blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
9ddd00c32e39e75fc2dc86eab1a749ea4157c8f6
Python
hugoruscitti/pybox
/pybox/dialogs/open.py
UTF-8
2,130
2.734375
3
[]
no_license
import cPickle import gtk class OpenDialog: """Abstract open dialog.""" def __init__(self, parent, canvas, status, pattern, name): self.canvas = canvas self.parent = parent self.status = status self._create_dialog(pattern, name) self._run() def _create_dialog(self, pattern, name): buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_OPEN, gtk.RESPONSE_OK) action = gtk.FILE_CHOOSER_ACTION_OPEN dialog = gtk.FileChooserDialog(action=action, buttons=buttons, parent=self.parent) dialog.set_do_overwrite_confirmation(True) # Filtro personalizado filter = gtk.FileFilter() label, mask = pattern filter.set_name(label) filter.add_pattern(mask) dialog.add_filter(filter) # Filtro (*) filter = gtk.FileFilter() filter.set_name("All Files") filter.add_pattern("*") dialog.add_filter(filter) self.dialog = dialog def _run(self): response = self.dialog.run() if response == gtk.RESPONSE_OK: self._open(self.dialog.get_filename()) self.dialog.hide() class Document(OpenDialog): "Allow to save all diagram in a the program format." def __init__(self, parent, canvas, status): pattern = ("pybox Files", "*.pybox") name = "untitled.pybox" OpenDialog.__init__(self, parent, canvas, status, pattern, name) def _open(self, filename): file = open(filename, 'rb') try: dump = cPickle.load(file) except cPickle.UnpicklingError: self.status.error("Can't read: %s" %(filename)) return self.canvas.open(filename) for (x, y, model) in dump: self.canvas.create_box(model, x, y, hierarchy_lines=False) # Connect lines for box in self.canvas.boxes: self.canvas.connect_box(box, box.model) self.status.info("File loaded as %s" %(filename)) self.canvas.session.open_document_notify(filename)
true
588fa10a6ed9030eca0fdae37dc2148c30cacd6a
Python
fengges/leetcode
/101-150/132. 分割回文串 II.py
UTF-8
951
3.078125
3
[]
no_license
class Solution: def minCut(self, s): dp=[[False for i in s] for j in s] size=len(s) for i in range(size): dp[i][i]=True for i in range(size-1): if s[i+1]==s[i]: dp[i][i+1]=True for i in range(2,size+1): for j in range(size-i): dp[j][j+i]= dp[j+1][i+j-1] and s[i+j]==s[j] flag=[0 for i in range(size)] for i in range(1,size): if dp[0][i]: flag[i]=0 else: flag[i]=flag[i-1]+1 for j in range(1,i+1): if dp[j][i]: flag[i]=min(flag[i],flag[j-1]+1) return flag[-1] s=Solution() test=[ {"input":"ababababababababababababcbabababababababababababa", "output":1}, {"input":"aab", "output":1}, ] for t in test: r=s.minCut(t['input']) if r!=t['output']: print("error:"+str(t)+" out:"+str(r))
true
1aa4915635abfbaed83f4e09751e76a67e845c53
Python
smurugap/tools
/flow.py
UTF-8
2,459
2.765625
3
[]
no_license
import os, subprocess, re, matplotlib, time, numpy matplotlib.use('Agg') import matplotlib.pyplot as plt iter = 5 ind = numpy.arange(5) width = 0.70 # the width of the bars fig, ax = plt.subplots(figsize=(10,7)) ax.set_xticks(ind+width) ax.set_ylabel('No of hash buckets') ax.set_xlabel('Depth of the bucket') ax.set_xticklabels( ('0', '1', '2', '3', '4') ) def autolabel(rects): for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height), ha='center', va='bottom') # Get flow table size pattern = 'Flow Table limit.*\s(\d+)' output = subprocess.check_output('vrouter --info', shell=True, stderr=subprocess.STDOUT) tablesize = re.search(pattern, output, re.M).group(1) keys = int(tablesize)/4 okeys = 2048 def get_flow_counts(): os.system('fab -H ubuntu@169.254.0.3 -p ubuntu --no-pty -- sudo nohup /var/tmp/client.sh >> test.log &') time.sleep(10) pattern = '^\s*(\d+).*1.1.1.' old_indices = 0 flow = dict() oflow = dict() while True: # Get the indices output = subprocess.check_output('flow -l', shell=True, stderr=subprocess.STDOUT) indices = re.findall(pattern, output, re.M) if len(indices) <= old_indices: break old_indices = len(indices) time.sleep(30) # Create dict for i in range(keys): flow[i] = 0 for i in range(okeys): oflow[i] = 0 for index in indices: key = int(index)/4 if key >= keys: key = key - keys oflow[key] += 1 else: flow[key] += 1 return (flow.values(), oflow.values()) for i in range(iter): (flows, oflows) = get_flow_counts() values = (flows.count(0), flows.count(1), flows.count(2), flows.count(3), flows.count(4)) ovalues = (oflows.count(0), oflows.count(1), oflows.count(2), oflows.count(3), oflows.count(4)) print 'No of buckets with', '\n\t\t0 entry:', values[0], '\n\t\t1 entry:', values[1], '\n\t\t2 entry:', values[2], '\n\t\t3 entry:', values[3], '\n\t\t4 entry:', values[4] print 'No of overflow buckets with', '\n\t\t0 entry:', ovalues[0], '\n\t\t1 entry:', ovalues[1], '\n\t\t2 entry:', ovalues[2], '\n\t\t3 entry:', ovalues[3], '\n\t\t4 entry:', ovalues[4] rects = ax.bar(ind+width, values, width, alpha=0.5, align='center') autolabel(rects) time.sleep(240) plt.savefig('/var/www/html/test')
true
2a24d54cb74523befc9f166da6d039676a503794
Python
niklasadams/explainable_concept_drift_pm
/pm4py/algo/filtering/pandas/cases/case_filter.py
UTF-8
4,149
2.609375
3
[]
no_license
import pandas as pd from pm4py.util import constants, xes_constants from enum import Enum from pm4py.util import exec_utils class Parameters(Enum): TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY def filter_on_ncases(df, case_id_glue=constants.CASE_CONCEPT_NAME, max_no_cases=1000): """ Filter a dataframe keeping only the specified maximum number of traces Parameters ----------- df Dataframe case_id_glue Case ID column in the CSV max_no_cases Maximum number of traces to keep Returns ------------ df Filtered dataframe """ cases_values_dict = dict(df[case_id_glue].value_counts()) cases_to_keep = [] for case in cases_values_dict: cases_to_keep.append(case) cases_to_keep = cases_to_keep[0:min(len(cases_to_keep), max_no_cases)] df = df[df[case_id_glue].isin(cases_to_keep)] return df def filter_on_case_size(df, case_id_glue="case:concept:name", min_case_size=2, max_case_size=None): """ Filter a dataframe keeping only traces with at least the specified number of events Parameters ----------- df Dataframe case_id_glue Case ID column in the CSV min_case_size Minimum size of a case max_case_size Maximum case size Returns ----------- df Filtered dataframe """ element_group_size = df[case_id_glue].groupby(df[case_id_glue]).transform('size') df = df[element_group_size >= min_case_size] if max_case_size: element_group_size = df[case_id_glue].groupby(df[case_id_glue]).transform('size') df = df[element_group_size <= max_case_size] return df def filter_on_case_performance(df, case_id_glue=constants.CASE_CONCEPT_NAME, timestamp_key=xes_constants.DEFAULT_TIMESTAMP_KEY, min_case_performance=0, max_case_performance=10000000000): """ Filter a dataframe on case performance Parameters ----------- df Dataframe case_id_glue Case ID column in the CSV timestamp_key Timestamp column to use for the CSV min_case_performance Minimum case performance max_case_performance Maximum case performance Returns ----------- df Filtered dataframe """ grouped_df = df[[case_id_glue, timestamp_key]].groupby(df[case_id_glue]) start_events = grouped_df.first() end_events = grouped_df.last() end_events.columns = [str(col) + '_2' for col in end_events.columns] stacked_df = pd.concat([start_events, end_events], axis=1) stacked_df['caseDuration'] = stacked_df[timestamp_key + "_2"] - stacked_df[timestamp_key] stacked_df['caseDuration'] = stacked_df['caseDuration'].astype('timedelta64[s]') stacked_df = stacked_df[stacked_df['caseDuration'] < max_case_performance] stacked_df = stacked_df[stacked_df['caseDuration'] > min_case_performance] i1 = df.set_index(case_id_glue).index i2 = stacked_df.set_index(case_id_glue).index return df[i1.isin(i2)] def filter_case_performance(df, min_case_performance=0, max_case_performance=10000000000, parameters=None): if parameters is None: parameters = {} timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, xes_constants.DEFAULT_TIMESTAMP_KEY) case_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) return filter_on_case_performance(df, min_case_performance=min_case_performance, max_case_performance=max_case_performance, timestamp_key=timestamp_key, case_id_glue=case_glue) def apply(df, parameters=None): del df del parameters raise NotImplementedError("apply method not available for case filter") def apply_auto_filter(df, parameters=None): del df del parameters raise Exception("apply_auto_filter method not available for case filter")
true
d42089b5912b974f3c08638b9b276e81986a3f2a
Python
Sariel-D/SDomain
/dnsdb/rfile.py
UTF-8
938
2.734375
3
[]
no_license
#!/usr/bin/env python # encoding: utf-8 # Data From File import platform import os def coupling_file_addr(file_addr): current_os = platform.system().lower() print '[!] 当前系统版本({0}), 尝试转换不规范路径.'.format(current_os) if current_os == 'win': file_addr = file_addr.replace('/', '\\') elif current_os == 'linux' or os == 'unix': file_addr = file_addr.replace('\\', '/') else: pass return file_addr def check_file_exist(file_addr): if os.path.exists(file_addr): return True else: return False def data_integration(file_addr): domains = {} if not check_file_exist(file_addr): return domains with open(coupling_file_addr(file_addr)) as rfile: for line in rfile: line = eval(line) if len(line): domains[line['host']] = {line['type']: [line['value']]} return domains
true
78e2af45e6857829d99fc0c3c1962c5edaf5275f
Python
luka3117/toy
/py/山内 テキスト text sample code/PythonStatistical 山内/ch6/list6-7.py
UTF-8
415
2.828125
3
[]
no_license
# -*- coding: utf-8 -*- # List 6-7 母分散の比の検定(母分散の等質性の検定)~f検定 import math import numpy as np from scipy.stats import f m = 10 n = 10 xmean = 76.3 ymean = 70.5 xvar = 160.1 yvar = 59.6 F = xvar/yvar f_lower = f.ppf(0.025, m-1, n-1) f_upper = f.ppf(0.975, m-1, n-1) print('F=', round(F, 4), 'reject=', (F<f_lower)or(f_upper<F)) # 出力結果は # F= 2.6862 reject= False
true
8e6efb1c7bec5df87d4ad89e434015163dd781fb
Python
PancrasL/chinamap-coloring
/coloring_algorithm.py
UTF-8
4,452
3.09375
3
[]
no_license
from pprint import pprint import copy id_to_name = {'1': '北京', '10': '黑龙江', '11': '江苏', '12': '浙江', '13': '安徽', '14': '福建', '15': '江西', '16': '山东', '17': '河南', '18': '湖北', '19': '湖南', '2': '天津', '20': '广东', '21': '甘肃', '22': '四川', '23': '贵州', '24': '海南', '25': '云南', '26': '青海', '27': '陕西', '28': '广西', '29': '西藏', '3': '上海', '30': '宁夏', '31': '新疆', '32': '内蒙古', '33': '澳门', '34': '香港', '4': '重庆', '5': '河北', '6': '山西', '7': '台湾', '8': '辽宁', '9': '吉林'} # 图节点个数 N = 34 # 根据节点id获取省份名称 def get_province_name_by_id(id): if id >= 1 and id <= N: return id_to_name[str(id)] return "" # 加载地图数据,以邻接表形式保存地图信息 def load_graph(filename): g = [0]*34 g.append(dict()) with open(filename, 'r') as f: lines = f.read().splitlines() for line in lines: ids = line.split(',') int_list = [] for id in ids: int_list.append(int(id)) g[int_list[0]] = int_list[1:] return g # 将省份id记录转换为省份名称记录 def trans_record(id_record): global N name_record = [] for record in id_record: cur_coloring_record = [] for i in range(1, N+1): cur_coloring_record.append((get_province_name_by_id(i), record[i])) name_record.append(cur_coloring_record) return name_record # 获取cur节点周围可用的颜色 def get_unused_color(cur, graph, node_color): unused_color = set((1, 2, 3, 4)) for node in graph[cur]: if (node_color[node] in unused_color): unused_color.remove(node_color[node]) return list(unused_color) # 查找下一个未被着色的节点 def find_next_node(node_color): for node in range(1, N+1): if(node_color[node] == 0): return node return -1 def coloring(cur, graph, node_color, all_coloring_record, true_coloring_record): # 记录着色过程 all_coloring_record.append(copy.deepcopy(node_color)) # 获取可用的颜色 unused_color = get_unused_color(cur, graph, node_color) # 如果存在可以使用的颜色 if(unused_color): # 为节点 cur 上色 for color in unused_color: node_color[cur] = color next_node = find_next_node(node_color) temp = copy.deepcopy(node_color) if(next_node > 0): result = coloring(next_node, graph, node_color, all_coloring_record, true_coloring_record) # 当前着色方案可行 if(result): true_coloring_record.append(temp) return True else: continue # 所有节点上色完毕 else: true_coloring_record.append(temp) return True # 当前涂色方案不可行,清空颜色 node_color[cur] = 0 # 当前节点没有可用颜色或者当前涂色方案无解,返回False return False # node_id:表示着色开始的位置 # is_true:True:显示正确的着色路径 def start(node_id, is_true): # 记录省份的颜色 # 0表示无色,1、2、3、4表示4种不同的颜色 all_coloring_record = [] true_coloring_record = [] china_map = load_graph('data/chinamap_adj_data.txt') node_color = [0]*(N+1) if(coloring(1, china_map, node_color, all_coloring_record, true_coloring_record)): all_coloring_record.append(copy.deepcopy(node_color)) else: print("无解") return -1 result = [] if(is_true): # 正确的着色序列 result = trans_record(true_coloring_record[::-1]) else: # 所有的着色序列 result = trans_record(all_coloring_record) return result if __name__ == "__main__": result = start(1, True)
true
6b56e817be2421806a691237f5205c68288651f0
Python
elcerdo/projecteuler
/problem15.py
UTF-8
432
2.765625
3
[]
no_license
import scipy as s total=s.zeros((21,21),dtype=s.int0) total[0,0]=1 def updatetotal(i,j): nn=[] if i>0: nn.append(total[i-1,j]) if j>0: nn.append(total[i,j-1]) total[i,j]=sum(nn) for k in xrange(1,total.shape[0]): for l in xrange(0,k+1): updatetotal(k-l,l) for k in xrange(-total.shape[0]+1,0): for l in xrange(k,0): updatetotal(total.shape[0]+k-l-1,total.shape[1]+l) print total[-1,-1]
true
fd59cd177546cee8feba33ba99d76615f7731f55
Python
kjchavez/pong-network
/Server/PongClient.py
UTF-8
12,059
2.84375
3
[]
no_license
# Pong Client import socket from PongNetworkConstants import * from GameEngine2D import * USE_NETWORK = True class PongWorld(World): def __init__(self,surface): World.__init__(self,"Pong",surface) self.playerScore = 0 self.opponentScore = 0 self.playerSide = None self.messageTimer = 0 def set_side(self,side): self.playerSide = side def award_point(self,side): print "called award_point" if side == self.playerSide: print "point for player" self.playerScore += 1 if self.playerScore >= WINNING_SCORE: self.winner = True self.end_game() else: self.reset() else: print "point for opponent" self.opponentScore += 1 if self.opponentScore >= WINNING_SCORE: self.winner = False self.end_game() else: self.reset() def reset(self): ball = self.get_group("Ball")[0] ball.move_to(self.size/2) def display_message(self,message,time=1000,pause=True): print message def end_game(self): if self.winner: self.display_message("You Win!") else: self.display_message("You Lose!") pygame.event.post(pygame.event.Event(QUIT,{})) class MessageWriter(Entity): def __init__(self,world,position=(200,200)): self.world = world self.type = "Message" self.image = None self.size = np.array(0,0) if not self.image else np.array(self.image.get_size()) self.position = np.array(position) self.rect = pygame.Rect(self.position-self.size/2,self.size) self.timer = 0. self.message = "" def process(self,dt): if self.timer > 0: self.timer -= dt def erase(self): pass def render(self,dt): pass class Ball(GraphicEntity): def __init__(self,world,position=(0,0),velocity=(200,200),size=30,color='red'): self.world = world self.position = np.array(position,float) self.velocity = np.array(velocity ,float) self.size = size self.type = "Ball" self.rect = pygame.Rect(self.position-(size/2,size/2),(size+1,size+1)) # Color can also be passed in as any string that pygame recognizes as a color if isinstance(color,str): color = pygame.Color(color) # Create image self.image = pygame.surface.Surface((size+1,size+1)) self.image.fill(pygame.Color('white')) pygame.draw.circle(self.image,color,(size/2,size/2),size/2) self.image.set_colorkey(self.image.get_at((0,0))) # Other Internal variables self.horizontalCollisionTimer = 0 self.verticalCollisionTimer = 0 def render(self,surface): surface.blit(self.image,self.position-np.array(self.image.get_size())/2) def erase(self): self.world.surface.blit(self.world.background,self.rect,self.rect) def process(self,dt): if self.world.isPaused: return # Check collisions self.has_hit_vertical() sideHit = self.has_hit_horizontal() if sideHit == RIGHT: self.world.award_point(LEFT) elif sideHit == LEFT: self.world.award_point(RIGHT) self.check_collisions() self.position += self.velocity * dt # Unless there's a real advantage to numpy, may just use Rects self.rect.center = self.position def check_collisions(self): # Simple version collisionPoints = [self.rect.midtop,self.rect.midright,self.rect.midbottom,self.rect.midleft] for entity in self.world.get_group("Paddle"): for point in collisionPoints: if entity.collides_with(point): if point == self.rect.midleft: self.velocity[0] = abs(self.velocity[0]) elif point == self.rect.midright: self.velocity[0] = -abs(self.velocity[0]) elif point == self.rect.midtop: self.velocity[1] = -abs(self.velocity[1]) elif point == self.rect.midbottom: self.velocity[1] = abs(self.velocity[1]) def collides_with(self,point): if LA.norm(point-self.position) < self.size/2: return True return False def has_hit_horizontal(self): if (self.position[0] > self.world.get_width() - self.size/2): self.velocity[0] = -abs(self.velocity[0]) return RIGHT if (self.position[0] < self.size/2): self.velocity[0] = abs(self.velocity[0]) return LEFT return None def has_hit_vertical(self): if (self.position[1] > self.world.get_height() - self.size/2): self.velocity[1] = -abs(self.velocity[1]) return BOTTOM if (self.position[1] < self.size/2): self.velocity[1] = abs(self.velocity[1]) return TOP return None class Paddle(GraphicEntity): def __init__(self,world,position=(0,0),velocity=(0,0),controller=PLAYER,size=(30,100),color='black'): self.world = world self.position = np.array(position) self.velocity = np.array(velocity) self.size = np.array(size) self.controller = controller self.type = "Paddle" self.rect = pygame.Rect(self.position-self.size/2,self.size) # Color can also be passed in as any string that pygame recognizes as a color if isinstance(color,str): color = pygame.Color(color) self.image = pygame.surface.Surface(self.size) pygame.draw.rect(self.image,color,pygame.Rect((0,0),self.size)) def render(self,surface): surface.blit(self.image,self.position-self.size/2) def erase(self): self.world.surface.blit(self.world.background,self.rect,self.rect) def process(self,dt): if self.world.isPaused: return if self.controller == PLAYER: # Only the Y coordinate can move, according to the mouse position self.move_to_y(pygame.mouse.get_pos()[1]) def move_to(self,pos): self.position = np.array(pos) self.rect.center = self.position def move_to_y(self,y): self.position[1] = y self.rect.center = self.position def get_pos(self): return self.position def check_collisions(self): pass def collides_with(self,point): return self.rect.collidepoint(point) class Score(GraphicEntity): def __init__(self,world,position,owner,color='black'): self.world = world self.position = np.array(position) self.owner = owner self.currentScore = -1 self.color = color self.type = "Score" if isinstance(self.color,str): self.color = pygame.Color(self.color) self.font = pygame.font.Font(None,36) self.image = self.font.render(str(self.currentScore),True,self.color) self.size = np.array(self.image.get_size()) self.rect = pygame.Rect(self.position - self.size/2, self.size) def render(self,surface): surface.blit(self.image,self.rect) def erase(self): self.world.surface.blit(self.world.background,self.rect,self.rect) def process(self,dt): if self.owner == PLAYER: newScore = self.world.playerScore else: newScore = self.world.opponentScore if newScore != self.currentScore: print "Change in score" self.currentScore = newScore self.update_image() def update_image(self): self.image = self.font.render(str(self.currentScore),True,self.color) self.size = np.array(self.image.get_size()) self.rect = pygame.Rect(self.position - self.size/2,self.size) class SocketEntity(Entity): def __init__(self,world,host,port): self.world = world self.host = host self.port = port self.type = "Socket" self.clientSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.clientSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.clientSocket.connect((host,port)) self.hasNotRecv = True self.opponentConnected = False def get_data(self): self.hasNotRecv = False string = self.clientSocket.recv(BUFFER_SIZE) #print "Server says:",string return string def put_data(self,data): self.clientSocket.send(str(data)) def process(self,dt): if self.opponentConnected: paddles = self.world.get_group("Paddle") for paddle in paddles: if paddle.controller == PLAYER: self.put_data(paddle.get_pos()[1]) elif paddle.controller == OPPONENT: message = self.get_data() # Check if other player disconnected if message == DISCONNECTED: self.world.display_message("Opponent disconnected!") self.opponentConnected = False self.world.pause() return # Otherwise the message is a position newY = int(message) paddle.move_to_y(newY) else: # Ask the server if the other player is connected yet print "Asking if opponent is connected..." self.clientSocket.send(POLL) response = self.clientSocket.recv(BUFFER_SIZE) print "Server responded:",response if response == YES: self.opponentConnected = True self.world.unpause() def main(): pygame.init() screen = pygame.display.set_mode((400,600)) screenWidth,screenHeight = screen.get_size() screenDimensions = np.array(screen.get_size()) pygame.display.set_caption("Socket Pong") screen.fill((255,255,255)) pygame.display.flip() # Game Objects world = PongWorld(screen) if USE_NETWORK: # Create SocketEntity first and receive client's player number sock = SocketEntity(world,HOST,PORT) world.add(sock) playerNumber = sock.get_data() print "This player designated as %s by the server." % playerNumber controllers = (PLAYER,OPPONENT) if (playerNumber == PLAYER1) else (OPPONENT,PLAYER) scores = controllers world.set_side(LEFT if playerNumber == PLAYER1 else RIGHT) else: # For testing purposes, mouse will control both paddles controllers = (PLAYER,PLAYER) scores = (PLAYER,OPPONENT) paddleLeft = Paddle(world,position=np.array([20,screenHeight/2]),controller=controllers[0]) paddleRight = Paddle(world,position=np.array([screenWidth-20,screenHeight/2]),controller=controllers[1]) ball = Ball(world,position=screenDimensions/2) scoreLeft = Score(world,(screenWidth/4,50),scores[0]) scoreRight = Score(world,(3*screenWidth/4,50),scores[1]) world.add(paddleLeft) world.add(scoreLeft) world.add(paddleRight) world.add(scoreRight) world.add(ball) if not USE_NETWORK: world.unpause() world.run_main_loop() pygame.quit() if __name__ == "__main__": main()
true
5e7ac2222ebb6cf2fcb267863f36d4dc16845475
Python
dagrewal/nfl-big-data-bowl-2021
/wrangling/eda.py
UTF-8
760
2.75
3
[]
no_license
""" NFL EDA of individual files using pyspark """ import pandas as pd from pyspark.sql import SparkSession from pyspark.context import SparkContext from pyspark.sql.functions import * from pyspark.sql.types import * import utils import sys # initialise spark session sc = SparkSession.builder.appName('nfl-eda')\ .master("local[15]").getOrCreate() # read in games games_df = sc.read.csv("../data/games.csv", header=True, inferSchema=True) utils.get_raw_data_info(games_df) # sort by date and time games_df = games_df.sort("gameDate", "gameTimeEastern") # rename some of the columns that end in "Abbr" games_df = games_df.toDF(*(c.replace("Abbr", "") for c in games_df.columns)) print(games_df.columns)
true
5db6a84b1882e96da0f66769cb24dd1023ee8bc2
Python
javiermontenegro/Python_Design.Patterns
/Behavioral/TemplatePattern.py
UTF-8
1,373
3.5
4
[ "MIT" ]
permissive
#******************************************************************** # Filename: TemplatePattern.py # Author: Javier Montenegro (https://javiermontenegro.github.io/) # Copyright: # Details: This code is the implementation of the template pattern. #********************************************************************* from abc import ABC, abstractmethod class Template(ABC): def __init__(self): pass @abstractmethod def function1(self): pass @abstractmethod def function2(self): pass def execute(self): print("Run function1 and function2.") self.function1() self.function2() class TemplateImplementation1(Template): def function1(self): print("TemplateImplementation1.function1() called.") def function2(self): print("TemplateImplementation1.function2() called.") class TemplateImplementation2(Template): def function1(self): print("TemplateImplementation2.function1() called.") def function2(self): print("TemplateImplementation2.function2() called.") if __name__ == "__main__": template_implementation11 = TemplateImplementation1() template_implementation11.execute() print("-----------------------------------------------") template_implementation12 = TemplateImplementation2() template_implementation12.execute()
true
f6d027205ecc66e4c3f4d9e823338fa75a7bc349
Python
GiladSchneider/laughing-pancake
/astar.py
UTF-8
787
3
3
[]
no_license
from astar_algo import loop #initializes the boards def init(n,num): board=[] #print ("arrays5/arrays%s.txt" %(num)) file = open("arrays%a/arrays%s.txt" %(n,num),"r") for i in range(n): line = file.readline() if ('S' in line): xstart = i ystart = line.index('S'); if ('T' in line): xtar = i ytar = line.index('T') #print(list(line)) board.append(list(line[:-1])) #printboard(board,n,num,folder) return board,xstart,ystart,xtar,ytar,n,num #Imports the boards from the txt files def main(): for i in range(50): #i=28 [board,xstart,ystart,xtar,ytar,n,num] = init(101,i) loop(board,xstart,ystart,xtar,ytar,n,num) main()
true
8e292665e52f488fdafd2e658ef60e5a3784beb5
Python
pedrobf777/MarchMadness
/src/utils.py
UTF-8
1,957
2.59375
3
[]
no_license
import pandas as pd from numpy import nan from sklearn.preprocessing import LabelEncoder def load_target_sample(): target = pd.read_csv('data/SampleSubmissionStage2.csv').set_index('ID')\ .drop('Pred', axis=1) target['Season'] = target.index.map(lambda i: i[:4]) target['team_a'] = target.index.map(lambda i: i[5:9]) target['team_b'] = target.index.map(lambda i: i[10:14]) target['in_target'] = True target['game_set'] = 'ncaa' return target def load_data_template(season=False): tourney_games = pd.read_csv('data/NCAATourneyCompactResults.csv') tourney_games['game_set'] = 'ncaa' data = [tourney_games] if season: season_games = pd.read_csv('data/RegularSeasonCompactResults_Prelim2018.csv') season_games['game_set'] = 'season' data.append(season_games) data = pd.concat(data).astype({ 'Season': str, 'WTeamID': str, 'LTeamID': str, 'DayNum': int }) data['team_a'] = data[['WTeamID', 'LTeamID']]\ .apply(lambda t: t[0] if int(t[0]) < int(t[1]) else t[1], axis=1) data['team_b'] = data[['WTeamID', 'LTeamID']]\ .apply(lambda t: t[0] if int(t[0]) > int(t[1]) else t[1], axis=1) data['a_win'] = data['WTeamID'] == data['team_a'] data = data[['Season', 'team_a', 'team_b', 'a_win', 'DayNum', 'game_set']] target = load_target_sample() target_index = target.index.tolist() data['in_target'] = data[['Season', 'team_a', 'team_b']]\ .apply(lambda r: '_'.join(r.values) in target_index, axis=1) data = pd.merge(target, data, on=['Season', 'team_a', 'team_b', 'game_set', 'in_target'], how='outer') data['DayNum'].fillna(366, inplace=True) data = data.astype({ 'Season': int, 'DayNum': int, 'team_a': str, 'team_b': str, 'in_target': bool }) data['game_set'] = LabelEncoder().fit_transform(data['game_set']) return data
true
3c0ae787aea711aa725d092f17288a6140f24812
Python
ZombieSave/Python
/Урок1.5/Задача2.py
UTF-8
587
4.03125
4
[]
no_license
# 2. Создать текстовый файл (не программно), сохранить в нем несколько строк, выполнить подсчет количества строк, # количества слов в каждой строке. try: with open("Задача1.dat", "r", encoding="utf-8") as f: data = [i for i in f] except IOError: print("Ошибка при чтении файла") print(f"Строк в файле: {len(data)}\n") for i, item in enumerate(data): print(f"Строка {i+1} слов {len(item.split())}")
true
ea972db451a8b60430d4860a88ab5061a36a2022
Python
uk-gov-mirror/ministryofjustice.opg-repository-reporting
/output/ouput.py
UTF-8
720
3.25
3
[]
no_license
# output class class outputer: data_store = {} conversion_function = None save_function = None def __init__(self, conversion_function, save_function): self.conversion_function = conversion_function self.save_function = save_function return def append(self, key, values): self.data_store[key] = values return def output(self): if len(self.data_store) > 0: print('>>>>> Saving dataframe') convert_func = self.conversion_function processed = convert_func(self.data_store) save = self.save_function save(processed) else: print('>>>>> Nothing to save') return
true
bed310213d50d83d0bdf9941eb41e14c9b527cc0
Python
UCRoboticsLab/gourmetBot
/light_show.py
UTF-8
850
2.59375
3
[]
no_license
#!/usr/bin/python2 import argparse import sys import rospy import baxter_interface def off_lights(navs): for nav in navs: nav.inner_led = False nav.outer_led = False def main(): rospy.init_node('light_show') navs = ( baxter_interface.Navigator('left'), baxter_interface.Navigator('right'), baxter_interface.Navigator('torso_left'), baxter_interface.Navigator('torso_right'),) rate = rospy.Rate(10) i = 0 for nav in navs: nav.inner_led = True nav.outer_led = False while not rospy.is_shutdown() and i < 10: for nav in navs: nav.inner_led = not nav.inner_led nav.outer_led = not nav.outer_led rate.sleep() i += 1 off_lights(navs) print("Running light show...") main() print("Program executed.")
true
e2c109b90721a4a3581a5c0c38f57f99f934fec5
Python
sftmsj/python-stepik
/loops.py
UTF-8
938
3.3125
3
[]
no_license
# a = 5 # while a <= 55: # print(a, end=' ') # a += 2 # c = 1 # while c < 7: # print('*' * c) # c += 1 # i = 0 # while i < 5: # print('*') # if i % 2 == 0: # print('**') # if i > 2: # print('***') # i = i + 1 # a = int(input()) # s = 0 # while a != 0: # s += a # a = int(input()) # print(s) # a = int(input()) # b = int(input()) # n = 1 # while n <= a * b: # if (n % a == 0) and (n % b == 0): # break # else: # n += 1 # print(n) # a = int(input()) # b = int(input()) # d=a # while d%b!=0: # d+=a # print(d) # i = 0 # s = 0 # while i < 10: # i = i + 1 # s = s + i # if s > 15: # continue # i = i + 1 # print(i) a = int(input()) while a < 100: if a > 10: print('output', a) else: a = int(input()) continue a = int(input())
true
bd40efa5bcb84bf7581e2f4122a4c7ab29292a95
Python
danihooven/Principles-of-Programming
/Homework07/homework07_02.py
UTF-8
1,332
3.984375
4
[]
no_license
""" ------------------------------------------------------------------------------------------------------------------- ITEC 136: Homework 07_02 Modify your first program to print count of the words instead of percentage of the letters. In this exercise you will get your input from a file. Case should be ignored. Write functions to analyze the words in file. @author: Dani Hooven @version: 10/20/2020 -------------------------------------------------------------------------------------------------------------------- """ f = open('data.txt', 'r') count = {} for line in f: for word in line.split(): # remove punctuation word = word.replace('_', '').replace('"', '').replace(',', '').replace('.', '') word = word.replace('-', '').replace('?', '').replace('!', '').replace("'", "") word = word.replace('(', '').replace(')', '').replace(':', '').replace('[', '') word = word.replace(']', '').replace(';', '') # ignore case word = word.lower() # ignore number if word.isalpha(): if word in count: count[word] = count[word] + 1 else: count[word] = 1 keys = count.keys() # keys.sort() for word in sorted(keys): print(word, " ", str(count[word]))
true
1ddc78d43bdcfab2d5215ce793580551117c1671
Python
anhthuanprobg/ngotuantu-Fundamentals-c4e13
/Session01/homework/hello_world.py/area_of_circle.py
UTF-8
53
3.53125
4
[]
no_license
r= int(input("Radius")) s= 3.14*r^2 print("Area =",s)
true
01f393a49e410da7cd29f4168e5f44abbe4450a9
Python
spanceac/raspboil
/mail.py
UTF-8
3,558
2.65625
3
[]
no_license
import imaplib import email from datetime import datetime import time date = "" action = "" date_unsplit = "" have_mail = 0 #variable used to avoid checking empty time structures in check_date at first run if no new mail available def check_mail(none): global date, action, have_mail, date_unsplit result, maildata = mail.search(None, '(Unseen FROM "your_emai_address")') ids = maildata[0] # data is a list. id_list = ids.split() # ids is a space separated string ################ TO DO Check if id_list is not empty ;) if not id_list: #if is empty return else: have_mail = 1 latest_email_id = id_list[-1] # get the latest result, maildata = mail.fetch(latest_email_id, "(RFC822)") # fetch the email body (RFC822) for the given ID msg = email.message_from_string(maildata[0][1]) for part in msg.walk(): # each part is a either non-multipart, or another multipart message # that contains further parts... Message is organized like a tree if part.get_content_type() == 'text/plain': continut = part.get_payload() # prints the raw text stop_content = continut.strip() if (stop_content == 'stop'): #print the stop print "Stop mail received" f = open('/dev/shm/state', 'w') f.write("stop") #notify start f.close() return 1 continut_new = continut.split(" ") action = continut_new[0] date = continut_new[1].split("\n") date = date[0] date_unsplit = date date = date.split("/") return def check_date(nada): global date, action day = int(date[0]) month = int(date[1]) hours = int(date[2]) minutes = int(date[3]) if (day > 0 and day <= 31) and (month > 0 and month <=12) and (hours >=0 and hours <= 23) and (minutes >=0 and minutes <= 59): print "date is valid" #let's see if the date is in the present or future now = datetime.now() if (month == now.month) and (day == now.day) and (hours == now.hour) and (minutes == now.minute): print "The date is now" f = open('/dev/shm/state', 'w') if (action == "start"): f.write("start now") #notify start else: print "Action is invalid" f.close() return else: #if the date is not now, let's check if it's in the future or the past if (month > now.month): print "The date is in the future" print_date_action(0) return elif (month == now.month): if (day > now.day): print "The date is in the future" print_date_action(0) return elif (day == now.day): if (hours > now.hour): print "The date is in the future" print_date_action(0) return elif (hours == now.hour): if(minutes > now.minute): print "The date is in the future" print_date_action(0) return else: print "The date is in the past" return else: print "The date is in the past" return else: print "The date is in the past" return else: print "The date is in the past" return else: print "date is invalid" return def print_date_action(nada): global date_unsplit print date_unsplit f = open('/dev/shm/state', 'w') a = 'start' + ' ' + date_unsplit + '\n' f.write(a) #notify start f.close() mail = imaplib.IMAP4_SSL('imap.gmail.com') mail.login('boilers_gmail_username', 'boilers_gmail_password') mail.list() # Out: list of "folders" aka labels in gmail. mail.select("inbox") # connect to inbox. stop = check_mail(0) if have_mail == 1 and stop != 1: check_date(0)
true
3cb0abc40a21d61a3fcc81472345fc812962bc9b
Python
daniela2001-png/MIN_TIC_UNAL
/FUNCIONES/area.py
UTF-8
227
3.515625
4
[]
no_license
#!/usr/bin/python3 from math import pi def rectangulo(b, h): return b * h def circulo(r): return pi * r ** 2 def total_area(): total = rectangulo(5, 10) + circulo(3) * 2 return total print(total_area())
true
183f19223366f5c96d26c7c16b61708e13e7e719
Python
Crossnonsense/Final-project-RTSoft
/main.py
UTF-8
4,698
2.84375
3
[]
no_license
import cv2 import numpy as np def canny_filter(frame): r_channel = frame[:, :, 2] binary = np.zeros_like(r_channel) binary[r_channel > 220] = 255 s_channel = frame[:, :, 2] binary2 = np.zeros_like(s_channel) binary2[s_channel > 211] = 1 allBinary = np.zeros_like(binary) allBinary[((binary == 1) | (binary2 == 1))] = 255 blurred_frame = cv2.GaussianBlur(allBinary, (5, 5), 0) return cv2.Canny(blurred_frame, 50, 150) def check_lines(lines): if lines[0][0] <= -50: return False, "Keep left" elif lines[1][0] >= 690: return False, "Keep right" else: return True, "Ok" def region_of_interest(image): polygons = np.array([(0, 320), (550, 320), (400, 155), (200, 155)]) mask = np.zeros_like(image) cv2.fillPoly(mask, np.array([polygons], dtype=np.int64), 1024) masked_image = cv2.bitwise_and(image, mask) return masked_image def make_coordinates(image, line_parameters): slope, intercept = line_parameters y1 = image.shape[0] y2 = int(y1 * (5/10)) x1 = int((y1 - intercept) / slope) x2 = int((y2 - intercept) / slope) return np.array([x1, y1, x2, y2]) right_prev = [] left_prev = [] def calculate_lines(image, lines): left_fit = [] right_fit = [] global left_prev global right_prev while lines is not None: for line in lines: x1, y1, x2, y2 = line.reshape(4) parameters = np.polyfit((x1, x2), (y1, y2), 1) slope = parameters[0] intercept = parameters[1] if slope < 0: left_fit.append((slope, intercept)) else: right_fit.append((slope, intercept)) if left_fit: left_fit_average = np.average(left_fit, axis=0) left_line = make_coordinates(image, left_fit_average) left_prev = left_line.copy() if right_fit: right_fit_average = np.average(right_fit, axis=0) right_line = make_coordinates(image, right_fit_average) right_prev = right_line.copy() if (not left_fit) and (left_prev) and (right_prev): for i in range(len(right_line)): left_line[i] = left_prev[i] - (right_line[i] - right_prev[i]) left_prev = left_line.copy() if (not right_fit) and (left_prev) and (right_prev): for i in range(len(right_line)): right_line[i] = right_prev[i] - (left_line[i] - left_prev[i]) right_prev = right_line.copy() return np.array([left_line, right_line]) def display_lines(image, lines, ok, msg): lined_image = np.zeros_like(image) if lines is not None: i = 1 for x1, y1, x2, y2 in lines: if i == 1: cv2.line(lined_image, (x1, y1), (x2, y2), (0, 255, 0), 8) i+=1 p1 = [x1,y1,x2,y2] else: cv2.line(lined_image, (x1, y1), (x2, y2), (0, 255, 0), 8) pts = np.array([[[ p1[0], p1[1]], [p1[2], p1[3]], [x2,y2],[x1,y1]]], dtype=np.int32) if ok: cv2.fillPoly(lined_image, pts, (202, 255, 192), lineType=8, shift=0, offset=None) cv2.putText(lined_image, msg, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) else: cv2.fillPoly(lined_image, pts, (100, 100, 255), lineType=8, shift=0, offset=None) cv2.putText(lined_image, msg, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) return lined_image def process_frame(frame): copied_frame = frame.copy() canny = canny_filter(frame) roi = region_of_interest(canny) lines = cv2.HoughLinesP(roi, 1, np.pi / 180, 20, np.array([()]), minLineLength=10, maxLineGap=5) a_lines = calculate_lines(frame, lines) ok, msg = check_lines(a_lines) lined_image = display_lines(copied_frame, a_lines, ok, msg) combined_frame = cv2.addWeighted(copied_frame, 0.9, lined_image, 0.5, 1) return combined_frame video = cv2.VideoCapture('msu1.mp4') if not video.isOpened(): print("Error") while video.isOpened(): video.set(cv2.CAP_PROP_FRAME_WIDTH, 640) video.set(cv2.CAP_PROP_FRAME_HEIGHT, 360) success, frame = video.read() if not success: break frame = cv2.resize(frame, (640, 360)) try: result = process_frame(frame) except: pass cv2.imshow('frame', result) if cv2.waitKey(10) & 0xFF == ord('q'): video.release() cv2.destroyAllWindows() video.release() cv2.destroyAllWindows()
true
859bb6e822e3da7f83c604c03bfd36ce71235756
Python
ot-vinta/PentaMail
/scripts/server/python/Normalizer.py
UTF-8
3,453
3.03125
3
[]
no_license
from nltk.stem import LancasterStemmer import Translator def separate_char(s, c): d = len(s) j = 1 while j < d - 1: if (s[j] == c) and (s[j - 1] != ' '): s = s[0: j] + ' ' + s[j: len(s)] d += 1 if (s[j] == c) and (s[j + 1] != ' '): s = s[0: j + 1] + ' ' + s[j + 1: len(s)] d += 1 j += 1 return s def delete_special_chars(s): s = separate_char(s, '{') s = separate_char(s, '}') s = separate_char(s, '[') s = separate_char(s, ']') s = separate_char(s, '.') s = separate_char(s, ',') s = separate_char(s, '?') s = separate_char(s, '\'') s = separate_char(s, '\"') s = separate_char(s, ':') s = separate_char(s, ';') s = separate_char(s, '|') s = separate_char(s, '_') s = separate_char(s, '-') s = separate_char(s, '+') s = separate_char(s, '=') s = separate_char(s, '!') s = separate_char(s, '@') s = separate_char(s, '#') s = separate_char(s, '$') s = separate_char(s, '№') s = separate_char(s, '%') s = separate_char(s, '^') s = separate_char(s, '&') s = separate_char(s, '<') s = separate_char(s, '>') s = separate_char(s, '*') s = separate_char(s, '\\') s = separate_char(s, '/') s = separate_char(s, '£') s = separate_char(s, '’') s = separate_char(s, 'ú') s = separate_char(s, '‘') s = separate_char(s, '(') s = separate_char(s, ')') s = s.replace('{', '') s = s.replace('}', '') s = s.replace(':)', '}') s = s.replace(':(', '{') s = s.replace('[', '') s = s.replace(']', '') s = s.replace('.', '') s = s.replace(',', '') s = s.replace('?', '') s = s.replace('\'', '') s = s.replace('\"', '') s = s.replace(':', '') s = s.replace('|', '') s = s.replace('_', '') s = s.replace(';', '') s = s.replace('-', '') s = s.replace('+', '') s = s.replace('=', '') s = s.replace('!', '') s = s.replace('@', '') s = s.replace('#', '') s = s.replace('№', '') s = s.replace('$', '') s = s.replace('%', '') s = s.replace('^', '') s = s.replace('<', '') s = s.replace('>', '') s = s.replace('*', '') s = s.replace('/', '') s = s.replace('\\', '') s = s.replace('£', '') s = s.replace('’', '') s = s.replace('ú', '') s = s.replace('‘', '') s = s.replace('&', '') s = s.replace(')', ' ') s = s.replace('(', ' ') s = separate_char(s, '{') s = separate_char(s, '}') return s def replace_digits(s): start_num = -1 digits = '0123456789' j = 0 for c in s: if (digits.find(c) != -1) and (start_num == -1): start_num = j elif (digits.find(c) == -1) and (start_num != -1): temp = s[start_num: j] j -= len(temp) - 1 s = s.replace(temp, '!', 1) start_num = -1 j += 1 if start_num != -1: temp = s[start_num: len(s[i]) - 1] s = s.replace(temp, '!', 1) s = separate_char(s, '!') return s def lemmatize(s): lancaster = LancasterStemmer() words = s.split() for i in range(0, len(words)): words[i] = lancaster.stem(words[i]) s = ' '.join(words) return s def normalize_data(s): s = .translate_string(s) s = s.lower() s = delete_special_chars(s) s = replace_digits(s) s = lemmatize(s) return s
true
0afee82bc951a4c423c01b60a164725a277ebd34
Python
JuliaZxr/LagouPractice_Yuki
/appium_test/test_touchActionDemo.py
UTF-8
1,334
2.75
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/8/29 12:32 # @Author : Yuki """ https://github.com/appium/appium/blob/master/docs/en/writing-running-appium/touch-actions.md TouchAction TouchAction对象包含一系列事件。 在所有appium客户端库中,都会创建触摸对象并为其分配一系列事件。 规范中可用的事件是: press release moveTo tap wait longPress cancel perform """ from appium import webdriver from appium.webdriver.common.touch_action import TouchAction class TestTouchAction: def setup(self): desire_cap = { "platformName": "android", "deviceName": "127.0.0.1:7555", "appPackage": "com.xueqiu.android", "appActivity": ".view.WelcomeActivityAlias", "noReset": "true" } self.driver = webdriver.Remote("http://127.0.0.1:4723/wd/hub", desire_cap) self.driver.implicitly_wait(5) def teardown(self): self.driver.quit() def test_touchAction(self): # 定义一个TouchAction类 action = TouchAction(self.driver) # 打印界面的宽和高 # print(self.driver.get_window_rect()) # press按住,move_to移动到,release释放,perform执行 action.press(x=360, y=1150).move_to(x=360, y=400).release().perform()
true
89aef2771bc3507278f56c56fdfaca8672fea77a
Python
Zander-M/ICS-Exercise
/Midterm/stack_union_student.py
UTF-8
1,290
3.671875
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Mar 20 15:58:27 2017 @author: Mebius Joyce edited it on Mar 12 2018 """ import stack_student def stack_union(lst1, lst2): """find the union of two *sorted* lists, with no duplicate in them Arguments: two sorted lists, each in ascending order Return: one list, also in *ascending* order Example: stack_union([0, 1], [0, 2, 4]) returns [0, 1, 2, 4] """ s1 = stack_student.Stack() s1.push_list(lst1) s2 = stack_student.Stack() s2.push_list(lst2) union = [] #-------------your code below-----------------# while s1.size() != 0 and s2.size() != 0: if s1.peek() == s2.peek(): a = s1.pop() s2.pop() else: a = s1.pop() if s1.peek() > s2.peek() else s2.pop() if len(union) == 0 or a != union[-1]: union.append(a) union.sort() #------------end of your code-----------------# return s1.items + union if s1.size != 0 else s2.items + union if __name__ == "__main__": import random random.seed(0) l1 = [random.randint(1, 20) for i in range(5)] l2 = [random.randint(1, 20) for i in range(5)] l1.sort(); l2.sort() print("l1: ", l1) print("l2: ", l2) r = stack_union(l1, l2) print(r)
true
dd63bb71b24d7fd3fd139603f9e10f003b56cbea
Python
CalvinMakelky/datasciencecoursera
/clientHW6.py
UTF-8
299
2.9375
3
[]
no_license
import socket host = socket.gethostname() port = 21000 print 'Connecting to ', host, port while True: s = socket.socket() s.connect((host, port)) msg = raw_input('CLIENT >> ') s.send(msg) msg = s.recv(1024) print 'SERVER >> ', msg s.close()
true
fd6324baad96b1780839732d2c46830db490873b
Python
KatrinaHoffert/stroke-radius-segmentation
/run_dilation.py
UTF-8
2,561
3.125
3
[ "BSD-3-Clause", "LicenseRef-scancode-public-domain", "BSD-2-Clause" ]
permissive
''' Performs dilation (utilizing the dilate module) on all stroke/point images. ''' import os, re, sys, enum from dilate import no_error_dilate from common import Study, dilation_radii def dilate(study, strokes_loc, ground_truth_loc, output_loc, radius_range): ''' Dilates all files. study: The Study used, which determines naming scheme. strokes_loc: Folder location for where the stroke files are. ground_truth_loc: Folder location for where the ground truth files are. output_loc: Folder location to save the dilated files in. radius_range: A generator yielding the radiuses to dilate each image for. ''' i = 0 files = os.listdir(strokes_loc) for file in files: # Extract data from file name if study == Study.Rau: file_re = re.search('(\d+)-(\d+)', file) else: file_re = re.search('(\d+)-(\d+)-(\d+)', file) if file_re == None: continue participant_id = file_re.group(1) file_id = file_re.group(2) if study == Study.Yuanxia: time_pressure = file_re.group(3) # Run the dilation for all files with all dilation radius values for radius in radius_range: i += 1 print('\rProcessing file', i, 'of', len(files) * len(radius_range), end='') sys.stdout.flush() background_label = 149 foreground_label = 29 input_image = strokes_loc + '/' + file ground_truth_image = ground_truth_loc + '/' + file_id + '-GT.png' if study == Study.Rau: output_image = output_loc + '/' + participant_id + '-' + file_id + '-' + str(radius) + '-dilate.png' else: output_image = output_loc + '/' + participant_id + '-' + file_id + '-' + time_pressure + '-' + str(radius) + '-dilate.png' # Skip files that have already been dilated if os.path.exists(output_image): continue no_error_dilate(input_image, ground_truth_image, output_image, radius, foreground_label, background_label) print('Processing Rau\'s strokes') dilate(Study.Rau, './rau/strokes', './rau/ground_truth', './rau/dilated_strokes', dilation_radii) print('\nProcessing Rau\'s points') dilate(Study.Rau, './rau/points', './rau/ground_truth', './rau/dilated_points', dilation_radii) print('\nProcessing Yuanxia\'s points') dilate(Study.Yuanxia, './yuanxia/points', './yuanxia/ground_truth', './yuanxia/dilated', dilation_radii) print()
true
8f0b06b67d96e03b869356fb235b4190f344de07
Python
XinpeiWangMRI/MRI-AUTOMAP
/Other files/Automap_chongduan
UTF-8
1,250
2.53125
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 23 09:10:16 2018 @author: chongduan """ import numpy as np import tensorflow as tf from tensorflow.python.framework import ops import math import time from generate_input import load_images_from_folder # Load training data: tic1 = time.time() # Folder with images dir_train = "/home/chongduan/Documents/6_DeepLearning_CMR-FT_Strain/Deep-MRI-Reconstruction-master/load_raw_T1_Map_data/sense_recon" n_cases = (0,1) # load image data from 0 to 1 X_train, Y_train = load_images_from_folder( # Load images for training dir_train, n_cases, normalize=False, imrotate=False) toc1 = time.time() print('Time to load data = ', (toc1 - tic1)) print('X_train.shape at input = ', X_train.shape) print('Y_train.shape at input = ', Y_train.shape) model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)
true
f9732e48f0533ade4ac82d514cf4b18fd6c42035
Python
earthinversion/PhD-Thesis-codes
/Earthquake-location-problem-Monte-Carlo/monte_carlo_eq_loc.py
UTF-8
3,512
2.765625
3
[ "MIT" ]
permissive
import matplotlib.pyplot as plt import numpy as np import pandas as pd from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm np.random.seed(0) plt.style.use('seaborn') minx, maxx = -2, 2 miny, maxy = -3, 3 numstations = 30 stn_locs=[] xvals = minx+(maxx-minx)*np.random.rand(numstations) yvals = miny+(maxy-miny)*np.random.rand(numstations) for num in range(numstations): stn_locs.append([xvals[num],yvals[num],0]) eq_loc = [2,2,-2] vel = 6 #kmps origintime = 0 def calc_arrival_time(eq_loc, stnx, stny, stnz, vel, origintime): eqx, eqy, eqz = eq_loc dist = np.sqrt((eqx - stnx)**2 + (eqy - stny)**2 + (eqz - stnz)**2) arr = dist/vel + origintime return arr d_obs = [] noise_level_data = 0.001 for stnx, stny, stnz in stn_locs: arr = calc_arrival_time(eq_loc, stnx, stny, stnz, vel, origintime) sign = np.random.choice([-1,1]) d_obs.append(arr+sign*noise_level_data*arr) d_obs = np.array(d_obs) def get_rand_number(min_value, max_value): range_vals = max_value - min_value choice = np.random.uniform(0,1) return min_value + range_vals*choice ## Monte Carlo num_iterations = 100000 inv_model = [] squared_error0 = 100000 mineqx, maxeqx = -3, 3 mineqy, maxeqy = -3, 3 mineqz, maxeqz = 0, -3 gen_num = [] lse = [] for i in range(num_iterations): eqx0 = get_rand_number(mineqx, maxeqx) eqy0 = get_rand_number(mineqy, maxeqy) eqz0 = get_rand_number(mineqz, maxeqz) vel0 = get_rand_number(5, 7) origintime0 = get_rand_number(-1, 1) d_pre = [] for stnx, stny, stnz in stn_locs: d_pre.append(calc_arrival_time([eqx0, eqy0, eqz0], stnx, stny, stnz, vel0, origintime0)) d_pre = np.array(d_pre) squared_error = np.sum((d_obs-d_pre)**2) if squared_error < squared_error0: print(i,squared_error) gen_num.append(i) lse.append(squared_error) m0 = np.array([eqx0, eqy0, eqz0, vel0, origintime0]) if np.abs(squared_error-squared_error0)<0.001: print("Terminated based on tol. value",np.abs(squared_error-squared_error0)) break squared_error0 = squared_error inv_model = m0 print("{:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(inv_model[0],inv_model[1],inv_model[2],inv_model[3],inv_model[4])) fig, ax = plt.subplots(1,1,figsize=(5,5)) ax.loglog(gen_num,lse, 'ko--') ax.set_xlabel('Generations') ax.set_ylabel('Least-squares error') plt.savefig('iterations.png',bbox_inches='tight',dpi=300) plt.close('all') ## to create the surface X = np.linspace(-3, 3, 200) Y = np.linspace(-3, 3, 200) X, Y = np.meshgrid(X, Y) Z = (X**2 + Y**2)*0 fig = plt.figure() ax = plt.axes(projection='3d') # plot stations ax.scatter([x[0] for x in stn_locs],[x[1] for x in stn_locs],[x[2] for x in stn_locs],c='b',marker='^',s=50) # plot surface surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,linewidth=0, antialiased=False,alpha=0.1) # plot actual EQ ax.scatter(eq_loc[0],eq_loc[1],eq_loc[2],c='r',marker='*',s=100,label='Actual EQ location') ax.scatter(inv_model[0],inv_model[1],inv_model[2],c='k',marker='*',s=100,label='Inverted EQ location') plt.title("Inverted model EQ loc: ({:.2f},{:.2f},{:.2f}),\nvel: {:.2f} and origin time: {:.2f}\nsq_error: {:.2f}".format(inv_model[0],inv_model[1],inv_model[2],inv_model[3],inv_model[4],squared_error),fontsize=8) ax.set_xlim([-3,3]) ax.set_ylim([-3,3]) ax.set_zlim(-3,0.1) plt.legend() plt.savefig('Earthquake_loc_monte_carlo.png',bbox_inches='tight',dpi=300) plt.close('all')
true
35b46348f92fbe1759948e0ef15e0d6179dff413
Python
Aasthaengg/IBMdataset
/Python_codes/p03556/s834395263.py
UTF-8
73
3.171875
3
[]
no_license
N=int(input()) if int((N+1)**.5)**2==N:print(N) else:print(int(N**.5)**2)
true
b0dc60718efa226ca2e42a421fd7cde62083066e
Python
makosenkov/Study
/lab2/src/main.py
UTF-8
30,959
2.921875
3
[]
no_license
import math import matplotlib.pyplot as plot import statistics as stat import scipy.stats as stats import numpy as np from lab2.src import help # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html # =================================== Подготовка данных =============================== f = open("../input/shuffled.txt", 'r') line = f.readline().split(" ") data = [] data2 = [[], [], [], [], [], [], [], [], [], []] numOfPoints = int(line[2]) numOfPointsInOneUnderArray = numOfPoints / 10 for t in f.readline().split(' '): data.append(float(t)) # создание 10 подвыборок res = 0 for i in range(numOfPoints): j = int(i // numOfPointsInOneUnderArray) res += data[i] data2[j].append(data[i]) # сортировка значений list.sort(data) for l in data2: list.sort(l) # =========================== функция распределения и гистограммы ===================== m = 40 # кол-во интервалов min_value = min(data) # минимальное значение в выборке max_value = max(data) # максимальное значение в выборке distribution_fun = np.zeros(m) h = (max_value - min_value) / m # шаг, с которым идут интервалы # steps - точки на графике от -0.411479 до 4.87074 включительно, 40 элементов steps = [] # массив 40 точек с шагом h for t in range(1, m + 1): steps.append(min_value + t * h) index = 0 for value in data: if value > steps[index]: p = int(abs(steps[index] - value) // h) + 1 for i in range(1, p): distribution_fun[index + i] = distribution_fun[index] index += p distribution_fun[index] = distribution_fun[index - 1] distribution_fun[index] += 1 plot.title("Функция распределения") plot.xlim([-0.5, 5]) plot.bar(steps, distribution_fun / numOfPoints) # plot.savefig("../out/destibutionFunction.png", dpi=200) # plot.show() plot.close() plot.title("Гистограмма") plot.hist(data, steps) # plot.savefig("../out/histogram.png", dpi=200) # plot.show() plot.close() # !!!!!!!!!Для относительной гистограммы index = 0 for_relative = np.zeros(m) for value in data: if value > steps[index]: p = int(abs(steps[index] - value) // h) + 1 for_relative[index] = for_relative[index] / (h * numOfPoints) index += p for_relative[index] += 1 for_relative[m - 1] = for_relative[m - 1] / (h * numOfPoints) # Проверка площади под гистограммой ssss_____ = 0 for v in for_relative: ssss_____ += v * h print('Area under an histogram : ', str(ssss_____)) # Конец проверки площади plot.bar(steps, for_relative, width=h) plot.title("Относительная гистограмма") # plot.savefig("../out/relativeHistogram.png", dpi=200) # plot.show() plot.close() # !!!!!!!!!!!!!!Относительная гистограмма построена # ================== ТОЧЕЧНЫЕ ОЦЕНКИ ========================= print("================== ТОЧЕЧНЫЕ ОЦЕНКИ =========================") empty = np.zeros(11) median = [stat.median(data)] # медианы mean = [stat.mean(data)] # среднее арифметическое (мат. ожидание) mid_range = [(min_value + max_value) / 2] # средина размаха dispersion = [help.dispersion(data, mean[0])] # дисперсия s^2 root_of_dispersion = [math.sqrt(dispersion[0])] # корень из дисперсии s third_central_moment = [help.central_moment(data, 3, mean[0])] # 3-ий центральный момент fourth_central_moment = [help.central_moment(data, 4, mean[0])] # 4-ый центральный момент asymmetry = [help.asymmetry(third_central_moment[0], root_of_dispersion[0])] # асимметрия kurtosis = [help.kurtosis(fourth_central_moment[0], dispersion[0])] # эксцесса interquantile_interval = help.interquantile_interval(numOfPoints, 0.5) # интерквантильный интервал index = 1 for n in data2: median.append(stat.median(n)) mean.append(stat.mean(n)) mid_range.append((min(n) + max(n)) / 2) dispersion.append(help.dispersion(data, mean[index])) root_of_dispersion.append((math.sqrt(dispersion[index]))) third_central_moment.append(help.central_moment(data, 3, mean[index])) fourth_central_moment.append(help.central_moment(data, 4, mean[index])) asymmetry.append(third_central_moment[index] / pow(root_of_dispersion[index], 3)) kurtosis.append(help.kurtosis(fourth_central_moment[index], dispersion[index])) index += 1 print('\tMin: ', min_value, ' Max: ', max_value) print('\tx_med :', median) print('\tM[x] :', mean) print('\tx_ср :', mid_range) print('\ts^2 :', dispersion) print('\ts :', root_of_dispersion) print('\t∘µ_3 :', third_central_moment) print('\t∘µ_4 :', fourth_central_moment) print('\tAs :', asymmetry) print('\tEx :', kurtosis) print('\tJ (номера значений) :', interquantile_interval) print('\tJ (значения) :', "(" + str(data[interquantile_interval[0]]) + ", " + str(data[interquantile_interval[1] - 1]) + ")") # ==================== ГРАФИКИ ТОЧЕЧНЫХ ПОКАЗАТЕЛЕЙ ========================= plot.figure() ax1 = plot.subplot(9, 1, 1) ax1.set_ylim(-0.1, 0.1) ax1.set_yticks([]) ax1.set_yticklabels([]) plot.title('Медианы') plot.plot(median, empty, 'r+') plot.plot(median[0], 0, 'rp') ax2 = plot.subplot(9, 1, 3) ax2.set_yticklabels([]) ax2.set_yticks([]) plot.title('Среднее арифметическое (мат ожидание)') plot.plot(mean, empty, 'b+') plot.plot(mean[0], 0, 'bp') ax3 = plot.subplot(9, 1, 5) ax3.set_yticks([]) ax3.set_yticklabels([]) plot.title('Средина размаха') plot.plot(mid_range, empty, 'g+') plot.plot(mid_range[0], 0, 'gp') ax4 = plot.subplot(9, 1, 7) ax4.set_yticks([]) ax4.set_yticklabels([]) plot.title('Дисперсия') plot.plot(dispersion, empty, 'g+') plot.plot(dispersion[0], 0, 'gp') ax5 = plot.subplot(9, 1, 9) ax5.set_yticks([]) ax5.set_yticklabels([]) plot.title('Среднеквадратичное отклонение') plot.plot(root_of_dispersion, empty, 'g+') plot.plot(root_of_dispersion[0], 0, 'gp') # plot.savefig("../out/moments1.png", dpi=200) # plot.show() plot.close() plot.figure() ax1 = plot.subplot(7, 1, 1) ax1.set_ylim(-0.1, 0.1) ax1.set_yticks([]) ax1.set_yticklabels([]) plot.title('Третий центральный момент') plot.plot(third_central_moment, empty, 'r+') plot.plot(third_central_moment[0], 0, 'rp') ax2 = plot.subplot(7, 1, 3) ax2.set_yticklabels([]) ax2.set_yticks([]) plot.title('Четвертый центральный момент') plot.plot(fourth_central_moment, empty, 'b+') plot.plot(fourth_central_moment[0], 0, 'bp') ax3 = plot.subplot(7, 1, 5) ax3.set_yticks([]) ax3.set_yticklabels([]) plot.title('Асимметрия') plot.plot(asymmetry, empty, 'g+') plot.plot(asymmetry[0], 0, 'gp') ax4 = plot.subplot(7, 1, 7) ax4.set_yticks([]) ax4.set_yticklabels([]) plot.title('Эксцесса') plot.plot(kurtosis, empty, 'g+') plot.plot(kurtosis[0], 0, 'gp') plot.savefig("../out/moments2.png", dpi=200) # plot.show() plot.close() # ==================== ГРАФИКИ ТОЧЕЧНЫХ ПОКАЗАТЕЛЕЙ НАЧЕРЧЕНЫ ================= # ======================!!! Часть 1.4 . Интервальные оценки !!!================== print("======================!!! Часть 1.4 . Интервальные оценки !!!===============") Q = 0.8 # доверительная вероятность left_chi2inv = 5.7350e+03 # посчитаны в MATLAB функцией chi2inv((1 + Q) / 2, n-1) right_chi2inv = 5.4638e+03 # посчитаны в MATLAB функцией chi2inv((1 - Q) / 2, n-1) tinv = 1.2817 # посчитано в MATLAB функцией tinv(0.9, n-1), 0.9 = (1+q)/2, где q=0.8 mean_interval = [help.mean_interval(numOfPoints, mean[0], root_of_dispersion[0], tinv)] dispersion_interval = [help.dispersion_interval(numOfPoints, dispersion[0], left_chi2inv, right_chi2inv)] for i in range(1, 11): mean_interval.append(help.mean_interval(numOfPoints, mean[i], root_of_dispersion[i], tinv)) dispersion_interval.append(help.dispersion_interval(numOfPoints, dispersion[i], left_chi2inv, right_chi2inv)) print("\t Интервальные оценки для мат. ожидания" + str(mean_interval)) print("\t Интервальные оценки для дисперсии" + str(dispersion_interval)) # =================== Чертим ИНТЕРВАЛЬНЫЕ ОЦЕНКИ МАТ ОЖИДАНИЯ М ДИСПЕРСИИ ==================================== # Для мат. ожидания plot.figure() axes = [plot.subplot(11, 1, 1)] axes[0].set_yticks([]) axes[0].set_ylabel('Full') plot.title('Интервальные оценки мат. ожидания') plot.setp(axes[0].get_xticklabels(), visible=False) plot.plot(mean[0], 0, 'rp') plot.plot(mean_interval[0][0], 0, 'b<') plot.plot(mean_interval[0][1], 0, 'b>') for i in range(1, 11): axes.append(plot.subplot(11, 1, i + 1, sharex=axes[0])) axes[i].set_yticks([]) axes[i].set_ylabel(str(i)) if i < 10: plot.setp(axes[i].get_xticklabels(), visible=False) plot.plot(mean[i], 0, 'r+') plot.plot(mean_interval[i][0], 0, 'b<') plot.plot(mean_interval[i][1], 0, 'b>') axes[0].set_xlim([1.97, 2.05]) # plot.savefig("../out/intervalsMoments.png", dpi=200) # plot.show() plot.close() # Для дисперсии plot.figure() axes = [plot.subplot(11, 1, 1)] axes[0].set_yticks([]) axes[0].set_ylabel('Full') plot.title('Интервальные оценки дисперсии') plot.setp(axes[0].get_xticklabels(), visible=False) plot.plot(dispersion[0], 0, 'rp') plot.plot(dispersion_interval[0][0], 0, 'b<') plot.plot(dispersion_interval[0][1], 0, 'b>') for i in range(1, 11): axes.append(plot.subplot(11, 1, i + 1, sharex=axes[0])) axes[i].set_yticks([]) axes[i].set_ylabel(str(i)) if i < 10: plot.setp(axes[i].get_xticklabels(), visible=False) plot.plot(dispersion[i], 0, 'r+') plot.plot(dispersion_interval[i][0], 0, 'b<') plot.plot(dispersion_interval[i][1], 0, 'b>') axes[0].set_xlim([0.218, 0.232]) # plot.savefig("../out/intervalDispersion.png", dpi=200) # plot.show() plot.close() # =================== графики ИНТЕРВАЛЬНЫХ ОЦЕНКИ МАТ ОЖИДАНИЯ М ДИСПЕРСИИ напечатаны! ========================== # ============================= ТОЛЕРАНТНЫЕ ПРЕДЕЛЫ =================================== print("============================= ТОЛЕРАНТНЫЕ ПРЕДЕЛЫ ===================================") p = 0.95 # вероятность для интерквантильного промежутка q = 0.8 # доверительная вероятность tolerant_interval_average = [0, 0] # массив для толерантных пределов k = help.find_k(numOfPoints, p, q) # кол-во отрасываемых точек print("\tПредел k : " + str(k) + " , Значение биномиального распределения : " + str( stats.binom.cdf(numOfPoints - k, numOfPoints, p))) # Для всей выборки относительно среднего арифметического if k % 2 == 0: left_lim = int(k / 2) right_lim = int(numOfPoints - k / 2) tolerant_interval_average[0], tolerant_interval_average[1] = data[left_lim], data[right_lim] else: left_lim = int((k - 1) / 2) right_lim = int(numOfPoints - (k - 1) / 2) tolerant_interval_average[0], tolerant_interval_average[1] = data[left_lim], data[right_lim] # Для всей выборки относительно нуля # Для этого возьмем модули отрицательных значений и пересортируем выборку data_abs = np.sort(abs(np.array(data))) tolerant_interval_zero = [-data_abs[numOfPoints - k + 1], data_abs[numOfPoints - k + 1]] print("\tТолерантные пределы для всей выборки относительно среднего: " + str(tolerant_interval_average)) print("\tТолерантные пределы для всей выборки относительно нуля" + str(tolerant_interval_zero)) # ЧЕРТИМ plot.title("Толерантные пределы для интерквантильного \nпромежутка относительно среднего значения") plot.yticks([]) plot.plot(tolerant_interval_average[0], 0, 'b<') plot.plot(tolerant_interval_average[1], 0, 'b>') plot.plot(data[interquantile_interval[0]], 0, 'ro') plot.plot(data[interquantile_interval[1]], 0, 'ro') plot.legend(("Левый толерантный предел", "Правый толерантный предел", "Интерквантильный промежуток"), loc='upper right') # plot.savefig("../out/tolerantLimsAverage.png", dpi=200) # plot.show() plot.close() plot.title("Толерантные пределы относительно нуля") plot.yticks([]) plot.plot(tolerant_interval_zero[0], 0, 'b<') plot.plot(tolerant_interval_zero[1], 0, 'b>') plot.legend(("Левый толерантный предел", "Правый толерантный предел"), loc='upper right') # plot.savefig("../out/tolerantLimsZero.png", dpi=200) # plot.show() plot.close() # Считаем параметрические толерантные пределы подвыборок k_tolerant_multiplier = 1.96 parametric_tolerant_interval = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]] for i in range(10): parametric_tolerant_interval[i][0] = mean[i + 1] - k_tolerant_multiplier * root_of_dispersion[i + 1] parametric_tolerant_interval[i][1] = mean[i + 1] + k_tolerant_multiplier * root_of_dispersion[i + 1] print("\tПараметрические толерантные интервалы для подвыборок:") print("\t\t" + str(parametric_tolerant_interval)) axes = [] plot.title("Параметрические толерантные пределы для подвыборок") for i in range(10): if i == 0: axes.append(plot.subplot(10, 1, i + 1)) else: axes.append(plot.subplot(10, 1, i + 1, sharex=axes[0])) axes[i].set_yticks([]) axes[i].set_ylabel(str(i + 1)) if i < 9: plot.setp(axes[i].get_xticklabels(), visible=False) plot.plot(parametric_tolerant_interval[i][0], 0, 'b<') plot.plot(parametric_tolerant_interval[i][1], 0, 'b>') plot.plot(mean[i + 1], 0, 'ro') # plot.savefig("../out/parametricTolerantLims.png", dpi=200) # plot.show() plot.close() # ============================= ЧАСТЬ 2 ======================================== # ========================== МЕТОД МОМЕНТОВ ==================================== print("===========================МЕТОД МОМЕНТОВ==========================") # Нормальное, Гамма и Лапласа # Для нормального распредления print("\tДля нормального распредления") print("\t\tc = " + str(mean[0]) + " s = " + str(root_of_dispersion[0])) a_for_laplace_moment_method = median[0] laplace_lambda_moment_method = math.sqrt(2 / dispersion[0]) print("\tДля распределения Лапласа") print("\t\ta = " + str(a_for_laplace_moment_method) + " lambda = " + str(laplace_lambda_moment_method)) k_for_gamma_moment_method = (mean[0] ** 2) / dispersion[0] theta_for_gamma_moment_method = dispersion[0] / mean[0] print("\tДля Гамма-распредления") print("\t\tk = " + str(k_for_gamma_moment_method) + " lambda = " + str(theta_for_gamma_moment_method)) # ======================================= ММП ==================================================== print("===========================ММП==========================") # Для нормального распределения c_for_normal_mmp = 1 / numOfPoints * sum(data) dispersion_for_normal_mmp = 1 / numOfPoints * sum((np.array(data) - c_for_normal_mmp) ** 2) s_for_normal_mmp = math.sqrt(dispersion_for_normal_mmp) print("\tДля нормального распределения") print("\t\tc = " + str(c_for_normal_mmp) + " s = " + str(s_for_normal_mmp)) # Для распределения Лапласа a_for_laplace_mmp = mean[0] laplace_lambda_mmp = numOfPoints * (1 / sum(abs(np.array(data) - a_for_laplace_mmp))) print("\tДля распределения Лапласа") print("\t\ta = " + str(a_for_laplace_mmp) + " lambda = " + str(laplace_lambda_mmp)) # Для Гамма-распределения # Числовые значения, которые нужно посчитать for_optimize1 = 0 for_optimize2 = 0 for v in data: if v > 0: for_optimize1 += v for_optimize2 += np.log(v) for_optimize3 = for_optimize1 for_optimize1 = np.log(for_optimize1 / numOfPoints) for_optimize2 = for_optimize2 / numOfPoints c_mmp = for_optimize1 - for_optimize2 # Достаем градиент Гамма-функции и ищем ее минимум, числа 19 и 12, найдены чисто эмпирически # 19 дает отрицательное значение функции, 12 положительное gamma_gradient = help.gammaGradient(c_mmp).gamma_gradient print(gamma_gradient(19)) print(gamma_gradient(12)) k_for_gamma_mmp = help.fmin_bisection(gamma_gradient, 19, 12, 1e-14) theta_for_gamma_mmp = for_optimize3 / (k_for_gamma_mmp * numOfPoints) print("\tДля Гамма-распределения") print("\t\tk = " + str(k_for_gamma_mmp) + " theta = " + str(theta_for_gamma_mmp)) # ======================= Построим финции распределения и плотности вместе с гистограммой # Для нормального распределения # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm plot.title("Сравнение с плотностью нормального распределения") plot.bar(steps, for_relative, width=h) plot.plot(data, stats.norm.pdf(np.array(data), loc=mean[0], scale=root_of_dispersion[0]), 'b') plot.plot(data, stats.norm.pdf(np.array(data), loc=c_for_normal_mmp, scale=s_for_normal_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Гистограмма"), loc='upper right') # plot.savefig("../out/withNorm.png", dpi=200) # plot.show() plot.close() plot.title("Сравнение с нормальным распределением") plot.bar(steps, distribution_fun / numOfPoints, width=h) plot.plot(data, stats.norm.cdf(np.array(data), loc=mean[0], scale=root_of_dispersion[0]), 'b') plot.plot(data, stats.norm.cdf(np.array(data), loc=c_for_normal_mmp, scale=s_for_normal_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Эмпирическая"), loc='upper right') plot.savefig("../out/withNormCumulative.png", dpi=200) # plot.show() plot.close() # Для распределения Лапласа # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace.html plot.title("Сравнение с плотностью распределения Лапласа") plot.bar(steps, for_relative, width=h) plot.plot(data, stats.laplace.pdf(np.array(data), loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method), 'b') plot.plot(data, stats.laplace.pdf(np.array(data), loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Гистограмма"), loc='upper right') # plot.savefig("../out/withLaplace.png", dpi=200) # plot.show() plot.close() plot.title("Сравнение с распределением Лапласа") plot.bar(steps, distribution_fun / numOfPoints, width=h) plot.plot(data, stats.laplace.cdf(np.array(data), loc=mean[0], scale=1 / laplace_lambda_moment_method), 'b') plot.plot(data, stats.laplace.cdf(np.array(data), loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Эмпирическая"), loc='upper right') plot.savefig("../out/withLaplaceCumulative.png", dpi=200) # plot.show() plot.close() # Для Гамма-распределения # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html plot.title("Сравнение с плотностью Гамма-распределения") plot.bar(steps, for_relative, width=h) plot.plot(data, stats.gamma.pdf(np.array(data), k_for_gamma_moment_method, scale=theta_for_gamma_moment_method), 'b') plot.plot(data, stats.gamma.pdf(np.array(data), k_for_gamma_mmp, scale=theta_for_gamma_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Гистограмма"), loc='upper right') # plot.savefig("../out/withGamma.png", dpi=200) # plot.show() plot.close() plot.title("Сравнение с Гамма-распределением") plot.bar(steps, distribution_fun / numOfPoints, width=h) plot.plot(data, stats.gamma.cdf(np.array(data), k_for_gamma_moment_method, scale=theta_for_gamma_moment_method), 'b') plot.plot(data, stats.gamma.cdf(np.array(data), k_for_gamma_mmp, scale=theta_for_gamma_mmp), 'r') plot.legend(("Метод моментов", "ММП", "Эмпирическая"), loc='upper right') plot.savefig("../out/withGammaCumulative.png", dpi=200) # plot.show() plot.close() # ========================== ПРОВЕРКА ГИПОТЕЗ ============================================ print("========================== ПРОВЕРКА ГИПОТЕЗ ==============================") # _nk - кол-во точек, попавших в k-ый интервал _nk = np.empty(m) index = 0 for val in distribution_fun: if index == 0: _nk[index] = val else: _nk[index] = val - distribution_fun[index - 1] index += 1 # =============== Хи-квадрат============================================================== print("=============== Хи-квадрат статистика=====================") print("\tКритическое значение = 45.0763") # Значение получено в MATLAB print("\tДля нормального распределения") index = 0 chi2_stat = 0 for i in range(40): if i == 0: ___Pk = stats.norm.cdf(steps[index], loc=mean[0], scale=root_of_dispersion[0]) - \ stats.norm.cdf(min_value, loc=mean[0], scale=root_of_dispersion[0]) else: ___Pk = stats.norm.cdf(steps[index], loc=mean[0], scale=root_of_dispersion[0]) - \ stats.norm.cdf(steps[index - 1], loc=mean[0], scale=root_of_dispersion[0]) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля метода моментов = " + str(chi2_stat)) index = 0 chi2_stat = 0 for i in range(40): if i == 0: ___Pk = stats.norm.cdf(steps[index], loc=c_for_normal_mmp, scale=s_for_normal_mmp) - \ stats.norm.cdf(min_value, loc=c_for_normal_mmp, scale=s_for_normal_mmp) else: ___Pk = stats.norm.cdf(steps[index], loc=c_for_normal_mmp, scale=s_for_normal_mmp) - \ stats.norm.cdf(steps[index - 1], loc=c_for_normal_mmp, scale=s_for_normal_mmp) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля ММП = " + str(chi2_stat)) print("\tДля распределения Лапласа") index = 0 chi2_stat = 0 for i in range(40): if i == 0: ___Pk = stats.laplace.cdf(steps[index], loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) - \ stats.laplace.cdf(min_value, loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) else: ___Pk = stats.laplace.cdf(steps[index], loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) - \ stats.laplace.cdf(steps[index - 1], loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля метода моментов = " + str(chi2_stat)) index = 0 chi2_stat = 0 for i in range(40): if i == 0: ___Pk = stats.laplace.cdf(steps[index], loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) - \ stats.laplace.cdf(min_value, loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) else: ___Pk = stats.laplace.cdf(steps[index], loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) - \ stats.laplace.cdf(steps[index - 1], loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля ММП = " + str(chi2_stat)) print("\tДля Гамма-распределения") # Здесь мы начинаем цикл от 4, так как иначе будут взяты отрицательные значения, которые в гамма распределении # отсутсвуют, а значит ___Pk будет ноль и мы получим деление на ноль index = 4 chi2_stat = 0 for i in range(4, 40): ___Pk = stats.gamma.cdf(steps[index], k_for_gamma_moment_method, scale=theta_for_gamma_moment_method) - \ stats.gamma.cdf(steps[index - 1], k_for_gamma_moment_method, scale=theta_for_gamma_moment_method) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля метода моментов = " + str(chi2_stat)) index = 4 chi2_stat = 0 for i in range(4, 40): ___Pk = stats.gamma.cdf(steps[index], k_for_gamma_mmp, scale=theta_for_gamma_mmp) - \ stats.gamma.cdf(steps[index - 1], k_for_gamma_mmp, scale=theta_for_gamma_mmp) chi2_stat += (numOfPoints * ___Pk - _nk[index]) ** 2 / (numOfPoints * ___Pk) index += 1 print("\t\tДля ММП = " + str(chi2_stat)) # =============== КОЛМАГОРОВА - СМИРНОВА============================================================== print("=============== статистика КОЛМАГОРОВА - СМИРНОВА =====================") # Посчитаем D критическое для N=5600, alpha=0.2 ___Dcrit = np.sqrt(- (np.log(0.5 * 0.2) / (2 * numOfPoints))) - 1 / (6 * numOfPoints) print("\tКритическое значение = " + str(___Dcrit)) print("\tДля нормального распределения") ___D = 0 index = 1 for val in data: _____ddd = abs(stats.norm.cdf(val, loc=mean[0], scale=root_of_dispersion[0]) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля метода моментов = " + str(___D)) ___D = 0 index = 1 for val in data: _____ddd = abs(stats.norm.cdf(val, loc=c_for_normal_mmp, scale=s_for_normal_mmp) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля ММП = " + str(___D)) print("\tДля распределения Лапласа") ___D = 0 index = 1 for val in data: _____ddd = abs(stats.laplace.cdf(val, loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля метода моментов = " + str(___D)) ___D = 0 index = 1 for val in data: _____ddd = abs(stats.laplace.cdf(val, loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля ММП = " + str(___D)) print("\tДля Гамма-распределения") ___D = 0 index = 1 for val in data: _____ddd = abs(stats.gamma.cdf(val, k_for_gamma_moment_method, scale=theta_for_gamma_moment_method) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля метода моментов = " + str(___D)) ___D = 0 index = 1 for val in data: _____ddd = abs(stats.gamma.cdf(val, k_for_gamma_mmp, scale=theta_for_gamma_mmp) - index / numOfPoints) if _____ddd > ___D: ___D = _____ddd index += 1 print("\t\tДля ММП = " + str(___D)) # ======================= критерий Мизеса ================================ print("=============== статистика Мизеса =====================") print("\tКритическое значение = 0.2415") # Значение взято из таблицы print("\tДля нормального распределения") ___w = 0 index = 1 for val in data: ___w += (stats.norm.cdf(val, loc=mean[0], scale=root_of_dispersion[0]) - (2 * index - 1) / (2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля метода моментов = " + str(___w)) ___w = 0 index = 1 for val in data: ___w += (stats.norm.cdf(val, loc=c_for_normal_mmp, scale=s_for_normal_mmp) - (2 * index - 1) / ( 2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля ММП = " + str(___w)) print("\tДля распределения Лапласа") ___w = 0 index = 1 for val in data: ___w += (stats.laplace.cdf(val, loc=a_for_laplace_moment_method, scale=1 / laplace_lambda_moment_method) - (2 * index - 1) / (2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля метода моментов = " + str(___w)) ___w = 0 index = 1 for val in data: ___w += (stats.laplace.cdf(val, loc=a_for_laplace_mmp, scale=1 / laplace_lambda_mmp) - (2 * index - 1) / (2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля ММП = " + str(___w)) print("\tДля Гамма-распределения") ___w = 0 index = 1 for val in data: ___w += (stats.gamma.cdf(val, k_for_gamma_moment_method, scale=theta_for_gamma_moment_method) - (2 * index - 1) / (2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля метода моментов = " + str(___w)) ___w = 0 index = 1 for val in data: ___w += (stats.gamma.cdf(val, k_for_gamma_mmp, scale=theta_for_gamma_mmp) - (2 * index - 1) / ( 2 * numOfPoints)) ** 2 index += 1 ___w = 1 / (12 * numOfPoints) + ___w print("\t\tДля ММП = " + str(___w))
true
bb1e7792704afe5b36323419282af6fb8d906e2e
Python
vonkez/r6s-rank-bot
/stat_providers/rate_limiter.py
UTF-8
1,049
2.671875
3
[]
no_license
import time from loguru import logger from stat_providers.stat_provider import PlayerNotFound class RateLimiter: """ A basic async rate limiter that raises exception if it exceeds the limit. """ def __init__(self, limit_per_minute): self.tokens = limit_per_minute self.token_rate = limit_per_minute self.updated_at = time.time() async def __aenter__(self): if time.time() - self.updated_at > 60: self.tokens = self.token_rate self.updated_at = time.time() if self.tokens > 0: self.tokens -= 1 return True else: logger.error("Rate limit exceeded") raise RateLimitExceeded() async def __aexit__(self, exc_type, exc_val, exc_tb): if exc_type is PlayerNotFound or exc_type is ConnectionError: return if exc_type is not None: logger.error(exc_type) logger.error(exc_val) logger.error(exc_tb) class RateLimitExceeded(Exception): pass
true
b6bafe8ec7b2fd147d6e5809e4ffdab16b1f84e9
Python
sherirosalia/Python_Challenge_Refactor
/main.py
UTF-8
4,335
3.34375
3
[]
no_license
#refactored script # #dependencies import os import csv #import operator for running code on line 63 import operator #csv file with election data election_data=os.path.join("election_results.csv") #variables total_votes = 0 county_votes = {} candidates = {} #open csv with open(election_data) as election_data: readCSV = csv.reader(election_data, delimiter=',') # Read the header header = next(readCSV) print(f'The headers are: {header}') #loop through data to append dictionaries for row in readCSV: # Add to the total vote count total_votes = total_votes + 1 county= row[1] candidate = row[2] if county not in county_votes: # setting default value county_votes[county] = 0 #appending regardless of whether county existed before or not # because we are outside of the if statment (forcing function). county_votes[county] += 1 #duplicate above comments substituting candidate if candidate not in candidates: candidates[candidate] = 0 candidates[candidate] += 1 # print(county_votes) # print(f'Total Votes are: {total_votes}') # print(county_votes.items()) #county winner County_Most_Votes = (max(county_votes, key=county_votes.get)) #candidate winner candidate_top_votes = (max(candidates, key=candidates.get)) # print(f'Candidate with most votes is: {candidate_top_votes}') for candidate in sorted(candidates, key=candidates.get): # print("%d '%s'" % (candidates[candidate], candidate)) # print("%s'%d'" % (candidate, candidates[candidate], )) candidate_by_name = candidate votes_per_candidate = candidates[candidate] candidate_vote_percent = votes_per_candidate/total_votes * 100 print(f'{candidate_by_name} votes: ({votes_per_candidate:,}){candidate_vote_percent:.1f}% ') candidate_tally = ("%s'%d'" % (candidate, candidates[candidate], )) print(candidate_tally) #function below allows us to call the percentage and tallies for counties and candidates #avoids having to break up our write to file statement so that we can access loop data def access_dictionary(dictionary, total): layout = '' #we don't need to define the dictionary in function for item in dictionary: tally = dictionary[item] percentage=tally/total *100 tallies = ("%s'%d'" % (item, dictionary[item], )) layout = layout + f'{item} votes: ({tally:,}) percentage: {percentage:.1f}% \n' #print(tallies) # print(f'{item} votes: ({tally:,}) percentage: {percentage:.1f}% ') return layout #common pattern to establish empty string, add to and return in function access_dictionary(candidates, total_votes) print(f'-----------------') access_dictionary(county_votes, total_votes) candidate_data = access_dictionary(candidates, total_votes) county_data = access_dictionary(county_votes, total_votes) #print to terminal print(candidate_data) #create text file to save analysis results=os.path.join("analysis", "election_analysis.txt") with open (results, "w") as txt_file: election_talies = ( f'---Election Tallies ----\n' f'------------------------\n' f'Total Votes: {total_votes}\n' f'------------------------\n' f'------------------------\n' f'County Votes: \n' f'------------------------\n' f'{county_data}' f'------------------------\n' f'------------------------\n' f'Largest County Turnout: {County_Most_Votes}\n' f'------------------------\n' f'------------------------\n' f'Candidates: \n' f'------------------------\n' f'{candidate_data}' f'------------------------\n' f'------------------------\n' f'Winner: {candidate_top_votes} \n' f'------------------------\n\n' ) print(election_talies, end='') txt_file.write(election_talies)
true
ffe1fe1a46c0f209bf276f347ea3dc36f1762140
Python
PecPeter/Stock_Tracker
/main.py
UTF-8
2,504
3.234375
3
[]
no_license
import os import sys import sqlite3 import database import menuCommands # Main program code # TODO: change the options to work like terminal commands, # make it so that you can choose which database to use, and pass the # cursor for that database to the different functions. add functions to # init a new database... exitProgram = False if len(sys.argv) != 2 : print("Please enter database that you would like to open as a " \ "console argument") exitProgram = True else : tmpStr = sys.argv[1].split("/") dirStr = "" for index in range(0,len(tmpStr)-1) : dirStr += tmpStr[index] + "/" if os.path.isdir(dirStr) == False : print("Path to database doesn't exist") exitProgram = True else : if os.path.isfile(sys.argv[1]) == False : database.create_database(sys.argv[1]) conn = sqlite3.connect(sys.argv[1]) cur = conn.cursor() while exitProgram == False : print(menuCommands.introString) userInput = input("Selection: ") if userInput == "1" : # Execute code for adding a new ticker print("\n") print("Adding new stock for tracking") foundStock = False while foundStock == False : print("Enter 'quit' to exit to main menu") userInput = input("New stock: ") if userInput == "quit" : break else : foundStock = database.track_stock(userInput,conn) elif userInput == "2" : # Execute code for removing a tracked ticker print("\n") print("Removing stock from tracking") foundStock = False while foundStock == False : print("Enter 'quit' to exit to main menu") userInput = input("Remove stock: ") if userInput == "quit" : break else : foundStock = database.untrack_stock(userInput,conn) elif userInput == "3" : # Execute code for listing all currently tracked tickers database.list_stock(conn) elif userInput == "4" : # Execute code for listing all the tickers that can be tracked print("4") elif userInput == "5" : # Execute code for updating all the information for the tracked tickers print("5") elif userInput == "6" : # Exit exitProgram = True else : print("Incorrect selection. Please try again.") print("Quiting Stock Ticker Tracker")
true
d7b154a988905c9da76950798e4e8ffbefa3dee8
Python
dmr8230/UNCW-Projects
/CSC231-Python/Chp 8 - Binary Tree/Lab8.py
UTF-8
5,232
4.0625
4
[]
no_license
# Author: Dani Rowe # Date: October 20th, 2020 # Description: tests the three different types of traversals by looping # through the tree class BinaryTree: def __init__(self, payload = None, leftChild = None, rightChild = None): ''' Constructor :param payload (any value): default None :param leftChild (a Binary Tree): default None :param rightChild (a Binary Tree): default None ''' self.__payload = payload self.__leftChild = leftChild self.__rightChild = rightChild def getPayload(self): ''' returns the current payload :return: the current payload ''' return self.__payload def setPayload(self, payload): ''' sets the current payload to the payload :param payload: sets the current payload to the payload :return: does not return anything ''' self.__payload = payload def getLeftChild(self): ''' returns the current LeftChild :return: the current LeftChild ''' return self.__leftChild def setLeftChild(self, leftChild): ''' sets the current leftChild to the leftChild :return: the current leftChild to the leftChild ''' self.__leftChild = leftChild def getRightChild(self): ''' returns the current RightChild :return: the current RightChild ''' return self.__rightChild def setRightChild(self, rightChild): ''' sets the current rightChild to the rightChild :return: the current rightChild to the rightChild ''' self.__rightChild = rightChild def __str__(self): ''' converts the tree to a string represenation do an in-order traversal :return: string ''' return self.inorderTraversal() def inorderTraversal(self): # not done -- rearrange spaces correct? ''' This function produces a inorder traversal of the tree. :return: a string that results from a inorder traversal ''' result = "" if self.isEmpty(): return result else: # visit the left subtree if self.getLeftChild() is not None: result += self.getLeftChild().inorderTraversal() # visit the root node result += " " + str(self.getPayload()) # visit the right subtree if self.getRightChild() is not None: result += " " + self.getRightChild().inorderTraversal() return result def preorderTraversal(self): ''' This function produces a preorder traversal of the tree. :return: a string that results from a preorder traversal ''' result = "" if self.isEmpty(): return result else: #visit the root node result += str(self.getPayload()) #visit the left subtree if self.getLeftChild() is not None: result += " " + self.getLeftChild().preorderTraversal() #visit the right subtree if self.getRightChild() is not None: result += " " + self.getRightChild().preorderTraversal() return result def postorderTraversal(self): # not done -- rearrange ''' This function produces a preorder traversal of the tree. :return: a string that results from a preorder traversal ''' result = "" if self.isEmpty(): return result else: # visit the left subtree if self.getLeftChild() is not None: result += self.getLeftChild().postorderTraversal() # visit the right subtree if self.getRightChild() is not None: result += " " + self.getRightChild().postorderTraversal() # visit the root node result += " " + str(self.getPayload()) return result def isEmpty(self): ''' returns True if the tree is empty, False otherwise :return (boolean): True if the tree is empty, False otherwise ''' # It is not really possible to call the isEmpty if you don't have # an object, so it really couldn't happen that self is None. return self is None or self.getPayload() is None def main(): BT = BinaryTree() print("isEmpty() = " + str(BT.isEmpty())) print(BT) BT.setPayload(101) print("isEmpty() = " + str(BT.isEmpty())) print(BT) BT.setLeftChild(BinaryTree(50)) print(BT) BT.setRightChild(BinaryTree(250)) print(BT) BT.getLeftChild().setLeftChild(BinaryTree(42)) print(BT) BT.getLeftChild().getLeftChild().setLeftChild(BinaryTree(31)) print(BT) BT.getRightChild().setRightChild(BinaryTree(315)) print(BT) BT.getRightChild().setLeftChild(BinaryTree(200)) print(BT) print("Inorder traversal: " + BT.inorderTraversal()) print("Preorder traversal: " + BT.preorderTraversal()) print("Postorder traversal: " + BT.postorderTraversal()) #creates the construct if __name__ == "__main__": main()
true
e0af975128b412b0abad597e47344d69370a9b1b
Python
CommanderErika/DataVisualization-with-Covid19-data
/Codes/evoluçao_incidencia_final.py
UTF-8
5,912
2.9375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 27 17:33:02 2020 @author: erika """ # Iportando as bibliotecas # import pandas as pd import numpy as np import matplotlib import seaborn as sns import math import matplotlib.pyplot as plt # Região que iremos fazer os graficos # regiao = 'Trairí' nome = 'Trairí' labels = ['Incidência acumulada no '+nome, 'Lajes Pintadas', 'Jaçanã', 'São José do Campestre', 'São Bento do Trairí', "Santa Cruz"] # Importando os dados # dataset_covid = pd.read_excel('02_07.xlsx') dataset_covid['TERRITÓRIO DE CIDADANIA'] = dataset_covid['TERRITÓRIO DE CIDADANIA'].astype(str) # FUNÇÕES AUXILIARES # def getMunicipios(casos): popu = [] municipios, index = np.unique(casos[:, 4], return_index = True) for i in index: popu = np.append(popu, casos[i][5]) return municipios, popu def ajeitar(casos): casos_positivos = [] for i in range(0, casos.shape[0]): if(casos[i][0] == 'Positivo' and casos[i][3].year >= 2020 and casos[i][1] == regiao): casos_positivos = np.append(casos_positivos, casos[i]) casos_positivos = casos_positivos.reshape((int(casos_positivos.shape[0]/casos.shape[1]), casos.shape[1])) return casos_positivos # Pegar os dados do Territorio em Especifico # def getValue(casos, dias, municipio, popu): counters = [0] * dias.shape[0] flag = False counter = 0 for y, i in enumerate(dias): for j in range(0, casos.shape[0]): if(casos[j][3] == i): if(casos[j][4] == municipio): counter += 1 flag = True if(flag == True): counters[y] = counter flag = False else: continue counters = [(l/popu) * 100000 for l in counters] return counters def getValueT(casos, dias, popu): counters = [0] * dias.shape[0] flag = False counter = 0 for y, i in enumerate(dias): for j in range(0, casos.shape[0]): if(casos[j][3] == i): counter += 1 flag = True if(flag == True): counters[y] = counter flag = False else: continue counters = [(l / popu) * 100000 for l in counters] return counters def getPopu(casos): popu = np.unique(casos[:, 5]) poputot = sum(int(i) for i in popu) return poputot # Criando o DataFrame # def getDataframe(casos, dias, listaMunicipios, listapopu): poputot = getPopu(casos) frame1 = pd.DataFrame(getValueT(casos, dias, poputot), columns = ['Incidência em ' + str(nome)]) for (i, j) in zip(listaMunicipios, listapopu): frame2 = pd.DataFrame(getValue(casos, dias, i, j), columns = [i]) frame1 = pd.concat([frame1, frame2], axis = 1) dataframe = frame1 return dataframe def getFix(data, listaMunicipios1): frame1 = pd.DataFrame(data.iloc[:, 0].values, columns = ['Obitos acumulados em '+nome]) for i in listaMunicipios1: casos = data.loc[:, i].values for j in range(1, casos.shape[0]): if(casos[j] == 0): casos[j] = casos[j-1] else: continue frame2 = pd.DataFrame(casos, columns = [i]) frame1 = pd.concat([frame1, frame2], axis = 1) dataframe = frame1 return dataframe def fourValues(data): data1 = data.iloc[:, 0] data2 = data.iloc[:, 1:] data2 = data2.sort_values(axis = 1, by = [data2.shape[0]-1], ascending = False) data2 = data2.iloc[:, 0:5] teste = pd.concat([data1, data2], axis = 1) return teste def index(k): lista = np.array([]) for i in range(0, k.shape[0]): if(i%2 == 0): lista = np.append(lista, k[i]) return lista # Pegando os dados que queremos, no caso queremos casos e obitos e os territorios de cidadania # casos = dataset_covid.loc[:, ['ResultadodoTeste', 'TERRITÓRIO DE CIDADANIA', 'ÓBITO', 'DatadaNotificação','MunicípiodeResidência', 'POP TOTAL 2020']].values casos = ajeitar(casos) # Deixas apenas as datas validas e os casos Positivos e o Territorio # listaMunicipios, listapopu = getMunicipios(casos) # Cria uma lista dos Territorios # # Alterando o formato das datas para facilitar # casos[:, 3] = pd.to_datetime(casos[:, 3]).strftime('%y/%m/%d') dias = pd.date_range(start='2020-03-09', end='2020-07-02') # Array com os dias # dias = pd.to_datetime(dias).strftime('%y/%m/%d') data = getDataframe(casos, dias, listaMunicipios, listapopu) # Ajeitando a questão das datas # data.index = dias data = data[(data.T != 0).any()] dataFinal = getFix(data, listaMunicipios) # Ajeitando os dias para ficar apenas os que tiveram casos # # Ajeitando a questão de pegar os 5 maiores valores # dataFinal = fourValues(dataFinal) # Pegar os 5 maiores valores # listaMunicipios = dataFinal.columns.values # Fazendo as labels # k2 = data.index.to_numpy(copy = True) k = pd.to_datetime(k2).strftime('%y/%B') k = index(k) k1 = list(range(0, dataFinal.shape[0], 2)) # PLOTANDO OS GRAFICOS # # Usando Seaborn para fazer os graficos # sns.set(style = 'whitegrid') plt.ylabel('Nº de casos acumulados/ 100 mil hab') sns.despine(left=True, bottom=True) sns.lineplot(data=dataFinal, linewidth=2.5,palette = 'colorblind', markers = False, dashes = True, legend = False) plt.legend(labels = labels) plt.xticks(rotation = 45, ticks = k1, labels = k, fontsize = 8.0, ha = 'right', weight='bold')
true
b5f46271daa92d9dbfea4e21c51a1adeac8743a1
Python
Miguel-Neves/AA-Assignment1
/SVM_algorithm.py
UTF-8
2,397
3.203125
3
[]
no_license
import numpy as np from sklearn import metrics from sklearn.svm import SVC def validation_curve(Xtrain, ytrain, Xval, yval, C_vals, sigma_vals, kernel): values, error_train, error_val = [], [], [] m_train = Xtrain.shape[0] m_val = Xval.shape[0] for i in C_vals: C = i for j in sigma_vals: gamma = 1 / j for k in kernel: classifier = SVC(C=C, gamma=gamma, kernel=k, coef0=10.0) classifier.fit(Xtrain, ytrain) # predicting the output for training and validation sets pred_train = classifier.predict(Xtrain) pred_val = classifier.predict(Xval) # computing the error error_train.append(1/(2*m_train) * np.sum((pred_train - ytrain)**2)) error_val.append(1/(2 * m_val) * np.sum((pred_val - yval) ** 2)) values.append((i, gamma, k)) # (C, gamma, kernel) # print("(C, gamma, kernel) = ", (i,gamma,k)) # print("Error val: ", 1/(2 * m_val) * np.sum((pred_val - yval) ** 2)) return values, error_train, error_val def svm_algorithm(X_train, y_train, X_val, y_val, C_vals, sigma_vals, kernel_vals): print(" - SVM algorithm - ") print("C values:", C_vals) print("sigma values:", sigma_vals) print("kernel values:", kernel_vals) values, error_train, error_val = validation_curve(X_train, y_train.ravel(), X_val, y_val.ravel(), C_vals, sigma_vals, kernel_vals) index = np.argmin(error_val).min() best_C, best_gamma, best_kernel = values[index] print("\tResults") print("Best values: C=", best_C, " sigma=", 1/best_gamma, " kernel=", best_kernel) print("Error: ", error_val[index]) classifier = SVC(C=best_C, gamma=best_gamma, kernel=best_kernel, coef0=10.0) classifier.fit(X_train, y_train) pred_val = classifier.predict(X_val) print("Accuracy:", round(metrics.accuracy_score(y_val, pred_val)*100, 1), "%") print("Precision:", round(metrics.precision_score(y_val, pred_val)*100, 1), "%") print("Sensitivity (recall):", round(metrics.recall_score(y_val, pred_val)*100, 1), "%") print("F1 score:", round(metrics.f1_score(y_val, pred_val)*100, 1), "%") print("Confusion matrix:\n", metrics.confusion_matrix(y_val, pred_val)) # TN FP # FN TP return error_val[index], values[index]
true
d14a70f5b8b58b164447b9a1d076c95d86b05ae4
Python
ChrisTensorflow/2021QOSF
/QuantumSimulator.py
UTF-8
4,495
3.453125
3
[]
no_license
""" ===================== Quantum Circuit Simulator ===================== """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import plot, ion, show from matplotlib.colors import ListedColormap import random from collections import Counter import itertools from numpy.linalg import multi_dot "Ground state" def ggs(num_qubits): #which is short for get_ground_state(num_qubits): "return vector of size 2**num_qubits with all zeroes except first element which is 1" ground_state = np.array([np.zeros(2**num_qubits)]) ground_state[0][0] = 1 return ground_state.T "Quantum Logic Gates" "One Qubit Gates" X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) Z = np.array([[1, 0], [0, -1]]) H = np.dot(2**(-0.5), np.array([[1, 1],[1, -1]])) I = np.array([[1, 0], [0, 1]]) def U(theta, nx, ny, nz): "theta is the rotation angle and (nx, ny, nz) should be a unit vector in Cartesian coordinates in the Bloch sphere describing the rotation axis" return 1j*np.cos(theta/2)*I + np.sin(theta/2)*(nx*X + ny*Y + nz*Z) "Product Gates" def gpg(arg): #which is short for get_product_gate(*arg): #input the gates that you want to apply using square brackets and quotation marks (e.g. ["X","H","Z"] if you want X to the first qubit, H to the second and Z to the final qubit) "return matrix of size 2**num_qubits by 2**num_qubits" if len(arg) == 2: return np.kron(eval(arg[-2]), eval(arg[-1])) else: argWithoutFirst = arg[1:] return np.kron(eval(arg[0]), gpg(argWithoutFirst)) "Controlled Gates" "Define useful matrices, such as the projection operations |0><0| and |1><1|" P0X0 = np.array([[1, 0], [0, 0]]) P1X1 = np.array([[0, 0], [0, 1]]) def gcg(*arg): #which is short for get_controlled_gate(*arg): #input the gates that you want to apply using quotation marks (e.g. "c","X","I","I" if you want the first to be the control and X to be (conditionally) applied to the second qubit while the third and fourth qubit is uninvolved "return matrix of size 2**num_qubits by 2**num_qubits" n = 0 for x in arg: n = n + x.count('c') if n == 0: print("If there are no controls, please use gpg to implement the circuit correctly.") if n > 1: print("I cannot apply gates with multiple controls.") else: controlled_gate = np.zeros((2**len(arg),2**len(arg))) arg0 = ["P0X0" if x == 'c' else 'I' for x in arg] arg1 = ["P1X1" if x == 'c' else x for x in arg] controlled_gate = gpg(arg0) + gpg(arg1) return controlled_gate "Compile and run the programme" def comp(circuit): #which is short for compile circuit_eval = [eval(circuit[x]) for x in range(len(circuit))] if len(circuit_eval) == 1: return circuit_eval[0] else: return np.linalg.multi_dot(circuit_eval) def run_programme(circuit, ground_state): final_state = np.dot(comp(circuit), ground_state) return final_state "Get the counts" "This creates a list of all the possible outputs" def bin_list(n): return ["".join(seq) for seq in itertools.product("01", repeat = int(n))] def measure_all(state_vector, num_shots): weights = [np.abs(state_vector.tolist()[x])**2 for x in range(len(state_vector.tolist()))] n = np.log2(len(state_vector.tolist())) outputs = random.choices(bin_list(n), weights, k = num_shots) cwzm = Counter(outputs) #which is short for counts_without_zeros_mentioned list_of_all_counts = ['%s : %d' % (x, cwzm[x]) for x in bin_list(n)] return list_of_all_counts "This is where the user defines what they want to simulate" "Define the ground state for the desired number qubits" my_num_qubits = 3 my_ground_state = ggs(my_num_qubits) "Define a programme consisting of well-defined gates" #Note that gpg requires square brackets but gcg does not my_circuit = ["gpg([\"X\",\"I\",\"I\"])", "gcg(\"c\",\"I\",\"X\")", "gcg(\"c\",\"U(np.pi,1,0,0)\",\"I\")", "gpg([\"I\",\"I\",\"H\"])" ] "Define the desired number of shots (i.e. the number of times the circuit is run)" my_shots = 1000 "This tells Python to print the user's input, run their programme and print the results" print(my_circuit, end = '\n \n') print(measure_all(run_programme(my_circuit[::-1], my_ground_state), my_shots))
true
1e1b86ca78e93d470577d779a98cecdd77807a3a
Python
kvpratama/medical-image-lib
/nii/Nii3D.py
UTF-8
2,230
2.59375
3
[]
no_license
from .Nii import Nii import nibabel as nib import numpy as np import matplotlib.pyplot as plt class Nii3D(Nii): def __init__(self, path, plane='axial'): Nii.__init__(self, path) self.nii_np = np.transpose(np.array(self.nii.dataobj), axes=[2, 1, 0]) self.shape = self.nii_np.shape self.plane = plane def plot(self, index=0): plt.imshow(self.nii_np[index]) plt.show() def to_axial(self): if self.plane == 'axial': print("current plane") pass elif self.plane == 'coronal': self.nii_np = np.transpose(self.nii_np, axes=[1, 0, 2]) elif self.plane == 'sagittal': self.nii_np = np.transpose(self.nii_np, axes=[1, 2, 0]) else: print('Unknown plane!') return self.plane = 'axial' self.shape = self.nii_np.shape def to_coronal(self): if self.plane == 'axial': self.nii_np = np.transpose(self.nii_np, axes=[1, 0, 2]) elif self.plane == 'coronal': print("current plane") pass elif self.plane == 'sagittal': self.nii_np = np.transpose(self.nii_np, axes=[2, 1, 0]) else: print('Unknown plane!') return self.plane = 'coronal' self.shape = self.nii_np.shape def to_sagittal(self): if self.plane == 'axial': self.nii_np = np.transpose(self.nii_np, axes=[2, 0, 1]) elif self.plane == 'coronal': self.nii_np = np.transpose(self.nii_np, axes=[2, 1, 0]) elif self.plane == 'sagittal': print("current plane") pass else: print('Unknown plane!') return self.plane = 'sagittal' self.shape = self.nii_np.shape def save(self, save_path): nii = nib.Nifti1Image(np.transpose(self.nii_np, axes=[2, 1, 0]), affine=None) nib.save(nii, save_path) def export_raw(self, save_path): if save_path[-4:] != '.raw': save_path += '.raw' fileobj = open(save_path, mode='wb') off = np.array(self.nii_np, dtype=np.int16) off.tofile(fileobj) fileobj.close()
true
33840b619d91aa3fd2adc3311cfcf68b80468fea
Python
Fabfm4/flask-docker
/src/firstapp/core/db/models/models.py
UTF-8
834
2.546875
3
[]
no_license
from datetime import datetime from firstapp import db, bcrypt class TimeStampedMixin(object): id = db.Column(db.Integer, primary_key=True) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, onupdate=datetime.utcnow) class CatalogueMixin(TimeStampedMixin): name = db.Column(db.String(600), nullable=False) is_active = db.Column(db.Boolean()) class UserMixin(CatalogueMixin): email = db.Column(db.String(120), unique=True, nullable=False) password = db.Column(db.String(255), nullable=True) login_with_password = True def set_password(self, password): self.password = bcrypt.generate_password_hash(password, 12) def verify_password(self, password): return bcrypt.check_password_hash(self.password, password)
true
c0836ca1e0d756772b0260bb47c246ce8585dc2a
Python
Merubokkusu/Discord-S.C.U.M
/examples/TheGiverOfServers.py
UTF-8
1,502
2.6875
3
[ "MIT" ]
permissive
''' if someone replies to your message in a dm, this code will use a recent bug to give that person the SERVER badge (credits go to https://github.com/divinityseraph/server-badge-exploit) here's how it looks: https://www.reddit.com/r/discordapp/comments/jzlnlb/discords_new_reply_feature_is_fun_and_bugged_lol/ this bug works both on servers and DMs :). The below code is only for DMs but can be easily modified to work only on guilds or on both. **idk if this bug still works ''' import discum import time bot = discum.Client(token='ur token') bot.discord = 'https://discord.com/api/' #modify base url @bot.gateway.command def helloworld(resp): if resp.event.ready_supplemental: #ready_supplemental is sent after ready user = bot.gateway.session.user print("Logged in as {}#{}".format(user['username'], user['discriminator'])) if resp.event.message: m = resp.parsed.auto() if m['content'] == 'turn me into a server': bot.sendMessage(m['channel_id'], 'reply to one of my messages and I will make you a server :)') if m['author']['id'] == bot.gateway.session.user['id']: return if m['type'] == 'reply': if 'referenced_message' in m and m['referenced_message']['author']['id'] == bot.gateway.session.user['id']: time.sleep(1) bot.reply(m['channel_id'], m['id'], "The server Gods have allowed me to grant you the server badge. You are now a server :).") bot.gateway.run()
true
adb9b55c2d75afc94f217e4805e34ef5269b68de
Python
QianWanghhu/oconnell-runner
/source_runner/parameter_funcs.py
UTF-8
3,557
2.875
3
[]
no_license
"""Helper functions to load parameters""" import pandas as pd __all__ = ['load_parameter_file', 'group_parameters', 'get_initial_param_vals'] def load_parameter_file(fn): """Load parameters from file Parameters ========== * fn : str, filename and location to load Returns ========== * tuple[parameter settings] """ # Importing parameters file parameters = pd.read_csv(fn) return parameters # End load_parameter_file() def group_parameters(parameters): """Group parameters for model analysis Parameters ========== * parameters : DataFrame, parameter values loaded from CSV Returns ========== * tuple[grouped parameters] """ # group parameters according to locations in Source param_group = ['param_cmtgen', 'param_linkcons', 'param_node', 'param_linkrout', 'param_nodecons'] # parameter names param_vename = ['param_cmtgen_list', 'param_linkcons_list', 'param_node_list', 'param_linkrout_list', 'param_nodecons_list'] # param_by_location: store parameter information grouped by locations param_locations = ['v.model.catchment.generation', 'v.model.link.constituents', 'v.model.node', 'v.model.link.routing', 'v.model.node.constituents'] name_loc_mapping = zip(param_group, param_locations) vename_loc_mapping = zip(param_vename, param_group) param_by_location = {name: parameters.loc[parameters['Veneer_location'] == loca, :] for name, loca in name_loc_mapping} # param_vename_dic: store parameter names grouped by locations param_vename_dic = {name: param_by_location[loca]['Veneer_name'].values for name, loca in vename_loc_mapping} param_names = parameters['Veneer_name'].values #param_count = len(param_names) #parameter types param_types = parameters.loc[:,'type'] return param_names, param_vename_dic, param_vename, param_types # End group_parameters() def get_initial_param_vals(v, param_names, param_vename, param_vename_dic): """Get initial parameter values from Source Parameters ========== * v : Veneer-py object * param_names : list[str], of parameter names * param_vename : list[str], of veneer-py parameter names * param_vename_dic : dict, mapping of veneer-py parameter name to Source model Returns ========== * dict, of initial parameter values """ initial_params = {} for i in param_names: if i in param_vename_dic[param_vename[0]]: initial_params[i] = v.model.catchment.generation.get_param_values(i) if i in param_vename_dic[param_vename[1]]: initial_params[i] = v.model.link.constituents.get_param_values(i) if i in param_vename_dic[param_vename[2]]: initial_params[i] = v.model.node.get_param_values(i) if i in param_vename_dic[param_vename[3]]: initial_params[i] = v.model.link.routing.get_param_values(i) if i in param_vename_dic[param_vename[4]]: initial_params[i] = v.model.node.constituents.get_param_values(i, node_types=['StorageNodeModel'],aspect='model') return initial_params # End get_initial_param_vals()
true
c6c7a7e341c63e60023502971f17e3f278f19162
Python
goyal705/Hotel-Management-System
/hotel.py
UTF-8
5,933
2.59375
3
[ "Apache-2.0" ]
permissive
from tkinter import * from PIL import Image, ImageTk from customer import Customer_win from room import Room_win from details import Details_win from tkinter import messagebox class Hotel: def __init__(self, root): self.root = root self.root.title("Hotel management system By Tushar Goyal") self.root.geometry('1366x768+0+0') # 1366x768 my size # ********************first image**********************8 img1 = Image.open(r"C:\Users\hp\Desktop\Python project\hotel management " r"system\hotel_images\hotel_images\Hotels1.png") img1 = img1.resize((1366, 135), Image.ANTIALIAS) # ANTIALIAS convert hll image to lll image self.photoimg1 = ImageTk.PhotoImage(img1) labelimg = Label(self.root, image=self.photoimg1, bd=4, relief=RIDGE) labelimg.place(x=0, y=0, width=1366, height=135) # ********************logo image**********************8 img2 = Image.open(r"C:\Users\hp\Desktop\Python project\hotel management " r"system\hotel_images\hotel_images\Logos.png") img2 = img2.resize((230, 135), Image.ANTIALIAS) self.photoimg2 = ImageTk.PhotoImage(img2) labelimg = Label(self.root, image=self.photoimg2, bd=4, relief=RIDGE) labelimg.place(x=0, y=0, width=230, height=135) # *******************title**************************** lbl_title = Label(self.root, text="HOTEL MANAGEMENT SYSTEM", font=('times new roman', 40, "bold"), bg='black', fg='gold', bd=4, relief=RIDGE) lbl_title.place(x=0, y=135, width=1366, height=50) # ********************main frame*****************************8 main_frame = Frame(self.root, bd=4, relief=RIDGE) main_frame.place(x=0, y=185, width=1366, height=600) # *********************frame named menu********************** lbl_menu = Label(main_frame, text="Menu", font=('times new roman', 20, "bold"), bg='black', fg='gold', bd=4, relief=RIDGE) lbl_menu.place(x=0, y=0, width=230) # ********************button frame*****************************8 button_frame = Frame(main_frame, bd=4, relief=RIDGE) button_frame.place(x=0, y=35, width=230, height=190) # ******************buttons in button frame************************* cust_button = Button(button_frame, command=self.cust_details, text="Customer", width=22, font=('times new roman', 14, "bold"), bg='black', fg="gold", bd=0, cursor="circle") cust_button.grid(row=0, column=0, pady=1) room_button = Button(button_frame, command=self.room_details, text="Room", width=22, font=('times new roman', 14, "bold"), bg='black', fg="gold", bd=0, cursor="circle") room_button.grid(row=1, column=0, pady=1) details_button = Button(button_frame,command=self.details, text="Details", width=22, font=('times new roman', 14, "bold"), bg='black', fg="gold", bd=0, cursor="circle") details_button.grid(row=2, column=0, pady=1) report_button = Button(button_frame, text="Report", width=22, font=('times new roman', 14, "bold"), bg='black', fg="gold", bd=0, cursor="circle") report_button.grid(row=3, column=0, pady=1) loguot_button = Button(button_frame, text="Logout", width=22, font=('times new roman', 14, "bold"), bg='black', fg="gold", bd=0, cursor="circle", command=self.exit_win) loguot_button.grid(row=4, column=0, pady=1) # *******************************right side image********************* img3 = Image.open(r"C:\Users\hp\Desktop\Python project\hotel management " r"system\hotel_images\hotel_images\slides3.png") img3 = img3.resize((1366, 590), Image.ANTIALIAS) # ANTIALIAS convert hll image to lll image self.photoimg3 = ImageTk.PhotoImage(img3) labelimg = Label(main_frame, image=self.photoimg3, bd=4, relief=RIDGE) labelimg.place(x=225, y=0, width=1150, height=550) # *****************************down images left side*************************88 img4 = Image.open(r"C:\Users\hp\Desktop\Python project\hotel management " r"system\hotel_images\hotel_images\600x400-5-1280x720.jpg") img4 = img4.resize((230, 210), Image.ANTIALIAS) # ANTIALIAS convert hll image to lll image self.photoimg4 = ImageTk.PhotoImage(img4) labelimg = Label(main_frame, image=self.photoimg4, bd=4, relief=RIDGE) labelimg.place(x=0, y=225, width=230, height=165) img5 = Image.open(r"C:\Users\hp\Desktop\Python project\hotel management " r"system\hotel_images\hotel_images\431710_EXT_ZEEE82.png") img5 = img5.resize((230, 190), Image.ANTIALIAS) # ANTIALIAS convert hll image to lll image self.photoimg5 = ImageTk.PhotoImage(img5) labelimg = Label(main_frame, image=self.photoimg5, bd=4, relief=RIDGE) labelimg.place(x=0, y=390, width=230, height=165) def cust_details(self): self.new_window = Toplevel(self.root) self.app = Customer_win(self.new_window) def room_details(self): self.new_window = Toplevel(self.root) self.app = Room_win(self.new_window) def details(self): self.new_window = Toplevel(self.root) self.app = Details_win(self.new_window) def exit_win(self): mdelete = messagebox.askyesno("Logout", "Do You Wish To Logout", parent=self.root) if mdelete > 0: exit() else: return if __name__ == '__main__': root = Tk() obj = Hotel(root) root.mainloop()
true
836a936540a80bc2b4c4e787f17fcec169cca317
Python
Dongdongshe/md5Cracker
/hashgenerator.py
UTF-8
1,205
2.84375
3
[]
no_license
import md5 import base64 import string b64_str='./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' final_str="" def b64_from_24bit(a, b ,c ,d): global final_str w = (ord(a)<<16)|(ord(b)<<8)|ord(c) for i in range(0, d): final_str+=b64_str[w & 0x3f] w = w >> 6 m=md5.new('chfT7jp2qc') m_tem=m.digest() m=md5.new('c$1$hfT7jp2q'+m_tem[0]) key='c' length=len(key) while(length>0): if(length &1 !=0): m.update('\0') print 1 else: m.update(key[0]) print 2 length>>=1 m_alt=m.digest() print base64.encodestring(m_alt) for i in range(0, 1000): if( i&1 != 0): m=md5.new('c') else: m=md5.new(m_alt) if(i % 3 != 0): m.update('hfT7jp2q') if(i % 7 != 0): m.update('c') if(i & 1 !=0): m.update(m_alt) else: m.update('c') m_alt=m.digest() print base64.encodestring(m.digest()) b64_from_24bit(m_alt[0],m_alt[6],m_alt[12],4) b64_from_24bit(m_alt[1],m_alt[7],m_alt[13],4) b64_from_24bit(m_alt[2],m_alt[8],m_alt[14],4) b64_from_24bit(m_alt[3],m_alt[9],m_alt[15],4) b64_from_24bit(m_alt[4],m_alt[10],m_alt[5],4) b64_from_24bit('0','0',m_alt[11],2)
true
f318b076d5b2b7218bb0d29b2fbf4edab4dbd195
Python
behrom/wprowadzenie_do_jezyka_pythona
/zadania_laboratorium/zadanie_3_przyblizanie_funkcji/zad_3_poprawka.py
UTF-8
9,040
3.828125
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import numpy as np import matplotlib.pyplot as plt from itertools import izip def linear_intp(nodes): """Funkcja, ktora dla zadanej listy punktow zwraca funkcje liczaca interpolacje liniowa. Parameters: nodes - lista punktow, dla których wiadome jest, ze naleza do badanej funkcji w postaci listy dwuelementowych tupl np. [(1, 2), (3, 8)] Return: funkcja liczaca interpolacje liniowa dla zadanej tablicy argumentow (numpy.ndarray) """ def linear(x): """Funkcja wyznaczajaca wartosci interpolacji liniowej. Parameters: x - tablica argumentow (numpy.ndarray), dla ktorych ma zostac policzona interpolacja Return: tablica wartosci (numpy.ndarray), zawierajaca wyliczone wartosci interpolacji """ # tworze pusta liste do ktorej beda dodawane wyliczone wartosci interpolacji intp_y = [] for i in xrange(len(x)): # wyznaczam w jakim przedziale znajduje sie x # to znaczy po miedzy jakimi punktami z listy punktow znajduje sie # x, dla ktorego liczona jest wartosc idx = sum(map(lambda t: t <= x[i], zip(*nodes)[0])) - 1 # wyliczam wartosci interpolacji liniowej przy wspolczynnik kierunkowego funkcji a = (nodes[idx + 1][1] - nodes[idx][1]) / (nodes[idx + 1][0] - nodes[idx][0]) intp_y.append(a * (x[i] - nodes[idx][0]) + nodes[idx][1]) # zwracam tablice wartosci (numpy.ndarray) po interpolacji return np.array(intp_y) # zwracam funkcje, liczaca dla zadanej tablicy argumentow, tablice wartosci po interpolacji return linear def nearest_intp(nodes): """Funkcja, ktora dla zadanej listy punktow zwraca funkcje liczaca interpolacje "nearest". Parameters: nodes - lista punktow, dla których wiadome jest, ze naleza do badanej funkcji w postaci listy dwuelementowych tupl np. [(1, 2), (3, 8)] Return: funkcja liczaca interpolacje "nearest" dla zadanej tablicy argumentow (numpy.ndarray) """ def nearest(x): """Funkcja wyznaczajaca wartosci interpolacji "nearest". Parameters: x - tablica argumentow (numpy.ndarray), dla ktorych ma zostac policzona interpolacja Return: tablica wartosci (numpy.ndarray), zawierajaca wyliczone wartosci interpolacji """ # tworze pusta liste do ktorej beda dodawane wyliczone wartosci interpolacji intp_y = [] for i in xrange(len(x)): # wyznaczam w jakim przedziale znajduje sie x # to znaczy po miedzy jakimi punktami z listy punktow znajduje sie # x, dla ktorego liczona jest wartosc idx = sum(map(lambda t: t <= x[i], zip(*nodes)[0])) - 1 # wyznaczam argument dla ktorego ma nastapic zmiana wartosci # srodek pomiedzy punktami z listy xs = (nodes[idx][0] + nodes[idx + 1][0]) / 2.0 # zapisanie odpowiednich wartosci do tablicy wartosci if x[i] <= xs: intp_y.append(nodes[idx][1]) else: intp_y.append(nodes[idx + 1][1]) # zwracam tablice wartosci (numpy.ndarray) po interpolacji return np.array(intp_y) # zwracam funkcje, liczaca dla zadanej tablicy argumentow, tablice wartosci po interpolacji return nearest def zero_intp(nodes): """Funkcja, ktora dla zadanej listy punktow zwraca funkcje liczaca interpolacje "zero". Parameters: nodes - lista punktow, dla których wiadome jest, ze naleza do badanej funkcji w postaci listy dwuelementowych tupl np. [(1, 2), (3, 8)] Return: funkcja liczaca interpolacje "zero" dla zadanej tablicy argumentow (numpy.ndarray) """ def zero(x): """Funkcja wyznaczajaca wartosci interpolacji "zero". Parameters: x - tablica argumentow (numpy.ndarray), dla ktorych ma zostac policzona interpolacja Return: tablica wartosci (numpy.ndarray), zawierajaca wyliczone wartosci interpolacji """ # tworze pusta liste do ktorej beda dodawane wyliczone wartosci interpolacji intp_y = [] for i in xrange(len(x)): # wyznaczam w jakim przedziale znajduje sie x # to znaczy po miedzy jakimi punktami z listy punktow znajduje sie # x, dla ktorego liczona jest wartosc idx = sum(map(lambda t: t <= x[i], zip(*nodes)[0])) - 1 # dodaje do tablicy wyznaczone wartosci interpolacji intp_y.append(nodes[idx][1]) # zwracam tablice wartosci (numpy.ndarray) po interpolacji return np.array(intp_y) # zwracam funkcje, liczaca dla zadanej tablicy argumentow, tablice wartosci po interpolacji return zero def lagrange_intp(nodes): """Funkcja, ktora dla zadanej listy punktow zwraca funkcje liczaca interpolacje Lagrange'a. Parameters: nodes - lista punktow, dla których wiadome jest, ze naleza do badanej funkcji w postaci listy dwuelementowych tupl np. [(1, 2), (3, 8)] Return: funkcja liczaca interpolacje Lagrange'a dla zadanej tablicy argumentow (numpy.ndarray) """ def lagrange(x): """Funkcja wyznaczajaca wartosci interpolacji Lagrange'a. Parameters: x - tablica argumentow (numpy.ndarray), dla ktorych ma zostac policzona interpolacja Return: tablica wartosci (numpy.ndarray), zawierajaca wyliczone wartosci interpolacji """ # tworze pusta liste do ktorej beda dodawane wyliczone wartosci interpolacji intp_y = [] # po wszystkich x dla których ma byc wyliczona wartosc for i in xrange(len(x)): # zmienna przechowujaca wynik mnozenia # (x-xi)(xk-xi) po wszystkich 0 < i < n, i != k, , gdzie n - liczba interpolowanych punktow tmp_x = 1.0 # zmienna przechowujaca sume mnozen # tmp_x * yk dla wszystkich 0 < k < n, gdzie n - liczba interpolowanych punktow tmp_y = 0 # implementacja wyliczenia zinterpolowanych wartosci funkcji na podstawie wzoru podanego # w specyfikacji for j in xrange(len(zip(*NODES)[0])): tmp_x = 1.0 for k in xrange(len(zip(*NODES)[0])): if j == k: continue tmp_x *= (x[i] - nodes[k][0]) / (nodes[j][0] - nodes[k][0]) tmp_y += nodes[j][1] * tmp_x # dodanie wyliczonej wartosci do listy intp_y.append(tmp_y) # zwracam tablice wartosci (numpy.ndarray) po interpolacji return np.array(intp_y) # zwracam funkcje, liczaca dla zadanej tablicy argumentow, tablice wartosci po interpolacji return lagrange # tworze generator punktow, dla których wiadome jest, ze naleza do funkcji # w tym przypadku funkcji sinus, ktorej dziedzina sa wartosci od 0 do 10 NODES = izip(np.arange(0, 10), np.sin(np.arange(0, 10))) # tworze liste tych punktow NODES = list(NODES) # tworze tablice (numpy.ndarray) argumentow, dla ktorych beda wyliczane # wartosci interpolacji x = np.arange(0, 9, 0.01) # dodaje podpis osi X do wykresu plt.xlabel('Wartosci $x$', fontsize=23) # dodaje podpis osi y do wykresu plt.ylabel('Interpolacja wartosci $y$', fontsize=23) # dodanie siatki do wykresu funkcji plt.grid(color=(0.7, 0.8, 1.0), linestyle='-') # rysuje punkty, dla ktorych znana jest wartosc funkcji na wykresie plt.plot(zip(*NODES)[0], zip(*NODES)[1], label='punkty', marker='o', linestyle='', markersize=8, color='blue') # rysuje jak wyglada interpolacja liniowa, # dla wczesniej zdefiniowanej tablicy argumentow # oraz wartosci funkcji wygenerowanych przy uzyciu zaimplementowanej wyzej funkcji plt.plot(x, linear_intp(NODES)(x), label='linear', linestyle='-', linewidth=1.5, color='red') # rysuje jak wyglada interpolacja Lagrange'a, # dla wczesniej zdefiniowanej tablicy argumentow # oraz wartosci funkcji wygenerowanych przy uzyciu zaimplementowanej wyzej funkcji plt.plot(x, lagrange_intp(NODES)(x), label='Lagrange', linestyle='-', linewidth=1.5, color='blue') # rysuje jak wyglada interpolacja "nearest", # dla wczesniej zdefiniowanej tablicy argumentow # oraz wartosci funkcji wygenerowanych przy uzyciu zaimplementowanej wyzej funkcji plt.plot(x, nearest_intp(NODES)(x), label='nearest', linestyle='-', linewidth=1.5, color='#bfbf00') # rysuje jak wyglada interpolacja "zero", # dla wczesniej zdefiniowanej tablicy argumentow # oraz wartosci funkcji wygenerowanych przy uzyciu zaimplementowanej wyzej funkcji plt.plot(x, zero_intp(NODES)(x), label='zero', linestyle='-', linewidth=1.5, color='#00bfbf') # umieszczam legende w lewym dolnym rogu wykresu plt.legend(loc=3) # pokazuje wykres na ekranie plt.show()
true
eda13393ba78b82f0f869e5d5a060d931004b9a7
Python
tejasarackal/PyConcept
/generators/gen.py
UTF-8
1,076
3.5
4
[]
no_license
from time import sleep from decorators import dec @dec.timer def add1(x, y): return x + y class Adder: @dec.timer def __call__(self, x, y): return x + y add2 = Adder() @dec.timer def heavy_compute(): rv = [] for i in range(101): sleep(.1) rv.append(i) return rv class Compute: def __iter__(self): self.last = 0 return self def __next__(self): rv = self.last self.last += 1 if self.last > 100: raise StopIteration() sleep(.1) return rv def compute(): # easier to read generator for i in range(101): sleep(.1) yield i class Api: def first(self, x, y): return add1(x, y) def second(self, x, y): return add2(x, y) def last(self): return compute() def __call__(self, x, y): yield self.first(x, y) yield self.second(x, y) for value in self.last(): yield value if __name__ == '__main__': a = Api() for i in a(10, 20): print(i)
true
cb216534ea3c84b63dc789dba76dc70932007388
Python
pablodarius/mod02_pyhton_course
/Python Exercises/3_question10.py
UTF-8
669
3.96875
4
[]
no_license
import unittest # Given an input string, count occurrences of all characters within a string def cout_ocurrences(input_str): result = dict() for i in input_str: count = input_str.count(i) result[i] = count return result class testing(unittest.TestCase): def setUp(self): print("Preparing context...") self.str = "Apple" self.result = {'A': 1, 'p': 2, 'l': 1, 'e': 1} def test01(self): self.assertEqual(cout_ocurrences(self.str), self.result) def tearDown(self): print("Deleting context...") del self.str del self.result if __name__ == "__main__": unittest.main()
true
168d0f234c60b692755eed70e19664fd0ef6d783
Python
Erik-Han/cs170_sp21_project
/choose_best_output.py
UTF-8
997
2.5625
3
[]
no_license
import os from shutil import copyfile from parse import read_input_file, read_output_file, write_output_file if __name__ == "__main__": test_to_files = {} inputs_to_graphs = {} sizes = ('small', 'medium', 'large') input_dir = "./all_inputs/" output_dir = "./best_outputs/" for size in sizes: for i in range(1,301): test = size+"-"+str(i) test_to_files[test] = [] inputs_to_graphs[test] = read_input_file(input_dir+test+".in") for root, dirs, files in os.walk("./"): for file in files: filepath = root+os.sep+file if filepath.endswith(".out"): test = file.split(".")[0] print(filepath,test) test_to_files[test].append((filepath, read_output_file(inputs_to_graphs[test], filepath))) for test in test_to_files: best_output = max(test_to_files[test], key = lambda item: item[1]) copyfile(best_output[0], output_dir+test+".out")
true
2b7f5ff7e8d4804c163b17a93e66ee02980b448d
Python
diego-codes/next-train
/next-train.py
UTF-8
3,045
2.734375
3
[]
no_license
#!/usr/bin/env python import re import csv import datetime import math from contextlib import contextmanager from os import getenv COLORS = { 'WARNING': '\033[31m', 'OK': '\033[32m', 'END': '\033[0m' } # Constants BASE_DIR = getenv('HOME') + '/bin/metros/ATX/' NOW = datetime.datetime.now() WALKING_MINUTES = 18 ROUTE_ID = '550' DIRECTION = 'S' SERVICE_IDS = ['110-13301', '110-14701', '110-13401', '110-14801', '110-14601', '110-14304', '110-20804', '110-15504', '110-20805'] KRAMER_STATION_STOP_ID = '5539' active_service_ids = set() train_trip_ids = [] next_train = None @contextmanager def openCSVDict(filename): with open(filename, 'rU') as opened_file: file_csv = csv.DictReader(opened_file) yield file_csv def formatTime(time): return time.strftime('%I:%M:%S %p') # Get the right service ID for today with openCSVDict(BASE_DIR + 'calendar_dates.txt') as dates: for row in dates: service_id = row['service_id'] date = row['date'] year = int(date[:4]) month = int(date[4:6]) day = int(date[6:8]) if ((service_id in SERVICE_IDS) and ((year, month, day) == (NOW.year, NOW.month, NOW.day))): active_service_ids.add(service_id) # Get trip IDs for train routes today with openCSVDict(BASE_DIR + 'trips.txt') as trips: for row in trips: # Add row trip ID to trip ids if it is the rail route southbound for today's service if (row['route_id'] == ROUTE_ID) and (row['dir_abbr'] == DIRECTION) and (row['service_id'] in active_service_ids): train_trip_ids.append(row['trip_id']) with openCSVDict(BASE_DIR + 'stop_times.txt') as stop_times: for row in stop_times: if row['trip_id'] in train_trip_ids and row['stop_id'] == KRAMER_STATION_STOP_ID: departure_time = row['departure_time'].split(':') hour = int(departure_time[0]) if departure_time[0] != '24' else 0 minute = int(departure_time[1]) departure_time = datetime.datetime(NOW.year, NOW.month, NOW.day, hour, minute) if departure_time > NOW: if not next_train: next_train = departure_time else: next_train = departure_time if next_train > departure_time else next_train if next_train: time_delta = next_train - NOW minutes_until_next_train = int(math.floor(time_delta.seconds / 60)) minute_string = 'minutes' if minutes_until_next_train > 1 else 'minute' should_walk_to_train = minutes_until_next_train > WALKING_MINUTES advice_color = COLORS['OK'] if should_walk_to_train else COLORS['WARNING'] advice_message = 'OK to take' if should_walk_to_train else 'Wait for next train' print 'Next Departure: %s' % formatTime(next_train) print '%s%s: You have %d %s to get to station %s' % (advice_color, advice_message, minutes_until_next_train, minute_string, COLORS['END']) else: print '%sSorry, the train does not run today anymore%s' % (COLORS['WARNING'], COLORS['END'])
true
b539490bc60f04d0dc42a15cec8c7633e824f6c3
Python
yenshipotato/TLGMBT
/user_inf.py
UTF-8
1,501
2.734375
3
[]
no_license
import json import os usr_dic={} def adduser(id): user={"latest":"","favorite":"","status":0,"lasttime":"14"} usr_dic[str(id)]=user def wInFile(id): with open("user/"+str(id)+".json","w",encoding="utf-8") as f: json.dump(usr_dic[str(id)],f,ensure_ascii=False) def saveAll(): for key,value in usr_dic.items(): wInFile(int(key)) def setLatest(id,latest): usr_dic[str(id)]["latest"]=latest def setFavorite(id,F): usr_dic[str(id)]["favorite"]=F def setStatus(id,S): usr_dic[str(id)]["status"]=S def setLasttime(id,L): usr_dic[str(id)]["lasttime"]=L def setRecord(id,R): usr_dic[str(id)]["record"]=R def getLatest(id): return usr_dic[str(id)]["latest"] def getFavorite(id): return usr_dic[str(id)]["favorite"] def getStatus(id): return usr_dic[str(id)]["status"] def getLasttime(id): return usr_dic[str(id)]["lasttime"] def getRecord(id): return usr_dic[str(id)]["record"] def readData(id): if os.path.isfile("user/"+str(id)+".json"): #print("檔案存在。") with open("user/"+str(id)+".json",encoding="utf-8") as f: a=json.load(f) usr_dic[str(id)]=a else: #print("檔案不存在。") adduser(id) if __name__ == '__main__': adduser(1013334846) setLatest(1013334846,"善化 南科") setFavorite(1013334846,"善化 台南") setStatus(1013334846,1) wInFile(1013334846)
true
87da43b90a31aa74ea14e7752aa69fbf58390ccf
Python
mccloskeybr/pystringevo
/stringevolution.py
UTF-8
1,786
3.296875
3
[]
no_license
import string import random target = str(raw_input('enter desired string: ')) strings = [] reward = [] currentGeneration = 0 NUM_PER_GENERATION = 10 MUTATION_RATE = 0.05 def is_done(): return strings[0] == target def sort(): for i in range(len(strings)): biggest = i for j in range(i, len(strings)): if reward[j] > reward[i]: biggest = j if biggest != i: t1 = reward[i] t2 = strings[i] reward[i] = reward[biggest] strings[i] = strings[biggest] reward[biggest] = t1 strings[biggest] = t2 def determine_reward(): for i in range(len(strings)): r = 0 for j in range(len(target)): if target[j] in strings[i]: r += 2 if target[j] == strings[i][j]: r += 6 reward[i] = r def breed(str1, str2): c = "" for i in range(len(str1)): if random.random() < MUTATION_RATE: c += random.choice(string.ascii_letters + ' ') elif random.random() < 2 * MUTATION_RATE: c += random.choice(str1 + str2) else: c += random.choice(str1[i] + str2[i]) return c for i in range(NUM_PER_GENERATION): strings.append("".join(random.choice(string.ascii_letters + ' ') for _ in range(len(target)))) reward.append(0) print strings[i] while not is_done(): currentGeneration += 1 determine_reward() sort() for i in range(NUM_PER_GENERATION / 2, NUM_PER_GENERATION): strings[i] = breed(strings[random.randint(0, NUM_PER_GENERATION / 2)], strings[random.randint(0, NUM_PER_GENERATION / 2)]) for s in strings: print s print "it took %d generations to evolve!" % currentGeneration
true
cbf8eff6c0e028e340f0f962860a72463666566e
Python
hg-pyun/algorithm
/leetcode/leftmost-column-with-at-least-a-one.py
UTF-8
1,055
3.515625
4
[ "MIT" ]
permissive
# """ # This is BinaryMatrix's API interface. # You should not implement it, or speculate about its implementation # """ #class BinaryMatrix(object): # def get(self, x: int, y: int) -> int: # def dimensions(self) -> list[]: class Solution: def binarySearch(self, binaryMatrix, current_col, size): lo = 0 hi = size - 1 while lo < hi: m = math.floor((lo + hi)/2) if binaryMatrix.get(current_col, m) == 1: hi = m else: lo = m + 1 if lo == hi and binaryMatrix.get(current_col, lo) == 0: return math.inf else: return lo def leftMostColumnWithOne(self, binaryMatrix: 'BinaryMatrix') -> int: [col_len, row_len] = binaryMatrix.dimensions() result = math.inf for i in range(col_len): left_most = self.binarySearch(binaryMatrix, i, row_len) result = min(result, left_most) return result if result is not math.inf else -1
true
5e63d576cba3897224ccf9e3fb9b639b9616488e
Python
NU-ACCESS/Spectral-Microscope-Tools
/rotation.py
UTF-8
518
2.625
3
[]
no_license
from ij import IJ, ImagePlus, ImageStack from ij.process import ImageProcessor, FloatProcessor from fiji.util.gui import GenericDialogPlus gd = GenericDialogPlus("Input Parameters") gd.addNumericField("Number of Angles", 10, 0) # show 3 decimals gd.showDialog() ang = 360/int(gd.getNextNumber()) imp = IJ.getImage() n_slices = imp.getStack().getSize() for i in range(1, n_slices+1): imp.setSlice(i) s = ((i*ang)-ang)*-1 IJ.run("Rotate... ", "angle="+str(s) + " grid=1 interpolation=Bilinear slice")
true
119197fa0317fb44052f07e1736bca688caa8c3b
Python
daydaychallenge/leetcode-python
/00893/test_groups_of_special_equivalent_strings.py
UTF-8
440
2.765625
3
[]
no_license
import unittest from groups_of_special_equivalent_strings import Solution class TestSolution(unittest.TestCase): def test_longestPalindrome_Solution(self): sol = Solution() self.assertEqual(3, sol.numSpecialEquivGroups(["abcd", "cdab", "cbad", "xyzz", "zzxy", "zzyx"])) self.assertEqual(3, sol.numSpecialEquivGroups(["abc", "acb", "bac", "bca", "cab", "cba"])) if __name__ == '__main__': unittest.main()
true
d0808da5888571ff365d104db7f27406467565db
Python
dhockaday/deep-embedded-music
/src/models_embedding/gru_net.py
UTF-8
1,775
2.78125
3
[ "MIT" ]
permissive
import tensorflow as tf from src.models_embedding.base_model import BaseModel from src.models_embedding.model_factory import ModelFactory @ModelFactory.register("GRUNet") class GRUNet(BaseModel): """ A simple 1-dimensional GRU model. """ def __init__(self, params, model_name="GRUNet"): """ Initialises the model. Calls the initialise method of the super class. :param params: the global hyperparameters for initialising the model. :param model_name: the name of the model. """ super(GRUNet, self).__init__(params=params, model_name=model_name, expand_dims=False) self.gru_1 = tf.keras.layers.GRU(64, return_sequences=True) self.gru_2 = tf.keras.layers.GRU(128) @tf.function def forward_pass(self, inputs, training=None): """ The forward pass through the network. :param inputs: the input that will be passed through the model. :param training: if the model is training, for disabling dropout, batch norm. etc. :return: the output of the forward pass. """ # 1. GRU layer x = self.gru_1(inputs) # 2. GRU layer x = self.gru_2(x) # Embedding layer x = self.flatten(x) x = self.dense(x) # L2 normalisation x = self.l2_normalisation(x) return x def log_model_specific_layers(self): """ Logs the specific layers of the model. Is used to log the architecture of the model. :return: None. """ # 1. GRU layer self.log_gru_layer(self.gru_1, layer_number=1) self.logger.info("---") # 2. GRU layer self.log_gru_layer(self.gru_2, layer_number=2) self.logger.info("---")
true
9f48e1dc70686140af803252f5a887b0950cab1b
Python
daianasousa/POO
/LISTA DE EXERCÍCIOS/S_02_Ati_01_Q01_e_02.py
UTF-8
2,571
3.359375
3
[ "MIT" ]
permissive
class Carro: #Atributos nome = None ano = None cor = None veloc_max = None veloc_atual = 0 estado = 'Desligado' #Construtores def __init__(self, cor, nome, veloc_max): self.cor = cor self.nome = nome self.veloc_max = veloc_max #Métodos def ligar(self): self.estado = 'Ligado' if self.nome == 'Fusca': print('O Fusca está ligado.') else: print('A Ferrari está ligada.') def parar(self): self.veloc_atual = 0 if self.nome == 'Fusca': print('Seu Fusca está Parado.') else: print('Sua Ferrari está Parada.') def desligar(self): self.estado = 'Desligado' if self.nome == 'Fusca': print('Seu Fusca está desligado.') else: print('Sua Ferrari está desligada.') def acelerar(self, valor): if self.nome == 'Fusca': if self.estado == 'Ligado': self.veloc_atual = valor if self.veloc_atual <= self.veloc_max: print(f'A velocidade atual do Fusca é de {fusca.veloc_atual} km/h.') else: print(f'Voçê passou da velocidade máxima do Fusca que era de {self.veloc_max} Km/h.') elif self.estado == 'Desligado': print('O Fusca está desligado.') else: if self.estado == 'Ligado': self.veloc_atual = valor if self.veloc_atual <= self.veloc_max: print(f'A velocidade atual da Ferrrari é de {fusca.veloc_atual} km/h.') else: print(f'Voçê passou da velocidade máxima da Ferrari que era de {self.veloc_max} Km/h.') elif self.estado == 'Desligado': print('A Ferrari está desligada.') #Objetos fusca = Carro('preto', 'Fusca', 80) fusca.nome = 'Fusca' fusca.ano = 1965 fusca.cor = 'preto' fusca.veloc_max = 80 fusca.veloc_atual = 20 fusca.estado = 'ligado' ferrari_sr2000 = Carro('vermelho', 'ferrari_sr2000', 300) ferrari_sr2000.nome = 'ferrari_sr2000' ferrari_sr2000.ano = 2014 ferrari_sr2000.cor = 'vermelho' ferrari_sr2000.veloc_max = 300 ferrari_sr2000.veloc_atual = 0 ferrari_sr2000.estado = 'desligado' fusca.acelerar(40) ferrari_sr2000.acelerar(200) fusca.desligar() ferrari_sr2000.ligar() ferrari_sr2000.acelerar(320) ferrari_sr2000.parar() ferrari_sr2000.desligar() fusca.ligar() fusca.acelerar(100) fusca.desligar()
true
ddf19011834c1554eb1fa5800606541a68cba671
Python
jellehu/Pythonlessen
/lessen/Jaar01/Periode01/Les06/pe6_5.py
UTF-8
215
3.0625
3
[]
no_license
def kwadraten_som(grondgetallen): resultaat = 0 for number in grondgetallen: if number >= 0: resultaat = resultaat + number ** 2 return resultaat print(kwadraten_som([4, 5, 3, -81]))
true
aa9c6671d78cafac45a4b620c54959ae75ba6151
Python
castlesmadeofcode/pythonFunctions
/chickenMonkey.py
UTF-8
563
4.78125
5
[]
no_license
# Write a program that prints the numbers from 1 to 100. # You can use Python's range() to quickly make a list of numbers. # For multiples of five (5, 10, 15, etc.) print "Chicken" instead of the number. # For the multiples of seven (7, 14, 21, etc.) print "Monkey". # For numbers which are multiples of both five and seven print "ChickenMonkey". x = range(101) for n in x: if n%5 == 0 and n%7 == 0: print("chicken monkey") elif n%5 == 0: print("chicken") elif n%7 == 0: print("monkey") else: print(n)
true
9b56fd98e97a12c48ca49c2475ee38c43e57820f
Python
sagynangare/Python-Programming
/practice program/parent.py
UTF-8
205
2.75
3
[]
no_license
class Person(): def __init__(self,name,age,address,mobile_no): self.name = name self.age = age self.address = address self.mobile_no = mobile_no
true
a7a51a550b4a07f90e8463d0d1d51e8ed0e4bb2f
Python
novalb12/ai
/Code-OpenCV.py
UTF-8
1,638
2.625
3
[]
no_license
import cv2 import numpy as np digits = cv2.imread("digits.png", cv2.IMREAD_GRAYSCALE) test_digits = cv2.imread("test_digits.png", cv2.IMREAD_GRAYSCALE) rows = np.vsplit(digits, 50) cells = [] for row in rows: row_cells = np.hsplit(row, 50) for cell in row_cells: cell = cell.flatten() cells.append(cell) cells = np.array(cells, dtype=np.float32) k = np.arange(10) cells_labels = np.repeat(k, 250) test_digits = np.vsplit(test_digits, 50) test_cells = [] for d in test_digits: d = d.flatten() test_cells.append(d) test_cells = np.array(test_cells, dtype=np.float32) # KNN def cari(img) : global cells global cells_labels knn = cv2.ml.KNearest_create() knn.train(cells, cv2.ml.ROW_SAMPLE, cells_labels) ret, result, neighbours, dist = knn.findNearest(img, k=3) return result def show_webcam(mirror=True): cam = cv2.VideoCapture(0) while True: ret_val, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if mirror: img = cv2.flip(img, 1) gray=cv2.resize(gray, (28,28)) print(gray.shape) print(cari(gray)) #text = get_string(img) #font = cv2.FONT_HERSHEY_SIMPLEX #if(len(text)> 0): #print(text) #cv2.putText(img,text,(0,10),font,0.5,(255,255,255),2,cv2.LINE_AA) if cv2.waitKey(1) == 27: break # esc to quit cv2.imshow('my webcam', gray) cv2.destroyAllWindows() cam.release() def main(): show_webcam(mirror=True) if __name__ == '__main__': main()
true
2e0c5bcfbf9c6b4ca4a94cb9981467508f1f66bc
Python
singhv1shal/Style-Transfer-using-Genetic-Programming
/GeneticStyleTransfer.py
UTF-8
4,607
2.890625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Jun 18 16:23:30 2019 @author: Vishal Singh @email: singhvishal0304@gmail.com """ import random import numpy as np import itertools import functools import operator ''' function for finding gram matrix of a given matrix ''' def gramMatrix(p): px=p.transpose(1,2,0).reshape(-1,p.shape[0]) pt=np.transpose(px) gp=px.dot(pt) return gp ''' fitness score is given by measuring error through euclidean distance between the gram matrices of population evolving and target style image ''' def fitness_score(gene_img ,style_im,img_shape): #This function transforms 1D matrix back to RGB image matrix gene_im= np.reshape(a=gene_img, newshape=img_shape) #print(gene_im.shape) gmContent=gramMatrix(gene_im) gmStyle=gramMatrix(style_im) #finding distance between the gram matrix of the genes and style image q1 = np.subtract(gmStyle,gmContent) #element-wise multiplication for squaring the error q2=np.multiply(q1,q1) fitness =np.mean(q2) return fitness def survival_of_the_fittest(n_survived,current_gene,img_shape,style_im): #initializing an empty matrix for survival genes: no.ofrows=no. to survive survived= np.empty((n_survived, current_gene.shape[1]), dtype=np.uint8) maxerror=999999999999999999999999999999999999999999999999999 #list to store fitness scores for genes fitness= np.zeros(current_gene.shape[0]) #print(img_shape) for i in range(current_gene.shape[0]): fitness[i]=fitness_score(current_gene[i,:],style_im,img_shape) for i in range(n_survived): min_index = np.where(fitness == np.min(fitness)) min_index= min_index[0][0] #storing survived genes survived[i, :] = current_gene[min_index, :] #replacing with maximum error so that no gene is selected twice fitness[min_index]=maxerror return survived ''' This function generates offspring equal to initial population- survived ''' def breed(survived,n_gene,img_shape): new_genes = np.empty(shape=(n_gene, functools.reduce(operator.mul, img_shape)), dtype=np.uint8) new_genes[0:survived.shape[0], :] = survived # Getting how many offspring to be generated. n_offspring = n_gene-survived.shape[0] # all possible permutations of the selected parents. survived_permutations = list(itertools.permutations(iterable=np.arange(0, survived.shape[0]), r=3)) # Randomly selecting the parents permutations to generate the offspring. selected_permutations = random.sample(range(len(survived_permutations)), n_offspring) comb_idx = survived.shape[0] for comb in range(len(selected_permutations)): first = np.int32(new_genes.shape[1]/3) second= 2*first selected_comb_idx = selected_permutations[comb] selected_comb = survived_permutations[selected_comb_idx] new_genes[comb_idx+comb, 0:first] = survived[selected_comb[0], 0:first] new_genes[comb_idx+comb, first:second] = survived[selected_comb[1], first:second] new_genes[comb_idx+comb, second:] = survived[selected_comb[2], second:] #pivot is selected as the 1/3rd and 2/3rd of the population after which elements are exchanged # Generating the offspring using the permutations previously selected randmly. return new_genes '''' Mutation enables offsprings to deviate from the characteristics of parent genes ''' def mutation(population,num_parents_mating, mut_percent): for i in range(num_parents_mating, population.shape[0]): #implementation inspired by project GARI by Ahmed F. Gad. # A predefined percent of genes are selected randomly. rand_idx = np.uint32(np.random.random(size=np.uint32(mut_percent/100*population.shape[1])) *population.shape[1]) # Changing the values of the selected genes randomly. new_values = np.uint8(np.random.random(size=rand_idx.shape[0])*256) # Updating population after mutation. population[i, rand_idx] = new_values return population
true
789a510fd3e2bf001542436e4326f46acb117db1
Python
ChristianEdge/Python
/CIS110/Week 9/Edge_Ch9Ex07.py
UTF-8
1,562
3.828125
4
[]
no_license
''' Program Name: Ch9Ex07 Program Description: Author: Christian Edge Date created: 29 July 2019 Last modified: Notes of interest: Uses time module ''' import time from random import randrange def main(): intro() n = int(input("How many games to simulate? : ")) #Processing wins = simNGames(n) printSummary(wins, n) outro() #End main() #**************** def intro(): print("\n\t***Welcome to Ch9Ex07***\n") print("This program establishes the probability of winning at craps\n") def simNGames(n): wins= 0 for i in range(n): if winCraps(): wins += 1 return wins def winCraps(): roll = rollDice() if roll == 7 or roll == 11: return True elif roll == 2 or roll == 3 or roll == 12: return False else: return rollForPoint(roll) def rollDice(): return randrange(1, 7) + randrange(1, 7) def rollForPoint(toMake): roll = rollDice() while roll != 7 and roll != toMake: roll = rollDice() return roll == toMake def printSummary(wins, n): print("\nThe player wins", wins, "games.") print("The probability of a win is : {0:0.2f}%".format(wins / n * 100)) def outro(): #Output to console the author, program, & date/time program was run print("\nAuthor: Christian Edge") print("CIS110 Ch9Ex07") print(time.asctime(time.localtime(time.time()))) input("\nPress <Enter> to Quit") #Run the program if __name__ == '__main__': main()
true
22c04d2cc7b6877210f8f2462096a942104f7c22
Python
harvard-dce/le-dash
/tests/test_banner.py
UTF-8
1,211
2.625
3
[]
no_license
from le_dash.banner import get_student_list def test_get_student_info(mocker, student_list_maker): fake_students = student_list_maker( ('12345', 'foo', 'b', 'baz'), ('12345', 'jane', 'q', 'public'), ('12345', 'fozzy', '', 'bear', 'Withdraw') ) resp_data = { "students": { "student": [x for x in fake_students] } } mocker.patch('le_dash.banner.banner_req', return_value=resp_data) students = get_student_list("9999999") assert len(students) == 2 assert students[1]['first_name'] == 'jane' def test_get_student_info_one_result(mocker, student_maker): resp_data = { "students": { "student": student_maker('23456', 'arther', 'j', 'fonzarelli') } } mocker.patch('le_dash.banner.banner_req', return_value=resp_data) students = get_student_list("10101010") assert isinstance(students, list) assert len(students) == 1 assert students[0]['huid'] == '23456' def test_get_student_info_no_results(mocker): mocker.patch('le_dash.banner.banner_req', return_value={'students': {}}) students = get_student_list("33434334") assert len(students) == 0
true
2fdf5a75c8f1d1d70356ba95554ac6a9686da156
Python
Rybasher/parsepexels
/parse.py
UTF-8
1,663
2.96875
3
[]
no_license
import os, urllib, webbrowser import requests from bs4 import BeautifulSoup import pathlib import csv from datetime import datetime from multiprocessing import Pool # # urls = [ # 'https://images.pexels.com/photos/772662/pexels-photo-772662.jpeg', # 'https://images.pexels.com/photos/1994904/pexels-photo-1994904.jpeg', # 'https://images.pexels.com/photos/1983772/pexels-photo-1983772.jpeg' # ] urls = [] def get_html(url): r = requests.get(url, stream=True) return r def get_img_data(html): soup = BeautifulSoup(html.text, 'lxml') imgs = soup.find('div', class_='photos').find_all('img', class_='photo-item__img') for img in imgs: some = img.get('src') urls.append(some) def get_name(url): name = url.split('/')[-1].split('?')[0] folder = name.split('-')[0] if not os.path.exists(folder): os.makedirs(folder) path = os.path.abspath(folder) return path + '/' + name # name = url.split('/')[-1] # folder = name.split('-')[0] # if not os.path.exists(folder): # os.makedirs(folder) # path = os.path.abspath(folder) # return path + '/' + name def save_image(name, file_object): with open(name, 'wb') as f: for chunk in file_object.iter_content(8192): f.write(chunk) def main(): url = 'https://www.pexels.com/' get_img_data(get_html(url)) print(len(urls)) print(urls) with Pool(30): for i in urls: print(get_name(i).split('-')[0]) # path = pathlib.Path(i) # save_image(get_name(i), get_html(i)) # # print(path) if __name__ == "__main__": main()
true
237ec23e9b211ffaa5ca2d5a94efd5830cecb12a
Python
so02e/TIL
/Python/Day3/forLab1.py
UTF-8
134
3.3125
3
[]
no_license
# 1부터 10까지 추출되는 코드 for a in range (1,11,1): print(a, end = " ") # '\n\n' 개행 처리 2번을 의미한다.
true
fa3715b14ab4f4f6ccb2357d65d008d6f6de476e
Python
kaasbroodju/PROG-V1K-PepeHands
/functions.py
UTF-8
7,143
3.40625
3
[]
no_license
import random import api import marvel import arcade import json def write_to_json(name, score): '''Writes name and score to leaderboard''' with open('leaderboard.json') as file: data = json.load(file) data['data']['players'].append({'name': name, 'score': score}) file = open('leaderboard.json', 'w') json.dump(data, file, indent=4) def sort_leaderbord(leaderboard): '''Sorting algorithm for leaderboard''' #bubble sort x = len(leaderboard) for y in range(x): for z in range(0, x-y-1): # swap elements if leaderboard[z]['score'] > leaderboard[z+1]['score'] : leaderboard[z], leaderboard[z+1] = leaderboard[z+1], leaderboard[z] return leaderboard def get_leaderboard(): '''Gets list of players and their scores''' with open('leaderboard.json') as file: data = json.load(file) return data['data']['players'] def newMultipleChoice(self): '''Get new set of options of answer(buttons) for easy/multiple choice mode''' self.notation_button_list = arcade.SpriteList() self.correctCharacter = api.get_character(True) #Get 'correct character' i.e. the answer we're looking for. Argument True so we get character description, comics and series. print(self.correctCharacter) self.characterList = [] #Empty character list self.possible_answer_buttons = arcade.SpriteList() #'Empty' our set of answer buttons self.characterList.append(self.correctCharacter['name']) #Add the name of the correct character to our list of characters self.description = self.correctCharacter['desc']['desc'] #Give variable 'description' the value of the description that belongs to our correct character self.charNumber = 0 for char in self.description: #| if self.charNumber >= 30 and char == ' ': #Make sure our description self.tempString += '\n' #has regular \n's (new lines) self.charNumber = 0 #so the entire thing self.tempString += char #fits on screen. self.charNumber += 1 #| self.description = self.tempString #| self.tempString = '' #| for i in range(0, 9): self.character = api.get_character() #Get a character name 9 times """ TODO naam filteren/anomiseren in descriptions """ safety = 0 while self.character['name'] in self.characterList: #Make sure that the name is not a duplicate self.character = api.get_character() #| safety += 1 if safety == 10: #Make sure we dont infinitely keep requesting from API (daily limit) break self.characterList.append(self.character['name']) #Add the character to our list random.shuffle(self.characterList) #Shuffle the character list (to make sure the correct answer isnt always in the same place) for index in self.characterList: #Make a button for every character in characterlist if self.characterList.index(index) < 5: #First 5 on the left side self.possible_answer_buttons.append(marvel.CharacterButton(marvel.WINDOW_WIDTH/8, marvel.WINDOW_HEIGHT/6 * (self.characterList.index(index) + 1), 'Button.png', index)) else: #Following 5 on the right self.possible_answer_buttons.append(marvel.CharacterButton(marvel.WINDOW_WIDTH/8*7, marvel.WINDOW_HEIGHT/6 * (self.characterList.index(index) - 4), 'Button.png', index)) def checkAnswerOpen(answerString, correctAnswer): '''Checks answer for open/hard mode. Takes; user answer (string), correct answer (string). Returns boolean, True if correct, False if wrong''' if answerString == correctAnswer: rightAnswer = True else: rightAnswer = False return rightAnswer def checkAnswerMultipleChoice(answer, correctAnswer): '''Checks answer for multiple choice/easy mode. Takes; user answer (string), correct answer (string)''' if answer == correctAnswer: rightAnswer = True else: rightAnswer = False return rightAnswer """ LEGACY Jasper Implemented elsewere in different form def points(answer, correctAnswer, easy, hint): '''Starts on 25 and removes 1 for every wrong answer, 3 for every hint. Maybe boolean argument for "hint" or smth if false it must be a wrong answer so you remove 1, if true remove 3''' if easy == True: ##checks difficulty## rightAnswer = checkAnswerMultipleChoice(answer, correctAnswer) ##checks answer## if hint == True: ##if hint is asked, subtracts 3 points## points = points - 3 else: if rightAnswer == False: ##checks answer and assigns points depending on the answer## points -= 1 else: ##hard## checkAnswerOpen(answer, correctAnswer) ##checks answer## if hint == True: ##if hint is asked, subtracts 3 points## points = points - 3 else: if rightAnswer == False: ##checks answer and assigns points depending on the answer## points = points - 1 return points """ """ LEGACY susan niet geimplenteerd def give_nickname(): \"""Asks the user for a username and returns this as string.\""" nickname = input('Nickname: ') file = 'scoreboard.json' try: with open(file, 'r') as json_file: data = json.load(json_file) data = data['scores'] for item in data.keys(): if nickname == item: print('Nickname taken. Try something else') give_nickname() return nickname except: return nickname def write_to_scoreboard(points): \"\"\"Takes the amount of points earned by player as input. Asks the user to choose a nickname and writes the chosen nickname and earned score to a jsonfile.\"\"\" file = 'scoreboard.json' nickname = give_nickname() dict_scores = {} output = {'scores': dict_scores} dict_scores[nickname] = points try: #kopieert de json file (naar de lijst waar de eerder geregristreerde inloggegevens ook in staan. with open(file, 'r') as json_file: data = json.load(json_file) data = data['scores'] for item in data: dict_scores[item] = data[item] except: #doet niks als er geen inhoud in de json file is. pass with open(file, 'w') as json_file: json_content = json.dump(output, json_file, indent=4) def leaderboard(): \"""Reads file 'Scoreboard.json', returns a sorted list of the scores with nicknames. Begins with the highest element.\""" file = 'scoreboard.json' leaderboard_list = [] with open(file, 'r') as json_file: data = json.load(json_file) data = data['scores'] leaderboard_list = sorted(data.items(), key=lambda x: x[1], reverse=True) return leaderboard_list """
true
63ffa3f0cd0f79659494190b1917880f34c7f8ea
Python
BrijeshDutta/stock-prices-dash
/StockPrices.py
UTF-8
290
3.28125
3
[]
no_license
import yfinance as yf #define the ticker symbol tickerSymbol = 'TSLA' #get data on this ticker tickerData = yf.Ticker(tickerSymbol) #get the historical prices for this ticker tickerDf = tickerData.history(period='1d', start='2010-1-1', end='2020-1-25') #see your data print(tickerDf)
true
60e3f3ba17613cc6d024235bffdd1a1a340ee38e
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2684/60694/261951.py
UTF-8
660
3.6875
4
[]
no_license
# www.geeksforgeeks.org/minimum-time-to-finish-tasks-without-skipping-two-consecutive def minTime(arr, n): if n <= 0: return 0 incl = arr[0] # First task is included excl = 0 # First task is exluded # Process remaining n-1 tasks for i in range(1, n): incl_new = arr[i] + min(excl, incl) excl_new = incl # Update incl and excl for next iteration incl = incl_new excl = excl_new # Return maximum of two values for last task return min(incl, excl) T = int(input()) for _ in range(T): N = int(input()) arr = list(map(int, input().split())) print(minTime(arr, N))
true
d9dc6df04a0fdd33a5a08952ba2bdd969be4e602
Python
KumarLamic/image-transform
/translate.py
UTF-8
1,313
2.890625
3
[]
no_license
from PIL import Image import os import random ori_image='three.png' scale_img_path='' img = Image.open(ori_image) #Apply translation by changing c and f values a = 1 b = 0 c = 0 #left/right (i.e. 5/-5) d = 0 e = 1 f = 0 #up/down (i.e. 5/-5) img = img.transform(img.size, Image.AFFINE, (a, b, c, d, e, f)) # img.save() img.show() # dir = "./test_images_ori" # # for name in os.listdir(dir): # print(name) # path = os.path.join(dir, name) # # fol = path.split('/')[2] # # print(fol) # for filename in os.listdir(path): # # ori_img_path = path +"/"+ filename # print("ori_img_path : " + ori_img_path) # ori_img= Image.open(ori_img_path) # # #create dir fol inside test_imgs_scale # scale_im_p= "test_imgs_scale/" + fol # scale_img_path = "test_imgs_scale/" + fol + "/" + filename # if not os.path.exists(scale_im_p): # os.makedirs(scale_im_p) # # # scale_factor = random.randint(2, 3) # a = 0 # b = 0 # c = 1 # left/right (i.e. 5/-5) # d = 0 # e = 0 # f = 1 # up/down (i.e. 5/-5) # scale_img = ori_img.transform(ori_img.size, Image.AFFINE, (a, b, c, d, e, f)) # scale_img.save(scale_img_path) # # print("scale_img_path : "+scale_img_path)
true
15847e832cfcad37081105a96a7b43e0b6c99644
Python
janosg/dag_gettsim
/dag_gettsim/main.py
UTF-8
7,030
2.9375
3
[ "BSD-3-Clause" ]
permissive
import inspect from functools import partial from inspect import getfullargspec, getmembers import networkx as nx import pandas as pd from dag_gettsim import aggregation, benefits, taxes def tax_transfer( baseline_date, data, functions=None, params=None, targets="all", return_dag=False ): """Simulate a tax and tranfers system specified in model_spec. Args: baseline_date (str): A date, e.g. '2019-01-01'. This is used to select a set of baseline parameters (and in the future baseline functions). data (dict): User provided dataset as dictionary of Series. functions (dict): Dictionary with user provided functions. The keys are the names of the function. The values are either callables or strings with absolute or relative import paths to a function. If functions have the same name as an existing gettsim function they override that function. params (dict): A pandas Series or dictionary with user provided parameters. Currently just mapping a parameter name to a parameter value, in the future we will need more metadata. If parameters have the same name as an existing parameter from the gettsim parameters database at the specified date they override that parameter. targets (list): List of strings with names of functions whose output is actually needed by the user. By default, all results are returned. Returns: dict: Dictionary of Series containing the target quantities. """ user_params = {} if params is None else params user_functions = {} if functions is None else functions params = get_params(baseline_date, user_params) func_dict = create_function_dict(user_functions=user_functions, params=params) dag = create_dag(func_dict) if targets != "all": dag = prune_dag(dag, targets) results = execute_dag(func_dict, dag, data, targets) if return_dag: results = (results, dag) return results def get_params(baseline_date, user_params): """Combine baseline parameters and user parameters. Currently this just generates baseline independent parameters for the toy model. In the long run it will load a database, query the baseline parameters and update or extend it with user parameters. Args: baseline_date (str): A date, e.g. '2019-01-01' user_params (dict or pd.Series): User provided parameters that override or extend the baseline parameters. Returns: pd.Series """ params = { "income_tax": 0.2, "wealth_tax": 0.9, # 90 % wealth tax is just to make Max happy ;-) "benefit_per_child": 2000, "benefit_cutoff": 30000, } if isinstance(user_params, pd.Series): user_params = user_params.to_dict() params.update(user_params) return pd.Series(params) def create_function_dict(user_functions, params): """Create a dictionary of all functions that will appear in the DAG. Args: user_functions (dict): Dictionary with user provided functions. The keys are the names of the function. The values are either callables or strings with absolute or relative import paths to a function. Returns: dict: Dictionary mapping function names to callables. """ func_dict = {} for module in taxes, benefits, aggregation: func_dict.update(dict(getmembers(module, inspect.isfunction))) func_dict.update(user_functions) partialed = {name: partial(func, params=params) for name, func in func_dict.items()} return partialed def create_dag(func_dict): """Create a directed acyclic graph (DAG) capturing dependencies between functions. Args: func_dict (dict): Maps function names to functions. Returns: dict: The DAG, represented as a dictionary of lists that maps function names to a list of its data dependencies. """ dag_dict = {name: getfullargspec(func).args for name, func in func_dict.items()} return nx.DiGraph(dag_dict).reverse() def prune_dag(dag, targets): """Prune the dag. Args: dag (nx.DiGraph): The unpruned DAG. targets (list): Variables of interest. Returns: dag (nx.DiGraph): Pruned DAG. """ # Go through the DAG from the targets to the bottom and collect all visited nodes. visited_nodes = set(targets) visited_nodes_changed = True while visited_nodes_changed: n_visited_nodes = len(visited_nodes) for node in visited_nodes: visited_nodes = visited_nodes.union(nx.ancestors(dag, node)) visited_nodes_changed = n_visited_nodes != len(visited_nodes) # Redundant nodes are nodes not visited going from the targets through the graph. all_nodes = set(dag.nodes) redundant_nodes = all_nodes - visited_nodes dag.remove_nodes_from(redundant_nodes) return dag def execute_dag(func_dict, dag, data, targets): """Naive serial scheduler for our tasks. We will probably use some existing scheduler instead. Interesting sources are: - https://ipython.org/ipython-doc/3/parallel/dag_dependencies.html - https://docs.dask.org/en/latest/graphs.html The main reason for writing an own implementation is to explore how difficult it would to avoid dask as a dependency. Args: func_dict (dict): Maps function names to functions. dag (nx.DiGraph) data (dict): targets (list): Returns: dict: Dictionary of pd.Series with the results. """ # Needed for garbage collection. visited_nodes = set() results = data.copy() for task in nx.topological_sort(dag): if task not in results: if task in func_dict: kwargs = _dict_subset(results, dag.predecessors(task)) results[task] = func_dict[task](**kwargs) else: raise KeyError(f"Missing variable or function: {task}") visited_nodes.add(task) if targets != "all": results = collect_garbage(results, task, visited_nodes, targets, dag) return results def _dict_subset(dictionary, keys): return {k: dictionary[k] for k in keys} def collect_garbage(results, task, visited_nodes, targets, dag): """Remove data which is no longer necessary. If all descendants of a node have been evaluated, the information in the node becomes redundant and can be removed to save memory. Args: results (dict) task (str) visited_nodes (set) dag (nx.DiGraph) Returns: results (dict) """ ancestors_of_task = nx.ancestors(dag, task) for node in ancestors_of_task: is_obsolete = all( descendant in visited_nodes for descendant in nx.descendants(dag, node) ) if is_obsolete and task not in targets: del results[node] return results
true
333b6e66fe4044d85ce78084d2728576ee5e1311
Python
Akatsuki06/Terminal-Pix
/colorinfo.py
UTF-8
344
2.9375
3
[ "MIT" ]
permissive
# https://jonasjacek.github.io/colors/data.json import json def fetchdata(): with open('data.json') as data_file: data=json.load(data_file) return data def getColorList(): data=fetchdata() colorList=[]; for i in data: # n=['colorId'] r=i['rgb']['r'] g=i['rgb']['g'] b=i['rgb']['b'] colorList.append([r,g,b]) return colorList
true
44a2d9679d5b364250efe5183a2852cb3844eefe
Python
Caps3c/batch2shellcode
/bat2shell.py
UTF-8
1,294
3.171875
3
[]
no_license
import os ,sys ### a script that reads a batch file then outputs a shellcode of the batch file ## a function to output the shell code to txt file with the name shellcode.txt def write_shellcode(): try: if sys.argv[2]=="txt": output = open("shellcode.txt","w") output.write(shellcode) output.close() else: pass except IndexError: pass try: ## open the batch file to read it's contents handle = open(sys.argv[1], "rb") dump = handle.read() handle.close() shellcode = "" ### checks every byte and turns the number to a hex string for byte in dump: hex_byte = (hex(byte)) hex_byte = "\\"+(hex_byte[1:]) if len(hex_byte)==3: hex_byte = hex_byte[:2]+"0"+hex_byte[2:3] else: pass shellcode += hex_byte #print (hex_byte) print ("The shell code of the following batch file is : "+sys.argv[1]) print (shellcode) write_shellcode() #print (dump) except IndexError: print ("no input files was detected \n") print ("Usage: python batreader.py batchfile") except FileNotFoundError: print ("No such batch file was found " +sys.argv[1]) ### author: capsec ### Friday 03/01/2020 ### twitter : capsec1
true
71114eb1bc1461f3b7aa517811bdbae3b9bf1351
Python
vietnvri/trigger-word
/preprocess/td_utils.py
UTF-8
3,401
2.90625
3
[]
no_license
import matplotlib.pyplot as plt from scipy.io import wavfile import os from pydub import AudioSegment import matplotlib.mlab as m import librosa import numpy as np class MaxSizeList(object): ls = [] def __init__(self, mx): self.val = mx def push(self, st): self.ls.append(st) def get_list(self): while len(self.ls) != self.val: self.ls.pop(0) return self.ls def plot(y, title=""): S = librosa.feature.melspectrogram(y, sr=16000, n_mels=40, n_fft=400, hop_length=160, power=1) # Convert to log scale (dB). We'll use the peak power (max) as reference. log_S = librosa.power_to_db(S, ref=np.max) # Make a new figure plt.figure(figsize=(12, 4)) # Display the spectrogram on a mel scale # sample rate and hop length parameters are used to render the time axis librosa.display.specshow(log_S, sr=16000, x_axis='time', y_axis='mel') # Put a descriptive title on the plot plt.title(title) # draw a color bar plt.colorbar(format='%+02.0f dB') # Make the figure layout compact plt.tight_layout() def get_spectrogram(data): """ Function to compute a spectrogram. Argument: predictions -- one channel / dual channel audio data as numpy array Returns: pxx -- spectrogram, 2-D array, columns are the periodograms of successive segments. """ nfft = 200 # Length of each window segment fs = 8000 # Sampling frequencies noverlap = 120 # Overlap between windows nchannels = data.ndim if nchannels == 1: pxx, _, _ = m.specgram(data, nfft, fs, noverlap=noverlap) elif nchannels == 2: pxx, _, _ = m.specgram(data[:, 0], nfft, fs, noverlap=noverlap) return pxx # %% # Calculate and plot spectrogram for a wav audio file def graph_spectrogram(wav_file): rate, data = get_wav_info(wav_file) nfft = 200 # Length of each window segment fs = 8000 # Sampling frequencies noverlap = 120 # Overlap between windows nchannels = data.ndim if nchannels == 1: pxx, freqs, bins, im = plt.specgram(data, nfft, fs, noverlap=noverlap) elif nchannels == 2: pxx, freqs, bins, im = plt.specgram(data[:, 0], nfft, fs, noverlap=noverlap) plt.close('all') return pxx # Load a wav file def get_wav_info(wav_file): rate, data = wavfile.read(wav_file) return rate, data # Used to standardize volume of audio clip def match_target_amplitude(sound, target_dBFS): change_in_dBFS = target_dBFS - sound.dBFS return sound.apply_gain(change_in_dBFS) # Load raw audio files for speech synthesis def load_raw_audio(): activates = [] backgrounds = [] negatives = [] for filename in os.listdir("./raw_data/activates"): if filename.endswith("wav"): activate = AudioSegment.from_wav("./raw_data/activates/" + filename) activates.append(activate) for filename in os.listdir("./raw_data/backgrounds"): if filename.endswith("wav"): background = AudioSegment.from_wav("./raw_data/backgrounds/" + filename) backgrounds.append(background) for filename in os.listdir("./raw_data/negatives"): if filename.endswith("wav"): negative = AudioSegment.from_wav("./raw_data/negatives/" + filename) negatives.append(negative) return activates, negatives, backgrounds
true
f249b2743f593ed2d68b1d492b8af569a9b21f3a
Python
korbelz/SC_Org_members
/scroll.py
UTF-8
1,138
3.140625
3
[ "MIT" ]
permissive
#scroll to bottom of the page from selenium import webdriver import time #Below are some example sites to test on. #https://robertsspaceindustries.com/orgs/SECPRO/members #https://robertsspaceindustries.com/orgs/AGBCORP/members def scroll(target_url): driver = webdriver.Chrome() driver.get(f'{target_url}') driver.page_source SCROLL_PAUSE_TIME = 3 time.sleep(SCROLL_PAUSE_TIME) # Get scroll height last_height = driver.execute_script("return document.body.scrollHeight") while True: # Scroll down to bottom driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") # Wait to load page time.sleep(SCROLL_PAUSE_TIME) # Calculate new scroll height and compare with last scroll height new_height = driver.execute_script("return document.body.scrollHeight") if new_height == last_height: break last_height = new_height #pita = driver.page_source #return pita return driver.page_source #pita = scroll('https://robertsspaceindustries.com/orgs/AGBCORP/members') #print (pita)
true
c7b9102c8637c5632b958827965ae209ba92bb0f
Python
danijar/dotfiles
/symlink.py
UTF-8
1,542
3.171875
3
[]
no_license
import pathlib def is_child(child, parent): try: child.relative_to(parent) return True except ValueError: return False def remove_broken_links(repo, user): # Only search in one level into directories that are mirrored in the # repository and only report broken links that point to the repository. It's # good to be careful because links in mounted network drives may seem broken # for the client. for directory in repo.glob('**/*'): if not directory.is_dir(): continue for path in (user / directory.relative_to(repo)).glob('*'): target = path.resolve() if is_child(target, repo) and not target.exists(): print('Broken:', path) path.unlink() def create_links(repo, user): for path in repo.glob('**/*'): dest = user / path.relative_to(repo) if path.is_dir(): dest.mkdir(exist_ok=True) continue if not dest.exists(): print('Create:', dest, '->', path) dest.symlink_to(path) continue if dest.is_symlink() and is_child(dest.resolve(), repo): if dest.resolve() != path: message = f'Expected existing {dest} to resolve to {path} ' message += f'but resolved to {dest.resolve()} instead.' raise RuntimeError(message) continue print('Exists:', dest) def main(): repo = (pathlib.Path(__file__).parent / 'home').resolve() user = pathlib.Path('~').expanduser().resolve() remove_broken_links(repo, user) create_links(repo, user) print('Done.') if __name__ == '__main__': main()
true
a021dc7e315a9e96dc8e85e84462d6aa10056044
Python
laolee010126/algorithm-with-python
/problems_solving/baekjoon/no_5430_AC.py
UTF-8
1,194
3.40625
3
[]
no_license
"""Do AC language calculations over integer array url: https://www.acmicpc.net/problem/5430 """ from collections import deque ERROR_MESSAGE = 'error' REVERSE, DISCARD = 'RD' def do_ac_calculations(arr, cmds): deck = deque(arr) # Preprocess commands tmp_r = 0 new_cmds = '' for c in cmds: if c == DISCARD: new_cmds += REVERSE if tmp_r % 2 else '' new_cmds += DISCARD tmp_r = 0 else: tmp_r += 1 new_cmds += REVERSE if tmp_r % 2 else '' # Do real calculations reverse_now = False for c in new_cmds: if c == REVERSE: reverse_now ^= True else: if not deck: return ERROR_MESSAGE if reverse_now: deck.pop() else: deck.popleft() if reverse_now: deck.reverse() return list(deck) if __name__ == '__main__': T = int(input()) ans = [] for _ in range(T): cmds = input() input() arr = eval(input()) ans.append(do_ac_calculations(arr, cmds)) for ret in ans: ret = str(ret).replace(' ', '') print(ret)
true
92b06f49babcec7474117d3a30173eb37994c3ca
Python
RaphP/ToutMonPython
/PythonLaptop/omeletes.py
UTF-8
548
2.921875
3
[]
no_license
import numpy import random import matplotlib.pyplot as plt import math dt = 1 Tmax = 1000 #t va de 0 a Tmax par pas de dt s = [0] for i in range(Tmax): s += [s[-1] + (1 -2*random.randint(0,1)) ] def phi(t): return 2*t*math.exp(-t**2) def T(b,a) : Dt = 3*a T = 0 for t in range(b-Dt, b+Dt): T+= s[t]*phi( (t-b)/a ) return T #plt.plot(f) #plt.show() map = numpy.empty([200,int(Tmax)]) for a in range(10, 200): print a Dt = 3*a for b in range(0+Dt, Tmax - Dt): map[a-10][b] = T(b,a) plt.imshow(map) plt.show()
true
2ce3ef0a7af55b2b0161eb18de450a46023b4124
Python
XYHC-MMDA/Multi-modal-Multi-task-DA
/mmdet3d/models/discriminators/disc.py
UTF-8
8,184
2.59375
3
[ "Apache-2.0" ]
permissive
import torch.nn as nn import torch import torch.nn.functional as F from ..registry import DISCRIMINATORS @DISCRIMINATORS.register_module() class FCDiscriminatorCE(nn.Module): def __init__(self, in_dim=128): super(FCDiscriminatorCE, self).__init__() self.fc = nn.Sequential( nn.Linear(in_dim, 256), nn.ReLU(inplace=True), nn.Linear(256, 512), nn.ReLU(inplace=True), nn.Linear(512, 2), ) self.criterion = nn.CrossEntropyLoss() def forward(self, x): if x.dim() == 4: x = x.permute([0, 2, 3, 1]) # x.shape=(N, in_dim=128) x = self.fc(x) if x.dim() == 4: x = x.permute([0, 3, 1, 2]) return x def loss(self, logits, src=True): label_shape = logits.shape[:1] + logits.shape[2:] if src: labels = torch.ones(label_shape, dtype=torch.long).cuda() else: labels = torch.zeros(label_shape, dtype=torch.long).cuda() return self.criterion(logits, labels) @DISCRIMINATORS.register_module() class ConvDiscriminator1x1(nn.Module): def __init__(self, in_dim=128, activation='ReLU'): # in_dim: input_channels assert activation in ['ReLU', 'Leaky'] super(ConvDiscriminator1x1, self).__init__() dim1, dim2 = 256, 256 self.conv = nn.Sequential( nn.Conv2d(in_dim, dim1, kernel_size=1), nn.BatchNorm2d(dim1), self._make_activation(activation), nn.Conv2d(dim1, dim2, kernel_size=1), nn.BatchNorm2d(dim2), self._make_activation(activation), nn.Conv2d(dim1, 2, kernel_size=1), ) self.criterion = nn.CrossEntropyLoss() def forward(self, x): # x.shape=(N, 128, 225, 400) x = self.conv(x) # (N, 2, 225, 400) return x def loss(self, logits, src=True): N, _, H, W = logits.shape if src: labels = torch.ones([N, H, W], dtype=torch.long).cuda() else: labels = torch.zeros([N, H, W], dtype=torch.long).cuda() return self.criterion(logits, labels) def _make_activation(self, act): if act == 'ReLU': return nn.ReLU(inplace=True) elif act == 'Leaky': return nn.LeakyReLU(0.2, inplace=True) @DISCRIMINATORS.register_module() class DetDiscriminator(nn.Module): def __init__(self, in_dim=128): # in_dim: input_channels super(DetDiscriminator, self).__init__() dim1, dim2, dim3 = 128, 256, 512 self.conv = nn.Sequential( nn.Conv2d(in_dim, dim1, kernel_size=8, stride=4), # (49, 99) nn.BatchNorm2d(dim1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim1, dim1, kernel_size=3, padding=[1, 0], stride=[1, 2]), # (49, 49) nn.BatchNorm2d(dim1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim1, dim2, kernel_size=3, padding=1, stride=2), # (25, 25) nn.BatchNorm2d(dim2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim2, dim2, kernel_size=3, padding=1, stride=2), # (13, 13) nn.BatchNorm2d(dim2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim2, dim3, kernel_size=3, padding=1, stride=2), # (7, 7) nn.BatchNorm2d(dim3), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim3, dim3, kernel_size=3, padding=1, stride=2), # (4, 4) nn.BatchNorm2d(dim3), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim3, 2, kernel_size=4), ) # ImageGAN self.criterion = nn.CrossEntropyLoss() def forward(self, x): # x.shape=(N, 128, 200, 400) x = self.conv(x) # (N, 2, 49, 99) return x def loss(self, logits, src=True): N, _, H, W = logits.shape if src: labels = torch.ones([N, H, W], dtype=torch.long).cuda() else: labels = torch.zeros([N, H, W], dtype=torch.long).cuda() return self.criterion(logits, labels) @DISCRIMINATORS.register_module() class Conv2dDiscriminator(nn.Module): def __init__(self, in_dim=128): # in_dim: input_channels super(Conv2dDiscriminator, self).__init__() dim1, dim2 = 64, 64 self.conv = nn.Sequential( nn.Conv2d(in_dim, dim1, kernel_size=3, stride=2, bias=True), # nn.Dropout2d(p=0.5), nn.ReLU(inplace=True), nn.Conv2d(dim1, dim2, kernel_size=3, stride=2, bias=True), # nn.Dropout2d(p=0.5), nn.ReLU(inplace=True), nn.Conv2d(dim1, 2, kernel_size=3, padding=1, bias=True), ) self.criterion = nn.CrossEntropyLoss() def forward(self, x): # x.shape=(N, 128, 200, 400) x = self.conv(x) # (N, 2, 49, 99) return x def loss(self, logits, src=True): N, _, H, W = logits.shape if src: labels = torch.ones([N, H, W], dtype=torch.long).cuda() else: labels = torch.zeros([N, H, W], dtype=torch.long).cuda() return self.criterion(logits, labels) @DISCRIMINATORS.register_module() class Conv2dDiscriminator01(nn.Module): def __init__(self, in_dim=128): # in_dim: input_channels super(Conv2dDiscriminator01, self).__init__() dim1, dim2 = 64, 64 self.conv = nn.Sequential( nn.Conv2d(in_dim, dim1, kernel_size=3, padding=1, stride=2), nn.BatchNorm2d(dim1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim1, dim2, kernel_size=3, padding=1), nn.BatchNorm2d(dim2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(dim1, 2, kernel_size=3, padding=1), ) # receptive field=11; 11x11 PatchGAN self.criterion = nn.CrossEntropyLoss() def forward(self, x): # x.shape=(N, 128, 200, 400) x = self.conv(x) # (N, 2, 49, 99) return x def loss(self, logits, src=True): N, _, H, W = logits.shape if src: labels = torch.ones([N, H, W], dtype=torch.long).cuda() else: labels = torch.zeros([N, H, W], dtype=torch.long).cuda() return self.criterion(logits, labels) @DISCRIMINATORS.register_module() class FCDiscriminator(nn.Module): def __init__(self, in_dim=128): super(FCDiscriminator, self).__init__() self.fc = nn.Sequential( nn.Linear(in_dim, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, 2), ) self.nllloss = nn.NLLLoss() def forward(self, x): # x.shape=(N, in_dim=128) x = self.fc(x) return x def loss(self, logits, src=True): if src: labels = torch.ones(logits.size(0), dtype=torch.long).cuda() else: labels = torch.zeros(logits.size(0), dtype=torch.long).cuda() return self.nllloss(F.log_softmax(logits, dim=1), labels) @DISCRIMINATORS.register_module() class FCDiscriminatorNew(nn.Module): def __init__(self, in_dim=128): super(FCDiscriminatorNew, self).__init__() self.fc = nn.Sequential( nn.Linear(in_dim, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, 2), ) self.nllloss = nn.NLLLoss() def forward(self, x, return_logits=False): # x.shape=(N, in_dim=128) logits = self.fc(x) logprob = F.log_softmax(logits, dim=1) if return_logits: return logits, logprob else: return logprob def loss(self, logprob, src=True): if src: labels = torch.ones(logprob.size(0), dtype=torch.long).cuda() else: labels = torch.zeros(logprob.size(0), dtype=torch.long).cuda() return self.nllloss(logprob, labels) if __name__ == '__main__': disc = DetDiscriminator(128) x = torch.rand(2, 128, 200, 400) x = disc(x) print(x.shape) # (2, 2, 49, 99)
true
1292c75a3e0f02792748e47f89c3b9e04652e0b1
Python
SpadavecchiaAdrian/surveillance
/opticalFlow_v1.py
UTF-8
3,538
2.5625
3
[]
no_license
# import the necessary packages from pyimagesearch.tempimage import TempImage from picamera.array import PiYUVArray from picamera import PiCamera import argparse import warnings import datetime import dropbox import imutils import json import time import numpy as np import cv2 # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-c", "--conf", required=True, help="path to the JSON configuration file") args = vars(ap.parse_args()) # filter warnings, load the configuration and initialize the Dropbox # client warnings.filterwarnings("ignore") conf = json.load(open(args["conf"])) client = None # check to see if the Dropbox should be used if conf["use_dropbox"]: # connect to dropbox and start the session authorization process client = dropbox.Dropbox(conf["dropbox_access_token"]) print("[SUCCESS] dropbox account linked") # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = tuple(conf["resolution"]) camera.framerate = conf["fps"] rawCapture = PiYUVArray(camera, size=tuple(conf["resolution"])) # allow the camera to warmup, then initialize the average frame, last # uploaded timestamp, and frame motion counter print("[INFO] warming up...") time.sleep(conf["camera_warmup_time"]) avg = None lastUploaded = datetime.datetime.now() motionCounter = 0 # params for ShiTomasi corner detection feature_params = dict(maxCorners=100, qualityLevel=0.8, minDistance=7, blockSize=7) # Parameters for lucas kanade optical flow lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # Take first frame and find corners in it #ret, old_frame = cap.read() #old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY) camera.capture(rawCapture, format="yuv", use_video_port=True) old_gray = rawCapture.array[:, :, 0] p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) # Create a mask image for drawing purposes mask = np.zeros_like(old_gray) rawCapture.truncate(0) # capture frames from the camera for f in camera.capture_continuous(rawCapture, format="yuv", use_video_port=True): # grab the raw NumPy array representing the image and initialize # the timestamp and occupied/unoccupied text frame_gray = f.array[:, :, 0] # accedemos a todas las filas, columnas del canal Y frame = frame_gray.copy() # calculate optical flow p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) # Select good points good_new = p1[st == 1] good_old = p0[st == 1] # draw the tracks for i, (new, old) in enumerate(zip(good_new, good_old)): a, b = new.ravel() c, d = old.ravel() mask = cv2.line(mask, (a, b), (c, d), (0xff), 2) frame = cv2.circle(frame, (a, b), 5, (0xff), -1) img = cv2.add(frame, mask) # check to see if the frames should be displayed to screen if conf["show_video"]: # display the security feed cv2.imshow("img", img) key = cv2.waitKey(1) & 0xFF # if the `q` key is pressed, break from the lop if key == ord("q"): break # Now update the previous frame and previous points old_gray = frame_gray.copy() p0 = good_new.reshape(-1, 1, 2) # clear the stream in preparation for the next frame rawCapture.truncate(0) cv.destroyAllWindows()
true
f6f88ef08b3c060609b64c0ddee0f191c8978832
Python
Avery123123/LeetCode
/dataStructure/array_and_string/寻找数组的中心索引.py
UTF-8
372
3.109375
3
[]
no_license
class Solution(object): def pivotIndex(self, nums): """ :type nums: List[int] :rtype: int """ left_sum = 0 right_sum = sum(nums) for index,item in enumerate(nums): right_sum -= item if left_sum == right_sum: return index left_sum += item return -1
true
0504099a50fda05cf91693efbcfb1abd814ba999
Python
51running/cmdb
/asset/validators.py
UTF-8
2,087
2.6875
3
[]
no_license
#encoding:utf-8 from .models import Host from datetime import datetime class Validator(object): @classmethod def is_interger(cls,value): try: int(value) return True except BaseException as e: return False class Host_Valid(Validator): #这里都是view.py在调用的 @classmethod def valid_update_asset(cls,params): is_valid = True errors = {} host = None try: host = Host.objects.get(pk=params.get('id','').strip()) except BaseException as e: errors['id'] = '主机信息不存在' is_valid = False return is_valid, host, errors print(host.cpu) # return is_valid, host, errors name = params.get('name', '').strip() if not cls.valid_name_unique(name, host.id): errors['name'] = '主机名已存在' is_valid = False else: host.name = name ip = params.get('ip', '0').strip() host.ip = ip # if not ip.isdigit(): # errors['ip'] = 'IP格式错误' # is_valid = False # else: # host.ip = int(ip) host.mac = int(params.get('mac', '0')) # w文件列表sex的值是整型,要不是整型,性别都为男 host.os = params.get('os', '0') host.arch = params.get('arch', '0') host.mem = params.get('mem', '0') host.cpu = params.get('cpu', '0') host.disk = params.get('disk', '0') host.create_time = params.get('create_time', '0') host.last_time = params.get('last_time', '0') return is_valid, host, errors @classmethod def valid_name_unique(cls,name, uid): host = None try: host = Host.objects.get(name=name) except BaseException as e: pass if host is None: return True else: return str(host.id) == str(uid) # 传进来是字符串类型,数据库是
true
557249e5b478fc5b09941d0a4467e628c1f3160c
Python
vnherdeiro/project-euler
/p267.py
UTF-8
541
2.90625
3
[]
no_license
#! /usr/bin/python3 from mpmath import mp pow = mp.power binom = mp.binomial from scipy.optimize import minimize thresh = 10**9 def g(f): mp.dps = 400 if f <= 0 or f >= 1: #forcing minimization in (0,1) return 0 f = mp.mpf( f[-1]) #print( f) s = mp.mpf() for k in range(1001): gain = pow(1+2*f, k) * pow(1-f, 1000 - k) if gain > thresh: s += binom(1000, k) #print(binom(1000, k)) #print( s) s /= pow(2,1000) return -s output = minimize( g, .05, method="Powell", tol=1e-14,) print( output) #print( "%.15f" % g(0.05))
true
4d64df957898d2758d81c7c6b84355ca7ac564cc
Python
yajvldrm/notepad_to_spreadsheet
/getting_sheet_from_workbook.py
UTF-8
205
3.03125
3
[]
no_license
import openpyxl wb = openpyxl.load_workbook('grading.xlsx') print(wb.get_sheet_names()) sheet = wb['Sheet1'] print(sheet) print(type(sheet)) print(sheet.title) anothersheet = wb.active print(anothersheet)
true
17b42b80c67fbd5df0aed930f1dc5924657a1463
Python
akirapop/pytako
/SSOtable_py3.py
UTF-8
5,604
3.109375
3
[]
no_license
####+ # # 03 June 2013 # # This class is intended to serve as an "internal" class # to be used by the solarSystem.py module. In other words, it # is expected that users will *not* make direct use of this # class! # # # Object instances of this class serve one fundamental # purpose: To encapsulate the series of data needed to # calculate approximate positions for given bodies in the # solar system. It is therefore expected that the 'wrapper' # module (solarSystem.py) will: (1) instantiate instances # as requested and (2) access the data stored in the instances. # # The data stored are taken from the paper "Low-Precision # Formulae for Planetary Positions", Van Flandern and Pulkkinen, # Ap J. Supp., 41, 391-411 (1979). Note that the so-called # "Fundamental Arguments" are _not_ encapsulated in this class! # The solarSystem.py contains/reads this information. # ####- from generic_py3 import openfile, filedata import math sinCos= { "sin": math.sin, "cos": math.cos } #dataDir="/home/baluta/Scheduling/bin/Data/SolarSystemVanFlandern/" dataDir="SolarSystemVanFlandern/" # "SSO" --> "Solar System Object" class SSOtable (object): def __init__(self, name): self.name=name.title() self.__readUVW(dataDir) self.__readSunDistance(dataDir) # self.__readUVW("/home/baluta/Scheduling/bin/Data/SolarSystemVanFlandern/") # self.__readSunDistance("/home/baluta/Scheduling/bin/Data/SolarSystemVanFlandern/") def __str__(self): return self.name ## The routines that appear below here are initialization-related def __closePolyTerm(self, coeff, xp): ''' Form a closure of the form: coeff * T^(xp) or, if xp is 0, just coeff. ''' if xp==0: def f(T): return coeff else: def f(T): return coeff * (T**xp) return f def __processSeriesString(self, dataString, norm): ''' Process the u/v/w portion of input. These should be strings that look something like this: "38966 0 sin 0 0 0 1 0 0 0 " ''' parts=dataString.split() ##### ## For the U, V, W series, the coefficients in the ## data files been multiplied ## by 100,000, so we ## must divide this term out. The series for the ## radius do not have this normalization applied. ##### coeff= float(parts[0]) / norm exponent=float(parts[1]) trigFunc= sinCos[parts[2]] series=[] #### # Now process the trigonometric series: If the term is a 0, skip it. # Otherwise, prepare a tuple of the appropriate "fundamental element" # and the current term. The "wrapper" library/module (solarSystem.py) # will then wrap this information into the appropriate closures. #### for k, term in enumerate(parts[3:]): n=int(term) if n==0: continue series.append ( (self.trigTerms[k], n) ) poly= self.__closePolyTerm(coeff, exponent) trigFunc= sinCos[parts[2]] if len(series) == 0: series= [ (self.trigTerms[0], 0) ] return (poly, trigFunc, tuple(series)) ## Make series a tuple -- don't allow anyone to mess it up! def __readUVW (self, dir="./"): # fileName= "".join([dir, self.name.lower(), "UVW"]) file= openfile("".join([dir, self.name.lower(), "UVW"])) self.uSeries=[] self.vSeries=[] self.wSeries=[] norm=100000.0 for line in filedata(file): if line.startswith("TrigSeriesTerms"): self.trigTerms=line.split()[1:] elif line.startswith("LongitudeTerm"): self.longitudeTerm=line.split()[1] elif line.startswith("DeltaBar"): self.deltaBar=float(line.split()[1]) else: v, u, w= line.split("|") if not u.isspace(): self.uSeries.append ( self.__processSeriesString(u, norm) ) if not v.isspace(): self.vSeries.append ( self.__processSeriesString(v, norm) ) if not w.isspace(): self.wSeries.append ( self.__processSeriesString(w, norm) ) ## The data encapsulated in this class must not be changed. tuple-ize! self.uSeries= tuple(self.uSeries) self.vSeries= tuple(self.vSeries) self.wSeries= tuple(self.wSeries) def __readSunDistance (self, dir="./"): # fileName= "".join([dir, self.name.lower(), "Radius"]) file= openfile("".join([dir, self.name.lower(), "Radius"])) self.rSeries=[] norm=1.0 for line in filedata(file): if line.startswith("TrigSeriesTerms"): continue if not line.isspace(): self.rSeries.append ( self.__processSeriesString(line, norm) ) ## The data encapsulated in this class must not be changed. tuple-ize! self.rSeries= tuple(self.rSeries) if __name__ == "__main__": obj="jupiter" sso= SSOtable (obj) series=sso.__getattribute__('uSeries') # for k,s in enumerate(series): for k,s in enumerate(sso.uSeries): print ("%r: %r" % (k,s[2])) # name=sso.__getattribute__('name') # print "\nThe name is: ",name test= "".join(["blah! ", sso.__str__()]) print("test: %s" % test) tterms=sso.trigTerms lterm=sso.longitudeTerm deltaBar=sso.deltaBar print("\nTrig terms: %r" % tterms) print("Longitude term: %r" % lterm) print("DeltaBar= %r" % deltaBar) print("\nR-Series:\n%r" % sso.rSeries)
true
e6ea9a51cd0686ae417f560aa5d10fff751631ca
Python
ketakic/Home-Security-Smart-Door-System
/doorlock.py
UTF-8
805
2.671875
3
[]
no_license
import RPi.GPIO as GPIO import BlynkLib import time from time import sleep BLYNK_AUTH = 'd2132438bc5244949d13241150f57958' blynk = BlynkLib.Blynk(BLYNK_AUTH) GPIO.setmode(GPIO.BOARD) GPIO.setup(03, GPIO.OUT) pwm=GPIO.PWM(03, 50) @blynk.VIRTUAL_WRITE(1) def my_write_handler(value): print('Current V! value: {}'.format(value)) pwm.start(0) print('Value - ') print(value) if(value == '0'): #pwm.start(7) setAngle(54) #pwm.stop() print('A') else: #pwm.start(90) setAngle(144) print('B') @blynk.VIRTUAL_READ(2) def my_read_handler(): blynk.virtual_write(2, time.ticks_ms() // 1000) pwm.stop() GPIO.cleanup() def setAngle(angle): duty = angle /18 +2 GPIO.output(03, True) pwm.ChangeDutyCycle(duty) sleep(1) GPIO.output(03, False) pwm.ChangeDutyCycle(0) blynk.run()
true
00e364eaf769d388bca75f32047d4cd3b5d741c0
Python
amanchourasiya/leetcode
/dp/best-time-to-buy-and-sell-stock.py
UTF-8
419
3.484375
3
[]
no_license
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ class Solution: def maxProfit(self, prices) : # Kadane algorithm maxpro = 0 minprice = 10 ** 5 for i in range(len(prices)): minprice = min(minprice, prices[i]) maxpro = max(maxpro, prices[i] - minprice) return maxpro s = Solution() print(s.maxProfit([7,1,5,3,6,4]))
true
c9eeeb4a58396e4389a003f4ea3c8536b63bd63c
Python
blainerothrock/seisml
/seisml/core/transforms/sample/resample.py
UTF-8
1,355
2.75
3
[]
no_license
from seisml.core.transforms import TransformException, BaseTraceTransform class Resample(BaseTraceTransform): """ reasmple using Fourier method, passthrough of obspy.core.trace.Trace.reample Args: sampling_rate: (float): new sample rate in Hz. source (string): the data source to filter, default: raw output: (string): optional, the key of the output data in the dictionary, default: resampled inplace: (Bool): optional, will overwrite the source data with the trim Raises: TransformException Returns: data: a modified dictionary with filters applied """ def __init__( self, sampling_rate, source='raw', output='resampled', inplace=False): super().__init__(source, output, inplace) if not isinstance(sampling_rate, float): raise TransformException(f'sampling_rate must be a float, got {type(sampling_rate)}') self.sampling_rate = sampling_rate def __call__(self, data): super().__call__(data) resampled = data[self.source].copy().resample(self.sampling_rate) return super().update(data, resampled) def __repr__(self): return ( f'{self.__class__.__name__}(' f'sampling_rate: {self.sampling_rate})' )
true
2aa527f184f61badd36a8c54266d8767c7856e4d
Python
levylll/leetcode
/test30.py
UTF-8
2,794
3.25
3
[]
no_license
class Solution: def findSubstring(self, s, words): """ :type s: str :type words: List[str] :rtype: List[int] """ if not s or not words: return [] word_dict = {} res = [] word_len = len(words[0]) all_words = len(words) for word in words: if word not in word_dict: word_dict[word] = 1 else: word_dict[word] += 1 all_len = all_words * word_len start = None p = None end = None for i in range(word_len): if p is not None and p == end: start = start + word_len else: start = i end = start + all_len cur_dict = {} p = start while p < end and end <= len(s): # print('==--=-=-') # print(start) tmp = s[p:p+word_len] if tmp not in word_dict: start = p + word_len end = start + all_len p = start cur_dict = {} continue else: if tmp in cur_dict: if cur_dict[tmp] + 1 > word_dict[tmp]: start_tmp = s[start:start+word_len] if start_tmp in cur_dict: if cur_dict[start_tmp] > 1: cur_dict[start_tmp] -= 1 else: del cur_dict[start_tmp] start += word_len end += word_len else: cur_dict[tmp] += 1 p += word_len else: if tmp not in word_dict: start = p + word_len end = start + all_len p = start else: cur_dict[tmp] = 1 p += word_len if p == end: res.append(start) start += word_len end = start + all_len cur_dict = {} p = start return res # words = "wordgoodgoodgoodbestword" # s = ["word","good","best","word"] # s = "barfoothefoobarman" # words = ["foo","bar"] # s = "barfoofoobarthefoobarman" # words = ["bar","foo","the"] # s = 'lingmindraboofooowingdingbarrwingmonkeypoundcake' # words = ["fooo","barr","wing","ding","wing"] s = 'aaa' words = ['a', 'a'] solution = Solution() print(solution.findSubstring(s, words))
true
c7be6109884b11a8f0246d1bb6c2ee48b0aaf642
Python
matthewmolinar/syllabus-scanner
/backend copy/util.py
UTF-8
1,805
2.78125
3
[]
no_license
from PyPDF4 import PdfFileReader from icalendar import Calendar, Event from datetime import datetime from io import StringIO import os.path import docx import pytz # to_text functions def pdf_to_txt(file): text = '' pdfReader = PdfFileReader(file) for i in range(pdfReader.numPages): page = pdfReader.getPage(i) text += page.extractText() return text def docx_to_txt(file): print(type(file)) doc = docx.Document(file) out_txt = StringIO() for para in doc.paragraphs: out_txt.write(para.text) text = out_txt.getvalue() out_txt.close() return text.lower() # prof_cal functions, will add more as we get more profs def get_barr_events(): # hardcoding events # summary, start, end, description event_mat = ['testing', datetime(2021,1,10,15,0,0,tzinfo=pytz.utc), datetime(2021,1,10,17,0,0,tzinfo=pytz.utc), 'a description'] return event_mat def get_newton_events(): # hardcoding events # summary, start, end, description event_mat = ['testing', datetime(2021,1,10,18,0,0,tzinfo=pytz.utc), datetime(2021,1,10,19,0,0,tzinfo=pytz.utc), 'a description'] return event_mat def get_xu_events(): # hardcoding events # summary, start, end, description event_mat = ['testing', datetime(2021,1,10,18,0,0,tzinfo=pytz.utc), datetime(2021,1,10,19,0,0,tzinfo=pytz.utc), 'a description'] return event_mat # returns a cal file def merge_into_cal(event_mat): # Create calander cal = Calendar() for e in event_mat: event = Event() event.add('summary', e[0]) event.add('dtstart', e[1]) event.add('dtend', e[2]) event.add('description', e[3]) cal.add_component(event) cal = cal.to_ical().decode('utf-8') return cal # this is a string
true
a8928d439fe1f728e6eb2c3330398748c3bff10f
Python
rekeshali/kNN-DecisonTree
/implement.py
UTF-8
10,145
3.015625
3
[]
no_license
import numpy as np ####################################################################################### ############################## K Nearest Neighbors #################################### ####################################################################################### def kNN(k, Lnorm, Xtrain, Xtest, Ctrain): # compares all test data to all training data # nearest neighbors give probability of class [Ntrain, F] = Xtrain.shape # samples in train Ntest = Xtest.shape[0] # samples in test dist = np.zeros((Ntrain)) # dist of nts compared to ntr CkNN = np.zeros((Ntest )) # class of nts according to kNN Clist = [] # list of all class values for c in Ctrain: # populate class list if c not in Clist: Clist.append(c) for nts in range(Ntest): for ntr in range(Ntrain): dist[ntr] = (np.sum(np.abs(Xtest[nts,:] - Xtrain[ntr,:])**Lnorm))**(1/Lnorm) kNNidx = np.argsort(dist)[:k] # get first k sorted distance indices Cprob = np.zeros((len(Clist))) # reinitialize to zero probability for nn in kNNidx: # for all k neighbors Cidx = Clist.index(Ctrain[nn]) # find index of class in list Cprob[Cidx] += 1 # add one to sum at index of class Cprob /= k # divide by k to get prob maxprob = np.max(Cprob) # find max CkNN[nts] = Clist[list(Cprob).index(maxprob)] # class = first appearance of maxprob return CkNN ####################################################################################### ################################ Decision Tree ######################################## ####################################################################################### def GetPrior(C): # Prior a sample of belonging to class C Cm = [] pm = [] for ci in C: # for all samples if ci not in Cm: # Gather unseen class Cm.append(ci) pm.append(0) # Add to sum for that class Cmi = Cm.index(ci) pm[Cmi] += 1 return np.asarray(pm)/len(C), Cm def NodeImpurity(pm, imptype): # Calculate impurity of node # gini and misclass are dichotomous if imptype == 'entropy': e = 0.0 for pi in pm: e += -pi*np.log2(pi) elif imptype == 'gini': e = 2*pm[0]*(1 - pm[0]) elif imptype == 'misclassification error': e = 1.0 - np.max(pm) return e def SplitImpurity(C, n, imptype): # Get the combined entropy of all resulting # branches after splitting a node e = 0.0 for j in n: Cj = [C[i] for i in j] # gather classes belonging to j pmj = GetPrior(Cj)[0] # get priors ej = NodeImpurity(pmj, imptype) # impurity of branch j e += len(j)*ej/len(C) # impurity of split return e def SplitIndex(X): # Splitting a discrete valued array based on like instances n = [] j = [] for t, xt in enumerate(X): if xt not in j: # gather new value for instance j.append(xt) n.append([]) nidx = j.index(xt) # add to like valued group n[nidx].append(t) return n # returns array of index arrays for each group def SplitAttribute(X, imptype, dtype): # Best split determined at minimum impurity # for any split at anny attribute MinEnt = float('inf') [N,D] = X.shape for i in range(D)[:-1]: # for all attributes if dtype == 'discrete': n = SplitIndex(X[:,i]) e = SplitImpurity(X[:,-1], n, imptype) if e < MinEnt: # minimize impurity MinEnt = e besti = i bestn = n elif dtype == 'numeric': sort = list(X[:,i].argsort()) # sort indices by increasing X for t in range(N)[1:]: n = [ sort[0:t] , sort[t:N] ] # split indices e = SplitImpurity(X[:,-1], n, imptype) if e < MinEnt: MinEnt = e besti = i bestn = n return besti, bestn # returns best feature to split in, and best way to split def AddTerminal(T, C): # Create leaf on tree T['type'] = 'terminal' T['class'] = C return T def AddNode(T, index, dtype): # Create a junction on tree T['type'] = 'node' T['index'] = index # attribute to compare if dtype == 'discrete': T['values'] = [] # possible values of branches elif dtype == 'numeric': T['midpoint'] = [] # 2 branches around midpoint T[ 'above'] = {} # creating branches T[ 'below'] = {} return T def AddBranch(T, val, dtype): # Create new branch on tree based on indicator if dtype == 'discrete': T['values'].append(val) T[ val ] = {} elif dtype == 'numeric': if val not in T['midpoint']: T['midpoint'].append(val) return T def GetValue(X, i, j, n, dtype): # Find value for branch indicator if dtype == 'discrete': val = X[j[0],i] # value of all rows in branch tooth = val elif dtype == 'numeric': val = (np.max(X[n[0],i]) + np.min(X[n[1],i]))/2 # midpoint between branches key = ['below', 'above'] tooth = key[ n.index(j) ] return val, tooth def GenerateTree(X, T, imptype, entmax, level, depth, depthmax, dtype): # Train a dataset and output a nested dictionary holding structure of tree # also output the depth of the tree # Supports numeric and discrete data # Stop conditions include impurity max and depth max level = level + 1 # add a level to the tree if level > depth: # keep highest level as depth depth = level [pm, Cm] = GetPrior(X[:,-1]) # get priors for instances in class # If we meet an impurity threshold or reach user defined max depth, add leaf if NodeImpurity(pm, imptype) < entmax or depth == depthmax: T = AddTerminal(T, Cm[ list(pm).index(np.max(pm)) ]) return [depth, T] # Otherwise define position as node and keep adding branches else: [i, n] = SplitAttribute(X, imptype, dtype) # minimum entropy split T = AddNode(T, i, dtype) # save index of split in node definition for j in n: # for all groups in split [val, tooth] = GetValue(X, i, j, n, dtype) # get comparison value and branch indicator T = AddBranch(T, val, dtype) # add branch to tree Xj = X[j,:] # new X for that branch # Continue algorithm down new branch depth = GenerateTree(Xj, T[tooth], imptype, entmax, level, depth, depthmax, dtype)[0] return [depth, T] def TreeClassify(X, T, dtype): if T['type'] == 'terminal': # if at a leaf C = T['class'] return C elif dtype == 'discrete': i = T['index'] # index to compare value dmin = float('inf') for val in T['values']: dist = abs(X[i] - val) # find nearest to value L1 norm if dist < dmin: dmin = dist branch = val C = TreeClassify(X, T[branch], dtype) # go down closest branch return C elif dtype == 'numeric': i = T['index'] mp = T['midpoint'] if X[i] <= mp: # see if above or below midpoint branch = 'below' else: branch = 'above' C = TreeClassify(X, T[branch], dtype) # go down branch return C ####################################################################################### ################################## Performance ######################################## ####################################################################################### def perform(Ck, Ct): # CkNN, Ctest TF = np.zeros((4)) # TP, TN, FP, FN N = Ck.shape[0] for n in range(N): if Ck[n] == Ct[n]: # if true if Ck[n] == 4: # if pos TF[0] += 1 elif Ck[n] == 2: # if neg TF[1] += 1 elif Ck[n] != Ct[n]: # if false if Ck[n] == 4: # if pos TF[2] += 1 elif Ck[n] == 2: # if neg TF[3] += 1 return TF def metrics(TF): # TF is [TP, TN, FP, FN] [TP, TN, FP, FN] = TF ACC = (TP + TN)/(sum(TF)) # accuracy TPR = TP/(TP + FN) # true positive rate, recall, or sensitivity PPV = TP/(TP + FP) # positive predictive value or precision TNR = TN/(TN + FP) # true negative rate or specificity F1S = 2*PPV*TPR/(PPV + TPR) return ACC, TPR, PPV, TNR, F1S ####################################################################################### ############### PCA ################################################################### ####################################################################################### def PCA(X, k, pvar): from scipy import linalg as la [U,S,V] = la.svd(X) # decompose kmin = get_k(S, pvar) # min k to get min percent variance if k == 'kmin': k = kmin # use min k Uk = U[:,0:k] # recompose reduced set Sk = S[ 0:k ] Vk = V[0:k,:] Sig = diag(Sk) Xk = Uk*Sig*Vk return np.asarray(Xk) def get_k(S, pvar): # k that satisfies percent var PV = percent_var(S) for k, var in enumerate(PV): if var >= pvar: break return k + 1 def percent_var(S): # compute pvar array S = S**2 SumS = np.sum(S) PV = [S[0]] for val in S[1:]: PV.append(PV[-1] + val) PV = np.asarray(PV)/SumS return PV def diag(S): # digaonalize array, Sig = S*I rank = len(S) Sig = [[0 for x in range(rank)] for y in range(rank)] for i in range(rank): Sig[i][i] = S[i] return np.asmatrix(Sig) ####################################################################################### ############### END ################################################################### #######################################################################################
true
b59b566172eaa118b5239d5a59ec9d6b328beb48
Python
DOREMUS-ANR/recommender
/recsystem/index.py
UTF-8
2,598
2.546875
3
[ "MIT" ]
permissive
#!/usr/bin/env python import argparse import json import logging from types import SimpleNamespace from embedder import create_edgelists, embed, post_embed, combine_embeddings, visualizer, most_similar logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('command', choices=['create_edgelists', 'embed', 'post_embed', 'combine', 'visualise', 'most_similar']) parser.add_argument('-f', '--feature', help='The feature on which compute the script. It subscribes the one in config.json') parser.add_argument('--reset', action='store_true', help='Replace the previous embeddings instead of incrementing (only in combine mode)') parser.add_argument('--show', action='store_true', help='Show the picture to video instead of saving to file (only in visualise mode)') parser.add_argument('-s', '--seed', nargs='?', default=None, help='The URI of the entity to be used as seed') parser.add_argument('-t', '--target', nargs='?', default=None, help='The URI of the entity to be used as target') parser.add_argument('-n', '--num_results', type=int, default=3, help='How many results are requested') parser.add_argument('-c', '--config', type=argparse.FileType('r'), default='config/config.json', help='Path of configuration file.') return parser.parse_args() def load_config(file): cfg = json.load(file) if type(cfg) == dict: cfg = SimpleNamespace(**cfg) return cfg if __name__ == '__main__': args = parse_args() config = load_config(args.config) config.feature = args.feature config.seed = args.seed config.target = args.target config.num_results = args.num_results config.reset = args.reset config.show = args.show try: if args.command == 'create_edgelists': create_edgelists.main(config) if args.command == 'embed': embed.main(config) post_embed.main(config) if args.command == 'post_embed': post_embed.main(config) if args.command == 'combine': combine = combine_embeddings.CombineEmbeddings(config) combine.run() if args.command == 'visualise': visualizer.main(config) if args.command == 'most_similar': ms = most_similar.MostSimilar(config) ms.find(args.seed, args.num_results) except RuntimeError as error: logger.error('[ERROR] %s' % error)
true
d044dafc29c428dabc7f6f501d1eb1d5966e494a
Python
mirhossain8248/Python-Practice-
/regularExpression_charClass_findAll.py
UTF-8
1,036
3.796875
4
[]
no_license
#Charecter Classes, Findall import re message = "My phone numbers are: 775-737-8248, 775-824-9921" phoneRegex = re.compile(r'((\d\d\d)-(\d\d\d-\d\d\d\d))') phoneObjectFindAll= phoneRegex.findall(message) print(phoneObjectFindAll) #Charecter classes are short cuts built in, we can just look them up lyrics = '''4 calling birds 5 gold rings 6 geese a-laying 7 swans a-swimming 8 maids a-milking 9 ladies dancing 10 lords a-leaping 11 pipers piping 12 drummers drumming''' xmasRegex = re.compile(r'\d+\s\w+') #looking for one or more digit, space, one or more letters xmasObjectFindAll = xmasRegex.findall(lyrics) print(xmasObjectFindAll) #make your own char class (object): vowelRegex = re.compile(r'[aeiouAEIOU]') #can also use params (a-z) gets all lower letters vowelObjectFindAll = vowelRegex.findall(lyrics) print(vowelObjectFindAll) #Negative Charecter class #negativeVowelRegex = re.compile(r'[^aeiouAEIOU]) #negObjectFindAll = negativeVowelRegex.findall(lyrics) #print(negObjectFindAll) #
true
df0b0e448d69feed074e95b7cae930a99cdb49d1
Python
MrHarcombe/PiTwiddles
/mcpi/George/AirShip.py
UTF-8
1,025
2.578125
3
[]
no_license
import minecraft.minecraft as minecraft import minecraft.block as block import time import datetime import math mc = minecraft.Minecraft.create() x = 64 y = 32 z = 64 xmv = 1 zmv = 0 try: while True : MOVE = 0 pos = mc.player.getPos() if (pos.x > x - 6) and (pos.z < z + 6) and (pos.z > z - 6) and (pos.z < z + 6) and (pos.y - 1 == y): MOVE = 1 xb = x - 5 while xb < x + 6: zb = z - 5 while zb < x + 6: mc.setBlock(xb, y, zb, 0) zb = zb + 1 xb = xb + 1 x = x + xmv z = z + zmv xb = x - 5 while xb < x + 6: zb = z - 5 while zb < x + 6: mc.setBlock(xb, y, zb, 1) zb = zb + 1 xb = xb + 1 if (MOVE == 1): mc.player.setPos(pos.x + xmv, pos.y, pos.x + zmv) time.sleep(1) except KeyboardInterrupt: xb = x - 5 while xb < x + 6: zb = z - 5 while zb < z + 6: mc.setBlock(xb, y, zb, 0) zb = zb + 1 xb = xb + 1 x = x + xmv z = z + zmv xb = x - 5 while xb < x + 6: zb = z - 5 while zb < z + 6: mc.setBlock(xb, y, zb, 0) zb = zb + 1 xb = xb + 1
true
adb9b7dcadda89c40a69e332d4e571957b41274a
Python
sharmar0790/python-samples
/numpy_package/npVector.py
UTF-8
179
3.140625
3
[]
no_license
import numpy as np import random as rn arr = [0 for i in range(30)] for i in range(30): arr[i] = rn.randint(1,1000) print(arr) data = np.mean(arr) print("Mean === ",data)
true
7326873f8e500fa958de5f701414cfa53f271b8e
Python
moylaugh/trading-toolbox
/myquant/my_util.py
UTF-8
10,468
2.828125
3
[]
no_license
import datetime import gmsdk import logging def average_true_range(dailybars, n): if len(dailybars) != n + 1: raise Exception('len(dailybars) = {0}'.format(len(dailybars))) sum_tr = 0 for i in range(0, n): bar = dailybars[i] pre_bar = dailybars[i+1] high = bar.high low = bar.low pre_close = pre_bar.close tr = max(high-low, abs(high-pre_close), abs(low-pre_close)) sum_tr += tr return sum_tr / n def get_symbol_list(config): return config['common']['symbol_list'].split(',') # 获取最近n天日线数据,结果的日线有可能不足n天 # 返回:symbol_to_dailybars # 返回类型:dict def get_dailybars(strategy, symbol_list, n): symbol_to_dailybars = {} for symbol in symbol_list: bars = strategy.get_last_n_dailybars(symbol, n) symbol_to_dailybars[symbol] = bars return symbol_to_dailybars # 获取交易品种的相关信息 # 返回:symbol_to_instrument # 返回类型:dict def get_instruments(strategy, symbol_list): symbol_to_instrument = {} symbol_set = set(symbol_list) instruments = strategy.get_instruments('SHFE', 4, 1) instruments.extend(strategy.get_instruments('DCE', 4, 1)) instruments.extend(strategy.get_instruments('CZCE', 4, 1)) for i in instruments: if i.symbol in symbol_set: symbol_to_instrument[i.symbol] = i if len(symbol_to_instrument) != len(symbol_list): raise Exception( 'len(symbol_to_instrument)={0}, len(symbol_list)={1}'.format( len(symbol_to_instrument), len(symbol_list))) return symbol_to_instrument # 获取策略子账户实际持仓数据 # 返回:symbol_to_position_account # 返回类型:dict def get_positions(strategy): symbol_to_position_account = {} for pos in strategy.get_positions(): symbol = '{0}.{1}'.format(pos.exchange, pos.sec_id) symbol_to_position_account[symbol] = pos return symbol_to_position_account def open_long(strategy, tick, instrument, volume): price = tick.last_price + 10 * instrument.price_tick price = min(price, tick.upper_limit) strategy.open_long(tick.exchange, tick.sec_id, price, volume) def close_long(strategy, position, tick, instrument, volume): if volume <= 0: raise Exception('volume = {0}'.format(volume)) if (position.side != gmsdk.OrderSide_Bid or position.volume < volume): raise Exception('{0}: side={1}, volume={2}'.format( position.sec_id, position.side, position.volume)) price = tick.last_price - 10 * instrument.price_tick price = max(price, tick.lower_limit) if position.volume_today >= volume: strategy.close_long(tick.exchange, tick.sec_id, price, volume) elif 0 < position.volume_today < volume: strategy.close_long(tick.exchange, tick.sec_id, price, position.volume_today) strategy.close_long_yesterday(tick.exchange, tick.sec_id, price, volume - position.volume_today) else: strategy.close_long_yesterday(tick.exchange, tick.sec_id, price, volume) def open_short(strategy, tick, instrument, volume): price = tick.last_price - 10 * instrument.price_tick price = max(price, tick.lower_limit) strategy.open_short(tick.exchange, tick.sec_id, price, volume) def close_short(strategy, position, tick, instrument, volume): if volume <= 0: raise Exception('volume = {0}'.format(volume)) if (position.side != gmsdk.OrderSide_Ask or position.volume < volume): raise Exception('{0}: side={1}, volume={2}'.format( position.sec_id, position.side, position.volume)) price = tick.last_price + 10 * instrument.price_tick price = min(price, tick.upper_limit) if position.volume_today >= volume: strategy.close_short(tick.exchange, tick.sec_id, price, volume) elif 0 < position.volume_today < volume: strategy.close_short(tick.exchange, tick.sec_id, price, position.volume_today) strategy.close_short_yesterday(tick.exchange, tick.sec_id, price, volume - position.volume_today) else: strategy.close_short_yesterday(tick.exchange, tick.sec_id, price, volume) def sync_position(strategy, tick, instrument, strategy_pos, account_pos): strategy_volume_long = 0 account_volume_long = 0 strategy_volume_short = 0 account_volume_short = 0 if strategy_pos and strategy_pos.side == gmsdk.OrderSide_Bid: strategy_volume_long = int(strategy_pos.volume) if strategy_pos and strategy_pos.side == gmsdk.OrderSide_Ask: strategy_volume_short = int(strategy_pos.volume) if account_pos and account_pos.side == gmsdk.OrderSide_Bid: account_volume_long = int(account_pos.volume) if account_pos and account_pos.side == gmsdk.OrderSide_Ask: account_volume_short = int(account_pos.volume) long_diff = strategy_volume_long - account_volume_long if strategy_volume_long > 0 and account_volume_long > 0: # 暂时忽略这种情况,手动处理 long_diff = 0 if long_diff > 0: # 开多 open_long(strategy, tick, instrument, long_diff) logging.info('[{0}.{1} open_long] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_long, strategy_volume_long)) elif long_diff < 0: # 平多 close_long(strategy, account_pos, tick, instrument, abs(long_diff)) logging.info('[{0}.{1} close_long] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_long, strategy_volume_long)) short_diff = strategy_volume_short - account_volume_short if strategy_volume_short > 0 and account_volume_short > 0: # 暂时忽略这种情况,手动处理 short_diff = 0 if short_diff > 0: # 开空 open_short(strategy, tick, instrument, short_diff) logging.info('[{0}.{1} open_short] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_short, strategy_volume_short)) elif short_diff < 0: # 平空 close_short(strategy, account_pos, tick, instrument, abs(short_diff)) logging.info('[{0}.{1} close_short] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_short, strategy_volume_short)) return (long_diff, short_diff) # 同步头寸函数,备份 def sync_position_backup(strategy, tick, instrument, strategy_pos, account_pos): strategy_volume_long = 0 account_volume_long = 0 strategy_volume_short = 0 account_volume_short = 0 if strategy_pos and strategy_pos.side == gmsdk.OrderSide_Bid: strategy_volume_long = int(strategy_pos.volume) if strategy_pos and strategy_pos.side == gmsdk.OrderSide_Ask: strategy_volume_short = int(strategy_pos.volume) if account_pos and account_pos.side == gmsdk.OrderSide_Bid: account_volume_long = int(account_pos.volume) if account_pos and account_pos.side == gmsdk.OrderSide_Ask: account_volume_short = int(account_pos.volume) long_diff = strategy_volume_long - account_volume_long if long_diff > 0: # 开多 open_long(strategy, tick, instrument, long_diff) logging.info('[{0}.{1} open_long] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_long, strategy_volume_long)) elif long_diff < 0: # 平多 close_long(strategy, account_pos, tick, instrument, abs(long_diff)) logging.info('[{0}.{1} close_long] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_long, strategy_volume_long)) short_diff = strategy_volume_short - account_volume_short if short_diff > 0: # 开空 open_short(strategy, tick, instrument, short_diff) logging.info('[{0}.{1} open_short] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_short, strategy_volume_short)) elif short_diff < 0: # 平空 close_short(strategy, account_pos, tick, instrument, abs(short_diff)) logging.info('[{0}.{1} close_short] {2} => {3}'.format( tick.exchange, tick.sec_id, account_volume_short, strategy_volume_short)) return (long_diff, short_diff) def pos_size_risk(core_equity, market_money, risk_points, multiplier, core_equity_percent=0.009, market_money_percent=0.03, max_total_percent=0.015): max_risk = (core_equity + market_money) * max_total_percent if market_money > 0: # 盈利时 total_risk = (core_equity * core_equity_percent + market_money * market_money_percent) else: # 亏损时 total_risk = (core_equity + market_money + market_money) * core_equity_percent if total_risk > max_risk: total_risk = max_risk pos_size = int(total_risk / (risk_points * multiplier)) if pos_size < 1: pos_size = 1 return pos_size # 返回on_timer触发的时刻 # 返回类型:datetime.time def timer_time(): return datetime.time(hour=20, minute=35, second=0) def milliseconds_to_next_timer(): now = datetime.datetime.now() ttime = timer_time() if now.time() < ttime: timer_datetime = datetime.datetime.combine(now.date(), ttime) else: tomorrow = now.date() + datetime.timedelta(days=1) timer_datetime = datetime.datetime.combine(tomorrow, ttime) result = int((timer_datetime-now).total_seconds() * 1000) if result > 0: return result else: return 3000 def position_to_str(position): if not position: return '' side = '' if position.side == gmsdk.OrderSide_Bid: side = 'L' elif position.side == gmsdk.OrderSide_Ask: side = 'S' return '{0}.{1}|{2}|{3}'.format( position.exchange, position.sec_id, side, int(position.volume)) def position_to_str_detail(position): if not position: return '' side = '' if position.side == gmsdk.OrderSide_Bid: side = 'L' elif position.side == gmsdk.OrderSide_Ask: side = 'S' return '{0}.{1}|{2}|{3}/{4}'.format( position.exchange, position.sec_id, side, int(position.volume), int(position.volume_today))
true
f8cd5fd444f7698eb5d105c40a89fbe027f74335
Python
nedima68/PseudoSupervisedAnomalyDetection
/utils/parse_json_files_to_latex_table.py
UTF-8
3,398
3.140625
3
[]
no_license
import glob import os import json class JSONtoLaTeXtableParser: def __init__(self, output_file, header_titles): """ Constructor. Set path where the JSON files are stored, e. g. "/some/path/to/results/*/*.json" Also filename for output file is needed """ self.header = header_titles self.lines = [] self.out = output_file def __build_latex_tab_string(self, data, args): """ extract values from data using keywords from args """ s = "" for i, key in enumerate(args): if i < len(args) - 1: s += str(data[key]) + " & " else: s += str(data[key]) + "\\" + "\\ \\hdashline" return s def convert_num_format(self, str_num): f1 = float(str_num[str_num.find('%')+1:str_num.find('\u00b1')-1]) f2 = float(str_num[str_num.find('\u00b1')+2:]) res = "{:.3f} \u00b1 {:.3f}".format(f1 / 100, f2 / 100) return res def add_line(self, data, data_keys): s="" for key in data_keys: if type(key) == str: t = str(data[key]) if t.find('%') != -1: t = self.convert_num_format(t) t = t.replace('\u00b1','\\pm') t = t.replace('_','\_') s += '$' + t + "$ & " elif type(key) == tuple: new_keys=key while type(new_keys) == tuple: data = data[new_keys[0]] new_keys = new_keys[1] for key_d in new_keys: t = str(data[key_d]) if t.find('%') != -1: t = self.convert_num_format(t) t = t.replace('\u00b1','\\pm') s += '$' + t + "$ & " i = s.rfind('&') s = s[:i] s += "\\" + "\\" self.lines.append(s) def parse_second_level_to_latex_tab(self, first_level_key, *args): """ extract data from a dictionary within a dictionary """ self.header= args for file_n in self.files: with open(file_n, 'r') as fd: data = json.load(fd)[first_level_key] s = self.__build_latex_tab_string(data, args) self.lines.append(s) def create_latex_table_2(self): """ create simple LaTeX table based on extracted data. """ self.table = "\\begin{tabular}{@{}l " self.table += (len(self.header)-1) * "r " + "@{}}\\toprule \n" for i, h in enumerate(self.header): if i < len(self.header) - 1: self.table += "\\textbf{" + h.replace("_", " ") + "} & " else: self.table += "\\textbf{" + h.replace("_", " ") + "} \\" + "\\ \\bottomrule \n" for line in self.lines: self.table += line + "\n" self.table += "\\bottomrule \n" self.table += "\\end{tabular}" def write_rows_to_file(self): """ write only rows with extracted data to file""" with open(self.out, 'w') as fd: for line in self.lines: fd.write(line + "\n") def write_table_to_file(self): """ write complete table to file """ with open(self.out, 'w') as fd: fd.write(self.table)
true
c6b820fe14dbbe123026ed5956bede31a1a2d373
Python
baker-project/baker
/baker_wet_cleaning_application/scripts/test_detection_and_removing_dirt.py
UTF-8
2,522
2.59375
3
[]
no_license
#!/usr/bin/env python from threading import Thread import services_params as srv from std_srvs.srv import Trigger from cob_object_detection_msgs.msg import DetectionArray import rospy from utils import projectToCamera from dirt_removing_behavior import DirtRemovingBehavior """ This file contains routine to start the dirt detection on the current robot location and then execute the dirt removing behavior if needed. WARNING: the functions used in this code are partly copy pasted from DryCleaningBehavior and could be outdated (7.08.2019) Usage: 1/ start the baker_wet_cleaning_application 2/ Start this file """ class TestDetector: def __init__(self): self.trash_topic_subscriber_ = rospy.Subscriber('/dirt_detection_server_preprocessing/dirt_detector_topic', DetectionArray, self.dirtDetectionCallback) self.callTriggerService(srv.START_DIRT_DETECTOR_SERVICE_STR) def callTriggerService(self, service_name): rospy.wait_for_service(service_name) try: req = rospy.ServiceProxy(service_name, Trigger) req() except rospy.ServiceException, e: print("Service call to {} failed: {}".format(service_name, e)) def dirtDetectionCallback(self, detections): detections = detections.detections if len(detections) == 0: return print('dirts detected') self.callTriggerService(srv.STOP_DIRT_DETECTOR_SERVICE_STR) # todo rmb-ma temporary solution. Keep camera, robot or room coordinates? print('Project positions to camera') detections = [projectToCamera(detection) for detection in detections] if None in detections or len(detections) == 0: print('No detections can be projected to the camera. Startin detection again') self.callTriggerService(srv.START_DIRT_DETECTOR_SERVICE_STR) return print("DIRT(S) DETECTED!!") # 1. Stop the dirt and the trash detections # 2. Clean them for detection in detections: dirt_remover = DirtRemovingBehavior("DirtRemovingBehavior", [0], move_base_service_str=srv.MOVE_BASE_SERVICE_STR, map_accessibility_service_str=srv.MAP_ACCESSIBILITY_SERVICE_STR, clean_pattern_str=srv.CLEAN_PATTERN_STR) position = detection.pose.pose.position dirt_remover.setParameters(dirt_position=position) dirt_remover.executeBehavior() if __name__ == '__main__': rospy.init_node('test_dirt_detector', anonymous=True) TestDetector() rospy.spin()
true
116a822dd47fae8f93b31a4e5cb7c0f4378a6374
Python
fidoriel/sudoku42
/legacy/sudoku.py
UTF-8
1,852
3.25
3
[]
no_license
#!/usr/bin/python3 sudoku = [[0,0,8,0,0,4,9,3,5], [0,0,0,0,0,5,2,6,0], [0,0,0,0,2,3,0,0,8], [0,0,0,0,0,0,1,0,7], [6,1,0,0,7,0,0,9,0], [0,0,0,4,5,0,0,0,0], [5,2,0,0,0,0,0,0,3], [0,0,3,0,1,0,0,0,0], [0,0,0,0,0,0,6,0,1]] def numberPossible(yP, xP, nr): global sudoku for i in range(0, 9): if sudoku[yP][i] == nr: return False for i in range(0, 9): if sudoku[i][xP] == nr: return False x0 = (xP//3)*3 y0 = (yP//3)*3 for i in range(0, 3): for j in range(0, 3): if sudoku[y0+i][x0+j] == nr: return False return True def printSudoku(): global sudoku print() for i in range(0, 3): print(" ", sudoku[i][0], sudoku[i][1], sudoku[i][2], " | ", sudoku[i][3], sudoku[i][4], sudoku[i][5], " | ", sudoku[i][6], sudoku[i][7], sudoku[i][8], " ") print("---------+---------+--------") for i in range(3, 6): print(" ", sudoku[i][0], sudoku[i][1], sudoku[i][2], " | ", sudoku[i][3], sudoku[i][4], sudoku[i][5], " | ", sudoku[i][6], sudoku[i][7], sudoku[i][8], " ") print("---------+---------+--------") for i in range(6, 9): print(" ", sudoku[i][0], sudoku[i][1], sudoku[i][2], " | ", sudoku[i][3], sudoku[i][4], sudoku[i][5], " | ", sudoku[i][6], sudoku[i][7], sudoku[i][8], " ") print() def solve(): global sudoku for y in range(9): for x in range(9): if sudoku[y][x] == 0: for nr in range(1, 10): if numberPossible(y, x, nr): sudoku[y][x] = nr if solve(): return True sudoku[y][x] = 0 return False return True solve() printSudoku()
true
84500c48cbbe32d115eaff2f96a30da9b6e4e7e9
Python
zzz136454872/leetcode
/hitBricks.py
UTF-8
2,174
2.890625
3
[]
no_license
from typing import * import copy class Solution: def hitBricks(self, grid: List[List[int]], hits: List[List[int]]) -> List[int]: n1=len(grid) n2=len(grid[0]) log=[False for i in range(len(hits))] for i in range(len(hits)): if not grid[hits[i][0]][hits[i][1]]: log[i]=True grid[hits[i][0]][hits[i][1]]=0 def p2n(p0,p1): return p0*n2+p1 # print(n1,n2) father=[i for i in range(n1*n2+1)] size=[1 for i in range(n1*n2+1)] size[n1*n2]=0 def find(a): # print(a,father) if a==father[a]: return a father[a]=find(father[a]) return father[a] def union(a,b): ra=find(a) rb=find(b) if ra>rb: father[rb]=ra size[ra]+=size[rb] if ra<rb: father[ra]=rb size[rb]+=size[ra] for i in range(n2): if grid[0][i]: union(i,n1*n2) for i in range(n1): for j in range(n2): if grid[i][j]: if i>0 and grid[i-1][j]: union(p2n(i,j),p2n(i-1,j)) if j>0 and grid[i][j-1]: union(p2n(i,j),p2n(i,j-1)) out=[0 for i in range(len(hits))] for k in range(len(hits)-1,-1,-1): if log[k]: continue i,j=hits[k] last=size[-1] if i==0: union(p2n(i,j),n1*n2) if i>0 and grid[i-1][j]: union(p2n(i,j),p2n(i-1,j)) if j>0 and grid[i][j-1]: union(p2n(i,j),p2n(i,j-1)) if i<n1-1 and grid[i+1][j]: union(p2n(i,j),p2n(i+1,j)) if j<n2-1 and grid[i][j+1]: union(p2n(i,j),p2n(i,j+1)) out[k]=max(0,size[-1]-last-1) grid[i][j]=1 #print(grid,father,size) return out sl=Solution() grid=[[1],[1],[1],[1],[1]] hits=[[3,0],[4,0],[1,0],[2,0],[0,0]] print(sl.hitBricks(grid,hits))
true
0ea808eb5207dfc9c8f140024919dbec0626a66a
Python
nssalim/we2hwk13112020_codeclan_caraoke
/tests/bar_test.py
UTF-8
1,313
3.359375
3
[]
no_license
import unittest from classes.room import Room from classes.guest import Guest from classes.song import Song from classes.drink import Drink from classes.food import Food class TestBar(unittest.TestCase): def setUp(self): self.song1 = Song("The Rolling Stones", "She's a rainbow") self.song2 = Song("The Kinks", "All day and all of the night") self.song3 = Song("The Beatles", "Norwegian Wood") self.song4 = Song("The Troggs", "Wild Thing") self.songs = [self.song1, self.song2, self.song3, self.song4] self.drink = Drink("rum", 5.00, 30) self.food = Food("peanuts", 2.00, 25) self.guest1 = Guest("Holly Golighty", 20, 50, self.song1, 4) self.guest2 = Guest("Paul Varjak", 27, 100, self.song2, 8) self.guest3 = Guest("Cat", 100, 0, self.song4, 2) self.guests = [self.guest1, self.guest2, self.guest3] def test_guest_age(self): self.assertEqual(20, self.guest1.age) def test_guest_wallet(self): self.assertEqual(50.00, self.guest1.wallet) def test_sufficient_funds__true_if_enough(self): self.assertEqual(True, self.guest1.sufficient_funds(self.drink)) def test_sufficient_funds__false_if_not_enough(self): self.assertEqual(False, self.guest1.sufficient_funds(self.drink))
true