blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
51798a388b3fe2392c3e3bcaf15594836ab91f62
Python
aliutkus/beads-presentation
/src/beads.py
UTF-8
12,302
3.25
3
[]
no_license
import numpy as np from scipy.special import erf from scipy.stats import norm import numbers from copy import copy from itertools import product import matplotlib.pyplot as plt from matplotlib import patches def cgauss(x, mu, sigma): return np.real(1./np.pi/sigma*np.exp(-np.abs(x-mu)**2 / sigma)) def vec(z): # makes a bidimensional array out of complex z z = np.array(z) return np.concatenate((np.real(z[None, ...]), np.imag(z[None, ...]))) def w(n): return np.exp(1j*2*np.pi/n) class Distribution(object): """Distribution: base class for the probabilistic models. Implements just the basics about the weight of this object, for convenience in the mixture models.""" def __init__(self): # initialize the weight to 1 self.weight = 1 def pdf(self, z): # will compute the pdf. To be overridden pass def __rmul__(self, other): # multiplying left-wise by a scalar means modifying the weight if isinstance(other, numbers.Number): result = copy(self) result.weight *= other return result elif other is None: return self else: raise ArithmeticError('Cannot left multiply a distribution ' 'by anything else than a number, for ' 'the purpose of assigning a weight.') def contour(self, canvas, ax=None, nlines=20, **kwargs): if ax is None: fig, ax = canvas.fig() density = self.pdf(canvas.Z) levels = np.linspace(density.min(), density.max(), nlines) ax.contour(canvas.X, canvas.Y, density, levels=levels, **kwargs) plt.show() def draw(self, num): # will draw num samples from the distribution pass class Bead(Distribution): """Bead: A Bead object is a simple complex isotropic Gaussian.""" def __init__(self, mu, sigma): super().__init__() self.mu = mu self.sigma = sigma self.references = [] def pdf(self, z): return self.weight * cgauss(z, self.mu, self.sigma) def __copy__(self): result = Bead(self.mu, self.sigma) result.weight = self.weight return result def draw(self, num): # draws samples from the isotropic gaussian return ((np.random.randn(num)+1j*np.random.randn(num) * np.sqrt(self.sigma) + self.mu)) def plot(self, canvas, ax, color, **kwargs): if self.sigma is not None: Canvas.circle(ax, self.mu, np.sqrt(self.sigma), color=color, linewidth=3, fill=True, alpha=0.3, **kwargs) ax.plot(np.real(self.mu), np.imag(self.mu), 'o', markersize=20, color=color) plt.show() @staticmethod def fromBeads(references): mean = sum([ref.mu for ref in references]) sigma = sum([ref.sigma for ref in references]) result = Bead(mean, sigma) result.references = references return result class Donut(Distribution): """Donut: The Donut class implements the ideal distribution that the BEADS model approximates.""" def __init__(self, mu, b, sigma): super().__init__() self.mu = mu self.b = b self.sigma = sigma/2 def pdf(self, z): radius = np.abs(z-self.mu) F = norm(self.b, self.sigma) # the normalizing constant for the donut distribution is # \int_{r,\theta}f\left(r\mid b,\sigma\right)drrd\theta # =\pi b(1-erf(-\frac{b}{\sigma\sqrt{2}})) # +\sqrt{2\pi}\exp(-\frac{b^{2}}{2\sigma2})$ Z = (np.pi * self.b * (1-erf(-self.b / self.sigma / np.sqrt(2))) + np.sqrt(2 * np.pi)*np.exp(-self.b**2/2/self.sigma**2)) return self.weight / Z * F.pdf(radius) def __copy__(self): result = Donut(self.mu, self.b, self.sigma) result.weight = self.weight return result def draw(self, num): phases = np.random.rand(num)*2*np.pi radius = np.random.randn(num)*np.sqrt(self.sigma)+self.b return radius * np.exp(1j*phases) class GMM(Distribution): """GMM: A Gaussian Mixture Model is a collection of Bead objects. The objects are in arbitrary numbers and positions, with arbitrary weights.""" def __init__(self): super().__init__() self.components = [] self.product_of = [] def total_weight(self): return self.weight * sum([comp.weight for comp in self.components]) def __iadd__(self, other): if not (isinstance(other, Bead) or isinstance(other, GMM)): raise ArithmeticError('can only add a GMM or a Bead to a GMM') if isinstance(other, Bead): # if we want to add a Bead, we simply append it to the components self.components += [other] return self # more complicated case: we add one GMM to another. In this case, # we need to weight the components of each according to each GMM # global weight, and doing so, we make new copies of the Bead objects. # the multiplication creates new copies self.components = [self.weight * comp for comp in self.components] other_components = [other.weight * comp for comp in other.components] self.components += other_components total_weight = sum([comp.weight for comp in self.components]) for comp in self.components: comp.weight /= total_weight self.weight = total_weight return self def __add__(self, other): result = copy(self) result += other return result def pdf(self, z): result = np.zeros(z.shape) for component in self.components: result += component.pdf(z) return result def __copy__(self): result = GMM() result.weight = self.weight result.components = [comp for comp in self.components] return result def draw(self, num): # get the weights weights = [comp.weight for comp in self.components] weights /= weights.sum() # draw the random selection of the components according to weights select = np.random.multinomial(1, weights, num) # build the result result = np.empty((num,)) for i, comp in enumerate(self.components): indices = np.nonzero(select[:, i]) result[indices] = comp.draw(len(indices)) return result def __mul__(self, other): if other is None: return self if not isinstance(other, (GMM, Beads)): raise ArithmeticError('Can only multiply GMM with GMM') if other in self.product_of: raise ArithmeticError('Cannot include twice the same GMM in a' 'product. Another one is needed.') result = GMM() # we want the product not to be nested: all operands need to be # simple GMM and not already part of the product def flatten(a, b, attr): attr_a = getattr(a, attr) attr_b = getattr(b, attr) res = attr_a + attr_b if not len(attr_a): res += [a] if not len(attr_b): res += [b] return res result.product_of = flatten(self, other, "product_of") # now incorporate all couples in the product components for a, b in product(self.components, other.components): references = flatten(a, b, "references") result += Bead.fromBeads(references) return result def post(self, mix, x): # if self is independent from mix, just return a copy if self not in mix.product_of: return copy(self) result = GMM() # We handle here the general case where the sources are general GMMs total_weight = 0 for xcomp in mix.components: scomp = [c for c in self.components if c in xcomp.references] if len(scomp) != 1: raise IndexError('One mix component featured no unique' 'Bead object from the source as' 'reference') scomp = scomp[0] sigmas = scomp.sigma sigmax = xcomp.sigma G = sigmas/sigmax pi_post = scomp.weight * xcomp.pdf(x) result += pi_post * Bead(scomp.mu+G*(x-xcomp.mu), sigmas*(1-G)) total_weight += pi_post for comp in result.components: comp.weight /= total_weight return result def plot(self, canvas, ax, color): for comp in self.components: comp.plot(canvas, ax, color) @staticmethod def product(factors): # multiplying the elements of a list result = None for factor in factors: result *= factor return result class Beads(GMM): def __init__(self, mu, b, sigma, weights): super().__init__() if isinstance(weights, int): weights = np.ones(weights) weights /= weights.sum() n = len(weights) omega = mu + b * w(n)**np.arange(0, n, 1) for (center_c, pi_c) in zip(omega, weights): self += pi_c * Bead(center_c, sigma) class Canvas: def __init__(self, minx, maxx, Nx, miny, maxy, Ny): self.Nx = Nx self.Ny = Ny self.minx = minx self.maxx = maxx self.miny = miny self.maxy = maxy # create a meshgrid X = np.linspace(minx, maxx, Nx) Y = np.linspace(miny, maxy, Ny) self.X, self.Y = np.meshgrid(X, Y) self.Z = self.X + 1j*self.Y def fig(self, subplots=1): (fig, ax) = plt.subplots(1, subplots) self.clear(ax) fig.show() return (fig, ax) def ax(self, title='Figure'): fig, ax = self.fig() return ax def clear(self, ax): if not isinstance(ax, np.ndarray): ax = [ax] for a in ax: a.clear() a.set_xlim([self.minx, self.maxx]) a.set_ylim([self.miny, self.maxy]) a.set_xlabel('Real part', fontsize=13) a.set_ylabel('Imaginary part', fontsize=13) a.grid(True) """def plot(self, distributions, ax, colors=None, **kwargs): if not isinstance(distributions, list): distributions = [distributions] if colors is not None: for (dist, color) in zip(distributions, colors): dist.plot(self, ax, color, **kwargs) else: for dist in distributions: dist.plot(self, ax, **kwargs)""" @staticmethod def circle(ax, center, radius, color, **kwargs): ax.add_artist(patches.Circle((np.real(center), np.imag(center)), radius, facecolor=color, edgecolor=color, **kwargs)) plt.show() """def circles(self, ax, centers, radius, colors, **kwargs): if ax is None: ax = self.ax() if isinstance(radius, numbers.Number): radius = [radius] if isinstance(centers, numbers.Number): centers = [centers] * len(radius) for (center, rad, color) in zip(centers, radius, colors): self.circle(ax, center, rad, color, **kwargs)""" @staticmethod def arrow(ax, start, delta, **kwargs): h = ax.arrow(np.real(start), np.imag(start), np.real(delta), np.imag(delta), head_width=1, head_length=1, length_includes_head=True, **kwargs) plt.show() return h """@staticmethod def arrows(ax, starts, deltas, colors, **kwargs): h = [] for start, delta, color in zip(starts, deltas, colors): h += [Canvas.arrow(ax, start, delta, color=color(200), **kwargs)] return h""" @staticmethod def text(ax, pos, text): ax.text(np.real(pos), np.imag(pos), text, fontsize=13) @staticmethod def connect(fig, fn): return fig.canvas.mpl_connect('button_press_event', fn)
true
e04c7e1f8192a52f14b1f56fcc7d90443cf86ca2
Python
Rambaldelli/SVM-GOR-Secondary-Structure-Prediction-Comparison
/BlindSet_save.py
UTF-8
1,939
2.546875
3
[]
no_license
import json import glob from numpy import argmax dic = {} with open('blindSet.json', 'w') as D: path = 'blindT/dssp/blind_test_dssp/*.dssp' files = glob.glob(path) for file in files: id=file.split('/')[3] id=id.split(':')[0] f = open(file, 'r') F = f.readlines() dic[id] = {} dic[id]['str']='' dic[id]['seq']='' for lin in F: #dssp if (lin[16] == 'H' or lin[16] == 'G' or lin[16] == 'I'): dic[id]['str']=dic[id]['str']+'H' elif (lin[16] == 'B' or lin[16] == 'E'): dic[id]['str']=dic[id]['str']+'E' else: dic[id]['str']=dic[id]['str']+'-' #fasta(sequence) if lin[13].islower(): dic[id]['seq']=dic[id]['seq']+'C' else: dic[id]['seq']=dic[id]['seq']+lin[13] # profile (if pssm missing create profiles one hot) # define input string data = dic[id]['seq'] # define universe of possible input values alphabet = 'ARNDCQEGHILKMFPSTWYVX' # define a mapping of chars to integers char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) # integer encode input data integer_encoded = [char_to_int[char] for char in data] # one hot encode onehot_encoded = list() for value in integer_encoded: letter = [0 for _ in range(len(alphabet))] letter[value] = 1 onehot_encoded.append(letter) dic[id]['prof'] = onehot_encoded # SVM class dic[id]['SVMclass'] = [] for i in dic[id]['str']: if i == 'H': dic[id]['SVMclass'].append(1) elif i == 'E': dic[id]['SVMclass'].append(2) else: dic[id]['SVMclass'].append(3) json.dump(dic, D)
true
82795d57dc9450901460beaafea0c02694a1f88a
Python
kartiktodi/PolySpider
/src/PolySpider/util/CategoryUtil.py
UTF-8
8,661
2.671875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- import os ''' 使用方法: 由于不同的应用商店对应的分类不同,抓取到的应用进行分类整理也不能完全按照分类名来新建分类 为了统一分类,采取91助手的分类作为默认分类方式,并为每一个分类定义一个ID 建立一个字典,key为应用市场中抓取的分类名,value为对应的分类ID 当所有市场中的分类名称都已经在字典中定义以后,就可以直接通过抓取分类名来将应用对应到我们的分类列表中来。 ''' ''' 应用名称 ID(后两位为00,预留,如果有子分类的话,可以利用,比如游戏有自分类的话可以是4601,4602这样) new category 根据GooglePlay分类规则进行分类 个性化 1000 交通运输 1100 体育 1200 健康与健身 1300 动态壁纸 1400 动漫 1500 医药 1600 商务 1700 图书与工具书 1800 天气 1900 娱乐 2000 媒体与视频 2100 小部件 2200 工具 2300 摄影 2400 效率 2500 教育 2600 新闻杂志 2700 旅游与本地出行 2800 生活时尚 2900 社交 3000 财务 3100 购物 3200 软件与演示 3300 通讯 3400 音乐与音频 3500 游戏 3600 其他 3700 ''' CATEGORY_ID = { ## Common '未分类' : '0', '其他' : '1000', ## App_star '阅读资讯' : '2700', '电子书' : '1800', '输入法' : '2300', '休闲益智' : '3600', '动作竞技' : '3600', '体育竞速' : '3600', '健康美食' : '1300', '系统工具' : '2300', '主题桌面' : '1000', '音乐视频' : '3500,2100', '社交' : '3000', '办公' : '2500', '交通地图' : '1100', ## 小米商城 '影音视听':'3500,2100', '图书与阅读':'1800', '效率办公':'2500', '生活':'2900', '摄影摄像':'2400', '体育运动':'1200', '娱乐消遣':'2000', '实用工具':'2300', '聊天与社交':'3000', '学习与教育':'2600', '时尚与购物':'3200', '旅行与交通':'1100,2800', '医疗与健康':'1300', '新闻':'2700', '理财':'3100', '策略':'3600', '竞速':'3600', '棋牌':'3600', '音乐游戏':'3600', '飞行模式':'3600', '动作冒险':'3600', '角色扮演':'3600', '体育运动':'3600', '益智解密':'3600', '重力感应':'3600', #安卓市场 '工具':'2300', '对战格斗':'3600', '其他游戏':'3600', '便捷生活':'2900', '网购支付':'3100', '资讯':'2700', '赛车竞速':'3600', '拍摄美化':'2400', '模拟经营':'3600', '聊天通讯':'3400', '动态壁纸':'1400', '出版-生活情感':'1800', '社交网络':'3000', '网络模拟':'2300', '策略游戏':'3600', '站外应用':'2300', '淘宝店铺':'3200', '效率':'2500', '射击游戏':'3600', '其他软件':'3700', '金融理财':'3100', '新闻资讯':'2700', '通讯':'3400', '辅助工具':'2300', '棋牌桌游':'3600', '影音':'2100,3500', '经营':'3600', '书籍阅读':'1800', '浏览器':'3300', '系统安全':'2300', '通信':'3400', '益智游戏':'3600', '学习办公':'2500', '阅读':'1800', '卡片棋牌':'3600', '主题插件':'1000', '出版-文史小说':'1800', '出行':'2800', '虚拟养成':'3600', '健康':'1300', '生活实用':'2900', '影音图像':'3500,2100', '体育':'1200', '休闲':'3600', '壁纸美化':'1400', '拍照':'2400', '通话通讯':'3400', '角色冒险':'3600', '动作格斗':'3600', '个性化':'1000', '原创-言情':'1800', '角色':'3600', '原创-都市':'1800', '购物':'3200', '安全':'2300', '网游':'3600', '射击':'3600', '图书阅读':'1800', '教育':'2600', '购物娱乐':'3200,2000', '飞行射击':'3600', '原创-玄幻':'1800', '原创-历史':'1800', '经营策略':'3600', '经营养成':'3600', '影音播放':'2100,3500', '益智':'3600', '手机网游':'3600', '网络社区':'3000', '地图导航':'2800', '理财购物':'3100,3200', '原创-仙侠':'1800', '原创-竞技':'1800', '出版-养生保健':'1800', '儿童':'2600', '原创-屌丝':'1800', '原创-穿越':'1800', '游戏':'3600', '原创-惊悚':'1800', '原创-军事':'1800', '原创-网络':'1800', '原创-科幻':'1800', '出版-时尚娱乐':'1800', '出版-经管励志':'1800', '原创-同人':'1800', '休闲益智':'3600', '动作射击':'3600', '体育竞技':'3600', '网络游戏':'3600', '棋牌游戏':'3600', '策略塔防':'3600', '卡牌策略':'3600', '动漫':'3600', '生活时尚':'2900', '回合战斗':'3600', '媒体与视频':'2100', '精选游戏':'3600', '交通运输':'1100', '音乐与音频':'3500', '射击冒险':'3600', '健康与健身':'1300', '词典':'2300', '娱乐':'2000', '必备软件':'3300', '益智和解谜':'3600', '有声读物':'1800', '休闲其它':'3600', '天气':'1900', '新闻杂志':'2700', '最新游戏':'3600', '软件与演示':'3300', '图书与工具书':'1800', '摄影':'2400', '纸牌和赌博':'3600', '财务':'3100', '中文游戏':'3600', '医药':'1600', '旅游与本地出行':'2800', '商务':'1700', '即时动作':'3600', '网站应用':'3300', '街机和动作':'3600', '即时动作':'3600' } CATEGORY_NAME = { '0' :'未分类', '1000':'个性化', '1100':'交通运输', '1200':'体育', '1300':'健康与健身', '1400':'动态壁纸', '1500':'动漫', '1600':'医药', '1700':'商务', '1800':'图书与工具书', '1900':'天气', '2000':'娱乐', '2100':'媒体与视频', '2200':'小部件', '2300':'工具', '2400':'摄影', '2500':'效率', '2600':'教育', '2700':'新闻杂志', '2800':'旅游与本地出行', '2900':'生活时尚', '3000':'社交', '3100':'财务', '3200':'购物', '3300':'软件与演示', '3400':'通讯', '3500':'音乐与音频', '3600':'游戏', '3700':'其他', '交通运输':'1100', '健康与健身':'1300', '动态壁纸':'1400', '动漫':'1500', '医疗':'1600', '商务':'1700', '图书与工具书':'1800', '天气':'1900', '小部件':'2200', '摄影':'2400', '教育':'2600', '新闻杂志':'2700', '旅游与本地出行':'2800', '生活时尚':'2900', '财务':'3100', '软件与演示':'3300', '音乐与音频':'3500' } def get_category_id_by_name(category_name,item): ''' * 根据抓取来的应用名来获取对应在分类系统中的适合的id * 如果没有找到对应项,则说明抓取到的该分类属于新分类,记录在`un_record_category.txt`文件中,等待人工进行分类确认 * input: category_name * output: category_id ''' if not CATEGORY_ID.get(category_name): flag = True category_map = {} if not os.path.isfile('un_record_category.txt'): f = file("un_record_category.txt","w") f.close() for line in open('un_record_category.txt','r'): if line.strip() == category_name: flag = False break category_map[line.strip()] = 1 category_map[category_name] = 1 if flag: with open('un_record_category.txt','w') as f: for key in category_map.keys(): f.write(key + "\n") return "0" return CATEGORY_ID.get(category_name) def get_category_name_by_id(category_id): ''' * 根据category_id来获取对应在分类系统中的名称,如果没有找到,则输出'无',不过应该不会出现这种情况 * input: category_id * output: category_name ''' if not CATEGORY_NAME.get(category_id): return "无" else: return CATEGORY_NAME.get(category_id)
true
589a0036fdef27c6c2eff42184aa328014033f10
Python
mahasen-s/deepQuantum
/exact/exact_temp.py
UTF-8
1,320
2.796875
3
[]
no_license
import numpy as np from scipy import sparse from scipy.sparse import linalg def exact_TFI(N,h): # sparse function sp_fun = sparse.csr_matrix # Pauli matrices sx = sp_fun(np.array([[0,1],[1, 0]])); sz = sp_fun(np.array([[1,0],[0,-1]])); eye = sparse.identity(2); zer = sp_fun(np.array([[0,0],[0,0]])); # Blank H H = sp_fun(1); for i in range(0,N): H = sparse.kron(H,zer) # Build H for i in range(0,N): # sig x sig_x = sp_fun(1) sig_z = sp_fun(1) for j in range(0,N): if i==j: sig_x = sparse.kron(sig_x,sx) sig_z = sparse.kron(sig_z,sz) else: sig_x = sparse.kron(sig_x,eye) sig_z = sparse.kron(sig_z,eye) H += h*sig_x for k in range(0,i): sig_z2 = sp_fun(1) for j in range(0,N): if j==k: sig_z2 = sparse.kron(sig_z2,sz) else: sig_z2 = sparse.kron(sig_z2,eye) sig_z2 = sp_fun.multiply(sig_z,sig_z2) H += sig_z2 print(H.toarray()) # Solve H evals, evecs = linalg.eigsh(H,1,which='SA') return evals, evecs evals, evecs = exact_TFI(3,0.11) print(evals) print(evecs)
true
ea96feea19ccf0387021024dc490946763cd9b0f
Python
nikolayvoronchikhin/pydrill
/pydrill/client/result.py
UTF-8
502
2.625
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- class ResultQuery(object): """ Class responsible for maintaining a information returned from Drill. It is iterable. """ # TODO: create better docs. def __init__(self, response, data, duration): self.response = response self.duration = duration self.data = data self.rows = data.get('rows', []) self.columns = data.get('columns', []) def __iter__(self): for row in self.rows: yield row
true
2fd25662d26d1f7aa3e70d89a023f947e565d892
Python
bhatnagaranshika02/Data-Structures-Python
/Stack/PranthesisOptimized.py
UTF-8
176
3.40625
3
[]
no_license
s = input() n=-1 while len(s)!=n: n =len(s) s=s.replace('()','') s=s.replace('[]','') s=s.replace('{}','') if len(s)==0: print("Yes") else: print("No")
true
29235e38ddeaf47169ad7ce3eefbc6be6629f053
Python
AK-1121/code_extraction
/python/python_12208.py
UTF-8
127
2.5625
3
[]
no_license
# Accessing capture groups during substitution re.sub(r'\d+\.\d*', lambda match: str(int(round(float(match.group(0))))), line)
true
1b34412c775e1e20781baa182f15d7a8cb524747
Python
BorisVV/try-your-luck-app
/games_classes.py
UTF-8
4,288
3.71875
4
[]
no_license
from game_class import Game import random # "Power Ball": 70, # "Power Play": 27, # "Gopher Five": 48, # "North Star": 32, # "Lotto America": 53, # "Star Ball": 11, # "Mega Millions": 71, # "Mega Ball": 26, # "Lucky For Life": 49, # "Lucky Ball": 19, #For each of the games we'll use the quick pick where the computer #selects the number. ''' class NorthStar(Game): ''' North Star has 31 numbers and the computer will select five for the quick pick and the drawings. ''' def calculate(self): self.numbers1 = 31 + 1 #When using range for loops the last number is not counted. self.counter = 1 insideLoopCounter = 0 if self.numb_of_qpick == 1: self.numb_of_weeks *= 7 while self.counter <= self.numb_of_weeks: Game.userQPickFive(self) # Change the number in the perimeter between 1 and 5. Game.computerDrawingFives(self, 3) self.counter += 1 # User decides to buy once every week and the ticket is good for 7 drawings. elif self.numb_of_qpick == 2: self.numb_of_qpick = 7 while self.counter <= self.numb_of_weeks: insideLoopCounter = 1 Game.userQPickFive(self) # Every week, we need to update the quick pick drawing for the user. while insideLoopCounter <= self.numb_of_qpick: # number of times North Star drawings. Game.computerDrawingFives(self, 3) insideLoopCounter += 1 self.counter += 1 # User selected one quick pick that is good for two weeks, or fourteen drawings. else: self.numb_of_qpick = 14 while self.counter <= self.numb_of_weeks: insideLoopCounter = 1 Game.userQPickFive(self) while insideLoopCounter <= self.numb_of_qpick: Game.computerDrawingFives(self, 3) insideLoopCounter += 1 self.counter += 2 def get_name(self): return self.name def get_numb_qpicks(self): print(self.numb_of_qpick) class GopherFive(Game): ''' This game plays 3 times a week. e.g. if user enters 2 for the numb of qpicks, wich is 1 week, that means that the ticket is valid to play for 3 drawings. The same numbers will be matched against 3 drawing and then, the user's numbers will be drawn again, repeating the sequence until the number of weeks are done.. ''' def calculate(self): self.numbers1 = 48 + 1 self.counter = 1 insideLoopCounter = 0 #This is for every ticket, loop three times. # User buys a ticket 3 times a week, every week. if self.numb_of_qpick == 1: #One quick pick for every drawing. self.numb_of_weeks *= 3 #where 3 is the number that gopher five plays # everyweek times the total number of week in a the years entered. while self.counter <= self.numb_of_weeks: Game.userQPickFive(self) # Change the number in the perimeter between 1 and 5. Game.computerDrawingFives(self, 2) self.counter += 1 # User buys a ticket that is good for 3 drawing (full week). elif self.numb_of_qpick == 2: #User buys quick pick once everyweek. self.numb_of_qpick = 3 while self.counter <= self.numb_of_weeks: insideLoopCounter = 1 Game.userQPickFive(self) while insideLoopCounter <= self.numb_of_qpick: Game.computerDrawingFives(self, 2) insideLoopCounter += 1 self.counter += 1 else: self.numb_of_qpick = 6 while self.counter <= self.numb_of_weeks: insideLoopCounter = 1 Game.userQPickFive(self) while insideLoopCounter <= self.numb_of_qpick: Game.computerDrawingFives(self, 2) insideLoopCounter += 2 self.counter += 2 def get_name(self): return self.name def get_numb_qpicks(self): return self.numb_of_qpick
true
1f67820253e9959c44ee8ce839a9ec3d8bfbf1d2
Python
rajeshkumarkarra/qml
/implementations/tutorial_rotoselect.py
UTF-8
16,801
3.609375
4
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
r""" .. _rotoselect: Quantum circuit structure learning ================================== """ ############################################################################## # This example shows how to learn a good selection of rotation # gates so as to minimize a cost # function using the Rotoselect algorithm of `Ostaszewski et al. # (2019) <https://arxiv.org/abs/1905.09692>`__. We apply this algorithm to minimize a Hamiltonian for a # variational quantum eigensolver (VQE) problem, # and improve upon an initial circuit structure ansatz. # # Background # ---------- # # In quantum machine learning and optimization problems, # one wishes to minimize a cost function with respect to some parameters in the circuit. It is desirable # to keep the circuit as shallow as possible to reduce the effects of noise, but an arbitrary # choice of gates is generally suboptimal for performing the optimization. # Therefore, it would be useful to employ an # algorithm which learns a good circuit structure at fixed depth to minimize the cost function. # # Furthermore, PennyLane's optimizers perform automatic differentiation of quantum nodes by evaluating phase-shifted # expectation values using the quantum circuit itself. # The output of these calculations, the gradient, is used in optimization methods to minimize # the cost function. However, # there exists a technique to discover the optimal parameters of a quantum circuit through phase-shifted evaluations, # without the need for calculating the gradient as an intermediate step (i.e., a gradient-free optimization). # It could be desirable, in some cases, to # take advantage of this. # # # The Rotoselect algorithm addresses the above two points: it allows one to jump directly to the # optimal value for a single parameter # with respect to fixed values for the other parameters, skipping gradient descent, and tries various # rotation gates along the way. # The algorithm works by updating the parameters :math:`\boldsymbol{\theta}=\theta_1,\dots,\theta_D` and gate choices # :math:`\boldsymbol{R}=R_1,\dots,R_D` # one at a time according to a *closed-form expression* for the optimal value of the :math:`d^{\text{th}}` parameter # :math:`\theta^{*}_d` when the other parameters and gate choices are fixed: # # .. math:: # # \theta^{*}_d &= \underset{\theta_d}{\text{argmin}} \langle H \rangle_{\theta_d} \\ # &= -\frac{\pi}{2} - \text{arctan}\left(\frac{2\langle H \rangle_{\theta_d = 0} - # \langle H \rangle_{\theta_d=\pi/2} - \langle H \rangle_{\theta_d=-\pi/2}}{\langle # H \rangle_{\theta_d=\pi/2} - # \langle H \rangle_{\theta_d=-\pi/2}}\right) # # The calculation makes use of 3 separate evaluations # of the expectation value :math:`\langle H \rangle_{\theta_d}` using the quantum circuit. Although # :math:`\langle H \rangle` is really a function of all parameters and gate choices # (:math:`\boldsymbol{\theta}`, :math:`\boldsymbol{R}`), we # are fixing every parameter and gate choice apart from :math:`\theta_d` in this expression so we write it as # :math:`\langle H \rangle = \langle H \rangle_{\theta_d}`. # For each parameter in the quantum circuit, the algorithm proceeds by evaluating :math:`\theta^{*}_d` # for each choice of # gate :math:`R_d \in \{R_x,R_y,R_z\}` and selecting the gate which yields the minimum value of # :math:`\langle H \rangle`. # # Thus, one might expect the number of circuit evaluations required to be 9 for each parameter (3 for each gate # choice). However, since all 3 rotation gates yield identity when :math:`\theta_d=0`, # # .. math:: R_x(0) = R_y(0) = R_z(0) = 1, # # the value of :math:`\langle H \rangle_{\theta_d=0}` in the expression for :math:`\theta_d^{*}` above # is the same for each of the gate choices, and this 3-fold # degeneracy reduces the number of evaluations required to 7. # # One cycle of the Rotoselect algorithm involves # iterating through every parameter and performing the calculation above. # This cycle is repeated for a fixed number of steps or until convergence. In this way, one could learn both # the optimal parameters and gate choices for the task of minimizing # a given cost function. Next, we present an example of this algorithm # applied to a VQE Hamiltonian. # # Example VQE Problem # ------------------- # # We focus on a 2-qubit VQE circuit for simplicity. Here, the Hamiltonian # is # # .. math:: # H = 0.5Y_2 + 0.8Z_1 - 0.2X_1 # # where the subscript denotes the qubit upon which the Pauli operator acts. The # expectation value of this quantity acts as the cost function for our # optimization. # # Rotosolve # --------- # As a precursor to implementing Rotoselect we can analyze a version of the algorithm # which does not optimize the choice of gates and only optimizes the parameters for a given circuit ansatz, # called Rotosolve. Later, we will build on this example # to implement Rotoselect and vary the circuit structure. # # Imports # ~~~~~~~ # To get started, we import PennyLane and the PennyLane-wrapped version of NumPy. We also # create a 2-qubit device using the ``default.qubit`` plugin and set the ``analytic`` keyword to ``True`` # in order to obtain exact values for any expectation values calculated. In contrast to real # devices, simulators have the capability of doing these calculations without sampling. import pennylane as qml from pennylane import numpy as np n_wires = 2 dev = qml.device("default.qubit", analytic=True, wires=2) ############################################################################## # Creating a fixed quantum circuit # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # .. figure:: ../implementations/rotoselect/original_ansatz.png # :scale: 65% # :align: center # :alt: original_ansatz # # | # # Next, we set up a circuit with a fixed ansatz structure---which will later be subject to change---and encode # the Hamiltonian into a cost function. The structure is shown in the figure above. def ansatz(params): qml.RX(params[0], wires=0) qml.RY(params[1], wires=1) qml.CNOT(wires=[0, 1]) @qml.qnode(dev) def circuit(params): ansatz(params) return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliY(1)) @qml.qnode(dev) def circuit2(params): ansatz(params) return qml.expval(qml.PauliX(0)) def cost(params): Z_1, Y_2 = circuit(params) X_1 = circuit2(params) return 0.5 * Y_2 + 0.8 * Z_1 - 0.2 * X_1 ############################################################################## # Helper methods for the algorithm # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # We define methods to evaluate # the expression in the previous section. These will serve as the basis for # our optimization algorithm. # calculation as described above def opt_theta(d, params, cost): params[d] = 0.0 M_0 = cost(params) params[d] = np.pi / 2.0 M_0_plus = cost(params) params[d] = -np.pi / 2.0 M_0_minus = cost(params) a = np.arctan2( 2.0 * M_0 - M_0_plus - M_0_minus, M_0_plus - M_0_minus ) # returns value in (-pi,pi] params[d] = -np.pi / 2.0 - a # restrict output to lie in (-pi,pi], a convention # consistent with the Rotosolve paper if params[d] <= -np.pi: params[d] += 2 * np.pi # one cycle of rotosolve def rotosolve_cycle(cost, params): for d in range(len(params)): opt_theta(d, params, cost) return params ############################################################################## # Optimization and comparison with gradient descent # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # We set up some initial parameters for the :math:`R_x` and :math:`R_y` # gates in the ansatz circuit structure and perform an optimization using the # Rotosolve algorithm. init_params = [0.3, 0.25] params_rsol = init_params.copy() n_steps = 30 costs_rotosolve = [] for i in range(n_steps): costs_rotosolve.append(cost(params_rsol)) params_rsol = rotosolve_cycle(cost, params_rsol) ############################################################################## # We then compare the results of Rotosolve to an optimization # performed with gradient descent and plot # the cost functions at each step (or cycle in the case of Rotosolve). # This comparison is fair since the number of circuit # evaluations involved in a cycle of Rotosolve is similar to those required to calculate # the gradient of the circuit and step in this direction. Evidently, the Rotosolve algorithm # converges on the minimum after the first cycle for this simple circuit. params_gd = init_params.copy() opt = qml.GradientDescentOptimizer(stepsize=0.5) costs_gd = [] for i in range(n_steps): costs_gd.append(cost(params_gd)) params_gd = opt.step(cost, params_gd) # plot cost function optimization using the 2 techniques import matplotlib.pyplot as plt steps = np.arange(0, n_steps) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3)) plt.subplot(1, 2, 1) plt.plot(steps, costs_gd, "o-") plt.title("grad. desc.") plt.xlabel("steps") plt.ylabel("cost") plt.subplot(1, 2, 2) plt.plot(steps, costs_rotosolve, "o-") plt.title("rotosolve") plt.xlabel("cycles") plt.ylabel("cost") plt.tight_layout() plt.show() ############################################################################## # Cost function surface for circuit ansatz # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Now, we plot the cost function surface for later comparison with the surface generated # by learning the circuit structure. from matplotlib import cm from matplotlib.ticker import MaxNLocator from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(6, 4)) ax = fig.gca(projection="3d") X = np.linspace(-4.0, 4.0, 40) Y = np.linspace(-4.0, 4.0, 40) xx, yy = np.meshgrid(X, Y) Z = np.array([[cost([x, y]) for x in X] for y in Y]).reshape(len(Y), len(X)) surf = ax.plot_surface(xx, yy, Z, cmap=cm.coolwarm, antialiased=False) ax.set_xlabel(r"$\theta_1$") ax.set_ylabel(r"$\theta_2$") ax.zaxis.set_major_locator(MaxNLocator(nbins=5, prune="lower")) plt.show() ############################################################################## # It is apparent that, based on the circuit structure # chosen above, the cost function does not depend on the angle parameter :math:`\theta_2` # for the rotation gate :math:`R_y`. As we will show in the following sections, this independence is not true # for alternative gate choices. # # Rotoselect # ---------- # # .. figure:: ../implementations/rotoselect/rotoselect_structure.png # :scale: 65% # :align: center # :alt: rotoselect_structure # # | # # We now implement the Rotoselect algorithm to learn a good selection of gates to minimize # our cost function. The structure is similar to the original ansatz, but the generators of rotation are # selected from the set of Pauli gates :math:`P_d \in \{X,Y,Z\}` as shown in the figure above. For example, # :math:`U(\theta,Z) = R_z(\theta)`. # # Creating a quantum circuit with variable gates # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # First, we set up a quantum circuit with a similar structure to the one above, but # instead of fixed rotation gates :math:`R_x` and :math:`R_y`, we allow the gates to be specified with the # ``generators`` keyword, which is a list of the generators of rotation that will be used for the gates in the circuit. # For example, ``generators=['X', 'Y']`` reproduces the original circuit ansatz used in the Rotosolve example # above. # A helper method ``RGen`` returns the correct unitary gate according to the # rotation specified by an element of ``generators``. def RGen(param, generator, wires): if generator == "X": qml.RX(param, wires=wires) elif generator == "Y": qml.RY(param, wires=wires) elif generator == "Z": qml.RZ(param, wires=wires) def ansatz_rsel(params, generators): RGen(params[0], generators[0], wires=0) RGen(params[1], generators[1], wires=1) qml.CNOT(wires=[0, 1]) @qml.qnode(dev) def circuit_rsel(params, generators=None): # generators will be passed as a keyword arg ansatz_rsel(params, generators) return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliY(1)) @qml.qnode(dev) def circuit_rsel2(params, generators=None): # generators will be passed as a keyword arg ansatz_rsel(params, generators) return qml.expval(qml.PauliX(0)) def cost_rsel(params, generators): Z_1, Y_2 = circuit_rsel(params, generators=generators) X_1 = circuit_rsel2(params, generators=generators) return 0.5 * Y_2 + 0.8 * Z_1 - 0.2 * X_1 ############################################################################## # Helper methods # ~~~~~~~~~~~~~~ # We define helper methods in a similar fashion to Rotosolve. In this case, # we must iterate through the possible gate choices in addition to optimizing each parameter. def rotosolve(d, params, generators, cost, M_0): # M_0 only calculated once params[d] = np.pi / 2.0 M_0_plus = cost(params, generators) params[d] = -np.pi / 2.0 M_0_minus = cost(params, generators) a = np.arctan2( 2.0 * M_0 - M_0_plus - M_0_minus, M_0_plus - M_0_minus ) # returns value in (-pi,pi] params[d] = -np.pi / 2.0 - a if params[d] <= -np.pi: params[d] += 2 * np.pi return cost(params, generators) def optimal_theta_and_gen_helper(d, params, generators, cost): params[d] = 0.0 M_0 = cost(params, generators) # M_0 independent of generator selection for generator in ["X", "Y", "Z"]: generators[d] = generator params_cost = rotosolve(d, params, generators, cost, M_0) # initialize optimal generator with first item in list, "X", and update if necessary if generator == "X" or params_cost <= params_opt_cost: params_opt_d = params[d] params_opt_cost = params_cost generators_opt_d = generator return params_opt_d, generators_opt_d def rotoselect_cycle(cost, params, generators): for d in range(len(params)): params[d], generators[d] = optimal_theta_and_gen_helper(d, params, generators, cost) return params, generators ############################################################################## # Optimizing the circuit structure # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # We perform the optimization and print the optimal generators for the rotation gates. The minimum value of the # cost function obtained by optimizing using Rotoselect is less than the minimum value of the cost function obtained by # gradient descent or Rotosolve, which were performed on the original circuit structure ansatz. # In other words, Rotoselect performs better without # increasing the depth of the circuit by selecting better gates for the task of minimizing the cost function. costs_rsel = [] params_rsel = init_params.copy() init_generators = ["X", "Y"] generators = init_generators for _ in range(n_steps): costs_rsel.append(cost_rsel(params_rsel, generators)) params_rsel, generators = rotoselect_cycle(cost_rsel, params_rsel, generators) print("Optimal generators are: {}".format(generators)) # plot cost function vs. steps comparison fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3)) plt.subplot(1, 2, 1) plt.plot(steps, costs_gd, "o-") plt.title("grad. desc. on original ansatz") plt.xlabel("steps") plt.ylabel("cost") plt.subplot(1, 2, 2) plt.plot(steps, costs_rsel, "o-") plt.title("rotoselect") plt.xlabel("cycles") plt.ylabel("cost") plt.yticks(np.arange(-1.25, 0.80, 0.25)) plt.tight_layout() plt.show() ############################################################################## # Cost function surface for learned circuit structure # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # .. figure:: ../implementations/rotoselect/learned_structure.png # :scale: 65% # :align: center # :alt: learned_structure # # | # # Finally, we plot the cost function surface for the newly discovered optimized # circuit structure shown in the figure above. It is apparent from the minima in the plot that # the new circuit structure is better suited for the problem. fig = plt.figure(figsize=(6, 4)) ax = fig.gca(projection="3d") X = np.linspace(-4.0, 4.0, 40) Y = np.linspace(-4.0, 4.0, 40) xx, yy = np.meshgrid(X, Y) # plot cost for fixed optimal generators Z = np.array([[cost_rsel([x, y], generators=generators) for x in X] for y in Y]).reshape( len(Y), len(X) ) surf = ax.plot_surface(xx, yy, Z, cmap=cm.coolwarm, antialiased=False) ax.set_xlabel(r"$\theta_1$") ax.set_ylabel(r"$\theta_2$") ax.zaxis.set_major_locator(MaxNLocator(nbins=5, prune="lower")) plt.show() ############################################################################## # References # ---------- # # 1. Mateusz Ostaszewski, Edward Grant, Marcello Bendetti. "Quantum circuit structure learning." # `arxiv:1905.09692 <https://arxiv.org/abs/1905.09692>`__, 2019.
true
4c56e24d81da12a8a9720cd40819e1d4c0be5424
Python
rrriiikkk/FormationFlying
/formation_flying/negotiations/japanese.py
UTF-8
7,240
2.90625
3
[]
no_license
''' # ============================================================================= # This file contains the function to do a Japanese auction. # ============================================================================= ''' def do_Japanese(flight): if not flight.departure_time: raise Exception( "The object passed to the japanese protocol has no departure time, therefore it seems that it is not a flight.") if flight.formation_state == 0 or flight.formation_state == 2: if flight.negotiation_state == 0: if flight.manager == 1 and flight.auctioneer == 0: #each auction is opened with a bidding value of 50. This is done to speed up the auction flight.auctionvalue = 50 flight.negotiation_state += 1 #auctioneers wil search for the best potential auction and take part of that bidding if the starting value of 50 is below their private maximum bidding value elif flight.negotiation_state == 1: if flight.manager == 0 and flight.auctioneer == 1: formation_targets = flight.find_greedy_candidate() # function works also for Japanese protocol if not formation_targets == []: potential_winning_manager = [] alliancemember = [] for manager in formation_targets: #check if auction is open and calculate own max private bidding value if manager.accepting_bids == True and not manager.auctionvalue == None: potential_winning_manager.append(flight.calculate_potential_fuelsavings(manager)) alliancemember.append(manager.Alliance) if not potential_winning_manager == [] and max(potential_winning_manager) > 0: #increase own private max bidding value by 25% if auctioneer AND mananager are part of the alliance if flight.Alliance == 1: for i in range(len(alliancemember)): if alliancemember[i] == 1: potential_winning_manager[i] = 1.25 * potential_winning_manager[i] flight.potential_managers = formation_targets[potential_winning_manager.index(max(potential_winning_manager))] flight.maxbid = max(potential_winning_manager) bidexp = 0 #dummy value, only used as it is requested by the make_bid function flight.negotiation_state += 1 if not flight.potential_managers.auctionvalue == None and flight.maxbid >= flight.potential_managers.auctionvalue: flight.make_bid(flight.potential_managers, flight.potential_managers.auctionvalue, bidexp) else: flight.regenerate_manager_auctioneer() #if there is no auction that is benefitial fot the auctioneer: else: flight.regenerate_manager_auctioneer() else: flight.regenerate_manager_auctioneer() elif flight.manager == 1 and flight.auctioneer == 0: flight.negotiation_state += 1 elif flight.negotiation_state % 2 == 0: #manager will make sure all auctioneers know how many auctioneers are taking part of the auction #if one auctioneer is left a formation is started if flight.manager == 1 and flight.auctioneer == 0: if len(flight.received_bids) > 1: # Open auction, so each bidder should know how many other bidders there are for bid in flight.received_bids: flight.other_bids(bid.get("bidding_agent"), flight.auctionvalue) flight.received_bids = [] #this list will be filled again in next step flight.auctionvalue += 10 #each bidding round the bid value will be increased by 10, seemed reasonable flight.negotiation_state += 1 elif len(flight.received_bids) == 1: winning_agent = flight.received_bids[0].get("bidding_agent") #this is a ducttape fix that will only allow a manager or auctioneer to take part in 1 formation #without this, at the destination a loop will be created at which formations leave each other but in the next step will rejoin each other... flight.numberformation += 1 winning_agent.numberformation += 1 if flight.numberformation == 2 or winning_agent.numberformation == 2: flight.regenerate_manager_auctioneer() winning_agent.regenerate_manager_auctioneer() # if winning_agent == flight.unique_id: #duckttape fix # flight.regenerate_manager_auctioneer() bid_value = flight.auctionvalue #very long if statement, somehow it is otherwise possible to let 2 formations join each other... if len(flight.agents_in_my_formation) > 0 and not winning_agent.formation_state == 1 and not winning_agent.formation_state == 2 and len(winning_agent.agents_in_my_formation) == 0 and not winning_agent in flight.agents_in_my_formation: flight.add_to_formation(winning_agent, bid_value, discard_received_bids=True) print('large formation!!!') elif len(flight.agents_in_my_formation) == 0 and len(winning_agent.agents_in_my_formation) == 0 and flight.manager == 1: flight.start_formation(winning_agent, bid_value, discard_received_bids=True) flight.regenerate_manager_auctioneer() elif len(flight.received_bids) == 0: flight.regenerate_manager_auctioneer() else: flight.negotiation_state += 1 elif flight.negotiation_state % 2 == 1: #in the previous step all auctioneers that are still in the bidding have been sent to all auctioneers, so they #'know' with how many they are still in the auction. #as in the previous step (that also is the next step) is looked at the amount of auctioneers in the auction, #and that a formation is started when only 1 auctioneer is left, it was decided to do nothing with that info in this step if flight.manager == 0 and flight.auctioneer == 1: if flight.maxbid >= flight.potential_managers.auctionvalue: bidexp = 2 #dummy flight.make_bid(flight.potential_managers, flight.potential_managers.auctionvalue, bidexp) flight.negotiation_state += 1 else: flight.regenerate_manager_auctioneer() else: flight.negotiation_state += 1
true
8efe7e8282737c335870664f59353010ec522595
Python
insigh/open-cv-study
/windows/Binary Image/Big Image Binary.py
UTF-8
1,005
2.53125
3
[]
no_license
import cv2 as cv import numpy as np import matplotlib.pyplot as plt def big_image_binary_demo(image): print(image.shape) ch, cw = 256, 256 h, w = image.shape[:2] gray = cv.cvtColor(src=image, code=cv.COLOR_BGR2GRAY) for row in range(0, h, ch): for col in range(0, w, cw): roi = gray[row:row+ch, col:col+cw] ret, dst = cv.threshold(src=roi, thresh=0, maxval=255, type=cv.THRESH_OTSU) gray[row:row+ch, col:col+cw] = dst print(np.std(dst), np.mean(dst)) cv.imwrite(filename=".\\big.jpg", img=gray) print("=========hello python!==========") src = cv.imread(filename="C:\\Users\zcj\Desktop\docum\photos\8776db91659bf1b9abada9bbc9d9f15d0b085642.jpg") cv.namedWindow(winname="input image", flags=cv.WINDOW_AUTOSIZE) cv.imshow(winname="input image", mat=src) print("=========Functions start here!==========") big_image_binary_demo(image=src) print("=========Functions end here!==========") cv.waitKey(0) cv.destroyAllWindows()
true
33d7ac65eda31a9e1cf29ebf471d1f685aaaf344
Python
cprovencher/dcos-e2e
/src/dcos_e2e_cli/common/options.py
UTF-8
14,259
2.546875
3
[ "Apache-2.0" ]
permissive
""" Click options which are common across CLI tools. """ import re from pathlib import Path from typing import Any, Callable, Dict, Optional, Union import click import yaml from .utils import DEFAULT_SUPERUSER_PASSWORD, DEFAULT_SUPERUSER_USERNAME from .validators import ( validate_path_is_directory, validate_path_pair, validate_paths_are_directories, ) def _validate_cluster_id( ctx: click.core.Context, param: Union[click.core.Option, click.core.Parameter], value: Optional[Union[int, bool, str]], ) -> str: """ Validate that a value is a valid cluster ID. """ # We "use" variables to satisfy linting tools. for _ in (ctx, param): pass # This matches the Docker ID regular expression. # This regular expression can be seen by running: # > docker run -it --rm --id=' WHAT ? I DUNNO ! ' alpine if not re.fullmatch('^[a-zA-Z0-9][a-zA-Z0-9_.-]*$', str(value)): message = ( 'Invalid cluster id "{value}", only [a-zA-Z0-9][a-zA-Z0-9_.-] ' 'are allowed and the cluster ID cannot be empty.' ).format(value=value) raise click.BadParameter(message) return str(value) def _validate_environment_variable( ctx: click.core.Context, param: Union[click.core.Option, click.core.Parameter], value: Any, ) -> Dict[str, str]: """ Validate that environment variables are set as expected. """ # We "use" variables to satisfy linting tools. for _ in (param, ctx): pass env = {} for definition in value: try: key, val = definition.split(sep='=', maxsplit=1) except ValueError: message = ( '"{definition}" does not match the format "<KEY>=<VALUE>".' ).format(definition=definition) raise click.BadParameter(message=message) env[key] = val return env def _validate_dcos_configuration( ctx: click.core.Context, param: Union[click.core.Option, click.core.Parameter], value: Union[int, bool, str], ) -> Dict[str, Any]: """ Validate that a given value is a file containing a YAML map. """ # We "use" variables to satisfy linting tools. for _ in (ctx, param): pass if value is None: return {} content = Path(str(value)).read_text() try: return dict(yaml.load(content) or {}) except ValueError: message = '"{content}" is not a valid DC/OS configuration'.format( content=content, ) except yaml.YAMLError: message = '"{content}" is not valid YAML'.format(content=content) raise click.BadParameter(message=message) def masters_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for the number of masters. """ function = click.option( '--masters', type=click.INT, default=1, show_default=True, help='The number of master nodes.', )(command) # type: Callable[..., None] return function def agents_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for the number of agents. """ function = click.option( '--agents', type=click.INT, default=1, show_default=True, help='The number of agent nodes.', )(command) # type: Callable[..., None] return function def public_agents_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for the number of agents. """ function = click.option( '--public-agents', type=click.INT, default=1, show_default=True, help='The number of public agent nodes.', )(command) # type: Callable[..., None] return function def environment_variables_option(command: Callable[..., None], ) -> Callable[..., None]: """ An option decorator for setting environment variables. """ function = click.option( '--env', type=str, callback=_validate_environment_variable, multiple=True, help='Set environment variables in the format "<KEY>=<VALUE>"', )(command) # type: Callable[..., None] return function def superuser_username_option(command: Callable[..., None], ) -> Callable[..., None]: """ An option decorator for a superuser username. """ function = click.option( '--superuser-username', type=str, default=DEFAULT_SUPERUSER_USERNAME, help=( 'The superuser username is needed only on DC/OS Enterprise ' 'clusters. ' 'By default, on a DC/OS Enterprise cluster, `admin` is used.' ), )(command) # type: Callable[..., None] return function def superuser_password_option(command: Callable[..., None], ) -> Callable[..., None]: """ An option decorator for a superuser password. """ function = click.option( '--superuser-password', type=str, default=DEFAULT_SUPERUSER_PASSWORD, help=( 'The superuser password is needed only on DC/OS Enterprise ' 'clusters. ' 'By default, on a DC/OS Enterprise cluster, `admin` is used.' ), )(command) # type: Callable[..., None] return function def extra_config_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for supplying extra DC/OS configuration options. """ function = click.option( '--extra-config', type=click.Path(exists=True), callback=_validate_dcos_configuration, help=( 'The path to a file including DC/OS configuration YAML. ' 'The contents of this file will be added to add to a default ' 'configuration.' ), )(command) # type: Callable[..., None] return function def workspace_dir_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for the workspace directory. """ help_text = ( 'Creating a cluster can use approximately 2 GB of temporary storage. ' 'Set this option to use a custom "workspace" for this temporary ' 'storage. ' 'See ' 'https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir ' 'for details on the temporary directory location if this option is ' 'not set.' ) function = click.option( '--workspace-dir', type=click.Path(exists=True), callback=validate_path_is_directory, help=help_text, )(command) # type: Callable[..., None] return function def variant_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for a DC/OS variant. """ function = click.option( '--variant', type=click.Choice(['auto', 'oss', 'enterprise']), default='auto', help=( 'Choose the DC/OS variant. ' 'If the variant does not match the variant of the given ' 'installer, an error will occur. ' 'Using "auto" finds the variant from the installer. ' 'Finding the variant from the installer takes some time and so ' 'using another option is a performance optimization.' ), )(command) # type: Callable[..., None] return function def license_key_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for passing a license key. """ function = click.option( '--license-key', type=click.Path(exists=True), envvar='DCOS_LICENSE_KEY_PATH', help=( 'This is ignored if using open source DC/OS. ' 'If using DC/OS Enterprise, this defaults to the value of the ' '`DCOS_LICENSE_KEY_PATH` environment variable.' ), )(command) # type: Callable[..., None] return function def security_mode_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for the DC/OS Enterprise security mode. """ function = click.option( '--security-mode', type=click.Choice(['disabled', 'permissive', 'strict']), help=( 'The security mode to use for a DC/OS Enterprise cluster. ' 'This overrides any security mode set in ``--extra-config``.' ), )(command) # type: Callable[..., None] return function def copy_to_master_option(command: Callable[..., None]) -> Callable[..., None]: """ A decorator for setting files to copy to master nodes before installing DC/OS. """ function = click.option( '--copy-to-master', type=str, callback=validate_path_pair, multiple=True, help=( 'Files to copy to master nodes before installing DC/OS. ' 'This option can be given multiple times. ' 'Each option should be in the format ' '/absolute/local/path:/remote/path.' ), )(command) # type: Callable[..., None] return function def dcos_login_uname_option(command: Callable[..., None], ) -> Callable[..., None]: """ A decorator for choosing the username to set the ``DCOS_LOGIN_UNAME`` environment variable to. """ function = click.option( '--dcos-login-uname', type=str, default=DEFAULT_SUPERUSER_USERNAME, help=( 'The username to set the ``DCOS_LOGIN_UNAME`` environment ' 'variable to.' ), )(command) # type: Callable[..., None] return function def dcos_login_pw_option(command: Callable[..., None]) -> Callable[..., None]: """ A decorator for choosing the password to set the ``DCOS_LOGIN_PW`` environment variable to. """ function = click.option( '--dcos-login-pw', type=str, default=DEFAULT_SUPERUSER_PASSWORD, help=( 'The password to set the ``DCOS_LOGIN_PW`` environment variable ' 'to.' ), )(command) # type: Callable[..., None] return function def sync_dir_run_option(command: Callable[..., None]) -> Callable[..., None]: """ A decorator for choosing a DC/OS checkout to sync before running commands. """ function = click.option( '--sync-dir', type=click.Path(exists=True), multiple=True, help=( 'The path to a DC/OS checkout. ' 'Part of this checkout will be synced to all master nodes before ' 'the command is run. ' 'The bootstrap directory is synced if the checkout directory ' 'variant matches the cluster variant.' 'Integration tests are also synced.' 'Use this option multiple times on a DC/OS Enterprise cluster to ' 'sync both DC/OS Enterprise and DC/OS Open Source tests.' ), callback=validate_paths_are_directories, )(command) # type: Callable[..., None] return function def verbosity_option(command: Callable[..., None]) -> Callable[..., None]: """ A decorator for setting the verbosity of logging. """ function = click.option( '-v', '--verbose', help=( 'Use verbose output. ' 'Use this option multiple times for more verbose output.' ), count=True, )(command) # type: Callable[..., None] return function def test_env_run_option(command: Callable[..., None]) -> Callable[..., None]: """ A decorator for choosing whether to run commands in a test environment. """ function = click.option( '--test-env', '-te', is_flag=True, help=( 'With this flag set, environment variables are set and the ' 'command is run in the integration test directory. ' 'This means that "pytest" will run the integration tests.' ), )(command) # type: Callable[..., None] return function def cluster_id_option(command: Callable[..., None]) -> Callable[..., None]: """ A Click option for choosing a new cluster ID. """ function = click.option( '-c', '--cluster-id', type=str, default='default', callback=_validate_cluster_id, help=( 'A unique identifier for the cluster. ' 'Use the value "default" to use this cluster for other ' 'commands without specifying --cluster-id.' ), )(command) # type: Callable[..., None] return function def existing_cluster_id_option(command: Callable[..., None], ) -> Callable[..., None]: """ An option decorator for an existing Cluster ID. """ function = click.option( '-c', '--cluster-id', type=str, default='default', show_default=True, help='The ID of the cluster to use.', )(command) # type: Callable[..., None] return function def genconf_dir_option(command: Callable[..., None]) -> Callable[..., None]: """ An option decorator for a custom "genconf" directory. """ function = click.option( '--genconf-dir', type=click.Path(exists=True), callback=validate_path_is_directory, help=( 'Path to a directory that contains additional files for the DC/OS ' 'installer. ' 'All files from this directory will be copied to the "genconf" ' 'directory before running the DC/OS installer.' ), )(command) # type: Callable[..., None] return function def enable_selinux_enforcing_option(command: Callable[..., None], ) -> Callable[..., None]: """ An option decorator for setting the SELinux mode to "enforcing". """ function = click.option( '--enable-selinux-enforcing', is_flag=True, help=( 'With this flag set, SELinux is set to enforcing before DC/OS is ' 'installed on the cluster.' ), )(command) # type: Callable[..., None] return function
true
a6fe7696f63e1f6500232c405fbe6d728b15d855
Python
lucasebs/TIC
/calc.py
UTF-8
685
3.375
3
[]
no_license
import numpy as np from text import Get_words from print_entropy import Print_entropy text = raw_input("Texto qualquer para conferencia de Entropia: ") words, wordset = Get_words(text) freq={word: words.count(word) for word in wordset} word_count_information = [] entropy = 0 for word in wordset: probability = freq[word] / float(1.0 * len(words)) self_information = np.log2(1.0/probability) entropy += (probability * self_information) word_count_information.append([word, freq[word], self_information]) sorted_word_count_information = list(sorted(word_count_information, key=lambda k:k[2], reverse=True)) Print_entropy(sorted_word_count_information, entropy)
true
3cf13d705e15b7d0d4969f3d4725152d1acc9379
Python
liuyuzhou/ai_pre_sourcecode
/chapter2/slice_1.py
UTF-8
158
3.359375
3
[]
no_license
import numpy as np # 创建ndarray对象 ar_np = np.arange(10) # 从索引 2 开始到索引 7 停止,间隔为2 s = slice(2, 7, 2) print(ar_np[s])
true
310788779ea095f2932ae43e6f2bcb08e3df5ae1
Python
yemikudaisi/Micro-GIS
/geometry/scale.py
UTF-8
462
3.203125
3
[ "MIT" ]
permissive
class Scale(object): def __init__(self, scale, denominator): assert isinstance(scale, float) assert isinstance(denominator, float) self.numerator = scale self.denominator = denominator @property def representativeFraction(self): numerator = int(round(self.numerator/self.numerator)) denominator = round(self.denominator/self.numerator,2) return "{numerator}:{denominator}".format(**locals())
true
f97c24ab02d6efd06d60b5865a8f51414d76038d
Python
quhuohuo/python
/lvlist/teacherPython/test2.py
UTF-8
175
3.1875
3
[]
no_license
#!/usr/bin/python def P(n,x): if n == 0: return 1 elif n == 1: return x return ((2 * n - 1)*x*P(n - 1,x) - (n - 1)*P(n - 2,x)) / n print P(2,3)
true
f44d8b0c0fe6ca9f5a59c5f1decbc049d64c27ca
Python
ximitiejiang/PythonCodingSkill
/test/test_tbd.py
UTF-8
1,785
3.140625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 18 11:10:14 2019 @author: ubuntu """ import torch.nn as nn class Registry(object): def __init__(self): print('this is init') self.module_dict={} def __call__(self, class_type): print('this is call') module_name = class_type.__name__ self.module_dict[module_name] = class_type return class_type # def __init__(self, name): # self._name = name # self._module_dict = dict() # def _register_module(self, module_class): # if not issubclass(module_class, nn.Module): # raise TypeError( # 'module must be a child of nn.Module, but got {}'.format( # type(module_class))) # module_name = module_class.__name__ # if module_name in self._module_dict: # raise KeyError('{} is already registered in {}'.format( # module_name, self.name)) # self._module_dict[module_name] = module_class # def register_module(self, cls): # 装饰器函数:传入一个类cls,返回一个类cls # self._register_module(cls) # return cls # def register_module(self, class_type): # module_name = class_type.__name__ # self._module_dict[module_name] = class_type # return class_type #backbones = Registry() # 创建一个Registry对象 #@backbones.register_module # 挂一个装饰器:用对象的方法作为装饰器,传入的是一个类名,比如ResNet registry = Registry() @registry class ResNet(nn.Module): def __init__(self): super().__init__() def forwrad(self): pass print(registry.module_dict) #model = ResNet() print(registry.module_dict)
true
6169d44e3f3e069f589a901c06af0bbe19c06f36
Python
martinabr/pydgilib
/tests/test_logger_data.py
UTF-8
5,464
2.796875
3
[ "BSD-3-Clause" ]
permissive
"""This module holds the automated tests for LoggerData.""" from pydgilib_extra import ( InterfaceData, LoggerData, INTERFACE_POWER, INTERFACE_SPI, INTERFACE_GPIO) def test_init_logger_data(): """Test instantiations.""" # Simple instantiaton data = LoggerData() assert tuple(data[INTERFACE_POWER]) == () assert tuple(data[INTERFACE_GPIO]) == () # Instantiaton from list of interfaces data = LoggerData([INTERFACE_GPIO, INTERFACE_POWER]) assert tuple(data[INTERFACE_POWER]) == () assert tuple(data[INTERFACE_GPIO]) == () # Instantiation from dictionary with empty values data = LoggerData( {INTERFACE_POWER: InterfaceData(), INTERFACE_GPIO: InterfaceData()} ) assert tuple(data[INTERFACE_POWER]) == () assert tuple(data[INTERFACE_GPIO]) == () # Instantiation from dictionary data = LoggerData( {INTERFACE_POWER: ([], []), INTERFACE_GPIO: ([], [])}) assert tuple(data[INTERFACE_POWER]) == () assert tuple(data[INTERFACE_GPIO]) == () # Instantiation from dictionary with data data = LoggerData( {INTERFACE_POWER: ([1], [2]), INTERFACE_GPIO: ([3], [4])}) assert tuple(data[INTERFACE_POWER]) == ((1, 2),) assert tuple(data[INTERFACE_GPIO]) == ((3, 4),) # Instantiation from dictionary with InterfaceData data = LoggerData({ INTERFACE_POWER: InterfaceData(([1], [2])), INTERFACE_GPIO: InterfaceData(([3], [4]))}) assert tuple(data[INTERFACE_POWER]) == ((1, 2),) assert tuple(data[INTERFACE_GPIO]) == ((3, 4),) def test__getattr__(): """Tests for __getattr__ function.""" data = LoggerData({ INTERFACE_POWER: ([1], [2]), INTERFACE_GPIO: ([], []), 4: ([3, 4], [5, 6])}) # Getting via dict assert tuple(data[INTERFACE_POWER]) == ((1, 2),) # Getting via attribute assert tuple(data.gpio) == () # assert data["gpio"] == ([3], [4]) # Not in syntax def test__setattr__(): """Tests for __setattr__ function.""" data = LoggerData({INTERFACE_POWER: ([1], [2])}) # Setting as dict data[INTERFACE_GPIO] = InterfaceData(([3], [4])) assert tuple(data[INTERFACE_POWER]) == ((1, 2),) assert tuple(data[INTERFACE_GPIO]) == ((3, 4),) # Setting as attribute data.spi = InterfaceData(([5], [6])) assert tuple(data[INTERFACE_SPI]) == ((5, 6),) def test__iadd__(): """Tests for __iadd__ function.""" # Add dict for existing interface data = LoggerData({INTERFACE_POWER: ([1], [2])}) data += {INTERFACE_POWER: ([2], [3])} assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) # Add LoggerData for existing interface data = LoggerData({INTERFACE_POWER: ([1], [2])}) data += LoggerData({INTERFACE_POWER: ([2], [3])}) assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) # Add dict and LoggerData with new interfaces data = LoggerData({INTERFACE_POWER: ([1], [2])}) data += {INTERFACE_GPIO: ([2], [3])} data += LoggerData({4: ([3], [4])}) assert tuple(data[INTERFACE_POWER]) == ((1, 2),) assert tuple(data[INTERFACE_GPIO]) == ((2, 3),) assert tuple(data[4]) == ((3, 4),) # Add dict and LoggerData for new and existing interfaces data = LoggerData({ INTERFACE_POWER: ([1], [2]), 4: ([3, 4], [5, 6])}) data += { INTERFACE_POWER: ([2], [3]), INTERFACE_GPIO: ([2], [3])} data += LoggerData({INTERFACE_POWER: ([3], [4]), INTERFACE_GPIO: ([1], [2])}) assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3), (3, 4)) assert tuple(data[INTERFACE_GPIO]) == ((2, 3), (1, 2)) assert tuple(data[4]) == ((3, 5), (4, 6)) def test__add__(): """Tests for __add__ function.""" # Simple addition of objects data1 = LoggerData({INTERFACE_POWER: ([1], [2])}) data2 = LoggerData({INTERFACE_POWER: ([2], [3])}) data = data1 + data2 assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) # Check that data has been deep copied data1[INTERFACE_POWER] = ([4], [5]) assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) # Delete original copies (decrease reference count to them) del data1 del data2 assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) # # Check that data has been shallow copied # data = LoggerData({INTERFACE_POWER: ([1], [2])}), "Incorrect value" # data1 = data # del data # assert data1[INTERFACE_POWER] == ((1, 2),), "Incorrect value" # Check that data has been deep copied data = LoggerData({INTERFACE_POWER: ([1], [2])}) data1 = data + {} del data assert tuple(data1[INTERFACE_POWER]) == ((1, 2),) def test_extend(): """Tests for extend function.""" # Simple extention of objects data = LoggerData({INTERFACE_POWER: ([1], [2])}) data1 = InterfaceData([[2], [3]]) data.extend(INTERFACE_POWER, data1) assert tuple(data[INTERFACE_POWER]) == ((1, 2), (2, 3)) def test_length(): """Tests for length function.""" data = LoggerData({ INTERFACE_POWER: ([1], [2]), INTERFACE_GPIO: ([], []), 4: ([3, 4], [5, 6])}) # Length of individual interfaces assert data.length(INTERFACE_POWER) == 1 assert data.length(INTERFACE_GPIO) == 0 assert data.length(4) == 2 # Lengths in dict of interfaces len_dict = data.length() assert len_dict[INTERFACE_POWER] == 1 assert len_dict[INTERFACE_GPIO] == 0 assert len_dict[4] == 2
true
b792965305b952795e0aa222c805441a2ba4652e
Python
zqfd9981/e-book-reader
/小说阅读器/typechange/typetobyte.py
UTF-8
2,467
3.09375
3
[]
no_license
""" 类型转化函数,将'int'等类型封装转化为byte """ import socket import enum from struct import pack, unpack from typechange.message_type import MessageType from binascii import unhexlify VAR_TYPE_INVERSE = { 'int': 1, 'float': 2, 'str': 3, 'list': 4, 'dict': 5, 'bool': 6, 'bytearray': 7 } def long_to_bytes(val, endianness='big'): """ 将数字转化为byte """ width = val.bit_length() width += 8 - ((width % 8) or 8) fmt = '%%0%dx' % (width // 4) s = b'\x00' if fmt % val == '0' else unhexlify(fmt % val) if endianness == 'little': s = s[::-1] return s def _serialize_int(int): body = long_to_bytes(int) return bytes([VAR_TYPE_INVERSE['int']]) + pack('!L', len(body)) + body def _serialize_bool(value): body = value return bytes([VAR_TYPE_INVERSE['bool']]) + pack('!L', 1) + bytes([1 if value else 0]) def _serialize_float(float): body = pack('f', float) return bytes([VAR_TYPE_INVERSE['float']]) + pack('!L', len(body)) + body def _serialize_str(str): body = str.encode() return bytes([VAR_TYPE_INVERSE['str']]) + pack('!L', len(body)) + body def _serialize_bytes(body): return bytes([VAR_TYPE_INVERSE['bytearray']]) + pack('!L', len(body)) + body def _serialize_list(list): body = bytearray() for i in range(0, len(list)): body += _serialize_any(list[i]) return bytes([VAR_TYPE_INVERSE['list']]) + pack('!L', len(body)) + body def _serialize_dict(dict): body = bytearray() for item_key, value in dict.items(): item_body = _serialize_any(value) key_length = len(item_key) body += bytes([key_length]) body += str.encode(item_key) body += item_body return bytes([VAR_TYPE_INVERSE['dict']]) + pack('!L', len(body)) + body _serialize_by_type = [None, _serialize_int, _serialize_float, _serialize_str, _serialize_list, _serialize_dict, _serialize_bool, _serialize_bytes] def _serialize_any(obj): if obj is None: return bytearray([0]) type_byte = VAR_TYPE_INVERSE[type(obj).__name__] # 首先判断是哪个类型,再调用相应的函数 return _serialize_by_type[type_byte](obj) def serialize_message(message_type, parameters=None): """将message_type和message本身转化为byte合并返回""" result = bytes([message_type.value]) result += _serialize_any(parameters) return result
true
fa83e9e29d5407a4de66b6008e89685bdcc310e0
Python
shaoguangleo/FastImaging-Python
/src/fastimgproto/skymodel/helpers.py
UTF-8
1,352
2.953125
3
[ "Apache-2.0" ]
permissive
""" Basic classes used to help structure data related to skymodel, skyregions, etc. """ import astropy.units as u import attr.validators from astropy.coordinates import Angle, SkyCoord from attr import attrib, attrs @attrs class SkyRegion(object): """ Defines a circular region of the sky. """ centre = attrib(validator=attr.validators.instance_of(SkyCoord)) radius = attrib(validator=attr.validators.instance_of(Angle)) @attrs class PositionError(object): """ Represent positional uncertainty. (Mainly used for representing entries in the SUMSS catalog.) """ ra = attrib(validator=attr.validators.instance_of(Angle)) dec = attrib(validator=attr.validators.instance_of(Angle)) @attrs class SkySource(object): """ Basic point source w/ flux modelled at a single frequency Attributes: position (astropy.coordinates.SkyCoord): Sky-coordinates of source. flux (astropy.units.Quantity): Source flux at measured frequency. frequency (astropy.units.Quantity): Measurement frequency. variable (bool): 'Known variable' flag. """ position = attrib(validator=attr.validators.instance_of(SkyCoord)) flux = attrib(convert=lambda x: x.to(u.Jy)) frequency = attrib(default=2.5 * u.GHz, convert=lambda x: x.to(u.GHz)) variable = attrib(default=False)
true
8e551171e49774f11e372787baef37da5f4082b3
Python
markWJJ/text_classifier_rl
/actor.py
UTF-8
3,458
2.734375
3
[]
no_license
import tensorflow as tf import tflearn import numpy as np from tensorflow.contrib.rnn import LSTMCell class ActorNetwork(object): """ action network use the state sample the action """ def __init__(self, sess, dim, optimizer, learning_rate, embeddings): self.global_step = tf.Variable(0, trainable=False, name="ActorStep") self.sess = sess self.dim = dim self.learning_rate = tf.train.exponential_decay(learning_rate, self.global_step, 10000, 0.95, staircase=True) self.init = tf.random_uniform_initializer(-0.05, 0.05, dtype=tf.float32) if optimizer == 'adam': self.optimizer = tf.train.AdamOptimizer(self.learning_rate) self.wordvector = embeddings self.num_other_variables = len(tf.trainable_variables()) self.input_state, self.input_word, self.scaled_out, self.out_state = self.create_actor_network() self.network_params = tf.trainable_variables()[self.num_other_variables:] self.action_gradient = tf.placeholder(tf.float32, [None, 2]) self.log_scaled_out = tf.log(self.scaled_out) self.reward = tf.placeholder(tf.float32, [None, 2]) self.loss = tf.reduce_mean(-self.log_scaled_out * self.reward) self.optimize = self.optimizer.minimize(self.loss) def create_actor_network(self): intpu_state_c = tf.placeholder(tf.float32, shape = [None, self.dim], name="cell_state") intpu_state_h = tf.placeholder(tf.float32, shape = [None, self.dim], name="cell_state") input_word = tf.placeholder(tf.int32, shape=[None,]) input_w = tf.nn.embedding_lookup(self.wordvector, input_word) cell = LSTMCell(self.dim, initializer=self.init) with tf.variable_scope('Actor/LSTM'): out, state1 = cell(input_w, (intpu_state_c, intpu_state_h)) t1 = tflearn.fully_connected(state1.c, 1, name='Actor/FullyConnectedC') t2 = tflearn.fully_connected(state1.h, 1, name='Actor/FullyConnectedH') t3 = tflearn.fully_connected(input_w, 1, name='Actor/FullyConnectedWord') scaled_out = tflearn.activation(\ tf.matmul(intpu_state_c, t1.W) + tf.matmul(intpu_state_h, t2.W) \ + tf.matmul(input_w, t3.W) + t1.b,\ activation = 'sigmoid') s_out = tf.clip_by_value(scaled_out, 1e-5, 1 - 1e-5) scaled_out = tf.concat([1.0 - s_out, s_out], axis=1) input_state = (intpu_state_c, intpu_state_h) out_state = (state1.c, state1.h) return input_state, input_word, scaled_out, out_state def train(self, input_state, input_word, reward): self.sess.run(self.optimize, feed_dict={ self.input_state: input_state, self.input_word: input_word, self.reward: reward}) def predict_target(self, input_state, input_word): return self.sess.run([self.scaled_out, self.out_state], feed_dict={ self.input_state: input_state, self.input_word: input_word}) def lower_LSTM_state(self, state, inputs): """ state : (state_c, state_h) """ state_c, state_h = state return self.sess.run(self.lower_cell_state1, feed_dict={ self.lower_cell_state: state, self.lower_cell_input: inputs})
true
5ec3599b8870a676d9bf4595883e12111cda7fa9
Python
harpninja/boids
/main.py
UTF-8
9,074
2.765625
3
[ "MIT" ]
permissive
import maya.cmds as cmds import random import math import imp v = imp.load_source('v', '/lhome/kristina/Documents/code/maya/boids/vector_class.py') # maya python 2.7 weirdness width = 100 height = 100 depth = 100 # was 150 class Particle(v.vec3): ''' Class defining a single particle. ''' def __init__(self, name): self.name = name super(v.vec3, self).__init__() # Complies with Python 2.7 conventions in Maya. # Python 3+ is super().__init__(0.0, 0.0, 0.0) self.position = v.vec3(random.uniform(0, width), random.uniform(0, height), random.uniform(0, depth)) self.velocity = v.vec3(math.cos(random.uniform(0.4, 1)), math.sin(random.uniform(0.4, 1)), math.tan(random.uniform(0.4, 1))) self.acceleration = v.vec3(0.0, 0.0, 0.0) self.size = 1 self.max_steering_speed = 0.4 * 6 self.max_steering_force = 0.8 * 2 # was 6 self.desired_separation = math.pow(self.size, 2) + 6 # was + 3 self.neighbour_distance = width/2 self.add_geometry() # self.point_boid() self.add_shader() def __repr__(self): return self.name def add_shader(self): ''' Create a random coloured shader. Apply shader to object geometry. ''' name_shader = 'aiStandardSurface' + self.name red = random.uniform(0.0, 0.1) green = random.uniform(0.0, 1.0) blue = random.uniform(0.3, 1.0) cmds.sets(renderable=True, noSurfaceShader=True, empty=True, name=name_shader+'SG') cmds.shadingNode('aiStandardSurface', asShader=True, name=name_shader) cmds.setAttr(name_shader+'.baseColor', red, green, blue, type='double3') cmds.setAttr(name_shader+'.base', 0.85) cmds.setAttr(name_shader+'.specular', 1) cmds.setAttr(name_shader+'.emission', 1) cmds.setAttr(name_shader+'.emissionColor', red, green, blue, type='double3') cmds.setAttr(name_shader+'.specularColor', red, green, blue, type='double3') cmds.connectAttr(name_shader+'.outColor', name_shader+'SG.surfaceShader') cmds.sets(self.name, edit=True, forceElement=name_shader+'SG') def add_geometry(self): ''' Create boid geometry. ''' # cmds.polyPlatonicSolid(n=self.name, solidType=0) # dodecahedron #cmds.polyCone(n=self.name, sx=24, sy=1, sz=0, ax=[0, -1, 0], rcp=0, cuv=3, ch=1, radius=self.size/2) cmds.sphere(n=self.name, radius=self.size) # cmds.polyCube(n=self.name) def set_key(self, frame): ''' Set keyframe for boid at frame number. ''' cmds.select(self.name) cmds.setKeyframe(self.name, t=frame) def point_boid(self): ''' Point boid in the direction it is travelling in Maya scene. ''' cmds.select(self.name) degrees_tuple = self.velocity.cosine_direction() cmds.rotate(degrees_tuple[0], degrees_tuple[1], degrees_tuple[2], absolute=True, componentSpace=True) def move_boid(self): ''' Move boid in Maya scene. ''' cmds.select(self.name) cmds.move(self.position.x, self.position.y, self.position.z, relative=True) def move_boid_absolute(self): ''' Move boid in Maya scene. ''' cmds.select(self.name) cmds.move(self.position.x, self.position.y, self.position.z, absolute=True) def update(self): ''' Update velocity, position and lifespan for this particle. ''' self.velocity = self.velocity + self.acceleration self.position = self.position + self.velocity self.acceleration = self.acceleration * 0 self.move_boid() self.point_boid() def apply_force(self, force): ''' Add force vector to acceleration vector @param {float} force ''' self.acceleration = self.acceleration + force def flock(self, others): ''' Apply flocking behaviours. ''' separation_force = self.separate(others) separation_force = separation_force * 0.5 self.apply_force(separation_force) alignment_force = self.align(others) alignment_force = alignment_force * 0.5 self.apply_force(alignment_force) cohesion_force = self.cohesion(others) cohesion_force = cohesion_force * 0.5 self.apply_force(cohesion_force) def seek(self, target): ''' Steer particle towards target. Called by cohesion(). ''' desired = target - self.position # point from position to target desired = desired.unit_vector() desired = desired * self.max_steering_speed steer = desired - self.velocity steer.limit(self.max_steering_force) return steer def separate(self, others): ''' Separate self from others. Separation is the average of all the vectors pointing away from any close others. ''' sum = v.vec3(0, 0, 0) count = 0 steer = self.velocity for other in others: d = self.position.distance(other.position) if ((d > 0) and (d < self.desired_separation)): # calculate vector pointing away from other difference = self.position - other.position difference = difference.unit_vector() difference = difference / d # weight by distance. More flee from closer things. sum = sum + difference # average of all vectors pointing away from close particles. count += 1 if count > 0: sum = sum / count sum = sum.unit_vector() sum = sum * self.max_steering_speed # go this way! steer = sum - self.velocity # steering = desired - velocity steer.limit(self.max_steering_force) return steer def align(self, others): ''' Align self with others. ''' sum = v.vec3(0, 0, 0) count = 0 for other in others: d = self.position.distance(other.position) if ((d > 0) and (d < self.neighbour_distance)): sum = sum + other.velocity count += 1 if count > 0: sum = sum / count sum = sum.unit_vector() sum = sum * self.max_steering_speed # go this way! steer = sum - self.velocity # steering = desired - velocity steer.limit(self.max_steering_force) return steer else: return v.vec3(0, 0, 0) # if no close boids then steering force is zero def cohesion(self, others): ''' Cohesion of self with others. ''' sum = v.vec3(0, 0, 0) count = 0 for other in others: d = self.position.distance(other.position) if ((d > 0) and (d < self.neighbour_distance)): sum = sum + other.position # sum location of others count += 1 if count > 0: sum = sum / count return self.seek(sum) else: return v.vec3(0, 0, 0) # if no close boids then cohesion force is zero def borders(self): ''' Move particle to wrap around borders of drawing area. ''' if self.position.x < -self.desired_separation: self.position.x = width + self.desired_separation if self.position.y < -self.desired_separation: self.position.y = height + self.desired_separation if self.position.z < -self.desired_separation: self.position.z = depth + self.desired_separation if self.position.x > width + self.desired_separation: self.position.x = -self.desired_separation if self.position.y > height + self.desired_separation: self.position.y = -self.desired_separation if self.position.z > depth + self.desired_separation: self.position.z = -self.desired_separation self.move_boid_absolute() self.point_boid() def borders1(self): ''' Move particle stay within borders of drawing area. Not used. ''' if self.position.x > width or self.position.x < 0: self.velocity.x = self.velocity.x * -1 if self.position.y > height or self.position.y < 0: self.velocity.y = self.velocity.y * -1 if self.position.z > depth or self.position.z < 0: self.velocity.z = self.velocity.z * -1 self.move_boid_absolute() self.point_boid() # initialise particle system boids = [] for a in range(2400): name = 'cube' + str(a) obj = Particle(name) boids.append(obj) FRAMES = 420 frame = 1 while frame < FRAMES: print('frame = ', frame) for boid in boids: boid.borders() boid.flock(boids) boid.update() boid.set_key(frame) frame += 1
true
26394d522a287ace3a9741e27d7d487fa638a969
Python
LokeshKD/MachineLearning
/CaseStudy/dataProcessing/integerFeature.py
UTF-8
389
2.78125
3
[]
no_license
import tensorflow as tf # Add the integer Feature objects to the feature dictionary def add_int_features(dataset_row, feature_dict): # CODE HERE int_vals = ['Store', 'Dept', 'IsHoliday', 'Size'] for feature_name in int_vals: list_val = tf.train.Int64List(value=[dataset_row[feature_name]]) feature_dict[feature_name] = tf.train.Feature(int64_list=list_val)
true
fee457acacb1d4721bd7f7beb84e60273f6ba4d9
Python
shubh4197/Python
/PycharmProjects/day3/program8.py
UTF-8
380
2.609375
3
[]
no_license
with open('demo.txt', 'r') as fo: data = fo.readline() data1 = fo.readline() data2 = fo.readline() print(data) print(data1) print(data2) fo = open('RA1511004010460 Shubham Das.jpg', 'rb') i = 0 for line in fo: fo1 = open('chunks/demo' + str(i) + '.jpg', 'wb') print(line) i += 1 fo1.write(line) fo1.close() fo.close()
true
35f24a0a9d55f7468b65e803659e7ae2d1cfbe85
Python
aplocher/rpi-bbmon
/WebMonitor/file_writer.py
UTF-8
213
3.484375
3
[]
no_license
class FileWriter: def __init__(self, filename): self._filename = filename def write(self, text): file = open(self._filename, "w") file.write(text +"\n") file.close()
true
91e8de234eaed083d081eb26bd60dedf25b413f3
Python
AbiramiRavichandran/DataStructures
/Tree/LeafTraversalOfTwoBST.py
UTF-8
1,410
3.828125
4
[]
no_license
class Node: def __init__(self, data): self.data = data self.left = self.right = None def is_leaf(self): return self.left is None and self.right is None def has_same_leaf_traversal(t1, t2): q1 = [] q2 = [] q1.append(t1) q2.append(t2) while q1 or q2: if not q1 or not q2: return False temp1 = q1.pop(0) while temp1 and not temp1.is_leaf(): if temp1.left: q1.append(temp1.left) if temp1.right: q1.append(temp1.right) temp1 = q1.pop(0) temp2 = q2.pop(0) while temp2 and not temp2.is_leaf(): if temp2.left: q2.append(temp2.left) if temp2.right: q2.append(temp2.right) temp2 = q2.pop(0) if (temp1 is None and temp2) or (temp2 is None and temp1): return False if temp1.data != temp2.data: return False return True if __name__ == '__main__': root1 = Node(1) root1.left = Node(2) root1.right = Node(3) root1.left.left = Node(4) root1.right.left = Node(6) root1.right.right = Node(7) root2 = Node(0) root2.left = Node(1) root2.right = Node(5) root2.left.right = Node(4) root2.right.left = Node(6) root2.right.right = Node(7) print(has_same_leaf_traversal(root1, root2))
true
448e30095ea4fa023a3091d5956d47fe8b81a18a
Python
LitRidl/checker-content
/cont11lab/problems/20/solution.py
UTF-8
772
3.015625
3
[]
no_license
#!/usr/bin/python # -*- coding: utf-8 -*- u''' перевести все мерные расстояние из миль(mi) в киллометры(km). Например 1000mi -> 1609km 28147326av 100mi 205mi\nami in 0mi 5MI man 1000mi ''' from __future__ import print_function from sys import stdin, stdout from string import * def cs(w): return str(int(round(1.609 * int(w[:-2], base=10)))) + 'km' def work_ok(w): if w[0] in '-+': w = w[1:] return len(w) > 2 and w[-1] == 'i' and w[-2] =="m" and all(c in digits for c in w[:-2]) for line in stdin: words = [w for w in line.strip().split() if len(w.strip()) > 0] words = [w for w in words if work_ok(w)] if len(words) > 0: print(' '.join(str(cs(word)) for word in words))
true
24301f4022d78ff3e78643c1776a0820c01c8777
Python
MsSusie/PythonProjects
/fillingInTheGaps.py
UTF-8
2,161
3.53125
4
[]
no_license
# python 3 # program that finds all files with a given prefix eg. spam001.txt, spam002.txt, spam004.txt etc and # locates any gaps in the numbering eg. missing spam003.txt when the file jumps to spam004.txt # program should rename all the later files to close the gaps import re, os, glob, shutil from pathlib import Path while True: userPathInput = input("Where is the file path that you want to check? ") filePath = os.chdir(userPathInput) p = Path(userPathInput) pathExists = os.path.exists(p) if not pathExists: print("That file path does not exist. Try again.") print('') continue else: for folders, subfolders, files in sorted(os.walk(p)): # traverse each file in folder and reads filename for file in files: fileRegex = re.compile(r'(\w{1,})(\d{1,})(.\w+)') fileMO = fileRegex.search(file) if fileMO == None: print("Not a match.") else: print(fileMO.group()) prefix = fileMO.group(1) # if file 'eggs001.txt' then prefix = eggs00 numberInFile = int(fileMO.group(2)) # if file 'eggs001.txt' then numberInFile = 1 suffix = fileMO.group(3) # extension of file counter = numberInFile # use this to check against the file number pulled from fileMO.group(2) to check for gaps, starts at whatever the smallest file number is for i in range(len(glob.glob('*[0-9].txt'))): if numberInFile != counter: # finds the gap in the numbering by comparing file number against counter renamedFile = prefix + str(counter) + suffix # rename the file by putting together the pieces if not os.path.exists(file): print(renamedFile) # test to see if it renamed correctly shutil.move(os.path.abspath(file), os.path.abspath(renamedFile)) counter += 1 break
true
c6a2f52900752d7ce222943ef9fda075a0c5f780
Python
june2413/python
/EMPService.py
UTF-8
1,035
3.75
4
[]
no_license
from EMP import EMP from datetime import datetime class EMPService: # 객체 생성없이 바로 사용가능한 static method로 선언 @staticmethod def readEmp(): # 사원번호, 이름, 성, 이메일, 전화번호, 입사일 등 입력 empno = input("사원번호를 입력하여 주십시오 : ") fname = input("이름을 입력하여 주십시오 : ") lname = input("성을 입력하여 주십시오 : ") email = input("이메일을 입력하여 주십시오 : ") phone = input("전화번호를 입력하여 주십시오 : ") hdate = input("입사일을 입력하여 주십시오 : ") return EMP(empno, fname, lname, email, phone, hdate) @staticmethod def computeDuty(emp: EMP): # 입사일 기준 근무일 계산 hdate = emp.hdate.split('-') now = datetime.now() hire = datetime(int(hdate[0]), int(hdate[1]), int(hdate[2])) # 연, 월, 일 days = now - hire print(str(days).split()[0], '일')
true
348a94152a810a80eb68776ab5ceaf0b228f5afb
Python
olive1618/csss17_multilayer_networks
/MultiTensor_Pkg/AUC.py
UTF-8
1,303
3.34375
3
[ "MIT" ]
permissive
import numpy as np def calculate_AUC(M,Pos,Neg): # M= # SORTED (from small to big) List of 2-tuple, each entry is M[n]=(mu_ij,A_ij) # Pos= # positive entries (graph edges) # Neg= # negative entries (graph non-edges) y=0.;bad=0.; for m,a,n in M: if(a>=1.): y+=1; else: bad+=y; AUC=1.-(bad/(Pos*Neg)); return AUC; def calculate_AUC_weighted(M,max_w): """" AUC for weighted entries A_ij. Ideally, if an observed edge has A_ij=4, it will have a bigger M entry than an observed edge with A_ij<4 - M= # SORTED (from small to big) List of 2-tuple, each entry is M[n]=(mu_ij,A_ij) - m_k= multiplicity of A_ij=k entries - max_w is the maximum edge weigth, needed to order the y[k] """ bad=0. y=np.zeros(max_w+1) for m, a in M: y[a] += 1 # number of entries with A_ij=a already encountered for q in range(a+1,max_w+1): # number of entries with A_ij>a already encountered --> penalty bad += y[q] # calculate denominator --> normalization Z = 0 for k in range(max_w+1): m = 0. for q in range(k+1, max_w+1): m += y[q] Z += m*y[k] AUC = 1.-(bad/float(Z)) return AUC;
true
fd5900793e66d605b11225e795b65ffc67c10232
Python
yogii1981/Fullspeedpythoneducative1
/test3.py
UTF-8
505
4.59375
5
[]
no_license
# Given an inRange(x,y) function, write a method that determine whether a pair (x,y) falls in # the range ( x < 1/3 < y)/ Essentially you will be implementing the body aof a function that takes two numbers # x and y and returns True if x <1/3 < y ; otherwise it returns False. x = int(input("Enter a value:")) y = int(input("Enter a value")) def inrange(x, y): if x < 1 / 3 < y: print(True) else: print(False) return True if x < 1 / 3 < y else False print(inrange(x, y))
true
57054a5a1c7b1ec450f2ccb0daf2f0bbe6ac48b9
Python
phny/python-lab
/random_walk.py
UTF-8
1,027
3.8125
4
[]
no_license
#!/usr/bin/env python3.5 from random import choice import matplotlib.pyplot as plt class RandomWalk(): ''' 一个生成随机漫步数据的类 ''' def __init__(self, num_points = 5000): '''初始化随机漫步属性 ''' self.num_points = num_points #所有的随机漫步都始于(0, 0) self.x_values = [0] self.y_values = [0] def fill_walk(self): while len(self.x_values) < self.num_points: x_direction = choice([1, -1]) x_distance = choice([0, 1, 2, 3, 4]) x_step = x_direction * x_distance y_direction = choice([1, -1]) y_distance = choice([0, 1, 2, 3, 4]) y_step = y_direction * y_distance #拒绝原地踏步 if x_step == 0 and y_step == 0: continue #计算下一个x 和 y的值 next_x = self.x_values[-1] + x_step next_y = self.y_values[-1] + y_step self.x_values.append(next_x) self.y_values.append(next_y) if __name__ == '__main__': rw = RandomWalk() rw.fill_walk() plt.scatter(rw.x_values, rw.y_values, s = 15) plt.show()
true
f6cf889773ce23c267394868bae65f3bb61e4ec2
Python
HanQQ/KNN-Test
/knn.py
UTF-8
3,353
2.84375
3
[]
no_license
#-*-coding:utf-8-*- __author__ = 'Qiao' from numpy import * import operator class knn: #初始化: def __init__(self,Filename,Inx,K,Filetest): #training数据集: self.filetrain=Filename #待检测数据: self.inX=Inx self.k=K #test数据集: self.filetest=Filetest #对training数据进行文本分析并返回矩阵: def file2matrix(self,filetrain): try: fr = open(self.filetrain) except: filetrain=raw_input("错误.输入training数据集") fr=open(filetrain) numberOfLines = len(fr.readlines()) dataSet = zeros((numberOfLines,3)) labels = [] index = 0 for line in fr.readlines(): line = line.strip() listFromLine = line.split('\t') dataSet[index,:] = listFromLine[0:3] labels.append(int(listFromLine[-1])) index += 1 return dataSet,labels,numberOfLines #归一化数据: def autoNorm(self,dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet=zeros() m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) return normDataSet, ranges, minVals #分类: def classify0(self, normdataSet, labels): #计算距离并距离排序: dataSetSize = normdataSet.shape[0] norminx=self.autoNorm(self,self.inX) diffMat = tile(norminx, (dataSetSize,1)) - normdataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() #选择与待分类数据最近k个的数据点并统计其类型: classCount={} try: k=int(self.k) except: k=raw_input("错误。输入k值") k=int(k) for i in range(self.k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #确定分类: sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] #算法检测: def datingClassTest(self): hoRatio = 0.50 datingDataMat,datingLabels =self.file2matrix(self.filetest) normMat, ranges, minVals = self.autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = self.classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print "分类结果为: %d, 正确结果为: %d" % (classifierResult, datingLabels[i]) if (classifierResult != datingLabels[i]): errorCount += 1.0 print "错误率为: %f" % (errorCount/float(numTestVecs)) print errorCount print "k均值聚类学习" Filename=raw_input("输入training数据集") Filetest=raw_input("输入test数据集") #可以用graphlib将一个数据集进行确定比例的随机分割 K=raw_input("输入k值") Inx=raw_input("输入待分类数据") KNN=knn(Filename,Inx,K,Filetest) KNN.start()
true
bcd04a88f6af6cece9c278b4bfab0676c59f2c39
Python
Shuravin/python_practice
/W3Resources/Strings/15.py
UTF-8
503
4.59375
5
[]
no_license
# 15. Write a Python function to create the HTML string with tags around the word(s). Go to the editor # Sample function and result : # add_tags('i', 'Python') -> '<i>Python</i>' # add_tags('b', 'Python Tutorial') -> '<b>Python Tutorial </b>' s = input("Type your sentence: ") tag = input( "In which tag do you whant to wrap your sentence? Type without brackets (eg a, b, p): ") def add_tags(attr="p", string="Python"): print("<" + attr + ">" + string + "</" + attr + ">") add_tags(tag, s)
true
c141f0d56d04e6c960e6de44e20ae8f7f46a8be0
Python
NoraXie/LeetCode_Archiver
/LeetCode_Archiver/pipelines.py
UTF-8
1,178
2.78125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import time from LeetCode_Archiver.LocalFile import LocalFile from LeetCode_Archiver.Statistic import Statistic class QuestionDataPipeline(object): def open_spider(self, spider): self.data_set = [] self.language_set = set() # self.start = time.time() def process_item(self, item, spider): data = dict(item) data["id"] = int(data["id"]) if len(data["submission_list"]) == 0: return self.data_set.append(data) for language in data["submission_list"].keys(): if language not in self.language_set: self.language_set.add(language) def close_spider(self, spider): print("Generating local files") LocalFile(self.data_set, self.language_set) print("Generating statistical figures") Statistic(self.data_set) print("Done!") # self.end = time.time() # print("Total time: " + str((self.end - self.start) // 1000) + "s")
true
84c97d77825d990da42eee6bf3c1a49e71c9dc62
Python
FalseG0d/gecko-dev
/third_party/rust/jsparagus/jsparagus/actions.py
UTF-8
10,213
3.0625
3
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "LLVM-exception", "Apache-2.0" ]
permissive
from .ordered import OrderedFrozenSet from .grammar import InitNt, Nt class Action: __slots__ = [ "read", # Set of trait names which are consumed by this action. "write", # Set of trait names which are mutated by this action. "_hash", # Cached hash. ] def __init__(self, read, write): assert isinstance(read, list) assert isinstance(write, list) self.read = read self.write = write self._hash = None def is_inconsistent(self): """Returns True whether this action is inconsistent. An action can be inconsistent if the parameters it is given cannot be evaluated given its current location in the parse table. Such as CheckNotOnNewLine. """ return False def is_condition(self): "Unordered condition, which accept or not to reach the next state." return False def condition(self): "Return the conditional action." raise TypeError("Action::condition_flag not implemented") def update_stack(self): """Change the parser stack, and resume at a different location. If this function is defined, then the function reduce_with should be implemented.""" return False def reduce_with(self): "Returns the non-terminal with which this action is reducing with." assert self.update_stack() raise TypeError("Action::reduce_to not implemented.") def shifted_action(self, shifted_term): "Returns the same action shifted by a given amount." return self def maybe_add(self, other): """Implement the fact of concatenating actions into a new action which can have a single state instead of multiple states which are following each others.""" actions = [] if isinstance(self, Seq): actions.extend(list(self.actions)) else: actions.append(self) if isinstance(other, Seq): actions.extend(list(other.actions)) else: actions.append(other) if any([a.is_condition() for a in actions]): return None if any([a.update_stack() for a in actions[:-1]]): return None return Seq(actions) def __eq__(self, other): if self.__class__ != other.__class__: return False if sorted(self.read) != sorted(other.read): return False if sorted(self.write) != sorted(other.write): return False for s in self.__slots__: if getattr(self, s) != getattr(other, s): return False return True def __hash__(self): if self._hash is not None: return self._hash def hashed_content(): yield self.__class__ yield "rd" for alias in self.read: yield alias yield "wd" for alias in self.write: yield alias for s in self.__slots__: yield repr(getattr(self, s)) self._hash = hash(tuple(hashed_content())) return self._hash def __lt__(self, other): return hash(self) < hash(other) def __repr__(self): return str(self) class Reduce(Action): """Define a reduce operation which pops N elements of he stack and pushes one non-terminal. The replay attribute of a reduce action corresponds to the number of stack elements which would have to be popped and pushed again using the parser table after reducing this operation. """ __slots__ = 'nt', 'replay', 'pop' def __init__(self, nt, pop, replay = 0): name = nt.name if isinstance(name, InitNt): name = "Start_" + name.goal.name super().__init__([], ["nt_" + name]) self.nt = nt # Non-terminal which is reduced self.pop = pop # Number of stack elements which should be replayed. self.replay = replay # List of terms to shift back def __str__(self): return "Reduce({}, {}, {})".format(self.nt, self.pop, self.replay) def update_stack(self): return True def reduce_with(self): return self def shifted_action(self, shifted_term): return Reduce(self.nt, self.pop, replay = self.replay + 1) class Lookahead(Action): """Define a Lookahead assertion which is meant to either accept or reject sequences of terminal/non-terminals sequences.""" __slots__ = 'terms', 'accept' def __init__(self, terms, accept): assert isinstance(terms, (OrderedFrozenSet, frozenset)) assert all(not isinstance(t, Nt) for t in terms) assert isinstance(accept, bool) super().__init__([], []) self.terms = terms self.accept = accept def is_inconsistent(self): # A lookahead restriction cannot be encoded in code, it has to be # solved using fix_with_lookahead. return True def is_condition(self): return True def condition(self): return self def __str__(self): return "Lookahead({}, {})".format(self.terms, self.accept) def shifted_action(self, shifted_term): if isinstance(shifted_term, Nt): return True if shifted_term in self.terms: return self.accept return not self.accept class CheckNotOnNewLine(Action): """Check whether the terminal at the given stack offset is on a new line or not. If not this would produce an Error, otherwise this rule would be shifted.""" __slots__ = 'offset', def __init__(self, offset = 0): # assert offset >= -1 and "Smaller offsets are not supported on all backends." super().__init__([], []) self.offset = offset def is_inconsistent(self): # We can only look at stacked terminals. Having an offset of 0 implies # that we are looking for the next terminal, which is not yet shifted. # Therefore this action is inconsistent as long as the terminal is not # on the stack. return self.offset >= 0 def is_condition(self): return True def condition(self): return self def shifted_action(self, shifted_term): if isinstance(shifted_term, Nt): return True return CheckNotOnNewLine(self.offset - 1) def __str__(self): return "CheckNotOnNewLine({})".format(self.offset) class FilterFlag(Action): """Define a filter which check for one value of the flag, and continue to the next state if the top of the flag stack matches the expected value.""" __slots__ = 'flag', 'value' def __init__(self, flag, value): super().__init__(["flag_" + flag], []) self.flag = flag self.value = value def is_condition(self): return True def condition(self): return self def __str__(self): return "FilterFlag({}, {})".format(self.flag, self.value) class PushFlag(Action): """Define an action which pushes a value on a stack dedicated to the flag. This other stack correspond to another parse stack which live next to the default state machine and is popped by PopFlag, as-if this was another reduce action. This is particularly useful to raise the parse table from a LR(0) to an LR(k) without needing as much state duplications.""" __slots__ = 'flag', 'value' def __init__(self, flag, value): super().__init__([], ["flag_" + flag]) self.flag = flag self.value = value def __str__(self): return "PushFlag({}, {})".format(self.flag, self.value) class PopFlag(Action): """Define an action which pops a flag from the flag bit stack.""" __slots__ = 'flag', def __init__(self, flag): super().__init__(["flag_" + flag], ["flag_" + flag]) self.flag = flag def __str__(self): return "PopFlag({})".format(self.flag) class FunCall(Action): """Define a call method operation which reads N elements of he stack and pushpathne non-terminal. The replay attribute of a reduce action correspond to the number of stack elements which would have to be popped and pushed again using the parser table after reducing this operation. """ __slots__ = 'method', 'offset', 'args', 'set_to' def __init__(self, method, alias_read, alias_write, args, set_to = None, offset = 0): super().__init__(alias_read, alias_write) self.method = method # Method and argument to be read for calling it. self.offset = offset # Offset to add to each argument offset. self.args = args # Tuple of arguments offsets. self.set_to = set_to # Temporary variable name to set with the result. def __str__(self): return "FunCall({}, {}, {}, {})".format(self.method, self.offset, self.args, self.set_to) def shifted_action(self, shifted_term): return FunCall(self.method, self.read, self.write, self.args, self.set_to, offset = self.offset + 1) class Seq(Action): """Aggregate multiple actions in one statement. Note, that the aggregated actions should not contain any condition or action which are mutating the state. Only the last action aggregated can update the parser stack""" __slots__ = 'actions', def __init__(self, actions): assert isinstance(actions, list) read = [ rd for a in actions for rd in a.read ] write = [ wr for a in actions for wr in a.write ] super().__init__(read, write) self.actions = tuple(actions) # Ordered list of actions to execute. assert all([not a.is_condition() for a in actions[1:]]) assert all([not a.update_stack() for a in actions[:-1]]) def __str__(self): return "Seq({})".format(repr(self.actions)) def is_condition(self): return self.actions[0].is_condition() def condition(self): return self.actions[0] def update_stack(self): return self.actions[-1].update_stack() def reduce_with(self): return self.actions[-1].reduce_with() def shifted_action(self, shift): actions = list(map(lambda a: a.shifted_action(shift), self.actions)) return Seq(actions)
true
9f184d4510aa25b6751e1a9ad0c0533c00ca5d42
Python
Rossel/Solve_250_Coding_Challenges
/chal111.py
UTF-8
111
3.484375
3
[]
no_license
x = "The days of Python 2 are almost over. Python 3 is the king now." if len(x) >= 50: print("True!")
true
696126e59b5036483badcc22bd49c7aa97bd2a34
Python
JetBrains-Research/similar-python-dependencies
/src/preprocessing/preprocess.py
UTF-8
4,357
2.6875
3
[ "MIT" ]
permissive
from collections import Counter, defaultdict from operator import itemgetter import os from typing import Dict, List, Optional import numpy as np import requirements def process_sources() -> None: """ Parses through all the versious of requirements files, saves the processed version into a single file. :return: None """ dataset = [] # Get the list of all the projects. with open("sources/requirements_history/download.txt") as fin: for line in fin: data = line.rstrip().split("/") dataset.append((data[0], data[1])) dataset = sorted(dataset, key=itemgetter(0, 1)) # Iterate over all the versions from the old towards the new. with open("processed/requirements_history.txt", "w+") as fout: for date in ["2011-11-22", "2012-11-21", "2013-11-21", "2014-11-21", "2015-11-21", "2016-11-20", "2017-11-20", "2018-11-20", "2019-11-20", "2020-11-19"]: # Iterate over all the projects. for repo in dataset: path = f"sources/requirements_history/{date}/{repo[0]}_{repo[1]}.txt" if os.path.exists(path): with open(path) as fin_req: try: reqs_list = [] # Parse the `requirements.txt` and save all the dependencies # in the form "reqirement:1" (remained from topic modelling) reqs = requirements.parse(fin_req) for req in reqs: reqs_list.append(req.name) if len(reqs_list) != 0: fout.write( f"{repo[0]}_{repo[1]}/{date};{','.join([req + ':1' for req in reqs_list])}\n") except: continue def read_dependencies() -> Dict[str, List[str]]: """ Read the file with the dependencies and return a dictionary with repos as keys and lists of their dependencies as values. Automatically considers the lower- and upppercase, and replaces "-" with "_". :return: dictionary {repo: [dependencies], ...} """ reqs = {} with open(f"processed/requirements_history.txt") as fin: for line in fin: data = line.rstrip().split(";") reqs[data[0]] = [req.split(":")[0].lower().replace("-", "_") for req in data[1].split(",")] return reqs def read_idfs() -> Dict[str, float]: idfs = {} with open(f"models/idfs.txt") as fin: for line in fin: data = line.rstrip().split(";") idfs[data[0]] = float(data[1]) return idfs def read_repo_list() -> np.ndarray: repos_list = [] with open("models/repos_list.txt") as fin: for line in fin: repos_list.append(line.rstrip()) repos_list = np.array(repos_list) return repos_list def read_library_names() -> List[str]: return [line.strip() for line in open("models/libraries_embeddings_dependencies.txt")] def read_library_embeddings() -> np.ndarray: return np.load('models/libraries_embeddings.npy') def years_requirements() -> None: """ Save the most popular requirement for each year separately. :return: None. """ reqs = read_dependencies() # Compile a dictionary {year: [depenencies]} years = defaultdict(list) for repo in reqs: year = repo.split("/")[1] years[year].extend(reqs[repo]) # Transform the lists into the Counters and print them. for year in years: years[year] = [x[0] for x in sorted(Counter(years[year]).items(), key=itemgetter(1, 0), reverse=True)] with open("dynamics/years.txt", "w+") as fout: for year in years: fout.write(f"{year};{','.join(years[year])}\n") def project_to_library_embedding(dependencies: List[str]) -> Optional[np.ndarray]: known_libraries = read_library_names() library_embeddings = read_library_embeddings() inds = [known_libraries.index(dep) for dep in dependencies if dep in known_libraries] if len(inds) == 0: return None embedding = library_embeddings[inds].mean(axis=0) return embedding / np.linalg.norm(embedding)
true
b3b0b8bb76c3c958628e771b2bfec4cb3c5499a9
Python
blodyx/AdventOfCode2020
/3_extra.py
UTF-8
342
2.6875
3
[]
no_license
lines = open("input/3.input", "r").readlines() tests=[] maxx=len(lines) maxy=len(lines[0])-1 for cx in range(10,19): for cy in range(10,19): tree=x=y=0 while x<maxx: if lines[x][y] == '#': tree+=1 x+=cx y+=cy if y>=maxy: y=y-maxy tests.append([cx,cy,tree]) print tests
true
f1b8a4d0f66502a2ca94cc20b1cf9e0043ee2ca4
Python
LoneElk/Infrared-IPS
/test/test_building_model.py
UTF-8
12,022
2.5625
3
[]
no_license
__author__ = 'jim' import unittest import sys import json import logging import globals.building_model as bm from globals.global_constants import * def load_map(file_name): """load map for specified room""" map_data = {} try: with open(file_name,'r') as fs: map_data = json.load(fs) except IOError as e: logging.error("I/O error({0}): {1}".format(e.errno, e.strerror)) except: logging.error("Unexpected error: %s - %s",str(sys.exc_info()[0]), str(sys.exc_info()[1])) return map_data class SurfaceUnitTests(unittest.TestCase): def test_surface_attributes(self): self.surface = bm.Surface('test', [],False) self.assertEquals(self.surface.surface_type,'test') self.assertItemsEqual(self.surface.linearring, []) self.surface = bm.Floor([]) self.assertEquals(self.surface.surface_type,SurfaceType.floor) self.assertItemsEqual(self.surface.linearring, []) self.surface = bm.Wall([]) self.assertEquals(self.surface.surface_type,SurfaceType.wall) self.assertItemsEqual(self.surface.linearring, []) self.assertTrue(self.surface.polygon is None) #Single Polygon no interior poly = [[[0,0],[0,1],[1,1],[1,0]]] self.surface = bm.Wall([poly]) self.assertEquals(self.surface.surface_type,SurfaceType.wall) self.assertItemsEqual(self.surface.linearring, [poly]) #Multiple Polygons poly2 = [[[0,0],[0,2],[2,2]]] self.surface = bm.Wall([poly, poly2]) self.assertEquals(self.surface.surface_type,SurfaceType.wall) self.assertItemsEqual(self.surface.linearring, [poly,poly2]) self.assertItemsEqual(self.surface.polygon.exterior.coords[:], [(0.0, 0.0), (0.0, 1.0), (0.0, 2.0), (2.0, 2.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]) class ContainerTests(unittest.TestCase): def setUp(self): self.container_geojson_obj = {"type": "FeatureCollection", "features": [ {"geometry": {"type": "Polygon", "coordinates": [ [[539, 2], [282, 1], [266, 120], [252, 94], [125, 96], [117, 13], [0, 14], [1, 301], [124, 300], [127, 231], [540, 233]]]}, "type": "Feature", "properties": {"geomType": "floor", "accessible": True, "colour": [79, 233, 252], "name": "hall", "level": 0}, "bbox": [0, 0, 542, 303]}, { "geometry": {"type": "MultiPolygon", "coordinates": [ [[ [0, 0], [0, 35], [1, 35], [3, 118], [18, 118], [18, 34], [97, 33], [101, 117], [297, 114], [304, 18], [515, 22], [516, 113], [542, 121], [542, 0], [0, 0] ]], [[ [100, 303], [125, 303], [125, 236], [394, 232], [394, 207], [101, 207], [99, 277], [21, 276], [21, 209], [4, 209], [2, 293], [101, 299], [100, 303] ]], [[ [542, 233], [542, 194], [483, 209], [483, 232], [542, 233] ]] ]}, "type": "Feature", "properties": {"geomType": "wall", "accessible": False, "colour": [0, 0, 0], "name": "walls", "level": 0}, "bbox": [0, 0, 542, 303]}], "properties": { "srcImage": "/Users/jim/Dropbox/Documents/Msc/Thesis/" "A4/Infrared-IPS/location_rules_engine/" "utilities/floor_plan/floorplan1.jpg", "scale": 100, "originalBBox": [617, 16, 1159, 319], "name": "hall", "imageSize": [303, 542, 3], 'position': {'y': 16, 'x': 721, 'referenceFrame': 'level', 'heading': 0}}} self.container_geojson_obj2 = {"type": "FeatureCollection", "features": [ {"geometry": {"type": "Polygon", "coordinates": [[[1, 2], [2, 450], [525, 451], [526, 4]]]}, "type": "Feature", "properties": {"geomType": "floor", "accessible": True, "colour": [186, 187, 248], "name": "livingRoom", "level": 0}, "bbox": [0, 0, 531, 452]}, {"geometry": {"type": "Polygon", "coordinates": [ [[0, 0], [0, 450], [517, 450], [530, 437], [530, 11], [517, 0], [379, 0], [379, 22], [505, 25], [505, 425], [21, 422], [21, 26], [290, 22], [290, 0], [0, 0]]]}, "type": "Feature", "properties": {"geomType": "wall", "accessible": False, "colour": [0, 0, 0], "name": "walls", "level": 0}, "bbox": [0, 0, 542, 303]}], "properties": { "srcImage": "/Users/jim/Dropbox/Documents/Msc/Thesis/A4/Infrared-IPS/location_rules_engine/utilities/floor_plan/floorplan1.jpg", "scale": 100, "originalBBox": [721, 226, 1252, 678], "name": "livingRoom", "imageSize": [452, 531, 3], 'position': {'y': 16, 'x': 721, 'referenceFrame': 'level', 'heading': 0} }} self.floor_plan_geojson_file = '/Users/jim/Dropbox/Documents/Msc/Thesis/A4/Infrared-IPS/configuration/floorplan1.json' def test_container_attributes(self): # Multipolygon self.container = bm.Container(ContainerType.room, self.container_geojson_obj) self.assertEqual(self.container.name,self.container_geojson_obj['properties']['name']) self.assertEquals(self.container.container_type, ContainerType.room) self.assertEquals(self.container.container_geojson_obj, self.container_geojson_obj) self.assertItemsEqual(self.container.floor_linearring, [self.container_geojson_obj['features'][0]['geometry']['coordinates']]) self.assertItemsEqual(self.container.wall_linearring, self.container_geojson_obj['features'][1]['geometry']['coordinates']) self.assertItemsEqual(self.container.floor.polygon.exterior.coords[:], [(539.0, 2.0), (282.0, 1.0), (266.0, 120.0), (252.0, 94.0), (125.0, 96.0), (117.0, 13.0), (0.0, 14.0), (1.0, 301.0), (124.0, 300.0), (127.0, 231.0), (540.0, 233.0), (539.0, 2.0)]) #Polygon self.container = bm.Container(ContainerType.room, self.container_geojson_obj2) self.assertEqual(self.container.name,self.container_geojson_obj2['properties']['name']) self.assertItemsEqual(self.container.floor_linearring, [self.container_geojson_obj2['features'][0]['geometry']['coordinates']]) self.assertItemsEqual(self.container.wall_linearring, [self.container_geojson_obj2['features'][1]['geometry']['coordinates']]) self.assertItemsEqual(self.container.floor.polygon.exterior.coords[:], [(1.0, 2.0), (2.0, 450.0), (525.0, 451.0), (526.0, 4.0), (1.0, 2.0)]) #Floor Plan self.container = bm.Container(ContainerType.room, load_map(self.floor_plan_geojson_file)) # print self.container.floor.polygon.exterior.coords[:] # print self.container.walls.polygon.exterior.coords[:] # print self.container.usable_area.polygon def test_room_attributes(self): self.room = bm.Room(self.container_geojson_obj) self.assertEqual(self.room.name, self.container_geojson_obj['properties']['name']) self.assertEquals(self.room.container_type, ContainerType.room) self.assertEquals(self.room.container_geojson_obj, self.container_geojson_obj) self.room = bm.Room(load_map(self.floor_plan_geojson_file)) def test_level_attributes(self): self.level = bm.Level(self.container_geojson_obj) self.level = bm.Level(load_map(self.floor_plan_geojson_file)) if __name__ == '__main__': unittest.main()
true
203eb553422fa0c063e352723b4c5ebc45f68e5a
Python
mattmar2410/spec_analysis
/spec_analysis/spec_analysis/fix_spe.py
UTF-8
877
2.609375
3
[]
no_license
import os from copy import deepcopy import numpy as np def fix_spe(fname, fname_new=None): ''' fix_spe_zero_cal(fname, fname_new=None) creates a new file name for an uncalibrated gammavision spectrum fname: the spectrum that needs to be calibrated ''' if fname_new is None: fname_new = '{}_fixed{}'.format(*os.path.splitext(fname)) with open(fname, 'r') as infile: old_lines = [l.rstrip('\n') for l in infile] new_lines = deepcopy(old_lines) for i, l in enumerate(old_lines): if l.startswith('$MCA_CAL'): cal = [float(x) for x in old_lines[i + 2].split()] if np.isclose(sum(cal), 0.): new_lines[i + 2] = '1.0 1.0 1.0' print('Fixed line:', i + 2) with open(fname_new, 'w') as infile: infile.write('\n'.join(new_lines) + '\n') return fname_new
true
f67efe29b21082a949d708bf9381ad412bf30872
Python
marcvifi10/Curso-Python
/Python 1/1 - Introducion/10 - Salida de datos/Salida_de_datos.py
UTF-8
180
4.125
4
[]
no_license
# Salidas nombre = "Marc" edad = 22 print("Hola",nombre,"tienes",edad,"años.") print("Hola {} tienes {} años.".format(nombre,edad)) print(f"Hola {nombre} tienes {edad} años.")
true
e6f9cf4f0f688084342266687a8b185983d6631b
Python
FKomendah/PYTHON_TIZI
/second_assignment/dirb_look_alike_with_exception.py
UTF-8
582
3.046875
3
[]
no_license
#!/usr/bin/python import requests as req import sys def statuschecker(url,path): '''comment here''' r=req.get(url+path) code=r.status_code return code path_file=open("/usr/share/dirb/wordlists/common.txt","r") try: if len(sys.argv)<2: print "Usage: %s http://target.url"%sys.argv[0] sys.exit() else: url=sys.argv[1] for path in path_file.readlines(): scode=statuschecker(url,path) print "[+] Checking URL: %s:%s. Status:%s"%(url,path,scode) except Exception as err: print "Check that URL" print (err)
true
70c62bbd1b1d115dcbcdb3639aa88e4cada0b88b
Python
Jannis12324/meme_generator
/QuoteEngine/DocxIngestor.py
UTF-8
921
3.09375
3
[]
no_license
"""Ingests docx files and returns a list of QuoteModule Objects.""" from .IngestorInterface import IngestorInterface from typing import List from .QuoteModel import QuoteModel import docx class DocxIngestor(IngestorInterface): """A class that handles the ingestion of docx files.""" allowed_extensions = ["docx"] @classmethod def parse(cls, path: str) -> List[QuoteModel]: """Parse QuoteModel obj of docx files and return a list of them.""" if not cls.can_ingest(path): raise Exception('Cannot Ingest Exception') quotes = [] doc = docx.Document(path) for line in doc.paragraphs: if line.text != "": parse = line.text.split('-') new_cat = QuoteModel(str(parse[0]).strip(' "'), str(parse[1]).strip(' "')) quotes.append(new_cat) return quotes
true
ed5186557c1a376d46524c4dc43accf789724f21
Python
wenshanj/Database-Development-for-Spotify
/simple_query_2.py
UTF-8
633
3.109375
3
[]
no_license
import psycopg2 as pg2 from prettytable import PrettyTable con = pg2.connect(database = 'spotify', user = 'isdb') con.autocommit = True cur = con.cursor() def US5(playlist_id): print ("US5: As a listener, I want to see the total number of songs in a given playlist") print ("Input: playlist_id = 9") tmpl = ''' SELECT playlist_id, num_songs FROM Playlists WHERE playlist_id = %s; ''' cmd = cur.mogrify(tmpl,(playlist_id,)) cur.execute(cmd) rows = cur.fetchall() table = PrettyTable(["playlist_id", "num_songs"]) for row in rows: table.add_row(row) print(table) US5(9)
true
492806f512380ad866832db38cdb64dec74a71a6
Python
ReinaKousaka/core
/src/algorithm/scripts/count_overlap_btw_clusters.py
UTF-8
1,984
2.734375
3
[]
no_license
from src.algorithm.Activity.count_overlap_activity import CountOverlapActivity import argparse import time from src.algorithm.count_overlap.parser.parse_config import parse_from_file from src.shared.utils import get_project_root DEFAULT_PATH = str(get_project_root()) + "/src/algorithm/count_overlap/config/count_overlap.yaml" DEFAULT_METHOD_1 = "Label Propagation" DEFAULT_METHOD_2 = "Max Modularity" def count_overlap(cluster_num_1: int, cluster_num_2: int, base_user: str, cluster_type_1: str, cluster_type_2: str, path=DEFAULT_PATH): config = parse_from_file(path) activity = CountOverlapActivity(config) activity.count_overlap_between_cluster(cluster_num_1, cluster_num_2, base_user, cluster_type_1, cluster_type_2) if __name__ == "__main__": """ Clean inactive users in the friends list. """ parser = argparse.ArgumentParser(description='count overlap between clusters') parser.add_argument('-c1', '--first cluster number', dest='cluster_num_1', required=True, help='the first cluster to compare', type=int) parser.add_argument('-c2', '--second cluster number', dest='cluster_num_2', required=True, help='the second cluster to compare', type=int) parser.add_argument('-u', '--user', dest='base_user', required=True, help='The target user', type=str) parser.add_argument('-t1', '--clustering type', dest='cluster_type_1', required=False, default=DEFAULT_METHOD_1, help='Label Propagation / Max Modularity', type=str) parser.add_argument('-t2', '--clustering type', dest='cluster_type_2', required=False, default=DEFAULT_METHOD_2, help='Label Propagation / Max Modularity', type=str) parser.add_argument('-p', '--path', dest='path', required=False, default=DEFAULT_PATH, help='The path of the config file', type=str) args = parser.parse_args() count_overlap(args.cluster_num_1, args.cluster_num_2, args.base_user, args.cluster_type_1, args.cluster_type_2, args.path)
true
a0f64ab6723d3a8ff4e25e00c4e7b50d578b5fc3
Python
jfmacedo91/curso-em-video
/python/ex102.py
UTF-8
543
4.375
4
[]
no_license
def fatorial(num, show=False): """ → Calcula o Fatorial de um número. :param num: O número a ser calculado. :param show: (Opcinal) Mostrar ou não a conta. :return: O valor fatorial do número num. """ tot = 1 for c in range(num, 0, -1): tot *= c if show: if c == 1: print(f'{c}', end=' = ') else: print(f'{c}', end=' x ') return tot print(f'\033[33m{" Exercício 102 ":-^51}\033[m') print(fatorial(7, True))
true
f12f67f33c0388e36300dc50a8b06ac4e841cca3
Python
jmoradian/directedStudy
/dataPrep/createFeatureMatrix/Featurize.py
UTF-8
946
2.734375
3
[]
no_license
import string, calendar, textblob from dateutil import parser FAVORITE_INDEX = 0 DATE_INDEX = 1 TEXT_INDEX = 3 LISTED_INDEX = 5 VERIFIED_INDEX = 6 FRIEND_INDEX = 7 def getTimeStamp(timeStr): parsedDate = parser.parse(timeStr) timestamp = calendar.timegm(parsedDate.timetuple()) return timestamp # uses textblob library to analyze the tweet sentiment # - textblob is trained on movie review data def getTweetSentiment(tweet): printable = set(string.printable) tweetText = filter(lambda char_: char_ in printable, tweet[TEXT_INDEX]) sentiment = float(textblob.TextBlob(tweetText).sentiment.polarity) # may need to rid text of special characters return sentiment def preProcessTweet(tweet): tweet[TEXT_INDEX] = getTweetSentiment(tweet) tweet[VERIFIED_INDEX] = 0 if tweet[VERIFIED_INDEX] == "False" else 1 tweet[DATE_INDEX] = getTimeStamp(tweet[DATE_INDEX]) del tweet[FRIEND_INDEX] del tweet[LISTED_INDEX] del tweet[FAVORITE_INDEX]
true
811d2537ca49dbeabcab9ee7c604f4235cef5d6c
Python
shen-huang/selfteaching-python-camp
/exercises/1901040047/1001S02E05_string.py
UTF-8
1,489
3.65625
4
[]
no_license
t = ''' "The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambxiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!" ''' t=t.replace("better","worse") #把上面段落里的"better"全部替换为"worse" print(t) t=t.swapcase() #把上面文字的大小写全部对换 print(t) t=t.replace(',','').replace('.','').replace('!','').replace('*','').replace('--','') #把标点符号去掉 t=t.split() #把上面文字变成字符串 x='EA' #上面的文字已大小写转换 y=[] #列表 for i in t: if i.find(x)<1:#搜索字符串中含有“EA”的单词并删除 y.append(i) #把除去含有“EA”外的单词放进列表 print(y) y.sort() #排序 print(y)
true
24bd91dbcb6cf81db97e05d97f7416b6e6d1ab84
Python
EachenKuang/LeetCode
/code/459#Repeated Substring Pattern.py
UTF-8
636
3.65625
4
[]
no_license
# https://leetcode.com/problems/repeated-substring-pattern/description/ class Solution(object): # First char of input string is first char of repeated substring # Last char of input string is last char of repeated substring # Let S1 = S + S (where S in input string) # Remove 1 and last char of S1. Let this be S2 # If S exists in S2 then return true else false # Let i be index in S2 where S starts then repeated substring length i + 1 and repeated substring S[0: i+1] def repeatedSubstringPattern(self, s): """ :type s: str :rtype: bool """ return s in (s + s)[1:-1]
true
b502ccc25a35b4297690f608243ee427e4405825
Python
924235317/leetcode
/179_largest_number.py
UTF-8
473
3.5625
4
[]
no_license
from functools import cmp_to_key def largestNumber(nums): def comp(str1, str2): if str1 + str2 > str2 + str1: return 1 elif str1 + str2 == str2 + str1: return 0 else: return -1 nums_str = list(map(str, nums)) nums_str = sorted(nums_str, key=cmp_to_key(comp), reverse=True) return str(int("".join(nums_str))) if __name__ == "__main__": nums = [10, 2] print(largestNumber(nums))
true
83cc1c83482a81874da6a730706c15b6f39403bc
Python
mattswoon/peanut-butter
/peanut_butter/indexer.py
UTF-8
1,262
2.796875
3
[ "MIT" ]
permissive
import attr import enum from typing import List import numpy as np @attr.s class Region: code = attr.ib(type=str) class Status(enum.Enum): susceptible = enum.auto() infected = enum.auto() recovered = enum.auto() NUM_STATUSES = 3 @attr.s class Indexer: regions = attr.ib(type=List[Region]) def __attrs_post_init__(self): self.regions = sorted(self.regions) idx = 0 fwd = {} bwd = {} for r in self.regions: fwd[r] = idx bwd[idx] = r idx += 1 self._index = fwd self._region = bwd self._n = idx def vector(self, map: Dict[Region, float]): v = np.zeros(self._n) for r, val in map.items(): v[self._index[r]] = val return v def matrix(self, entries: List[Dict[str, float]]): pass def unpack(self, y): """ Unpacks the vector into the S, I and R variables in that order """ n = self._n return np.split(y, [(i+1)*n for i in range(NUM_STATUSES-1)]) def pack(self, S, I, R): """ Packs variables S, I and R into a vector by stacking them in that order """ return np.concatenate((S, I, R), axis=0)
true
88da2053bc2c93da551bd414c1fd629e9cb90863
Python
qmnguyenw/python_py4e
/geeksforgeeks/python/easy/6_17.py
UTF-8
19,882
4.5
4
[]
no_license
Tic Tac Toe GUI In Python using PyGame This article will guide you and give you a basic idea of designing a game Tic Tac Toe using _pygame_ library of Python. Pygame is a cross-platform set of Python modules designed for writing video games. It includes computer graphics and sound libraries designed to be used with the Python programming language. Let’s break the task in five parts: 1. Importing the required libraries and setting up the required global variables. 2. Designing the game display function, that will set a platform for other components to be displayed on the screen. 3. Main algorithm of win and draw 4. Getting the user input and displaying the “X” or “O” at the proper position where the user has clicked his mouse. 5. Running an infinite loop, and including the defined methods in it. **Note:** The required PNG files can be downloaded below – ![](https://media.geeksforgeeks.org/wp- content/uploads/20200507204322/modified_cover-100x100.png) modified_cover.png ![](https://media.geeksforgeeks.org/wp- content/uploads/20200507204515/X_modified-100x100.png) X_modified.png ![](https://media.geeksforgeeks.org/wp- content/uploads/20200507204429/o_modified-100x100.png) o_modified.png ### Importing the required libraries and setting up the required global variables We are going to use the pygame, time, and the sys library of Python. **time** library is used to keep track of time and sleep() method that we are going to use inside our code. Have a look at the code below. __ __ __ __ __ __ __ # importing the required libraries import pygame as pg import sys import time from pygame.locals import * # declaring the global variables # for storing the 'x' or 'o' # value as character XO = 'x' # storing the winner's value at # any instant of code winner = None # to check if the game is a draw draw = None # to set width of the game window width = 400 # to set height of the game window height = 400 # to set background color of the # game window white = (255, 255, 255) # color of the straightlines on that # white game board, dividing board # into 9 parts line_color = (0, 0, 0) # setting up a 3 * 3 board in canvas board = [[None]*3, [None]*3, [None]*3] --- __ __ ### Designing the game display This is the trickier part, that makes the utmost importance in game development. We can use the **display.set_mode()** method to set up our display window. This takes three arguments, first one being a tuple having (width, height) of the display that we want it to be, the other two arguments are depth and fps respectively. **display.set_caption()** , sets a caption on the name tag of our display. **pg.image.load()** is an useful method to load the background images to customize the display. This method takes the file name as an argument along with the extension. There is a small problem with image.load(), it loads the image as a Python object in its native size, which may not be optimized along with the display. So we use another method in pygame known as **pg.transform.scale()**. This method takes two arguments, one being the name of the image object and the other is a tuple having (width, height), that we want our image to scale to. Finally we head to the first function, **game_initiating_window()**. On the very first line there is a **screen.blit()** function. The screen is the Python function and blit is the method that enables pygame to display something over another thing. Here out image object has been displayed over the screen, which was set white initially. **pg.display.update()** is another important function in game development. It updates the display of our window when called. Pygame also enables us to draw geometric objects like line, circle, etc. In this project we have used **pg.draw.line()** method that takes five arguments, namely – _(display, line color, starting point, ending point, width)_. This involves a little bit of coordinate geometry to draw the lines properly. This is not sufficient. At each update of the display we need to know the game status, Weather it is win or lose. **draw_status()** helps us in displaying another 100pc window at the bottom of the main window, that updates the status at each click of the user. __ __ __ __ __ __ __ # initializing the pygame window pg.init() # setting fps manually fps = 30 # this is used to track time CLOCK = pg.time.Clock() # this method is used to build the # infrastructure of the display screen = pg.display.set_mode((width, height + 100), 0, 32) # setting up a nametag for the # game window pg.display.set_caption("My Tic Tac Toe") # loading the images as python object initiating_window = pg.image.load("modified_cover.png") x_img = pg.image.load("X_modified.png") y_img = pg.image.load("o_modified.png") # resizing images initiating_window = pg.transform.scale(initiating_window, (width, height + 100)) x_img = pg.transform.scale(x_img, (80, 80)) o_img = pg.transform.scale(y_img, (80, 80)) def game_initiating_window(): # displaying over the screen screen.blit(initiating_window, (0, 0)) # updating the display pg.display.update() time.sleep(3) screen.fill(white) # drawing vertical lines pg.draw.line(screen, line_color, (width / 3, 0), (width / 3, height), 7) pg.draw.line(screen, line_color, (width / 3 * 2, 0), (width / 3 * 2, height), 7) # drawing horizontal lines pg.draw.line(screen, line_color, (0, height / 3), (width, height / 3), 7) pg.draw.line(screen, line_color, (0, height / 3 * 2), (width, height / 3 * 2), 7) draw_status() def draw_status(): # getting the global variable draw # into action global draw if winner is None: message = XO.upper() + "'s Turn" else: message = winner.upper() + " won !" if draw: message = "Game Draw !" # setting a font object font = pg.font.Font(None, 30) # setting the font properties like # color and width of the text text = font.render(message, 1, (255, 255, 255)) # copy the rendered message onto the board # creating a small block at the bottom of the main display screen.fill ((0, 0, 0), (0, 400, 500, 100)) text_rect = text.get_rect(center =(width / 2, 500-50)) screen.blit(text, text_rect) pg.display.update() --- __ __ ### Main algorithm The main algorithm has a straight forward approach. A user can win row-wise, column-wise, and diagonally. So by using a multidimensional array, we can set up the conditions easily. __ __ __ __ __ __ __ def check_win(): global board, winner, draw # checking for winning rows for row in range(0, 3): if((board[row][0] == board[row][1] == board[row][2]) and (board [row][0] is not None)): winner = board[row][0] pg.draw.line(screen, (250, 0, 0), (0, (row + 1)*height / 3 -height / 6), (width, (row + 1)*height / 3 - height / 6 ), 4) break # checking for winning columns for col in range(0, 3): if((board[0][col] == board[1][col] == board[2][col]) and (board[0][col] is not None)): winner = board[0][col] pg.draw.line (screen, (250, 0, 0), ((col + 1)* width / 3 - width / 6, 0), \ ((col + 1)* width / 3 - width / 6, height), 4) break # check for diagonal winners if (board[0][0] == board[1][1] == board[2][2]) and (board[0][0] is not None): # game won diagonally left to right winner = board[0][0] pg.draw.line (screen, (250, 70, 70), (50, 50), (350, 350), 4) if (board[0][2] == board[1][1] == board[2][0]) and (board[0][2] is not None): # game won diagonally right to left winner = board[0][2] pg.draw.line (screen, (250, 70, 70), (350, 50), (50, 350), 4) if(all([all(row) for row in board]) and winner is None ): draw = True draw_status() --- __ __ ### Getting the user input and displaying the “X” or “O” This part deals with a visualization of the board and a little bit of coordinate geometry. **drawXO()** takes two arguments row and col. First of all, we have to set up the correct geometrical position to put the image of X and image of O that we have stored as two python objects “x_img” and “y_img” respectively. Have a look at the code for a proper understanding. **user_click()** is a function we have designed to get the input from a user mouse click. Imagine, you have clicked on one of the nine parts (boxes divided by the lines we have drawn horizontally and vertically), this function will define the coordinate of the position where you have clicked. **pg.mouse.get_pos()** gets the x-coordinate and y-coordinate of the mouse click of the user and return a tuple. Depending upon the (x, y) we can define the exact row and the exact column where the user has clicked. Finally, when we have the row and col, we pass these two as arguments to the function **drawXO(row, col)** to draw the image of ‘X’ or the image of ‘O’ at the desired position of the user on the game screen. __ __ __ __ __ __ __ def drawXO(row, col): global board, XO # for the first row, the image # should be pasted at a x coordinate # of 30 from the left margin if row == 1: posx = 30 # for the second row, the image # should be pasted at a x coordinate # of 30 from the game line if row == 2: # margin or width / 3 + 30 from # the left margin of the window posx = width / 3 + 30 if row == 3: posx = width / 3 * 2 + 30 if col == 1: posy = 30 if col == 2: posy = height / 3 + 30 if col == 3: posy = height / 3 * 2 + 30 # setting up the required board # value to display board[row-1][col-1] = XO if(XO == 'x'): # pasting x_img over the screen # at a coordinate position of # (pos_y, posx) defined in the # above code screen.blit(x_img, (posy, posx)) XO = 'o' else: screen.blit(o_img, (posy, posx)) XO = 'x' pg.display.update() def user_click(): # get coordinates of mouse click x, y = pg.mouse.get_pos() # get column of mouse click (1-3) if(x<width / 3): col = 1 elif (x<width / 3 * 2): col = 2 elif(x<width): col = 3 else: col = None # get row of mouse click (1-3) if(y<height / 3): row = 1 elif (y<height / 3 * 2): row = 2 elif(y<height): row = 3 else: row = None # after getting the row and col, # we need to draw the images at # the desired positions if(row and col and board[row-1][col-1] is None): global XO drawXO(row, col) check_win() --- __ __ ### Running an infinite loop This is the final important step to run our game infinitely until the user clicks **exit**. Before running an infinite loop, we need to set up a function that can reset all the global values and parameters to initial values for a fresh start of the game. **reset_game()** is used for this purpose. It resets the board value to 3 * 3 None value again and initializes global parameters. In the game development, every action by the player is an **event**. Whether he clicks on the window or clicks on the exit/close icon. To get these events as an object, pygame has a built-in method used as **pg.event.get()**. If the event type is “QUIT”, we use the sys library of Python to exit the game. But if the mouse is pressed, the **event.get()** will return “MOUSEBUTTONDOWN” and our call to **user_click()** happens to know the exact coordinate of the board where the user has clicked. In the entire code we have used the .sleep() method to pause our game for sometimes and make that user friendly and smooth. __ __ __ __ __ __ __ def reset_game(): global board, winner, XO, draw time.sleep(3) XO = 'x' draw = False game_initiating_window() winner = None board = [[None]*3, [None]*3, [None]*3] game_initiating_window() while(True): for event in pg.event.get(): if event.type == QUIT: pg.quit() sys.exit() elif event.type is MOUSEBUTTONDOWN: user_click() if(winner or draw): reset_game() pg.display.update() CLOCK.tick(fps) --- __ __ **The complete code:** __ __ __ __ __ __ __ # importing the required libraries import pygame as pg import sys import time from pygame.locals import * # declaring the global variables # for storing the 'x' or 'o' # value as character XO = 'x' # storing the winner's value at # any instant of code winner = None # to check if the game is a draw draw = None # to set width of the game window width = 400 # to set height of the game window height = 400 # to set background color of the # game window white = (255, 255, 255) # color of the straightlines on that # white game board, dividing board # into 9 parts line_color = (0, 0, 0) # setting up a 3 * 3 board in canvas board = [[None]*3, [None]*3, [None]*3] # initializing the pygame window pg.init() # setting fps manually fps = 30 # this is used to track time CLOCK = pg.time.Clock() # this method is used to build the # infrastructure of the display screen = pg.display.set_mode((width, height + 100), 0, 32) # setting up a nametag for the # game window pg.display.set_caption("My Tic Tac Toe") # loading the images as python object initiating_window = pg.image.load("modified_cover.png") x_img = pg.image.load("X_modified.png") y_img = pg.image.load("o_modified.png") # resizing images initiating_window = pg.transform.scale(initiating_window, (width, height + 100)) x_img = pg.transform.scale(x_img, (80, 80)) o_img = pg.transform.scale(y_img, (80, 80)) def game_initiating_window(): # displaying over the screen screen.blit(initiating_window, (0, 0)) # updating the display pg.display.update() time.sleep(3) screen.fill(white) # drawing vertical lines pg.draw.line(screen, line_color, (width / 3, 0), (width / 3, height), 7) pg.draw.line(screen, line_color, (width / 3 * 2, 0), (width / 3 * 2, height), 7) # drawing horizontal lines pg.draw.line(screen, line_color, (0, height / 3), (width, height / 3), 7) pg.draw.line(screen, line_color, (0, height / 3 * 2), (width, height / 3 * 2), 7) draw_status() def draw_status(): # getting the global variable draw # into action global draw if winner is None: message = XO.upper() + "'s Turn" else: message = winner.upper() + " won !" if draw: message = "Game Draw !" # setting a font object font = pg.font.Font(None, 30) # setting the font properties like # color and width of the text text = font.render(message, 1, (255, 255, 255)) # copy the rendered message onto the board # creating a small block at the bottom of the main display screen.fill ((0, 0, 0), (0, 400, 500, 100)) text_rect = text.get_rect(center =(width / 2, 500-50)) screen.blit(text, text_rect) pg.display.update() def check_win(): global board, winner, draw # checking for winning rows for row in range(0, 3): if((board[row][0] == board[row][1] == board[row][2]) and (board [row][0] is not None)): winner = board[row][0] pg.draw.line(screen, (250, 0, 0), (0, (row + 1)*height / 3 -height / 6), (width, (row + 1)*height / 3 - height / 6 ), 4) break # checking for winning columns for col in range(0, 3): if((board[0][col] == board[1][col] == board[2][col]) and (board[0][col] is not None)): winner = board[0][col] pg.draw.line (screen, (250, 0, 0), ((col + 1)* width / 3 - width / 6, 0), \ ((col + 1)* width / 3 - width / 6, height), 4) break # check for diagonal winners if (board[0][0] == board[1][1] == board[2][2]) and (board[0][0] is not None): # game won diagonally left to right winner = board[0][0] pg.draw.line (screen, (250, 70, 70), (50, 50), (350, 350), 4) if (board[0][2] == board[1][1] == board[2][0]) and (board[0][2] is not None): # game won diagonally right to left winner = board[0][2] pg.draw.line (screen, (250, 70, 70), (350, 50), (50, 350), 4) if(all([all(row) for row in board]) and winner is None ): draw = True draw_status() def drawXO(row, col): global board, XO # for the first row, the image # should be pasted at a x coordinate # of 30 from the left margin if row == 1: posx = 30 # for the second row, the image # should be pasted at a x coordinate # of 30 from the game line if row == 2: # margin or width / 3 + 30 from # the left margin of the window posx = width / 3 + 30 if row == 3: posx = width / 3 * 2 + 30 if col == 1: posy = 30 if col == 2: posy = height / 3 + 30 if col == 3: posy = height / 3 * 2 + 30 # setting up the required board # value to display board[row-1][col-1] = XO if(XO == 'x'): # pasting x_img over the screen # at a coordinate position of # (pos_y, posx) defined in the # above code screen.blit(x_img, (posy, posx)) XO = 'o' else: screen.blit(o_img, (posy, posx)) XO = 'x' pg.display.update() def user_click(): # get coordinates of mouse click x, y = pg.mouse.get_pos() # get column of mouse click (1-3) if(x<width / 3): col = 1 elif (x<width / 3 * 2): col = 2 elif(x<width): col = 3 else: col = None # get row of mouse click (1-3) if(y<height / 3): row = 1 elif (y<height / 3 * 2): row = 2 elif(y<height): row = 3 else: row = None # after getting the row and col, # we need to draw the images at # the desired positions if(row and col and board[row-1][col-1] is None): global XO drawXO(row, col) check_win() def reset_game(): global board, winner, XO, draw time.sleep(3) XO = 'x' draw = False game_initiating_window() winner = None board = [[None]*3, [None]*3, [None]*3] game_initiating_window() while(True): for event in pg.event.get(): if event.type == QUIT: pg.quit() sys.exit() elif event.type is MOUSEBUTTONDOWN: user_click() if(winner or draw): reset_game() pg.display.update() CLOCK.tick(fps) --- __ __ **Output:** https://media.geeksforgeeks.org/wp-content/uploads/20200507213942/python-tic- tac-toe-pygame.webm Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
true
849d86ee6a349a19d1ef5025e59c45f593bdb2ea
Python
kangminsu1/Computer_Vision
/Midterm/Q_3.py
UTF-8
1,637
3.703125
4
[]
no_license
class N: def __init__(self, head, new_head=None, random=None): self.head = head self.new_head = new_head self.random = random #Print를 위한 재귀 함수 def finding(node): if node is None: print("null") return # 현재의 노드 head와 random한 포인터 데이타 print(node.head, end='') if node.random: text = "[%d]"%(node.random.head) print(text, end = ' -> ') else: print("[x]", end = ' -> ') # 다음 노트를 찾는다 finding(node.new_head) def Random_pointer_update(node, dictionary): if dictionary.get(node) is None: return dictionary.get(node).random = dictionary.get(node.random) Random_pointer_update(node.new_head, dictionary) def Recursive(node, dictionary): if node is None: return None dictionary[node] = N(node.head) dictionary.get(node).new_head = Recursive(node.new_head, dictionary) return dictionary.get(node) def Clone_linked_list(node): dictionaryionary = {} Recursive(node, dictionaryionary) Random_pointer_update(node, dictionaryionary) return dictionaryionary[node] if __name__ == '__main__': node = N(1) node.new_head = N(2) node.new_head.new_head = N(3) node.new_head.new_head.new_head = N(4) node.new_head.new_head.new_head.new_head = N(5) node.random = node.new_head node.new_head.random = node.new_head.new_head node.new_head.new_head.random = node.new_head.new_head.new_head node.new_head.new_head.new_head.random = node.new_head.new_head.new_head.new_head # print("Linked lists:") # finding(node) clone = Clone_linked_list(node) print("\nCloned Linked List:") finding(clone)
true
b2e7a6f4a2df69448b8231f572d8fbb3701bb1ff
Python
NannikEU/eu_python_basics
/exc_423.py
UTF-8
1,852
3.40625
3
[]
no_license
# 423 import math import random def a(): result = 0 for i in range(n): result += A[i][0] return result def b(): result = 0 for i in range(n): result += A[i][i] for i in range(n): result += A[i][n - i - 1] if n % 2 == 1: result -= A[math.floor(n / 2)][math.floor(n / 2)] return result def c(): max = A[0][0] for j in range(2, n): if A[0][j] > max: max = A[0][j] for j in range(n): if A[n - 1][j] > max: max = A[n - 1][j] return max def d(): if n < 3: print("n must be > 3") return 0 min = A[0][n - 1] for i in range(n - 2, -1, -1): if A[i][n - i - 1] < min: min = A[i][n - i - 1] for i in range(n - 1, -1, -1): if A[i][n - i - 2] < min: min = A[i][n - i - 2] for i in range(n - 2, -1, -1): if A[i - 1][n - i - 1] < min: min = A[i - 1][n - i - 1] return min def e(): result = 0 m = int(input("print m: ")) if m > 2 * n: print("m must be <= {}".format(2 * n)) return 0 i = m j = 0 while i >= 0: if i < len(A): if j < len(A[i]): result += A[i][j] i -= 1 j += 1 return result def f(): min = A[0][n - 1] max = A[0][0] for i in range(1, n): if A[i][i] > max: max = A[i][i] for i in range(1, n): if A[i][n - i - 1] < min: min = A[i][n - i - 1] return max > min n = int(input("n: ")) A = [] for i in range(n): row = [] for j in range(n): row.append(random.randint(0, 9)) A.append(row) print("") for row in A: print(row) print("\na:", a()) print("b:", b()) print("c:", c()) print("d:", d()) print("e:", e()) print("f:", f())
true
c229eda1c818c0dcc98a36a7279e3186f31a4f42
Python
gungui98/object-detect
/shrink_images.py
UTF-8
435
2.625
3
[]
no_license
import glob import cv2 FOLDERS = ['livingrooms/','bedrooms/','kitchen/','bathrooms/'] ROOT_FOLDER = 'data/' DESTINATION_FOLDER = 'preprocess/' for folder in FOLDERS: for file in glob.glob(ROOT_FOLDER+folder+'*.jpg'): file_name = file.replace(ROOT_FOLDER+folder,'') image = cv2.imread(file) small = cv2.resize(image, (0, 0), fx=0.25, fy=0.25) cv2.imwrite(DESTINATION_FOLDER+folder+file_name,small)
true
d134596f4bbf3f38682b70687c3d559bb559a913
Python
NikhilCBhat/grow-organic
/data_collection/water_plants.py
UTF-8
1,789
3.390625
3
[]
no_license
import sys sys.path.append('.') import time from time import sleep from data_collection.valve import setup_valve, open_valve, close_valve from data_collection.pump import setup_pump, run_pump_forward, run_pump_backward, stop_pump from data_collection.moisture import is_water_safe def water_plant(plant_id, water_duration=60): """plant_id = '1', '2', '3' or '0' or None to loop through all plants""" plant_id_to_pins = { '1': (26, 23, 24), '2': (13, 23, 24), '3': (14, 23, 24) } # ids_to_water = [plant_id] if plant_id != 0 else plant_id_to_pins.keys() ids_to_water = [plant_id] if (plant_id is not None) and (plant_id != 0) else plant_id_to_pins.keys() for p_id in ids_to_water: print(f"Water plant {p_id}") valve_pin, pump_in1, pump_in2 = plant_id_to_pins[p_id] # setup setup_valve(valve_pin) setup_pump(pump_in1, pump_in2) # do watering start_time = time.time() while time.time() - start_time < water_duration and is_water_safe(): run_pump_forward(pump_in1, pump_in2, 0.5) open_valve(valve_pin, 0.5) print("Soil too wet") # stop watering close_valve(valve_pin, 1) stop_pump(pump_in1, pump_in2, 1) sleep(10) def aerate_water(aerate_duration=2): valve_pin, pump_in1, pump_in2 = 26, 23, 24 # setup setup_valve(valve_pin) setup_pump(pump_in1, pump_in2) # do aeration open_valve(valve_pin, 0.5) run_pump_backward(pump_in1, pump_in2, 0.5) sleep(aerate_duration) # stop aerating stop_pump(pump_in1, pump_in2, 1) close_valve(valve_pin, 1) sleep(10) if __name__ == "__main__": aerate_water(2) # water_plant(1) water_plant(2) # water_plant(3)
true
f04fc2dd703cf2308caba986c4966c320a5c5084
Python
amaozhao/algorithms
/algorithms/arrays/two_sum.py
UTF-8
509
3.828125
4
[ "MIT" ]
permissive
""" 给定一个整型数组, 返回这样2个元素的索引: 这2个元素相加的结果为给定的值. 你可以假定这个结果只有一种情况, 但是每个元素只能使用一次. 例如: 给定 nums = [2, 7, 11, 15], target = 9, 因 nums[0] + nums[1] = 2 + 7 = 9, 返回 [0, 1]. """ def two_sum(array, target): dic = {} for i, num in enumerate(array): if num in dic: return dic[num], i else: dic[target - num] = i return None
true
0f4776e4b12700024e106bd7e1a31cd1300ae489
Python
joesdesk/themecrafter
/themecrafter/interface/html.py
UTF-8
3,351
3.15625
3
[]
no_license
# Module to visualize the comments through html. from math import floor from bs4 import BeautifulSoup from .htmlrender import doc2tr from .html_styling import Doc2HtmlStyler class HTMLInterface: '''The interface for viewing the XML documents.''' def __init__(self, xmlstring): '''Takes an XML string and turns it into a soup so that elements can be easily extracted and rendered. ''' # Convert the entire XML string into a soup. soup = BeautifulSoup(xmlstring, "xml") # The documents are cached via a list of soup tags so that # only selected documents are rendered saving time. self.docs = soup.corpus.contents # Set html styling self.renderer = Doc2HtmlStyler() # Pagination variables self.n_docs_per_page = 10 self.n_pages = 0 self.curr_page = 0 # Selection of documents self.sel_doc_ids = None self.set_doc_sel() def set_doc_sel(self, doc_ids=None): '''Changes the list of documents to navigate through.''' self.sel_doc_ids = doc_ids if doc_ids is None: total_docs = len(self.docs) else: total_docs = len(doc_ids) self.n_pages = (total_docs // self.n_docs_per_page) + 1 def doc_range(self, page_num): '''Returns a range object indicating the ids of the documents specified by the page number. ''' # Find start and end indices specified by page_num start_doc_id = self.n_docs_per_page * page_num end_doc_id = start_doc_id + self.n_docs_per_page if self.sel_doc_ids is None: total_docs = len(self.docs) sel_docs = range(total_docs) return list(sel_docs[start_doc_id:end_doc_id]) total_docs = len(self.sel_doc_ids) end_doc_id = min(end_doc_id, total_docs) if start_doc_id > end_doc_id: return [] return self.sel_doc_ids[start_doc_id:end_doc_id] def render(self, page_num): '''Turns the documents into a list of html strings for pages.''' page_num = max(0, page_num) page_num = min(page_num, self.n_pages-1) self.curr_page = page_num doc_ids = self.doc_range(page_num) page = r'<html><table style="width:100%">' for i in doc_ids: doc_elem = self.docs[i] self.renderer.highlight(doc_elem) page += r'<tr style="align:center">' page += r'<td></td>' #page += r'<td style="text-align:right; vertical-align:top; background-color:blue; width:100%">300</td>' page += r'<td style="vertical-align:top; width:50">{:d}</td>'.format(i+1) page += doc2tr(doc_elem) page += r'<td></td>' page += r'</tr>' page += r'<table></html>' return page def render_first(self): return self.render(0) def render_prev(self): return self.render(self.curr_page-1) def render_next(self): return self.render(self.curr_page+1) def render_last(self): return self.render(self.n_pages-1)
true
04fee2416e4a10cde49fc3267f7b371f0b16fa87
Python
AlbertoCastelo/Neuro-Evolution-BNN
/neat/dataset/regression_example.py
UTF-8
5,653
2.78125
3
[]
no_license
import torch from sklearn.preprocessing import StandardScaler from torch.utils.data import Dataset import numpy as np from neat.dataset.abstract import NeatTestingDataset class RegressionExample1Dataset(NeatTestingDataset): ''' Dataset with 1 input variables and 1 output ''' TRAIN_SIZE = 5000 TEST_SIZE = 5000 def __init__(self, train_percentage, dataset_type='train', random_state=42, noise=0.0, label_noise=0.0, is_debug=False): self.is_debug = is_debug self.dataset_type = dataset_type self.input_scaler = StandardScaler() self.output_scaler = StandardScaler() if dataset_type not in ['train', 'validation', 'test']: raise ValueError(f'Dataset Type {dataset_type} is not valid') super().__init__(train_percentage=train_percentage, dataset_type=dataset_type, random_state=random_state, noise=noise, label_noise=label_noise) def generate_data(self): range_ = [0.0, 0.7] noise = [0.0, 0.02] x_train = np.random.uniform(range_[0], range_[1], self.TRAIN_SIZE) x_train, y_train = self._get_x_y(x=x_train, noise=noise) self.input_scaler.fit(x_train) self.output_scaler.fit(y_train) if self.dataset_type == 'train': x = x_train y = y_train if self.dataset_type == 'test': x_test = np.linspace(-0.5, 1.5, self.TEST_SIZE) noise = [0.00, 0.00] x, y = self._get_x_y(x=x_test, noise=noise) self.x_original = x self.y_original = y # self.x = x # self.y = y.unsqueeze(y, dim=1) self.x = self.input_scaler.transform(x) self.y = self.output_scaler.transform(y).reshape((-1, 1)) if self.is_debug: self.x = x[:512] self.y = y[:512] self.x = torch.tensor(self.x).float() self.y = torch.tensor(self.y).float() self._generate_train_test_sets() def _get_x_y(self, x, noise): dataset_size = x.shape[0] # y = 0.1 + 0.5 * (x + np.random.normal(noise[0], noise[1], dataset_size)) + \ # 0.3 * np.square(x + np.random.normal(noise[0], noise[1], dataset_size)) y = x + 0.3 * np.sin(2 * np.pi * (x + np.random.normal(noise[0], noise[1], dataset_size))) + \ 0.3 * np.sin(4 * np.pi * (x + np.random.normal(noise[0], noise[1], dataset_size))) + \ np.random.normal(noise[0], noise[1], dataset_size) return x.reshape((-1, 1)), y.reshape((-1, 1)) def unnormalize_output(self, y_pred: torch.Tensor) -> torch.Tensor: y_pred = y_pred.numpy().reshape((-1, 1)) y_pred_unnormalized = self.output_scaler.inverse_transform(y_pred).reshape(-1) return torch.Tensor(y_pred_unnormalized) def __len__(self): return len(self.x) def __getitem__(self, idx): x = self.x[idx] y = self.y[idx] return x, y class RegressionExample2Dataset(NeatTestingDataset): TRAIN_SIZE = 500 TEST_SIZE = 500 ''' Dataset with 2 input variables and 1 output ''' def __init__(self, train_percentage, dataset_type='train', is_debug=False): self.is_debug = is_debug self.input_scaler = StandardScaler() self.output_scaler = StandardScaler() super().__init__(train_percentage=train_percentage, dataset_type=dataset_type) def generate_data(self): range_ = [0.0, 0.7] noise = [0.0, 0.02] x_1_train = np.random.uniform(range_[0], range_[1], self.TRAIN_SIZE) x_2_train = np.random.uniform(range_[0], range_[1], self.TRAIN_SIZE) x_train, y_train = self._get_x_y(x_1=x_1_train, x_2=x_2_train, noise=noise) self.input_scaler.fit(x_train) self.output_scaler.fit(y_train) if self.dataset_type == 'train': x = x_train y = y_train if self.dataset_type == 'test': x_1_test = np.linspace(-0.5, 1.5, self.TEST_SIZE) x_2_test = np.linspace(-0.5, 1.5, self.TEST_SIZE) noise = [0.00, 0.00] x, y = self._get_x_y(x_1=x_1_test, x_2=x_2_test, noise=noise) self.x_original = x self.y_original = y # self.x = x # self.y = y.reshape((-1, 1)) self.x = self.input_scaler.transform(x) self.y = self.output_scaler.transform(y).reshape((-1, 1)) if self.is_debug: self.x = self.x[:512] self.y = self.y[:512] self.x = torch.tensor(self.x).float() self.y = torch.tensor(self.y).float() data_limit = self._get_data_limit() self.x_train = self.x[:data_limit] self.y_train = self.y[:data_limit] self.x_test = self.x[data_limit:] self.y_test = self.y[data_limit:] def _get_x_y(self, x_1, x_2, noise): x = np.array(list(zip(x_1, x_2))) dataset_size = x.shape[0] y = x_1 + 0.3 * np.sin(2 * np.pi * (x_1 + np.random.normal(noise[0], noise[1], dataset_size))) + \ 0.3 * np.sin(4 * np.pi * (x_2 + np.random.normal(noise[0], noise[1], dataset_size))) + \ np.random.normal(noise[0], noise[1], dataset_size) return x, y.reshape(-1, 1) def unnormalize_output(self, y_pred: torch.Tensor) -> torch.Tensor: y_pred = y_pred.numpy().reshape((-1, 1)) y_pred_unnormalized = self.output_scaler.inverse_transform(y_pred).reshape(-1) return torch.Tensor(y_pred_unnormalized) def __len__(self): return len(self.x) def __getitem__(self, idx): x = self.x[idx] y = self.y[idx] return x, y
true
50c4efde030006daeab9693571f8c1d5324c5b80
Python
1576dkm/Spark_Jobs
/Abs/p1.py
UTF-8
408
2.59375
3
[]
no_license
from operator import add from pyspark import SparkContext sc = SparkContext("local[*]", "example") rdd = sc.textFile("C:\\Users\janjanam.sudheer\Desktop\data.csv") rdd1 = rdd.map(lambda x : x.split(',')).map(lambda x: (x[0],x[1].split(';'))).filter(lambda line: "Country" not in line).map(lambda z : (z[0],list(map(lambda y : int(y),z[1])))).reduceByKey(lambda a, b: list(map(add,a,b))) print(rdd1.take(10))
true
c6d6b7f340d07353c7da767b83732d87361ae593
Python
kar655/Kaggle-cactus-identification
/build_data.py
UTF-8
2,879
3.125
3
[]
no_license
import os import cv2 import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import time labels = pd.read_csv("train.csv") class Cactus(): IMG_SIZE = 32 cactuscount = 0 notcactuscount = 0 # 0: not-cac 1: cac test_data_amount = [0, 0] # trying to get 1000 cac and 1000 not-cac training_data = [] test_data = [] def make_dataset(self): for _, row in tqdm(labels.iterrows()): has_cac = row['has_cactus'] try: path = os.path.join("train", row['id']) img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) / 255 # first 1000 imgs of cac and not-cac goes to test dataset if(self.test_data_amount[has_cac] < 1000): self.test_data_amount[has_cac] += 1 self.test_data.append([ np.array(img), int(has_cac)]) else: self.training_data.append([ np.array(img), int(has_cac)]) if has_cac: self.cactuscount += 1 else: self.notcactuscount += 1 except Exception as e: print(str(e)) print("Cactus / Total = ", round(self.cactuscount / (self.cactuscount + self.notcactuscount), 4)) print(len(self.training_data)) # count cac def count(self, arr): sum = 0 for _, is_cac in arr: sum += is_cac # adding either 0 or 2 return sum def save(self): np.random.shuffle(self.training_data) np.random.shuffle(self.test_data) np.save("training_data.npy", self.training_data) np.save("testing_data.npy", self.test_data) with open("info.txt", "a") as f: f.write(f"Time: {time.time()}\n") f.write(f"Whole dataset\n") f.write(f"Img size: {cac.IMG_SIZE}\n") f.write(f"Cactuses: {self.cactuscount}\n") f.write(f"Notcactuses: {self.notcactuscount}\n") f.write(f"Total: {self.cactuscount + self.notcactuscount}\n\n") f.write(f"Training dataset\n") f.write(f"Cactuses: {self.count(self.training_data)}\n") f.write(f"Training data samples: {len(self.training_data)}\n") f.write(f"Percentage: {self.count(self.training_data) / len(self.training_data)}\n") f.write(f"Testing dataset\n") f.write(f"Cactuses: {self.count(self.test_data)}\n") f.write(f"Test data samples: {len(self.test_data)}\n") f.write(f"Percentage: {self.count(self.test_data) / len(self.test_data)}\n") f.write("\n") cac = Cactus() cac.make_dataset() cac.save()
true
890735457d3b5c643b871623ee8af1edcddef0f7
Python
bledem/webvision
/cnn/vocab.py
UTF-8
2,578
2.921875
3
[]
no_license
# Create a vocabulary wrapper import nltk import pickle from collections import Counter import json import argparse import os class Vocabulary(object): """Simple vocabulary wrapper.""" def __init__(self): self.word2idx = {} self.idx2word = {} self.idx = 0 def add_word(self, word): if word not in self.word2idx: self.word2idx[word] = self.idx self.idx2word[self.idx] = word self.idx += 1 def __call__(self, word): if word not in self.word2idx: return self.word2idx['<unk>'] return self.word2idx[word] def __len__(self): return len(self.word2idx) def from_json(path): dataset = json.load(open(path, 'r')) captions = [] for i, d in enumerate(dataset): captions += [str(x['raw']) for x in d['descriptions']] captions += [str(x['raw']) for x in d['title']] return captions def build_vocab(data_path, threshold): """Build a simple vocabulary wrapper.""" counter = Counter() for json_file in sorted(os.listdir(data_path)): #args.data_path print("Processing metadata of {}".format(json_file)) full_path = os.path.join(data_path, json_file) captions = from_json(full_path) for i, caption in enumerate(captions): tokens = nltk.tokenize.word_tokenize( caption.lower().decode('utf-8')) counter.update(tokens) if i % 1000 == 0: print("[%d/%d] tokenized the captions." % (i, len(captions))) # Discard if the occurrence of the word is less than min_word_cnt. words = [word for word, cnt in counter.items() if cnt >= threshold] # Create a vocab wrapper and add some special tokens. vocab = Vocabulary() vocab.add_word('<pad>') vocab.add_word('<start>') vocab.add_word('<end>') vocab.add_word('<unk>') # Add words to the vocabulary. for i, word in enumerate(words): vocab.add_word(word) return vocab def main(data_path, data_name): vocab = build_vocab(data_path, threshold=4) with open('./vocab/%s_vocab.pkl' % data_name, 'wb') as f: pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL) print("Saved vocabulary file to ", './vocab/%s_vocab.pkl' % data_name) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_path', default='/w/31/faghri/vsepp_data/') parser.add_argument('--data_name', default='webvision') opt = parser.parse_args() main(opt.data_path, opt.data_name)
true
b78980d67c88fb9400fc79bc00e1aa0d0a2b96d3
Python
an-kumar/rntn
/stepper.py
UTF-8
9,974
2.84375
3
[]
no_license
''' Ankit Kumar ankitk@stanford.edu learning steps for the rntn model uses adagrad as in the paper ''' from rntn import * import cPickle as pkl from data import * def softmax_crossentropy_cost(tree): ''' a costfunction that computes softmax crossentropy gradients and cost ''' cost = 0. for node in tree.nodes: cost -= np.log(node.rntnparams['softmax'][node.label]) node.rntnparams['dtop'] = np.copy(node.rntnparams['softmax']) node.rntnparams['dtop'][node.label] -= 1. return cost def unsupervised_softmax_cost(tree): ''' a costfunction for unsupervised training ''' cost = 0. for node in tree.nodes: windices = node.rntnparams['wIndices'] # print np.log(node.rntnparams['softmax'][windices]) cost -= np.mean(np.log(node.rntnparams['softmax'][windices])) node.rntnparams['dtop'] = np.copy(node.rntnparams['softmax']) node.rntnparams['dtop'][windices] -= 1./len(windices) return cost class stepper(object): def __init__(self, lr=1e-2, reg={'Ws': 1e-4, 'L':1e-4, 'W':1e-3, 'V':1e-3, 'bs':1e-4, 'b':1e-3}, learning_algo='adagrad', momentum=.9): self.lr = lr self.start_lr = lr # for SGD decreasing self.reg = reg self.historical_gparams = None self.learning_algo = learning_algo self.momentum = momentum def step(self,model, minibatch, costfunction, epoch=0): ''' performs a single step given the model and the minibatch minibatch is an iterable of PTBtrees returns the cost on the minibatch ''' # iterate through batch and go forward,backward,cost cost, gparams = self.cost_fbprop(model, minibatch, costfunction) # # get regularization cost and gparams # reg_cost, reg_gparams = self.cost_regularize(model) # # add the two gparam dicts and scale by minibatch size (so that larger minibatches doesn't greatly change anything) # minibatch_scale = 1/float(len(minibatch)) # for k in reg_gparams: # # only add the reg gparams to gparams; non reg gparams stay as they were # gparams[k] += reg_gparams[k] # gparams[k] * minibatch_scale # now update the model if self.learning_algo == 'adagrad': # if reset_adagrad is not None: # if epoch > 0 and (epoch % reset_adagrad == 0): # print "resetting adagrad" # self.historical_gparams = None self.update_model_adagrad(model, gparams) elif self.learning_algo == 'sgd': self.lr = self.start_lr * (.98**epoch) # trick to scale the lr down self.update_model_sgd(model,gparams) # return the cost (scaled by minibatch size) return cost def update_model_sgd(self, model, gparams): ''' sgd with momentum ''' # first we get current updates: upds = {} for p in gparams: upds[p] = -1*self.lr * gparams[p] # now add momentum term if self.historical_gparams is None: self.historical_gparams = upds else: for p in upds: upds[p] += self.momentum * self.historical_gparams[p] self.historical_gparams[p] = upds[p] for p in upds: model[p] += upds[p] def update_model_adagrad(self, model, gparams): ''' updates a model using adagrad learning algorithm ''' # we're gonna use AdaGrad because that's what is listed in the paper # note that I have never really used AdaGrad before so I'm going off the original paper + this helpful blog: http://xcorr.net/2014/01/23/adagrad-eliminating-learning-rates-in-stochastic-gradient-descent/ epsilon = 1e-6 if self.historical_gparams is None: adj_gparams = gparams self.historical_gparams = {} # set the historical gparams for key in gparams: self.historical_gparams[key] = (gparams[key] ** 2) else: adj_gparams = {} for key in gparams: grad = gparams[key] # add square of current gradient to historical gradient self.historical_gparams[key] += (grad**2) # calculate adjusted gradient if np.isinf(self.historical_gparams[key]).sum() > 0 or np.isnan(self.historical_gparams[key]).sum()> 0: print key raise Exception ("fuck.") adj_gparams[key] = grad / (epsilon + np.sqrt(self.historical_gparams[key])) # now one by one update the params for key in adj_gparams: model[key] -= self.lr * adj_gparams[key] def cost_regularize(self, model): ''' computes the cost and fills a dict of gparams for the regularization ''' cost = 0. gparams = {} for p in model['regularize']: gparams[p] = model[p] * self.reg[p] cost += np.sum(model[p]**2) * (self.reg[p]) * .5 # .5 so that the gradient is just reg*model[p], otherwise would be 2x return cost, gparams def cost_fbprop(self,model,minibatch,costfunction): ''' total cost and gparams ''' cost, gparams = self.cost_fbprop_softmax(model, minibatch, costfunction) reg_cost,reg_gparams = self.cost_regularize(model) # add the two gparam dicts and scale by minibatch size (so that larger minibatches doesn't greatly change anything) minibatch_scale = 1/float(len(minibatch)) for k in gparams: gparams[k] *= minibatch_scale for k in reg_gparams: # only add the reg gparams to gparams; non reg gparams stay as they were gparams[k] += reg_gparams[k] cost = cost*minibatch_scale + reg_cost # cost *= minibatch_scale return cost, gparams def cost_fbprop_softmax(self, model, minibatch,costfunction): ''' iterates through the batch and goes forward, backward, and computes cost returns cost and an aggregated gparam dict ''' cost = 0. gparams = {k:np.zeros(model[k].shape) for k in model['update']} # below is commented because in practice it was slower. batch_fprop(model, minibatch) for tree in minibatch: # fprop, bprop # fprop(model, tree) cost += costfunction(tree) # this should add node.rntnparams['dh'] local_gparams = bprop(model, tree) # accumulate the dicts for k in local_gparams: gparams[k] += local_gparams[k] # cost += self.compute_cost(tree) return cost, gparams def compute_cost(self, tree): ''' computes the cost of the tree, assumed to already be fpropd. note that this does NOT include regularization cost.''' cost = 0. for node in tree.nodes: if node.rntnparams['softmax'][node.label] == 0: print node.rntnparams cost -= np.log(node.rntnparams['softmax'][node.label]) return cost def gradcheck(self, model, minibatch, costfunction, num_checks=5, epsilon=1e-5): ''' does a gradcheck on the minibatch lot of the code is very similar to karpathy neuraltalk ''' # run forward, backward to get grads & cost for it in range(num_checks): cost, gparams = self.cost_fbprop(model, minibatch,costfunction) for p in model['update']: mat = model[p] grad = gparams[p] assert mat.shape == grad.shape, "shapes dont match" # let's also do a max to get out of numerical stuff (hopefully) ri = np.argmax(grad.flat) old = mat.flat[ri] # add epsilon mat.flat[ri] = old + epsilon c1,_ = self.cost_fbprop(model, minibatch,costfunction) # subtract epsilon mat.flat[ri] = old - epsilon c2, _=self.cost_fbprop(model, minibatch,costfunction) # back to normal mat.flat[ri] = old analytic = grad.flat[ri] numerical = (c1 - c2) / (2*epsilon) print "MAX: param: %s. analytical grad: %s. numerical grad: %s. relative error: %s" % (p, str(analytic), str(numerical), str(abs(analytic - numerical) / abs(numerical + analytic))) ri = np.random.randint(mat.size) old = mat.flat[ri] # add epsilon mat.flat[ri] = old + epsilon c1,_ = self.cost_fbprop(model, minibatch,costfunction) # subtract epsilon mat.flat[ri] = old - epsilon c2, _=self.cost_fbprop(model, minibatch,costfunction) # back to normal mat.flat[ri] = old analytic = grad.flat[ri] numerical = (c1 - c2) / (2*epsilon) print "param: %s. analytical grad: %s. numerical grad: %s. relative error: %s" % (p, str(analytic), str(numerical), str(abs(analytic - numerical) / abs(numerical + analytic))) if __name__ == '__main__': model1 = initRNTN(25, 16582, 5, activation='tanh', wordActivations=False) # model2= initRNTN(25, 16582, 5, activation='relu') train = pkl.load(open('formatted/train.pkl')) s1 = stepper() # s2 = stepper() # test step mbsize = 27 minibatches = [train.trees[i:i+mbsize] for i in range(0,len(train.trees), mbsize)][:2] for mb in minibatches: s1.step(model1, mb, softmax_crossentropy_cost) # s2.step(model2, train.trees[:50]) # test grad s1.gradcheck(model1,train.trees[51:71],softmax_crossentropy_cost) print "\n\n" # s2.gradcheck(model2, train.trees[51:71])
true
c0a508625d84d1b3117a33a8987a7b8a0108e28c
Python
gogofunoliver/WeChatCon
/WeChatServer/CloudVision.py
UTF-8
1,204
2.75
3
[]
no_license
# -*- coding: utf-8 -*- # filename: CloudVision.py # Jason Li # text detection API import argparse import io from google.cloud import vision from google.cloud.vision import types class GCPCV(object): def detect_document(path): """Detects document features in an image.""" client = vision.ImageAnnotatorClient() with io.open(path, 'rb') as image_file: content = image_file.read() image = types.Image(content=content) response = client.document_text_detection(image=image) document = response.full_text_annotation for page in document.pages: for block in page.blocks: block_words = [] for paragraph in block.paragraphs: block_words.extend(paragraph.words) block_symbols = [] for word in block_words: block_symbols.extend(word.symbols) block_text = '' for symbol in block_symbols: block_text = block_text + symbol.text print('Block Content: {}'.format(block_text)) print('Block Bounds:\n {}'.format(block.bounding_box))
true
00edc8f96e99bc3890df137019b0c585194d6d9c
Python
boks01/True-or-False
/checking.py
UTF-8
965
4.09375
4
[]
no_license
class Checking: def __init__(self, question, answer): self.answer = answer self.question = question self.question_number = 0 self.score = 0 def give_question(self): for _ in range(len(self.question)): current_question = self.question[self.question_number] answer = self.answer[self.question_number] self.question_number += 1 asking = input(f"{self.question_number}.{current_question} : True or False?\n") self.check_answer(answer, asking) print(f"\nYou reach the end of this quiz\nscore: {self.score}/{self.question_number}") def check_answer(self, answer, user_answer): if answer.lower() == user_answer.lower(): print("You right!!!") self.score += 1 print(f"{self.score}/{self.question_number}") else: print("You wrong") print(f"{self.score}/{self.question_number}")
true
873ac0f5487556c590adb9ced4a2edf7cb7353ff
Python
Aasthaengg/IBMdataset
/Python_codes/p02803/s480619618.py
UTF-8
1,651
2.671875
3
[]
no_license
#!usr/bin/env python3 from collections import defaultdict, deque, Counter, OrderedDict from functools import reduce, lru_cache import collections, heapq, itertools, bisect import math, fractions import sys, copy def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI1(): return [int(x) - 1 for x in sys.stdin.readline().split()] def I(): return int(sys.stdin.readline().rstrip()) def LS(): return [list(x) for x in sys.stdin.readline().split()] def S(): return list(sys.stdin.readline().rstrip()) def IR(n): return [I() for i in range(n)] def LIR(n): return [LI() for i in range(n)] def SR(n): return [S() for i in range(n)] def LSR(n): return [LS() for i in range(n)] sys.setrecursionlimit(1000000) dire = [[1, 0], [0, 1], [-1, 0], [0, -1]] dire8 = [[1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1], [1, -1]] MOD = 1000000007 def main(): H, W = LI() maze = SR(H) ans = 0 for h in range(H): for w in range(W): if maze[h][w] == '#': continue q = deque() q.append((0, h, w)) visited = [[False] * W for _ in range(H)] visited[h][w] = True while q: dist, y, x = q.popleft() for dy, dx in dire: if y + dy >= 0 and y + dy < H and x + dx >= 0 and x + dx < W: if maze[y + dy][x + dx] == '.' and not visited[y + dy][x + dx]: q.append((dist + 1, y + dy, x + dx)) visited[y + dy][x + dx] = True ans = max(ans, dist) print(ans) if __name__ == '__main__': main()
true
995424bb9db2fcd925533d89bee981055daa223e
Python
LoverOfPies/AutomationBuild
/src/gui/dictionary/simple_dictionary/BaseUnitUI.py
UTF-8
4,016
2.5625
3
[]
no_license
from kivy.lang import Builder from kivy.metrics import dp from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.label import Label from kivy.uix.screenmanager import Screen from kivy.uix.scrollview import ScrollView from src.db.models.base.BaseUnit import BaseUnit from src.gui.BaseUIUtils import init_control_buttons, init_title_layout, init_back_button from src.gui.add_dictionary.AddRowSimplePopup import AddRowSimplePopup from src.gui.custom_uix.ChangeTextAttributePopup import ChangeTextAttributePopup from src.gui.custom_uix.DeleteRowButton import DeleteRowButton from src.gui.custom_uix.SelectableButton import SelectableButton class BaseUnitUI: screen_name = 'baseunit_screen' parent_screen = 'dictionary_screen' table_name = 'Базовые единицы' model_class = BaseUnit screen = Screen(name=screen_name) add_popup = AddRowSimplePopup def __init__(self, screen_manager): self.sm = screen_manager self.update_screen() self.sm.add_widget(self.screen) # Обновление экрана def update_screen(self): self.screen.clear_widgets() self.screen.add_widget(self.main_layout()) # Получение main_layout для интерфейса def main_layout(self): main_anchor = AnchorLayout() bl = BoxLayout(orientation='vertical', size_hint=[.7, .9]) main_anchor.add_widget(bl) # Фильтр # search_layout = BoxLayout(orientation='horizontal', size_hint=[1, .2], padding=[0, 15]) # search_layout.add_widget(Label(text='Фильтр')) # id_input = TextInput(hint_text='id', multiline=False) # name_input = TextInput(hint_text='Наименование', multiline=False) # search_button = Button(text='Поиск') # search_layout.add_widget(id_input) # search_layout.add_widget(name_input) # search_layout.add_widget(search_button) # Вывод данных data_scroll = ScrollView(do_scroll_y=True, do_scroll_x=False) data_layout = Builder.load_string('''GridLayout: size:(root.width, root.height) size_hint_x: 1 size_hint_y: None cols: 2 height: self.minimum_height row_default_height: 50 row_force_default: True''') data_scroll.add_widget(data_layout) data_layout.add_widget(Label(text='Наименование', height=dp(30))) data_layout.add_widget(Label(text='', height=dp(30))) base_units = self.model_class.select() for base_unit in base_units: data_layout.add_widget(SelectableButton(height=dp(30), text=str(base_unit.name), popup_title="Изменить наименование", class_popup=ChangeTextAttributePopup, dict_class=self.model_class, id_value=str(base_unit.id), field='name' )) data_layout.add_widget(DeleteRowButton(height=dp(30), text='Удалить', id_value=str(base_unit.id), ui=self)) # Заголовок формы title_layout = init_title_layout(self) # Кнопки управления button_layout = init_control_buttons(self) # Кнопка назад back_layout = init_back_button(self) bl.add_widget(title_layout) bl.add_widget(back_layout) bl.add_widget(data_scroll) # bl.add_widget(search_layout) bl.add_widget(button_layout) return main_anchor
true
fe3129bdcdd5644f8eb6ae4fc4701f750863c384
Python
gladpark/network-importer
/tests/unit/adapters/test_base_adapter.py
UTF-8
1,436
2.734375
3
[ "Apache-2.0" ]
permissive
"""test for the base adapter.""" from typing import List, Optional from pydantic import BaseSettings from network_importer.adapters.base import BaseAdapter def test_init_no_settings_class(): adapter = BaseAdapter(nornir="nornir_object", settings=None) assert adapter.nornir == "nornir_object" assert adapter.settings is None adapter = BaseAdapter(nornir="nornir_object", settings={"mysettings": "settings"}) assert adapter.nornir == "nornir_object" assert adapter.settings == {"mysettings": "settings"} def test_init_with_settings_class(): """Validate that the settings are properly initialized with the settings_class when present.""" class MyAdapterSettings(BaseSettings): """Fake adapter settings.""" first: List[str] = list() second: Optional[str] class MyAdapter(BaseAdapter): """test adapter.""" settings_class = MyAdapterSettings def load(self): """load must be defined.""" adapter = MyAdapter(nornir="nornir_object", settings=None) assert adapter.nornir == "nornir_object" assert adapter.settings is not None assert adapter.settings.first == [] assert adapter.settings.second is None adapter = MyAdapter(nornir="nornir_object", settings={"second": "settings"}) assert adapter.nornir == "nornir_object" assert adapter.settings.first == [] assert adapter.settings.second == "settings"
true
30f04eafccdaf258dff18d0448b1311371e2bce5
Python
tro9lh/RandomYoutubeVideo
/defs.py
UTF-8
3,574
2.5625
3
[]
no_license
import requests import json import datetime import random def get_random_video_ru(): day = random.randrange(3000) sec = random.randrange(86399) datenow = datetime.datetime.now() publishedAfter1 = datenow - datetime.timedelta(days=(day +1), seconds = sec) publishedAfter = publishedAfter1.strftime("%Y-%m-%dT%H:%M:%SZ") publishedBefore1 = datenow - datetime.timedelta(days=day, seconds = sec) publishedBefore = publishedBefore1.strftime("%Y-%m-%dT%H:%M:%SZ") qQ = 'абвгдеёжзийклмнопрстуфхцчшщъыэюя' q = qQ[random.randrange(0, (len(qQ)-1))] params = {"q": q, "order": 'date', "part": 'snippet', "type": 'video', "videoDuration": 'short', "publishedBefore": publishedBefore, "publishedAfter": publishedAfter, "relevanceLanguage": 'ru', "maxResults": 1, "key": 'AIzaSyDMQuRHpIjfG_eMhJEVNo2TEcntJfw5_Ms'} url = 'https://www.googleapis.com/youtube/v3/search' r = requests.get(url, params=params) json_data = json.loads(r.text) try: temp = json_data["items"][0]["id"]["videoId"] video_link = str(temp) return video_link except : print('except') get_random_video_ru() def get_random_video(): day = random.randrange(3000) sec = random.randrange(86399) datenow = datetime.datetime.now() publishedAfter1 = datenow - datetime.timedelta(days=(day +1), seconds = sec) publishedAfter = publishedAfter1.strftime("%Y-%m-%dT%H:%M:%SZ") publishedBefore1 = datenow - datetime.timedelta(days=day, seconds = sec) publishedBefore = publishedBefore1.strftime("%Y-%m-%dT%H:%M:%SZ") key = 'AIzaSyDMQuRHpIjfG_eMhJEVNo2TEcntJfw5_Ms' params = {"q": '', "order": 'date', "part": 'snippet', "type": 'video', "videoDuration": 'short', "publishedBefore": publishedBefore, "publishedAfter": publishedAfter, "maxResults": 1, "key": 'AIzaSyDMQuRHpIjfG_eMhJEVNo2TEcntJfw5_Ms'} url = 'https://www.googleapis.com/youtube/v3/search' r = requests.get(url, params=params) json_data = json.loads(r.text) try: temp = json_data["items"][0]["id"]["videoId"] video_link = str(temp) return video_link except : get_random_video() def most_popular_video_a_year_ago(n): datenow = datetime.datetime.now() date_some_years_ago = datenow.replace(year=datenow.year-n, hour=0, minute=0) publishedAfter = date_some_years_ago.strftime("%Y-%m-%dT%H:%M:%SZ") publishedBefore1 = date_some_years_ago + datetime.timedelta(days=1) publishedBefore = publishedBefore1.strftime("%Y-%m-%dT%H:%M:%SZ") stopdate = datetime.datetime(1970, 1, 1) if date_some_years_ago < stopdate: return 'date error' key = 'AIzaSyDMQuRHpIjfG_eMhJEVNo2TEcntJfw5_Ms' params = {"q": '', "order": 'viewCount', "part": 'snippet', "type": 'video', "videoDuration": 'short', "publishedBefore": publishedBefore, "publishedAfter": publishedAfter, "maxResults": 1, "key": 'AIzaSyDMQuRHpIjfG_eMhJEVNo2TEcntJfw5_Ms'} url = 'https://www.googleapis.com/youtube/v3/search' r = requests.get(url, params=params) json_data = json.loads(r.text) try: temp = json_data["items"][0]["id"]["videoId"] video_link = "https://www.youtube.com/watch?v="+str(temp) return video_link except : return 'canot read request correct'
true
c5daaf71e11306b0f614c84959bd39ce2b6df241
Python
lijiunderstand/MultitaskNet
/utils/data_utils.py
UTF-8
4,856
2.859375
3
[]
no_license
import os import numpy as np import h5py import torch import torch.utils.data as data import pickle from PIL import Image class CreateData(data.Dataset): def __init__(self, dataset_dict): self.len_dset_dict = len(dataset_dict) self.rgb = dataset_dict['rgb'] self.depth = dataset_dict['depth'] self.seg_label = dataset_dict['seg_label'] if self.len_dset_dict > 3: self.class_label = dataset_dict['class_label'] self.use_class = True def __getitem__(self, index): rgb_img = self.rgb[index] depth_img = self.depth[index] seg_label = self.seg_label[index] rgb_img = torch.from_numpy(rgb_img) depth_img = torch.from_numpy(depth_img) dataset_list = [rgb_img, depth_img, seg_label] if self.len_dset_dict > 3: class_label = self.class_label[index] dataset_list.append(class_label) return dataset_list def __len__(self): return len(self.seg_label) def get_data(opt, dset_info, use_train=True, use_test=True, visualize = False): """ Load NYU_v2 or SUN rgb-d dataset in hdf5 format from disk and prepare it for classifiers. """ if list(dset_info.keys())[0] == "NYU": # Load the chosen datasets path if os.path.exists(opt.dataroot): path = opt.dataroot else: raise Exception('Wrong datasets requested. Please choose either "NYU" or "SUN"') h5file = h5py.File(path, 'r') elif list(dset_info.keys())[0] == "SUN": h5file = None train_dataset_generator = None test_dataset_generator = None # Create python dicts containing numpy arrays of training samples if use_train: train_dataset_generator = dataset_generator(h5file, 'train', opt, dset_info, visualize) print('[INFO] Training set generator has been created') # Create python dicts containing numpy arrays of test samples if use_test: test_dataset_generator = dataset_generator(h5file, 'test', opt, dset_info, visualize) print('[INFO] Test set generator has been created') if h5file is not None: h5file.close() return train_dataset_generator, test_dataset_generator def dataset_generator(h5file, dset_type, opt, dset_info, visualize): """ Move h5 dictionary contents to python dict as numpy arrays and create dataset generator """ use_class = opt.use_class if list(dset_info.keys())[0] == "NYU": dataset_dict = dict() # Create numpy arrays of given samples dataset_dict['rgb'] = np.array(h5file['rgb_' + dset_type], dtype=np.float32) dataset_dict['depth'] = np.array(h5file['depth_' + dset_type], dtype=np.float32) dataset_dict['seg_label'] = np.array(h5file['label_' + dset_type], dtype=np.int64) # If classification loss is included in training add the classification labels to the dataset as well if use_class: dataset_dict['class_label'] = np.array(h5file['class_' + dset_type], dtype=np.int64) print(dataset_dict['rgb'].shape) print(dataset_dict['depth'].shape) print(dataset_dict['seg_label'].shape) return CreateData(dataset_dict) elif list(dset_info.keys())[0] == "SUN": root = opt.dataroot splits = pickle.load(open(os.path.join(root, "splits.pkl"), "rb"), encoding="latin1") tsplits = None if dset_type == 'train': tsplits = np.arange(2000, 9001) #1 - 9001 elif dset_type== 'test': tsplits = np.arange(9001, 10335) #9001 - 10335 rgb = [] depth = [] mask = [] for index in tsplits: rimg = np.array(Image.open(os.path.join(root, "images-224", str(index)+".png"))) rimg = rimg.transpose(2, 0, 1) rgb.append(rimg) dimg = np.array(Image.open(os.path.join(root, "depth-inpaint-u8-224", str(index)+".png"))) dimg = dimg[:, :, np.newaxis] dimg = dimg.transpose(2, 0, 1) depth.append(dimg) mask.append(np.array(Image.open(os.path.join(root, "seglabel-224", str(index)+".png")))) if visualize: if index == tsplits[0] + 300: # only 20 images for visualization, limited memory while training break dataset_dict = dict() dataset_dict['rgb'] = np.array(rgb, dtype=np.float32) dataset_dict['depth'] = np.array(depth, dtype=np.float32) dataset_dict['seg_label'] = np.array(mask, dtype=np.int64) print(dataset_dict['rgb'].shape) #print(dataset_dict['depth'].shape) #print(dataset_dict['seg_label'].shape) return CreateData(dataset_dict)
true
ff403a67dc337f4c59971d5be5adddbab58fae18
Python
shellydeforte/PDB
/pdb/lib/datetime_info.py
UTF-8
1,184
2.8125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """Create ISO 8601 compliant date and time stamps.""" from __future__ import ( absolute_import, division, print_function, unicode_literals) import pytz import re from datetime import datetime class RE(object): datetime_stamp_pattern = """ ^ # Anchor to the beginning of string. # Named references. (?P<year>\d{4}) (?P<month>\d{2}) (?P<day>\d{2}) T # Delimiter (Begin time.) (?P<hour>\d{2}) (?P<minute>\d{2}) (?P<second>\d{2}) Z # Indicate UTC TZ. """ datetime_pat = re.compile(datetime_stamp_pattern, re.VERBOSE) def now_utc(): return datetime.utcnow().strftime("%Y%m%dT%H%M%S" + "Z") def create_dt_obj(time_stamp): dt = RE.datetime_pat.search(time_stamp) assert dt dt_obj = datetime( int(dt.group('year')), int(dt.group('month')), int(dt.group('day')), hour=int(dt.group('hour')), minute=int(dt.group('minute')), second=int(dt.group('second')), tzinfo=pytz.UTC ) return dt_obj
true
4a8f579cace15ea48effc824850c610308b56bd8
Python
JonathanCSantos098/programacao-orientada-a-objetos
/listas/lista-de-exercicio-02/questao11.py
UTF-8
159
3.15625
3
[]
no_license
num1=int(input()) num2=int(input()) num3=int(input()) produto=(num1*2)*(num2/2) soma=(num1*3)+num3 potencia=num3**3 print(produto) print(soma) print(potencia)
true
dde499912a98190e19a7026b2fe799d61d7c76b5
Python
Hchong16/VulnContract
/tests/declaration_test.py
UTF-8
5,152
2.65625
3
[]
no_license
import unittest import sys sys.path.append("../..") from declarations.solidityFile import SolidityFile class TestFunctionsModule(unittest.TestCase): filename = 'suicidal.sol' file_path = '../../examples/{}'.format(filename) smart_contract = SolidityFile(filename, file_path) smart_contract.parse_top_level() def test_pragmas(self): pragma_dict = self.smart_contract.pragmas pragma_obj = pragma_dict['solidity'] expected_name = 'solidity' expected_kind = 'PragmaDirective' expected_version = '0.8.1' self.assertEqual(len(pragma_dict), 1) # Only 1 pragma in suicidal.sol self.assertEqual(pragma_obj.name, expected_name) self.assertEqual(pragma_obj.kind, expected_kind) self.assertEqual(pragma_obj.version, expected_version) def test_imports(self): import_dict = self.smart_contract.imports import_obj = import_dict['test'] expected_path = 'test' expected_kind = 'ImportDirective' expected_symbol_aliases = {} expected_unit_alias = 'test' self.assertEqual(len(import_dict), 1) # Only 1 import in suicidal.sol self.assertEqual(import_obj.path, expected_path) self.assertEqual(import_obj.kind, expected_kind) self.assertEqual(import_obj.symbol_aliases, expected_symbol_aliases) self.assertEqual(import_obj.unit_alias, expected_unit_alias) def test_contracts(self): contract_dict = self.smart_contract.underlying_contracts expected_contracts = ['Contract_v1', 'Contract_v2', 'Contract_v3', 'Contract_v4', 'Contract_v5'] if len(contract_dict) == 5: self.assertEqual(len(contract_dict), 5) else: return # Evaluate each contract for contract in contract_dict.values(): self.assertIn(contract.name, expected_contracts) self.assertEqual(len(contract.functions), 1) def test_functions(self): contract_dict = self.smart_contract.underlying_contracts # Evaluate function in Contract 1 contract = contract_dict['Contract_v1'] function = contract.functions['protected_kill_1'] self.assertEqual(function.name, 'protected_kill_1') self.assertEqual(function.visibility, 'public') self.assertEqual(function.state_mutability, None) self.assertTrue(function.is_protected) self.assertEqual(len(function.arguments), 0) self.assertEqual(len(function.declarations), 0) self.assertEqual(len(function.identifiers), 5) self.assertEqual(len(function.returns), 0) # Evaluate function in Contract 2 contract = contract_dict['Contract_v2'] function = contract.functions['bad_kill_1'] self.assertEqual(function.name, 'bad_kill_1') self.assertEqual(function.visibility, 'public') self.assertEqual(function.state_mutability, None) self.assertFalse(function.is_protected) self.assertEqual(len(function.arguments), 0) self.assertEqual(len(function.declarations), 1) self.assertEqual(len(function.identifiers), 6) self.assertEqual(len(function.returns), 0) # Evaluate function in Contract 3 contract = contract_dict['Contract_v3'] function = contract.functions['bad_kill_2'] self.assertEqual(function.name, 'bad_kill_2') self.assertEqual(function.visibility, 'public') self.assertEqual(function.state_mutability, None) self.assertFalse(function.is_protected) self.assertEqual(len(function.arguments), 0) self.assertEqual(len(function.declarations), 0) self.assertEqual(len(function.identifiers), 2) self.assertEqual(len(function.returns), 0) # Evaluate function in Contract 4 contract = contract_dict['Contract_v4'] function = contract.functions['bad_kill_3'] self.assertEqual(function.name, 'bad_kill_3') self.assertEqual(function.visibility, 'public') self.assertEqual(function.state_mutability, None) self.assertFalse(function.is_protected) self.assertEqual(len(function.arguments), 0) self.assertEqual(len(function.declarations), 0) self.assertEqual(len(function.identifiers), 5) self.assertEqual(len(function.returns), 0) # Evaluate function in Contract 5 contract = contract_dict['Contract_v5'] function = contract.functions['protected_kill_2'] self.assertEqual(function.name, 'protected_kill_2') self.assertEqual(function.visibility, 'private') self.assertEqual(function.state_mutability, None) self.assertTrue(function.is_protected) self.assertEqual(len(function.arguments), 0) self.assertEqual(len(function.declarations), 0) self.assertEqual(len(function.identifiers), 2) self.assertEqual(len(function.returns), 0) if __name__ == '__main__': unittest.main()
true
177b0021efcbe19b1edf7f5151db60c43cf0c7d0
Python
jjliewie/kakao
/taxi.py
UTF-8
560
2.671875
3
[]
no_license
import heapq # floyd warshall algorithm def solution(n, s, a, b, fares): d = [ [ 20000001 for _ in range(n) ] for _ in range(n) ] for x in range(n): d[x][x] = 0 for x, y, c in fares: d[x-1][y-1] = c d[y-1][x-1] = c for i in range(n): for j in range(n): for k in range(n): if d[j][k] > d[j][i] + d[i][k]: d[j][k] = d[j][i] + d[i][k] minv = 40000002 for i in range(n): minv = min(minv, d[s-1][i]+d[i][a-1]+d[i][b-1]) return minv
true
28b38a2047ed90001f54964a449f02eaebe24c98
Python
NgoKnows/Interview-Practice
/Trees and Graphs/List of Depths.py
UTF-8
475
2.90625
3
[]
no_license
from collections import dequeue def list_depths(root, queue=None, levels=None, index=0): if queue is None: queue = dequeue([root]) if levels is None: levels = dict() levels[index] = LinkedList() queue2 = dequeue() while len(queue1): node = queue.pop() levels[index].add(node) if node.left: queue2.append(node.left) if node.right: queue2.append(node.right) return list_depths(root, queue, levels, index + 1)
true
3e867851c9048c770968fa665bda04d4a5ddbdf9
Python
syn1911/Python-spider-demo
/01improve/14多线程04.py
UTF-8
910
3.5
4
[]
no_license
# map使用 from concurrent.futures import ThreadPoolExecutor import time # 参数times用来模拟网络请求的时间 def get_request(times): time.sleep(times) print("用了{} 时间进行了返回".format(times)) return times executor = ThreadPoolExecutor(max_workers=2) urls = [3, 2, 4] # 并不是真的url for data in executor.map(get_request, urls): print("获取 url {}s 成功".format(data)) """使用map方法,无需提前使用submit方法, map方法与python标准库中的map含义相同, 都是将序列中的每个元素都执行同一个函数。 上面的代码就是对urls的每个元素都执行get_html函数, 并分配各线程池。可以看到执行结果与上面的as_completed方法的结果不同, 输出顺序和urls列表的顺序相同,就算2s的任务先执行完成, 也会先打印出3s的任务先完成,再打印2s的任务完成 """
true
1e554b0bc634837c42ca21686db3181b6225c5bc
Python
YangLiyli131/Leetcode2020
/in_Python/1276 Number of Burgers with No Waste of Ingredients.py
UTF-8
456
2.625
3
[]
no_license
class Solution(object): def numOfBurgers(self, tomatoSlices, cheeseSlices): """ :type tomatoSlices: int :type cheeseSlices: int :rtype: List[int] """ A,B = tomatoSlices, cheeseSlices res = [] a = A - 2 * B b = 4 * B - A if a % 2 != 0 or b % 2 != 0: return res if a < 0 or b < 0: return res return [a/2, b/2]
true
ca9b7730bc2a4157f7570d3dbce5114725c50613
Python
frostbyte16/botaku
/project_files/contentBased.py
UTF-8
3,560
3.28125
3
[]
no_license
# content based filtering import pandas as pd from sklearn.metrics.pairwise import sigmoid_kernel, cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer import random def recommend(name, anime_type, subtype): df_anime = pd.read_csv(f"{anime_type}.csv") # Drops all blank anime with duplicate titles df_anime.drop_duplicates(subset=['title'], inplace=True) x = df_anime.loc[(df_anime['synopsis'].isnull())] # Drops all blank anime with blank synopsis df_anime.dropna(subset=['synopsis'], inplace=True) if anime_type == 'manga': df_anime['chCount'] = df_anime['chCount'].fillna(0) df_anime['vCount'] = df_anime['vCount'].fillna(0) # Resets the index of dataframe after removing blanks and duplicates df_anime.reset_index(drop=True, inplace=True) # Computes for the similarity of synopsis using sigmoid kernel tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode', analyzer='word', token_pattern=r'\w{1,}', ngram_range=(1, 3), stop_words='english') tfv_matrix = tfv.fit_transform(df_anime['synopsis']) sig = sigmoid_kernel(tfv_matrix, tfv_matrix) indices = pd.Series(df_anime.index, index=df_anime['title']).drop_duplicates() if anime_type == 'anime': df_anime = pd.concat( [df_anime, df_anime['subtype'].str.get_dummies(), df_anime['genre'].str.get_dummies(sep=',')], axis=1) anime_features = df_anime.loc[:, "TV":].copy() elif anime_type == 'manga': df_anime = pd.concat([df_anime, df_anime['genre'].str.get_dummies(sep=', ')], axis=1) anime_features = df_anime.loc[:, "'Cooking']":].copy() cosine_sim = cosine_similarity(anime_features.values, anime_features.values) def recommend_anime(title, similarity=cosine_sim): title = title.replace(' (TV)', '') # Searches for anime if title exists in dataframe if title in df_anime.values: if df_anime['title'].str.contains(title).sum() > 0: idx = int(indices[title]) # multiplies the similarity of synopsis and genre scores = list(enumerate(sig[idx] * cosine_sim[idx])) # sort the movies scores = sorted(scores, key=lambda x: x[1], reverse=True) # anime indices anime_indices = [i[0] for i in scores] if anime_type == 'anime': recommendation = \ df_anime[['title', 'status', 'subtype', 'epCount', 'image', 'rating', 'synopsis']].iloc[ anime_indices] if subtype == 'TV': recommendation.drop(df_anime[df_anime['subtype'] == 'movie'].index, inplace=True) elif subtype == 'movie': recommendation.drop(df_anime[df_anime['subtype'] == 'TV'].index, inplace=True) else: recommendation = \ df_anime[['title', 'status', 'chCount', 'vCount', 'image', 'rating', 'synopsis']].iloc[ anime_indices] # Returns 5 from Top 10 most similar anime ran_idx = random.randint(1, 5) recommendation = recommendation[ran_idx:ran_idx+5] else: # Returns empty dataframe if title is not found recommendation = df_anime.iloc[0:0] return recommendation recommended = recommend_anime(name, anime_type) return recommended
true
a78c8ee218eacb59646c2dea593ffa74ebb7e231
Python
odnodn/PatientFM
/src/models/BiLstmCRF/decoder.py
UTF-8
2,379
2.71875
3
[ "MIT" ]
permissive
import torch from torch import nn from torchcrf import CRF r""" The Decoder implements two tasks: I2B2 entity classification, and novel detection of entities. I2B2 part uses the CRF, novel part uses linear+softmax """ class Decoder(nn.Module): def __init__(self, input_size, hidden_size, output_size, max_len, batch_size=1, num_layers = 1, bi=True): super(Decoder, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.batch_size = batch_size self.max_len = max_len self.mutihead_attention = nn.MultiheadAttention(self.input_size, num_heads=2) r""" I2B2 task: CRF """ self.crf_linear = nn.Linear(self.hidden_size*2, self.output_size) self.crf = CRF(self.output_size, batch_first=True) r""" Entity detection task: linear + softmax """ self.entity_linear = nn.Linear(self.hidden_size*2, 2) self.softmax = nn.LogSoftmax(dim=2) def generate_masked_labels(self, observed_labels, mask, device): masked_labels = torch.zeros((mask.size(0), mask.size(1)), dtype=torch.long).to(device) for i in range(mask.size(0)): masked_labels[i, :len(observed_labels[i][0])] = observed_labels[i][0] return masked_labels r""" CHECK IF hn IS NECESSARY IN INPUT """ # def forward(self, encoder_outputs, hn, batch_classes, mask, device): def forward(self, encoder_outputs, batch_classes, mask, device): r""" Attention block """ x = encoder_outputs.permute(1, 0, 2) attn_output, attn_output_weights = self.mutihead_attention(x, x, x) z = attn_output.permute(1, 0, 2) decoder_inputs = nn.functional.relu(z) r""" I2B2 task: CRF """ fc_out = self.crf_linear(decoder_inputs) #fc_out = self.crf_linear(encoder_outputs) masked_labels = self.generate_masked_labels(batch_classes, mask, device) mask = mask.type(torch.uint8).to(device) crf_loss = self.crf(fc_out, masked_labels, mask, reduction='token_mean') crf_out = self.crf.decode(fc_out) r""" Entity detection task: linear + softmax """ seg_weights = self.entity_linear(decoder_inputs) seg_out = self.softmax(seg_weights) return crf_out, seg_out, -crf_loss
true
50790c3c6a4926d4ce0271d910df58945e45a5bd
Python
texnedo/algo-tasks
/algo-python/PaintHouse.py
UTF-8
804
2.890625
3
[]
no_license
import sys from typing import List, Dict class Solution: def min_cost(self, costs: List[List[int]]) -> int: return self.min_cost_internal(costs, 0, -1, dict()) def min_cost_internal(self, costs: List[List[int]], i: int, prev_j: int, cache: Dict[tuple, int]): if i >= len(costs): return 0 option = (i, prev_j) if option in cache: return cache[option] min_cost = None for current_j in range(0, len(costs[i])): if current_j != prev_j: cost = costs[i][current_j] + self.min_cost_internal(costs, i + 1, current_j, cache) if min_cost is None or cost < min_cost: min_cost = cost cache[option] = min_cost return min_cost
true
a633fa471a6d1f6ac4f93a9e3cf85be4870a08b8
Python
Sentone5/Laba_4
/Zadanye2.py
UTF-8
545
3.796875
4
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Дано слово из 12 букв. Переставить в обратном порядке буквы, расположенные между # второй и десятой буквами (т.е. с третьей по девятую). if __name__ == '__main__': word = input("Введите слово из 12 букв ") word = word.replace(word[2], word[8], 1) word = word.replace(word[3], word[7], 1) word = word.replace(word[4], word[6], 1) print(word)
true
7f32b5e6a1d6151c7442621d939bd63214d82bb6
Python
noahfkaplan/InterviewPracticeSolutions
/DailySolutions/2020/01-07-2020/main.py
UTF-8
72
2.765625
3
[]
no_license
import LookAndSee n = 4 result = LookAndSee.LookAndSee(n) print(result)
true
863485bb52b7b7aa4fa0b76ac2aa8ced543578fa
Python
asw101/GithubAzureGuide
/djangoapp-master/polls/pandas_data.py
UTF-8
2,121
2.609375
3
[ "MIT" ]
permissive
import pandas import os from datetime import datetime from datetime import timedelta from .models import Githubevent def filter_in_admin(): issue_df = pandas.DataFrame(list(Githubevent.objects.all().values())) count_df = issue_df.groupby('issue_id').size().sort_values(ascending=False) count_df = count_df[count_df.iloc[:] > 1] total_times = [] for id in list(count_df.index): temp_df = issue_df.loc[issue_df['issue_id'] == id] temp_df = temp_df.sort_values(by=['time'], ascending=True) temp_list = temp_df['time'].tolist() if temp_df['action'].iloc[0] == 'closed' and len(temp_df) % 2 == 0: temp_list = temp_df['time'].tolist() del temp_list[0] # for i, time in enumerate(temp_list): # temp_list[i] = datetime.strptime(time, '%Y-%m-%d %X') temp_list.append(datetime.combine(temp_list[-1], datetime.min.time()) + timedelta(days=1)) elif temp_df['action'].iloc[0] == 'closed' and len(temp_df) % 2 == 1: temp_list = temp_df['time'].tolist() del temp_list[0] # for i, time in enumerate(temp_list): # temp_list[i] = datetime.strptime(time, '%Y-%m-%d %X') if len(temp_list) == 1: temp_list.append(datetime.combine(temp_list[-1], datetime.min.time()) + timedelta(days=1)) elif len(temp_df) % 2 == 0: temp_list = temp_df['time'].tolist() # for i, time in enumerate(temp_list): # temp_list[i] = datetime.strptime(time, '%Y-%m-%d %X') else: temp_list = temp_df['time'].tolist() # for i, time in enumerate(temp_list): # temp_list[i] = datetime.strptime(time, '%Y-%m-%d %X') temp_list.append(datetime.combine(temp_list[-1], datetime.min.time()) + timedelta(days=1)) temp_time = 0 for i,k in zip(temp_list[0::2], temp_list[1::2]): temp_time += (k-i).total_seconds() total_times.append(temp_time) return(float(sum(total_times)) / len(total_times) / 60)
true
081af84de8920c3300774a5d658ce7b2520ef2b0
Python
brandoneng000/LeetCode
/medium/998.py
UTF-8
883
3.390625
3
[]
no_license
from typing import Optional # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: # def insertIntoMaxTree(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]: # res = root # parent = None # while root and root.val > val: # parent = root # root = root.right # if not parent: # return TreeNode(val, root) # else: # parent.right = TreeNode(val, root) # return res def insertIntoMaxTree(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]: if not root or root.val < val: return TreeNode(val, root) root.right = self.insertIntoMaxTree(root.right, val) return root
true
9feba069ed707117cae743f32f65590a64e44a5d
Python
TylerMorley/book-scraper
/scraper-test-unit.py
UTF-8
2,490
2.59375
3
[]
no_license
#!/usr/bin/env python import unittest import scraper from lxml import etree, html from lxml.etree import tostring import requests class UnitTest_Iterations(unittest.TestCase): @classmethod def setUp(self): self.setupTest(self) class TestCases(UnitTest_Iterations): def setupTest(self): self.header = '<!DOCTYPE html><html lang="en-US"><body><div class="wx_audiobook">' self.footer = '</div></body></html>' self.author = 'Patrick Shoggothfuss' self.title = 'Shame of the Wind' #Test Case 1, example 10.1 def test_p_a_em_a(self): body = '<p><a href="a"><em>{}</em></a>, by {},<a href="b">stuff</a>more</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) #Test Case 2, example 10.2 def test_p_a_em(self): body = '<p><a href="huh"><em>{}</em></a>, by {}, and somesuch</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) #Test Case 3, example 10.4 def test_p_em_a(self): body = '<p><em><a href="eh">{}</a></em>by {}, and other info</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) #Test Case 4, example 10.10 def test_p_em(self): body = '<p><em>{}</em>, by {}, and some other info.</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) #Test Case 5, example 10.20 def test_p(self): body = '<p>{}, by {}</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) #Test Case 6, example 10.41 def test_p_ahref(self): body = '<p><a href="heh">{}</a>, some info by {}</p>'.format(self.title, self.author) website = self.header + body + self.footer result = scraper.getBookData(website) self.assertEqual(result, [['Shame of the Wind', 'Patrick Shoggothfuss']]) if __name__ == '__main__': unittest.main()
true
80cf59158e8dd1dabbf7d47822b6cb99b9ec3bd1
Python
sebinemeth/chesscraft-client
/figure/FigureFactory.py
UTF-8
773
3.046875
3
[]
no_license
from abc import ABC from figure.Bishop import Bishop from figure.King import King from figure.Knight import Knight from figure.Peasant import Peasant from figure.Queen import Queen from figure.Rook import Rook class FigureFactory(ABC): @staticmethod def get_figure(figure_type, player): if figure_type == 'peasant': return Peasant(player) if figure_type == 'rook': return Rook(player) if figure_type == 'knight': return Knight(player) if figure_type == "bishop": return Bishop(player) if figure_type == 'queen': return Queen(player) if figure_type == 'king': return King(player) raise Exception(f'{figure_type} is not a figure type')
true
024000850ac46c847cc2838f945b9d3c42139baf
Python
liuspencersjtu/MyLeetCode
/925-Long-Pressed-Name.py
UTF-8
1,026
3.03125
3
[]
no_license
class Solution: def isLongPressedName(self, name, typed): """ :type name: str :type typed: str :rtype: bool """ if len(name)==1: for i in typed: if i != name: return False return True p1,p2 = 0,0 l1 = len(name)-1 l2 = len(typed)-1 while p1<l1: if name[p1+1]!=name[p1]: if p2>=l2 or name[p1]!=typed[p2]: print(p1,p2,1) return False p1+=1 p2+=1 while p2<l2 and typed[p2]==typed[p2-1]: p2+=1 else: if p2>=l2 or name[p1+1]!=typed[p2+1]: print(p1,p2,2,l1) return False p1+=1 p2+=1 print(p1) for i in typed[p2:]: if i != name[p1]: print(p1,p2) return False return True
true
5ea700be999aee2a1187981c0497c725c06fec7f
Python
bohdi2/euler
/problem43.py
UTF-8
4,167
3.53125
4
[]
no_license
#!/usr/bin/env python3 import argparse import functools import sys import time def timeit(method): def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() print('%r (%r, %r) %2.2f sec' % (method.__name__, args, kw, te-ts)) return result return timed def isPandigital(n): return "0123456789" == ''.join(sorted(str(n))) def pandigital(): for n in range(123456789, 9876543210): if isPandigital(n): #print("slow", n) yield n def pandigital1(step=1): steps = [n for n in range(1000) if n % step == 0] for ii in range(123456, 9876543): for jj in steps: n = ii * 1000 + jj if isPandigital(n): yield n def pandigital3(): digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} def piter(remaining_digits, result): if not remaining_digits: yield result else: for digit in remaining_digits: new_digits = set(remaining_digits) - {digit} new_result = list(result) new_result.append(digit) yield from piter(new_digits, new_result) return piter(digits, []) def test(n, divisor, prime): return ((n//divisor) % 1000) % prime == 0 def test_all(n): return (test(n, 1, 17) and test(n, 10, 13) and test(n, 100, 11) and test(n, 1000, 7) and test(n, 10000, 5) and test(n, 100000, 3) and test(n, 1000000, 2)) def test3(result, index, prime): n = 100 * result[index-1] + 10 * result[index] + result[index+1] return n % prime == 0 def test_all3(result): return (test3(result, 8, 17) and test3(result, 7, 13) and test3(result, 6, 11) and test3(result, 5, 7) and test3(result, 4, 5) and test3(result, 3, 3) and test3(result, 2, 2)) class BruteForce: def __call__(self): answer = 0 for n in pandigital(): if test_all(n): answer += n print(n, answer) return answer class BruteForce17: def __call__(self): answer = 0 for n in pandigital1(17): if test_all(n): answer += n print(n, answer) return answer class BruteForce3: def __call__(self): answer = 0 for result in pandigital3(): if test_all3(result): n = functools.reduce(lambda accum, item: 10*accum + item, result, 0) answer += n print(n, answer) return answer class Problem43(): @timeit def sanity_checks(self): return test_all(1406357289) @timeit def sanity_checks2(self): return test_all(1406357288) @timeit def brute_force(self): # 2.4 hours function = BruteForce() return function() @timeit def brute_force17(self): # 9.1 minutes function = BruteForce17() return function() @timeit def brute_force3(self): # 8 seconds function = BruteForce3() return function() def main(): parser = argparse.ArgumentParser() parser.add_argument("command") args = parser.parse_args() problem = Problem43() if "tests" == args.command: # print("sanity checks", problem.sanity_checks()) # print("sanity checks", problem.sanity_checks2()) # print("17s", [n for n in range(1000) if n%17 == 0]) for n in pandigital3(): print("m", n) elif "brute1" == args.command: print("brute_force", problem.brute_force()) elif "brute17" == args.command: print("brute_force17", problem.brute_force17()) elif "brute3" == args.command: print("brute_force3", problem.brute_force3()) elif "all" == args.command: print("brute_force", problem.brute_force()) print("brute_force17", problem.brute_force17()) print("brute_force3", problem.brute_force3()) if __name__ == '__main__': sys.exit(main())
true
f888e32e5eae74a2110534237c0b47145bfc2c4a
Python
jlyons6100/Wallbreakers
/Week_2/jewels_and_stones.py
UTF-8
453
3.453125
3
[]
no_license
# Jewels and Stones: Given strings J representing the types of stones that are jewels and s representing the stones you have. # Determine how many stones you have that are also jewels. class Solution: def numJewelsInStones(self, J: str, S: str) -> int: j_set = set() for jewel in J: j_set.add(jewel) count = 0 for stone in S: if stone in j_set: count += 1 return count
true
a86d6791ab30901d2297c2ad67a250392e608cd9
Python
UrbanWojnowski/PythonFiles
/ExcelWrite.py
UTF-8
206
2.640625
3
[]
no_license
import xlwt # create an object of workbook wk = xlwt.Workbook() ws = wk.add_sheet("Testing") ws.write(0,0,"Testing WOrld") ws.write(0,1,"www.theTestingWorld.com") wk.save("TestingWorld1.xlsx")
true
cf1889966eba2efc94e0aa558178f2f0002dcec3
Python
rezasaneei/ML
/Python/massoud_tfidf/massoud_tfidf_v3.py
UTF-8
1,655
3.078125
3
[]
no_license
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd from sklearn.metrics.pairwise import euclidean_distances import csv import numpy as np docs = [] with open('movie_lines.txt') as f: docs = f.read().splitlines() len_docs = len(docs) #print 'number of documents' , len(docs), '\n' # empty list to be the movie corpus my_corpus = [] # open a plot_summaries file containing movie summaries, from http://www.cs.cmu.edu/~ark/personas/ # and put movie summaries as a list of strings to be used as our corpus with open('plot_summaries.txt', encoding='utf8') as f: rd = csv.reader(f, delimiter='\t', quotechar='"') for row in rd: my_corpus.append(row[1]) #print top 10 movie corpus text #print(my_corpus[:10]) # initialize the vectorizer vect = TfidfVectorizer(stop_words = stopwords.words('english')) # vectorize the corpus corpus_dtm = vect.fit(docs) # transfor the given documents of texts according to corpus docs_dtm = vect.transform(docs) # print features (extracted words) #print(vect.get_feature_names()) # make a pandas dataframe for better visualization pd_docs = pd.DataFrame(docs_dtm.toarray(),columns = vect.get_feature_names()) #print(type(docs_dtm)) for i in range(len_docs): print ('document',i+1,'top 5 keywords :') print (pd_docs.loc[i].sort_values(ascending = False)[:5]) print ('\n') print ('Euclidean distance of each document text from others') for i in range(len_docs): print ('document',i+1,'distance to others:') for d in docs_dtm: print (euclidean_distances(docs_dtm[i], d)) print ('\n')
true
b444bc7436611d75e25e30bea711a1c36801b5f6
Python
moonkangyun/MSE_python
/ex110.py
UTF-8
500
4.25
4
[]
no_license
if True : if False: print("1") print("2") else: print("3") else : print("4") print("5") # 즉, 3과 5가 나올 것이다. 첫번째 if문에서서 무조건 True기 때문에 두번째 if문으로 가는데 이때에는 거짓이라면 1과 2를 출력하지만 거짓이 아니기 때문에 3을 출력하고 if문을 빠져나온다. 그러고나서 제일 마지막에 if문에 영향을 받지않는 print("5")가 있기 때문에 5도 출력하고 마친다.
true
21a66cb234653fce958ae89e45123bafe910f79c
Python
JohnEstefano/AWS_Data_Lake
/etl.py
UTF-8
7,266
2.59375
3
[]
no_license
import configparser from datetime import datetime import os from pyspark.sql import SparkSession from pyspark.sql.functions import udf, col from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format config = configparser.ConfigParser() config.read_file(open('dl.cfg')) config.sections() os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY'] def create_spark_session(): spark = SparkSession \ .builder \ .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.5") \ .getOrCreate() return spark def process_song_data(spark, input_data, output_data): # get filepath to song data file song_data = input_data + "song_data/*/*/*/*.json" # read song data file df = spark.read.json(song_data) # create song_data_table view for SQL df.createOrReplaceTempView("song_data_table") # extract columns to create songs table songs_table = spark.sql(""" SELECT song_id, title, artist_id, year, duration FROM song_data_table WHERE song_id IS NOT NULL """) # write songs table to parquet files partitioned by year and artist songs_table.write.mode('overwrite').partitionBy("year", "artist_id").parquet(output_data +"songs_table.parquet") # extract columns to create artists table artists_table = spark.sql(""" SELECT DISTINCT artist_id, artist_name, artist_location, artist_latitude, artist_longitude FROM song_data_table WHERE artist_id IS NOT NULL """) # write artists table to parquet files artists_table.write.mode('overwrite').parquet(output_data +'artists_table.parquet') def process_log_data(spark, input_data, output_data): # get filepath to log data file log_data = input_data + 'log_data/*.json' # read log data file df = spark.read.json(log_data) # filter by actions for song plays df = df.filter(df.page == 'NextSong') # create log_data_table view for SQL df.createOrReplaceTempView("log_data_table") # extract columns for users table users_table = spark.sql(""" SELECT DISTINCT (log_data_table.userId) AS user_id, log_data_table.firstName AS first_name, log_data_table.lastName AS last_name, log_data_table.gender AS gender, log_data_table.level AS level FROM log_data_table WHERE log_data_table.userId IS NOT NULL """) # write users table to parquet files users_table.write.mode('overwrite').parquet(output_data +'users_table.parquet') # create timestamp column from original timestamp column get_timestamp = udf(lambda x: str(int(int(x) / 1000))) df = df.withColumn("timestamp", get_timestamp(df.ts)) # create datetime column from original timestamp column get_datetime = udf(lambda x: str(datetime.fromtimestamp(int(x) / 1000.0))) df = df.withColumn("datetime", get_datetime(df.ts)) # extract columns to create time table time_table = df.select( 'timestamp', hour('datetime').alias('hour'), dayofmonth('datetime').alias('day'), weekofyear('datetime').alias('week'), month('datetime').alias('month'), year('datetime').alias('year'), date_format('datetime', 'F').alias('weekday') ) # extract columns to create time table time_table = spark.sql(""" SELECT tt.time as start_time, hour(tt.time) as hour, dayofmonth(tt.time) as day, weekofyear(tt.time) as week, month(tt.time) as month, year(tt.time) as year, dayofweek(tt.time) as weekday FROM ( SELECT to_timestamp(log_data_table.ts/1000) as time FROM log_data_table WHERE log_data_table.ts IS NOT NULL ) tt """) # write time table to parquet files partitioned by year and month time_table.write.mode('overwrite').partitionBy("year", "month").parquet(output_data +'time_table.parquet') # read in song data to use for songplays table song_data = input_data + "song_data/*/*/*/*.json" song_df = spark.read.json(song_data) # create song_data_table view for SQL song_df.createOrReplaceTempView("song_data_table") # extract columns from joined song and log datasets to create songplays table songplays_table = spark.sql(""" SELECT monotonically_increasing_id() AS songplay_id, to_timestamp(log_data_table.ts/1000) AS start_time, month(to_timestamp(log_data_table.ts/1000)) AS month, year(to_timestamp(log_data_table.ts/1000)) AS year, log_data_table.userId AS user_id, log_data_table.level AS level, song_data_table.song_id AS song_id, song_data_table.artist_id AS artist_id, log_data_table.sessionId AS session_id, log_data_table.location AS location, log_data_table.userAgent AS user_agent FROM log_data_table JOIN song_data_table ON log_data_table.artist = song_data_table.artist_name AND log_data_table.song = song_data_table.title """) # write songplays table to parquet files partitioned by year and month songplays_table.write.mode('overwrite').partitionBy("year", "month").parquet(output_data +'songplays_table.parquet') def main(): spark = create_spark_session() input_data = "s3a://udacity-dend/" output_data = "s3a://dend-14/" process_song_data(spark, input_data, output_data) process_log_data(spark, input_data, output_data) if __name__ == "__main__": main()
true
dd8d9bf1244616b0884e9da8b9b1e05c23a01f83
Python
johnwatterlond/playground
/hangman.py
UTF-8
4,291
4.5625
5
[]
no_license
""" A hangman game. Player is allowed 7 wrong guesses. """ import string import os import random from words import word_list def clear(): """Clear terminal screen.""" os.system('clear') class Hangman: """ Represents a game of hangman. Args: secret_word: The word used for the game of hangman. Attributes: secret_word: The word used for the game of hangman. board_list: List representing current board. Missing letters are indicated by '-'. guesses: List of guesses made. guesses_left: Number of guesses left. Only changes if an incorrect guess is made. last_guess: String holding the last guess made. message: String used to print a message to the screen. """ def __init__(self, secret_word): self.secret_word = secret_word self.board_list = ['-' for letter in secret_word] self.guesses = [] self.guesses_left = 7 self.last_guess = '' self.message = '' def update_board(self, letter): """Update board with letter.""" for index, secret_letter in enumerate(self.secret_word): if secret_letter == letter: self.board_list[index] = letter def update_guesses(self, letter): """Update the list of letters already tried.""" self.guesses.append(letter) def update_guesses_left(self): """Update the number of guesses left.""" self.guesses_left = self.guesses_left - 1 def update_last_guess(self, letter): """Update the last guess to letter.""" self.last_guess = letter def board_empty(self): """Return True if the board is empty (word guessed).""" return not '-' in self.board_list def print_board(self): """ Print out the current board and info about it. Clears out terminal screen. """ clear() print('Current board:') print(''.join(self.board_list)) print() print('Number of guesses left: {}'.format(self.guesses_left)) print('Last guess was: {}'.format(self.last_guess)) print('Guesses so far: {}\n'.format(' '.join(self.guesses))) print('{}'.format(self.message)) def prompt_letter(self): """ Prompt the user for a letter. Checks that given character is a single letter and that it hasn't already been guessed. """ while True: letter = input('Guess a letter.\n').lower() if letter not in list(string.ascii_letters): print('\nInvalid input. Try again.') elif letter in self.guesses: print('\nAlready guessed {}. Try again.'.format(letter)) else: break return letter def take_turn(self): """ Take a turn. Prompt user for letter. Update board and letters that have already been tried. Also update the number of guesses and the last guess. If game is over, prints the appropriate message. """ # print board and prompt user for letter. self.print_board() letter = self.prompt_letter() # update list of guesses and last guess. self.update_guesses(letter) self.update_last_guess(letter) # process guess. if letter in self.secret_word: self.update_board(letter) else: self.update_guesses_left() # check for and process end of game. if self.board_empty(): self.message = 'Congrats you win!' self.print_board() elif not self.guesses_left: self.message = ( 'No more guesses left. You lose.' '\n' 'The word was {}.' ).format(self.secret_word) self.print_board() def play_game(self): """Play hangman.""" while self.guesses_left and not self.board_empty(): self.take_turn() def main(): """ Grab a secret_word from word_list and start a game of hangman. """ secret_word = random.choice(word_list) hangman = Hangman(secret_word) hangman.play_game() if __name__ == '__main__': main()
true
03a83330bc3bfd7e16bda60c29dd3dea06bb7a08
Python
JorgeOrobio/Proyecto1_CG
/Proyecto_1/Objetos.py
UTF-8
3,515
2.78125
3
[]
no_license
import pygame as pg from libreria import* class Bloque(pg.sprite.Sprite): """clase bloque""" def __init__(self,imagen,pos): pg.sprite.Sprite.__init__(self) self.image = imagen self.rect=self.image.get_rect() self.pos = pos self.rect.x=pos[0]+240 self.rect.y=pos[1] self.velx=-8 self.error=32 # self.grito_arc="/home/jorge/Escritorio/CGrafica/Music/Wilhelm_Scream.ogg" # self.grito = pg.mixer.Sound(self.grito_arc) def update(self): self.rect.x+=self.velx def OnLimit(self,pos_jugador): condition=False liminfx=self.rect.center[0] - self.error liminfy=self.rect.center[1] + self.error liminf = [liminfx,liminfy] limsupx=self.rect.center[0] + self.error limsupy=self.rect.center[1] - self.error limsup = [limsupx,limsupy] if liminf < pos_jugador <limsup : condition=True else: condition=False return condition def Death(self,pos_jugador): condition=False liminfx=self.rect.center[0] - self.error liminfy=self.rect.center[1] + self.error liminf = [liminfx,liminfy] limsupx=self.rect.center[0] + self.error limsupy=self.rect.center[1] - self.error limsup = [limsupx,limsupy] posr = pos_jugador[0] + 32 posl = pos_jugador[0] - 32 posu = pos_jugador[1] + 32 posd = pos_jugador[1] - 32 if posr == liminfx: condition=True else: condition=False return condition class Torre(pg.sprite.Sprite): """clase torre""" def __init__(self,pos,cl=azul): pg.sprite.Sprite.__init__(self) self.image=pg.Surface([40,40]) self.image.fill(cl) self.rect=self.image.get_rect() self.rect.x=pos[0] self.rect.y=pos[1] self.click=False def update(self): if self.click: self.rect.center = pg.mouse.get_pos() class Cuadro(pg.sprite.Sprite): """clase cuadro""" def __init__(self,pos,cl=verde): pg.sprite.Sprite.__init__(self) self.image=pg.Surface([40,40]) self.image.fill(cl) self.rect=self.image.get_rect() self.rect.x=pos[0] self.rect.y=pos[1] self.click=False self.velx=0 self.vely=0 def update(self): self.rect.x += self.velx self.rect.y += self.vely if self.click: self.rect.center = pg.mouse.get_pos() class Region(pg.sprite.Sprite): """clase Region""" def __init__(self,pos,cl=blanco): pg.sprite.Sprite.__init__(self) self.image=pg.Surface([100,100]) self.image.fill(cl) self.rect=self.image.get_rect() self.rect.x=pos[0] self.rect.y=pos[1] self.click=False # def update(self): # if self.click: # self.rect.center = pg.mouse.get_pos() class Linea(pg.sprite.Sprite): """clase Linea""" def __init__(self,pos,c=[5,200]): pg.sprite.Sprite.__init__(self) self.image=pg.Surface(c) self.image.fill(negro) self.rect=self.image.get_rect() self.rect.x=pos[0] self.rect.y=pos[1] self.click=False self.velx=0 self.vely=0 self.h=False self.v=False def update(self): if self.h: self.velx=0 self.vely=5 else: self.velx=-5 self.vely=0
true
69fb323f44bea3f1af5b7c9721c59fb59eef4bcd
Python
bengwie/PythonCodePractice
/missingnumber2.py
UTF-8
1,335
3.1875
3
[]
no_license
#!/usr/bin/python def testMe(nums): maxRep = 0 num_dict = dict() previousNum = None for (index, num) in enumerate(nums): print "num: %s" % num if num in num_dict: num_dict[num] += 1 else: if maxRep != 0: if num_dict[previousNum] < maxRep: return previousNum elif len(num_dict.keys()) == 2 and maxRep > num_dict[nums[0]]: return nums[0] num_dict[num] = 1 if maxRep < num_dict[num]: maxRep = num_dict[num] if index == len(nums) - 1: if len(num_dict.keys()) == 1: return -1 else: return num previousNum = num if __name__ == '__main__': samples = ["11222333", "11122333", "11122233", "11222333444555666777888", "1112233344455666777888", "11122233344455566777888", "11122233344455566677788", "111" ] import time for sample in samples: print "Sample is: %s" % sample time1 = time.time() output = testMe(sample) time2 = time.time() print "start time: %d" % time1 print "end time: %d" % time2 delta = time2 - time1 print "output: %s with time: %d" % (output, delta)
true
7fede34f5e5c07e5f1a9d887e832e160c19b6367
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_135/2180.py
UTF-8
501
3.1875
3
[]
no_license
def gl(f, splitchar=' '): return map(f, raw_input().split(splitchar)) def g(f): return f(raw_input()) t=g(int) for i in xrange(t): first=g(int) - 1 cards1=[gl(int) for _ in xrange(4)] second=g(int) - 1 cards2=[gl(int) for _ in xrange(4)] ans = set(cards1[first]) & set(cards2[second]) print "Case #%d:" % (i + 1), if len(ans) == 1: print list(ans)[0] elif len(ans) == 0: print "Volunteer cheated!" else: print "Bad magician!"
true
04e99c8a77a9a28ee221e945ed8ed30c662cad8d
Python
KashifAS/Aganitha-Full-Stack-and-AI-Quiz-2020-
/app.py
UTF-8
5,209
3.5
4
[]
no_license
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask, jsonify, request import flask app = Flask(__name__) def get_rules(): rules = {'Numbers': { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9, 'ten': 10, 'twenty': 20, 'thirty': 30, 'forty': 40, 'fifty': 50, 'sixty': 60, 'seventy': 70, 'eighty': 80, 'ninety': 90, 'hundred': 100, }, 'Tuples': { 'single': 1, 'double': 2, 'triple': 3, 'quadruple': 4, 'quintuple': 5, 'sextuple': 6, 'septuple': 7, 'octuple': 8, 'nonuple': 9, 'decuple': 10, }, 'General': { 'C M': 'CM', 'P M': 'PM', 'D M': 'DM', 'A M': 'AM', }} return rules def check_front_last(word): '''checking if word has comma at front or at last or at both if true then return front,word and last.''' front = '' last = '' if len(word) > 1: if word[-1] == ',' or word[-1] == '.': last = word[-1] word = word[:-1] if word[0] == ',' or word[0] == '.': front = word[0] word = word[1:] return (front, word, last) class SpokenToWritten: def __init__(self): self.rules = get_rules() self.paragraph = '' self.ouptut_para = '' # getting user input def get_user_input(self,input): self.paragraph = input if(self.paragraph == '.'): self.paragraph = self.paragraph[:-1] if not self.paragraph: raise ValueError("You entered nothing.") # main conversion function of spoken to written english def Convert(self): # splitting paragraph into individual words words_of_para = self.paragraph.split() # accessing defines rules numbers = self.rules['Numbers'] tuples = self.rules['Tuples'] general = self.rules['General'] i = 0 no_of_words = len(words_of_para) # loop will run for the number of words in paragraph while i < no_of_words: (front, word, last) = check_front_last(words_of_para[i]) # Word of paragraph may of form ',dollars.' if i + 1 != no_of_words: # when word is of the form e.g.: two (front_n, next_word, last_n) = \ check_front_last(words_of_para[i + 1]) if i + 2 != no_of_words: (front_t, t_word, last_t) = \ check_front_last(words_of_para[i + 2]) if word.lower() in numbers.keys() \ and (next_word.lower() == 'dollars' or next_word.lower() == 'dollar'): self.ouptut_para = self.ouptut_para + ' ' + front \ + '$' + str(numbers[word.lower()]) + last i = i + 2 elif word.lower() in tuples.keys() and len(next_word) \ == 1: # when word is of form Triple A self.ouptut_para = self.ouptut_para + ' ' + front_n \ + next_word * tuples[word.lower()] + last_n i = i + 2 elif word + ' ' + next_word in general.keys(): # if word is of form P M or C M self.ouptut_para = self.ouptut_para + ' ' + front \ + word + next_word + last_n i = i + 2 elif word.lower() == 'at' and next_word.lower() \ == 'the' and t_word.lower() == 'rate': self.ouptut_para = self.ouptut_para + ' ' + front \ + '@' + last i = i + 3 else: self.ouptut_para = self.ouptut_para + ' ' \ + words_of_para[i] i = i + 1 else: self.ouptut_para = self.ouptut_para + ' ' \ + words_of_para[i] i = i + 1 else: if self.ouptut_para[-1] != '.': self.ouptut_para = self.ouptut_para + '.' return self.ouptut_para # main function def convert_sp_to_wr(input): # creating class object obj_spoken = SpokenToWritten() obj_spoken.get_user_input(input) return "<h1>Converted text :</h1><br/>" + obj_spoken.Convert() # obj_spoken.show_output() @app.route('/') def hello_world(): return flask.render_template('index.html') @app.route('/index') def index(): return flask.render_template('index.html') @app.route('/predict', methods=['POST']) def predict(): query = request.form.to_dict() return convert_sp_to_wr(query['review_text']) if __name__ == '__main__': app.run(debug=True)
true
b57228086259be3c3d07349118f0a38d612f85ea
Python
JiaXingBinggan/RL_ad
/src/DRLB/RL_brain_for_test.py
UTF-8
3,045
2.734375
3
[]
no_license
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from src.config import config import os np.random.seed(1) class Net(nn.Module): def __init__(self, feature_numbers, action_numbers): super(Net, self).__init__() # 第一层网络的神经元个数,第二层神经元的个数为动作数组的个数 neuron_numbers_1 = 100 # 第二层网络的神经元个数,第二层神经元的个数为动作数组的个数 neuron_numbers_2 = 100 self.fc1 = nn.Linear(feature_numbers, neuron_numbers_1) self.fc1.weight.data.normal_(0, 0.1) # 全连接隐层 1 的参数初始化 self.fc2 = nn.Linear(neuron_numbers_1, neuron_numbers_2) self.fc2.weight.data.normal_(0, 0.1) # 全连接隐层 2 的参数初始化 self.out = nn.Linear(neuron_numbers_1, action_numbers) self.out.weight.data.normal_(0, 0.1) # 全连接隐层 2 的参数初始化 def forward(self, input): x_1 = self.fc1(input) x_1 = F.relu(x_1) x_2 = self.fc2(x_1) x_2 = F.relu(x_2) actions_value = self.out(x_2) return actions_value def store_para(Net): torch.save(Net.state_dict(), 'Model/DRLB_model_params.pth') # 定义DeepQNetwork class DRLB: def __init__( self, action_space, # 动作空间 action_numbers, # 动作的数量 feature_numbers, # 状态的特征数量 learning_rate=0.01, # 学习率 reward_decay=1, # 奖励折扣因子,偶发过程为1 e_greedy=0.9, # 贪心算法ε replace_target_iter=300, # 每300步替换一次target_net的参数 memory_size=500, # 经验池的大小 batch_size=32, # 每次更新时从memory里面取多少数据出来,mini-batch ): self.action_space = action_space self.action_numbers = action_numbers # 动作的具体数值?[0,0.01,...,budget] self.feature_numbers = feature_numbers self.lr = learning_rate self.gamma = reward_decay self.epsilon_max = e_greedy # epsilon 的最大值 self.replace_target_iter = replace_target_iter # 更换 target_net 的步数 self.memory_size = memory_size # 记忆上限 self.batch_size = batch_size # 每次更新时从 memory 里面取多少记忆出来 self.epsilon = 0.9 # restore params self.eval_net = Net(self.feature_numbers, self.action_numbers).cuda() self.eval_net.load_state_dict(torch.load('Model/DRLB_model_params.pth')) # 选择最优动作 def choose_best_action(self, state): # 统一 state 的 shape (1, size_of_state) state = torch.unsqueeze(torch.FloatTensor(state), 0).cuda() actions_value = self.eval_net.forward(state) action_index = torch.max(actions_value, 1)[1].data.cpu().numpy()[0] action = self.action_space[action_index] # 选择q_eval值最大的那个动作 return action
true