blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
530e78cfaf61329b81acdad0309247af27335469
Python
RafidaZaman/Lab-3-solution
/Problem 4.py
UTF-8
367
2.828125
3
[]
no_license
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics iris = load_iris() # X = features and y = response X = iris.data y = iris.target print(iris) knn = KNeighborsClassifier(n_neighbors=50) knn.fit(X, y) y_pred = knn.predict(X) print("Accuracy:") print(metrics.accuracy_score(y, y_pred))
true
638419846c35eaf0d3885cf9bc09549afb7c2340
Python
lic-informatica-umet/Eibu-s-code
/Uni Programacion/IntroProg/Guia de ejercicios/Unidad 7/1 - Operaciones Condicionales/3.py
UTF-8
671
4.875
5
[]
no_license
''' 3. Ingresar dos valores y realizar cl producto, si el 1ro es mayor al 2do, si son iguales solo indicarlo. ''' # Nombre: Agustin Arce # Fecha: 20/04/2019 # Programa: Producto entre dos numeros # Inicializacion de variables num1 = 0 num2 = 0 prod = 0 # Ingreso de datos num1 = float(input("Ingrese primer numero: ")) num2 = float(input("Ingrese segundo numero: ")) # Operacion prod = num1 * num2 # Control de flujo e informacion en pantalla if num1 == num2: print("Los dos numeros son iguales, no se mostrara el producto") elif num1 >= num2: print("El producto entre los dos valores es:", prod) else: print("Intente indicar el primer numero como mayor")
true
35d654597e5a2d9de53510654e1c617d7417bcfd
Python
a8578062/store
/Day13/homework/sendemail.py
UTF-8
1,602
2.53125
3
[]
no_license
import smtplib from email.mime.text import MIMEText from email.utils import formataddr from email.header import Header from email.mime.application import MIMEApplication from email.mime.multipart import MIMEMultipart import os,sys from nt import chdir#判断目录是否存在并切换目录 print("正在发送...") #登陆邮件服务器 smtpObj=smtplib.SMTP('smtp.qq.com', 587) smtpObj.ehlo() smtpObj.starttls() #传入相应的账号密码信息 smtpObj.login('1021295302@qq.com', '') #邮件收发信人信息 sender = '1021295302@qq.com'#发件人信息 receivers = ['2431320433@qq.com']#收件人信息 #完善发件人收件人,主题信息 message=MIMEMultipart() message['From'] = formataddr(["姚佳龙",sender]) message['To'] = formataddr(["Jason",'2431320433@qq.com'.join(receivers)]) subject = 'Day13' message['Subject'] = Header(subject, 'utf-8') #正文部分 textmessage = MIMEText('计算器的测试报告','html', 'utf-8') message.attach(textmessage) workLoc = os.path.join('E:\\', 'pythonProject','day13','homework') # #检查路径有效性 if (os.path.exists(workLoc))&(os.path.isdir(workLoc)): #尝试改变当前工作路径: chdir(workLoc) else: print('路径无效,请从新检查') sys.exit() #尝试添加附件 File='计算器的测试报告.html' print("附件文件名为:%s" %File) FileLoc=os.path.join(workLoc,File) FileAtt = MIMEApplication(open(FileLoc,'rb').read()) FileAtt.add_header('Content-Disposition', 'attachment', filename=File) message.attach(FileAtt) #发送邮件操作 smtpObj.sendmail(sender,receivers, message.as_string()) smtpObj.quit() print("发送成功!")
true
79de0fb745ad4c52ac84db5ebb3ca9e3a5685d87
Python
haruki37/keisan
/test/latexfile.py
UTF-8
1,818
2.890625
3
[]
no_license
""" latexfile.py """ import os import subprocess import textwrap class LatexFile: PROLOGUE = textwrap.dedent('''\ \\documentclass[{}pt,dvipdfmx,a4paper]{{jsarticle}} \\usepackage{{amsmath}} \\usepackage{{tgpagella, euler}} \\begin{{document}}\ ''') def __init__(self, fname, title=None, point=10): self.title = title self.text = [] self.fname = fname self.point = point if title is None: self.title = '' else: self.title = '\\title{{{}}} \n\\date{{}} \n\\maketitle'.format(title) def add_text(self, text): self.text.append(text) def add_eq(self, equation): self.text.append('\\begin{align*}\n' + equation + '\n\\end{align*}') def add_eqs(self, eqs, leftalign=True): if leftalign is True: self.text.append('\\begin{align*}\n' + '& ' + '\\\\ \n& '.join(eqs) + '\n\\end{align*}') else: self.text.append('\\begin{align*}\n' + '\\\\ \n'.join(eqs) + '\n\\end{align*}') def output(self): res = '\n'.join([ self.PROLOGUE.format(self.point), self.title, '\n'.join(self.text), '\\end{document}' ]) return res def compile(self, remove=True): with open(self.fname + '.tex', mode='wt') as fout: fout.write(self.output()) command1 = 'platex {}.tex'.format(self.fname) print(command1.split(' ')) subprocess.run(command1.split(' ')) command2 = "dvipdfmx {}".format(self.fname) subprocess.run(command2.split(' ')) if remove is True: rmv_list = [self.fname + x for x in ('.aux', '.log', '.dvi')] for rmv_fname in rmv_list: os.remove(rmv_fname)
true
b7d68915559caff7605dbf2ed2c2505261fb60c4
Python
Bhargavisaikia219/Madlibs-Generator
/Madlibs_Generator.py
UTF-8
1,425
3.8125
4
[]
no_license
#taking a series of input from the user charname1 = input("Give me a character name:") charname2 = input("Give me another character name:") place = input("Give me name of a place:") yr = input("Mention a year:") verb1 = input("Give me a verb (present tense):") noun1 = input("Give me a noun:") noun2 = input("Give me another noun:") verb2 = input("Give me a verb (present tense, in third person):") verb3 = input("Give me a verb (present tense, in third person):") charname3 = input("Give me another character name:") verb4 = input("Give me a verb (present tense):") noun3 = input("Give me another noun:") adj = input("Give me an adjective:") showname = input("Mention name of a show:") noun4 = input("Give me another noun:") #arrange the data in madlib variable madlib = f"Newlywed couple {charname1} and {charname2} move into the town of {place} in a black-and-white {yr}s setting.One day they {verb1} a heart drawn on their {noun1}, but neither can remember what the {noun2} is.\nWhile Vision {verb2} his job at Computational Services Inc., Wanda decides that the heart {verb3} their anniversary.Their neighbor {charname3} introduces herself to Wanda and helps her prepare to {verb4} that night.Vision amazes his co-workers with his {noun3} but is unsure what his company actually does.All of this takes place in the {adj} sitcom {showname} which someone is watching on a {noun4}." #to display the output print(madlib)
true
b8783374f1caca681dfa97860e2348055ed575e6
Python
TheDubliner/RedArmy-Cogs
/stig/stig.py
UTF-8
4,873
2.65625
3
[ "MIT" ]
permissive
from pathlib import Path import asyncio import discord import random import re import yaml from redbot.core import ( Config, commands, data_manager ) from redbot.core.utils import ( chat_formatting ) UNIQUE_ID = 5140937153389558 class Stig(commands.Cog): __version__ = "0.1.0" DATAFILENAME = "stigquotes.yaml" CUSTOMFILENAME = "custom-stig-quotes.yaml" IMGFILENAME = "stig.jpeg" """Spam random The Stig quotes.""" def __init__(self, bot): super().__init__() self.bot = bot self.name = "stig" self.config = Config.get_conf( self, identifier=UNIQUE_ID, force_registration=True ) async def red_delete_data_for_user(self, **kwargs): """No data to delete.""" return @commands.group(invoke_without_command=True) async def stig(self, ctx: commands.Context, name: str = None, gender: str = "m"): """ Add The Stig to your channel. Post a random Stig quote to the channel. You can also mention another user, optionally adding **f** to change the gender. """ async with ctx.channel.typing(): await asyncio.sleep(1) quote = await self.get_random_stig_quote() if ctx.message.mentions: name = ctx.message.mentions[0].display_name if name: quote = self.replace_name(quote, name) if gender == "f": quote = self.replace_pronouns(quote) if quote: embed = self.build_embed(quote) return await ctx.channel.send(embed=embed) @stig.command(name="addquote", rest_is_raw=True) async def add_stig_quote(self, ctx: commands.Context, *, quote: str): """ Add a Stig quote to the rotation. Ensure your sentence includes the name _Stig_ somewhere! """ if quote is not None: if not re.search(r"Stig", quote): message = ("Your message needs more Stig!") return await ctx.send(message) quote = quote.strip() # remove quotes but only if symmetric if quote.startswith('"') and quote.endswith('"'): quote = quote[1:-1] fname = data_manager.cog_data_path(self) / self.CUSTOMFILENAME data = [quote] if fname.exists(): with open(fname, "r") as f: existing_quotes = yaml.safe_load(f) data = existing_quotes + data with open(fname, "w") as f: f.write(yaml.dump(data)) return await ctx.channel.send( chat_formatting.info("Added your quote!") ) else: await self.bot.say( chat_formatting.warning( "Cannot add a quote with no text, " "attachments or embed images." )) @stig.command() async def version(self, ctx: commands.Context): """ Display the current cog version. """ await ctx.reply( f"This cog is on version {self.__version__}.", mention_author=False ) async def get_random_stig_quote(self): """ Returns a random Stig quote. """ bundledquotes = Path.joinpath(data_manager.bundled_data_path(self), self.DATAFILENAME) customquotes = Path.joinpath(data_manager.cog_data_path(self), self.CUSTOMFILENAME) with open(bundledquotes, "r", encoding="utf8") as source: quotes = yaml.safe_load(source) if customquotes.exists(): with open(customquotes, "r", encoding="utf8") as source: extraquotes = yaml.safe_load(source) quotes = quotes + extraquotes return random.choice(quotes) @staticmethod def replace_pronouns(sentence): sentence = re.sub(r"\b([Hh])is\b", r"\1er", sentence) sentence = re.sub(r"\bhe\b", "she", sentence) sentence = re.sub(r"\bHe\b", "She", sentence) sentence = re.sub(r"\b([Hh])im\b", r"\1er", sentence) return sentence @staticmethod def replace_name(sentence, name): sentence = re.sub(r"\bStig\b", name, sentence) return sentence def build_embed(self, quote): """ Builds an embed message based on the provided quote. """ embed = discord.Embed( title='The Stig', colour=discord.Colour.from_rgb(0, 0, 245), description=quote) embed.set_thumbnail(url="https://github.com/TheDubliner/RedArmy-Cogs/" "blob/master/stig/data/stig.jpeg?raw=true") return embed
true
01bef5c36db1d849c01f5202669baf49cf430f49
Python
chiragjindal/Competitive-programming
/Codechef/APRIL12/DUMPLING.py
UTF-8
278
2.75
3
[]
no_license
#import psyco #psyco.full() def gcd(a,b): while b>0: a,b=b,a%b return a for i in range(input()): a,b,c,d,k=raw_input().split(' ') g1,g2=gcd(int(a),int(b)),gcd(int(c),int(d)) lcm=(g1*g2)//gcd(g1,g2) positions=int(k)//lcm print (positions*2)+1
true
9f03c323c4617f000ed4e8f98be04dd18a629f35
Python
sven91swe/CarND-AdvancedLaneLines
/code/development.py
UTF-8
5,871
2.71875
3
[]
no_license
import cv2 import os import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import matplotlib.image as mpimg from undistort import undistort from transformPerspective import transformPerspective, inverseTransformPerspective from imageFilters import threshold, sobelX, sobelY, sobelDirection, sobelMagnitude, toHLS from findLines import findLineAndPlot pathToTestImages = "../test_images" outputFolder = "../output_images" listTestImages = os.listdir(pathToTestImages) image = cv2.imread("../camera_cal/calibration1.jpg") undistortedImage = undistort(image) cv2.imwrite(outputFolder + "/" + "undist-chessboard.jpg", undistortedImage) for imageName in listTestImages: #image = cv2.imread(pathToTestImages + "/" + imageName) image = mpimg.imread(pathToTestImages + "/" + imageName) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) pathAndNameForOutput = outputFolder + "/" nameWithoutFormat = imageName.split(".")[0] cv2.imwrite(pathAndNameForOutput + "original-" + imageName, image) undistortedImage = undistort(image) cv2.imwrite(pathAndNameForOutput + "undist-" + imageName, undistortedImage) transformed = transformPerspective(undistortedImage) cv2.imwrite(pathAndNameForOutput + "transformed-" + imageName, transformed) scaledSobelX = sobelX(undistortedImage, k = 9) cv2.imwrite(pathAndNameForOutput + "sobelX-" + imageName, scaledSobelX) thresholdSobelX = threshold(scaledSobelX, min = 8, max=100) #cv2.imwrite(pathAndNameForOutput + "sobelX - threshold - " + imageName, thresholdSobelX) plt.imsave(pathAndNameForOutput + "sobelX-threshold-" + nameWithoutFormat + ".png", thresholdSobelX, cmap = 'gray', format='png') scaledSobelY = sobelY(undistortedImage, k = 9) cv2.imwrite(pathAndNameForOutput + "sobelY-" + imageName, scaledSobelY) thresholdSobelY = threshold(scaledSobelY, min = 8, max=100) plt.imsave(pathAndNameForOutput + "sobelY-threshold-" + nameWithoutFormat + ".png", thresholdSobelY, cmap = 'gray', format='png') sobelDir = sobelDirection(undistortedImage, k = 9) plt.imsave(pathAndNameForOutput + "sobelDirection-" + nameWithoutFormat + ".png", sobelDir, cmap='gray', format='png') thresholdSobelDirection = threshold(sobelDir, min=0.7, max=1.3) plt.imsave(pathAndNameForOutput + "sobelDirection-threshold-" + nameWithoutFormat + ".png", thresholdSobelDirection, cmap='gray', format='png') sobelMag = sobelMagnitude(undistortedImage, k = 5) plt.imsave(pathAndNameForOutput + "sobelMagnitude-" + nameWithoutFormat + ".png", sobelMag, cmap='gray', format='png') thresholdSobelMag = threshold(sobelMag, min=12, max=15) plt.imsave(pathAndNameForOutput + "sobelMagnitude-threshold-" + nameWithoutFormat + ".png", thresholdSobelMag, cmap='gray', format='png') H, L, S = toHLS(undistortedImage) cv2.imwrite(pathAndNameForOutput + "hue-" + imageName, H) cv2.imwrite(pathAndNameForOutput + "lightness-" + imageName, L) cv2.imwrite(pathAndNameForOutput + "saturation-" + imageName, S) H_threshold = threshold(H, min=10, max=30) plt.imsave(pathAndNameForOutput + "hue-threshold-" + nameWithoutFormat + ".png", H_threshold, cmap='gray', format='png') H_threshold_yellow = threshold(H, min=17, max=30) plt.imsave(pathAndNameForOutput + "hue_yellow-threshold-" + nameWithoutFormat + ".png", H_threshold_yellow, cmap='gray', format='png') S_threshold = threshold(S, min=100, max=255) plt.imsave(pathAndNameForOutput + "saturation-threshold-" + nameWithoutFormat + ".png", S_threshold, cmap='gray', format='png') L_threshold = threshold(L, min=100, max=255) plt.imsave(pathAndNameForOutput + "lightness-threshold-" + nameWithoutFormat + ".png", L_threshold, cmap='gray', format='png') combined = np.zeros_like(thresholdSobelX) combined[(S_threshold + H_threshold + H_threshold_yellow + thresholdSobelMag + thresholdSobelDirection + thresholdSobelY + thresholdSobelX)>=6] = 1 plt.imsave(pathAndNameForOutput + "combined-" + nameWithoutFormat + ".png", combined, cmap='gray', format='png') combinedAndTransformed = transformPerspective(combined) plt.imsave(pathAndNameForOutput + "combinedAndTransformed-" + nameWithoutFormat + ".png", combinedAndTransformed, cmap='gray', format='png') print(imageName) import findLines findLines.old_left_fit = None findLines.old_right_fit = None lines, radius, offMiddleBy = findLineAndPlot(pathAndNameForOutput + "foundLine-" + nameWithoutFormat + ".png", combinedAndTransformed) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = inverseTransformPerspective(lines) # Combine the result with the original image result = cv2.addWeighted(undistortedImage, 1, newwarp, 0.3, 0) cv2.imwrite(pathAndNameForOutput + "resultWithLines-" + imageName, result) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(result, 'Radius: ' + str(radius) + "m", (10, 500), font, 1, (255, 255, 255), 2) if offMiddleBy < 0: cv2.putText(result, 'Left of middle by: ' + str(offMiddleBy) + "m", (10, 100), font, 1, (255, 255, 255), 2) else: cv2.putText(result, 'Right of middle by: ' + str(offMiddleBy) + "m", (10, 300), font, 1, (255, 255, 255), 2) convertedRGB = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) plt.imsave(pathAndNameForOutput + "convertedRGB-" + nameWithoutFormat + ".png", convertedRGB, format='png')
true
aa94564cc3e854f4d61fd37cb7d80d71ba5f3b00
Python
TangYiChing/A-method-to-discover-combinatorial-variants-within-transcription-factors-associated-with-gene-expres
/script/parse_randomSelection_result.py
UTF-8
6,956
2.703125
3
[]
no_license
""" Run Wilconsin Ranked Sum for each outliers that passed background models Report outliers passing Wilconsin paired test (p<0.01) """ import os import sys import glob import argparse import numpy as np import pandas as pd import scipy.stats as scistats def read_as_df(input_path): """ Function to read tab-delimited flat file (1st row is header) from imput path. :param input_path: file name str :return df: pandas dataframe """ if input_path.endswith('.gz'): df = pd.read_csv(input_path, compression='gzip', header=0, sep='\t', quotechar='"', error_bad_lines=False) else: df = pd.read_csv(input_path, sep="\t", header=0) return df def has_headers(df, header_list): """ Function to check whether the header_list is in file. :param df: pd.dataframe :param header_list: list of str :return True/False """ header_in_df = df.columns.tolist() missing_header = [] for header in header_list: if not header in header_in_df: missing_header.append(header) if len(missing_header) > 0: print("header should have:{:}, missing={:}".format(header_list, missing_header)) sys.exit(1) return def collect_workingFiles(resultFolder, chrList): # collecting results from all chromsomes files = glob.glob(resultFolder+'working*.txt') resultDict = {'chr'+str(chr):[] for chr in range(1,23)} for f in files: # retrive chr number nchr = os.path.basename(f).split('.txt')[0].split('chr')[-1] # append to dict if int(nchr) in chrList: chr_key_str = 'chr' + str(nchr) resultDict[chr_key_str].append(f) return resultDict def chrDict2runDict(baselineDict, tfDict, chrStr, run=100): runDict = {'run'+str(run+1):[] for run in range(int(run))} for f in baselineDict[chrStr]: run_key_str = os.path.basename(f).split('_')[-2].split('.')[-1] runDict[run_key_str].append(f) for f in tfDict[chrStr]: run_key_str = os.path.basename(f).split('_')[-2].split('.')[-1] runDict[run_key_str].append(f) return runDict if __name__ == "__main__": parser = argparse.ArgumentParser(description = "Parse random fold selection result.") parser.add_argument("--outlierFile", required = True, help = "result file from parse_backgroundmodel.py Must have headers = [adj_p-value]") parser.add_argument("--baseline_resultFolder", required = True, help = "Location to results from random fold selection model. (e.g., ./baseline/randomSelection/)") parser.add_argument("--tfmodel_resultFolder", required = True, help = "Location to results from random fold selection model.") parser.add_argument("--model_name", choices = ['tf-binding', 'tf-both', 'tf-regulation'], help = "Choice of TF-model: [ tf-binding | tf-both | tf-regulation ]") parser.add_argument("--threshold", required = False, type = float, default = 0.01, help = "threshold to filter outliers. default: 0.01") parser.add_argument("--run", type = int, help = "the number of files from N runs.") parser.add_argument("--out_prefix", nargs = "?", default = "result", help = "Prefix of output file.") args = parser.parse_args() # initialize outlierFile = args.outlierFile baselineFolder = args.baseline_resultFolder tfFolder = args.tfmodel_resultFolder model = args.model_name threshold = args.threshold runs = args.run prefix = args.out_prefix # get significant outliers (those passed background model) outliers = read_as_df(outlierFile) has_headers(outliers, ['chr', 'gene', 'genename', 'adj_p-value']) sig_outliers = outliers.loc[outliers['adj_p-value'] < threshold] print( 'model={:}, outliers={:}, threshold={:}, significant outliers={:}'.format(model, outliers.shape[0], threshold, sig_outliers.shape[0]) ) # retrieve result from baseline and tfmodel chrList = list(sig_outliers['chr'].unique()) baseline_fileDict = collect_workingFiles(baselineFolder, chrList) tfmodel_fileDict = collect_workingFiles(tfFolder, chrList) # retrieve paired-result from all runs, for each outliers qualifiedGeneList = [] wilcoxinPvalue = [] for chrom in chrList: # get chromsome and corresponding run files chromDf = sig_outliers.loc[sig_outliers['chr']==chrom] runDict = chrDict2runDict(baseline_fileDict, tfmodel_fileDict, 'chr'+str(chrom), run=100) # for each gene/outlier, combine run files to calculate Wilconsin ranked sum if chromDf.shape[0]>0: print( 'chr={:}, #outliers={:}'.format(chrom, chromDf.shape[0]) ) genes = list( chromDf['gene'].unique() ) baselineR2 = [] tfR2 = [] for i in range(len(genes)): for key, value in runDict.items(): # loop through all runs bdf = read_as_df(value[0]) # files from baseline tdf = read_as_df(value[1]) # files from tfmodel if bdf.shape[0] > 0 and tdf.shape[0] > 0: if genes[i] in bdf['gene'].values.tolist() and genes[i] in tdf['gene'].values.tolist(): #print( ' {:}/{:} outlier(s), gene={:}'.format(i+1, len(genes), genes[i]) ) bdf.set_index('gene', inplace=True) tdf.set_index('gene', inplace=True) # get R2 from each run bR2 = bdf.loc[genes[i], 'R2'] tR2 = tdf.loc[genes[i], 'R2'] baselineR2.append(bR2) tfR2.append(tR2) # filter by threshold to obtain qualified outlier(s) if len(baselineR2) > 0 or len(tfR2) >0: stats, pvalue = scistats.wilcoxon(baselineR2, tfR2) if pvalue < threshold: qualifiedGeneList.append(genes[i]) wilcoxinPvalue.append(pvalue) print( ' gene={:}, #bR2={:}, #tR2={:}, wilcoxin test: p-value={:}'.format(genes[i], len(baselineR2), len(tfR2), pvalue) ) # combine back to outliers table df = sig_outliers.loc[sig_outliers['gene'].isin(qualifiedGeneList)] df.loc[:, 'wilcoxon p-value'] = wilcoxinPvalue print( 'threshold={:}, #pass={:}'.format(threshold, df.shape[0])) # save to file df.to_csv(prefix+'.'+model+'.outliers.pass.randomFoldSelection.txt', header=True, index=False, sep="\t")
true
d67fae4939f9f191b16c1abab7f587eccf014c75
Python
ericzhai918/Python
/My_Python_Test/Higher_Order_Function/map_02.py
UTF-8
216
3.265625
3
[]
no_license
def f(x): return x * x l = [] for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]: l.append(f(n)) print(l) r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) print(list(r)) s = map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]) print(list(s))
true
c92f3a1ad062f2fd87a14bb5e5d42d2d2be55d63
Python
eabdiel/python_playground
/Russian Peasant Algorithm - Multi Module Flow/sim_database.Py
UTF-8
938
3.359375
3
[]
no_license
""" Simulation of Web App Architecture | Case study based on assignment from https://www.udemy.com/share/103nlaAEMZdllWTHg=/ Run flow_controller.py to start """ import time def russian(a, b): x = a; y = b # Semicolon -> Compound Statement z = 0 # Acumulator while x > 0: # While Loop Begins if x % 2 == 1: z = z + y # Modulo operator y = y << 1 # Shift Binary over to left x = x >> 1 # Shift Binary over to right print("/////////////////////////////") print("**********Hit DB*************") print("/////////////////////////////") return z ## Return Z def test_russian(): start_time = time.time() print(russian(357, 16)) print("Russian Algorithm took %f seconds" % (time.time() - start_time)) assert russian(357, 16) == 5712 if __name__ == "__main__": test_russian() # End of code - github.com/eabdiel
true
c3f103854b4b9091fb1cc17747b72dd0c1c0559d
Python
JeetShetty/Blackjack
/tests/test_round.py
UTF-8
9,916
2.625
3
[]
no_license
import unittest import mock from blackjack import round class TestRound(unittest.TestCase): def setUp(self): self.mock_time = mock.Mock() self.mock_shoe = mock.Mock() self.mock_bankroll = mock.Mock() def test_deal_hands_dealer_natural(self): mock_player_input = mock.Mock() mock_hand_generator = mock.Mock() mock_hand_one = mock.Mock() mock_hand_two = mock.Mock() mock_hand_generator.side_effect = [mock_hand_one, mock_hand_two] mock_hand_one.hand_value.return_value = 21 mock_hand_two.hand_value.return_value = 15 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round.deal_hands(self.mock_shoe, mock_hand_generator) self.assertEqual(bj_round._dealer_hand, mock_hand_one) self.assertEqual(bj_round._player_hands, [mock_hand_two]) self.assertTrue(bj_round.dealer_natural) self.assertFalse(bj_round.player_natural) def test_deal_hands_player_natural(self): mock_player_input = mock.Mock() mock_hand_generator = mock.Mock() mock_hand_one = mock.Mock() mock_hand_two = mock.Mock() mock_hand_generator.side_effect = [mock_hand_one, mock_hand_two] mock_hand_one.hand_value.return_value = 15 mock_hand_two.hand_value.return_value = 21 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round.deal_hands(self.mock_shoe, mock_hand_generator) self.assertEqual(bj_round._dealer_hand, mock_hand_one) self.assertEqual(bj_round._player_hands, [mock_hand_two]) self.assertFalse(bj_round.dealer_natural) self.assertTrue(bj_round.player_natural) def test_double_down(self): mock_player_input = mock.Mock() mock_player_input.bet.return_value = 250 mock_hand = mock.Mock() bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._player_hands = [mock_hand] bj_round.place_bet() bj_round._double_down() self.assertEqual(bj_round._bet, 500) def test_play_through_split_hand(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_two = mock.Mock() mock_hand_three = mock.Mock() mock_hand_one.split_aces = mock_hand_two.split_aces = ( mock_hand_three.split_aces) = False bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._player_hands = [mock_hand_one] mock_player_input.action.side_effect = ['sp', 'h', 'st', 'st'] mock_hand_one.split.return_value = mock_hand_two, mock_hand_three mock_hand_two.hand_value.return_value = 15 mock_hand_three.hand_value.return_value = 15 mock_hand_one.display_hand.return_value = '' mock_hand_two.display_hand.return_value = '' mock_hand_three.display_hand.return_value = '' bj_round._bet = 1 bj_round.play_through_player_hands(self.mock_shoe) self.assertEqual(bj_round._player_hands, [mock_hand_two, mock_hand_three]) self.assertEqual(mock_hand_two.hit.call_count, 1) self.assertFalse(mock_hand_three.hit.called) def test_play_through_stand(self): mock_player_input = mock.Mock() mock_hand = mock.Mock() mock_hand.split_aces = False bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._player_hands = [mock_hand] mock_hand.hand_value.return_value = 15 mock_hand.display_hand.return_value = '' mock_player_input.action.return_value = 'st' bj_round.play_through_player_hands(self.mock_shoe) self.assertFalse(mock_hand.hit.called) self.assertFalse(mock_hand.split.called) def test_play_through_hit_once_and_bust(self): mock_player_input = mock.Mock() mock_hand = mock.Mock() mock_hand.split_aces = False bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._player_hands = [mock_hand] mock_hand.hand_value.return_value = 22 mock_hand.display_hand.return_value = '' mock_player_input.action.return_value = 'h' bj_round.play_through_player_hands(self.mock_shoe) self.assertFalse(mock_hand.split.called) self.assertEqual(mock_hand.hit.call_count, 1) def test_play_through_split_aces(self): mock_hand_one = mock.Mock() mock_hand_two = mock.Mock() mock_hand_one.split_aces = mock_hand_two.split_aces = True bj_round = round.Round(self.mock_time, None, self.mock_bankroll) bj_round._player_hands = [mock_hand_one, mock_hand_two] bust = bj_round.play_through_player_hands(self.mock_shoe) self.assertFalse(bust) mock_hand_one.hit.assert_called_once() mock_hand_two.hit.assert_called_once() def increase_hand_value(self, x): self.hand_value += 5 def test_play_through_dealer_hand_dealer_hits(self): mock_player_input = mock.Mock() mock_hand = mock.Mock() bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand self.hand_value = 15 mock_hand.hand_value.side_effect = lambda: self.hand_value mock_hand.display_hand.return_value = '' mock_hand.hit.side_effect = self.increase_hand_value bj_round.play_through_dealer_hand(self.mock_shoe) self.assertEqual(mock_hand.hit.call_count, 1) def test_play_through_dealer_stands(self): mock_player_input = mock.Mock() mock_hand = mock.Mock() bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand mock_hand.hand_value.return_value = 19 mock_hand.display_hand.return_value = '' bj_round.play_through_dealer_hand(self.mock_shoe) self.assertFalse(mock_hand.hit.called) def test_amount_won_player_busts(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_one.hand_value.return_value = 25 mock_hand_two = mock.Mock() mock_hand_two.hand_value.return_value = 22 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand_one bj_round._player_hands = [mock_hand_two] bj_round._bet = 250 self.assertEqual(bj_round.showdown(), -250) def test_amount_won_player_natural_no_dealer_natural(self): mock_player_input = mock.Mock() bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round.player_natural = True bj_round._bet = 250 self.assertEqual(bj_round.showdown(), 375) def test_amount_won_player_and_dealer_naturals(self): mock_player_input = mock.Mock() bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round.player_natural = True bj_round.dealer_natural = True bj_round._bet = 250 self.assertEqual(bj_round.showdown(), 0) def test_amount_won_dealer_busts(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_one.hand_value.return_value = 25 mock_hand_two = mock.Mock() mock_hand_two.hand_value.return_value = 15 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand_one bj_round._player_hands = [mock_hand_two] bj_round._bet = 250 self.assertEqual(bj_round.showdown(), 250) def test_amount_won_player_wins(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_one.hand_value.return_value = 19 mock_hand_two = mock.Mock() mock_hand_two.hand_value.return_value = 20 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand_one bj_round._player_hands = [mock_hand_two] bj_round._bet = 250 self.assertEqual(bj_round.showdown(), 250) def test_amount_won_dealer_wins(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_one.hand_value.return_value = 20 mock_hand_two = mock.Mock() mock_hand_two.hand_value.return_value = 19 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand_one bj_round._player_hands = [mock_hand_two] bj_round._bet = 250 self.assertEqual(bj_round.showdown(), -250) def test_amount_won_two_player_hands(self): mock_player_input = mock.Mock() mock_hand_one = mock.Mock() mock_hand_one.hand_value.return_value = 19 mock_hand_two = mock.Mock() mock_hand_three = mock.Mock() mock_hand_two.hand_value.return_value = 20 mock_hand_three.hand_value.return_value = 20 bj_round = round.Round(self.mock_time, mock_player_input, self.mock_bankroll) bj_round._dealer_hand = mock_hand_one bj_round._player_hands = [mock_hand_two, mock_hand_three] bj_round._bet = 250 self.assertEqual(bj_round.showdown(), 500)
true
69159eed6aa0e9a1b97fbfda47a9d8d5d0658cd7
Python
0x5eba/Dueling-DQN-SuperMarioBros
/environment/frame_stack_env.py
UTF-8
2,145
3.265625
3
[ "MIT" ]
permissive
"""An environment wrapper to stack observations into a tensor.""" from collections import deque import numpy as np import gym class FrameStackEnv(gym.Wrapper): """An environment wrapper to stack observations into a tensor.""" def __init__(self, env, k): """ Stack k last frames. Returns lazy array, which is much more memory efficient. """ gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = gym.spaces.Box( low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8 ) def reset(self): ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self._get_ob() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self._get_ob(), reward, done, info def _get_ob(self): assert len(self.frames) == self.k return LazyFrames(list(self.frames)) class LazyFrames(object): """A memory efficient buffer for frame tensors.""" def __init__(self, frames): """ This object ensures that common frames between the observations are only stored once. It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay buffers. This object should only be converted to numpy array before being passed to the model. You'd not believe how complex the previous solution was. """ self._frames = frames self._out = None def _force(self): if self._out is None: self._out = np.concatenate(self._frames, axis=2) self._frames = None return self._out def __array__(self, dtype=None): out = self._force() if dtype is not None: out = out.astype(dtype) return out def __len__(self): return len(self._force()) def __getitem__(self, i): return self._force()[i]
true
07566fa9877faf0ed693fee24f643a38d308d6b2
Python
chance-murphy/national-parks-website-scraper
/SI507_project4.py
UTF-8
4,388
3.09375
3
[]
no_license
import requests, json from bs4 import BeautifulSoup from advanced_expiry_caching import Cache import pandas as pd import csv # "crawling" -- generally -- going to all links from a link ... like a spiderweb # its specific def'n varies, but this is approximately the case in all situations # and is like what you may want to do in many cases when scraping ###### # A "simple" example (without much fancy functionality or data processing) # Constants START_URL = "https://www.nps.gov/" FILENAME = "national_sites.json" # So I can use 1 (one) instance of the Cache tool -- just one for my whole program, even though I'll get data from multiple places PROGRAM_CACHE = Cache(FILENAME) # assuming constants exist as such # use a tool to build functionality here def access_page_data(url): data = PROGRAM_CACHE.get(url) if not data: data = requests.get(url).text PROGRAM_CACHE.set(url, data) # default here with the Cache.set tool is that it will expire in 7 days, which is probs fine, but something to explore return data ####### main_page = access_page_data(START_URL) # explore... find that there's a <ul> with class 'topics' and I want the links at each list item... # I've cached this so I can do work on it a bunch main_soup = BeautifulSoup(main_page, features="html.parser") # print(main_soup.prettify()) dropdown_list = main_soup.find('ul',{'class':'dropdown-menu SearchBar-keywordSearch'}) # print(dropdown_list) # cool # for each list item in the unordered list, I want to capture -- and CACHE so I only get it 1 time this week -- # the data at each URL in the list... states_links = dropdown_list.find_all('a') # print(states_links) # cool # Get a list of possible locations for later # site_states = [] # for i in states_links[:1]: # state = i.text # site_states.append(state) # print(site_locations) # Debugging/thinking code: # # # for i in states_links: # print(i['href']) # Just text! I'm not going back to the internet at all anymore since I cached the main page the first time # This is stuff ^ I'd eventually clean up, but probably not at first as I work through this problem. states_pages = [] # gotta get all the data in BeautifulSoup objects to work with... site_states = [] site_names = [] site_types = [] site_descriptions = [] site_locations = [] for i in states_links: page_data = access_page_data(START_URL + i['href']) soup_of_page = BeautifulSoup(page_data, features="html.parser") # print(soup_of_page.prettify()) states_pages.append(soup_of_page) # print(states_pages[0].prettify()) for state in states_pages: site_state = state.find("h1", class_ = "page-title") parks_list = state.find_all("div", class_ = "col-md-9 col-sm-9 col-xs-12 table-cell list_left") #Get the states for i in parks_list: site_states.append(site_state.text) #Get name of each site for i in parks_list: name = i.h3.text if name == '': name = 'N/A' site_names.append(name) #Type of each site for i in parks_list: type = i.h2.text if type == '': type = 'N/A' site_types.append(type) #Get Description of each site for i in parks_list: description = i.p.text if description == '': description = 'N/A' site_descriptions.append(description) #Get location of each site for i in parks_list: location = i.h4.text if location == '': location = 'N/A' site_locations.append(location) # print(site_states) # print(site_names) # print(site_types) # print(site_descriptions) # print(site_locations) # print(len(site_states)) # print(len(site_names)) # print(len(site_types)) # print(len(site_descriptions)) # print(len(site_locations)) site_info = pd.DataFrame({'State': site_states, 'Location': site_locations, 'Name': site_names, 'Type': site_types, 'Description': site_descriptions, }) # print(site_info.info()) csv_file_name = "national_sites.csv" site_info.to_csv(csv_file_name) ################## # START IGNORING # ################## # #Location of each site # site_location = [] # for i in parks_list: # location = i.h4.text # site_location.append(location) # # print(site_location)
true
74e9391f8214ef30216a35cd7eeebc8cd191bed9
Python
caideyang/python2018
/Python全栈学习/第二模块 函数、装饰器、迭代器、内置方法/practise/map-test.py
UTF-8
119
2.84375
3
[]
no_license
#!/usr/bin/python3 #@Author:CaiDeyang #@Time: 2018/9/6 15:57 L = [1,2,3,4,5] l = map(lambda x:x**2,L) print(list(l))
true
654ed1d6cd8c2baffb6837df0179c95a3c0a24bd
Python
scress78/Module7Try2
/sort_and_search_list.py
UTF-8
652
3.984375
4
[]
no_license
""" Program: sort_and_search_list.py Author: Spencer Cress Date: 06/21/2020 This program contains the functions sort_list and search_list for Search and Sort List Assignment """ def sort_list(x): """ :parameter x: a list to be sorted :returns: A sorted list """ x.sort() return x def search_list(x, y): """ :parameter x: a list to be searched :parameter y: the item to be searched for in the list :returns: the index of the item in the list, if it is in the list; otherwise -1 if it isn't. """ try: z = x.index(y) except ValueError: z = -1 return z
true
aff22dcaf92ac61c374a7ede56a19c8afc39cd13
Python
murakami10/atc_python
/solved/05/abc106_b.py
UTF-8
575
2.9375
3
[]
no_license
import collections from typing import Dict N = int(input()) ans: int = 0 for i in range(1, N + 1): if i % 2 == 0: continue tmp_i: int = i table: Dict[int, int] = collections.defaultdict(lambda: 0) for j in range(2, int(pow(i, 0.5)) + 1): while tmp_i % j == 0: tmp_i //= j table[j] += 1 if tmp_i != 1: table[tmp_i] += 1 count: int = 1 for key, value in table.items(): count *= value + 1 if count == 8: ans += 1 print(ans) # https://atcoder.jp/contests/abc106/tasks/abc106_b
true
49160f697f87c3fe4c9ba55b46c0e24e35e5b99c
Python
mudkip201/distributions
/dist/src/dists/chi2.py
UTF-8
1,222
2.640625
3
[]
no_license
''' Created on Jul 15, 2017 @author: matthewcowen-green ''' import dists.Distribution.Distribution as Distribution import math import dists.normal.normal as normal class chi2(Distribution): #Chi-squared @staticmethod def random(k): avg_=0 for _ in range(k): avg_+=math.pow(normal.random(0,1),2) return avg_ @staticmethod def pdf(k,x): return 1/(math.pow(2,k/2)*math.gamma(k/2))*math.pow(x,k/2-1)*math.exp(-x/2) @staticmethod def kurtosis(k): return 12/k @staticmethod def mean(k): return k @staticmethod def median(k): return k*math.pow(1-2/(9*k),3) @staticmethod def mode(k): return max(k-2,0) @staticmethod def variance(k): return 2*k @staticmethod def stddev(k): return math.sqrt(2*k) @staticmethod def skewness(k): return math.sqrt(8/k) @staticmethod def mle(x): #not in eclipse def mlefunc(args_): tomin=1 for i in x: tomin*=chi2.pdf(args_[0],i) return -tomin ''' ret=op.differential_evolution(mlefunc,[(0.01,50)]).x.tolist() return {'k':ret[0]} '''
true
e1955dd78da70ac6ea18500c927d0f117562e6f7
Python
leoprover/ltb
/leo3ltb/data/problem.py
UTF-8
3,929
2.765625
3
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
from ..tptp.szsStatus import SZS_STATUS class Problem: ''' LTB Problem * filePattern: the pattern of problem files for this problem, usally something like 'Problems/HL400001*.p', * is a placeholder for the variant of the problem, @see ProblemVariant * output: the name of the outfile for the problem * variants: a dictionary of problem variantes for the problem. Keys are a variant identifiers like '^1', '^3', '1' Values are ProblemVariant instances * successfulVariant: first found variant which proves the problem ''' def __init__(self, filePattern, output): self.filePattern = filePattern self.output = output self.variants = {} self.successfulVariant = None self._finished = False def isSuccessful(self): ''' Whether a prove for this problem was successful. ''' return self.successfulVariant is not None def isFinished(self): return self._finished def setFinished(self): self._finished = True def getOutfile(self): ''' Output filename of the problem. ''' return self.output def __str__(self): solvedBy = '' tried = '' if self.isSuccessful(): solvedBy = ', solvedBy: {}'.format(self.successfulVariant) tried = ', {} variants tried'.format(len(self.variants)) return '{}{}{}'.format( self.filePattern, solvedBy, tried, ) class ProblemVariant: ''' LTB problem variant. * problem: the problem the variant belongs to * variant: the variant identifier * szsStatus: the szsStatus of the problem variant * stdout: the stdout of the prove attempt of the problem variant * stderr: the stdout of the prove attempt of the problem variant * process: the process which is/was used to prove the problem variant ''' def __init__(self, problem, *, variant): self.problem = problem # back reference self.problem.variants[variant] = self self.variant = variant self.ltbVariant = variant[0:2] self.szsStatus = 'NotTriedYet' self.stdout = [] self.stderr = [] self.process = None def getProblemFile(self): ''' The accual problem definition file. FilePattern 'Problems/HL400001*.p' with variant '^3' -> 'Problems/HL400001^3.p' ''' problemFile = self.problem.filePattern.replace('*', self.ltbVariant) return problemFile def getOutfile(self): ''' Output filename of the problem variant. ''' outputFile = self.problem.output + self.ltbVariant + '.out' return outputFile def getErrfile(self): ''' Output filename of the problem variant. ''' outputFile = self.problem.output + self.ltbVariant + '.err' return outputFile def isSuccessful(self): ''' Whether a prove for this problem variant was successful. ''' return SZS_STATUS.isSuccess(self.szsStatus) def isScheduled(self): ''' Whether the problem is scheduled. ''' if self.schedulerStatus: return True return False def isScheduled(self): ''' Whether the problem is scheduled. ''' if self.schedulerStatus: return True return False def __str__(self): return '{name} [{szsStatus}, {schedulerStatus}, {processState}] {stdout} {stderr}'.format( name=self.getProblemFile(), szsStatus=self.szsStatus, schedulerStatus=self.schedulerStatus if self.schedulerStatus else '-', processState=self.process.stateStr() if self.process else 'no process', stdout=self.stdout[-3:], stderr=self.stderr[-3:], )
true
f94661e500810391bbc385fd65c9c3da84024cff
Python
cameronmcphail/RAPID
/rapid/robustness/analysis/comparisons.py
UTF-8
4,736
3.328125
3
[ "MIT" ]
permissive
"""Compares robustness values Contains (1) a function for showing how a different set of scenarios affects the robustness values and robustness rankings; and (2) a function for showing how different robustness metrics affects the robustness values and robustness rankings. Also contains a helper function for creating basic visualisations of the effects of scenarios and robustness metrics. """ import copy import numpy as np from scipy import stats from matplotlib import pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable def scenarios_similarity(R): """Determines similarity in robustness from multiple scenario sets Robustness is a function of scenarios, decision alternatives, and a performance metric. 2 sets of scenarios can lead to a different calculation of robustness. This function measures the difference in 2 different ways: - Relative difference, delta (%); and - Kendall's Tau-b correlation, tau (unitless, [-1, 1]). Parameters ---------- R : numpy.ndarray, shape=(m, n) Robustness values, R, for m decision alternatives and n scenario sets. Returns ------- delta : numpy.ndarray, shape=(n, n) Average relative difference (%) in robustness for each pair of scenario sets. i.e. idx [0, 3] would be the relative difference between scenario sets 0 and 3 (and would be equal to [3, 0]) tau : numpy.ndarray, shape=(n, n) Kendall's Tau-b correlation for each pair of scenario sets. i.e. idx [0, 3] would be the correlation between scenario sets 0 and 3 (and would be equal to [3, 0]) """ # Get the number of sets of scenarios n = R.shape[1] deltas = np.zeros((n, n)) taus = np.zeros((n, n)) for idx_1 in range(n): for idx_2 in range(idx_1, n): delta = np.divide( np.abs(R[:, idx_1] - R[:, idx_2]), (np.abs(R[:, idx_1] + R[:, idx_2])) / 2.) delta = np.average(delta) * 100.0 deltas[idx_1, idx_2] = delta deltas[idx_2, idx_1] = delta tau, _ = stats.kendalltau(R[:, idx_1], R[:, idx_2], nan_policy='omit') taus[idx_1, idx_2] = tau taus[idx_2, idx_1] = tau return deltas, taus def R_metric_similarity(R): """Determines similarity in robustness from multiple robustness metrics 2 different robustness metrics can lead to a different calculation of robustness. This function measures the difference by using Kendall's Tau-b correlation, tau (unitless, [-1, 1]). Parameters ---------- R : numpy.ndarray, shape=(m, n) Robustness values, R, for m decision alternatives and n robustness metrics. Returns ------- tau : numpy.ndarray, shape=(n, n) Kendall's Tau-b correlation for each pair of robustness metrics. i.e. idx [0, 3] would be the correlation between R metrics 0 and 3 (and would be equal to [3, 0]) """ # Get the number of sets of scenarios n = R.shape[1] taus = np.zeros((n, n)) for idx_1 in range(n): for idx_2 in range(idx_1, n): tau, _ = stats.kendalltau(R[:, idx_1], R[:, idx_2], nan_policy='omit') taus[idx_1, idx_2] = tau taus[idx_2, idx_1] = tau return taus def delta_plot(delta): """A helper fn for plotting the deltas Plots the deltas as a 2D heatmap grid. Parameters ---------- delta : numpy.ndarray, shape=(n, n) Average relative difference (%) in robustness for each pair of scenario sets. i.e. idx [0, 3] would be the relative difference between scenario sets 0 and 3 (and would be equal to [3, 0]) """ ax = plt.subplot(111) cmap = 'rainbow' cmap = copy.copy(mpl.cm.get_cmap(cmap)) cmap.set_bad(cmap(0.0)) norm = mpl.colors.LogNorm(vmin=1.0, vmax=100.0) im = ax.imshow(delta, cmap=cmap, norm=norm) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im, cax=cax) plt.show() def tau_plot(tau): """A helper fn for plotting the Kendall's Tau-b values Plots the tau values as a 2D heatmap grid. Parameters ---------- tau : numpy.ndarray, shape=(n, n) Kendall's Tau-b correlation for each pair of scenario sets. i.e. idx [0, 3] would be the correlation between scenario sets 0 and 3 (and would be equal to [3, 0]) """ ax = plt.subplot(111) im = ax.imshow(tau, cmap='RdBu', vmin=-1.0, vmax=1.0) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) plt.colorbar(im, cax=cax) plt.show()
true
324ed4c429db05389bc6764b4aef19248d12f492
Python
rasake/MPCAS
/FFR135 Artificial Neural Networks/Assignment 1/pattern_utilities.py
UTF-8
565
2.75
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Sep 19 13:19:57 2016 @author: Rasmus """ import numpy as np def create_random_pattern(pattern_length): temp_lst = [np.sign(2*(np.random.rand()-0.5)) for x in range(pattern_length)] return np.reshape(np.array(temp_lst), [pattern_length, 1]) def store_random_patterns(hopfield_network, nbr_of_patterns): patterns = [create_random_pattern(hopfield_network._NBR_OF_CELLS) for x in range(nbr_of_patterns)] for pattern_i in patterns: hopfield_network.store_pattern(pattern_i) return patterns
true
c582d85e80fe750df50762b9b11632bafea06ccd
Python
TuomoNieminen/BrewStat
/data/ratebeer_python_old/format_beer_json.py
UTF-8
1,055
3.484375
3
[]
no_license
import json # Reads a json file containting beer information, adds missing value tags to all the beers that are # missing features so that all beers have all features. Saves the new formatted json to output file def add_missing_value_tags(input_file: str = "first5beers.json", output_file: str ="formatted_beers.json", missing_value_tag: str ="NA") -> None: with open(input_file, "r") as f: beer_dict = json.load(f) all_features = set([feature for beer in beer_dict for feature in beer_dict[beer]]) # Add missing values for beer in beer_dict: for item in all_features: if item not in beer_dict[beer]: beer_dict[beer][item] = missing_value_tag # Add beer url to features and convert dictionary of beers to just list of beers output_list = [] for beer in beer_dict: beer_dict[beer]["url"] = beer output_list.append(beer_dict[beer]) with open(output_file, "w") as f: json.dump(output_list, f) if __name__ == "__main__": add_missing_value_tags()
true
e8a942c7afa534bf4de19c9e78dee3bf730f4d94
Python
igormorgado/nlp
/writes/asd.py
UTF-8
758
2.515625
3
[]
no_license
import numpy as np S = "Será que hoje vai chover, eu não sei não" S = S.lower() S = S.replace(',', '') S = S.split() V = list(set(S)) V.sort() V = dict(zip(V, range(0, len(V)))) n = len(V) M = np.zeros((4,n), dtype=int) for k, w in enumerate(S[0:2] + S[3:5]): i = V[w] wr = np.zeros(n) wr[i] = 1 M[k] = wr # V # V # S # list(set(S)) # list(set(S)).sorted() # V = list(set(S)) # V # V.sort() # V # for w in S[0:2] + S[3:5]: # print(V[w]) # S # S[0:2] # S[0:2] + S[3:5] # V # V = dict(zip(V,range(1,len(V)))) # V # V = dict(zip(V,range(1,len(V+1)))) # V = "Será que hoje vai chover, eu não sei não" # V = V.lower() # V = V.split() # S # V # V = dict(zip(V,range(1,len(V+1)))) # V # V = dict(zip(V,range(1,len(V)+1))) # V # %history
true
4228b5b992f1c5bef25c7ed809deecca1a2f51d6
Python
JuliaMaria/Algorytmy-Kombinatoryczne
/3/Ex2.py
UTF-8
440
3.296875
3
[]
no_license
import numpy as np def rank(subset, n): result = np.repeat(0, n) for x in range(n): if x+1 in subset: result[x] = 1 b = 0 r = 0 for x in range(0,n): b = (b+result[x])%2 if b == 1: power = n-(x+1) r = r + np.power(2, power) print r rank([], 3) rank([3], 3) rank([2, 3], 3) rank([2], 3) rank([1, 2], 3) rank([1, 2, 3], 3) rank([1, 3], 3) rank([1], 3)
true
2f93d29ad388fce9d51c3149bf4cb86d537b6b06
Python
Csonic90/python_example_PL
/lista 7/zad5.py
UTF-8
316
3.34375
3
[]
no_license
fo = open("p.txt", "r") s = fo.read() ls = list(s.split()) element = input('podaj szukane słowo') iloscElem = ls.count(element) if iloscElem > 0 : print('słowo "' + element +'" znajduje sie w szukanym tekscie : ' + str(iloscElem)+' razy' ) else : print('slowo nie występujeala') fo.close()
true
4f497581351344a20f972e7759843ace5f39e93d
Python
Kolbk17/cs660aia-voip-flood-detect
/sip_generator.py
UTF-8
5,495
2.609375
3
[]
no_license
import random import graph_pps import make_sketch as ms """ Assigns a specific range of values within the maximum and minumum packets per second to a percent. The percent represents the number of packets within a range of the normal distribution. The percents used are: 0.1, 0.5, 1.7, 3.4, 8.2, 13.0, 23.1 """ def get_distance(min, max, avg, percents): lst = [] min_range = avg - min min_set = min_range / 7 max_range = max - avg max_set = max_range / 7 j = 0 for i in range(0, len(percents)): lst.append((min + min_set * j, min + min_set * (j + 1))) j += 1 j = 0 for i in range(0, len(percents)): lst.append((avg + max_set * j, avg + max_set * (j + 1))) j += 1 return lst """ Uses psuedo random number generators to calculate a value between the minimum and maximum values given, Then uses a set of probabilities to create a normal distribution of packets per second. """ def gen_pps(avg_pack, min_pack=0, max_pack=0): percents = [0.1, 0.5, 1.7, 3.4, 8.2, 13.0, 23.1] ranges = get_distance(min_pack, max_pack, avg_pack, percents) do_pps = True if min_pack == 0 and max_pack == 0: do_pps = False pps = avg_pack while do_pps: pps = random.randint(min_pack, max_pack) percent = random.randrange(0, 231, 1) / 10 loc = 0 for i in range(0, len(percents)): if percent <= percents[i]: loc = i break if pps < avg_pack: if pps >= ranges[loc][0] and pps < ranges[loc][1]: break elif pps > avg_pack: if pps > ranges[13 - loc][0] and pps <= ranges[13 - loc][1]: break elif pps == avg_pack: if pps >= ranges[13 - loc][0] and pps <= ranges[13 - loc][1]: break return pps """ A pseudo packet generator that takes a time second, a csv file to write traces to, the total number of packets to write, the max, min, and average number of packets to write per second, and a number of attack packets. First gets the packets per second, while the pps is greater than 0, continue selecting packets for users. Random numbers are used to mimic network errors, timeouts, and no responses from callee in normal SIP traffic. Returns the next time second and the number of packets left, so they can be used as parameters for the next iteration. """ def gen_packets(timer, tempfile, packets, avg_pack, min_pack=0, max_pack=0, atk=0): with open(tempfile, 'w+') as f: f.write('') pps = gen_pps(avg_pack, min_pack, max_pack) total = pps timer += 1 packets -= pps while pps > 0: sipid = get_sipid() accept = False gen_inv(tempfile, timer, sipid) pps -= 1 for i in range(0, 3): if random.random() < .5: gen_inv(tempfile, timer, sipid) pps -= 1 for i in range(0, 2): if random.random() < .7: gen_acc(tempfile, timer, sipid) pps -= 1 accept = True if(accept == True): gen_ack(tempfile, timer, sipid) pps -= 1 for i in range(0, 2): if random.random() < .5: gen_ack(tempfile, timer, sipid) pps -= 1 gen_bye(tempfile, timer, sipid) pps -= 1 if atk > 0: atk_sipid = get_sipid(True) count = random.randint(int(atk/2), atk) total += count for i in range(0, count): gen_inv(tempfile, timer, atk_sipid) with open('pps.txt', 'a') as f: f.write(str(total) + '\n') return (timer, packets) """ Set of functions used to write a single packet to a csv file of traces """ def gen_inv(tempfile, timer, sipid): with open(tempfile, 'a') as f: f.write(str(timer) + '\t' + str(sipid) + '\tINV\n') def gen_acc(tempfile, timer, sipid): with open(tempfile, 'a') as f: f.write(str(timer) + '\t' + str(sipid) + '\tACC\n') def gen_ack(tempfile, timer, sipid): with open(tempfile, 'a') as f: f.write(str(timer) + '\t' + str(sipid) + '\tACK\n') def gen_bye(tempfile, timer, sipid): with open(tempfile, 'a') as f: f.write(str(timer) + '\t' + str(sipid) + '\tBYE\n') """ Generates a string in the standard SIP ID form of 'name@example.com' by randomly selecting a name, a set of numbers, and a hostname from the defined arrays. """ def get_sipid(attack=False): names = ['alice', 'bob', 'carol', 'dave', 'evan', 'fin', 'gale', 'hana', 'ingres', 'jake', 'kely', 'lilly', 'mark', 'nora', 'ozpin', 'pira', 'quest', 'rose', 'stella', 'tim', 'umbra', 'vic', 'will', 'xeno', 'yarl', 'zest'] extentions = ['@gmail.com', '@yahoo.com', '@skype.com', '@discord.com', '@hotmail.com', '@sketchyvoip.net'] n = random.randint(0, len(names)-1) e = random.randint(0, len(extentions)-1) sipid = str(names[n]) for i in range(0, 4): if random.random() > .7: sipid += str(random.randint(0, 9)) if attack == True: sipid += '@attackers_haven.tor' else: sipid += str(extentions[e]) return sipid """ Sets an array of time seconds of when an attack will occure based on a maximum value and an interval """ def set_attack_seconds(max, interval): attacks = [] i = interval while i < max: attacks.append(i) i += interval return attacks
true
06d5e97a8ac55f266c525989bba877831f8c48a5
Python
Chelton-dev/ICTPRG-Python
/file10readnum.py
UTF-8
215
3.671875
4
[]
no_license
infile = open('numbers2.txt') num1 = int(infile.readline()) num2 = int(infile.readline()) num3 = int(infile.readline()) infile.close() total = num1+num2+num3 print("numbers: ", num1,num2,num3) print("total: ",total)
true
ee2e020fd78a07716d0f6566181e5fee5426cf40
Python
RuiSONG1117/SD201
/kNN.py
UTF-8
3,130
2.984375
3
[]
no_license
# coding: utf-8 # In[178]: import os import sys import random os.chdir("/Users/songsophie/Documents/SD/SD201 DataMining/TP2/data") import sklearn as sk from sklearn.feature_extraction.text import CountVectorizer from sklearn.neighbors import KNeighborsClassifier import numpy as np from sklearn.feature_extraction.text import TfidfTransformer def splitFileName(fileNames, labels): trainingFileNames = [] trainingLabels = [] testFileNames = [] testLabels = [] if(len(fileNames)<>len(labels)): print("Dimension wrong") return [],[],[],[] for i in range(0, len(fileNames)): k = random.random() if (k < 0.6667): trainingFileNames.append(fileNames[i]) trainingLabels.append(labels[i]) else: testFileNames.append(fileNames[i]) testLabels.append(labels[i]) return trainingFileNames, trainingLabels, testFileNames, testLabels FileNames = ["apple1.txt","apple2.txt","apple3.txt","apple4.txt","apple5.txt", "apple6.txt","apple7.txt","apple8.txt","apple9.txt","apple10.txt", "apple11.txt","apple12.txt","apple13.txt","apple14.txt","apple15.txt"] Labels = [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1] trainingFileNames, trainingLabels, testFileNames, testLabels = splitFileName(FileNames, Labels) print trainingFileNames, trainingLabels, testFileNames, testLabels # read the text of training documents trainingFiles = [] # the i th training file for i in range(0, len(trainingFileNames)): string = "" of = open(trainingFileNames[i], 'r') string = of.read().strip() #for line in of: # string += line.strip() trainingFiles.append(string) #print trainingFiles[1] #read the text of test documents testFiles = [] for j in range(0, len(testFileNames)): string1 = "" of = open(testFileNames[j], 'r') string1 = of.read().strip() #for line1 in of: # string1 += line1.strip() testFiles.append(string1) count_vect = CountVectorizer(stop_words = 'english') # convert training and test data to matrix X_train_counts = count_vect.fit_transform(trainingFiles) training = X_train_counts.toarray() trainingCl = np.array(trainingLabels) X_test_counts = count_vect.transform(testFiles) test = X_test_counts.toarray() testCl = np.array(testLabels) print("Results using count_vect:") for k in range(1,5): neigh = KNeighborsClassifier(n_neighbors=k) neigh.fit(training,trainingCl) print("neighbors: %d, score: %f" %(k, neigh.score(test, testCl))) # improve the classifier with tf-idf representation tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) training_tfidf = X_train_tfidf.toarray() trainingCl_tfidf = np.array(trainingLabels) X_test_tfidf = tfidf_transformer.transform(X_test_counts) test_tfidf = X_test_tfidf.toarray() testCl_tfidf = np.array(testLabels) print("Results using tf-idf:") for k in range(1,5): neigh = KNeighborsClassifier(n_neighbors=k) neigh.fit(training_tfidf,trainingCl_tfidf) print("neighbors: %d, score: %f" %(k, neigh.score(test_tfidf, testCl_tfidf)))
true
b0f1dbd50ee77ba589182a299b32b8ca1739f087
Python
janewjy/Leetcode
/UniqueBinarySearchTrees.py
UTF-8
803
3.359375
3
[]
no_license
class Solution(object): def numTrees(self, n): """ :type n: int :rtype: int """ subtree = {0:1, 1:1,2:2} for i in xrange(1,n+1): if i not in subtree: print i num = 0 for j in range(i): num += subtree[i-1-j] * subtree[j] subtree[i] = num return subtree[n] a = Solution() print a.numTrees(7) # 2-6 class Solution(object): def numTrees(self, n): """ :type n: int :rtype: int """ dp = [0]*(n+1) dp[0] = 1 dp[1] = 1 for i in xrange(2,n+1): for j in xrange(i): dp[i] += dp[j]*dp[i-j-1] return dp[n]
true
69f8f2afdc30b7b377eaf9dc2cb81154d0090048
Python
AlaixComet/AnnotationSlamPTut
/traitement donnees/randomizeList.py
UTF-8
1,181
3.421875
3
[]
no_license
from random import randint """ file used to generate random list of texts """ def randommizeList(l): """ with a list l return randomized list l2 """ l2 = [] if len(l) == 0 : raise Exception("list can't be empty") while(len(l)>0) : if len(l) == 1 : l2.append(l.pop()) return l2 else : l2.append(l.pop(randint(0,len(l)-1))) def chooseOneFromList(l) : """ with a list l return a random value """ if len(l) == 0 : raise Exception("list can't be empty","list len = "+str(len(l)),l) return l.pop(randint(0,len(l)-1)) temoin = ["volley","concours"] text1 = ["nord","florence"] text2 = ["sauveur","provocation"] with open("Liste_Textes_Passation.txt",'w',encoding="utf-8") as csvFile : csvFile.write("Id Annotateur,Texte 1,Texte 2,Texte 3\n") for i in range(0,150): l = [] l.append(chooseOneFromList(temoin.copy())) l.append(chooseOneFromList(text1.copy())) l.append(chooseOneFromList(text2.copy())) finalL = randommizeList(l.copy()) csvFile.write(","+str(finalL[0])+","+str(finalL[1])+","+str(finalL[2])+"\n")
true
a9ec96f9620c5e8275f3a8a9fbb5c82f9fb20028
Python
digitalWestie/curlybot
/curlybot.py
UTF-8
3,412
2.78125
3
[ "MIT" ]
permissive
import os import time import json from slackclient import SlackClient import pycurl from io import BytesIO # curlybot's ID as an environment variable BOT_ID = os.environ.get("BOT_ID") AT_BOT = "<@" + BOT_ID + ">" # instantiate Slack & Twilio clients slack_client = SlackClient(os.environ.get('SLACK_BOT_TOKEN')) HOST = 'https://api.github.com' PATH = '/' #'users/digitalWestie/repos' def index_cmd(resource): result = make_request(resource) if (result == None): return "Sorry! Couldn't return a list of " + resource + "." else: return "Here's a list of "+resource+" you wanted: \n```\n"+result+"\n```" def api_info_cmd(): return "Here's some details:\nENDPOINT: "+HOST+PATH def quit_cmd(): slack_client.api_call("chat.postMessage", channel=channel, text="Bye!", as_user=True) exit() FULLCOMMANDS = { "tell me about the API you're using": api_info_cmd, "what API?": api_info_cmd, "config info?": api_info_cmd, "that'll do pig": quit_cmd, "disconnect": quit_cmd } PARAMCOMMANDS = { "list all the ": index_cmd, "give me all the ": index_cmd, "give me a list of the ": index_cmd } #IDEA: split at the first 'the' to find the object def make_request(resource): url = HOST+PATH+resource print 'Making a request to ' + url data = BytesIO() c = pycurl.Curl() c.setopt(c.URL, url) c.setopt(c.WRITEFUNCTION, data.write) c.perform() c.close() r = data.getvalue() data.close() try: jsondata = json.loads(r) return json.dumps(jsondata, sort_keys=True, indent=2, separators=(',', ': ')) except: print "couldn't parse json from request to " + url def handle_command(command, channel): """ Receives commands directed at the bot and determines if they are valid commands. If so, then acts on the commands. If not, returns back what it needs for clarification. """ #command = command.lower() command = command.encode('utf-8') response = "Not sure what you mean. Use the *list all the " + \ "* command with a resource, delimited by spaces." for cmd in PARAMCOMMANDS.keys(): if command.startswith(cmd.lower()): split = command.split(cmd) response = PARAMCOMMANDS[cmd](split[1]) for cmd in FULLCOMMANDS.keys(): if command == cmd.lower(): response = FULLCOMMANDS[cmd]() slack_client.api_call("chat.postMessage", channel=channel, text=response, as_user=True) def parse_slack_output(slack_rtm_output): """ The Slack Real Time Messaging API is an events firehose. this parsing function returns None unless a message is directed at the Bot, based on its ID. """ output_list = slack_rtm_output if output_list and len(output_list) > 0: for output in output_list: if output and 'text' in output and AT_BOT in output['text']: # return text after the @ mention, whitespace removed return output['text'].split(AT_BOT)[1].strip().lower(), \ output['channel'] return None, None if __name__ == "__main__": READ_WEBSOCKET_DELAY = 1 # 1 second delay between reading from firehose if slack_client.rtm_connect(): print("CurlyBot connected and running!") while True: command, channel = parse_slack_output(slack_client.rtm_read()) if command and channel: handle_command(command, channel) time.sleep(READ_WEBSOCKET_DELAY) else: print("Connection failed. Invalid Slack token or bot ID?")
true
63ea8b7bff029f6829f902e9843e9faa6715145d
Python
antarcticalgebra/antarcticalgebra
/play_level.py
UTF-8
4,933
3.109375
3
[]
no_license
#! /usr/bin/env python import pygame import random import time from equation import Equation class play_level: def draw(self, level, event): self.__screen.fill([0, 0, 0]) pygame.font.init() font = pygame.font.Font(None, 100) ren = font.render("This is level " + str(level), 1, [0, 255, 0]) square_count_text = font.render("Squares caught: " + str(self.__square_count), 1, [0, 255, 0]) eq_text = font.render(self.__eq, 1, [0, 255, 0]) self.__screen.blit(ren, [25, 50]) self.__screen.blit(square_count_text, [25, 200]) self.__screen.blit(eq_text, [25, 350]) self.__see_saw.draw() self.__cur_time = time.time() if (self.__cur_time - self.__start_time) < self.__drop_time: if self.__square.get_x() > self.__see_saw.get_upper_left_corner()[0] and self.__square.get_x() < self.__see_saw.get_upper_right_corner()[0]: if self.__square.get_height_constraint() < self.__see_saw.get_upper_left_corner()[1] and self.__square.get_height_constraint() > self.__see_saw.get_lower_right_corner()[1]: self.__square_count += 1 self.__generate_square() self.__square.draw((self.__cur_time - self.__start_time), self.__drop_time, self.__drop_height) else: self.__generate_square() pygame.display.flip() if event.type == pygame.KEYDOWN: if event.key == pygame.K_RIGHT: self.__see_saw.move_right(True) if event.key == pygame.K_LEFT: self.__see_saw.move_left(True) if event.key == pygame.K_RETURN: return 0 if event.type == pygame.KEYUP: if event.key == pygame.K_RIGHT: self.__see_saw.move_right(False) if event.key == pygame.K_LEFT: self.__see_saw.move_left(False) return level def __generate_square(self): self.__square = Droppable_Square(self.__screen) self.__start_time = time.time() def __init__(self, screen): self.__screen = screen self.__seesaw_gap = 10 self.__see_saw = See_Saw(self.__screen, self.__seesaw_gap) self.__start_time = time.time() self.__cur_time = None self.__drop_time = 5 #in seconds self.__square = Droppable_Square(self.__screen) self.__drop_height = self.__screen.get_height() - (self.__see_saw.get_height() + self.__seesaw_gap) self.__square_count = 0 self.__eq = Equation().generateEquation(2) class Droppable_Square: def __init__(self, parent_screen): colors = [[255,0,0], [0,255,0], [0,0,255]] self.__color = colors[random.randint(0, len(colors)-1)] self.__size = 50 self.__x = random.randint(0, parent_screen.get_width() - self.__size) self.__y = 0 self.__screen = parent_screen def draw(self, time_elapsed, drop_time, drop_height): self.__y = (time_elapsed / drop_time) * drop_height pygame.draw.rect(self.__screen, self.__color, [self.__x, self.__y, self.__size, self.__size]) def get_size(self): return self.__size def get_x(self): return self.__x def get_y(self): return self.__y def get_height_constraint(self): return self.__y + (self.__size - 10) class See_Saw: def __init__(self, parent_screen, gap): self.__color = [255, 0, 0] self.__length = 200 self.__height = 25 self.__x = parent_screen.get_width()/2 - self.__length self.__y = parent_screen.get_height() - (self.__height + gap) self.__screen = parent_screen self.__move_right = False self.__move_left = False def draw(self): if (self.__x + self.__length) > self.__screen.get_width(): self.__x = self.__screen.get_width() - self.__length elif self.__move_right: self.__x += 5 if self.__x < 0: self.__x = 0 elif self.__move_left: self.__x -= 5 pygame.draw.rect(self.__screen, self.__color, [self.__x, self.__y, self.__length, self.__height]) def move_right(self, bool): self.__move_right = bool def move_left(self, bool): self.__move_left = bool def get_height(self): return self.__height def get_upper_left_corner(self): return [self.__x, self.__y] def get_upper_right_corner(self): return [self.__x + self.__length, self.__y] def get_lower_right_corner(self): return [self.__x + self.__length, self.__y - self.__height] def get_lower_left_corner(self): return [self.__x, self.__y - self.__height]
true
c88c83b2f36cf02bc51971358cf2f88143dd00a4
Python
dipalpatel77/mypythonpractice
/collagechallange.py
UTF-8
70
3.59375
4
[]
no_license
a=input("enter the number") n=0 while(a!=0): n+=a%10 a=a/10 print n
true
27313219c97489391301dae072fa241336b8dfb9
Python
SweetSnack/unipg-twitter-stream
/twitter/listeners.py
UTF-8
1,371
2.53125
3
[]
no_license
import json import config from tweepy import OAuthHandler, API, Stream from tweepy.streaming import StreamListener from server import MessageHandler class StdOutListener(StreamListener): """ Handles tweets from the received Twitter stream. """ def on_data(self, data): data = json.loads(data) if 'entities' in data and 'hashtags' in data.get('entities'): data_hashtags = data['entities']['hashtags'] for i in data_hashtags: hashtag = '#{}'.format(i['text']) if hashtag in config.HASHTAGS: # sends a websocket message with the appropriate hashtag for connection in MessageHandler.connections: connection.write_message(hashtag) return True return True def on_error(self, status): print(status) def TwitterListener(): """ Initializes the twitter listener """ l = StdOutListener() auth = OAuthHandler(config.CONSUMER_KEY, config.CONSUMER_SECRET) auth.set_access_token(config.ACCESS_TOKEN, config.ACCESS_TOKEN_SECRET) stream = Stream(auth, l) api = API(auth_handler=auth) config.HASHTAGS = [x['name'] for x in api.trends_place(id=44418)[0]['trends']] print("Stream listener is up and running") stream.filter(track=config.HASHTAGS)
true
f2b5055d146abfc7020290361e759ab7683da7d6
Python
Bandwidth/python-sdk
/bandwidth/voice/bxml/verbs/start_stream.py
UTF-8
2,559
2.9375
3
[ "MIT" ]
permissive
""" start_stream.py Representation of Bandwidth's start stream BXML verb @copyright Bandwidth INC """ from lxml import etree from .base_verb import AbstractBxmlVerb START_STREAM_TAG = "StartStream" class StartStream(AbstractBxmlVerb): def __init__(self, destination, name=None, tracks=None, streamEventUrl=None, streamEventMethod=None, username=None, password=None, streamParams=None): """ Initializes the StartStream class with the following parameters :param str destination: A websocket URI to send the stream to :param str name: A name to refer to this stream by :param str tracks: The part of the call to send a stream from. `inbound`, `outbound` or `both`. :param str streamEventUrl: URL to send the associated Webhook events to during this stream's lifetime :param str streamEventMethod: The HTTP method to use for the request to `streamEventUrl`. `GET` or `POST` :param str username: The username to send in the HTTP request to `streamEventUrl` :param str password: The password to send in the HTTP request to `streamEventUrl` """ self.destination = destination self.name = name self.tracks = tracks self.streamEventUrl = streamEventUrl self.streamEventMethod = streamEventMethod self.username = username self.password = password self.stream_params = streamParams def to_etree_element(self): """ Converts the class into an etree element. Used for other verb classes to build xml :return etree.Element: The etree Element representing this class """ root = etree.Element(START_STREAM_TAG) root.set("destination", self.destination) if self.name is not None: root.set("name", self.name) if self.tracks is not None: root.set("tracks", self.tracks) if self.streamEventUrl is not None: root.set("streamEventUrl", self.streamEventUrl) if self.streamEventMethod is not None: root.set("streamEventMethod", self.streamEventMethod) if self.username is not None: root.set("username", self.username) if self.password is not None: root.set("password", self.password) if self.stream_params is not None: for stream_param in self.stream_params: root.append(stream_param.to_etree_element()) return root def to_bxml(self): return etree.tostring(self.to_etree_element()).decode()
true
d9b638ef42f0811466dc59195f5d89a5e6178d08
Python
tomfisher/tradingtool
/trash/create_stock_history.py
UTF-8
786
2.765625
3
[ "MIT" ]
permissive
from yahoo_finance import Share import sys import json import csv # Create the list of stock symbol s symbols = [] with open('data/companylist.csv', 'rb') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='|') header_skip = False for row in reader: symbol = row[0][1:-1] if not header_skip: header_skip = True continue if symbol!='VIIX': symbols.append(symbol) # Get the history for each stock symbol data = {} for symbol in symbols: print 'Processing ' + symbol try: share = Share(symbol) data[symbol] = share.get_historical('2013-01-01', '2016-12-31') except: continue # Dump the stock history output_path = 'data/stock_history.json' with open(output_path, "wb") as f: f.write(json.dumps(data, indent=4))
true
4df9b7340aa208f10b929f1e7bc8ad07da768cab
Python
gurumitts/lumens
/lumens/lumens.py
UTF-8
1,429
2.703125
3
[ "Apache-2.0" ]
permissive
import RPi.GPIO as GPIO from random import randint import logging from apscheduler.schedulers.background import BackgroundScheduler scheduler = BackgroundScheduler() led_pins = {'r': 26, 'b': 20, 'g': 21, 'w': 19} #set up gpio print GPIO.VERSION GPIO.setmode(GPIO.BCM) class Lumens: def __init__(self): logging.getLogger('lumens').info('lumens is starting...') self.random_mode = False for led in led_pins: pin = led_pins[led] GPIO.setup(pin, GPIO.OUT) GPIO.output(pin, 1) scheduler.start() scheduler.add_job(self._randomize, 'interval', seconds=30) def toggle(self, led): pin = led_pins[led] logging.getLogger('lumens').info('toggle %s %s' % (led, pin)) current_status = GPIO.input(pin) if current_status == 1: GPIO.output(pin, 0) else: GPIO.output(pin, 1) def random(self): if self.random_mode: self.random_mode = False else: self.random_mode = True logging.getLogger('lumens').info('random mode is %s' % self.random_mode) def _randomize(self): if self.random_mode: self._all_off() pin = led_pins[led_pins.keys()[randint(0, 3)]] GPIO.output(pin, 0) def _all_off(self): for led in led_pins: pin = led_pins[led] GPIO.output(pin, 1)
true
eef88e05a36ee6c3c58708569a13d1f704a716af
Python
xbliss/photons-core
/modules/photons_tile_paint/twinkles.py
UTF-8
4,508
2.65625
3
[ "MIT" ]
permissive
from photons_tile_paint.animation import Animation, coords_for_horizontal_line, Finish from photons_tile_paint.options import AnimationOptions from photons_themes.theme import ThemeColor as Color from photons_themes.canvas import Canvas from delfick_project.norms import dictobj, sb import random # Palettes from https://www.color-hex.com/ (Using HSL) palettes = { "twilight": [ (0.65 * 360, 0.53, 0.33, 3500), (0.76 * 360, 0.42, 0.38, 3500), (0.79 * 360, 0.42, 0.73, 3500), ], "summertime": [ (0.11 * 360, 1, 0.65, 3500), (0.51 * 360, 0.86, 0.38, 3500), (0.06 * 360, 0.81, 0.54, 3500), (0.58 * 360, 0.82, 0.27, 3500), ], "rainbow_dash": [ (0.01 * 360, 0.84, 0.57, 3500), (0.06 * 360, 0.89, 0.58, 3500), (0.15 * 360, 0.96, 0.79, 3500), (0.26 * 360, 0.50, 0.51, 3500), (0.55 * 360, 0.97, 0.41, 3500), ], } class choose_palette(sb.Spec): def normalise_empty(self, meta): return None def normalise_filled(self, meta, val): val = sb.string_choice_spec(list(palettes)).normalise(meta, val) return palettes[val] class TileTwinklesOptions(AnimationOptions): num_iterations = dictobj.Field(sb.integer_spec, default=-1) palette = dictobj.Field(choose_palette()) num_twinkles = dictobj.Field(sb.integer_spec, default=20) fade_in_speed = dictobj.Field(sb.float_spec, default=0.125) fade_out_speed = dictobj.Field(sb.float_spec, default=0.078) def final_iteration(self, iteration): if self.num_iterations == -1: return False return self.num_iterations <= iteration class TwinklesState: def __init__(self, coords, options): self.options = options self.twinkles = {} self.directions = {} self.left = coords[0][0][0] self.right = coords[0][0][0] self.top = coords[0][0][1] self.bottom = coords[0][0][1] for (left, top), (width, height) in coords: self.left = min(left, self.left) self.right = max(left + width, self.right) self.bottom = min(top - height, self.bottom) self.top = max(top, self.top) self.place_random(random.randrange(0, self.options.num_twinkles / 2)) def random_coord(self): left = random.randrange(self.left, self.right) top = random.randrange(self.bottom, self.top) return left, top def place_random(self, amount): for _ in range(amount): if self.options.palette: hue, saturation, brightness, kelvin = random.choice(self.options.palette) else: hue = random.randrange(0, 360) saturation = random.randrange(5, 10) / 10 brightness = random.randrange(1, 10) / 10 kelvin = random.randrange(2500, 9000) point = self.random_coord() if point not in self.twinkles: self.directions[point] = 1 if brightness < 0.6 else 0 self.twinkles[point] = Color(hue, saturation, brightness, kelvin) def tick(self): diff = self.options.num_twinkles - len(self.twinkles) if diff > 0: self.place_random(random.randrange(0, diff)) for pos, color in list(self.twinkles.items()): if color.brightness == 0: del self.twinkles[pos] for (x, y), color in self.twinkles.items(): if self.directions[(x, y)] == 0: color.brightness -= self.options.fade_in_speed if color.brightness < 0: color.brightness = 0 else: color.brightness += self.options.fade_out_speed if color.brightness > 1: color.brightness = 1 self.directions[(x, y)] = 0 return self class TileTwinklesAnimation(Animation): coords = coords_for_horizontal_line def setup(self): self.iteration = 0 def next_state(self, prev_state, coords): if prev_state is None: return TwinklesState(coords, self.options) self.iteration += 1 if self.options.final_iteration(self.iteration): raise Finish("Reached max iterations") return prev_state.tick() def make_canvas(self, state, coords): canvas = Canvas() for point, color in state.twinkles.items(): canvas[point] = color return canvas
true
6d59ba5ea4e06d23720d090ebac95bbc65529383
Python
omar20261/python-examples
/Http_Req.py
UTF-8
206
2.59375
3
[]
no_license
#!/usr/bin/python import urllib3 def main(): MyUrl="https://www.google.com.eg/"; http = urllib3.PoolManager() data= http.request('GET',MyUrl); print(data) if __name__ == "__main__":main()
true
967284cdbcf86d61d77409e8ca2d97e04443901b
Python
Pluto-Zmy/Python-OJ
/5/2. Prime.py
UTF-8
196
3.84375
4
[]
no_license
def isPrime(num): for i in range(2, num): if num % i == 0: return False return True def primeSum(m, n): sum = 0 for num in range(m, n + 1): if isPrime(num): sum += num return sum
true
9ff3f79ad99496d030abb533b6e1d9b3bd58cbdd
Python
rookzeno/kprlibrary
/葉からdfs.py
UTF-8
649
2.546875
3
[]
no_license
import sys sys.setrecursionlimit(200000) n,k = map(int,input().split()) a = list(map(int,input().split())) ans = 0 if a[0] != 1: a[0] = 1 ans += 1 b = [[]for i in range(n)] for i in range(n): b[a[i]-1].append(i) b[0].remove(0) huka = 0 kyo = [float("inf")] * n def dfs(x,y): kyo[x] = y for i in b[x]: dfs(i,y+1) dfs(0,0) def dfs2(x,y): if kyo[x] <=k-y: return if y == k-1 and x != 0: kyo[x] = 0 global ans ans += 1 return kyo[x] = 0 dfs2(a[x]-1,y+1) hukai = [] for i in range(n): hukai.append([kyo[i],i]) hukai.sort(key = lambda x:-x[0]) for j,i in hukai: if j <= k: continue dfs2(i,0) print(ans)
true
132e94eb729cc02437a85444f005647c1a940bb6
Python
bravesoftdz/delphi-epidata
/src/acquisition/cdcp/cdc_dropbox_receiver.py
UTF-8
4,411
2.96875
3
[ "MIT" ]
permissive
""" =============== === Purpose === =============== Downloads CDC page stats stored in Delphi's dropbox. This program: 1. downloads new files within dropbox:/cdc_page_stats 2. moves the originals to dropbox:/cdc_page_stats/archived_reports 3. zips the downloaded files and moves that to delphi:/common/cdc_stage 4. queues cdc_upload.py, cdc_extract.py, and other scripts to run See also: - cdc_upload.py - cdc_extract.py """ # standard library import argparse import datetime from zipfile import ZIP_DEFLATED, ZipFile # third party import dropbox import mysql.connector # first party import delphi.operations.secrets as secrets # location constants DROPBOX_BASE_DIR = '/cdc_page_stats' DELPHI_BASE_DIR = '/common/cdc_stage' def get_timestamp_string(): """ Return the current local date and time as a string. The format is "%Y%m%d_%H%M%S". """ return datetime.datetime.now().strftime('%Y%m%d_%H%M%S') def trigger_further_processing(): """Add CDCP processing scripts to the Automation run queue.""" # connect u, p = secrets.db.auto cnx = mysql.connector.connect(user=u, password=p, database='automation') cur = cnx.cursor() # add step "Process CDCP Data" to queue cur.execute('CALL automation.RunStep(46)') # disconnect cur.close() cnx.commit() cnx.close() def fetch_data(): """ Check for new files on dropbox, download them, zip them, cleanup dropbox, and trigger further processing of new data. """ # initialize dropbox api dbx = dropbox.Dropbox(secrets.cdcp.dropbox_token) # look for new CDC data files print('checking dropbox:%s' % DROPBOX_BASE_DIR) save_list = [] for entry in dbx.files_list_folder(DROPBOX_BASE_DIR).entries: name = entry.name if name.endswith('.csv') or name.endswith('.zip'): print(' download "%s"' % name) save_list.append(name) else: print(' skip "%s"' % name) # determine if there's anything to be done if len(save_list) == 0: print('did not find any new data files') return # download new files, saving them inside of a new zip file timestamp = get_timestamp_string() zip_path = '%s/dropbox_%s.zip' % (DELPHI_BASE_DIR, timestamp) print('downloading into delphi:%s' % zip_path) with ZipFile(zip_path, 'w', ZIP_DEFLATED) as zf: for name in save_list: # location of the file on dropbox dropbox_path = '%s/%s' % (DROPBOX_BASE_DIR, name) print(' %s' % dropbox_path) # start the download meta, resp = dbx.files_download(dropbox_path) # check status and length if resp.status_code != 200: raise Exception(['resp.status_code', resp.status_code]) dropbox_len = meta.size print(' need %d bytes...' % dropbox_len) content_len = int(resp.headers.get('Content-Length', -1)) if dropbox_len != content_len: info = ['dropbox_len', dropbox_len, 'content_len', content_len] raise Exception(info) # finish the download, holding the data in this variable filedata = resp.content # check the length again payload_len = len(filedata) print(' downloaded') if dropbox_len != payload_len: info = ['dropbox_len', dropbox_len, 'payload_len', payload_len] raise Exception(info) # add the downloaded file to the zip file zf.writestr(name, filedata) print(' added') # At this point, all the data is stored and awaiting further processing on # the delphi server. print('saved all new data in %s' % zip_path) # on dropbox, archive downloaded files so they won't be downloaded again archive_dir = 'archived_reports/processed_%s' % timestamp print('archiving files...') for name in save_list: # source and destination dropbox_src = '%s/%s' % (DROPBOX_BASE_DIR, name) dropbox_dst = '%s/%s/%s' % (DROPBOX_BASE_DIR, archive_dir, name) print(' "%s" -> "%s"' % (dropbox_src, dropbox_dst)) # move the file meta = dbx.files_move(dropbox_src, dropbox_dst) # sanity check if archive_dir not in meta.path_lower: raise Exception('failed to move "%s"' % name) # finally, trigger the usual processing flow print('triggering processing flow') trigger_further_processing() print('done') def main(): # args and usage parser = argparse.ArgumentParser() args = parser.parse_args() # fetch new data fetch_data() if __name__ == '__main__': main()
true
37b14e5317ef55843148ef4abf807fad94391660
Python
FedericoBaron/my-portfolio
/cop3223H/Code/turtleeee.py
UTF-8
112
2.6875
3
[]
permissive
import turtle turtle.fd(50) turtle.lt(90) turtle.fd(50) turtle.lt(90) turtle.fd(50) turtle.lt(90) turtle.fd(50)
true
a1d57bec8e0f2b7fdd6df0305c650d438f7be081
Python
Cenation2812/Python-projects
/Ladder.py
UTF-8
147
3.109375
3
[]
no_license
n=int(input()) l=n*2+2 length=n+l for i in range(1,length+1): if i%3==0: print("*****") else: print("* *")
true
df6d53a56f9cac59357a42f50b79bb03b4cbba6c
Python
Hott-J/Preparing-Programming-Interviews
/[03]전화 예비 면접/중첩 괄호.py
UTF-8
378
3.765625
4
[]
no_license
#괄호가 제대로 중첩되었는지 판단 s="(())" s1="()()" s2="(()()" s3=")(" flag=True def solution(s): #flag=True cnt=0 for i in range(len(s)): if s[i]=="(": cnt+=1 else: cnt-=1 if cnt<0: return False if cnt==0: return True return False print(solution(s3))
true
09f4b19824eeea29ad339245ef1adf81e7376b21
Python
Adelina360/Python_Projects
/Problem Solver/Problem Solver.py
UTF-8
925
3.734375
4
[]
no_license
# People have many problems but they can solver their problems with this print('WRITE ALL WITH LOWERCASE') def funcion(): word = input('Your problem: ') funcion() def funcion_2(): word_2 = input('Cause of the problem: ') funcion_2() def funcion_3(): word_3 = input('Solution: ') if word_3 == 'yes': input('Which one: ') input('Resources for the solution: ') print('Your problem have solution. Congratulations!') elif word_3 == 'no': print('Let it happen.') else: word_3 = input('Please input yes or no: ') if word_3 == 'yes': input('Which one: ') input('Resources for the solution: ') print('Your problem have solution. Congratulations! You can!') funcion_4() elif word_3 == 'no': print('Let it happen.') funcion_3()
true
b8c03bd29ef349eb0b876b4634032b19e8ad0ced
Python
afilipch/nrlbio
/tasks/targets_ligated_not_to_perfect.py
UTF-8
2,135
2.546875
3
[]
no_license
#! /usr/lib/python '''Script answers to the question: How many clusters have a perfect seed match for one of the top N expressed miRNAs families, but were actually found ligated to another miRNA?''' import argparse import os import sys from pybedtools import BedTool from collections import defaultdict from nrlbio.mirna import fasta2mirnas, assign_expression, mirnas2families, find_family from nrlbio.pyplot_extension import histogram parser = argparse.ArgumentParser(description='Script answers to the question: How many clusters have a perfect seed match for one of the top N expressed miRNAs families, but were actually found ligated to another miRNA?'); parser.add_argument('path', metavar = 'N', nargs = '?', type = str, help = "path to interaction.bed file"); parser.add_argument('--mir', nargs = '?', required=True, type = str, help = "path to the file with miRNAs in fasta format"); parser.add_argument('--expr', nargs = '?', required=True, type = str, help = "path to the expression file (mirid expression tsv format)"); args = parser.parse_args(); seed_start = 1; seed_stop = 7 def bound2other(mirid, families, tseq): lfam=find_family(mirid, families) for fam in families: if(fam!=lfam and fam.match in tseq): return 1; else: return 0; mirdict = fasta2mirnas(args.mir, seed_start, seed_stop); assign_expression(args.expr, mirdict, sep="\t"); families = mirnas2families(mirdict.values()) families.sort(key=lambda x: x.expression, reverse = True) result = defaultdict(int); total_int=0; for interval in BedTool(args.path): total_int += 1; mirid, tseq = interval[6].split(",")[0], interval[8]; for i in range(1,11): result[i] += bound2other(mirid, families[:i], tseq) histogram(result, title='interactions that have perfect seed match to another miRNA from top expressed families', ylabel='number of interactions(total %d)' % total_int, xlabel='number of top expressed families', xticks=range(1, 11), xticklabels=None, xticksrotation = 0, output='targets_ligated_not_to_perfect.pdf', color='skyblue', align=u'left', rwidth=0.5) #if(not find_family(mirid, families)): #print mirid;
true
7ea1202d8394ba17b4431990a0565eb57db7d169
Python
dlrgy22/Boostcamp
/2주차/2021.01.25/예제/vector.py
UTF-8
647
3.4375
3
[]
no_license
import numpy as np def l1_norm(x): x_norm = np.abs(x) x_norm = np.sum(x_norm) return x_norm def l2_norm(x): x_norm = x*x x_norm = np.sum(x_norm) x_norm = np.sqrt(x_norm) return x_norm def angle(x, y): v = np.inner(x, y) / (l2_norm(x) * l2_norm(y)) theta = np.arccos(v) return theta x = np.array([0, 1]) y = np.array([0, 2]) print(angle(x, y)) print(np.inner([1, -1, 1, -1], [4, -4, 4, -4])) x = np.array([[1, 0, 1], [0, 1, 0], [1, 1, 0]]) print(np.linalg.inv(x)) x = np.array([[1, 0, 1], [0, 1, 0]]) print(np.linalg.pinv(x)) x= np.array([[1, 2], [3, 4]]) y = np.array([[2, 4]]) print(x + y)
true
4edc5ce01e03f5f30d81b63477f8485b618d9870
Python
enessitki/wikiHow
/qt-modelviewcontroller-example/classes/Views.py
UTF-8
794
2.71875
3
[]
no_license
from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import * import sys class FilesView(QWidget): def __init__(self, parent=None): super(FilesView, self).__init__(parent=parent) self.scanButton = QPushButton("Scan") self.filesLabel = QLabel("") self.deleteButton = QPushButton("Delete") layout = QHBoxLayout() layout.addWidget(self.scanButton) layout.addWidget(self.filesLabel) layout.addWidget(self.deleteButton) self.setLayout(layout) def update_view(self, files_array): self.filesLabel.setText(str(files_array).replace(" ", "").replace("]", "").replace("[", "").replace(")", "\n").replace("(", "").replace("'", "")) def clear(self): self.filesLabel.setText("")
true
e5c3fbda41fab0f9e7d8979145a580ee414c1d89
Python
nakagawaneal/my-new-repo1
/test_employee.py
UTF-8
4,150
3.109375
3
[]
no_license
import unittest from employee import Employee class TestEmployee(unittest.TestCase): def test_email(self): #we're creating 2 employees emp_1 = Employee('Corey', 'Schafer', 50000) emp_2 = Employee('Sue', 'Smith', 60000) self.assertEqual(emp_1.email, 'Corey.Schafer@email.com') self.assertEqual(emp_2.email, 'Sue.Smith@email.com') emp_1.first = 'John' emp_2.first = 'Jane' self.assertEqual(emp_1.email, 'John.Schafer@email.com') self.assertEqual(emp_2.email, 'Jane.Smith@email.com') def test_fullname(self): emp_1 = Employee('Corey', 'Schafer', 50000) emp_2 = Employee('Sue', 'Smith', 60000) self.assertEqual(emp_1.fullname, 'Corey Schafer') self.assertEqual(emp_2.fullname, 'Sue Smith') emp_1.first = 'John' emp_2.first = 'Jane' self.assertEqual(emp_1.fullname, 'John Schafer') self.assertEqual(emp_2.fullname, 'Jane Smith') def test_apply_raise(self): emp_1 = Employee('Corey', 'Schafer', 50000) emp_2 = Employee('Sue', 'Smith', 60000) emp_1.apply_raise() emp_2.apply_raise() self.assertEqual(emp_1.pay, 52500) self.assertEqual(emp_2.pay, 63000) if __name__ == '__main__': unittest.main() ###### With Prints ###### import unittest from employee import Employee class TestEmployee(unittest.TestCase): def setUp(self): print('setUp') self.emp_1 = Employee('Corey', 'Schafer', 50000) self.emp_2 = Employee('Sue', 'Smith', 60000) def tearDown(self): print('tearDown\n') def test_email(self): print('test_email') self.assertEqual(self.emp_1.email, 'Corey.Schafer@email.com') self.assertEqual(self.emp_2.email, 'Sue.Smith@email.com') self.emp_1.first = 'John' self.emp_2.first = 'Jane' self.assertEqual(self.emp_1.email, 'John.Schafer@email.com') self.assertEqual(self.emp_2.email, 'Jane.Smith@email.com') def test_fullname(self): print('test_fullname') self.assertEqual(self.emp_1.fullname, 'Corey Schafer') self.assertEqual(self.emp_2.fullname, 'Sue Smith') self.emp_1.first = 'John' self.emp_2.first = 'Jane' self.assertEqual(self.emp_1.fullname, 'John Schafer') self.assertEqual(self.emp_2.fullname, 'Jane Smith') def test_apply_raise(self): print('test_apply_raise') self.emp_1.apply_raise() self.emp_2.apply_raise() self.assertEqual(self.emp_1.pay, 52500) self.assertEqual(self.emp_2.pay, 63000) if __name__ == '__main__': unittest.main() ###### setUpClass and tearDownClass ###### @classmethod def setUpClass(cls): print('setupClass') @classmethod def tearDownClass(cls): print('teardownClass') ##### Mocking ##### def monthly_schedule(self, month): response = requests.get(f'http://company.com/{self.last}/{month}') if response.ok: return response.text else: return 'Bad Response!' def test_monthly_schedule(self): with patch('employee.requests.get') as mocked_get: mocked_get.return_value.ok = True mocked_get.return_value.text = 'Success' schedule = self.emp_1.monthly_schedule('May') mocked_get.assert_called_with('http://company.com/Schafer/May') #this is to make sure that the corect url was called self.assertEqual(schedule, 'Success') # To test the opposite... mocked_get.return_value.ok = False #make this False schedule = self.emp_2.monthly_schedule('June') mocked_get.assert_called_with('http://company.com/Smith/June') #this is to make sure that the corect url was called self.assertEqual(schedule, 'Bad Response!') """ notes - tests don't run in order that they're written. So it's important to include a print statement so you canb identify which test was tested - @classmethod - this is working with the class instead of the 'instance of the class' (HUH???) -- look at the link in the yt description - MOCKING - this is useful for identifying if the API is down or the website is down example: line 109 - this is testing whether the response is OK or not OK - import unittest.mock import patch """
true
8721479f068078dd85e3a7619f6387e6c5633e94
Python
Rock1311/Python_Practise
/unique_list_from_two_diff_list.py
UTF-8
311
3.953125
4
[]
no_license
##print unique list from 2 different lists a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2,2, 3, 4,5, 5, 6, 7, 8, 9, 10, 11, 12, 13] c= [] d=[] for x in a: for y in b: if (x==y): c.append(x) print(c) for x in c: if (x not in d): d.append(x) print(d)
true
7794390e1c780b7069d0c03de4dce6d0384566d8
Python
TonyBoy22/gittest
/Python/displaying data/learn_venv/Lib/site-packages/ground/core/angular.py
UTF-8
890
2.796875
3
[]
no_license
from .enums import (Kind, Orientation) from .hints import (Point, QuaternaryPointFunction, Scalar) def kind(vertex: Point, first_ray_point: Point, second_ray_point: Point, dot_producer: QuaternaryPointFunction[Scalar]) -> Kind: return Kind(to_sign(dot_producer(vertex, first_ray_point, vertex, second_ray_point))) def orientation(vertex: Point, first_ray_point: Point, second_ray_point: Point, cross_producer: QuaternaryPointFunction[Scalar] ) -> Orientation: return Orientation(to_sign(cross_producer(vertex, first_ray_point, vertex, second_ray_point))) def to_sign(value: Scalar) -> int: return (1 if value > 0 else -1) if value else 0
true
8b1f8e3fe31be65a1292f710628e9cbe6cdb4284
Python
allenlipeng47/AlgorithmPy
/sort/QuickSelect.py
UTF-8
745
3.328125
3
[]
no_license
class Solution(object): def select(self, arr, k): return self.partition(arr, 0, len(arr) - 1, len(arr) - k) def partition(self, arr, low, high, k): if low > high: return -1 l, h, pivot = low, high, arr[low] while l < h: while l < h and pivot <= arr[h]: h = h - 1 arr[l] = arr[h] while l < h and pivot >= arr[l]: l = l + 1 arr[h] = arr[l] arr[l] = pivot if l == k: return arr[l] elif l > k: return self.partition(arr, low, l - 1, k) else: return self.partition(arr, l + 1, high, k) arr = [4, 3, 5, 2, 1] s = Solution() print (s.select(arr, 2))
true
976f7e66565a36cbec543f0fa08419542edb0381
Python
e-v-mst/cpp_code-kata
/Python_Code_Kata/ClassGraph/ClassGraph.py
UTF-8
843
3.078125
3
[]
no_license
classMap = {'object':list()} def find_path(start, end, path = [] ): if start not in classMap: return None path = path + [start] if start == end: return path for node in classMap[start]: #if node not in path: newpath = find_path(node, end, path) if newpath: return newpath return None for _ in range(int(input())): className, *clss = str(input()).split() if className not in classMap: classMap[className] = list() if len(clss) > 0: for i in (clss[1:]): if i not in classMap: classMap[i] = list() classMap[i].append(className) for _ in range(int(input())): classes = str(input()).split() if find_path(classes[0], classes[1]) == None: print('No') else: print('Yes')
true
d13aa7b84b80cca9ff6ae0563a1e7405fe3ae0aa
Python
hyusterr/Text-Mining
/hw3/hw3-b05702095.py
UTF-8
9,167
2.828125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[46]: import os import sys import nltk nltk.download('stopwords') # download stopwords lexion nltk.download('punkt') # download tokenize related tools import numpy as np from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import * from num2words import num2words from collections import Counter # In[23]: # load data with open('./training.txt', 'r') as f: training = f.readlines() f.close() # In[24]: # prepare training data classes = [i.strip().split()[0] for i in training] docs = [i.strip().split()[1:] for i in training] class_N = np.array([len(i) for i in docs]) training_N = 0 for cls in docs: training_N += len(cls) prior = class_N / training_N # In[95]: # read stopwords stopwordset = set( stopwords.words( 'english' ) ) # update english numbers to stopwords list stopwordset.update( { num2words( i ) for i in range( 0, 20 ) } ) # initialize porter stemmer stemmer = PorterStemmer() # function for tokenize -> remove stopwords -> stem def Preprocessing( sentence ): # tokenize words = word_tokenize( sentence ) # remove stopwords and stemming, return a list words = [ stemmer.stem( w.lower() ) for w in words if w.isalpha() and w.lower() not in stopwordset ] # return a list return words def TrainMultiNB( docs ): # get the dimension of all words Dictionary = set() # read through training corpus for cls in docs: for doc in cls: with open( 'IRTM/' + doc + '.txt', 'r' ) as f: text = set( Preprocessing( f.read() ) ) f.close() Dictionary.update( text ) # sort the counter Dictionary = sorted(list(Dictionary)) print( 'Already built MutliNomialNB Dictionary!' ) print('length of dictionary: ', len(Dictionary)) # build word position dictionary pos_dict = { Dictionary[i]: i for i in range(len(Dictionary)) } term_N = len(Dictionary) # build class-TF matrix cls_tf_matrix = [] for cls in docs: cls_tf_vec = [1] * term_N for doc in cls: with open('IRTM/' + doc + '.txt', 'r') as f: text = Preprocessing( f.read() ) f.close() for term in text: cls_tf_vec[ pos_dict[term] ] += 1 cls_tf_matrix.append( cls_tf_vec ) cls_posterior_matrix = np.array( [ np.array(vec) / sum(vec) for vec in cls_tf_matrix ] ) print( 'the MultiNomial NB model is built, the shape is:', cls_posterior_matrix.shape ) # return probability matrix, term frequency matrix, feature position matrix return cls_posterior_matrix, np.array( cls_tf_matrix ), pos_dict # In[136]: def NBPredict( cls_posterior_matrix, pos_dict, text ): classes = [ str(i) for i in range(1, 14) ] doc = Preprocessing( text ) cls_scores = [] for cls in range(len(prior)): cls_score = np.log(prior[cls]) for term in doc: if term in pos_dict: cls_score += cls_posterior_matrix[cls][pos_dict[term]] cls_scores.append(cls_score) return classes[ np.argmax( np.array(cls_scores) ) ] # In[109]: def TrainBernoulliNB( docs ): # get the dimension of all words Dictionary = set() # read through training corpus for cls in docs: for doc in cls: with open( 'IRTM/' + doc + '.txt', 'r' ) as f: text = set( Preprocessing( f.read() ) ) f.close() Dictionary.update( text ) # sort the counter Dictionary = sorted(list(Dictionary)) print( 'Already built Bernoulli Dictionary!' ) print('length of dictionary: ', len(Dictionary)) # build word position dictionary pos_dict = { Dictionary[i]: i for i in range(len(Dictionary)) } term_N = len(Dictionary) # build class-TF matrix cls_tf_matrix = [] for cls in docs: cls_tf_vec = [1] * term_N for doc in cls: with open('IRTM/' + doc + '.txt', 'r') as f: text = set( Preprocessing( f.read() ) ) f.close() for term in text: cls_tf_vec[ pos_dict[term] ] += 1 cls_tf_matrix.append( cls_tf_vec ) cls_posterior_matrix = np.array( [ np.array(vec) / sum(vec) for vec in cls_tf_matrix ] ) print( 'the Bernoulli NB model is built, the shape is:', cls_posterior_matrix.shape ) return cls_posterior_matrix, np.array( cls_tf_matrix ), pos_dict # In[97]: # prepare testing set training_set = [] for i in docs: training_set += i print( 'getting testing data' ) testing_set = [] for i in range(1, 1096): if str(i) not in training_set: testing_set.append(str(i)) # In[103]: # training print('Training MultiNomial NB...') cls_condi_matrix, cls_tf_matrix, pos_dict = TrainMultiNB( docs ) # In[99]: # predict on testing set print('Predicting...') out = [] for txt in testing_set: with open('./IRTM/' + txt + '.txt') as f: t = f.read() f.close() out.append(NBPredict( cls_condi_matrix, pos_dict, t )) # In[100]: outcsv = 'id,Value\n' for idx, val in zip( testing_set, out ): outcsv += idx + ',' + val + '\n' with open('MultiNB-out.csv', 'w') as f: f.write(outcsv) f.close() print('MultiNB predicting is done! output is MultiNB-out.csv') # In[110]: print('Training Bernoulli NB...') # Bernoulli Training ber_cls_prob_matrix, ber_cls_df_matrix, ber_pos_dict = TrainBernoulliNB( docs ) # In[117]: print('Predicting...') # predict on testing set ber_out = [] for txt in testing_set: with open('./IRTM/' + txt + '.txt') as f: t = f.read() f.close() ber_out.append(NBPredict( ber_cls_prob_matrix, ber_pos_dict, t )) ber_outcsv = 'id,Value\n' for idx, val in zip( testing_set, ber_out ): ber_outcsv += idx + ',' + val + '\n' with open('BerNB_out.csv', 'w') as f: f.write(ber_outcsv) f.close() print('Bernoulli NB predicting is done! output is BerNB_out.csv') # In[124]: def CalculateChiScore( tf_vec ): chi_score = 0 for cls in range( len( tf_vec ) ): # 13 classes present_ontopic = tf_vec[cls] absent_ontopic = len(docs[cls]) - present_ontopic present_offtopic = sum( tf_vec ) - present_ontopic absent_offtopic = len( training_set ) - present_ontopic - present_offtopic - absent_ontopic present = present_offtopic + present_ontopic ontopic = present_ontopic + absent_ontopic Ne = len( training_set ) * present / len( training_set ) * ontopic / len( training_set ) chi_score += ( present_ontopic - Ne ) ** 2 / Ne return chi_score # print( len(ber_cls_df_matrix[0,])) print('Applying Chi-Score Feature Selection...') chi_score_list = [] for i in range( len(ber_cls_df_matrix[0]) ): # return to original tf matrix # vector shape (13, 1) ori_df_vec = ber_cls_df_matrix[:,i] - 1 # print( ori_df_vec ) chi_score_list.append( (i, CalculateChiScore(ori_df_vec) ) ) # chi # absent = len(training_set) - present # In[130]: chi_select = sorted( chi_score_list, key= lambda x: x[1], reverse=True )[:500] pos_chi_list = [ x[0] for x in chi_select ] print('Get top 500 important features!') # In[131]: print('Predicting on model after feature selection') def ChiNBPredict( cls_posterior_matrix, pos_dict, pos_chi_list, text ): doc = Preprocessing( text ) cls_scores = [] for cls in range(len(prior)): cls_score = np.log(prior[cls]) for term in doc: if term in pos_dict and pos_dict[term] in pos_chi_list: cls_score += cls_posterior_matrix[cls][pos_dict[term]] cls_scores.append(cls_score) return classes[ np.argmax( np.array(cls_scores) ) ] # In[133]: # predict on testing set chi_out = [] for txt in testing_set: with open('./IRTM/' + txt + '.txt') as f: t = f.read() f.close() chi_out.append( ChiNBPredict( cls_condi_matrix, pos_dict, pos_chi_list, t) ) chi_outcsv = 'id,Value\n' for idx, val in zip( testing_set, chi_out ): chi_outcsv += idx + ',' + val + '\n' with open('chi-mul-out.csv', 'w') as f: f.write(chi_outcsv) f.close() # In[135]: # predict on testing set chi_ber_out = [] for txt in testing_set: with open('./IRTM/' + txt + '.txt') as f: t = f.read() f.close() chi_ber_out.append( ChiNBPredict( ber_cls_prob_matrix, ber_pos_dict, pos_chi_list, t) ) chi_ber_outcsv = 'id,Value\n' for idx, val in zip( testing_set, chi_ber_out ): chi_ber_outcsv += idx + ',' + val + '\n' with open('chi-ber-out.csv', 'w') as f: f.write(chi_ber_outcsv) f.close() print( 'Prediction is done! Files are chi-* files!' )
true
0f930a30941d0ade8bae4a7c417ed4f22b2c1f2b
Python
luochonglie/tf
/open_cv/cv_02_visit_bits.py
UTF-8
1,382
3.21875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Feb 25 16:09:58 2016 按位操作图片 @author: chonglie """ import cv2 import numpy as np from open_cv import cv_01_read_copy_write as img_utils def salt(img, num): """在图片上加入白色的噪点 :param img: 图片 :param num: 噪点数量 :return: 增加噪点后的图片 """ print(img.shape) for i in range(num): y = int(np.random.random() * img.shape[0]) x = int(np.random.random() * img.shape[1]) print("x =", x, "y =", y) if img.ndim == 2: img[y, x] = 255 elif img.ndim == 3: img[y, x, 0] = 255 img[y, x, 1] = 255 img[y, x, 2] = 255 return img def split_channel(img): """ :param img: 图片 :return: 分离后的通道 red: 红 green: 绿 blue: 蓝 """ blue, green, red = cv2.split(img) return red, green, blue def show_add_silt(): img = img_utils.read_img() salt_image = salt(img, 500) cv2.imshow("Salt", salt_image) cv2.waitKey(0) cv2.destroyAllWindows() def show_split_channel(): img = img_utils.read_img() r, g, b = split_channel(img) cv2.imshow("Blue", r) cv2.imshow("Red", g) cv2.imshow("Green", b) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': show_split_channel()
true
14232a52b58c06bafd7a1084d458eca490b98674
Python
SebastianThomas1/coding_challenges
/hackerrank/algorithms/implementation/designer_pdf_viewer.py
UTF-8
648
3.21875
3
[]
no_license
# Sebastian Thomas (coding at sebastianthomas dot de) # https://www.hackerrank.com/challenges/designer-pdf-viewer # # Designer PDF Viewer ALPHABET = 'abcdefghijklmnopqrstuvwxyz' IDX_OF_CHAR = {char: idx for idx, char in enumerate(ALPHABET)} def designer_pdf_viewer(h, word): return max(h[IDX_OF_CHAR[char]] for char in word) * len(word) if __name__ == '__main__': print(designer_pdf_viewer( [1, 3, 1, 3, 1, 4, 1, 3, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], 'abc')) # 9 print(designer_pdf_viewer( [1, 3, 1, 3, 1, 4, 1, 3, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7], 'zaba')) # 28
true
c511034c6195a3d9a9c89e897e4881714f5dac1c
Python
chrishart0/GildedRose-Refactoring-Kata
/python/test_gilded_rose.py
UTF-8
7,104
3.234375
3
[ "MIT" ]
permissive
#!/bin/python3 # -*- coding: utf-8 -*- import unittest from gilded_rose import Item, GildedRose class GildedRoseTest(unittest.TestCase): def item_are_valid_tests(self, items): ''' A series of constraints an item should always abide by Use this on every test ''' valid = True for item in items: #Verify item quality is not negative if ( item.quality < 0 ): valid = False #Verify item quality is greater than 50 if ( item.quality > 50 ): valid = False return valid def test_EOD_SellIn_value_lowered_1(self): #Define test item items = [ Item(name="+5 Dexterity Vest", sell_in=10, quality=20), ] #Save sell_in value for use in the assert day0_sell_in = items[0].sell_in #Iterate one day GildedRose(items).update_quality() #Verify sell_in has changed by -1 day1_sell_in = items[0].sell_in self.assertTrue(day0_sell_in == (day1_sell_in + 1)) self.assertTrue(self.item_are_valid_tests(items)) #TODO: also test what happens when value is at 1 then iterated def test_EOD_Quality_value_lowered(self): #Define test item items = [ Item(name="+5 Dexterity Vest", sell_in=10, quality=2), ] #save quality value for use in the assert day0_quality = items[0].quality #Iterate one day GildedRose(items).update_quality() #Verify quality has been reduced by any amount day1_quality = items[0].quality self.assertGreater(day0_quality, day1_quality) self.assertTrue(self.item_are_valid_tests(items)) def test_item_past_expiration_quality_degrades_double(self): #Define test item items = [ Item(name="+5 Dexterity Vest", sell_in=1, quality=20), ] #Save quality value for use in the assert day0_quality = items[0].quality #Iterate 2 days, saving quality data for testing GildedRose(items).update_quality() #Iterate one day day1_quality = items[0].quality GildedRose(items).update_quality() #Iterate one day day2_quality = items[0].quality #Calculated differences between days diff_day0_day1 = day0_quality - day1_quality diff_day1_day2 = day1_quality - day2_quality #Verify when item has "Expired" it loses value twice as fast #Diff between day1 and day2 should be double diff between day0 and day1 because sell_in is then less than 1 self.assertEqual(diff_day1_day2, (diff_day0_day1*2)) self.assertTrue(self.item_are_valid_tests(items)) def test_quality_does_not_decrease_under_0(self): #Define test item items = [ Item(name="+5 Dexterity Vest", sell_in=10, quality=0), ] #Iterate one day GildedRose(items).update_quality() #Verify quality has been reduced by any amount final_quality = items[0].quality self.assertGreaterEqual(final_quality, 0) self.assertTrue(self.item_are_valid_tests(items)) def test_quality_never_over_50(self): ''' We are assuming that item quality never input as over 50 Most items go down in quality, we are using Backstage passes amd Brie because they go up Aged Brie will go: 49 > 50 > 51 Backstage Passes will go: 49 > 52 > 55 ''' params = [ Item(name="Aged Brie", sell_in=10, quality=49), Item(name="Backstage passes to a TAFKAL80ETC concert", sell_in=3, quality=49), ] for param in params: with self.subTest(param=param): items = [ param, ] #Iterate one day GildedRose(items).update_quality() GildedRose(items).update_quality() #Verify quality has raised by any amount final_quality = items[0].quality self.assertTrue(self.item_are_valid_tests(items)) def test_exception_items_increase_quality_over_time(self): ''' 'Aged Brie' and 'Backstage passes to a TAFKAL80ETC concert' are exception to the rule that quality goes down over time 'Aged Brie' and 'Backstage passes to a TAFKAL80ETC concert' quality value goes up over time ''' params = [ Item(name="Aged Brie", sell_in=10, quality=20), Item(name="Backstage passes to a TAFKAL80ETC concert", sell_in=10, quality=20), ] for param in params: with self.subTest(param=param): items = [ param, ] #save quality value for use in the assert day0_quality = items[0].quality #Iterate one day GildedRose(items).update_quality() #Verify quality has raised by any amount day1_quality = items[0].quality self.assertGreater(day1_quality, day0_quality) self.assertTrue(self.item_are_valid_tests(items)) def test_backstage_pass_increase_by_2_days_10_to_6(self): for i in range(6, 11): with self.subTest(i=i): items = [ Item(name="Backstage passes to a TAFKAL80ETC concert", sell_in=i, quality=20), ] #save quality value for use in the assert day0_quality = items[0].quality #Iterate one day GildedRose(items).update_quality() #Verify quality has raised by any amount day1_quality = items[0].quality self.assertEqual(day1_quality, (day0_quality + 2)) self.assertTrue(self.item_are_valid_tests(items)) def test_backstage_pass_increase_by_3_days_5_to_0(self): for i in range(1, 6): with self.subTest(i=i): items = [ Item(name="Backstage passes to a TAFKAL80ETC concert", sell_in=i, quality=20), ] #save quality value for use in the assert day0_quality = items[0].quality #Iterate one day GildedRose(items).update_quality() #Verify quality has raised by any amount day1_quality = items[0].quality self.assertEqual(day1_quality, (day0_quality + 3)) self.assertTrue(self.item_are_valid_tests(items)) def test_backstage_pass_quality_0_past_sell_in_date(self): items = [ Item(name="Backstage passes to a TAFKAL80ETC concert", sell_in=0, quality=20), ] #Iterate one day GildedRose(items).update_quality() #Verify quality has raised by any amount final_quality = items[0].quality self.assertEqual(final_quality, 0) if __name__ == '__main__': unittest.main()
true
7cfb5d2a8c824bc0e22cbc66f9be0bc0e1fc966a
Python
ffhan/lingua
/automata/fa.py
UTF-8
14,304
3.40625
3
[ "MIT" ]
permissive
""" Defines finite automata abstract class. In other words, it defines an interface that all derived classes have to follow. """ import abc, copy import automata.state as st import automata.packs as pk class FiniteAutomaton(abc.ABC): """ Finite automata base abstract class. It isn't aware of transition functions. This is not an initialisable class. It serves exclusively as a template for more defined derived classes such as DFA and NFA. """ def __init__(self, states, inputs, start_state): """ Initialises a finite state automaton. Direct use is highly discouraged. Use factory method instead. :param states: all State objects :param inputs: all inputs :param State start_state: starting State object """ self.states = states self.inputs = set(inputs) self.records = pk.Records() if self.states.get(start_state.name, 0): self.start_state = start_state assert isinstance(self.start_state, st.State) self.current = {start_state} else: raise TypeError(self._state_error(start_state.name)) for name, state in self.states.items(): try: assert isinstance(name, st.StateName) except AssertionError: raise TypeError('Type {} is NOT StateName (Name: {})'.format(name.__class__.__name__, name)) try: assert isinstance(state, st.State) except AssertionError: raise TypeError('Type {} is NOT State (Object {})'.format(state.__class__.__name__, state)) assert isinstance(start_state, st.State) assert isinstance(self.start_state, st.State) self._check_structure() self._alias = dict() # used to ensure backwards compatibility after FA minimization. @abc.abstractmethod def _check_structure(self) -> bool: """ Checks if inner structure is correct. Raises a ValueError if not correct. :return bool: True """ pass @property @abc.abstractmethod def accepted(self) -> bool: """ Defines if current automaton state is defined :return bool: True if accepted, False if not """ pass @property def accepted_states(self): """ Returns states that contain value different than 0. :return: Accepted States """ final = set() for state in self.states.values(): if state.accepted: final.add(state) return final def _set_alias(self, state, alias): """ Stores an alias for a removed State. :param StateName state: State that has replaced a state :param StateName alias: The replaced State :return: """ self._alias[alias] = state def _get_alias(self, alias): """ Find current State associated with a removed State. Returns the same State if it doesn't exist (case when State hasn't been removed from FA. :param StateName alias: Removed State :return StateName: Current State identical to the old State """ # print(alias, type(alias)) # assert isinstance(alias, StateName) if isinstance(alias, st.State): alias = alias.name found = self._alias.get(alias, alias) if found in self._alias.keys() and found != alias: found = self._get_alias(found) return found def reachable(self): """ Removes all unreachable states. :return: """ visited = self.start_state.indirect_reach states = dict() for state in visited: states[state.name] = state self.states = states def reset(self): """ Resets the current FA state and clears step records. :return: """ # self.records.clear() self.current = {self.start_state} def _not_defined_substring(self): """ Method used to follow DRY principle in error reporting. May be moved to custom Error classes. :return str: Returns 'is not defined in this "name of the class"' string for an error. """ return ' is not defined in this {}.'.format(type(self).__name__) def _state_error(self, state, prefix=''): """ Returns a default error string with a possible prefix. Example: print(self.__state_error("q0", "Hey, this state")) [Out]: Hey, this state "q0" is not defined in this FA. :param str state: state name :param str prefix: Possible beginning of the error. :return str: state error string """ start_prefix = 'S' if prefix == '' else ' s' return '{}{}tate "{}" {}'.format(prefix, start_prefix, state, type(self).__name__) + self._not_defined_substring() def _input_error(self, inp): """ Defines an input error string. :param str inp: value of the input :return str: input error string """ return 'Input "{}"'.format(inp) + self._not_defined_substring() def __repr__(self): assert isinstance(self.start_state, st.State) def wrap_in_braces(string, last_brace_newline=False): """ Wraps up a string in {}. :param str string: string to be wrapped :param bool last_brace_newline: defines if newline will be put after braces :return str: wrapped string """ return '{' + string + ('\n}' if last_brace_newline else '}') def tab(string): """ Puts tabs in front of all lines in a string. Example: ------------- For example, this becomes: ------------- For example, this becomes: ------------- :param str string: input string :return str: tabbed strings """ return '\t' + string.replace('\n', '\n\t') def newline(*lines): """ Returns string composed of all line arguments with newline added between them. :param str lines: lines of text that need to be newlined. :return: full string composed of individual lines concatenated with newline in-between """ res = '\n' for line in lines: res += line + '\n' return res[:-1] states = '' final = '' for state, state_object in sorted(self.states.items(), key=lambda t : t[0]): states += str(state) + ',' if state_object.value: # print(final, state) final += str(state.name) + ',' final = 'F=' + wrap_in_braces(final[:-1]) states = 'Q=' + wrap_in_braces(states[:-1]) inputs = '' for inp in sorted(self.inputs): inputs += str(inp) + ',' inputs = u'\u03A3=' + wrap_in_braces(inputs[:-1]) funcs = u'\u03B4=' + wrap_in_braces(self.functions) try: assert isinstance(self.start_state, st.State) except AssertionError as error: print("Start state is not a state, it's {}".format(type(self.start_state)), error) raise error start = 'q0=' + str(self.start_state.name) try: assert isinstance(self.start_state, st.State) except AssertionError as error: print("Start state is not a state, it's {}".format(type(self.start_state)), error) raise error return '{} '.format(type(self).__name__) + wrap_in_braces(tab( newline(states, inputs, funcs, start, final) ), True) def __contains_helper(self, item): """ Internal wrapper for states dict getter. :param StateName item: State name :return bool: True if State exists """ assert type(item) is st.StateName return item in self.states def __contains__(self, item): """ Wrapper allowing 'in self' notation. :param item: State name :return: """ assert not isinstance(item, str) if isinstance(item, st.StateName): return self.__contains_helper(item) elif isinstance(item, st.State): return self.__contains_helper(item.name) return False # exists to precisely define how entries are handled. Enter is just interface endpoint def _process(self, *entry): """ Processes the entry arguments. :param entry: entries that have to be handled. :return: """ records = pk.Records() records.add_record(pk.RecordPack(self.current, self.accepted)) for inp in entry: self._access(inp) records.add_record(pk.RecordPack(self.current, self.accepted)) self.records.add_record(records) @abc.abstractmethod def _access(self, value): """ A method that handles the individual input passing through FA. :param value: input :return: """ pass def enter(self, *entry): """ Reads all inputs from entry and puts them through the FA. :param entry: All entries. :return: result states """ self._process(*entry) return self.current def record(self, *entry): """ See entry method. :param entry: All entries. :return: """ self._process(*entry) return self.records def output(self, *entry): """ Outputs end state acceptance. :param entry: Inputs :return bool: Outputs True if end state is acceptable, False if not """ self.enter(*entry) return self.accepted def distinguish(self): """ Distinguishes identical states from non-identical and updates the automatum. :return: """ raise NotImplementedError() def minimize(self): """ Minimizes an automaton. :return: """ raise NotImplementedError() @property def functions(self) -> str: """ Returns functions for repr() function. :return str: string representation of transition functions """ result = '' for state in sorted(self.states.values()): for event, end_states in state.transitions.items(): # extremely bad code, but it's a part of an interface result += '{},{}->'.format(self._get_alias(state.name), event) for end in end_states: # print(end, type(end)) result += '{},'.format(self._get_alias(end.name)) result = result[:-1] + '\n' return result.strip() @staticmethod def factory(input_text, lexer): """ Encapsulates FA object creation through a string and a lexer. Use this method for FA object creation instead of direct __init__ :param type class_type: class type that has to be created :param str input_text: text that defines the FA :param Generator lexer: a conecrete Generator implementation :return FA: a concrete FA object """ lexer.scan(input_text) return __class__(lexer.states, lexer.inputs, lexer.start_state) def _create_copy(self, *args): """ Handles copy creation. Enables easy extension of deepcopy. Internal method. Do not use directly. :param args: arguments for creation. :return: FA object """ return self.__class__(*args) def _create_state(self, *args): """ Creates a State object. Exists solely for easy deepcopy extensions. Do NOT use directly. :param args: arguments for State creation. :return State: a State object """ return st.State(*args) def deepcopy(self): """ Deep copies an instance of FA. :return: FA object not bound by any references to the original object """ # copying states has to be done inside FAs' because references have to be the same. copied_states = set() for state in self.states.values(): name = copy.deepcopy(state.name) copied_states.add(self._create_state(name.name, copy.deepcopy(state.value))) inputs = copy.deepcopy(self.inputs) states = dict() for state in copied_states: states[state.name] = state for name, state in self.states.items(): for event, transition_states in state.transitions.items(): transitions = set() for transition_state in transition_states: try: transitions.add(states[transition_state.name]) except KeyError as err: raise err states[name].transitions[event] = transitions start_state = states[self.start_state.name] assert len(self.states) == len(states) for state in self.states: assert state in states return self._create_copy(states, inputs, start_state) def rename_state(self, old_name: st.StateName, new_name: str): """ Renames a state inside the FA. It's critical to use this method to rename a state. If renaming states through iterator contain the keys in a list or a set, otherwise renaming will be incorrect (the dictionary changes size during iteration). For example: for name in list(automaton.states): ... automaton.rename_state(name, 'new_name') ... and NOT for name in automaton.states: ... :param StateName old_name: state name to be renamed :param str new_name: new state name :return: """ state = self.states.pop(old_name) state.name.name = new_name self.states[state.name] = state
true
db3b6fc01878b2b90179a7ff027dcbdc6eaebd23
Python
ArvidLandmark/Twitter-sentiment-analyzer
/twitter.py
UTF-8
5,024
2.609375
3
[]
no_license
import tweepy as tw from textblob import TextBlob from openpyxl import Workbook from openpyxl.styles import Font def paste_cells(ws_feed): for il in range(len(excel_pos)): ws_feed.cell(il*7+2, 1).value = search_list()[il] ws_feed.cell(il * 7 + 2, 1).font = Font(bold=True) ws_feed.cell(il * 7 + 2, 1).font = Font(bold=True) ws_feed.cell(il * 7 + 2, 1).font = Font(bold=True) ws_feed.cell(il*7+3, 1).value = "Positive tweets" ws_feed.cell(il*7+4, 1).value = "Negative tweets" ws_feed.cell(il*7+5, 1).value = "Neutral tweets" ws_feed.cell(il*7+6, 1).value = "Positive amount" ws_feed.cell(il*7+7, 1).value = "Negative amount" ws_feed.cell(il*7+3, 2).value = excel_pos[il] ws_feed.cell(il*7+4, 2).value = excel_neg[il] ws_feed.cell(il*7+5, 2).value = excel_neu[il] ws_feed.cell(il*7+6, 2).value = excel_pos_amt[il] ws_feed.cell(il*7+7, 2).value = excel_neg_amt[il] def paste_tweets(ws_tweets): for iu in range(len(excel_all_tweets)): ws_tweets.cell(1, iu*3+1).value = search_list()[iu] ws_tweets.cell(1, iu*3+1).font = Font(bold=True) ws_tweets.cell(1, iu*3+2).value = "Date" ws_tweets.cell(1, iu*3+2).font = Font(bold=True) for iy in range(tweet_amount): try: ws_tweets.cell(iy+2, iu*3+1).value = excel_all_tweets[iu][iy] ws_tweets.cell(iy+2, iu*3+2).value = excel_date[iu][iy] except: pass def paste_excel(): ws = wb.active ws.title = "Twitter feed" ws_feed = wb["Twitter feed"] ws_tweets = wb.create_sheet("All_tweets") paste_tweets(ws_tweets) paste_cells(ws_feed) def search_list(): temp_list = [] user_hashtags = b_user_hashtags.split(",") for i in range(len(user_hashtags)): temp_list.append("#" + user_hashtags[i]) return temp_list def twitter_search(): x = 2 consumer_key = "Use your key here" consumer_secret = "Use your key here" access_token = "Use your key here" access_token_secret = "Use your key here" auth = tw.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tw.API(auth, wait_on_rate_limit=True) user_save = input("Enter project name: ") loc_save = input(r"Enter where to save the project: [C:\Users\..]") backslash_sol = "\\" print(f"Project will be saved as {loc_save + backslash_sol + user_save}.xlsx") wb = Workbook() b_user_hashtags = input("Enter the hashtags you would like to search for [separated by , and no spaces]: ") date_since = "2015-09-13" print_list = [] print(search_list()) excel_neg, excel_neu, excel_pos, excel_neg_amt, excel_pos_amt, excel_all_tweets, excel_date = [], [], [], [], [], [], [] tweet_amount = int(input("How many tweets would you like to search: ")) for hashes in range(len(search_list())): #new_search = search_list() + " -filter:retweets" tweet_list, tweet_location, sentiment_list = [], [], [] excel_all_tweets.append([]) excel_date.append([]) tweet_count = 0 neg_count, pos_count, neu_count = 0, 0, 0 neg_amt, pos_amt, neu_amt = 0, 0, 0 # Collect tweets tweets = tw.Cursor(api.search, q=search_list()[hashes] + "-filter:retweets", lang="en", since=date_since).items(tweet_amount) for tweet in tweets: try: tweet_list.append(tweet.text) tweet_location.append(tweet.user.location) print(f"[{tweet_count+1}/{tweet_amount}] {tweet_location[tweet_count]} \n {tweet.text}") tweet_count += 1 analysis = TextBlob(tweet.text) print(analysis.sentiment) sentiment_list.append(analysis.sentiment) excel_all_tweets[hashes].append(tweet.text) excel_date[hashes].append(tweet.created_at) if analysis.sentiment[0] == 0: neu_amt += analysis.sentiment[1] neu_count += 1 elif analysis.sentiment[0] > 0: pos_count += 1 pos_amt += analysis.sentiment[1] else: neg_count += 1 neg_amt += analysis.sentiment[1] except: break print_list.append(f"\nFor {search_list()[hashes]}: \nNegative tweets count: {neg_count}\nPositive tweets count: {pos_count}\nNeutral tweets count: {neu_count}\nNegative tweets amount: {neg_amt}\nPositive tweets amount: {pos_amt}") excel_neg.append(neg_count) excel_neu.append(neu_count) excel_pos.append(pos_count) excel_neg_amt.append(neg_amt) excel_pos_amt.append(pos_amt) wb.save(loc_save[:-1] + user_save + ".xlsx") for number_hashes in range(len(print_list)): print(print_list[number_hashes]) paste_excel() wb.save(loc_save[:-1] + user_save + ".xlsx") print(f"Project saved as {loc_save + backslash_sol + user_save}.xlsx")
true
a6dc0dabf394bc92b470153a342775880d35c108
Python
hudsonchromy/kattis
/t9spelling.py
UTF-8
608
2.65625
3
[]
no_license
trans = {'a': '2', 'b': '22', 'c':'222', 'd':'3', 'e':'33', 'f':'333', 'g':'4', 'h':'44', 'i':'444', 'j':'5', 'k':'55', 'l':'555', 'm':'6', 'n':'66', 'o':'666', 'p':'7', 'q':'77', 'r':'777', 's':'7777', 't':'8', 'u':'88', 'v':'888', 'w':'9', 'x':'99', 'y':'999', 'z':'9999', ' ':'0'} cases = int(input()) for j in range(cases): inp = list(input()) outp = trans[inp[0]] for i in range(1, len(inp)): #print(outp[-1]) if(trans[inp[i]][0] == outp[-1]): outp += " " + trans[inp[i]] else: outp += trans[inp[i]] print("Case #{}: ".format(j+1) + outp)
true
b9fa03d24b0ebde9538db4f3df24680076079862
Python
redelste/CS559
/hw1/Assignment1.py
UTF-8
1,078
3.203125
3
[]
no_license
# coding: utf-8 # In[8]: import numpy as np import math # In[149]: #non custom input def observations(): N = [10, 100, 1000] neat = np.random.normal(0, 1, (N[0], 1)) neat1 = np.random.normal(0,1,(N[1], 1)) neat2 =np.random.normal(0,1,(N[2], 1)) #mean for 10 m1 = sum(neat) / 10 v1 = neat.var() #mean for 100 m2 = sum(neat1) / 100 v2 = neat1.var() #mean for 1000 m3 = sum(neat2) /1000 v3 = neat2.var() print(m1) print(v1) print(m2) print(v2) print(m3) print(v3) # In[150]: observations() # In[266]: def observations2(mean, var, N): testboi = np.random.normal(mean, (var**.5), N) print(testboi.mean()) print(testboi.var()) return(testboi) # In[276]: print("TESTBOI2 = mean = 1, var = 4, N = 2000") testboi2 = observations2(1,4,2000) print("TESTBOI3 = mean =4, var = 9, N = 1000" ) testboi3 = observations2(4,9,1000) x = newestArr = np.append(testboi2, testboi3) print("X") print(x.mean()) print(x.var()) # In[268]: observations2(1,4,2000)
true
ca480580333ed78d63e1c313be9550ba5426b761
Python
wschmitt/pynes
/emulator.py
UTF-8
3,303
2.703125
3
[]
no_license
import cpu_opcodes from cpu import CPU from ppu import PPU from ram import RAM from rom import ROM class Emulator: def __init__(self): self.MEMORY_SIZE = 0x800 # 2kB self.rom = None self.ram = RAM(self.MEMORY_SIZE) self.cpu = CPU(self.cpu_read, self.cpu_write) self.ppu = PPU(self.ppu_read, self.ppu_write) self.system_clock = 0 def set_rom(self, rom: ROM): self.rom = rom self.cpu.reset() def has_rom(self): return self.rom is not None def tick_clock(self): self.ppu.clock() if self.system_clock % 3 == 0: self.cpu.clock() self.system_clock += 1 # ----------------------------------- PPU BUS ADDRESSING - 16 bits range - 0x0000 to 0xFFFF def ppu_write(self, addr, value): addr &= 0x3FFF # pattern memory # if addr <= 0x1FFF: # return self.rom.get_chr_data(addr) # self.ppu.tbl_pattern[int(addr >= 0x1000)][addr & 0x0FFF] # elif addr <= 0x3EFF: # pass # palette memory if 0x3F00 <= addr <= 0x3FFF: addr &= 0x001F # mirroring if addr == 0x0010 or addr == 0x0014 or addr == 0x0018 or addr == 0x001C: addr -= 0x10 self.ppu.tbl_palette[addr] = value return value def ppu_read(self, addr, byte=1): addr &= 0x3FFF # pattern memory if addr <= 0x1FFF: return self.rom.get_chr_data(addr) # self.ppu.tbl_pattern[int(addr >= 0x1000)][addr & 0x0FFF] elif addr <= 0x3EFF: pass # palette memory elif 0x3F00 <= addr <= 0x3FFF: addr &= 0x001F # mirroring if addr == 0x0010 or addr == 0x0014 or addr == 0x0018 or addr == 0x001C: addr -= 0x10 return self.ppu.tbl_palette[addr] def __ppu_memory_access(self, write, addr, value, word=0): pass # ----------------------------------- CPU BUS ADDRESSING - 16 bits range - 0x0000 to 0xFFFF # CPU write to memory def cpu_write(self, addr, value): return self.__cpu_memory_access(True, addr, value) # CPU read from memory def cpu_read(self, addr, byte=1): if byte == 2: return self.__cpu_memory_access(False, addr, None, 1) return self.__cpu_memory_access(False, addr, None) def __cpu_memory_access(self, write, addr, value, word=0): # RAM ranges from 0x0000 to 0x2000 and uses mirroring each 0x800 if addr <= 0x1FFF: if write: return self.ram.cpu_write(addr, value) else: if word: return self.ram.get_word(addr) # pop 2 bytes from memory else: return self.ram.cpu_read(addr) # pop 1 byte from memory # PPU Ranges from 0x2000 to 0x3FFF elif addr <= 0x3FFF: if write: return self.ppu.cpu_write(addr, value) else: return self.ppu.cpu_read(addr) # access rom otherwise if word: return self.rom.get_word(addr) return self.rom.get(addr)
true
ae21c861cb3a7f5ea86d7e25b5e38a696ec9d47e
Python
MJSahebnasi/SearchOnGrid
/Main.py
UTF-8
1,136
3.0625
3
[]
no_license
from bfs import bfs from matrix_stuff import read_matrix, find_index, draw_path from dfs import dfs from A_star import a_star # , a_star_wikiVersion from collections import deque matrix = read_matrix() # print('primary map:') # for row in matrix: # print(row) # print() (start_y, start_x) = find_index(matrix, 'S') print('dfs:') path = deque() if dfs(matrix, start_y, start_x, [[False] * len(matrix[0]) for _ in range(len(matrix[0]))], path): for dir in path: print(dir, end=' ') # draw_path(matrix, path, start_y, start_x) else: print('no path found!') print('\nbfs:') result = bfs(matrix, start_y, start_x) if len(result) > 0: for dir in result: print(dir, end=' ') # draw_path(matrix, result, start_y, start_x) else: print('no path found!') print('\nA*:') (goal_y, goal_x) = find_index(matrix, 'A') # result = a_star_wikiVersion(matrix, start_y, start_x, goal_y, goal_x) result = a_star(matrix, start_y, start_x, goal_y, goal_x) if len(result) > 0: for dir in result: print(dir, end=' ') # draw_path(matrix, result, start_y, start_x) else: print('no path found!')
true
05f41c3ee0dc4b326d19ea9c29ddd10db66f311f
Python
Yu-Igarashi-aiiit/SelfStudying
/atcoder/test.py
UTF-8
822
3.015625
3
[]
no_license
"map int input": { "prefix": "mpi", "body": [ "map(int,input().split())" ], "description": "map int" } "list map int": { "prefix": "lmpi", "body": [ "list(map(int,input().split()))" ], "description": "list map int" } "resolve": { "prefix": "res", "body": [ "def resolve():" ], "description": "resolve" } "int input": { "prefix": "ii", "body": [ "int(input())" ], "description": "int input" } "dfs": { "prefix": "dfs", "body": [ "def dfs(A):" "# 数列の長さが N に達したら打ち切り" "if len(A) == N:" "# 処理" "return" "for v in range(M):" "A.append(v)" "dfs(A)" "A.pop()" ], "description": "dfs" }
true
73f4870a30f7f87c0db8082a910090624cdac8c0
Python
davzha/DESP
/datasets/polygons.py
UTF-8
1,667
2.828125
3
[]
no_license
import math import random import torch TWO_PI = 2 * math.pi class Polygons(torch.utils.data.Dataset): def __init__(self, n_points, n_poly, radius=0.35, noise=True, length=60000, mem_feat=False, mode=None): self.n_points = n_points self.length = length self.center = torch.tensor((0.5,0.5)) self.radius = radius self.noise = noise self.n_poly = n_poly self.mem_feat = mem_feat self.mode = mode def _get_n_polygon(self, n): angles = torch.linspace(0., TWO_PI - (TWO_PI / n), n) radius = self.radius if self.noise: angles += torch.empty(1).uniform_(0., TWO_PI) # target = torch.randint(self.centers.shape[0], (1,)) center = self.center x = torch.cos(angles) * radius y = torch.sin(angles) * radius coo = torch.stack((x,y), dim=1) coo = coo + center padding = torch.zeros(self.n_points - n, 2, dtype=coo.dtype) padding_len = padding.shape[0] nonpadding_len = coo.shape[0] coo = torch.cat([coo, padding], dim=0) if self.mem_feat: membership = torch.zeros(self.n_points, 1, dtype=coo.dtype) membership[:n].fill_(1.) coo = torch.cat([coo, membership], dim=-1) if self.n_points != coo.shape[0]: print(coo.shape, n, padding_len, nonpadding_len) return coo def __getitem__(self, item): # angles = torch.empty(self.n_points).uniform_(0., 2 * np.pi) n = random.choice(self.n_poly) coo = self._get_n_polygon(n) return n, coo def __len__(self): return self.length
true
35b261afadd3c90e030a814fd0c274b7849ce29e
Python
ninjaihero/GeoPix
/GP/Assets/code/extensions/SaveLoad.py
UTF-8
6,787
2.640625
3
[ "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
""" SAVE LOAD is an extension for making a component or it's sub components saveable. """ import SaveLoadGlobal class SaveLoad: """ SaveLoad description """ def __init__(self, ownerComp): # The component to which this extension is attached self.ownerComp = ownerComp def SaveLoad_GET( self , root_op , include_self , find_children_expression , sub_operators , extra_page_names , extra_parameter_attributes , ignore_defaults , find_children_expression_secondary , panel_values ): ''' returns a dictionary of save data from the saveable items/parameters. effectively this is the SAVE function. root_op = is the root operator this function and all sub functions uses as an origin for this iteration of saving. include_self = if True, will save parameters and attributes etc of the root, and not just the children. find_children_expression = this should be a findChildren() funcion, that evaluates properly relative to the root_op. the returned children, are saved. ie children of geoHOLDER. sub_operators = this should be a comma separated list of sub components to manually save data about, as well. ie. pix, hull, etc. extra_page_names = specify the other page names of params you wish to save, other than the default uppercase ones. find_children_expression_secondary = this is the search expression that searches relative to the children found from find_children_expression, ie. for Macro's ''' root_op = op( root_op ) include_self = eval( include_self ) ignore_defaults = eval( ignore_defaults ) try: root_objects = eval( find_children_expression ) if find_children_expression != '' else [] except: root_objects = [] debug('could not eval the expression:', find_children_expression) sub_operators = sub_operators.split(',') extra_page_names = [ each for each in extra_page_names.split(',') if each != '' ] extra_parameter_attributes = [ each for each in extra_parameter_attributes.split(',') if each != '' ] panel_value_names = panel_values.split(',') save_data = {} # if we have include_self flag True, we want to include the top level operator. if include_self == True: root_objects.append( root_op ) for obj in root_objects: obj_data = {} #### save operator level attributes. obj_data = SaveLoadGlobal.SaveLoad_get_clone_op_attribute( obj_data, obj ) obj_data = SaveLoadGlobal.SaveLoad_get_general_op_data( obj_data, obj ) obj_data = SaveLoadGlobal.SaveLoad_get_panel_data( obj_data, panel_value_names, obj ) #### save operator and sub operator level node storage. obj_data = SaveLoadGlobal.SaveLoad_get_op_node_storage( obj_data, obj, sub_operators ) #### save operator hierarchy parent. obj_data = SaveLoadGlobal.SaveLoad_get_comp_hierearchy_inputs( obj_data, obj ) obj_data = SaveLoadGlobal.SaveLoad_get_comp_node_inputs( obj_data, obj ) #### save custom parameters pageNames = SaveLoadGlobal.SaveLoad_get_uppercase_custom_parameter_pages( obj ) pageNames += extra_page_names # add some others we have in scene objects. pageNames = list(set(pageNames)) parAttrs = SaveLoadGlobal.SaveLoad_get_typical_parameter_attributes_to_save() parAttrs += extra_parameter_attributes parAttrs = list(set(parAttrs)) # ignoreDefault = False # setting to true, will not save params already set to default value. obj_data = SaveLoadGlobal.SaveLoad_get_parameter_data( obj_data, obj, pageNames, parAttrs, ignore_defaults ) # store the primary save data. save_data[obj.path] = obj_data # return for root_object in root_objects: try: secondaryEvalExpr = "op('%s')%s"%( root_object.path,find_children_expression_secondary) secondaryResults = eval(secondaryEvalExpr) if find_children_expression_secondary != '' else [] except: debug('could not eval the expression:', find_children_expression_secondary) secondaryResults = [] all_secondary_obj_data = {} for each in secondaryResults: secondary_obj_data = {} # print(each) #### save operator level attributes. secondary_obj_data = SaveLoadGlobal.SaveLoad_get_clone_op_attribute( secondary_obj_data, each ) secondary_obj_data = SaveLoadGlobal.SaveLoad_get_general_op_data( secondary_obj_data, each ) secondary_obj_data = SaveLoadGlobal.SaveLoad_get_panel_data( secondary_obj_data, panel_value_names, each ) #### save operator and sub operator level node storage. secondary_obj_data = SaveLoadGlobal.SaveLoad_get_op_node_storage( secondary_obj_data, each, sub_operators ) #### save operator hierarchy parent. secondary_obj_data = SaveLoadGlobal.SaveLoad_get_comp_hierearchy_inputs( secondary_obj_data, each ) secondary_obj_data = SaveLoadGlobal.SaveLoad_get_comp_node_inputs( secondary_obj_data, each ) #### save custom parameters pageNames = SaveLoadGlobal.SaveLoad_get_uppercase_custom_parameter_pages( each ) pageNames += extra_page_names # add some others we have in scene objects. parAttrs = SaveLoadGlobal.SaveLoad_get_typical_parameter_attributes_to_save() ignoreDefault = False secondary_obj_data = SaveLoadGlobal.SaveLoad_get_parameter_data( secondary_obj_data, each, pageNames, parAttrs, ignoreDefault ) all_secondary_obj_data[each.path] = secondary_obj_data # print('---',root_object) save_data[root_object]['__secondarylayer__'] = all_secondary_obj_data return save_data def SaveLoad_SET(self, loadDict, exact_match, isImport): ''' attempts to recreate or set the operators up.. effectively this is the LOAD function. ''' # print( list(loadDict.keys()) ) # get the root path. we'll use this to filter out save data from other parts of the network. rootPath = self.ownerComp.path if exact_match == False: # filter out save data from other parts of the network. loadDict = { k:v for k,v in loadDict.items() if k.startswith(rootPath) } elif exact_match == True: # filter out save data from other parts of the network, stricter loadDict = { k:v for k,v in loadDict.items() if k == rootPath } elif exact_match == None: # if the exact match cell is None, we do no filtering at all good sir. pass # create or set the initial operaetors up, returning a translation dict for any name conflicts. translationDict = SaveLoadGlobal.SaveLoad_create_or_set_operators( rootPath , loadDict , isImport=isImport ) # if isImport == True: # SaveLoadGlobal.SaveLoad_uniquify_names_on_operators( translationDict ) # parent objects to their intended parents. SaveLoadGlobal.SaveLoad_set_parent_operators( rootPath , loadDict , translationDict ) # wire operators to their inputs. SaveLoadGlobal.SaveLoad_set_input_operators( rootPath , loadDict , translationDict ) return
true
f60ee09e83d4c6943db7e63f3e7db5a01d452174
Python
cxu60-zz/LeetCodeInPython
/longest_common_prefix.py
UTF-8
1,415
3.734375
4
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # encoding: utf-8 """ longest_common_prefix.py Created by Shengwei on 2014-07-15. """ # https://oj.leetcode.com/problems/longest-common-prefix/ # tags: easy / medium, array, string, pointer, logest, D&C, edge cases """ Write a function to find the longest common prefix string amongst an array of strings. """ class Solution: # @return a string def longestCommonPrefix(self, strs): if len(strs) == 0: return '' if len(strs) == 1: return strs[0] for index in xrange(len(strs[0])): char = strs[0][index] for s in strs: if index >= len(s) or char != s[index]: return strs[0][:index] return strs[0] ############### D&C ############### class Solution: # @return a string def longestCommonPrefix(self, array): if array is None or len(array) == 0: return '' if len(array) == 1: return array[0] half = len(array) / 2 longest_left = self.longestCommonPrefix(array[:half]) longest_right = self.longestCommonPrefix(array[half:]) min_length = min(len(longest_left), len(longest_right)) for index in xrange(min_length): if longest_left[index] != longest_right[index]: return longest_left[:index] return longest_left[:min_length]
true
2cde7e1e6f52c53d37d4329de6b184439548aaed
Python
mvanveen/musicDB
/encounter.py
UTF-8
2,055
3.296875
3
[]
no_license
# Encounter.py # ============================================================================== # Michael Van Veen # 03/08/10 # ============================================================================== # Checks to see if a file exists in DB. # ============================================================================== import sys import os import json import hashlib encounterDir = os.environ['HOME'] + "/.encounter" encounterFile = "duplicateHashes" class Encounter(): def __init__(self): # Path to duplicate hash file, determined via global vars above self.__filePath = "" if (encounterDir[-1] == "/") else "/" self.__filePath = self.__filePath.join((encounterDir, encounterFile)) self.__duplicateHashes = self.__loadHashes() if (self.__duplicateHashes == {}): self.__writeHashes() def check(self, fileName): return(self.__checkEntity(fileName)) def __writeHashes(self): fileObj = open(self.__filePath, "w") fileObj.write(json.dumps(self.__duplicateHashes)) fileObj.close() def __loadHashes(self): if(not (os.access(encounterDir, os.F_OK))): os.mkdir(encounterDir) print("Created directory " + encounterDir) if(not (os.access(self.__filePath, os.F_OK))): print("Created hash dictionary " + self.__filePath) return({}) return(json.loads(open(self.__filePath).read())) def __checkEntity(self, fileName): if (not os.access(fileName, os.F_OK)): print("Error: No such file found") return(False) hashObj = hashlib.sha1() hashObj.update(open(fileName).read()) fileHash = hashObj.hexdigest() # See if the file has been encountered if (self.__duplicateHashes.has_key(fileHash)): return(True) # File has not been encountered. Add it to dictionary. self.__duplicateHashes[fileHash] = True return(False) def close(self): self.__writeHashes() if (__name__ == "__main__"): encounter = Encounter() if (encounter.check(sys.argv[1])): print("File has already been encountered") sys.exit() print("Adding file....") encounter.close()
true
0696a1eb1b199494d64f5336db4eb68bf2cfa217
Python
mrtonks/PythonCourses
/Python Programming/Chapter 6/Exercise2.py
UTF-8
170
4.03125
4
[]
no_license
#Sample for loop program #First create a list this_list = [45, 14, 65, 42, 34] #Create the for loop for content in this_list: print content print "It's the end."
true
5819198dd49c436c6c0bb999ebf234b9fb2f48f7
Python
hawksong/pythontest
/pylearn/src/test/qing.py
UTF-8
233
3.3125
3
[]
no_license
''' Created on 2017年12月8日 @author: user ''' def printinfo( arg1, *vartuple ): "This prints a variable passed arguments" print ("Output is: ") print (arg1) for var in vartuple: print (var) return
true
b01d1a24c338a720426a7ef8678d32f0d0435b76
Python
harshit-ladia/Excel-to-SQL
/myfile.py
UTF-8
349
2.859375
3
[]
no_license
import pandas as pd my_data = pd.read_csv(r"file.csv") table = input() query=[] # my file had id as a column for j in range(my_data['Id'].count()): query.append("Insert into " + table + " values({},{});".format(my_data.iloc[j,0],my_data.iloc[j,1])) with open("insert_query.sql","a") as sql: for i in query: sql.write(i+"\n")
true
d4d721f5c3788b68f1d027480612572bcf999352
Python
DimaAnsel/GraphicsFinal-3DRenderer
/src/model_creator.py
UTF-8
29,476
2.84375
3
[]
no_license
################################ # model_creator.py # Noah Ansel # nba38 # 2016-11-17 # ------------------------------ # Generates models of different resolutions # for use in main rendering program. ################################ # import validation fail = False try: from numpy import * except Exception: print("ERROR: Could not import 'numpy' module.") fail = True try: from math import * except Exception: print("ERROR: Could not import 'math' module.") fail = True try: from copy import copy except Exception: print("ERROR: Could not import 'copy' module.") fail = True try: from time import clock except Exception: print("ERROR: Could not import 'time' module.") fail = True try: import warnings except Exception: print("ERROR: Could not import 'warnings' module.") fail = True if fail: input("Press ENTER to close this window.") exit() # ignore unnecessary warnings warnings.simplefilter(action = 'ignore', category = FutureWarning) # If set to true, models will use minimal number of points. This slows down # model generation exponentially. USE_MINIMAL_POINTS = False # output file (if run standalone) OUTPUT_FILE = "models.txt" # Flags used for cube_intersect() preliminary intersection tests. POS_X = 0x1 POS_Y = 0x2 POS_Z = 0x4 NEG_X = 0x8 NEG_Y = 0x10 NEG_Z = 0x20 IN_X = 0x40 IN_Y = 0x80 IN_Z = 0x100 EXT = POS_X | POS_Y | POS_Z | NEG_X | NEG_Y | NEG_Z ######## # Determines if the line between 2 points intersects a cube (centered at origin). # Loosely based on Cohen–Sutherland clipping algorithm discussed in lecture. # Params: # p1, p2 : Endpoints of line to test for intersection. # Returns: True if detects intersection, False otherwise def cube_intersect(size, p1, p2): minBound = -size / 2 maxBound = size / 2 p1sides = POS_X if (p1.x >= maxBound) else (NEG_X if (p1.x <= minBound) else IN_X) p1sides |= POS_Y if (p1.y >= maxBound) else (NEG_Y if (p1.y <= minBound) else IN_Y) p1sides |= POS_Z if (p1.z >= maxBound) else (NEG_Z if (p1.z <= minBound) else IN_Z) p2sides = POS_X if (p2.x >= maxBound) else (NEG_X if (p2.x <= minBound) else IN_X) p2sides |= POS_Y if (p2.y >= maxBound) else (NEG_Y if (p2.y <= minBound) else IN_Y) p2sides |= POS_Z if (p2.z >= maxBound) else (NEG_Z if (p2.z <= minBound) else IN_Z) comb = p1sides & p2sides if comb & EXT or p1sides == p2sides: # both on same side return False elif ((comb & IN_X and comb & IN_Y) or (comb & IN_Y and comb & IN_Z) or (comb & IN_Z and comb & IN_X)): # on opposite sides return True else: # check each face to see if it intersects lVec = Point(matrix = p2.mat() - p1.mat()) maxD = lVec.mag() lVec.normalize() # make unit vect if lVec.x != 0: dBot = (minBound - p1.x) / lVec.x dTop = (maxBound - p1.x) / lVec.x if 0 < dBot and dBot < maxD: res = Point(matrix = p1.mat() + dBot * lVec.mat()) if (minBound < res.y and res.y < maxBound and minBound < res.z and res.z < maxBound): return True if 0 < dTop and dTop < maxD: res = Point(matrix = p1.mat() + dTop * lVec.mat()) if (minBound < res.y and res.y < maxBound and minBound < res.z and res.z < maxBound): return True if lVec.y != 0: dBot = (minBound - p1.y) / lVec.y dTop = (maxBound - p1.y) / lVec.y if 0 < dBot and dBot < maxD: res = Point(matrix = p1.mat() + dBot * lVec.mat()) if (minBound < res.x and res.x < maxBound and minBound < res.z and res.z < maxBound): return True if 0 < dTop and dTop < maxD: res = Point(matrix = p1.mat() + dTop * lVec.mat()) if (minBound < res.x and res.x < maxBound and minBound < res.z and res.z < maxBound): return True if lVec.z != 0: dBot = (minBound - p1.z) / lVec.z dTop = (maxBound - p1.z) / lVec.z if 0 < dBot and dBot < maxD: res = Point(matrix = p1.mat() + dBot * lVec.mat()) if (minBound < res.x and res.x < maxBound and minBound < res.y and res.y < maxBound): return True if 0 < dTop and dTop < maxD: res = Point(matrix = p1.mat() + dTop * lVec.mat()) if (minBound < res.x and res.x < maxBound and minBound < res.y and res.y < maxBound): return True return False ######## # Determines if the line between 2 points intersects a sphere (centered at origin). # Formula from: https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection # Params: # p1, p2 : Endpoints of line to test for intersection. # Returns: True if detects intersection, False otherwise def sphere_intersect(size, p1, p2): lVec = Point(matrix = p2.mat() - p1.mat()) maxD = lVec.mag() lVec.normalize() # make unit vector res = (lVec.dot(p1))**2 - (p1.x * p1.x + p1.y * p1.y + p1.z * p1.z) + size ** 2 if res < 0: return False else: d = -lVec.dot(p1) - sqrt(res) if 0 < d and d < maxD: # check that inside line segment return True else: return False ################ # Point: Container class for a single 3-D point. # Members: # x, y, z : Coordinates of point in 3-space. # phi : Declination from positive z-axis. None if not provided on init # theta : Clockwise rotation from positive x-axis. None if not provided on init # radius : Distance from origin. None if not provided on init. class Point: C1 = 0.4 C2 = 0.3 C3 = 0.3 ######## # Initializes the point. Precedence of parameters is: point, matrix, # spherical coords, Cartesian coords. # Params: # point : Point to generate copy of. Supercedes other parameters. # x, y, z : Coordinates of point in 3-space. # phi : Declination from positive z-axis. Supercedes x,y,z. # theta : Clockwise rotation from positive x-axis. Supercedes x,y,z. # radius : Distance from origin. Supercedes x,y,z. # matrix : Matrix to set point from. Supersedes spherical and Cartesian coordinates. def __init__(self, point = None, x = 0, y = 0, z = 0, theta = None, phi = None, radius = None, matrix = None): if point != None: self.x = point.x self.y = point.y self.z = point.z self.phi = point.phi self.theta = point.phi self.radius = point.radius return elif matrix != None: self.x = matrix.item((0,0)) self.y = matrix.item((1,0)) self.z = matrix.item((2,0)) self.phi = None self.theta = None self.radius = None elif theta != None and phi != None and radius != None: self.x = radius * sin(phi) * cos(theta) self.y = radius * sin(phi) * sin(theta) self.z = radius * cos(phi) else: self.x = x self.y = y self.z = z # always save for reference self.phi = phi self.theta = theta self.radius = radius ######## # Generates a string representation of the point. # Coordinates are comma-separated 9-decimal-precision floats. # Returns: String representation of the point. def __str__(self): return "{:.9f},{:.9f},{:.9f}".format(self.x, self.y, self.z) ######## # Determines if two points are identical. # Params: # other : Point to compare with # Returns: True if identical, False otherwise def __eq__(self, other): if other == None: return False elif isinstance(other, Point): return (self.x == other.x and self.y == other.y and self.z == other.z) else: raise TypeError("Can only compare of type Point.") ######## # Returns a vector matrix representation for translations. def mat(self): return mat([[self.x], [self.y], [self.z], [1]]) ######## # Computes the attenuation factor of this point for shading. def att(self): return min(1 / (Point.C1 + Point.C2 * self.mag() + Point.C3 * (self.x * self.x + self.y * self.y + self.z * self.z)), 1) ######## # Computes the magnitude of this vector. def mag(self): return sqrt(self.x * self.x + self.y * self.y + self.z * self.z) ######## # Computes the spherical coordinates of this point. # Returns: θ, ϕ, and radius of point in spherical coordinates def to_spherical(self): r = self.mag() phi = acos(self.z/r) theta = atan2(self.y, self.x) return (theta, phi, r) ######## # Converts the given point into a unit vector. def normalize(self): mag = self.mag() self.x /= mag self.y /= mag self.z /= mag ######## # Sets a point from a vector matrix. # Params: # matrix : Numpy matrix to set given point from. def set(self, matrix = None): if matrix != None: self.x = matrix.item((0,0)) self.y = matrix.item((1,0)) self.z = matrix.item((2,0)) ######## # Computes the dot product of two points. # Params: # other : Point to compute dot product with. # Returns: Computed dot product of two points. def dot(self, other): return self.x * other.x + self.y * other.y + self.z * other.z # Point ################ ################ # Model: Class containing all information about a single 3-D model. # Members: # name : A string name for the model # points : List containing all points in model # norms : List containing all surface normals in model # tris : List containing all triangles in model # offset : Offset of this model from the origin, stored as a Point. # rotation : Rotation of this model, stored as a Point. # scale : Scaling of this model, stored as a Point. # color : 3-tuple of RGB format representing model's color # specular : Specular coefficient. Higher means specular lighting is brighter. # diffuse : Diffuse coefficient. Higher means diffuse lighting is brighter. # _size : Size parameter used when calling intersectFcn # _intersectFcn : Function to be used when determining if given line segment # intersects with this model. See intersects(). class Model: DEFAULT_NAME = "unnamedModel" DEFAULT_COLOR = (1.0, 1.0, 1.0) DEFAULT_SPECULAR = 0.6 DEFAULT_DIFFUSE = 0.5 ################ # Triangle: Interior class to Model that must refer to its parent. # Should not be instantiated outside of Model's methods. # Members: # _parent : Reference to model used for points and norms lists # p1, p2, p3 : Indexes to parent's points list # norm : Index to parent's norms list # color : 3-tuple of RGB format representing triangle's color # If None or not provided, uses parent's color class Triangle: ######## # Generates a new triangle. # Params: # parent : Reference to model used for points and norms lists # p1, p2, p3 : Indexes to parent's points list # norm : Index to parent's norms list # color : 3-tuple of RGB format representing triangle's color # If None or not provided, uses parent's color # triangle : Triangle to copy information from. def __init__(self, parent, p1 = None, p2 = None, p3 = None, norm = None, color = None, triangle = None): self._parent = parent if triangle != None: self.p1 = triangle.p1 self.p2 = triangle.p2 self.p3 = triangle.p3 self.norm = triangle.norm self.color = triangle.color else: self.p1 = p1 self.p2 = p2 self.p3 = p3 self.norm = norm if color != None: self.color = color else: self.color = parent.color ######## # Generates a string representation of this triangle. # Points are separated by spaces, with the last point being the normal. # Returns: String representation of the triangle def __str__(self): return "{} {} {} {}".format(str(self._parent.points[self.p1]), str(self._parent.points[self.p2]), str(self._parent.points[self.p3]), str(self._parent.norms[self.norm])) # Triangle ################ ######## # Generates a model with the given name and parameters. # Params: # name : A string name for this model # color : A 3-tuple of RGB format representing model's color # points : List of points to associate with this model. # norms : List of normals to associate with this model. # tris : List of triangles to associate with this model. # offset : Offset of this model from the origin, stored as a Point. # rotation : Rotation of this model, stored as a Point. # scale : Scaling of this model, stored as a Point. # specular : Specular coefficient. Higher means specular lighting is brighter. # diffuse : Diffuse coefficient. Higher means diffuse lighting is brighter. # size : Size parameter used when calling intersectFcn # intersectFcn : Function to be used when determining if given line segment # intersects with this model. See intersects(). def __init__(self, name = DEFAULT_NAME, color = None, points = None, norms = None, tris = None, offset = None, rotation = None, scale = None, specular = DEFAULT_SPECULAR, diffuse = DEFAULT_DIFFUSE, size = 1, intersectFcn = cube_intersect): self.name = name self.points = [] if points != None: for p in points: self.points.append(Point(p)) self.norms = [] if norms != None: for n in norms: self.norms.append(Point(n)) self.tris = [] if tris != None: for t in tris: self.tris.append(Model.Triangle(self, triangle = t)) if offset != None: self.offset = Point(offset) else: self.offset = Point(x = 0, y = 0, z = 0) if rotation != None: self.rotation = Point(rotation) else: self.rotation = Point(phi = 0, theta = 0, radius = 1) if scale != None: self.scale = Point(rotation) else: self.scale = Point(x = 1, y = 1, z = 1) if color != None: self.color = color else: self.color = copy(Model.DEFAULT_COLOR) self.specular = specular self.diffuse = diffuse self._size = size self._intersectFcn = intersectFcn ######## # Generates a multi-line string representation of the model. # Each line represents a triangle in the model. # Returns: String representation of the model def __str__(self): retStr = "{} {} ({},{},{})\n".format(self.name, len(self.tris), self.color[0], self.color[1], self.color[2]) for tri in self.tris: retStr += str(tri) + "\n" return retStr ######## # Creates a new normal and appends it to the model's list. If normal already exists # in list and USE_MINIMAL_POINTS set to True, does not create new normal. # Params: # x, y, z : Cartesian coordinates of the point. # phi : Declination from positive z-axis. # theta : Rotation clockwise from positive x-axis. # radius : Distance from the origin. # Returns: Index of the normal def add_norm(self, x = None, y = None, z = None, phi = None, theta = None, radius = None): if x != None and y != None and z != None: if USE_MINIMAL_POINTS: for i in range(len(self.norms)): # search for already existing point if x == self.norms[i].x and y == self.norms[i].y and z == self.norms[i].z: return i p = Point(x = x, y = y, z = z) self.norms.append(p) return len(self.norms) - 1 elif phi != None and theta != None and radius != None: if USE_MINIMAL_POINTS: for i in range(len(self.norms)): if phi == self.norms[i].phi and theta == self.norms[i].theta and radius == self.norms[i].radius: return i p = Point(phi = phi, theta = theta, radius = radius) self.norms.append(p) return len(self.norms) - 1 raise ValueError("Unrecognized params: x={} y={} z = {} phi={} theta={} radius={}".format(x,y,z,phi,theta,radius)) ######## # Creates a new point and appends it to the model's list. If point already exists # in list and USE_MINIMAL_POINTS set to True, does not create new point. # Params: # x, y, z : Cartesian coordinates of the point. # phi : Declination from positive z-axis. # theta : Rotation clockwise from positive x-axis. # radius : Distance from the origin. # Returns: Index of the point def add_point(self, x = None, y = None, z = None, phi = None, theta = None, radius = None): if x != None and y != None and z != None: if USE_MINIMAL_POINTS: for i in range(len(self.points)): # search for already existing point if x == self.points[i].x and y == self.points[i].y and z == self.points[i].z: return i p = Point(x = x, y = y, z = z) self.points.append(p) return len(self.points) - 1 elif phi != None and theta != None and radius != None: if USE_MINIMAL_POINTS: for i in range(len(self.points)): if phi == self.points[i].phi and theta == self.points[i].theta and radius == self.points[i].radius: return i p = Point(phi = phi, theta = theta, radius = radius) self.points.append(p) return len(self.points) - 1 raise ValueError("Unrecognized params: x={} y={} z = {} phi={} theta={} radius={}".format(x,y,z,phi,theta,radius)) ######## # Creates a new triangle and appends it to the model's list. # Params: # p1, p2, p3 : Indexes of triangle corners in the model's points array. # norm : Index of triangle normal in the model's norms array. # Returns: Index of the new triangle def add_tri(self, p1, p2, p3, norm): tri = Model.Triangle(parent = self, p1 = p1, p2 = p2, p3 = p3, norm = norm) self.tris.append(tri) return len(self.tris) - 1 ######## # Divides all triangles in model into 4 smaller triangles. Used to generate # higher resolution cube. def subdivide_triangles(self): for i in range(len(self.tris)-1, -1, -1): # from back to not interfere when inserting tri = self.tris[i] midX = (self.points[tri.p1].x + self.points[tri.p2].x) / 2 midY = (self.points[tri.p1].y + self.points[tri.p2].y) / 2 midZ = (self.points[tri.p1].z + self.points[tri.p2].z) / 2 mid12idx = self.add_point(x = midX, y = midY, z = midZ) midX = (self.points[tri.p2].x + self.points[tri.p3].x) / 2 midY = (self.points[tri.p2].y + self.points[tri.p3].y) / 2 midZ = (self.points[tri.p2].z + self.points[tri.p3].z) / 2 mid23idx = self.add_point(x = midX, y = midY, z = midZ) midX = (self.points[tri.p3].x + self.points[tri.p1].x) / 2 midY = (self.points[tri.p3].y + self.points[tri.p1].y) / 2 midZ = (self.points[tri.p3].z + self.points[tri.p1].z) / 2 mid31idx = self.add_point(x = midX, y = midY, z = midZ) newTri = Model.Triangle(parent = self, p1 = mid23idx, p2 = mid31idx, p3 = mid12idx, norm = tri.norm) self.tris.insert(i + 1, newTri) newTri = Model.Triangle(parent = self, p1 = mid31idx, p2 = mid23idx, p3 = tri.p3, norm = tri.norm) self.tris.insert(i + 1, newTri) newTri = Model.Triangle(parent = self, p1 = mid12idx, p2 = tri.p2, p3 = mid23idx, norm = tri.norm) self.tris.insert(i + 1, newTri) # must occur after above tri.p2 = mid12idx tri.p3 = mid31idx ######## # Determines if the line segment intersects the given model using the # intersect function provided on initialization. # Params: # p1, p2 : Line endpoints. # Returns: True if segment intersects model, False otherwise def intersects(self, p1, p2): return self._intersectFcn(self._size, p1, p2) # Model ################ ################ # Light: Class containing all information about a point light. # Members: # loc : Location of light in the world space. # color : Light color as a 3-tuple of RGB values between 0 and 1. class Light: DEFAULT_COLOR = (1.0, 1.0, 1.0) ######## # Initializes internal variables. # Params: # x, y, z : Location of light in the world space. # color : Light color as a 3-tuple of RGB values between 0 and 1. def __init__(self, x = 0, y = 0, z = 0, color = None): self.loc = Point(x = x, y = y, z = z) if color != None: self.color = color else: self.color = copy(Light.DEFAULT_COLOR) ######## # Returns a vector matrix representation of location for translations. def mat(self): return self.loc.mat() # Light ################ ######## # Generates an approximation of a sphere with provided radius. # Params: # radius : Radius of sphere # numLaterals : Number of lateral divisions # numVerticals : Number of vertical (longitudinal) divisions # color : Model color as a 3-tuple of RGB values between 0 and 1. # Returns: Model object approximation of sphere def generate_sphere(radius = 1, numLaterals = 4, numVerticals = 6, color = Model.DEFAULT_COLOR): m = Model(color = color, size = radius * 2, intersectFcn = sphere_intersect) thetaStep = 2 * pi / numVerticals # clockwise rot from x thetaInc = thetaStep * 2 / numLaterals # each ring is shifted by 2/numLaterals rotations phiStep = pi / numLaterals # declination from pos z startTheta = 0 rightTheta = startTheta # goes clockwise from x-axis for i in range(numVerticals): # for each vertical strip botPhi = 0 leftTheta = startTheta rightTheta = startTheta + thetaStep startTheta += thetaStep botLeftIdx = m.add_point(phi = 0, theta = leftTheta, radius = radius) botLeft = m.points[botLeftIdx] botRightIdx = m.add_point(phi = 0, theta = rightTheta, radius = radius) botRight = m.points[botRightIdx] # goes down from z-axis for j in range(numLaterals): botPhi += phiStep leftTheta += thetaInc rightTheta += thetaInc topLeft = botLeft # copy previous data topLeftIdx = botLeftIdx topRight = botRight topRightIdx = botRightIdx botLeftIdx = m.add_point(phi = botPhi, theta = leftTheta, radius = radius) botLeft = m.points[botLeftIdx] if j > 0: # not the top, so include inverted triangle phi = (topLeft.phi + topRight.phi + botLeft.phi) / 3 theta = (topLeft.theta + topRight.theta + botLeft.theta) / 3 normIdx = m.add_norm(phi = phi, theta = theta, radius = radius) norm = m.norms[normIdx] m.add_tri(p1 = topLeftIdx, p2 = topRightIdx, p3 = botLeftIdx, norm = normIdx) if j < numLaterals - 1: # not the bottom, so include upright triangle botRightIdx = m.add_point(phi = botPhi, theta = rightTheta, radius = radius) botRight = m.points[botRightIdx] phi = (topRight.phi + botLeft.phi + botRight.phi) / 3 theta = (topRight.theta + botLeft.theta + botRight.theta) / 3 normIdx = m.add_norm(phi = phi, theta = theta, radius = radius) norm = m.norms[normIdx] m.add_tri(p1 = topRightIdx, p2 = botLeftIdx, p3 = botRightIdx, norm = normIdx) return m ######## # Generates a cube with provided side length. # Params: # size : Side length # trisPerSide : Triangles to generate per side. Must be odd power of 2. # color : Model color as a 3-tuple of RGB values between 0 and 1. # Returns: Model object of cube def generate_cube(size = 1, trisPerSide = 2, color = Model.DEFAULT_COLOR): m = Model(color = color, size = 1) halfSize = size / 2 # number of times to recursively subdivide triangles if trisPerSide % 2 != 0 or int(log2(trisPerSide)) % 2 == 0: # input validation raise ValueError("Invalid number of triangles. Must be odd power of 2.") numDivisions = (int(log2(trisPerSide)) - 1) // 2 # generate pos x-y and neg x-y separately for mul in (-1, 1): # upper A tris p1idx = m.add_point(x = mul * halfSize, y = -mul * halfSize, z = halfSize) p1 = m.points[p1idx] p2idx = m.add_point(x = mul * halfSize, y = -mul * halfSize, z = -halfSize) p2 = m.points[p2idx] p3idx = m.add_point(x = mul * halfSize, y = mul * halfSize, z = halfSize) p3 = m.points[p3idx] nIdx = m.add_norm(x = mul, y = 0, z = 0) n = m.norms[nIdx] m.add_tri(p1 = p1idx, p2 = p2idx, p3 = p3idx, norm = nIdx) # lower A tris p1idx = m.add_point(x = mul * halfSize, y = mul * halfSize, z = -halfSize) p1 = m.points[p1idx] m.add_tri(p1 = p1idx, p2 = p3idx, p3 = p2idx, norm = nIdx) # lower B tris p2idx = m.add_point(x = -mul * halfSize, y = mul * halfSize, z = -halfSize) p2 = m.points[p2idx] nIdx = m.add_norm(x = 0, y = mul, z = 0) n = m.norms[nIdx] m.add_tri(p1 = p1idx, p2 = p2idx, p3 = p3idx, norm = nIdx) # upper B tris p1idx = m.add_point(x = -mul * halfSize, y = mul * halfSize, z = halfSize) p1 = m.points[p1idx] m.add_tri(p1 = p1idx, p2 = p3idx, p3 = p2idx, norm = nIdx) p2idx = m.add_point(x = mul * halfSize, y = -mul * halfSize, z = halfSize) p2 = m.points[p2idx] nIdx = m.add_norm(x = 0, y = 0, z = 1) n = m.norms[nIdx] m.add_tri(p1 = p3idx, p2 = p1idx, p3 = p2idx, norm = nIdx) # bot tris p1idx = m.add_point(x = mul * halfSize, y = -mul * halfSize, z = -halfSize) p1 = m.points[p1idx] p2idx = m.add_point(x = -mul * halfSize, y = -mul * halfSize, z = -halfSize) p2 = m.points[p2idx] p3idx = m.add_point(x = mul * halfSize, y = mul * halfSize, z = -halfSize) p3 = m.points[p3idx] nIdx = m.add_norm(x = 0, y = 0, z = -1) n = m.norms[nIdx] m.add_tri(p1 = p1idx, p2 = p2idx, p3 = p3idx, norm = nIdx) while numDivisions > 0: m.subdivide_triangles() numDivisions -= 1 return m ######## # Generates a torus with provided size. # Params: # outRadius : Outer radius # inRadius : Inner radius # numStripes : Number of segments per cross-section # numDivisions : Number of divisions around center (number cross-sections) def generate_torus(outRadius = 1, inRadius = 0.5, numStripes = 6, numDivisions = 6): m = Model() # TODO: generate torus faceStep = 2 * pi / numDivisions # clockwise rot from posx (model view) stripeStep = 2 * pi / numStripes # clockwise rot from posx (division view) stripeInc = stripeStep * 2 / numDivisions # each stripe is shifted by 2/numDivisions rotations torusRad = (outRadius - inRadius) / 2 # actual radius used for calculations torusMid = (outRadius + inRadius) / 2 # center point of each cross-section for i in range(numStripes): for j in range(numDivisions): pass # NOTE: Currently, this is an empty model. Torus generation not supported yet. return m ######## # Main code architecture if run standalone. # Times generation of several models and saves models to file. if __name__ == "__main__": # generate various models print("Generating models... ", end = "") start = clock() sphereLowModel = generate_sphere(radius = 1, numLaterals = 6, numVerticals = 9) sphereLowModel.name = "sphereLow" cubeLowModel = generate_cube(size = 1, trisPerSide = 2) cubeLowModel.name = "cubeLow" torusLowModel = generate_torus(outRadius = 1, inRadius = 0.5, numStripes = 6, numDivisions = 6) torusLowModel.name = "torusLow" sphereMedModel = generate_sphere(radius = 1, numLaterals = 8, numVerticals = 12) sphereMedModel.name = "sphereMed" cubeMedModel = generate_cube(size = 1, trisPerSide = 8) cubeMedModel.name = "cubeMed" torusMedModel = generate_torus(outRadius = 1, inRadius = 0.5, numStripes = 8, numDivisions = 9) torusMedModel.name = "torusMed" sphereHighModel = generate_sphere(radius = 1, numLaterals = 16, numVerticals = 24) sphereHighModel.name = "sphereHigh" cubeHighModel = generate_cube(size = 1, trisPerSide = 32) cubeHighModel.name = "cubeHigh" torusHighModel = generate_torus(outRadius = 1, inRadius = 0.5, numStripes = 10, numDivisions = 12) torusHighModel.name = "torusHigh" elapsed = clock() - start print("Completed in {:.3f}s.".format(elapsed)) # validate file okay try: f = open(OUTPUT_FILE, 'w') except Exception: print("ERROR: Could not open output file.") f = None if f != None: # write objects to file print("Writing models to file... ", end = "") start = clock() f.write(str(sphereLowModel)) f.write(str(cubeLowModel)) f.write(str(torusLowModel)) f.write(str(sphereMedModel)) f.write(str(cubeMedModel)) f.write(str(torusMedModel)) f.write(str(sphereHighModel)) f.write(str(cubeHighModel)) f.write(str(torusHighModel)) f.close() elapsed = clock() - start print("Completed in {:.3f}s.".format(elapsed)) input("Press ENTER to close this window.")
true
27f1b357d40888e1fd534944aad45048e59e4035
Python
crudelens/prog_fr_art
/day03/todo.py
UTF-8
1,234
4.09375
4
[]
no_license
# Shopping list shopping_list = [] # Menu def menu_serve(): print(''' Choose an option: 1. Add Item 2. Remove Item 3. Show List 4. Quit ''') # Add item def add_item(item_name): shopping_list.append(item_name) print(f'{item_name} added to list\n {shopping_list}') # remove item def remove_item(item_name): shopping_list.remove(item_name) print(f'{item_name} removed from list\n {shopping_list}') # see all items def print_list(): print([i for i in shopping_list]) # quit program def quit_prog(): print("Quiting Program") if __name__ == "__main__": while True: menu_serve() try: input_frm_user = int(input("Enter choice: ")) if input_frm_user == 1: item = input("Enter item name: ") add_item(item) elif input_frm_user == 2: item = input("Enter item name: ") remove_item(item) elif input_frm_user == 3: print_list() elif input_frm_user == 4: quit_prog() break else: continue except ValueError as e: print("Bakwass Input")
true
f20859d7c36966a687091744abc2a3c2b62114fe
Python
jkoser/euler
/work/p314.py
UTF-8
3,947
3.109375
3
[]
no_license
#!/usr/bin/env python3 from fractions import Fraction from math import sqrt ratiomax = 0 bestpath = [] def step(r, pos, slope, path, area, perim): global ratiomax global bestpath x, y = pos if y == x - 1 or (slope == 1 and (x + y) % 2 == 1): d = (x - y - 1) // 2 pos1 = x1, y1 = (x - d), (y + d) perim1 = perim + d * sqrt(2) da = d * (d + 1) pos1 = x1, y1 = (x1 - 1), (y1 + 1) path1 = path + [pos1] perim1 += sqrt(2) / 2 da += Fraction(1, 4) ratio = (area + da) / perim1 if ratio > ratiomax: #print(path1, area + da, perim1) #print((area + da) / perim1) ratiomax = ratio bestpath = path1 return for dy in range(x - y, 0, -1): if slope < 0: dxmin = 0 else: dxmin = int(slope * dy) + 1 for dx in range(dxmin, min(dy, x - y - dy) + 1): da = dy * (Fraction(1, 2) * dy + (x - y - dy) - Fraction(1, 2) * dx) x1, y1 = (x - dx, y + dy) pos1 = x1, y1 path1 = path + [pos1] perim1 = perim + sqrt(dx * dx + dy * dy) if x1 == y1: ratio = (area + da) / perim1 if ratio > ratiomax: #print(path1, area + da, perim1) #print((area + da) / perim1) ratiomax = ratio bestpath = path1 else: slope1 = dx / dy step(r, pos1, slope1, path1, area + da, perim1) def show_path(r, path): for y in range(r, -1, -1): for x in range(0, r + 1): if (x, y) in path or (y, x) in path: print(' o', end='') else: print(' .', end='') print() def p314(r, showpath=True): global ratiomax global bestpath pos = (r, 0) path = [pos] ratiomax = 0 step(r, pos, -1, path, 0, 0) print(bestpath) print(ratiomax) if showpath: show_path(r, bestpath) def p314_dp(r, showpath=True): # (area, pathlen, path) tuple matrix m = [[]] * (r + 1) for y in range(r, -1, -1): m[y] = [None] * (r + 1) m[y][y] = (Fraction(0, 1), 0, [(y, y)]) if y < r: x0, y0 = y + Fraction(1, 2), y + Fraction(1, 2) a = (y + 1) * y0 - Fraction(1, 8) - Fraction(y0 * x0, 2) - Fraction((y + 1) * y, 2) m[y+1][y] = (a, sqrt(2) / 2, [(y, y+1), (y+1, y)]) for x in range(y + 2, r + 1): best_ratio = 0 best_area = 0 best_perim = 0 best_path = [] for dy in range(x - y, 0, -1): for dx in range(0, min(dy, x - y - dy) + 1): x0, y0 = x - dx, y + dy a0, p0, path0 = m[x0][y0] a = a0 + x * y0 - Fraction(dx * dy, 2) - Fraction(y0 * x0, 2) - Fraction(x * y, 2) p = p0 + sqrt(dx * dx + dy * dy) ratio = a / p if ratio > best_ratio: best_ratio = ratio best_area = a best_perim = p best_path = path0 + [(x, y)] m[x][y] = (best_area, best_perim, best_path) best_ratio = 0 best_path = 0 for x in range(1, r + 1): a, p, path = m[x][0] ratio = a / p if ratio > best_ratio: best_ratio = ratio best_path = path print(best_path) print(best_ratio) if showpath: show_path(r, best_path) for r in range(3, 50): p314(r, False) # show_path(250, [(214, 208), (220, 201), (226, 193), (230, 187), (234, 180), (238, 172), (242, 162), (244, 156), (246, 149), (247, 145), (248, 140), (249, 133), (250, 122)]) # p314(23, False) #for r in range(6, 11): # print('--- r = ' + str(r) + ' ---') # p314(r, True) # p314_dp(r, True)
true
b4d5b99fcd12af9a88112f9e0b24b41183055701
Python
DavidLohrentz/LearnPy3HardWay
/puppies.py
UTF-8
171
3.171875
3
[]
no_license
reps = int(input("\n\tHow many times to display puppy tracks? ")) print(f"\N{PAW PRINTS}" * reps) # a = 0 # while a < reps: # a += 1 # print(f"\N{PAW PRINTS}")
true
f5f250694bb03fa18efd2a28fa0640ca136176cf
Python
vpozdnyakov/fca_lazy_clf
/setup.py
UTF-8
1,967
2.828125
3
[ "MIT" ]
permissive
import setuptools setuptools.setup( name='fca_lazy_clf', packages=['fca_lazy_clf'], version='0.3', license='MIT', description='Lazy binary classifier based on Formal Concept Analysis', long_description=""" ### Installation ```sh $ pip install fca_lazy_clf ``` ### Requirements The train and test datasets must be represented as ```pandas.DataFrame```. The classifier uses only attributes of types ```numpy.dtype('O')```, ```np.dtype('int64')``` and attributes with 2 any values. Other attributes will not be used. The target attribute must be binary. ### Example ```python >>> import fca_lazy_clf as fca >>> import pandas as pd >>> from sklearn import model_selection >>> data = pd.read_csv('https://datahub.io/machine-learning/tic-tac-toe-endgame/r/tic-tac-toe.csv') >>> data.head() TL TM TR ML MM MR BL BM BR class 0 x x x x o o x o o True 1 x x x x o o o x o True 2 x x x x o o o o x True 3 x x x x o o o b b True 4 x x x x o o b o b True >>> X = data.iloc[:, :-1] # All attributes except the last one >>> y = data.iloc[:, -1] # Last attribute >>> X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33, random_state=0) >>> clf = fca.LazyClassifier(threshold=0.000001, bias='false') >>> clf.fit(X_train, y_train) >>> clf.score(X_test, y_test) 0.9716088328075709 ``` """, long_description_content_type="text/markdown", author='Vitaliy Pozdnyakov', author_email='pozdnyakov.vitaliy@yandex.ru', url='https://github.com/vpozdnyakov/fca_lazy_clf', keywords=['fca', 'formal-concept-analysis', 'lazy-learning', 'binary-classification'], install_requires=[ 'pandas', 'numpy', 'sklearn', ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], )
true
70f3b5a7de972d6428a84012c41978696ddc2579
Python
Vinograd17/Python
/HW 5/hw5_task_1.py
UTF-8
230
3.75
4
[]
no_license
# Task 1 with open('my_file.txt', 'w') as f_obj: while True: if input('To stop enter "q", any other letter to continue: ') == 'q': break line = input('Enter text: ') print(line, file=f_obj)
true
bff71f635c0913bcb0bf79f6f5c7c9a172bd8b8a
Python
sdytlm/sdytlm.github.io
/downloads/code/LeetCode/Python/Reconstruct-Itinerary.py
UTF-8
560
3.359375
3
[]
no_license
class Solution(object): def findItinerary(self, tickets): """ :type tickets: List[List[str]] :rtype: List[str] """ # Create a dict with list in the value part target = collections.defaultdict(list) for i,j in sorted(tickets)[::-1]: targets[i] += j, ret = [] def visit(airport): while targets[airport]: visit(targets[airport].pop()) # find destination ret.append(airport) visit('JFK') return ret[::-1]
true
804531a04e9c8fa5ac38f51243885917ba825bb2
Python
NicoJG/Anfaengerpraktikum
/V355/frequenzentheorie.py
UTF-8
1,413
2.6875
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import json from scipy.optimize import curve_fit def vMinus_theorie(L,C,Ck): return 1/(2 *np.pi * np.sqrt(L/((1/C)+2/(Ck)))) def vPlus_theorie(L,C): return 1/(2*np.pi*np.sqrt(L*C)) # Konstanten im Experiment L = 23.9540 * 10**(-3) C = 0.7932 *10**(-9) # Daten einlesen Ck_gemessen,vPlus_gemessen,vMinus_gemessen = np.genfromtxt('frequenzen.csv',delimiter=',',unpack=True) vPlus_gemessen = vPlus_gemessen*10**3 # Hz vMinus_gemessen = vMinus_gemessen*10**3 # Hz Ck_gemessen = Ck_gemessen*10**(-9) # F Ck_linspace= np.linspace(0.5,12.5,100) # Plot der Daten plt.plot(Ck_gemessen*10**(9), vMinus_gemessen*10**(-3), 'rx', label='Messwerte') #plt.plot(Ck_gemessen*10**(9), vPlus_gemessen*10**(-3), 'kx', label='Messwerte (v+)') # Plot der Theoriekurve plt.plot(Ck_linspace, vMinus_theorie(L,C,Ck_linspace*10**(-9))*10**(-3), 'b-', label='Theoriekurve') #plt.plot(Ck_linspace, (Ck_linspace/Ck_linspace)*vPlus_theorie(L,C)*10**(-3), 'y-', label='Theoriekurve (v+)') # Achsenbeschriftung plt.xlabel(r'$C_\text{k} \:/\: \si{\nano\farad}$') plt.ylabel(r'$\nu \:/\: \si{\kilo\hertz}$') # in matplotlibrc leider (noch) nicht möglich plt.legend(loc='best') plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) plt.grid(True,which="both", linestyle='--') # Speicherort plt.savefig('build/plot_frequenzentheorie.pdf')
true
557378b33172f2e48e27db48be5f3e27144ff4fa
Python
unclebae/python3-data-analysis
/ch02/convertArray.py
UTF-8
439
3.703125
4
[]
no_license
# _*_ coding: utf-8 _*_ import numpy as num a = num.array([ 1. + 1.j, 3. + 2.j]) print("num.array([ 1. + 1.j, 3. + 2.j]) : ", a) # tolist()함수를 이용하여 배열을 리스트로 변환한다. print("a.tolist() : ", a.tolist()) # 배열을 특정 타입의 배열로 변환한다. print("a.astype(int) : ", a.astype(int)) # 배열을 복소수형 타입으로 변환한다. print("a.astype('complex') : ", a.astype('complex'))
true
a807f3f31808e7042d17b0a9611669a780b30b75
Python
FP1212/FP
/Test_QUEEN_ATTACK_Federico_Pinilla_Tarazona/Test_QueenAttack.py
UTF-8
2,500
2.8125
3
[]
no_license
''' Created on 17/10/2019 @author: FP ''' import array n=0; k=0; rq=0; cq=0; ro=0; co=0; p=255; limite_inferior=0; limite_superior=100000; direccion=8; cuadros_restantes=0; import re parametros_in=open("prueba.txt","r"); acumulador=0; for lineas in parametros_in.readlines(): temp = re.findall(r'\d+', lineas); res = list(map(int, temp)); if acumulador==0: n=res[0]; k=res[1]; tablero=[[0 for x in range(n)]for y in range(n)]; obstaculos=[[0 for x in range(2)]for y in range(k)]; elif acumulador==1: rq=res[0]-1; cq=res[1]-1; tablero[rq][cq]=1; else: obstaculos.append(res); acumulador=acumulador+1; parametros_in.close(); def Adir(rq,cq,i): return rq-i,cq def Bdir (rq,cq,i): return rq,cq-i def Cdir (rq,cq,i): return rq-i,cq-i def Ddir (rq,cq,i): return rq+i,cq def Edir (rq,cq,i): return rq,cq+i def Fdir (rq,cq,i): return rq+i,cq+i def Gdir (rq,cq,i): return rq-i,cq+i def Hdir (rq,cq,i): return rq+i,cq-i direcciones={0:Adir,1:Bdir,2:Cdir,3:Ddir,4:Edir,5:Fdir,6:Gdir,7:Hdir}; detectados_direccion=array.array('B', [True] * direccion); if n<limite_inferior:n=0; elif n>=limite_superior:n=limite_superior; if k<=limite_inferior:k=limite_inferior; elif k>=limite_superior:k=limite_superior; for i in obstaculos: tablero[i[0]-1][i[1]-1]=3; for i in range(n): p=int(''.join(map(str, map(int, detectados_direccion))), 2) if p==0: break; for j in range (direccion): try: resultado=direcciones[j](int(rq),int(cq),int(i+1)); bandera=detectados_direccion[j]; q=resultado[0]; c=resultado[1]; if tablero[q][c] !=3 and tablero[q][c] !=1 and (not(q>=n or c>=n or q<0 or c<0)) and bandera==True: tablero[q][c]=2; cuadros_restantes=cuadros_restantes+1; else: detectados_direccion[j]=False; except: detectados_direccion[j]=False; print("Se Encontraron ",cuadros_restantes,"Cuadros Por Los Cuales Se Puede Desplazar La Reina");
true
aad1dba2d235dbcd830545d6e9e3f883a5b59bf0
Python
jaabee/daily_code
/Django_Code/mysite/blog/forms.py
UTF-8
962
2.5625
3
[]
no_license
# @Time : 2020/11/17 21:38 # @Author : GodWei # @File : forms.py from django import forms from .models import Comment # Django表单,通过继承Form基类创建了一个表单 class EmailPostForm(forms.Form): # 该字段类型显示为<input type='text'>HTML元素 name = forms.CharField(max_length=25) email = forms.EmailField() to = forms.EmailField() class CommentForm(forms.ModelForm): # 1.required=False 将comments设置为可选项等 # 2.默认的微件可通过widget被覆写,如下使用了Textarea微件, # 将其显示为<textarea>HTML元素,而非默认状态下的<input>元素 comments = forms.CharField(required=False, widget=forms.Textarea) class Meta: # 指定一个模型创建Meta类中的表单。 model = Comment # 通知当前框架希望在表单中包含哪些字段;也可采用exclude列表定义希望排除的字段 fields = ('comments',)
true
f47adc889daa101d6697768e037a7c9e09a9ec2b
Python
mkt-Do/codewars
/python/tests/test_sum_of_numbers_from_0_to_N.py
UTF-8
424
3.6875
4
[]
no_license
from codewars.sum_of_numbers_from_0_to_N import show_sequence from codewars.test import Test class TestSumOfNumbersFrom0ToN(Test): def test_show_sequence(self): self.describe("Example Tests") tests = ( (6, "0+1+2+3+4+5+6 = 21"), (7, "0+1+2+3+4+5+6+7 = 28"), (0, "0=0"), (-1, "-1<0"), (-10, "-10<0"), ) for inp, exp in tests: self.assert_equals(show_sequence(inp), exp)
true
e15a108c13d3a66312478bd2159f90e39adda5e0
Python
DaianeFeliciano/python-fatec
/atv105.py
UTF-8
1,778
4.28125
4
[]
no_license
import os import sys def lerNumero(): N = int(input('Digite um número: ')) return N def numeroParouImpar(N): if N % 2 == 0: print("Número {} é par".format(N)) return True else: print("Número {} é impar".format(N)) return False def numeroPrimo(N): contdiv = 0; for i in range(1, N + 1, 1): if N % i == 0: contdiv += 1; # incrementa 1 ao contdiv if contdiv == 2: return True # é primo else: return False # não é primo def somaPrimos( x, y ): somaprimo=0 for i in range (x, y+1): if numeroPrimo (i): somaprimo+= i # acumular os pares somapar = somapar + i return somaprimo def controle(): itemMenu = 0 linhasMenu = '\n\033[1;96m**Menu de Controle**\033[m' linhasMenu += '\n 1 Ler' linhasMenu += '\n 2 Par ou Impar' linhasMenu += '\n 3 Verificar Primo' linhasMenu += '\n 4 Somar Primo' linhasMenu += '\n 5 Sair' linhasMenu += '\n Item: ' while True: itemMenu = int(input(linhasMenu)) if itemMenu == 1: numero = lerNumero() elif itemMenu == 2: parouimpar = numeroParouImpar(numero) elif itemMenu == 3: primo = numeroPrimo(numero) status = numeroPrimo(numero) if status: print(f'O número {numero} é um número primo.') else: print(f'O número {numero} não é um número primo.') elif itemMenu == 4: x = somaPrimos(1,numero) print('A soma dos números primos de 1 até {} é {}'.format(numero, x)) elif itemMenu == 5: print("Programa Finalizado") break sys.exit() controle()
true
f6c8f7a8b5ca78935d060f50f264ca2b83c177ea
Python
ketasaka/Python_study
/提出/sakamotokeita_1_10.py
UTF-8
199
4.09375
4
[]
no_license
a = input("文字の入力:") b = int(input("整数の入力:")) c = input("小数の入力:") print("入力された文字 =",a) print("入力された整数 =",b) print("入力された小数 =",c)
true
938915d4fe69c7a61b5303d25f7aa2d6e060362c
Python
arunkumarpalaniappan/algorithm_tryouts
/arrays_matrices/compression.py
UTF-8
635
3.203125
3
[ "MIT" ]
permissive
def compressString(string): newString = '' index = 0 tempCount = 1 while index < len(string): tempIndex = 1 while index+tempIndex < len(string) and string[index] == string[index+tempIndex]: tempCount+=1 tempIndex+=1 newString = newString + string[index]+str(tempCount) tempCount = 1 index = index + tempIndex if len(string) <= len(newString): return string else: return newString print compressString('test') # test ,O(n) print compressString('thissusssssss') # a3b3c3a3,O(n) print compressString('compression') # compression,O(n)
true
ec4d7e70f8b229d97fa0c8033f087a46f7d8ccf3
Python
kurtw29/algorithmPractice
/maxPalindrome.py
UTF-8
1,846
3.625
4
[]
no_license
def findPalindromeLength(index, arr): #odd palindrome trackerOdd = 1 i = 1 while(index-i >= 0 and index+i < len(arr)): if arr[index-i] == arr[index+i]: trackerOdd += 2 i += 1 else: break #even palindrome trackerEven = 0 if index < len(arr)-1 and arr[index] == arr[index+1]: trackerEven += 2 j = 1 while(index-j >= 0 and index+1+j < len(arr)): if arr[index-j] == arr[index+1+j]: trackerEven += 2 j += 1 else: break if trackerOdd > trackerEven: return trackerOdd else: return trackerEven def maxPalindrome(arr): max = { "index": 0, "length": 0 } for i in range(len(arr)): # print(i, "and arr[i]: ", arr[i]) p = findPalindromeLength(i, arr) # print("pLength: ",p) if p > max["length"]: max["index"] = i max["length"] = p if max["length"] > 1: if max["length"] % 2 != 0: output = arr[max["index"]] # print((max["length"]-1)/2) for j in range(1,int((max["length"]-1)/2)+1): output = arr[max["index"]-j] + output + arr[max["index"]+j] return output else: # max["length"] % 2 == 0 (even palindrome) output = arr[max["index"]] + arr[max["index"]+1] if max["length"]/2 - 1 > 0: for j in range(1,int((max["length"]/2))): output = arr[max["index"]-j] + output + arr[max["index"]+1+j] return output else: "no palindrome found" arr = "jjjjjjbcajacbjabaj" print("string:", arr, "\nlongest palindrom: ",maxPalindrome(arr)) arr = "dbcqbbabad" print("string:", arr, "\nlongest palindrom: ",maxPalindrome(arr))
true
35ed736b6d2ebedefb6eac7b916957a370efabe6
Python
knschuckmann/Modul-Learning-From-Images
/lfi-01/Dennis Baskan/lfi-01/filter.py
UTF-8
3,351
3.6875
4
[]
no_license
""" Kostja Comments: - Can u explain the ravel() function and why you dont give it a order?? in im2double - when using convolution2d is it fastser to create the variables and not claculate with calculated values? - Very nice codestyle - Is Gausian Vlur required before aplying the sobel? - why do you use angle """ import numpy as np import cv2 from time import time as t import timeit def im2double(im): """ Converts uint image (0-255) to double image (0.0-1.0) and generalizes this concept to any range. :param im: :return: normalized image """ min_val = np.min(im.ravel()) max_val = np.max(im.ravel()) out = (im.astype('float') - min_val) / (max_val - min_val) return out def make_gaussian(size, fwhm = 3, center=None): """ Make a square gaussian kernel. size is the length of a side of the square fwhm is full-width-half-maximum, which can be thought of as an effective radius. """ x = np.arange(0, size, 1, float) y = x[:,np.newaxis] if center is None: x0 = y0 = size // 2 else: x0 = center[0] y0 = center[1] k = np.exp(-4*np.log(2) * ((x-x0)**2 + (y-y0)**2) / fwhm**2) return k / np.sum(k) def convolution_2d(img, kernel,mode='padding'): """ Computes the convolution between kernel and image :param img: grayscale image :param kernel: convolution matrix - 3x3, or 5x5 matrix :return: result of the convolution """ k = kernel.shape[0] offset = int(k/2) imgm,imgn = img.shape if mode == 'padding': #img = np.pad(img,[(moff,moff2),(noff,noff2)]) img = np.pad(img,offset) #calculate convolution m = [np.sum(img[i:i+k,j:j+k] * kernel) for i in range(imgm) for j in range(imgn)] newimg = np.matrix(m).reshape((imgm,imgn)) return newimg if __name__ == "__main__": # 1. load image in grayscale+scale frame = cv2.imread('heart.jpg',0) #frame = cv2.imread('Lenna.png',0) m,n = frame.shape[:2] s = 0.35 frame = cv2.resize(frame,(int(n*s),int(m*s))) # 2. convert image to 0-1 image (see im2double) frame = im2double(frame) # image kernels sobelmask_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) sobelmask_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) gk = make_gaussian(11) # 3. use image kernels on normalized image frame = convolution_2d(frame,gk) print("Gaussian Blur Done!") sobel_x = convolution_2d(frame,sobelmask_x) print("Sobel X Done!") sobel_y = convolution_2d(frame,sobelmask_y) print("Sobel Y Done!") # 4. compute magnitude of gradients mog = np.sqrt(np.multiply(sobel_x,sobel_x)+np.multiply(sobel_y,sobel_y)) print("MOG Done!") angle = np.arctan2(sobel_y,sobel_x) print("Angle Done!") # Show resulting images cv2.imshow("sobel_x", sobel_x) cv2.imshow("sobel_y", sobel_y) cv2.imshow("mog", mog) cv2.waitKey(0) cv2.destroyAllWindows() ''' References: -https://lms.beuth-hochschule.de/pluginfile.php/781445/mod_resource/content/0/LFI-02-ImageProcessing.pdf -https://docs.scipy.org/doc/numpy/reference/ -https://docs.python.org/2/library/timeit.html -https://joblib.readthedocs.io/en/latest/parallel.html ''' np.matrix(4).reshape((2,2))
true
52b1ed386f65bb237f6737a2b76febad05f5a0b3
Python
BnkColon/parallel
/mergeParallel.py
UTF-8
6,761
3.40625
3
[ "MIT" ]
permissive
# Bianca I. Colon Rosado # This file is: mergeParallel.py # To compile $ python mergeParallel.py # I make this program last semester after CCOM3034. # Learning Parallel and learning Python for my own in a Coursera class. # http://www.tutorialspoint.com/python/python_multithreading.htm # https://docs.python.org/dev/library/multiprocessing.html # http://sebastianraschka.com/Articles/2014_multiprocessing_intro.html from multiprocessing import Process, Pipe import time, random, sys # why we use sys: The list of command line arguments passed to a Python script. #https://docs.python.org/2/library/sys.html #Dependencies defined below main() def main(): """ This is the main method, where we: - generate a random list. (it's more easy) - time a sequential mergesort on the list. - time a parallel mergesort on the list. - time Python's built-in sorted on the list. """ print(''' # # ##### ## ## ###### ##### #### ###### # # #### ##### ##### # # # # # # # # # # # # # # # # # # # ##### # # # ##### ##### # # # # # # # # ##### # ### # # # # ##### # # # # # # # # # # # # # # # # # # ###### # # #### ###### ##### #### # # # ''') N = 500000 if len(sys.argv) > 1: #the user input a list size. N = int(sys.argv[1]) #We want to sort the same list, so make a backup. lystbck = [random.random() for x in range(N)] #Sequential mergesort a copy of the list. lyst = list(lystbck) start = time.time() #start time lyst = mergesort(lyst) elapsed = time.time() - start #stop time if not isSorted(lyst): print('Sequential mergesort did not sort. oops.') print('Sequential mergesort: %f sec' % (elapsed)) # I don't know why, I saw this line in a lot of implementations. # I believe, it's required time.sleep(3) #Now, parallel mergesort. lyst = list(lystbck) start = time.time() n = 3 #Instantiate a Process and send it the entire list, #along with a Pipe so that we can receive its response. pconn, cconn = Pipe() p = Process(target=mergeSortParallel, \ args=(lyst, cconn, n)) p.start() lyst = pconn.recv() #Blocks until there is something (the sorted list) #to receive. p.join() elapsed = time.time() - start print(''' ###### ###### # # ## ##### ## # # ###### # # # ##### #### #### ##### ## # # # # # # # #### # # # # # # # # # # # # # # # # # # # # # # # # ## ## ## ## # ## # # # ###### # # # # # # # # ##### # ###### # # # # # # # # # # ## # # ## # # # # # # # ###### ##### ###### # # # # # ##### # # # ### ##### ###### # # # # # # # # # ### # # # # # # # # # # # # # # # # # # # # # # # # # # # # ## # # # # # # # # # ###### ###### ###### ###### # # # #### #### # # # # # # # # # # # #### ''') if not isSorted(lyst): print('mergeSortParallel did not sort. oops sorry.') print('Parallel mergesort: %f sec' % (elapsed)) time.sleep(3) #Built-in test. lyst = list(lystbck) start = time.time() lyst = sorted(lyst) elapsed = time.time() - start print('Built-in sorted: %f sec' % (elapsed)) def merge(left, right): """returns a merged and sorted version of the two already-sorted lists.""" ret = [] li = ri = 0 while li < len(left) and ri < len(right): if left[li] <= right[ri]: ret.append(left[li]) li += 1 else: ret.append(right[ri]) ri += 1 if li == len(left): ret.extend(right[ri:]) else: ret.extend(left[li:]) return ret def mergesort(lyst): """ The seemingly magical mergesort. Returns a sorted copy of lyst. Note this does not change the argument lyst. """ if len(lyst) <= 1: return lyst ind = len(lyst)//2 return merge(mergesort(lyst[:ind]), mergesort(lyst[ind:])) def mergeSortParallel(lyst, conn, procNum): """mergSortParallel receives a list, a Pipe connection to the parent, and procNum. Mergesort the left and right sides in parallel, then merge the results and send over the Pipe to the parent.""" #Base case, this process is a leaf or the problem is #very small. if procNum <= 0 or len(lyst) <= 1: conn.send(mergesort(lyst)) conn.close() return ind = len(lyst)//2 #Create processes to sort the left and right halves of lyst. #In creating a child process, we also create a pipe for that #child to communicate the sorted list back to us. pconnLeft, cconnLeft = Pipe() leftProc = Process(target=mergeSortParallel, \ args=(lyst[:ind], cconnLeft, procNum - 1)) #Creat a process for sorting the right side. pconnRight, cconnRight = Pipe() rightProc = Process(target=mergeSortParallel, \ args=(lyst[ind:], cconnRight, procNum - 1)) #Start the two subprocesses. leftProc.start() rightProc.start() #Recall that expression execution goes from first evaluating #arguments from inside to out. So here, receive the left and #right sorted sublists (each receive blocks, waiting to finish), #then merge the two sorted sublists, then send the result #to our parent via the conn argument we received. conn.send(merge(pconnLeft.recv(), pconnRight.recv())) conn.close() #Join the left and right processes. leftProc.join() rightProc.join() def isSorted(lyst): """ Return whether the argument lyst is in non-decreasing order. """ #Cute list comprehension way that doesn't short-circuit. #return len([x for x in # [a - b for a,b in zip(lyst[1:], lyst[0:-1])] # if x < 0]) == 0 for i in range(1, len(lyst)): if lyst[i] < lyst[i-1]: return False return True #Execute the main method now that all the dependencies #have been defined. #The if __name is so that pydoc works and we can still run #on the command line. if __name__ == '__main__': main()
true
55148641c7e637e19ad100e0aa596a304c74241a
Python
LuciraSilva/FreelaDev
/app/models/contractor_model.py
UTF-8
2,011
2.78125
3
[]
no_license
from app.configs.database import db from dataclasses import dataclass from werkzeug.security import generate_password_hash, check_password_hash import re from flask import request, jsonify @dataclass class ContractorModel(db.Model): name: str email: str cnpj: str __tablename__ = 'contractors' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=False) email = db.Column(db.String, nullable=False, unique=True) password_hash = db.Column(db.String, nullable=False) cnpj = db.Column(db.String, nullable=True, unique=True) @property def password(self): raise AttributeError("Password cannot be accessed!") @password.setter def password(self, password_to_hash): self.password_hash = generate_password_hash(password_to_hash) def verify_password(self, password_to_compare): return check_password_hash(self.password_hash, password_to_compare) @staticmethod def verify_pattern_email(email): pattern_email = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' if(re.fullmatch(pattern_email, email)): return True else: return False @staticmethod def verify_pattern_password(password): pattern_password = "^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*#?&])[A-Za-z\d@$!#%*?&]{6,20}$" if(re.search( pattern_password, password)): return True return False @staticmethod def verify_cnpj(cnpj): pattern_cnpj = r'(^\d{2}.\d{3}.\d{3}/\d{4}-\d{2}$)' if(re.fullmatch(pattern_cnpj, cnpj)): return True else: return False @staticmethod def unique_email(user_email): user = ContractorModel.query.filter_by(email=user_email).first() if user: return True @staticmethod def unique_cnpj(user_cnpj): user = ContractorModel.query.filter_by(cnpj=user_cnpj).first() if user: return True
true
8f21b4e9a89dc3e6605ec185a87bb98992fc667b
Python
Aasthaengg/IBMdataset
/Python_codes/p03146/s788338217.py
UTF-8
195
3
3
[]
no_license
s=int(input()) a=[s] res=0 while True: tmp=0 if a[res]%2==0: tmp=a[res]/2 else: tmp=3*a[res]+1 res+=1 if tmp in a: break a.append(tmp) print(res+1)
true
4fcd5f7a94f65e8208038c8f3ad8ad80fbf84495
Python
zhipenglu/xist_structure
/pca2tracks.py
UTF-8
1,819
2.796875
3
[]
no_license
""" pca2tracks.py This script converts the PCA analysis results for RIP/CLIP enrichment to a minimal number of tracks for display on IGV. This approach provides more useful information than the heatmap. The input file is *pca_array.pc.txt, and output are the first few tracks that explain the most variance (e.g. *pc1.bedgraph). Input format: Interval NAME MEAN PC1 PC2 ... hsXIST_0_100 hsXIST_0_100 value value value ... Example: cd /Users/lu/Documents/chang/eCLIP/fripsum python ~/Documents/scripts/pca2tracks.py \ frip_gap_hsXIST_geometric_100nt_pca_array.pc.txt 7 \ frip_gap_hsXIST_geometric_100nt_pca_array For the PCA results from gene level, need to transpose the matrix############### python ~/Documents/scripts/pca2tracks.py \ frip_gap_hsXIST_geometric_100nt_pca_gene.pc.txt 7 array \ frip_gap_hsXIST_geometric_100nt_pca_gene """ import sys if len(sys.argv) < 4: print "Usage: python pca2tracks.py pca_file track_number dim output_prefix" print "dim: gene or array" sys.exit() pcafile = open(sys.argv[1], 'r') ntracks = int(sys.argv[2]) dimension = sys.argv[3] outputprefix = sys.argv[4] pcadata = pcafile.readlines()[1:] #input as a list, remove the header line pcamatrix = [line.strip('\n').split() for line in pcadata] meanbedgraph = open(outputprefix + "_mean.bedgraph", 'w') #output mean bedgraph meanout = '' for row in pcamatrix: meanout += ('\t'.join(row[0].split('_') + row[2:3]) +'\n') meanbedgraph.write(meanout) meanbedgraph.close() for i in range(ntracks): #output major principal component tracks pctrack = open(outputprefix + '_pc' + str(i+1) + '.bedgraph', 'w') pctrackout = '' for row in pcamatrix: pctrackout += ('\t'.join(row[0].split('_') + row[3+i:4+i]) + '\n') pctrack.write(pctrackout) pctrack.close() pcafile.close()
true
41661be35d826e93188e0074f02d1248dcb4317f
Python
chang-change/9eqModel_KNFandLSTM
/Post-processing/compare_long_term_statistics.py
UTF-8
3,843
2.9375
3
[]
no_license
""" compare_long_term_statistics.py --------------------- This file compares the performance of KNF, HDMD, and LSTM models in the reproduction of the long-term statistics by producing Figures 5 of the paper. Requires: stats_KNF_model_name.npz - reproduction of the long-term statistics by KNF. stats_HDMD_model_name.npz - reproduction of the long-term statistics by HDMD. stats_LSTM_model_name.npz - reproduction of the long-term statistics by LSTM. Each of these files contain a 2-D array of size (nGP, 6) where nGP - number of grid points Rows represent: u_ref u_pred uu_ref uu_pred uv_ref uv_pred Creates: Figures 5 of the paper. The code has been used for the results in: "Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence" Hamidreza Eivazi, Luca Guastoni, Philipp Schlatter, Hossein Azizpour, Ricardo Vinuesa International Journal of Heat and Fluid Flow (accepted) https://arxiv.org/abs/2005.02762 """ import numpy as np from matplotlib import pyplot as plt from scipy.interpolate import make_interp_spline plt.rc('text', usetex = True) plt.rc('font', family = 'serif') plt.rc('axes', labelsize = 16, linewidth = 1) plt.rc('font', size = 14) plt.rc('legend', fontsize = 12, handletextpad=0.3) plt.rc('xtick', labelsize = 14) plt.rc('ytick', labelsize = 14) direc = './../Predictions/' models = ['KNF_10000_5', 'HDMD_10000_5', 'LSTM1_t10000'] knf = np.loadtxt(direc + 'stats_' + models[0] + '.txt') hdmd = np.loadtxt(direc + 'stats_' + models[1] + '.txt') lstm = np.loadtxt(direc + 'stats_' + models[2] + '.txt') u_ref = knf[0]; uu_ref = knf[2]; uv_ref = knf[4] u_knf = knf[1]; uu_knf = knf[3]; uv_knf = knf[5] u_hdmd = hdmd[1]; uu_hdmd = hdmd[3]; uv_hdmd = hdmd[5] u_lstm = lstm[1]; uu_lstm = lstm[3]; uv_lstm = lstm[5] Np = 21 Y = np.linspace(-1, 1, Np) Yn = np.linspace(-1, 1, 51) def spl(x): spl1 = make_interp_spline(Y, x, k=3) y = spl1(Yn) return y u_ref = spl(u_ref) u_knf = spl(u_knf) u_lstm = spl(u_lstm) u_hdmd = spl(u_hdmd) uu_ref = spl(uu_ref) uu_knf = spl(uu_knf) uu_lstm = spl(uu_lstm) uu_hdmd = spl(uu_hdmd) uv_ref = spl(uv_ref) uv_knf = spl(uv_knf) uv_lstm = spl(uv_lstm) uv_hdmd = spl(uv_hdmd) lsiz = 18 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharex = False, sharey = True, figsize = (10, 4)) ax1.plot(u_ref, Yn, color = 'k', linestyle = '--', label = 'Reference', linewidth = 1) ax1.plot(u_knf, Yn, color = 'tab:orange', linestyle = '-', label = 'KNF', linewidth = 1) ax1.plot(u_lstm, Yn, color = 'tab:blue', label = 'LSTM', linewidth = 1) ax1.plot(u_hdmd, Yn, color = 'tab:green', label = 'HDMD', linewidth = 1) ax1.set_xlabel('$\overline{u}$', fontsize = lsiz) ax1.set_ylabel('$y$', fontsize = lsiz) ax1.set_xlim(-0.5, 0.5) ax1.set_ylim(-1, 1) ax1.set_yticks(np.linspace(1, -1, 5)) ax1.legend(frameon = False, loc = 0) ax2.plot(uu_ref, Yn, color = 'k', linestyle = '--', linewidth = 1) ax2.plot(uu_knf, Yn, color = 'tab:orange', linestyle = '-', linewidth = 1) ax2.plot(uu_lstm, Yn, color = 'tab:blue', linewidth = 1) ax2.plot(uu_hdmd, Yn, color = 'tab:green', linewidth = 1) ax2.set_xlabel('$\overline{u^{\prime 2}}$', fontsize = lsiz) ax2.set_xlim(-0.01, 0.06) ax3.plot(uv_ref, Yn, color = 'k', linestyle = '--', linewidth = 1) ax3.plot(uv_knf, Yn, color = 'tab:orange', linestyle = '-', linewidth = 1) ax3.plot(uv_lstm, Yn, color = 'tab:blue', linewidth = 1) ax3.plot(uv_hdmd, Yn, color = 'tab:green', linewidth = 1) ax3.set_xlabel('$\overline{u^{\prime}v^{\prime}}$', fontsize = lsiz) ax3.set_xlim(-0.007, 0.001) plt.subplots_adjust(wspace = 0.3) # plt.savefig('statistics.pdf', bbox_inches='tight')
true
dd955cbd954e5f4a914336c509e4a38b115f07c4
Python
mgzhao/test
/modelmanager/distributed.py
UTF-8
2,167
2.609375
3
[]
no_license
import os import random import torch.distributed as td from torch.multiprocessing import Process def train(Model, model_args): # Run one worker node for each gpu gpus = model_args['gpus'] model_args["distributed"]["world_size"] *= len(gpus) processes = [] for gpu in gpus: p = Process(target=launch_worker_thread, args=(gpu, Model, model_args)) p.start() processes.append(p) for p in processes: p.join() def launch_worker_thread(gpu, Model, model_args): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu) model = Model(**model_args) model.train() def init_processes( world_size, sharedfile, group_name, backend='gloo', initialized=False ): """ Initialize the distributed environment. """ if not initialized: filepath = 'file://{}'.format(sharedfile) td.init_process_group( backend, init_method=filepath, group_name=group_name, world_size=world_size) rank = td.get_rank() return rank class Partition(object): def __init__(self, data, index): self.data = data self.index = index def __len__(self): return len(self.index) def __getitem__(self, index): data_idx = self.index[index] return self.data[data_idx] class DataPartitioner(object): def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234): self.data = data self.partitions = [] random.seed(seed) data_len = len(data) indexes = [x for x in range(0, data_len)] random.shuffle(indexes) for frac in sizes: part_len = int(frac * data_len) self.partitions.append(indexes[0:part_len]) indexes = indexes[part_len:] def use(self, partition): return Partition(self.data, self.partitions[partition]) def get_partition(dataset): size = td.get_world_size() partition_sizes = [1.0 / size for _ in range(size)] partition = DataPartitioner(dataset, partition_sizes) partition = partition.use(td.get_rank()) return partition
true
d244e73f778f596c0c9f213c7f83175c7079fff9
Python
hemanthkumark005/Insurance_classification_task
/trainer/model.py
UTF-8
1,965
2.53125
3
[]
no_license
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def def input_fn(features, labels, shuffle, num_epochs, batch_size): #Input function to generate data which will be used for model training. if labels is None: inputs = features else: inputs = (features, labels) dataset = tf.data.Dataset.from_tensor_slices(inputs) if shuffle: dataset = dataset.shuffle(buffer_size=len(features)) # We call repeat after shuffling, to prevent separate epochs from blending together. dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) return dataset def create_keras_model(input_dim, learning_rate): #Creating a DNN from Keras for classification #Returns a model which is ready to be trained Dense = tf.keras.layers.Dense model = tf.keras.Sequential( [ Dense(125, activation=tf.nn.relu, kernel_initializer='uniform', input_shape=(input_dim,)), Dense(75, activation=tf.nn.relu), Dense(65, activation=tf.nn.relu), Dense(40, activation=tf.nn.relu), Dense(25, activation=tf.nn.relu), Dense(1, activation=tf.nn.sigmoid) #since it is a binary classification, last layer is sigmoid ]) # using custom optimizer: optimizer = tf.keras.optimizers.RMSprop(lr=learning_rate) # Compile Keras model model.compile( loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model
true
a029f8b95bc862ea028df7eaa2d3f3ba9816b458
Python
alexhkurz/introduction-to-programming
/src/insertion_sort.py
UTF-8
534
4.03125
4
[]
no_license
list = [2,1] def mysort(list): new_list = [] # the sorted list for x in list: # insert x in new_list j = 0 # j is used to computer the index where to insert x # compare x against the elements y of new_list for y in new_list: if x <= y: break # insert x "here", ie at index j else: j = j + 1 # continue with the next element of new_list new_list.insert(j,x) return new_list print(mysort(list))
true
85c9b1df58172c0eb2a2f5a4ac6185c8807913bf
Python
linea-it/tno
/backend/skybot/skybot_server.py
UTF-8
11,011
2.9375
3
[ "MIT" ]
permissive
import os from datetime import datetime from io import StringIO from urllib.parse import urljoin import numpy as np import pandas as pd import requests from requests.exceptions import HTTPError class SkybotServer: """Esta classe tem a função de facilitar consultas ao serviço Skybot.""" def __init__(self, url): self.result_columns = [ "expnum", "band", "date_obs", "skybot_downloaded", "skybot_url", "download_start", "download_finish", "download_time", "filename", "file_size", "file_path", "import_start", "import_finish", "import_time", "count_created", "count_updated", "count_rows", "ccd_count", "ccd_count_rows", "ccd_start", "ccd_finish", "ccd_time", "error", ] # Url para o serviço do Skybot incluindo o endpoint. # exemplo: http://vo.imcce.fr/webservices/skybot/skybotconesearch_query.php self.server_url = url def __check_date(self, date): """Verifica se date é uma datetime, se for converte para string. Arguments: date {datetime} -- Data de observação. Returns: str -- Data de observação em no formato ("%Y-%m-%d %H:%M:%S") """ # Converte a data para string se for um objeto do tipo datetime. if isinstance(date, datetime): date = date.strftime("%Y-%m-%d %H:%M:%S") return date def __check_ra(self, ra): """Valida o valor para RA. que deve ser um float entre 0 e 360. Arguments: ra {float} -- valor para RA em degrees. Raises: Exception: lança excessão caso o valor de ra não seja um float ou seu valor não esteja entre 0 e 360. Returns: float -- RA """ ra = float(ra) if 0 <= ra <= 360: return ra else: raise Exception( "Right ascension or ecliptic longitude of the FOV center limits 0..360 degrees." ) def __check_dec(self, dec): """Valida o valor para Dec. que deve ser um float entre -90 e 90. Arguments: dec {float} -- valor para Dec em degrees. Raises: Exception: lança excessão caso o valor de dec não seja um float ou seu valor não esteja entre -90 e 90. Returns: float -- Dec """ dec = float(dec) if -90 <= dec <= 90: return dec else: raise Exception( "Declination or ecliptic latitude of the FOV center limits -90..+90 degrees." ) def __check_radius(self, radius): """Valida os valores para Radius, dever ser um float entre 0 e 10. Arguments: radius {float} -- Cone search radius in degrees. Raises: Exception: lança excessão caso o radius não seja um float ou seu valor não esteja entre 0 e 10. Returns: float -- radius """ radius = float(radius) if 0 <= radius <= 10: return radius else: raise Exception("Radius of the FOV must be float between 0 and 10 degrees.") def __get_ticket_from_response(self, data): """Read the output file and retrieve the ticket number on the second line. this ticket identifies the request that was made for the Skybot service. Arguments: data {str} -- response from skybot server Returns: int -- Ticket number, example: 166515392791779001 """ line = data.splitlines()[1] ticket = int(line.split(":")[1].strip()) return ticket def cone_search( self, date, ra, dec, radius, observer_location, position_error, output ): """Faz uma requisição ao serviço do skybot e grava o resultado em um arquivo. Utiliza a função conesearch do Skybot. Exemplo de uma url de requisição: # http://vo.imcce.fr/webservices/skybot/skybotconesearch_query.php?-ep=2012-11-10%2003:27:03&-ra=37.44875&-dec=-7.7992&-rd=1.1&-mime=text&-output=object&-loc=w84&-filter=0 a execução desta função sempre retornara o dict de resultado, mesmo que ocorra uma Excessão. neste caso o atributo success é False e error é preenchido com a Exception. para os casos de sucesso, success = True e error é None todos os outros campos serão preenchidos. Arguments: date {datetime} -- Epoch requested, expressed in Julian day or formatted as any English textual datetime. ra {float} -- Right ascension or ecliptic longitude of the FOV center in degrees. limits 0..360 degrees. dec {float} -- Declination or ecliptic latitude of the FOV center in degrees. limits -90..+90. radius {float} -- Radius of the FOV in degrees limits 0..10 degrees. observer_location {str} -- Code of the observer location based in this list of ObsCodes: https://minorplanetcenter.net//iau/lists/ObsCodes.html. position_error {float} -- Filter to retrieve only objects with a position error lesser than the given value. optional parameter 0 implies no filter Default: 120 arcsec . output {str} -- filepath p Returns: {dict} -- returns a dict with the request information, execution time, status... dict({ 'success': False, 'ticket': None, # Identificação retornada pelo skybot. 'positions': 0, # Quantidade de posições encontradas. 'start': None, # Inicio do Download. 'finish': None, # Fim do Download 'execution_time': 0, # Tempo de execução do download. 'file_size': 0, # Tamanho do arquivo criado 'skybot_url': None, # Url usada na requisição ao skybot 'error': None # Caso ocorra alguma excessão ela sera colocada neste campo. }) """ t0 = datetime.now() result = dict( { "success": False, "ticket": None, "positions": 0, "start": None, "finish": None, "execution_time": 0, "output": None, "file_size": 0, "skybot_url": None, "error": None, } ) try: # Monta a url para o serviço do skybot na função de conesearch # exemplo: http://vo.imcce.fr/webservices/skybot/skybotconesearch_query.php url = urljoin(self.server_url, "skybotconesearch_query.php") # Faz a requisição r = requests.get( url, params={ "-ep": self.__check_date(date), "-ra": self.__check_ra(ra), "-dec": self.__check_dec(dec), "-rd": self.__check_radius(radius), "-loc": str(observer_location), "-mime": "text", "-output": "all", "-filter": float(position_error), }, ) # Checa o status da requisição # If the response was successful, no Exception will be raised r.raise_for_status() # Cria um arquivo com o resultado with open(output, "w+") as csv: csv.write(r.text) # Atualiza o dict de retorno com os dados da execução. result.update( { "success": True, "skybot_url": r.url, "file_size": os.path.getsize(output), "ticket": self.__get_ticket_from_response(r.text), "positions": len(r.text.splitlines()) - 3, } ) # Checa se o resultdo retornado pelo Skybot possui algum valor Nulo. # Caso um dos campos esteja Nulo o resultado é considerado com Falha. if not self.check_missing_values(r.text): result.update( { "success": False, "error": "Result of skybot has fields missing values.", } ) except HTTPError as http_err: result.update( {"success": False, "error": "HTTP error occurred: %s" % http_err} ) except Exception as e: result.update({"success": False, "error": e}) # tempo de execução t1 = datetime.now() tdelta = t1 - t0 result.update( { "start": t0.strftime("%Y-%m-%d %H:%M:%S"), "finish": t1.strftime("%Y-%m-%d %H:%M:%S"), "execution_time": tdelta.total_seconds(), } ) return result def check_missing_values(self, data): """Valida o retorno do skybot buscando por valores Nulos. Se houver algum valor Nulo o retorno é False, o resultado não passou na validação. Se NÃO Houver valores Nulos o retorno é True, o resultado é valido. Args: data (String): Skybot cone search result Returns: bool: True se o resultado for valido, False para resultados invalidos. """ df = self.read_output_file(data) df = df.replace("", np.nan) has_null_value = df.isnull().values.any() return not has_null_value # # TODO: REMOVER ISSO QUE É SO TESTE # from common.random import randbool # return randbool(2) def read_output_file(self, data): """Le a o resultado do Skybot e retorna um dataframe. Args: data (String): Skybot cone search result Returns: pandas.dataframe: Dataframe com o resultado do Skybot """ # Headers que estão no arquivo e na ordem correta de leitura. headers = [ "number", "name", "ra", "dec", "dynclass", "mv", "errpos", "d", "dracosdec", "ddec", "dgeo", "dhelio", "phase", "solelong", "px", "py", "pz", "vx", "vy", "vz", "jdref", ] df = pd.read_csv(StringIO(data), skiprows=3, delimiter="|", names=headers) # Retirar os espaços entre os valores df = df.applymap(lambda x: x.strip() if type(x) == str else x) return df
true
1fb9d230a339be93c1da0bd1679a6a53d2dec39b
Python
quarkgluant/exercism
/python/perfect-numbers/perfect_numbers.py
UTF-8
376
3.5625
4
[]
no_license
def classify(number): if number <= 0: raise ValueError('then number must be strictly posistive') sum = sum_aliquots(number) if sum == number: return 'perfect' elif sum > number: return 'abundant' else: return 'deficient' def sum_aliquots(number): return sum(set([div for div in range(1, number) if number % div == 0]))
true
5ca558d6794e3937f8793f63cf2f1d4cab72add2
Python
shivam90y/practice-py
/practice4.py
UTF-8
156
3.640625
4
[]
no_license
# Write a Python program to convert a tuple to a string. tup = ('S', 'h', 'i', 'v', 'a', 'm', ' ', 'y', 'a', 'd', 'a', 'v') str = ''.join(tup) print(str)
true