nm_open() syntax ' '(e.g. "^", "-5", "{44", ...)', required = True) parser.add_argument('-f', '--function', help = 'the function to perform', choices = ['tx', 'rx'], default = 'rx') parser.add_argument('-b', '--batchsize', help = 'number of packets to send with each TXSYNC ' 'operation', type=int, default = 512, dest = 'batch') parser.add_argument('-l', '--length', help = 'length of the ethernet frame sent', type = int, default = 60) parser.add_argument('-D', '--dstmac', help = 'destination MAC of tx packets', default = 'ff:ff:ff:ff:ff:ff') parser.add_argument('-S', '--srcmac', help = 'source MAC of tx packets', default = '00:00:00:00:00:00') parser.add_argument('-d', '--dst', help = 'destination IP address and UDP port of tx packets', default = '10.0.0.2:54322', metavar = 'IP:PORT') parser.add_argument('-s', '--src', help = 'source IP address and UDP port of tx packets', default = '10.0.0.1:54321', metavar = 'IP:PORT') parser.add_argument('-w', '--wait-link', help = 'time to wait for the link before starting ' 'transmit/receive operations (in seconds)', type = int, default = 1) parser.add_argument('-X', '--dump', help = 'dump the packet', action = 'store_true') parser.add_argument('-p', '--threads', help = 'number of threads to used for tx/rx ' 'operations', type = int, default = 1) # parse the input args = parser.parse_args() # print args # bound checking if args.length < 60: print('Invalid packet length\n') help_quit(parser) if args.threads < 1: print('Invalid number of threads\n') help_quit(parser) # Temporary open a netmap descriptor to get some info about # number of involved rings or the specific ring couple involved d = netmap.NetmapDesc(args.interface) if d.getflags() in [netmap.RegAllNic, netmap.RegNicSw]: max_couples = min(len(d.receive_rings), len(d.transmit_rings)) if d.getflags() == netmap.RegAllNic: max_couples -= 1 ringid_offset = 0 suffix_required = True else: max_couples = 1 ringid_offset = d.getringid() suffix_required = False del d if args.threads > max_couples: print('You cannot use more than %s (tx,rx) rings couples with "%s"' % (max_couples, args.interface)) quit(1) jobs = [] # array of worker processes queues = [] # array of queues for IPC for i in range(args.threads): queue = multiprocessing.Queue() queues.append(queue) # 'ring_id' contains the ring idx on which the process below will operate ring_id = i + ringid_offset # it may also be necessary to add an extension suffix to the interface # name specified by the user ifname = args.interface if suffix_required: ifname += '-' + str(ring_id) print("Run worker #%d on %s, ring_id %d" % (i, ifname, ring_id)) # create a new process that will execute the user-selected handler function, # with the arguments specified by the 'args' tuple job = multiprocessing.Process(name = 'worker-' + str(i), target = handler[args.function], args = (ring_id, ifname, args, parser, queue)) job.daemon = True # ensure work termination jobs.append(job) # start all the workers for i in range(len(jobs)): jobs[i].start() # Wait for the user pressing Ctrl-C try: while 1: time.sleep(1000) except KeyboardInterrupt: pass # collect and print the result returned by the workers tot_rate = 0.0 for i in range(len(jobs)): result = queues[i].get() jobs[i].join() delta = result[1] cnt = result[0] if delta == None: rate = None else: rate = 0.001 * cnt / delta tot_rate += rate print('[%d] Packets processed: %s, Avg rate %s Kpps' % (i, cnt, rate)) print('Total rate: %s' % (tot_rate, ))
true
0bc456507a518f3fb571504ebb53ed478f723250
Python
WashHolanda/Curso-Python
/exercicios_Youtube/ex057.py
UTF-8
422
3.921875
4
[]
no_license
''' Faça um programa que leia o sexo de uma pessoa, mas só aceite os valores 'M' ou 'F'. Caso esteja errado, peça a digitação novamente até ter um valor correto. ''' sexo = input('Informe seu sexo [M/F]: ').strip().upper()[0] while sexo not in 'MF': sexo = input('\033[31mDados Inválidos!\033[m Por favor informe seu sexo [M/F]: ').strip().upper()[0] print(f'\033[32mSexo {sexo} registrado com sucesso!\033[m')
true
35e0da2ba60407f971aa3b8200d64f01ceefc970
Python
BAGPALLAB7/HackerRank-Solutions-Python3
/HackerRank - Problem Solving/anagram-hackerrank(easy).py
UTF-8
372
3.5
4
[]
no_license
def anagram(s): if len(s)%2!=0: return (-1) else: res=0 s1=s1=s[:int(len(s)/2)] s2=s[int(len(s)/2):] s2=list(s2) for i in s1: if i in s2: s2.remove(i) else: res+=1 return res s='ab' print(anagram(s))
true
286ff42f93d973e05447f3cfe94769ba09057f42
Python
tempflip/pyxel_stuff
/engine.py
UTF-8
1,435
3.796875
4
[]
no_license
import pyxel import math def rot(x_, y_, angle, cx=0, cy=0): x = x_ - cx y = y_ - cy c = math.cos(math.radians(angle)) s = math.sin(math.radians(angle)) xn = x * c + y * s yn = -x * s + y * c return (xn + cx, yn + cy) class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def draw(self, camera, color): (x, y) = camera.show_point(self) pyxel.pset(x, y, color) class Shape: def __init__(self, points=[]): self.points = points def draw(self, camera, color): prev_point = self.points[-1] for p in self.points: (x1, y1) = camera.show_point(prev_point) (x2, y2) = camera.show_point(p) pyxel.line(x1, y1, x2, y2, color) prev_point = p class Model: def __init__(self, faces = [], points = []): self.faces = faces self.points = points def rot_z(self, cx, cy, angle): for p in self.points: (p.x, p.y) = rot(p.x, p.y, angle, cx = cx, cy = cy) def rot_y(self, cx, cz, angle): for p in self.points: (p.x, p.z) = rot(p.x, p.z, angle, cx = cx, cy = cz) class Camera: # fl -- focal length def __init__(self, fl = 100, angle = 45, fx = 100, fy = 100): self.fl = fl self.angle = angle self.fy = fy self.fx = fx def show_point(self, p): yc1 = math.radians(self.angle) * self.fl yc2 = math.radians(self.angle) * self.fl + p.z z_prop = yc1 / yc2 x = self.fx - (self.fx-p.x) * z_prop y = self.fy - (self.fy-p.y) * z_prop return (x, y)
true
b3432adc2e18640d451e977207a6a1c6ccf8f10f
Python
pzengseu/leetcode
/MultiplyStrings.py
UTF-8
839
2.65625
3
[]
no_license
class Solution(object): def multiply(self, num1, num2): """ :type num1: str :type num2: str :rtype: str """ if num1=='0' or num2=='0': return '0' m = len(num1) n = len(num2) res = [0] * (m + n) num1 = list(reversed(num1)) num2 = list(reversed(num2)) for i in xrange(m): multiFlag = 0 addFlag = 0 for j in xrange(n): t1 = int(num1[i]) * int(num2[j]) + multiFlag multiFlag = t1 / 10 t2 = res[i+j] + t1 % 10 + addFlag addFlag = t2 / 10 res[i + j] = t2 % 10 res[i+n] = res[i+n] + multiFlag + addFlag res.reverse() if res[0] == 0: res=res[1:] res=map(str, res) return ''.join(res)
true
e486c02858064c752bcd6ec909d64f8c36eeccb1
Python
dustinpfister/examples-python
/for-post/python-data-types/s5-lists/basic-list.py
UTF-8
66
2.953125
3
[]
no_license
l = [1, 'two', 3] print(l, type(l)) # [1, 'two', 3] <class 'list'>
true
d8f1eecca08c9725f56d15ab3e10f06c4d8a259a
Python
baijifeilong/MilkPlayer
/widgets/media_player_buttons.py
UTF-8
2,212
2.578125
3
[]
no_license
from PyQt5 import QtWidgets, QtCore, QtGui import os class MediaPlayerButtons(QtWidgets.QWidget): def __init__(self, media_player): super().__init__() self._media_player = media_player self._media_player.stateChanged.connect(self._change_button_icon) self.init_ui() @property def media_player(self): return self._media_player def init_ui(self): self.main_layout = QtWidgets.QHBoxLayout() self.main_layout.setContentsMargins(0, 0, 0, 0) self.previous_icon = QtGui.QIcon('images/previous.png') self.next_icon = QtGui.QIcon('images/next.png') self.play_icon = QtGui.QIcon('images/play.png') self.pause_icon = QtGui.QIcon('images/pause.png') self.previous_song_button = QtWidgets.QPushButton(self.previous_icon, '') self.previous_song_button.setSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) self.next_song_button = QtWidgets.QPushButton(self.next_icon, '') self.next_song_button.setSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) self.play_pause_button = QtWidgets.QPushButton(self.play_icon, '') self.play_pause_button.setSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) self.play_pause_button.clicked.connect(self.toggle_play) self.main_layout.addStretch() self.main_layout.addWidget(self.previous_song_button) self.main_layout.addWidget(self.play_pause_button) self.main_layout.addWidget(self.next_song_button) self.main_layout.addStretch() self.setStyleSheet('QPushButton{ ' ' background: transparent;' '}') self.setLayout(self.main_layout) def toggle_play(self): if self.media_player.state() == self.media_player.PlayingState: self.media_player.pause() else: self.media_player.play() def _change_button_icon(self, state): if state == self.media_player.PlayingState: self.play_pause_button.setIcon(self.pause_icon) else: self.play_pause_button.setIcon(self.play_icon)
true
3f6c8ae7d6f8e29c16443382bf5b8659728c29de
Python
candyer/leetcode
/2020 June LeetCoding Challenge/26_sumNumbers.py
UTF-8
1,419
3.84375
4
[]
no_license
# https://leetcode.com/explore/featured/card/june-leetcoding-challenge/542/week-4-june-22nd-june-28th/3372/ # Sum Root to Leaf Numbers # Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. # An example is the root-to-leaf path 1->2->3 which represents the number 123. # Find the total sum of all root-to-leaf numbers. # Note: A leaf is a node with no children. # Example: # Input: [1,2,3] # 1 # / \ # 2 3 # Output: 25 # Explanation: # The root-to-leaf path 1->2 represents the number 12. # The root-to-leaf path 1->3 represents the number 13. # Therefore, sum = 12 + 13 = 25. # Example 2: # Input: [4,9,0,5,1] # 4 # / \ # 9 0 # / \ # 5 1 # Output: 1026 # Explanation: # The root-to-leaf path 4->9->5 represents the number 495. # The root-to-leaf path 4->9->1 represents the number 491. # The root-to-leaf path 4->0 represents the number 40. # Therefore, sum = 495 + 491 + 40 = 1026. # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def dfs(self, root, res): if not root: return 0 res = res * 10 + root.val if not root.left and not root.right: return res return self.dfs(root.left, res) + self.dfs(root.right, res) def sumNumbers(self, root: TreeNode) -> int: return self.dfs(root, 0)
true
04cef3376226ddc9b9135f2a0ee6056ef9ad26b9
Python
FireCARES/firecares
/firecares/firestation/management/commands/match_districts.py
UTF-8
3,055
2.578125
3
[ "MIT" ]
permissive
from django.contrib.gis.gdal import DataSource from django.contrib.gis.geos import MultiPolygon, Polygon from firecares.firestation.models import FireStation from django.core.management.base import BaseCommand class Command(BaseCommand): help = 'Matches district geometry within GeoJSON files with appropriate fire station.' queryset = None def add_arguments(self, parser): parser.add_argument('geojson_file') parser.add_argument('verbose', default=False, nargs='?') def handle(self, *args, **options): geojson_file = options.get('geojson_file') verbose = options.get('verbose') state_filter = geojson_file.split('/')[-1].split('-')[1] ds = DataSource(geojson_file) print('Extracted State code: {0}'.format(state_filter.upper())) filter_stations = options.get('queryset', FireStation.objects.filter(state=state_filter.upper())) print(filter_stations.count()) for layer in ds: geom_list = layer.get_geoms(geos=True) num_geoms = len(geom_list) num_updated = 0 print('Number of Districts: {0}'.format(num_geoms)) for geom in geom_list: match_stations = list() for station in filter_stations: if geom.intersects(station.geom) is True: match_stations.append(station) matched_station = None num_match_stations = len(match_stations) if num_match_stations == 1: matched_station = match_stations[0] elif num_match_stations > 1: geom.set_srid(4326) meter_geom = geom.centroid.transform(3857, clone=True) shortest_dist = meter_geom.distance(match_stations[0].geom.centroid.transform(3857, clone=True)) matched_station = match_stations[0] for station in match_stations: station_dist = meter_geom.distance(station.geom.centroid.transform(3857, clone=True)) if station_dist < shortest_dist: shortest_dist = station_dist matched_station = station if matched_station is not None and matched_station.district is None: if verbose: print('Updated district for {0}'.format(matched_station.name)) if isinstance(geom, MultiPolygon): matched_station.district = geom elif isinstance(geom, Polygon): matched_station.district = MultiPolygon(geom) matched_station.save() num_updated += 1 elif matched_station is not None and matched_station.district is not None: if verbose: print('District already set: No Update') print('Successfully Updated {0}/{1} Stations'.format(num_updated, num_geoms))
true
69981bd78ce3934247216ebaaf59e9e9b87d55cf
Python
jiyali/python-target-offer
/64_求1+2+…+n.py
UTF-8
554
3.921875
4
[]
no_license
# 题目:求 1+2+…+n,要求不能使用乘除法、for、while、if、else、switch、case 等关键字及条件判断语句(A?B:C)。 # 思路:等差求和 class Solution(object): def Sum_Solution(self, n): return (n**2 + n) >> 1 class Solution1(object): def __init__(self): self.sum = 0 def Sum_Solution(self, n): self.getsum(n) return self.sum def getsum(self, n): self.sum += n n -= 1 return n > 0 and self.getsum(n) s = Solution1() print(s.Sum_Solution(5))
true
9344b300d7a03bf88427b6e94651178d9b25ba01
Python
pengyuhou/git_test1
/leetcode/2的幂.py
UTF-8
412
3.59375
4
[]
no_license
import math class Solution(object): def isPowerOfTwo(self, n): if n <= 0: return False a = math.log(n) b = math.log(2) res = str(a / b) if res[-1] == str(0): return True else: return False if __name__ == '__main__': s = Solution() print(s.isPowerOfTwo(0)) a = 'ada' b = 'jj' print(f'{a}哈哈{b}')
true
82a33c9a9b9c86f110d1cc0b95d742651046f649
Python
Jingboguo/python
/ps1/ps1b.py
UTF-8
950
3.5
4
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 23 22:27:26 2017 @author: Vivian """ annal_salary = float(input('Enter your starting annual salary:')) portion_saved = float(input('Enter the percent of your salary to save, as a decimal:')) total_cost = float(input('Enter the cost of your dream home:')) semi_annual_raise = float(input('Enter the semi-annual raise, as a decimal:')) portion_down_payment = 0.25 current_savings = 0 r = 0.04 number_of_month = 0 target = total_cost * portion_down_payment monthly_interest_rate = r / 12 while current_savings < target: number_of_month = number_of_month + 1 pre_savings = current_savings monthly_savings = annal_salary / 12 * portion_saved current_savings = pre_savings + monthly_savings + pre_savings * monthly_interest_rate if number_of_month % 6 == 0: annal_salary = annal_salary * (1 + semi_annual_raise) print('Number of months: ',number_of_month)
true
a757cc21a98e4f0acf9c97f1f84364b6b1be439c
Python
carolinesargent/molssi-python-tutorial
/test_geom_analysis.py
UTF-8
938
2.671875
3
[]
no_license
import geom_analysis as ga import pytest def test_calculate_distance(): coord1 = [0, 0, 0] coord2 = [1, 0, 0] expected = 1.0 observed = ga.calculate_distance(coord1,coord2) assert observed == expected def test_bond_check_1(): atom_distance = 1.501 expected = False observed = ga.bond_check(atom_distance) assert observed == expected def test_bond_check_2(): atom_distance = 0 expected = False observed = ga.bond_check(atom_distance) assert observed == expected def test_bond_check_3(): atom_distance = 1.5 expected = True observed = ga.bond_check(atom_distance) assert observed == expected def test_bond_check_neg(): atom_distance = -1 expected = False with pytest.raises(ValueError): calculated = ga.bond_check(atom_distance) def test_open_xyz(): fname = 'hello.txt' with pytest.raises(ValueError): ga.open_xyz(fname)
true
ee254927141454c7385b4fec59098b1808f478e5
Python
nileshnmahajan/helth
/temp/bulk_rog.py
UTF-8
291
2.578125
3
[]
no_license
import sqlite3 conn = sqlite3.connect('hos_data.db') c = conn.cursor() fp1=open('rog.csv','r',encoding="utf-8") count=0 for row in fp1: count=count+1 data=row.replace("\n",'') c.execute('insert into Disease(dname) values (?)',(data,)) if(count==2): break conn.commit() conn.close()
true
346e2d757607c95d1b8e2b6b5eb0717a77bc48cf
Python
itsolutionscorp/AutoStyle-Clustering
/all_data/exercism_data/python/bob/1654f40a0e1d45dcbfc8c4c54c282aeb.py
UTF-8
388
3.6875
4
[]
no_license
def is_question(phrase): return phrase.endswith("?") def is_yelling(phrase): return phrase.isupper() def hey(phrase): response = "Whatever." phrase = phrase.strip() if not phrase: response = "Fine. Be that way!" elif is_yelling(phrase): response = "Woah, chill out!" elif is_question(phrase): response = "Sure." return response
true
3bbae030819c3f9fd7c87a6dd7ac3ee311d0e68e
Python
CristianoSouza/tcc
/server/ArduinoUDPClient.py
UTF-8
420
3.171875
3
[]
no_license
import socket # Create a TCP/IP socke sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Connect the socket to the port where the server is listening server_address = ('192.168.25.177', 8888) while 1: print ("connecting to " ,server_address) message = 'This is the message' print ('sending :', message) a = sock.sendto(message.encode(), server_address) print ("result: ", a) sock.close()
true
4be8882539901195f1daa27546d519fdf50a1379
Python
innovatorved/Web-Scrapping
/b6-comment.py
UTF-8
211
3.03125
3
[]
no_license
# python b6-comment.py from bs4 import BeautifulSoup with open("example.html" ,"r") as l: soup = BeautifulSoup(l ,"lxml") comment = soup.p.string print(comment) print(type(comment)) print(soup.p.prettify())
true
af33c18456d120d59040d698b857237f9592a33b
Python
obscuresc/aah-hp
/module_controller/hat.py
UTF-8
1,644
2.5625
3
[]
no_license
# install 'sudo pip3 install adafruit-circuitpython-servokit' # see hat reference import board import busio import adafruit_pca9685 from adafruit_servokit import ServoKit # settings PWM_FREQ = 60 PWM_DUTYCYCLE_MAX = 0xffff # modules m1a_ch = 0 m1b_ch = 1 m1v_ch = 2 m2a_ch = 3 m2b_ch = 4 m2v_ch = 5 m3a_ch = 6 m3b_ch = 7 m3v_ch = 8 # vibration intensities m1v_vibration = 0.2 m2v_vibration = 0.4 m3v_vibration = 0.6 # motor angle ranges m1a_range = 180 m1b_range = 180 m2a_range = 180 m2b_range = 180 m3a_range = 180 m3b_range = 180 #### main #### i2c = busio.I2C(board.SCL, board.SDA) hat = adafruit_pca9685.PCA9685(i2c) hat.frequency(PWM_FREQ) kit = ServoKit(channels=16) def vibration_init(): """ Vibration Init Sets vibration motors to predescribed levels of intensity. Levels are not (yet) tailored to represent specific frequencies. """ kit.continuous_servo[m1v_ch] = m1v_vibration kit.continuous_servo[m2v_ch] = m2v_vibration kit.continuous_servo[m3v_ch] = m3v_vibration def motor_init(): """ Motor Init Sets controls ranges for each module's pan/tilt stage. """ kit.servo[m1a_ch].actuation_rangle = m1a_range kit.servo[m1b_ch].actuation_rangle = m1b_range kit.servo[m2a_ch].actuation_rangle = m2a_range kit.servo[m2b_ch].actuation_rangle = m2b_range kit.servo[m3a_ch].actuation_rangle = m3a_range kit.servo[m3b_ch].actuation_rangle = m3b_range def motor_update(m1_dev, m2_dev, m3_dev): """ Motor Update Takes positional deviation and updates the angular rotation of each module. """ # not sure if will work kit.servo[m1a_ch].angle++;
true
48251f4b5a725289e7de7175534fc40526e118cb
Python
dtewitt/Wflow_Volta_Project
/RS_assessment_funcs.py
UTF-8
19,637
2.75
3
[]
no_license
### Write GRACE assessment in a script that assesses GRACE performance after saving of the TWSA netcdf file # GRACE is quite fast (coarse spatial and temporal resolution) so can be done outside of the loop, also because of the rescaling (to monhtly) makes things very difficult inside the loop... def TWSA_assessment_spatially(loc_TWSA_sim): ## IMPORT FUNCTIONS import xarray as xr import numpy as np from scipy.stats import spearmanr from sklearn.metrics import mean_squared_error ## PREPARE DATA # Open files TWSA_sim_file = xr.open_dataset(loc_TWSA_sim) TWSA_obs_file = xr.open_dataset('TWSA_obs.nc') # Open TWSA data TWSA_sim_xr = TWSA_sim_file['TWSA'] TWSA_obs_xr = TWSA_obs_file['TWSA'] # turn into numpy arrays TWSA_sim_np = np.zeros(((62, 11, 9))) TWSA_obs_np = np.zeros(((62, 11, 9))) TWSA_sim_np[:, :, :] = TWSA_sim_xr[:, ::-1, :] TWSA_obs_np[:, :, :] = TWSA_obs_xr[:, ::-1, :] # reshape arrays TWSA_sim_flat = np.reshape(TWSA_sim_np, (62, 99)) TWSA_obs_flat = np.reshape(TWSA_obs_np, (62, 99)) # create nan values in observations outside basin nan1_arr = np.where(np.isnan(TWSA_sim_flat), np.nan, 1) TWSA_obs_flat = TWSA_obs_flat * nan1_arr ## PERFORM Esp CALCULATION (this cannot be done in 2D and is also very fast like this!) Esp_TWSA_cal = np.zeros(62) Esp_TWSA_val = np.zeros(62) for i in range(62): if i == 0 or i == 1 or i == 2 or i == 5 or i == 6 or i == 17: Esp_TWSA_cal[i] = np.nan Esp_TWSA_val[i] = np.nan else: # delete nan values TWSA_sim = TWSA_sim_flat[i][~np.isnan(TWSA_sim_flat[i])] TWSA_obs = TWSA_obs_flat[i][~np.isnan(TWSA_obs_flat[i])] # Validation cells are 3, 6, 7, 10, and 11 in count # Seperate calibration and validation cells TWSA_sim_val = np.array([TWSA_sim[3], TWSA_sim[6], TWSA_sim[10], TWSA_sim[11], TWSA_sim[16], TWSA_sim[17]]) TWSA_obs_val = np.array([TWSA_obs[3], TWSA_obs[6], TWSA_obs[10], TWSA_obs[11], TWSA_obs[16], TWSA_obs[17]]) TWSA_sim_cal = np.delete(TWSA_sim, np.array([17, 16, 11, 10, 6, 3])) TWSA_obs_cal = np.delete(TWSA_obs, np.array([17, 16, 11, 10, 6, 3])) # 1. Calculate spearman rank correlation of the flattened array of validation and calibration array rs_cal = spearmanr(a=TWSA_obs_cal, b=TWSA_sim_cal, axis=0, nan_policy='omit')[0] rs_val = spearmanr(a=TWSA_obs_val, b=TWSA_sim_val, axis=0, nan_policy='omit')[0] # 2. Calculate variability ratio # (assume means and std's are calculated wrt to space, not to time, because it is a spatial matching term) std_obs_cal = np.nanstd(TWSA_obs_cal) std_sim_cal = np.nanstd(TWSA_sim_cal) std_obs_val = np.nanstd(TWSA_obs_val) std_sim_val = np.nanstd(TWSA_sim_val) mean_obs_cal = np.nanmean(TWSA_obs_cal) mean_sim_cal = np.nanmean(TWSA_sim_cal) mean_obs_val = np.nanmean(TWSA_obs_val) mean_sim_val = np.nanmean(TWSA_sim_val) CV_obs_cal = std_obs_cal / mean_obs_cal CV_sim_cal = std_sim_cal / mean_sim_cal CV_obs_val = std_obs_val / mean_obs_val CV_sim_val = std_sim_val / mean_sim_val gamma_cal = CV_sim_cal / CV_obs_cal gamma_val = CV_sim_val / CV_obs_val # 3. spatial location matching term alpha Z_obs_cal = (TWSA_obs_cal - mean_obs_cal) / std_obs_cal Z_sim_cal = (TWSA_sim_cal - mean_sim_cal) / std_sim_cal Z_obs_val = (TWSA_obs_val - mean_obs_val) / std_obs_val Z_sim_val = (TWSA_sim_val - mean_sim_val) / std_sim_val Z_obs_cal = Z_obs_cal[~np.isnan(Z_obs_cal)] Z_sim_cal = Z_sim_cal[~np.isnan(Z_sim_cal)] Z_obs_val = Z_obs_val[~np.isnan(Z_obs_val)] Z_sim_val = Z_sim_val[~np.isnan(Z_sim_val)] alpha_cal = 1 - np.sqrt(mean_squared_error(y_true=Z_obs_cal, y_pred=Z_sim_cal)) alpha_val = 1 - np.sqrt(mean_squared_error(y_true=Z_obs_val, y_pred=Z_sim_val)) # 4. Return Esp from its three components Esp_TWSA_cal[i] = 1 - np.sqrt((rs_cal - 1) ** 2 + (gamma_cal - 1) ** 2 + (alpha_cal - 1) ** 2) Esp_TWSA_val[i] = 1 - np.sqrt((rs_val - 1) ** 2 + (gamma_val - 1) ** 2 + (alpha_val - 1) ** 2) # Divide the TWSA dataset into two periods, one for calibration and one for evaluation # calibration period (2002 t/m feb 2005) (32 months with data) # evaluation period (mar 2005 - feb 2007) (24 months) # Take mean of arrays Esp_TWSA_mean_cal_cal = np.nanmean(Esp_TWSA_cal[0:38]) # calibration catchment, calibration period Esp_TWSA_mean_cal_val = np.nanmean(Esp_TWSA_cal[38:]) # calibration catchment, validation period Esp_TWSA_mean_val_cal = np.nanmean(Esp_TWSA_val[0:38]) # validation catchment, calibration period Esp_TWSA_mean_val_val = np.nanmean(Esp_TWSA_val[38:]) # validation catchment, validation period TWSA_sim_file.close() TWSA_obs_file.close() return Esp_TWSA_mean_cal_cal, Esp_TWSA_mean_cal_val, Esp_TWSA_mean_val_cal, Esp_TWSA_mean_val_val ## Here, also a function for GRACE assessment temporally is given. This may take much longer! def TWSA_assessment_temporally(loc_TWSA_sim): ## IMPORT FUNCTIONS import xarray as xr import numpy as np # Get files and open datasets TWSA_obs_file = xr.open_dataset('TWSA_obs.nc') TWSA_sim_file = xr.open_dataset(loc_TWSA_sim) # Open TWSA dataset TWSA_obs_xr = TWSA_obs_file['TWSA'] TWSA_sim_xr = TWSA_sim_file['TWSA'] # Turn into numpy arrays TWSA_obs_np = np.zeros(((62, 11, 9))) TWSA_sim_np = np.zeros(((62, 11, 9))) TWSA_sim_np[:, :, :] = TWSA_sim_xr[:, ::-1, :] TWSA_obs_np[:, :, :] = TWSA_obs_xr[:, ::-1, :] # Divide in calibration and validation period # calibration period TWSA_sim_np_cal = TWSA_sim_np[0:38, :, :] TWSA_obs_np_cal = TWSA_obs_np[0:38, :, :] # validation period TWSA_sim_np_val = TWSA_sim_np[38:, :, :] TWSA_obs_np_val = TWSA_obs_np[38:, :, :] ## Calculate KGE value in 3D!!! # Prepare means and standard deviations mean_TWSA_sim_cal = np.round(np.nanmean(TWSA_sim_np_cal, axis=0), decimals=2) mean_TWSA_sim_val = np.round(np.nanmean(TWSA_sim_np_val, axis=0), decimals=2) std_TWSA_sim_cal = np.nanstd(TWSA_sim_np_cal, axis=0) std_TWSA_sim_val = np.nanstd(TWSA_sim_np_val, axis=0) mean_TWSA_obs_cal = np.round(np.nanmean(TWSA_obs_np_cal, axis=0), decimals=2) mean_TWSA_obs_val = np.round(np.nanmean(TWSA_obs_np_val, axis=0), decimals=2) std_TWSA_obs_cal = np.nanstd(TWSA_obs_np_cal, axis=0) std_TWSA_obs_val = np.nanstd(TWSA_obs_np_val, axis=0) # 1. Calculate Pearson r correlation coefficients cov_TWSA_cal = np.nanmean((TWSA_sim_np_cal - mean_TWSA_sim_cal) * (TWSA_obs_np_cal - mean_TWSA_obs_cal), axis=0) cov_TWSA_val = np.nanmean((TWSA_sim_np_val - mean_TWSA_sim_val) * (TWSA_obs_np_val - mean_TWSA_obs_val), axis=0) Pearson_r_cal = cov_TWSA_cal / (std_TWSA_sim_cal * std_TWSA_obs_cal) Pearson_r_val = cov_TWSA_val / (std_TWSA_sim_val * std_TWSA_obs_val) # 2. bias ratio beta # means are probably both zero so they are shifted with 5!! beta_cal = (mean_TWSA_sim_cal + 5) / (mean_TWSA_obs_cal + 5) beta_val = (mean_TWSA_sim_val + 5) / (mean_TWSA_obs_val + 5) # everything + 5 # 3. variability ratio gamma gamma_cal = (std_TWSA_sim_cal / (mean_TWSA_sim_cal + 5)) / (std_TWSA_obs_cal / (mean_TWSA_obs_cal + 5)) gamma_val = (std_TWSA_sim_val / (mean_TWSA_sim_val + 5)) / (std_TWSA_obs_val / (mean_TWSA_obs_val + 5)) # every mean + 5 # 4. KGE calculation KGE_cal = 1 - np.sqrt((Pearson_r_cal - 1) ** 2 + (beta_cal - 1) ** 2 + (gamma_cal - 1) ** 2) KGE_val = 1 - np.sqrt((Pearson_r_val - 1) ** 2 + (beta_val - 1) ** 2 + (gamma_val - 1) ** 2) # Divide area in calibration and validation catchtments mean_KGE_val_cal = np.nanmean([KGE_cal[2, 4], KGE_cal[3, 4], KGE_cal[4, 4], KGE_cal[5, 4], KGE_cal[4, 5], KGE_cal[5, 5]]) mean_KGE_val_val = np.nanmean([KGE_val[2, 4], KGE_val[3, 4], KGE_val[4, 4], KGE_val[5, 4], KGE_val[4, 5], KGE_val[5, 5]]) KGE_cal[2, 4], KGE_cal[3, 4], KGE_cal[4, 4], KGE_cal[5, 4], KGE_cal[4, 5], KGE_cal[5, 5] = np.nan, np.nan, np.nan, np.nan, np.nan, np.nan KGE_val[2, 4], KGE_val[3, 4], KGE_val[4, 4], KGE_val[5, 4], KGE_val[4, 5], KGE_val[5, 5] = np.nan, np.nan, np.nan, np.nan, np.nan, np.nan mean_KGE_cal_cal = np.nanmean(KGE_cal) mean_KGE_cal_val = np.nanmean(KGE_val) # mean_KGE_cal_cal = calibration catchment, calibration period # mean_KGE_cal_val = calibration catchment, validation period # mean_KGE_val_cal = validation catchment, calibration period # mean_KGE_val_val = validation catchment, validation period TWSA_sim_file.close() TWSA_obs_file.close() return mean_KGE_cal_cal, mean_KGE_cal_val, mean_KGE_val_cal, mean_KGE_val_val def ET_assessment_spatially(ET_sim_dayi, NDVI_obs_dayi): ## IMPORT FUNCTIONS import xarray as xr import numpy as np from scipy.stats import spearmanr from sklearn.metrics import mean_squared_error # Load calibration and validation catchments calibration_catch = np.loadtxt('wflow_Volta_hbv2_0/staticmaps/calibration_catch.txt') validation_catch = np.loadtxt('wflow_Volta_hbv2_0/staticmaps/validation_catch.txt') ## PREPARE DATA # Open files ET_sim_xr = ET_sim_dayi NDVI_obs_xr = NDVI_obs_dayi # make numpy arrays to store and modify the data ET_sim_np = np.zeros((220, 180)) NDVI_obs_np = np.zeros((220, 180)) # turn array around to be able to plot it right and insert the right values ET_sim_np[:, :] = ET_sim_xr[::-1, :] NDVI_obs_np[:, :] = NDVI_obs_xr # create nan values in observations outside basin nan1_arr = np.where(np.isnan(ET_sim_np), np.nan, 1) NDVI_obs_np = NDVI_obs_np * nan1_arr # Create nan values in simulation inside basin (Lake Volta) # this works great! nan2_arr = np.where(np.isnan(NDVI_obs_np), np.nan, 1) ET_sim_np = ET_sim_np * nan2_arr # Introduce calibration and validation catchments ET_sim_np_cal = ET_sim_np * calibration_catch ET_sim_np_val = ET_sim_np * validation_catch NDVI_obs_np_cal = NDVI_obs_np * calibration_catch NDVI_obs_np_val = NDVI_obs_np * validation_catch # reshape arrays ET_sim_cal_flat = np.reshape(ET_sim_np_cal, (39600)) ET_sim_val_flat = np.reshape(ET_sim_np_val, (39600)) NDVI_obs_cal_flat = np.reshape(NDVI_obs_np_cal, (39600)) NDVI_obs_val_flat = np.reshape(NDVI_obs_np_val, (39600)) # delete nan values ET_sim_cal = ET_sim_cal_flat[~np.isnan(ET_sim_cal_flat)] ET_sim_val = ET_sim_val_flat[~np.isnan(ET_sim_val_flat)] NDVI_obs_cal = NDVI_obs_cal_flat[~np.isnan(NDVI_obs_cal_flat)] NDVI_obs_val = NDVI_obs_val_flat[~np.isnan(NDVI_obs_val_flat)] ## PERFORM Esp CALCULATION in 1D (input is daily xr.dataset sim and obs) # 1. Calculate spearman rank correlation of the flattened array rs_cal = spearmanr(a=NDVI_obs_cal, b=ET_sim_cal, axis=0, nan_policy='omit')[0] rs_val = spearmanr(a=NDVI_obs_val, b=ET_sim_val, axis=0, nan_policy='omit')[0] # 2. Calculate variability ratio # (assume means and std's are calculated wrt to space, not to time, because it is a spatial matching term) std_obs_cal = np.nanstd(NDVI_obs_cal) std_obs_val = np.nanstd(NDVI_obs_val) std_sim_cal = np.nanstd(ET_sim_cal) std_sim_val = np.nanstd(ET_sim_val) mean_obs_cal = np.nanmean(NDVI_obs_cal) mean_obs_val = np.nanmean(NDVI_obs_val) mean_sim_cal = np.nanmean(ET_sim_cal) mean_sim_val = np.nanmean(ET_sim_val) CV_obs_cal = std_obs_cal / mean_obs_cal CV_obs_val = std_obs_val / mean_obs_val CV_sim_cal = std_sim_cal / mean_sim_cal CV_sim_val = std_sim_val / mean_sim_val gamma_cal = CV_sim_cal / CV_obs_cal gamma_val = CV_sim_val / CV_obs_val # 3. spatial location matching term alpha Z_obs_cal = (NDVI_obs_cal - mean_obs_cal) / std_obs_cal Z_obs_val = (NDVI_obs_val - mean_obs_val) / std_obs_val Z_sim_cal = (ET_sim_cal - mean_sim_cal) / std_sim_cal Z_sim_val = (ET_sim_val - mean_sim_val) / std_sim_val alpha_cal = 1 - np.sqrt(mean_squared_error(y_true=Z_obs_cal, y_pred=Z_sim_cal)) alpha_val = 1 - np.sqrt(mean_squared_error(y_true=Z_obs_val, y_pred=Z_sim_val)) # Return Esp from its three components Esp_NDVI_ET_cal = 1 - np.sqrt((rs_cal - 1) ** 2 + (gamma_cal - 1) ** 2 + (alpha_cal - 1) ** 2) Esp_NDVI_ET_val = 1 - np.sqrt((rs_val - 1) ** 2 + (gamma_val - 1) ** 2 + (alpha_val - 1) ** 2) # Divide the ET/NDVI dataset into two periods, outside this function! return Esp_NDVI_ET_cal, Esp_NDVI_ET_val def ET_assessment_temporally(loc_ET_sim): ## Import functions import xarray as xr import numpy as np # Load calibration and validation catchments calibration_catch = np.loadtxt('wflow_Volta_hbv2_0/staticmaps/calibration_catch.txt') validation_catch = np.loadtxt('wflow_Volta_hbv2_0/staticmaps/validation_catch.txt') ## Open xr datasets NDVI_obs = xr.open_dataset('NDVI_obs.nc') ET_sim = xr.open_dataset(loc_ET_sim) NDVI_obs_xr = NDVI_obs['NDVI'] ET_sim_xr = ET_sim['ET'] # Turn into numpy arrays NDVI_obs_np = np.zeros(((2616, 220, 180))) ET_sim_np = np.zeros(((2616, 220, 180))) ET_sim_np[:, :, :] = ET_sim_xr[:, ::-1, :] # this may take quite some memory! NDVI_obs_np[:, :, :] = NDVI_obs_xr # calculate normalized ET_sim_np (in total or per ts?) now it is in total max_ET = np.nanmax(ET_sim_np) min_ET = np.nanmin(ET_sim_np) ET_sim_np_norm = (ET_sim_np - min_ET) / (max_ET - min_ET) # Divide the assessment in a calibration and validation period NDVI_obs_np_cal = NDVI_obs_np[0:1461, :, :] NDVI_obs_np_val = NDVI_obs_np[1461:, :, :] ET_sim_np_norm_cal = ET_sim_np_norm[0:1461, :, :] ET_sim_np_norm_val = ET_sim_np_norm[1461:, :, :] ## Calculate KGE value in 3D!!! # Prepare means and standard deviations mean_ET_sim_cal = np.nanmean(ET_sim_np_norm_cal, axis=0) mean_ET_sim_val = np.nanmean(ET_sim_np_norm_val, axis=0) std_ET_sim_cal = np.nanstd(ET_sim_np_norm_cal, axis=0) std_ET_sim_val = np.nanstd(ET_sim_np_norm_val, axis=0) mean_NDVI_obs_cal = np.nanmean(NDVI_obs_np_cal, axis=0) mean_NDVI_obs_val = np.nanmean(NDVI_obs_np_val, axis=0) std_NDVI_obs_cal = np.nanstd(NDVI_obs_np_cal, axis=0) std_NDVI_obs_val = np.nanstd(NDVI_obs_np_val, axis=0) # 1. Calculate Pearson r correlation coefficients cov_NDVI_ET_cal = np.nanmean((ET_sim_np_norm_cal - mean_ET_sim_cal) * (NDVI_obs_np_cal - mean_NDVI_obs_cal), axis=0) cov_NDVI_ET_val = np.nanmean((ET_sim_np_norm_val - mean_ET_sim_val) * (NDVI_obs_np_val - mean_NDVI_obs_val), axis=0) Pearson_r_cal = cov_NDVI_ET_cal / (std_ET_sim_cal * std_NDVI_obs_cal) Pearson_r_val = cov_NDVI_ET_val / (std_ET_sim_val * std_NDVI_obs_val) # 2. bias ratio beta beta_cal = mean_ET_sim_cal / mean_NDVI_obs_cal beta_val = mean_ET_sim_val / mean_NDVI_obs_val # 3. variability ratio gamma gamma_cal = (std_ET_sim_cal / mean_ET_sim_cal) / (std_NDVI_obs_cal / mean_NDVI_obs_cal) gamma_val = (std_ET_sim_val / mean_ET_sim_val) / (std_NDVI_obs_val / mean_NDVI_obs_val) # 4. KGE calculation KGE_cal = 1 - np.sqrt((Pearson_r_cal - 1) ** 2 + (beta_cal - 1) ** 2 + (gamma_cal - 1) ** 2) # w/o loop still 51 seconds KGE_val = 1 - np.sqrt((Pearson_r_val - 1) ** 2 + (beta_val - 1) ** 2 + (gamma_val - 1) ** 2) ## Calculate KGE and its components in calibration and validation periods and catchments KGE_cal_cal = KGE_cal * calibration_catch # calibration period, calibration catchment KGE_cal_val = KGE_cal * validation_catch # calibration period, validation catchment KGE_val_cal = KGE_val * calibration_catch # validation period, calibration catchment KGE_val_val = KGE_val * validation_catch # validation period, validation catchment Pearson_r_cal_cal = Pearson_r_cal * calibration_catch Pearson_r_cal_val = Pearson_r_cal * validation_catch Pearson_r_val_cal = Pearson_r_val * calibration_catch Pearson_r_val_val = Pearson_r_val * validation_catch beta_cal_cal = beta_cal * calibration_catch beta_cal_val = beta_cal * validation_catch beta_val_cal = beta_val * calibration_catch beta_val_val = beta_val * validation_catch gamma_cal_cal = gamma_cal * calibration_catch gamma_cal_val = gamma_cal * validation_catch gamma_val_cal = gamma_val * calibration_catch gamma_val_val = gamma_val * validation_catch # Calculate means of KGE and its components mean_KGE_cal_cal = np.nanmean(KGE_cal_cal) mean_KGE_cal_val = np.nanmean(KGE_cal_val) mean_KGE_val_cal = np.nanmean(KGE_val_cal) mean_KGE_val_val = np.nanmean(KGE_val_val) mean_Pearson_r_cal_cal = np.nanmean(Pearson_r_cal_cal) mean_Pearson_r_cal_val = np.nanmean(Pearson_r_cal_val) mean_Pearson_r_val_cal = np.nanmean(Pearson_r_val_cal) mean_Pearson_r_val_val = np.nanmean(Pearson_r_val_val) mean_beta_cal_cal = np.nanmean(beta_cal_cal) mean_beta_cal_val = np.nanmean(beta_cal_val) mean_beta_val_cal = np.nanmean(beta_val_cal) mean_beta_val_val = np.nanmean(beta_val_val) mean_gamma_cal_cal = np.nanmean(gamma_cal_cal) mean_gamma_cal_val = np.nanmean(gamma_cal_val) mean_gamma_val_cal = np.nanmean(gamma_val_cal) mean_gamma_val_val = np.nanmean(gamma_val_val) # Close datasets NDVI_obs.close() ET_sim.close() # Return only KGE's for now, but more is possible of course return mean_KGE_cal_cal, mean_KGE_cal_val, mean_KGE_val_cal, mean_KGE_val_val ## function that takes as input the ICF and creates a numpy Su_max map as output def ICF_transformer(ICF_nf, ICF_f): import numpy as np # Calculate the Su_max for every combination of subcatchment and landuse (non-forest and forest) offset = [599.19503772, 625.03274585, 562.259546, 522.95253363, 401.11391317, 509.64177338, 534.37225299, 475.73219414, 533.26170669, 558.97329238, 513.43244853, 497.85879029, 426.11175142] slope = [-41.78375641, -41.23973506, -36.63365806, -33.08527239, -24.1950782, -45.04986909, -44.78285965, -31.07722248, -37.7781033, -32.37036803, -30.7590952, -32.34913525, -25.17571431] Su_max_nf = np.zeros(13) Su_max_f = np.zeros(13) for i in range(13): Su_max_nf[i] = offset[i] + ICF_nf * slope[i] Su_max_f[i] = offset[i] + ICF_f * slope[i] return Su_max_nf, Su_max_f
true
7bf6c165209bea1931c5db13c4339e0bb6e5c870
Python
mjziebarth/gmt-python-extensions
/gmt_extensions/axis.py
UTF-8
788
2.828125
3
[ "BSD-3-Clause" ]
permissive
# Supply a simple axis. class Axis: """ Make plotting a little bit like matplotlib. """ def __init__(self, fig, region, projection, frame=True): self._region = region self._projecion = projection self._fig = fig self._frame = frame def coast(self, land=None, water=None, shownationalborders=False, showstateborders=False): # Preprocess: kwargs = dict() # Borders (-N): if not (shownationalborders is False and showstateborders is False): kwargs['borders'] = '' if shownationalborders is True: kwargs['borders'] += '1' if showstateborders is True: kwargs['borders'] += '2' self._fig.coast(region=self._region, projection=self._projection, land=land, water=water, **kwargs) def grdimage(self, grid, cmap): if
true
ca34ed57b1e00ec36c57bb53a2e9966c60c98b93
Python
TeamSkyHackathon/blue
/loader.py
UTF-8
2,278
3.140625
3
[]
no_license
import numpy as np from sklearn.cross_validation import KFold from settings import * ##################### HELPERS ############################ def load_data(path, count, with_labels=False): """ :param count: feature count to load for one subset :param with_labels: indicate whether labels are present :rtype: 2/3-element tuple - [labels], first_feature_array, second_feature_array """ labels, a_features, b_features = [], [], [] with open(path) as f: offset = 1 if with_labels else 0 headers = f.next().rstrip().split(',') for line in f: values = line.rstrip().split(',') if with_labels: labels.append(values[0]) a_features.append([float(x) for x in values[offset:count+offset]]) b_features.append([float(x) for x in values[count+offset:]]) if with_labels: return np.array(labels), np.array(a_features), np.array(b_features) else: return np.array(a_features), np.array(b_features) ################# TRAINING ####################### def predict(a_features, b_features): """ Magical functions that makes all predictions. return: A user is more influential than B rtype: bool """ pass #################### RESULTS ###################### def produce_results(fname): with open(fname, 'w+') as f: af, bf = load_data(TEST_PATH, 11) for a_features, b_features in zip(list(af), list(bf)): a_better = predict(a_features, b_features) f.write(bool(a_better)) # label '1' means A is more influential than B. 0 means B is more influential than A #################### MAIN ########################## if __name__ == "__main__": # Load data labels, A, B = load_data(TRAIN_PATH, 11, with_labels=True) # split original set into training and testing kf = KFold(len(A), 2) for train_indices, test_indices in kf: train_labels, train_A, train_B = labels[train_indices], A[train_indices], B[train_indices] # learn model using training data test_labels, test_A, test_B = labels[test_indices], A[test_indices], B[test_indices] # test model using test data # produce results produce_results('submission.csv')
true
2ddff464b08a99514ccbc693763a52b724fc94e2
Python
LaurensVergote/Robotic-Hand
/build/debug/Serializer.py
UTF-8
934
2.828125
3
[ "MIT" ]
permissive
import serial ser = serial.Serial() class Serializer: def _init_(self): self.baudrate = 9600 self.comPort = None def createSerialPort(self): try: ser = serial.Serial(self.comPort, self.baudrate) except Exception,e: print "createSerialPort error: ", str(e) def setBaudRate(self, baudrate): self.baudrate = baudrate if (ser != None): ser.baudrate = baudrate def setComPort(self, comPort): self.comPort = comPort if (ser != None): ser.port = comPort def createConnection(self): try: ser = serial.Serial(self.comPort,self.baudrate) except Exception,e: print "createConnection error: ", str(e) def openConnection(self): ser.open() def closeConnection(self): ser.close() def sendData(self, b0, b1): try: print 'Sending ', hex(b0), 'and', hex(b1) s = str(unichr(b0)) r = str(unichr(b1)) ser.write(s+r) except Exception,e: print "sendData error: ", str(e)
true
310e777251747a5dfafbc9f3be2637e2b6cd9f69
Python
hcourt/biology
/alignment.py
UTF-8
10,061
3.5625
4
[]
no_license
#!/usr/bin/python import sys #A program to calculate a best alignment for two given ACTG sequences. ## a class which represents each position in the sequence matrix which will be calculated. Position has a score, an up pointer (0 or 1), a left pointer (0 or 1), and a diagonal pointer (0 or 1). Each pointer is 0 if the pointer is unused or 1 if the pointer is used. class Position: def __init__(self, score=0): self.score=score self.up=0 self.left=0 self.diag=0 ## a function to construct a matrix of length c and width r def construct_matrix(r, c, type): matrix = [] for i in range(0,r): list = [] for j in range(0,c): if type=='p': list.append(Position()) elif type=='s': list.append(0) matrix.append(list) return matrix ## a function which recieves an index for a sequence and returns the alphabet index of the letter def get_index(seq_index, seq): letter = '' if seq == 'A': letter = left_side[seq_index] elif seq == 'B': letter = up_side[seq_index] for i in range (0, len(alphabet)): if alphabet[i]==letter: return i return -1 ## a function which recieves three scores (diagonal, left, and up) and returns a list containing the value of the best score and the codes for the highest score directions def get_best_point(up, left, diag): score = max([diag,left,up]) return_list = [] return_list.append(score) if (diag==score): return_list.append('D') if (left==score): return_list.append('L') if (up==score): return_list.append('U') return return_list ## the traceback function for all types of alignments def traceback (cur_r, cur_c, seq_matrix, prev_align_A, prev_align_B, aligns, left_side, up_side): pos = seq_matrix[cur_r][cur_c] ## end case for 0,0 if ((cur_r == 0 and cur_c == 0) or (align_type==2 and (cur_r==0 or cur_c==0))): aligns['A'].append(prev_align_A[::-1]) aligns['B'].append(prev_align_B[::-1]) return aligns ## resolve diagonal tree if (pos.diag == 1): working_align_A = prev_align_A working_align_B = prev_align_B working_align_A += left_side[cur_r] working_align_B += up_side[cur_c] aligns=traceback (cur_r-1, cur_c-1, seq_matrix, working_align_A, working_align_B, aligns, left_side, up_side) ## resolve left tree elif (pos.left == 1): working_align_A = prev_align_A working_align_B = prev_align_B working_align_A+='-' working_align_B+=up_side[cur_c] aligns=traceback (cur_r, cur_c-1, seq_matrix, working_align_A, working_align_B, aligns, left_side, up_side) ## resolve up tree elif (pos.up == 1): working_align_A= prev_align_A working_align_B= prev_align_B working_align_A+=left_side[cur_r] working_align_B+='-' aligns=traceback (cur_r-1, cur_c, seq_matrix, working_align_A, working_align_B, aligns, left_side, up_side) return aligns ## MAIN FUNCTION ## file = open(sys.argv[1]) lines = file.readlines() for l in range(0,len(lines)): lines[l]=lines[l].rstrip() ## sequence of letters indicating sequence A seqA = lines[1] left_side = "-"+seqA ## sequence of letters indicating sequence B seqB = lines[0] up_side = "-"+seqB ## an argument for the type of alignment to perform (0 is global, 1 is semi-global, 2 is local) align_type = int(lines[2]) ## gap penalty (asumming a constant gap penalty for both seqs) gap_penalty = int(lines[3]) ## sequence of letters indicating the alphabet for the strings alphabet = lines[4] n = len(alphabet) ## series of n lines, each consisting of n space-separated values, indicating the score of matching characters between the two sequences in matrix form. Characters are in the same order as alphabet given above. Matrix is symmetric. score_matrix = construct_matrix(n, n, 's') for i in range (0, n): line_list = lines[i+5].split() for j in range (0, n): score_matrix[i][j] = int(line_list[j]) best_score=0 align_As = [] align_Bs = [] ## the matrix into which the sequence scores will be outputted. Assuming seqB is on top and seqA is to left seq_matrix = construct_matrix(len(left_side), len(up_side), 'p') seq_matrix[0][0].score=0 if align_type == 0: ## fill first column and first row with gap penalty for i in range (1, len(up_side)): seq_matrix[0][i].score = gap_penalty + seq_matrix[0][i-1].score seq_matrix[0][i].left = 1 for j in range (1, len(left_side)): seq_matrix[j][0].score = gap_penalty + seq_matrix[j-1][0].score seq_matrix[j][0].up = 1 elif align_type == 1 or align_type == 2: ## fill first column and first row with 0 for i in range (1, len(up_side)): seq_matrix[0][i].score = 0 seq_matrix[0][i].left = 1 for j in range (1, len(left_side)): seq_matrix[j][0].score = 0 seq_matrix[j][0].up = 1 ## work through each row, calculating the resulting score for the position for row in range (1, len(left_side)): for col in range (1, len(up_side)): p = seq_matrix[row][col] ## get the predicted scores for each pointer p_up_score = 0 p_left_score = 0 if align_type == 1: ##semi-global has no penalty for end gaps p_up_score = seq_matrix[row - 1][col].score if (col == len(up_side)-1) else seq_matrix[row - 1][col].score + gap_penalty p_left_score = seq_matrix[row][col - 1].score if (row == len(left_side)-1) else seq_matrix[row][col - 1].score + gap_penalty else: p_up_score = seq_matrix[row - 1][col].score + gap_penalty p_left_score = seq_matrix[row][col - 1].score + gap_penalty indexA = get_index(row, 'A') indexB = get_index(col, 'B') p_diag_score = seq_matrix[row - 1][col - 1].score + score_matrix[get_index(row, 'A')][get_index(col, 'B')] if indexA == -1 or indexB == -1: print "ERROR: letter combination not in score matrix" ## set any negative scores to 0, if doing local alignment if align_type == 2: if p_up_score < 0: p_up_score = 0 if p_left_score < 0: p_left_score = 0 if p_diag_score < 0: p_diag_score = 0 ## get the best, and assign pointers appropriately best = get_best_point(p_up_score, p_left_score, p_diag_score) for i in range (1, len(best)): if (best[i]=='D'): p.diag=1 elif (best[i]=='L'): p.left=1 elif (best[i]=='U'): p.up=1 p.score=int(best[0]) seq_matrix[row][col] = p ## tracebacks for global and semi-global alignment if align_type < 2: if len(up_side)>=len(left_side): end_score_list=[] best_score = seq_matrix[0][len(up_side)-1].score ## get best score and all positions to start from for i in range (0,len(left_side)): pos = seq_matrix[i][len(up_side)-1] s = pos.score if s > best_score: best_score = s end_score_list=[] end_score_list.append(i) elif s == best_score: end_score_list.append(i) ## begin tracebacks from each start position for start in end_score_list: ## start traceback call aligns={'A':[], 'B':[]} aligns=traceback(start, len(up_side) - 1, seq_matrix, "", "", aligns, left_side, up_side) align_As.append(aligns['A']) align_Bs.append(aligns['B']) else: end_score_list=[] best_score = seq_matrix[len(left_side) - 1][0].score ## get best score and all positions to start from for i in range (0,len(up_side)): pos = seq_matrix[len(left_side) - 1][i] s = pos.score if s > best_score: best_score = s end_score_list=[] end_score_list.append(i) elif s == best_score: end_score_list.append(i) ## begin tracebacks from each start position for start in end_score_list: ## start traceback call aligns={'A':[], 'B':[]} aligns=traceback(len(left_side) - 1, start, seq_matrix, "", "", aligns, left_side, up_side) align_As.append(aligns['A']) align_Bs.append(aligns['B']) ##tracebacks for local alignment elif align_type == 2: score_list=[] best_score = seq_matrix[0][0].score ## get best score and all associated positions to start from for row in range(0, len(left_side)): for col in range(0, len(up_side)): pos = seq_matrix[row][col] s = pos.score if s > best_score: best_score = s score_list=[] score_list.append((row,col)) elif s == best_score: score_list.append((row,col)) ## select the furthest to the right, and the furthest down furthest=(0,0) for (x,y) in score_list: if x>=furthest[0] and y>=furthest[1]: furthest=(x,y) ## traceback call aligns={'A':[], 'B':[]} aligns = traceback(furthest[0],furthest[1], seq_matrix, "", "", aligns, left_side, up_side) align_As.append(aligns['A']) align_Bs.append(aligns['B']) ## output, via print: ## 1. score of the best alignment ## 2. alignment of seqA ## 3. alignment of seqB ## toprint seq_matrix, remove both """ """ sys.stdout.write(" ") for i in range (0, len(up_side)): sys.stdout.write(" "+str(up_side[i])) print "" for row in range (0, len(left_side)): sys.stdout.write(left_side[row]+" ") for col in range(0, len(up_side)): sys.stdout.write(str(seq_matrix[row][col].score)+" ") print """ print("Best score for all alignments: "+str(best_score)) for i in range (0, len(align_As)): print(align_Bs[i][0]) print(align_As[i][0])
true
da70674bece2ff983896f7e16d1418eda48fa730
Python
legendary-jld/schema-org
/schema_org.py
UTF-8
2,292
2.8125
3
[]
no_license
import datetime # Local Libraries import definitions class Thing(object): def __init__(self, **kwargs): self.itemStructure = None self.parentStructure = None self.schema = definitions.Thing() self.setAttributes() def setAttributes(self, parent=None, **kwargs): if parent: self.itemStructure = "{0} > {1}".format(parent.schema.itemType, self.schema.itemType) self.parentStructure = parent.schema.itemType else: self.itemStructure = self.schema.itemType for attribute in self.schema.canonicalAttributes: setattr(self, attribute, kwargs.get(attribute, None)) def validate(self): pass def toJSON(self): if self.validate(): # Must validate first pass def toHTML(self): if self.validate(): # Must validate first pass def __repr__(self): return "<SCHEMA:{0} - ID: {1} | Name: {2}>".format( self.itemStructure, self.identifier, self.name ) class Action(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.Action() self.setAttributes(parent=Thing(), **kwargs) # Would prefer not to create a Thing Instance just to get the itemType class CreativeWork(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.CreativeWork() self.setAttributes(parent=Thing, **kwargs) class Event(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.Event() self.setAttributes(parent=Thing, **kwargs) class Intangible(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.Intangible() self.setAttributes(parent=Thing, **kwargs) class Organization(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.Organization() self.setAttributes(parent=Thing, **kwargs) class Person(Thing): def __init__(self, **kwargs): Thing.__init__(self, **kwargs) self.schema = definitions.Person() self.setAttributes(parent=Thing, **kwargs)
true
2f155ddf253abf8bc0809b55a63169b6463fd042
Python
niranjan-nagaraju/Development
/python/interviewbit/arrays/find_permutation/find_permutation.py
UTF-8
2,016
4.09375
4
[]
no_license
''' https://www.interviewbit.com/problems/find-permutation/ Find Permutation Given a positive integer n and a string s consisting only of letters D or I, you have to find any permutation of first n positive integer that satisfy the given input string. D means the next number is smaller, while I means the next number is greater. Notes Length of given string s will always equal to n - 1 Your solution should run in linear time and space. Example : Input 1: n = 3 s = ID Return: [1, 3, 2] ''' ''' Solution Outline: 1. Generate an increasing sequence, seq [1..n] 2. Since the sequence is already increasing, the Is dont need any change. 3. For each contiguous sequence of Ds {i..j} reverse seq[i..j] seq[j+1] is automatically increasing because seq[i]<seq[i+1]<..seq[j]<seq[j+1] ''' class Solution: # reverse a[i..j] def reverse(self, a, i, j): while i < j: a[i], a[j] = a[j], a[i] i += 1 j -= 1 def find_permutation(self, n, s): seq = range(1, n+1) i = 0 while i < n-1: # s length is n-1 curr_dec_seq_start = None while i < n-1 and s[i] == 'D': if curr_dec_seq_start == None: curr_dec_seq_start = i i += 1 if curr_dec_seq_start is not None: # End of 'D' sequence # i is at the beginning of the next 'I' sequence # reverse i=k+1 elements starting from the index where 'D' starts # k: length of the D sequence # k=1 => reverse two elements, and so on. self.reverse(seq, curr_dec_seq_start, i) else: # We are in an 'I' sequence i += 1 # skip ahead this 'I' return seq if __name__ == '__main__': s = Solution() assert s.find_permutation(2, 'I') == [1,2] assert s.find_permutation(2, 'D') == [2,1] assert s.find_permutation(3, 'ID') == [1,3,2] assert s.find_permutation(3, 'DI') == [2,1,3] assert s.find_permutation(6, 'IDDID') == [1,4,3,2,6,5] assert s.find_permutation(6, 'DDDDD') == [6,5,4,3,2,1] assert s.find_permutation(6, 'DIDID') == [2,1,4,3,6,5] assert s.find_permutation(6, 'IDIDI') == [1,3,2,5,4,6]
true
23221def284aa4e39a15db7e4d1a9144661a7c8a
Python
jklypchak13/TrojanHorse
/src/trojan/crypto.py
UTF-8
1,666
3.21875
3
[]
no_license
from pathlib import Path from pyAesCrypt import encryptFile from pyAesCrypt import decryptFile password = "trojan" bufferSize = 64 * 1024 # 64k """ encrypt the file at input_file_path_str input_file_path_str can be relative or absolute deletes the input file at the end """ def encryptAndDeletePlaintext(input_file_path_str): # name the output file the same as the input file, but append .aes to it output_file_path_str = input_file_path_str + ".aes" try: # encrypt the file encryptFile(input_file_path_str, output_file_path_str, password, bufferSize) # delete the input plaintext source file Path(input_file_path_str).unlink() except FileNotFoundError: print('ERROR: File Could Not Be read') # on file read error, do nothing pass """ decrypt the file at input_file_path_str input_file_path_str can be relative or absolute deletes the input file at the end """ def decryptAndDeleteCipherText(input_file_path_str): # output filename = input filename + ".decrypted" output_file_path_str = input_file_path_str + ".decrypted" # if the input filename ends with ".aes" output filename is changed to the input filename without the .aes extension if input_file_path_str[-4:] == ".aes": output_file_path_str = input_file_path_str[:-4] try: # decrypt the file decryptFile(input_file_path_str, output_file_path_str, password, bufferSize) # delete the input ciphertext file Path(input_file_path_str).unlink() except FileNotFoundError: # on file read error, do nothing pass
true
b678daa44551a7749097ab56a40715489dfcd86b
Python
hector81/Aprendiendo_Python
/Panda/Ejercicio4_pago_media_vivos_muertos.py
UTF-8
637
3.703125
4
[]
no_license
''' 4. ¿Cuánto pagaron de media los supervivientes? ¿y los que no se salvaron? ''' from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt fichero = Path('titanic.csv') # sep='\t' es el delimitador donde separa con \t o tabulaciones df = pd.read_csv(fichero, sep='\t') # 1 es supervivientes , 0 es fallecido pago_media_supervivientes = df.Fare[df.Survived == 1].mean() print(f"¿Cuánto pagaron de media los supervivientes? = {pago_media_supervivientes}") pago_media_muertos = df.Fare[df.Survived == 0].mean() print(f"¿y los que no se salvaron? = {pago_media_muertos}")
true
f9d12ed8605663d69a21e91eb917e614b9140648
Python
terryhu08/MachingLearning
/src/python/FP-Growth/FP-Growth.py
UTF-8
5,607
2.984375
3
[]
no_license
#coding:utf-8 ''' Created on 2017/11/14 author: fdh FP—Growth: 韩家炜教授提出的基于FP-tree挖掘频繁项的算法,相对于Apriori只扫描 2遍数据,效率更高, FP = Frequent Pattern 算法需要创建两个数据结构: 1: FP-Tree 2: Header Table 参考博客: http://www.cnblogs.com/jiangzhonglian/p/7778830.html https://www.cnblogs.com/datahunter/p/3903413.html#undefined ''' print(__doc__) class TreeNode: def __init__(self, name, count, parentNode): self.name = name self.count = count self.parent = parentNode self.nextlink = None self.children = {} def inc(self, count): self.count+=count def disp(self, depth=1): """disp(以文本形式展示树结构) """ print ' '*depth, self.name,' ', self.count for child in self.children.values(): child.disp(depth+1) def loadDataSet(): dataSet = [['f', 'a', 'c', 'd', 'g', 'i', 'm', 'p'], ['a', 'b', 'c', 'f', 'l', 'm', 'o'], ['b', 'f', 'h', 'j', 'o'], ['b', 'c', 'k', 's', 'p'], ['a', 'f', 'c', 'e', 'l', 'p', 'm', 'n']] return dataSet def calDataSetCnt(dataSet): '''initDataSet(初始化数据,去除重复数据,使用计数) Args: dataSet 原始数据 Return: dataSetCnt 去除重复数据,添加计数 ''' dataSetCnt = {} for trans in dataSet: if dataSetCnt.has_key(frozenset(trans)): dataSetCnt[frozenset(trans)]+=1 else: dataSetCnt[frozenset(trans)]=1 return dataSetCnt def updateTable(treeNode, item, FPHeaderTable): headNode = FPHeaderTable[item][1] if headNode is None: FPHeaderTable[item][1]=treeNode else: while headNode.nextlink: headNode = headNode.nextlink headNode.nextlink= treeNode def updateTreeAndTable(orderItem, cnt, FPHeaderTable, FPTree): '''updateTreeAndTable(将排好序的单项条目添加到FP树和表格中) Args: orderItem 当个排序条目 FPHeaderTable FP头表格 FPTree FP树 ''' treeNode = FPTree #递归调用树节点 for item in orderItem: if treeNode.children.has_key(item): treeNode.children[item].count+=cnt else: treeNode.children[item] = TreeNode(item, cnt, treeNode) updateTable(treeNode.children[item], item, FPHeaderTable) treeNode = treeNode.children[item] def buildTreeAndTable(dataSetCnt, minSupport=1): '''buildTreeAndTable(创建FP-Growth所需的树结构和表格) Args: dataSetCnt 计数数据集 minSupport 最小支持度,用整数表示 Return: FPHeaderTable 按支持度排序的链表 FPTree 满足最小支持度的数据创建的树结构 ''' #创建FP表格 FPHeaderTable={} for trans,cnt in dataSetCnt.items(): for item in trans: FPHeaderTable[item]=FPHeaderTable.get(item,0)+cnt #print '过滤前:',FPHeaderTable #过滤掉低频数据 FPHeaderTable = {k:[v,None] for k,v in FPHeaderTable.items() if v>=minSupport} # print 'FPTable:',FPHeaderTable freqItemSet = set(FPHeaderTable.keys()) # print '频繁集合',freqItemSet if len(freqItemSet)==0: return None, None #FP树 FPTree = TreeNode("NULL", 1, None) #第二遍数据遍历 for trans,cnt in dataSetCnt.items(): localD = {} for item in trans: if item in freqItemSet: localD[item] = FPHeaderTable[item][0] #print 'localD', localD.keys() #存在可用数据 if len(localD)>0: orderItem = [k for k,v in sorted(localD.items(), key=lambda x:x[1], reverse=True)] # print 'orderItem cnt:',cnt,' items:', orderItem updateTreeAndTable(orderItem, cnt, FPHeaderTable, FPTree) return FPTree, FPHeaderTable def findPrefixPath(treeNode): dataSetCnt= {} headNode=treeNode while headNode: endNode = headNode.parent newTrans = [] count = headNode.count while endNode.parent: newTrans.insert(0, endNode.name) endNode = endNode.parent dataSetCnt[frozenset(newTrans)]=count headNode= headNode.nextlink return dataSetCnt def FP_Growth(dataSetCnt, minSupport, prelist): '''FP_Growth(挖掘频繁项集) Args: FPTable FP表 FPTree FP树 Return 打印出挖掘的频繁项集 ''' FPTree, FPTable = buildTreeAndTable(dataSetCnt, minSupport) if FPTable is None: return #print 'tree view:' #FPTree.disp() orderFPTable = [v[1] for k,v in sorted(FPTable.items(), key=lambda x:x[1][0])] #print 'orderFPTable', [v.name for v in orderFPTable] # print '******************************' for tableNode in orderFPTable: print tableNode.name, prelist if len(orderFPTable): print prelist # print '****************************' for tableNode in orderFPTable: # print '遍历元素',tableNode.name newDataSetCnt = findPrefixPath(tableNode) # print '元素',tableNode.name,'前数据', newDataSetCnt newPrelist = [v for v in prelist] newPrelist.append(tableNode.name) FP_Growth(newDataSetCnt, minSupport, newPrelist) def main(): dataSet = loadDataSet(); dataSetCnt = calDataSetCnt(dataSet) prelist= [] FP_Growth(dataSetCnt, 3, prelist) if __name__ == '__main__': main()
true
2ad3edccc0f1d649d1780aa020b8ecd7575d88e4
Python
Beelthazad/PythonExercises
/EjerciciosBasicos/ejercicio1.py
UTF-8
217
3.609375
4
[]
no_license
# Resultado de leer num enteros, reales o cadenas... num = int(input("Introduce un número\n")) print(num) char = input("Introduce un carácter\n") print(char) string = input("Introduce una cadena\n") print(string)
true
3b89ba980f95aace259b5f3a2fa6c2cea671f7b2
Python
SLR1999/ML_Assignment
/outlier.py
UTF-8
1,381
3.359375
3
[]
no_license
import numpy as np def MahalanobisDist(data): '''Computing covariance matrix for the data''' covariance_matrix = np.cov(data, rowvar=False) '''Computing pseudoinverse of the covariance matrix''' inv_covariance_matrix = np.linalg.pinv(covariance_matrix) vars_mean = [] '''Appending mean of the columns respectively in vars_mean''' for i in range(data.shape[0]): vars_mean.append(list(data.mean(axis=0))) diff = data - vars_mean md = [] '''Computing Mahalanobis distance for each feature''' for i in range(len(diff)): md.append(np.sqrt(diff[i].dot(inv_covariance_matrix).dot(diff[i]))) return md def MD_detectOutliers(data, extreme=False): MD = MahalanobisDist(data) '''one popular way to specify the threshold''' m = np.mean(MD) t = 3. * m if extreme else 2. * m outliers = [] for i in range(len(MD)): if MD[i] > t: outliers.append(i) # index of the outlier return np.array(outliers) ''' or according to the 68–95–99.7 rule std = np.std(MD) k = 3. * std if extreme else 2. * std m = np.mean(MD) up_t = m + k low_t = m - k outliers = [] for i in range(len(MD)): if (MD[i] >= up_t) or (MD[i] <= low_t): outliers.append(i) # index of the outlier return np.array(outliers) '''
true
1547be792bfb60d8d879d9b6fd95736d1047ce18
Python
kanishka100/gitdemo
/tests/test_swag_lab.py
UTF-8
2,963
2.984375
3
[]
no_license
import pytest from Page_object.login_page import Login_page from test_data.home_page_data import Test_Data from utilities.bAse_class import Base_Class class Test_Sauce(Base_Class): def test_sauce_website(self, get_login_data, get_homepage_data, get_checkout_data): url = 'https://www.saucedemo.com/' log = self.get_logger() self.driver.get(url=url) login_obj = Login_page(self.driver) log.info("Entering values in the homepage") login_obj.send_user_name().send_keys(get_login_data['username']) login_obj.send_password().send_keys(get_login_data['password']) # home page object is made in the login page file and is returned to the testcase home_page_obj = login_obj.click_login_button() # second page log.info("Getting all the products from homepage.") products = home_page_obj.get_all_products() price, price_list, i = 0, [], -1 for product in products: # NOTE: starting index =0 i = i + 1 if product.text == get_homepage_data['product_name']: # find all the elements individually as done here (find elements) not a single element but multiple then u can use index to move price = home_page_obj.product_price()[i].text log.info(f"Product selected: {product.text}\n Price of product: {price}") price_list = price.split("$") home_page_obj.add_to_cart().click() # object of the checkout page check_out_obj = home_page_obj.cart_link() # 3rd page-checkout page print(check_out_obj.get_inventory_item_name()) log.info(f"The item name selected {get_homepage_data['product_name']}") assert check_out_obj.get_inventory_item_name() == get_homepage_data['product_name'] check_out_obj.click_checkout().click() log.info("Entering checkout details") check_out_obj.get_name().send_keys(get_checkout_data['first_name']) check_out_obj.get_lastname().send_keys(get_checkout_data['last_name']) check_out_obj.get_postal_code().send_keys(get_checkout_data['postal_code']) check_out_obj.click_continue_button().click() price_got = check_out_obj.get_total_price() print(price) log.info(f"The total price of product (price+tax) : {str(float(price_list[1]) + 4.00)}") assert price_got.split()[1].split("$")[1] == str(float(price_list[1]) + 4.00) check_out_obj.click_finish_button().click() # they are the data driven fixtures @pytest.fixture(params=Test_Data.test_login_data) def get_login_data(self, request): return request.param @pytest.fixture(params=Test_Data.test_home_page_data) def get_homepage_data(self, request): return request.param @pytest.fixture(params=Test_Data.check_out_data) def get_checkout_data(self, request): return request.param
true
fed0220d8de3bf71ec98085ba30581cdf7bfd88a
Python
V-E/scraping
/worldometer/worldometer/spiders/countries_data.py
UTF-8
1,843
2.703125
3
[]
no_license
# -*- coding: utf-8 -*- import scrapy def sanitize(value): if (not value) or (value.strip() == ''): return 0 index = 1 if '+' in value else 0 return float(''.join(value.strip().split('+')[index].split(','))) def toggle_check(check1, check2): if not check1: return check2 return check1 class CountriesDataSpider(scrapy.Spider): name = 'countries_data' allowed_domains = ['https://www.worldometers.info/coronavirus/'] start_urls = ['https://www.worldometers.info/coronavirus/'] def parse(self, response): rows = response.xpath('//table[@id="main_table_countries_today"]/tbody[1]/tr[not(contains(@style,"display: none"))]') for row in rows[1:-1]: yield { 'country': toggle_check(row.xpath('td[2]/a/text()').get(), row.xpath('td[2]/span/text()').get()), 'total_cases': sanitize(row.xpath('td[3]/text()').get()), 'new_cases': sanitize(row.xpath('td[4]/text()').get()), 'total_death': sanitize(row.xpath('td[5]/text()').get()), 'new_death': sanitize(row.xpath('td[6]/text()').get()), 'total_recovered': sanitize(toggle_check(row.xpath('td[7]/span/text()').get(), row.xpath('td[7]/text()').get())), 'active_cases': sanitize(row.xpath('td[8]/text()').get()), 'serious_critical': sanitize(row.xpath('td[9]/text()').get()), 'total_cases_per_million': sanitize(row.xpath('td[10]/text()').get()), 'death_per_million': sanitize(row.xpath('td[11]/text()').get()), 'total_tests': sanitize(row.xpath('td[12]/text()').get()), 'tests_per_million': sanitize(row.xpath('td[13]/text()').get()), 'population': sanitize(row.xpath('td[14]/text()').get()), }
true
87776657dd851506aa2c9e4e3f1960e2bcb2dc0a
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2623/60594/243798.py
UTF-8
565
3
3
[]
no_license
def panduan(z)->bool: try: z = int(z) return isinstance(z, int) except ValueError: return False def sort(A:list)->list: oc=[] a=1 b=len(A) while a<=b: min=0 for index in range(len(A)): if A[index]<A[min]: min=index oc.append(A[min]) del(A[min]) a+=1 return oc ar1=input().split(",") arr1=[] for index in range(len(ar1)): if panduan(ar1[index]): arr1.append((int)(ar1[index])) n=(int)(input()) arr1=sort(arr1) print(arr1[len(arr1)-n])
true
013038a7d13d0c376cc1309eb0bc4296dfe6a197
Python
kstudzin/pub_sub_mq
/latency_analysis.py
UTF-8
1,533
2.71875
3
[]
no_license
import os import pathlib import re import pandas as pd from matplotlib import pyplot as plt source = "latency" filename_pattern = re.compile(".*(sub-(\\d+)_broker-([rd])).*") output_plot = "boxplot.png" output_stat = "boxplot.txt" def import_data(): df = pd.DataFrame() names = [] for file in os.listdir(source): match = filename_pattern.match(file) if not match: continue num_subs = int(match.group(2)) rows = num_subs * 1000 name = "{0:03}_{1}".format(num_subs, match.group(3)) df_curr = pd.read_csv(os.path.join(source, file), header=None, usecols=[0], names=[name], nrows=rows) df[name] = df_curr[name] names.append(name) names.sort() return df, names def main(): print("Analyzing...") df, cols = import_data() plt.figure() plt.title("PubSub Latency") boxplot = df.boxplot(column=cols, return_type='axes') boxplot.set_xlabel("Test Run (<number subscribers>_<routing|direct>)") boxplot.set_ylabel("Time (seconds)") plt.savefig(output_plot, format="png") print(f"Generated plot: {output_plot}") mode_df = pd.DataFrame() for name in cols: mode_df[name] = df[name].mode() df.sort_index(axis=1) print(f"Statistics: {output_stat}") f = open(output_stat, "w") f.write("Statistics:\n\n") f.write(df.describe().sort_index(axis=1).to_string()) f.write("\n\nMode:\n\n") f.write(mode_df.to_string()) f.close() if __name__ == "__main__": main()
true
fbf0bec49e487ab4a6fccb12b875ea4223613641
Python
PennaLai/patch_sampling
/patch_samping.py
UTF-8
1,978
3.125
3
[]
no_license
from matplotlib.image import imread from matplotlib import pyplot as plt import numpy as np def read_image(file_name): image_matrix = imread(file_name) print(image_matrix.shape) return image_matrix def output_image(image_arr): plt.imshow(image_arr, interpolation='nearest') plt.show() def patch_sampling(image_arr, patch_width, patch_heigh, patch_distance): image_heigh = image_arr.shape[0] image_width = image_arr.shape[1] result = [] for line_index in range(len(image_arr)): if line_index % patch_distance == 0: for each_pixel_index in range(len(image_arr[line_index])): if line_index + patch_heigh <= image_heigh and each_pixel_index + patch_width < image_width: if each_pixel_index % patch_distance == 0: patch_arr = image_arr[line_index:line_index+patch_heigh, each_pixel_index:each_pixel_index+patch_width] result.append((patch_arr, (line_index, each_pixel_index))) return result if __name__ == '__main__': patch_width = 224 patch_heigh = 224 patch_distance = 8 data_size = 40 result = [] for i in range(1, 41): image_data = read_image("graph_data/Images/test_{}.png".format(i)) annotation_data = read_image("graph_data/Annotation/test_{}.png".format(i)) image_patch_result = patch_sampling(image_data, patch_width, patch_heigh, patch_distance) annotation_patch_result = patch_sampling(annotation_data, patch_width, patch_heigh, patch_distance) result.append((image_patch_result, annotation_patch_result)) # result: an array, element: (origin_data, annotation_data), length=number of origin image # origin_data/annotation_data: an array, element: (patch_data, index_of_left_top_pixel), length=number of patch # patch_data: three dimension array # each patch_data in origin data should relate to the same index patch_data in annotation_data
true
830ce2e97a871c3bcda6bd5bacb1db4da672ac8b
Python
jbwillis/marblemaze
/tools/captureImage.py
UTF-8
1,050
2.796875
3
[]
no_license
#! /usr/bin/env python3 import cv2 import numpy as np import argparse parser = argparse.ArgumentParser(description='Capture an image from the given camera number') parser.add_argument('cam', help='OpenCV camera number (0 indexed)', type=int) parser.add_argument('--video', help='Capture and save video', type=str) args = parser.parse_args() print("Press 'c' to capture an image or 'q' to quit") cap = cv2.VideoCapture(args.cam) vOut = None while True: ret, frame = cap.read() frame = frame[125:350 , 225:450] cv2.imshow('Frame', frame) kp = cv2.waitKey(1) if (kp & 0xFF) == ord('c'): fn = input("Enter the filename: ") cv2.imwrite(fn, frame) elif (kp & 0xFF) == ord('q'): break if args.video is not None and vOut is None: fourcc = cv2.VideoWriter_fourcc(*"XVID") vOut = cv2.VideoWriter(args.video, fourcc, 30, (frame.shape[0], frame.shape[1])) if args.video is not None: vOut.write(frame) # vOut.release() cap.release() cv2.destroyAllWindows()
true
be29c53ce6ec699d6f39b0ce6bd8928ee8e7bda9
Python
OpenDingux/tests
/vsync/buffersim.py
UTF-8
3,235
3.234375
3
[]
no_license
#!/usr/bin/env python3 def render_constant(duration): """Return the same frame render duration for every time stamp.""" return lambda now: duration # An application model should yield (buf_count, render_start) pairs. # buf_count is a sequence number identifying the render, or -1 for # frames already in the framebuffer before simulation started. # render_start is the timestamp at which the render started. For # computing latency, we assume that input was processed immediately # before the rendering started. # The simulator sends the timestamp of the next vblank back the # application model. def swap_chain(num_buffers, renderer): """Model of an application that renders via a swap chain.""" now = 0 render_start = None render_done = None buf_count = 0 # Buffers ready to be displayed. buffers = [(-1, 0)] while True: vblank = yield buffers[0] while True: if render_done is None: if len(buffers) >= num_buffers: # Block on acquiring buffer. now = vblank render_start = now render_done = render_start + renderer(now) if render_done > vblank: break else: buffers.append((buf_count, render_start)) buf_count += 1 now = render_done render_done = None if len(buffers) > 1: del buffers[0] def swap_discard(renderer): """Model of an application that renders as many frames as possible via triple buffering, potentially discarding some frames. """ now = 0 render_start = None render_done = None buf_count = 0 buffers = [(-1, 0)] while True: vblank = yield buffers[0] while True: if render_done is None: if len(buffers) >= 3: # Discard oldest waiting buffer. del buffers[1] render_start = now render_done = render_start + renderer(now) if render_done > vblank: break else: buffers.append((buf_count, render_start)) buf_count += 1 now = render_done render_done = None if len(buffers) > 1: del buffers[0] def simulate(num_frames, frame_rate, **apps): labels = f" {frame_rate:3} Hz refresh" column_headers = "frame: vblank:" for label, app in apps.items(): app.send(None) labels += f" | {label.replace('_', ' '):17}" column_headers += ' | buffer: latency:' print(labels) print(column_headers) for frame in range(num_frames): vblank = int((frame / frame_rate) * 1000) line = f"{frame:4} {vblank:8}" for app in apps.values(): buf_count, input_time = app.send(vblank) latency = vblank - input_time line += f" | {buf_count:5} {latency:8} " print(line) renderer = render_constant(25) simulate(50, 60, double_chain=swap_chain(2, renderer), triple_chain=swap_chain(3, renderer), triple_discard=swap_discard(renderer) )
true
a9a5977273ce884e08369c92951eb06bd194eec6
Python
Halacky/parsRos
/screenShot.py
UTF-8
790
3.203125
3
[]
no_license
import cv2 class Image: def __init__(self, imageLink): self.imageLink = imageLink def readImage(self): try: imgRead = cv2.imread(self.imageLink) return imgRead except Exception: print(Exception) return False def cropImage(self): image = self.readImage() imageHeight, imageWidth, channels = image.shape # Обрезаем половину картинки, левая часть нафиг не нужна и перезаписываем ее в ту же папку targetWidth = int(imageWidth / 3) croppedImage = image[0: 0 + imageHeight, targetWidth: targetWidth + targetWidth*2] cv2.imwrite(self.imageLink, croppedImage) return croppedImage
true
82a4691b73c28b372704796beef097703fba5477
Python
faylau/PythonStudy
/src/Decorator/DecoratorExample01.py
UTF-8
7,765
4.03125
4
[]
no_license
#!/usr/bin/python # encoding:utf-8 __authors__ = ['"Liu Fei" <liufei83@163.com>'] __version__ = "V0.1" import functools ''' 1.关于Decorator,这里并没有做特别详细和深入的讲解,只是给了一些常规的Decorator用法; 2.具体Decorator的学习,可以参考文章 http://coolshell.cn/articles/11265.html; 3.Decorator的使用很广泛,建议在平时coding过程中思考,哪些操作可以通过Decorator的方式解决,积累经验。 ''' '''------------------------------------------------------------------------------------------------------- Example-01:最基本的Decorator(装饰器) @note: (1)被装饰的函数 foo1() 不带任何参数; @note: (2)装饰器 hello(fn) 本身也不带任何参数(严格上说只带有一个被装饰的function的名称)。 ---------------------------------------------------------------------------------------------------------- 1.结合输出结果可以看到如下的东西: (1)函数 foo1 前面有个 @hello 的“注解”,hello 就是我们前面定义的装饰器hello(由此可知装饰器其实就是一个函数)。 (2)在 hello 函数中,其需要一个 fn 的参数(这就用来做回调的函数) (3)hello 函数中返回了一个 inner 函数 wrapper,这个 wrapper 函数回调了传进来的 fn,并在回调前后加了两条语句。 2.Decorator的本质: (1)当你在用某个@decorator来修饰某个函数func时,其解释器会解释成下面这样的语句: func = decorator(func) (2)由下面的例子可以看到,hello(foo1)返回了wrapper()函数,所以,foo1其实变成了wrapper的一个变量,而后面的foo1()执行其实变成了wrapper()。 -------------------------------------------------------------------------------------------------------''' def hello1(fn): @functools.wraps(fn) def wrapper(): print "Hello function '%s'." % fn.__name__ fn() print "Goodbye function '%s'" % fn.__name__ return wrapper @hello1 def foo1(): ''' @summary: 打印一句话。 ''' print "I am function 'foo1'." '''------------------------------------------------------------------------------------------------------- Example-02:被装饰的函数有固定个数的参数(如 foo2(a, b)) @note: (1)被装饰的函数 foo2(a, b) 带有固定个数的参数; @note: (2)装饰器 hello(fn) 本身不带任何参数(严格上说只带有一个被装饰的function的名称); ---------------------------------------------------------------------------------------------------------- 1.说明: (1)function的参数在装饰器中以 wrapper(*args, **kwargs) 的形式传递; (2)关于function(*args, **kwargs)的意义请参阅这两个参数相关的说明; (3)*args参数表示可以同时接收n个参数,这n个参数与tuple的形式传递给函数; (4)*kwargs表示可以同时传n个key-value形式的参数,这n个key-value形式的参数以list形式传递给函数。 -------------------------------------------------------------------------------------------------------''' def hello2(fn): def wrapper(a, b): print "Hello function '%s'." % fn.__name__ print "Parameters are '%s' and '%s'." % (a, b) fn(a, b) print "Goodbye function '%s'." % fn.__name__ return wrapper @hello2 def foo2(a, b): print "Function 'foo2' parameters are '%s' and '%s'." % (a, b) '''------------------------------------------------------------------------------------------------------- Example-03:被装饰的函数带有不固定个数的参数 @note: (1)被装饰的函数 foo3(a, b) 带有2参数,foo3_1(a, b, c)带有3个参数; @note: (2)装饰器 hello(fn)接受动态个数的参数; ---------------------------------------------------------------------------------------------------------- 1.说明: (1)function的不固定个数参数在装饰器中以 wrapper(*args, **kwargs) 的形式传递; (2)*args参数表示可以同时接收n个参数(如(1, 2, 3)),这n个参数以tuple的形式传递给函数; (3)*kwargs表示可以同时传n个key-value形式的参数(如(a=1, b=2, c=3)),这n个key-value形式的参数以list形式传递给函数。 -------------------------------------------------------------------------------------------------------''' def hello3(fn): def wrapper(*args, **kwargs): print "Hello functiono '%s'." % fn.__name__ fn(*args, **kwargs) print "Goodbye function '%s'." % fn.__name__ return wrapper @hello3 def foo3(a, b): print "Function 'foo3(%s, %s)' is called. Result is '%s'." % (a, b, a+b) @hello3 def foo3_1(a, b, c): print "Function 'foo3_1(%s, %s, %s)' is called. Result is '%s'." % (a, b, c, a+b+c) '''------------------------------------------------------------------------------------------------------- Example-04:装饰器带参数 @note: (1)被装饰的函数 foo4(a) 带有1个参数,但调用该函数的时候不需要传参; @note: (2)装饰器带hello4(arg)带有1个参数; @note: (3)foo4(a)需要的参数由装饰器 hello4("xyz")中的参数来传递; ---------------------------------------------------------------------------------------------------------- 1.说明: (1)function的不固定个数参数在装饰器中以 wrapper(*args, **kwargs) 的形式传递; (2)*args参数表示可以同时接收n个参数,这n个参数与tuple的形式传递给函数; (3)*kwargs表示可以同时传n个key-value形式的参数,这n个key-value形式的参数以list形式传递给函数。 -------------------------------------------------------------------------------------------------------''' def hello4(arg): def wrapper(fn): def _wrapper(): print "Hello function '%s'." % fn.__name__ fn(arg) print "Goodbye function '%s'." % fn.__name__ return _wrapper return wrapper @hello4("xyz") def foo4(a): print "Function 'foo4(a)' is called. Parameter is '%s'." % a '''------------------------------------------------------------------------------------------------------- Example-05:以class作为装饰器参数 @note: (1)作为参数的class中带有Static Method,用于在装饰器中以cls.method的形式调用; @note: (2)本质上与Example-04差不多。 ---------------------------------------------------------------------------------------------------------- 1.说明: (1) -------------------------------------------------------------------------------------------------------''' class mylocker(object): def __init__(self): print "mylocker.__init__() called." @staticmethod def acquire(): print "mylocker.acuire() called." @staticmethod def unlock(self): print "mylocker.unlock() called." class lockerex(mylocker): @staticmethod def acquire(): print "lockerex.acuire() called." @staticmethod def unlock(): print "lockerex.unlock() called." def decorator_locker(cls): ''' @note: cls必须实现静态方法acquire和unlock ''' def _deco(fn): def __deco(*args, **kwargs): print "Before '%s' called." % fn.__name__ cls.acquire() fn(*args, **kwargs) cls.unlock() print "After '%s' called." % fn.__name__ return __deco return _deco @decorator_locker(lockerex) def foo5(): print "Function 'foo5()' is called." if __name__ == '__main__': print foo1() print foo1.__doc__ # foo2(1, 2) # foo3(1, 2) # foo3_1(1, 2, 3) # foo4() # foo5()
true
32327fdedaed80675002f85f360746e1f5719c89
Python
Ptrak/AdventOfCode2019
/problem7/solution.py
UTF-8
5,912
3.234375
3
[ "Apache-2.0" ]
permissive
import itertools def add(program, pc, mode1, mode2): if mode1 == 0: lhs_val = int(program[int(program[pc+1])]) elif mode1 == 1: lhs_val = int(program[pc+1]) if mode2 == 0: rhs_val = int(program[int(program[pc+2])]) if mode2 == 1: rhs_val = int(program[pc+2]) result = lhs_val + rhs_val #print("{} + {} = {}".format(lhs_val, rhs_val, result)) program[int(program[pc+3])] = str(result) return pc + 4 def multiply(program, pc, mode1, mode2): if mode1 == 0: lhs_val = int(program[int(program[pc+1])]) if mode1 == 1: lhs_val = int(program[pc+1]) if mode2 == 0: rhs_val = int(program[int(program[pc+2])]) if mode2 == 1: rhs_val = int(program[pc+2]) result = lhs_val * rhs_val program[int(program[pc+3])] = str(result) return pc + 4 def read(program, pc, mode1): if mode1 == 0: location = int(program[pc+1]) elif mode1 == 1: location = pc + 1 #print("PC: {} Reading Location: {}".format(pc, location)) print(" Value: {}".format(program[location])) return pc + 2 def jit(program, pc, mode1, mode2): if mode1 == 0: test_val = int(program[int(program[pc+1])]) elif mode1 == 1: test_val = int(program[pc + 1]) if mode2 == 0: jump_val = int(program[int(program[pc+2])]) if mode2 == 1: jump_val = int(program[pc+2]) if test_val != 0: return jump_val return pc + 3 def jnt(program, pc, mode1, mode2): if mode1 == 0: test_val = int(program[int(program[pc+1])]) elif mode1 == 1: test_val = int(program[pc + 1]) if mode2 == 0: jump_val = int(program[int(program[pc+2])]) if mode2 == 1: jump_val = int(program[pc+2]) if test_val == 0: return jump_val return pc + 3 def lt(program, pc, mode1, mode2): if mode1 == 0: lhs_val = int(program[int(program[pc+1])]) elif mode1 == 1: lhs_val = int(program[pc+1]) if mode2 == 0: rhs_val = int(program[int(program[pc+2])]) elif mode2 == 1: rhs_val = int(program[pc+2]) result = int(lhs_val < rhs_val) program[int(program[pc+3])] = str(result) return pc + 4 def eq(program, pc, mode1, mode2): if mode1 == 0: lhs_val = int(program[int(program[pc+1])]) elif mode1 == 1: lhs_val = int(program[pc+1]) if mode2 == 0: rhs_val = int(program[int(program[pc+2])]) elif mode2 == 1: rhs_val = int(program[pc+2]) result = int(lhs_val == rhs_val) program[int(program[pc+3])] = str(result) return pc + 4 def run_program(program, program_input, program_counter, phase_tmp): input_index = 0 output = None pc = program_counter while(1): instruction = program[pc] while(len(instruction) < 5) : instruction = "0" + instruction mode3 = int(instruction[0]) mode2 = int(instruction[1]) mode1 = int(instruction[2]) opcode = int(instruction[3:]) # add if opcode == 1: pc = add(program, pc, mode1, mode2) elif opcode == 2: pc = multiply(program, pc, mode1, mode2) elif opcode == 3: location = int(program[pc+1]) # val = input("Enter your value: ") # Read input given and automatically enter it val = program_input[input_index] input_index += 1 program[location] = val if phase_tmp == 4: print("inputting", val) pc += 2 elif opcode == 4: if mode1 == 0: location = int(program[pc+1]) elif mode1 == 1: location = pc + 1 #print(" Value: {}".format(program[location])) output = int(program[location]) pc += 2 return [output, pc, program] # Halt the program here. Resume after elif opcode == 5: pc = jit(program, pc, mode1, mode2) elif opcode == 6: pc = jnt(program, pc, mode1, mode2) elif opcode == 7: pc = lt(program, pc, mode1, mode2) elif opcode == 8: pc = eq(program, pc, mode1, mode2) elif opcode == 99: break else: print("invalid opcode!!!", opcode) break return [output, -1, -1] ## MAIN f = open('program.txt', 'r') #f = open('test_program.txt', 'r') og_program = f.readline().rstrip().split(',') f.close() max_output = -1 max_sequence = [0,0,0,0,0] sequences = itertools.permutations(range(5,10)) #sequences = itertools.permutations(range(5)) # for each sequence for sequence in sequences: current_output = 0 # current output accumulated programs = [og_program.copy(), og_program.copy(), og_program.copy(), og_program.copy(), og_program.copy()] # for tracking programs mid execution pcs = [0,0,0,0,0] # for tracking program counters mid execution while pcs[len(sequence)-1] > -1: phase_count = 0 for phase in sequence: program_input = [phase, current_output] if pcs[phase_count] != 0: program_input = [current_output] [output, program_counter, program_state] = run_program(programs[phase_count], program_input, pcs[phase_count], phase) # save the state of the program back programs[phase_count] = program_state pcs[phase_count] = program_counter if output: current_output = output # save module output phase_count += 1 print ("Sequence: {} Output: {}".format(sequence, current_output)) if current_output > max_output : max_output = current_output max_sequence = sequence print("max output: {} Max Sequence: {}".format(max_output, max_sequence)) program = og_program.copy()
true
b4819c07d5926b771165f74ec24f9b5070f15554
Python
YanWangNYUSH/CalcVIX
/graph.py
UTF-8
1,209
2.796875
3
[ "MIT" ]
permissive
import matplotlib.pyplot as plt import pandas as pd import numpy as np # use the commented code to generate to_daily.csv and true_vix.csv # result = pd.read_csv('Calculated_result.csv') # result['datetime']=pd.to_datetime(result['time']) # result.set_index(result['datetime'],inplace = True) # dayvix = result.resample('D').mean() # dayvix = dayvix.dropna() # dayvix.to_csv('to_daily.csv') # # true_vix = pd.read_csv('ivixx.csv',usecols = [u'日期',u'收盘价(元)'],encoding='GBK') # true_vix['date'] = pd.to_datetime(true_vix[u'日期'].copy()) # true_vix.set_index(true_vix['date'],inplace=True) # true_vix = true_vix.reindex(pd.date_range('2015-02-10','2019-10-22')).fillna(method='ffill') # true_vix = true_vix.drop(columns = [u'日期']) # true_vix.columns = ['price','date'] # true_vix.to_csv('true_vix.csv') result = pd.read_csv('to_daily.csv') true_vix = pd.read_csv('true_vix.csv') plt.title("Calculated VIX") plt.plot(result['datetime'], result['Calculated_VIX'], label='Calculated VIX') plt.plot(true_vix.index,true_vix['price'],label='true vix') plt.yticks(np.arange(0, 80, step=5)) plt.legend() fig = plt.gcf() fig.set_size_inches(28.5, 10.5) fig.savefig('test2png.png', dpi=100) plt.show()
true
28f9fab3e39f901aa33dab1b59a11f80193058cb
Python
pankaj-lewagon/mltoolbox
/mltoolbox/clean_data.py
UTF-8
534
3.5625
4
[]
no_license
import string def remove_punctuation(text): for punctuation in string.punctuation: text = text.replace(punctuation, '') return text def lowercase(text): text = text.lower() return text def remove_num(text): num_remove = ''.join(word for word in text if not word.isdigit()) return num_remove if __name__ == '__main__': print remove_num("121212 Pankaj 121212") print remove_punctuation("12121?????2 Pank2!!!aj 121212????") print lowercase("12121?????2 Pank2!!!aj XXXXXXXXX121212????")
true
89aad3d9d252c31de5f85d7722de94145432e99c
Python
dmitryhits/learning_python3
/reloadall3.py
UTF-8
677
2.875
3
[]
no_license
""" reloadall3.py: transitively reload nested modules (nested stack) """ import types from reloadall import status, tryreload, tester def transitive_reload(modules, visited): while modules: nextmod = modules.pop() status(nextmod) tryreload(nextmod) visited.add(nextmod) #print('VISITED:', visited) modules.extend(x for x in nextmod.__dict__.values() if type(x) == types.ModuleType and x not in visited and x not in modules) #print('MODULES;', modules) def reload_all(*modules): transitive_reload(list(modules), set()) if __name__ == '__main__': tester(reload_all, 'reloadall3')
true
03d9bf5cfdc9457715409c89c49dd0c30b7e741d
Python
Herohonour/Dict
/Dict/dict_client_v02.py
UTF-8
2,062
3.75
4
[]
no_license
""" 客户端 v2.0 1. 与服务端建立连接 2. 给用户显示功能菜单 3. 给服务端发送注册请求 """ from socket import * from getpass import getpass # 服务端地址 ADDR = ("127.0.0.1", 12306) # 建立套接字对象,并与服务端建立连接 s = socket() s.connect(ADDR) def do_register(): """ 注册逻辑: 输入用户名 用户名不能重复 - 查询user表中是否存在username,存在则不合规则 用户名当中不能含有特殊符号(空格......) - 获取到用户名之后,in 输入密码 密码当中不能含有特殊符号(空格......) - 获取到密码之后,in 确认密码 如果两次密码输入不正确,则注册失败 向服务端发送注册的请求:以 R 开头的请求 :return: """ while True: username = input("请输入用户名:") password = getpass("请输入密码:") password_again = getpass("请再次输入密码:") if password != password_again: print("两次输入的密码不一致") continue if (" " in username) or (" " in password): print("用户名或密码中有特殊符号") continue # 向服务端发送请求 msg = "R {} {}".format(username, password) s.send(msg.encode()) data = s.recv(1028).decode() if data == "OK": print("注册成功") else: print("注册失败") break def main(): # 处理客户端的主逻辑 while True: print("欢迎您: 1.注册 2.登录 3.退出") cmd = input("请选择功能(输入序号,并回车即可~)") if cmd == "1": do_register() elif cmd == "2": s.send("登录".encode()) elif cmd == "3": s.send("退出".encode()) else: print("请输入正确的序号~") if __name__ == '__main__': main()
true
785a4748e33e7c97b6d672bc1e0a9ec9a2bc286d
Python
Aasthaengg/IBMdataset
/Python_codes/p03993/s527132366.py
UTF-8
143
3.140625
3
[]
no_license
n = int(input()) a = [int(s) for s in input().split()] ans = 0 for i in range(n): if a[a[i]-1] == i + 1: ans += 1 print(ans // 2)
true
1b77b79c865f3b047e24fcee2f6408b13bcedbae
Python
maftuna-coder/Python-Programming-3
/exercise3solution.py
UTF-8
478
3.75
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Feb 7 10:01:01 2019 @author: Maftuna """ def XOR(a,b,c): a = int(a) b = int(b) c = str("XOR") if ((a and not b) or (not a and b))==1: return 1 else: return 0 def Main(): a = input("enter value for first input -> ") b = input("enter value for second input -> ") c ='XOR' x = XOR(a,b,c) print ("Output of {} XOR {} is {}".format(a, b, x)) Main()
true
fca047c54adb9e66960bfda79cb32a1126e1f9ae
Python
k0syan/Kattis
/booking_a_room.py
UTF-8
365
3.453125
3
[]
no_license
if __name__ == "__main__": tmp = input().split() r, n = int(tmp[0]), int(tmp[1]) rooms = [] while n != 0: room = int(input()) rooms.append(room) n -= 1 if len(rooms) == r: print("too late") else: for i in range(1, r + 1): if i not in rooms: print(i) break
true
e5e84ebe45d6b3ee03e7dcd5ebd5f5594ae5eba6
Python
pastly/tor-ircbot
/member.py
UTF-8
4,374
3.109375
3
[]
no_license
from time import time class Member: def __init__(self, nick, user=None, host=None): self.nick = nick self.user = user self.host = host def __str__(self): return '{}!{}@{}'.format(self.nick, self.user, self.host) def set(self, nick=None, user=None, host=None): if nick: self._set_nick(nick) if user: self._set_user(user) if host: self._set_host(host) def _set_nick(self, nick): self.nick = nick def _set_user(self, user): self.user = user def _set_host(self, host): self.host = host class MemberList: def __init__(self, recent_until=10.00): self._members = set() self._recent = [] self._recent_until = recent_until def __len__(self): return len(self._members) def __iter__(self): return self._members.__iter__() def add(self, nick, user=None, host=None): if not self.contains(nick=nick): m = Member(nick, user, host) self._members.add(m) self._recent.append((time(), m)) else: member = self.__getitem__(nick) member.set(user=user, host=host) self._trim_recent() def remove(self, nick): member = self.__getitem__(nick) if not member: return self._members.discard(member) self._recent = [(at, m) for at, m in self._recent if m.nick != nick] self._trim_recent() def discard(self, nick): return self.remove(nick) def contains(self, nick=None, user=None, host=None): assert nick is not None or user is not None or host is not None match_nick, match_user, match_host = False, False, False if nick: match_nick = self._contains_nick(nick) if user: match_user = self._contains_user(user) if host: match_host = self._contains_host(host) if nick and not user and not host: return True if match_nick else False if user and not nick and not host: return True if match_user else False if host and not nick and not user: return True if match_host else False if nick and user and not host: return True if match_nick == match_user and match_nick else False if nick and host and not user: return True if match_nick == match_host and match_nick else False if user and host and not nick: return True if match_user == match_host and match_user else False if match_nick == match_user and match_nick == match_host: return True if match_nick else False return False def _contains_nick(self, nick): m = self.__getitem__(nick) return m if m else False def _contains_user(self, user): user = user.lower() for m in self: if m.user.lower() == user: return m return False def _contains_host(self, host): host = host.lower() for m in self: if m.host.lower() == host: return m return False def __getitem__(self, nick): nick = nick.lower() for m in self: if m.nick.lower() == nick: return m return None def matches(self, user=None, host=None): assert user is not None or host is not None matching_users = [] matching_hosts = [] if user: user = user.lower() if host: host = host.lower() for m in self: if user and m.user.lower() == user: matching_users.append(m) if host and m.host.lower() == host: matching_hosts.append(m) if user and host: return matching_users, matching_hosts if user: return matching_users return matching_hosts def _trim_recent(self): new_recent = [] now = time() for at, m in self._recent: if at + self._recent_until >= now: new_recent.append((at, m)) self._recent = new_recent def get_joined_since(self, t): members = set() for at, m in self._recent: if at >= t: members.add(m) return members
true
99821a5e24fced3323c4b73c9fc578ac822a1f9f
Python
kexinyi/crowdsource
/python/nebulosity_mask.py
UTF-8
4,772
2.625
3
[]
no_license
#!/usr/bin/env python from __future__ import print_function, division import keras import keras.models as kmodels import numpy as np def equalize_histogram(img, n_bins=256, asinh_stretch=False): # from http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html # Stretch the image with asinh in order to get more even histogram if asinh_stretch: vmin = np.nanmin(img) scale = np.nanpercentile(img-vmin, 50.) img = np.arcsinh((img-vmin) / scale) # get image histogram img_histogram, bins = np.histogram(img.flatten(), n_bins, density=False) cdf = img_histogram.cumsum() # cumulative distribution function cdf = 255 * cdf / cdf[-1] # normalize # use linear interpolation of cdf to find new pixel values img_equalized = np.interp(img.flatten(), bins[:-1], cdf) return img_equalized.reshape(img.shape), cdf def equalize_histogram_wise(img, n_bins=256, asinh_stretch=False): # tweaked version for WISE import numpy as np # Stretch the image with asinh in order to get more even histogram if asinh_stretch: vmed = np.nanmedian(img) scale = np.nanpercentile(img, 30.)-np.nanpercentile(img, 10) scale = np.clip(scale, 100, np.inf) img = np.arcsinh((img-vmed) / scale) # get image histogram img_histogram, bins = np.histogram(img.flatten(), n_bins, density=False) cdf = img_histogram.cumsum() # cumulative distribution function cdf = 255 * cdf / cdf[-1] # normalize # use linear interpolation of cdf to find new pixel values img_equalized = np.interp(img.flatten(), bins[:-1], cdf) return img_equalized.reshape(img.shape), cdf def load_model(fname_base): with open(fname_base + '.json', 'r') as f: model_json = f.read() model = kmodels.model_from_json(model_json) model.load_weights(fname_base + '.h5') return model def subimages(img, shape): j = np.arange(0, img.shape[0]+shape[0]-1, shape[0], dtype=int) k = np.arange(0, img.shape[1]+shape[1]-1, shape[1], dtype=int) for j0, j1 in zip(j[:-1], j[1:]): for k0, k1 in zip(k[:-1], k[1:]): yield j0, k0, img[j0:j1, k0:k1] def gen_mask(model, img): img = np.pad(img, 1, mode='constant', constant_values=np.median(img)) _, h, w, _ = model.layers[0].input_shape mask = np.empty(img.shape, dtype='u1') for j0, k0, subimg in subimages(img, (h, w)): subimg, _ = equalize_histogram(subimg.astype('f8'), asinh_stretch=True, n_bins=3000) subimg /= 255. subimg.shape = (1, subimg.shape[0], subimg.shape[1], 1) pred = model.predict(subimg, batch_size=1)[0] mask[j0:j0+h, k0:k0+w] = np.argmax(pred*[0.25, 1, 1, 1]) return mask[1:-1, 1:-1] def gen_mask_wise(model, img): _, h, w, _ = model.layers[0].input_shape mask = np.empty(img.shape, dtype='u1') for j0, k0, subimg in subimages(img, (h, w)): subimg, _ = equalize_histogram_wise(subimg.astype('f8'), asinh_stretch=True, n_bins=3000) subimg /= 255. subimg.shape = (1, subimg.shape[0], subimg.shape[1], 1) pred = model.predict(subimg, batch_size=1)[0] # light, normal, nebulosity predcondense = np.argmax(pred*[1., 1., 0.5]) mask[j0:j0+h, k0:k0+w] = predcondense # if predcondense == 2: # print(pred) mask[mask == 0] = 1 # nebulosity_light -> normal return mask def test_plots(model, imfns, extname='N26'): from matplotlib import pyplot as p from astropy.io import fits import os for timfn in imfns: tim = fits.getdata(timfn, extname='S7') mask = gen_mask(model, tim) if np.any(mask != 2): print(timfn, np.sum(mask == 0)/1./np.sum(np.isfinite(mask)), np.sum(mask == 1)/1./np.sum(np.isfinite(mask)), np.sum(mask == 3)/1./np.sum(np.isfinite(mask))) p.clf() p.imshow(((tim-np.median(tim))).T, aspect='equal', vmin=-50, vmax=50, interpolation='none', cmap='binary', origin='lower') p.imshow(mask.T, cmap='jet', alpha=0.2, vmin=0, vmax=3, interpolation='none', origin='lower') p.draw() p.savefig(os.path.basename(timfn)+'.mask.png') def main(): from PIL import Image model = load_model('toy_data/19th_try') img = Image.open('toy_data/test_image.png') img = np.array(img) mask = gen_mask(model, img) mask = Image.fromarray((255.*mask/2.).astype('u1'), mode='L') mask.save('toy_data/test_image_mask.png') return 0 if __name__ == '__main__': main()
true
a64337580de37dbd4fb4c6c6e09c8e45a9e26420
Python
rghiglia/Yelp
/yelp_start_20160620b_bkp.py
UTF-8
10,054
2.609375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Jun 10 08:23:23 2016 @author: rghiglia """ import matplotlib.pyplot as plt # Wasn't necessary. Used winzip and now files are in JSON # Use this to unzip #import gzip # ## Extract files #dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp' #fnz = 'sample_submission.csv.gz' #fnzL = dnm + '\\' + fnz #fnmL = fnzL[:-3] # remove the '.gz' from the filename # ## Read from .gz #with gzip.open(fnzL, 'rb') as in_file: # s = in_file.read() # ## Store uncompressed file data from 's' variable #with open(fnmL, 'w') as f: # f.write(s) # ---------------------------------------------------------------------------- # Extract data # ---------------------------------------------------------------------------- #dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp' #fnm = 'yelp_academic_dataset_checkin.json' #fnmL = dnm + '\\' + fnm ## Trials ##import pandas as pd ##df = pd.read_json(fnmL) ### Error: ###ValueError: Trailing data ## ##import sys ##sys.path.append(dnm) ##import json_to_csv_converter ### Worked now ## ### nope: json_to_csv_converter(fnmL) ## ##fnmO = 'yelp_academic_dataset_checkin.csv' ##fnmOL = dnm + '\\' + fnmO ## List files #import glob #fnmO = glob.glob(dnm + '\\' + '*.json') # #for f in fnmO: # print "Processing file '{}'".format(f) # clmns = json_to_csv_converter.get_superset_of_column_names_from_file(f) # read_and_write_file(f, f.replace('.json','.csv'), clmns) #import pandas as pd #dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp' # # #fnm = 'yelp_academic_dataset_checkin.csv' #df_checkin = pd.read_csv(dnm + '\\' + fnm) ## Worked! # #fnm = 'yelp_academic_dataset_business.csv' #df_busines = pd.read_csv(dnm + '\\' + fnm, dtype=object) ### Error: ##C:\Users\rghiglia\Anaconda2\lib\site-packages\IPython\core\interactiveshell.py:2723: DtypeWarning: Columns (1,4,7,17,29,49,60,62,79,86,94) have mixed types. Specify dtype option on import or set low_memory=False. ## interactivity=interactivity, compiler=compiler, result=result) ## Ok, worked # #fnm = 'yelp_academic_dataset_review.csv' #df_review = pd.read_csv(dnm + '\\' + fnm) # #fnm = 'yelp_academic_dataset_tip.csv' #df_tip = pd.read_csv(dnm + '\\' + fnm) # #fnm = 'yelp_academic_dataset_user.csv' #df_usr = pd.read_csv(dnm + '\\' + fnm) # DO NOT ERASE THIS PART! import pandas as pd dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp' import time start_time = time.time() # Assign data to dataframes import glob fnm = glob.glob(dnm + '\\' + '*.csv') nm_df = [f.replace(dnm,'').replace('\\yelp_academic_dataset_','').replace('.csv','') for f in fnm] dfs = {nm: None for nm in nm_df} for nm, f in zip(nm_df, fnm): print "Processing file '{0}' ...".format(nm) dfs[nm] = pd.read_csv(f, dtype=object) print("--- %s seconds ---" % (time.time() - start_time)) ## Try to save data to file # #fnmO = (dnm + '\\' + 'yelp_data.pkl') #import time #import dill #pip install dill --user #start_time = time.time() #dill.dump_session(fnmO) #print("--- %s seconds ---" % (time.time() - start_time)) ## Load session #import time #start_time = time.time() #dnm = r'C:\Users\rghiglia\Documents\ML_ND\Yelp' #fnmO = (dnm + '\\' + 'yelp_data.pkl') #import dill #pip install dill --user #dill.load_session(fnmO) #print("--- %s seconds ---" % (time.time() - start_time)) ## Takes almost 10 times than reading data in ... # See Yelp.ptx for data structure # Now study the data # dfs is a list of data frames # ----------------------------------------------------------------------------- # Business # ----------------------------------------------------------------------------- df = dfs['business'] df.info() df.shape df.count() # already a summary of non-nulls but the code below extract more info # 77k entries, with 98 columns # Reorder # Unique business_id? # Order by non-nulls # This is a good way to summarize data: # Fisrt column is the column name # Second column is how many non-null entries # Third column is how many distinct values it has # Use following to import import sys sys.path.append(r'C:\Users\rghiglia\Documents\ML_ND\Toolbox') from rg_toolbox_data import df_summarize nn = df_summarize(df) # Notes: # busID is unique nB IDs # things like full_address: # all have an entry but not nB uniques # since they are all different businesses, either you have two businesses # at the same address or there might be a default value that is not a null # There are 9710 categories # I want to know how many entries we have for each category # I think that's a groupby thingy #grp = pd.groupby(df, 'categories') #df_tmp = grp.count() #df_tmp.info() # Much better implementation grp_cat = df.groupby('categories').size().sort_values(ascending=False) # I see, so the value for category is actually a multiple thing already: df.ix[0,'categories'] # If you want to start analysing the data I think you need to split those apart # One of the question has to do with cities. Can I get that info from somewhere? grp_city = df.groupby('city').size().sort_values(ascending=False) # Usual crap ... # there might be some bad character, I can't use the variable explorer # Then: different spelling of Montreal, maybe Mathews, etc. #Cities: # # U.K.: Edinburgh # Germany: Karlsruhe # Canada: Montreal and Waterloo # U.S.: Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison #So you might want to add country as a tag # I think I want to stick with restaurants, so you'll need to filter them out # The first question has to do with preferences: parking, type of food, etc. # is there a bias US vs. EU? # Second question has to do with location. I guess you'd try to relate business # success with location, how do you define success? stars? # Third question about seasonal effects. This is across categories. Could be # interesting, but is it machine learning? I guess ML might just be: find a # relationship ... # Fourth question: non-intuitive categories. Complex, might need NLP # Fifth question: NLP. Guess review rating from text. Wow! # Sixth question: VERY VERY IMPORTANT!!!!!!!! #Changepoints and Events: Can you detect when things change suddenly (i.e. a business coming under new management)? Can you see when a city starts going nuts over cronuts? # Jeez, I thought the underlying assumption is of stationarity! # Welcome to the real world!!!!! #Social Graph Mining: Can you figure out who the trend setters are and who found the best waffle joint before waffles were cool? How much influence does my social circle have on my business choices and my ratings? # Also very interesting and complex!! # All-in-all very rich! I think I will stick with this data set. There is plenty of stuff to work on # Start with a simple thing: # Is stuff time-varying? # Seasonalities? # Interests and country bias? # Let's see reviews per busID # Start with most common busID # Look into Review data set df = dfs['review'].copy() df.info() df.head() # Discard text for now df.drop('text', axis=1, inplace=True) df.info() df.head() nn = df_summarize(df) #grp = df.groupby(['business_id', 'review_id']) #grp_s = grp.size().sort_values(ascending=False) #grp_s[0:5] #!df.groupby(['business_id', 'review_id']).count() bID_grp = df[['business_id', 'review_id']].groupby(['business_id']).count() bID_grp.sort_values('review_id', ascending=False, inplace=True) # Let's look at the most popular business rec = dfs['business'][dfs['business']['business_id']==bID_grp.index[0]] # Plot the average star rating over time fgsz = (5, 3) i0 = 145 revs = dfs['review'][dfs['review']['business_id']==bID_grp.index[i0]] if 'text' in revs.columns: revs.drop('text', axis=1, inplace=True) x = revs['stars'].astype(int) #s = pd.Series(revs['stars'].astype(int), index=revs['date']) # doesn't work ... not sure why s = revs['stars'].astype(int) s.index = revs['date'] s.sort_index(axis=0, ascending=True, inplace=True) fig = plt.figure(figsize=fgsz) s.plot() pd.rolling_mean(s, 100).plot(color='r') # Time-varying nature of ratings seems quite interesting! # Review df.info() bID_grp = df['business_id'].count() bID_grp.count() #pd.value_counts(d[["col_title1","col_title2"]].values.ravel()) grp = pd.value_counts(df[['business_id']].values.ravel()) # .ravel() flattens the dataframe grp = pd.value_counts(df['business_id']) # I think what you had in mind was: bID_grp = df.groupby(['business_id', 'review_id']) # or bID_grp = df.groupby(['business_id', 'user_id', 'review_id']) # possibly same reviewer made mutliple reviews to the same place; that could be an indication of change in management or other relevant change especially if dates are farther apart bID_grp.count() df['stars'] = df['stars'].astype(int) bID_grp = df.groupby(['business_id', 'user_id']) stat = bID_grp['stars'] stat.agg('mean') df_tmp = stat.agg('count') type(df_tmp) # Series with a multi-index I assume # Can you sort it? # Sort by most popular b_id then reviewer largest number of reviews # Possible, will look into if necessary # In simplest form: grp = pd.value_counts(df['business_id']) type(grp) # Series df_b_id = pd.DataFrame({'b_id': grp.index, 'cnt': grp.values}) df_b_id.head() df_b_id['cnt'].plot(figsize=fgsz) # Thing is you have to control for age, so maybe you want to look at reviews per week # There might be methods for aggregating over time #by_week = df['date'].groupby(lambda x: x.week) ## Didn't work # Probably need to convert date to appropriate date obect #https://docs.python.org/2/library/datetime.html#datetime.datetime.strptime from datetime import datetime date_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p') n = len(df) ## This will take an ENORMOUS amount of time! #for (i, d) in enumerate(df['date']): # print "%i %i" % (i, n) # df['date'].iloc[i] = datetime.strptime(d, '%Y-%m-%d') d_tmp = set(df['date']) nU = len(d_tmp) for (i, d) in enumerate(d_tmp): print "%i %i" % (i, nU) d_tpp = datetime.strptime(d, '%Y-%m-%d') df['date'][df['date']==d] = d_tpp df_tmp
true