blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
797a419a87d47d61a08d610a97ecec200a732124
Python
ivanistheone/cs231n
/assignment1/cs231n/classifiers/softmax.py
UTF-8
3,551
3.25
3
[ "MIT" ]
permissive
from builtins import range import numpy as np from random import shuffle from past.builtins import xrange def softmax_loss_naive(W, X, y, reg): """ Softmax loss function, naive implementation (with loops) Inputs have dimension D, there are C classes, and we operate on minibatches of N examples. Inputs: - W: A numpy array of shape (D, C) containing weights. - X: A numpy array of shape (N, D) containing a minibatch of data. - y: A numpy array of shape (N,) containing training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - reg: (float) regularization strength Returns a tuple of: - loss as single float - gradient with respect to weights W; an array of same shape as W """ num_classes = W.shape[1] num_train = X.shape[0] # Initialize the loss and gradient to zero. loss = 0.0 dW = np.zeros_like(W) ############################################################################# # TODO: Compute the softmax loss and its gradient using explicit loops. # # Store the loss in loss and the gradient in dW. If you are not careful # # here, it is easy to run into numeric instability. Don't forget the # # regularization! # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** for i in range(num_train): scores = X[i].dot(W) scores -= np.max(scores) exp_scores = np.exp(scores) ps = exp_scores / np.sum(exp_scores) loss += -1 * np.log(ps[y[i]]) # gradient calcs for j in range(num_classes): dW[:,j] += ps[j]*X[i] if j == y[i]: dW[:,y[i]] += -1*X[i] # 1/N factor in front and regularization component loss /= num_train loss += reg * np.sum(W * W) # 1/N factor in front and regularization component dW /= num_train dW += 2*W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW def softmax_loss_vectorized(W, X, y, reg): """ Softmax loss function, vectorized version. Inputs and outputs are the same as softmax_loss_naive. """ # Initialize the loss and gradient to zero. num_train = X.shape[0] ############################################################################# # TODO: Compute the softmax loss and its gradient using no explicit loops. # # Store the loss in loss and the gradient in dW. If you are not careful # # here, it is easy to run into numeric instability. Don't forget the # # regularization! # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # build mask selecting only the correct classes (one-hot encodig of y_i) mask = np.eye(W.shape[1], dtype=bool)[y] S = X.dot(W) S -= np.max(S, axis=1)[:,np.newaxis] ES = np.exp(S) P = ES / np.sum(ES, axis=1)[:,np.newaxis] # compute loss loss = -1.0/num_train*np.sum(np.log(P[mask])) + reg * np.sum(W * W) # -1/N sum log(prob of y_i) + regularization part # gadiaent ones_yi = mask.astype(float) dW = 1.0/num_train * X.T.dot(P - ones_yi) + reg * 2*W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW
true
a9396e80d2eaa6594ddbb69fe36f6da7a3cefaa1
Python
DuttaSejuti/HackerRank-Python
/mutation.py
UTF-8
124
2.734375
3
[]
no_license
if __name__ == '__main__': s=input() n,c=input().split() n=int(n) c=str(c) print(s[:n]+c+s[n+1:])
true
246756226d7639c17e7f5ecf37002a6fabf011ed
Python
coder5492/WineQualityPrediction
/wineQualityDataset.py
UTF-8
1,911
3.234375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- Created on Tue Dec 11 09:43:03 2018 """ @author: sangeeth """ import pandas as pd from sklearn import preprocessing from sklearn.decomposition import PCA import pylab as pl from sklearn.naive_bayes import GaussianNB from sklearn import preprocessing url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv" #Importing the data data = pd.read_csv(url, sep=";") #Declaring X and Y X = data.iloc[:,:-1] Y = data.iloc[:, 11:12] #Standardising the data sc = preprocessing.StandardScaler() X = sc.fit(X).transform(X) #Splitting the observations to test set and train set from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42) #Predicting the output using actual variables bayes_real_model = GaussianNB() bayes_real_model.fit(X_train,Y_train) real_prediction = bayes_real_model.predict(X_test) #Calculation of Accuracy Score and Confusion Matrix from sklearn.metrics import accuracy_score real_score = accuracy_score(Y_test,real_prediction) print("The accuracy with Real data is " + str(real_score)) from sklearn.metrics import confusion_matrix print(confusion_matrix(Y_test,real_prediction).trace()) #Predicting with Different models with different PCA components for i in range(1,10): model = PCA(n_components = i) model.fit(X) X_PCA = model.transform(X) X_train_PCA, X_test_PCA, Y_train_PCA, Y_test_PCA = train_test_split(X_PCA, Y, test_size=0.33, random_state=42) bayes_PCA_model = GaussianNB() bayes_PCA_model.fit(X_train_PCA,Y_train) PCA_prediction = bayes_PCA_model.predict(X_test_PCA) PCA_score = accuracy_score(Y_test,PCA_prediction) print("The accuracy with PCA data with " + str(i) + " components is " + str(PCA_score)) print(confusion_matrix(Y_test,PCA_prediction).trace())
true
ad2018deab75f496911bb3599eab481de8d925f3
Python
Thalisson01/Python
/Exercício Python #092 - Cadastro de Trabalhador em Python.py
UTF-8
693
3.515625
4
[]
no_license
from datetime import date dataatual = date.today().year dados = dict() dados['nome'] = str(input('Digite seu nome: ')) dados['idade'] = dataatual - int(input('Digite a sua data de nascimento: ')) cdt = int(input('Digite a sua carteira de trabalho. [0] caso não tenha: ')) if (cdt != 0): dados['CTPS'] = cdt dados['ano de contratação'] = int(input('Qual foi o ano de contratação? ')) dados['salário'] = float(input('Qual é o seu salário: R$')) aposentadoria = 35 - (dataatual - dados['ano de contratação']) dados['aposentádoria'] = dados['idade'] + aposentadoria else: dados['CTPS'] = 'Empty' for k, v in dados.items(): print(f'{k} tem o valor: {v}')
true
86d3e7f84cfd2a9e7af722876e6a2c88c80320e3
Python
franklintra/template-project
/main.py
UTF-8
827
2.9375
3
[]
no_license
import math as m import numpy as np import sympy as sp import statistics as s import sys import os import argparse import random as r import pprint def loop_list(n: int, f: callable, *args) -> object: """ :rtype: list :param n: int :param f: callable :param kwargs: args """ return [f(*args) for i in range(n)] def loop(n: int, f: callable, *args) -> object: """ :rtype: list :param n: int :param f: callable :param kwargs: args """ for i in range(n): f(*args) def main(): pass def add(f, liste): return liste.append(f) if __name__ == '__main__': liste = loop_list(100, loop_list, 10, r.randint, 0, 1) pprint.pprint(liste) average = [] for i in liste: average.append(s.mean(i)) pprint.pprint(s.mean(average)) help()
true
63a890d056ac84054eaf3c1c1b7c057ccd96e269
Python
Dflybird/PlotDemo
/ocean_physics_exp/speed/speed_airboat.py
UTF-8
1,200
2.640625
3
[]
no_license
# coding:utf-8 import matplotlib.pyplot as plt import numpy import json plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False if __name__ == "__main__": plt.subplots(1, 1, figsize=(8, 4), frameon=True) plt.xlim((0, 14)) plt.ylim((0, 0.8)) plt.grid(True, linestyle='--', alpha=0.5) # plt.xlabel("Lutra Airboat和仿真的无人船速度对比,推进力为3.13N", size=12) plt.xlabel("时间 (单位:秒)", size=12) plt.ylabel("速度(单位:米/秒)", size=12) labels = ["仿真无人船", "真实舰艇"] f = open("./lutra_airboat_data.json") # f = open("./lutra_prop_data.json") jsonData = json.load(f) realData = jsonData["speedData"] f = open("./sim_speed_data.json") jsonData = json.load(f) simData = jsonData["speed"] plt.plot(numpy.arange(0, len(realData) / 5, 0.2), realData, label="真实舰艇", linewidth=0, marker='s') plt.plot(numpy.arange(0, len(simData) / 10, 0.1), simData, label="仿真无人船", linewidth=0, marker='.') plt.legend(loc="lower right") plt.tight_layout() plt.savefig("./speed_lutra_airboat.png", dpi=300) # plt.show() plt.clf()
true
daa23629d033c9c0e3e9c0ead97f361faf9f238d
Python
mengqingmeng/gcft_ant
/test_ant/ant/export_excel_test.py
UTF-8
2,555
2.578125
3
[]
no_license
#coding=utf-8 ''' Created on 2016年8月18日 @author: MQM ''' from openpyxl import Workbook from openpyxl import load_workbook import json wb = Workbook() #新建文档 ws = wb.active #workSheet = wb.create_sheet("sheet2") #新建一页,名字“sheet2” #workSheet.title = "new sheet2" #更改sheet 名字 #ws3 = wb["New Title"] 获取sheet,两种方式 #ws4 = wb.get_sheet_by_name("New Title") ws['A1'] = "id" ws['B1'] = "名称" ws['C1'] = "备案编号" ws['D1'] = "备案日期" ws['E1'] = "备案状态" ws['F1'] = "企业名称" ws['G1'] = "企业地址" ws['H1'] = "卫生许可" ws['I1'] = "说明" ws['J1'] = "processid" for value in range(1,600000): with open('F:\JTPData\detail\\'+str(value)+'_gcft.json' , 'r',encoding='utf-8',errors='ignore') as f: jsonData = json.load(f) name = jsonData["productname"] apply_sn = jsonData["apply_sn"] provinceConfirm = jsonData["provinceConfirm"] #备案日期 state = jsonData["state"] enterprise_name = jsonData["scqyUnitinfo"]["enterprise_name"] enterprise_address = jsonData["scqyUnitinfo"]["enterprise_address"] enterprise_healthpermits = jsonData["scqyUnitinfo"]["enterprise_healthpermits"] remark = jsonData["scqyUnitinfo"]["remark"] processid = jsonData["processid"] ws['A'+str(value+1)] = str(value) ws['B'+str(value+1)] = name ws['C'+str(value+1)] = apply_sn ws['D'+str(value+1)] = provinceConfirm ws['E'+str(value+1)] = state ws['F'+str(value+1)] = enterprise_name ws['G'+str(value+1)] = enterprise_address ws['H'+str(value+1)] = enterprise_healthpermits ws['I'+str(value+1)] = remark ws['J'+str(value+1)] = processid tep =int(ord('J')) for cf in jsonData["pfList"]: tep = tep+1 cowNum = '' if tep <=90: cowNum = chr(tep) if tep > 90: cowNum = 'A'+chr(tep-26) if tep >116: cowNum = 'B'+chr(tep-52) if tep>142: cowNum = 'C'+chr(tep-78) if tep>168: cowNum ='D'+chr(tep-104) try: ws[cowNum+str(value+1)] = cf["cname"] except: print("行数超出") if value % 1000 == 0: print("value:",value) wb.save("F:\JTPData\\test.xlsx") #wb.save("F:\JTPData\\test.xlsx")
true
3c952aec77460288fc4ef9537dd62dccc0bb9cef
Python
MenaceDenis/DojoWork
/Python/average.py
UTF-8
96
3.140625
3
[]
no_license
a = [1, 2, 5, 10, 255, 3] sum = 0 for num in a: sum += num avg = sum / len(a) print avg
true
aec58eff5161dbfcdb012f94039fa95a2cbbf2fe
Python
misskaseyann/candy-slayer
/candy_slayer/game_state/NeighborhoodScreen.py
UTF-8
4,425
3.0625
3
[]
no_license
import os import pygame from candy_slayer.game_state.GameState import GameState class NeighborhoodScreen(GameState): """ Neighborhood game state object. Music credit: Visager @ https://soundcloud.com/visagermusic Font credit: Alagard @ https://www.dafont.com/alagard.font """ def __init__(self, manager): """ Initialize the neighborhood game state. :param manager: game object manager """ super().__init__(manager) self.neighborhoodx = self.manager.neighborhood.get_width() self.neighborhoody = self.manager.neighborhood.get_height() self.playerx = (335 - ((self.neighborhoodx * 100) / 2)) self.playery = (300 - ((self.neighborhoody * 80) / 2)) self.housex = 0 self.housey = 0 def startup(self, persistent): """ Called when a state resumes being active. Allows information to be passed between states. :param persistent: a dict passed from state to state """ pygame.mixer.music.load(os.path.join("candy_slayer/assets/", "eerieloop.wav")) pygame.mixer.music.play(-1) self.font = pygame.font.Font(os.path.join("candy_slayer/assets/", "alagard.ttf"), 16) self.house_img = pygame.image.load(os.path.join("candy_slayer/assets/", "house.png")).convert_alpha() self.player_img = pygame.image.load(os.path.join("candy_slayer/assets/", "player.png")).convert_alpha() self.enemies_txt = self.font.render("Monsters: " + str(self.manager.get_population()) + " | Health: " + str(self.manager.get_player().get_currhp()) + "/" + str(self.manager.get_player().get_hpmax()) + " | Weapon: " + str(self.manager.get_player().get_currweapon().get_name()), True, (112, 89, 154)) def get_event(self, event): """ Handles events in the game. :param event: event to be handled """ # If player exits, end the game. if event.type == pygame.QUIT: self.quit = True if event.type == pygame.KEYDOWN: # 'd' key moving the player to the right. if event.key == pygame.K_d: if self.playerx < (((self.neighborhoodx - 1) * 100) + (320 - ((self.neighborhoodx * 100)/2))): self.housex += 1 self.playerx += 100 # 'a' key moving the player to the left. if event.key == pygame.K_a: if self.playerx > (320 - (((self.neighborhoodx - 1) * 100)/2)): self.housex -= 1 self.playerx -= 100 # 'w' key moving the player up. if event.key == pygame.K_w: if self.playery > (280 - (((self.neighborhoody - 1) * 80)/2)): self.housey -= 1 self.playery -= 80 # 's' key moving the player down. if event.key == pygame.K_s: if self.playery < (((self.neighborhoody - 1) * 80) + (280 - ((self.neighborhoody * 80)/2))): self.housey += 1 self.playery += 80 # Enter button selects the house the player is entering. if event.key == pygame.K_RETURN: pygame.mixer.music.load(os.path.join("candy_slayer/assets/", "battle.wav")) pygame.mixer.music.play(-1) self.manager.get_player().set_currhouse( self.manager.get_neighborhood().get_house(self.housey, self.housex)) self.next_state = "BATTLE" self.done = True def draw(self, surface): """ Draw game objects on the screen. :param surface: game screen to be drawn on """ surface.fill((255, 241, 235)) for h in range(0, self.neighborhoody): for w in range(0, self.neighborhoodx): surface.blit(pygame.transform.scale(self.house_img, (64, 64)), ((w * 100) + (320 - ((self.neighborhoodx * 100)/2)), (h * 80) + (280 - ((self.neighborhoody * 80)/2)))) surface.blit(self.player_img, (self.playerx, self.playery)) surface.blit(self.enemies_txt, (300 - self.enemies_txt.get_width() / 2, 10))
true
def86977940f03af17c8e91505b5763e6a81113d
Python
Vchenhailong/my-notes-on-python
/basic_rules/chapter_9/__init__.py
UTF-8
1,444
3.671875
4
[]
no_license
#! /usr/bin/python # coding:utf-8 """ contractor, property, iterator & generator: —— To create objects what can act as a sequence or mapping. For activating the objs, should implement the following contractors: __len__(self), __getitem__(self, key), __setitem__(self, key, value), __delitem__(self, key) Note: immutable objs need to implements 2 methods, mutable objs need 4 methods. property: @see contractors.py @property: to get the attributes @staticmethod: 静态方法,其定义中没有参数 self,可直接通过类来调用。 @classmethod: 类方法,其定义中包含类似于 self 的参数,通常被命名为 cls. iterator: Any objs implement __iter__ method, and it will contains __next__ method. 生成器:yield 语句 构造器、属性、迭代器和生成器: —— 可创建基于序列或映射的对象。为了使之有效,按需实现下列构造方法: __len__(self), __getitem__(self, key), __setitem__(self, key, value), __delitem__(self, key). 注意:不可变对象需 要实现2个方法,而可变对象需要实现4个 property:见 contractors.py @property:属性取值器 @staticmethod:静态方法,其定义中没有参数 self,可直接通过类来调用。 @classmethod: 类方法,其定义中包含类似于 self 的参数,通常被命名为 cls. iterator: 任何实现了 __iter__ 方法的对象。 """
true
1dbca8ddc241452d7c31fa58d253a891828a9325
Python
kh4r00n/Pet-Shop-Boys
/petshopboys_final.py
UTF-8
14,842
3.484375
3
[]
no_license
# FUNÇÃO VALOR DO PRODUTOS: def val_prod(s, n): if s == 'ração' or s == 'R': return 199.90 * n elif s == 'ração_premium' or s == 'RP': return 259.90 * n elif s == 'brinquedo' or s == 'BR': return 39.90 * n elif s == 'remédio' or s == 'RM': return 59.90 * n return 'Erro' # FUNÇÃO VALOR SERVIÇOS: def val_serv(s, n): if s == 'tosa' or s == 'T': return 59.90 * n elif s == 'banho' or s == 'B': return 49.90 * n elif s == 'passeio' or s == 'P': return 39.90 * n elif s == 'hotel' or s == 'H': return 119.90 * n return 'Erro' # FUNÇÃO EXIBIR LISTA DE PRODUTOS: def exibir_lista(l): for e in l: qnt = e[0] prod = e[1] val = e[2] if e[0] > 1: print(f'{qnt} unidades de {prod} = R$ {val:.2f}') else: print(f'{qnt} unidade de {prod} = R$ {val:.2f}') # FUNÇÃO TROCO: def troco(numero): cinquenta = int(numero / 50) numero = numero - (cinquenta * 50) vinte = int(numero / 20) numero = numero - (vinte * 20) dez = int(numero / 10) numero = numero - (dez * 10) cinco = int(numero / 5) numero = numero - (cinco * 5) dois = int(numero / 2) numero = numero - (dois * 2) um = numero print('Notas R$ 50,00 = ', cinquenta) print('Notas R$ 20,00 = ', vinte) print('Notas R$ 10,00 = ', dez) print('Notas R$ 5,00 = ', cinco) print('Notas R$ 2,00 = ', dois) print('Notas R$ 1,00 = ', um) # FUNÇÃO PARA IDENTIFICAR O ITEM A SER REMOVIDO: def identifica(l, s): i = 0 for e in l: if e[1] == s: return i else: i += 1 # FUNÇÃO ADEQUAÇÃO LETRA EM PALAVRA def adeq(l, s): for e in l: if e[1] == s: return e[0] else: return s # FUNÇÃO ENCERRAMENTO DO CÓDIGO: def bye(l, carrinho): print(f'\n\n\nSucesso, {name}! Sua compra já foi validada! :D') print('\n\nSegue sua notinha:') print('-' * 35) print(' ' * 13 + 'NOTA FISCAL\n') exibir_lista(l) print('-' * 35) print(f'Valor total: R$ {carrinho:.2f}') print('-' * 35) print(f'\nA PetShopBoys agradece pela sua compra!\n\nVolte sempre, {name}!') print( f'\n\nPs.: Ei, não fui eu quem te disse, mas tá aqui um cupom de desconto para você compartilhar com a galera: {name}TemOPetMaisLindo\n\n') # FUNÇÃO MÉTODOS DE PAGAMENTO: def pagamento(s, tot, l): if s == 'dinheiro' or s == 'DR': print(f'\nValor da compra: R$ {tot:.2f}') val = float(input(f'\nDeseja troco para quanto?\n> ')) while val < tot: val = float(input(f'\nValor inválido. Deseja troco para quanto?\n> ')) val_troco = (val - tot) // 1 print(f'\nSeu troco será de: R$ {val_troco:.2f}\n') troco(val_troco) bye(l, tot) elif s == 'cartão_de_crédito' or s == 'CC': print(f'\nValor da compra: R$ {tot:.2f}\n') qnt_parc = int(input(f'Gostaria de parcelar em quantas vezes?\nPodemos fazer em até 5 vezes sem juros!\n> ')) while qnt_parc > 5 or qnt_parc < 1: qnt_parc = int(input('Ops! Nº de parcelas inválido. Tenta outro:\n> ')) parM = tot / qnt_parc print(f'\nValor da parcela: R$ {parM:.2f}') input( f'\nColoca aqui dados do cartão:\nAh, {name}, pode ficar relax que ninguém vai ter acesso a esses dados, tá?\n> ') bye(l, tot) elif s == 'cartão_de_débito' or s == 'CD': print(f'\nValor da compra: R$ {tot:.2f}') input( f'\nColoca aqui os dados do cartão:\nAh, {name}, pode ficar relax que ninguém vai ter acesso a esses dados, tá?\n> ') bye(l, tot) elif s == 'PIX' or s == 'pix': print(f'\nValor da compra: R$ {tot:.2f}\n') print('Pronto! Agora é fazer o PIX para o e-mail: professores.bcw4@soulcodeacademy.com') input('\nColoca aqui pra mim o comprovante da transferência:\n> ') bye(l, tot) # ______________________________________________________________________________________________________________________________________________________________ # DECLARAÇÃO VARIÁVEIS: list_adeq = [['Ração(R)', 'R'], ['Ração Premium(RP)', 'RP'], ['Brinquedo(BR)', 'BR'], ['Remédio(RM)', 'RM'], ['Tosa(T)', 'T'], ['Banho(B)', 'B'], ['Passeio(P)', 'P'], ['Hotel(H)', 'H']] list_prod = [ 'Os produtos em estoque são:\n\n- Ração(R): R$ 199.90\n- Ração_Premium(RP): R$ 259.90\n- Brinquedo(BR): R$ 39.90\n- Remédio(RM): R$ 59.90'] list_serv = [ 'Os serviços disponíveis são:\n\n- Tosa(T): R$ 59.90\n- Banho(B): R$ 49.90\n- Passeio(P): R$ 39.90\n- Hotel(H): R$ 119.90'] list_main = [] carrinho = 0 y = 13457 # ______________________________________________________________________________________________________________________________________________________________ # INICIO CÓDIGO name = input(f'Olá, cliente nº: {y}!\n\nPor favor, digite seu primeiro nome:\n> ') y += 1 print(f'\nAgora sim, {name}!\nBem-vindo(a) a PetShopBoys: O parque de diversões dos "Pais de Pet"!') while True: continuar = ' ' # input('\n\nEscolha Acessar(A) nosso menu ou Finalizar(F) o atendimento:\n> ').strip().upper()[0] # WHILE INPUT DIFERENTE DE F EXECUTAR O PROGRAMA while continuar not in 'AF': continuar = input('\n\nEscolha Acessar(A) nosso menu ou Finalizar(F) o atendimento:\n> ').strip().upper()[0] # IF INPUT SEJA A ABRIR MENU PARA O CLIENTE if continuar == 'A': call = input('\nPosso te ajudar com:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() resp = '' while (resp != 'S'): # IF PARA CALLAR OS PRODUTOS if call == 'produtos' or call == 'PRODUTOS' or call == 'P': print() print(*list_prod, sep='') prod = input('\nPõe aqui o código do produto que você escolheu: ').upper() while prod not in 'R, RP, BR, RM': prod = input('\nPõe aqui o código do produto que você escolheu: ').upper() while True: try: qnt = int(input('Escolha a quantidade: ')) while qnt < 1: qnt = int(input('Ops! Quantidade inválida, tente novamente: ')) break except: print('Número inválido') val = val_prod(prod, qnt) adequação = adeq(list_adeq, prod) list_sub = [qnt, adequação, val] list_main.append(list_sub) carrinho += val print(f'\n> Adicionei {qnt} unidades de {adequação} no seu carrinho.\n>> Total: R$ {val:.2f}') call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() # ELIF PARA CALLAR OS SERVIÇOS elif (call == 'serviços' or call == 'SERVIÇOS' or call == 'SV'): print() print(*list_serv, sep='') serv = input('\nPõe aqui o código do serviço desejado: ').upper() while serv not in 'T, B, P, H': serv = input('\nPõe aqui o código do serviço desejado: ').upper() while True: try: qnt = int(input('Escolha a quantidade de vezes: ')) while qnt < 1: qnt = int(input('Ops! Quantidade inválida, tente novamente: ')) break except: print('Número inválido') val = val_serv(serv, qnt) adequação = adeq(list_adeq, serv) list_sub = [qnt, adequação, val] list_main.append(list_sub) carrinho += val print(f'\n> Adicionei {qnt} vezes o serviço {adequação} no seu carrinho.\n>> Total: R$ {val:.2f}') call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() # ELIF PARA CALLAR O CARRINHO elif (call == 'carrinho' or call == 'CARRINHO' or call == 'C'): # IF PARA CARRINHO VAZIO if carrinho == 0: print('\nOps! Seu carrinho ainda está vazio! Vamos às compras!') call = input( '\nPosso te ajudar com:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() # ELSE EXIBIR LISTA MAIN = PRODUTOS NO CARRINHO else: print() exibir_lista(list_main) print('-' * 35) print(f'Valor total: {carrinho:.2f}') # INPUT/IF PARA REMOVER PRODUTOS DO CARRINHO q = str(input(f'\n{name}, quer remover algum intruso dessa lista?\n(S/N): ')).strip().upper()[0] while q not in 'SN': q = \ str(input(f'\n{name}, quer remover algum intruso dessa lista?\n(S/N): ')).strip().upper()[0] if q == 'S': r = input('\nFala pra mim o código do item intruso:\n> ').upper() while r not in 'R, RP, BR, RM, T, B, P, H': r = input('\nFala pra mim o código do item intruso:\n> ').upper() r = adeq(list_adeq, r) i = identifica(list_main, r) carrinho -= list_main[i][2] list_main.pop(i) print('\nProduto removido com sucesso!') # IF PARA CALLAR CHECKOUT checkout = input('\nTudo certo para finalizarmos a compra?\n(S/N): ').strip().upper()[0] while checkout not in 'SN': checkout = input('\nTudo certo para finalizarmos a compra?\n(S/N): ').strip().upper()[0] if checkout == 'S': metodo = input( f'\n{name}, qual a forma de pagamento que você prefere?\n\nDinheiro(DR), PIX, Cartão de Crédito(CC), Cartão de Débito(CD) ou Desistir da Compra(D)?\n> ').upper() resp = 'S' # IF PARA DESISTÊNCIA DA COMPRA if metodo == 'D' or metodo == 'DESISTIR': print( f'\nCOMOASSIM, {name}?! Você realmente vai abandonar seu carrinho (e a mim também ;-;)?\n') exibir_lista(list_main) desist = input('(S/N): ').strip().upper()[0] while desist not in "SN": desist = input('(S/N): ').strip().upper()[0] # IF DESISTÊNCIA POSITIVA if desist == 'S': print(f'\nUma pena você estar indo embora, {name}.') # IF DESISTÊNCIA NEGATIVA else: metodo = input( f'\nOba, você ficou! Qual forma de pagamento você prefere, {name}:\n\nDinheiro(DR), Cartão de Crédito(CC), Cartão de Débito(CD) ou PIX?\n> ').upper() pagamento(metodo, carrinho, list_main) # ELSE O CLIENTE NÃO TENTE DESISTIR else: pagamento(metodo, carrinho, list_main) # ELSE CASO O CLIENTE RESPONDA ALGO ERRADO NO MÉTODO DE PAGAMENTO else: call = input( '\nCerto! Vamos para onde então:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() # ELIF CASO O CLIENTE DIGITE SAIR elif (call == 'sair' or call == 'SAIR' or call == 'S'): resp = input(f'\nTem certeza que deseja sair, {name}? ;-;\n(S/N): ').strip().upper()[0] while resp not in 'SN': resp = input(f'\nTem certeza que deseja sair, {name}? ;-;\n(S/N): ').strip().upper()[0] # IF CASO CLIENTE DESISTA DE SAIR if resp != 'S': call = input( '\nOba, você ficou! Vamos para onde então:\n\nProdutos(P), Serviços(SV) ou Carrinho(C)?\n> ').upper() while call not in 'P,SV,C,S': call = input( '\nVamos para onde agora:\n\nProdutos(P), Serviços(SV), Carrinho(C) ou Sair(S)?\n> ').upper() # ELSE CASO CLIENTE PROSSIGA COM SAÍDA else: print(f'\nUma pena você estar indo embora, {name}. :(') # CONTINUAR PARA QUE AO FIM DO PROG RETORNE AO INÍCIO # IF CASO O CLIENTE DIGITE F TANTO NO INÍCIO QUANTO AO FIM if continuar == 'F': print(f'\n\nObrigado pela visita, {name}! \o/\nVolte sempre!') break
true
ad72d5193218779432833d444fd5fa0a1749e037
Python
ScottLangridge/Shutdown-Command-Generator
/VirtualKeyboard.py
UTF-8
2,858
3.109375
3
[]
no_license
from time import sleep from code_dict import CODE_DICT from code_dict import CUSTOM_CODES import ctypes class VirtualKeyboard: #Set custom codes to matching definitions for user defined quick codes def __init__(self): self.user32 = ctypes.windll.user32 #Returns code from key def decode(self, key): return CODE_DICT[key.lower()] #Presses down key def key_down(self, key): self.user32.keybd_event(self.decode(key), 0, 0, 0) sleep(0.1) #Lets go of key def key_up(self, key): self.user32.keybd_event(self.decode(key), 0, 2, 0) sleep(0.1) #Quickly presses then lets go of key def key_stroke(self, key): self.key_down(key) self.key_up(key) ## Type whole messages. Letters will be read as keys, except # which denotes ## the start of a multi-char key. EG: To write: ## ## hello ## world ## ## You should enter: "hello#enter##tab#world def type(self, keys): if keys in CUSTOM_CODES.keys(): self.type(CUSTOM_CODES[keys]) else: code = '' in_code = False for char in keys: if char == '#': if in_code: self.key_stroke(code) code = '' in_code = False else: in_code = True elif in_code: code = code + str(char) else: self.key_stroke(str(char)) #Presses keys down one by one then releases together. #Good for things like "#alt##tab#" or "#ctrl##alt##delete#" def hold_keys(self, keys): if keys in CUSTOM_CODES.keys(): self.hold_keys(CUSTOM_CODES[keys]) else: code = '' in_code = False for char in keys: if char == '#': if in_code: self.key_down(code) code = '' in_code = False else: in_code = True elif in_code: code = code + str(char) else: self.key_down(str(char)) for char in keys: if char == '#': if in_code: self.key_up(code) code = '' in_code = False else: in_code = True elif in_code: code = code + str(char) else: self.key_up(str(char))
true
fda77059f91015439cbfddc96e2473ffecaf27f6
Python
straga/micropython_littlefs_test
/data_esp/core/rpc/jsonrpc.py
UTF-8
2,606
2.53125
3
[]
no_license
try: import ujson as json except Exception: import json pass from core import logging log = logging.getLogger("JSONRPC") class JsonRpc: def __init__(self, core, mbus): self.core = core self.mbus = mbus @staticmethod def isgenerator(iterable): return hasattr(iterable, '__iter__') and not hasattr(iterable, '__len__') @staticmethod def query_params(params): if "args" in params: params["args"] = tuple(params["args"]) else: params["args"] = tuple() if "kwargs" in params: params["kwargs"] = params["kwargs"] else: params["kwargs"] = dict() return params # DB async def call_db(self, params): response = {} try: # ACTION response["result"] = await self.core.uconf.call( params["method"], params["param"], *params["args"], **params["kwargs"] ) if self.isgenerator(response["result"]): response["result"] = list(response["result"]) except Exception as e: response["error"] = "".format(e) log.error("RPC-DB: {}".format(e)) pass return response # ENV async def call_env(self, params): response = {} try: _env = params["env"] _path = params["path"] # ACTION response["result"] = await self.mbus.rpc.action(env_name=_env, path=_path, args=params["args"], kwargs=params["kwargs"]) except Exception as e: response["error"] = "{}".format(e) log.error("RPC-ENV: {} : {}".format(e, params)) pass return response # CALL async def call(self, rpc_string): response = {} rpc_id = 0 method = None parse_params = None try: jsonrpc = json.loads(rpc_string) rpc_id = jsonrpc["id"] method = jsonrpc["method"] parse_params = self.query_params(jsonrpc["params"]) except Exception as e: response["error"] = "{}".format(e) log.error("RPC-ENV: {} : {}".format(e, rpc_string)) pass # Method if method == "call_db": response = await self.call_db(parse_params) if method == "call_env": response = await self.call_env(parse_params) response["id"] = rpc_id return json.dumps(response)
true
6921c5494947346bf1d1b0fad9276610224b9166
Python
karimmakynch/PYTHON
/Encryption[py]/bak/c.py
UTF-8
455
2.578125
3
[]
no_license
# Variables key = 200 def encode(msg): tx = '' for l in msg: if ord(l) in range(0,0xff): pos = ord(l) pos += key if pos >= 0xff: pos -= 0xff if pos < 0: pos += 0xff tx += chr(pos) else: tx += l return tx def decode(msg): tx = '' for l in msg: if ord(l) in range(0,0xff): pos = ord(l) pos -= key if pos >= 0xff: pos -= 0xff if pos < 0: pos += 0xff tx += chr(pos) else: tx += l return tx
true
5ff597fb6d6375c577c80afdb57d950e7f66a985
Python
nitinverma99/Codeforces---800
/Two_Arrays_and_Swaps.py
UTF-8
416
2.703125
3
[]
no_license
for i in range(int(input())): n, k = list(map(int, input().split())) lst = list(map(int, input().split())) gst = list(map(int, input().split())) while(k>0): if max(gst)>min(lst): maxx = max(gst) minn = min(lst) lst.append(maxx) lst.remove(minn) gst.remove(maxx) k -= 1 else: break print(sum(lst))
true
5160a5d6f5580ad0b42f3e831af7c3642ac3c38a
Python
jerry73204/ms-agv-car
/tf_openvino_source/movidius_video.py
UTF-8
4,671
2.515625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # # 本程式檔據隨附於套件的的「LICENSE.txt」檔案內容授權,感謝你遵守協議。 import argparse import time import cv2 import numpy as np from openvino.inference_engine import IENetwork, IEPlugin def main(): # 設定程式參數 arg_parser = argparse.ArgumentParser(description='使用 Movidius 進行預測') arg_parser.add_argument( '--model-file', default='../tf_openvino_model/mo2_model/saved_model.xml', help='模型架構檔', ) arg_parser.add_argument( '--weights-file', default='../tf_openvino_model/mo2_model/saved_model.bin', help='模型參數檔', ) arg_parser.add_argument( '--video-type', choices=['file', 'camera'], default='file', help='影片類型', ) arg_parser.add_argument( '--source', default='../sample_video/example_1.mp4', help='影片來源檔', ) arg_parser.add_argument( '--input-width', type=int, default=48, help='模型輸入影像寬度', ) arg_parser.add_argument( '--input-height', type=int, default=48, help='模型輸入影像高度', ) arg_parser.add_argument( '--gui', action='store_true', help='啓用圖像界面', ) arg_parser.add_argument( '--device', choices=['CPU', 'MYRIAD'], default='MYRIAD', help='計算裝置', ) # 解讀程式參數 args = arg_parser.parse_args() assert args.input_width > 0 and args.input_height > 0 # 設置 Movidius 裝置 plugin = IEPlugin(device=args.device) # 載入模型檔 net = IENetwork.from_ir(model=args.model_file, weights=args.weights_file) input_blob = next(iter(net.inputs)) out_blob = next(iter(net.outputs)) exec_net = plugin.load(network=net) # 開啓影片來源 if args.video_type == 'file': # 檔案 video_dev = cv2.VideoCapture(args.source) video_width = video_dev.get(cv2.CAP_PROP_FRAME_WIDTH) video_height = video_dev.get(cv2.CAP_PROP_FRAME_HEIGHT) elif args.video_type == 'camera': # 攝影機 video_dev = cv2.VideoCapture(0) # 主迴圈 try: prev_timestamp = time.time() while True: ret, orig_image = video_dev.read() curr_time = time.localtime() # 檢查串流是否結束 if ret is None or orig_image is None: break # 縮放爲模型輸入的維度、調整數字範圍爲 0~1 之間的數值 preprocessed_image = cv2.resize( orig_image.astype(np.float32), (args.input_width, args.input_height), ) / 255.0 # 這步驟打包圖片成大小爲 1 的 batch batch = np.expand_dims( np.transpose(preprocessed_image, (2, 0 ,1)), # 將維度順序從 NHWC 調整爲 NCHW 0, ) # 執行預測 request_handle = exec_net.start_async( request_id=0, inputs={input_blob: batch} ) status = request_handle.wait() result_batch = request_handle.outputs[out_blob] result_onehot = result_batch[0] # 判定結果 left_score, right_score, stop_score, other_score = result_onehot class_id = np.argmax(result_onehot) if class_id == 0: class_str = 'left' elif class_id == 1: class_str = 'right' elif class_id == 2: class_str = 'stop' elif class_id == 3: class_str = 'other' # 計算執行時間 recent_timestamp = time.time() period = recent_timestamp - prev_timestamp prev_timestamp = recent_timestamp print('時間:%02d:%02d:%02d ' % (curr_time.tm_hour, curr_time.tm_min, curr_time.tm_sec)) print('輸出:%.2f %.2f %.2f %.2f' % (left_score, right_score, stop_score, other_score)) print('類別:%s' % class_str) print('費時:%f' % period) print() # 顯示圖片 if args.gui: cv2.imshow('', orig_image) cv2.waitKey(1) except KeyboardInterrupt: print('使用者中斷') # 終止影像裝置 video_dev.release() if __name__ == '__main__': main()
true
b491ab1931f7f936e8f71e186daf2e4f57af5490
Python
akatkar/PythonLesson
/ThreadDemo.py
UTF-8
493
3.359375
3
[]
no_license
from threading import * from time import sleep class MyThread(Thread): def __init__(self, name, delay=0.5): Thread.__init__(self, name=name) self.delay = delay def run(self): i = 0 while i<5: sleep(self.delay) i +=1 print(f"{self.name} finished") th = [MyThread("M1"), MyThread("M2",0.4)] for t in th: t.start() print("check point 1") for t in th: t.join() print("check point 2")
true
c413e55be7bf623a80bef6b0b897b4360be5d1f3
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_116/1221.py
UTF-8
1,169
2.984375
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import sys import os import time import itertools import collections xs = range(4) ys = range(4) def solv(s, c): if any([all([s[i][j]==c or s[i][j]=='T' for j in ys]) for i in xs]): return True if any([all([s[i][j]==c or s[i][j]=='T' for i in xs]) for j in ys]): return True if all([s[i][i] == c or s[i][i] == 'T' for i in xs]): return True if all([s[i][3-i] == c or s[i][3-i] == 'T' for i in xs]): return True def main(): tt = int(raw_input()) #print "t=",tt s = ['' for i in range(4)] for t in xrange(tt): s[0] = raw_input() s[1] = raw_input() s[2] = raw_input() s[3] = raw_input() ss = ''.join(s) if t!=tt-1: raw_input() #print s #print ss if solv(s, 'X'): print "Case #%d: X won" % (t+1) elif solv(s, 'O'): print "Case #%d: O won" % (t+1) elif '.' in ss: print "Case #%d: Game has not completed" % (t+1) else: print "Case #%d: Draw" % (t+1) if __name__ == '__main__': main()
true
949f35a84828a28cfe65c20a561df2aea6a5209e
Python
jmnel/dromedary-welcome
/src/help_browser.py
UTF-8
3,187
3.046875
3
[ "MIT" ]
permissive
import os from PySide2.QtWidgets import (QWidget, QPushButton, QTextBrowser, QHBoxLayout, QVBoxLayout, QDialog) from PySide2.QtCore import Qt, Slot class HelpBrowser(QWidget): instance = None # Class variable instance of help browser documentation_path = '' # Documentation path def __init__(self, parent=None): # def __init__(self, path, page, parent=None): # We don't pass parent to superclass, because we don't want help browser to be a child of # main window. We handle closing help browser when main window closes manually. super(HelpBrowser,self).__init__() # Set needed widget attributes. WA_DeleteOnClose is needed so that closing main window also # closes instance of help browser. self.setAttribute(Qt.WA_DeleteOnClose) # Destroy widget when window is closed. self.setAttribute(Qt.WA_GroupLeader) # Create home, back, and close buttons. self.home_button = QPushButton(self.tr('&Home')) self.back_button = QPushButton(self.tr('&Back')) self.close_button = QPushButton(self.tr('Close')) self.close_button.setShortcut(self.tr('Esc')) # Layout home, back, and close buttons. self.button_layout = QHBoxLayout() self.button_layout.addWidget(self.home_button) self.button_layout.addWidget(self.back_button) self.button_layout.addStretch() self.button_layout.addWidget(self.close_button) # Create basic layout containing QTextBrowser. self.text_browser = QTextBrowser() self.main_layout = QVBoxLayout() self.main_layout.addLayout(self.button_layout) self.main_layout.addWidget(self.text_browser) self.setLayout(self.main_layout) # Connect button signals self.home_button.clicked.connect(self.text_browser.home) self.back_button.clicked.connect(self.text_browser.backward) self.close_button.clicked.connect(self.close) # Calls static function to clear help browser instance reference. self.destroyed.connect(HelpBrowser.on_close) # Close help browser on parent is_closing signal. parent.is_closing.connect(self.close) # Navigates to page in documentation path. def goto_page(self, page): page_file_path = os.path.join(HelpBrowser.documentation_path, page) self.text_browser.setSource(page_file_path) # Sets documenation path. @staticmethod def set_documentation_path(path): HelpBrowser.documentation_path = path # Unsets help browser instance reference. This gets called when help browser is destroyed. @staticmethod def on_close(): if HelpBrowser.instance != None: HelpBrowser.instance = None # Creates and shows help browser window, stores instance in class variable, and navigates to # page in documentation path. @staticmethod def show_page(page, parent=None): if HelpBrowser.instance == None: HelpBrowser.instance = HelpBrowser(parent) HelpBrowser.instance.resize(500,400) HelpBrowser.instance.show() HelpBrowser.instance.goto_page(page)
true
7c8a1408c8e623011af7e781790890eac990ba0e
Python
COHRINT/cops-and-robots-2.0
/main.py
UTF-8
7,890
2.703125
3
[]
no_license
#!/usr/bin/env python ''' Cops and Robots launchig file. Contains the main update loop in the __init__ function ''' __author__ = ["LT"] __copyright__ = "Copyright 2017, Cohrint" __credits__ = ["Ian Loefgren","Sierra Williams","Matt Aiken","Nick Sweet"] __license__ = "GPL" __version__ = "2.2" # for CnR 2.0 __maintainer__ = "Luke Barbier" __email__ = "luke.barbier@colorado.edu" __status__ = "Development" from pdb import set_trace import sys import os import rospy import yaml from core.helpers.config import load_config from core.robo_tools.cop import Cop from core.robo_tools.robber import Robber from core.robo_tools.gaussianMixtures import GM, Gaussian from caught.msg import Caught from std_msgs.msg import Bool class MainTester(object): """ Starts the CnR experiment Methods ---------- 1) __init__() : launches the experiment and contains the main loop 2) init_cop_robber() : creates each robot as either a cop or robber 3) update_cop_robber() : calls the robot.update() method of each robot 4) end_experiment() : callback to the /caught_confirm topic and influences the self.running_experiment variable """ running_experiment = True experiment_runspeed_hz = 2; map_bounds = [-5, -2.5, 5, 2.5] max_num_robots = 2 # Maximum number of robots our experiment is designed for # Related to Cop's belief # cop_initial_belief = GM() # cop x, cop y, rob x, rob y, then follow the rooms # cop_initial_belief.addNewG([0,0,-2,2],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # kitchen # cop_initial_belief.addNewG([0,0,-5,0],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # hallway # cop_initial_belief.addNewG([0,0,0,-2.5],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # library # cop_initial_belief.addNewG([0,0,2,2.5],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # billiards room # cop_initial_belief.addNewG([0,0,-5,-2],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # study # cop_initial_belief.addNewG([0,0,-8,-2],[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]],1) # dining room # cop_initial_belief.normalizeWeights() delta = 0.1 def __init__(self, config_file='config/config.yaml'): print("Starting Cops and Robots") rospy.init_node("Python_Node") rospy.Subscriber('/caught_confirm', Caught, self.end_experiment) # caught_confirm topic # Create robots self.init_cop_robber(config_file) # Main Loop print("Entering Main Loop") r = rospy.Rate(self.experiment_runspeed_hz) # 1 Hz while self.running_experiment is True and not rospy.is_shutdown(): self.update_cop_robber() r.sleep() for robot in self.robots: self.robots[robot].goal_planner.return_position() rospy.sleep(1) print("Experiment Finished") def init_cop_robber(self, config_file=None): """ Initialize the cop and robber using the config file """ if config_file != None: cfg = load_config(config_file) #load the config file as a dictionary else: print("No Config File. Restart and pass the config file.") raise self.robots = {} # robot dictionary num_robots = 0 try: for robot, kwargs in cfg['robots'].iteritems(): if cfg['cop_rob'][robot] != 'no': # check for bad config, too many robots selected num_robots += 1 if num_robots > self.max_num_robots: print("Bad config file, More robots selected than allowed") print("Check config/config.yaml or run gui.py and reconfigure") raise # goal_planner string goal_planner = cfg['robots'][robot]['goal_planner'] # Check cop or robber # Initialize a cop if cfg['cop_rob'][robot] == 'cop': with open('models/'+cfg['map']+'.yaml', 'r') as stream: map_cfg = yaml.load(stream) cop_initial_belief = GM() for room in map_cfg['info']['rooms']: max_x = map_cfg['info']['rooms'][room]['max_x'] max_y = map_cfg['info']['rooms'][room]['max_y'] min_x = map_cfg['info']['rooms'][room]['min_x'] min_y = map_cfg['info']['rooms'][room]['min_y'] cent_x = (max_x + min_x) / 2 cent_y = (max_y + min_y) / 2 cop_initial_belief.addG(Gaussian([0,0,cent_x,cent_y],[[0.5,0,0,0],[0,0.5,0,0],[0,0,0.5,0],[0,0,0,0.5]],1)) cop_initial_belief.normalizeWeights() self.robots[robot] = Cop(cop_initial_belief, self.delta, self.map_bounds, robot, goal_planner) # Initialize a robber elif cfg['cop_rob'][robot] == 'rob': self.robots[robot] = Robber(robot, goal_planner) print("Added: " + str(robot) + " to the experiment") except TypeError as ex: print("***ERROR***, in config/config.yaml, add singe quotes (') around 'cop', 'rob' and 'no' ") raise except Exception as ex: template = "***ERROR*** An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print message raise print("COP AND ROBBER INITIALIZED") def update_cop_robber(self): """ Updates the cop and robber: goal pose and belief (if cop) """ # set_trace() for robot_name, robot in self.robots.iteritems(): # print("UPDATING: : " + robot_name) robot.update() # calls Robot.update (in Robot.py) def end_experiment(self, msg): if msg.confirm is True: self.running_experiment = False print("*****"+ msg.robber.upper() + " CAUGHT*****") print(" ENDING EXPERIMENT") self.running_experiment = False if __name__ == '__main__': MainTester()
true
9281eb55ef79475f37a1cb2fcf721f5203021385
Python
rajesh95cs/assignments
/1/substringmatchtuple.py
UTF-8
516
3.171875
3
[]
no_license
import string def countsubstringmatch(target, key): i=0 b = 0 c = 0 alist[:] alist[0:len(target)]=0 count = 0 while b != -1: b = string.find(target, key, c) if b == -1: break else: count = count+1 print "Position at ", b alist[i:]=b i=i+1 c = b + 1 print(count) atuple=tuple(alist) print(atuple) print "tuple=" target = "atgacatgcacaagtatgcat" key = "atgc" countsubstringmatch(target, key)
true
29468acd8f1a3cb76cabb1fbb0f62bad76bae661
Python
Klowner/8cic-encode
/8cic_encode.py
UTF-8
4,278
3
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python """ Anything-That-PIL-Can-Read to Lightwall 8cic converter Mark "Klowner" Riedesel (mark@klowner.com) / QCCoLab ------------------------------------------------------ version 2 Reads a series of image files (or a single animated GIF) and converts them into lightwall ready format! You can use a tool such as ffmpeg to convert any resize a variety of videos available on the internets. example: $ ffmpeg -i giveyouup.flv -s 16x16 -o giveyouup_%05d.png Then use this script to process the resulting series of png image files. Requires: Python Imaging Library (PIL) """ import struct import glob import sys from PIL import Image FORMAT_VERSION = 3 FORMAT_TYPE = 0 def dump_color_stream(c): out = [] c = [x/16 for x in c] for bit in reversed(range(4)): byte = 0 for i, color in enumerate(c): byte |= (color >> bit & 1) << i out.append(byte ^ 0xFF) return out def process_pixel_column(pixels): (r,g,b) = map(lambda x:[p[x] for p in pixels], range(3)) for color_column in (b,g,r): yield dump_color_stream(reversed(color_column)) def write_frame(image, size, ostream): (w,h) = size rows = h/8 for row_groups in xrange(rows): for xpos in xrange(w): ypos = range(h)[row_groups::2] pixels = map(lambda y: image.getpixel((xpos,y)), ypos) for x in process_pixel_column(pixels): ostream.write(struct.pack('BBBB', *x)) def write_header(target_size, delay, ostream): (w,h) = target_size rows = h/8 if FORMAT_VERSION > 2: ostream.write(struct.pack('BBBBH', FORMAT_VERSION, FORMAT_TYPE, w*rows, w, delay)) else: ostream.write(struct.pack('BBB', FORMAT_VERSION, FORMAT_TYPE, w*rows)) sys.stdout.write("HEADER [ 8cic version:%d target:%dx%d ]\n" % (FORMAT_VERSION, w,h)) def process_image_sequence(files, target_size, options, ostream): for x in xrange(options.repeat): for filename in files: img = Image.open(filename) img = img.convert('RGB') write_frame(img, target_size, ostream) sys.stdout.write("FRAME [ %s ]\n" % filename) def process_animated_gif(files, target_size, options, ostream): filename = files[0] gifimg = Image.open(filename) count = 0 while count < options.repeat: # REPEATEDLY INSERT FRAME TO FILL REQUEST FRAME DURATION for i in xrange( gifimg.info.get('duration') / options.delay): img = gifimg.convert('RGB') write_frame(img, target_size, ostream) try: gifimg.seek(gifimg.tell()+1) except EOFError, e: count += 1 gifimg.seek(0) def cmdline(): import optparse parser = optparse.OptionParser() parser.add_option('-i', '--input', dest="input_path", help="Source image(s) (glob) or single animated GIF") parser.add_option('-o', '--output', dest='output_file', default='wall.dat', help="Destination filename (default: wall.dat)") parser.add_option('-W', '--width', dest='width', default=0, type='int', help="Force width") parser.add_option('-H', '--height', dest='height', default=0, type='int', help="Force height") parser.add_option('-r', '--repeat', dest='repeat', default=1, type='int', help="Repeat N times (warning: makes file Nx larger)") parser.add_option('-d', '--delay', dest='delay', default=16, type='int', help="Inter-frame delay (mS, default: 16)") (options, args) = parser.parse_args() if not options.input_path: parser.print_help() return ostream = file(options.output_file, 'wb') files = glob.glob(options.input_path) files.sort() if files: img = Image.open(files[0]) target_size = img.size target_size = (options.width or target_size[0], options.height or target_size[1]) write_header(target_size, options.delay, ostream) if len(files) == 1 and img.format == 'GIF': process_animated_gif(files, target_size, options, ostream) else: process_image_sequence(files, target_size, options, ostream) ostream.close() sys.stdout.write("Done.\n") if __name__ == '__main__': cmdline()
true
11bcc3080344a710d50e26e9f4196ac7379391fc
Python
stanfordnlp/color-describer
/third-party/stanza/stanza/text/vocab.py
UTF-8
13,262
3.8125
4
[ "Apache-2.0" ]
permissive
""" Vocabulary module for conversion between word tokens and numerical indices. """ __author__ = 'victor' from collections import Counter, namedtuple, OrderedDict from itertools import izip import numpy as np from copy import deepcopy import zipfile from ..util.resource import get_data_or_download class Vocab(object): """A mapping between words and numerical indices. This class is used to facilitate the creation of word embedding matrices. Example: .. code-block:: python v = Vocab('***UNK***') indices = v.update("I'm a list of words".split()) print('indices') NOTE: UNK is always represented by the 0 index. """ def __init__(self, unk): """Construct a Vocab object. :param unk: string to represent the unknown word (UNK). It is always represented by the 0 index. """ self._word2index = OrderedDict() self._counts = Counter() self._unk = unk # assign an index for UNK self.add(self._unk, count=0) def clear(self): """ Resets all mappings and counts. The unk token is retained. """ self._word2index.clear() self._counts.clear() self.add(self._unk, count=0) def __iter__(self): """ :return: An iterator over the (word, index) tuples in the vocabulary """ return iter(self._word2index) def iteritems(self): """ :return: An iterator over the (word, index) tuples in the vocabulary """ return self._word2index.iteritems() def items(self): """ :return: A list of (word, index) pairs from the vocabulary. """ return self._word2index.items() def keys(self): """ :return: A list of words in the vocabulary. """ return self._word2index.keys() def iterkeys(self): """ :return: An iterator over the words in the vocabulary. """ return self._word2index.iterkeys() def __repr__(self): """Represent Vocab as a dictionary from words to indices.""" return str(self._word2index) def __str__(self): return 'Vocab(%d words)' % len(self._word2index) def __len__(self): """Get total number of entries in vocab (including UNK).""" return len(self._word2index) def __getitem__(self, word): """Get the index for a word. If the word is unknown, the index for UNK is returned. """ return self._word2index.get(word, 0) def __contains__(self, word): """ :return: whether word is in the vocabulary """ return word in self._word2index def add(self, word, count=1): """Add a word to the vocabulary and return its index. :param word: word to add to the dictionary. :param count: how many times to add the word. :return: index of the added word. WARNING: this function assumes that if the Vocab currently has N words, then there is a perfect bijection between these N words and the integers 0 through N-1. """ if word not in self._word2index: self._word2index[word] = len(self._word2index) self._counts[word] += count return self._word2index[word] def update(self, words): """ Add an iterable of words to the Vocabulary. :param words: an iterable of words to add. Each word will be added once. :return: the corresponding list of indices for each word. """ return [self.add(w) for w in words] def words2indices(self, words): """ Convert a list of words into a list of indices. :param words: an iterable of words to map to indices. :return: the corresponding indices for each word. If a word is not found in the vocabulary then the unknown index will be returned for it. """ return [self[w] for w in words] def indices2words(self, indices): """ Converts a list of indices into a list of words. :param indices: indices for which to retrieve words. :return: a list of words corresponding to each index. """ index2word = self._word2index.keys() # works because word2index is an OrderedDict return [index2word[i] for i in indices] @property def counts(self): """ :return: a counter containing the number of occurrences of each word. """ return self._counts def prune_rares(self, cutoff=2): """ returns a **new** `Vocab` object that is similar to this one but with rare words removed. Note that the indices in the new `Vocab` will be remapped (because rare words will have been removed). :param cutoff: words occuring less than this number of times are removed from the vocabulary. :return: A new, pruned, vocabulary. NOTE: UNK is never pruned. """ # make a deep copy and reset its contents v = deepcopy(self) v.clear() for w in self._word2index: if self._counts[w] >= cutoff or w == self._unk: # don't remove unk v.add(w, count=self._counts[w]) return v def sort_by_decreasing_count(self): """Return a **new** `Vocab` object that is ordered by decreasing count. The word at index 1 will be most common, the word at index 2 will be next most common, and so on. :return: A new vocabulary sorted by decreasing count. NOTE: UNK will remain at index 0, regardless of its frequency. """ v = self.__class__(unk=self._unk) # use __class__ to support subclasses # UNK gets index 0 v.add(self._unk, count=self._counts[self._unk]) for word, count in self._counts.most_common(): if word != self._unk: v.add(word, count=count) return v def clear_counts(self): """ Removes counts for all tokens. :return: the vocabulary object. """ # TODO: this removes the entries too, rather than setting them to 0 self._counts.clear() return self @classmethod def from_dict(cls, word2index, unk): """Create Vocab from an existing string to integer dictionary. All counts are set to 0. :param word2index: a dictionary representing a bijection from N words to the integers 0 through N-1. UNK must be assigned the 0 index. :param unk: the string representing unk in word2index. :return: a created vocab object. """ try: if word2index[unk] != 0: raise ValueError('unk must be assigned index 0') except KeyError: raise ValueError('word2index must have an entry for unk.') # check that word2index is a bijection vals = set(word2index.values()) # unique indices n = len(vals) bijection = (len(word2index) == n) and (vals == set(range(n))) if not bijection: raise ValueError('word2index is not a bijection between N words and the integers 0 through N-1.') # reverse the dictionary index2word = {idx: word for word, idx in word2index.iteritems()} vocab = cls(unk=unk) for i in xrange(n): vocab.add(index2word[i]) return vocab class EmbeddedVocab(Vocab): def get_embeddings(self): """ :return: the embedding matrix for this vocabulary object. """ raise NotImplementedError() def backfill_unk_emb(self, E, filled_words): """ Backfills an embedding matrix with the embedding for the unknown token. :param E: original embedding matrix of dimensions `(vocab_size, emb_dim)`. :param filled_words: these words will not be backfilled with unk. NOTE: this function is for internal use. """ unk_emb = E[self[self._unk]] for i, word in enumerate(self): if word not in filled_words: E[i] = unk_emb class SennaVocab(EmbeddedVocab): """ Vocab object with initialization from Senna by Collobert et al. Reference: http://ronan.collobert.com/senna """ embeddings_url = 'https://github.com/baojie/senna/raw/master/embeddings/embeddings.txt' words_url = 'https://raw.githubusercontent.com/baojie/senna/master/hash/words.lst' n_dim = 50 def __init__(self, unk='UNKNOWN'): super(SennaVocab, self).__init__(unk=unk) @classmethod def gen_word_list(cls, fname): with open(fname) as f: for line in f: yield line.rstrip("\n\r") @classmethod def gen_embeddings(cls, fname): with open(fname) as f: for line in f: yield np.fromstring(line, sep=' ') def get_embeddings(self, rand=None, dtype='float32'): """ Retrieves the embeddings for the vocabulary. :param rand: Random initialization function for out-of-vocabulary words. Defaults to `np.random.uniform(-0.1, 0.1, size=shape)`. :param dtype: Type of the matrix. :return: embeddings corresponding to the vocab instance. NOTE: this function will download potentially very large binary dumps the first time it is called. """ rand = rand if rand else lambda shape: np.random.uniform(-0.1, 0.1, size=shape) embeddings = get_data_or_download('senna', 'embeddings.txt', self.embeddings_url) words = get_data_or_download('senna', 'words.lst', self.words_url) E = rand((len(self), self.n_dim)).astype(dtype) seen = [] for word_emb in izip(self.gen_word_list(words), self.gen_embeddings(embeddings)): w, e = word_emb if w in self: seen += [w] E[self[w]] = e self.backfill_unk_emb(E, set(seen)) return E class GloveVocab(EmbeddedVocab): """ Vocab object with initialization from GloVe by Pennington et al. Reference: http://nlp.stanford.edu/projects/glove """ GloveSetting = namedtuple('GloveSetting', ['url', 'n_dims', 'size', 'description']) settings = { 'common_crawl_48': GloveSetting('http://nlp.stanford.edu/data/glove.42B.300d.zip', [300], '1.75GB', '48B token common crawl'), 'common_crawl_840': GloveSetting('http://nlp.stanford.edu/data/glove.840B.300d.zip', [300], '2.03GB', '840B token common crawl'), 'twitter': GloveSetting('http://nlp.stanford.edu/data/glove.twitter.27B.zip', [25, 50, 100, 200], '1.42GB', '27B token twitter'), 'wikipedia_gigaword': GloveSetting('http://nlp.stanford.edu/data/glove.6B.zip', [50, 100, 200, 300], '822MB', '6B token wikipedia 2014 + gigaword 5'), } def __init__(self, unk='UNKNOWN'): super(GloveVocab, self).__init__(unk=unk) def get_embeddings(self, rand=None, dtype='float32', corpus='common_crawl_48', n_dim=300): """ Retrieves the embeddings for the vocabulary. :param rand: Random initialization function for out-of-vocabulary words. Defaults to `np.random.uniform(-0.1, 0.1, size=shape)`. :param dtype: Type of the matrix. :param corpus: Corpus to use. Please see `GloveVocab.settings` for available corpus. :param n_dim: dimension of vectors to use. Please see `GloveVocab.settings` for available corpus. :return: embeddings corresponding to the vocab instance. NOTE: this function will download potentially very large binary dumps the first time it is called. """ assert corpus in self.settings, '{} not in supported corpus {}'.format(corpus, self.settings.keys()) self.n_dim, self.corpus, self.setting = n_dim, corpus, self.settings[corpus] assert n_dim in self.setting.n_dims, '{} not in supported dimensions {}'.format(n_dim, self.setting.n_dims) rand = rand if rand else lambda shape: np.random.uniform(-0.1, 0.1, size=shape) zip_file = get_data_or_download('glove', '{}.zip'.format(self.corpus), self.setting.url, size=self.setting.size) E = rand((len(self), self.n_dim)).astype(dtype) n_dim = str(self.n_dim) with zipfile.ZipFile(open(zip_file)) as zf: # should be only 1 txt file names = [info.filename for info in zf.infolist() if info.filename.endswith('.txt') and n_dim in info.filename] if not names: s = 'no .txt files found in zip file that matches {}-dim!'.format(n_dim) s += '\n available files: {}'.format(names) raise IOError(s) name = names[0] seen = [] with zf.open(name) as f: for line in f: toks = line.rstrip().split(' ') word = toks[0] if word in self: seen += [word] E[self[word]] = np.array([float(w) for w in toks[1:]], dtype=dtype) self.backfill_unk_emb(E, set(seen)) return E
true
828a8c41783e8ea8b98c4c15d3a7f252288b4698
Python
xiaoxiaomeng0/python_projects
/Day39_flight-deals-start/flight_search.py
UTF-8
5,492
2.671875
3
[]
no_license
# from datetime import datetime, timedelta # import requests # import data_manager # from dotenv import load_dotenv # import os # # load_dotenv() # # flight_search_endpoint = "https://tequila-api.kiwi.com/v2/search" # # class FlightSearch: # #This class is responsible for talking to the Flight Search API. # def __init__(self, list:data_manager, range=30): # self.list = list # self.now = datetime.now() # self.range = range # self.future = None # self.cheap_flight = [] # # self.stop_overs = stop_overs # # self.via_city = via_city # # def day_range_cal(self): # self.future = self.now + timedelta(days=self.range) # self.now = self.now.strftime("%d/%m/%Y") # self.future = self.future.strftime("%d/%m/%Y") # # def flight_request(self): # self.day_range_cal() # for data in self.list: # search_params = { # "fly_from": "BOS", # "fly_to": data["iataCode"], # "dateFrom": self.now, # "dateTo": self.future, # # "max_stopovers": self.stop_overs, # "flight_type": "round", # # "curr": "EUR", # # "select_stop_airport": self.via_city # } # headers = { # "content-encoding": "gzip", # "apikey": os.environ.get("FLIGHT_APIKEY"), # } # response = requests.get(url=flight_search_endpoint, params=search_params, headers=headers) # # try: # cur_lowest = response.json()["data"][0] # print(cur_lowest) # # except IndexError: # # print(f"No flights found for {data['iataCode']}") # # # else: # if cur_lowest["price"] < int(data["lowestPrice"]): # flight = { # "price": cur_lowest["price"], # "flyFrom": cur_lowest["flyFrom"], # "flyTo": cur_lowest["flyTo"], # "local_arrival": cur_lowest["local_arrival"], # "local_departure": cur_lowest["local_departure"], # } # self.cheap_flight.append(flight) # # return self.cheap_flight # import os from dotenv import load_dotenv import requests from flight_data import FlightData from pprint import pprint load_dotenv() TEQUILA_ENDPOINT = "https://tequila-api.kiwi.com" class FlightSearch: def __init__(self): self.city_codes = [] def get_destination_codes(self, city_names): print("get destination codes triggered") location_endpoint = f"{TEQUILA_ENDPOINT}/locations/query" headers = {"apikey": os.environ.get("FLIGHT_APIKEY")} for city in city_names: query = {"term": city, "location_types": "city"} response = requests.get(url=location_endpoint, headers=headers, params=query) results = response.json()["locations"] code = results[0]["code"] self.city_codes.append(code) return self.city_codes def check_flights(self, origin_city_code, destination_city_code, from_time, to_time): print(f"Check flights triggered for {destination_city_code}") headers = {"apikey": os.environ["TEQUILA_API_KEY"]} query = { "fly_from": origin_city_code, "fly_to": destination_city_code, "date_from": from_time.strftime("%d/%m/%Y"), "date_to": to_time.strftime("%d/%m/%Y"), "nights_in_dst_from": 7, "nights_in_dst_to": 30, "flight_type": "round", "one_for_city": 1, "max_stopovers": 0, "curr": "GBP" } response = requests.get( url=f"{TEQUILA_ENDPOINT}/v2/search", headers=headers, params=query, ) try: data = response.json()["data"][0] except IndexError: ########################## query["max_stopovers"] = 1 response = requests.get( url=f"{TEQUILA_ENDPOINT}/v2/search", headers=headers, params=query, ) data = response.json()["data"][0] pprint(data) flight_data = FlightData( price=data["price"], origin_city=data["route"][0]["cityFrom"], origin_airport=data["route"][0]["flyFrom"], destination_city=data["route"][1]["cityTo"], destination_airport=data["route"][1]["flyTo"], out_date=data["route"][0]["local_departure"].split("T")[0], return_date=data["route"][2]["local_departure"].split("T")[0], stop_overs=1, via_city=data["route"][0]["cityTo"] ) return flight_data ########################### else: flight_data = FlightData( price=data["price"], origin_city=data["route"][0]["cityFrom"], origin_airport=data["route"][0]["flyFrom"], destination_city=data["route"][0]["cityTo"], destination_airport=data["route"][0]["flyTo"], out_date=data["route"][0]["local_departure"].split("T")[0], return_date=data["route"][1]["local_departure"].split("T")[0] ) return flight_data
true
8e910d9e8666850dbe6805b6b5bfa58b58c35fa8
Python
nayankshingnapure/Nayank-Shingnapure
/Model 1 (1).py
UTF-8
3,183
3.078125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np # In[2]: stock=pd.read_csv('c:\\Nifty50.csv') # In[3]: print(stock) # In[4]: stock.head() # In[5]: stock.tail() # In[6]: stock.describe() # In[7]: stock.tail(90) # In[8]: stock.tail(90).min(axis=0) # In[9]: stock.tail(90).max(axis=0) # In[10]: stock.tail(90).mean(axis=0) # In[11]: stock.info() # In[12]: stock['Date']=pd.to_datetime(stock['Date']) # In[13]: stock.info() # In[14]: stock['Month']=pd.DatetimeIndex(stock['Date']).month # In[15]: stock['Year']=pd.DatetimeIndex(stock['Date']).year # In[16]: gym=stock.groupby(['Month','Year']) # In[17]: stock['vwap'] = (np.cumsum(stock['Shares Traded'] * stock['Close']) / np.cumsum(stock['Close'])).astype(int) # In[18]: stock # In[19]: N=int(input("")) stock["avg"]=stock['Close'].rolling(window=N).mean() # In[20]: stock.head(1) # In[21]: def profit_loss_pct(N): stock['Profit/Loss'] = (stock['Close'] - stock['Close'].shift(1)) / stock['Close'] total_days = len(stock['Profit/Loss']) calc_pnl = stock['Profit/Loss'][total_days-N:].sum() if stock["Profit/Loss"][N] < 0: print("Loss pct is: {:5.2f}%". format(stock["Profit/Loss"][N]*100)); else: print("Profit pct is : {:5.2f}%". format(stock["Profit/Loss"][N]*100)); return # In[22]: profit_loss_pct(365) # In[23]: stock.fillna(0) # In[24]: stock['Day_Perc_Change']=stock['Close'].pct_change() # In[25]: stock # In[26]: stock.fillna(0) # In[27]: trend=pd.Series([]) for i in range(len(stock)): if stock['Day_Perc_Change'][i]>-0.5 or stock['Day_Perc_Change'][i]<0.5 : trend[i] = "Slight or No change" elif stock['Day_Perc_Change'][i]>0.5 or stock['Day_Perc_Change'][i]<1 : trend[i] = "Slight positive" elif stock['Day_Perc_Change'][i]>-1 or stock['Day_Perc_Change'][i]<-0.5 : trend[i] = "Slight negative" elif stock['Day_Perc_Change'][i]>1 or stock['Day_Perc_Change'][i]<3 : trend[i] = "Positive" elif stock['Day_Perc_Change'][i]>-3 or stock['Day_Perc_Change'][i]<-1 : trend[i] = "Negative" elif stock['Day_Perc_Change'][i]>3 or stock['Day_Perc_Change'][i]<7: trend[i] = "Among top gainers" elif stock['Day_Perc_Change'][i]>-7 or stock['Day_Perc_Change'][i]<-3 : trend[i] = "Among top losers" elif stock['Day_Perc_Change'][i]>7: trend[i] = "Bull run" elif stock['Day_Perc_Change'][i]<-7 : trend[i] = "Bear drop" stock.insert(10,"Trend",trend) # In[28]: stock # In[29]: stock.fillna(0) # In[30]: stock.head(30) # In[31]: gtrend=stock.groupby(['Trend']) # In[32]: stock['Total Traded Quantity']=stock['Shares Traded'] # In[33]: stock # In[34]: stock_trend = stock.groupby(["Trend"]) average_trades = stock_trend["Total Traded Quantity"].mean() print("The average traded quantity is: ", average_trades) # In[35]: stock.groupby(stock.Trend).mean()['Total Traded Quantity'].astype(int) # In[36]: stock.groupby(stock.Trend).median()['Total Traded Quantity'] # In[ ]: # In[ ]:
true
30c28fbb7c5875a089b520bef2f9c21cf7ac52c3
Python
JitenKumar/Data-Science-Practice-With-Python
/Cleaning Data in Python/duplicates.py
UTF-8
781
3.515625
4
[]
no_license
# Create the new DataFrame: tracks tracks = billboard[['year', 'artist', 'track','time']] # Print info of tracks print(tracks.info()) # Drop the duplicates: tracks_no_duplicates tracks_no_duplicates = tracks.drop_duplicates() # Print info of tracks print(tracks_no_duplicates.info()) #----------------------------- # fill missing values # Calculate the mean of the Ozone column: oz_mean oz_mean = airquality.Ozone.mean() # Replace all the missing values in the Ozone column with the mean airquality['Ozone'] = airquality.fillna(oz_mean) # Print the info of airquality print(airquality.info()) #---- assert ------------------- # Assert that there are no missing values assert pd.notnull(ebola).all().all() # Assert that all values are >= 0 assert (ebola >= 0).all().all()
true
a235af6ed810cccb07ef2a0a7eaee8980a1e984d
Python
scanner/tesla-powerwall-play
/tesla-api-play.py
UTF-8
8,614
2.640625
3
[ "MIT" ]
permissive
#!/usr/bin/env python # # File: $Id$ # """ Try using the tesla-api instead of talking to the powerwall directly """ # system imports # import os import asyncio import pprint import time from pathlib import Path from collections import defaultdict from datetime import datetime, date, timedelta import matplotlib.pyplot as plt import matplotlib.dates as mdates import hvac from tesla_api import TeslaApiClient COLORS = ["red", "blue", "green", "yellow", "orange", "cyan", "magenta"] TESLA_API_TOKEN_FILE = Path("~/.tesla-api-token").expanduser() VAULT_TOKEN_FILE = Path("~/.vault-token").expanduser() VAULT_SECRETS_PATH = os.getenev("VAULT_SECRETS_PATH") CHARTS = [ "battery_power", # "generator_power", "grid_power", # "grid_services_power", "solar_power", ] #################################################################### # def get_hvac_client(): """ Return a connection to our hashicorp vault server so we can get login credentials for the site we are going to download things from. Raises a RuntimeError if we are not able to authenticate to the vault server. """ if "VAULT_ADDR" not in os.environ: raise RuntimeError('"VAULT_ADDR" not in environment') vault_addr = os.environ["VAULT_ADDR"] if "VAULT_TOKEN" in os.environ: vault_token = os.environ["VAULT_TOKEN"] elif VAULT_TOKEN_FILE.exists(): with open(VAULT_TOKEN_FILE) as f: vault_token = f.read() hvac_client = hvac.Client(url=vault_addr, token=vault_token) if not hvac_client.is_authenticated(): raise RuntimeError(f"Can not authenticate with token to {vault_addr}") return hvac_client #################################################################### # def get_login_credentials(hvac_client): """ Go to vault, get our login credentials and return a dict properly formatted for authenticating with the web site. """ login_credentials = hvac_client.secrets.kv.v1.read_secret( VAULT_SECRETS_PATH ) return login_credentials["data"] ############################################################################# # async def save_token(token): """ Save the oauth token for re-use instead of logging in again. We store it in the vault cubbyhole secrets engine. """ os.umask(0) with open( os.open(TESLA_API_TOKEN_FILE, os.O_CREAT | os.O_WRONLY, 0o600), "w" ) as fh: fh.write(token) #################################################################### # def read_token(): """ Reads the token from the token file. Returns None if file does not exist. """ if not TESLA_API_TOKEN_FILE.exists(): return None return open(TESLA_API_TOKEN_FILE, "r").read() #################################################################### # def tg_plot_history_power(ts): """ Plot the timeseries data using termgraph Keyword Arguments: ts -- list of dicts. Each dict contains the keys: 'battery_power', 'generator_power', 'grid_power', 'grid_services_power', 'solar_power', 'timestamp' 'timestamp' is of the format: : '2020-10-25T00:00:00-07:00' All of the other values are floats (presummably in watts?) """ # Open our output data file we are generating for termgraph and # define in it what data columns we are writing. # with open("termgraph.dat", "w") as fh: fh.write(f"# Tesla energy graph starting {ts[0]['timestamp']}\n") fh.write(f"@ {','.join(CHARTS)}\n") for ts_d in ts: # We generate one row at a time. The row label, then the data # in the same order as we wrote in the header above. # row = [] row.append(ts_d["timestamp"][11:16]) for c in CHARTS: row.append(str(abs(ts_d[c]))) fh.write(",".join(row)) fh.write("\n") #################################################################### # def write_blessed_datafile(ts): """ Write a javascript file that can be used by `blessed` to write an ascii chart Keyword Arguments: ts -- list of dicts. Each dict contains the keys: 'battery_power', 'generator_power', 'grid_power', 'grid_services_power', 'solar_power', 'timestamp' 'timestamp' is of the format: : '2020-10-25T00:00:00-07:00' All of the other values are floats (presummably in watts?) """ min_y = 0 max_y = 0 timestamps = [] series = defaultdict(list) for ts_d in ts: timestamps.append(f"\"{ts_d['timestamp'][11:16]}\"") for c in CHARTS: min_y = min(min_y, ts_d[c]) max_y = max(max_y, ts_d[c]) series[c].append(str(ts_d[c])) # Open our output data file we are generating for termgraph and # define in it what data columns we are writing. # with open("tesla-blessed.js", "w") as fh: fh.write( f""" var blessed = require('blessed') , contrib = require('../index') , screen = blessed.screen() , line = contrib.line( {{ width: 164 , height: 24 , xPadding: 5 , minY: {min_y} , showLegend: true , legend: {{width: 12}} , wholeNumbersOnly: false // true=do not show fraction in y axis , label: 'Power data'}}); """ ) series_names = [] for idx, c in enumerate(CHARTS): series_name = f"series{idx}" series_names.append(series_name) fh.write(f"var {series_name} = {{\n") fh.write(f" title: '{c}',\n") fh.write(f" x: [{','.join(timestamps)}],\n") fh.write(f" y: [{','.join(series[c])}],\n") fh.write(f" style: {{line: '{COLORS[idx]}'}}\n") fh.write(" };\n") fh.write("screen.append(line); //must append before setting data\n") set_data = ", ".join(series_names) fh.write(f"line.setData([{set_data}]);\n") fh.write( """ screen.key(['escape', 'q', 'C-c'], function(ch, key) { return process.exit(0); }); screen.render(); """ ) ############################################################################# # async def main(): pp = pprint.PrettyPrinter(indent=2) email = password = None token = read_token() if token is None: hvac_client = get_hvac_client() creds = get_login_credentials(hvac_client) email = creds["username"] password = creds["password"] async with TeslaApiClient( email, password, token, on_new_token=save_token ) as client: energy_sites = await client.list_energy_sites() print(f"Number of energy sites = {len(energy_sites)}") # We only expect there to be a single site for our home # (Apricot Systematic) # assert len(energy_sites) == 1 site_as01 = energy_sites[0] reserve = await site_as01.get_backup_reserve_percent() print(f"Backup reserve percent = {reserve}") operating_mode = await site_as01.get_operating_mode() print(f"Operating mode: {operating_mode}") version = await site_as01.get_version() print(f"Version: {version}") battery_count = await site_as01.get_battery_count() print(f"Battery count: {battery_count}") # history_energy = await site_as01.get_energy_site_calendar_history_data( # kind="energy", period="lifetime" # ) # print(f"History energy: \n{pp.pformat(history_energy)}") # history_sc = await site_as01.get_energy_site_calendar_history_data( # kind="self_consumption", period="lifetime" # ) # print(f"History self consumption:\n{pp.pformat(history_sc)}") while True: live_status = await site_as01.get_energy_site_live_status() print(f"Site live status:\n{pp.pformat(live_status)}") time.sleep(150) # tg_plot_history_power(history_power["time_series"]) # write_blessed_datafile(history_power["time_series"]) # print("Increment backup reserve percent") # await energy_sites[0].set_backup_reserve_percent(reserve + 1) ############################################################################ ############################################################################ # # Here is where it all starts # if __name__ == "__main__": asyncio.run(main()) # ############################################################################ ############################################################################
true
bc6f92dee367b78b68847d32706a70bfc28bb2af
Python
mmangione/open
/open/core/betterself/fixtures/demo_constants.py
UTF-8
5,804
2.796875
3
[ "MIT" ]
permissive
ACTIVITY_NAMES = [ "Run", "Job", "Eat", "Jumping Jacks", "Drinking Tea", "Playing Video Games", "Juggling", "Hug Dog", "Hug Spouse", "Call Parents", "Meditate", "Poop", "Exercise", "Got A Period", "Online Shopping", "Play Guitar", "Sex", "Listened to THE BEST SONG EVER", "Proposed", "Proposed To Love of my Life - Got Rejected", "Not Have Sex", "Buy A Dog", "Power Nap", "Video Chat", "Laughing", "BIG POOP", "Sprint", "Lazily Stare at Workout Equipment", "Read", "Fall Asleep Reading Mathematics Textbook", "Watch YouTube", "Watch Motivational Videos", "Listen to Podcast", "Binge on Food", "Binge on Alcohol", ] FOOD_NAMES = [ "Cheeseburger", "Beefburger", "Beef", "Steak", "Chicken", "Tomato", "Carrot", "Cheese", "Pizza", "Big Steak", "Onions", "Rice", "Garlic", "Soup", "Bland Soup", "Mom's Cooking", "Chinese Takeout", "Italian Food", "Chips", "Cape Cod", "Lays Chips", "Taco", "Guacamole", "Big Cheese", "Tasty Food", "Not Tasty Food", "Awful Salad", "Beef Salad", "Chicken Salad", "Chicken Water Salad", "Chicken of the Sea", "Air", "Generic Food Name", "Chinese Food", "Asian Food", "Thai Food", "Seamless", "GrubHub", "Delivery", ] GENERIC_NOTES_TO_USE = [ "Happy as a dog", "SO PUMPED IM GETTING A PUPPY", "Feel Good", "Sad", "Need to poop", "Thirsty", "Felt strong today", "Super motivated", "A little tired", "Have a hangover", "Sad that I lost my wallet", "Happy that I found my wallet", "Anxious", "Happy I finally cleaned my apartment", "Angry that I played video games", "Excited spouse is visiting", "Excited to propose", "Stomach hurts, annoyed", "Super happy", "Coffee feels awesome today", "Super productive", "Productive", "Lazy", "Feel like shit", "Jog felt good", "Crushing it at work", "Not crushing it at work", "Distracted", "Want to watch movies", "Super lazy", "Super sleepy", "Furious about morning", "Constipated", "Lethargic", "ENERGIZED", "I feel like I can do anything", "Dont wanna be sad no more", "Cramped", "Period Hurts", "Motivated af", "I AM THE BEST", "I AM THE WORST", "Ugh....", "I want coffee", "I want a nap", "I want to scream", "Shit feels tedious", "Laughing", "Gotta poop, gotta poop", "DOG MAKES ME SO HAPPY", "Feeling happy I called Mom", "Angry people make me angry", "Gotta meditate, gotta meditate", "ANGRY I PLAYED VIDEO GAMES, WTF", "FOOD POISONING, THE PAIN, OW OW OW", "I'm going to crush it one day, but right now I feel like shit", "I haven't been this productive in a while, I'm super pleased how much progress I made today", "I felt really tired after the afternoon nap ... ", "In hindsight, I drank way too much coffee earlier - it's been hard to sleep", "Definitely been feeling a bit more anxious than normal, hoping this should fade by the end of the day", "Trying to be a more productive person these days is quite an up hill battle. 1 step of hard work followed by 2 steps of YouTube, sigh." "If I spend another 15 minutes on Reddit, I'm going to be so angry at myself", "I will continue eating the right foods to focus better ....", "I'm definitely allergic to cheese. I can't stop farting", "Having that hour long meeting really drained me ... ", "Today is really important for me to sleep the proper amount of hours", "NO SOCIAL MEDIA AGAIN", "I feel bad I haven't gone to the gym", "I want a cheese burger ...", ] PRODUCTIVITY_NOTES_TO_USE = [ "Been super productive for the whole day today. Started off on the right rhythm and made sure I didn't go on Reddit.", "Didn't do as much as I wanted today - was feeling a bit tired from my hangover and the food from last night.", "Been hard to focus, I started off the day reading news ... it didn't help, made me keep on checking those dopamine sites for new updates. BAD.", "Been pretty decent - I've gotten a lot of work done. Coworkers are pushing me to finish this project.", "Today I got a lot of work done because the deadlines were very soon.", "Felt super lethargic, couldn't get as much work done as I wanted to today.", "Today was a bad day, I wanted to go shopping and it distracted me really hard.", "I had to do a lot of studying today, as a result ... I didn't do any studying. Bad day, but hopefully next week I'll be much better.", "Thank god it's Friday, finally done with all my chores. I'll make sure I'm super productive in the next weeks to come.", "Been trying to fight off some of my addictions ... as a result , I just could never get into a good rhythm that I was proud enough of what I could get done.", "Been reading motivational quotes all throughout the day to keep me motivated. As a result, I've gotten a pretty good day of work done. Happy about that.", "Some crappy fights w/spouse today, I couldn't focus throughout the day.", "I ate a lot of junk food the night before, and so I was a little bit sluggish throughout the day.", "I've been eating only clean foods the last few weeks, so I've been able to get so much done today and feel great doing so!", ] # most notes should be empty ... no one would write this much, so create a bunch of empty notes too EMPTY_SPACES_NOTES = [""] * len(GENERIC_NOTES_TO_USE) # make it 50% filled, 50% blank NOTES_TO_USE_WITH_EMPTY_SPACES = GENERIC_NOTES_TO_USE + EMPTY_SPACES_NOTES
true
67d2e9141b5b3e80fa76f3c0bc4b0993df28cfdc
Python
leonmbauer/Advent-Of-Code-2020
/day12/day12part2.py
UTF-8
1,661
3.59375
4
[]
no_license
# Puzzle link: https://adventofcode.com/2020/day/12 inputfile = open("D:\coding\Advent of Code 2020\day12\day12input.txt", "r") lines = inputfile.readlines() directions = [] for value in lines: directions.append(value.strip("\n")) def day12(directions): x = 0 y = 0 wx = 10 wy = 1 for direction in directions: print(direction) if direction[0] == "N": wy += int(direction[1:]) elif direction[0] == "S": wy -= int(direction[1:]) elif direction[0] == "E": wx += int(direction[1:]) elif direction[0] == "W": wx -= int(direction[1:]) elif direction[0] == "F": x += wx * int(direction[1:]) y += wy * int(direction[1:]) xdiff = wx ydiff = wy if direction[0] == "R": if int(direction[1:]) % 360 == 90: wx = ydiff wy = -1 * xdiff elif int(direction[1:])% 360 == 180: wx = -1 * xdiff wy = -1 * ydiff elif int(direction[1:]) % 360 == 270: wx = -1 * ydiff wy = xdiff elif direction[0] == "L": if int(direction[1:]) % 360 == 90: wx = -1 * ydiff wy = xdiff elif int(direction[1:]) % 360 == 180: wx = -1 * xdiff wy = -1 * ydiff elif int(direction[1:]) % 360 == 270: wx = ydiff wy = -1 * xdiff print("waypoint: ", wx, wy) print("boat: ", x, y) return abs(x) + abs(y) print(day12(directions))
true
880fb5f5569d86dd71d6988ad0464ad1be022130
Python
weed478/asd1
/offline/zad3.py
UTF-8
1,485
3.109375
3
[]
no_license
from random import randint, shuffle, seed def partition(A, p, r): i = p - 1 for j in range(p, r): if A[j] <= A[r - 1]: i += 1 A[i], A[j] = A[j], A[i] return i def insertion_sort(A, p, r): for i in range(p + 1, r): for j in range(i, p, -1): if A[j - 1] > A[j]: A[j - 1], A[j] = A[j], A[j - 1] else: break def pivot5(A, p, r): insertion_sort(A, p, r) return (p + r) // 2 def median_of_medians(A, p, r): n = r - p bins = (n + 4) // 5 for i in range(bins): left = p + i * 5 right = min(left + 5, r) median = pivot5(A, left, right) A[p + i], A[median] = A[median], A[p + i] return linear_select(A, p, p + bins, p + bins // 2) def pivot(A, p, r): if r - p <= 5: return pivot5(A, p, r) else: return median_of_medians(A, p, r) def linear_select(A, p, r, k): while r - p > 1: x = pivot(A, p, r) A[x], A[r - 1] = A[r - 1], A[x] q = partition(A, p, r) if k < q: r = q elif q < k: p = q + 1 else: return q return p def linearselect(A, k): return linear_select(A, 0, len(A), k) seed(42) n = 11 for i in range(n): A = list(range(n)) shuffle(A) print(A) x = linearselect(A, i) if x != i: print("Blad podczas wyszukiwania liczby", i) exit(0) print("OK")
true
d8af9ff3d9d0e1a5d9911979d397a75c05ec9d09
Python
versigtig/code
/python/pygame_basically.py
UTF-8
915
3.25
3
[]
no_license
# Import import pygame # Initialize game engine pygame.init() # Open window window_size = (640, 480) screen = pygame.display.set_mode(window_size) pygame.display.set_caption("The Quest") WHITE = (255, 255, 255) RED = (255, 0, 0) done = False clock = pygame.time.Clock() # MAIN GAME LOOP while not done: # EVENTS for event in pygame.event.get(): if event.type == pygame.QUIT: done = True # GAME LOGIC # WIPE SCREEN screen.fill(WHITE) # DRAWING offset = 0 for x_offset in range(30,300,30): pygame.draw.line(screen,RED,[x_offset,100],[x_offset-10,90],2) pygame.draw.line(screen,RED,[x_offset,90],[x_offset-10,100],2) font = pygame.font.SysFont('Calibri',25,True,False) text = font.render("Anal Seepage",True,RED) screen.blit(text,[250,250]) # UPDATE SCREEN pygame.display.flip() clock.tick(60) pygame.quit()
true
0f580bf33aa4471a83d6aa68387ead34c46e990d
Python
BUEC500C1/twitter-summarizer-rest-service-lqi25
/queue_mul.py
UTF-8
1,463
2.53125
3
[]
no_license
import Twitter2Video import queue import threading import multiprocessing import os q = queue.Queue() threads = [] def Mul_Threads(item_list,num): if item_list == []: return "No twitter names entered" if num == 0: return "The num should be bigger than 0" #nn = num.copy() def Thread(): while True: #if q.empty(): #break item = q.get() if item is None: break print("Thread {} is processing".format(item)) Twitter2Video.tweet2image(item) Twitter2Video.image2video(item) print("Thread {} has completed".format(item)) q.task_done() #if q.empty(): #break for i in range(num): t = threading.Thread(target = Thread) t.start() threads.append(t) for item in item_list: q.put(item) q.join() for i in range(num): q.put(None) for t in threads: t.join() print() print("All threads have completed") return "All threads have completed!" #item_list = ['BU_Tweets','CNN','Nike','mfaboston'] #item_list_2 = ['BU_Tweets', 'CNN', 'Nike', 'mfaboston', 'BU_ece', 'BostonDynamics', 'realDonaldTrump', 'WHO', 'TIME'] #Mul_Threads(item_list,4) #Mul_Threads(item_list_2,6) ''' print(os.path.exists('BU_Tweets.avi') == True) print(os.path.exists('CNN.avi') == True) print(os.path.exists('Nike.avi') == True) print(os.path.exists('mfaboston.avi') == True) print(os.path.exists('tttttt.avi') == True) '''
true
065d5a27bd08c429bb639bce66c8bb6ff8da3380
Python
Navid2zp/django-challenge
/volleyball/matches/api/serializers.py
UTF-8
3,377
2.890625
3
[]
no_license
from rest_framework.exceptions import ValidationError from rest_framework.fields import IntegerField, SerializerMethodField from rest_framework.serializers import ModelSerializer, Serializer from matches.models import Match, MatchSeat from stadiums.api.serializers import StadiumSerializer from stadiums.models import StadiumSeatRow class MatchSerializer(ModelSerializer): """ Serializer responsible for generating matches list and creating one""" stadium = StadiumSerializer() class Meta: model = Match fields = ( 'id', 'stadium', 'team_a', 'team_b', 'start_time', 'stadium' ) read_only_fields = ('id',) class MatchSeatSerializer(ModelSerializer): """ Serializer responsible for generating matches list and creating one""" class Meta: model = MatchSeat fields = ( 'id', 'row', 'seat_number', 'price', ) class AddSeatSerializer(Serializer): """ We'll accept a range for each row of the stadium to generate the seats for the match. Using range will allow us to create bulk seats as well as creating them one by one. """ row = IntegerField(required=True, help_text="seat row") from_column = IntegerField(required=True, help_text="starting column range") to_column = IntegerField(required=True, help_text="ending column range") price = IntegerField(required=True, help_text="ticket price") def get_match(self) -> Match: return self.context.get("match") def validate_row(self, value) -> StadiumSeatRow: """ Check if row exists in the stadium of the match :param value: int - row number :return: StadiumSeatRow - row instance """ match = self.get_match() if match.stadium.row_count < value: raise ValidationError("row doesn't exists") try: return match.stadium.rows.get(row_number=value) except: raise ValidationError("row doesn't exists") def validate_from_column(self, value): """ Check if the start column is in range. """ if self.get_match().stadium.seat_in_row < value: raise ValidationError("seat out of range") return value def validate_to_column(self, value): """ Check if the end column is in range. """ if self.get_match().stadium.seat_in_row < value: raise ValidationError("seat out of range") return value @staticmethod def validate_price(value): """ Price can't be less than 1 """ if value < 0: raise ValidationError("ticket price must be greater than 0") return value def create(self, validated_data): """ Create seats in range [from_column, to_column] (from and to column included). Example: range 1-5 will generate 5 seats with seat numbers: [1, 2, 3, 4, 5] """ match = self.get_match() seats = [] for i in range(validated_data["from_column"], validated_data["to_column"] + 1): seats.append(MatchSeat(seat_number=i, match=match, row=validated_data["row"])) # Generate seats all together. # No reason to create them one by one. MatchSeat.objects.bulk_create(seats) return {"status": "ok", "message": "seats added"}
true
492001d64a03a80a34111d769b8d29fae113f310
Python
Kunal-Kumar-Sahoo/Hand-Gesture-Based-Painting
/e-Paint.py
UTF-8
2,882
2.671875
3
[ "MIT" ]
permissive
import cv2 import mediapipe as mp import os import numpy as np import HandTrackingModule as htm ################################################ #Configurable variables brushThickness = 15 eraserThickness = 100 ################################################ folderPath = "Header Files" myList = os.listdir(folderPath) # print(myList) Output: ['4.png', '1.png', '3.png', '2.png'] overlayList = [] for imgPath in myList: image = cv2.imread(f"{folderPath}/{imgPath}") overlayList.append(image) # print(overlayList) header = overlayList[1] drawColour = (255, 0, 255) # cap = cv2.VideoCapture(0) cap = cv2.VideoCapture(2) cap.set(3, 1280) cap.set(4, 720) detector = htm.HandDetector(detectionConf=0.85) xp, yp = 0, 0 imageCanvas = np.zeros((720, 1280, 3), np.uint8) while True: # Import Image _, image = cap.read() image = cv2.flip(image, 1) # Find Hand Landmarks image = detector.findHands(image) landmarkList = detector.findPosition(image, draw=False) if len(landmarkList) != 0: # print(landmarkList) # Tip of index and middle finger x1, y1 = landmarkList[8][1:] x2, y2 = landmarkList[12][1:] # Check which fingers are up ? fingers = detector.fingersUp() # print(fingers) # Selection mode : 2 fingers are up if fingers[1] and fingers[2]: # print("Selection mode") xp, yp = 0, 0 if y1 < 125: if 250 < x1 < 450: header = overlayList[1] drawColour = (255, 0, 255) # Purple elif 550 < x1 < 750: header = overlayList[3] drawColour = (255, 0, 0) # Blue elif 800 < x1 < 950: header = overlayList[2] drawColour = (0, 255, 0) # Green elif 1050 < x1 < 1200: header = overlayList[0] drawColour = (0, 0, 0) # Black cv2.rectangle(image, (x1, y1-15), (x2, y2+15), drawColour, cv2.FILLED) # Drawing mode : Index finger is up if fingers[1] and not fingers[2]: cv2.circle(image, (x1, y1), 15, drawColour, cv2.FILLED) # print("Drawing mode") if xp == 0 and yp == 0: xp, yp = x1, y1 if drawColour == (0, 0, 0): cv2.line(image, (xp, yp), (x1, y1), drawColour, eraserThickness) cv2.line(imageCanvas, (xp, yp), (x1, y1), drawColour, eraserThickness) cv2.line(image, (xp, yp), (x1, y1), drawColour, brushThickness) cv2.line(imageCanvas, (xp, yp), (x1, y1), drawColour, brushThickness) xp, yp = x1, y1 imageGray = cv2.cvtColor(imageCanvas, cv2.COLOR_BGR2GRAY) _, imageInverse = cv2.threshold(imageGray, 50, 255, cv2.THRESH_BINARY_INV) imageInverse = cv2.cvtColor(imageInverse, cv2.COLOR_GRAY2BGR) image = cv2.bitwise_and(image, imageInverse) image = cv2.bitwise_or(image, imageCanvas) image[0:125, 0:1280] = header # Parcing the image as it is a matrix # image = cv2.addWeighted(image, 0.5, imageCanvas, 0.5, 0) cv2.imshow("Frontend Canvas", image) # cv2.imshow("Backend Canvas", imageCanvas) if cv2.waitKey(1) & 0xFF == ord('q'): break
true
84e3c7833958a923cf3c3aea9c576da037abb83f
Python
Liahm/CS-265
/Labs/Lab 4/s1.py
UTF-8
566
3.3125
3
[]
no_license
import sys import math if len( sys.argv ) < 2 : # no file name print 'ERROR:' sys.exit() else : fName = "students" f = open (fName, "r") #open file for reading l = f.readline() while l : l = l.strip (' \t\n' ) #Remove whitespaces s = l.split() #split strings into "chars" length = len(s[1:]) i = 1 total = 0 #Value of student scores while i<length : total += float(s[i]) #+1 total i += 1 total = int(round(total/length))#Average print '{0}{1}'.format(s[0], total) #Prints formatted output l = f.readline() #Next line
true
136e0ee1d344a340d81a78fa2df0eb379455fa51
Python
memicq/ProgrammingContestAnswers
/aizu/lectures/computational_geometry/segments_lines/parallel_orthogonal.py
UTF-8
841
3.6875
4
[]
no_license
#! python3 # parallel_orthogonal.py class Point(): def __init__(self, x, y): self.x = x self.y = y class Line(): def __init__(self, x1, y1, x2, y2): self.p1 = Point(x1, y1) self.p2 = Point(x2, y2) def get_slope(self): if self.p1.x == self.p2.x: return float('inf') return (self.p2.y - self.p1.y)/(self.p2.x - self.p1.x) q = int(input()) for i in range(q): x0, y0, x1, y1, x2, y2, x3, y3 = list(map(int, input().split(' '))) line1, line2 = Line(x0, y0, x1, y1), Line(x2, y2, x3, y3) a1, a2 = line1.get_slope(), line2.get_slope() if a1 == a2: # 平行 print('2') elif round(a1*a2, 8) == -1.0: print('1') elif (a1 == float('inf') and a2 == 0) or (a1 == 0 and a2 == float('inf')): print('1') else: print('0')
true
e6cdc91d6a85e778af9e03ad70d475526d8af64d
Python
gone2808/IACV_background_subtractor
/optical_flow.py
UTF-8
2,311
2.53125
3
[ "MIT" ]
permissive
import cv2 import numpy as np FLOW_MAG_THRESHOLD = 0.7 CONSECUTIVE_FLOW_FRAMES = 6 # FLOW_ANGLE_THRESHOLD = 0.3 cap = cv2.VideoCapture('dataset/Jackson_Hole_Wyoming/out0.mov') ret, frame1 = cap.read() prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) hsv = np.zeros_like(frame1) hsv[...,1] = 255 hsv[...,2] = 255 # avg_flow_angle = np.zeros(frame1.shape[:2], dtype=float) # avg_mag = np.zeros_like(avg_flow_angle) scores = np.zeros(frame1.shape[:2], dtype=np.uint8) flow_mag_history = [] def update_flow(mag, scores): indices = mag > FLOW_MAG_THRESHOLD hot = np.zeros(mag.shape, dtype=np.uint8) hot[indices] = 255 flow_mag_history.append(hot) if len(flow_mag_history) >= CONSECUTIVE_FLOW_FRAMES: flow_mag_history.pop(0) total_hot = np.ones(mag.shape, dtype=np.uint8) * 255 for m in flow_mag_history: total_hot = cv2.bitwise_and(total_hot, m) scores = cv2.bitwise_or(scores, total_hot) return scores else: return np.zeros(mag.shape, dtype=np.uint8) n = 1 while(1): ret, frame2 = cap.read() cv2.imshow('frame', frame2) next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0) mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1]) # threshold # indices = mag > FLOW_MAG_THRESHOLD # hot = np.zeros(mag.shape, dtype=np.uint8) # hot[indices] = 255 # cv2.imshow('mag', hot) scores = update_flow(mag, scores) cv2.imshow('mag', scores) # show optical flow # hsv[...,0] = ang*180/np.pi/2 # hsv[...,1] = 0 # hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX) # bgr = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR) # cv2.imshow('flow',bgr) if cv2.waitKey(25) & 0xff == ord('q'): break prvs = next n += 1 cap.release() cv2.destroyAllWindows() # update average flow direction # def flow_with_angle(): # ang[ang >= np.pi] -= np.pi # flow_indices = mag > FLOW_MAG_THRESHOLD # avg_flow_angle[flow_indices] += (ang[flow_indices] - avg_flow_angle[flow_indices]) / n # differences = np.abs(avg_flow_angle - ang) # scores[(differences < FLOW_ANGLE_THRESHOLD) & (flow_indices) & (scores < 255)] += 1 # cv2.imshow('scores', scores)
true
1da4ae51674a11c93391583262a73ee86f69ca95
Python
lapotolo/Smart_ELF
/SmartApp.GNLP/acronyms.py
UTF-8
828
2.765625
3
[]
no_license
import json import spacy import en_core_web_sm with open('all_lectures.json') as f: all_lectures = json.load(f) # Days of the week days = { "Mon" : "Monday", "Tue" : "Tuesday", "Wed" : "Wednesday", "Thu" : "Thursday", "Fri" : "Friday", "Sat" : "Saturday", "Sun" : "Sunday" } # Lectures lectures = {} parser = en_core_web_sm.load() for entry in all_lectures: lecture = all_lectures[entry]["name"] tree = parser(lecture) acronym = "" for token in tree: if (token.tag_ != "IN" and token.tag_ != "TO" and token.tag_ != "DT" and token.tag_ != "CC"): acronym = acronym + token.text[0].upper() lectures[acronym] = lecture with open('lectures_acr.json', 'w') as fp: json.dump(lectures, fp) with open('days_acr.json', 'w') as fp: json.dump(days, fp)
true
2b4266bf96f1ac79e91be13b7d41d77b738eace6
Python
parksjsj9368/TIL
/ALGORITHM/BAEKJOON/SOURCE/07. Sort(정렬)/15. 시리얼 번호.py
UTF-8
337
3.453125
3
[]
no_license
n = int(input()) data = [] for _ in range(n) : data.append(list(input())) def data_sum(x) : sum = 0 for i in x : if i.isnumeric() : sum += int(i) return sum answer = sorted(data, key = lambda x : (len(x), data_sum(x), x)) for i in range(len(answer)) : print(''.join(answer[i]))
true
22c04f7c9842e43421bc465545b05c654090fc33
Python
tderensis/digital_control
/inverted_pendulum.py
UTF-8
3,157
2.8125
3
[ "MIT" ]
permissive
""" Design of a state space controller for an inverted pendulum driven by stepper motor. """ import control_plot, control_sim, control_design, control_optimize, control_eval, control_poles from scipy import signal import numpy as np import math # System Clasification Results # motor position low pass filter (bessel with 1 sec settling time) b_1 = 21.9 b_0 = 8.106 b_g = 21.9 g = 9.81 w0 = 4.008 # natural frequency d = 0.0718 # damping a_1 = w0**2 a_2 = a_1/g # State Space Equations """ x = | x | - motor position (m) | vel | - motor velocity (m/s) | theta | - pendulum position (rad) | theta_dot | - pendulum velocity (rad/s) u = | x_d | - desired motor position (m) """ A = np.matrix([ [ 0, 1, 0, 0], [-b_1, -b_0, 0, 0], [ 0, 0, 0, 1], [-b_1*a_2, -b_0*a_2, a_1, -d] ]) B = np.matrix([ [0], [b_g], [0], [b_g*a_2] ]) C = np.matrix([ [1, 0, 0, 0], [0, 0, 1, 0] ]) D = np.matrix([ [0], [0] ]) sys_c_ol = signal.StateSpace(A, B, C, D) print(sys_c_ol) T = 0.05 # sampling time Ts = 1.2 # settling time Tso = Ts/6 print("Using T =", T, "Ts =", Ts, "Tso = ", Tso) spoles = [ (-4.053+2.34j), (-4.053-2.34j), (-4.044060776465936+0j), (-3.9722607764659337+0j) ] (sys_d_ol, L, K) = control_design.design_regob(sys_c_ol, T, Ts, Tso, spoles) phi = sys_d_ol.A gamma = sys_d_ol.B print("phi =\n", phi) print("gamma =\n", gamma) print("L =\n", L) print("K =\n", K) (phi_ltf, gamma_ltf, c_ltf) = control_eval.ltf_regsf(sys_d_ol, L) print("Stability assuming all states are measured") control_eval.print_stability_margins(phi_ltf, gamma_ltf, c_ltf) (phi_ltf, gamma_ltf, c_ltf) = control_eval.ltf_regob(sys_d_ol, L, K) print("Stability using a full order observer") control_eval.print_stability_margins(phi_ltf, gamma_ltf, c_ltf) x0 = np.zeros((1, 4)) x0[0,1] = 20/math.pi (t, u, x) = control_sim.sim_regsf(phi, gamma, L, T, x0, Ts*2) print("reg settling time = ", control_eval.settling_time(t, x)) control_plot.plot_regsf(t, u, x) (t, u, x, xhat, y) = control_sim.sim_regob(phi, gamma, C, L, K, T, x0, Ts*2) print("fob settling time = ", control_eval.settling_time(t, y)) control_plot.plot_regob(t, u, x, xhat, y) # Add a pole for the tracking system spoles = spoles + control_poles.bessel_spoles(1, Ts) # Only position is tracked Ca = np.matrix([ 1, 0, 0, 0 ]) (sys_d_ol, phia, gammaa, L1, L2, K) = control_design.design_tsob(sys_c_ol, Ca, T, Ts, Tso, spoles) print("phia = ", phia) print("gammaa = ", gammaa) print("L1 = ", L1) print("L2 = ", L2) print("K =\n", K) (phi_ltf, gamma_ltf, c_ltf) = control_eval.ltf_tssf(sys_d_ol, phia, gammaa, Ca, L1, L2) print("Stability using a tracking system with full state feedback.") control_eval.print_stability_margins(phi_ltf, gamma_ltf, c_ltf) (phi_ltf, gamma_ltf, c_ltf) = control_eval.ltf_tsob(sys_d_ol, phia, gammaa, Ca, L1, L2, K) print("Stability using a tracking system with full order observer") control_eval.print_stability_margins(phi_ltf, gamma_ltf, c_ltf)
true
7144f8d25e213d5df479984d2e8af851082379a7
Python
asihacker/python3_bookmark
/python笔记/aaa基础内置/类相关/多父类调用顺序.py
UTF-8
1,259
3.546875
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/11/21 16:01 # @Author : AsiHacker # @File : 多父类调用顺序.py # @Software: PyCharm # !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/11/16 16:08 # @Author : AsiHacker # @Site : # @File : 自定义异常.py # @Software: PyCharm class Displayer(): def display(self, message): print(message) class LoggerMixin(): def log(self, message, filename='logfile.txt'): with open(filename, 'bet') as fh: fh.write(message) def display(self, message): super().display(message) self.log(message) class MySubClass(LoggerMixin, Displayer): def log(self, message): super().log(message, filename='subclasslog.txt') subclass = MySubClass() subclass.display("This string will be shown and logged in subclasslog.txt") # 总结 如果上述的解释太过于难以理解,我们可以简单记住,self.method() 将会先在当前类中查看 method() 方法, # 如果没有,就在继承链中进行查找,查找顺序就是你继承的顺序从左到右,直到 method() 方法被找到。super().method() # 与 self.method() 是差不多的,只是 super().method() 需要跳过当前类而已。
true
1d88678bcd96a394ad346e4759efcbb62a8e0006
Python
rabramley/advent_of_code_2015
/4a/solution.py
UTF-8
254
2.78125
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import hashlib import itertools for i in itertools.count(1): tohash = 'yzbqklnj' + str(i) m = hashlib.md5(tohash.encode('utf-8')) hash = m.hexdigest() if hash[0:5] == "00000": print(i, hash) break
true
e04ff3fffa38274d486fc2e7b35b5a2eec87969b
Python
TaeYeon-kim-ai/Pytorch
/object_detection/YOLOv3/train.py
UTF-8
2,427
2.515625
3
[]
no_license
import config import torch import torch.optim as optim from model import YOLOv3 from tqdm import tqdm from utils import ( mean_average_precision, cells_to_bboxes, # 이미지에 대한 상대적 경계상자 get_evaluation_bboxes, save_checkpoint, load_checkpoint, check_class_accuracy, get_loaders, plot_couple_examples ) from loss import YoloLoss torch.backends.cudnn.benchmark = True def train_fn(train_loader, model, optimizer, loss_fn, scaler, scaled_anchors) : loop = tqdm(train_loader, leave = True) losses = [] for batch_idx, (x, y) in enumerate(loop) : x = x.to(config.DEVICE) y0, y1, y2 = ( y[0].to(config.DEVICE), y[1].to(config.DEVICE), y[2].to(config.DEVICE) ) with torch.cida.amp.autocast(): out = model(x) loss = ( loss_fn(out[0], y0, scaled_anchors[0]), + loss_fn(out[1], y1, scaled_anchors[1]) + loss_fn(out[2], y2, scaled_anchors[2]) ) losses.append(loss.item()) optimizer.zero_grad() scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() #update progress bar mean_loss = sum(losses) / len(losses) loop.set_postfix(loss = mean_loss) def main() : model = YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE) optimizer = optim.Adam( model.parameters(), lr = config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY, ) loss_fn = YoloLoss() scaler = torch.cuda.amp.GradScaler() train_loader, test_loader, train_eval_loder = get_loaders( train_csv_path = config.DATASET+"/100examples.csv", test_csv_path=config.DATASET+"/100examples.csv" ) if config.LOAD_MODEL : load_checkpoint( config.CHECKPOINT_FILE, model, optimizer, config.LEARNING_RATE, ) scaled_anchors = ( torch.tensor(config.ANCHORS) *torch.tensor(config.S).unsqueeze(1).unsqueeze(2).repeat(1, 3, 2) ).to(config.DEVICE) for epoch in range(config.NUM_CLASSES) : train_fn(test_loader, model, optimizer, loss_fn, scaler, scaled_anchors) #train_fn(train_loader, model, optimizer, loss_fn, scaler, scaled_anchors) if config.SAVE_MODEL : save_checkpoint(model, optimizer) if __name__ == "__main__" : main()
true
bb0859718d03b418127e834c096304b265388641
Python
Kmmanki/bit_seoul
/AE/a07_nosie2_CAE.py
UTF-8
2,369
2.578125
3
[]
no_license
import numpy as np from tensorflow.keras.datasets import mnist (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.reshape(60000,28,28,1).astype('float32')/255. x_test = x_test.reshape(10000,28,28,1).astype('float32')/255. x_train_noised = x_train + np.random.normal(0, 0.1, size=x_train.shape) x_test_noised = x_test + np.random.normal(0, 0.1, size= x_test.shape) x_train_noised = np.clip(x_train_noised, a_min=0, a_max=1) x_test_noised = np.clip(x_test_noised, a_min=0, a_max=1) # print(x_train[0]) # print(x_test[0]) from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Input, Conv2D, Flatten def autoencoder (hidden_layer_size): model = Sequential() model.add(Conv2D(154, (3,3), strides=(1,1), padding='valid', input_shape=(28,28,1) )) model.add(Conv2D(128, padding='valid',kernel_size= (3,3) ) ) model.add(Conv2D(64, padding='valid',kernel_size= (3,3) ) ) model.add(Flatten()) model.add(Dense(units=784, activation='sigmoid')) return model #pca 시 가장손실이 적은 값이 154였음 model = autoencoder(hidden_layer_size=154) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) model.fit(x_train_noised, x_train.reshape(60000,784,), epochs=10, batch_size=512) outputs = model.predict(x_test_noised) from matplotlib import pyplot as plt import random fig, ((ax1,ax2,ax3,ax4,ax5), (ax6,ax7,ax8,ax9,ax10), (ax11, ax12, ax13, ax14, ax15)) = \ plt.subplots(3,5,figsize=(20,7)) random_images = random.sample(range(outputs.shape[0]), 5) for i, ax in enumerate([ax1, ax2, ax3, ax4, ax5]): ax.imshow(x_test[random_images[i]].reshape(28,28), cmap='gray') if i == 0: ax.set_ylabel("input", size=20) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) for i, ax in enumerate([ax6,ax7,ax8,ax9,ax10]): ax.imshow(x_test_noised[random_images[i]].reshape(28,28), cmap='gray') if i == 0: ax.set_ylabel("noised", size=20) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) for i, ax in enumerate([ax11, ax12, ax13, ax14, ax15]): ax.imshow(outputs[random_images[i]].reshape(28,28), cmap='gray') if i == 0: ax.set_ylabel("output", size=20) ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout() plt.show()
true
a83d5ec8c70b75269545900f7b447a5e14c61fd5
Python
SemyonSinchenko/RandomGraphModels
/utils/plot_report.py
UTF-8
5,117
2.8125
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- from collections import Counter import logging from pathlib import Path from random import choice, random import igraph as ig import matplotlib.pylab as plt import numpy as np def plot_all_distributions(g: ig.Graph, path_prefix: Path) -> None: path_prefix.mkdir(parents=True, exist_ok=True) logger = logging.getLogger("Plotter") logger.info("\tEstimate degree distribution...") _plot_degree_distribution(g, path_prefix) logger.info("\tDone.") logger.info("\tEstimate clsutering...") _plot_clustering_coeff(g, path_prefix) logger.info("\tDone.") logger.info("\tEstimate paths...") _plot_shortest_paths(g, path_prefix) logger.info("\tDone.") logger.info("\tEstimate correlations...") _plot_degrees_correlations(g, path_prefix) logger.info("\tDone.") def _plot_degree_distribution(g: ig.Graph, path_prefix: Path) -> None: file_path = path_prefix.joinpath("degrees.png") # Count degrees degrees = g.vs.degree() degree_distr = Counter(degrees) log_deg = np.zeros(len(degree_distr), dtype=np.float32) log_cnt = np.zeros(len(degree_distr), dtype=np.float32) for i, kv in enumerate(degree_distr.items()): log_deg[i] = np.log(kv[0]) if kv[0] > 0 else 0 log_cnt[i] = np.log(kv[1]) # Fit linear regression solution = np.polyfit(log_deg[log_cnt > 1.5], log_cnt[log_cnt > 1.5], deg=1) # Plot distributions plt.style.use("ggplot") f: plt.Figure = plt.Figure(figsize=(8, 5), dpi=150) ax: plt.Axes = f.add_subplot() ax.plot(log_deg, log_cnt, ".", label="Real Degrees") ax.plot( log_deg, log_deg * solution[0] + solution[1], "-", label="Linear fit: {:.4f}x + {:.2f}".format(solution[0], solution[1]), ) ax.legend() ax.set_xlabel("Log degree") ax.set_ylabel("Log count degrees") ax.set_ylim(bottom=np.min(log_cnt) - 1e-5) f.savefig(str(file_path.absolute())) plt.close(f) def _plot_clustering_coeff(g: ig.Graph, path_prefix: Path) -> None: file_path = path_prefix.joinpath("clustcoeff.png") g = g.copy().simplify() # Get clustering coefficient based on 50% of vertices subset = [vidx for vidx in g.vs.indices if random() <= 0.5] lcc = g.transitivity_local_undirected(vertices=subset, mode="zero") degrees = g.degree(vertices=subset) avg_clustering_coeff = np.mean(lcc) # Plot plt.style.use("ggplot") f: plt.Figure = plt.Figure(figsize=(8, 5), dpi=150) ax: plt.Axes = f.add_subplot() ax.plot( degrees, lcc, ".", label="ClustCoeff. Avg = {:.2e}".format(avg_clustering_coeff) ) ax.legend() ax.set_xlabel("Degree") ax.set_ylabel("Avg Clustering of Degree") f.savefig(str(file_path.absolute())) plt.close(f) def _plot_shortest_paths(g: ig.Graph, path_prefix: Path) -> None: file_path = path_prefix.joinpath("shortest_paths.png") # Estimate diameter and paths paths = g.get_all_shortest_paths(0, mode=ig.ALL) path_lens = list(map(len, paths)) diam = max(path_lens) eff_diam = np.percentile(path_lens, 90) cnts = Counter(path_lens) # Plot plt.style.use("ggplot") f: plt.Figure = plt.Figure(figsize=(8, 5), dpi=150) ax: plt.Axes = f.add_subplot() ax.plot( cnts.keys(), cnts.values(), ".", label="Path.Len.Distr.\nDiam.: {:d}\nEff.Diam.: {:.2f}".format(diam, eff_diam), ) ax.legend() ax.set_xlabel("Path. length") ax.set_ylabel("Count paths") f.savefig(str(file_path.absolute())) plt.close(f) def _plot_degrees_correlations(g: ig.Graph, path_prefix: Path) -> None: file_path = path_prefix.joinpath("degree_correlations.png") # Compute correlations num_nodes = int(g.vcount() * 0.35) visited = set() corrs = np.zeros((num_nodes, 2), dtype=np.float32) # Compute coefficient assortativity = g.assortativity_degree(directed=False) for i in range(num_nodes): while True: rnd_id = choice(g.vs) if rnd_id.index not in visited: visited.add(rnd_id.index) break deg = rnd_id.degree() for nbh in rnd_id.neighbors(): corrs[i, 1] += nbh.degree() / deg corrs[i, 0] = deg # Drop heavy tail corrs = corrs[np.argsort(corrs[:, 0])[:-50], :] # Fit line solution = np.polyfit(corrs[:, 0], corrs[:, 1], deg=1) # Plot scatter plt.style.use("ggplot") f: plt.Figure = plt.Figure(figsize=(8, 5), dpi=150) ax: plt.Axes = f.add_subplot() ax.plot(corrs[:, 0], corrs[:, 1], ".", label="Real data") ax.plot( corrs[np.argsort(corrs[:, 0]), 0], corrs[np.argsort(corrs[:, 0]), 0] * solution[0] + solution[1], "-", label="Fitted line: {:2f}x + {:2f}\nAssortativity coeff.: {:.3f}".format( solution[0], solution[1], assortativity ), ) ax.legend() ax.set_xlabel("Node degree") ax.set_ylabel("Neighborhood avg degree") f.savefig(str(file_path.absolute())) plt.close(f)
true
56d9008d3653b886f4a7c0489242ea1484408e85
Python
jonnylee719/actividad_practica_iic2233_2
/AC10-201516_2-metaclase/trial_2.py
UTF-8
1,409
3.671875
4
[]
no_license
def create_property(name): def setter(self, val): if self.__dict__.get(name) is None: self.__dict__[name] = val else: raise AttributeError def getter(self): return self.__dict__.get(name) return property(getter, setter) class RestrictedAccess(type): def __new__(cls, name, bases, attrs): for a in attrs['attributes']: attrs.update({a: create_property(a)}) return super().__new__(cls, name, bases, attrs) def __call__(self, *args, **kwargs): inst = super().__call__(*args, **kwargs) for i in range(len(inst.attributes)): setattr(inst, inst.attributes[i], args[i]) del inst.__class__.attributes return inst class Persona(metaclass=RestrictedAccess): attributes = ['name', 'lastname', 'alias'] def __init__(self, *args): pass class Singleton(type): instance = None def __call__(self, *args, **kwargs): if self.instance is None: self.instance = super().__call__(*args, **kwargs) return self.instance class A(metaclass=Singleton): def __init__(self, value): self.val = value if __name__ == '__main__': p1 = Persona('Bruce', 'Wayne', 'Batman') print(p1.name , p1. lastname , "es", p1.alias , "!") print(p1.__dict__) a = A(10) b = A(20) print(a.val, b.val) print(a is b)
true
5139240eb2aa77a26b14075b198ad54fbc71737a
Python
RagnvaldArnulfson/TIPE-Game-Of-War
/BacktrackPredeterminedWeight.py
UTF-8
3,565
3.09375
3
[]
no_license
# -*- coding: cp1252 -*- import random as rd jeu52Cartes = [(i%13)+1 for i in range(13*4)] #poids du jeu : 364 #poids minimal d'un paquet (26 cartes tirées dedans) : 98 #poids maximal : 266 (=364-98) jeu32Cartes = [(i%8)+1 for i in range(8*4)] #poids du jeu : 144 #poids minimal d'un paquet (16 cartes tirées dedans) : 40 # maximal : 104 (=144-40) #CF NB en bas de page pour des commentaires sur la nouvelle version #aleatoire booléen pour savoir si on veut un jeu aléatoire #attention, augmente significativement le temps de calcul pour les cas équilibrés #si aleatoire == True def genererDistribution(jeuComplet,poidsSouhaite,aleatoire = False): jeuComplet = sorted(jeuComplet) #ON TRIE LE JEU DONNE (obligatoire pour genererPaquet) poidsTotal = sum(jeuComplet) jeuContraire = False if poidsSouhaite > poidsTotal//2: poidsSouhaite = poidsTotal-poidsSouhaite jeuContraire = True paquet1 = genererPaquet(jeuComplet,len(jeuComplet)//2,poidsSouhaite,aleatoire) paquet2 = jeuComplet[:] for carte in paquet1: paquet2.remove(carte) if aleatoire: paquet2.shuffle() return [paquet2,paquet1] if jeuContraire else [paquet1,paquet2] #cartesDispo doit être triée à chaque étape de la récursivité def genererPaquet(cartesDispo,nombreDeCartesSouhaitees,poidsSouhaite,aleatoire = False,paquetActuel = []): nombreDeCartesDispo = len(cartesDispo) nombreDeCartesActuel = len(paquetActuel) poidsActuel = sum(paquetActuel) nombreDeCartesATirer = nombreDeCartesSouhaitees-nombreDeCartesActuel #comme cartesDispo est triée il est simple de déterminer le poids min #ainsi que le poids max du paquetActuel quand celui-ci sera complet poidsMin = poidsActuel + sum(cartesDispo[:nombreDeCartesATirer]) poidsMax = poidsActuel + sum(cartesDispo[(nombreDeCartesDispo-nombreDeCartesATirer):]) if nombreDeCartesActuel == nombreDeCartesSouhaitees and poidsActuel == poidsSouhaite: return paquetActuel elif nombreDeCartesActuel == nombreDeCartesSouhaitees \ or poidsMin > poidsSouhaite or poidsMax < poidsSouhaite: return [] dejaVu = [] piocheAlea = cartesDispo[:] if aleatoire: rd.shuffle(piocheAlea) for cartePioche in piocheAlea: if cartePioche not in dejaVu: dejaVu.append(cartePioche) nouveauDispo = cartesDispo[:] nouveauDispo.remove(cartePioche) #nouveau dispo est bien trié solution = genererPaquet(nouveauDispo,nombreDeCartesSouhaitees,poidsSouhaite,aleatoire,paquetActuel+[cartePioche]) if solution != []: return solution return [] #preuve que même si le tirage est aléatoire, le temps de calcul pour les cas #de poids extremes est relativement rapide #(ça tombe bien c'est ce qui nous intéresse) for i in range(100): print(genererDistribution(jeu52Cartes,100,True)[0]) #NB : #on a ajouté une condition d'arrêt symetrique à l'ancienne qui utilisais ajoutMin #on a rendu cette condition plus fine en considérant que si cartesDispo est triée #à chaque niveau de la récursivité, on peut vraiment donner le poidsMin ainsi que #le poidsMax du paquet courant (et non plus un simple minorant) #le renversement du probleme (jeuContraire) reste pertinent car si cartesDispo est #triée par ordre croissant, les solutions de poids faibles sont trouvées en premier
true
15b73ffb7feea81118dff6e36d68d185b88087d0
Python
arielsl/LynBot
/urlhelper.py
UTF-8
4,699
2.984375
3
[]
no_license
""" A simple class that will handle URL requests """ from urllib.request import Request, urlopen import urllib.error import re import help_messages from bs4 import * """ Checks if the given url exists by reading the response code """ def url_exits(url): code = 0 try: req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req) code = webpage.getcode() except urllib.error.HTTPError as e: pass if code == 200: return True else: return False """ Finds the card's image url """ def get_card_image(url, cardname): imgpostfix = None try: req = Request(url+"png", headers={'User-Agent': 'Mozilla/5.0'}) source = urlopen(req).read() soup = BeautifulSoup(source, "html.parser") imgpostfix = soup.find("img").get("src") return help_messages.card_img_prefix + imgpostfix except urllib.error.HTTPError as e: pass try: req = Request(url+"jpg", headers={'User-Agent': 'Mozilla/5.0'}) source = urlopen(req).read() soup = BeautifulSoup(source, "html.parser") imgpostfix = soup.find("img").get("src") return help_messages.card_img_prefix + imgpostfix except urllib.error.HTTPError as e: pass try: req = Request(url+"jpeg", headers={'User-Agent': 'Mozilla/5.0'}) source = urlopen(req).read() soup = BeautifulSoup(source, "html.parser") imgpostfix = soup.find("img").get("src") return help_messages.card_img_prefix + imgpostfix except urllib.error.HTTPError as e: pass return None """ Find the game's info """ def game_info(game_url): info = [] try: req = Request(game_url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() except urllib.error.HTTPError as e: pass soup = BeautifulSoup(webpage, "html.parser") for h in soup.find_all("h2",{"class" : "page-title"}): info.append(h.string) info.append(soup.p.get_text(" ", strip=True)) want = True counter = 0 for heading in soup.find_all("td"): if want and counter < 3: info.append(heading.get_text(" ", strip=True)) want = False counter += 1 else: want = True info.append(soup.img.get('src')) return info """ Find the booster's info """ def booster_info(booster_url): info = [] try: req = Request(booster_url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() except urllib.error.HTTPError as e: pass soup = BeautifulSoup(webpage, "html.parser") info.append(soup.find_all("h1",{"class":"page-header__title"})[0].get_text(" ", strip=True)) info.append(soup.find_all("p")[0].get_text(" ", strip=True)) info.append(soup.find_all("p")[1].get_text(" ", strip=True)) info.append(soup.find_all('div', id='mw-content-text')[0].ul.get_text(" ", strip=True)) link = soup.find_all("a",{"class":"image-thumbnail"})[0] info.append(link.get("href")) info.append(soup.find_all("div",{"class":"pi-data-value"})[4].get_text(" ", strip=True)) return info """ Find the deck info """ def deck_info(deck_url): info = [] try: req = Request(deck_url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() except urllib.error.HTTPError as e: pass soup = BeautifulSoup(webpage, "html.parser") info.append(soup.find_all("h1",{"class":"page-header__title"})[0].get_text(" ", strip=True)) info.append(soup.find_all("p")[0].get_text(" ", strip=True)) info.append(soup.find_all("p")[1].get_text(" ", strip=True)) info.append(soup.find_all('div', id='mw-content-text')[0].ul.get_text(" ", strip=True)) link = soup.find_all("a",{"class":"image-thumbnail"})[0] info.append(link.get("href")) info.append(soup.find_all("div",{"class":"pi-data-value"})[4].get_text(" ", strip=True)) return info """ Find the color info """ def get_color_info(color_url): info = [] color_data = [] try: req = Request(color_url, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() except urllib.error.HTTPError as e: pass soup = BeautifulSoup(webpage, "html.parser") paragraphs = soup.find_all("p") for p in paragraphs: info.append(p.get_text(" ", strip=True)) if len(info) == 2: color_data.append(info[0]) else: color_data.append(info[0]) if len(info[1]) > 997: info[1] = info[1][:997] info[1] = info[1] + "..." color_data.append(info[1]) return color_data
true
b60dcbf78326fdc9809d7278780485fda6820088
Python
Dhaval2110/Python
/Regex_Parser/main_method.py
UTF-8
8,359
2.953125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sat Feb 19 00:10:40 2022 @author: Dhaval """ # global imports import os import re import logging import warnings #local imports from argparser import argParsing # global/local variables l=[] #============================================================================== # main class to perform patternmatching #============================================================================== class PatternMatch(): #-------------------------------------------------------------------------- # Name : constructor method # Inputs : None # Description : Argparse return value , logging module initilization # and color code definition is defined in this consturctor # Output : None #-------------------------------------------------------------------------- def __init__(self): self.sVal = argParsing() # calling method from pattern_find.py to fetch the cli inputs logging.basicConfig(filename='output.log', level=logging.DEBUG, # Initializing logging file to save the output logs printed on console format='%(message)s',filemode='w') self.CYAN = '\033[96m' # Color code for CYAN self.END = '\033[0m' # Color code for END #-------------------------------------------------------------------------- # Name: argsaves method # Input : None # Description : The class method to read the file from commandline, process # file line by line and match the pattern passed in command # line or match pattern to command line string # print them in differnent formats based on # optional parameters which are mutually exclusive. # Logging console output to log file 'output.txt' # Output : Output.txt file and console output #-------------------------------------------------------------------------- def argSaves(self): try: if self.sVal.sFile: # If file is passed as an argument for files in self.sVal.sFile: # Iterate for multiple files if passed #---------------------------------------------------------- # Case 1 : If file is not passed as command line STDIN as # input #---------------------------------------------------------- if not os.path.exists(files): # Check if file is valid path or not warnings.warn("File is not passed???") match = re.search(self.sVal.sPattern,files) #Check if regex pattern is matches with line if match != None: if self.sVal.underline: #If underline is passed to command line print "^" to line on termina print("{} matches in line {}" .format(match.group(0),files)) print(" " ,"^" * len(files) ) if self.sVal.color: # Print color on console output when color argument is passed to a file print("{} matches in line {}" .format(match.group(0),files) + self.END) if self.sVal.machine: # print a machine readable format matched string to pattern as it does not have lines print("{}:{}".format((files),match.group(0)), end="") else: print("{} matches in line {}" .format(match.group(0),files)) #---------------------------------------------------------- # Case 2: If files are passed as command line , filenames # are as inputs #---------------------------------------------------------- else: with open(files,'r') as fd: # Open a file one by one to read l = fd.readlines() # Save the content lines of files into a list for i in range(0,len(l)) : # Iterate over list elements match = re.search(self.sVal.sPattern,l[i]) # Check if regex pattern is matches with line if match != None: # In order to print the lines with matching pattern , ignore if no patten match if self.sVal.underline: # If underline is passed to command line print "^" to line on terminal as well as in log file print("{} matches at line {} in file {}" .format(match.group(0),i+1,files)) print(" " ,"^" * len(l[i]) ) logging.info("{} matches at line {} in" " file {}" .format(match.group(0), i+1,files)) logging.info(" ^" ) if self.sVal.color: # Print color on console output when color argument is passed to a file print("{} matches at line {} in file {}" .format(match.group(0),i+1,files) + self.CYAN + l[i] + self.END) logging.info("{} matches at line {} " " in file {}" .format(match.group(0), i+1,files) + self.CYAN + l[i] + self.END) if self.sVal.machine: # which generate machine-readable output , format: file_name:no_line:start_pos:matched_text print("{}:{}:{}".format(files, i+1, l[i]), end="") else: # if in case no optional arguments are passed print("{} matches at line {} in file " "{}".format(match.group(0),i+1, files)) logging.info("{} matches at line {} in " "file {}" .format(match.group(0),i+1, files)) except Exception : # Ignore case if file does not exists but use STDIN as input of -f pass #------------------------------------------------------------------------------ # main function #------------------------------------------------------------------------------ if __name__ == '__main__': c=PatternMatch() c.argSaves()
true
dbca189b795c5dff81afc83652af2bc2837d06da
Python
JancisWang/-offer_python
/剪绳子.py
UTF-8
853
3.40625
3
[]
no_license
''' 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。 输入描述: 输入一个数n,意义见题面。(2 <= n <= 60) 输出描述: 输出答案。 示例1 输入 复制 8 输出 复制 18 ''' # -*- coding:utf-8 -*- class Solution: def cutRope(self, number): # write code here dp = [1] * (number+1) dp[1] = 1 dp[2] = 1 for i in range(2, number+1): res = 0 for j in range(1, i): res = max(res, max(dp[j], j)*max(dp[i-j], i-j)) dp[i] = res return dp[-1]
true
8971a16b298c6c344a97d8ec8a060d16d15e314b
Python
SnapshotSerengetiScienceTeam/Scripts
/metadatadb-scripts/import_clean_season_metadata_into_database.py
UTF-8
9,830
2.828125
3
[]
no_license
#!/usr/bin/python import MySQLdb import sys import snapshotDB import datetime import csv # format of the authentication file should be three lines: # MSI user name # database password # full name # format of the season file should be one or more comma-separated line(s) # with fields: # season: integer # start date: date in format 'YYYY-MM-DD' # end date: date in format 'YYYY-MM-DD' # comments: quoted string of up to 500 characters # --- # format of the clean season metadata file should be: # COLUMNS: # rownum: integer # season: integer # site: 3-character alphanumeric # roll: integer # capture: integer # image: integer # path: character string # newtime: datetime in format 'YYYY-MM-DD HH:MM:SS' # oldtime: datetime in format 'YYYY:MM:DD HH:MM:SS' # invalid: integer # include: 1 for send to Zooniverse, 0 for don't # make sure we have 4 arguments if len(sys.argv) < 5 : print ("format: import_clean_season_metadata_into_database <authentication file> <season file> <metadata file> <output dir>") exit(1) authfilename = sys.argv[1] sfilename = sys.argv[2] infilename = sys.argv[3] outdirname = sys.argv[4] with open(authfilename,'rb') as afile: username = afile.readline().strip() password = afile.readline().strip() fullname = afile.readline().strip() try: # connect to the database db = MySQLdb.connect(host="mysql.msi.umn.edu", user=username, passwd=password, db="packerc_snapshot_serengeti") # use the database with db: snapshotDB.cur = db.cursor() print "Validating Season file\n" # add the season information with open(sfilename,'rb') as sfile: # use CSV reader sreader = csv.reader(sfile,delimiter=',',quotechar='"') # usually just 1 file for 1 season, but could handle more for row in sreader: season = row[0] startdate = row[1] enddate = row[2] comments = row[3] # see if this season is already in the DB if not snapshotDB.seasonExists(season): snapshotDB.addSeason(season,startdate,enddate,comments) # make a note in the log snapshotDB.log(fullname,"Added new season " + season) # now the metadata lastseason = "0" lastsite = "0" print "Validating the season and site values in the metadata file\n" # Go through the file once to check seasons and sites # We will not calculate roll start and stop times, as this is easy # to do once the data are loaded, and makes this script cleaner. with open(infilename,'rb') as infile: # use CSV reader freader = csv.reader(infile,delimiter=',',quotechar='"') # ignore header freader.next() # for each image for row in freader: season = row[0] site = row[1] newtime = row[6] # verify season if season != lastseason: # make sure the season is already in the database if (lastseason!="0" and not snapshotDB.seasonExists(season)): print "Season " + season + " is not in the database." print "Please create and import a Season file before uploading metadata for that season." print "Metadata import ABORTED. No metadata imported." exit(1) lastseason = season # verify site if site != lastsite: # make sure sites are already in the database if (lastsite!="0" and not snapshotDB.siteExists(site)): print "Site " + site + " is not in the database." print "This Site will need to be created in the database before uploading metadata for it." print "Metadata import ABORTED. No metadata imported." exit(1) lastsite = site # record start and stop date #rsskey = season+site #if rsskey not in rollstartstop: # add start date # rollstartstop[rsskey] = [newtime[0:10],None] # add stop date #rollstartstop[rsskey][1] = newtime[0:10] print "Adding rolls from metadata file\n" # season(s) and sites are okay # now go through and add the rolls, creating two new files in the process # for capture and image imports outfilename1 = outdirname + "temp_captures.csv" outfilename2 = outdirname + "temp_images1.csv" # ugly with python 2.6, but that's what's running at MSI with open(infilename,'rb') as infile: with open(outfilename1,'wb') as outfile1: with open(outfilename2,'wb') as outfile2: # CSV readers freader = csv.reader(infile,delimiter=',',quotechar='"') fwriter1 = csv.writer(outfile1,delimiter=',',quotechar='"') fwriter2 = csv.writer(outfile2,delimiter=',',quotechar='"') # remove header line freader.next() # write header lines fwriter1.writerow(["idRoll","capture","newtime","invalid","zoon_status"]) fwriter2.writerow(["idSeason","idSite","idRoll","capture", "image","path","newtime","oldtime"]) lastsite = "0" lastroll = "0" for row in freader: season = row[0] site = row[1] roll = row[2] capture = row[3] image = row[4] path = row[5] newtime = row[6] oldtime = row[7] invalid = row[8] include = row[9] # look up the site if site!=lastsite: siteID = snapshotDB.getSite(site) lastsite = site # create (or look up) roll rollcombo = season+site+roll if rollcombo!=lastroll: print "adding roll " + season + ", " + site + ", " + roll rollID = snapshotDB.addRoll(season,site,roll,None,None) lastroll = rollcombo # write to captures file using data for first image if image=="1": fwriter1.writerow([rollID,capture,newtime,invalid,include]) # write to images file using all data fwriter2.writerow([season,siteID,rollID,capture, image,path,newtime,oldtime]) # make a note in the log snapshotDB.log(fullname,"Added rolls for new season from file " + infilename) # now rolls is created # create capture events with temp file snapshotDB.addCaptures(outfilename1) # make a note in the log snapshotDB.log(fullname,"Added capture events for new season from file " + infilename) # modify the image import file with capture event ID numbers outfilename3 = outdirname + "temp_images2.csv" with open(outfilename2,'rb') as infile: with open(outfilename3,'wb') as outfile: # CSV readers freader = csv.reader(infile,delimiter=',',quotechar='"') fwriter = csv.writer(outfile,delimiter=',',quotechar='"') # remove header line freader.next() # write header line fwriter.writerow(["idSeason","idSite","idRoll","idCapture", "image","path","newtime","oldtime"]) lastcombo = "0" for row in freader: season = row[0] siteID = row[1] rollID = row[2] capture = row[3] image = row[4] path = row[5] newtime = row[6] ot = row[7] # convert the oldtime oldtime = ot[0:4]+"-"+ot[5:7]+"-"+ot[8:] # look up capture if necessary combo = season + siteID + rollID + capture if combo!=lastcombo: captureID = snapshotDB.getCaptureEvent(rollID,capture) lastcombo=combo # write to new file with capture ID instead of capture number fwriter.writerow([captureID,image,path,newtime,oldtime]) # import the images using this temp file snapshotDB.addImages(outfilename3) # make a note in the log snapshotDB.log(fullname,"Added images for new season from file " + infilename) # catch errors except MySQLdb.Error, e: print "Error %d: %s" % (e.args[0],e.args[1]) sys.exit(1) # close connection to the database finally: if db: db.close()
true
4dce3bb4972b7a9f8759f8ebaf3fc0571a40fb54
Python
pmirallesr/Abeona
/transfer/mod_problems/direct_pl2pl_mod.py
UTF-8
8,925
2.515625
3
[]
no_license
from pykep.trajopt._direct import _direct_base import pykep as pk import numpy as np from utils.pow_to_mass import pow_to_mass as pw2m from utils.pow_to_mass import min_panel_mass import time defaults = { "w_mass": 0.5, "w_tof":0.5, "prop_eff": 0.5} class direct_pl2pl_mod(_direct_base): """Represents a direct transcription transfer between solar system planets. This problem works by manipulating the starting epoch t0, the transfer time T the final mass mf and the controls The dicision vector is:: z = [t0, T, mf, Vxi, Vyi, Vzi, Vxf, Vyf, Vzf, controls] """ def __init__(self, p0="earth", pf="mars", mass=1000, thrust=0.3, isp=3000, power=None, nseg=20, t0=[500, 1000], tof=[200, 500], vinf_dep=1e-3, vinf_arr=1e-3, hf=False, **kwargs): """Initialises a direct transcription orbit to orbit problem. Args: - p0 (``str``): Departure planet name. (will be used to construct a planet.jpl_lp object) - pf (``str``): Arrival planet name. (will be used to construct a planet.jpl_lp object) - mass (``float``, ``int``): Spacecraft wet mass [kg]. - thrust (``float``, ``int``): Spacecraft maximum thrust [N]. - isp (``float``, ``int``): Spacecraft specific impulse [s]. - nseg (``int``): Number of colocation nodes. - t0 (``list``): Launch epochs bounds [mjd2000]. - tof (``list``): Transfer time bounds [days]. - vinf_dep (``float``): allowed launch DV [km/s] - vinf_arr (``float``): allowed arrival DV [km/s] - hf (``bool``): High-fidelity. Activates a continuous representation for the thrust. """ # Init args self.i=0 self.args = defaults for arg in self.args: if arg in kwargs: self.args[arg] = kwargs[arg] # Init optim weights self.w_mass = self.args["w_mass"] self.w_tof = self.args["w_tof"] # Init power if power: self.power = power else: self.power = 0.5*thrust*isp/self.args["prop_eff"] # initialise base _direct_base.__init__(self, mass, thrust, isp, nseg, pk.MU_SUN, hf) # planets if all([isinstance(pl, str) for pl in [p0, pf]]): self.p0 = pk.planet.jpl_lp(p0) self.pf = pk.planet.jpl_lp(pf) else: raise TypeError("Planet names must be supplied as str.") # bounds assert t0[1] - t0[0] >= tof[0] assert all(t > 0 for t in tof) assert tof[1] > tof[0] self.t0 = t0 self.tof = tof # boundary conditions on velocity self.vinf_dep = vinf_dep * 1000 # (in m) self.vinf_arr = vinf_arr * 1000 # (in m) # The class is built around solar system planets hence mu is always the # SUN self.mu = pk.MU_SUN def fitness(self, z): # z = t0, tof, mf, [vinf_0], [vinf_f], [u] # epochs (mjd2000) t0 = pk.epoch(z[0]) tf = pk.epoch(z[0] + z[1]) # final mass mf = z[2] # controls: 60 element vector, containing ux, uy, uz for each segment u = z[9:] # compute Cartesian states of planets r0, v0 = self.p0.eph(t0) rf, vf = self.pf.eph(tf) # add the vinfs from the chromosome v0 = [a + b for a, b in zip(v0, z[3:6])] vf = [a + b for a, b in zip(vf, z[6:9])] # spacecraft states x0 = pk.sims_flanagan.sc_state(r0, v0, self.sc.mass) xf = pk.sims_flanagan.sc_state(rf, vf, mf) # set leg self.leg.set(t0, x0, u, tf, xf) # compute equality constraints ceq = np.asarray(self.leg.mismatch_constraints(), np.float64) # nondimensionalise equality constraints ceq[0:3] /= pk.AU ceq[3:6] /= pk.EARTH_VELOCITY ceq[6] /= self.sc.mass # compute inequality constraints cineq = np.asarray(self.leg.throttles_constraints(), np.float64) # compute inequality constraints on departure and arrival velocities v_dep_con = (z[3] ** 2 + z[4] ** 2 + z[5] ** 2 - self.vinf_dep ** 2) v_arr_con = (z[6] ** 2 + z[7] ** 2 + z[8] ** 2 - self.vinf_arr ** 2) # nondimensionalize inequality constraints v_dep_con /= pk.EARTH_VELOCITY ** 2 v_arr_con /= pk.EARTH_VELOCITY ** 2 return np.hstack(([self.obj_func(z)], ceq, cineq, [v_dep_con, v_arr_con])) def obj_func(self, z): self.i+=1 tof, mf = z[1:3] u = z[9:] pwr = [self.power*(u[i]**2 + u[i+1]**2 + u[i+2]**2)**0.5 for i in range(0,len(u),3)] # get states # x = list(self.leg.get_states())[2] # <-- Big delay! And really costly. Let's use an approximate method # # remove matchpoint duplicate # x.pop(self.nseg) # # convert to numpy.ndarray # x = np.asarray(x, np.float64) # x.reshape((self.nseg * 2 + 1, 3)) # r = [(x[i][0]**2 + x[i][1]**2 + x[i][2]**2)**0.5/pk.AU for i in range(0,len(x),3)] # We approximate distance as a piecewise function to accelerate the opt procedure r = [1 for _ in pwr[:-6]] + [1.6 for _ in pwr[-6:]] masses = [pw2m(pwr[i], tof, r[i]) for i in range(len(r))] mpow = min(200,max(masses)) mprop = self.sc.mass - mf transfer_mass = mprop + mpow - min_panel_mass # We don't penalize the essential panel mass # 0 if we arrive in min time, 1 if we arrive in max time weighted_tof_score = self.w_tof*(tof-self.tof[0])/(self.tof[1]-self.tof[0]) # 0 if all mass is dry, 1 if all mass is prop or power weighted_mass_score = self.w_mass*transfer_mass/self.sc.mass return weighted_tof_score + weighted_mass_score def get_nic(self): return super().get_nic() + 2 def get_bounds(self): lb = [self.t0[0], self.tof[0], self.sc.mass * 0.1] + \ [-self.vinf_dep] * 3 + [-self.vinf_arr] * 3 + \ [-1, -1, -1] * self.nseg ub = [self.t0[1], self.tof[1], self.sc.mass] + \ [self.vinf_dep] * 3 + [self.vinf_arr] * 3 + \ [1, 1, 1] * self.nseg return (lb, ub) def _plot_traj(self, z, axis, units): # times t0 = pk.epoch(z[0]) tf = pk.epoch(z[0] + z[1]) # plot Keplerian pk.orbit_plots.plot_planet( self.p0, t0, units=units, color=(0.8, 0.8, 0.8), axes=axis) pk.orbit_plots.plot_planet( self.pf, tf, units=units, color=(0.8, 0.8, 0.8), axes=axis) def pretty(self, z): """ pretty(x) Args: - x (``list``, ``tuple``, ``numpy.ndarray``): Decision chromosome, e.g. (``pygmo.population.champion_x``). Prints human readable information on the trajectory represented by the decision vector x """ data = self.get_traj(z) result = self._pretty(z) sun_pos = (data[-1, 1], data[-1, 2], data[-1, 3]) sun_speed = (data[-1, 4], data[-1, 5], data[-1, 6]) result += ("\nSpacecraft Initial Mass (kg) : {!r}".format(data[0, 7])) result += ("\nSpacecraft Final Mass (kg) : {!r}".format(data[-1, 7])) result += ("\nSpacecraft Initial Position (m) : [{!r}, {!r}, {!r}]".format( data[0, 1], data[0, 2], data[0, 3])) result += ("\nSpacecraft Initial Velocity (m/s): [{!r}, {!r}, {!r}]".format( data[0, 4], data[0, 5], data[0, 6])) result += ("\nSpacecraft Final Position (m) : [{!r}, {!r}, {!r}]".format( *sun_pos)) result += ("\nSpacecraft Final Velocity (m/s): [{!r}, {!r}, {!r}]".format( *sun_speed)) return result def _pretty(self, z): result = "" result += ("\nLow-thrust NEP transfer from " + self.p0.name + " to " + self.pf.name) result += ("\nLaunch epoch: {!r} MJD2000, a.k.a. {!r}".format( z[0], pk.epoch(z[0]))) result += ("\nArrival epoch: {!r} MJD2000, a.k.a. {!r}".format( z[0] + z[1], pk.epoch(z[0] + z[1]))) result += ("\nTime of flight (days): {!r} ".format(z[1])) result += ("\nLaunch DV (km/s) {!r} - [{!r},{!r},{!r}]".format(np.sqrt( z[3]**2 + z[4]**2 + z[5]**2) / 1000, z[3] / 1000, z[4] / 1000, z[5] / 1000)) result += ("\nArrival DV (km/s) {!r} - [{!r},{!r},{!r}]".format(np.sqrt( z[6]**2 + z[7]**2 + z[8]**2) / 1000, z[6] / 1000, z[7] / 1000, z[8] / 1000)) return result @staticmethod def _get_controls(z): return z[9:]
true
d299e332ce29e79ae0f5bb5817701dd2db7e1fed
Python
weecology/retriever
/retriever/engines/jsonengine.py
UTF-8
5,520
2.640625
3
[ "MIT" ]
permissive
"""Engine for writing data to a JSON file""" import json import os from collections import OrderedDict from retriever.lib.defaults import DATA_DIR from retriever.lib.dummy import DummyConnection from retriever.lib.models import Engine from retriever.lib.tools import open_fr, open_fw from retriever.lib.engine_tools import json2csv, sort_csv class engine(Engine): """Engine instance for writing data to a JSON file.""" name = "JSON" abbreviation = "json" auto_column_number = 0 datatypes = { "auto": "INTEGER", "int": "INTEGER", "bigint": "INTEGER", "double": "REAL", "decimal": "REAL", "char": "TEXT", "bool": "INTEGER", } insert_limit = 1000 required_opts = [ ("table_name", "Format of table name", "{db}_{table}.json"), ("data_dir", "Install directory", DATA_DIR), ] table_names = [] def create_db(self): """Override create_db since there is no database just a JSON file""" return None def create_table(self): """Create the table by creating an empty json file""" table_path = os.path.join(self.opts["data_dir"], self.table_name()) self.output_file = open_fw(table_path, encoding=self.encoding) self.output_file.write("[") self.table_names.append((self.output_file, table_path)) self.auto_column_number = 1 # Register all tables created to enable # testing python files having custom download function if self.script.name not in self.script_table_registry: self.script_table_registry[self.script.name] = [] self.script_table_registry[self.script.name].append( (self.table_name(), self.table)) def disconnect(self): """Close out the JSON with a `\\n]}` and close the file. Close all the file objects that have been created Re-write the files stripping off the last comma and then close with a `\\n]}`. """ if self.table_names: for output_file_i, file_name in self.table_names: output_file_i.close() current_input_file = open_fr(file_name, encoding=self.encoding) file_contents = current_input_file.readlines() current_input_file.close() file_contents[-1] = file_contents[-1].strip(',\n') current_output_file = open_fw(file_name, encoding=self.encoding) current_output_file.writelines(file_contents) current_output_file.writelines(['\n]']) current_output_file.close() self.table_names = [] def execute(self, statement, commit=True): """Write a line to the output file""" self.output_file.writelines(statement) def executemany(self, statement, values, commit=True): """Write a line to the output file""" self.output_file.writelines(statement) def format_insert_value(self, value, datatype): """Formats a value for an insert statement""" v = Engine.format_insert_value(self, value, datatype) if v == 'null': return "" try: if len(v) > 1 and v[0] == v[-1] == "'": v = '"%s"' % v[1:-1] except BaseException: pass return v def insert_statement(self, values): if not hasattr(self, 'auto_column_number'): self.auto_column_number = 1 keys = self.table.get_insert_columns(join=False, create=True) if self.table.columns[0][1][0][3:] == 'auto': newrows = [] for rows in values: insert_stmt = [self.auto_column_number] + rows newrows.append(insert_stmt) self.auto_column_number += 1 else: newrows = values json_dumps = [] pretty = bool("pretty" in self.opts and self.opts["pretty"]) for line_data in newrows: tuples = (zip(keys, line_data)) write_data = OrderedDict(tuples) if not pretty: json_dumps.append(json.dumps(write_data, ensure_ascii=False) + ",") else: json_dumps.append( json.dumps(write_data, ensure_ascii=False, indent=2) + ",") return json_dumps def table_exists(self, dbname, tablename): """Check to see if the data file currently exists""" tablename = self.table_name(name=tablename, dbname=dbname) tabledir = self.opts["data_dir"] table_name = os.path.join(tabledir, tablename) return os.path.exists(table_name) def to_csv(self, sort=True, path=None, select_columns=None): """Export table from json engine to CSV file""" for table_item in self.script_table_registry[self.script.name]: header = table_item[1].get_insert_columns(join=False, create=True) outputfile = os.path.normpath( os.path.join( path if path else '', os.path.splitext(os.path.basename(table_item[0]))[0] + '.csv')) csv_outfile = json2csv(table_item[0], output_file=outputfile, header_values=header, encoding=self.encoding) sort_csv(csv_outfile, encoding=self.encoding) def get_connection(self): """Gets the db connection.""" self.get_input() return DummyConnection()
true
d7cfc0c6b9a94503d675faf62da8f3b59d0466ef
Python
ashirwadsangwan/Python
/OOPs/classMethods.py
UTF-8
1,140
4.03125
4
[ "MIT" ]
permissive
class Employee: number_of_employees = 0 raise_amount = 1.04 def __init__(self, first, last, pay): ## self is the instance here self.first = first self.last = last self.pay = pay self.email = first + "." + last + "@company.com" Employee.number_of_employees += 1 def fullName(self): return "{} {}".format(self.first, self.last) def applyRaise(self): self.pay = int( self.pay * self.raise_amount ) ## we'll have to use this through instance or class variable @classmethod def setRaiseAmount(cls, amount): cls.raise_amount = amount @classmethod def fromString(cls, emp_str): first, last, pay = emp_str.split("-") return cls(first, last, pay) """ You can also use instances instead of class in classmethods and it'll still work. """ emp1 = Employee("Ashirwad", "Sangwan", 50000) emp2 = Employee("Test", "User", 70000) print(Employee.raise_amount) Employee.setRaiseAmount(1.05) print(Employee.raise_amount) str_emp1 = "Joe-Root-40000" new_emp1 = Employee.fromString(str_emp1) print(new_emp1.email)
true
bf207a48790bd22e1b41c59eb129bf3181410938
Python
gl-coding/OpenBaseCode
/NlpBase/utils.py
UTF-8
764
3.484375
3
[]
no_license
import time def print_help(res): if isinstance(res, list): for item in res[:min(10,len(res))]: print item elif isinstance(res, dict): for k, v in res: print k, v else: print res def deco(f): def wrapper(*args, **kwargs): start_time = time.time() res = f(*args, **kwargs) end_time = time.time() execution_time = (end_time - start_time)*1000 print_help(res) print("time is %d ms" %execution_time) return wrapper @deco def f(a,b): print("be on") time.sleep(1) print("result is %d" %(a+b)) @deco def f2(a,b,c): print("be on") time.sleep(1) print("result is %d" %(a+b+c)) if __name__ == '__main__': f2(3,4,5) f(3,4)
true
821ce992b6ad817c97407d49095f9768705c0cf2
Python
lesteve/markdown-it-py
/markdown_it/common/entities.py
UTF-8
450
2.921875
3
[ "MIT" ]
permissive
"""HTML5 entities map: { name -> characters }.""" import html class _Entities: def __getattr__(self, name): try: return DATA[name] except KeyError: raise AttributeError(name) def __getitem__(self, name): return DATA[name] def __contains__(self, name): return name in DATA entities = _Entities() DATA = {name.rstrip(";"): chars for name, chars in html.entities.html5.items()}
true
36222ece45752befa30ccd7f342645775a3f258e
Python
zhengminhui/leetcode-python
/src/convertToTitle.py
UTF-8
205
3.640625
4
[]
no_license
def convertToTitle(n): """ :type n: int :rtype: str """ s = '' while n > 0: n -= 1 s = chr(n%26 + 65) + s n /= 26 return s print convertToTitle(27)
true
45a4c0c19fdf58be842f86c0914d48b33626b1d0
Python
mlbudda/Checkio
/o_reilly/remove_all_after.py
UTF-8
685
3.734375
4
[]
no_license
# Remove all after from typing import Iterable def remove_all_after(items: list, border: int) -> Iterable: """ Removes all of the elements after the given one from list """ try: return items[:(items.index(border)+1)] except ValueError: return items # Running some tests... print(list(remove_all_after([1, 2, 3, 4, 5], 3)) == [1, 2, 3]) print(list(remove_all_after([1, 1, 2, 2, 3, 3], 2)) == [1, 1, 2]) print(list(remove_all_after([1, 1, 2, 4, 2, 3, 4], 2)) == [1, 1, 2]) print(list(remove_all_after([1, 1, 5, 6, 7], 2)) == [1, 1, 5, 6, 7]) print(list(remove_all_after([], 0)) == []) print(list(remove_all_after([7, 7, 7, 7, 7, 7, 7, 7, 7], 7)) == [7])
true
a6b796b00215f3417c1520862d774d13f347742d
Python
murex971/cryptopals
/Set-1/Solution-2.py
UTF-8
228
3.140625
3
[]
no_license
from binascii import unhexlify,hexlify def XORfunc(str1, str2): a = unhexlify(str1) b = unhexlify(str2) output = "" for x in range(0,len(a)): output+= (chr(ord(a[x])^ord(b[x]))) print hexlify(output)
true
afca42f40349f960a28a981e7e8c04e08c9c1fa3
Python
shanti-uva/mms_image_import
/file-import.py
UTF-8
544
2.765625
3
[]
no_license
import sys import subprocess import os if len(sys.argv) > 1: fpath = sys.argv[1] print("File path is: {}".format(fpath)) with open(fpath, 'r') as inf: for ln in inf: print(ln) try: mid = int(ln.strip()) cmd = "python import.py -coll 346 -i {}".format(mid) os.system(cmd) # subprocess.call(cmd, Shell=True) except Exception as e: print("Exception: {}".format(e)) print("--------------------\n")
true
65ea14706e29e771c91514560afddb5c2642fd9e
Python
ching-yi-hsu/practice_python
/8_Rock_Paper_Scissors/rock_paper_scissors.py
UTF-8
911
3.6875
4
[]
no_license
def RPS_game(): rock = 1 paper = 2 scissors = 3 player_1 = int((input("you are play1 , rock = 1, paper = 2, scissors = 3, please enter a number : "))) player_2 = int((input("you are play2 , rock = 1, paper = 2, scissors = 3, please enter a number : "))) if player_1 == player_2 : print("this game is even") elif player_1 <= 2 and player_2 <= 2 : if player_1 > player_2 : print(" Play1 won !") else : print("play2 won !") elif player_1 == 3 or player_2 == 3 : if player_1 == 1 : print("Play1 won !") elif player_2 == 2 : print("play1 Won!") else: print("Play2 won!") play_game = str(input("would you like to start the game ? Y/N ? ")) while play_game == "Y" or play_game == "y" : RPS_game() play_game = input("would you like to start the game again ? Y/N ? ")
true
b614d30d3186c88376489272c35db5aabb86b102
Python
kids-first/kf-lib-data-ingest
/kf_lib_data_ingest/validation/hierarchy.py
UTF-8
1,648
2.5625
3
[ "Apache-2.0" ]
permissive
from math import inf from graph import Graph # https://github.com/root-11/graph-theory from kf_lib_data_ingest.validation.default_hierarchy import DEFAULT_HIERARCHY def get_full_hierarchy(H=None): HIERARCHY = H if H is not None else DEFAULT_HIERARCHY # Make a faster lookup than HIERARCHY.nodes() ANCESTOR_LOOKUP = {n: HIERARCHY.nodes(n) for n in HIERARCHY.nodes()} # Find a hierarchy node without ancestors to use as a starting point, and # breadth-first crawl the hierarchy from there to create a decent ordering # for listing node counts # # (This is optional and could just be removed as unimportant later) _bidirectional = Graph() for a, b, _ in HIERARCHY.edges(): _bidirectional.add_edge(a, b, bidirectional=True) top = None for n, v in ANCESTOR_LOOKUP.items(): if not v: top = n break HIERARCHY_ORDER = list(_bidirectional.breadth_first_walk(top)) # Make a faster lookup than H.is_connected (also bakes in distance costs) # # (It doesn't matter that the edge weights in the hierarchy graph are arbitrary # cardinality enumerations and not actual distances. As long as the values are # all positive, the "cost" here will monotonically increase along the # hierarchy, which is all we care about.) HIERARCHY_PATHS = { source: { dest: cost for dest, cost in connected.items() if cost != inf and cost != 0 } for source, connected in HIERARCHY.all_pairs_shortest_paths().items() } return HIERARCHY, HIERARCHY_ORDER, HIERARCHY_PATHS, ANCESTOR_LOOKUP
true
44756735423df33703d4d7bff915bb2270e80541
Python
MarianDanaila/Competitive-Programming
/LeetCode_30days_challenge/2020/June/Power of Two.py
UTF-8
187
3.296875
3
[]
no_license
def isPowerOfTwo(n): while n % 2 == 0: n //= 2 if n == 1: return 1 else: return 0 """ # with bit manipulation return n > 0 and (n & (n-1) == 0) """
true
c6e6c39e05e1919ff8baf104a83bf0b12dd2fcac
Python
phamous2day/rpg_PythonExercises
/bubblesort.py
UTF-8
486
3.578125
4
[]
no_license
def bubbleSort(my_array): for pass_number in range(len(my_array)-1,0,-1): print "This is pass_number, round: %r" % pass_number for i in range(pass_number): if my_array[i]>my_array[i+1]: temp = my_array[i] my_array[i] = my_array[i+1] print "my_array[i] is %r" %(my_array[i]) my_array[i+1] = temp my_array = [54,26,93,17,77,31,44,55,20] bubbleSort(my_array) print(my_array)
true
4175c3e5992bef93a800da4b0546b73c74d1ab47
Python
lunkaleung/HackerRank
/Practice/Python/Arithmetic Operators/arithmetic_operators.py
UTF-8
194
3.59375
4
[ "MIT" ]
permissive
if __name__ == '__main__': a = int(input()) b = int(input()) if(a >= 1 and a <= 10**10) and (b >= 1 and b <= 10**10): print(a + b) print(a - b) print(a * b)
true
e6568f0dd0820e6faac88113d925e30ed7ba7bdc
Python
AWildDevAppears/Porcupine
/constants/config.py
UTF-8
548
2.609375
3
[]
no_license
from tkinter import filedialog from yaml import load class Config: CONFIG_ROOT_PATH = './Dataset' CONFIG_OUT_PATH = './out' @staticmethod def load_config(): filename = filedialog.askopenfile(filetypes=('Config file', '*.yml')) if filename: config = load(open(filename, 'r')) if 'CONFIG_ROOT_PATH' in config: Config.CONFIG_ROOT_PATH = config['CONFIG_ROOT_PATH'] if 'CONFIG_OUT_PATH' in config: Config.CONFIG_OUT_PATH = config['CONFIG_OUT_PATH']
true
7664d3a5141dd1804e63a583e9cd6f31ab420a64
Python
jlopez1423/python-crash-course-tutorials
/chapter-4-exercises/animals.py
UTF-8
302
4.6875
5
[]
no_license
# Animals think of three animals that have a common characteristics. # Use a for loop to print them out animals = ['wolves', 'foxes', 'dogs'] for animal in animals: print("A " + animal + " would make a great pet.") print("Any of these animals would make a great pet") print("I think, maybe not.")
true
35869cfd0a88c49baf8cd8ace010564daad9a52f
Python
talhaHavadar/ProjectChelonoidis
/sensorkit/motorcontrol_test.py
UTF-8
1,359
2.6875
3
[ "MIT" ]
permissive
from RPi import GPIO as io from sensorkit.UltrasonicHCSR04 import UltrasonicHCSR04 from sensorkit.MotorControl_L298N import MotorControl_L298N mcontrol = MotorControl_L298N(input_pin0=17, input_pin1=27, enable_pin=22) while(True): command = raw_input("Give a command(up, down, stop, forward, backward): ") if command == "up": mcontrol.setSpeed(100) elif command == "down": mcontrol.setSpeed(50) elif command == "forward": mcontrol.forward() elif command == "backward": mcontrol.backward() elif command == "stop": mcontrol.stop() break; mcontrol.cleanup() """ import time import threading input0 = 17 input1 = 27 enable = 22 io.setmode(io.BCM) io.setup(input0, io.OUT) io.setup(input1, io.OUT) io.setup(enable, io.OUT) pwm = io.PWM(enable, 100) dc = 30.0 pwm.start(30) while(True): command = raw_input("Give a command(up, down, stop, forward, backward): ") if command == "up": dc += 10 pwm.ChangeDutyCycle(dc) elif command == "down": dc -= 10 pwm.ChangeDutyCycle(dc) elif command == "forward": io.output(input0, True) io.output(input1, False) elif command == "backward": io.output(input0, False) io.output(input1, True) elif command == "stop": break; pwm.stop() io.cleanup() """
true
79abb3ac17b67272d36723bf3139c2972f78b1ee
Python
RensZ/thesis2
/Python/SEPPartialUnitTest.py
UTF-8
4,902
2.75
3
[]
no_license
def CentralGravity(mu, position): return -mu * position / (np.linalg.norm(position)**Decimal(3.0)) def SEPcorrection(mu, r_1, r_2, dr): r_1_c = r_1 + dr r_12 = r_2 - r_1 r_12_c = r_2 - r_1_c a = CentralGravity(mu, r_12) a_c = CentralGravity(mu, r_12_c) # print("a_c: ", a_c) # print("a: ", a) # print("dif: ", a_c-a) return a_c - a def PartialWrtPosition(mu, r_1, r_2, dr): r_1_c = r_1 + dr r_12 = r_2 - r_1 r_12_c = r_2 - r_1_c d_12 = np.linalg.norm(r_12) d_12_c = np.linalg.norm(r_12_c) p1 = Decimal(3.0) * np.outer(r_12, r_12_c.T) / d_12_c**5 p2 = Decimal(-3.0) * np.outer(dr, r_12_c.T) / d_12_c**5 p3 = Decimal(-3.0) * np.outer(r_12, r_12.T) / d_12**5 p4 = np.dot(( Decimal(1.0) / d_12**3 - Decimal(1.0) / d_12_c**3 ), np.identity(3, dtype=Decimal)) return -mu*(p1+p2+p3+p4) def PartialWrtMu(mu, r_1, r_2, dr, acc): r_1_c = r_1 + dr r_12 = r_2 - r_1 r_12_c = r_2 - r_1_c d_12 = np.linalg.norm(r_12) d_12_c = np.linalg.norm(r_12_c) p1 = acc/mu p2a = np.identity(3, dtype=Decimal) / (d_12_c**3) p2b = Decimal(3.0) * np.outer(r_12_c, r_12_c.T) / (d_12_c**5) p2 = np.matmul((p2a - p2b), dr) # print("p1 \n", p1) # print("p2a \n", p2a) # print("p2b \n", p2b) # print("p2 \n", p2) return p1 - p2 # c = dr / mu # # p1 = r_12_c / (d_12_c**3) # p2 = Decimal(3.0) * np.dot(r_12_c.T, r_12_c) * c / (mu * d_12_c**5) # p3 = c / (mu * d_12_c**3) # p4 = r_12 / d_12**3 # return -p1 + p2 - p3 + p4 def PartialWrtEta(mu, r_1, r_2, dr, n): c = dr / n r_1_c = r_1 + c*n r_12 = r_2 - r_1 r_12_c = r_2 - r_1_c d_12 = np.linalg.norm(r_12) d_12_c = np.linalg.norm(r_12_c) # p1 = -mu * c / (d_12_c**3) # p2 = Decimal(3.0) * mu * np.dot(r_12_c.T, r_12_c) * c / (d_12_c**5) brackets1 = np.identity(3, dtype=Decimal) / (d_12_c**3) brackets2 = Decimal(3.0) * np.outer(r_12_c, r_12_c.T) / (d_12_c**5) partial = mu * np.matmul( (brackets1 - brackets2) , dr) / n return partial def CentralDifferenceWrtPos(p, mu, r_1, r_2, dr): p_x = np.asarray([p, Decimal(0.0), Decimal(0.0)]) p_y = np.asarray([Decimal(0.0), p, Decimal(0.0)]) p_z = np.asarray([Decimal(0.0), Decimal(0.0), p]) cd_x = (SEPcorrection(mu, r_1 + p_x, r_2, dr) - SEPcorrection(mu_S, r_1 - p_x, r_2, dr)) / ( Decimal(2.0) * p) cd_y = (SEPcorrection(mu, r_1 + p_y, r_2, dr) - SEPcorrection(mu_S, r_1 - p_y, r_2, dr)) / ( Decimal(2.0) * p) cd_z = (SEPcorrection(mu, r_1 + p_z, r_2, dr) - SEPcorrection(mu_S, r_1 - p_z, r_2, dr)) / ( Decimal(2.0) * p) return np.vstack([cd_x, cd_y, cd_z]) def CentralDifferenceWrtMu(p, mu, r_1, r_2, dr): dr_up = dr*mu/(mu+p) dr_down = dr*mu/(mu-p) # print(dr, dr_up, dr_down) cd = (SEPcorrection(mu + p, r_1, r_2, dr_up) - SEPcorrection(mu_S - p, r_1, r_2, dr_down)) / ( Decimal(2.0) * p) return cd def CentralDifferenceWrtEta(p, mu, r_1, r_2, dr, n): dr_up = dr*(n+p)/n dr_down = dr*(n-p)/n cd = (SEPcorrection(mu, r_1, r_2, dr_up) - SEPcorrection(mu_S, r_1, r_2, dr_down)) / ( Decimal(2.0) * p) return cd import numpy as np from decimal import * getcontext().prec = 33 mu_test = 1.32712440041939e+20 mu_S = Decimal(1.32712440041939e+20) r_S = np.asarray(([Decimal(-1058202435.85883), Decimal(-407616171.803058) , Decimal(-143292503.024126) ])) r_M = np.asarray([Decimal(17776989161.8444), Decimal(-56861189168.2378), Decimal(-32252099174.0247) ]) dr_SEP_nvfalse = np.asarray([Decimal(2.92724249666266), Decimal(2.33826700072565), Decimal(0.898587531648646) ]) dr_SEP_nvtrue = np.asarray([Decimal(0.390298999555446), Decimal(0.311768933430425), Decimal(0.119811670886616) ]) dr_SEP = dr_SEP_nvfalse da = SEPcorrection(mu_S, r_S, r_M, dr_SEP) p_pos = Decimal(1000.0) cd_pos = CentralDifferenceWrtPos(p_pos, mu_S, r_S, r_M, dr_SEP) partial_pos = PartialWrtPosition(mu_S, r_S, r_M, dr_SEP) print("central difference wrt position: \n", cd_pos) print("partial wrt position: \n", partial_pos) print("partial - central difference wrt position: \n", partial_pos-cd_pos) # p_mu = Decimal(1E19) # cd_mu = CentralDifferenceWrtMu(p_mu, mu_S, r_S, r_M, dr_SEP) # partial_mu = PartialWrtMu(mu_S, r_S, r_M, dr_SEP, da) # # print("central difference wrt mu: \n", cd_mu) # print("partial wrt mu: \n", partial_mu) # print("partial - central difference wrt mu: \n", partial_mu-cd_mu) # p_eta = Decimal(1.0E-4) # eta = Decimal(1.0E-3) # cd_eta = CentralDifferenceWrtEta(p_eta, mu_S, r_S, r_M, dr_SEP, eta) # partial_eta = PartialWrtEta(mu_S, r_S, r_M, dr_SEP, eta) # # print("central difference wrt eta: \n", cd_eta) # print("partial wrt eta: \n", partial_eta) # print("partial - central difference wrt eta: \n", partial_eta-cd_eta)
true
8d09a4f09ed64fab80ca676606caab3914f1b3fa
Python
shakyasaijal/Google-Foobar-Challenge
/re-id.py
UTF-8
316
3.203125
3
[]
no_license
def solution(n): if n < 0 or n > 10000: return 0 prime_numbers = "" for x in range(1, n+100): if x > 1: for i in range(2, x): if(x % i == 0): break else: prime_numbers += str(x) return prime_numbers[n:n+5]
true
d2771a78f19f1519e906b8e00897f4316c67d0a0
Python
Torlinski/football-modelling
/soccermatics/tracking/lecture4_5.py
UTF-8
1,387
2.6875
3
[ "MIT" ]
permissive
#!/usr/bin/env python # coding: utf-8 # In[1]: import Metrica_IO as mio import Metrica_Viz as mviz import Metrica_Velocities as mvel import matplotlib.pyplot as plt import numpy as np import pandas as pd import os # In[2]: # set up initial path to data WORKING_DIR = os.getcwd() BASE_DIR = os.path.dirname(os.path.dirname(WORKING_DIR)) DATA_DIR = os.path.join(BASE_DIR, 'data/metrica/data') DATADIR = DATA_DIR game_id = 2 # let's look at sample match 2 # read in the event data events = mio.read_event_data(DATADIR,game_id) # read in tracking data tracking_home = mio.tracking_data(DATADIR,game_id,'Home') tracking_away = mio.tracking_data(DATADIR,game_id,'Away') # Convert positions from metrica units to meters (note change in Metrica's coordinate system since the last lesson) tracking_home = mio.to_metric_coordinates(tracking_home) tracking_away = mio.to_metric_coordinates(tracking_away) events = mio.to_metric_coordinates(events) # reverse direction of play in the second half so that home team is always attacking from right->left tracking_home,tracking_away,events = mio.to_single_playing_direction(tracking_home,tracking_away,events) # In[4]: # Making a movie of the second home team goal PLOTDIR = DATADIR mviz.save_match_clip(tracking_home.iloc[73600:73600+500],tracking_away.iloc[73600:73600+500],PLOTDIR,fname='home_goal_2',include_player_velocities=False)
true
24e4e957f336cb5ade09877013db83792dcdafbf
Python
MirandaKoubi/School_Projects
/A_Star_Project/mrk3865_astar_project.py
UTF-8
9,929
3.9375
4
[]
no_license
#Name: Miranda Koubi #CLID: mrk3865 #Class: CMPS 420 Spring 2015 #Due Date: February 20, 2015 at 10:00 am #Project: #1 8-Puzzle Solver using A* Algorithm #Assignment: #Implement a program that solves an 8-puzzle using the A* shortest path algorithm. import heapq import time startInput = " " goalInput = " " class Board: def __init__(self, state, parent): #self.state equals an empty 3x3 array self.state = [[0 for x in range (3)] for x in range (3)] #fills the self.state array with the values passed in from state for i in range(3): for j in range(3): self.state[i][j] = state[i][j] self.manhattan() self.setParent(parent) self.name = self.toString() #converts states to strings for comparisons def toString(self): string = "" for i in range(3): for j in range(3): string += self.state[i][j] return string def setParent(self, parent): self.g = 0 self.f = 0 self.parent = parent #sets the g value of the current state to the g value of its parent + 1 if parent: self.g = parent.g + 1 #the f value is the g value plus the h value self.f = self.h + self.g #calculate the distance from where a tile is to where it should be def manhattan(self): distance = 0 for i in range(3): for j in range(3): if goal[i][j] != "0": #get location of where that tile ([i][j]) should be in the goal state location = self.getTile(goal[i][j]) distance += abs(location[0] - i) + abs(location[1] - j) self.h = distance #takes a tile and gets where it is on the board def getTile(self, tile): #iterates through self.state and finds where tile is located for i in range(3): for j in range(3): if self.state[i][j] == tile: return (i,j) def __eq__(self, other): #does this board position equal other #comparison of two states #overlaod equals operator return self.name == other.name def __ne__(self, other): #does this board position not equal other? #overload not equals operator return not self == other def __lt__(self, other): return self.f < other.f def __gt__(self, other): return self.f > other.f def __le__(self, other): return self.f <= other.f def __ge__(self, other): return self.f >= other.f def getNeighbors(self): neighbors = [] #get tuple where 0 is located spaceJam = self.getTile("0") a = spaceJam[0] b = spaceJam[1] if spaceJam[0] > 0: #create an empty matrix for neighborState neighborState = [[0 for x in range (3)] for x in range (3)] #fill the neighborState will indicies from self.state for i in range(3): for j in range(3): neighborState[i][j] = self.state[i][j] #swicth the space's position from where it is in self.state to one to the left in neighbior temp = neighborState[a][b] neighborState[a][b] = neighborState[a-1][b] neighborState[a-1][b] = temp #create a new board out of this neighbor newNeighbor = Board(neighborState, self) #add the neighbor to the list of possible neighbors neighbors.append(newNeighbor) if spaceJam[0] < 2: #create an empty matrix for neighborState neighborState = [[0 for x in range (3)] for x in range (3)] #fill the neighborState will indicies from self.state for i in range(3): for j in range(3): neighborState[i][j] = self.state[i][j] #swicth the space's position from where it is in self.state to one to the right in neighbior temp = neighborState[a][b] neighborState[a][b] = neighborState[a+1][b] neighborState[a+1][b] = temp #create a new board out of this neighbor newNeighbor = Board(neighborState, self) #add the neighbor to the list of possible neighbors neighbors.append(newNeighbor) if spaceJam[1] > 0: #create an empty matrix for neighborState neighborState = [[0 for x in range (3)] for x in range (3)] #fill the neighborState will indicies from self.state for i in range(3): for j in range(3): neighborState[i][j] = self.state[i][j] #swicth the space's position from where it is in self.state to one below in neighbior temp = neighborState[a][b] neighborState[a][b] = neighborState[a][b-1] neighborState[a][b-1] = temp #create a new board out of this neighbor newNeighbor = Board(neighborState, self) #add the neighbor to the list of possible neighbors neighbors.append(newNeighbor) if spaceJam[1] < 2: #create an empty matrix for neighborState neighborState = [[0 for x in range (3)] for x in range (3)] #fill the neighborState will indicies from self.state for i in range(3): for j in range(3): neighborState[i][j] = self.state[i][j] #swicth the space's position from where it is in self.state to one to the left in neighbior temp = neighborState[a][b] neighborState[a][b] = neighborState[a][b+1] neighborState[a][b+1] = temp #create a new board out of this neighbor newNeighbor = Board(neighborState, self) #add the neighbor to the list of possible neighbors neighbors.append(newNeighbor) #return list of neighbors return neighbors def printBoard(self): #print board as a matrix for row in self.state: for column in row: print(column if column != "0" else " ", end=" ") print(end="\n") print(" ") def isSolvable(startInput, goalInput): #have list of start and list of goal #if what is before the current index in start is after the current index in goal #then it is an inversion inversions = 0 #turn the start and goal inputs into lists startList = list(startInput) goalList = list(goalInput) #remove 0 from both lists, since 0 is not counted when determining solvability goalList.remove("0") startList.remove("0") #loop through elements in list for i in range(8): goalIndex = goalList.index(startList[i]) #splice the start list and goal lists from where i is in both startSplice = startList[0:i] goalSplice = goalList[goalIndex + 1:8] #whatever is in both the startSplice and goalSplice is an inversion and is added to inversions inversions += len(set(startSplice) & set(goalSplice)) #if there are an even number of inversions, return True and the puzzle is solvable #if there are an odd number of inversions, return False and the puzzle is not solvable if (inversions % 2 == 0): return True else: return False #A* algorithm def puzzleMaster(): startTime = time.time() startState = Board(start, None) goalState = Board(goal, None) open = [] closed = [] path = [] #puts the start state into the heap heapq.heappush(open, startState) count = 0 while (open != []): currentState = heapq.heappop(open) if currentState == goalState: #return path from start to currentState path.append(currentState) while currentState.parent: path.append(currentState.parent) currentState = currentState.parent path.reverse() for i in path: i.printBoard() print("Solution Found!") print(" ") print("Solution was found in " + str(count) + " state examinations.") print("Number of moves: " + str(len(path) - 1)) print("Solution found in about " + str(int(time.time() - startTime)) + " seconds.") print(" ") return path else: children = currentState.getNeighbors() for child in children: if child in open: #if this state already exists in the open list #check the g values of the two states to see which one is shorter #if the current state's path is shorter, assign the shorter to open #assign open's parent to be the current state openState = open[open.index(child)] if currentState.g + 1 < openState.g: openState.setParent(currentState) open.sort() elif child in closed: # print("Found in closed!") closedIndex = closed.index(child) closedState = closed[closedIndex] if currentState.g + 1 < closedState.g: closed.pop(closedIndex) heapq.heappush(open, child) else: # print("Found in neither!") count += 1 heapq.heappush(open, child) closed.append(currentState) return None def main(): print("This is a program that solves the 8-puzzle problem. The input is two strings of non-repeating numbers. One for the start state, and one for the goal state. 0 represents the open space in the puzzle.") print("example:012345678 is a possible start state, and 876543210 is a possible goal state. Not every puzzle will have a solution.") print(" ") correctInput = False correctStart = False correctGoal = False #checks to make sure input is valid while (correctInput != True): startInput = input("Start State (numbers 0-8, 0 for empty space): ") goalInput = input("Goal State (numbers 0-8, 0 for empty space): ") if startInput.isnumeric() == False or '0' not in startInput or '9' in startInput or len(startInput) != 9 or len(startInput) != len(set(startInput)): print ("Invalid Start State.") else: correctStart = True if goalInput.isnumeric() == False or '0' not in goalInput or '9' in goalInput or len(goalInput) != 9 or len(goalInput) != len(set(goalInput)): print ("Invalid Goal State.") else: correctGoal = True if correctStart == True and correctGoal == True: correctInput = True global start global goal #list(start) start = [[startInput[0], startInput[1], startInput[2]], [startInput[3], startInput[4], startInput[5]], [startInput[6], startInput[7], startInput[8]]] #list(goal) goal = [[goalInput[0], goalInput[1], goalInput[2]], [goalInput[3], goalInput[4], goalInput[5]], [goalInput[6], goalInput[7], goalInput[8]]] #if the board given is valid and the puzzle is solvable, runs the puzzle solver if isSolvable(startInput, goalInput): puzzleMaster() else: print("Puzzle is not solvable.") input('Press ENTER to exit') main()
true
179e0f43caceff1928c95f82a21534568e1d92c3
Python
nv-jeff/pytorch
/torch/utils/data/webdataset/bench.py
UTF-8
3,102
2.765625
3
[ "BSD-3-Clause", "BSD-2-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
import argparse import time from collections import Counter import itertools as itt from . import dataset, loader, filters description = """Check validity of dataset and measure I/O speed. This command lets you quickly check whether a WebDataset is valid (i.e., has no repeated keys, which happens if you accidentally store the files unsorted). It will also compute I/O speeds in terms of samples per second and bytes per second, letting you check and compare loader speeds for different storage devices and preprocessing optinos. For testing I/O pipeline performance, using the `-l` option, you can load an arbitrary `.py` file that contains a function definition for `make_dataset(url)`. By default, this only loads up to 1000 samples; you can adjust this number with the `-c` argument; `-c -1` means loading all samples in every shard. Examples: python -m torch.utils.data.webdataset.bench -c 100 'pipe:gsutil cat gs://nvdata-ytsamples/yt8m-clips-000000.tar' python -m torch.utils.data.webdataset.bench -c 100 'pipe:curl -s -L https://storage.googleapis.com/nvdata-ytsamples/yt8m-clips-000000.tar' """ class TotalSize: """Estimate the total size and count of data records.""" def __init__(self): self.count = 0 self.total = 0 def __call__(self, sample): self.count += 1 self.total += sum(len(x) for x in sample.values()) return sample def main(args): for shard in args.shards: print() print("===", shard) totals = TotalSize() if args.load != "": dsmod = loader.load_file("dsmod", args.load) ds = dsmod.make_dataset(shard) ds.pipeline = ds.pipeline[:1] + [filters.map(totals)] + ds.pipeline[1:] else: ds = dataset.Dataset(shard) ds.map(totals) keys = set() skeys = Counter() delta = None start = None for i, sample in itt.islice(enumerate(ds), 1, 1 + args.count): assert sample["__key__"] not in keys, "bad shard: detected duplicate keys" if i == 1: start = time.time() keys = tuple(sorted(set(sample.keys()))) skeys.update([keys]) delta = time.time() - start print() print(f"#samples/sec: {totals.count/delta:15.2f}") print(f"#bytes/sec: {totals.total/delta:15.2f}") print() print("sample types:") stats = list(skeys.most_common()) for key, count in stats: print(f"{count:9d} {key}") if len(stats) > 1: print() print("WARNING: multiple different sample types found") print() if __name__ == "__main__": parser = argparse.ArgumentParser( description=description, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("-c", "--count", type=int, default=1000) parser.add_argument("-l", "--load", default="") parser.add_argument("shards", nargs="+") args = parser.parse_args() if args.count < 0: args.count = 999999999 main(args)
true
753c58d288e7e7af809ee50b07f428ec106df23c
Python
marmute360/Python-Exercises
/calculando lanches.py
UTF-8
522
3.390625
3
[]
no_license
print("==============================================") print("=== Calculando lanches ===") print("==============================================") Cod100 = float(input("PRODUTO CÓD. 100 (Preço Unitário: R$ 5,30), informe a quantidade: ")) Cod101 = float(input("PRODUTO CÓD. 101 (Preço Unitário: R$ 6,00), informe a quantidade: ")) Cod102 = float(input("PRODUTO CÓD. 102 (Preço Unitário: R$ 3,20), informe a quantidade: ")) print("Total do lanche: ",(Cod100*5.3)+(Cod101*6)+(Cod102*3.2))
true
17448f77bdf640daf166670dda0ebe83c0ee2f6c
Python
gzgdouru/python_study
/python3_cookbook/chapter06/demo09.py
UTF-8
261
3.203125
3
[]
no_license
''' 编码和解码十六进制数 ''' import binascii import base64 if __name__ == "__main__": s = b"hello" h = binascii.b2a_hex(s) print(h) print(binascii.a2b_hex(h)) h = base64.b16encode(s) print(h) print(base64.b16decode(h))
true
f72d148b55fce2aad537160681650a40aec6d7d5
Python
softmaxhuanchen/optimal-double-execution
/src/data/gbm.py
UTF-8
1,045
2.890625
3
[ "MIT" ]
permissive
import numpy as np from .base import Price class GBM(Price): """Brownian motion.""" def __init__(self, T=1., sigma1=0.02, sigma2=0.01, s1=1., s2=1., drift1=0., drift2=0., n=100): self.sigma1 = sigma1 self.sigma2 = sigma2 self.drift1 = drift1 self.drift2 = drift2 self.n = n self.s1 = s1 self.s2 = s2 self.T = T def generate(self): dt1 = self.sigma1 ** 2 * self.T / self.n dt2 = self.sigma2 ** 2 * self.T / self.n bm1 = np.r_[[0.], np.sqrt(dt1) * np.random.randn(self.n - 1).cumsum()] bm2 = np.r_[[0.], np.sqrt(dt2) * np.random.randn(self.n - 1).cumsum()] path = np.c_[np.linspace(0, self.T, self.n), bm1, bm2] path[:, 1] = np.exp((self.drift1 - self.sigma1 ** 2 / 2.) * path[:, 0] + self.sigma1 * path[:, 1]) path[:, 2] = np.exp((self.drift2 - self.sigma2 ** 2 / 2.) * path[:, 0] + self.sigma2 * path[:, 2]) path[:, 1] *= self.s1 path[:, 2] *= self.s2 return path
true
188e8b1f947bd45afa4564af5dffbc3f575bf165
Python
raywiis/advent-of-code-2020
/src/day-17.py
UTF-8
2,975
3.171875
3
[]
no_license
from itertools import product from collections import defaultdict f = open('./day-17-problem.txt') start = [list(line) for line in f.read().splitlines()] def count_activated_around(a, pos, directions): x, y, z = pos return sum([ 1 for d in directions if a[(x + d[0], y + d[1], z + d[2])] == '#' ]) def show(a, dx, dy, dz): for z in range(-dz, dz + 1): print('\n\n', z) for y in range(-dy, dy + 1): line = [] for x in range(-dx, dx + 1): pos = (x, y, z) line += [a[pos]] print(''.join(line)) def iterate(start, to, dx, dy, dz, directions): for z in range(-dz, dz + 1): for y in range(-dy, dy + 1): for x in range(-dx, dx + 1): pos = (x, y, z) activated = count_activated_around(start, pos, directions) if activated == 3: to[pos] = '#' elif activated == 2 and start[pos] == '#': to[pos] = '#' else: to[pos] = '.' def count_activated_around_4(a, pos, directions): x, y, z, w = pos return sum([ 1 for d in directions if a[(x + d[0], y + d[1], z + d[2], w + d[3])] == '#' ]) def iterate_4(start, to, dx, dy, dz, dw, directions): for w in range(-dw, dw + 1): for z in range(-dz, dz + 1): for y in range(-dy, dy + 1): for x in range(-dx, dx + 1): pos = (x, y, z, w) activated = count_activated_around_4( start, pos, directions) if activated == 3: to[pos] = '#' elif activated == 2 and start[pos] == '#': to[pos] = '#' else: to[pos] = '.' def part_1(start): directions = list(product([0, -1, 1], repeat=3))[1:] a = defaultdict(lambda: '.') b = defaultdict(lambda: '.') for y, line in enumerate(start): for x, char in enumerate(line): a[(x, y, 0)] = char dx, dy, dz = len(start[0]), len(start), 1 for _ in range(6): iterate(a, b, dx, dy, dz, directions) a, b = b, a dx += 1 dy += 1 dz += 1 return len(list(filter(lambda v: v == '#', a.values()))) def part_2(start): directions = list(product([0, -1, 1], repeat=4))[1:] a = defaultdict(lambda: '.') b = defaultdict(lambda: '.') for y, line in enumerate(start): for x, char in enumerate(line): a[(x, y, 0, 0)] = char dx, dy, dz, dw = len(start[0]), len(start), 1, 1 for _ in range(6): iterate_4(a, b, dx, dy, dz, dw, directions) a, b = b, a dx += 1 dy += 1 dz += 1 dw += 1 return len(list(filter(lambda v: v == '#', a.values()))) print(part_1(start)) print(part_2(start))
true
d8bf2d28d4e731fd1af23e40cdfd27fee2740480
Python
lizenghui1121/DS_algorithms
/剑指offer/09.链表中倒数第k个节点.py
UTF-8
798
3.3125
3
[]
no_license
""" 输出链表中倒数第K个节点 @Author: Li Zenghui @Date: 2020-03-03 16:06 """ class Solution: def FindKthToTail(self, head, k): # write code here if head is None or k==0: return None length = 0 r = head while r: r = r.next length += 1 if k > length: return None p = head q = head for i in range(k-1): q = q.next while q.next is not None: p = p.next q = q.next return p class Solution2: def FindKthToTail(self, head, k): # write code here l=[] while head!=None: l.append(head) head=head.next if k>len(l) or k<1: return return l[-k]
true
135122eef70e3b207a1f2799128447ead6103565
Python
smachage2019/edoc-stuff
/time-freq.py
UTF-8
8,270
3.4375
3
[]
no_license
# # Analysis of harmonics # # The idea behind this script is to explore the data series for seasonal trends, using a # fourier decomposition of the time series, aggregated by climatic seasons (resampled and sliced # every 3 months). # # The analysis goes as follows: # # - Loading the data # - Filling the gaps # - Resampling at different scales (3 months, 6 months, 1 and 4 years) # - Slicing the data by seasons # - Applying the Fourier transform over each of the seasonal data # - Filtering out minor frequencies (below 500 in the power spectrum) # - Recomposing the original series only with the major frequency # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from numpy.fft import fft, ifft # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # Any results you write to the current directory are saved as output. # Import data global_temp = pd.read_csv('../input/GlobalTemperatures.csv', index_col='dt', parse_dates=True) # Fill the gaps in the series global_temp.fillna(method='ffill') # Skip the first years and start the series at the beginning of spring, # so seasonal variations can be captured global_temp = global_temp['1753-03-21':] # Plot initial data plt.figure(figsize=(15,4)) global_temp['LandAverageTemperature'].plot() plt.grid() plt.show() # # Data resampling # Resample the series and visualise at different scales plt.figure(figsize=(15,16)) # Seasonal seasonal_temp = global_temp.resample('3M', how='mean') plt.subplot(4,1,1) seasonal_temp['LandAverageTemperature'].plot() plt.ylim([0,18]) plt.grid() # half year bi_seasonal_temp = global_temp.resample('6M', how='mean') plt.subplot(4,1,2) bi_seasonal_temp['LandAverageTemperature'].plot() plt.ylim([0,18]) plt.grid() # Yearly year_temp = global_temp.resample('A', how='mean') plt.subplot(4,1,3) year_temp['LandAverageTemperature'].plot() plt.ylim([0,18]) plt.grid() # 4-Yearly year_4_temp = global_temp.resample('4A', how='mean') plt.subplot(4,1,4) year_4_temp['LandAverageTemperature'].plot() plt.ylim([0,18]) plt.grid() plt.show() # # Explore autocorrelation of the time series (at motnhly scale) ## eplore the autocorrelation of temperature data lat = np.array(global_temp['LandAverageTemperature']) # detrend the seasonal data by removing the average det_lat = lat - np.average(lat) # Get correlogram for 24 seasons (2 years) seasonal_correlogram = [1.0, ] seasonal_correlogram.extend([np.corrcoef(det_lat[:-i], det_lat[i:])[0, 1] for i in range(1, 25)]) plt.plot(seasonal_correlogram) plt.grid() plt.xlabel('Periods [Months]') plt.ylabel('Correlation') plt.title('Autocorrelation') plt.show() ## Therefore cold winters are followed by hot summers, or hot summer followed by cold winters # # Slicing data into seasons # Analysing seasonal changes over time seasonal_lat = np.array(seasonal_temp['LandAverageTemperature']) # Parse into stations spring = seasonal_lat[::4] summer = seasonal_lat[1::4] fall = seasonal_lat[2::4] winter = seasonal_lat[3::4] plt.figure(figsize=(12,3)) ax = plt.subplot(1,1,1) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) plt.plot(spring, label='Spring') plt.plot(summer, label='Summer') plt.plot(fall, label='Fall') plt.plot(winter, label='Winter') plt.xlim([0, len(summer)]) plt.grid() plt.xlabel('Year') plt.ylabel('Average Temperature [C]') plt.legend(bbox_to_anchor=(1.18, 1.04)) # # Preparing data for trend analysis over each season # # The data is detrended using a mean filter (basically removing the mean value for each of the series), # to later apply a fft transform of the detrended data. # Seasonal analysis seasons = [spring, summer, fall, winter] seasons_string = ['spring', 'summer', 'fall', 'winter'] # Detrend for each of the seasons seasons_average = [np.average(season) for season in seasons] seasons_det = [seasons[i] - seasons_average[i] for i in range(len(seasons))] plt.figure(figsize=[12,6]) plt.subplot(2,1,1) [plt.plot(seasons_det[i], label=seasons_string[i]) for i in range(len(seasons))] plt.ylabel('Centered Temperature') plt.grid() plt.xlim([0, len(seasons_det[0])]) ## do the regression analysis # Get the fourier coefficients seasons_fft = [fft(season) for season in seasons_det] # Get the power spectrum seasons_ps = [np.abs(season)**2 for season in seasons_fft] plt.subplot(2,1,2) [plt.plot(seasons_ps[i], label=seasons_string[i]) for i in range(len(seasons))] plt.xlabel('Frequency [Months]') plt.ylabel('Power spectrum') plt.xlim([0, 30]) plt.grid() plt.show() # # Filter frequencies in the low part of the power spectrum and re-construct the series # # A filter in the value of 500 of the power spectrum was set. In other words, if the value # of the power spectrum is below this threshold, it will be set to 0. this will allow to focus # on the signal of the data, instead that in the fluctuations that comes from the randomness of # the process and the measurements. # # The selection of the 500 threshold was arbitrary and of course is open for debate. ## Clean each of the time series in the seasons by selecting such that the power spectrum is higher than 500 clean_seasons_ps = seasons_ps[:] clean_seasons_ps = [[seasons_fft[season_i][year_i] if seasons_ps[season_i][year_i] > 500 else 0 for year_i in range(len(seasons_fft[0]))] for season_i in range(len(seasons_ps))] plt.figure(figsize=[12,9]) plt.subplot(3,1,1) plt.plot(np.transpose(clean_seasons_ps)) plt.xlim([0, 30]) plt.grid() ## redraw the series only with significant harmonics seasons_series_clean = [np.real(ifft(serie)) for serie in clean_seasons_ps] plt.subplot(3,1,2) [plt.plot(seasons_series_clean[i], label=seasons_string[i]) for i in range(len(seasons))] plt.xlim([0, len(seasons_det[0])]) plt.legend(bbox_to_anchor=(1.18, 1.04)) plt.grid() ## put the trend back into the dataset seasonal_trends = [seasons_series_clean[i] + seasons_average[i] for i in range(len(seasons))] plt.subplot(3,1,3) [plt.plot(seasonal_trends[i], label=seasons_string[i]) for i in range(len(seasons))] plt.xlim([0, len(seasons_det[0])]) plt.legend(bbox_to_anchor=(1.18, 1.04)) plt.grid() plt.show() # # Results and conclusions # # From the analysiis it can be seen that indeed there seems to be a trend in the # last 150 years (from year 100 and forth) to increment the average temperature in # each season. # # Seems that the average temperature in spring is more variable thatn the rest of the # seasons, however one of the main harmonics of the series seem to reveal that the # large temperature fluctations in the winter are consistent with the main variations # of temperature in the winter. This appear to occur in a 25-30 years cycles at the # beggining of the series, and in 18-20 years cycles at the end of the series # (industrialisation perhaps?). # # On the contrary, oscilations in the fall are far more stable, indicating more stable # patterns. Therefore, we migh think on using average fall temperature as an indicator # of the Land Average Temperature (LAM), in the detection of long term variations of temperature. # # Also is interesting to see how the trends between winter and summer have appear to change # in the latter 150 years. In the first period, summer and winter appear to have similar # trends, as cold winters lead to cold summers, however this trend seem to change in the # second period, especially towards the end, in which an inversion is found, for which cold winters # seem to be paired up with warm summers. Looks like the weather may be changing indeed.
true
d42822f15489a3931726cf50f055ea095e0654bd
Python
one3chens/cloudpunch
/cloudpunch/slave/ping.py
UTF-8
2,813
2.546875
3
[ "GPL-2.0-only", "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
import re import subprocess import logging import collections import time from threading import Thread class CloudPunchTest(Thread): def __init__(self, config): self.config = config self.final_results = [] super(CloudPunchTest, self).__init__() def run(self): try: default_config = { 'ping': { 'target': 'google.com', 'duration': 10 } } self.merge_configs(default_config, self.config) self.config = default_config self.runtest() except Exception as e: # Send exceptions back to master logging.error('%s: %s', type(e).__name__, e.message) self.final_results = '%s: %s' % (type(e).__name__, e.message) def runtest(self): # Configuration setup target = self.config['match_ip'] if self.config['server_client_mode'] else self.config['ping']['target'] duration = str(self.config['ping']['duration']) results = [] logging.info('Starting ping command to server %s for %s seconds', target, duration) ping = subprocess.Popen(['ping', '-c', duration, target], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for line in iter(ping.stdout.readline, ''): latency = re.findall(r'time=(\d+\.\d+)', line) now = time.time() if latency: latency = float(latency[0]) # Over time results if self.config['overtime_results']: self.final_results.append({ 'time': now, 'latency': latency }) # Summary results else: results.append(latency) # Ping failed elif 'Request timeout' in line and self.config['overtime_results']: self.final_results.append({ 'time': now, 'latency': 0 }) ping.stdout.close() # Send back summary if not over time if not self.config['overtime_results']: try: self.final_results = { 'latency': sum(results) / len(results) } except ZeroDivisionError: self.final_results = { 'latency': -1 } def merge_configs(self, default, new): for key, value in new.iteritems(): if (key in default and isinstance(default[key], dict) and isinstance(new[key], collections.Mapping)): self.merge_configs(default[key], new[key]) else: default[key] = new[key]
true
4fbfc79d1b48d651282d6a6d513ec28182620be3
Python
KotR9001/sqlalchemy-challenge
/Python Files/app.py
UTF-8
13,184
3.03125
3
[]
no_license
#########Climate App #####Re-Enter Code From Jupyter Notebook from matplotlib import style style.use('fivethirtyeight') import matplotlib.pyplot as plt import numpy as np import pandas as pd import datetime as dt import time ###Reflect Tables into SQLAlchemy ORM # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func #Method to Resolve Thread Issue Found on https://stackoverflow.com/questions/48218065/programmingerror-sqlite-objects-created-in-a-thread-can-only-be-used-in-that-sa/51147168 engine = create_engine("sqlite:///C:/Users/bjros/OneDrive/Desktop/KU_Data_Analytics_Boot_Camp/Homework Assignments/Homework Week 10/sqlalchemy-challenge/SQLite File/hawaii.sqlite", connect_args={'check_same_thread': False}) # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # We can view all of the classes that automap found Base.classes.keys() # Save references to each table Measurement = Base.classes.measurement Station = Base.classes.station # Create our session (link) from Python to the DB session = Session(engine) session ###Exploratory Climate Analysis ##Precipitation # Design a query to retrieve the last 12 months of precipitation data and plot the results # Display the Data Types data_types = type(session.query(Measurement).first()) # Display the date of the last data point in the database dates = session.query(Measurement.date).all() last_date = dates[-1] # Calculate the date 1 year ago from the last data point in the database dates = session.query(Measurement.date).all() last_date = dates[-1] last_date1 = pd.to_datetime(last_date) year_ago = last_date1 - dt.timedelta(days=365) #Convert the Dates to Timestamps last_date1 = dt.datetime.strptime('08/23/2017', "%m/%d/%Y") year_ago = dt.datetime.strptime('08/23/2016', "%m/%d/%Y") # Perform a query to retrieve the date and precipitation scores yearly_dates = [row for row in session.query(Measurement.date).filter(func.date(Measurement.date)>=year_ago).filter(func.date(Measurement.date)<=last_date1).all()] yearly_prcp = [row for row in session.query(Measurement.prcp).filter(func.date(Measurement.date)>=year_ago).filter(func.date(Measurement.date)<=last_date1).all()] # Save the query results as a Pandas DataFrame and set the index to the date column #Found method to save query results as Pandas DataFrame from https://stackoverflow.com/questions/35937579/pandas-read-sql-columns-not-working-when-using-index-col-returns-all-columns-i precipitation_df = pd.DataFrame({'Precipitation':yearly_prcp}, index=yearly_dates) #Rename the Index Column #Method Found at https://stackoverflow.com/questions/19851005/rename-pandas-dataframe-index precipitation_df = precipitation_df.rename_axis("Date") #Sort the Data and Make the Date Column Accessible precipitation_df = precipitation_df.sort_index().reset_index() #Pull Values Out of Tuples in Columns #Method Found at https://stackoverflow.com/questions/29550414/how-to-split-column-of-tuples-in-pandas-dataframe precipitation_df['Date'] = pd.DataFrame(precipitation_df['Date'].tolist()) precipitation_df['Precipitation'] = pd.DataFrame(precipitation_df['Precipitation'].tolist()) ##Stations # Design a query to show how many stations are available in this dataset? num_stations = session.query(Measurement.station).group_by(Measurement.station).count() num_stations # What are the most active stations? (i.e. what stations have the most rows)? # List the stations and the counts in descending order. stations = [row for row in session.query(Measurement.station).group_by(Measurement.station).all()] station_counts = [row for row in session.query(func.count(Measurement.station)).group_by(Measurement.station).all()] #Put the Data in a DataFrame stations_df = pd.DataFrame({'Station':stations, 'Station Activity':station_counts}) #Take the Values Out of Tuples #Method to Take Values Out of Tuples Found at https://stackoverflow.com/questions/16296643/convert-tuple-to-list-and-back stations_df['Station'] = pd.DataFrame(stations_df['Station'].tolist()) stations_df['Station Activity'] = pd.DataFrame(map(list, stations_df['Station Activity'])) #Sort the Values by Station Activity Counts stations_df = stations_df.sort_values('Station Activity', ascending=False) ##Temperatures # Using the station id from the previous query, calculate the lowest temperature recorded, # highest temperature recorded, and average temperature of the most active station? low_temp = session.query(func.min(Measurement.tobs)).group_by(Measurement.station).filter(Measurement.station=='USC00519281').all() high_temp = session.query(func.max(Measurement.tobs)).group_by(Measurement.station).filter(Measurement.station=='USC00519281').all() avg_temp = session.query(func.round(func.avg(Measurement.tobs))).group_by(Measurement.station).filter(Measurement.station=='USC00519281').all() # Choose the station with the highest number of temperature observations. # Query the last 12 months of temperature observation data for this station and plot the results as a histogram #Determine the last date last_date_station = [row for row in session.query(Measurement.date).filter(Measurement.station=='USC00519281').order_by(Measurement.date.desc()).first()] #Convert to DateTime last_date_station = pd.to_datetime(last_date_station) print(last_date_station) #Calculate the Date from a Year Ago start_date_station = last_date_station - dt.timedelta(days=365) print(start_date_station) #Convert the Dates to Timestamps last_date_station = dt.datetime.strptime('08/18/2017', "%m/%d/%Y") start_date_station = dt.datetime.strptime('08/18/2016', "%m/%d/%Y") #Perform Query yearly_dates = [row for row in session.query(Measurement.date).filter(Measurement.station=='USC00519281').filter(func.date(Measurement.date)>=start_date_station).filter(func.date(Measurement.date)<=last_date_station).all()] yearly_temps = [row for row in session.query(Measurement.tobs).filter(Measurement.station=='USC00519281').filter(func.date(Measurement.date)>=start_date_station).filter(func.date(Measurement.date)<=last_date_station).all()] # Save the query results as a Pandas DataFrame and set the index to the date column #Found method to save query results as Pandas DataFrame from https://stackoverflow.com/questions/35937579/pandas-read-sql-columns-not-working-when-using-index-col-returns-all-columns-i temp_df = pd.DataFrame({'Temperature':yearly_temps}, index=yearly_dates) #Rename the Index Column #Method Found at https://stackoverflow.com/questions/19851005/rename-pandas-dataframe-index temp_df = temp_df.rename_axis("Date") #Sort the Data and Make the Date Column Accessible temp_df = temp_df.sort_index().reset_index() #Pull Values Out of Tuples in Columns #Method Found at https://stackoverflow.com/questions/29550414/how-to-split-column-of-tuples-in-pandas-dataframe temp_df['Date'] = pd.DataFrame(temp_df['Date'].tolist()) temp_df['Temperature'] = pd.DataFrame(temp_df['Temperature'].tolist()) #Close All Existing Sessions #Method Found at https://docs.sqlalchemy.org/en/13/orm/session_api.html #session.close_all() ###Create New Code for the Climate App #Import Flask & climate_starter notebook #Method to Allow Import of Python Files Found at https://stackoverflow.com/questions/4142151/how-to-import-the-class-within-the-same-directory-or-sub-directory from flask import Flask, jsonify, Response #Create App app = Flask(__name__) #Define the Start & End Dates start = dt.datetime.strptime('3/18/2012', '%m/%d/%Y') end = dt.datetime.strptime('3/18/2013', '%m/%d/%Y') #Create the Homepage @app.route("/") def home(): return( f"Here is the homepage</br>." f"---------------------------------</br>" f"Here is the directory of routes</br>." f"-----------------------------------------</br>" f"Here is the page with precipitation data</br>" f"/api/v1.0/precipitation</br>" f"----------------------------------------</br>" f"Here is the page with the stations list</br>" f"/api/v1.0/stations</br>" f"-----------------------------------------------------------------------------------------------</br>" f"Here is the page with the temperature data from the most active station from the previous year</br>" f"/api/v1.0/tobs</br>" f"------------------------------------------------------------------------------------------------------------------------------</br>" f"Here is the list of minimum, average, and maximum temperature values from the specified start date to the last available date</br>" f"/api/v1.0/start</br>" f"------------------------------------------------------------------------------------------------------------------------------</br>" f"Here is the list of minimum, average, and maximum temperature values from the specified start date to the specified end date</br>" f"/api/v1.0/start/end" ) #Create the Precipitation Page @app.route("/api/v1.0/precipitation") def precipitation(): #Create the Precipitation List prcp_list = [] #session = Session(engine) for date, prcp in session.query(Measurement.date, Measurement.prcp).all(): prcp_dict = {} prcp_dict["date"] = date prcp_dict["prcp"] = prcp prcp_list.append(prcp_dict) #session.close() return jsonify(prcp_list) #Create the Stations Page @app.route("/api/v1.0/stations") def station(): #Create the Stations List stations_list = [] #session = Session(engine) for station in session.query(Measurement.station).group_by(Measurement.station).all(): stations_dict = {} stations_dict["station"] = station stations_list.append(stations_dict) #session.close() return jsonify(stations_list) #Create the Temperature Page for the Most Active Station from the Last Year @app.route("/api/v1.0/tobs") def tobs(): #Create the Temperature List for the Most Active Station from the Last Year temp_list = [] #session = Session(engine) for date, tobs in session.query(Measurement.date, Measurement.tobs).all(): temp_dict = {} temp_dict["date"] = date temp_dict["tobs"] = tobs temp_list.append(temp_dict) #session.close() return jsonify(temp_list) #Create the List of Minimum, Average, and Maximum Temperature Values from the Specified Start Date Where the End Date is Not Specified @app.route("/api/v1.0/start") def extremes1(): #session = Session(engine) #Perform Queries for Minimum, Average, & Maximum Temperature Values where the End Date is not Specified in the URL low_temp1 = session.query(func.min(Measurement.tobs)).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=last_date1).all() print(f"The lowest recorded temperature at the most active station was {low_temp1}oC.") high_temp1 = session.query(func.max(Measurement.tobs)).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=last_date1).all() print(f"The highest recorded temperature at the most active station was {high_temp1}oC.") avg_temp1 = session.query(func.round(func.avg(Measurement.tobs))).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=last_date1).all() print(f"The average temperature at the most active station was {avg_temp1}oC.") #session.close() return(f"The minimum temperature in the date range is: {low_temp1}oF.</br>" f"The average temperature in the date range is: {avg_temp1}oF.</br>" f"The maximum temperature in the date range is: {high_temp1}oF.</br>") #Create the List of Minimum, Average, and Maximum Temperature Values from the Specified Start Date to the Specified End Date @app.route("/api/v1.0/start/end") def extremes2(): #session = Session(engine) #Perform Queries for Minimum, Average, & Maximum Temperature Values where the End Date is Specified in the URL low_temp2 = session.query(func.min(Measurement.tobs)).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=end).all() print(f"The lowest recorded temperature at the most active station was {low_temp2}oC.") high_temp2 = session.query(func.max(Measurement.tobs)).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=end).all() print(f"The highest recorded temperature at the most active station was {high_temp2}oC.") avg_temp2 = session.query(func.round(func.avg(Measurement.tobs))).filter(func.date(Measurement.date)>=start).filter(func.date(Measurement.date)<=end).all() print(f"The average temperature at the most active station was {avg_temp2}oC.") #session.close() return (f"The minimum temperature in the date range is: {low_temp2}oF.</br>" f"The average temperature in the date range is: {avg_temp2}oF.</br>" f"The maximum temperature in the date range is: {high_temp2}oF.</br>") #Create the URL if __name__ == "__main__": app.run(debug=True)
true
227c59bb246cb920265502f866e52e1c4669e290
Python
xiongmi39/leetcode
/py/stack/503nextGreaterElements.py
UTF-8
650
3.171875
3
[]
no_license
from typing import List class Solution: def nextGreaterElements(self, nums: List[int]) -> List[int]: db_nums = nums*2 ans = [-1]*len(nums) stack = [0] len_db = len(db_nums)-1 for i in range(len_db,-1,-1): while len(stack) >1 and db_nums[i] >= nums[stack[-1]]: stack.pop() if len(stack) >1: top_idx = stack[-1] tmp = int(i%len(nums)) ans[tmp] = nums[top_idx] stack.append(i % len(nums)) return ans solution = Solution() ans = solution.nextGreaterElements([3,4,2,1,6,7,-1,-5,10,-9]) print(ans)
true
c2e8680c9bdbada014005d0277d3ea7aee04c406
Python
eduardopds/Programming-Lab1
/mediafinal/mediafinal.py
UTF-8
253
3.453125
3
[]
no_license
# coding: utf-8 # media final # Eduardo Pereira / Programação 1 nota_1 = float(raw_input()) nota_2 = float(raw_input()) peso_1 = 60 peso_2 = 40 media_final = ((nota_1 * peso_1) + (nota_2 * peso_2)) / (peso_1 + peso_2) print 'Média final: %.1f' % media_final
true
00949fd7089d26747f4e1fea3ec301898957f3a3
Python
evgenykurbatov/kb21-hotjup-migration-adv
/config_xray_min.py
UTF-8
2,260
2.59375
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- ## ## Photoevaporation model ## import numpy as np from numpy import pi, sqrt, exp, sin, cos, tan, log, log10 import scipy as sp import scipy.integrate import const from aux import * path = 'xray' ## ## The X-ray luminosity evolution based on two papers: ## i) Louden T, Wheatley P J, Briggs K. Reconstructing the high-energy irradiation of the evaporating hot Jupiter HD 209458b ## https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.2396L ## log10(L_X) = 27.08 +/- 0.07 ## ii) Tu L et al. The extreme ultraviolet and X-ray Sun in Time: High-energy evolutionary tracks of a solar-like star ## https://ui.adsabs.harvard.edu/abs/2015A%26A...577L...3T ## L_X ~ t^{-1.42} L_X = lambda t : 0.5 * 10**(27.08) * (t/t_age)**(-1.42) ## ## The model of photoevaporation ## Owen J E, Clarke C J, Ercolano B, 2012, MNRAS, 422, 1880 ## https://ui.adsabs.harvard.edu/abs/2012MNRAS.422.1880O ## from dataclasses import dataclass @dataclass class Photoevaporation: pass pe = Photoevaporation() def tmpfn(y): a = -0.438226 b = -0.10658387 c = 0.5699464 d = 0.010732277 e = -0.131809597 f = -1.32285709 return (a*b*exp(b*y) + c*d*exp(d*y) + e*f*exp(f*y)) * exp(-(y/57)**10) pe.f = tmpfn y = np.linspace(0, 500, 5000) pe.C_y = sp.integrate.simps(tmpfn(y), y, even='avg') print("pe.C_y =", pe.C_y) pe.C = 4.8e-9 * const.M_sol/const.yr / (2*pi/0.95 * pe.C_y * const.AU**2) print("pe.C = %.2e [g cm-2 s-1]" % pe.C) def dotSigma_pe(t, r, r_0): m = M_s/const.M_sol y = 0.95/m * (r - r_0)/const.AU cond = (r >= r_0) & (r >= r_g) return pe.C * m**(-1.148) * (L_X(t)/1e30)**1.14 / (r/const.AU) \ * np.where(cond, pe.f(y), np.zeros_like(r)) def dotM_pe(t, r_0): m = M_s/const.M_sol y_min = np.where(r_g >= r_0, 0.95/m * (r_g - r_0)/const.AU, 0) y = np.linspace(y_min, 500, 5000).T integral = sp.integrate.simps(pe.f(y), y, even='avg') return 4.8e-9 * const.M_sol/const.yr * m**(-0.148) * (L_X(t)/1e30)**1.14 * integral/pe.C_y ## ## Ride S K, Walker A B C Jr. Absorption of X-rays in the interstellar medium ## https://ui.adsabs.harvard.edu/abs/1977A%26A....61..339R ## ## Opacity for the solar sbundance for ~ 1 keV photons: kappa_X = 2e-22 / const.m_p print("kappa_X = %.2e [cm^2/g]" % kappa_X)
true
ed83ff4e611549d97bc8b2a50ce2bbef7b530cd1
Python
dewhurstwill/simulate_coin_flip_python
/main.py
UTF-8
1,542
4.46875
4
[ "MIT" ]
permissive
###################################################### # # # A simple program to simulate the flipping a coin # # multiple times. # # # ###################################################### # Importing the random module, this will be used to # simulate a coin flip, random number between 1-2 import random # Function for flipping coin x times def flip_coins(number_of_flips): # Variable to track the number of heads and tails number_of_heads = 0 number_of_tails = 0 # Loop number_of_flip times for _ in range(number_of_flips): # Flip coin (Heads - 1, Tails - 2) flipped_coin = random.randint(1,2) # If flipped_coin was 1 if flipped_coin == 1: # Increment heads counter by 1 number_of_heads += 1 # If flipped_coin was 2 else: # Increment tails counter by 1 number_of_tails += 1 # If number_of_flips was greater than 1, if number_of_flips > 1: # Print number of heads Vs number of tails print("Number of heads: ", number_of_heads) print("Number of tails: ", number_of_tails) else: # If the coin was only flipped once if number_of_heads == 1: # Print heads print("It was heads") else: # Print tails print("It was tails") # Set to 1 for a head/tails tool # Set to anyhing greater than 1 to calculate the probability times_to_flip = 10 # Run the simulation flip_coins(times_to_flip)
true
fe129fdfc319851bf95852a862d9bb1a07fbd578
Python
PribhuPatel/python-training-programs
/day6/6-2.py
UTF-8
778
2.953125
3
[]
no_license
"""Try serializing file handler object.""" import io import json try: file = open("6-1.json", "r") except FileNotFoundError: print("File not Found") exit(1) file_json = { 'name': file.name, 'data': file.read() } file.close() with open("6-2.json", "w") as f: json.dump(file_json, f) with open("6-2.json", "r") as f: loaded_json = json.load(f) file2 = io.BytesIO(bytes(loaded_json["data"], encoding="utf-8")) file2.name = loaded_json["name"] file2 = io.TextIOWrapper(file2) print(file2.read()) print(file2.name) print(file2.__class__) print(file2.closed) file2.close() print(file2.closed) """Pickle cannot Serialize all type of objects. There are limitations. It cannot serialize Objects wich are temporary with program runtime."""
true
f171d65781b92fef5e4e6ec97e6aa92937d9dd95
Python
CandyTt20/Notes
/algorithm/add2.py
UTF-8
1,549
3.625
4
[]
no_license
class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ p1 = [] p2 = [] while l1 != None: p1.append(l1.val) l1 = l1.next while l2 != None: p2.append(l2.val) l2 = l2.next y = [] temp = 0 if len(p1) > len(p2): for i in range(len(p1) - len(p2)): p2.append(0) elif len(p2) > len(p1): for i in range(len(p2) - len(p1)): p1.append(0) for i in range(len(p1)): y.append((p1[i] + p2[i] + temp) % 10) if p1[i] + p2[i] + temp >= 10: temp = 1 else: temp = 0 if temp == 1: y.append(1) enter = ListNode(y[0]) result = enter for i in range(len(y)-1): result.next = ListNode(y[i + 1]) result = result.next return enter def appendList(l): result = ListNode(l[0]) head = result for i in range(len(l) - 1): head.next = ListNode(l[i + 1]) head = head.next return result def showList(head): l = [] while head != None: l.append(head.val) head = head.next return l x = appendList([2,4,3]) y = appendList([5,6,4]) z = Solution().addTwoNumbers(x, y) print(showList(z))
true
3b38b2ea189b27d480b41ea5261259b123ae7dda
Python
brent-harrison/CS660Assignment1
/bandits/controller.py
UTF-8
1,914
2.75
3
[]
no_license
import numpy as np import sys import copy import time import random from randAgent import randomAgent from epsGreedyAgent import epsGreedyAgent from UCBAgent import UCBAgent from thompsonAgent import thompsonAgent import argparse ###################################################### AGENTS_MAP = {'randomAgent' : randomAgent, 'epsGreedyAgent' : epsGreedyAgent, 'UCBAgent': UCBAgent, 'thompsonAgent': thompsonAgent } class bandit: def __init__(self, file): f = open(file, "r") lines = f.readlines() for i in range(len(lines)): lines[i] = lines[i].rstrip("\n") self.arms = [] for i in range(1, len(lines)): self.arms.append(float(lines[i])) def pull_arm(self, arm): prob = self.arms[arm] randNum = random.random() if randNum <= prob: return 1 else: return 0 def getNumArms(self): return len(self.arms) parser = argparse.ArgumentParser(description='Define bandit problem and agents.') parser.add_argument('--input', choices=['input/test0.txt', 'input/test1.txt'], default='input/test1.txt', help='The input file, can be input/test0.txt or input/test1.txt') parser.add_argument('--agent', choices=AGENTS_MAP.keys(), default='randomAgent', help='The bandit AI. Can be randomAgent, epsGreedyAgent, UCBAgent, or thompsonAgent') parser.add_argument('--num_plays', type=int, default = 10000, help='The number of pulls an agent has.') args = parser.parse_args() testBandit = bandit(args.input) agent = AGENTS_MAP[args.agent]() history = [] cumulative_reward = 0 for numRuns in range(args.num_plays): testArm = agent.recommendArm(testBandit, history) reward = testBandit.pull_arm(testArm) cumulative_reward += reward history.append((testArm, reward)) print(cumulative_reward)
true
8de5996d4c8a20644e70d03956bf5d49331d979a
Python
VVeremjova/physiopsychotest
/admin/saveInDB.py
UTF-8
1,553
2.9375
3
[]
no_license
import sqlite3 class SaveInDB() : def __init__(self,filename = 'example.db'): db_file = filename self.conn = sqlite3.connect(filename) def createDB(self): # Create table c = self.conn.cursor() c.execute('''CREATE TABLE Users (id_ text, name text, gender text, date_age text, occupation text, work_experience text, last_work_experience text, comments text)''') c.execute('''CREATE TABLE Results (name text, total_errors int, correct_answers int)''') self.conn.commit() def addNewClient(self,params): c = self.conn.cursor() c.execute("INSERT INTO Users VALUES (?,?, ?, ?, ?,? ,? , ?)",params) # Save (commit) the changes self.conn.commit() def searchClient(self, user_name): params = (user_name,) c = self.conn.cursor() curs = c.execute('SELECT * FROM Users WHERE name=?', [user_name]) res=c.fetchone() return res def updateClient(self,params): # Insert a row of data c = self.conn.cursor() c.execute("UPDATE Users SET id_ = ?, gender = ?,date_age = ?,occupation =?,work_experience=?,last_work_experience=?, comments = ? WHERE name = ?;",params) self.conn.commit() def close(self): # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. self.conn.close()
true
3f28514c3fbf693ac85c3a8ad3a661da6605580d
Python
JustasJJ/D16-Hangman
/main.py
UTF-8
5,338
2.5625
3
[ "MIT" ]
permissive
import os import random from flask import ( Flask, session, render_template, redirect, url_for, request ) app = Flask(__name__) app.config['SECRET_KEY'] = 'vavavava' @app.route('/', methods=['GET', 'POST']) def index(): session.clear() return render_template("Hangman.html", score=0) @app.route('/guess_input', methods=['GET', 'POST']) def guess_input(): return render_template("guess_input.html", score=0) @app.route('/game', methods=['GET', 'POST']) def game(): session['answer'] = request.form['answer'] session['s'] = '_'*len(session['answer']) session['puzzle'] = list(session['s']) session['score'] = 0 session['h'] = [] # history of guesses as a list session['question'] = "" if request.method == 'POST': return render_template("Game.html", answer=session['answer'], puzzle=session['puzzle'], puzzle_st=session['s'], score=0, question=session['question'] ) else: return redirect(url_for('index')) @app.route('/guess_random', methods=['GET', 'POST']) def guess_random(): words = [line.rstrip().lower() for line in open("words.txt")] word = random.choice(words) session['answer'] = word session['s'] = '_'*len(word) session['puzzle'] = list('_'*len(word)) session['score'] = 0 session['h'] = [] # history of guesses as a list session['question'] = "" return render_template("Game.html", answer=session['answer'], puzzle=session['puzzle'], puzzle_st=session['s'], score=0, question=session['question'] ) @app.route('/guess_riddle', methods=['GET', 'POST']) def guess_riddle(): return render_template("guess_riddle.html", score=0) @app.route('/riddle_game', methods=['GET', 'POST']) def riddle_game(): ctg = request.form['category'] dct = {} f = open("riddles.txt", "r") for line in f: if line.strip() == '*' + ctg + '*': # start reading file break for line in f: if "*" not in line and len(line) > 3: # populate dict with riddles (key, val) = line.split("?") dct[key+"?"] = val[1:-1] else: break # ends reading file f.close() riddle = random.choice(list(dct.keys())) # select random riddle session['answer'] = dct[riddle] session['s'] = '_'*len(session['answer']) session['puzzle'] = list(session['s']) session['score'] = 0 session['h'] = [] # history of guesses as a list session['question'] = riddle[:-1] + ". Kas?" if request.method == 'POST': return render_template("Game.html", answer=session['answer'], puzzle=session['puzzle'], puzzle_st=session['s'], score=0, question=session['question'] ) @app.route('/guess', methods=['GET', 'POST']) def guess(): results = {} answer = session['answer'] session['guess'] = request.form['guess'] g = session['guess'] results = check_guesses(answer, g, session['score'], session['puzzle'], session['s'], session['h'] ) session['score'] = results["c"] session['s'] = results["s"] session['puzzle'] = results["p"] session['h'] = results["h"] # DEBUG # print("answer",answer) # print("guess",g) # print("puzzle", session['puzzle']) # print("s", session['s']) # print("h",session['h']) # print("score",session['score']) if request.method == 'POST': return render_template("Game.html", guess=g, answer=answer, puzzle=session['puzzle'], history=session['h'], score=session['score'], puzzle_st=session['s'], question=session['question']) else: return redirect(url_for('index')) # functions for guessing algorithm def word_to_list(w): # "wheel" ---> "[w, h, e, e, l]" p = [] for i in range(0, len(w)): p.append(w[i]) return p def puzzle_to_string(p): # "[w, "_", "_", e, l]" --> "w _ _ e l" s = "" for i in range(0, len(p)): s += p[i] return s def check_guesses(answer, g, c, p, s, h): if g not in h: h.append(g) if g in answer: f = answer.find(g) while f >= 0: p[f] = g.upper() f = answer.find(g, f + 1) s = puzzle_to_string(p) else: c += 1 if c - 6 == 0 or s == answer: p = word_to_list(answer.upper()) return {"p": p, "h": h, "c": c, "s": s.lower()} port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port)
true
b5b4c7d2a0e719279f2d3cd706e2f3a26b838bf8
Python
Voljega/BestArcade
/conf.py
UTF-8
416
3.046875
3
[]
no_license
def cleanString(string): return string.rstrip('\n\r ').lstrip() def loadConf(confFile): conf = dict() file = open(confFile, 'r', encoding="utf-8") for line in file.readlines(): if not line.startswith('#'): confLine = line.split("=") if len(confLine) == 2: conf[cleanString(confLine[0])] = cleanString(confLine[1]) file.close() return conf
true
de4438e5df82fff40baacf0ea8b16ad2c207bacc
Python
manojgudi/yelp
/function_testing/regexp.py
UTF-8
1,195
3.1875
3
[]
no_license
#script for detecting functions defined but not used in scilab import re file_name = 'C:\Users\kushal\Documents\python programs\scilab.txt' file_obj = open(file_name, 'r') file_data = file_obj.read() file_obj.close() def useless(file_data): ret = [] functionline = 'function [^(]*' # detects function declaration line results = re.findall(functionline, file_data) for result in results: name = re.findall("=[^(]*", result)[0][1:].strip() count = file_data.count(name) if count==1: ret.append(name) return ret def var(file_data): ret=[] temp_names=[] var_declaration = '[a-zA-Z_][a-zA-Z0-9_]* *=' results = re.findall(var_declaration, file_data) for result in results: name = result.replace("=","").strip() count = file_data.count(name) if count==1: temp_names.append(name) line_no=1 for line in file_data.split("\n"): for name in temp_names: if name in line: ret.append({'var_name':name,'line_no':line_no}) line_no+=1 return ret print 'Unused variables :',var(file_data) print '\nUnused functions :',useless(file_data)
true
a14903aa0d29f522f160f5139e5015403fa3a396
Python
2014arki/Assignments
/untitled/Lesson_18_02_16.py
UTF-8
873
2.84375
3
[]
no_license
#! /usr/bin/env python """ """ from __future__ import division, print_function def fasta_reader(fp): """ :param fp: :return: """ pass def hamming(seq1, seq2): """ :type seq1: str :param seq1: :type seq2: str :param seq2: :return: """ if len(seq1) != len(seq2): raise ValueError("") return sum(a != b for a, b in zip(seq1, seq2)) def matrix_mul(matr1, matr2): nrow_matr1, ncol_matr1 = len(matr1), len(matr1[0]) nrow_matr2, ncol_matr2 = len(matr2), len(matr2[0]) if ncol_matr1 != nrow_matr2: raise ValueError("") matrix_mult_res = [[None] for i in xrange(ncol_matr2) #генер-р списков, влож-й в генер-р списков for i in xrange(nrow_matr1)] def get_col(matr, j): return [row[j] for row in matr]
true
02bcecef95303dab9509cd37fd935dd3bcaca57f
Python
ixxra/projecteuler
/problem040/problem40.py
UTF-8
333
3.328125
3
[]
no_license
#!/usr/bin/env python2 def seq(): a = 1 while True: digits = map(int, str(a)) for d in digits: yield d a += 1 prod = 1 for i, s in enumerate(seq()): if i in (0, 9, 99, 999, 9999, 99999): prod *= s if i == 999999: prod *= s break print prod
true
32c3fc8607a234c9327d3daa036684461d034807
Python
80pctsols/breaker
/breaker/test_breaker.py
UTF-8
2,774
3.15625
3
[]
no_license
from .breaker import ( CircuitBreaker, CircuitBreakerException ) import datetime import time # Functions used in tests def func(x1, x2, x3=10): return x1 + x2 + x3 def error_func(): bad_list = [] return bad_list[10] def error2_func(): raise Exception # Class used to test cb use with class class MyClassTester(object): def __init__(self): self.cbs = {} def _func(self): return 10 * 10 def func(self): return self.get_cb(self._func).call() def get_cb(self, function): func_name = function.__name__ if func_name in self.cbs: return self.cbs[func_name] self.cbs[func_name] = CircuitBreaker(function) return self.cbs[func_name] # Test functions def test_call(): cb = CircuitBreaker(func) assert cb.call(1, 2) == func(1, 2) assert cb.call(10, 20, 30) == func(10, 20, 30) def test_reset(): cb = CircuitBreaker(func) cb.num_failures = 10 cb.reset() assert cb.num_failures == 0 def test_failure(): cb = CircuitBreaker(func) old_failures = cb.num_failures cb.failure() assert old_failures + 1 == cb.num_failures def test_closed_breaker(): cb = CircuitBreaker(func) cb.num_failures = cb.failures_allowed + 1 try: cb.call(1, 2) assert False except CircuitBreakerException: assert True def test_error_functions(): cb = CircuitBreaker(error_func) for i in range(12): try: cb.call() except CircuitBreakerException: assert i > 10 except IndexError: assert i <= 10 def test_not_half_open(): cb = CircuitBreaker(func) assert cb.is_half_open() is False def test_half_open(): cb = CircuitBreaker(error_func) cb.num_failures = 20 double_ago = past(2 * cb.timeout) cb.last_failure = double_ago assert cb.is_half_open() is True def test_half_open_close(): cb = CircuitBreaker(error_func, 1, .5) for i in range(2): try: cb.call() assert False except Exception: assert True time.sleep(1) assert cb.is_half_open() is True # Should try the call again if its half open try: cb.call() assert False except IndexError: assert True except CircuitBreakerException: assert False assert cb.state() == cb.OPEN assert cb.is_half_open() is False def test_class_use(): myclass = MyClassTester() assert myclass.func() == 100 myclass.cbs['_func'].num_failures = 20 try: myclass.func() assert False except CircuitBreakerException: assert True def past(seconds): return datetime.datetime.now() - datetime.timedelta(seconds=seconds)
true
32b8e29b705f724b702ee4a1139637e4d676f1c9
Python
kevinhaube/LoLDataVisualizer
/Evaluation.py
UTF-8
1,680
3.421875
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt def clear_false_index(*data_frames): """Clears the false indexing created by Pandas when saved as a CSV. WARNING: ONLY USE ONCE PER DATA FRAME. :param data_frames: Data Frames :return: None """ for df in data_frames: df.drop(df.columns[0], axis=1, inplace=True) def make_sub_set(keys, data_frame): """Creates subsets of data by passing in a List of column keys and a Data Frame to pull from :param keys: List of String Keys :param data_frame: Data Frame :return: Data Frame """ df = data_frame[keys] df.columns = keys return df def simple_feature_scale(key, data_frame): """Uses Simple Feature Scaling to normalize a column. Col / Col.max() :param key: String Key :param data_frame: Data Frame :return: Data Frame Column """ return data_frame[key]/data_frame[key].max() def create_bins(key, data_frame, div): """Creates a Numpy Linspace based on the min/max of the column, and how many dividers you pass in. :param key: String Key :param data_frame: Data Frame :param div: Integer :return: Numpy Linspace """ return np.linspace(min(data_frame[key]), max(data_frame[key]), div) def create_binned_column(key, bin_names, data_frame): """Creates a binned column :param key: String Key :param bin_names: List of String Keys :param data_frame: Data Frame :return: Data Frame Column """ return pd.cut(data_frame[key], create_bins(key, data_frame, len(bin_names) + 1), labels=bin_names, include_lowest=True)
true
4b5c377a7553581dace3792912de3de252a98911
Python
arifwc/JDIH_JABAR
/scraping_py/pandangarankab_scraping.py
UTF-8
815
2.53125
3
[]
no_license
import json import requests import re urls=['https://web.pangandarankab.go.id/public/jdih/dokumen/list/1/peraturan-daerah?_=1583154735707', 'https://web.pangandarankab.go.id/public/jdih/dokumen/list/4/keputusan-bupati?_=1583154402551', 'https://web.pangandarankab.go.id/public/jdih/dokumen/list/3/peraturan-bupati?_=1583153982973'] peraturan=[] for url in urls: r = requests.get(url) jsondata = json.loads(r.content) peraturan += jsondata['data'] data_file = open('csv/pangandarankab.csv', 'w') count=0 for perda in peraturan: if count==0: data_file.write('peraturan\n') count+=1 if perda[3]: data_file.write("{}\n".format(perda[3])) else: data_file.write("{}\n".format(re.findall(r"[^\s*].*[^\s*]",perda[4]))) data_file.close()
true
c8e68e4929b56a5ba5e1d25091b01e4ee442926c
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_116/688.py
UTF-8
3,211
3.015625
3
[]
no_license
''' Created on 13/04/13 Code Jam 2013 Qualification Round A @author: manolo ''' import sys ifile = sys.stdin def r(): return ifile.readline()[:-1] ofile = open('./a-large.out', 'w') def w(what): ofile.write(what + '\n') def check_line(l): # print "checking line " + str(l) x_wins = True o_wins = True for c in l: # print "c = " + str(c) if c == '.': # print 'line: ' + str(l) + ' --> not completed' return '.' x_wins = x_wins and (c == 'X' or c == 'T') o_wins = o_wins and (c == 'O' or c == 'T') # print "x_wins: " + str(x_wins) # print "o_wins: " + str(o_wins) if x_wins and o_wins: # print "X and O win, not possible" raise if x_wins: # print 'line: ' + str(l) + ' --> X wins' return 'X' if o_wins: # print 'line: ' + str(l) + ' --> O wins' return 'O' t = int(r()) for c in range(1, t+1): line =[None] * 4 someone_won = False game_not_completed = False # check rows # print str(c) + ":" for i in range(4): line[i] = list(r()) # print line[i] # print for i in range(4): # print "line: " + str(line[i]) res =check_line(line[i]) if res == 'X': w('Case #' + str(c) + ': X won') someone_won = True break if res == 'O': w('Case #' + str(c) + ': O won') someone_won = True break if res == '.': game_not_completed = True # print ' ' if not someone_won: # check cols for i in range(4): col = [line[0][i], line[1][i], line[2][i], line[3][i]] res=check_line(col) if res == 'X': w('Case #' + str(c) + ': X won') someone_won = True break if res == 'O': w('Case #' + str(c) + ': O won') someone_won = True break if res == '.': game_not_completed = True # print if not someone_won: # check diags diag1 = [line[0][0], line[1][1], line[2][2], line[3][3]] res=check_line(diag1) if res == 'X': w('Case #' + str(c) + ': X won') someone_won = True if res == 'O': w('Case #' + str(c) + ': O won') someone_won = True if res == '.': game_not_completed = True if not someone_won: diag2 = [line[0][3], line[1][2], line[2][1], line[3][0]] res=check_line(diag2) if res == 'X': w('Case #' + str(c) + ': X won') someone_won = True if res == 'O': w('Case #' + str(c) + ': O won') someone_won = True if res == '.': game_not_completed = True if not someone_won: if game_not_completed: # print 'Case #' + str(c) + ': Game has not completed' w('Case #' + str(c) + ': Game has not completed') else: # print 'Case #' + str(c) + ': Draw' w('Case #' + str(c) + ': Draw') trash = r() ofile.close
true
80a8a4e39cd502a519deb60fb2fd705048089f68
Python
wagllgaw/Email
/flask_app/app.py
UTF-8
4,879
2.546875
3
[]
no_license
import json import requests import socket import time import cPickle as pickle import pandas as pd import re import StringIO from HTMLParser import HTMLParser from flask import Flask, request, render_template from processor import Processor app = Flask(__name__) ## Welcome to the Email Rank flask app. This runs a persistent flask app that takes ## email input from users and returns predictions based on the models trained in the ## Ipython notebooks found in this directory ## Please refer to the 'emailRank_home.html' for the base page that is modified here ## Global variables PORT = 8080 MODELTO = None MODELFROM = None PROCESSOR = None VERBOSE = True ## Home directory, contains a page that asks for email & a submit box @app.route('/') def index(): data = ''' <h1>Welcome to Email Rank <br> </h1></h2>This tool will help you gauge the authority of your email </h2> <form action="/predict" method='POST' > <form action="/predict" method='POST' > <textarea name="user_input" cols="80" rows="20" >Please insert email text here...</textarea> <br><input type="submit" /> ''' return render_template('emailRank_home.html').format(data) ## Predict method used, receives data from the index method and returns a page with predictions @app.route('/predict', methods=['POST']) def predict(): # Method to predict data and send to PSQL database # is automatically called based on the score POST request # sent by the data server # requires the database table to be built already text = request.form['user_input'] text = str(text.decode(errors='ignore').encode('utf-8', errors='ignore')) if VERBOSE: print 'predict called on:' print text print type(text) df = pd.Series([text]) X = PROCESSOR.transform(df) resultTO = MODELTO.predict(X) resultFROM = MODELFROM.predict(X) data = ''' <h2>Prediction model results:<br> <h2>Sent from: {0}</h2> <img src='/Employee.jpg'> <br> <h2>Sent to: {1}</h2> <img src='/Employee.jpg'></h2><br> <form action="/predict" method='POST' > <textarea name="user_input" cols="80" rows="15" >{2}</textarea> <br><input type="submit" /> <br><br><br> '''.format(resultFROM, resultTO, text) return render_template('emailRank_home.html').format(data) ## About page @app.route('/about') def about(): data = '''Email Rank is a tool to help better adjust our email to the expectations and norms of the corporate world. The app uses the public Enron email database of over 100k emails to predict the corporate title of the sender and sendee of any email based on its text. Using the prediction and importance scores, the app provides insight into why the email ranks the way is does and how you can improve the way people will perceive you. ''' return render_template('emailRank_home.html').format(data) ## Contact page @app.route('/contact') def contact(): data = ''' Created by Alex Bergin as a capstone project for <a href="http://www.galvanize.com/courses/data-science/">Galvanize Data Science.</a><br> <img src='/Alex.jpg' height="400" width="400"><br> Alex has 5+ years of experience at a premier global business consulting firm. There he developed a reputation for extensive quantitative skills combined with a history of successful client relationships. He has been recognized as a leader in pricing/contracting analysis having lead teams working on predictive analysis for reimbursement rates and optimization of contract terms. Alex is focused on continuing to applying his quantitative skills to improve the solutions to complex business problems. <br> <a href="https://docs.google.com/document/d/1-VUpr-vOjXB8WmOJQY0qX6n0_ZoWFlZK1k9p6gQqF84/edit?usp=sharing">Resume</a> <br><span class="email">atbergin (at) gmail (dot) com</span> ''' return render_template('emailRank_home.html').format(data) ## Picture fetching code @app.route('/Alex.jpg') def alex(): with open('data/images/alex.jpg') as pic: return pic.read(), 200, {'Content-Type': 'image/jpg'} @app.route('/Employee.jpg') def Employee(): with open('data/images/Employee.jpg') as pic: return pic.read(), 200, {'Content-Type': 'image/jpg'} ## Loads the model pickles for use in the app if __name__ == '__main__': print '#################### SERVER START ##############################' with open('data/model_pickles/processor.pkl') as f: PROCESSOR = pickle.load(f) #PROCESSOR = None with open('data/model_pickles/modelTO.pkl') as f: MODELTO = pickle.load(f) with open('data/model_pickles/modelFROM.pkl') as f: MODELFROM = pickle.load(f) print 'Model Pickles Loaded Successfully' # Start Flask app app.run(host='0.0.0.0', port=PORT, debug=True)
true
e64cda17aab916d64ef21aceb64a49479422fd9a
Python
mashago/study
/python/print.py
UTF-8
50
2.640625
3
[]
no_license
a = 100; if (a >= 0): print a else: print -a
true