blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
e9672fd59354efc95991b6783512354ecd4bc87b
Python
rhsieh91/sife-net
/charades_experiments/old_files/create_single_action_dataset.py
UTF-8
1,626
2.828125
3
[ "Apache-2.0" ]
permissive
# Splits Charades RGBs into single-action samples and copies into a target directory # Contributor: Samuel Kwong import cv2 import argparse import os import pandas as pd import numpy as np import math import shutil if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--csv_path', type=str) # <relative-path>/Charades_v1_train.csv parser.add_argument('--input_root', type=str) # directory containing 24FPS RGBs parser.add_argument('--target_root', type=str) # directory to save single-action samples args = parser.parse_args() df = pd.read_csv(args.csv_path) NUM_FPS = 24 for i, row in df.iterrows(): # for a single sample if type(row['actions']) is not str: continue groups = row['actions'].split(';') frame_names = sorted(os.listdir(os.path.join(args.input_root, row['id']))) for j, group in enumerate(groups): # this will turn into its own sample action, start, end = group.split() length = float(end) - float(start) num_frames = math.floor(NUM_FPS * length) # copy from start to end for k in range(math.floor(float(start) * NUM_FPS), math.floor(float(end) * NUM_FPS)): if k >= len(frame_names): break src = os.path.join(args.input_root, row['id'], frame_names[k]) dst = os.path.join(args.target_root, row['id'] + '-' + str(j).zfill(2)) if not os.path.exists(dst): os.makedirs(dst) shutil.copy2(src, dst)
true
ecf91e7b6a2943c6b0004ab9133a467b3fdbc6c0
Python
yufanana/ROStutorial
/ros_navigation/src/bug_zero.py
UTF-8
9,288
3
3
[]
no_license
#!/usr/bin/env python # roslaunch turtlebot3_gazebo turtlebot3_stage_4.launch # rosservice call /gazebo/reset_world ''' This Bug0 alrogithm turns left upon encountering an obstacle. ''' import rospy import math import sys from sensor_msgs.msg import LaserScan from nav_msgs.msg import Odometry from geometry_msgs.msg import Point from geometry_msgs.msg import Twist from tf import transformations yaw_ = 0 yaw_error_allowed_ = 5 * (math.pi / 180) # 5 degrees # Precision of facing/reaching goal yaw_precision_ = math.pi / 90 # +/- 2 degree allowed dist_precision_ = 0.1 position_ = Point() regions_ = None bug_state_ = 0 # 0 as go to goal, 1 as wall following state_ = 4 # initialise state as go to goal state_dict_ = { 0: 'find the wall', 1: 'turn left', 2: 'follow the wall', 3: 'fix yaw', 4: 'go to goal', 5: 'reached goal' } def odom_callback(msg): ''' Updates the robot's current position that is stored in the global variable ''' global position_, yaw_ # position position_ = msg.pose.pose.position # yaw quaternion = ( msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z, msg.pose.pose.orientation.w) euler = transformations.euler_from_quaternion(quaternion) yaw_ = euler[2] return def laser_callback(msg): ''' Reads the scan, determines where are the obstacles ''' global regions_ # define directions regions_ = { 'front': min(min(msg.ranges[0:22]),min(msg.ranges[338:360]), 10), 'fleft': min(min(msg.ranges[23:67]), 10), 'left': min(min(msg.ranges[68:102]), 10), 'right': min(min(msg.ranges[247:291]), 10), 'fright': min(min(msg.ranges[292:337]), 10), } # print("front: ",msg.ranges[0]) # print("left: ",msg.ranges[90]) # print("back: ",msg.ranges[180]) # print("right: ",msg.ranges[270]) # print("------") d = 0.5 # threshold to consider obstacle as far # determine direction of obstacle(s) if bug_state_ == 1: # wall following if regions_['front'] > d and regions_['fleft'] > d and regions_['fright'] > d: state_description = 'case 1 - nowhere' change_state(0) # find wall elif regions_['front'] < d and regions_['fleft'] > d and regions_['fright'] > d: state_description = 'case 2 - front only' change_state(1) # turn left elif regions_['front'] > d and regions_['fleft'] > d and regions_['fright'] < d: state_description = 'case 3 - fright only' change_state(2) # follow wall elif regions_['front'] > d and regions_['fleft'] < d and regions_['fright'] > d: state_description = 'case 4 - fleft only' change_state(0) # find wall elif regions_['front'] < d and regions_['fleft'] > d and regions_['fright'] < d: state_description = 'case 5 - front and fright' change_state(1) # turn left elif regions_['front'] < d and regions_['fleft'] < d and regions_['fright'] > d: state_description = 'case 6 - front and fleft' change_state(1) # turn left elif regions_['front'] < d and regions_['fleft'] < d and regions_['fright'] < d: state_description = 'case 7 - front and fleft and fright' change_state(1) # turn left elif regions_['front'] > d and regions_['fleft'] < d and regions_['fright'] < d: state_description = 'case 8 - fleft and fright' change_state(0) # find wall else: state_description = 'unknown case' rospy.loginfo(regions_) def change_state(state): global state_, state_dict_ if state is not state_: print('Bug Zero: [%s] - %s' % (state, state_dict_[state])) state_ = state # change global state to current state def find_wall(): msg = Twist() msg.linear.x = 0.05 msg.angular.z = -0.3 return msg def turn_left(): ''' Turn left to start going along the wall ''' cmd = Twist() cmd.angular.z = 0.3 cmd.linear.x = 0 return cmd def follow_wall(): ''' Go straight along the wall ''' cmd = Twist() cmd.angular.z = 0 cmd.linear.x = 0.1 return cmd def normalize_angle(angle): if(math.fabs(angle) > math.pi): angle = angle - (2 * math.pi * angle) / (math.fabs(angle)) return angle def fix_yaw(goal): ''' Rotate the robot to face the goal ''' global yaw_, yaw_precision_, state_ desired_yaw = math.atan2(goal.y - position_.y, goal.x - position_.x) err_yaw = normalize_angle(desired_yaw - yaw_) # rospy.loginfo(err_yaw) cmd = Twist() if math.fabs(err_yaw) > yaw_precision_: cmd.angular.z = 0.3 if err_yaw > 0 else -0.1 # state change conditions if math.fabs(err_yaw) <= yaw_precision_: print('Yaw error: [%s]' % err_yaw) cmd.angular.z = 0 cmd.linear.x = 0 change_state(4) # go to goal return cmd def go_to_goal(goal): ''' Go towards the goal location ''' global yaw_, yaw_precision_, state_ desired_yaw = math.atan2(goal.y - position_.y, goal.x - position_.x) err_yaw = desired_yaw - yaw_ err_pos = math.sqrt(pow(goal.y - position_.y, 2) + pow(goal.x - position_.x, 2)) if err_pos > dist_precision_: cmd = Twist() cmd.linear.x = 0.1 cmd.angular.z = 0.1 if err_yaw > 0 else -0.1 else: print('Position error: [%s]' % err_pos) cmd = Twist() cmd.linear.x = 0 cmd.angular.z = 0 change_state(5) # done # state change conditions if math.fabs(err_yaw) > yaw_precision_: print('Yaw error: [%s]' % err_yaw) change_state(3) # fix yaw return cmd def done(): cmd = Twist() cmd.linear.x = 0 cmd.angular.z = 0 return cmd def main(): global position_, regions_, bug_state_ if len(sys.argv) < 3: print ("Usage: bug_zero.py x_goal y_goal") else: goal = Point() goal.x = float(sys.argv[1]) goal.y = float(sys.argv[2]) # goal.x = 2 # goal.y = -2 desired_yaw = math.atan2(goal.y - position_.y, goal.x - position_.x) rospy.init_node('bug0') #init node sub_odom = rospy.Subscriber('/odom', Odometry, odom_callback) sub_laser = rospy.Subscriber('/scan', LaserScan, laser_callback) pub_velocity = rospy.Publisher('/cmd_vel',Twist, queue_size=1) rate = rospy.Rate(10.0) while not rospy.is_shutdown(): if regions_ == None: continue if bug_state_ == 0: # go to goal if regions_['front'] < 0.4: print("Front: ", regions_['front']) change_state(1) # turn left bug_state_ = 1 elif bug_state_ == 1: # wall following desired_yaw = math.atan2(goal.y - position_.y, goal.x - position_.x) err_yaw = normalize_angle(desired_yaw - yaw_) d = 0.5 # if goal is in front, check if there obstacles in front if math.fabs(err_yaw) < (math.pi / 8) and \ regions_['front'] > d and regions_['fright'] > d and regions_['fleft'] > d: print("Cleared case 1") # less than 30 # no more obstacles in front change_state(4) # go to goal bug_state_ = 0 # if goal is fleft, check if there are obstacles in fleft if err_yaw > 0 and \ math.fabs(err_yaw) > (math.pi / 8) and \ math.fabs(err_yaw) < (math.pi / 2 + math.pi / 8) and \ regions_['left'] > d and regions_['fleft'] > d: print("Cleared case 2") # between 30 and 90 - to the left # cleared the obstacle that was on the left change_state(4) # go to goal bug_state_ = 0 # if goal is fright, check if there are obstacles in fright if err_yaw < 0 and \ math.fabs(err_yaw) > (math.pi / 8) and \ math.fabs(err_yaw) < (math.pi / 2 + math.pi / 8) and \ regions_['right'] > d and regions_['fright'] > d: print("Cleared case 3") # between 247 & 337 to the right # cleared the obstacle that was on the right change_state(4) # go to goal bug_state_ = 0 # publish cmd messages based on the current state if state_ == 0: cmd = find_wall() elif state_ == 1: cmd = turn_left() elif state_ == 2: cmd = follow_wall() elif state_ == 3: cmd = fix_yaw(goal) elif state_ == 4: cmd = go_to_goal(goal) elif state_ == 5: cmd = done() else: rospy.logerr('Unknown state!') pub_velocity.publish(cmd) rate.sleep() if __name__ == '__main__': try: main() except rospy.ROSInterruptException: print("\n Quitting...") pass
true
9bb20c57a8cae5f5d31e542e2cbaee1c6048001d
Python
jshreyas/python-serverless-app
/testrail.py
UTF-8
19,062
2.515625
3
[]
no_license
import json import base64 import time import math import datetime import urllib.request import urllib.error import pytz def get_timestamp(): """ Returns timestamp in desired format """ return datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') class Testrail(object): def __init__(self, user, password, base_url="https://velocloud.testrail.com"): """ Testrail initializer Args: user (str): Username to authorize with password (str): Password base_url (str): Testrail URL """ self.user = user self.password = password self.__run_id = None self.result_map = { "passed": 1, "failed": 5 } self.cases_in_run = {} if not base_url.endswith('/'): base_url += '/' self.__url = base_url + 'index.php?/api/v2/' self.__project = None self.__project_id = None self.__suite = None self.__suite_id = None self.project = "Velocloud" self.suite = "Master" @property def project(self): return self.__project @project.setter def project(self, project_name): self.__project = project_name if project_name is not None: self.__project_id = self.__get_project_by_name(project_name)["id"] else: self.__project_id = None @property def project_id(self): if self.__project_id: return self.__project_id raise EnvironmentError( "Define the project name as an object attribute like so\n" "client.project = 'Velocloud'") @property def suite(self): return self.__suite @suite.setter def suite(self, suite_name): self.__suite = suite_name if suite_name is not None: self.__suite_id = self.__get_suite_by_name(suite_name)["id"] else: self.__suite_id = None @property def suite_id(self): if self.__suite_id: return self.__suite_id raise EnvironmentError( "Define the suite name as an object attribute like so\n" "client.suite = 'Master'") @property def run_id(self): return self.__run_id @run_id.setter def run_id(self, run_id): self.__run_id = run_id self.cases_in_run = { run_id: self.get_cases_in_run(run_id=run_id) } def get_cases_in_run(self, run_id): """ Returns the test cases associated to a test run Args: run_id (str): id of the run Returns: list: response of the API call of the test cases associated to a run """ return self.send_get("get_tests/{run_id}".format(run_id=run_id)) def get_all_cases(self): """ Returns all test cases from testrail Returns: list: list of all test cases """ return self.send_get(f"get_cases/{self.project_id}") def get_milestone_id(self, name): """ Returns milestone id based on given name Returns: integer: Milestone ID """ milestone_list = self.send_get(f"get_milestones/{self.project_id}") if milestone_list: for elem in milestone_list: if name in elem['name']: return elem['id'] def get_cases_based_on_milestone(self, milestone_id): """ Returns testcase ID list based on milestone Returns: list: Testcase list """ total_cases = self.send_get(f"get_cases/{self.project_id}&milestone_id={milestone_id}") case_list = [] for elem in total_cases: case_list.append(elem['id']) return case_list def get_sections(self): """ Gets all sections Returns: list: list of all sections """ return self.send_get(f"get_sections/{self.project_id}") def send_get(self, uri): """ Send Get Issues a GET request (read) against the API and returns the result (as Python dict). Args: uri (str): The API method to call including parameters (e.g. get_case/1) """ return self.__send_request('GET', uri, None) def send_post(self, uri, data): """ Send POST Issues a POST request (write) against the API and returns the result (as Python dict). Args: uri (str): The API method to call including parameters (e.g. add_case/1) data (dict): The data to submit as part of the request (as Python dict, strings must be UTF-8 encoded) """ return self.__send_request('POST', uri, data) def __send_request(self, method, uri, data): url = self.__url + uri request = urllib.request.Request(url) if method == 'POST': request.data = bytes(json.dumps(data), 'utf-8') auth = str( base64.b64encode( bytes('%s:%s' % (self.user, self.password), 'utf-8') ), 'ascii' ).strip() request.add_header('Authorization', 'Basic %s' % auth) request.add_header('Content-Type', 'application/json') e = None try: response = urllib.request.urlopen(request).read() except urllib.error.HTTPError as ex: response = ex.read() e = ex if response: result = json.loads(response.decode()) else: result = {} if e is not None: if result and 'error' in result: error = '"' + result['error'] + '"' else: error = 'No additional error message received' raise APIError('TestRail API returned HTTP %s (%s)' % (e.code, error)) return result def __get_projects(self): """ Returns a list of projects """ url = f"get_projects" return self.send_get(url) def __get_project_by_name(self, project_name): """ Searches for an exact match of the project name Args: project_name (string): name of the project Returns: dict: project None: if there is no match """ projects = self.__get_projects() for project in projects: if project_name == project["name"]: return project return None def __get_suites(self, project_id=None): """ Returns a list of suites for a project Args: project_id (str): project id Returns: list: list of suites in a project """ if not project_id: project_id = self.project_id url = f"get_suites/{project_id}" return self.send_get(url) def __get_suite_by_name(self, suite_name, project_id=None): """ Searches for an exact match of the suite name for a given project Args: suite_name (string): name of the suite project_id (string): project id Returns: dict: suite None: if there is no match """ if not project_id: project_id = self.project_id suites = self.__get_suites(project_id) for suite in suites: if suite_name == suite["name"]: return suite return None def get_users(self): """ Returns users information Returns: list: list of users """ url = "get_users" return self.send_get(url) def get_case(self, case_id): """ Returns test case information Args: case_id (string): test case id Returns: dict: case """ url = f"get_case/{case_id}" return self.send_get(url) def update_case(self, case_id, data): """ Updates test case information Args: case_id (string): test case id data (dict)L dictionary of the testcase attributes """ return self.send_post( uri=f'update_case/{case_id}', data=data) def _get_plan_by_name(self, plan_name, project_id=None): """ Searches for an exact match of the test plan name for a given project Args: plan_name (string): name of the test plan project_id (string): project id Returns: dict: plan None: if there is no match """ if not project_id: project_id = self.project_id plans = self._get_plans(project_id) for plan in plans: if plan_name == plan["name"]: return plan return None def _get_plans(self, project_id=None): """ Returns a list of test plans for a project Args: project_id (string): project id Returns: list: list of test plans """ if not project_id: project_id = self.project_id url = f"get_plans/{project_id}" return self.send_get(url) def _get_plan(self, plan_id): """ Returns an existing test plan along with all its runs Args: plan_id (int): plan id Returns: dict: test plan entry """ url = f"get_plan/{plan_id}" return self.send_get(url) def _add_plan_entry(self, plan_id, data): """ Add test run/entry to a test plan Args: plan_id (string): test plan id data (dict): post body data Returns: dict: test plan entry """ url = f"add_plan_entry/{plan_id}" return self.send_post(url, data) def format_testrun(self, test_run): """ Formats test run with time stamp """ # return test_run date_format = '%Y-%m-%d %H:%M' date = datetime.datetime.now(tz=pytz.utc) date = date.astimezone(pytz.timezone('US/Pacific')) date_format = date.strftime(date_format) return f"{date_format} - {test_run}" def add_default_test_run_entry_to_plan(self, test_run_name, plan_name, case_ids=None): """ Creates a test run entry with some standard defaults to a test plan Defaults: test_run_entry = { "suite_id": suite_id, "name": "{test_run_name} - {timestamp}".format( test_run_name=test_run_name, timestamp=get_timestamp()), "assignedto_id": None, "include_all": True, "config_ids": [], "runs": [ { "include_all": True, "case_ids": [], "config_ids": [] } ] } Args: test_run_name (string): name of the test plan entry to be created plan_name (string): name of the test plan case_ids (list): Specifug testCase Id's with which new test run will be created. Returns: dict: test plan entry """ if case_ids: include_all = False else: include_all = True # This condition mandates testcase list not to be empty if include_all is False if not include_all and not case_ids: return False plan = self._get_plan_by_name(plan_name=plan_name) if plan is None: raise APIError("testrail plan '%s' not found" % plan_name) plan_id = plan["id"] # Format the testrun name with Time stamp. test_run_name = self.format_testrun(test_run_name) suite_id = self.suite_id test_run_entry = { "suite_id": suite_id, "name": "{test_run_name}".format( test_run_name=test_run_name, timestamp=get_timestamp()), "assignedto_id": None, "include_all": include_all, "config_ids": [], "case_ids": case_ids, "runs": [ { "include_all": False, "case_ids": case_ids, "config_ids": [] } ] } return self._add_plan_entry(plan_id, test_run_entry) def update_test_run(self, test_run_name, plan_name, case_ids=None): """ Updates the existing test run with new set of testcases Args: test_run (str): test run name plan_name (str): test plan name """ # Look for tescase entru already present in the test-run if so skip those test_run_id = self.get_run_id(plan_name, test_run_name) plan = self._get_plan_by_name(plan_name) plan_detail = self._get_plan(plan['id']) for elem in plan_detail['entries']: if test_run_name in elem['name']: entry_id = elem['runs'][0]['entry_id'] break else: return False case_ids = self.check_test_id_duplicate(case_ids, test_run_id) if not case_ids: return False existing_tests = self.get_cases_in_run(test_run_id) for elem in existing_tests: case_ids.append(elem['case_id']) test_run_entry = { "include_all": False, "case_ids": case_ids } url = f"update_plan_entry/{plan['id']}/{entry_id}" return self.send_post(url, test_run_entry) def check_test_id_duplicate(self, test_list, run_id): """ Look for testcase present in the testrun and remove duplicate testcases Args: test_list (str): List of testcases to be validated run_id (object): test run id Returns: (list): Valid testcases (unique one) """ url = f"get_tests/{run_id}" test_case_list = self.send_get(url) new_list = [] for elem in test_case_list: new_list.append(elem['case_id']) new_list = set(test_list) - set(new_list) return list(new_list) def get_run_id(self, plan_name, run_name): """ Returns an existing test run id Args: plan_name (str): test plan name run_name (str): test run name Returns: int: test run id """ plan = self._get_plan_by_name(plan_name) complete_plan = self._get_plan(plan["id"]) for each in complete_plan["entries"]: # Added this to look for sub-string, Reason: we are creating test-run prepending with # time stamp and also wanted to remove duplicate testrun entries if run_name in each["runs"][0]["name"]: return each["runs"][0]["id"] def add_results(self, run_id, data): """ Add results for a test run/entry Args: run_id (string): test run or entry id data (dict): post body data Returns: dict: result """ url = f"add_results/{run_id}" return self.send_post(url, data) def __check_case_in_run(self, run_id, case_id): """ Checks if the case is associated to the run Args: run_id (str): id the the run case_id (int): Case id (not the id that is created once associated to a run) Returns: id: test case if the case is present in the run bool: False if absent """ if run_id not in self.cases_in_run: tc_list = self.get_cases_in_run(run_id=run_id) else: tc_list = self.cases_in_run[run_id] for test_case in tc_list: if test_case.get('case_id', None) == case_id: return test_case.get('id', None) return False def update_test_result(self, run_id, case_id, report): """ Update the test result of a test case associated to a run Args: run_id (str): Id of the test run case_id (id): Case id (not the id that is created once associated to a run) report (obj): instance of pytest TestReport Returns: bool: False if unsuccessful in updating """ test_id = self.__check_case_in_run(run_id, case_id) if not test_id: return False data = {"results": [{ "test_id": test_id, "status_id": self.result_map.get(report.outcome, 5), "elapsed": time.strftime('%Hh %Mm %Ss', time.gmtime(math.ceil(report.duration))), "comment": report.longreprtext }] } return self.send_post( uri='add_results/{run_id}'.format(run_id=run_id), data=data) def _get_runs(self, project_id=None): """ Returns a list of test runs for a project Args: project_id (int): project id Returns: list: list of test runs """ if not project_id: project_id = self.project_id url = f"get_runs/{project_id}" return self.send_get(url) def _get_run(self, run_id): """ Returns an existing test run Args: run_id (int): plan id Returns: dict: test run entry """ url = f"get_run/{run_id}" return self.send_get(url) def _get_results_for_run(self, run_id): """ Returns a list of test results for a test run. Args: run_id (int): The ID of the test run Returns: list: list of test results """ url = f"get_results_for_run/{run_id}" return self.send_get(url) def _get_testrun_by_name(self, project_name, plan_name, testrun_name): """ Searches for an exact match of the testrun name Args: project_name (string): name of the project testrun_name (str): testrun name Returns: dict: testrun None: if there is no match """ project = self.__get_project_by_name(project_name) plan = self._get_plan_by_name(plan_name, project['id']) plan = self._get_plan(plan['id']) for entry in plan['entries']: if entry['name'] == testrun_name: for testrun in entry['runs']: if testrun['name'] == testrun_name: return testrun return None def get_testrun_results(self, project_name, plan_name, testrun_name): """ Gets testrun results Args: project_name (str): project name plane_name (str): plane name testrun_name (str): testrun name Returns: list: list of test results """ testrun = self._get_testrun_by_name(project_name, plan_name, testrun_name) if testrun is not None: return self._get_results_for_run(testrun["id"]) return None class APIError(Exception): pass
true
849b341510f5c7bf398912befd6451284eae4903
Python
AungMyatSan/python
/practice/bst/bst.py
UTF-8
1,966
3.6875
4
[]
no_license
from typing import List class Node: def __init__(self, val, left=None, right=None) -> None: self.val = val self.left = left self.right = right class Tree: def __init__(self, root_val) -> None: self.root = Node(root_val) self.height = 0 def insert(self, cnode, val) -> Node: if cnode.left is None and cnode.right is None: self.height += 1 if val < cnode.val: cnode.left = Node(val) else: cnode.right = Node(val) return cnode if val < cnode.val: if cnode.left is None: cnode.left = Node(val) return cnode else: return self.insert(cnode.left, val) else: if cnode.right is None: cnode.right = Node(val) return cnode else: return self.insert(cnode.right, val) def traverse(self, node: Node, kind='io') -> list: if node is None: return [] if kind is 'io': return self.traverse(node.left, kind) + [node.val] + self.traverse(node.right, kind) elif kind is 'pr': return [node.val] + self.traverse(node.left, kind) + self.traverse(node.right, kind) elif kind is 'po': return self.traverse(node.left, kind) + self.traverse(node.right, kind) + [node.val] def from_list(l: list) -> Tree: bst = Tree(l[0]) for x in l[1:]: bst.insert(bst.root, x) return bst def traversal_test(x: list): bst = Tree(x[0]) for val in x[1:]: bst.insert(bst.root, val) print(bst.traverse(bst.root, kind='io')) print(bst.traverse(bst.root, kind='pr')) print(bst.traverse(bst.root, kind='po')) if __name__ == '__main__': x = [10, 33, 1, 5, 65, 3, 25, 167, 34, 6 , 15, 28] traversal_test(x)
true
8e3dfe8b23e3eccbc6636c5f677be2c2dbb0f615
Python
ZAKERR/-16-python-
/软件第四次作业/软件161/夔纭嘉2016021196/计算器的实现.py
UTF-8
738
4.125
4
[]
no_license
#!/user/bin/python #-*-coding:utf-8-*- ''' 编写人:夔纭嘉 编写时间:20181005 功能:计算器的实现 ''' #定义函数 def add(x,y): return x+y def jian(x,y): return x-y def cheng(x,y): return x*y def chu(x,y): return x/y print(u"选择运算:") print(u"+ - * /") choice =input("请输入你的选择:") x = int(input(u'请输入第一个数字:')) y = int(input(u'请输入第二个数字:')) if choice == '+': print(x,'+',y,'=',add(x,y)) elif choice == '-': print(x,'-',y,'=',jian(x,y)) elif choice == '*': print(x,'*',y,'=',cheng(x,y)) elif choice == '/': print(x,'/',y,'=',chu(x,y)) else: print(u'您的输入出错!')
true
9db6c166aa9982c7cc0d4d82fba7752358eb94f8
Python
dmrowan/LommenResearchGroup
/PulseCharacteristics/old_scripts/ampfitcrab.py
UTF-8
5,077
2.953125
3
[]
no_license
#!/usr/bin/env python from astropy.table import Table from astropy import log import datetime import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit import pandas as pd import math from functions import * desc=""" Makes a histogram of the integrated intensities of pulse profiles for each integration time """ def fit(timewidth): intint = pd.read_csv('intdata/crabintdata_%s.txt' %timewidth, header = None) intint = list(intint[0]) intint = [x for x in intint if x > 0.001] intint = [x for x in intint if x < 3] intint = np.array(intint) print('The total number of profiles in the %s pulse histogram is '%timewidth, len(intint)) binwidths = list(np.linspace(0, 0.12, 100)) plt.hist(intint, binwidths) width = 0.05 sd = np.std(intint) # calculates standard deviation directly # Makes a line plot from the histogrm intint = np.array(intint) # uses pulse phases in nth profile xvals, yvals = hist_to_curve(intint, binwidths) # Use convolution to find the estimate for the location of the peak #x = xvals #template = (np.exp(-((x/width)**2)/2)) #convo = [] #for i in range(len(yvals)): # convo.append(np.sum(yvals*np.roll(template,i))) # finds convolution #m = np.max(convo) # finds peak value of convolution #maxloc = xvals[convo.index(m)] # finds the location of the peak of convolution #popt, pcov = curve_fit(gauss, xvals, yvals, p0= [max(yvals),maxloc, width], bounds = ((0, 0, 0), (np.inf, np.inf, np.inf))) # uses gaussian function to do a curve fit to the line version fo the histogram; uses maxloc for the guess for location #popt, pcov = curve_fit(lognormal, xvals, yvals, p0 = [100, 0, 2]) #print(popt) #plt.plot(xvals, lognormal(xvals, *popt)) plt.hist(intint, bins=binwidths) #plt.plot(xvals, gauss(xvals,*popt)) #errorbar = np.absolute(pcov[2][2])**0.5 plt.xlabel('Integrated intensity (counts/pulse)') plt.ylabel('# of Profiles') plt.title('Integrated intensity distribution for %s pulses/profile'%timewidth) plt.savefig('crab_%s.png' % timewidth) plt.clf() return() plottype = 'loglog' width = [] width2 = [] errorbars = [] timewidth=[] times = [15, 20, 30, 90, 150, 300, 900] for twidth in times: if (twidth == 0): twidth = 10 fit(twidth) #width.append(w) #width2.append(w2) #errorbars.append(e) #timewidth.append(twidth) #y =[] """ for i in timewidth: y.append(1/(i**0.5)) if (plottype == 'plot'): plt.plot(timewidth, width, 'o', color = 'b') popt, pcov = curve_fit(power, timewidth, width) calc = plt.plot(timewidth, power(timewidth, *popt), color = 'b', label = 'Standard deviation') # plt.plot(timewidth, width2, 'o', color = 'g') popt, pcov = curve_fit(power, timewidth, width2) fit = plt.plot(timewidth, power(timewidth, *popt), color = 'g', label = 'Gaussian curve fit') plt.errorbar(timewidth, width2, yerr = errorbars, fmt = 'o', color = 'g') plt.title("Width of Integrated Intensity Distribution vs Integration Time") plt.legend() plt.xlabel("Integration Time (seconds)") plt.ylabel("Standard Deviation (counts/second)") if (plottype == 'loglog'): plt.plot(np.log10(timewidth), np.log10(width), 'o', color = 'b') #popt, pcov = curve_fit(power, timewidth, width) fit, cov = np.polyfit(np.log10(timewidth), np.log10(width), 1, cov=True) cslope = fit[0] csloperror = np.absolute(cov[0][0])**0.5 #cslopeerror = np.absolute(pcov[1][1])**0.5 plt.plot(np.log10(timewidth), np.log10(timewidth)*fit[0]+fit[1], color = 'b', label = 'Standard deviation, %s$\pm$%s'%(float('%.2g' % cslope), float('%.1g' % csloperror))) plt.plot(np.log10(timewidth), np.log10(width2), 'o', color = 'g') #popt, pcov = curve_fit(power, timewidth, width2) fit, cov = np.polyfit(np.log10(timewidth), np.log10(width2), 1, cov=True) fslope = fit[0] #fslopeerror = np.absolute(pcov[1][1])**0.5 fsloperror = np.absolute(cov[0][0])**0.5 plt.plot(np.log10(timewidth), np.log10(timewidth)*fit[0]+fit[1], color = 'g', label = 'Gaussian curve fit, %s$\pm$%s'%(float('%.2g' % fslope), float('%.1g' % fsloperror))) shift = 1.3 plt.plot(np.log10(timewidth), np.log10(y)-shift, '--', label = 'Gaussian distribution (slope = -1/2)') lowererror = [] uppererror = [] for x in range(len(errorbars)): lowererror.append(abs(np.log10(width2[x]-errorbars[x])-np.log10(width2[x]))) uppererror.append(np.log10(width2[x]+errorbars[x])-np.log10(width2[x])) loglogerrors = [lowererror, uppererror] loglogerror = np.array(loglogerrors) plt.errorbar(np.log10(timewidth),np.log10(width2), yerr = loglogerror , fmt = 'o', color = 'g') plt.title("Width of Integrated Intensity Distribution vs Number of Pulses") plt.legend() plt.xlabel("log(Number of Pulses per Profile)") plt.ylabel("log(Width (counts/second))") print(cslope, csloperror) print(fslope, fsloperror) plt.show() """
true
026564c0f515289c801342d2e8887c9eec7490b6
Python
andaru/netmunge
/netmunge/grammars/cisco_show_arp.py
UTF-8
2,621
2.515625
3
[]
no_license
# "show arp" parser for Cisco IOS # def convert_mac(mac): """Converts cisco xxxx.xxxx.xxxx.format to xx:xx:xx:xx:xx:xx format.""" return '%s:%s:%s:%s:%s:%s' % (mac[0:2], mac[2:4], mac[5:7], mac[7:9], mac[10:12], mac[12:14]) # Begin -- grammar generated by Yapps import sys, re from yapps import runtime class CiscoShowArpScanner(runtime.Scanner): patterns = [ ("'(Protocol.*Interface)?'", re.compile('(Protocol.*Interface)?')), ("'ARPA'", re.compile('ARPA')), ("'Internet'", re.compile('Internet')), ('\\s+', re.compile('\\s+')), ('MAC', re.compile('\\S+')), ('INTF', re.compile('\\S+')), ('END', re.compile('$')), ('ANY', re.compile('.')), ('IPV4', re.compile('([0-9]{1,3}\\.){3}[0-9]{1,3}')), ('AGE', re.compile('([0-9]+|-)')), ] def __init__(self, str,*args,**kw): runtime.Scanner.__init__(self,None,{'\\s+':None,},str,*args,**kw) class CiscoShowArp(runtime.Parser): Context = runtime.Context def entry(self, _parent=None): _context = self.Context(_parent, self._scanner, 'entry', []) self._scan("'Internet'", context=_context) IPV4 = self._scan('IPV4', context=_context) AGE = self._scan('AGE', context=_context) MAC = self._scan('MAC', context=_context) self._scan("'ARPA'", context=_context) INTF = self._scan('INTF', context=_context) return (('arpv4', IPV4, convert_mac(MAC), INTF)) def parse(self, _parent=None): _context = self.Context(_parent, self._scanner, 'parse', []) arps = set() while self._peek("'(Protocol.*Interface)?'", 'ANY', context=_context) == 'ANY': ANY = self._scan('ANY', context=_context) self._scan("'(Protocol.*Interface)?'", context=_context) while self._peek('END', "'Internet'", context=_context) == "'Internet'": entry = self.entry(_context) arps.add(entry) END = self._scan('END', context=_context) return arps def parse(rule, text): P = CiscoShowArp(CiscoShowArpScanner(text)) return runtime.wrap_error_reporter(P, rule) if __name__ == '__main__': from sys import argv, stdin if len(argv) >= 2: if len(argv) >= 3: f = open(argv[2],'r') else: f = stdin print parse(argv[1], f.read()) else: print >>sys.stderr, 'Args: <rule> [<filename>]' # End -- grammar generated by Yapps
true
ae899a6c7c4d0cd5ca879fd51810fddf685ac428
Python
zfdupont/stockticker
/main.py
UTF-8
1,189
2.609375
3
[ "MIT" ]
permissive
from yahoo_fin import stock_info as si from time import time from datetime import datetime from decimal import Decimal import os; class colors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' # TEST TICKETS # AAPL AMZN TSLA gme AMC SPY MSFT SBUX FB tags = input("").split(" ") t = time() clear = lambda: os.system('cls') prices = [] def print_watching(): clear() temp = [] global prices for i in range(len(tags)): tick = tags[i] x = si.get_live_price(tick) print(f"{tick.upper()}\t\t{x}", end="") if prices: change = "=" if(x > prices[i]): change = "▲" if(x < prices[i]): change = "▼" print(f"({change}{round(abs(x - prices[i]), 2)})") else: print() temp.append(round(x, 2)) prices = temp[:] print(datetime.now().strftime("%H:%M:%S")) print_watching() CONST_INTERVAL = 5 while True: # print(time() - t) if (time() - t) > CONST_INTERVAL: print_watching() t = time()
true
df56e59cf7749b29e91f8524106307b0afdfd1bd
Python
mali0728/cs107_Max_Li
/homework/HW2/HW2_final/P2.py
UTF-8
942
4.28125
4
[]
no_license
# Problem 2 DNA Complement for Homework 2 of CS107 # Author: Max Li def dna_complement(original): '''This function takes in a DNA sequence represented as a string and returns it complement as a string.''' bases = ['A', 'T', 'G', 'C'] if len(original) == 0: return None for x in original: if x.upper() not in bases: return None complement = '' for x in original: if x.upper() == 'A': complement+='T' elif x.upper() == 'T': complement+='A' elif x.upper() == 'C': complement+='G' elif x.upper() == 'G': complement+='C' return complement example_1 = 'AatGGc' example_2 = 'AATdog' print('example 1: '+ example_1 + " has complement: ") print(dna_complement(example_1)) print('example 2: '+ example_2 + " has complement: ") print(dna_complement(example_2))
true
d9dd28aac91196449ec7cba7582a01ee7396e8e0
Python
percyliang/sempre
/tables/wikipedia-scripts/weblib/clean_html.py
UTF-8
4,314
2.75
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- import re, sys, os sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'external')) from bs4 import BeautifulSoup, element import tidylib tidylib.BASE_OPTIONS = { 'output-html': 1, 'indent': 0, 'tidy-mark': 0, 'wrap': 0, 'doctype': 'strict', 'force-output': 1, } WHITELIST_NAMES = set( ('html', 'head', 'meta', 'title', #'noscript', 'body', 'section', 'nav', 'article', 'aside', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'header', 'footer', 'address', 'main', 'p', 'hr', 'pre', 'blockquote', 'ol', 'ul', 'li', 'dl', 'dt', 'dd', 'figure', 'figcaption', 'div', 'a', 'em', 'strong', 'small', 's', 'cite', 'q', 'dfn', 'abbr', 'data', 'time', 'code', 'var', 'samp', 'kbd', 'sub', 'sup', 'i', 'b', 'u', 'mark', 'ruby', 'rt', 'rp', 'wbr', 'ins', 'del', 'bdi', 'bdo', 'span', 'br', 'img', 'table', 'caption', 'colgroup', 'col', 'tbody', 'thead', 'tfoot', 'tr', 'td', 'th', 'form', 'fieldset', 'legend', 'label', 'input', 'button', 'select', 'datalist', 'optgroup', 'option', 'textarea', 'keygen', 'output', 'progress', 'meter', 'details', 'summary', 'menuitem', 'menu', 'acronym', 'basefont', 'big', 'blink', 'center', 'font', 'marquee', 'nobr', 'noframes', 'strike', 'tt') ) WHITELIST_ATTRS = set( ('colspan', 'rowspan') ) WHITELIST_NAME_ATTRS = set( (('meta', 'charset'), ('img', 'alt'), ('img', 'title')) ) INPUT_TYPES = set( ('checkbox', 'color', 'date', 'datetime', 'datetime-local', 'email', 'hidden', 'month', 'number', 'password', 'radio', 'range', 'tel', 'text', 'time', 'url', 'week') ) INPUT_BUTTON_TYPES = set( ('button', 'reset', 'submit', 'file', 'image') ) def is_whitelisted(name): return name.lower() in WHITELIST def create_clean_tag(tag): '''Return an empty tag with whitelisted attributes, or None''' name = tag.name.lower() answer = element.Tag(name=name) # Special Case : encoding if name == 'meta': if (tag.get('http-equiv') == "Content-Type" and '7' not in tag.get('content')): answer['http-equiv'] = tag.get('http-equiv') answer['content'] = tag.get('content') else: return None # Special Case : input if name == 'input': if tag.get('type') in INPUT_TYPES: answer['type'] = tag.get('type') elif tag.get('type') in INPUT_BUTTON_TYPES: answer['type'] = 'button' for key, value in tag.attrs.iteritems(): if (key in WHITELIST_ATTRS or (name, key) in WHITELIST_NAME_ATTRS): answer[key] = value # Special Case : display:none elif key == 'style': if (not isinstance(value, list) and re.search(r'display:\s*none', value)): answer['style'] = 'display:none' # Special Case : button if name == 'button': answer['type'] = 'button' return answer def build(tag): '''Return the clean equivalent of tag, or None''' answer = create_clean_tag(tag) if not answer: return for child in tag.contents: #print tag.name, type(child), child.name, unicode([unicode(child)])[:50] if isinstance(child, element.Tag): if child.name.lower() in WHITELIST_NAMES: built_child = build(child) if built_child: answer.append(built_child) elif child.__class__ == element.NavigableString: answer.append(unicode(child)) return answer def clean_html(page): '''Return the cleaned page as a unicode object. Argument: - page -- a page string without any <!--comment--> at the top. ''' soup = BeautifulSoup(unicode(BeautifulSoup(page, "html5lib")), "html5lib") new_soup = BeautifulSoup('<!DOCTYPE html><html></html>') new_soup.html.replace_with(build(soup.html)) document, errors = tidylib.tidy_document(unicode(new_soup)) return document if __name__ == '__main__': # Test from codecs import open with open(sys.argv[1]) as fin: url = fin.readline() data = fin.read() cleaned = clean_html(data) with open(sys.argv[2], 'w', 'utf8') as fout: fout.write(cleaned)
true
825845aeb99e34797ccd7a92264cfe22c251dfcc
Python
Fulldis/dl-course
/week-13/research/experiments/optuna/model.py
UTF-8
964
2.6875
3
[ "MIT" ]
permissive
import torch from torch import nn class SimpleNet(nn.Module): def __init__( self, num_filters1: int = 6, num_filters2: int = 16, num_hiddens1: int = 120, num_hiddens2: int = 84, num_classes: int = 10, ): super().__init__() self.num_hiddens0 = num_filters2 * 5 * 5 self.core = nn.Sequential( nn.Conv2d(3, num_filters1, 5), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d(num_filters1, num_filters2, 5), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Flatten(), nn.Linear(self.num_hiddens0, num_hiddens1), nn.ReLU(), nn.Linear(num_hiddens1, num_hiddens2), nn.ReLU(), ) self.head = nn.Sequential(nn.Linear(num_hiddens2, num_classes),) def forward(self, x: torch.Tensor) -> torch.Tensor: output = self.core(x) return self.head(output)
true
c56c956cbd0aff6383e386db0db20aec4cdae69a
Python
arusdef/OpenCSAM
/scrapy-crawlers/scrapy_crawlers/useragents.py
UTF-8
704
2.546875
3
[]
no_license
""" User-Agent Middleware """ import logging from fake_useragent import UserAgent class RandomUserAgentMiddleware(object): """ Random User-Agent Middleware """ default_user_agent = ('''Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_5) ''' '''AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36''') user_agent = UserAgent(verify_ssl=False, fallback=default_user_agent) def process_request(self, request, spider): """ Process Request """ random_user_agent = self.user_agent.random logging.debug(random_user_agent) request.headers.setdefault('User-Agent', random_user_agent) return None # continue processing this request
true
e90a7353f5fe5adfcb08e65fb18e2b0c29d964c2
Python
ChoiYoonSung/Python
/HelloPython/day10/myflask04_forward.py
UTF-8
473
2.75
3
[]
no_license
from flask import Flask, request, render_template app = Flask(__name__) @app.route('/') def home(): title = 'List' mylist = ['a', 'b', 'c', 'd'] objList = {} objList.append({'e_id' : '1', 'e_name' : '이름1', 'e_birth' : '1996'}) objList.append({'e_id' : '2', 'e_name' : '이름2', 'e_birth' : '1997'}) return render_template('index.html', mylist = mylist, title=title, objList = objList) if __name__ == '__main__': app.run(debug=True)
true
00373b0eb385faa3e84177cd0822cf60a147fc13
Python
sachahu1/RL_trading
/network.py
UTF-8
4,232
3.34375
3
[]
no_license
import torch # The Network class inherits the torch.nn.Module class, which represents a neural network. class Network(torch.nn.Module): # The class initialisation function. This takes as arguments the dimension of the network's input (i.e. the dimension of the state), and the dimension of the network's output (i.e. the dimension of the action). def __init__(self, input_dimension, output_dimension): # Call the initialisation function of the parent class. super(Network, self).__init__() # Config the network # self.config = network_config # Define the network layers. This example network has two hidden layers, each with 100 units. self.layer_1 = torch.nn.Linear(in_features=input_dimension, out_features=100) self.layer_2 = torch.nn.Linear(in_features=100, out_features=100) self.V_layer = torch.nn.Linear(in_features=100, out_features=1) self.a_layer = torch.nn.Linear(in_features=100, out_features=output_dimension) # Function which sends some input data through the network and returns the network's output. In this example, a ReLU activation function is used for both hidden layers, but the output layer has no activation function (it is just a linear layer). def forward(self, input): layer_1_output = torch.nn.functional.relu(self.layer_1(input.float())) layer_2_output = torch.nn.functional.relu(self.layer_2(layer_1_output)) V = self.V_layer(layer_2_output) a = self.a_layer(layer_2_output) q = V + a - a.mean() return q # import torch # # The Network class inherits the torch.nn.Module class, which represents a neural network. # class Network(torch.nn.Module): # # The class initialisation function. This takes as arguments the dimension of the network's input (i.e. the dimension of the state), and the dimension of the network's output (i.e. the dimension of the action). # def __init__(self, input_dimension, output_dimension): # # Call the initialisation function of the parent class. # super(Network, self).__init__() # # Config the network # # self.config = network_config # # Define the network layers. This example network has two hidden layers, each with 100 units. # self.rnn_market = torch.nn.GRU(10, 1, 2) # self.rnn_rsi = torch.nn.GRU(10, 1, 2) # self.h1 = torch.zeros(2,1,1) # self.h2 = torch.zeros(2,1,1) # self.layer_1 = torch.nn.Linear(in_features=4, out_features=100) # self.layer_2 = torch.nn.Linear(in_features=100, out_features=100) # self.V_layer = torch.nn.Linear(in_features=100, out_features=1) # self.a_layer = torch.nn.Linear(in_features=100, out_features=output_dimension) # # Function which sends some input data through the network and returns the network's output. In this example, a ReLU activation function is used for both hidden layers, but the output layer has no activation function (it is just a linear layer). # def forward(self, input): # T = torch.cat((torch.tensor(input[0]), # torch.tensor(input[1]), # torch.tensor([input[2]]), # torch.tensor([input[3]]) # )) # O, self.h1 = self.rnn_market(T[:10].reshape(1,1,-1), self.h1) # rnn_market_output = torch.nn.functional.relu(O) # O, self.h2 = self.rnn_rsi(T[10:20].reshape(1,1,-1), self.h2) # rnn_rsi_output = torch.nn.functional.relu(O) # rnn_output = torch.cat((rnn_market_output.reshape(-1), rnn_rsi_output.reshape(-1), T[20:])) # layer_1_output = torch.nn.functional.relu(self.layer_1(rnn_output)) # layer_2_output = torch.nn.functional.relu(self.layer_2(layer_1_output)) # V = self.V_layer(layer_2_output) # a = self.a_layer(layer_2_output) # q = V + a - a.mean() # return q
true
e1ceb3f5ca54d3624ee3f8d44590da8dd7cb0c1b
Python
C3RV1/Prive
/server/generateKeys.py
UTF-8
1,855
2.59375
3
[ "MIT" ]
permissive
import Crypto.PublicKey.RSA as RSA import os import sys import json from config import Config class GenerateKeys: def __init__(self): self.database_directory = Config.DATABASE_PATH self.key_size = Config.CLIENT_KEYSIZE def generate(self): #type: () -> None if not os.path.isdir(self.database_directory): print("Error in generateKeys.py: Database directory not found") print("Aborting operation") sys.exit(1) print("\nGenerating key pair") new_key = RSA.generate(self.key_size) new_private_key_exported = new_key.export_key() new_public_key_exported = new_key.publickey().export_key() private_key_file = open(self.database_directory + "/privateKey.skm", "wb") private_key_file.write(new_private_key_exported) private_key_file.close() public_key_file = open(self.database_directory + "/publicKey.pk", "wb") public_key_file.write(new_public_key_exported) public_key_file.close() config_dict = {"host": Config.HOST, "port": Config.PORT, "key-size": Config.CLIENT_KEYSIZE, "rsa-key": new_public_key_exported.decode("ascii"), "pow-0es": Config.POW_NUM_OF_0, "pow-iterations": Config.POW_ITERATIONS, "file-send-chunks": Config.FILE_SEND_CHUNKS} print("Creating Prive Config File (PCF) with conf: ") for key in config_dict.keys(): print("{}. {}".format(key, repr(config_dict[key]))) prive_config_file = open(self.database_directory + "/priveConfigFile.pcf", "w") prive_config_file.write(json.dumps(config_dict, sort_keys=True, indent=4)) prive_config_file.close() print("Setup Complete\n")
true
068a077d2f580dadbc0234c96ddfe96e1d268da0
Python
NithinNitz12/ProgrammingLab-Python
/CO1/9_exchange.py
UTF-8
62
3.3125
3
[]
no_license
str = input("Enter a string:") print(str[-1]+str[1:-1]+str[0])
true
7b26a8c7065744adde26e32dc5d3278efb80f192
Python
serashioda/code-katas
/src/calculate_years.py
UTF-8
379
3.328125
3
[ "MIT" ]
permissive
"""Implementation of the Kata Money, Money, Money.""" def calculate_years(principal, interest, tax, desired): """Calculate how many years it take to reach desired principle.""" years = 0 while (principal < desired): accrued = principal * interest accrued = accrued - (accrued * tax) principal += accrued years += 1 return years
true
fdf5608b017eb64ec5d627056d180a5750db1dc6
Python
enriqueee99/learning_python
/ejercicio_12.3.py
UTF-8
200
4.125
4
[]
no_license
lista = [] for x in range(5): num = input('Ingrese un numero: ') lista.append(num) print(f'El mayor de la lista es: ',max(lista)) print(f'El numero {num} se repite {lista.count(num)} veces')
true
a587eb70c3cf901751e707220a9e1b3380de1365
Python
ShaneRich5/fti-programming-training
/solutions/labs/lab5.2/lab.py
UTF-8
1,273
2.734375
3
[]
no_license
import getpass from sqlalchemy import create_engine from sqlalchemy.orm import relationship, backref, sessionmaker import models # Ask user for connection details server = 'tmp-training.c21v9ghziray.us-west-1.rds.amazonaws.com' database = 'training' username = 'ftimaster' password = getpass.getpass() # Format connection string connection_string_template = "mssql+pyodbc://{}:{}@{}:1433/{}?driver=SQL+Server+Native+Client+11.0" connection_string = connection_string_template.format(username, password, server, database) # create database engine from connection string engine = create_engine(connection_string) # configure session Session = sessionmaker() Session.configure(bind=engine) # create session for interacting with database session = Session() # define the users to insert users = [ {"first_name": 'George', "last_name": 'Washington', "username": 'gwash'}, {"first_name": 'Thomas', "last_name": 'Jefferson', "username": 'tjeff'} ] # iterate new users for user in users: # create user object from model user = models.User(first_name=user["first_name"], last_name=user["last_name"], username=user["username"]) # create database record from object session.add(user) # save changes to database session.commit() print('done inserting')
true
fc5138ae3007b67918acc3c028ac700d4581785e
Python
pfigz/python-files-projects
/Celsius.py
UTF-8
206
4.03125
4
[]
no_license
celsius = float(input("Degrees Celsius")) def fahrenheit(c): return round((1.8 * c + 32), 1) print("The Fahrenheit equivalent of " + str(celsius) + " degrees Celsius is " + str(fahrenheit(celsius)))
true
5a6474ef331ba43d60be0ee52f1978ec2db883c0
Python
Rkluk/uri
/1248 Plano de Dieta.py
UTF-8
1,222
3.15625
3
[]
no_license
u = int(input()) for c in range(u): dieta= input() cafe= input() almoco = input() ldieta = [] cheater = False for v in dieta: if ord(v) not in ldieta: ldieta.append(ord(v)) lcafe = [] for v in cafe: lcafe.append(ord(v)) lalmoco = [] for v in almoco: lalmoco.append(ord(v)) ldieta.sort() for v in lcafe: if v in ldieta: for k in range(len(ldieta)): if ldieta[k] == v: ldieta.pop(k) break else: cheater = True break if not cheater: for v in lalmoco: if v in ldieta: for k in range(len(ldieta)): if ldieta[k] == v: ldieta.pop(k) break else: cheater = True break if cheater: print('CHEATER') elif len(ldieta) > 0: for v in range(len(ldieta)): if v == (len(ldieta) - 1): print(chr(ldieta[v])) else: print(chr(ldieta[v]), end='') else: print('')
true
aa77c7009863cc23d04e9ace18c152a33bbccb8c
Python
jsheflin/UnitConverter
/test.py
UTF-8
3,641
2.71875
3
[]
no_license
import unittest import start class TestFactorial(unittest.TestCase): def test_all_temp(self): temp = start.MULTIPLIERS_TO_STD['temp'].keys() source_val = 111.1 answer = 232 for tunit in temp: for to_temp in temp: if (to_temp != tunit): print ('Convert From ' + tunit +' to ' + to_temp ) def test_all_volume(self): volume = start.MULTIPLIERS_TO_STD['volume'].keys() source_val = 111.1 answer = 0.064 for tunit in volume: for to_volume in volume: if (to_volume != tunit): print ('Convert From ' + tunit +' to ' + to_volume ) def test_c_to_tb_incorrect(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'tb' answer = 222.2 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_tb_correct(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'tb' answer = 177.6 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_g_incorrect(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'g' answer = 222.2 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, 177.6) def test_c_to_g_correct(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'g' answer = .7 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_l_incorrect(self): print(self._testMethodName) source_unit = 'c' source_val = 1 convert_to = 'l' answer = 0.236 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, 177.6) def test_c_to_l_correct(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'l' answer = 2.6 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_cf_incorrect(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'cf' answer = 12.6 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_cf_correct(self): print(self._testMethodName) source_unit = 'c' source_val = 1 convert_to = 'cf' answer = 0.0 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_ci_incorrect(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'ci' answer = 222.2 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) def test_c_to_ci_correct(self): print(self._testMethodName) source_unit = 'c' source_val = 11.1 convert_to = 'ci' answer = 160.2 res = start.convert(source_unit, source_val, convert_to,answer) self.assertEqual(res, answer) if __name__ == '__main__': unittest.main()
true
de86818ea87db1ae8c64e5855bbce363446a442f
Python
ImNimeshKumar/InitalizePython
/forloop.py
UTF-8
62
3.078125
3
[]
no_license
j=0 for i in range(0,10): i = i+1 j = j+i print(j)
true
bc69d7d99ad4c2fbaf6b3988a8e92bc7f380f452
Python
dAIsySHEng1/CCC-Junior-Python-Solutions
/2011/J3.py
UTF-8
213
3.265625
3
[]
no_license
def sumac(): t1 = int(input()) t2 = int(input()) sumac_num = [t1,t2] while t1>=t2: a = t1 t1=t2 t2 = a-t1 sumac_num.append(t2) print(len(sumac_num)) sumac()
true
e00cc57588e2e8066902af6b5f4c66f81572ef1f
Python
Deniska10K/stepik
/2.4-integer_arithmetic_part_1/7.arithmetic_operations.py
UTF-8
729
4.125
4
[]
no_license
""" Напишите программу, в которой вычисляется сумма, разность и произведение двух целых чисел, введенных с клавиатуры. Формат входных данных На вход программе подаётся два целых числа, каждое на отдельной строке. Формат выходных данных Программа должна вывести сумму, разность и произведение введённых чисел, каждое на отдельной строке. """ a, b = int(input()), int(input()) print(f"{a} + {b} = {a + b}\n{a} - {b} = {a - b}\n{a} * {b} = {a * b}")
true
e0e2c0330e7327fe1c692453c88e4e77c3bfbfb6
Python
lemontreeran/adx-automation-monitor
/app/app/models/user.py
UTF-8
206
2.75
3
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
from flask_login import UserMixin class User(UserMixin): def __init__(self, user_id: str, user_name: str): self.id = user_id # pylint: disable=invalid-name self.user_name = user_name
true
952b341742faf36affb6b3def84206118a8c3d0a
Python
willie19971103/test_in_cjcu-master
/4-3.py
UTF-8
102
2.6875
3
[]
no_license
# 10 numbers are given in the input. Read them and print their sum. Use as few variables as you can.
true
612c4a707bf44656dbf7c908475560c5bd50e489
Python
Manideepnizam26/CLOTH-EXTRACTION
/CITY SCAPES/save_data_as_npy.py
UTF-8
1,276
2.828125
3
[]
no_license
import numpy as np import cv2 import glob import matplotlib.pyplot as plt import time train_images = [] train_output = [] test_images = [] test_output = [] t1 = time.time() files = glob.glob('./DATA/train/*') print(len(files)) for image_file in files: image = cv2.imread(image_file) image1, image2 = np.split(image,2,1) train_images.append(image1) train_output.append(image2) files = glob.glob('./DATA/test/*') print(len(files)) for image_file in files: image = cv2.imread(image_file) image1, image2 = np.split(image,2,1) test_images.append(image1) test_output.append(image2) t2 = time.time() print(f"Time took to read: {t2-t1} seconds.") np.save('./DATA/train_images.npy', train_images) np.save('./DATA/train_optput.npy', train_output) np.save('./DATA/test_images.npy', test_images) np.save('./DATA/test_output.npy', test_output) t3 = time.time() print(f"Time took to save: {t3-t2} seconds.") # image1 = image[:256][256:][:3] # image2 = image[:][256:][:] # print(image1.shape) # print(image2.shape) # plt.imshow(image1[:,:,[2,1,0]],cmap = 'gray') # plt.show() # plt.imshow(image2[:,:,[2,1,0]],cmap = 'gray') # plt.show() # cv2.imshow(image1[:,:,[2,1,0]],cmap = 'gray') # plt.imshow(image2)
true
b83f1d8b0c171a18c82eec8325b7db9351ecb882
Python
ajinkyapatankar/Soccer-Team-Management-System
/Diva/Code/DIVAAAAA/diva_backend/diva_backend/djangorest/api/example.py
UTF-8
12,012
2.546875
3
[]
no_license
import pandas as pd import itertools import numpy data = pd.read_csv('api/data.csv') def removeadd(st): return float(st[0:-2]) def preprocessing_data(data, club): list = ['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB'] midfielders = ['LCM', 'CM', 'RCM', 'LDM', 'CDM', 'RDM'] defenders = ['RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB'] attackers = ['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'RM'] for i in list: data[i] = data[i].apply(removeadd) return data def mapping(formation): if formation == '4231A': list_positions = ['ST', 'LAM', 'RAM', 'LCM', 'CAM', 'RCM', 'LB', 'LCB', 'RCB', 'RB'] attackers = ['ST', 'RAM', 'LAM', 'CAM'] defenders = ['LB', 'LCB', 'RCB', 'RB'] mid_fielders = ['LCM', 'RCM'] amd_no = [4, 2, 4] elif formation == '4231D': list_positions = ['ST', 'LAM', 'RAM', 'LCM', 'CDM', 'RCM', 'LB', 'LCB', 'RCB', 'RB'] attackers = ['ST', 'RAM', 'LAM'] defenders = ['CDM', 'LB', 'LCB', 'RCB', 'RB'] mid_fielders = ['LCM', 'RCM'] amd_no = [3, 2, 5] elif formation == '433': list_positions = ['ST', 'RW', 'LW', 'LCM', 'CM', 'RCM', 'LB', 'LCB', 'RCB', 'RB'] attackers = ['ST', 'RW', 'LW'] mid_fielders = ['LCM', 'CM', 'RCM'] defenders = ['LB', 'LCB', 'RCB', 'RB'] amd_no = [3, 3, 4] return (attackers, mid_fielders, defenders, amd_no) def position_mapping(formation): if formation == '4231A': lst = [['ST'], ['LAM', 'CAM', 'RAM'], ['LCM', 'RCM'], ['LB', 'LCB', 'RCB', 'RB']] if formation == '4231D': lst = [['ST'], ['LAM', 'CAM', 'RAM'], ['LCM', 'RCM'], ['LB', 'LCB', 'RCB', 'RB']] if formation == '433': lst = [['LW','ST', 'RW'], ['LCM', 'CM', 'RCM'], ['LB', 'LCB', 'RCB', 'RB']] return lst def formations(formation): if formation == '4231A': list_positions = ['ST', 'LAM', 'RAM', 'LCM', 'CAM', 'RCM', 'LB', 'LCB', 'RCB', 'RB'] if formation == '4231D': lst_positions = ['ST', 'LAM', 'CAM', 'RAM', 'LCM', 'RCM', 'LB', 'LCB', 'RCB', 'RB'] if formation == '433': lst_positions = ['ST', 'LW', 'RW', 'LCM', 'CM' 'RCM', 'LB', 'LCB', 'RCB', 'RB'] return list_positions def combo(data, combo): pref_score = 0 for i in combo: if i[0] == data.loc[data['Name'] == i[1], 'Position'].reset_index(drop=True)[0]: pref_score += 1 return pref_score def map_value(st): if st[1] == '0': return 0 return float(st[1:-1]) def formplayers(position, data_filter, val): players = set() for i in position: players_top_players = data_filter.nlargest(val, columns=[i])['Name'].values players.update(players_top_players) player_positions = itertools.permutations(players, val) attack_score = 0 team_attackers = {} for i in player_positions: score = 0 team = [] for j in range(len(i)): score += data_filter.loc[data_filter['Name'] == i[j], position[j]].values[0] team.append((position[j], i[j])) t = tuple(team) team_attackers[t] = score for t in team_attackers: pre_score = combo(data_filter, t) team_attackers[t] = (team_attackers[t], pre_score) best_team_attakers = [v for v in sorted(team_attackers.items(), key=lambda x: (-x[1][0], -x[1][1]))][0] for p in best_team_attakers: data_filter.drop(data_filter[data_filter['Name'] == p].index) return best_team_attakers def map_position_cordinates(st, formation): if formation == '4231A' or '4231D': if st == 'ST': left = 237 top = 35 elif st == 'LAM': left = 120 top = 25 elif st == 'CAM': left = 35 top = 25 elif st == 'RAM': left = 35 top = 25 elif st == 'LCM': left = 176 top = 40 elif st == 'RCM': left = 35 top = 40 elif st == 'LB': left = 90 top = 70 elif st == 'LCB': left = 15 top = 70 elif st == 'RCB': left = 15 top = 70 elif st == 'RB': left = 15 top = 70 elif st == 'GK': left = 237 top = 20 elif st == 'CDM': left = 35 top = 25 elif st == 'GK': left = 237 top = 15 if formation == '433': if st == 'LW': left = 120 top = 85 elif st == 'ST': left = 35 top = 85 elif st == 'RW': left = 35 top = 85 elif st == 'LCM': left = 120 top = 85 elif st == 'CM': left = 35 top = 85 elif st == 'RCM': left = 35 top = 85 elif st == 'LB': left = 90 top = 85 elif st == 'LCB': left = 15 top = 85 elif st == 'RB': left = 15 top = 85 elif st == 'RCB': left = 15 top = 85 elif st == 'GK': left = 237 top = 15 return (left, top) def build_team(data, formation, club=None): data1 = data list = [] if club != None: data1 = data.loc[data['Club'] == club] data1 = data1.filter(items=['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Position', 'Overall', 'Name', 'Club', 'Nationality', 'Photo']) goal_keeper = tuple( data1.loc[data1['Position'] == 'GK'].nlargest(1, columns='Overall')[['Name', 'Overall']].values[0]) lst = [] df = data1.loc[data1['Name'] == goal_keeper[0]] df = df.fillna(0) d1 = {} d1['Position'] = 'GK' d1['Name'] = goal_keeper[0] (left, top) = map_position_cordinates('GK', formation) d1['left'] = left d1['top'] = top for column in df.columns[4:]: d1[column] = df[column].iloc[0] data1 = data1.dropna(subset=['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB']) data_filter = preprocessing_data(data1, club) if len(data_filter) < 10: return None team_score = 0 (attackers, mid_fielders, defenders, amd_no) = mapping(formation) players = set() team_attackers = formplayers(attackers, data_filter, amd_no[0]) data_player = data_filter.loc[data_filter['Name'] == team_attackers[0][0][1]] data_filter = data_filter.drop(data_filter[data_filter['Name'] == team_attackers[0][0][1]].index) for p in team_attackers[0][1:]: data_player = data_player.append(data_filter.loc[data_filter['Name'] == p[1]]) data_filter = data_filter.drop(data_filter[data_filter['Name'] == p[1]].index) team_midfielders = formplayers(mid_fielders, data_filter, amd_no[1]) for p in team_midfielders[0]: df = data_filter.loc[data_filter['Name'] == p[1]] data_player = data_player.append(df, ignore_index=True) data_filter = data_filter.drop(data_filter[data_filter['Name'] == p[1]].index) team_defenders = formplayers(defenders, data_filter, amd_no[2]) for p in team_defenders[0]: df = data_filter.loc[data_filter['Name'] == p[1]] df = data_filter.loc[data_filter['Name'] == p[1]] data_player = data_player.append(df, ignore_index=True) data_filter = data_filter.drop(data_filter[data_filter['Name'] == p[1]].index) team = dict(team_attackers[0] + team_midfielders[0] + team_defenders[0]) team_score = team_attackers[1][0] + team_defenders[1][0] + team_midfielders[1][0] + goal_keeper[1] position_placement = position_mapping(formation) data_player = data_player.drop(['Position'], axis=1) for i in position_placement: list_i = [] for j in i: d = {} d['Position'] = j d['Name'] = team[j] (left, top) = map_position_cordinates(j, formation) d['left'] = left d['top'] = top df = data_player.loc[data_player['Name'] == team[j]] for column in df.columns[4:]: d[column] = df[column].iloc[0] list_i.append(d) lst.append(list_i) lst.append([d1]) return {"name":lst, "score":team_score} team, team_score = build_team(data, '433', 'FC Barcelona') # print(team) def subsitute_player(data, team, player): club = team[0][0]['Club'] fixed_players = [] for i in team: for j in i: fixed_players.append(j['Name']) data_filter = data.loc[data['Club'] == club] fixed_players.remove(player) data_filter = data_filter.drop(data_filter[data_filter['Name'] == player].index) # data_fixed_players = data_filter[data_filter['Name'] == fixed_players[0]] data_filter = data_filter.drop(data_filter[data_filter['Name'] == fixed_players[0]].index) # # for i in fixed_players[1:]: df2 = data_filter[data_filter['Name'] == i] data_fixed_players = data_fixed_players.append(df2, ignore_index=True) data_filter = data_filter.drop(data_filter[data_filter['Name'] == i].index) # # # score = 0 best_team = [] for index, row in data_filter.iterrows(): new_data = data_fixed_players.append(row, ignore_index=True) ret = build_team(new_data, '4231A', club) if ret == None: continue else: (team, team_score) = ret if team_score > score: score = team_score best_team = team return score, best_team # print(subsitute_player(data,team,'Coutinho')) def budget_build(data, budget, formation): data1 = data list = ['ID', 'Name', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Position', 'Value'] data_filter = data1.loc[:, data1.columns.isin(list)] data_filter = data_filter.dropna() list = ['LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB'] for i in list: data_filter[i] = data_filter[i].apply(removeadd) data_filter = data_filter.dropna() positions = formations(formation) print(positions) data_filter['Value'] = data_filter['Value'].apply(map_value) team = [] while len(positions) != 0 and budget >= 0: team_positions = {} val = budget / len(positions) for i in positions: rows = data_filter.loc[(data_filter['Value'] <= val) & (data_filter['Value'] > 0)] serie = rows.loc[rows[i].idxmin()][['Name', 'Value']] team_positions[i] = (serie['Name'], serie['Value']) print('hi') value = ([(v[0], v[1][0], v[1][1]) for v in sorted(team_positions.items(), key=lambda x: x[1][1])][0]) print(value[0]) team.append([value[0], value[1], value[2]]) budget = budget - value[2] print(budget) positions.remove(value[0]) data_filter = data_filter.drop(data_filter[data_filter['Name'] == value[1]].index) return team # print(budget_build(data,200,'4231A'))
true
a68f778c94f180a2dcb45805a775ffa44ad174ea
Python
lauramatchett/hackbright-intro-more-lists-and-loops
/01-list-primes/list_primes.py
UTF-8
121
2.796875
3
[]
no_license
primes = [1,3] primes = primes + [5] primes.append (7) primes.append (11) primes.extend ([13, 17]) print primes
true
cdb0aaac23045a257c540f947a71dc11782277fd
Python
rob-luke/mne-nirs
/examples/general/plot_13_fir_glm.py
UTF-8
12,883
2.765625
3
[]
permissive
""" .. _tut-fnirs-fir: GLM FIR Analysis ================ In this example we analyse data from a real multi-channel functional near-infrared spectroscopy (fNIRS) experiment (see :ref:`tut-fnirs-hrf-sim` for a simplified simulated analysis). The experiment consists of three conditions: 1) tapping with the left hand, 2) tapping with the right hand, and 3) a control condition where the participant does nothing. In this tutorial the morphology of an fNIRS response is obtained using a Finite Impulse Response (FIR) GLM analysis. An alternative epoching-style analysis on the same data can be viewed in the :ref:`waveform analysis example <tut-fnirs-group-wave>`. See `Luke et al (2021) <https://www.spiedigitallibrary.org/journals/neurophotonics/volume-8/issue-2/025008/Analysis-methods-for-measuring-passive-auditory-fNIRS-responses-generated-by/10.1117/1.NPh.8.2.025008.short>`_ for a comparison of the epoching and GLM FIR approaches. This tutorial only examines the tapping with the right hand condition to simplify explanation and minimise computation time. The reader is invited to expand the code to also analyse the other conditions. This GLM analysis is a wrapper over the excellent `Nilearn GLM <http://nilearn.github.io/modules/reference.html#module-nilearn.glm>`_. .. note:: This is an advanced tutorial and requires knowledge of pandas and numpy. I plan to write some functions to make this more convenient in the future. .. note:: The sample rate used in this example is set to 0.5 Hz. This is to ensure that the code can run on the continuous integration servers. You may wish to increase the sample rate by adjusting `resample` below for your own analysis. .. note:: This tutorial uses data stored using `the BIDS format <https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/11-near-infrared-spectroscopy.html>`_ :footcite:p:`luke2023bids`. MNE-Python allows you to process fNIRS data that is not in BIDS format. Simply modify the ``read_raw_`` function to match your data type. See :ref:`data importing tutorial <tut-importing-fnirs-data>` to learn how to use your data with MNE-Python. .. contents:: Page contents :local: :depth: 2 """ # sphinx_gallery_thumbnail_number = 1 # Authors: Robert Luke <mail@robertluke.net> # # License: BSD (3-clause) # Import common libraries import numpy as np import pandas as pd # Import MNE processing from mne.preprocessing.nirs import optical_density, beer_lambert_law # Import MNE-NIRS processing from mne_nirs.statistics import run_glm from mne_nirs.experimental_design import make_first_level_design_matrix from mne_nirs.statistics import statsmodels_to_results from mne_nirs.datasets import fnirs_motor_group from mne_nirs.channels import get_short_channels, get_long_channels # Import MNE-BIDS processing from mne_bids import BIDSPath, read_raw_bids # Import StatsModels import statsmodels.formula.api as smf # Import Plotting Library import matplotlib.pyplot as plt # %% # Define FIR analysis # --------------------------------------------------------------------- # # This code runs a FIR GLM analysis. # It fits a FIR for each sample from the onset of a trigger. # We specify here that 10 FIR delays should be used. # This results in values being estimated for 10 `delay` steps. # Due to the chosen sample rate of 0.5 Hz, these delays # correspond to 0, 2, 4... seconds from the onset of the stimulus. def analysis(fname, ID): raw_intensity = read_raw_bids(bids_path=fname, verbose=False) # Delete annotation labeled 15, as these just signify the start and end of experiment. raw_intensity.annotations.delete(raw_intensity.annotations.description == '15.0') # sanitize event names raw_intensity.annotations.description[:] = [ d.replace('/', '_') for d in raw_intensity.annotations.description] # Convert signal to haemoglobin and just keep hbo raw_od = optical_density(raw_intensity) raw_haemo = beer_lambert_law(raw_od, ppf=0.1) raw_haemo.resample(0.5, npad="auto") # Cut out just the short channels for creating a GLM regressor short_chans = get_short_channels(raw_haemo) raw_haemo = get_long_channels(raw_haemo) # Create a design matrix design_matrix = make_first_level_design_matrix(raw_haemo, hrf_model='fir', stim_dur=1.0, fir_delays=range(10), drift_model='cosine', high_pass=0.01, oversampling=1) # Add short channels as regressor in GLM for chan in range(len(short_chans.ch_names)): design_matrix[f"short_{chan}"] = short_chans.get_data(chan).T # Run GLM glm_est = run_glm(raw_haemo, design_matrix) # Create a single ROI that includes all channels for example rois = dict(AllChannels=range(len(raw_haemo.ch_names))) # Calculate ROI for all conditions conditions = design_matrix.columns # Compute output metrics by ROI df_ind = glm_est.to_dataframe_region_of_interest(rois, conditions) df_ind["ID"] = ID df_ind["theta"] = [t * 1.e6 for t in df_ind["theta"]] return df_ind, raw_haemo, design_matrix # %% # Run analysis # --------------------------------------------------------------------- # # The analysis is run on each individual subject measurement. # The individual results are then appended to a dataframe for # group-level analysis below. df = pd.DataFrame() for sub in range(1, 6): # Loop from first to fifth subject ID = '%02d' % sub # Tidy the subject name # Create path to file based on experiment info bids_path = BIDSPath(subject=ID, task="tapping", root=fnirs_motor_group.data_path(), datatype="nirs", suffix="nirs", extension=".snirf") df_individual, raw, dm = analysis(bids_path, ID) df = pd.concat([df, df_individual]) # %% # Tidy the dataframe # --------------------------------------------------------------------- # # For simplicity we only examine the data from the right hand # tapping condition. The code below retains only the relevant information # from the dataframe and design matrix for the following statistical analysis. # Keep only tapping and FIR delay information in the dataframe # I.e., for this example we are not interest in the drift coefficients, # short channel information, or control conditions. df["isTapping"] = ["Tapping_Right" in n for n in df["Condition"]] df["isDelay"] = ["delay" in n for n in df["Condition"]] df = df.query("isDelay in [True]") df = df.query("isTapping in [True]") # Make a new column that stores the condition name for tidier model below df.loc[df["isTapping"] == True, "TidyCond"] = "Tapping" # Finally, extract the FIR delay in to its own column in data frame df.loc[:, "delay"] = [n.split('_')[-1] for n in df.Condition] # To simplify this example we will only look at the right hand tapping # condition so we now remove the left tapping conditions from the # design matrix and GLM results dm_cols_not_left = np.where(["Right" in c for c in dm.columns])[0] dm = dm[[dm.columns[i] for i in dm_cols_not_left]] # %% # Run group-level model # --------------------------------------------------------------------- # # A linear mixed effects (LME) model is used to determine the effect # of FIR delay for each chromophore on the evoked response with participant # (ID) as a random variable. lme = smf.mixedlm('theta ~ -1 + delay:TidyCond:Chroma', df, groups=df["ID"]).fit() # The model is summarised below, and is not displayed here. # You can display the model output using: lme.summary() # %% # Summarise group-level findings # --------------------------------------------------------------------- # # Next the values from the model above are extracted into a dataframe for # more convenient analysis below. # A subset of the results is displayed, illustrating the estimated coefficients # for oxyhaemoglobin (HbO) for the right hand tapping condition. # Create a dataframe from LME model for plotting below df_sum = statsmodels_to_results(lme) df_sum["delay"] = [int(n) for n in df_sum["delay"]] df_sum = df_sum.sort_values('delay') # Print the result for the oxyhaemoglobin data in the tapping condition df_sum.query("TidyCond in ['Tapping']").query("Chroma in ['hbo']") # %% # Note in the output above that there are 10 FIR delays. # A coefficient estimate has been calculated for each delay. # These coefficients must be multiplied by the FIR function to obtain the # morphology of the fNIRS response. # %% # Plot the response from a single condition # --------------------------------------------------------------------- # # Finally we create a plot with three facets. # The first facet illustrates the FIR model that was used in the GLM analysis, # the model results displayed in the table above indicate the scaling values # that should be applied to this model so that it best describes the # measured data. # The second facet illustrates the estimated amplitude of each FIR component # for the right hand tapping condition for the oxyhaemoglobin data, # it is obtained by multiplying the FIR model by the estimated coefficients # from the GLM output. # The third facet illustrates the overall estimated response for each # chromophore and is calculated by summing all the individual FIR components # per chromophore (HbR not shown in first two facets). fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(20, 10)) # Extract design matrix columns that correspond to the condition of interest dm_cond_idxs = np.where(["Tapping" in n for n in dm.columns])[0] dm_cond = dm[[dm.columns[i] for i in dm_cond_idxs]] # Extract the corresponding estimates from the lme dataframe for hbo df_hbo = df_sum.query("TidyCond in ['Tapping']").query("Chroma in ['hbo']") vals_hbo = [float(v) for v in df_hbo["Coef."]] dm_cond_scaled_hbo = dm_cond * vals_hbo # Extract the corresponding estimates from the lme dataframe for hbr df_hbr = df_sum.query("TidyCond in ['Tapping']").query("Chroma in ['hbr']") vals_hbr = [float(v) for v in df_hbr["Coef."]] dm_cond_scaled_hbr = dm_cond * vals_hbr # Extract the time scale for plotting. # Set time zero to be the onset of the finger tapping. index_values = dm_cond_scaled_hbo.index - np.ceil(raw.annotations.onset[0]) index_values = np.asarray(index_values) # Plot the result axes[0].plot(index_values, np.asarray(dm_cond)) axes[1].plot(index_values,np.asarray(dm_cond_scaled_hbo)) axes[2].plot(index_values, np.sum(dm_cond_scaled_hbo, axis=1), 'r') axes[2].plot(index_values, np.sum(dm_cond_scaled_hbr, axis=1), 'b') # Format the plot for ax in range(3): axes[ax].set_xlim(-5, 30) axes[ax].set_xlabel("Time (s)") axes[0].set_ylim(-0.5, 1.3) axes[1].set_ylim(-3, 8) axes[2].set_ylim(-3, 8) axes[0].set_title("FIR Model (Unscaled by GLM estimates)") axes[1].set_title("FIR Components (Scaled by Tapping/Right GLM Estimates)") axes[2].set_title("Evoked Response (Tapping/Right)") axes[0].set_ylabel("FIR Model") axes[1].set_ylabel("Oyxhaemoglobin (ΔμMol)") axes[2].set_ylabel("Haemoglobin (ΔμMol)") axes[2].legend(["Oyxhaemoglobin", "Deoyxhaemoglobin"]) # %% # Plot the response with confidence intervals # --------------------------------------------------------------------- # # We can also extract the 95% confidence intervals of the estimates too l95_hbo = [float(v) for v in df_hbo["[0.025"]] # lower estimate u95_hbo = [float(v) for v in df_hbo["0.975]"]] # upper estimate dm_cond_scaled_hbo_l95 = dm_cond * l95_hbo dm_cond_scaled_hbo_u95 = dm_cond * u95_hbo l95_hbr = [float(v) for v in df_hbr["[0.025"]] # lower estimate u95_hbr = [float(v) for v in df_hbr["0.975]"]] # upper estimate dm_cond_scaled_hbr_l95 = dm_cond * l95_hbr dm_cond_scaled_hbr_u95 = dm_cond * u95_hbr fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(7, 7)) # Plot the result axes.plot(index_values, np.sum(dm_cond_scaled_hbo, axis=1), 'r') axes.plot(index_values, np.sum(dm_cond_scaled_hbr, axis=1), 'b') axes.fill_between(index_values, np.asarray(np.sum(dm_cond_scaled_hbo_l95, axis=1)), np.asarray(np.sum(dm_cond_scaled_hbo_u95, axis=1)), facecolor='red', alpha=0.25) axes.fill_between(index_values, np.asarray(np.sum(dm_cond_scaled_hbr_l95, axis=1)), np.asarray(np.sum(dm_cond_scaled_hbr_u95, axis=1)), facecolor='blue', alpha=0.25) # Format the plot axes.set_xlim(-5, 30) axes.set_ylim(-7, 10) axes.set_title("Evoked Response (Tapping/Right)") axes.set_ylabel("Haemoglobin (ΔμMol)") axes.legend(["Oyxhaemoglobin", "Deoyxhaemoglobin"]) axes.set_xlabel("Time (s)")
true
4043513921a71bd2f619ae6a66e9e010ec894662
Python
slott56/navtools
/navtools/olc.py
UTF-8
8,898
3.921875
4
[ "BSD-3-Clause" ]
permissive
"""OLC Representation of latitude/longitude pairs. (Sometimes called a "Plus Code") This is one of many Geocoding schemes that permits simplistic proximity checks. There are two parts to the encoding: most significant 10, least signficant 5. - Most significant is base 20 for 5 digits. Lat and Lon codes are interleaved we create a 10 digit sequence. A "+" is inserted after 8 characters. This is approximately a 13.9 meter square. - Least significant is base 5/base 4 decomposition, combined into single digits. There can be at most 5 of these. They are optional. >>> from math import isclose >>> lat = 1.286785 >>> lon = 103.854503 >>> OLC().encode(lat, lon) '6PH57VP3+PR6' >>> lat_2, lon_2 = OLC().decode('6PH57VP3+PR6') >>> isclose(lat_2, 1.28675, rel_tol=1E-5) # Truncation, not the original value True >>> isclose(lon_2, 103.8545, rel_tol=1E-5) # Truncation: not the original lon value. True >>> isclose(lat, lat_2, rel_tol=1E-4) True >>> isclose(lon, lon_2, rel_tol=1E-5) True The official Test Cases: https://github.com/google/open-location-code/blob/main/test_data We don't actually pass *all* of these. There are four decoding test cases that involve careful rounding that are implemented incorrectly. """ from typing import Iterable, Iterator class Geocode: # pragma: no cover def encode(self, lat: float, lon: float) -> str: pass def decode(self, code: str) -> tuple[float, float]: pass class OLC(Geocode): code = "23456789CFGHJMPQRVWX" def encode(self, lat: float, lon: float, size: int = 11) -> str: """ Encode an OLC string from a lat, lon pair. The latitude number must be clipped to be in the range -90 to 90. The longitude number must be normalised to be in the range -180 to 180. >>> OLC().encode(20.3701135, 2.78223535156, size=13) '7FG49QCJ+2VXGJ' :param lat: latitude, signed :param lon: longitude, signed :param size: limit of detail, usually 10 or 11, but be up to 15. :return: OLC string """ # Clip latitude to -90 - +90. # Special case for excluding +90: back off based on how many digits are needed. lat = max(min(lat, 90), -90) if lat == 90.0: if size <= 10: adj = 20 ** (2 - size / 2) else: adj = 20 ** -3 / 5 ** (size - 10) lat -= adj # Normalize longitude to -180 to +180 (excluding +180) while lon >= 180: lon -= 360 while lon < -180: lon += 360 # Convert to N latitude and E longitude via offsets to remove signs. nlat = lat + 90 elon = lon + 180 # Create the sequences of digits lat_digits = list(base20(nlat, lsb=5)) lon_digits = list(base20(elon, lsb=4)) # Interleave 5 pairs of digits from latitude and longitude for the most significant portion msb = "".join( f"{self.code[lat_digits[i]]}{self.code[lon_digits[i]]}" for i in range(5) ) # Append five of the LSB characters from pairs of digits. lsb = "".join( self.code[lat_digits[p] * 4 + lon_digits[p]] for p in range(5, 10) ) # Handle the size parameter with truncation and/or zero-padding. olc = (msb + lsb)[:size] if len(olc) < 8: olc += "0" * (8 - len(olc)) # Inject the "+" after 8. return f"{olc[:8]}+{olc[8:]}" def decode(self, olc: str, size: int = 11) -> tuple[float, float]: """ Decode a lat, lon pair from an OLC string. An OLC has several forms, punctuated by an "+" that signals the end of the leading 8 characters. 1. ``AOAOAOAO``: no plus. Assume "+00" suffix to fill up to a 10-digit MSB-only form. 2. ``AOAOAOAO+AO``: the expected 10-digit MSB-only form. 3. ``AOAOAOAO+AOVWYXZ``: after the 10-digits, an LSB suffix of 1 to 5 additional digits. 4. ``AOAO0000`` zeros used as place-holders to fill out the MSB section. 5. ``AOAO+`` leading positions can be assumed based on other context. We don't handle this. Note that the encoded value is allowed to pad with zeroes, which are not otherwise valid. These are -- in effect -- wild-card matching values. We can replace them with "2" which is not as obviously a wild-card. The reference implementation decodes an OLC to define a bounding box; not a single point. We don't implement this completely. Four test cases do not pass with this implementation. :param olc: OLC string :param size: not used, but can truncate long over-specified strings Can also be used to define the size of the bounding box in the LSB suffix. :return: lat, lon pair """ # Expand to a single, uniform string (without punctuation or special cases.) # 10 MSB positions of 2-digit, 5 LSB positions of 1-digit. olc_clean = "".join(olc.split("+")) if len(olc_clean) <= 15: olc_15 = olc_clean.replace("0", "2") + "2" * (15 - len(olc_clean)) else: olc_15 = olc_clean # Each of the LSB Characters needs to be expanded into base 5/base 4 lat-lon pair msb = olc_15[:10] lsb = olc_15[10:15] pairs = (divmod(self.code.index(c), 5) for c in lsb) lsb_expanded = "".join( f"{self.code[lat]}{self.code[lon]}" for lat, lon in pairs ) lsb_expanded += "2" * (10 - len(lsb_expanded)) full = msb + lsb_expanded # Convert from base-20 to float. # TODO: Honor the size parameter by chopping the values. nlat = from20(list(self.code.index(c) for c in full[0::2]), lsb=5) elon = from20(list(self.code.index(c) for c in full[1::2]), lsb=4) # TODO: Tweak a tiny bit with the level of precision given by the size. nlat += 0.5 / 20 ** 3 / 5 ** 5 elon += 0.5 / 20 ** 3 / 4 ** 5 # Remove North and East offsets. return round(nlat - 90, 8), round(elon - 180, 8) def base20(x: float, msb: int = 20, lsb: int = 5) -> Iterable[int]: """ Decompose a positive Lat or Lon value to a sequence of 5 base-20 values followed by 5 base-4 or base-5 values. See https://github.com/google/open-location-code/blob/main/docs/specification.md#encoding >>> list(base20(1.286785+90, lsb=5)) [4, 11, 5, 14, 14, 1, 2, 0, 0, 0] >>> list(base20(103.854503+180, lsb=4)) [14, 3, 17, 1, 16, 0, 0, 1, 2, 0] From 20.3701135,2.78223535156,13,7FG49QCJ+2VXGJ The last 3, XGJ, are combinations of base 5, base 4 pairs. X = (4, 3), G = (2, 2), J = (3, 0) "7G9C2645" >>> list(base20(20.3701135+90, lsb=5)) [5, 10, 7, 8, 0, 4, 2, 3, 2, 2] "F4QJV642" >>> list(base20(2.78223535156+180, lsb=4)) [9, 2, 15, 12, 17, 3, 2, 0, 1, 3] """ def ldigits(value: int, base: int) -> Iterable[int]: """ Generates 5 digits from an integer value for a given base. This is starts with Least Significant, which requires reversal. """ for b in range(5): value, digit = divmod(value, base) yield digit def digits(value: int, base: int) -> list[int]: """ A list of six digits from a positive integer value for a given base. This starts with the Most Significant Digit. """ return list(reversed(list(ldigits(value, base)))) # Scale up the latitude or longitude float to a large integer for the 5 MSB's. x_most = int(round(x * msb ** 3, 6)) # Create the sequence of digits in the MSB base (20, usually) msb_digits = digits(int(x_most), msb) # Scale up the latitude or longitude float to a larger integer for the 5 LSB's. x_least = int(round(x * msb ** 3 * lsb ** 5, 5)) # Create a sequence of digits in the LSB base (4 or 5, depending.) lsb_digits = digits(int(x_least), lsb) # Emit the sequence of digits return msb_digits + lsb_digits def from20(digits: list[int], msb: int = 20, lsb: int = 5) -> float: """ Convert a sequence of 10 digits, 5 in the msb base and 5 in the lsb base, into a float value. >>> from math import isclose >>> nlat_i = from20([4, 11, 5, 14, 14, 1, 1, 4, 4, 4]) >>> isclose(nlat_i, 91.286785, rel_tol=1E-6) True >>> elon_i = from20([14, 3, 17, 1, 16, 0, 0, 1, 2, 0], lsb=4) >>> isclose(elon_i, 283.854503, rel_tol=1E-5) True """ m = digits[0] for d in digits[1:5]: m = m * msb + d l = digits[5] for d in digits[6:10]: l = l * lsb + d # print(f"{digits=} {m=} {msb ** 3=} {m / msb ** 3=} {l=} {l / lsb**5=}") return (m + l / lsb ** 5) / msb ** 3 if __name__ == "__main__": # pragma: no cover import doctest doctest.testmod()
true
59c2e577d0748bf6c3d4110ce6a243797fedbd17
Python
fpt/sendmsgw
/sendmsgw.py
UTF-8
1,930
2.78125
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # pywin32 # http://sourceforge.net/projects/pywin32/ # ref # http://mail.python.org/pipermail/python-win32/2005-March/003077.html import win32api import win32gui import win32con import getopt import sys import re def FindWindowRegExp(pat): p = re.compile(pat) # http://www.brunningonline.net/simon/blog/archives/000652.html def windowEnumerationHandler(hwnd, resultList): resultList.append((hwnd, win32gui.GetWindowText(hwnd))) topWindows = [] win32gui.EnumWindows(windowEnumerationHandler, topWindows) for item in topWindows: if p.match(item[1]): return item[0] # http://stackoverflow.com/questions/5080777/what-sendmessage-to-use-to-send-keys-directly-to-another-window def send_input_hax(hwnd, msg): for c in msg: if c == "\n": win32api.SendMessage(hwnd, win32con.WM_KEYDOWN, win32con.VK_RETURN, 0) win32api.SendMessage(hwnd, win32con.WM_KEYUP, win32con.VK_RETURN, 0) else: win32api.SendMessage(hwnd, win32con.WM_CHAR, ord(c), 0) def usage(): print 'usage: sendmsg <window title> <key strokes>' def main(): try: opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.GetoptError: # ヘルプメッセージを出力して終了 usage() sys.exit(2) for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() if len(args) < 2: usage() sys.exit(2) pat = args[0] strokes = args[1].replace(r'\n', '\n') # find window by regexp hwnd = FindWindowRegExp(pat) if not hwnd: print 'Window not found' sys.exit(1) send_input_hax(hwnd, strokes) print 'sent message ' + strokes + ' to ' + str(hwnd) if __name__ == "__main__": main()
true
6884d5389a3362482daebd359dd1ec7714ceeec5
Python
bhaveshpandey29/phpstore
/product.py
UTF-8
2,294
3
3
[]
no_license
from databaseConnector import getDBConnection as connection def registerProduct(product_name,product_price,product_quantity): try: flag=0 db,cursor= connection() insert_sql = f"insert into product(product_name,product_price,product_quantity) values ('{product_name}','{product_price}','{product_quantity}')" search_sql = f"select * from product where product_name like '{product_name}' and product_price like {product_price}" cursor.execute(search_sql) rs = cursor.fetchall() if(len(rs)>0): flag = 1 else: cursor.execute(insert_sql) db.commit() except Exception as e: db.rollback() raise e else: if(flag == 0): print("inserted successfully") else: print("produt already exist") finally: db.close() #registerProduct('Java','100','5','21 Aug') def getProductDetail(product_name): try: flag = 0 db,cursor = connection() sql = f"select * from product where product_name like '{product_name}'" cursor.execute(sql) res = cursor.fetchall() if len(res)>0: flag =1 except Exception as e: print("Something went wrong") raise e else: print(list(res)) finally: db.close() #getProductDetail('python') def getAllProduct(): db,cursor = connection() try: sql = f"select * from product" cursor.execute(sql) resu = cursor.fetchall() except Exception as e: print("Something went wrong") raise e else: print(list(resu)) finally: db.close() #getAllProduct() def getProductId(product_name): try: flag = 0 db,cursor = connection() sql = f"select product_id from product where product_name like '{product_name}'" cursor.execute(sql) result = cursor.fetchall() if len(result)>0: flag =1 except Exception as e: print("Something went wrong") raise e else: #print(list(result)) return(result[0][0]) #print(result[0][0]) finally: db.close() #getProductId('java')
true
83c76f6091ae0cf0eca04ac870456997217ae729
Python
iverberk/advent-of-code-2018
/day-06/part1.py
UTF-8
1,209
3.359375
3
[]
no_license
from collections import defaultdict def X(point): x, y = point return x def Y(point): x, y = point return y def manhattan_distance(p1, p2): return abs(X(p2) - X(p1)) + abs(Y(p2) - Y(p1)) coordinates = {} max_x, max_y = 0, 0 with open('input') as f: for index, coordinate in enumerate(f): (x, y) = list(map(int, coordinate.strip().split(','))) max_x, max_y = max(max_x, x), max(max_y, y) coordinates[(x, y)] = index counts = defaultdict(int) infinite = set() for y in range(0, max_y+1): for x in range(0, max_x+1): min_distance = max_x + max_y min_index = 0 distances = [] for coordinate, index in coordinates.items(): distance = manhattan_distance((x, y), coordinate) distances.append(distance) if distance < min_distance: min_distance = distance min_index = index distances.sort() if distances[0] != distances[1]: counts[min_index] += 1 if x == 0 or x == max_x or y == 0 or y == max_y: infinite.add(min_index) print(max({k: v for k, v in counts.items() if k not in infinite}.values()))
true
e0e0b1f2f48da420f57fbdd77a28dd381543ba00
Python
L3NNY0969/datbananabotheroku
/cogs/idiotic.py
UTF-8
5,051
2.5625
3
[]
no_license
import discord import os import io import idioticapi import random import json from discord.ext import commands class Idiotic: def __init__(self, bot): self.bot = bot self.client = idioticapi.Client(os.environ.get('idioticapi'), dev=True) def format_avatar(self, avatar_url): if avatar_url.endswith(".gif"): return avatar_url + "?size=2048" return avatar_url.replace("webp", "png") @commands.command(aliases=['triggered']) async def triggeredpic(self, ctx, user: discord.Member = None): """TRI GER RED!!!""" if user is None: user = ctx.author try: await ctx.trigger_typing() av = self.format_avatar(user.avatar_url) await ctx.send(f"Grrrr...**{user.name}** is triggered.", file=discord.File(await self.client.triggered(av), "triggered.gif")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def batslap(self, ctx, user: discord.Member = None): """User 1 will be slapping, user 2 will BE SLAPPED! Tehehe!""" if user is None: await ctx.send("Gotta tag someone that you wanna slap!") else: await ctx.trigger_typing() try: av = self.format_avatar(user.avatar_url) avatar = self.format_avatar(ctx.author.avatar_url) await ctx.send(f"Ouch! **{ctx.author.name}** slapped **{user.name}!**", file=discord.File(await self.client.batslap(avatar, av), "batslap.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def missing(self, ctx, user: discord.Member = None): """Uh-oh...someone went missing!""" await ctx.trigger_typing() user = ctx.author if user is None else user try: await ctx.send(f"**{user.name}** went missing!", file=discord.File(await self.client.missing(user.avatar_url, user.name), "missing.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def wanted(self, ctx, user: discord.Member = None): """Someone is WANTED!""" await ctx.trigger_typing() user = ctx.author if user is None else user try: await ctx.send(f"**{user.name}** is wanted!", file=discord.File(await self.client.wanted(user.avatar_url), "wanted.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def achievement(self, ctx, *, text=None): """Give yourself an achievement. You need one.""" text = text if text else "Not putting text when using this command." try: await ctx.send(f"**{ctx.author.name}** got an achievement!", file=discord.File(await self.client.achievement(ctx.author.avatar_url, text), "achievement.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def facepalm(self, ctx, user: discord.Member = None): user = user if user is not None else ctx.author try: await ctx.send(f"**{user.name}** had to facepalm.", file=discord.File(await self.client.facepalm(user.avatar_url), "facepalm.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def beautiful(self, ctx, user: discord.Member = None): user = user if user is not None else ctx.author try: await ctx.send(f"**{user.name}** is beautiful!", file=discord.File(await self.client.beautiful(user.avatar_url), "beautiful.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def stepped(self, ctx, user: discord.Member = None): user = user if user is not None else ctx.author try: await ctx.send(f"**{user.name}** got stepped on.", file=discord.File(await self.client.stepped(user.avatar_url), "stepped.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") @commands.command() async def fear(self, ctx, user: discord.Member = None): user = user if user is not None else ctx.author try: await ctx.send(f"**{user.name}** is SCARY!", file=discord.File(await self.client.heavyfear(user.avatar_url), "fear.png")) except Exception as e: await ctx.send(f"An error occured with IdioticAPI. \nMore details: \n{e}") def setup(bot): bot.add_cog(Idiotic(bot))
true
e7e609d3f62b6377cc159f1e8fdeccae08a3271c
Python
lcbasu/Pyhthon-Search-Engine
/greatest.py
UTF-8
147
3.484375
3
[]
no_license
def greatest(list): max = 0 if len(list) > 0 : for e in list : if e > max : max = e return max print greatest([1,2,3,4,5,1,5])
true
479dfc761da13ddca612baa1f50ca30c9318494c
Python
kwohlfahrt/nuc_analyze
/nuc_analyze/util.py
UTF-8
562
2.921875
3
[]
no_license
from collections import defaultdict def flatten_dict(d): r = {} for key, value in d.items(): try: r.update({(key,) + k: v for k, v in flatten_dict(value).items()}) except AttributeError: r[(key,)] = value return r def tree(): def tree_(): return defaultdict(tree_) return tree_() def unflatten_dict(it): r = tree() for ks, v in it: d = r for k in ks[:-1]: d = d[k] d[ks[-1]] = v return r def ceil_div(x, y): return x // y + (x % y != 0)
true
d814daf3f093f9e86466d2200a1f37cfdbda2220
Python
steveshogren/GraphFun
/Graph.py
UTF-8
2,167
2.875
3
[]
no_license
__author__ = 'jack' from os.path import exists from subprocess import call G = { 'A': {'B': 10, 'D': 4, 'F': 10}, 'B': {'E': 5, 'J': 10, 'I': 17}, 'C': {'A': 4, 'D': 10, 'E': 16}, 'D': {'F': 12, 'G': 21}, 'E': {'G': 4}, 'F': {'H': 3}, 'G': {'J': 3}, 'H': {'G': 3, 'J': 5}, 'I': {}, 'J': {'I': 8}, } def printInGraphViz(G): dotContents = ''; for v, pointsTo in G.items(): for u, weight in pointsTo.items(): dotContents += v + ' -> ' + u + ' [label=' + str(weight) + '];' return dotContents def printPathInGraphViz(G, start, end): dotContents = ''; path = Dijkstra(G, start, end) for v, pointsTo in G.items(): for u, weight in pointsTo.items(): color = '' if path.count(u) and path.count(v): color = ' color=red ' dotContents += v + ' -> ' + u + ' [label=' + str(weight) + color + '];' return dotContents def Dijkstra(G, start, end): dist = {} previous = {} for v in G.keys(): dist[v] = float('inf') previous[v] = None dist[start] = 0 unseen_nodes = G.keys() # calculate the shortest path from every node to the start while len(unseen_nodes) > 0: shortest = None u = '' for temp_node in unseen_nodes: if shortest is None: shortest = dist[temp_node] u = temp_node elif dist[temp_node] < shortest: shortest = dist[temp_node] u = temp_node unseen_nodes.remove(u) for v, child_dist in G[u].items(): alt = dist[u] + child_dist if dist[v] > alt: dist[v] = alt previous[v] = u path = [] u = end while previous[u] is not None: path.insert(0, u) u = previous[u] path.insert(0, start) return path dotFile = 'dotTemp.dot' f = open(dotFile, 'w') f.write('digraph G {' + printPathInGraphViz(G, 'C', 'I') + '}') f.close() output_file = 'graph.png' if exists(output_file): call(['rm', output_file]) call(['dot', '-Tpng', dotFile, '-o' + output_file])
true
2d61eb68dede36b38faafbf9e7085ef292d75fcf
Python
oxhead/CodingYourWay
/src/lt_167.py
UTF-8
2,248
4.03125
4
[]
no_license
""" https://leetcode.com/problems/two-sum-ii-input-array-is-sorted Related: - lt_1_two-sum - lt_653_two-sum-iv-input-is-a-bst """ """ Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based. You may assume that each input would have exactly one solution and you may not use the same element twice. Input: numbers={2, 7, 11, 15}, target=9 Output: index1=1, index2=2 """ class Solution: def twoSum(self, numbers, target): """ :type numbers: List[int] :type target: int :rtype: List[int] """ left, right = 0, len(numbers) - 1 while left < right: total = numbers[left] + numbers[right] if total > target: right -= 1 elif total < target: left += 1 else: return [left + 1, right + 1] def twoSum_slow(self, numbers, target): """ :type numbers: List[int] :type target: int :rtype: List[int] """ def binary_search(start, end, n): if start > end: return -1 mid = (start + end) // 2 records[target - numbers[mid]] = mid if numbers[mid] == n: return mid elif numbers[mid] > n: return binary_search(start, mid - 1, n) else: return binary_search(mid + 1, end, n) records = {} for i, n in enumerate(numbers): if n in records: return [i + 1, records[n] + 1] j = binary_search(i + 1, len(numbers) - 1, target - n) if j != -1: return [i + 1, j + 1] return [] if __name__ == '__main__': test_cases = [ (([2, 7, 11, 15], 9), [1, 2]), (([5, 25, 75], 100), [2, 3]), ] for test_case in test_cases: print('case:', test_case) output = Solution().twoSum(*test_case[0]) print('output:', output) assert output == test_case[1]
true
c9e1a0bb1fb9d060b651c1c883bfbc5acdf125bd
Python
muvox/PythonPractice
/functionpractice.py
UTF-8
1,836
4.1875
4
[]
no_license
import random wins = 0 ties = 0 rounds = 0 def computerChooses(playerString): player = int(playerString) computerSelection = random.randint(1, 3) if computerSelection == 2: print("Computer chose: Nuke") elif computerSelection == 1: print("Computer chose: Foot") else: print("Computer chose: Cockroach") comp = computerSelection if comp == 2 and player == 2: print("Both LOSE") roundCounter(0) elif comp == player: print("It is a tie!") roundCounter(2) elif (comp == 1 and player == 2) or \ (comp == 2 and player == 3) or \ (comp == 3 and player == 1): print("You WIN!") roundCounter(1) else: print("You LOSE!") roundCounter(0) def roundCounter(outcome=0): global rounds global wins global ties if outcome == 1: wins = wins+1 rounds = rounds + 1 elif outcome == 2: ties = ties+1 rounds = rounds + 1 else: rounds = rounds + 1 def main(): running = True while running: playerSelection = input("Foot, Nuke or cockroach? (Quit ends):") if playerSelection == "Foot": print("You chose: Foot") computerChooses(1) elif playerSelection == "Nuke": print("You chose: Nuke") computerChooses(2) elif playerSelection == "Cockroach": print("You chose: Cockroach") computerChooses(3) elif playerSelection == "Quit": print("You played {} rounds, and won {} rounds, playing tie in" " {} rounds." .format(rounds, wins, ties)) running = False else: print("Incorrect selection.") if __name__ == "__main__": # execute only if run as a script main()
true
6a00be042a1851b24b1b99b717f4d5659b5e1103
Python
Socrats/Axelrod
/axelrod/tests/unit/test_classification.py
UTF-8
7,977
2.984375
3
[ "MIT" ]
permissive
"""Tests for the classification.""" import unittest import axelrod as axl class TestClassification(unittest.TestCase): def test_known_classifiers(self): # A set of dimensions that are known to have been fully applied known_keys = [ "stochastic", "memory_depth", "long_run_time", "inspects_source", "manipulates_source", "manipulates_state", ] for s in axl.all_strategies: s = s() self.assertTrue(None not in [s.classifier[key] for key in known_keys]) def test_multiple_instances(self): """Certain instances of classes of strategies will have different classifiers based on the initialisation variables""" P1 = axl.MemoryOnePlayer(four_vector=(.5, .5, .5, .5)) P2 = axl.MemoryOnePlayer(four_vector=(1, 0, 0, 1)) self.assertNotEqual(P1.classifier, P2.classifier) P1 = axl.Joss() P2 = axl.Joss(p=0) self.assertNotEqual(P1.classifier, P2.classifier) P1 = axl.GTFT(p=1) P2 = axl.GTFT(p=.5) self.assertNotEqual(P1.classifier, P2.classifier) P1 = axl.StochasticWSLS() P2 = axl.StochasticWSLS(ep=0) self.assertNotEqual(P1.classifier, P2.classifier) P1 = axl.GoByMajority(memory_depth=5) P2 = axl.StochasticWSLS(ep=.1) self.assertNotEqual(P1.classifier, P2.classifier) def test_manipulation_of_classifier(self): """Test that can change the classifier of an instance without changing the classifier of the class""" player = axl.Cooperator() player.classifier["memory_depth"] += 1 self.assertNotEqual(player.classifier, axl.Cooperator.classifier) player = axl.Defector() player.classifier["memory_depth"] += 1 self.assertNotEqual(player.classifier, axl.Defector.classifier) def test_obey_axelrod(self): """A test that verifies if the obey_axl function works correctly""" known_cheaters = [ axl.Darwin, axl.Geller, axl.GellerCooperator, axl.GellerDefector, axl.MindBender, axl.MindController, axl.MindWarper, axl.MindReader, ] known_basic = [ axl.Alternator, axl.AntiTitForTat, axl.Bully, axl.Cooperator, axl.Defector, axl.GoByMajority, axl.SuspiciousTitForTat, axl.TitForTat, axl.WinStayLoseShift, ] known_ordinary = [ axl.AverageCopier, axl.ForgivingTitForTat, axl.GoByMajority20, axl.GTFT, axl.Grudger, axl.Inverse, axl.Random, ] for strategy in known_cheaters: self.assertFalse(axl.obey_axelrod(strategy()), msg=strategy) for strategy in known_basic: self.assertTrue(axl.obey_axelrod(strategy()), msg=strategy) for strategy in known_ordinary: self.assertTrue(axl.obey_axelrod(strategy()), msg=strategy) def test_is_basic(self): """A test that verifies if the is_basic function works correctly""" known_cheaters = [ axl.Darwin, axl.Geller, axl.GellerCooperator, axl.GellerDefector, axl.MindBender, axl.MindController, axl.MindWarper, axl.MindReader, ] known_basic = [ axl.Alternator, axl.AntiTitForTat, axl.Bully, axl.Cooperator, axl.Defector, axl.SuspiciousTitForTat, axl.TitForTat, axl.WinStayLoseShift, ] known_ordinary = [ axl.AverageCopier, axl.ForgivingTitForTat, axl.GoByMajority20, axl.GTFT, axl.Inverse, axl.Random, ] for strategy in known_cheaters: self.assertFalse(axl.is_basic(strategy()), msg=strategy) for strategy in known_basic: self.assertTrue(axl.is_basic(strategy()), msg=strategy) for strategy in known_ordinary: self.assertFalse(axl.is_basic(strategy()), msg=strategy) def str_reps(xs): """Maps a collection of player classes to their string representations.""" return set(map(str, [x() for x in xs])) class TestStrategies(unittest.TestCase): def test_strategy_list(self): for strategy_list in [ "all_strategies", "demo_strategies", "basic_strategies", "long_run_time_strategies", "strategies", "ordinary_strategies", "cheating_strategies", ]: self.assertTrue(hasattr(axl, strategy_list)) def test_lists_not_empty(self): for strategy_list in [ axl.all_strategies, axl.demo_strategies, axl.basic_strategies, axl.long_run_time_strategies, axl.strategies, axl.ordinary_strategies, axl.cheating_strategies, ]: self.assertTrue(len(strategy_list) > 0) def test_inclusion_of_strategy_lists(self): all_strategies_set = set(axl.all_strategies) for strategy_list in [ axl.demo_strategies, axl.basic_strategies, axl.long_run_time_strategies, axl.strategies, axl.ordinary_strategies, axl.cheating_strategies, ]: self.assertTrue( str_reps(strategy_list).issubset(str_reps(all_strategies_set)) ) strategies_set = set(axl.strategies) for strategy_list in [ axl.demo_strategies, axl.basic_strategies, axl.long_run_time_strategies, ]: self.assertTrue(str_reps(strategy_list).issubset(str_reps(strategies_set))) def test_long_run_strategies(self): long_run_time_strategies = [ axl.DBS, axl.MetaMajority, axl.MetaMajorityFiniteMemory, axl.MetaMajorityLongMemory, axl.MetaMinority, axl.MetaMixer, axl.MetaWinner, axl.MetaWinnerDeterministic, axl.MetaWinnerEnsemble, axl.MetaWinnerFiniteMemory, axl.MetaWinnerLongMemory, axl.MetaWinnerStochastic, axl.NMWEDeterministic, axl.NMWEFiniteMemory, axl.NMWELongMemory, axl.NMWEStochastic, axl.NiceMetaWinner, axl.NiceMetaWinnerEnsemble, ] self.assertEqual( str_reps(long_run_time_strategies), str_reps(axl.long_run_time_strategies) ) self.assertTrue( all(s().classifier["long_run_time"] for s in axl.long_run_time_strategies) ) def test_short_run_strategies(self): short_run_time_strategies = [ s for s in axl.strategies if s not in axl.long_run_time_strategies ] self.assertEqual( str_reps(short_run_time_strategies), str_reps(axl.short_run_time_strategies) ) self.assertFalse( any(s().classifier["long_run_time"] for s in axl.short_run_time_strategies) ) def test_meta_inclusion(self): self.assertTrue(str(axl.MetaMajority()) in str_reps(axl.strategies)) self.assertTrue(str(axl.MetaHunter()) in str_reps(axl.strategies)) self.assertFalse( str(axl.MetaHunter()) in str_reps(axl.long_run_time_strategies) ) def test_demo_strategies(self): demo_strategies = [ axl.Cooperator, axl.Defector, axl.TitForTat, axl.Grudger, axl.Random, ] self.assertTrue(str_reps(demo_strategies), str_reps(axl.demo_strategies))
true
06ec6000235923a6f526ce9bc5305d080ef9e882
Python
IgorxutStepikOrg/AlgorithmsTheoryAndPracticeMethods
/Module2_2/Step6/python/solution1.py
UTF-8
209
3.46875
3
[]
no_license
def fib(num): prev, cur = 0, 1 for i in range(1, num): prev, cur = cur, prev + cur return cur def main(): n = int(input()) print(fib(n)) if __name__ == "__main__": main()
true
4e698d55499c70ae0bc5fe3270162686e25b5a80
Python
arlethitgo/pic2map
/tests/test_cli.py
UTF-8
6,128
2.703125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """Command Line Interface test cases.""" import argparse import logging import os import tempfile import unittest from StringIO import StringIO from mock import ( MagicMock as Mock, patch, ) from pic2map.cli import ( add, count, main, parse_arguments, remove, serve, valid_directory, ) class MainTests(unittest.TestCase): """Main function test cases.""" def setUp(self): """Patch parse_arguments function.""" self.parse_arguments_patcher = patch('pic2map.cli.parse_arguments') self.parse_arguments = self.parse_arguments_patcher.start() self.logging_patcher = patch('pic2map.cli.logging') self.logging_patcher.start() def test_func_called(self): """Command function is called.""" argv = Mock() function = Mock() args = argparse.Namespace( log_level=logging.WARNING, func=function, ) self.parse_arguments.return_value = args main(argv) function.assert_called_once_with(args) def tearDown(self): """Undo the patching.""" self.parse_arguments_patcher.stop() self.logging_patcher.stop() class CommandFunctionTests(unittest.TestCase): """Command function test cases.""" def setUp(self): """Patch dependencies.""" self.tree_explorer_patcher = patch('pic2map.cli.TreeExplorer') self.tree_explorer_cls = self.tree_explorer_patcher.start() self.filter_gps_metadata_patcher = ( patch('pic2map.cli.filter_gps_metadata')) self.filter_gps_metadata = self.filter_gps_metadata_patcher.start() self.transform_metadata_to_row_patcher = ( patch('pic2map.cli.transform_metadata_to_row')) self.transform_metadata_to_row = ( self.transform_metadata_to_row_patcher.start()) self.location_db_patcher = patch('pic2map.cli.LocationDB') self.location_cls = self.location_db_patcher.start() def tearDown(self): """Undo the patching.""" self.tree_explorer_patcher.stop() self.filter_gps_metadata_patcher.stop() self.transform_metadata_to_row_patcher.stop() self.location_db_patcher.stop() def test_add(self): """Add command function.""" tree_explorer = self.tree_explorer_cls() paths = Mock() tree_explorer.paths.return_value = paths metadata_record = Mock() metadata_records = [metadata_record] self.filter_gps_metadata.return_value = metadata_records row = Mock() self.transform_metadata_to_row.return_value = row database = self.location_cls().__enter__() directory = 'some directory' args = argparse.Namespace(directory=directory) add(args) self.tree_explorer_cls.assert_called_with(directory) self.filter_gps_metadata.assert_called_once_with(paths) self.transform_metadata_to_row.assert_called_once_with(metadata_record) database.insert.assert_called_with([row]) def test_remove(self): """Remove command function.""" directory = 'some directory' args = argparse.Namespace(directory=directory) remove(args) database = self.location_cls().__enter__() database.delete.assert_called_once_with(directory) def test_count(self): """Count command function.""" file_count = 10 database = self.location_cls().__enter__() database.count.return_value = file_count args = argparse.Namespace() with patch('sys.stdout', new_callable=StringIO) as stdout: count(args) self.assertEqual(stdout.getvalue(), '{}\n'.format(file_count)) def test_serve(self): """Serve command function.""" args = argparse.Namespace() with patch('pic2map.cli.app') as app: serve(args) app.run.assert_called_once_with(debug=True) class ValidDirectoryTest(unittest.TestCase): """Valid directory test cases.""" def test_valid_directory(self): """Valid directory path.""" temp_directory = tempfile.mkdtemp() try: self.assertTrue( valid_directory(temp_directory), temp_directory, ) finally: os.rmdir(temp_directory) def test_invalid_directory(self): """Invalid directory.""" with tempfile.NamedTemporaryFile() as temp_file: with self.assertRaises(argparse.ArgumentTypeError): valid_directory(temp_file.name) def test_unreadable_directory(self): """Unreadable diretory.""" temp_directory = tempfile.mkdtemp() try: os.chmod(temp_directory, 0) with self.assertRaises(argparse.ArgumentTypeError): valid_directory(temp_directory) finally: os.rmdir(temp_directory) class ParseArgumentsTest(unittest.TestCase): """Parse arguments test case.""" def test_add_command(self): """Add command.""" directory = 'some directory' with patch('pic2map.cli.valid_directory') as valid_directory_func: valid_directory_func.return_value = directory args = parse_arguments(['add', directory]) self.assertEqual(args.directory, directory) self.assertEqual(args.func, add) def test_remove(self): """Remove command.""" directory = 'some directory' with patch('pic2map.cli.valid_directory') as valid_directory_func: valid_directory_func.return_value = directory args = parse_arguments(['remove', directory]) self.assertEqual(args.directory, directory) self.assertEqual(args.func, remove) def test_count(self): """Count command.""" args = parse_arguments(['count']) self.assertEqual(args.func, count) def test_serve_command(self): """Serve command.""" args = parse_arguments(['serve']) self.assertEqual(args.func, serve)
true
5834bce9b1f5a4868bcd8f11fc644eea9d65e7b8
Python
RodolfoGueiros/PYTHON
/Exercicios/Exerc_lista_3.py
UTF-8
886
4.0625
4
[]
no_license
listaCD = [] def exibirMenu(): print("1 - Inserir novo CD") print("2 - Excluir CD") print("3 - Listar CDs") print("4 - Sair") opcao = int(input("Escolha uma opcao: ")) return opcao def inserirCD(): novoCD = input("Digite o nome do Artista: ") listaCD.append(novoCD) def listarCD(): for elemento in listaCD: print (elemento) def excluirCD(): nomeCD = input("Nome do CD que deseja excluir:") indice = -1 encontrou = False for elemento in listaCD: indice += 1 if elemento == nomeCD: encontrou = True break if (encontrou): del listaCD[indice] while True: opcao = exibirMenu() if opcao == 4: break elif opcao == 3: listarCD() elif opcao == 1: inserirCD() elif opcao == 2: excluirCD()
true
4975b1dd0a41288f00512424a317b4e6d0f2af19
Python
wfjin/LING570
/HW5/ngram_count.py
UTF-8
1,856
3.53125
4
[]
no_license
""" This python program reads a training file and outputs the ngram count for unigrams, bigrams and trigrams of the training data """ import sys def addebos(line_ebos): """ This function adds BOS and EOS to each sentence """ new_line = ['<s>'] new_line.extend(line_ebos) new_line.append('</s>') return new_line if __name__ == "__main__": UNIGRAM = {} BIGRAM = {} TRIGRAM = {} with open(sys.argv[1], 'r') as training: for line in training: words = line.split() words = addebos(words) for i in range(0, len(words)): if words[i] in UNIGRAM: UNIGRAM[words[i]] += 1 else: UNIGRAM[words[i]] = 1 if i < len(words) - 1: bi_words = words[i] + ' ' + words[i+1] if bi_words in BIGRAM: BIGRAM[bi_words] += 1 else: BIGRAM[bi_words] = 1 if i < len(words) - 2: tri_words = words[i] + ' ' + words[i+1] + ' ' + words[i+2] if tri_words in TRIGRAM: TRIGRAM[tri_words] += 1 else: TRIGRAM[tri_words] = 1 SORTED_UNIGRAM = sorted(UNIGRAM.items(), key=lambda x: (x[1], x[0]), reverse=True) SORTED_BIGRAM = sorted(BIGRAM.items(), key=lambda x: (x[1], x[0]), reverse=True) SORTED_TRIGRAM = sorted(TRIGRAM.items(), key=lambda x: (x[1], x[0]), reverse=True) NGRAM_COUNT = open(sys.argv[2], 'w') for uni in SORTED_UNIGRAM: NGRAM_COUNT.write(str(uni[1])+'\t'+uni[0]+'\n') for bi in SORTED_BIGRAM: NGRAM_COUNT.write(str(bi[1])+'\t'+bi[0]+'\n') for tri in SORTED_TRIGRAM: NGRAM_COUNT.write(str(tri[1])+'\t'+tri[0]+'\n')
true
551a6f003f0061c7b26f74efa36fad6acc5cf67e
Python
obround/ppci
/ppci/codegen/registerallocator.py
UTF-8
29,548
3.96875
4
[ "BSD-2-Clause" ]
permissive
""" Instructions generated during instruction selection phase use virtual registers and some physical registers (e.g. when an instruction expects arguments in particular register(s)). Register allocation is the process of assigning physical location (register or memory) to the remaining virtual registers. Some key concepts in the domain of register allocation are: - **virtual register**: A location which must be mapped to a physical register. - **physical register**: A real CPU register - **interference graph**: A graph in which each node represents a location. An edge indicates that the two locations cannot have the same physical register assigned. - **pre-colored register**: A location that is already assigned a specific physical register. - **coalescing**: The process of merging two nodes in an interference graph which do not interfere and are connected by a move instruction. - **spilling**: Spilling is the process when no physical register can be found for a certain virtual register. Then this value will be placed in memory. - **register class**: Most CPU's contain registers grouped into classes. For example, there may be registers for floating point, and registers for integer operations. - **register alias**: Some registers may alias to registers in another class. A good example are the x86 registers rax, eax, ax, al and ah. **Interference graph** Each instruction in the instruction list may use or define certain registers. A register is live between a definition and a use of that register. Registers that are live at the same point in the program interfere with each other. An interference graph is a graph in which each node represents a register and each edge represents interference between those two registers. **Graph coloring** In 1981 Chaitin presented the idea to use graph coloring for register allocation. In a graph a node can be colored if it has less neighbours than possible colors (referred to as K from now on). This is true because when each neighbour has a different color, there is still a valid color left for the node itself. The outline of the algorithm is: Given a graph, if a node can be colored, remove this node from the graph and put it on a stack. When added back to the graph, it can be given a color. Now repeat this process recursively with the remaining graph. When the graph is empty, place all nodes back from the stack one by one and assign each node a color when placed. Remember that when adding back, a color can be found, because this was the criteria during removal. See: https://en.wikipedia.org/wiki/Chaitin%27s_algorithm [Chaitin1982]_ **Coalescing** Coalescing is the process of merging two nodes in an interference graph. This means that two temporaries will be assigned to the same register. This is especially useful if the temporaries are used in move instructions, since when the source and the destination of a move instruction are the same register, the move can be deleted. Coalescing a move instruction is easy when an interference graph is present. Two nodes that are used by a move instruction can be coalesced when they do not interfere. However, if we coalesce too many moves, the graph can become uncolorable, and spilling has to be done. To prevent spilling, coalescing must be done in a controlled manner. A conservative approach to the coalescing is the following: if the merged node has fewer than K neighbours, then the nodes can be coalesced. The reason for this is that when all nodes that can be colored are removed and the merged node and its non-colored neighbours remain, the merged node can be colored. This ensures that the coalescing of the nodes does not have a negative effect on the colorability of the graph. [Briggs1994]_ **Spilling** **Iterated register coalescing** Iterated register coalescing (IRC) is a combination of graph coloring, coalescing and spilling. The process consists of the following steps: - build an interference graph from the instruction list - remove trivial colorable nodes. - coalesce registers to remove redundant moves - spill registers - select registers See: https://en.wikipedia.org/wiki/Register_allocation [George1996]_ **Graph coloring with more register classes** Most instruction sets are not uniform, and hence simple graph coloring cannot be used. The algorithm can be modified to work with several register classes that possibly interfere. [Runeson2003]_ [Smith2004]_ **Implementations** The following class can be used to perform register allocation. """ import logging from functools import lru_cache from .flowgraph import FlowGraph from .interferencegraph import InterferenceGraph from ..arch.arch import Architecture, Frame from ..arch.registers import Register from ..utils.tree import Tree from ..utils.collections import OrderedSet, OrderedDict from .instructionselector import ContextInterface class MiniCtx(ContextInterface): def __init__(self, frame, arch): self._frame = frame self._arch = arch self.instructions = [] def move(self, dst, src): """ Generate move """ self.emit(self._arch.move(dst, src)) def emit(self, instruction): self.instructions.append(instruction) def new_reg(self, cls): return self._frame.new_reg(cls) class MiniGen: """ Spill code generator """ def __init__(self, arch, selector): self.arch = arch self.selector = selector def gen_load(self, frame, vreg, slot): """ Generate instructions to load vreg from a stack slot """ at = self.make_at(slot) fmt = self.make_fmt(vreg) t = Tree( "MOV{}".format(fmt), Tree("LDR{}".format(fmt), at), value=vreg, ) return self.gen(frame, t) def gen_store(self, frame, vreg, slot): """ Generate instructions to store vreg at a stack slot """ at = self.make_at(slot) fmt = self.make_fmt(vreg) t = Tree( "STR{}".format(fmt), at, Tree("REG{}".format(fmt), value=vreg), ) return self.gen(frame, t) def gen(self, frame, tree): """ Generate code for a given tree """ ctx = MiniCtx(frame, self.arch) self.selector.gen_tree(ctx, tree) return ctx.instructions def make_fmt(self, vreg): """Determine the type suffix, such as I32 or F64.""" # TODO: hack to retrieve register type (U, I or F): ty = getattr(vreg, "ty", "I") fmt = "{}{}".format(ty, vreg.bitsize) return fmt def make_at(self, slot): bitsize = self.arch.get_size("ptr") * 8 offset_tree = Tree("FPRELU{}".format(bitsize), value=slot) return offset_tree # TODO: implement linear scan allocator and other allocators! class GraphColoringRegisterAllocator: """Target independent register allocator. Algorithm is iterated register coalescing by Appel and George. Also the pq-test algorithm for more register classes is added. """ logger = logging.getLogger("regalloc") verbose = False # Set verbose to True to get more logging info def __init__(self, arch: Architecture, instruction_selector, reporter): assert isinstance(arch, Architecture), arch self.arch = arch self.spill_gen = MiniGen(arch, instruction_selector) self.reporter = reporter # A map with register alias info: self.alias = arch.info.alias # Register information: # TODO: Improve different register classes self.K = {} # type: Dict[Register, int] self.cls_regs = {} # Mapping from class to register set for reg_class in self.arch.info.register_classes: kls, regs = reg_class.typ, reg_class.registers if self.verbose: self.logger.debug('Register class "%s" contains %s', kls, regs) self.K[kls] = len(regs) self.cls_regs[kls] = OrderedSet(regs) def alloc_frame(self, frame: Frame): """Do iterated register allocation for a single frame. This is the entry function for the register allocator and drives through all stages of the algorithm. Args: frame: The frame to perform register allocation on. """ spill_rounds = 0 self.logger.debug("Starting iterative coloring") while True: self.init_data(frame) # Process all work lists: while True: # self.check_invariants() # Run one of the possible steps: if self.simplify_worklist: self.simplify() elif self.worklistMoves: self.coalesc() elif self.freeze_worklist: self.freeze() elif self.spill_worklist: self.select_spill() else: break self.logger.debug("Now assinging colors") spilled_nodes = self.assign_colors() if spilled_nodes: spill_rounds += 1 self.logger.debug("Spilling round %s", spill_rounds) max_spill_rounds = 30 if spill_rounds > max_spill_rounds: raise RuntimeError( "Give up: more than {} spill rounds done!".format( max_spill_rounds ) ) # Rewrite program now. for node in spilled_nodes: self.rewrite_program(node) if self.verbose: self.reporter.message("Rewrote program with spilling") self.reporter.dump_frame(self.frame) else: # Done! break self.remove_redundant_moves() self.apply_colors() def link_move(self, move): """ Associate move with its source and destination """ src = self.node(move.used_registers[0]) dst = self.node(move.defined_registers[0]) src.moves.add(move) dst.moves.add(move) def unlink_move(self, move): src = self.node(move.used_registers[0]) dst = self.node(move.defined_registers[0]) if move in src.moves: src.moves.remove(move) if move in dst.moves: dst.moves.remove(move) def init_data(self, frame: Frame): """ Initialize data structures """ self.frame = frame cfg = FlowGraph(self.frame.instructions) self.logger.debug( "Constructed flowgraph with %s nodes", len(cfg.nodes) ) cfg.calculate_liveness() self.frame.ig = InterferenceGraph() self.frame.ig.calculate_interference(cfg) self.logger.debug( "Constructed interferencegraph with %s nodes", len(self.frame.ig.nodes), ) self.moves = [i for i in self.frame.instructions if i.ismove] for mv in self.moves: self.link_move(mv) self.select_stack = [] # Move related sets: self.coalescedMoves = OrderedSet() self.constrainedMoves = OrderedSet() self.frozenMoves = OrderedSet() self.activeMoves = OrderedSet() self.worklistMoves = OrderedSet() # Fill initial move set, try to remove all moves: for m in self.moves: self.worklistMoves.add(m) # Make worklists for nodes: self.spill_worklist = OrderedSet() self.freeze_worklist = OrderedSet() self.simplify_worklist = OrderedSet() self.precolored = OrderedSet() self._num_blocked = {} # Divide nodes into categories: for node in self.frame.ig.nodes: if node.is_colored: if self.verbose: self.logger.debug("Pre colored: %s", node) self.precolored.add(node) elif not self.is_colorable(node): self.spill_worklist.add(node) elif self.is_move_related(node): self.freeze_worklist.add(node) else: self.simplify_worklist.add(node) self.logger.debug( "%s node in spill list, %s in freeze list and %s in simplify list", len(self.spill_worklist), len(self.freeze_worklist), len(self.simplify_worklist), ) def node(self, vreg): return self.frame.ig.get_node(vreg) def has_edge(self, t, r): """ Helper function to check for an interfering edge """ if self.frame.ig.has_edge(t, r): return True if t in self.precolored: # Check aliases: for reg2 in self.alias[t.reg]: if self.frame.ig.has_node(reg2): t2 = self.frame.ig.get_node(reg2, create=False) if self.frame.ig.has_edge(t2, r): return True if r in self.precolored: # Check aliases: for reg2 in self.alias[r.reg]: if self.frame.ig.has_node(reg2): r2 = self.frame.ig.get_node(reg2, create=False) if self.frame.ig.has_edge(t, r2): return True return False @lru_cache(maxsize=None) def q(self, B, C) -> int: """ The number of class B registers that can be blocked by class C. """ assert issubclass(B, Register) assert issubclass(C, Register) B_regs = self.cls_regs[B] C_regs = self.cls_regs[C] x = max(len(self.alias[r] & B_regs) for r in C_regs) if self.verbose: self.logger.debug( "Class %s register can block max %s class %s register", C, x, B ) return x def is_colorable(self, node) -> bool: """ Helper function to determine whether a node is trivially colorable. This means: no matter the colors of the nodes neighbours, the node can be given a color. In case of one register class, this is: n.degree < self.K In case of more than one register class, somehow the worst case damage by all neighbours must be determined. We do this now with the pq-test. """ if node.is_colored: return True if node in self._num_blocked: num_blocked = self._num_blocked[node] else: num_blocked = self.calc_num_blocked(node) self._num_blocked[node] = num_blocked # This invariant should hold: # assert num_blocked == self.calc_num_blocked(node) return num_blocked < self.K[node.reg_class] def calc_num_blocked(self, node): """Calculate for the given node how many registers are blocked by it's adjecent nodes. This is an advanced form of a nodes degree, but then for register of different classes. """ B = node.reg_class num_blocked = sum(self.q(B, j.reg_class) for j in node.adjecent) return num_blocked def release_pressure(self, node, reg_class): """Remove some register pressure from the given node.""" if node in self._num_blocked: self._num_blocked[node] -= self.q(node.reg_class, reg_class) def NodeMoves(self, n): return n.moves def is_move_related(self, n): """ Check if a node is used by move instructions """ return bool(self.NodeMoves(n)) def simplify(self): """ Remove nodes from the graph """ n = self.simplify_worklist.pop() self.select_stack.append(n) if self.verbose: self.logger.debug("Simplify node %s", n) # Pop out of graph, we place it back later: self.frame.ig.mask_node(n) for m in n.adjecent: self.release_pressure(m, n.reg_class) self.decrement_degree(m) def decrement_degree(self, m): """If a node was lowered in degree, check if there are nodes that can be moved from the spill list to the freeze of simplify list """ # This check was m.degree == self.K - 1 if m in self.spill_worklist and self.is_colorable(m): self.enable_moves({m} | m.adjecent) self.spill_worklist.remove(m) if self.is_move_related(m): self.freeze_worklist.add(m) else: self.simplify_worklist.add(m) def enable_moves(self, nodes): for node in nodes: for move in self.NodeMoves(node): if move in self.activeMoves: self.activeMoves.remove(move) self.worklistMoves.add(move) def coalesc(self): """Coalesc moves conservative. This means, merge the variables of a move into one variable, and delete the move. But do this only when no spill will occur. """ # Remove the move from the worklist: m = self.worklistMoves.pop() x = self.node(m.defined_registers[0]) y = self.node(m.used_registers[0]) u, v = (y, x) if y in self.precolored else (x, y) if self.verbose: self.logger.debug("Coalescing %s which couples %s and %s", m, u, v) if u is v: # u is v, so we do 'mov x, x', which is redundant self.coalescedMoves.add(m) self.unlink_move(m) self.add_worklist(u) if self.verbose: self.logger.debug("Move was an identity move") elif (v in self.precolored) or self.has_edge(u, v): # Both u and v are precolored # or there is an interfering edge # between the two nodes: self.constrainedMoves.add(m) self.unlink_move(m) self.add_worklist(u) self.add_worklist(v) if self.verbose: self.logger.debug("Move is constrained!") elif ( u.is_colored and issubclass(u.reg_class, v.reg_class) and all(self.ok(t, u) for t in v.adjecent) ) or ((not u.is_colored) and self.conservative(u, v)): # Check if v can be given the class of u, in other words: # is u a subclass of v? self.coalescedMoves.add(m) self.unlink_move(m) self.combine(u, v) self.add_worklist(u) else: self.logger.debug("Active move!") self.activeMoves.add(m) def add_worklist(self, u): if ( (u not in self.precolored) and (not self.is_move_related(u)) and self.is_colorable(u) ): self.freeze_worklist.remove(u) self.simplify_worklist.add(u) def ok(self, t, r): """ Implement coalescing testing with pre-colored register """ return t.is_colored or self.is_colorable(t) or self.has_edge(t, r) def conservative(self, u, v): """Briggs conservative criteria for coalescing. If the result of the merge has fewer than K nodes that are not trivially colorable, then coalescing is safe, because when coloring, all other nodes that can be colored will be popped from the graph, leaving the merged node that then can be colored. In the case of multiple register classes, first determine the new neighbour nodes. Then assume that all nodes that can be colored will be colored, and are taken out of the graph. Then calculate how many registers can be blocked by the remaining nodes. If this is less than the number of available registers, the coalesc is safe! """ nodes = u.adjecent | v.adjecent B = self.common_reg_class(u.reg_class, v.reg_class) num_blocked = sum( self.q(B, j.reg_class) for j in nodes if not self.is_colorable(j) ) return num_blocked < self.K[B] def combine(self, u, v): """ Combine u and v into one node, updating work lists """ if self.verbose: self.logger.debug("Combining %s and %s", u, v) # Remove v from work list: if v in self.freeze_worklist: self.freeze_worklist.remove(v) else: self.spill_worklist.remove(v) # update _num_blocked of neighbours fine grained: for t in u.adjecent: self.release_pressure(t, u.reg_class) for t in v.adjecent: self.release_pressure(t, v.reg_class) # Determine new register class: u.reg_class = self.common_reg_class(u.reg_class, v.reg_class) self.frame.ig.combine(u, v) # Update node pseudo-degree: if u in self._num_blocked: # Brute force re-calculate. # We could figure out the shared edges # and do careful book keeping, but this # might be as intensive as well. self._num_blocked[u] = self.calc_num_blocked(u) for t in u.adjecent: if t in self._num_blocked: self._num_blocked[t] += self.q(t.reg_class, u.reg_class) if self.verbose: self.logger.debug("Combined node: %s", u) # See if any adjecent nodes dropped in degree by merging u and v # This can happen when u and v both interfered with t. for t in u.adjecent: self.decrement_degree(t) # Move node to spill worklist if higher degree is reached: if (not self.is_colorable(u)) and u in self.freeze_worklist: self.freeze_worklist.remove(u) self.spill_worklist.add(u) @lru_cache(maxsize=None) def common_reg_class(self, u, v): """ Determine the smallest common register class of two nodes """ if issubclass(u, v): cc = u elif issubclass(v, u): cc = v else: raise RuntimeError( "Cannot determine common registerclass for {} and {}".format( u, v ) ) if self.verbose: self.logger.debug("The common class of %s and %s is %s", u, v, cc) return cc def freeze(self): """Give up coalescing on some node, move it to the simplify list and freeze all moves associated with it. """ u = self.freeze_worklist.pop() if self.verbose: self.logger.debug("freezing %s", u) self.simplify_worklist.add(u) self.freeze_moves(u) def freeze_moves(self, u): """ Freeze moves for node u """ for m in list(self.NodeMoves(u)): if m in self.activeMoves: self.activeMoves.remove(m) else: self.worklistMoves.remove(m) self.unlink_move(m) self.frozenMoves.add(m) # Check other part of the move for still being move related: src = self.node(m.used_registers[0]) dst = self.node(m.defined_registers[0]) v = src if u is dst else dst if ( v not in self.precolored and not self.is_move_related(v) and self.is_colorable(v) ): assert v in self.freeze_worklist self.freeze_worklist.remove(v) self.simplify_worklist.add(v) def select_spill(self): """Select potential spill node. Select a node to be spilled. This is optimistic, since this might be turned into a real spill. Continue nevertheless, to discover more potential spills, or we might be lucky and able to color the graph any ways. """ # TODO: select a node which is certainly not a node that was # introduced during spilling? # Select to be spilled variable: # Select node with the lowest priority: p = [] for n in self.spill_worklist: assert not n.is_colored d = sum(len(self.frame.ig.defs(t)) for t in n.temps) u = sum(len(self.frame.ig.uses(t)) for t in n.temps) priority = (u + d) / n.degree self.logger.debug("%s has spill priority=%s", n, priority) p.append((n, priority)) node = min(p, key=lambda x: x[1])[0] # Potential spill node, place in simplify worklist: self.spill_worklist.remove(node) self.simplify_worklist.add(node) self.freeze_moves(node) def rewrite_program(self, node): """ Rewrite program by creating a load and a store for each use """ # Generate spill code: self.logger.debug("Placing {} on stack".format(node)) if self.verbose: self.reporter.message("Placing {} on stack".format(node)) size = node.reg_class.bitsize // 8 alignment = size slot = self.frame.alloc(size, alignment) self.logger.debug("Allocating stack slot %s", slot) # TODO: maybe break-up coalesced node before doing this? for tmp in node.temps: instructions = OrderedSet( self.frame.ig.uses(tmp) + self.frame.ig.defs(tmp) ) for instruction in instructions: if self.verbose: self.reporter.message( "Updating instruction: {}".format(instruction) ) vreg2 = self.frame.new_reg(type(tmp)) self.logger.debug("tmp: %s, new: %s", tmp, vreg2) if self.verbose: self.reporter.message( "Replace {} by {}".format(tmp, vreg2) ) instruction.replace_register(tmp, vreg2) if instruction.reads_register(vreg2): code = self.spill_gen.gen_load(self.frame, vreg2, slot) if self.verbose: self.reporter.message( "Load code before instruction: {}".format( list(map(str, code)) ) ) self.frame.insert_code_before(instruction, code) if instruction.writes_register(vreg2): code = self.spill_gen.gen_store(self.frame, vreg2, slot) if self.verbose: self.reporter.message( "Store code after instruction: {}".format( list(map(str, code)) ) ) self.frame.insert_code_after(instruction, code) if self.verbose: self.reporter.dump_frame(self.frame) def assign_colors(self): """Add nodes back to the graph to color it. Any potential spills might turn into real spills at this stage. """ spilled_nodes = [] # Start with the last node added: for node in reversed(self.select_stack): # Place node back into graph: self.frame.ig.unmask_node(node) # Check registers occupied by neighbours: takenregs = set() for m in node.adjecent: if m.reg in self.alias: for r in self.alias[m.reg]: takenregs.add(r) else: takenregs.add(m.reg) ok_regs = self.cls_regs[node.reg_class] - takenregs if ok_regs: assert ok_regs reg = ok_regs[0] if self.verbose: self.logger.debug("Assign %s to node %s", reg, node) node.reg = reg else: spilled_nodes.append(node) return spilled_nodes def remove_redundant_moves(self): """ Remove coalesced moves """ for move in self.coalescedMoves: self.frame.instructions.remove(move) def apply_colors(self): """ Assign colors to registers """ # Apply all colors: for node in self.frame.ig: assert node.reg is not None for reg in node.temps: if reg.is_colored: assert reg.color == node.reg.color else: reg.set_color(node.reg.color) # Mark the register as used in this frame: self.frame.used_regs.add(node.reg.get_real()) # TODO: # if self.frame.debug_db: # self.frame.debug_db.map( # reg, self.arch.get_register(node.reg)) def check_invariants(self): # pragma: no cover """ Test invariants """ # When changing the code, these asserts validate the worklists. assert all(self.is_colorable(u) for u in self.simplify_worklist) assert all(not self.is_move_related(u) for u in self.simplify_worklist) assert all(self.is_colorable(u) for u in self.freeze_worklist) assert all(self.is_move_related(u) for u in self.freeze_worklist) assert all(not self.is_colorable(u) for u in self.spill_worklist) # Check that moves live in exactly one set: assert ( self.activeMoves & self.worklistMoves & self.coalescedMoves & self.constrainedMoves & self.frozenMoves == set() )
true
5e753ca4f30b2840195ed03afc0d1f7203f98d42
Python
a-pallotto/project-euler
/ex014.py
UTF-8
1,010
4.09375
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Jun 5 23:22:00 2018 The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. @author: pallo """ def collatz(n, count=1): while n > 1: count += 1 if n % 2 == 0: n = n/2 else: n = 3*n + 1 return count sizes = [] for i in range(1000000): sizes.append(collatz(i)) print(max(sizes)) print(sizes.index(max(sizes)))
true
ec897f4a35b0f9e4a7f18f3092c53221076bbd5c
Python
jianengli/leetcode_practice
/array/43.py
UTF-8
1,001
3.515625
4
[]
no_license
class Solution: def multiply(self, num1: str, num2: str) -> str: if num1 == '0' or num2 == '0' : return "0" l1 = list(map(int,list(num1))) # 用列表储存num1的每一数位 l2 = list(map(int,list(num2))) # 用列表储存num2的每一数位 carry2 = 1 # 帮助 num2 中乘数的进位 res = 0 # 累加 乘数的每一位与被乘数相乘得到的结果 while l2: carry1 = 1 # 帮助 num1 中被乘数的进位 tmp = 0 # 储存在未进位时,乘数的每一位与被乘数相乘得到的结果 factor2 = l2.pop() # 将被乘数的每一位与乘数的当前位相乘,得到的结果累加,并存入tmp for i in range(len(l1)-1,-1,-1): print(i) tmp += l1[i]*factor2*carry1 carry1 *= 10 # 被乘数进位 res += tmp * carry2 carry2 *= 10 # 乘数进位 return str(res)
true
fcbbdbdf255b81b93864a140692171b96553d077
Python
welchbj/almanac
/almanac/core/command_engine.py
UTF-8
11,513
2.625
3
[ "MIT", "BSD-3-Clause" ]
permissive
from __future__ import annotations import inspect import pyparsing as pp from typing import ( Any, Callable, Dict, List, MutableMapping, Tuple, Type, TYPE_CHECKING, TypeVar, Union ) from ..commands import FrozenCommand from ..errors import ( CommandNameCollisionError, ConflictingPromoterTypesError, MissingArgumentsError, NoSuchArgumentError, NoSuchCommandError, TooManyPositionalArgumentsError, UnknownArgumentBindingError ) from ..hooks import AsyncHookCallback, PromoterFunction from ..types import is_matching_type from ..utils import FuzzyMatcher if TYPE_CHECKING: from .application import Application HookCallbackMapping = MutableMapping[FrozenCommand, List[AsyncHookCallback]] _T = TypeVar('_T') class CommandEngine: """A command lookup and management engine.""" def __init__( self, app: Application, *commands_to_register: FrozenCommand ) -> None: self._app = app self._registered_commands: List[FrozenCommand] = [] self._command_lookup_table: Dict[str, FrozenCommand] = {} self._after_command_callbacks: HookCallbackMapping = {} self._before_command_callbacks: HookCallbackMapping = {} for command in commands_to_register: self.register(command) self._type_promoter_mapping: Dict[Type, Callable] = {} @property def app( self ) -> Application: """The application that this engine manages.""" return self._app @property def type_promoter_mapping( self ) -> Dict[Type, Callable]: """A mapping of types to callables that convert raw arguments to those types.""" return self._type_promoter_mapping def add_promoter_for_type( self, _type: Type[_T], promoter_callable: PromoterFunction[_T] ) -> None: """Register a promotion callable for a specific argument type.""" if _type in self._type_promoter_mapping.keys(): raise ConflictingPromoterTypesError( f'Type {_type} already has a registered promoter callable ' f'{promoter_callable}' ) self._type_promoter_mapping[_type] = promoter_callable def register( self, command: FrozenCommand ) -> None: """Register a command on this class. Raises: CommandNameCollisionError: If the ``name`` or one of the ``aliases`` on the specified :class:`FrozenCommand` conflicts with an entry already stored in this :class:`CommandEngine`. """ already_mapped_names = tuple( identifier for identifier in command.identifiers if identifier in self._command_lookup_table.keys() ) if already_mapped_names: raise CommandNameCollisionError(*already_mapped_names) for identifier in command.identifiers: self._command_lookup_table[identifier] = command self._after_command_callbacks[command] = [] self._before_command_callbacks[command] = [] self._registered_commands.append(command) def add_before_command_callback( self, name_or_command: Union[str, FrozenCommand], callback: AsyncHookCallback ) -> None: """Register a callback for execution before a command.""" if isinstance(name_or_command, str): try: command = self[name_or_command] except KeyError: raise NoSuchCommandError(name_or_command) else: command = name_or_command self._before_command_callbacks[command].append(callback) def add_after_command_callback( self, name_or_command: Union[str, FrozenCommand], callback: AsyncHookCallback ) -> None: """Register a callback for execution after a command.""" if isinstance(name_or_command, str): try: command = self[name_or_command] except KeyError: raise NoSuchCommandError(name_or_command) else: command = name_or_command self._after_command_callbacks[command].append(callback) def get( self, name_or_alias: str ) -> FrozenCommand: """Get a :class:`FrozenCommand` by its name or alias. Returns: The mapped :class:`FrozenCommand` instance. Raises: :class:`NoSuchCommandError`: If the specified ``name_or_alias`` is not contained within this instance. """ if name_or_alias not in self._command_lookup_table.keys(): raise NoSuchCommandError(name_or_alias) return self._command_lookup_table[name_or_alias] __getitem__ = get async def run( self, name_or_alias: str, parsed_args: pp.ParseResults ) -> int: """Run a command, validating the specified arguments. In the event of coroutine-binding failure, this method will do quite a bit of signature introspection to determine why a binding of user-specified arguments to the coroutine signature might fail. """ try: command: FrozenCommand = self[name_or_alias] coro_signature: inspect.Signature = command.signature except NoSuchCommandError as e: raise e pos_arg_values = [x for x in parsed_args.positionals] raw_kwargs = {k: v for k, v in parsed_args.kv.asDict().items()} resolved_kwargs, unresolved_kwargs = command.resolved_kwarg_names(raw_kwargs) # Check if we have any extra/unresolvable kwargs. if not command.has_var_kw_arg and unresolved_kwargs: extra_kwargs = list(unresolved_kwargs.keys()) raise NoSuchArgumentError(*extra_kwargs) # We can safely merged these kwarg dicts now since we know any unresolvable # arguments must be due to a **kwargs variant. merged_kwarg_dicts = {**unresolved_kwargs, **resolved_kwargs} try: bound_args = command.signature.bind(*pos_arg_values, **merged_kwarg_dicts) can_bind = True except TypeError: can_bind = False # If we can call our function, we next promote all eligible arguments and # execute the coroutine call. if can_bind: for arg_name, value in bound_args.arguments.items(): param = coro_signature.parameters[arg_name] arg_annotation = param.annotation for _type, promoter_callable in self._type_promoter_mapping.items(): if not is_matching_type(_type, arg_annotation): continue new_value: Any if param.kind == param.VAR_POSITIONAL: # Promote over all entries in a *args variant. new_value = tuple(promoter_callable(x) for x in value) elif param.kind == param.VAR_KEYWORD: # Promote over all values in a **kwargs variant. new_value = { k: promoter_callable(v) for k, v in value.items() } else: # Promote a single value. new_value = promoter_callable(value) bound_args.arguments[arg_name] = new_value await self._app.run_async_callbacks( self._before_command_callbacks[command], *bound_args.args, **bound_args.kwargs ) ret = await command.run(*bound_args.args, **bound_args.kwargs) await self._app.run_async_callbacks( self._after_command_callbacks[command], *bound_args.args, **bound_args.kwargs ) return ret # Otherwise, we do some inspection to generate an informative error. try: partially_bound_args = command.signature.bind_partial( *pos_arg_values, **merged_kwarg_dicts ) partially_bound_args.apply_defaults() can_partially_bind = True except TypeError: can_partially_bind = False if not can_partially_bind: # Check if too many positional arguments were provided. if not command.has_var_pos_arg: pos_arg_types = ( inspect.Parameter.POSITIONAL_ONLY, inspect.Parameter.POSITIONAL_OR_KEYWORD, ) unbound_pos_args = [ param for name, param in command.signature.parameters.items() if param.kind in pos_arg_types and name not in merged_kwarg_dicts ] if len(pos_arg_values) > len(unbound_pos_args): unbound_values = pos_arg_values[len(unbound_pos_args):] raise TooManyPositionalArgumentsError(*unbound_values) # Something else went wrong. # XXX: should we be collecting more information here? raise UnknownArgumentBindingError( command.signature, pos_arg_values, merged_kwarg_dicts ) # If we got this far, then we could at least partially bind to the coroutine # signature. This means we are likely just missing some required arguments, # which we can now enumerate. missing_arguments = ( x for x in command.signature.parameters if x not in partially_bound_args.arguments.keys() ) if not missing_arguments: raise UnknownArgumentBindingError( command.signature, pos_arg_values, merged_kwarg_dicts ) raise MissingArgumentsError(*missing_arguments) def get_suggestions( self, name_or_alias: str, max_suggestions: int = 3 ) -> Tuple[str, ...]: """Find the closest matching names/aliases to the specified string. Returns: A possibly-empty tuple of :class:`Command`s that most closely match the specified `name_or_alias` field. """ fuzz = FuzzyMatcher( name_or_alias, self._command_lookup_table.keys(), num_max_matches=max_suggestions ) return fuzz.matches def keys( self ) -> Tuple[str, ...]: """Get a tuple of all registered command names and aliases.""" return tuple(self._command_lookup_table.keys()) @property def registered_commands( self ) -> Tuple[FrozenCommand, ...]: """The :py:class:`FrozenCommand` instances registered on this engine.""" return tuple(self._registered_commands) def __contains__( self, name_or_alias: str ) -> bool: """Whether a specified command name or alias is mapped.""" return name_or_alias in self._command_lookup_table.keys() def __len__( self ) -> int: """The number of total names/aliases mapped in this instance.""" return len(self._command_lookup_table.keys()) def __repr__( self ) -> str: return f'<{self.__class__.__qualname__} [{str(self)}]>' def __str__( self ) -> str: return ( f'{len(self)} names mapped to {len(self._registered_commands)} commands' )
true
3e89995dd17a33516f8e2d317305b5445d44ee28
Python
mattiagiuri/rubikpy
/CubeSolverTest.py
UTF-8
3,575
3.1875
3
[ "Apache-2.0" ]
permissive
from CubeSolver import CubeSolver import numpy as np # disposition = np.array([[['U', 'G', 'Y'], # ['U', 'W', 'O'], # ['R', 'Y', 'W']], # [['G', 'G', 'U'], # ['Y', 'R', 'G'], # ['O', 'Y', 'U']], # [['R', 'R', 'O'], # ['W', 'G', 'O'], # ['O', 'Y', 'R']], # [['G', 'G', 'Y'], # ['W', 'O', 'O'], # ['G', 'U', 'W']], # [['R', 'U', 'Y'], # ['U', 'U', 'R'], # ['U', 'R', 'W']], # [['G', 'R', 'W'], # ['W', 'Y', 'W'], # ['O', 'O', 'Y']] # ]) disposition = np.array([[['G', 'U', 'W'], ['Y', 'W', 'Y'], ['U', 'G', 'Y']], [['R', 'R', 'O'], ['O', 'R', 'U'], ['O', 'O', 'O']], [['G', 'G', 'Y'], ['Y', 'G', 'W'], ['U', 'O', 'R']], [['R', 'O', 'U'], ['U', 'O', 'R'], ['U', 'R', 'R']], [['Y', 'G', 'G'], ['U', 'U', 'G'], ['W', 'R', 'Y']], [['O', 'W', 'G'], ['Y', 'Y', 'W'], ['W', 'W', 'W']] ]) sample_input = np.array([[['G', 'U', 'W'], ['Y', 'W', 'Y'], ['U', 'G', 'Y']], [['R', 'R', 'O'], ['O', 'R', 'U'], ['O', 'O', 'O']], [['G', 'G', 'Y'], ['Y', 'G', 'W'], ['U', 'O', 'R']], [['R', 'O', 'U'], ['U', 'O', 'R'], ['U', 'R', 'R']], [['Y', 'G', 'G'], ['U', 'U', 'G'], ['W', 'R', 'Y']], [['O', 'W', 'G'], ['Y', 'Y', 'W'], ['W', 'W', 'W']] ]) print('input must be a numpy array and contain faces in this order: white, red, green, orange, blue, yellow') print(sample_input) print('white face input considered as if you had red face on top') print('yellow face input considered as if you had orange face on top') print('the other faces are considered as if you had yellow face on top') print('while you solve the cube, you should look to the red face with yellow face on top') print('F = move front (red) face clockwise, F1 = move front (red) face anticlockwise') print('R = move right (green) face clockwise, R1 = move right (green) face anticlockwise') print('B = move back (orange) face clockwise, B1 = move back (orange) face anticlockwise') print('L = move left (blue) face clockwise, L1 = move left (blue) face anticlockwise') print('U = move up (yellow) face clockwise, U1 = move up (yellow) face anticlockwise') print('D = move down (white) face clockwise, D1 = move down (white) face anticlockwise') print('\n\n') solver = CubeSolver(disposition) print(solver.mover.moves) print(solver.mover.cube) print(solver.mover.initial_cube)
true
60b582707e3a0cd64370ec89e38de2f21f559372
Python
WKPlus/phone-address
/crawl_phone_prefix.py
UTF-8
1,494
2.828125
3
[]
no_license
#!/usr/bin/env python # -*- coding:utf8 -*- import requests import re from bs4 import BeautifulSoup import os import time URL = "http://www.nowdl.cn/city/guangdong/{}.php" HEADERS = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) ' 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36', } CITY = { '广州': 'guangzhou', '湛江': 'zhanjiang', '肇庆': 'zhaoqing', '中山': 'zhongshan', '珠海': 'zhuhai', '潮州': 'chaozhou', '东莞': 'dongguan', '佛山': 'fushan', '河源': 'heyuan', '惠州': 'huizhou', '江门': 'jiangmen', '揭阳': 'jieyang', '茂名': 'maoming', '梅州': 'meizhou', '清远': 'qingyuan', '汕头': 'shantou', '汕尾': 'shanwei', '韶关': 'shaoguan', '深圳': 'shenzhen', '阳江': 'yangjiang', '云浮': 'yunfu', } def get_phone_prefix(cname, city, p=re.compile(r'^\d{7}$')): url = URL.format(city) r = requests.get(url) bs = BeautifulSoup(r.content) al = bs.find_all('a') ret = [i.get_text() for i in al if p.match(i.get_text())] print "%s爬取号码前缀%s个" % (cname, len(ret)) return ret if __name__ == '__main__': for cname, city in CITY.iteritems(): ret = get_phone_prefix(cname, city) if os.path.isfile(city): continue with open(city, 'w') as out_fd: out_fd.write(cname) out_fd.write(" " + ",".join(ret)) out_fd.write("\n") time.sleep(30)
true
ee5fb9db73b16be2b59c3aae95f4d9eb548d1446
Python
Sanjo23Chaval/programming_oscar_sanjose
/exersices/tri_matrix.py
UTF-8
1,019
3.203125
3
[ "MIT" ]
permissive
def read_row_column(text): f = open(text,"r") info = f.readline() info = info.rstrip() info = info.split() for i in range(len(info)): if info[i] == "rows": rows = info[i+2] rows = list(rows) if "," in rows: rows.remove(",") elif info[i] == "cols": cols = info[i+2] cols = list(cols) if "," in cols: cols.remove(",") return rows, cols, f def pairs_from_matrix(rows, cols, file): matrix = {} col = 0 for line in file: line = line.split() for z in range(len(line)): matrix[rows[z]+cols[col]] = line[z].replace(".","") col += 1 return matrix def fill_rest_matrix(matrix): for i in matrix.keys(): if i[::-1] not in matrix.keys(): matrix[i[::-1]] = matrix[i] return matrix A = read_row_column("PAM.txt") B = pairs_from_matrix(A[0], A[1], A[2]) C = fill_rest_matrix(B) print C["TW"],C["WW"],C["WT"]
true
6f9b13fd9c8621e629a8a365073fd19d3d7b2ba0
Python
shimy-abd/speech_recognizer
/src/recognizer.py
UTF-8
738
3.203125
3
[]
no_license
import speech_recognition class Recognizer: def main(self): recognizer = speech_recognition.Recognizer() while True: try: with speech_recognition.Microphone() as mic: recognizer.adjust_for_ambient_noise(mic, 0.5) print("Ok, I'm listening...") audio = recognizer.listen(mic) text_list = recognizer.recognize_google(audio) print(f"Right, you said: {text_list}") except speech_recognition.UnknownValueError: print("Sorry I didn't get that :(") except Exception as e: print(f"exception: {e}") exit(1) Recognizer().main()
true
548e363588aca045738ebc575fe70ef9ac530dad
Python
pragadish92/wordpress-auto-post
/blogpost.py
UTF-8
2,500
2.78125
3
[]
no_license
from wordpress_xmlrpc import Client, WordPressPost from wordpress_xmlrpc.methods.posts import GetPosts, NewPost from wordpress_xmlrpc.methods.users import GetUserInfo from wordpress_xmlrpc import Client, WordPressPost from wordpress_xmlrpc.compat import xmlrpc_client from wordpress_xmlrpc.methods import media, posts from os import remove from datetime import datetime import json with open('auth.json') as f: authData = json.load(f) def make_post(content, categorys='0', tags='0', date = None): ''' :param content: dict() formatado corretamente :param categorys: lista com as categorias do post :param tags: lista com as tags do post :param date: data para o post ser publicado ( formato datetime.datetime()) :return: ''' #URL DO SITE, USUARIO , SENHA !!! wp = Client( authData['url'] + '/xmlrpc.php', authData['adminUsername'], authData['adminPassword']) post = WordPressPost() post.title = content['title'] post.content = content['body'] if tags[0] != '0': post.terms_names = { 'post_tag': tags } try: categorys[0] == 0 except IndexError: pass else: if categorys[0] != '0': post.terms_names = { 'category': categorys } # Lets Now Check How To Upload Media Files filename = content['image'] data = { 'name': content['title']+ '.jpeg', 'type': 'image/jpeg' # Media Type } # Now We Have To Read Image From Our Local Directory ! with open(filename, 'rb') as img: data['bits'] = xmlrpc_client.Binary(img.read()) response = wp.call(media.UploadFile(data)) attachment_id = response['id'] # Above Code Just Uploads The Image To Our Gallery # For Adding It In Our Main Post We Need To Save Attachment ID post.thumbnail = attachment_id #deletando do pc a imagem remove(filename) #setando para o post ser publicado (nao ficar de rascunho) post.post_status = 'publish' # marcando p/ o post ser postado na data desejada if date != None: post.date = date post.id = wp.call(posts.NewPost(post)) # Set Default Status For Post .i.e Publish Default Is Draft # We Are Done With This Part :) Lets Try To Run It if not date: print(post.title, " Postado com sucesso !") if date: print(post.title, " Vai ser postado em ",date,'!')
true
decea53dc4b713b7333ad773c7c4169075ab73a3
Python
k1713310/Python-Sample
/Python TestScript.py
UTF-8
1,015
3.8125
4
[ "Unlicense" ]
permissive
print() print ("Hello World") fred = 200 print(fred) john = fred print(john) print() number_of_coins = 240 print(number_of_coins) found_coins = 20 magic_coins = 10 stolen_coins = 3 found_coins + magic_coins * 365 - stolen_coins * 52 stolen_coins = 2 magic_coins = 13 found_coins + magic_coins * 365 - stolen_coins * 52 fred = "why do gorillas have big nostrils? Big fingers!!" print (fred) fred = "what is pink and fluffy? Pink fluff!" print (fred) fred = '''how do dinosaurs pay their bills? With tyrannosaurus checks!''' print (fred) silly_string = '''He said, "Aren't can't shoudn't wouldn't ."''' print (silly_string) joke_text = '%s: a device for finding furniture in the dark' bodypart1 = 'knee' bodypart2 = 'shin' print(joke_text % bodypart1) print(joke_text % bodypart2) myscore = 2400 message = 'I scored %s points' print(message % myscore) nums = 'What did number %s say to number %s? Nice Belt!!' print(nums % (0, 8)) print(10 * 'Hello ') print (1000 * 'WOW! ')
true
7351e72adbbd7316407333b52ad58e869176ba2f
Python
karagg/tt
/logistic/logistic_main.py
UTF-8
2,037
2.546875
3
[]
no_license
import numpy as np import Nor_sta as ns from gradientDesent import gradientDesent from gradientDesent_Reg import grad import sys sys.path.append(r"C:\Users\Lenovo\performance_evaluation") from F1 import F1 import ROC_AUC as ra from Accuray import Accuracy from hold_out import hold_out import Confusion_Matrix as cm from plotDecisionBoundary import plotDB from computecost import sigmoid data = np.loadtxt('ex2data1.txt',delimiter=",")#下载数据文件,此数据文件数组为array数组 print(data) X=data[:,0:-1] h=ns.Nor() #X=h.S_n_normalize(X,"standard")#数组标准化,数据符合正态分布 X=h.S_n_normalize(X,"normalize")#数组归一化,数据都在零和一之间 X1=X[:,0] X2=X[:,1] y=data[:,-1] y1=y y=y.reshape(-1,1) #pl.plotData(X1,X2,y1) m=X.shape[0]#获取原特征矩阵的行数 n=X.shape[1]#获取原特征矩阵的列数 ones=np.ones(m).reshape(-1,1) X=np.hstack([ones,X])#特征矩阵中合并一个x0矩阵,x0初始为1 m=len(y) """分百分之八十数据作为训练集和验证集进行留出集验证,剩下为测试集进行模型性能准确率,F1,混淆矩阵的评估""" q=int(m*0.8) X_train=X[:q,:] y_train=y[:q,:] X_test=X[q:,:] y_test=y[q:,:] #print(X_train) #print(X_test) #theta,J=grad(X_train,y_train,0.3,1500,0.1)#梯度下降加正则化取得目标theta值 #theta,J=gradientDesent(X_train,y_train,0.3,1500)#梯度下降取得目标theta值 #print(theta) #print(J) theta=hold_out(X_train,y_train,0.8,num_val=10)#10次留出集评估取平均的theta值 plotDB(theta,X1,X2,y1)#决策边界加数据可视化 y_pre=sigmoid(np.dot(X_test,theta)) yP=sigmoid(np.dot(X,theta)) y_pre1=y_pre y_pre1[y_pre<0.5]=0 y_pre1[y_pre>=0.5]=1#得到的y_pre1为最终预测标签 acc=Accuracy(y_pre1, y_test)#调用准确率函数 print('accuracy') print(acc) f1=F1(y_test, y_pre1)#调用函数 print("F1") print(f1) cm.Con_Mat(y_test,y_pre1)#调用混淆矩阵函数 roc=ra.ROC(y,yP,np.arange(0,1,0.05))#调用ROC函数 print(roc) auc=ra.AUC(y,yP,np.arange(0,1,0.05))#调用AUC函数 print(auc)
true
07de629782dbd09f1bdee837ee55ddecb6c818df
Python
FredericCanaud/Kattis
/Filip/main.py
UTF-8
277
3.734375
4
[]
no_license
import sys nombres = sys.stdin.readline().split() nombre1 = int(nombres[0]) nombre2 = int(nombres[1]) nombre1 = str(nombre1)[::-1] nombre2 = str(nombre2)[::-1] nombre1 = int(nombre1) nombre2 = int(nombre2) if nombre1 <= nombre2: print(nombre2) else: print(nombre1)
true
d3eeab7b70ffe76cfa72b1ef6de37eed65dd0ab1
Python
vietanhdev/iFirewall
/iWAF/Config.py
UTF-8
3,221
2.65625
3
[]
no_license
from threading import Lock import redis class Config: PUBLIC_PARAMS = ["rate_limit_interval", "rate_limit_warning_thresh", "rate_limit_block_thresh", "rate_limit_block_time", "rate_limit_ddos_thresh", "rate_limit_ddos_interval", "rate_limit_whitelist_expiration_time", "rate_limit_under_attack", "rate_limit_ddos_blocking_time", "servers", "homepage" ] def __init__(self, default_config): self.config = default_config self.data_lock = Lock() self.redis_db = redis.StrictRedis(host=self.config["redis_host"], port=self.config["redis_port"], db=self.config["redis_db"]) def get(self): self.data_lock.acquire() config = self.config.copy() self.data_lock.release() return config def get_public_params(self): config = {} self.data_lock.acquire() for key in self.PUBLIC_PARAMS: config[key] = self.config[key] self.data_lock.release() return config def get_param(self, key): self.data_lock.acquire() value = self.config[key] self.data_lock.release() return value def set_param(self, key, value): self.data_lock.acquire() self.config[key] = value self.data_lock.release() def update_params(self, params): for key in params: # Int params if key in ["rate_limit_interval", "rate_limit_warning_thresh", "rate_limit_block_thresh", "rate_limit_block_time", "rate_limit_ddos_thresh", "rate_limit_ddos_interval", "rate_limit_ddos_blocking_time", "rate_limit_whitelist_expiration_time"]: try: value = int(params[key]) if value <= 0: return "Wrong value for %s!" % key self.set_param(key, value) except: return "Wrong value for %s!" % key elif key == "rate_limit_under_attack": try: value = bool(params[key]) self.set_param(key, value) except: return "Wrong value for %s!" % key elif key == "servers": try: servers = [] for i in range(len(params["servers"])): servers.append({ "id": i+1, "address": params["servers"][i], "server_status_url": params["servers"][i] + "server_status", "online": True }) self.set_param(key, servers) except: return "Wrong value for %s!" % key elif key == "reset_protection_db": # Clear protection database for key in self.redis_db.scan_iter("*"): self.redis_db.delete(key) return "Cleared database successfully!" return "Updated successfully!"
true
ee5ffb295a8b79d322362c5fb23f50e15fb76372
Python
tsl3su/moods
/streaming8emo2.py
UTF-8
8,530
2.734375
3
[]
no_license
from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream import json import csv import math from collections import Counter import string import nltk from nltk.corpus import wordnet as wn from nltk.stem.wordnet import WordNetLemmatizer import time import datetime # Go to http://dev.twitter.com and create an app. # The consumer key and secret will be generated for you after consumer_key="SikqyZdm7zTQ2BwVujWqvHQNt" consumer_secret="PFzKTkeD8OcyIxEsXR8vX7UGPXwg8Y0w3y33BZXbls9AmHNaFx" # After the step above, you will be redirected to your app's page. # Create an access token under the the "Your access token" section access_token="2556855996-0hqPxqN0BOe2Qv8VBEJ7lIHo2KZeO7TDtceLonD" access_token_secret="VyecktLuynfc4mYQLaPuma0RDxV2hRiLotMB3ICtC1pdY" lmtzr = WordNetLemmatizer() emotionCounter = Counter() wordCounter = Counter() emojiCounter = Counter() # timer = int(datetime.datetime.fromtimestamp(time.time()).strftime('%M')) + 1 #interval of write interval csv out prevtime = datetime.datetime.now() interval = 3 # 12 different emotion types _emotions = { 0: "Pleasant", 1: "Excited", 2: "Tense", 3: "Stressed", 4: "Unpleasant", 5: "Unhappy", 6: "Calm", 7: "Content" } # 9 different Emoji codes _emojis = { "\xF0\x9F\x98\x83": "Happy", # \xF0\x9F\x98\x83 - Happy [1500] "\xF0\x9F\x98\x8C": "Relaxed", ## \xF0\x9F\x98\x8C - relieved face [315] "\xF0\x9F\x98\x84": "Elated", ## \xF0\x9F\x98\x84 - smiling face with open mouth and smiling eyes[1500] "\xF0\x9F\x98\x9D": "Excited", ## \xF0\x9F\x98\x9D - face with stuck-out toungue and tightly closing eyes [1211] "\xF0\x9F\x98\xB3": "Stressed", ## \xF0\x9F\x98\xB3 - Flushed face [969] "\xF0\x9F\x98\xA1": "Upset", ## \xF0\x9F\x98\xA1 - Red pouting face [670] "\xF0\x9F\x98\x9E": "Unhappy", ## \xF0\x9F\x98\x9E - disappointed face [635] "\xF0\x9F\x98\xA2": "Sad", ## \xF0\x9F\x98\xA2 - crying face [508] "\xF0\x9F\x98\x8A": "Pleasant" # \xF0\x9F\x98\x8A - smiling face with smiling eyes [1460] } class StdOutListener(StreamListener): """ A listener handles tweets are the received from the stream. This is a basic listener that just prints received tweets to stdout. """ def on_data(self, data): #print data f = open("feels.txt", 'a') if 'text' in json.loads(data): # print json.loads(data) tweet = json.loads(data)['text'] tweet = tweet.encode('UTF-8') # print "\n", "\n", results = tweetCat([tweet]) for r in results: print(r) # #counters for 12 emotion types # emotionCounter[emotion] += 1 # print 'EMOTION COUNTER TALLY CURRENTLY ATM:', emotionCounter.most_common() f.write(tweet + "\n" + "\n") f.close() return True else: print json.loads(data) def on_error(self, status): print status def scoreWord(word): """count a singular word's: V.Mean.Sum -- Valence/Pleasure Mean Sum A.Mean.Sum -- Arousal Mean Sum and return a coordinate tuple in the following order of (Valence, Arousal) """ global anew #gives stem of word/ lemmatized stWord = lmtzr.lemmatize(word) # print 'the word is', word, 'all other versions are', stWord if word in anew: # print word valenceMeanSum = float(anew[word]['V.Mean.Sum']) arousalMeanSum = float(anew[word]['A.Mean.Sum']) return (valenceMeanSum, arousalMeanSum,word) elif stWord in anew: valenceMeanSum = float(anew[stWord]['V.Mean.Sum']) arousalMeanSum = float(anew[stWord]['A.Mean.Sum']) return (valenceMeanSum, arousalMeanSum,stWord) # elif stWord + ed in anew: # valenceMeanSum = float(anew[stWord]['V.Mean.Sum']) # arousalMeanSum = float(anew[stWord]['A.Mean.Sum']) # return (valenceMeanSum, arousalMeanSum) else: return False def scoreAngle(score): """Pass in a scoreWord tuple, Returns radians of tuple""" #Divide by pi to get a transformatiom of (o, 2pi) -> (0, 2) angle = math.atan2((score[1]/9.0) -.5, (score[0]/9.0) -.5)/math.pi if angle < 0: angle +=2 return angle def scoreEmo(score): print score print scoreAngle(score) print round((scoreAngle(score))*4) return _emotions[round(scoreAngle(score)*4)%8] #column[1][score[0]] for column in anew, ; need to get the word assoc. with it! def search(tweet): for key in _emojis.keys(): # print key # emojis = _emojis[key] # yield emojis if key in tweet: # print "key: %s, value: %s" % (key, _emojis[key]) yield _emojis[key] print _emojis[key] # else: return False # def remove_left(f): num = 0 csv = [] while True: data = f.readline() if data == '': break if (num < 1 or num > 8): csv.append(data) num += 1 f.seek(14) for row in csv: f.write(row) # f.truncate() numOfTweets = 0 numOfEmo = 0 def tweetCat(tweets): global numOfTweets # global timer global numOfEmo global prevtime tweets = [tweet.translate(None, string.punctuation).split() for tweet in tweets] # print tweets allemotions = [] for tweet in tweets: ts = time.time() emojis = search(tweet) # print type(emojis) # for emoji in emojis: # emojiCounter[emoji]+=1 # # print 'EMOJI IS:', emoji print tweet # for word in tweet: wordCounter[word]+=1 emotions = map(scoreEmo,filter(None,map(scoreWord,tweet))) print 'emotions',emotions numOfTweets += 1 print print 'Number of Tweets ****** :', numOfTweets allemotions.append(emotions) for feeling in emotions: emotionCounter[feeling]+=1 st = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S') #%Y-%m-%d minutes = datetime.datetime.fromtimestamp(ts).strftime('%M') yield emotions #returns top 20 ten words in emotion counter # print 'This is the top twenty for Word Counter', wordCounter.most_common(20) currenttime = datetime.datetime.now() if(currenttime-prevtime).seconds >= interval: #file for percentages per respective emotions with open('/home/tsl/public_html/percenttest1.csv', 'a') as outfileone: numOfEmo = sum(emotionCounter.itervalues()) for item in emotionCounter: emoPercentage = float(emotionCounter[item])/float(numOfEmo) print emoPercentage outfileone.write(item + ',' + str(emoPercentage) + ','+ str(st) + ',' + '\n') print '********** Just logged into Percentages ***************' #file for raw number per respective emotions with open('/home/tsl/public_html/rawtest1.csv', 'a') as outfiletwo: print 'Number of Emotions ****** :', numOfEmo for item in emotionCounter: # runningEmoAvg += emoPercentage outfiletwo.write(item + ',' + str(emotionCounter[item]) + ','+ str(st) + ',' + '\n') emotionCounter[item] = 0 numOfTweets = 0 numOfEmo = 0 prevtime = currenttime print 'Emotion Counter is: ', emotionCounter # print 'This is the Emoji Counter: ', emojiCounter.most_common() print "*************************************" #empty dictionary to fill with tweet words in comment with ANEW words anew = {} #open ANEW csv file and read in a dictionary of like word's key-values pairs with open('ANEWwordbank.csv', 'rb') as f: reader = csv.DictReader(f) for row in reader: anew.update({row['Word']:row}) l = StdOutListener() auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) stream = Stream(auth, l) stream.filter(track=[ 'worldcup', 'world', 'cup' ], languages = ["en"]) # optative_mood = ['May', 'if only', 'save'] # imperative_mood = ['go', 'do','run', 'i have to', 'would', 'could'] # , 'would', 'could', 'actually', 'all in all', 'certainly', 'cleraly', 'doubtful', 'debatable', 'essentially', 'fortunately', # 'unfortunately', 'in fact', 'inevitably', 'likely', 'maybe if', 'without a doubt', 'positively', 'really', 'technically', # 'without a doubt', 'undeniably
true
36849aef297944fb64f7b05417e387dacc0023c1
Python
killynathan/Algorithms
/Assign13-Johnson'sAPSP/BellmanFord.py
UTF-8
1,244
3.359375
3
[]
no_license
import math def findShortestPathsFromSource(numOfVertices, edges, source): # constant INF = 99999 # used for stopping early listIsSameAsBefore = True # get data structs #numOfVertices, edges = getGraph2(filename) # !!!!!!! 1 vs 2 A = [INF]*(numOfVertices + 1) # vertices indexed starting from 1 A[source] = 0 # source node for i in range(numOfVertices + 1): listIsSameAsBefore = True for u,v,w in edges: if (A[u] + w < A[v]): A[v] = A[u] + w listIsSameAsBefore = False if listIsSameAsBefore: break elif (i == numOfVertices): return 'negative cycle' return A # return numOfVertices and [[vertex 1, v 2, weight of edge], ...] def getGraph(filename): graph = [] lines = open(filename).read().split('\n') for line in lines: values = line.split(' ') graph.append([int(i) for i in values]) return graph[0][0], graph[1:] def getGraph2(filename): graph = [] lines = open(filename).read().split('\n') for line in lines: edges = line.split('\t') for edge in edges[1:(len(edges) - 1)]: edgeContent = edge.split(',') graph.append([int(edges[0]), int(edgeContent[0]), int(edgeContent[1])]) return 200, graph # n, test = getGraph('g3.txt') # print(findShortestPathsFromSource(n, test, 1))
true
4ee52bd0afcbb1dc6253e5a3f1b4f4ade9905c26
Python
BigR-Lab/concrete-python
/concrete/util/file_io.py
UTF-8
13,297
2.8125
3
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
"""Code for reading and writing Concrete Communications """ import cStringIO import gzip import bz2 import mimetypes import os.path import tarfile import zipfile import os import pwd import grp import time from thrift import TSerialization from thrift.transport import TTransport from concrete import Communication, TokenLattice from concrete.util.references import add_references_to_communication from concrete.util.thrift_factory import factory def read_thrift_from_file(thrift_obj, filename): """Instantiate Thrift object from contents of named file The Thrift file is assumed to be encoded using TCompactProtocol **WARNING** - Thrift deserialization tends to fail silently. For example, the Thrift libraries will not complain if you try to deserialize data from the file `/dev/urandom`. Args: - `thrift_obj`: A Thrift object (e.g. a Communication object) - `filename`: A filename string Returns: - The Thrift object that was passed in as an argument """ thrift_file = open(filename, "rb") thrift_bytes = thrift_file.read() TSerialization.deserialize( thrift_obj, thrift_bytes, protocol_factory=factory.protocolFactory) thrift_file.close() return thrift_obj def read_communication_from_file(communication_filename, add_references=True): """Read a Communication from the file specified by filename Args: - `communication_filename`: String with filename Returns: - A Concrete `Communication` object """ comm = read_thrift_from_file(Communication(), communication_filename) if add_references: add_references_to_communication(comm) return comm def read_tokenlattice_from_file(tokenlattice_filename): """ Takes the filename of a serialized Concrete TokenLattice file, reads the TokenLattice from the file and returns an instantiated TokenLattice instance. """ return read_thrift_from_file(TokenLattice(), tokenlattice_filename) def write_communication_to_file(communication, communication_filename): return write_thrift_to_file(communication, communication_filename) def write_thrift_to_file(thrift_obj, filename): thrift_bytes = TSerialization.serialize( thrift_obj, protocol_factory=factory.protocolFactory) thrift_file = open(filename, "wb") thrift_file.write(thrift_bytes) thrift_file.close() class _FileTypeClass(object): ''' An instance of this class represents filetypes abstractly; its members correspond to individual filetypes. It probably doesn't make sense to have more than one instance of this class. ''' def __init__(self, *names): self.CHOICES = tuple(names) for (i, name) in enumerate(names): if name == 'CHOICES': raise ValueError('%s is an invalid filetype name' % name) setattr(self, self._normalize(name), i) @classmethod def _normalize(cls, name): return name.replace('-', '_').upper() def lookup(self, ft): ''' Return filetype (integer value) for ft, where ft may be a filetype name or (for convenience) the filetype integer value itself. ''' if isinstance(ft, int): return ft elif isinstance(ft, str) or isinstance(ft, unicode): return getattr(self, self._normalize(ft)) else: raise ValueError('unknown filetype %s' % str(ft)) def add_argument(self, argparse_parser, flag='--input-filetype', help_name='input file'): ''' Add filetype argument to parser, return function that can be called on argparse namespace to retrieve argument value, e.g., >>> get_filetype = add_argument(parser, ...) >>> ns = parser.parse_args() >>> filetype = get_filetype(ns) ''' argparse_parser.add_argument(flag, type=str, choices=self.CHOICES, default=self.CHOICES[0], help='filetype for %s (choices: %s)' % (help_name, ', '.join(self.CHOICES))) def _get_value(ns): return getattr(ns, flag.lstrip('-').replace('-', '_')) return _get_value FileType = _FileTypeClass( 'auto', 'zip', 'tar', 'tar-gz', 'tar-bz2', 'stream', 'stream-gz', 'stream-bz2', ) class CommunicationReader(object): """Iterator/generator class for reading one or more Communications from a file The iterator returns a `(Communication, filename)` tuple Supported filetypes are: - a file with a single Communication - a file with multiple Communications concatenated together - a gzipped file with a single Communication - a gzipped file with multiple Communications concatenated together - a .tar.gz file with one or more Communications - a .zip file with one or more Communications ----- Sample usage: for (comm, filename) in CommunicationReader('multiple_comms.tar.gz'): do_something(comm) """ def __init__(self, filename, add_references=True, filetype=FileType.AUTO): filetype = FileType.lookup(filetype) self._add_references = add_references self._source_filename = filename if filetype == FileType.TAR: self.filetype = 'tar' self.tar = tarfile.open(filename, 'r|') elif filetype == FileType.TAR_GZ: self.filetype = 'tar' self.tar = tarfile.open(filename, 'r|gz') elif filetype == FileType.TAR_BZ2: self.filetype = 'tar' self.tar = tarfile.open(filename, 'r|bz2') elif filetype == FileType.ZIP: self.filetype = 'zip' self.zip = zipfile.ZipFile(filename, 'r') self.zip_infolist = self.zip.infolist() self.zip_infolist_index = 0 elif filetype == FileType.STREAM: self.filetype = 'stream' f = open(filename, 'rb') elif filetype == FileType.STREAM_GZ: self.filetype = 'stream' f = gzip.open(filename, 'rb') elif filetype == FileType.STREAM_BZ2: self.filetype = 'stream' f = bz2.BZ2File(filename, 'r') elif filetype == FileType.AUTO: if tarfile.is_tarfile(filename): self.filetype = 'tar' self.tar = tarfile.open(filename, 'r|*') elif zipfile.is_zipfile(filename): self.filetype = 'zip' self.zip = zipfile.ZipFile(filename, 'r') self.zip_infolist = self.zip.infolist() self.zip_infolist_index = 0 elif mimetypes.guess_type(filename)[1] == 'gzip': # this is not a true stream---is_tarfile will have # successfully seeked backwards on the file if we have # reached this point self.filetype = 'stream' f = gzip.open(filename, 'rb') elif mimetypes.guess_type(filename)[1] == 'bzip2': # this is not a true stream self.filetype = 'stream' f = bz2.BZ2File(filename, 'r') else: # this is not a true stream self.filetype = 'stream' f = open(filename, 'rb') else: raise ValueError('unknown filetype %d' % filetype) if self.filetype is 'stream': self.transport = TTransport.TFileObjectTransport(f) self.protocol = factory.createProtocol(self.transport) self.transport.open() def __iter__(self): return self def next(self): """Returns a `(Communication, filename)` tuple If the CommunicationReader is reading from an archive, then `filename` will be set to the name of the Communication file in the archive (e.g. `foo.concrete`), and not the name of the archive file (e.g. `bar.zip`). If the CommunicationReader is reading from a concatenated file (instead of an archive), then all Communications extracted from the concatenated file will have the same value for the `filename` field. """ if self.filetype is 'stream': return self._next_from_stream() elif self.filetype is 'tar': return self._next_from_tar() elif self.filetype is 'zip': return self._next_from_zip() def _next_from_stream(self): try: comm = Communication() comm.read(self.protocol) if self._add_references: add_references_to_communication(comm) return (comm, self._source_filename) except EOFError: self.transport.close() raise StopIteration def _next_from_tar(self): while True: tarinfo = self.tar.next() if tarinfo is None: raise StopIteration if not tarinfo.isfile(): # Ignore directories continue filename = os.path.split(tarinfo.name)[-1] if filename[0] is '.' and filename[1] is '_': # Ignore attribute files created by OS X tar continue comm = TSerialization.deserialize( Communication(), self.tar.extractfile(tarinfo).read(), protocol_factory=factory.protocolFactory) if self._add_references: add_references_to_communication(comm) # hack to keep memory usage O(1) # (...but the real hack is tarfile :) self.tar.members = [] return (comm, tarinfo.name) def _next_from_zip(self): if self.zip_infolist_index >= len(self.zip_infolist): raise StopIteration zipinfo = self.zip_infolist[self.zip_infolist_index] self.zip_infolist_index += 1 comm = TSerialization.deserialize( Communication(), self.zip.open(zipinfo).read(), protocol_factory=factory.protocolFactory) if self._add_references: add_references_to_communication(comm) return (comm, zipinfo.filename) class CommunicationWriter(object): """Class for writing one or more Communications to a file ----- Sample usage: writer = CommunicationWriter('foo.concrete') writer.write(existing_comm_object) writer.close() """ def __init__(self, filename=None): if filename is not None: self.open(filename) def close(self): self.file.close() def open(self, filename): self.file = open(filename, 'wb') def write(self, comm): thrift_bytes = TSerialization.serialize( comm, protocol_factory=factory.protocolFactory) self.file.write(thrift_bytes) def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() class CommunicationWriterTar(object): """Class for writing one or more Communications to a .TAR archive ----- Sample usage: writer = CommunicationWriterTar('multiple_comms.tar') writer.write(comm_object_one, 'comm_one.concrete') writer.write(comm_object_two, 'comm_two.concrete') writer.write(comm_object_three, 'comm_three.concrete') writer.close() """ def __init__(self, tar_filename=None, gzip=False): self.gzip = gzip if tar_filename is not None: self.open(tar_filename) def close(self): self.tarfile.close() def open(self, tar_filename): self.tarfile = tarfile.open(tar_filename, 'w:gz' if self.gzip else 'w') def write(self, comm, comm_filename=None): if comm_filename is None: comm_filename = comm.uuid.uuidString + '.concrete' thrift_bytes = TSerialization.serialize( comm, protocol_factory=factory.protocolFactory) file_like_obj = cStringIO.StringIO(thrift_bytes) comm_tarinfo = tarfile.TarInfo() comm_tarinfo.type = tarfile.REGTYPE comm_tarinfo.name = comm_filename comm_tarinfo.size = len(thrift_bytes) comm_tarinfo.mode = 0644 comm_tarinfo.mtime = time.time() comm_tarinfo.uid = os.getuid() comm_tarinfo.uname = pwd.getpwuid(os.getuid()).pw_name comm_tarinfo.gid = os.getgid() comm_tarinfo.gname = grp.getgrgid(os.getgid()).gr_name self.tarfile.addfile(comm_tarinfo, file_like_obj) def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() class CommunicationWriterTGZ(CommunicationWriterTar): """Class for writing one or more Communications to a .TAR.GZ archive ----- Sample usage: writer = CommunicationWriterTGZ('multiple_comms.tgz') writer.write(comm_object_one, 'comm_one.concrete') writer.write(comm_object_two, 'comm_two.concrete') writer.write(comm_object_three, 'comm_three.concrete') writer.close() """ def __init__(self, tar_filename=None): super(CommunicationWriterTGZ, self).__init__(tar_filename, gzip=True)
true
a92a31caef6680afc6ebdb761cd61a228345a662
Python
TPSGrzegorz/PyCharmStart
/Collections/Collections_deque.py
UTF-8
326
2.859375
3
[]
no_license
from collections import deque n = int(input()) d = deque() for i in range(n): to_uppack= list(input().split()) if len(to_uppack) == 2: command, item = to_uppack arg = int(item) eval('d.' + command + '(arg)') else: command = to_uppack[0] eval('d.' + command + '()') print(*d)
true
fb12c09623e58c888353d97183078c8e2b1c734d
Python
JuanMazza85/TesisUBA
/Scripts/SOM.py
UTF-8
11,588
2.96875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Sep 12 11:02:48 2017 @author: waldo Función trainSOM ------------- Parámetros: P: es una matriz con los datos de los patrones con los cuales entrenar la red neuronal. filas: la cantidad de filas del mapa SOM columnas: la cantidad de columnas del mapa SOM alfa_inicial: velocidad de aprendizaje inicial vecindad: vecindad inicial fun_vecindad: función para determinar la vecindad (1: lineal, 2: sigmoide) sigma: ancho de la campana (solo para vecindad sigmoide) ite_reduce: la cantidad de iteraciones por cada tamaño de vecindad (la cantidad de iteraciones total sera: total = ite_reduce * (vecindad+1)) dibujar: si vale True (y los datos son en dos dimensiones) dibuja los ejemplos y el mapa SOM. Devuelve: w_O: la matriz de pesos de las neuronas competitivas Ejemplo de uso: (w_O) = trainSOM(P, filas, columnas, alfa, vecindad_inicial, fvecindario, sigma, reduce, True); ------------------------------------------------------------------------------- Función trainOL ------------- Parámetros: P: es una matriz con los datos de los patrones con los cuales entrenar la red neuronal. T: es una matriz con la salida esperada para cada ejemplo. Esta matriz debe tener tantas filas como neuronas de salida tenga la red T_O: clases con su valor original (0 .. n-1) (Solo es utilizado para graficar) w: es la matriz de pesos devuelta por la función trainSOM filas: la cantidad de filas del mapa SOM columnas: la cantidad de columnas del mapa SOM alfa: velocidad de aprendizaje max_ite: la cantidad de iteraciones del entrenamiento dibujar: si vale True (y los datos son en dos dimensiones) dibuja los ejemplos y el mapa SOM. Devuelve: w_S: la matriz de pesos de las neuronas de la capa de salida Ejemplo de uso: (w_S) = trainOL(P, T_matriz.T, T, w, filas, columnas, alfa, 100, True); ------------------------------------------------------------------------------- Función umatrix ------------- Parámetros: def umatrix(w, filas, columnas): w: es la matriz de pesos devuelta por la función trainSOM filas: la cantidad de filas del mapa SOM columnas: la cantidad de columnas del mapa SOM Devuelve: umatrix: la matriz de distancias del SOM Ejemplo de uso: umatrix = umatrix(w, filas, columnas) """ import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as col from scipy.cluster.hierarchy import dendrogram, linkage from scipy.spatial.distance import squareform from mpl_toolkits.mplot3d import Axes3D #Para poder plottear en 3D marcadores = {0:('.','b'), 1:('.','g'), 2:('x', 'y'), 3:('*', 'm'), 4:('.', 'r'), 5:('+', 'k')} # -*- coding: utf-8 -*- """ Created on Tue Aug 22 15:28:31 2017 @author: auvimo """ import numpy as np import scipy.misc as sp #En 2.7 hay que hacer otro import que ofrece imread (quizas scipy.image) def OpenImage(archivo): datos = np.array(sp.imread(archivo, mode='P')) # en mac es mode='I' maximo = len(datos) X = np.array([], dtype=np.int64).reshape(0,3) colores = np.array([0, 9, 12, 10, 6, 11]) # negro rojo azul verde for color in colores: filas, columnas = np.where(datos == color) clase = np.where(colores == color)[0][0] clases = [clase] * len(filas) X = np.vstack([X, np.column_stack((columnas+1, maximo-(filas+1), clases))]) return X def dendograma(matriz, T): (filas, columnas) = matriz.shape labels=[] for f in range(filas): labels.append(str(int(T[f]))) for c in range(columnas): if(f==c): matriz[f,c] = 0 else: if(matriz[f,c] == 0): matriz[f,c] = 2 else: matriz[f,c] = 1 / matriz[f,c] dists = squareform(matriz) linkage_matrix = linkage(dists, "single") dendrogram(linkage_matrix, labels=labels) plt.title("Dendograma") plt.show() def plot(P, T, W, filas, columnas, pasos, title): plt.figure(0) plt.clf() #Ejemplos x = [] y = [] if(T is None): for i in range(P.shape[0]): x.append(P[i, 0]) y.append(P[i, 1]) plt.scatter(x, y, marker='o', color='b', s=100) else: colores = len(marcadores) for class_value in np.unique(T): x = [] y = [] for i in range(len(T)): if T[i] == class_value: x.append(P[i, 0]) y.append(P[i, 1]) plt.scatter(x, y, marker=marcadores[class_value % colores][0], color=marcadores[class_value % colores][1]) #ejes minimos = np.min(P, axis=0) maximos = np.max(P, axis=0) diferencias = maximos - minimos minimos = minimos - diferencias * 0.1 maximos = maximos + diferencias * 0.1 plt.axis([minimos[0], maximos[0], minimos[-1], maximos[1]]) #centroides (neuronas, patr) = W.shape for neu in range(neuronas): plt.scatter(W[neu,0], W[neu,1], marker='o', color='r') #conexiones if(pasos is not None): #if(pasos != None): for f in range(filas): for c in range(columnas): n1 = f*columnas + c for ff in range(filas): for cc in range(columnas): if(pasos[f, c, ff, cc] == 1): n2 = ff*columnas + cc plt.plot([W[n1, 0], W[n2, 0]], [W[n1, 1], W[n2, 1]], color='r') plt.title(title) plt.draw() plt.pause(0.00001) def plot3D(P, T, W, filas, columnas, pasos, title): fig = plt.figure(0) plt.clf() ax= fig.add_subplot(111, projection='3d') c=[] for i in range(P.shape[0]): c.append(col.rgb2hex((P[i,0]/255,P[i,1]/255,P[i,2]/255))) ax.scatter(P[:,0], P[:,1], P[:,2], c = c, marker = 'o', linewidths=.05, s=100) ax.set_xlim3d(0,np.max(P[:,0])) ax.set_ylim3d(0,np.max(P[:,1])) ax.set_zlim3d(0,np.max(P[:,2])) ax.set_xlabel('R') ax.set_ylabel('G') ax.set_zlabel('B') #centroides (neuronas, patr) = W.shape for neu in range(neuronas): ax.scatter(W[neu,0], W[neu,1], W[neu,2],marker='o', c='r') #conexiones if(pasos is not None): #if(pasos != None): for f in range(filas): for c in range(columnas): n1 = f*columnas + c for ff in range(filas): for cc in range(columnas): if(pasos[f, c, ff, cc] == 1): n2 = ff*columnas + cc ax.plot([W[n1, 0], W[n2, 0]], [W[n1, 1], W[n2, 1]], [W[n1, 2], W[n2, 2]], c='r') plt.title(title) plt.draw() plt.pause(0.00001) def linkdist(filas, columnas): pasos = np.zeros((filas, columnas, filas, columnas)) for f in range(filas): for c in range(columnas): for ff in range(filas): for cc in range(columnas): pasos[f, c, ff, cc] = abs(f-ff) + abs(c-cc) return pasos def trainSOM(P, filas, columnas, alfa_inicial, vecindad, fun_vecindad, sigma, ite_reduce, dibujar): (cant_patrones, cant_atrib) = P.shape ocultas = filas * columnas w_O = np.random.rand(ocultas, cant_atrib) - 0.5 #w_O = np.ones((ocultas, cant_atrib)) * 0 pasos = linkdist(filas, columnas) max_ite = ite_reduce * (vecindad + 1) ite = 0; while (ite < max_ite): alfa = alfa_inicial * (1 - ite / max_ite) for p in range(cant_patrones): distancias = -np.sqrt(np.sum(np.power(w_O-P[p,:],2),1)) ganadora = np.argmax(distancias) fila_g = int(np.floor(ganadora / columnas)) columna_g = int(ganadora % columnas) for f in range(filas): for c in range(columnas): if(pasos[fila_g, columna_g, f, c] <= vecindad): if fun_vecindad == 1: gamma = 1 else: gamma = np.exp(- pasos[fila_g, columna_g, f, c] / (2*sigma)) n = f * columnas + c w_O[n,:] = w_O[n,:] + alfa * (P[p,:] - w_O[n,:]) * gamma ite = ite + 1 if (vecindad >= 1) and ((ite % ite_reduce)==0): vecindad = vecindad - 1; if dibujar and (cant_atrib == 2): plot(P, None, w_O, filas, columnas, pasos, 'Iteración: ' + str(ite)) if dibujar and (cant_atrib == 3): plot3D(P, None, w_O, filas, columnas, pasos, 'Iteración: ' + str(ite)) if ite % 10 == 0: if dibujar and (cant_atrib == 2): plot(P, None, w_O, filas, columnas, pasos, 'Iteración: ' + str(ite)) if dibujar and (cant_atrib == 3): plot3D(P, None, w_O, filas, columnas, pasos, 'Iteración: ' + str(ite)) return (w_O) def trainOL(P, T, T_O, w, filas, columnas, alfa, max_ite, dibujar): (cant_patrones, cant_atrib) = P.shape (cant_patrones, salidas) = T.shape ocultas = filas * columnas pasos = linkdist(filas, columnas) w_S = np.random.rand(salidas, ocultas) - 0.5 ite = 0; while ( ite <= max_ite ): for p in range(cant_patrones): distancias = -np.sqrt(np.sum((w-(P[p,:])*np.ones((ocultas,1)))**2,1)) ganadora = np.argmax(distancias) w_S[:, ganadora] = w_S[:, ganadora] + alfa * (T[p, :] - w_S[:, ganadora]) ite = ite + 1 if dibujar and (cant_atrib == 2): plot(P, T_O, w, filas, columnas, pasos, 'Fin') if dibujar and (cant_atrib == 3): plot3D(P, T_O, w, filas, columnas, pasos, 'Fin') return (w_S) def umatrix(w, filas, columnas): (ncen, atributos) = w.shape umat = np.zeros((filas*2-1, columnas*2-1)) for f in range(filas): for c in range(columnas): ff = f*2 cc= c*2 n1 = f * columnas + c suma = 0 n=0 n2 = f * columnas + (c+1) if(cc < (columnas*2-2)): umat[ff, cc+1] = np.sqrt(np.sum((w[n1,:]-w[n2,:])**2)) suma = suma + umat[ff, cc+1] n=n+1 n2 = (f+1) * columnas + c if(ff < (filas*2-2)): umat[ff+1, cc] = np.sqrt(np.sum((w[n1,:]-w[n2,:])**2)) suma = suma + umat[ff+1, cc] n=n+1 if(n==2): umat[ff+1, cc+1] = suma / 2 suma = suma + umat[ff+1, cc+1] n=n+1 if(n>0): umat[ff, cc] = suma / n umat[filas*2-2, columnas*2-2] = (umat[filas*2-3, columnas*2-2] + umat[filas*2-2, columnas*2-3]) / 2 return umat def PrepararSOM(X, Y, CantColumnas): for j in range(X.shape[1]): MinCol = X[:,j].min() MaxCol = X[:,j].max() for i in range(X.shape[0]): X[i,j] = (X[i,j] - MinCol) / (MaxCol - MinCol) T = Y P = X[:,:CantColumnas] return (P, T)
true
77599051f4300e3d3a95d0f1454df3864546e1ca
Python
saetar/pyEuler
/not_done/py_not_started/euler_614.py
UTF-8
896
3.96875
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # ~ Jesse Rubin ~ project Euler ~ """ Special partitions 2 http://projecteuler.net/problem=614 An integer partition of a number n is a way of writing n as a sum of positive integers. Partitions that differ only by the order of their summands are considered the same. We call an integer partition special if 1) all its summands are distinct, and 2) all its even summands are also divisible by 4. For example, the special partitions of 10 are: 10 = 1+4+5=3+7=1+9 The number 10 admits many more integer partitions (a total of 42), but only those three are special. Let be P(n) the number of special integer partitions of n. You are given that P(1) = 1, P(2) = 0, P(3) = 1, P(6) = 1, P(10)=3, P(100) = 37076 and P(1000)=3699177285485660336. Find ∑_i=1^10^7P(i). Give the result modulo 10^9+7. """ def p614(): pass if __name__ == '__main__': p614()
true
4b044a8a7f6774d4418b650224c7ff34d9925241
Python
nonas-hunter/warmup_project
/warmup_project/scripts/test.py
UTF-8
847
3.5
4
[]
no_license
#!/usr/bin/env python3 import numpy import math def point_to_global(x, y): theta = math.radians(0) point = [x, y, 1] rot_matrix = [[math.cos(theta), -math.sin(theta), 0], \ [math.sin(theta), math.cos(theta), 0], \ [0, 0, 1]] trans_matrix = [[1, 0 ,0], \ [0, 1, 0], \ [0, 0, 1]] temp1 = multiply(rot_matrix, point) temp2 = multiply(trans_matrix, temp1) return temp2[0], temp2[1] def multiply(matrix, vector): output = [0,0,0] for i in range(len(matrix)): for j in range(len(matrix[i])): output[i] += matrix[i][j] * vector[j] return output if __name__ == "__main__": print(point_to_global(1,0))
true
184de29f33e5dca6d273c1defac3d83e89716f83
Python
algoitssm/algorithm_taeyeon
/Baekjoon/20924_tree_트리의기둥과가지.py
UTF-8
1,159
3.25
3
[]
no_license
import sys sys.setrecursionlimit(10 ** 6) sys.stdin = open("input.txt") # 양방향 처리 해줘야함 12,7일때 (3,7) def dfs(giga_node, giga_length): for node in tree[giga_node]: if visited[node[0]][0] == 0: # 방문하지 않은경우 visited[node[0]][0] = 1 # 방문 표현 dfs(node[0], giga_length + node[1]) visited[node[0]][1] = giga_length + node[1] N, R = map(int, sys.stdin.readline().split()) tree = [[] for i in range(N + 1)] for i in range(N - 1): a, b, d = map(int, sys.stdin.readline().split()) tree[a].append((b, d)) tree[b].append((a, d)) giga_f = [] for i in range(len(tree)): if len(tree[i]) > 2: giga_f.append(i) # print(giga_f) if len(giga_f) < 1: giga_node = N else: giga_node = giga_f[0] length = 0 # 기가로드를 통해 기가로드까지의 기둥 길이 구함 visited = [[0] * 2 for i in range(N + 1)] for i in range(R, giga_node): for j in tree[i]: if visited[j[0]][0] == 0 and j[0] != R: length += j[1] visited[j[0]][0] = 1 visited[giga_node][0] = 1 dfs(giga_node, 0) print(length, max(visited)[1])
true
83ef188bec1f39920efcf302730ec9df4ef22c1b
Python
twarogm/pp1
/03-FileHandling/Exercises/03-19.py
UTF-8
193
3.203125
3
[]
no_license
tab = [] with open('universities.txt', 'r') as file: for line in file: tab.append(line) with open('universities.txt', 'w') as file: for i in sorted(tab): file.write(i)
true
07a18fa5e624a4e59d445d794f8fd51fbbe64fda
Python
lamby/django-slack
/tests/test_escaping.py
UTF-8
2,117
3.125
3
[ "BSD-3-Clause" ]
permissive
import django import unittest from django_slack import slack_message from django_slack.utils import get_backend class SlackTestCase(unittest.TestCase): def setUp(self): self.backend = get_backend() self.backend.reset() def assertMessageCount(self, count): self.assertEqual(len(self.backend.messages), count) def assertMessage(self, url=None, **kwargs): """ Ensure there was only one message sent with a URL and data values. """ self.assertMessageCount(1) message = self.backend.messages[0] # Optionally ensure the URL. if url is not None: self.assertEqual(url, message['url']) # Ensure each input value in data. for kwarg, value in kwargs.items(): self.assertEqual(value, message['message_data'][kwarg]) class TestEscaping(SlackTestCase): def test_simple_message(self): slack_message('test.slack', {'text': 'test'}) self.assertMessage(text='test') def test_escaped(self): """ Simple test of the Django escaping to illustrate problem. """ slack_message('test.slack', {'text': '< > & " \''}) if django.VERSION[0] >= 3: self.assertMessage(text='&lt; &gt; &amp; &quot; &#x27;') else: self.assertMessage(text='&lt; &gt; &amp; &quot; &#39;') def test_escape_tag(self): """ Test using the escape tag, but not escaping anything. """ slack_message('escape.slack', {'text': 'test'}) self.assertMessage(text='test') def test_escape_chars(self): """ Test the characters Slack wants escaped. See <https://api.slack.com/docs/formatting#how_to_escape_characters> """ slack_message('escape.slack', {'text': '< > &'}) self.assertMessage(text='&lt; &gt; &amp;') def test_not_escape_chars(self): """ Test normal HTML escaped characters that Slack doesn't want escaped. """ slack_message('escape.slack', {'text': '" \''}) self.assertMessage(text='" \'')
true
95b9aba31e282dd44f8852b09caeee6b2499901f
Python
admalledd/sublime_text
/keymapper.py
UTF-8
1,818
2.703125
3
[]
no_license
import sublime, sublime_plugin class keymapperCommand(sublime_plugin.TextCommand,sublime_plugin.WindowCommand): """Key Mapper, sadly you still have to define all the keymaps in your .sublime-keymap just point them all here that you want to be able to map around. this subclasses both TextCommand and WindowCommand so that it can be used for anything! in your project file have a new index called "keymapper", inside define keys as you would in a .sublime-keymap. Note again that these keys that are available are only the ones that you pointed to run keymapper in your master keymap file. samples::: ** added to Default ($OS).sublime-keymap { "keys": ["ctrl+alt+r"], "command": "keymapper","args":{"key":"ctrl+alt+r"}} ** added to $PROJECT.sublime-project "keymapper":[ { "keys": ["ctrl+alt+r"], "command": "subprocess", "args": {"exe": "/home/admalledd/bin/pypy3"}}, ] Note that the .sublime-project sample is using one of my other plugins (sp.py/subprocess), just because it is all I really use the keymapper for... """ def run(self,*args,key=None): if ((not sublime.active_window().project_file_name()) or 'keymapper' not in sublime.active_window().project_data()): print("keymapper: no project file found! aborting!") return False self.proj_keys = sublime.active_window().project_data()['keymapper'] for keymap in self.proj_keys: if key in keymap['keys']: print('keymapper: found keybinding!') #here is where more complicated logics would go if more crazy is wanted return sublime.active_window().active_view().run_command( keymap['command'],keymap['args'] )
true
a80d7822c73877119cbd81d2af444cc31aaef41d
Python
Kristof95/Security-Tools
/IP Address Scanner/Ip_address_scanner.py
UTF-8
1,284
3.390625
3
[]
no_license
#python34 import requests import json def main(): ip = input("Please add an ip address:") print("\n") try: ip_info = [] response = requests.get('http://ipinfo.io/'+ip) json_resp = json.loads(response.text) print("Hostname: "+json_resp["hostname"]) print("Location: "+json_resp["loc"]) print("IP Address: "+json_resp["ip"]) print("City: "+json_resp["city"]) print("Postal: "+json_resp["postal"]) print("Region: "+json_resp["region"]) print("Org: "+json_resp["org"]) print("Country: "+json_resp["country"]) print("\n") print("Saved Ip address information to txt file!") ip_info.append("Hostname: "+json_resp["hostname"] + "\n" +"Location: "+json_resp["loc"] + "\n" +"IP Address: "+json_resp["ip"]+ "\n" +"City: "+json_resp["city"]+ "\n" +"Postal: "+json_resp["postal"]+ "\n" +"Region: "+json_resp["region"]+ "\n" +"Org: "+json_resp["org"]+ "\n" +"Country: "+json_resp["country"]) save_to_txt(ip_info) except Exception as e: print(e.reason) def save_to_txt(info): with open("ip_info.txt", "a") as file: for i in info: file.write(str(i) + "\n") if __name__ == "__main__": main()
true
d62ef5eb94731634ae604bada048fd573fe73d9e
Python
Cooton/Test
/study17.py
UTF-8
169
3.15625
3
[]
no_license
#!/use/bin/env python3 #-*- conding:utf-8 -*- a=[1,2,3,4,5,'a','b'] zong=0 for x in a: if(type(x)==int) or (type(x)==float): zong=zong+x else: continue print(zong)
true
d347204d471b6a8e5d5b442923358ee85ce71ab6
Python
leihong/learn_python
/html_parser.py
UTF-8
1,940
3.21875
3
[]
no_license
#!/usr/bin/env python3 from html.parser import HTMLParser from urllib import request import re class MyHTMLParser(HTMLParser): def __init__(self): super(MyHTMLParser, self).__init__() self.flag=0 self.logdata=0 self.information = [] self.__dataname = 0 def handle_starttag(self, tag, attrs): if tag=='ul' and attrs[0][1] == 'list-recent-events menu': print('find a ul:', attrs) self.flag=1 if self.flag==1: if tag=='a' and attrs[0][0] == 'href': print('\nTitle: ', end='') self.logdata=1 elif tag=='time': print('Time: ', end='') self.logdata=2 elif tag=='span' and self.logdata==2: self.logdata=1 elif tag=='span' and attrs[0][1]=='event-location': print('Location: ', end='') self.logdata=1 #pass #print("Encountered a start tag:", tag) def handle_endtag(self, tag): if tag=='ul' and self.flag==1: self.flag=0 print('encountered ul end') #pass #print("Encountered an end tag:", tag) def handle_data(self, data): if self.flag == 1: if self.logdata==1: self.logdata=0 print(data) elif self.logdata==2: print(data, end=' ') pass #print("Encountered some data:", data) parser = MyHTMLParser() #parser.feed('<html><head><title>Test</title></head>') print('Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is buffered until more data is fed or close() is called. data must be str.') #parser.feed('<body><h1>Parse me!</h1></body></html>') URL='https://www.python.org/events/python-events/' with request.urlopen(URL) as f: data = f.read().decode('utf-8') print(data) parser.feed(data)
true
48513fccf0b89b8e04686a6016521e13e6ee14ce
Python
Harry-Rogers/PythonNotesForProfessionals
/Chapter 2 Data Types/2.2 Set Data Types.py
UTF-8
418
3.78125
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Jul 26 15:05:45 2020 @author: Harry """ basket = {"apple","orange","apple","pear","bannana"} print(basket) #duplicates from a set are removed on print a = set("abracadabra") print(a) # prints the unique letters in a a.add("z") print(a) #can add to a set but will be at the start of the set b = frozenset("asdfgasa") print(b) # cant add to a frozen set
true
65f78a399237a7d4afe2751cadc303d4d0478787
Python
smhemel/Problem-Solving-using-Python
/URI Online Judge/Uri 1059.py
UTF-8
69
3.609375
4
[]
no_license
for i in range(100): i+=1 if(i%2==0): print("%d" %i)
true
7282eee89b2b4a07daaea132882d5d40e6b9cd64
Python
DebojyotiRoy15/LeetCode
/268. Missing Number.py
UTF-8
324
3.109375
3
[]
no_license
#https://leetcode.com/problems/missing-number/ #O(n) class Solution: def missingNumber(self, nums: List[int]) -> int: n = len(nums) sum =(n*(n+1))//2 sum_real = 0 for i in range(len(nums)): sum_real = sum_real + nums[i] diff = abs(sum_real - sum) return diff
true
083432c0814b53dedb373e1be67bc6b5b55d150d
Python
feisuxiaozhu/gate-complexity
/one_way_function/sparse_matrix_creater/4_no_hw1.py
UTF-8
4,507
2.75
3
[]
no_license
import numpy as np import random import galois from typing import List, Any import os import pickle import multiprocessing from sympy import Matrix, latex from itertools import combinations, product, permutations def weighted_sample(choices: List[Any], probs: List[float]): """ Sample from `choices` with probability according to `probs` """ probs = np.concatenate(([0], np.cumsum(probs))) r = random.random() for j in range(len(choices) + 1): if probs[j] < r <= probs[j + 1]: return choices[j] def sidant_test(n, m): j = 0 while True: B_inv, B = matrix_generator(n,m) # print(B) A = np.matrix(B) # j += 1 # print(j) flag = 0 row_sum = np.array(np.sum(np.matrix(A), axis = 0))[0] if np.any([i in row_sum for i in range(6)]): # first sidhant test continue print('passed column denstiy check!') for ind in pair_cols: # second sidhant test if np.sum(np.array(B[:, ind[0]] + B[:, ind[1]])) <= 5: flag = 1 break if flag: continue return (B_inv, B) def matrix_generator(n,m,k): GF2 = galois.GF(2) counter = 0 c=int(n/2) while True: counter += 1 # if counter % 10000 == 0: # os.system('cls') # print(counter) candidates = [] for i in range(n): # creat first n unit vectors of length n + m temp = np.zeros((n,1), dtype=int) temp[i][0] = 1 candidates.append(temp) for i in range(c): # add n/2 gates to include all inputs one = candidates[2*i] two = candidates[2*i+1] sum = (one + two) % 2 candidates.append(sum) for i in range(c, m): # add m-c gates using Hamming weight distribution of previous candidates Hamming = [] for candidate in candidates: Hamming.append((np.sum(candidate))**(k)) # non-linear distribution normed = [float(i)/np.sum(Hamming) for i in Hamming] all_indices = [j for j in range(len(candidates))] index1 = weighted_sample(all_indices, normed) index2 = weighted_sample(all_indices, normed) while index2 == index1: index2 = weighted_sample(all_indices, normed) random_indices = [index1, index2] # print(random_indices) one = candidates[random_indices[0]] two = candidates[random_indices[1]] sum = (one + two) % 2 candidates.append(sum) all_indices = [j for j in range(len(candidates))] # matrix_indices = random.sample(range(0, m+n), n) # build matrix # matrix_indices = [i+m for i in range(n)] # use n last gate as output i = m+n-1 result_matrix = candidates[i].T counter = 1 while counter < n: counter += 1 temp_matrix = [] while np.linalg.matrix_rank(temp_matrix) < counter and i>=n: i -= 1 # if i<n: # matrix_generator # return np.zeros((n,n)), np.zeros((n,n)) # continue temp_matrix = np.concatenate((result_matrix, candidates[i].T), axis=0) temp_matrix = GF2(temp_matrix) result_matrix = temp_matrix if i == n-1: break if i == n-1: continue result_matrix = GF2(result_matrix) result_matrix_inv = np.linalg.inv(result_matrix) row_sum = np.array(np.sum(np.matrix(result_matrix_inv), axis = 0))[0] # if np.any([i in row_sum for i in range(6)]): # must pass the fist Sidhant test! # continue return result_matrix, result_matrix_inv def worker(n,m,k,i): print('Thread '+str(i)+' working') A,B = matrix_generator(n,m,k) print(A) print(B) if __name__ == '__main__': n=20 m=30 pair_cols = [list(i) for i in list(combinations(range(n), 2))] jobs = [] # list of jobs jobs_num = 10 # number of workers for i in range(jobs_num): k = 0.1*i + 0.1 p1 = multiprocessing.Process(target=worker, args=(n,m,k,i)) jobs.append(p1) p1.start() # starting workers # A,B = matrix_generator(n,m) # print(A) # print(B) # print('A density: ' + str(np.count_nonzero(A)/n)) # print('B density: ' + str(np.count_nonzero(B)/n))
true
f91114ebc15ddad18d35615248e622d509f169e1
Python
maxfiedler/breze
/breze/arch/model/gaussianprocess.py
UTF-8
3,913
2.53125
3
[]
no_license
# -*- coding: utf-8 -*- """Module containing models for Gaussian processes.""" import numpy as np import theano.tensor as T from theano.sandbox.linalg.ops import MatrixInverse, Det, psd, Cholesky minv = MatrixInverse() det = Det() cholesky = Cholesky() from ..util import lookup, get_named_variables from ..component import misc, kernel as kernel_ # TODO document def parameters(n_inpt): return dict(length_scales=n_inpt, noise=1, amplitude=1) def exprs(inpt, test_inpt, target, length_scales, noise, amplitude, kernel): exprs = {} # To stay compatible with the prediction api, target will # be a matrix to the outside. But in the following, it's easier # if it is a vector in the inside. We keep a reference to the # matrix anyway, to return it. target_ = target[:, 0] # The Kernel parameters are parametrized in the log domain. Here we recover # them and make sure that they do not get zero. minimal_noise = 1e-4 minimal_length_scale = 1e-4 minimal_amplitude = 1e-4 noise = T.exp(noise) + minimal_noise length_scales = T.exp(length_scales) + minimal_length_scale amplitude = T.exp(amplitude) + minimal_amplitude # In the case of stationary kernels (those which work on the distances # only) we can save some work by caching the distances. Thus we first # find out if it is a stationary tensor by checking whether the kernel # can be computed by looking at diffs only---this is the case if a # ``XXX_by_diff`` function is available in the kernel module. # If that is the case, we add the diff expr to the exprs dict, so it can # be exploited by code on the top via a givens directory. kernel_by_dist_func = lookup('%s_by_dist' % kernel, kernel_, None) stationary = kernel_by_dist_func is not None kernel_func = lookup(kernel, kernel_) if stationary: inpt_scaled = inpt * length_scales.dimshuffle('x', 0) diff = exprs['diff'] = misc.pairwise_diff(inpt_scaled, inpt_scaled) D2 = exprs['sqrd_dist'] = misc.distance_matrix_by_diff(diff, 'l2') gram_matrix = amplitude * kernel_by_dist_func(D2) exprs['D2'] = D2 else: gram_matrix = kernel_func(inpt, inpt, length_scales, amplitude) # TODO clarify nomenclature; the gram matrix is actually the whole thing # without noise. gram_matrix += T.identity_like(gram_matrix) * noise # This is an informed choice. I played around a little with various # methods (e.g. using cholesky first) and came to the conclusion that # this way of doing it was way faster than explicitly doing a Cholesky # or so. psd(gram_matrix) inv_gram_matrix = minv(gram_matrix) n_samples = gram_matrix.shape[0] ll = ( - 0.5 * T.dot(T.dot(target_.T, inv_gram_matrix), target_) - 0.5 * T.log(det(gram_matrix)) - 0.5 * n_samples * T.log(2 * np.pi)) nll = -ll # We are interested in a loss that is invariant to the number of # samples. nll /= n_samples loss = nll # Whenever we are working with points not in the training set, the # corresponding expressions are prefixed with test_. Thus test_inpt, # test_K (this is the Kernel matrix of the test inputs only), and # test_kernel (this is the kernel matrix of the training inpt with the # test inpt. test_kernel = kernel_func(inpt, test_inpt, length_scales, amplitude) kTK = T.dot(test_kernel.T, inv_gram_matrix) output = output_mean = T.dot(kTK, target_).dimshuffle(0, 'x') kTKk = T.dot(kTK, test_kernel) chol_inv_gram_matrix = cholesky(inv_gram_matrix) diag_kTKk = (T.dot(chol_inv_gram_matrix.T, test_kernel) ** 2).sum(axis=0) test_K = kernel_func(test_inpt, test_inpt, length_scales, amplitude, diag=True) output_var = ((test_K - diag_kTKk)).dimshuffle(0, 'x') return get_named_variables(locals())
true
7a07c5bcf3111fe432429167febdd3b8360c26c5
Python
mr-kkid/sklearn
/test10-Kfold&cross_validation&precision&recall.py
UTF-8
2,227
2.53125
3
[]
no_license
#encoding=UTF-8 #K-fold and cross_validation and precision and recall from sklearn import datasets import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score import plot_decision_regions import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.cross_validation import StratifiedKFold,cross_val_score from sklearn.metrics import f1_score,recall_score,precision_score iris=datasets.load_iris() X=iris.data[:,[0,1,2,3]] Y=iris.target X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=0) pipline_lr=Pipeline([('scl',StandardScaler()),('pca',PCA(n_components=2)),('cls',LogisticRegression(random_state=1))]) kfold=StratifiedKFold(y=Y_train,n_folds=10,random_state=1) scores=[] for k,(train,test) in enumerate(kfold): pipline_lr.fit(X_train[train],Y_train[train]) score=pipline_lr.score(X_train[test],Y_train[test]) scores.append(score) print ('Fold %d:%.3f'%(k+1,score)) scores=cross_val_score(estimator=pipline_lr,X=X_train,y=Y_train,n_jobs=2,cv=10) print scores print '\n' #encoding=UTF-8 from sklearn import datasets import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score import plot_decision_regions import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline iris=datasets.load_iris() X=iris.data[:,[0,1,2,3]] Y=iris.target X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=0) print np.mean(scores) lr=LogisticRegression() lr.fit(X_train,Y_train) Y_pred=lr.predict(X_test) print '-----------------------------\n' print precision_score(y_true=Y_test,y_pred=Y_pred,sample_weight=None) print recall_score(y_true=Y_test,y_pred=Y_pred,sample_weight=None) print f1_score(y_true=Y_test,y_pred=Y_pred,sample_weight=None)
true
0ad87d83c1fd290fd46a803459a90d2365382075
Python
jordibusoms/APA
/Assignment2/main_cheating.py
UTF-8
7,251
2.828125
3
[]
no_license
# import copy # weakref import re import sys def default_gt(node_a, node_b): """Not to be used outside lnk_list insert_sort but the users may code another one to substitute it if needed, so it's outside the class. Defines how two lnk_nodes should be compared, returning 1 if node_a is greater or equal to b and 0 otherwise""" if not node_a: return 0 if not node_b: return 1 if node_a.value >= node_b.value: # While not used in the task I return 1 # considered it the most logic else: # default return 0 def gt_by_chom_arm_cheating(node_a, node_b): """Not to be used outside lnk_list insert_sort. Defines how two lnk_nodes should be compared, returning 1 if node_a is greater or equal to b and 0 otherwise using chromosome arm as first discriminant if read_sec_locations_cheating used""" if not node_a: return 0 if not node_b: return 1 if node_a.loci>=node_b.loci: return 1 else: return 0 def gt_by_chom_alone(node_a, node_b): """Not to be used outside lnk_list insert_sort. Defines how two lnk_nodes should be compared, Suposing loci already contains only the chromosome arm information.""" if not node_a: return 0 if not node_b: return 1 if (int(node_a.loci[:-1]),node_a.loci[-1])>= (int(node_b.loci[:-1]), node_b.loci[-1]): return 1 # considered it the most logic else: # default return 0 class lnk_list: def __init__(self, loci, val, n=False): self.root = lnk_node(loci,val) self.current = self.root self.last = self.root def start(self): """Resets the cursor current back to the root""" self.current = self.root def next(self): """Advance one position, returns 0 if already at the end and 1 otherwise""" n = self.current.n self.current = n if n!=False: return 1 else: return 0 def new_node(self,loci,val): """ Creates a new node at the end of the list""" self.last.insert(lnk_node(loci,val)) self.last = self.last.n def insert(self, new_node): """Inserts a single node at the current position""" self.current.insert(new_node) def __add__(self, b): """Add the content of a second lnk_list after the own """ if type(self)!=type(b): raise NameError('lnk_list can only be added to ln_list') else: self.last.n = b.root self.last = b.last def insert_sort(self, gt_function = default_gt): """ Sorts the lnk_list using insertion sort""" sorted_list = lnk_list(self.root.loci, self.root.value) to_rmv = self.root self.root = self.root.n del(to_rmv) # giben that del just remove the reference to let # the garbage collector to actuate creating to_rmv # was not really needed but useful to be explicid. while self.root: to_add = self.root self.root = to_add.n sorted_list.current = sorted_list.root if gt_function(sorted_list.root, to_add): to_add.n = sorted_list.root sorted_list.root = to_add #print(to_add.loci) continue while not gt_function(sorted_list.current.n, to_add) and sorted_list.current.n: sorted_list.next() sorted_list.insert(to_add) self.root = sorted_list.root def __str__(self): cur = self.root ret = "" while cur: ret+="[loci: "+str(cur.loci)+", value: "+str(cur.value)+"] -> " cur = cur.n return ret class lnk_node: def __init__(self, loci, val, n=False): self.loci = loci #self.chrom = int(loci.split(".").strip(" \nq") self.value = val self.n = n def next(self): return self.n def insert(self, new_node): new_node.n = self.n self.n = new_node #print ("inserting", new_node.loci, new_node.value) def read_sec_locations_cheating(file_name): """Reads a file with sequence id, chromosomal location and geometric locations separated by taps and produces a lnk_list with the relevant information stores chromosome arm and geometeical coordinates sum instead of loci""" with open(file_name) as fh: fi=1 for line in fh: loci = line.split("\t")[1] location = ( tuple(float(x) for x in re.split('\\(|,|\\)',line)[1:3])) ident = (int(re.split('p|q',loci)[0]), re.search('p|q',loci)[0], sum(location)) if fi: to_return = lnk_list(ident,location) fi=0 else: to_return.new_node(ident,location) return(to_return) def count_close_reads_cheating(sorted_lnk_list, threshold): """This function assumes it is giben a lnk_list sorted using gt_by_chom_arm as discriminant criteria and counts how many reads on the same chromosom arm are closer than threshold. Theorical basis for loop breaking: gt_by_chom_arm sorts by chromosome arm but also by the sum of the coordinates having the sum of the coordinates we know a point falls in the line x + y = n and the mininum distance between two lines like those is equal to min_dist([0,n1], line2)= |n1-n2|/sqrt(2)""" max_diference_coord_sum = threshold * 1.5 # I use 1.5 as sqrt(2) to # avoid decimal errors in reality would be 1.4142135623730951 max_distance_squared = threshold**2 node1 = sorted_lnk_list.root chrom1 = str(node1.loci[0])+node1.loci[1] count_result = lnk_list(chrom1, 0) while node1.n: node2 = node1.n chrom2 = str(node2.loci[0])+node2.loci[1] dif = 0 while node2 and chrom1==chrom2 and dif < max_diference_coord_sum: if ((node1.value[0]-node2.value[0])**2+(node1.value[1] -node2.value[1])**2) <= max_distance_squared: count_result.last.value+=1 dif = sum(node1.value)- sum(node2.value) dif = max(dif,-dif) node2 = node2.n if not node2: break chrom2 = str(node2.loci[0])+node2.loci[1] node1 = node1.n chrom1 = str(node1.loci[0])+node1.loci[1] # There are repetitive pices of code but otherwise to know the # chromosome arm without lossing loci information would require # some kind of aditional data structure if chrom1 != count_result.last.loci: count_result.new_node(chrom1,0) return(count_result) if __name__=="__main__": our_data = read_sec_locations_cheating(sys.argv[1]) our_data.start() our_data.insert_sort(gt_by_chom_arm_cheating) counts = count_close_reads_cheating(our_data, float(sys.argv[2])) counts.insert_sort(gt_by_chom_alone) print(counts)
true
3d1129ce24bae925d5f338970367b9d55c5499c5
Python
P4SSER8Y/ProjectEuler
/pr117/pr117.py
UTF-8
295
2.96875
3
[]
no_license
#coding:utf8 def foo(group): n = 50 f = [0] * (n + max(group)) f[0] = 1 for i in range(n): for j in group: f[i+j] += f[i] return f[n] def pr117(): return foo([1, 2, 3, 4]) def run(): return pr117() if __name__ == "__main__": print(run())
true
fc8db291afad84b025ec3013d898c0de46122f02
Python
iwiwi/darkopt
/example/chainer_mnist.py
UTF-8
3,221
2.609375
3
[ "MIT" ]
permissive
#!/usr/bin/env python import argparse import chainer import chainer.functions as F import chainer.links as L from chainer import training from chainer.training import extensions import numpy as np import darkopt test_batch_size = 1024 param_space = { 'unit': 2 ** np.arange(3, 10), 'batch_size': 2 ** np.arange(3, 10), 'lr': 0.5 ** np.arange(1, 20), } class Model(chainer.Chain): def __init__(self, n_units): super(Model, self).__init__( l1=L.Linear(None, n_units), l2=L.Linear(None, n_units), l3=L.Linear(None, 10), ) def __call__(self, x): h1 = F.relu(self.l1(x)) h2 = F.relu(self.l2(h1)) return self.l3(h2) def main(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='result', help='Directory to output the result') parser.add_argument('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train') parser.add_argument('--n_trials', '-n', type=int, default=10, help='Number of trials for hyper-parameter search') args = parser.parse_args() train, test = chainer.datasets.get_mnist() def eval_func(param, known_best_score): print(param) model = L.Classifier(Model(param['unit'])) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() optimizer = chainer.optimizers.Adam(param['lr']) optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(train, param['batch_size']) test_iter = chainer.iterators.SerialIterator( test, test_batch_size, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu) # Trigger for pruning pruned_stop_trigger = darkopt.ChainerTrigger( # Key for the score to watch score_key='validation/main/loss', # If there's little chance to beat this score, we prune the training known_best_score=known_best_score, # Standard training termination trigger stop_trigger=(args.epoch, 'epoch') ) trainer = training.Trainer(updater, pruned_stop_trigger, out=args.out) trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu)) log_report_extension = extensions.LogReport() trainer.extend(log_report_extension) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) trainer.run() return log_report_extension.log[-1]['validation/main/loss'] opt = darkopt.Optimizer(eval_func, param_space) best_trial_result = opt.optimize(args.n_trials) print('Best validation loss:', best_trial_result.score) print('Best parameter:', best_trial_result.param) if __name__ == '__main__': main()
true
53252245d72f40ca7b0f9be56822801b14f6852e
Python
alexcrichton/wasmtime-py
/wasmtime/_instance.py
UTF-8
3,295
2.671875
3
[ "LLVM-exception", "Apache-2.0" ]
permissive
from ._ffi import * from ctypes import * from wasmtime import Module, Extern, Func, Table, Memory, Trap, Global dll.wasm_instance_new.restype = P_wasm_instance_t class Instance(object): # Creates a new instance by instantiating the `module` given with the # `imports` provided. # # The `module` must have type `Module`, and the `imports` must be an # iterable of external values, either `Extern`, `Func`, `Table`, `Memory`, # or `Global`. # # Raises an error if instantiation fails (e.g. linking or trap) and # otherwise initializes the new instance. def __init__(self, module, imports): if not isinstance(module, Module): raise TypeError("expected a Module") import_types = module.imports() if len(imports) != len(import_types): raise RuntimeError("wrong number of imports provided") imports_ffi = (P_wasm_extern_t * len(import_types))() for i, ty in enumerate(import_types): val = imports[i] if isinstance(val, Extern): imports_ffi[i] = val.__ptr__ elif isinstance(val, Func): imports_ffi[i] = val.as_extern().__ptr__ elif isinstance(val, Memory): imports_ffi[i] = val.as_extern().__ptr__ elif isinstance(val, Global): imports_ffi[i] = val.as_extern().__ptr__ elif isinstance(val, Table): imports_ffi[i] = val.as_extern().__ptr__ else: raise TypeError("expected an external item as an import") trap = P_wasm_trap_t() ptr = dll.wasm_instance_new( module.store.__ptr__, module.__ptr__, imports_ffi, byref(trap)) if not ptr: if trap: raise Trap.__from_ptr__(trap) raise RuntimeError("failed to compile instance") self.__ptr__ = ptr self._module = module @classmethod def __from_ptr__(cls, ptr, module): ty = cls.__new__(cls) if not isinstance(ptr, P_wasm_instance_t): raise TypeError("wrong pointer type") ty.__ptr__ = ptr ty._module = module return ty # Returns the exports of this module def exports(self): externs = ExternTypeList() dll.wasm_instance_exports(self.__ptr__, byref(externs.vec)) ret = [] for i in range(0, externs.vec.size): ret.append(Extern.__from_ptr__(externs.vec.data[i], externs)) return ret # Gets an export from this module by name, returning `None` if the name # doesn't exist. def get_export(self, name): if not hasattr(self, '_export_map'): self._export_map = {} exports = self.exports() for i, export in enumerate(self._module.exports()): self._export_map[export.name()] = exports[i] if name in self._export_map: return self._export_map[name] else: return None def __del__(self): if hasattr(self, '__ptr__'): dll.wasm_instance_delete(self.__ptr__) class ExternTypeList(object): def __init__(self): self.vec = wasm_extern_vec_t(0, None) def __del__(self): dll.wasm_extern_vec_delete(byref(self.vec))
true
a42fd149f6f2557ae6e8b61c025a52111e8b2e91
Python
Kimuda/Phillip_Python
/longer_cool_code/movies.py
UTF-8
1,517
3.671875
4
[]
no_license
movie1 = { "name":"The grey", "rating":79, "year":2012, "actors":["Liam Neeson","Frank Grillo","Dermot Mulroney","Dallas Roberts","Joe Anderson","Nonso Anozie"] } movie2 = { "name":"LOTR: TFOTR" } movie2["rating"]=91 movie2["year"]=2002 movie2["actors"]=["Elijah Wood","Ian McKellen","Viggo Mortensen","Dermot Mulroney","Liv Tyler","Sean Bean","Cate Blanchett"] movies = [movie1,movie2] question="" while question!="N" and question!="Y": question = input("Do you want to enter another movie? (Y/N) ") while question=="Y": movie = {} movie["name"]= input("Whats the name? ") movie["rating"]= int(input("Whats the rating? ")) movie["year"]= int(input("when was released? ")) actors_str = input("list of actors (comma separated) ") actor="" actors=[] for char in actors_str: if char!=",": actor = actor + char else: actors = actors + [actor] actor = "" if actor!="": actors = actors + [actor] movie["actors"]=actors movies += [movie] question="" while question!="N" and question!="Y": question = input("Do you want to enter another movie? (Y/N) ") print (movies) actor_q = input ("which actor should we look for?") answer = [] # got into the list of movies for movie in movies: # get the actors actors = movie["actors"] # check each actor if actor_q in actors: print (movie["name"]) answer = answer + [movie] # for actor in actors: # if actor == actor_q: # print (movie["name"]) print (answer)
true
04dcb407acc970f3e68e132d660ea0f7e49c71e6
Python
bopopescu/licorn
/daemon/threads.py
UTF-8
33,467
2.65625
3
[]
no_license
# -*- coding: utf-8 -*- """ Licorn Daemon threads classes. Worth reads (among many others): * http://code.google.com/p/python-safethread/w/list * http://www.python.org/dev/peps/pep-0020/ Copyright (C) 2010 Olivier Cortès <oc@meta-it.fr> Licensed under the terms of the GNU GPL version 2. """ import time, __builtin__ from threading import Thread from Queue import Queue from licorn.foundations import logging, exceptions from licorn.foundations import process, pyutils from licorn.foundations.threads import RLock, Event from licorn.foundations.styles import * from licorn.foundations.ltrace import * from licorn.foundations.ltraces import * class BaseLicornThread(Thread): """ A simple class of thread which records its own instances, and whose start() method returns the current instance. This allows to instanciate and start the thread in one line. """ def __init__(self, *a, **kw): try: # using self.__class__ will fill subclasses._instances, # instead of BaseLicornThread._instances. self.__class__._instances.append(self) except AttributeError: self.__class__._instances = [ self ] Thread.__init__(self, *a, **kw) def start(self): """ Just a handy method that allows us to do:: >>> th = BaseLicornThread(...).start() """ Thread.start(self) return self def stop(self): try: self.__class__._instances.remove(self) except ValueError: pass class LicornThread(Thread): """ A simple thread with an Event() used to stop it properly, and a Queue() to get events from other threads asynchronically. Every subclass must implement a process_message() method, which will be called by the main loop until the thread stops. """ def __init__(self, tname=None): Thread.__init__(self) self.name = tname or self.__class__.__name__ # trap the original gettext translator, to avoid the builtin '_' # trigerring an exception everytime we need to translate a string. try: self._ = __builtin__.__dict__['_orig__'] except KeyError: # In case our threaded gettext is not set up. Eg in WMI, we # don't set it up: Django does it, but much later that when # we initialize. Thus, we take the original gettext as fallback. self._ = __builtin__.__dict__['_'] self._stop_event = Event() self._input_queue = Queue() assert ltrace(TRACE_THREAD, '%s initialized' % self.name) def start(self): """ Just a handy method that allows us to do:: >>> th = LicornThread(...).start() """ Thread.start(self) return self def dispatch_message(self, msg): """ get an incoming message in a generic way. """ self._input_queue.put(msg) def run(self): """ Process incoming messages until stop Event() is set. """ # don't call Thread.run(self), just override it. assert ltrace(TRACE_THREAD, '%s running' % self.name) while not self._stop_event.isSet(): data = self._input_queue.get() if data is None: break self.process_data(data) self._input_queue.task_done() assert ltrace(TRACE_THREAD, '%s ended' % self.name) def stop(self): """ Stop current Thread and put a special None entry in the queue, to be sure that self.run() method exits properly. """ assert ltrace(TRACE_THREAD, '%s stopping' % self.name) self._stop_event.set() self._input_queue.put(None) class LicornBasicThread(BaseLicornThread): """ A simple Thread with an Event(), used to stop it properly. Threaded gettext is setup in the :meth:`__init__` method. You must implement a method named `run_action_method` which does **one** processing at a time. This method will be automatically run in a `while` loop. It will be Exception-immune: any encountered exception is printed with a full stack trace, and next run goes on. ..warning:: Don't put any infinite loop in your `run_action_method`, else the thread will never stop(). Optional: - if a method named `pre_run_method` exists, it is run before entering the main while loop. - if a method named `post_run_method` exists, it is run after exiting the main while loop. - you should probably overload :method:`dump_status()` to provide more informations about the current thread. .. versionadded:: a long while ago, I can't even remember when. Before version 1.2, this is sure. """ @property def pretty_name(self): return stylize(ST_NAME, self.name) def __init__(self, *args, **kwargs): # Pop our args to not bother upper classes. tname = kwargs.pop('tname', None) licornd = kwargs.pop('licornd', None) BaseLicornThread.__init__(self, *args, **kwargs) self.name = tname or self.__class__.__name__ self.__licornd = licornd # trap the original gettext translator, to avoid the builtin '_' # trigerring an exception everytime we need to translate a string. try: self._ = __builtin__.__dict__['_orig__'] except KeyError: # In case our threaded gettext is not set up. Eg in WMI, we # don't set it up: Django does it, but much later that when # we initialize. Thus, we take the original gettext as fallback. self._ = __builtin__.__dict__['_'] self._stop_event = Event() assert ltrace(TRACE_THREAD, '%s initialized.' % self.name) @property def licornd(self): return self.__licornd def dump_status(self, long_output=False, precision=None, as_string=False): if as_string: return '%s%s (stop=%s)' % ( stylize(ST_RUNNING if self.is_alive() else ST_STOPPED, self.name), '&' if self.daemon else '', self._stop_event.is_set() ) else: # TODO: more details return process.thread_basic_info(self) def run(self): """ default run method, which calls: * pre_run_method one time without arguments, if it exists. * run_action_method multiple times during a while loop until stopped. * post_run_method one time without arguments, if it exists. .. versionadded:: 1.2.4 In previous versions, this run method didn't exist at all (this call was purely abstract). """ # don't call Thread.run(self), just override it. assert ltrace(TRACE_THREAD, '%s running' % self.name) assert hasattr(self, 'run_action_method') if hasattr(self, 'pre_run_method'): try: getattr(self, 'pre_run_method')() except: logging.exception(_(u'{0}: Exception in self.pre_run_method(), aborting.'), (ST_NAME, self.name)) self.finish() return while not self._stop_event.is_set(): try: self.run_action_method() except: logging.exception(_(u'{0}: Exception in self.run_action_method(), ' u'continuing.'), (ST_NAME, self.name)) if hasattr(self, 'post_run_method'): try: getattr(self, 'post_run_method')() except: logging.exception(_(u'{0}: Exception in self.post_run_method()'), (ST_NAME, self.name)) self.finish() def finish(self): assert ltrace(TRACE_THREAD, '%s ended' % self.name) def stop(self): """ Stop current Thread. """ assert ltrace(TRACE_THREAD, '%s stopping' % self.name) self._stop_event.set() BaseLicornThread.stop(self) class GQWSchedulerThread(BaseLicornThread): """ Try to dynamically adapt the number of workers for a given qsize. .. warning:: this scheduler is very basic, and in loaded conditions, the priorities will not be respected: if all workers are currently handling jobs, any incoming one (even with a higher priority) will have to wait before beiing processed. This can eventually be avoided by the use of greenlets everywhere in licorn code, but this will need a deeper level of code rewrite. """ def __init__(self, klass, *a, **kw): BaseLicornThread.__init__(self, *a, **kw) self.scheduled_class = klass self._stop_event = Event() self.sleep_lock = RLock() self.name = '%s(%s)' % (self.__class__.__name__, klass.__name__) # trap the original gettext translator, to avoid the builtin '_' # trigerring an exception everytime we need to translate a string. # the try/except block is for the testsuite, which uses this thread # as base class, but doesn't handle on-the-fly multilingual switch. try: self._ = __builtin__.__dict__['_orig__'] except KeyError: self._ = __builtin__.__dict__['_'] def dump_status(self, long_output=False, precision=None, as_string=False): if as_string: return _('{0}{1} for {2} [{3} workers; wake up in {4}]\n{5}').format( stylize(ST_RUNNING if self.is_alive() else ST_STOPPED, self.__class__.__name__), '&' if self.daemon else '', self.scheduled_class.__name__, # `.instances` is the number of instances self.scheduled_class.instances, pyutils.format_time_delta(self.sleep_start_time + self.sleep_time - time.time()), '\n'.join(('\t%s' % t.dump_status(long_output, precision, as_string)) # `._instances` is the list of threads. for t in self.scheduled_class._instances) ) else: return dict(workers=[ t.dump_status(long_output, precision, as_string) for t in self.scheduled_class._instances ], wake_up=self.sleep_start_time + self.sleep_time, **process.thread_basic_info(self)) def run(self): assert ltrace_func(TRACE_THREAD) def throttle_up(): """ See if there are too many or missing peers to handle queued jobs, and spawn a friend if needed, or terminate myself if no more useful. """ # we acquire the class lock to "freeze" starts/ends while we count # everyone and throttle workers. This can make all workers wait, but # doesn't happen that frequently. with cls.lock: # FIRST, see if peers are in need of help: if there are # still a lot of job to do, spawn another peer to get the # job done, until the configured thread limit is reached. n_instances = cls.instances if qsize > 0 and n_instances == cls.busy: if n_instances < cls.peers_max: # sleep a lot, because we start a lot of workers, # but no more that 10 seconds. return min(10.0, float(self.spawn_worker(min(qsize, cls.peers_max - n_instances)))) else: if time.time() - cls.last_warning > 5.0: cls.last_warning = time.time() logging.progress(_(u'{0}: maximum workers already ' u' running, but qsize={1}.').format( self.name, qsize)) # all workers are currently busy, we can wait a lot # before things settle. Keep CPU cycles for our workers. return 10.0 else: # things have not changed. Wait a little, but not that # much in case things go up again fast. return 2.0 def throttle_down(): """ See if there are too many peers to handle queued jobs, and then send terminate signal (put a ``None`` job in the queue), so that one of the peers will terminate. """ # we need to get the class lock, else peers could stop() while we are # stopping too, and the daemon could be left without any thread for a # given class of them. with cls.lock: # See if jobs have been worked out during the time # we spent joing our job. If things have settled, signify to # one of the peers to terminate (this could be me, or not), # but only if there are still more peers than the configured # lower limit. n_instances = cls.instances if qsize <= n_instances and n_instances > cls.busy: # sleep a lot if we terminate a lot of workers, but # no more than 10 seconds to avoid beiing flooded # by next "queue attack". return min(10.0, float(self.stop_worker( n_instances - qsize - cls.peers_min))) # things have not changed. Wait a little, but not that # much in case things go up again fast. return 2.0 cls = self.scheduled_class q = cls.input_queue prev_qsize = 0 from licorn.core import LMC while not self._stop_event.is_set(): with cls.lock: qsize = q.qsize() with self.sleep_lock: if qsize >= prev_qsize: self.sleep_time = throttle_up() else: self.sleep_time = throttle_down() # from time to time, or if we are in the process of settling down, # ask the thread-cleaner to search for dead-threads to wipe from memory. try: if len(cls._instances) != cls.instances: try: LMC.licornd.clean_objects(delay=1.0) except AttributeError: # if daemon is currently stopping, the thread-cleaner # could be already wiped out. Harmless. pass except AttributeError: # the first time, cls._instances is not yet set. harmless. pass prev_qsize = qsize self.sleep_start_time = time.time() with self.sleep_lock: # don't hold the lock while we sleep, this would cause # dump_status() to hang. sleep_time = self.sleep_time if sleep_time < 0: # Circumvent #901: in some very rare conditions, sleep_time # seems to be negative, which raises an "IOError: # Invalid Argument" exception on Unixes (cf. http://bytes.com/topic/python/answers/29389-behaviour-time-sleep-negative-arg). sleep_time = 0 time.sleep(sleep_time) assert ltrace_func(TRACE_THREAD, True) def stop(self): assert ltrace_func(TRACE_THREAD) # Stop blocked workers self.stop_worker(self.scheduled_class.instances) # Stop sleeping workers for inst in self.scheduled_class._instances: inst.stop() self._stop_event.set() assert ltrace_func(TRACE_THREAD, True) def spawn_worker(self, number=None): for i in range(number or 1): self.scheduled_class().start() return number or 1.0 def stop_worker(self, number=None): for i in range(number or 1): self.scheduled_class.input_queue.put_nowait( self.scheduled_class.stop_packet) return number or 1.0 class AbstractTimerThread(LicornBasicThread): """ Base (abstract) class for any advanced timer thread: * the thread can loop any number of time (0 to infinite). 0 means it is a one shot timer, 1 or more means it is like a scheduled job (but no date handling yet). * it can wait a specific time before starting to loop. * the timer can be reset at any moment. :param time: is a time.time() object before first execution, or for one-shot jobs ("AT" like) :param count: eventually the number of time you want the job to repeat (>0) default: None => infinite loop :param delay: a float in seconds to wait between each call when looping. Only used in loop. If looping (infinite or not), delay must be set. args and kwargs are for target, which will be executed at least once. tname is an optionnal thread name, to differentiate each, if you launch more than one JobThread. .. versionadded:: 1.2.4 .. warning:: This class is an abstract one, it does nothing besides sleeping. All inheriting classes must implement a ``run_action_method``, else they will fail. """ def __init__(self, *args, **kwargs): # Pop our args to not bother upper classes. time = kwargs.pop('time', None) count = kwargs.pop('count', None) delay = kwargs.pop('delay', None) daemon = kwargs.pop('daemon', False) LicornBasicThread.__init__(self, *args, **kwargs) self.time = time self.delay = delay self.count = count self.daemon = daemon # lock used when accessing self.time_elapsed and self.sleep_delay self._time_lock = RLock() # these 2 variable are internal to the sleep() method, but can be used # R/O in remaining_time(). self.__time_elapsed = 0.0 self.__sleep_delay = None #: used when we want to reset the timer, without running our action. self._reset_event = Event() #: used when we force running our action without waiting the full #: delay. This event is triggered from the outside using methods. self._trigger_event = Event() self.__trigger_delay = None if self.count is None: self.loop = True else: if self.count <= 0: raise exceptions.BadArgumentError('count can only be > 0') elif self.count >= 1: self.loop = False assert ltrace(TRACE_THREAD, '| AbstractTimerThread.__init__(time=%s, ' 'count=%s, delay=%s, loop=%s)' % (self.time, self.count, self.delay, self.loop)) if (self.loop or self.count > 1) and self.delay is None: raise exceptions.BadArgumentError( 'must provide a delay for looping.') def sleep(self, delay=None): """ sleep at most self.delay, but with smaller intervals, to allow interruption without waiting to the end of self.delay, which can be very long. """ if delay: self.__sleep_delay = delay else: self.__sleep_delay = self.delay assert ltrace(TRACE_THREAD, '| %s.sleep(%s)' % (self.name, delay)) with self._time_lock: self.__time_elapsed = 0.0 while self.__time_elapsed < self.__sleep_delay: #print "waiting %.1f < %.1f" % (current_delay, self.delay) if self._stop_event.is_set(): break if self._reset_event.is_set(): logging.progress(_(u'{0}: timer reset after {1} elapsed.').format( stylize(ST_NAME, self.name), pyutils.format_time_delta(self.__time_elapsed, big_precision=True))) with self._time_lock: self.__time_elapsed = 0.0 self._reset_event.clear() if self._trigger_event.is_set(): with self._time_lock: if self.__trigger_delay is None: self.__time_elapsed = self.__sleep_delay else: self.__time_elapsed = self.__sleep_delay - self.__trigger_delay self._trigger_event.clear() time.sleep(0.01) with self._time_lock: self.__time_elapsed += 0.01 assert ltrace(TRACE_THREAD, '| %s.sleep(EXIT)' % self.name) def trigger_event(self, delay=None): self.__trigger_delay = delay self._trigger_event.set() trigger = trigger_event def reset_timer(self): self._reset_event.set() #: :meth:`reset` is an alias to :meth:`reset_timer` reset = reset_timer def remaining_time(self): """ Returns the remaining time until next target execution, in seconds. """ with self._time_lock: if self.__sleep_delay is None: raise exceptions.LicornRuntimeException( '%s: not yet started.' % self.name) return self.__sleep_delay - self.__time_elapsed def run(self): """ TODO. """ self.current_loop = 0 # first occurence: we need to wait until time if it is set. if self.time: # only sleep 'til initial time if not already passed. Else just run # the loop, to have the job done as soon as possible. first_delay = self.time - time.time() if first_delay > 0: self.sleep(first_delay) elif self.delay: # we just have to wait a delay before starting (this is a # simple timer thread). self.sleep() while self.loop or self.current_loop < self.count: if self._stop_event.is_set(): break self.run_action_method() self.current_loop += 1 self.sleep() LicornBasicThread.finish(self) class GenericQueueWorkerThread(AbstractTimerThread): """ Inherits from :class:`AbstractTimerThread` to be able to be interrupted in the middle of a :meth:`sleep` triggered by a ``job_delay``. The :meth:`run` method of the :class:`AbstractTimerThread` is totally overriden though, and is never called, this is intended. We just need the :meth:`sleep` one. The :meth:`stop` method comes from :class:`LicornBasicThread`. .. versionadded:: - created for the 1.2.5 - enhanced for the 1.5: add the ability to stop the thread in the middle of a sleep, not only when the thread is idle. """ _setup_done = False lock = RLock() counter = 0 instances = 0 busy = 0 last_warning = 0 #: what we need to put in the queue for a worker to stop. stop_packet = (-1, None, None, None) scheduler = None @classmethod def setup(cls, licornd, input_queue, peers_min, peers_max, daemon=False): """ Setup The Worker class. Starts the Scheduler thread, and return it. You have to store the scheduler reference somewhere! To stop the workers, invoke the scheduler `stop()` method. """ if cls._setup_done: return cls._instance = [] #cls.high_bypass = high_bypass cls.peers_min = peers_min cls.peers_max = peers_max #: a reference to the licorn daemon cls.licornd = licornd #: should the worker instances be daemon threads? cls.daemon = daemon # the very first instance of the class has to setup everything # for its future peers. cls.input_queue = input_queue # start the class scheduler, which will manage worker threads cls.scheduler = GQWSchedulerThread(cls).start() cls._setup_done = True # start the first worker, which needs `_setup_done` to be True. cls().start() return cls.scheduler def __init__(self, *a, **kw): cls = self.__class__ if not cls._setup_done: raise RuntimeError(_(u'Class method {0}.setup() has not been ' u'called!').format(cls.__name__)) kw.update({ #: the :class:`threading.Thread` attributes. 'tname' : '%s-%03d' % (cls.__name__, cls.counter), 'daemon' : cls.daemon, 'licornd' : cls.licornd, # FAKE: we pass 1 for the AbstractTimerThread.__init__() not to # bother us with 'must provide a delay for looping' check error. # Anyway, as we override completely its run() method, this has # no importance at all for the runtime, *we* loop like we want. 'count' : 1, }) AbstractTimerThread.__init__(self, *a, **kw) # trap the original gettext translator, to avoid the builtin '_' # trigerring an exception everytime we need to translate a string. # the try/except block is for the testsuite, which uses this thread # as base class, but doesn't handle on-the-fly multilingual switch. try: self._ = __builtin__.__dict__['_orig__'] except KeyError: self._ = __builtin__.__dict__['_'] #: used in dump_status (as a display info only), to know which #: object our target function is running onto. self.job = None self.priority = None self.job_args = None self.job_kwargs = None self.job_start_time = None #: used to sync and not crash between run() and dump_status(). self.lock = RLock() self.jobbing = Event() #assert ltrace_locks(cls.lock) with cls.lock: cls.counter += 1 cls.instances += 1 def dump_status(self, long_output=False, precision=None, as_string=True): """ get detailled thread status. """ with self.lock: if as_string: return '%s%s [%s]' % ( stylize(ST_RUNNING if self.is_alive() else ST_STOPPED, self.name), '&' if self.daemon else '', 'on %s since %s' % (self.__format_job(), pyutils.format_time_delta( time.time() - self.job_start_time, big_precision=True)) if self.jobbing.is_set() else 'idle' ) else: return dict(job=self.job, job_args=self.job_args, job_kwargs=self.job_kwargs, start_time=self.job_start_time, jobbing=self.jobbing.is_set(), **process.thread_basic_info(self)) def __format_job(self): try: job_name = self.job.__name__ except AttributeError: # Pyro's `core._RemoteMethod` class has no __name__ # retro-compatibility attribute. We must fake to # find the real name, but at least with Python, we can. try: job_name = getattr(self.job, '_RemoteMethod__name') except: # In case it wasn't a Pyro method, use a sane fallback. job_name = str(self.job) return stylize(ST_ON, '%s(%s%s%s)' % ( job_name, ', '.join([str(j) for j in self.job_args]) if self.job_args else '', ', ' if self.job_args and self.job_kwargs else '', ', '.join(['%s=%s' % (key, value) for key, value in self.jobs_kwargs]) if self.job_kwargs else '')) def run(self): """ A queue worker can be interrupted in two ways: - calling its :meth:`stop` method - putting ``(None, …)`` in its queue. """ assert ltrace_func(TRACE_THREAD) cls = self.__class__ q = cls.input_queue while not self._stop_event.is_set(): # We need to store the item in a separate variable in case it is # badly formed (see #898). Without this, we won't be able to # display it in the message in case of an exception. temp_data = q.get() try: self.priority, self.job, self.job_args, self.jobs_kwargs = temp_data except ValueError: logging.warning(_(u'{0}: invalid queue item "{1}", ' u'terminating.').format(self.name, temp_data)) # Even with a bad-built item, we successfully poped it from the # queue. Notify any waiters before quitting. q.task_done() break else: del temp_data if self.job is None: # None is a fake message to unblock the q.get(), when the # main process terminates the current thread with stop(). We # emit task_done(), else the main process will block forever # on q.join(). q.task_done() # Don't set self._stop_event(), just break: when we encounter # the 'stop job' item, the QueueWorkerScheduler is in the # process of calling our stop() method too. Setting the event # from here is thus not necessary; the loop will already break. break with cls.lock: cls.busy += 1 with self.lock: self.jobbing.set() self.job_start_time = time.time() # this will at most eventually sleep a little if called requested # if, or at best (with 0.0s) switch to another thread needing the # CPU in the Python interpreter before starting to process the job. self.sleep(self.jobs_kwargs.pop('job_delay', 0.0)) # In case the sleep() was interrupted by a stop(), we need to # check, to avoid running the job in a stopping daemon. if self._stop_event.is_set(): with cls.lock: cls.busy -= 1 with self.lock: self.jobbing.clear() q.task_done() logging.warning(_(u'{0}: stopped during sleep, job {1} will ' u'not be run at all.').format(self.name, self.__format_job())) break #assert ltrace(TRACE_THREAD, '%s: running job %s' % ( # self.name, self.job)) try: self.job(*self.job_args, **self.jobs_kwargs) except Exception: logging.exception(_(u'{0}: Exception encountered while running ' u'{1}'), self.name, self.__format_job()) q.task_done() with self.lock: self.jobbing.clear() with cls.lock: cls.busy -= 1 self.job = None self.priority = None self.job_args = None self.job_kwargs = None self.job_start_time = None if q.qsize() == 0: logging.progress(_(u'%s: queue is now empty, going ' u'asleep waiting for jobs.') % self.name) # when ending, be sure to notice everyone interested. with cls.lock: cls.instances -= 1 class ServiceWorkerThread(GenericQueueWorkerThread): pass class ACLCkeckerThread(GenericQueueWorkerThread): pass class NetworkWorkerThread(GenericQueueWorkerThread): pass class TriggerTimerThread(AbstractTimerThread): """ A Timer Thread whose sole action is to trigger an :class:`~threading.Event`. It is used in conjunction of the :class:`TriggerWorkerThread` (which waits on the :class:`~threading.Event`). .. versionadded:: 1.2.4 """ def __init__(self, trigger_event, tname=None, time=None, count=None, delay=0.0, daemon=False): AbstractTimerThread.__init__(self, time=time, count=count, delay=delay, daemon=daemon, tname=tname) self._trigger_event = trigger_event def run_action_method(self): return self._trigger_event.set() class TriggerWorkerThread(LicornBasicThread): def __init__(self, *a, **kw): assert ltrace(TRACE_THREAD, '| TriggerWorkerThread.__init__()') try: target = a.pop() except: try: target = kw.pop('target') except: raise exceptions.BadArgumentError(_(u'{0}: the "target" first ' u'(or named) argument is mandatory!').format( self.__class__.__name__)) try: trigger_event = a.pop() except: try: trigger_event = kw.pop('trigger_event') except: raise exceptions.BadArgumentError(_(u'{0}: the "trigger_event" ' u'second (or named) argument is mandatory!').format( self.__class__.__name__)) try: args = a.pop() except: args = kw.pop('args', ()) try: kwargs = a.pop() except: kwargs = kw.pop('kwargs', {}) LicornBasicThread.__init__(self, *a, **kw) self._disable_event = Event() self._currently_running = Event() self._trigger_event = trigger_event self.target = target self.args = args self.kwargs = kwargs # used on manual triggering only. self.one_time_args = None self.one_time_kwargs = None def dump_status(self, long_output=False, precision=None, as_string=False): if as_string: return '%s%s (%s)' % ( stylize(ST_RUNNING if self.is_alive() else ST_STOPPED, self.name), '&' if self.daemon else '', stylize(ST_OFF, 'disabled') if self._disable_event.is_set() else '%s, %s' % ( stylize(ST_ON, 'enabled'), stylize(ST_ON, 'active') if self._currently_running.is_set() else 'idle' ) ) else: return process.thread_basic_info(self) def active(self): """ Returns ``True`` if the internal worker is running, else ``False`` (the thread can be considered idle). """ return self._currently_running.is_set() #: an alias from :meth:`running` to :meth:`active`. running = active def idle(self): """ Exact inverse of :meth:`active` method. """ return not self._currently_running.is_set() def enabled(self): """ Returns ``True`` if not currently disabled. """ return not self._disable_event.is_set() def disabled(self): """Exact inverse of :meth:`enabled` method. """ return self._disable_event.is_set() def run(self): # don't call Thread.run(self), just override it. assert ltrace(TRACE_THREAD, '%s running' % self.name) while True: self._trigger_event.wait() # be sure to wait at next loop. self._trigger_event.clear() if self._stop_event.is_set(): assert ltrace(TRACE_THREAD, '%s: breaking our loop now.' % self.name) break if self._disable_event.is_set(): assert ltrace(TRACE_THREAD, '%s: triggered, but currently ' 'disabled: not doing anything.' % self.name) continue # use one_time arguments if we have been manually trigerred. if self.one_time_args is not None: args = self.one_time_args self.one_time_args = None else: args = self.args if self.one_time_kwargs is not None: kwargs = self.one_time_kwargs self.one_time_kwargs = None else: kwargs = self.kwargs assert ltrace(TRACE_THREAD, '%s: triggered, running target %s(%s, %s)' % (self.name, self.target, ', '.join(args), ', '.join(kwargs))) self._currently_running.set() self.target(*args, **kwargs) self._currently_running.clear() self.finish() def trigger(self, *args, **kwargs): """ Trigger a worker run if we are not currently stopping. """ assert ltrace(TRACE_THREAD, '| TriggerWorkerThread.trigger()') self.one_time_args = args self.one_time_kwargs = kwargs if not self._stop_event.is_set(): return self._trigger_event.set() #: An alias from :meth:`manual_trigger` to :meth:`trigger` for purists. manual_trigger = trigger def disable(self): """ Disable next runs (until re-enabled), but only if we are not currently stopping. """ assert ltrace(TRACE_THREAD, '| TriggerWorkerThread.disable()') if not self._stop_event.is_set(): return self._disable_event.set() def enable(self): assert ltrace(TRACE_THREAD, '| TriggerWorkerThread.enable()') return self._disable_event.clear() def stop(self): """ Stop the thread properly (things must be done in a certain order, internally). """ # Stop the base things. At this moment, the thread is either waiting # on the trigger, or running. LicornBasicThread.stop(self) # Then be sure to release the wait() on the trigger, # else we will never quit... self._trigger_event.set() class LicornJobThread(AbstractTimerThread): def __init__(self, target, tname=None, time=None, count=None, delay=0.0, target_args=(), target_kwargs={}, daemon=False): """ TODO: this class is meant to be removed in version 1.3+, replaced by the couple :class:`TriggerWorkerThread` / :class:`TriggerTimerThread`. """ AbstractTimerThread.__init__(self, time=time, count=count, delay=delay, daemon=daemon, tname=tname) self.target = target self.target_args = target_args self.target_kwargs = target_kwargs # a parallel thread that will run the real job, to be able to continue # to countdown the delay while job is running. self.job_runner = None def dump_status(self, long_output=False, precision=None, as_string=False): """ get detailled thread status. """ if as_string: return '%s%s [%s]' % ( stylize(ST_RUNNING if self.job_runner else ST_STOPPED, self.name), '&' if self.daemon else '', '%s(%s%s%s)' % (self.target, self.target_args if self.target_args else '', ', ' if (self.target_args and self.target_kwargs) else '', self.target_kwargs if self.target_kwargs else '') if self.job_runner else 'sleeping, wake up in %s' % pyutils.format_time_delta(self.remaining_time()) ) else: # TODO: more details return process.thread_basic_info(self) def run_action_method(self): """ A method that will wrap self.target into a JobRunner simple :class:`~threading.Thread`. """ ''' if (not self.job_runner) or (not self.job_runner.is_alive()): self.job_runner = Thread( target=self.target, name=self.name + '.JobRunner', args=self.target_args, kwargs=self.target_kwargs ) self.job_runner.daemon = True self.job_runner.start() ''' self.target(*self.target_args, **self.target_kwargs)
true
70b36d0a3334a45334be9eb6e8b714b7ad865c22
Python
yienlyu/Python-Implementations
/Data_Structures/server.py
UTF-8
2,193
3.515625
4
[]
no_license
# data format: <user_name> <user_id> <click_timestamp> <product_id> <sale> # store the costumers' information with a list of tuples def store_allInfo(a, all_info): a = tuple(str(x) for x in a.split(" ")) all_info.append(a) # store the products' information with a dictionary {product_id : {(user_id, sale), ...}} def store_productInfo(a, product_info): a = tuple(str(x) for x in a.split(" ")) if a[3] in product_info: product_info.get(a[3]).add((a[0], a[4])) else: product_info[a[3]] = {(a[0], a[4])} # store by coustumers with a dictionary {user_id : {(click_timestamp, product_id)}} # def store_costumerInfo(): # count and print the information of the product's sales def count_sales(sales_list, product_id, click): purchase = 0 users = [] num = len(sales_list) for i in range(num): purchase = purchase + int(sales_list[i][1]) users.append(sales_list[i][0]) print(f'product {product_id}: {purchase} purchase / {click} click') for i in range(num): print(users[i]) # print sales and user who purchase among all clicks of the product (using filter) def product_sales(product_id, product_info): click = len(product_info.get(product_id)) sales_list = list(filter(lambda sale : sale[1] > "0", product_info.get(product_id))) count_sales(sales_list, product_id, click) # return the products clicked by both two users (using set intersection) # def users_intersect(user_id1, user_id2, all_info): # return 5 products the user most recently clicked # def users_recentClick(user_id, costumerInfo): # (after adding classification of products) # return 5 recommended products to the user # def users_recommend(user_id, product_info): # read and process the data def readData(all_info, product_info): for i in range(15): a = input() store_allInfo(a, all_info) store_productInfo(a, product_info) # print(f'all_info: {all_info}') # print(f'product_info: {product_info}') if __name__ == '__main__': all_info = [] product_info = {} readData(all_info, product_info) product_sales("14667", product_info) product_sales("3k495", product_info)
true
fe36d062eb999af0436b0cff93561c822aede2c5
Python
LValencia24/othellopy
/Othello_def1.py
UTF-8
10,954
3.375
3
[]
no_license
# Autor : Luis Valencia 14-11335 # Variables iniciales PlayerOneBlack = 1 PlayerTwoWhite = 2 turno = 0 # Funcion para crear el tablero def crearTablero(): tablero = [ [0 for j in range(0, 8)] for i in range(0, 8)] tablero[3][4] = tablero[4][3] = PlayerOneBlack tablero[4][4] = tablero[3][3] = PlayerTwoWhite a = "" for k in range(8): for j in range(8): a+=str(tablero[k][j])+str(" ") print (a) a="" return tablero # Funcion cambiar jugador def cambiarJugador(turn): if turn == 0: turn = 1 elif turn == 1: turn = 0 return turn def quedanFichas(tablero): quedaFicha = True for i in range(0, 8): for j in range(0, 8): if tablero[i][j] == 0: break else: quedaFicha = False return quedaFicha # Funcion para definir si una jugada es valida o no def esValida(tablero, columna, fila, turno): valido = False if fila > 8 or columna > 8: pass else: if tablero[fila][columna] != 0: pass else: if turno == 0: tu_pieza = PlayerOneBlack oponente = PlayerTwoWhite elif turno == 1: tu_pieza = PlayerTwoWhite oponente = PlayerOneBlack for x, y in [ [1, 1], [0, 1], [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1] ]: if valido == True: break columna_tablero, fila_tablero = columna, fila columna_tablero = columna_tablero + x fila_tablero = fila_tablero + y if fila_tablero > 7 or columna_tablero > 7: continue if tablero[fila_tablero][columna_tablero] == oponente: while tablero[fila_tablero][columna_tablero] == oponente: columna_tablero = columna_tablero + x fila_tablero = fila_tablero + y if columna_tablero > 7 or fila_tablero > 7: break elif tablero[fila_tablero][columna_tablero] == tu_pieza: valido = True break if fila_tablero > 7 or columna_tablero > 7: continue return valido # Piezas verticalez que se consumen luego de la jugada def consumoVertical(tablero, columna, fila, turno): consumoVertical = [] consumoVerticalUp = [] consumoVerticalUpFinal = [] consumoVerticalDown = [] consumoVerticalDownFinal = [] if turno == 0: tu_pieza = PlayerOneBlack oponente = PlayerTwoWhite elif turno == 1: tu_pieza = PlayerTwoWhite oponente = PlayerOneBlack tablero_fila_up = fila + 1 if tablero_fila_up < 8: if tablero[tablero_fila_up][columna] == oponente: while tablero[tablero_fila_up][columna] == oponente: consumoVerticalUp.append([tablero_fila_up, columna]) tablero_fila_up = tablero_fila_up + 1 if tablero_fila_up > 8: continue elif tablero[tablero_fila_up][columna] == tu_pieza: consumoVerticalUpFinal = consumoVerticalUp break tablero_fila_down = fila - 1 if tablero[tablero_fila_down][columna] == oponente: while tablero[tablero_fila_down][columna] == oponente: consumoVerticalDown.append([tablero_fila_down, columna]) tablero_fila_down = tablero_fila_down - 1 if tablero_fila_down < 0: continue elif tablero[tablero_fila_down][columna] == tu_pieza: consumoVerticalDownFinal = consumoVerticalDown break consumoVertical = consumoVerticalUpFinal + consumoVerticalDownFinal return consumoVertical # Piezas horizontales que se consumen luego de la jugada def consumoHorizontal(tablero, columna, fila, turno): consumoHorizontal = [] consumoHorizontalRight = [] consumoHorizontalRightFinal = [] consumoHorizontalLeft = [] consumoHorizontalLeftFinal = [] if turno == 0: tu_pieza = PlayerOneBlack oponente = PlayerTwoWhite elif turno == 1: tu_pieza = PlayerTwoWhite oponente = PlayerOneBlack tablero_columna_right = columna + 1 tablero_columna_left = columna - 1 if tablero[fila][tablero_columna_right] == oponente: while tablero[fila][tablero_columna_right] == oponente: consumoHorizontalRight.append([fila, tablero_columna_right]) tablero_columna_right = tablero_columna_right + 1 if tablero_columna_right > 8: break elif tablero[fila][tablero_columna_right] == tu_pieza: consumoHorizontalRightFinal = consumoHorizontalRight break if tablero[fila][tablero_columna_left] == oponente: while tablero[fila][tablero_columna_left] == oponente: consumoHorizontalLeft.append([fila, tablero_columna_left]) tablero_columna_left = tablero_columna_left - 1 if tablero_columna_left > 8: break elif tablero[fila][tablero_columna_left] == tu_pieza: consumoHorizontalLeftFinal = consumoHorizontalLeft break consumoHorizontal = consumoHorizontalRightFinal + consumoHorizontalLeftFinal return consumoHorizontal # Piezas diagonales que se consumen luego de la jugada def consumoDiagonal(tablero, columna, fila, turno): consumoDiagonal = [] consumoDiagonalRightUp = [] consumoDiagonalRightUpFinal = [] consumoDiagonalRightDown = [] consumoDiagonalRightDownFinal = [] consumoDiagonalLeftUp = [] consumoDiagonalLeftUpFinal = [] consumoDiagonalLeftDown = [] consumoDiagonalLeftDownFinal = [] if turno == 0: tu_pieza = PlayerOneBlack oponente = PlayerTwoWhite elif turno == 1: tu_pieza = PlayerTwoWhite oponente = PlayerOneBlack tablero_diagonal_up = fila + 1 tablero_diagonal_right = columna + 1 tablero_diagonal_left = columna - 1 tablero_diagonal_down = fila - 1 if tablero_diagonal_up < 8: if tablero[tablero_diagonal_up][tablero_diagonal_right] == oponente: while tablero[tablero_diagonal_up][tablero_diagonal_right] == oponente: consumoDiagonalRightUp.append([tablero_diagonal_up, tablero_diagonal_right]) tablero_diagonal_up = tablero_diagonal_up + 1 tablero_diagonal_right = tablero_diagonal_right + 1 if tablero_diagonal_right > 8 or tablero_diagonal_up > 8: break elif tablero[tablero_diagonal_up][tablero_diagonal_right] == tu_pieza: consumoDiagonalRightUpFinal = consumoDiagonalRightUp break if tablero[tablero_diagonal_up][tablero_diagonal_left] == oponente: while tablero[tablero_diagonal_up][tablero_diagonal_left] == oponente: consumoDiagonalLeftUp.append([tablero_diagonal_up, tablero_diagonal_left]) tablero_diagonal_up = tablero_diagonal_up + 1 tablero_diagonal_left = tablero_diagonal_left - 1 if tablero_diagonal_left < 0 or tablero_diagonal_up > 8: break elif tablero[tablero_diagonal_up][tablero_diagonal_right] == tu_pieza: consumoDiagonalLeftUpFinal = consumoDiagonalLeftUp break if tablero_diagonal_right < 8: if tablero[tablero_diagonal_down][tablero_diagonal_right] == oponente: while tablero[tablero_diagonal_down][tablero_diagonal_right] == oponente: consumoDiagonalRightDown.append([tablero_diagonal_down, tablero_diagonal_right]) tablero_diagonal_down = tablero_diagonal_down - 1 tablero_diagonal_right = tablero_diagonal_right + 1 if tablero_diagonal_right > 8 or tablero_diagonal_down < 0: break elif tablero[tablero_diagonal_down][tablero_diagonal_right] == tu_pieza: consumoDiagonalRightDownFinal = consumoDiagonalRightDown break if tablero[tablero_diagonal_down][tablero_diagonal_left] == oponente: while tablero[tablero_diagonal_down][tablero_diagonal_left] == oponente: consumoDiagonalLeftDown.append([tablero_diagonal_down, tablero_diagonal_left]) tablero_diagonal_down = tablero_diagonal_down - 1 tablero_diagonal_left = tablero_diagonal_left - 1 if tablero_diagonal_left < 0 or tablero_diagonal_down < 0: break elif tablero[tablero_diagonal_down][tablero_diagonal_left] == tu_pieza: consumoDiagonalLeftDownFinal = consumoDiagonalLeftDown break consumoDiagonal = consumoDiagonalLeftDownFinal + consumoDiagonalLeftUpFinal + consumoDiagonalRightDownFinal + consumoDiagonalRightUpFinal print(consumoDiagonal) return consumoDiagonal # Piezas que se consumen en total luego de realizar la jugada def consumo(tablero, columna, fila, turno): consumoTotal = [] consumoTotal = consumoVertical(tablero, columna, fila, turno) + consumoHorizontal(tablero, columna, fila, turno) + consumoDiagonal(tablero, columna, fila, turno) return consumoTotal # Funcion para mostrar la jugada realizada def reflejarJugada(tablero, columna, fila, turno): if turno == 0: jugada = 1 elif turno == 1: jugada = 2 tablero[fila][columna] = jugada jugadaReflejada = consumo(tablero, columna, fila, turno) if len(jugadaReflejada) > 0: for x, y in jugadaReflejada: tablero[x][y] = jugada else: return False a = "" for k in range(8): for j in range(8): a+=str(tablero[k][j])+str(" ") print (a) a="" return tablero # Funcion para pedir la jugada a los jugadores def obtenerJugada(): fila = int(input("Ingrese la fila en la que desea jugar: ")) columna = int(input("Ingrese la columna en la que desea jugar: ")) jugadaObtenida = [fila, columna] return jugadaObtenida turno = 0 tablero = crearTablero() # Comienzo y bucle del juego while True: jugadaObtenida = obtenerJugada() if esValida(tablero, jugadaObtenida[1], jugadaObtenida[0], turno) == True: reflejarJugada(tablero, jugadaObtenida[1], jugadaObtenida[0], turno) turno = cambiarJugador(turno) elif esValida(tablero, jugadaObtenida[1], jugadaObtenida[0], turno) == False: print("La jugada no es valida.")
true
b59ba71084bc6c5af6827dec115a8fcd27a88595
Python
renll/rongba
/examples/experiments/loggers.py
UTF-8
3,436
2.53125
3
[ "Apache-2.0" ]
permissive
import numpy as np import pandas as pd import pickle from ngboost.evaluation import * class RegressionLogger(object): def __init__(self, args): self.args = args self.log = pd.DataFrame() def tick(self, forecast, y_test): pred, obs, slope, intercept = calibration_regression(forecast, y_test) self.log = self.log.append([{ "r2": r2_score(y_test, forecast.loc), "mse": mean_squared_error(y_test, forecast.loc), "nll": -forecast.logpdf(y_test.flatten()).mean(), "crps": forecast.crps(y_test.flatten()).mean(), "slope": slope, "calib": calculate_calib_error(pred, obs) }]) def to_row(self): return pd.DataFrame({ "dataset": [self.args.dataset], "distn": [self.args.distn], "score": [self.args.score], "rmse": ["{:.2f} \pm {:.2f}".format(np.mean(np.sqrt(self.log["mse"])), np.std(np.sqrt(self.log["mse"])) / self.args.reps)], "nll": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["nll"]), np.std(self.log["nll"]) / self.args.reps)], "crps": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["crps"]), np.std(self.log["crps"]) / self.args.reps)], "r2": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["r2"]), np.std(self.log["r2"]) / self.args.reps)], "calib": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["calib"]), np.std(self.log["calib"]) / self.args.reps)], "slope": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["slope"]), np.std(self.log["slope"]) / self.args.reps)], }) def save(self): outfile = open("results/regression/logs_%s_%s_%s_%s.pkl" % (self.args.dataset, self.args.score, self.args.natural, self.args.distn), "wb") pickle.dump(self, outfile) class SurvivalLogger(object): def __init__(self, args): self.args = args self.log = pd.DataFrame() def tick(self, forecast, y_test): C = 1-y_test['Event'] T = y_test['Time'] pred, obs, slope, intercept = calibration_time_to_event(forecast, T, C) self.log = self.log.append([{ "cstat_naive": calculate_concordance_naive(forecast.loc, T, C), "cstat_dead": calculate_concordance_dead_only(forecast.loc, T, C), "cov": np.mean(np.sqrt(forecast.var) / forecast.loc), "slope": slope, "calib": calculate_calib_error(pred, obs) }]) def to_row(self): return pd.DataFrame({ "dataset": [self.args.dataset], "score": [self.args.score], "natural": [self.args.natural], "cstat_naive": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["cstat_naive"]), np.std(self.log["cstat_naive"]) / self.args.reps)], "cstat_dead": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["cstat_dead"]), np.std(self.log["cstat_dead"]) / self.args.reps)], "calib": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["calib"]), np.std(self.log["calib"]) / self.args.reps)], "slope": ["{:.2f} \pm {:.2f}".format(np.mean(self.log["slope"]), np.std(self.log["slope"]) / self.args.reps)], }) def save(self): outfile = open("results/survival/logs_%s_%s_%s_%s.pkl" % (self.args.dataset, self.args.score, self.args.natural, self.args.distn), "wb") pickle.dump(self, outfile)
true
9771651a4aa5603f1db8e9f97a86cfce60aed4a2
Python
NotGeobor/Bad-Code
/Physics equations/vf vi a t/a = vf vi t.py
UTF-8
120
3.46875
3
[]
no_license
vf = float(input("vf? ")) vi = float(input("vi? ")) t = float(input("t? ")) a = ((vf - vi) / t) print() print(a) print()
true
682ba4bda9c878651b53eed26dba5a2dd677177e
Python
wangye707/Test
/校招笔试/souhu.py
UTF-8
837
3.0625
3
[]
no_license
#!D:/workplace/python # -*- coding: utf-8 -*- # @File : souhu.py # @Author: WangYe # @Date : 2019/8/29 # @Software: PyCharm def go(num,n): if num and len(str(n))>0: m = 0 for i in range(n+1): for k in str(i): if num in k: print(i) m = m +1 return m else: return 0 if __name__ == '__main__': x = input() if x: m = x.split(' ') if len(m)>1: print(go(m[0],int(m[1]))) else: print(0) else: print(0) # def go(n): # if n==1: # return 1 # if n==2: # return 3 # if n==3: # return 2 # if n == 4: # return 3 # # if n ==5: # # return # if __name__ == '__main__': # n = int(input()) # print(go(n))
true
731840ae9a21e97e2befa24d3e3d40edbf179685
Python
dr1990/CSE-601-Data-Mining-Bioinformatics
/Project2/ClusteringAlgos/index.py
UTF-8
1,339
3.0625
3
[]
no_license
import numpy as np # Creates the incidence matrix indicating the similarity of cluster assignments to each datapoint def get_incidence_matrix(ground_truth, cluster_group): n = len(ground_truth) incidence_matrix = np.zeros((n, n), dtype='int') for k, v in cluster_group.items(): for i, row in enumerate(v): for col in range(i, len(v)): incidence_matrix[row - 1][v[col] - 1] = 1 incidence_matrix[v[col] - 1][row - 1] = 1 return incidence_matrix # Creates a map of cluster numbers (key) to gene_ids (values) # id - gene ids in the data set # ground_truth - cluster numbers def get_cluster_group(id, ground_truth): cluster_group = dict() for i in range(len(id)): if ground_truth[i] in cluster_group.keys(): values = cluster_group[ground_truth[i]] else: values = list() values.append(i) cluster_group[ground_truth[i]] = values return cluster_group # Takes 2 maps (cluster number -> gene_ids) and computes a 2x2 matrix # to indicate TP, FP, TN, FN def get_categories(im_a, im_b): categories = [[0, 0], [0, 0]] (m, n) = np.shape(im_a) for i in range(m): for j in range(n): x = im_a[i][j] y = im_b[i][j] categories[x][y] += 1 return categories
true
81313238a49245fdb63ba719594ae5fd12f705f3
Python
georgeerol/LogAnalysis
/reportdb.py
UTF-8
3,089
3.265625
3
[]
no_license
#!/usr/bin/env python3 import psycopg2 # Question 1 popular_art_title = "What are the most popular three articles of all time?" popular_art_query = \ ( "select articles.title, count(*) as views " "from articles inner join log on log.path " "like concat('%', articles.slug, '%') " "where log.status like '%200%' group by " "articles.title, log.path order by views desc limit 3") # Question 2 popular_au_title = "Who are the most popular article authors of all time?" popular_au_query = \ ( "select authors.name, count(*) as views from articles inner " "join authors on articles.author = authors.id inner join log " "on log.path like concat('%', articles.slug, '%') where " "log.status like '%200%' group " "by authors.name order by views desc") # Question 3 error_day_title = "On which days did more than 1% of requests lead to errors" error_day_query = \ ( "select day, pc from (" "select day, round((sum(requests)/(select count(*) from log where " "substring(cast(log.time as text), 0, 11) = day) * 100), 2) as " "pc from (select substring(cast(log.time as text), 0, 11) as day, " "count(*) as requests from log where status like '%404%' group by day)" "as log_percentage group by day order by pc desc) as final_query " "where pc >= 1") def connect(db_name="news"): """ Connect to the Postgres database. :param db_name: the name of the database :return: the database connection """ try: db = psycopg2.connect(database=db_name) cursor = db.cursor() return db, cursor except: print("Unable to connect to: {}".format(db_name)) def get_query(query): """ Return the given query information :param query: :return: """ db, cursor = connect() cursor.execute(query) data = cursor.fetchall() db.close() return data def print_query_info(query): """ Print the query information :param query: """ title = query[0] print(title) for index, results in enumerate(query[1]): number = index + 1 first_result = results[0] second_result = results[1] print("{}) {}--{} views".format(number, first_result, second_result)) def print_error_day_info(error_day_query): """ Print the day and the percent of error/s :param error_day_query: :return: """ title = error_day_query[0] print(title) for results in error_day_query[1]: first_result = results[0] second_result = results[1] print("{}--{}% errors".format(first_result, second_result)) if __name__ == '__main__': print("\n") popular_art_info = popular_art_title, get_query(popular_art_query) print_query_info(popular_art_info) print("\n") popular_au_info = popular_au_title, get_query(popular_au_query) print_query_info(popular_au_info) print("\n") error_day_info = error_day_title, get_query(error_day_query) print_error_day_info(error_day_info)
true
1f3b9ef27eb193b8433c5d7a6afe966f2190edd3
Python
msergeant/adventofcode
/2019/day10/main.py
UTF-8
2,372
3.28125
3
[]
no_license
from math import atan2, pi def main(): with open('./input') as file: raw = file.read() grid = [i for i in raw.strip().split("\n")] width = len(grid[0]) height = len(grid) max = 0 max_coords = (-1, -1) for i in range(width): for j in range(height): if grid[j][i] == '#': count = asteroids_in_site(width, height, i, j, grid) if count > max: max = count max_coords = (i, j) print(max_coords) part1 = max origin = (23, 19) trajectories = sorted_trajectories(width, height, origin[0], origin[1], grid) count = 0 traj_index = 0 while count < 200: traj = trajectories[traj_index] x, y = [origin[0] + traj[0], origin[1] + traj[1]] while (x >= 0 and y >= 0 and x < width and y < height): if grid[y][x] == '#': count += 1 grid[y] = grid[y][:x] + '.' + grid[y][x+1:] last = (x,y) break x, y = [x + traj[0], y + traj[1]] traj_index = (traj_index + 1) % len(trajectories) traj = trajectories[traj_index] print("200th", last) part2 = last[0] * 100 + last[1] return part1, part2 def angle(point): ang = atan2(point[1], point[0]) ang = pi / 2 + ang if ang < 0: ang += 2 * pi return ang def sorted_trajectories(width, height, x, y, grid): trajectories = set() asteroids = 0 for i in range(width): for j in range(height): if grid[j][i] == '#' and not (i == x and j == y): asteroids += 1 rise = j - y run = i - x if rise != 0 and run != 0: denom = gcd(abs(rise), abs(run)) else: denom = max(abs(rise), abs(run)) trajectories.add((run // denom, rise // denom)) all_trajectories = list(trajectories) all_trajectories.sort(key=angle) return all_trajectories def asteroids_in_site(width, height, x, y, grid): return len(sorted_trajectories(width, height, x, y, grid)) def gcd(a, b): if a == 0: return b return gcd(b % a, a) print("The answer to part 1 is %d\n" "The answer to part 2 is %d" % main())
true
925593027622e9ee4638300352690c936bb606cb
Python
HeyAnirudh/leetcode
/. Find Numbers with Even Number of Digits.py
UTF-8
229
3.1875
3
[]
no_license
#lt=[12,12,333,1234,34545] #print(len(str(lt[2]))) def findNumbers(lt): count=0 for i in range(0,len(lt)): if len(str(lt[i]))%2==0: count+=1 return count lt=[12,345,2,6,7896] print(findNumbers(lt))
true
ffb568c3876b6cb4d87b7f7a9a07889bcf7a8cae
Python
hyeonahkiki/home
/problem_soliving/sw_expert/5789. 현주의 상자바꾸기.py
UTF-8
484
2.953125
3
[]
no_license
import sys sys.stdin = open('input.txt', 'r') T = int(input()) for tc in range(1, T+1): # 상자개수, 반복횟수 N, Q = map(int, input().split()) box = [0] * (N + 1) # 변화값 x = 0 for i in range(Q): x += 1 L, R = map(int, input().split()) if x != Q+1: for j in range(L, R+1): box[j] = x else: break ans = list(map(str, box[1:])) print('#{} {}'.format(tc, ' '.join(ans)))
true
995cbd9ff946b4779c7fbe6b88cc7d88f6bbd440
Python
johny65/acm
/Facebook Hacker Cup/2012/Qualification/c.py
UTF-8
565
2.953125
3
[]
no_license
import sys import math t = int(input()) for f in range(t): s = sys.stdin.readline() h = a = c = k = e = r = u = p = 0 for i in s: if i == 'H': h += 1 elif i == 'A': a += 1 elif i == 'C': c += 1 elif i == 'E': e += 1 elif i == 'R': r += 1 elif i == 'K': k += 1 elif i == 'U': u += 1 elif i == 'P': p += 1 l = (h, a, c, k, e, r, u, p) m = min(l) if c >= 2*m: total = m else: c2 = c//2 if c2 <= m: total = c2 else: total = 0 print('Case #{}: {}'.format(f+1, total))
true
bf20ff74eafa50b143f851ee79654c2fb272bc1e
Python
JiangHuYiXiao/Web-Autotest-Python
/第六章-pytest框架/pytest_参数化09/test_parametrize.py
UTF-8
962
3.265625
3
[]
no_license
# -*- coding:utf-8 -*- # @Author : 江湖一笑 # @Time : 2020/5/8 8:47 # @Software : Web-Autotest-Python # @Python_verison : 3.7 ''' 使用.parametrize装饰器可以实现测试用例的参数化。 pytest.mark.parametrize('参数',[value]) ''' import pytest # 一个参数 list1 = ['寒山孤影','江湖故人','相逢何必曾相识'] @pytest.mark.parametrize('par1',list1) def test_01(par1): print('用例_',par1) # 两个参数 list2 = [('寒山孤影',1),('江湖故人',2),('相逢何必曾相识',3)] @pytest.mark.parametrize('par1,par2',list2) def test_01(par1,par2): print(par2,'用例_',par1) # 通过参数化标记单个测试实例,为失败 @pytest.mark.parametrize("test_input,expected", [("3+5", 8),("2+4", 6), pytest.param("6 * 9", 42, marks=pytest.mark.xfail) ,]) def test_eval(test_input, expected): assert eval(test_input) == expected if __name__ =='__main__': pytest.main()
true
69ff482fb58eb0a1b2f4b808dfa9dbcd5ca71f44
Python
williamejelias/Huffman-EncoderDecoder
/HuffmanDecode.py
UTF-8
1,424
3.21875
3
[]
no_license
import pickle import sys import time start = time.time() infile = sys.argv[1] filename = infile try: # read the file as bytes and unpickle file = open(filename, "rb") list_dictionary_message = pickle.load(file) # extract dictionary huffmanCodes = list_dictionary_message[0] # extract the number of padded zeroes lengthPaddedZeroes = list_dictionary_message[1] # extract the encoded bitarray bitarray = list_dictionary_message[2] # remove the padded zeroes from the encoded bitarray for i in range(lengthPaddedZeroes): bitarray.pop() # decode the bitarray into a list of characters dec = bitarray.decode(huffmanCodes) # join the characters into one string to complete the decoding decoded_message = ''.join(dec) # print("Decoded Message by decode method: ", decoded_message) # write the decoded message to a new text file newFilename = '' + filename[:-3] + '.txt' newFile = open(newFilename, "w") newFile.write(decoded_message) # close the newly created file newFile.close() print("Number of symbols: ", len(huffmanCodes)) print("Time: ", (time.time() - start)) except FileNotFoundError: print("No such file or directory...") print("Exiting program.") except pickle.UnpicklingError: print("Error decompressing - file is likely corrupted or not in the correct format.") print("Exiting program.")
true
8b01c1f8e1edb35f9b72a1445ce0190eaf25b5a6
Python
phamtony/turtle-cross-game
/car_manager.py
UTF-8
820
3.375
3
[]
no_license
from turtle import Turtle import random COLORS = ["red", "orange", "yellow", "green", "blue", "purple"] STARTING_MOVE_DISTANCE = 5 MOVE_INCREMENT = 10 class CarManager(Turtle): def __init__(self): super().__init__() self.shape("square") self.color(random.choice(COLORS)) self.shapesize(stretch_wid=1, stretch_len=3) self.penup() self.x_cord = 0 self.goto(random.randint(-280, 280), random.randint(-260, 270)) def move(self, level_floor): if level_floor == 1: speed = STARTING_MOVE_DISTANCE else: speed = (level_floor - 1) * MOVE_INCREMENT if self.xcor() <= -320: self.goto(320, random.randint(-260, 270)) self.x_cord = self.xcor() - speed self.goto(self.x_cord, self.ycor())
true
589d65de2452c265c3c1b43f4d7d401a23cfecc1
Python
5l1v3r1/network-scanner-1
/networkscanner/PortScanner/PortScanExample.py
UTF-8
455
3
3
[]
no_license
import PortScanner as ps def main(): # Initialize a Scanner object that will scan top 50 commonly used ports. scanner = ps.PortScanner(target_ports=50) host_name = input('hostname:') message = 'put whatever message you want here' scanner.set_delay(15) scanner.show_target_ports() scanner.show_delay() scanner.show_top_k_ports(100) output = scanner.scan(host_name, message) if __name__ == "__main__": main()
true