blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
e73ae82d3026f03fe0b18ec32ac02a8f54d425cc
Python
ValDagon/computer-switch
/server.py
UTF-8
602
2.71875
3
[ "MIT" ]
permissive
import socket SERVER_ADDRESS = ('192.168.56.1', 8686) server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.bind(SERVER_ADDRESS) server_socket.listen(1) print("Server is running") while True: connection, address = server_socket.accept() message = connection.recv(1024) if str(message) == "b'sleep'": print("i'm sleeped") elif str(message) == "b'shutdown'" or str(message) == "b'sd'": print("i'm power off") else: print("Unknown command", str(message)) connection.send(bytes("OK", encoding='UTF-8')) connection.close()
true
9c486ec84fc0a3cc914faf715b312de5c56c8890
Python
phamvankien/pypowersystem
/methods/cSimulation.py
UTF-8
3,722
2.65625
3
[]
no_license
#Libraries from scipy.sparse.linalg import inv from scipy.sparse.linalg import spsolve from scipy.sparse import identity from scipy.sparse import hstack from scipy.sparse import vstack from scipy.sparse import csc_matrix from numpy import r_ from numpy import zeros from numpy import empty from numpy import Inf from numpy.linalg import norm from numpy import vstack as npvstack from progress.bar import IncrementalBar def cSimulation(system, dae, tMax = 1, dT = 10e-3, iterMax = 10, tol = 1e-12, event = None, control= None): #How often the control is to be executed... if control: tControl = control.tControl sControl = round(tControl/dT) #Number of elements nx = dae.nx ny = dae.ny nu = dae.nu #Number of steps nStep = round(tMax/dT) #Identity matrix Ix = identity(nx) #Initialize time t = 0 #Initialize Output dae.xOut = zeros((nStep,nx)) dae.yOut = zeros((nStep,ny)) dae.uOut = zeros((nStep,nu)) dae.tOut = zeros(nStep) #Initialize flag event: Used to indicate that an event has ocurred... flagEvent = False #Progress bar progressbar = IncrementalBar('Simulation progress', max = nStep) #Start simulation!!! for step in range(nStep): #Show Progress progressbar.next() #Eval event if event: flagEvent = event(t, dT) #If an event an ocurred update system if flagEvent: #Topology system.makeYbus() print('\n **********************An event has ocurred**********************\n') # Inform the control agents about the change in topology if control: control.computeAll(system, dae) #ReinitFlag flagEvent = False #Eval control if control and step%sControl == 0: control.execute(system, dae) #Compute matrices dae.reInitG() dae.reInitF() system.computeF(dae) system.computeG(dae, system.Ybus) #Current state ft = 1 * dae.f gt = 1 * dae.g xt = 1 * dae.x yt = 1 * dae.y ut = 1 * dae.u #Store Results dae.xOut[step, :] = 1 * dae.x dae.yOut[step, :] = 1 * dae.y dae.uOut[step, :] = 1 * dae.u dae.tOut[step] = 1 * t #Solve this integration step using Newton-Rhapson method converged = False nIter = 0 while not converged: nIter += 1 #Compute matrices dae.reInitG() dae.reInitF() system.computeF(dae) system.computeG(dae, system.Ybus) xi = 1 * dae.x fi = 1 * dae.f fxi = 1 * dae.fx fyi = 1 * dae.fy gi = 1 * dae.g gxi = 1 * dae.gx gyi = 1 * dae.gy qi = xi - xt - 0.5*dT*(fi + ft) Ac = hstack([ vstack([Ix - 0.5*dT*fxi, gxi]), vstack([-0.5*dT*fyi, gyi]) ]) phi = r_[qi, gi] #Compute update term dz = -1*spsolve(csc_matrix(Ac), phi) dx = dz[range(nx)] dy = dz[range(nx, nx+ny)] #Compute norm. normF = norm(dz, Inf) if normF < tol: converged = True dae.x = dae.x + dx dae.y = dae.y + dy #If there is not convergence rise exception if not converged: raise Exception('Dynamic simulation did not converged') #Update time t += dT
true
2c61bff48777b4342bf44acc6a23f1a724d6f945
Python
kmcclean/PressYourBuncoLuck
/src/Players.py
UTF-8
696
3.359375
3
[]
no_license
# this class holds all of the information on the players. class Players: def __init__(self, name, rounds_won, points_this_round, is_computer): self.player_name = name self.rounds = rounds_won self.points = points_this_round self.is_comp = is_computer # This increases the number of rounds won by the player. def won_round(self): self.rounds += 1 # resets the score to zero. def reset_points(self): self.points = 0 # Changes the score by a bunco result. def buncoed(self): self.points = 21 # adds the new points onto the score. def scored_points(self, new_points): self.points += new_points
true
5a739bf4769943f35f477d6488b225c4248b4923
Python
hakanmhmd/messenger_bot
/messengerbot/bot.py
UTF-8
4,686
2.515625
3
[ "MIT" ]
permissive
#!/usr/bin/env python import os import requests import apiai import json from sys import argv from wit import Wit from bottle import Bottle, request, debug from dotenv import load_dotenv # Setup Bottle Server debug(True) app = Bottle() # Facebook Messenger GET Webhook @app.get('/webhook') def messenger_webhook(): """ A webhook to return a challenge """ verify_token = request.query.get('hub.verify_token') # check whether the verify tokens match if verify_token == FB_VERIFY_TOKEN: # respond with the challenge to confirm challenge = request.query.get('hub.challenge') return challenge else: return 'Invalid Request or Verification Token' # Facebook Messenger POST Webhook @app.post('/webhook') def messenger_post(): """ Handler for webhook (currently for postback and messages) """ print('In webhook post') data = request.json if data['object'] == 'page': for entry in data['entry']: # get all the messages messages = entry['messaging'] for message in messages: if 'message' in message: # We retrieve the Facebook user ID of the sender fb_id = message['sender']['id'] # We retrieve the message content text = message['message']['text'] processMessage(fb_id, text) else: # Returned another event return 'Received Different Event' return None # Fetch image from getty def fetch_image_by_text(searchQuery): # GET request to getty url = GETTY_URL + searchQuery response = requests.get(url, headers={'Api-Key': GETTY_TOKEN}) parsedResp = json.loads(response.content) # Get the required parameters imageUri = parsedResp['images'][0]['display_sizes'][0]['uri'] return imageUri def send_image_message(sender_id, imageUri): print('In send image message') """ Function for returning image response to messenger """ data = { 'recipient': {'id': sender_id}, 'message': {'attachment': {'type': 'image', 'payload': {'url': imageUri}}} } # Setup the query string with your PAGE TOKEN qs = 'access_token=' + FB_PAGE_TOKEN # Send POST request to messenger resp = requests.post('https://graph.facebook.com/me/messages?' + qs, json=data) return resp.content def send_text_message(sender_id, text): print('In send text message') """ Function for returning text response to messenger """ data = { 'recipient': {'id': sender_id}, 'message': {'text': text} } # Setup the query string with your PAGE TOKEN qs = 'access_token=' + FB_PAGE_TOKEN # Send POST request to messenger resp = requests.post('https://graph.facebook.com/me/messages?' + qs, json=data) return resp.content def processMessage(fb_id, input): print('In process message') request = ai.text_request() request.lang = 'en' request.session_id = 'messengerbot' request.query = input response = request.getresponse() parsedResp = json.loads(response.read()) print parsedResp result = parsedResp.get('result') if result is None: return '' fulfillment = result.get('fulfillment') if fulfillment is None: return '' speech = fulfillment.get('speech') if speech is None: return '' metadata = result.get('metadata') intentName = metadata.get('intentName') if intentName is None: print('Sending message... ') send_text_message(fb_id, speech) elif intentName == 'images.search': print('Sending image... ') searchQuery = result['parameters']['image_name'] if searchQuery == '': return send_text_message(fb_id, 'I could not find any images.') imageUri = fetch_image_by_text(searchQuery) send_image_message(fb_id, imageUri) if __name__ == '__main__': load_dotenv(os.path.join(os.path.dirname(__file__), ".env")) # Messenger API parameters FB_PAGE_TOKEN = os.environ.get('FB_PAGE_TOKEN') # A user secret to verify webhook get request. FB_VERIFY_TOKEN = os.environ.get('FB_VERIFY_TOKEN') #getty api GETTY_TOKEN = os.environ.get('GETTY_KEY') GETTY_URL = 'https://api.gettyimages.com/v3/search/images?fields=id,title,thumb,referral_destinations&sort_order=best&phrase=' # Api.ai token for NLP API_AI_TOKEN = os.environ.get('API_AI_TOKEN') # AI instance ai = apiai.ApiAI(API_AI_TOKEN) # Run Server app.run(host='0.0.0.0', port=8000, reloader=True)
true
8dc1aeb75e88323f7be38163f737458e5e7a21c6
Python
CaesarZhang070497/audios
/wavenet/decoder.py
UTF-8
7,436
2.8125
3
[]
no_license
from itertools import product from typing import List, Optional import torch from torch import nn from torch.nn import functional as F from tqdm import trange from .modules import BlockWiseConv1d, DilatedQueue class WaveNetDecoder(nn.Module): """ WaveNet as described NSynth [http://arxiv.org/abs/1704.01279]. This WaveNet has some differences to the original WaveNet. Namely: · It uses a conditioning on all layers, input always the same conditioning, added to the dilated values (features and gates) as well as after the final skip convolution. · The skip connection does not start at 0 but comes from a 1×1 Convolution from the initial Convolution. """ def __init__(self, n_layers: int = 10, n_blocks: int = 3, width: int = 512, skip_width: int = 256, channels: int = 1, quantization_channels: int = 256, bottleneck_dims: int = 16, kernel_size: int = 3, gen: bool = False): """ :param n_layers: Number of layers in each block :param n_blocks: Number of blocks :param width: The width/size of the hidden layers :param skip_width: The width/size of the skip connections :param channels: Number of input channels :param quantization_channels: Number of final output channels :param bottleneck_dims: Dim/width/size of the conditioning, output of the encoder :param kernel_size: Kernel-size to use :param gen: Is this generation ? """ super(WaveNetDecoder, self).__init__() self.width = width self.n_stages, self.n_layers = n_blocks, n_layers # The compound dilation (input to last layer in each block): self.scale_factor = 2 ** (n_layers - 1) self.receptive_field = 2 ** n_layers * n_blocks self.quantization_channels = quantization_channels self.gen = gen self.kernel_size = kernel_size self.initial_dilation = BlockWiseConv1d(in_channels=channels, out_channels=width, kernel_size=kernel_size, block_size=1, causal=True) self.initial_skip = BlockWiseConv1d(width, skip_width, 1) self.dilations = self._make_conv_list(width, 2 * width, kernel_size, not gen) self.conds = self._make_conv_list(bottleneck_dims, 2 * width, 1, False) self.residuals = self._make_conv_list(width, width, 1, False) self.skips = self._make_conv_list(width, skip_width, 1, False) self.queues = [] for _, l in product(range(self.n_stages), range(self.n_layers)): self.queues.append( DilatedQueue(size=(kernel_size - 1) * 2 ** l + 1, channels=width, dilation=2 ** l) ) self.upsampler = nn.Upsample(scale_factor=self.scale_factor, mode='nearest') self.final_skip = nn.Sequential( nn.ReLU(), BlockWiseConv1d(skip_width, skip_width, 1) ) self.final_cond = BlockWiseConv1d(bottleneck_dims, skip_width, 1) self.final_quant = nn.Sequential( nn.ReLU(), BlockWiseConv1d(skip_width, quantization_channels, 1) ) def _make_conv_list(self, in_channels: int, out_channels: int, kernel_size: int, dilate: bool) -> nn.ModuleList: """ A little helper function for generating lists of Convolutions. Will give list of n_blocks × n_layers number of convolutions. If kernel_size is bigger than one we use the BlockWise Convolution and calculate the block size from the power-2 dilation otherwise we always use the same 1×1-conv1d. :param in_channels: :param out_channels: :param kernel_size: :param dilate: Whether to dilate in each step :return: ModuleList of len self.n_blocks * self.n_layers """ module_list = [] for _, layer in product(range(self.n_stages), range(self.n_layers)): block_size = 2 ** layer if dilate else 1 module_list.append(BlockWiseConv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, block_size=block_size, causal=kernel_size != 1)) return nn.ModuleList(module_list) def forward(self, x: torch.Tensor, embedding: torch.Tensor, conditionals: Optional[List[torch.Tensor]] = None) \ -> torch.Tensor: """ :param x: :param embedding: :param conditionals: (Optional) contains list of all upsampled conditionals. Used for generation. If given do not give an embedding. :return: """ x = self.initial_dilation(x) skip = self.initial_skip(x) conds = conditionals or self.conds layers = (self.dilations, conds, self.residuals, self.skips, self.queues) for l_dilation, cond, l_residual, l_skip, queue in zip(*layers): if self.gen: queue.enqueue(x.squeeze()) dilated = queue.dequeue(num_deq=self.kernel_size) dilated = dilated.unsqueeze(0) else: dilated = x dilated = l_dilation(dilated) if self.gen: dilated = dilated[:, :, 1].unsqueeze(-1) if conditionals: dilated = dilated + cond else: dilated = dilated + self.upsampler(cond(embedding)) filters = torch.sigmoid(dilated[:, :self.width, :]) gates = torch.tanh(dilated[:, self.width:, :]) pre_res = filters * gates x = x + l_residual(pre_res) # Is this correct???? skip = skip + l_skip(pre_res) skip = self.final_skip(skip) if conditionals: skip = skip + conds[-1] else: skip = skip + self.upsampler(self.final_cond(embedding)) quant_skip = self.final_quant(skip) return quant_skip def generate(self, x: torch.Tensor, conditionals, length: int, device: str, temp: float = 1.): for queue in self.queues: queue.reset(device) rem_length = length - x.numel() # Fill queues with initial values for i in trange(x.numel() - 1): inp = x[0, 0, i:i + 1].view(1, 1, 1) _ = self(inp, None, conditionals) generation = torch.zeros(length) for i in trange(rem_length): logits = self(inp, None, conditionals).squeeze() if temp > 0: prob = F.softmax(logits / temp, dim=0) c = torch.multinomial(prob, 1).float() else: c = torch.argmax(logits).float() c = (c - 128.) / 128. generation[i] = c.cpu() inp = c.view(1, 1, 1) return generation
true
3e0da2e2699ec60bf41ebdf072838ac3b4163c8c
Python
DaHuO/Supergraph
/codes/CodeJamCrawler/16_0_1_neat/16_0_1_Kiiwi_a.py
UTF-8
639
3.015625
3
[]
no_license
file = open('A-large.in') out = open('output.in', 'w') T = int(file.readline().strip()) case = 1 for cases in range(T): input_line = file.readline().strip().split(" ") N = int(input_line[0]) digit_list = [] i = 1 while len(digit_list) < 10: n = N*i if n == 0: n = 'INSOMNIA' break n_string = str(n) for digit in n_string: if digit not in digit_list: digit_list.append(digit) if len(digit_list) == 10: break i += 1 out.write("Case #%i: %s\n" % (case, n)) case += 1
true
ac8fc701cc95a5f76ed9de7987ed601e1990e8c7
Python
Sahanave/Millionsongdataset_UCI
/Part-2.py
UTF-8
2,076
2.796875
3
[]
no_license
# coding: utf-8 # In[3]: #import the libraries import pandas from pandas.tools.plotting import scatter_matrix import matplotlib.pyplot as plt from sklearn import cross_validation from statistics import mode from sklearn.linear_model import SGDRegressor from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNet import numpy from scipy import sparse from sklearn.svm import LinearSVR from sklearn import preprocessing from sklearn.metrics import make_scorer from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor #loading the dataset f = open("/Users/sahanavenkatesh/Desktop/Semester-2 US/Machine Learning/Project/raw_data.txt") dataset = numpy.loadtxt(f,delimiter=",") train_dataset=dataset[0:463714,:] test_dataset=dataset[463715:515344,:] X_train=train_dataset[:,1:91] X_trainsub=train_dataset[:,1:13] y_train=train_dataset[:,0] X_test=test_dataset[:,1:91] X_testsub=test_dataset[:,1:13] y_test=test_dataset[:,0] scaler = preprocessing.StandardScaler().fit(train_dataset) train_dataset=scaler.transform(train_dataset) train2_dataset=train_dataset[0:463714,:] cross_val_data=train_dataset[363715:463714,:] X_train=train2_dataset[:,1:91] X_trainsub=train2_dataset[:,1:12] y_train=train2_dataset[:,0] #Model no 5 Extratrees Classifier clf = RandomForestRegressor(n_estimators=20,criterion='mse', max_features='sqrt') #Usually above 10 is good in most cases. clf = clf.fit(X_train, y_train) ################# X_crossval=cross_val_data[:,1:91] y_true=cross_val_data[:,0] y_predict=clf.predict(X_crossval) y_true=1998.3+y_true*10.93#scaling it back to measure the absolute error y_predict=1998.3+y_predict*10.93#scaling it back to measure the absolute error error_rf=mean_absolute_error(y_true, y_predict) sq_error_rf=mean_squared_error(y_true, y_predict) print('values for rf absolute error(years) and mean_squared_error(years)',error_rf) print(sq_error_rf)
true
9fdafc26664d41cfb5a8f1696626363704309cf8
Python
Erick-rick/Python
/Exercicios II/Ex_01.py
UTF-8
144
3.484375
3
[]
no_license
print ('**-- Conta de Luz --**') cl = int(input ('Digite o valor da conta de luz :')) if (cl > 50): print ('Você esta gastando muito!')
true
1565c55ec5fb3e17adb280790dc6237751b082c2
Python
monci07/AI
/Primer bloque/1249134_primerEje.py
UTF-8
578
3.875
4
[]
no_license
#funcion que invierte la lista def rev(lista): reversa = [] #el ciclo empieza en el ultimo elemento de la lista, para ir decrementando mientras sea mayor a -1 for i in range(len(lista)-1, -1, -1): reversa.append(lista[i]) return reversa lista1=[] listaR=[] bandera = 's' #se empiezan a tomar datos mientras que el usuario quiera while bandera == 's': lista1.append(int(input("Introdusca un numero:"))) bandera = input("Quieres ingresar otro? (s/n)") listaR=rev(lista1) print("Lista original: "+ str(lista1)) print("Lista inversa: "+ str(listaR))
true
a6b24b10fc3650e2e65e2c9cf5a500c97fb39fd0
Python
rzwck/c1-form-reader
/read-C1-form.py
UTF-8
20,438
2.546875
3
[]
no_license
import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import warnings warnings.filterwarnings("ignore") import matplotlib.image as mpimg import numpy as np import cv2 from pyimagesearch import * from keras.models import load_model def read_box(window): # input image is black over white background window = window.copy() # image is now white over black background window = cv2.bitwise_not(window) h = window.shape[0] w = window.shape[1] # clean left borders for i in range(5): filled = sum(window[:,i:i+1]!=0) / h if filled > 0.45: window = cv2.line(window, (i,0), (i,h),0,1) # clean top borders for i in range(5): filled = (window[i:i+1,:]!=0).sum() / w if filled > 0.45: window = cv2.line(window, (0,i), (w,i),0,1) # clean right borders for i in range(5): filled = sum(window[:,w-i-1:w-i]!=0) / h if filled > 0.45: window = cv2.line(window,(w-1-i,0),(w-1-i,h),0,1) # clean bottom borders for i in range(5): filled = (window[h-i-1:h-i,:]!=0).sum() / w if filled > 0.45: window = cv2.line(window, (0,h-i-1), (w,h-i-1),0,1) lineThickness = 1 window = cv2.line(window, (0,0), (window.shape[1],0),0, lineThickness) window = cv2.line(window, (0,0), (0,window.shape[0]),0, lineThickness) window = cv2.line(window, (window.shape[1]-1,0), (window.shape[1]-1,window.shape[0]),0, lineThickness) window = cv2.line(window, (0,window.shape[0]-1), (window.shape[1],window.shape[0]-1),0, lineThickness) contours, h = cv2.findContours(window.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) full_area = window.shape[0] * window.shape[1] min_x = window.shape[1] min_y = window.shape[0] max_x = 0 max_y = 0 mask = np.ones(window.shape[:2], dtype="uint8") for cnt in contours: area = cv2.contourArea(cnt) if area <= 2: _ = cv2.drawContours(mask, [cnt], -1, 0, -1) continue rect = cv2.boundingRect(cnt) if (rect[2]*rect[3])/full_area >= 0.95: continue if rect[3] == window.shape[0] or rect[2] == window.shape[1]: _ = cv2.drawContours(mask, [cnt], -1, 0, -1) continue if rect[0] < min_x: min_x = rect[0] if rect[0]+rect[2] > max_x: max_x = rect[0]+rect[2] if rect[1] < min_y: min_y = rect[1] if rect[1]+rect[3] > max_y: max_y = rect[1]+rect[3] digit_region = (min_x,min_y, max_x-min_x,max_y-min_y) max_rect = digit_region window = cv2.bitwise_and(window, window, mask=mask) window = window[max_rect[1]:max_rect[1]+max_rect[3], max_rect[0]:max_rect[0]+max_rect[2]] desired = 56 if window.shape[0] < 28 and window.shape[1] < 28: desired = 28 top = bottom = (desired - window.shape[0]) // 2 left = right = (desired - window.shape[1]) // 2 if top+bottom+window.shape[0] < desired: top += 1 if left+right+window.shape[1] < desired: left += 1 window = cv2.copyMakeBorder(window,top,bottom,left,right,cv2.BORDER_CONSTANT,0) if window.shape != (28,28): window = cv2.resize(window, (28,28), interpolation=cv2.INTER_AREA) return window def adjust_borders(window): win = window.copy() w = win.shape[1] h = win.shape[0] # adjust left left_border = 0 for i in range(10): filled = sum(win[:,i:i+1]!=0) / h if filled > 0.9: left_border = i+1 win = win[:,left_border:] # adjust top top_border = 0 for i in range(10): filled = (win[i:i+1,:]!=0).sum() / w if filled > 0.9: top_border = i+1 win = win[top_border:,:] # adjust right right_border = 0 for i in range(10): filled = sum(win[:,w-i-1:w-i]!=0) / h if filled > 0.9: right_border = i+1 win = win[:,:w-right_border] # adjust bottom bottom_border = 0 for i in range(10): filled = (win[h-i-1:h-i,:]!=0).sum() / w if filled > 0.9: bottom_border = i+1 win = win[:h-bottom_border,:] return (left_border,top_border,right_border,bottom_border) def get_boxes(window, topleft_xy,min_vertical,min_horizontal,minLineLength,maxLineGap,min_w,min_h): pivot_x, pivot_y = topleft_xy window_edges = cv2.Canny(window, 100, 150) lines = cv2.HoughLinesP(window_edges, 1, np.pi / 180, 15, np.array([]),minLineLength, maxLineGap) ys1 = [] ys2 = [] xs = [[],[],[],[]] boxes = [[],[],[]] for line in lines: ln = line[0] # vertical lines if abs(ln[0]-ln[2])<=3 and abs(ln[1]-ln[3]) >= min_vertical: if ln[0] < 0.36*window_edges.shape[1]: xs[0].append(ln[0]) elif ln[0] < 0.6*window_edges.shape[1]: xs[1].append(ln[0]) elif ln[0] < 0.83*window_edges.shape[1]: xs[2].append(ln[0]) elif ln[0] > 0.89*window_edges.shape[1]: xs[3].append(ln[0]) # horizontal lines if abs(ln[1]-ln[3])<=3 and abs(ln[0]-ln[2]) >= min_horizontal: if ln[1] < window_edges.shape[0]/2: ys1.append(ln[1]) else: ys2.append(ln[1]) if not ys1 or not ys2: return boxes y1 = max(ys1) y2 = min(ys2) if xs[0] and xs[1]: boxes[0] = [max(xs[0]), y1, abs(min(xs[1])-max(xs[0])), abs(y2-y1)] if xs[1] and xs[2]: boxes[1] = [max(xs[1]), y1, abs(min(xs[2])-max(xs[1])), abs(y2-y1)] if xs[2] and xs[3]: boxes[2] = [max(xs[2]), y1, abs(min(xs[3])-max(xs[2])), abs(y2-y1)] # validate box width and height for i in range(3): if not boxes[i]: continue # validate box width if boxes[i][2] < min_w-5 or boxes[i][2] > min_w+5: boxes[i][2] = min_w # validate box height if boxes[i][3] < min_h-5 or boxes[i][3] > min_h+5: boxes[i][3] = min_h if not boxes[0]: # missing left box if boxes[1]: boxes[0] = list(boxes[1]) boxes[0][0] = boxes[1][0] - boxes[1][2] elif boxes[2]: boxes[0] = list(boxes[2]) boxes[0][0] = boxes[2][0] - 2*boxes[2][2] if not boxes[1]: # missing middle box if boxes[0]: boxes[1] = list(boxes[0]) boxes[1][0] = boxes[0][0] + boxes[0][2] elif boxes[2]: boxes[1] = list(boxes[2]) boxes[1][0] = boxes[2][0] - boxes[2][2] if not boxes[2]: # missing right box if boxes[1]: boxes[2] = list(boxes[1]) boxes[2][0] = boxes[1][0] + boxes[1][2] elif boxes[0]: boxes[2] = list(boxes[0]) boxes[2][0] = boxes[0][0] + 2*boxes[0][2] # make sure there is no overlap between boxes horizontally if boxes[0] and boxes[1] and boxes[1][0] < boxes[0][0] + boxes[0][2]: boxes[1][0] = boxes[0][0] + boxes[0][2] if boxes[1] and boxes[2] and boxes[2][0] < boxes[1][0] + boxes[1][2]: boxes[2][0] = boxes[1][0] + boxes[1][2] # adjust boxes boundaries for box in boxes: if not box: continue (thresh, box_window_bw) = cv2.threshold(window, 215, 255, cv2.THRESH_BINARY) box_window = box_window_bw[box[1]:box[1]+box[3], box[0]:box[0]+box[2]] box_window = cv2.bitwise_not(box_window) w = box_window.shape[1] h = box_window.shape[0] (left,top,right,bottom) = adjust_borders(box_window) adjusted_box = box_window[top:h-bottom, left:w-right] box[0] += pivot_x+left box[1] += pivot_y+top box[2] = adjusted_box.shape[1] box[3] = adjusted_box.shape[0] return boxes def get_vote_box(window, topleft_xy,min_wh): min_w, min_h = min_wh return get_boxes(window, topleft_xy, 0.5*window.shape[0], 0.5*window.shape[1], 50, 20, min_w,min_h) def get_ballot_box(window, topleft_xy,min_wh): min_w, min_h = min_wh return get_boxes(window, topleft_xy, 0.4*window.shape[0], 0.4*window.shape[1], 20, 10,min_w,min_h) def get_squares(image_bw, min_side, max_side): contours, h = cv2.findContours(image_bw,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) full_area = image_bw.shape[0] * image_bw.shape[1] squares = [] for cnt in contours: area = cv2.contourArea(cnt) rects = cv2.boundingRect(cnt) if area/full_area >= 0.9: continue if rects[2] < min_side or rects[3] < min_side: continue if rects[2] > max_side or rects[3] > max_side: continue if abs(rects[3]-rects[2]) >= 2: continue squares.append(rects) return squares def get_marker_box(window, min_side, max_side): thres = 250 boxes = [] min_box = () min_area = max_side*max_side full_area = window.shape[0] * window.shape[1] * 255 while thres > 100: (thres, window_bw) = cv2.threshold(window, thres, 255, cv2.THRESH_BINARY) boxes = get_squares(window_bw, min_side, max_side) if len(boxes) == 1: box_area = boxes[0][2]*boxes[0][3] occupied = window_bw.sum()/full_area if box_area < min_area and occupied >= 0.75: min_area = box_area min_box = boxes[0] thres -= 5 return min_box def find_markers(image, min_side, max_side): image_grayed = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) marker_w, marker_h = 100,100 h = image.shape[0] w = image.shape[1] markers = {} # top-left marker pivot_x,pivot_y = (0,0) window = image_grayed[pivot_y:marker_h,pivot_x:marker_w] window = cv2.copyMakeBorder(window,1,1,1,1,cv2.BORDER_CONSTANT,value=255) box = get_marker_box(window, min_side,max_side) if box: markers['top-left'] = (pivot_x+box[0],pivot_y+box[1],box[2],box[3]) # bot-left marker pivot_x,pivot_y = 0, h-marker_h window = image_grayed[pivot_y:,pivot_x:marker_w] window = cv2.copyMakeBorder(window,1,1,1,1,cv2.BORDER_CONSTANT,value=255) box = get_marker_box(window, min_side,max_side) if box: markers['bot-left'] = (pivot_x+box[0],pivot_y+box[1],box[2],box[3]) # top-right marker pivot_x,pivot_y = (w-marker_w,0) window = image_grayed[pivot_y:marker_h,pivot_x:] window = cv2.copyMakeBorder(window,1,1,1,1,cv2.BORDER_CONSTANT,value=255) box = get_marker_box(window, min_side,max_side) if box: markers['top-right'] = (pivot_x+box[0],pivot_y+box[1],box[2],box[3]) # bot-right marker pivot_x,pivot_y = (w-marker_w,h-marker_h) window = image_grayed[pivot_y:,pivot_x:] window = cv2.copyMakeBorder(window,1,1,1,1,cv2.BORDER_CONSTANT,value=255) box = get_marker_box(window, min_side,max_side) if box: markers['bot-right'] = (pivot_x+box[0],pivot_y+box[1],box[2],box[3]) if len(markers) == 3: if 'top-left' not in markers: dy = markers['bot-right'][1] - markers['bot-left'][1] dx = markers['bot-right'][0] - markers['bot-left'][0] tl_x = markers['top-right'][0] - dx tl_y = markers['top-right'][1] - dy markers['top-left']=(tl_x,tl_y,28,28) elif 'top-right' not in markers: dy = markers['bot-right'][1] - markers['bot-left'][1] dx = markers['bot-right'][0] - markers['bot-left'][0] tr_x = markers['top-left'][0] + dx tr_y = markers['top-left'][1] + dy markers['top-right']=(tr_x,tr_y,28,28) elif 'bot-left' not in markers: dy = markers['top-right'][1] - markers['top-left'][1] dx = markers['top-right'][0] - markers['top-left'][0] bl_x = markers['bot-right'][0] - dx bl_y = markers['bot-right'][1] - dy markers['bot-left']=(bl_x,bl_y,28,28) elif 'bot-right' not in markers: dy = markers['top-right'][1] - markers['top-left'][1] dx = markers['top-right'][0] - markers['top-left'][0] br_x = markers['bot-left'][0] + dx br_y = markers['bot-left'][1] + dy markers['bot-right']=(br_x,br_y,28,28) return markers def scan_boxes(boxes, boxes_window_bw): count_str = '' confidence = True boxes28 = [] for box in boxes: window = boxes_window_bw[box[1]:box[1]+box[3], box[0]:box[0]+box[2]] window = read_box(window) boxes28.append(window) if window.sum() < 10: char = '0' count_str += '0' continue window = window.reshape((1, 28, 28, 1)) pred = model_hyphen.predict_classes(window) if pred[0] == 1: char = '-' else: pred = modelX.predict_classes(window) if pred[0] == 1: char = 'X' else: pred = model_mnist.predict_classes(window)[0] pred2 = model_dki17.predict_classes(window)[0] if pred != pred2: confidence = False char = str(pred) count_str += char if count_str[2] == 'X': count_str = 'XXX' elif count_str[1] == 'X': count_str = 'X' + count_str[1:] return count_str, confidence, boxes28 def scan_form(img_file, img_file_out): # ### Load Formulir-C1 Scanned Images image = mpimg.imread(img_file) # ### Find 4 box markers markers = find_markers(image, min_side=20, max_side=50) if len(markers) != 4: raise Exception("Unable find corner markers") # ## Perspective Transform based on Markers pts = [markers[x][:2] for x in markers] pts = np.array(pts, dtype = "float32") trans_img = four_point_transform(image, pts) trans_img_grayed = cv2.cvtColor(trans_img, cv2.COLOR_RGB2GRAY) form_height = trans_img.shape[0] form_width = trans_img.shape[1] # ### Get votes boxes pivot_x, pivot_y = round(form_width*0.8),round(form_height*0.14) window = trans_img_grayed[pivot_y:round(form_height*0.29),pivot_x:] min_w = round(form_width*0.04) min_h = round(form_height*0.05) win01 = window[:window.shape[0]//2,:] boxes01 = get_vote_box(win01, (pivot_x,pivot_y), (min_w,min_h)) if not all(boxes01): raise Exception("Unable to find digit positions for votes #01") win02 = window[window.shape[0]//2:,:] boxes02 = get_vote_box(win02, (pivot_x,pivot_y+window.shape[0]//2),(min_w,min_h)) if not all(boxes02): raise Exception("Unable to find digit positions for votes #02") # ### Get ballots boxes pivot_x, pivot_y = round(form_width*0.8),round(form_height*0.37) window = trans_img_grayed[pivot_y:round(form_height*0.55),pivot_x:] min_w = round(form_width*0.041) min_h = round(form_height*0.025) win_valid = window[:round(0.23*window.shape[0]),:] win_invalid = window[round(0.37*window.shape[0]):round(0.65*window.shape[0]),:] win_total = window[round(0.78*window.shape[0]):,:] boxes_valid = get_ballot_box(win_valid,(pivot_x, pivot_y),(min_w,min_h)) if not all(boxes_valid): raise Exception("Unable to find digit positions for valid ballots count") boxes_invalid = get_ballot_box(win_invalid,(pivot_x, round(0.37*window.shape[0])+pivot_y),(min_w,min_h)) if not all(boxes_invalid): raise Exception("Unable to find digit positions for invalid ballots count") boxes_total = get_ballot_box(win_total,(pivot_x, round(0.78*window.shape[0])+pivot_y),(min_w,min_h)) if not all(boxes_total): raise Exception("Unable to find digits for total ballots count") # ### Read hand written digits confidence = {'votes01':True,'votes02':True,'valid_ballots':True,'invalid_ballots':True,'total_ballots':True} validity = {k:False for k in confidence} clone = trans_img.copy() clone_grayed = cv2.cvtColor(clone, cv2.COLOR_RGB2GRAY) (thresh, clone_bw) = cv2.threshold(clone_grayed, 215, 255, cv2.THRESH_BINARY) suara01, confidence['votes01'], digits_01 = scan_boxes(boxes01, clone_bw.copy()) suara02, confidence['votes02'], digits_02 = scan_boxes(boxes02, clone_bw.copy()) suara_sah,confidence['valid_ballots'], digits_valid = scan_boxes(boxes_valid, clone_bw.copy()) suara_tidak_sah,confidence['invalid_ballots'], digits_invalid = scan_boxes(boxes_invalid, clone_bw.copy()) total_suara,confidence['total_ballots'], digits_total = scan_boxes(boxes_total, clone_bw.copy()) # ## Validation and correction try: votes01 = int(suara01.replace('X','0')) votes02 = int(suara02.replace('X','0')) nb_valid = int(suara_sah.replace('X','0')) nb_invalid = int(suara_tidak_sah.replace('X','0')) nb_total = int(total_suara.replace('X','0')) except: raise Exception("Unable to read form: %s" % img_file) if nb_valid == votes01 + votes02: validity['votes01'] = validity['votes02'] = validity['valid_ballots'] = True if nb_total == nb_invalid + nb_valid: validity['valid_ballots'] = validity['invalid_ballots'] = validity['total_ballots'] = True if nb_total == votes01 + votes02 - nb_invalid: validity['votes01'] = validity['votes02'] = validity['invalid_ballots'] = validity['total_ballots'] = True valid_conf = {x:validity[x] or confidence[x] for x in validity} if not valid_conf['votes01'] and valid_conf['votes02'] and valid_conf['valid_ballots']: votes01 = nb_valid-votes02 valid_conf['votes01'] = True if not valid_conf['votes02'] and valid_conf['votes01'] and valid_conf['valid_ballots']: votes02 = nb_valid - votes01 valid_conf['votes02'] = True # one value still invalid or low confidence if sum(valid_conf.values())==4: if not valid_conf['valid_ballots']: nb_valid = votes01 + votes02 valid_conf['valid_ballots'] = True if not valid_conf['invalid_ballots']: nb_invalid = nb_total - nb_valid valid_conf['invalid_ballots'] = True if not valid_conf['total_ballots']: nb_total = nb_valid + nb_invalid valid_conf['total_ballots'] = True # ### Draw CNN 28x28 digits digit_box = [(digits_01,boxes01),(digits_02,boxes02),(digits_valid,boxes_valid),(digits_invalid,boxes_invalid),(digits_total,boxes_total)] for digits, boxes in digit_box: width = boxes[2][0]+boxes[2][2] - boxes[0][0] for j, box in enumerate(boxes): s_img = digits[j] x_offset=box[0] - width y_offset=box[1]-45 clone_grayed[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img # convert back to RGB clone = cv2.cvtColor(clone_grayed,cv2.COLOR_GRAY2RGB) # ### Draw boxes for box in (boxes01+boxes02+boxes_valid+boxes_invalid+boxes_total): _ = cv2.rectangle(clone, (box[0], box[1]), (box[0] + box[2], box[1] + box[3]), (0,255,0), 2) # ## Draw numbers count_box = [(votes01,boxes01),(votes02,boxes02),(nb_valid,boxes_valid),(nb_invalid,boxes_invalid),(nb_total,boxes_total)] for count, boxes in count_box: count_str = str(count).zfill(3) for j, box in enumerate(boxes): char = count_str[j] _ = cv2.rectangle(clone, (box[0],box[1]-45), (box[0]+30,box[1]-5), (0, 0, 255), -1) _ = cv2.putText(clone,char,(box[0],box[1]-10), cv2.FONT_HERSHEY_PLAIN,3,(255,255,255),2) # ## Save image mpimg.imsave(img_file_out,clone) return {"01": votes01, "02":votes02, "valid":nb_valid, "invalid":nb_invalid, "total":nb_total} import glob, os if __name__ == "__main__": # ### Load Classifiers model_dki17 = load_model('classifiers/digits_recognizer.h5') model_mnist = load_model('classifiers/mnist_classifier.h5') model_hyphen = load_model('classifiers/hyphen_classifier.h5') modelX = load_model('classifiers/X_classifier.h5') files = glob.glob('test_images/test*.jpg') for file in files: if '_out' in file: continue nameonly = os.path.splitext(file)[0] try: results = scan_form("%s.jpg" % nameonly, "%s_out.jpg" % nameonly) print(file, results) except Exception as e: print("Form %s is unreadable: %s" % (file, e))
true
48bd6197674262811f0e2c7a3f639aa72293b41e
Python
6564200/Channel4-TV-Prog
/doctoxml.py
UTF-8
3,307
3.015625
3
[]
no_license
# -*- coding: utf-8 -*- import os import sys import re from datetime import datetime import xml.etree.cElementTree as ET month = (('января', '1'), ('февраля', '2'), ('марта', '3'), ('апреля', '4'), ('мая', '5'), ('июня', '6'), ('июля', '7'), ('августа', '8'), ('сентября', '9'), ('октября', '10'), ('ноября', '11'), ('декабря', '12')) def main(): if len(sys.argv) < 2: print("NO Argument! DOC file!") sys.exit() print("Process DOC to XML ", sys.argv[1]) doc_file = sys.argv[1] result = os.system('antiword -m cp1251.txt ' + doc_file + ' > ' + doc_file[:-3] + 'txt') text = open(doc_file[:-3] + 'txt').readlines() print("---------------------------------------------------------") tcls = [] text = [line.rstrip() for line in text] for t in text: if (len(t.strip().strip(".").strip()) > 1): ## ----------- убираем пустое и лишнее tcls.append(t.strip().strip(".").strip()) textcls = [] timeRe = re.compile('\d\d\\.\d\d') # dayRe = re.compile('\d\s\w+,\s\d+\s\w+') # 1 Понедельник, 27 января ageRe = re.compile('\(\d*\+\)') # (16+) (6+) ## -------------- убираем переносы i = 0 for t in tcls: time = timeRe.findall(t) age = ageRe.findall(t) if (len(time) > 0 and len(age) == 0): tcls[i] = tcls[i] + tcls[i+1] tcls.pop(i+1) elif (len(time) == 0 and len(age) == 0): day = re.findall('воскресенье,|суббота,|пятница,|понедельник,|вторник,|среда,|четверг,', str(t).lower()) if (len(day) == 0): tcls[i] = '' i += 1 tcls = [t for t in tcls if t] tree = ET.Element("TVPrograms") ## -------------------------------- prsing for t in tcls: day = re.findall('воскресенье,|суббота,|пятница,|понедельник,|вторник,|среда,|четверг,', str(t).lower()) if (len(day) > 0): ### ---------------------- разбираем дату tma = t[t.find(",")+1:].strip() for old, new in month: tma = tma.replace(old, new) tma = tma + " " + datetime.now().strftime("%Y") date = datetime.strptime(tma, "%d %m %Y" ).strftime("%d-%m-%Y") print(date) TVDay = ET.SubElement(tree, "TVDay") ET.SubElement(TVDay, "Date").text = datetime.strptime(tma, "%d %m %Y" ).strftime("%d-%m-%Y") TVList = ET.SubElement(TVDay, "TVList") else: ### --------------- разбираем строки time = timeRe.findall(t) age = ageRe.findall(t) prg = str(t)[str(t).find("«"):str(t).rfind("(")] #print(t) print(time, age, prg) TVProgram = ET.SubElement(TVList, "TVProgram") ET.SubElement(TVProgram, "Time").text = str(time) ET.SubElement(TVProgram, "ProgramName").text = str(prg) ET.SubElement(TVProgram, "ProgramAge").text = str(age) root = ET.ElementTree(tree) root.write("doc" + (datetime.now()).strftime('%m_%d_%Y') + ".xml", encoding="utf-8") if __name__ == "__main__": main()
true
7425bb4c2c7077b8037d080c073c559834c4e1be
Python
johntomyang/stockopr
/selector/plugin/dynamical_system.py
UTF-8
1,629
2.6875
3
[]
no_license
# -*- coding: utf-8 -*- import pandas as pd from util.macd import macd from util.macd import ema def function(ema_, macd_): if ema_ and macd_: return 1 if not ema_ and not macd_: return -1 return 0 def dynamical_system(quote, n=13): ema13 = ema(quote['close'], n)['ema'] # ema26 = ema(quote['close'], 26) # print(ema13.iloc[-1]) # print(ema13.values[-1]) histogram = pd.Series(macd(quote['close'])[2]) ema13_shift = ema13.shift(periods=1) dlxt_ema = ema13 > ema13_shift quote_copy = quote.copy() quote_copy.loc[:, 'dlxt_ema13'] = dlxt_ema.values quote_copy.loc[:, 'macd'] = histogram histogram_shift = histogram.shift(periods=1) dlxt_macd = histogram > histogram_shift quote_copy.loc[:, 'dlxt_macd'] = dlxt_macd.values # df.city.apply(lambda x: 1 if 'ing' in x else 0) # quote_copy_copy = quote_copy.copy() quote_copy.loc[:, 'dlxt'] = quote_copy.apply(lambda x: function(x.dlxt_ema13, x.dlxt_macd), axis=1) return quote_copy # ema_ = ema13.iloc[-1] > ema13.iloc[-2] # macd_ = histogram[-1] > histogram[-2] # if ema_ and macd_: # return 1 # # if not ema_ and not macd_: # return -1 # # return 0 def dynamical_system_green(quote): quote = dynamical_system(quote) return True if quote['dlxt'][-1] == 1 else False def dynamical_system_red(quote): quote = dynamical_system(quote) return True if quote['dlxt'][-1] == -1 else False def dynamical_system_blue(quote): quote = dynamical_system(quote) return True if quote['dlxt'][-1] == 0 else False
true
081995cb84d92813f5117283b373d3446242d212
Python
ylee22/labeler_project
/media/post_file_upload.py
UTF-8
338
2.765625
3
[ "MIT" ]
permissive
import requests import os def upload_file(filename): url = 'http://localhost:8000/images/' local_path = os.getcwd() with open(filename, 'rb') as file: file_data = {'file': (filename, file), 'file_name': filename} resp = requests.post(url, files = file_data) print(resp) upload_file('HUNT0133.jpg')
true
fbf698d362102c1e1c27c3128f7080c27c068b95
Python
jfriedly/foreign-currency
/create_country.py
UTF-8
3,634
3.171875
3
[]
no_license
#!/usr/bin/env python import argparse import os import sys import constants import models def parse_args(): description = ("Add a new country to the collection, creating all the " "metadata.") argparser = argparse.ArgumentParser(description=description) argparser.add_argument("short_name", type=str, nargs='?', default='', help="Short name of country") args = argparser.parse_args() return args def parse_bool(instring): instring = instring.lower() if 'y' in instring and 'n' not in instring: return True if 'n' in instring and not 'y' in instring: return False print "Could not parse %s into a boolean" % instring prompt = "Try again, or press Ctrl-C to exit [y|n]: " return parse_bool(raw_input(prompt)) def create_subdivision(big_unit, small_unit, value): """ Create a subdivision dict for totalling For more info on subdivision dicts, see the module docs for ``total``, but the tl;dr is there are <value> <small_units> in a <big_unit>. Ex: There are <100> <cents> in a <dollar>. """ division = { big_unit: { "subunit": small_unit, "value": value } } return division def read_denomination(): name = raw_input("Denomination names (most recent first): ") if not name: return None code = raw_input(" ISO-4217 code: ").upper() obsolete = parse_bool(raw_input(" Obsolete? [y|n] ")) subunits = [] while True: subunit = raw_input(" Subunits (largest first): ") if not subunit: break subunits.append(subunit) smallest_unit = subunits[-1] divisions = create_subdivision(smallest_unit, smallest_unit, 1) subunits.reverse() for i, unit in enumerate(subunits[:-1]): bigger_unit = subunits[i+1] value = int(raw_input(" How many %s in %s? " % (unit, bigger_unit))) divisions.update(create_subdivision(bigger_unit, unit, value)) subunits.reverse() return dict(name=name, code=code, subunits=subunits, divisions=divisions, obsolete=obsolete) def read_input(short_name): long_name = short_name.replace('-', ' ').title() long_name_prompt = "Country name (long) [%s]: " % long_name long_name = raw_input(long_name_prompt) or long_name denominations = [] while True: denomination = read_denomination() if not denomination: break denominations.append(denomination) if denominations[0]['obsolete']: confirm_prompt = ("Newest denomination is obsolete. Is this " "correct? [y|n] ") confirm = parse_bool(raw_input(confirm_prompt)) if not confirm: denominations[0]['obsolete'] = False country = models.Country.from_dict(dict(short_name=short_name, long_name=long_name, denominations=denominations, inventory=[])) country.save() def main(): args = parse_args() short_name = args.short_name or raw_input("Country name (short): ") path = os.path.join(constants.COUNTRY_DIR, short_name + ".json") if os.path.exists(path): print "Country %s already exists!" % short_name sys.exit(1) read_input(short_name) if __name__ == "__main__": main()
true
4768a3d3ce5ce6c08d7de73e4593fa311aef9c9f
Python
EmilyStohl/ProjectEuler
/21-40/P27.py
UTF-8
574
3.171875
3
[]
no_license
# Project Euler - Problem 27 # 1/10/17 import math def TestPrime(n): Top = math.ceil(math.sqrt(n)) for i in range(2,int(Top)+1): if n%i == 0: return False return True MaxN = 0 MaxA = -2000 MaxB = -2000 for a in range(-999, 1000): for b in range(-1000, 1001): Stop = False n = 0 while Stop == False: TestNum = n**2+(a*n)+(b) if TestNum < 2: Stop = True else: if TestPrime(TestNum) == True: if n > MaxN: MaxN = n MaxA = a MaxB = b else: Stop = True n = n+1 print MaxA*MaxB print MaxN print MaxA, MaxB
true
201aab77ddc33788e59c7c02938d5aadb555fbc4
Python
clemigg/INF8808_Projet
/Source/helper.py
UTF-8
2,284
2.84375
3
[]
no_license
''' This file contains some helper functions to help display the map. ''' import plotly.graph_objects as go def adjust_map_style(fig): ''' Sets the mapbox style of the map. Args: fig: The current figure Returns: fig: The updated figure ''' fig.update_layout(mapbox_style='white-bg') return fig def adjust_map_sizing(fig): ''' Sets the sizing of the map. Args: fig: The current figure Returns: fig: The updated figure ''' fig.update_layout(mapbox_center=go.layout.mapbox.Center( lat=45.569260, lon=-73.707014)) fig.update_layout(mapbox_zoom=9.5) fig.update_layout(height=725, width=1000) fig.update_layout(margin_l=0) return fig def adjust_map_info(fig): ''' Adjusts the various info displayed on the map. Args: fig: The current figure Returns: fig: The updated figure ''' fig.update_layout(legend_x=0.055, legend_y=0.95) fig.update_layout(title_xref='paper', title_y=0.5) title = 'Explorez les rues pietonnes de Montréal' info = 'Cliquez sur un marqueur pour plus d\'information.' fig.update_layout(title=title, title_font_family='Oswald', title_font_color='black', title_font_size=28) fig.update_layout(annotations=[dict(xref='paper', yref='paper', x=0.055, y=1.08, showarrow=False, text=info, font_family='Open Sans Condensed', font_color='black', font_size=18)]) fig.update_layout(legend_title_text='Légende', legend_title_font_family='Open Sans Condensed', legend_title_font_color='black', legend_title_font_size=16, legend_font_family='Open Sans Condensed', legend_font_color='black', legend_font_size=16) return fig
true
a6818c5b873f3fa9173b9ec52d50bf028ef3d225
Python
azakimi123/Python
/flower.py
UTF-8
195
3.703125
4
[]
no_license
import turtle import math bob = turtle.Turtle() bob.color("red", "yellow") bob.speed(10) bob.begin_fill() for i in range(50): bob.forward(200) bob.left(168.5) bob.end_fill() turtle.done()
true
3acd8780955897049b51d620742901cff47b0785
Python
dennisnderitu254/CodeCademy-Py
/chapter_08_Taking_a_Vacation/16_Paying_Up.py
UTF-8
333
3.546875
4
[]
no_license
def hotel_cost(nights): return nights * 140 bill = hotel_cost(5) def add_monthly_interest(balance): return balance * (1 + (0.15 / 12)) def make_payment(payment, balance): balance = add_monthly_interest(balance - payment) print "You still owe:", balance return balance print make_payment(bill / 2 + 100, bill)
true
7cd3f94c63144251bb32bcde0422a2b7534492db
Python
kojh0111/Data-Structure-and-Algorithms
/10_Binary_Search/1300.py
UTF-8
455
3.5625
4
[]
no_license
""" - K번째 수 이분탐색 문제/ 각 열별로 mid보다 작은 수 갯수를 파악하여 k보다 많아지면 답 출력 """ import sys input = sys.stdin.readline N = int(input()) k = int(input()) left = 1 right = k while left <= right: mid = (left + right) // 2 cnt = 0 for i in range(1, N + 1): cnt += min(mid // i, N) if cnt < k: left = mid + 1 else: ans = mid right = mid - 1 print(ans)
true
a567d445fd5560ec97bef9dffed71d95bedb404d
Python
ElChurco/Introprogramacion
/Grafica/Clase_2.py
UTF-8
500
3.640625
4
[]
no_license
Ax = int(input("Ingrese un numero para Ax: ")) Ay = int(input("Ingrese un numero para Ay: ")) Bx = int(input("Ingrese un numero para Bx: ")) By = int(input("Ingrese un numero para By: ")) Cx = int(input("Ingrese un numero para Cx: ")) Cy = int(input("Ingrese un numero para Cy: ")) base = Cx - Ax altura = By - Ay import math hipo = math.sqrt((altura*altura)+(base*base)) perimetro = base + altura + hipo area = base * altura / 2 print (f"El perimetro es {perimetro}") print (f"El area es {area}")
true
dcaf28137a2d41d14feab9257c00934766b683ae
Python
5l1v3r1/mr_london
/app/model/textgen.py
UTF-8
5,514
2.953125
3
[]
no_license
import pickle import numpy as np class LiteTextGen: def __init__(self, fn=None): self.maxlen = 20 self.generated = '' self.primer = "I want to have a big" self.LSTM = LiteLSTM() if fn is None: fn = "app/model/lstm_weights.pkl" self.load_model(fn) def load_model(self, fn): [weights, meta] = pickle.load(open(fn, 'rb'), encoding='latin1') self.LSTM.load_weights(weights) self.char_indices = meta['char_indices'] self.indices_char = meta['indices_char'] def clean_slate(): self.generated = '' self.primer = "This primer has 20 c" def predict(self, primer = None, length = 1, stream=True, diversity = 0.2): if primer is None or stream: pass elif type(primer) is not str: raise ValueError("Primer must be a string") else: self.primer = ' ' * (self.maxlen - len(primer)) + primer self.primer = self.primer[-20:] assert 1 <= length <= 1000, "Length of string to generate must be between 1 and 1000" self.primer = self.primer.lower() for i in range(length): X = self.vectorize_primer() next_index = self.LSTM.predict_i(X, diversity) next_char = self.indices_char[next_index] self.generated += next_char self.primer = self.primer[1:] + next_char if stream: return next_char self.generated = self.generated txt = self.generated.split('\n') return txt def vectorize_primer(self): X = np.zeros((1, self.maxlen, len(self.char_indices))) for t, char in enumerate(self.primer): X[0, t, self.char_indices[char] ] = 1. return X class LiteLSTM: def __init__(self): self.layers = [] def load_weights(self, weights): assert not self.layers, "Weights can only be loaded once!" for k in range(len(weights.keys())): self.layers.append(weights['layer_{}'.format(k)]) def predict_i(self, X, diversity): assert not not self.layers, "Weights must be loaded before making a prediction!" h = self.lstm_layer(X, layer_i=0, seq=True) ; X = h h = self.dropout(X, .2) ; X = h h = self.lstm_layer(X, layer_i = 2, seq=False) ; X = h h = self.dropout(X, .2) ; X = h h = self.dense(X, layer_i = 4) ; X = h h = self.softmax_2D(X) ; X = h[0] #convert it from a [n,1] tensor to a [n] vector i = self.sample(X, diversity) return i def predict_classes(self, X): assert not not self.layers, "Weights must be loaded before making a prediction!" h = self.lstm_layer(X, layer_i=0, seq=False) ; X = h h = self.repeat_vector(X, 4) ; X = h h = self.lstm_layer(X, layer_i=2, seq=True) ; X = h h = self.timedist_dense(X, layer_i=3) ; X = h h = self.softmax_2D(X) ; X = h preds = self.classify(X) ; X = h return preds def lstm_layer(self, X, layer_i=0, seq=False): X = np.flipud(np.rot90(X)) #load weights w = self.layers[layer_i] W_i = w["W_i"] ; U_i = w["U_i"] ; b_i = w["b_i"] #[n,m] ; [m,m] ; [m] W_f = w["W_f"] ; U_f = w["U_f"] ; b_f = w["b_f"] W_c = w["W_c"] ; U_c = w["U_c"] ; b_c = w["b_c"] W_o = w["W_o"] ; U_o = w["U_o"] ; b_o = w["b_o"] #create each of the x input vectors for the LSTM xi = np.dot(X, W_i) + b_i xf = np.dot(X, W_f) + b_f xc = np.dot(X, W_c) + b_c xo = np.dot(X, W_o) + b_o hprev = np.zeros((1, len(b_i))) #[1,m] Cprev = np.zeros((1, len(b_i))) #[1,m] [output, memory] = self.nsteps(xi, xf, xo, xc, hprev, Cprev, U_i, U_f, U_o, U_c) if seq: return np.flipud(np.rot90(output)) output = np.reshape(output[-1,:,:],(1,output.shape[1], output.shape[2])) return np.flipud(np.rot90(output)) def nsteps(self, xi, xf, xo, xc, hprev, Cprev, U_i, U_f, U_o, U_c): nsteps = xi.shape[0] # should be n long output = np.zeros_like(xi) # [n,1,m] memory = np.zeros_like(xi) # [n,1,m] for t in range(nsteps): xi_t = xi[t,:,:] ; xf_t = xf[t,:,:] ; xc_t = xc[t,:,:] ; xo_t = xo[t,:,:] # [1,m] for all i_t = self.hard_sigmoid(xi_t + np.dot(hprev, U_i)) #[1,m] + [m]*[m,m] -> [1,m] f_t = self.hard_sigmoid(xf_t + np.dot(hprev, U_f)) #[1,m] + [m]*[m,m] -> [1,m] o_t = self.hard_sigmoid(xo_t + np.dot(hprev, U_o)) #[1,m] + [m]*[m,m] -> [1,m] c_t = f_t*Cprev + i_t * np.tanh(xc_t + np.dot(hprev, U_c)) #[1,m]*[m] + [1,m] * [1,m] -> [1,m] h_t = o_t * np.tanh(c_t) #[1,m]*[1,m] (elementwise) output[t,:,:] = h_t ; memory[t,:,:] = c_t hprev = h_t # [1,m] Cprev = c_t # [1,m] return [output, memory] def dense(self, X, layer_i=0): w = self.layers[layer_i] W = w["W_i"] b = w["U_i"] output = np.dot(X, W) + b return output def timedist_dense(self, X, layer_i=0): w = self.layers[layer_i] W = w["W_i"] b = w["U_i"] output = np.tanh(np.dot(np.flipud(np.rot90(X)), W) + b) return np.flipud(np.rot90(output)) @staticmethod def sigmoid(x): return 1.0/(1.0+np.exp(-x)) @staticmethod def hard_sigmoid(x): slope = 0.2 shift = 0.5 x = (x * slope) + shift x = np.clip(x, 0, 1) return x @staticmethod def repeat_vector(X, n): y = np.ones((X.shape[0], n, X.shape[2])) * X return y @staticmethod def softmax_2D(X): w = X[0,:,:] w = np.array(w) maxes = np.amax(w, axis=1) maxes = maxes.reshape(maxes.shape[0], 1) e = np.exp(w - maxes) dist = e / np.sum(e, axis=1, keepdims=True) return dist @staticmethod def classify(X): return X.argmax(axis=-1) @staticmethod def sample(X, temperature=1.0): # helper function to sample an index from a probability array X = np.log(X) / temperature X = np.exp(X) / np.sum(np.exp(X)) return np.argmax(np.random.multinomial(1, X, 1)) @staticmethod def dropout(X, p): retain_prob = 1. - p X *= retain_prob return X
true
36d59ac3249af68b210cf0a0cea088b7a6ca6dff
Python
optimusMY/PYTHON
/TkinterExamples/loginpage.py
UTF-8
2,033
3.109375
3
[]
no_license
from tkinter import * # note that module name has changed from Tkinter in Python 2 to tkinter in Python 3 from tkinter import messagebox import tkinter # creating a window wnd = Tk() wnd.geometry("300x100") label_1 = Label(wnd, text="Name") label_2 = Label(wnd, text="Password") entry_1 = Entry(wnd) entry_2 = Entry(wnd) label_1.grid(row=0, sticky=E) label_2.grid(row=1, sticky=E) entry_1.grid(row=0, column=1) entry_2.grid(row=1, column=1) '''CLASSIC WAY TO ADD AN ACTION TO BUTTON AND CHECKBUTTON USING COMMAND PARAM def ChkBtn_CallBack(): msg = messagebox.showinfo("Welcome", "You will be kept logged in!") checkButton1 = Checkbutton(wnd, text="Keep me logged in", command=ChkBtn_CallBack) checkButton1.grid(columnspan=2) def But_RegisterCallBack(): msg = messagebox.showinfo("Welcome", "Registry Successful") But_register = Button(wnd, text="Register", command=But_RegisterCallBack) But_register.grid(columnspan=3) ''' '''NOW WE CAN USE EVENT BINDING WAY TO ADD AN ACTION TO BUTTON AND THE OTHER WIDGETS EVENT IS USEFUL WHEN YOU BIND A WIDGET TO IT ''' def ChkBtn_CallBack(event): msg = messagebox.showinfo("Welcome", "You will be kept logged in!") checkButton1 = Checkbutton(wnd, text="Keep me logged in") checkButton1.bind("<Button-2>", ChkBtn_CallBack) # designated to wheelbuttonclick event checkButton1.grid(row=2, columnspan=2) def But_LoginCallBack(): msg = messagebox.showinfo("Welcome", "Login Successful") But_login = Button(wnd, text=" Login ", command=But_LoginCallBack) But_login.grid(row=3, column=0) def But_RegisterCallBack(event): msg = messagebox.showinfo("Welcome", "Registry Successful") But_register = Button(wnd, text="Register") But_register.bind("<Button-1>", But_RegisterCallBack) # designated to leftclick event But_register.grid(row=3, column=1) But_passMiss = Button(wnd, text="Pass Miss", command=wnd.quit) But_passMiss.grid(row=3, column=2) wnd.mainloop()
true
7f91122ca1353c7938198324b9b633232268541c
Python
LauraBritoMedina/EyeTracking_DimRed_SmartFlat
/Random_Forest.py
UTF-8
5,173
3.109375
3
[]
no_license
""" =================================================== Random Forest =================================================== Applies random forest to the data in path: Inputs: path: Folder containing features a : Index of the data to preprocess. It can be: 0 = Initial Calibration 1 = Final Calibration 2 = Initial Fixation 3 = Final Fixation 4 = Mixing 5 = Reading tp : Percentage of the testing set over the data c : Penalty of the SVM N : Number of most important features to process Outputs: svmt : Training time of the SVM atr : Training accuracy ate : Testing accuracy """ #print (__doc__) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import input_data_txt from time import time def exec_(a, tp, c, N, path, clf): # Obtain the data from the tables _data_, _labels_, features_ = input_data_txt.tune(path) X=_data_[a] y = _labels_[a] features = features_[a] # Number of samples n_samples = len(X) # Number of features n_features = len(features) # the label to predict is 0 or 1 by now #n_classes = len(y.unique()) #print ("Total dataset size:") #print ("n_samples: %d" % n_samples) #print ("n_features: %d" % n_features) #print ("n_classes: %d" % n_classes) ############################################################################### # Split into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=tp) ############################################################################### ######################################## # Standarizing the features # ######################################## from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = pd.DataFrame(sc.fit_transform(X_train), columns=features) X_test = pd.DataFrame(sc.transform(X_test), columns=features) ######################################## # Applying Random Forest # ######################################## feat_labels = features forest = RandomForestClassifier(n_estimators=10000, random_state=10, n_jobs=-1) forest.fit(X_train,y_train) importances = forest.feature_importances_ indices = np.argsort(importances)[::-1] #for f in range(X_train.shape[1]): # print("%2d) %-*s %f" % (f + 1, 30,feat_labels[f],importances[indices[f]]*100)) plt.title('Feature Relative Importance') plt.bar(range(X_train.shape[1]), importances[indices], color='grey', align='center') plt.xticks(range(X_train.shape[1]), feat_labels, rotation=90) plt.xlim([-1, X_train.shape[1]]) plt.tight_layout() plt.show() ######################################## # Classification # ######################################## if clf == 'svm': ############################################### # Training SVM with N most important features # ############################################### from sklearn.svm import SVC from sklearn.metrics import accuracy_score idx=indices[:N] #Index svm = SVC(kernel='rbf', C=c) t0 = time() svm.fit(X_train.iloc[:, idx], y_train) svmt=time() - t0 #print ("SVM Training done in %0.9fs" % svmt) y_pred=svm.predict(X_train.iloc[:,idx]) #print('Training set:') atr=accuracy_score(y_train, y_pred) #print('Accuracy of', N, 'features: %.2f' % atr) y_pred=svm.predict(X_test.iloc[:,idx]) #print('Testing set:') ate=accuracy_score(y_test, y_pred) #print('Accuracy of', N, 'features: %.2f' % ate) return svmt, atr, ate elif clf == 'lda': ############################################### # Training SVM with N most important features # ############################################### from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.metrics import accuracy_score idx=indices[:N] #Index lda = LinearDiscriminantAnalysis(n_components=2) t0 = time() lda.fit_transform(X_train.iloc[:, idx], y_train) svmt=time() - t0 #print ("SVM Training done in %0.9fs" % svmt) y_pred=lda.predict(X_train.iloc[:,idx]) #print('Training set:') atr=accuracy_score(y_train, y_pred) #print('Accuracy of', N, 'features: %.2f' % atr) y_pred=lda.predict(X_test.iloc[:,idx]) #print('Testing set:') ate=accuracy_score(y_test, y_pred) #print('Accuracy of', N, 'features: %.2f' % ate) return svmt, atr, ate
true
3cfb6073d8bf213c167ba27752288f8b5ba10c4d
Python
hemanthgr19/practise
/sumof arr.py
UTF-8
116
3.078125
3
[]
no_license
def _sum(arr,n): return (sum(arr)) arr = [] arr = [12,3,56,23,78,42] n = len(arr) ans = _sum(arr,n) print(ans)
true
e17be6e38065793ee1c5769ddffcfa3961a57a5c
Python
lacriment/Jordamach
/jordamach/app.py
UTF-8
4,363
2.890625
3
[ "MIT" ]
permissive
import sys from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QMainWindow, QMessageBox, QTableWidgetItem import numpy as np import matplotlib.pyplot as plt import seaborn as sns; sns.set(color_codes=True) from ui.design import Ui_MainWindow from linear_regression import Regrezio class App(QMainWindow): def __init__(self): super(App, self).__init__() # Set up the user interface from Designer. self.ui = Ui_MainWindow() self.ui.setupUi(self) self.model_type = 'lin-lin' self.r = Regrezio(model=self.model_type) self.modelled = False self.msg = QMessageBox() self.ui.tableWidget.setColumnCount(6) self.ui.tableWidget.setHorizontalHeaderLabels(['Y', 'X1', 'X2', 'X3', 'X4', 'X5']) self.ui.tableWidget.setRowCount(50) # Connect up the buttons. self.ui.btn_fitModel.clicked.connect(self.fit_model) self.ui.btn_plot.clicked.connect(self.plot_model) self.ui.btn_clear.clicked.connect(self.clear_table) self.ui.btn_predict.clicked.connect(self.predict_value) self.ui.btn_exit.clicked.connect(QtCore.QCoreApplication.instance().quit) self.ui.cb_funcType.currentIndexChanged.connect(self.set_model_type) def set_model_type(self): self.model_type = self.ui.cb_funcType.currentText().lower() print(model_type) self.r = Regrezio(model=self.model_type) def keyPressEvent(self, event): row = self.ui.tableWidget.currentRow() col = self.ui.tableWidget.currentColumn() if event.key() == QtCore.Qt.Key_Backspace or event.key() == QtCore.Qt.Key_Delete: self.ui.tableWidget.setItem(row, col, QTableWidgetItem("")) def fit_model(self): row_count = 50 y = [] x = [] for row in range(0, row_count): a = self.ui.tableWidget.item(row, 0) if a is not None: try: if a.text() != "": y.append(float(a.text())) except ValueError: self.ui.statusBar.showMessage("Please enter numerical data into the table!") b = self.ui.tableWidget.item(row, 1) if b is not None: try: if b.text() != "": x.append(float(b.text())) except ValueError: self.ui.statusBar.showMessage("Please enter numerical data into the table!") y = np.array([[i] for i in y]) x = np.array([[i] for i in x]) if len(x) > 1 and len(y) > 1 and len(y) == len(x): self.r.fit(x, y) self.r.predict(self.r.x) self.ui.lbl_model.\ setText("ŷ = %s + %s * X1" % (round(float(self.r.intercept), 4), round(float(self.r.coefficients[0]), 4))) self.ui.lbl_rsqr.setText(str(round(self.r.score, 4))) self.modelled = True self.ui.statusBar.showMessage('Successfully accomplished.') else: self.modelled = False self.ui.statusBar.showMessage("Every column should have same number of data!") def plot_model(self): if self.modelled: y = np.array([i[0] for i in self.r.y]) x = np.array([i[0] for i in self.r.x]) ax = sns.regplot(x=x, y=y, color="g") plt.show() else: self.ui.statusBar.showMessage("Model must have been fit to make a plot.") def predict_value(self): if self.modelled: val = float(self.ui.txt_predict.text()) predicted_val = self.r.y_func(val) self.ui.lbl_predict.setText(str(round(float(predicted_val), 4))) else: self.ui.statusBar.showMessage("Model must have been fit to make a prediction.") def clear_table(self): self.ui.tableWidget.clear() self.ui.tableWidget.setColumnCount(6) self.ui.tableWidget.setHorizontalHeaderLabels(['Y', 'X1', 'X2', 'X3', 'X4', 'X5']) self.ui.tableWidget.setRowCount(50) self.ui.lbl_model.setText("ŷ = ") self.ui.lbl_predict.clear() self.ui.lbl_rsqr.clear() def main(): app = QApplication(sys.argv) form = App() form.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
true
05c8ec32ce255a6ef1b0de6585100eb8eb2e7657
Python
Keimoshi/Learing
/9.类/9-3.py
UTF-8
1,117
3.828125
4
[]
no_license
class User(): def __init__(self, first_name, last_name, age, skill): self.first_name = first_name self.last_name = last_name self.age = age self.skill = skill self.login_attempts = 0 def describe_user(self): print( "--------" + self.first_name + self.last_name + "--------" + "\n姓:" + self.first_name + "\n名:" + self.last_name + "\n年龄 " + self.age + "\n天赋: " + self.skill ) def read_login_attempts(self): print(self.login_attempts) def increment_login_attempts(self): self.login_attempts += 1 def set_login_attempts(self): self.login_attempts = 0 def greet_user(self): full_name = self.first_name + self.last_name print("欢迎回到欲望都市," + full_name + "!") login_user = User("王", "大力", "33", "能长能短") #login_user.describe_user() for i in range(10): login_user.increment_login_attempts() login_user.read_login_attempts() login_user.set_login_attempts() login_user.read_login_attempts()
true
d8bbceb3ba28bfddeaf18e6bc7c885431c387cde
Python
EoJin-Kim/CodingTest
/BFS/02CompetitiveInfection.py
UTF-8
792
2.96875
3
[]
no_license
from collections import deque n,k = map(int,input().split()) graph=[] data=[] for i in range(n): graph.append(list(map(int,input().split()))) for j in range(n): if graph[i][j] != 0: data.append((graph[i][j],0, i, j)) s,x,y = map(int,input().split()) ''' n,k=3,3 graph=[[1,0,2],[0,0,0],[3,0,0]] s,x,y=2,3,2 ''' data.sort() q=deque(data) dx=[-1,0,1,0] dy=[0,1,0,-1] def bfs(seconds): while q: type,time,x,y =q.popleft() if seconds<=time: break; for i in range(4): nx=x+dx[i] ny=y+dy[i] if nx>=0 and nx<n and ny>=0 and ny<n: if graph[nx][ny]==0: graph[nx][ny]=type q.append((type,time+1,nx,ny)) bfs(s) print(graph[x-1][y-1])
true
88ad9de71cc641777e1035b602ebf5c2e06dc73e
Python
ashmorecartier/pyjunk
/src/Zbrac.py
UTF-8
6,057
3.28125
3
[ "MIT" ]
permissive
#! /bin/env python3 # -*- coding: utf-8 -*- ################################################################################ # # This file is part of PYJUNK. # # Copyright © 2021 Marc JOURDAIN # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the “Software”), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # You should have received a copy of the MIT License # along with PYJUNK. If not, see <https://mit-license.org/>. # ################################################################################ """ Zbrac.py rassemble la définition des classes: Zbrac """ import sys import pathlib #----- constantes pour finir le programme NORMAL_TERMINATION = 0 ABNORMAL_TERMINATION = 1 #----- Classe permettant de calculer un encadrement de la solution à partir d'un point class Zbrac: """ Classe Zbrac ============ La classe Zbrac permet d'obtenir un encadrement de la solution d'une fonction à partir d'un seul point fX. il est souhaitable que la fonction soit gentiment monotone on applique la technique suivante : dans un diagramme x-fx selon C ou D | */ | /* ------- /* | */ | :Example: >>> def f(x): return (2.*x-1.)*(2.*x+1.) >>> Zc = Zbrac(f) >>> Zc.solve(5., 'C') 0 >>> Zc.getFresult() (0.625, 0.3125) >>> Zc.getNiters() 5 .. seealso:: .. warning:: .. note:: .. todo:: """ __iter = 20 __factor = 2. __sens1 = {'C':1./__factor, 'D':__factor} __sens2 = {'C':__factor, 'D':1./__factor} #----- def __init__(self, func, *param) -> None: self.func = func self.param = param self.nError = 0 self.nIter = 0 self.fX0 = 0. self.fX1 = 0. self.fY0 = 0. self.fY1 = 0. #----- def solve(self, fX: float, sSens: str) -> int: """ lance le solveur avec un paramètre :param fX: borne :type fX: float :param sSens: sens 'C' croissant 'D' décroissant :type sSens: string :return: 0 ok 1 pas ok :rtype: int >>> def f(x): return (2.*x-1.)*(2.*x+1.) >>> Zc = Zbrac(f) >>> Zc.solve(5., 'E') Mauvaise indication du sens 1 >>> Zc.solve(5., 'C') 0 >>> Zc.solve(-5., 'D') 0 """ if sSens not in ('C', 'D'): print(f'Mauvaise indication du sens') self.nError = 1 return self.nError self.nIter = 1 self.fX0 = fX self.fY0 = self.func(self.fX0, *self.param) while self.nIter < Zbrac.__iter: if self.fX0*self.fY0 > 0.: self.fX1 = self.fX0*Zbrac.__sens1[sSens] else: self.fX1 = self.fX0*Zbrac.__sens2[sSens] self.fY1 = self.func(self.fX1, *self.param) self.nIter += 1 if self.fY0*self.fY1 > 0.: self.fX0 = self.fX1 self.fY0 = self.fY1 else: self.nError = 0 return self.nError print(f'Maximum number of iterations exceeded in zbrac') self.nError = 1 return self.nError #----- def getFresult(self) -> (float, float): """ retourne le résultat nécessite d'avoir lancer le solve et d'avoir tester le code erreur :param: aucun :return: le résultat :rtype: liste de 2 float >>> def f(x): return (2.*x-1.)*(2.*x+1.) >>> Zc = Zbrac(f) >>> Zc.solve(5., 'C') 0 >>> Zc.getFresult() (0.625, 0.3125) >>> Zc.solve(-5., 'D') 0 >>> Zc.getFresult() (-0.625, -0.3125) """ return (self.fX0, self.fX1) #----- def getNiters(self) -> int: """ retourne le nombre d'itérations effectuées nécessite d'avoir lancer le solve et d'avoir tester le code erreur :param: aucun :return: le nombre d'itérations :rtype: int >>> def f(x): return (2.*x-1.)*(2.*x+1.) >>> Zc = Zbrac(f) >>> Zc.solve(5., 'C') 0 >>> Zc.getNiters() 5 >>> Zc.solve(-5., 'D') 0 >>> Zc.getNiters() 5 """ return self.nIter #----- start here if __name__ == '__main__': import doctest (failureCount, testCount) = doctest.testmod(verbose=False) print(f'nombre de tests : {testCount:>3d}, nombre d\'erreurs : {failureCount:>3d}', end='') if failureCount != 0: print(f' --> Arrêt du programme {pathlib.Path(__file__)}') sys.exit(ABNORMAL_TERMINATION) else: print(f' --> All Ok {pathlib.Path(__file__)}') sys.exit(NORMAL_TERMINATION)
true
e5ac3ca3af1b173570d5c68178628409ec19d6e2
Python
CNLiiserp/CA3bouton
/vdcc_dat/genStimVid.py
UTF-8
1,358
2.59375
3
[]
no_license
from pylab import * # Note: stimuli are 5 ms wide. n = 20 # n = number of pules in tetanic pulse nBurst = 2 # number of bursts isi = 10e-3 # isi = Inter-Spike Interval in burst ibi = 5 # inter-burst internal (sec) infile=[0]*9 outfile=[0]*9 infile[0]="VDCC_PQ_C01.dat" infile[1]="VDCC_PQ_C10.dat" infile[2]="VDCC_PQ_C12.dat" infile[3]="VDCC_PQ_C21.dat" infile[4]="VDCC_PQ_C23.dat" infile[5]="VDCC_PQ_C32.dat" infile[6]="VDCC_PQ_C34.dat" infile[7]="VDCC_PQ_C43.dat" infile[8]="VDCC_PQ_Ca.dat" # Generate outfile for (i,f) in enumerate(infile): f = f.split(".")[0]+"_" #outfile[i] = "ptp/"+f+str(n)+"_"+str(int(1/isi))+"hz_train.dat" outfile[i] = f+"n_"+str(n)+"_nB_"+str(nBurst)+"_isi_"+str(int(1000*isi))+"ms_ibi_"+str(ibi)+"s_burstTrain.dat" print outfile[i] # Generate Stim for PTP for i in range(len(infile)): tdelay = 0 ofile = open(outfile[i], 'w') for nb in range(nBurst): #4, 6, 10, 15, 20, 30]: tdelay += nb*ibi # Read The Stim idata = genfromtxt(infile[i]) # Post-Tetanic Pulse with number of spikes n and interspike interval isi for j in range(n): #print tdelay for k in range(len(idata)): ofile.write(str(idata[k][0]+tdelay)+"\t"+str(idata[k][1])+"\n") tdelay += isi if j<n-1 else 0
true
20dbacad7bd4d5d763a4d08e1a244fbf4bee5e1f
Python
Rafsun83/Python-Basic-practice-Code-With-OOP
/pytest.py
UTF-8
183
2.90625
3
[]
no_license
import pytest @pytest.mark.one def test_method1(): x = 10 y = 20 assert x == y @pytest.mark.two def test_method2(): a = 20 b = 15 assert a == b+5
true
0d8f22a63a5f28a2ee356b8843efa9d135142511
Python
wkentaro/effective-python
/chapter5/0039_thread_cooperation/sample2.py
UTF-8
563
2.515625
3
[]
no_license
from __future__ import absolute_import from __future__ import division from __future__ import print_function from Queue import deque from Queue import Queue import time from threading import Lock from threading import Thread def main(): queue = Queue() def consumer(): print('Consumer waiting') queue.get() print('Consumer done') thread = Thread(target=consumer) thread.start() print('Producer putting') queue.put(object()) thread.join() print('Producer done') if __name__ == '__main__': main()
true
4ccae33d43c0a8d04e71dc447288afb1ee70f3ef
Python
ptsiampas/Exercises_Learning_Python3
/12_Modules/Exercise_12.11.7.py
UTF-8
465
3.5
4
[]
no_license
from unit_tester import test def myreplace(old, new, s): """ Replace all occurrences of old with new in s. """ if old == " ": return new.join(s.split()) return new.join(s.split(old)) test(myreplace(",", ";", "this, that, and some other thing"), "this; that; and some other thing") test(myreplace(" ", "**","Words will now be separated by stars."), "Words**will**now**be**separated**by**stars.")
true
464da1f0054ec13f521918dc212374add49631d3
Python
physcode/capitainterview
/joinscript.py
UTF-8
2,140
3.46875
3
[]
no_license
##Script written in Python3 - Nikolaos Palamidas## def LEFTJOIN(Lfilename,Rfilename,LEFT_ON,RIGHT_ON,destination,delimiter = ","): """Takes arguments of a file name for the left and right tables (in working directory). Left joins according to the LEFT_ON and RIGHT_ON columns of each specified by zero indexed number. Delimiter is set to a comma as default""" dataL = open(Lfilename,"r") dataR = open(Rfilename,"r") listL = [] listR = [] joinedlist = [] def csvtoarray(file,array,delim): """Takes a file delimited by some delim character (csv by default) and returns a list of lists(array) of the file""" line = '' for line in file: line = line.strip('\n') splitstring = line.split(delim) array.append(splitstring) csvtoarray(dataL,listL,delimiter) csvtoarray(dataR,listR,delimiter) def JOIN(LEFT,RIGHT,L_ON,R_ON,RESULT): """Takes a left and right array and left joins them according to the zero indexed ON keys. Returns a RESULT array""" for L in LEFT: countmatch = 0 for R in RIGHT: if L[L_ON] == R[R_ON]: countmatch = countmatch + 1 RESULT.append(L+R) if countmatch == 0: RESULT.append(L+['NULL','NULL']) keys = LEFT[0] + RIGHT[0] RESULT[0] = keys JOIN(listL,listR,LEFT_ON,RIGHT_ON,joinedlist) def concatlist(lst): """Concatenates all the lists in a string in preparation for loading into the final csv file""" result = '' for element in lst: result += delimiter + str(element) result = result[1:] return result dest = open(destination,'w') for row in joinedlist: dest.write(str(concatlist(row))+'\n') dest.close() #END OF LEFTJOIN FUNCTION #Left join the test files using the PD columns LEFTJOIN("test_data_01.csv","test_data_02.csv",1,0,"joined.csv") input("SUCCESS!!! joined.csv can now be found in the working directory...")
true
1e9a383d814c3724d7194c175eaa543959cadfcc
Python
monini13/NucleiSegmentationAI
/gui.py
UTF-8
3,721
2.53125
3
[]
no_license
import tkinter as tk from tkinter import * from tkinter import filedialog import os from PIL import Image, ImageTk from predict import predict, get_actual_mask from scipy.io import loadmat import matplotlib.pyplot as plt import numpy as np class Window(Frame): def __init__(self, weights_path, master=None): Frame.__init__(self, master) self.master = master self.pos = [] self.master.title("Nuclei Segmentation") self.pack(fill=BOTH, expand=1) menu = Menu(self.master) self.master.config(menu=menu) file = Menu(menu) file.add_command(label="Select Image", command=self.uploadImage) file.add_command(label="Predict", command=self.show_prediction) menu.add_cascade(label="File", menu=file) self.canvas = tk.Canvas(self) self.canvas.pack(fill=tk.BOTH, expand=True) self.image = None self.image2 = None self.weights_path = weights_path frm = Frame(self.master) frm.pack(side=BOTTOM, padx=15, pady=15) btn1 = Button(frm, text="Select Image", command=self.uploadImage) btn1.pack(side=tk.LEFT) btn2 = Button(frm, text="Predict", command = self.show_prediction) btn2.pack(side=tk.LEFT, padx=30) def uploadImage(self): filename = filedialog.askopenfilename(initialdir=os.getcwd()) if not filename: return img = Image.open(filename).convert("RGB") if not img: return #feed input into model here, output into ./result.png self.predicted_mask = predict(self.weights_path,img) # PIL Image base_name = os.path.basename(filename) base_name = os.path.splitext(base_name)[0] labels_list = os.listdir('./Test/Labels') label = base_name + ".mat" label = loadmat('./Test/Labels/'+label) true_mask = get_actual_mask(label) self.true_mask = Image.fromarray(np.uint8(true_mask*255)).convert('RGB') img = img.resize((400, 400)) w, h = img.size width, height = root.winfo_width(), root.winfo_height() self.render = ImageTk.PhotoImage(img) if self.image: self.canvas.delete(self.text) self.image = self.canvas.create_image((w / 3, h / 3), image=self.render) self.canvas.move(self.image, 80, 0) self.text = self.canvas.create_text(170,380, fill="black",font="Times 20 bold", text="Input: " + base_name) def show_prediction(self): if not hasattr(self, 'predicted_mask'): return load = self.predicted_mask load = load.resize((400, 400)) load_true_mask = self.true_mask load_true_mask = load_true_mask.resize((400, 400)) w, h = load.size width, height = root.winfo_screenmmwidth(), root.winfo_screenheight() self.render2 = ImageTk.PhotoImage(load_true_mask) self.image2 = self.canvas.create_image((w / 3, h / 3), image=self.render2) self.canvas.move(self.image2, 500, 0) self.canvas.create_text(620,380, fill="black",font="Times 20 bold", text="True Mask") self.render3 = ImageTk.PhotoImage(load) self.image3 = self.canvas.create_image((w / 3, h / 3), image=self.render3) self.canvas.move(self.image3, 930, 0) self.canvas.create_text(1050,380, fill="black",font="Times 20 bold", text="Predicted Mask") if __name__ == "__main__": root = tk.Tk() root.title("Nuclei Segmentation") root.geometry('1280x600') weights_path = "./weights_3channel_dropout_1" app = Window(weights_path,root) root.mainloop()
true
2688632cebd70d447b46da4738d33a6c270d5b60
Python
feliciahsieh/holbertonschool-higher_level_programming
/0x03-python-data_structures/5-no_c.py
UTF-8
147
3.0625
3
[]
no_license
#!/usr/bin/python3 def no_c(my_string): n = "" for x in my_string: if x != 'c' and x != 'C': n = n + x return(n)
true
3a927b053ea3ecb83d1b941be27a72431f10f78d
Python
gdfelt/competition
/euler/python3/euler007.py
UTF-8
392
3.921875
4
[]
no_license
#!/usr/bin/env python3 """ Project Euler Problem 7 ======================= By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? """ import utils def main(): p_count = 0 num = 1 while p_count < 10001: num +=1 if utils.is_prime(num): p_count+=1 print(str(num)) if __name__ == "__main__": main()
true
bf1fffad2fd1f28181a83fe31352c58ab53b9c31
Python
Noverish/Face-Recognition
/src/extraction/__init__.py
UTF-8
822
2.828125
3
[]
no_license
import os def extract(input_path): input_path = os.path.abspath(input_path) image_paths = [] labels = [] person_names = sorted([x for x in os.listdir(input_path) if os.path.isdir(os.path.join(input_path, x))]) for i in range(len(person_names)): person_name = person_names[i] person_path = os.path.join(input_path, person_name) image_names = sorted([x for x in os.listdir(person_path) if os.path.isfile(os.path.join(person_path, x))]) for image_name in image_names: image_path = os.path.join(person_path, image_name) ext = os.path.splitext(image_path)[1].lower() if ext in ['.jpg', '.png']: image_paths.append(image_path) labels.append(person_name) return image_paths, labels, person_names
true
52ed2e0c7f94bc60e699ea15838178a7eed0c65f
Python
Gitikameher/Emotion-classification
/data_loader.py
UTF-8
1,629
3.59375
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Jan 10 17:31:49 2019 @author: meher """ from os import listdir from PIL import Image import numpy as np # The relative path to your CAFE-Gamma dataset data_dir = "./CAFE/" # Dictionary of semantic "label" to emotions emotion_dict = {"h": "happy", "ht": "happy with teeth", "m": "maudlin", "s": "surprise", "f": "fear", "a": "anger", "d": "disgust", "n": "neutral"} def load_data(data_dir="./CAFE/"): """ Load all PGM images stored in your data directory into a list of NumPy arrays with a list of corresponding labels. Args: data_dir: The relative filepath to the CAFE dataset. Returns: images: A list containing every image in CAFE as an array. labels: A list of the corresponding labels (filenames) for each image. """ # Get the list of image file names all_files = listdir(data_dir) # Store the images as arrays and their labels in two lists images = [] labels = [] for file in all_files: # Load in the files as PIL images and convert to NumPy arrays img = Image.open(data_dir + file) images.append(np.array(img)) labels.append(file) print("Total number of images:", len(images), "and labels:", len(labels)) return images, labels def display_face(img): """ Display the input image and optionally save as a PNG. Args: img: The NumPy array or image to display Returns: None """ # Convert img to PIL Image object (if it's an ndarray) if type(img) == np.ndarray: print("Converting from array to PIL Image") img = Image.fromarray(img) # Display the image img.show()
true
417f56cb5af06e3784bb33bddf1b1efb7647f204
Python
incalia/schedy-client
/schedy/pbt.py
UTF-8
2,388
3.03125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals #: Minimize the objective MINIMIZE = 'min' #: Maximize the objective MAXIMIZE = 'max' class Truncate(object): _EXPLOIT_STRATEGY_NAME = 'truncate' def __init__(self, proportion=0.2): ''' Truncate exploit strategy: if the selected candidate job is in the worst n%, use a candidate job in the top n% instead. Args: proportion (float): Proportion of jobs that are considered to be "best" jobs, and "worst" jobs. For example, if ``proportion = 0.2``, if the selected candidate job is in the bottom 20%, it will be replaced by a job in the top 20%. Must satisfy ``0 < proportion <= 0.5``. ''' self.proportion = proportion def _get_params(self): return self.proportion @classmethod def _from_params(cls, params): proportion = float(params) return cls(proportion) def __eq__(self, other): return type(self) == type(other) and \ self.proportion == other.proportion class Perturb(object): _EXPLORE_STRATEGY_NAME = 'perturb' def __init__(self, min_factor=0.8, max_factor=1.2): ''' Perturb explore strategy: multiply the designated hyperparameter by a random factor, sampled from a uniform distribution. Args: min_factor (float): Minimum value for the factor (inclusive). max_factor (float): Maximum value for the factor (exclusive). ''' self.min_factor = min_factor self.max_factor = max_factor def _get_params(self): return { 'minFactor': float(self.min_factor), 'maxFactor': float(self.max_factor), } @classmethod def _from_params(cls, params): min_factor = float(params['minFactor']) max_factor = float(params['maxFactor']) return cls(min_factor, max_factor) def __eq__(self, other): return type(self) == type(other) and \ self.min_factor == other.min_factor and \ self.max_factor == other.max_factor _EXPLOIT_STRATEGIES = {strat._EXPLOIT_STRATEGY_NAME: strat for strat in [ Truncate ]} _EXPLORE_STRATEGIES = {strat._EXPLORE_STRATEGY_NAME: strat for strat in [ Perturb ]}
true
91253ec84fe1dcdbaaffb95f39338e8bde793233
Python
PDXDevCampJuly/Nehemiah-Newell
/Python/Bank/Bank.py
UTF-8
2,334
3.484375
3
[]
no_license
### # Defines the Bank ### from Person import Person class Bank(object): """Bank information stored here""" def __init__(self): self.customers = {} self.vault = -10.00 self.savings_interest = .3 def new_customer(self, name, email): self.customers[email] = Person(name, email) def remove_customer(self, email): del self.customers[email] def show_customer_info(self, email): self.customers[email].banking() def show_all_customers(self): for customer in self.customers: print("{}.\n email: {}\n".format(self.customers[customer].first_name + " " + self.customers[customer].last_name, customer)) def customer_deposit(self, email, accountNumber, amount): self.customers[email].accounts[accountNumber].deposit(amount) def customer_withdraw(self, email, accountNumber, amount): self.customers[email].accounts[accountNumber].withdraw(amount) def make_customer_account(self, email, amount, accountType="Checking Account"): self.customers[email].open_account(amount, accountType) def remove_customer_account(self, email, accountNumber): self.customers[email].close_account(accountNumber) def monthly_interest(self): for customer in self.customers: for saving in self.customers[customer].accounts: saving.interest(self.savings_interest) def customer_worth(self,email): value = 0.0 for saving in self.customers[email].accounts: value += saving.check_balance() print("{} is worth ${:,.2f}".format(self.customers[email].first_name + " " + self.customers[email].last_name, value)) # def menu(self): # article = "Wecome to Banking Services! \nWould you like to (a)dd a customer \n(r)emove a customer \na(d)d a account \n(c)lose a account \ncalculate the (w)orth of a customer \nget customer (i)nfo \n dep(o)set or withdraw." # flag = True # while flag == True: # theInput = input("Please enter the desired service: ") # # if theInput.lower() == 'a': # # elif theInput.lower() == 'r': # # elif theInput.lower() == 'd': # # elif theInput.lower() == 'c': # # elif theInput.lower() == 'w': # # elif theInput.lower() == 'i': # # elif theInput.lower() == 'o': # start asking for information from the user theInput = input("Please enter a action ") # and concantitate it. article += theInput + "." # and output print("\n\n") print(article) print("\n\n")
true
32fb36b6bcd783a31dc7ebb20a2c48b7e1dfda58
Python
davidvlaminck/OTLMOW
/src/OTLMOW/OTLModel/Datatypes/TimeField.py
UTF-8
3,937
2.875
3
[ "MIT" ]
permissive
import logging import random from datetime import time, datetime, date from OTLMOW.Facility.Exceptions.CouldNotConvertToCorrectTypeError import CouldNotConvertToCorrectTypeError from OTLMOW.OTLModel.BaseClasses.OTLField import OTLField class TimeField(OTLField): """Beschrijft een tekstregel volgens http://www.w3.org/2001/XMLSchema#string.""" naam = 'Time' objectUri = 'http://www.w3.org/2001/XMLSchema#time' definition = 'Beschrijft een datum volgens http://www.w3.org/2001/XMLSchema#time.' label = 'Tijd' usagenote = 'https://www.w3.org/TR/xmlschema-2/#time' @classmethod def convert_to_correct_type(cls, value, log_warnings=True): if value is None: return None if isinstance(value, bool): raise CouldNotConvertToCorrectTypeError(f'{value} could not be converted to correct type (implied by {cls.__name__})') if isinstance(value, time): return value if isinstance(value, datetime): if log_warnings: logging.warning( 'Assigned a datetime to a time datatype. Automatically converted to the correct type. Please change the type') return time(value.hour, value.minute, value.second) if isinstance(value, date): if log_warnings: logging.warning( 'Assigned a date to a time datatype. Automatically converted to the correct type. Please change the type') return time(0, 0, 0) if isinstance(value, int): if log_warnings: logging.warning( 'Assigned a int to a date datatype. Automatically converted to the correct type. Please change the type') timestamp = datetime.fromtimestamp(value) return time(timestamp.hour, timestamp.minute, timestamp.second) if isinstance(value, str): try: dt = datetime.strptime(value, "%H:%M:%S") if log_warnings: logging.warning( 'Assigned a string to a time datatype. Automatically converted to the correct type. Please change the type') return time(dt.hour, dt.minute, dt.second) except ValueError: try: dt = datetime.strptime(value, "%Y-%m-%d %H:%M:%S") if log_warnings: logging.warning( 'Assigned a string to a time datatype. Automatically converted to the correct type. Please change the type') return time(dt.hour, dt.minute, dt.second) except ValueError: try: dt = datetime.strptime(value, "%d/%m/%Y %H:%M:%S") if log_warnings: logging.warning( 'Assigned a string to a time datatype. Automatically converted to the correct type. Please change the type') return time(dt.hour, dt.minute, dt.second) except Exception: raise CouldNotConvertToCorrectTypeError(f'{value} could not be converted to correct type (implied by {cls.__name__})') raise CouldNotConvertToCorrectTypeError(f'{value} could not be converted to correct type (implied by {cls.__name__})') @staticmethod def validate(value, attribuut): if value is not None and not isinstance(value, time): raise TypeError(f'expecting datetime in {attribuut.naam}') return True @staticmethod def value_default(value): if value is None: return None return value.strftime("%H:%M:%S") def __str__(self): return OTLField.__str__(self) @classmethod def create_dummy_data(cls): return time(hour=random.randint(0, 23), minute=random.randint(0, 59), second=random.randint(0, 59))
true
88a87965df6f7089c0217116783c45aedffb054a
Python
jingong171/jingong-homework
/张庭康/2017310416张庭康金工17-1第四次作业/2017310416张庭康金工17-1第四次作业/作业1.py
UTF-8
611
4.4375
4
[]
no_license
from random import randint #导入模块random中生成随机数的函数 class Die(): """打印位于1和骰子面数之间的随机数""" def __init__(self,sides=6): self.sides = sides """创建一个名为sides(面数)的属性""" def roll_die(self): print("面数为"+str(self.sides)+"的骰子投掷十次的结果为:",end=' ') for i in range(10): print(str(randint(1,self.sides))+",",end=' ') """打印位于1和骰子面数之间的随机数""" #创建对象:不同面数的骰子,并打印十个随机数 dice1=Die() dice1.roll_die()
true
9e7904301dc6474e8dc333a7ab4f5aa8914e9fbb
Python
holoviz/datashader
/datashader/layout.py
UTF-8
8,967
3.34375
3
[]
permissive
"""Assign coordinates to the nodes of a graph. """ from __future__ import annotations import numpy as np import param import scipy.sparse class LayoutAlgorithm(param.ParameterizedFunction): """ Baseclass for all graph layout algorithms. """ __abstract = True seed = param.Integer(default=None, bounds=(0, 2**32-1), doc=""" Random seed used to initialize the pseudo-random number generator.""") x = param.String(default='x', doc=""" Column name for each node's x coordinate.""") y = param.String(default='y', doc=""" Column name for each node's y coordinate.""") source = param.String(default='source', doc=""" Column name for each edge's source.""") target = param.String(default='target', doc=""" Column name for each edge's target.""") weight = param.String(default=None, allow_None=True, doc=""" Column name for each edge weight. If None, weights are ignored.""") id = param.String(default=None, allow_None=True, doc=""" Column name for a unique identifier for the node. If None, the dataframe index is used.""") def __call__(self, nodes, edges, **params): """ This method takes two dataframes representing a graph's nodes and edges respectively. For the nodes dataframe, the only column accessed is the specified `id` value (or the index if no 'id'). For the edges dataframe, the columns are `id`, `source`, `target`, and (optionally) `weight`. Each layout algorithm will use the two dataframes as appropriate to assign positions to the nodes. Upon generating positions, this method will return a copy of the original nodes dataframe with two additional columns for the x and y coordinates. """ return NotImplementedError class random_layout(LayoutAlgorithm): """ Assign coordinates to the nodes randomly. Accepts an edges argument for consistency with other layout algorithms, but ignores it. """ def __call__(self, nodes, edges=None, **params): p = param.ParamOverrides(self, params) np.random.seed(p.seed) df = nodes.copy() points = np.asarray(np.random.random((len(df), 2))) df[p.x] = points[:, 0] df[p.y] = points[:, 1] return df class circular_layout(LayoutAlgorithm): """ Assign coordinates to the nodes along a circle. The points on the circle can be spaced either uniformly or randomly. Accepts an edges argument for consistency with other layout algorithms, but ignores it. """ uniform = param.Boolean(True, doc=""" Whether to distribute nodes evenly on circle""") def __call__(self, nodes, edges=None, **params): p = param.ParamOverrides(self, params) np.random.seed(p.seed) r = 0.5 # radius x0, y0 = 0.5, 0.5 # center of unit circle circumference = 2 * np.pi df = nodes.copy() if p.uniform: thetas = np.arange(circumference, step=circumference/len(df)) else: thetas = np.asarray(np.random.random((len(df),))) * circumference df[p.x] = x0 + r * np.cos(thetas) df[p.y] = y0 + r * np.sin(thetas) return df def _extract_points_from_nodes(nodes, params, dtype=None): if params.x in nodes.columns and params.y in nodes.columns: points = np.asarray(nodes[[params.x, params.y]]) else: points = np.asarray(np.random.random((len(nodes), params.dim)), dtype=dtype) return points def _convert_graph_to_sparse_matrix(nodes, edges, params, dtype=None, format='csr'): nlen = len(nodes) if params.id is not None and params.id in nodes: index = dict(zip(nodes[params.id].values, range(nlen))) else: index = dict(zip(nodes.index.values, range(nlen))) if params.weight and params.weight in edges: edge_values = edges[[params.source, params.target, params.weight]].values rows, cols, data = zip(*((index[src], index[dst], weight) for src, dst, weight in edge_values if src in index and dst in index)) else: edge_values = edges[[params.source, params.target]].values rows, cols, data = zip(*((index[src], index[dst], 1) for src, dst in edge_values if src in index and dst in index)) # Symmetrize matrix d = data + data r = rows + cols c = cols + rows # Check for nodes pointing to themselves loops = edges[edges[params.source] == edges[params.target]] if len(loops): if params.weight and params.weight in edges: loop_values = loops[[params.source, params.target, params.weight]].values diag_index, diag_data = zip(*((index[src], -weight) for src, dst, weight in loop_values if src in index and dst in index)) else: loop_values = loops[[params.source, params.target]].values diag_index, diag_data = zip(*((index[src], -1) for src, dst in loop_values if src in index and dst in index)) d += diag_data r += diag_index c += diag_index M = scipy.sparse.coo_matrix((d, (r, c)), shape=(nlen, nlen), dtype=dtype) return M.asformat(format) def _merge_points_with_nodes(nodes, points, params): n = nodes.copy() n[params.x] = points[:, 0] n[params.y] = points[:, 1] return n def cooling(matrix, points, temperature, params): dt = temperature / float(params.iterations + 1) displacement = np.zeros((params.dim, len(points))) for iteration in range(params.iterations): displacement *= 0 for i in range(matrix.shape[0]): # difference between this row's node position and all others delta = (points[i] - points).T # distance between points distance = np.sqrt((delta ** 2).sum(axis=0)) # enforce minimum distance of 0.01 distance = np.where(distance < 0.01, 0.01, distance) # the adjacency matrix row ai = matrix[i].toarray() # displacement "force" dist = params.k * params.k / distance ** 2 if params.nohubs: dist = dist / float(ai.sum(axis=1) + 1) if params.linlog: dist = np.log(dist + 1) displacement[:, i] += (delta * (dist - ai * distance / params.k)).sum(axis=1) # update points length = np.sqrt((displacement ** 2).sum(axis=0)) length = np.where(length < 0.01, 0.01, length) points += (displacement * temperature / length).T # cool temperature temperature -= dt class forceatlas2_layout(LayoutAlgorithm): """ Assign coordinates to the nodes using force-directed algorithm. This is a force-directed graph layout algorithm called `ForceAtlas2`. Timothee Poisot's `nxfa2` is the original implementation of this algorithm. .. _ForceAtlas2: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098679&type=printable .. _nxfa2: https://github.com/tpoisot/nxfa2 """ iterations = param.Integer(default=10, bounds=(1, None), doc=""" Number of passes for the layout algorithm""") linlog = param.Boolean(False, doc=""" Whether to use logarithmic attraction force""") nohubs = param.Boolean(False, doc=""" Whether to grant authorities (nodes with a high indegree) a more central position than hubs (nodes with a high outdegree)""") k = param.Number(default=None, doc=""" Compensates for the repulsion for nodes that are far away from the center. Defaults to the inverse of the number of nodes.""") dim = param.Integer(default=2, bounds=(1, None), doc=""" Coordinate dimensions of each node""") def __call__(self, nodes, edges, **params): p = param.ParamOverrides(self, params) np.random.seed(p.seed) # Convert graph into sparse adjacency matrix and array of points points = _extract_points_from_nodes(nodes, p, dtype='f') matrix = _convert_graph_to_sparse_matrix(nodes, edges, p, dtype='f') if p.k is None: p.k = np.sqrt(1.0 / len(points)) # the initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. temperature = 0.1 # simple cooling scheme. # linearly step down by dt on each iteration so last iteration is size dt. cooling(matrix, points, temperature, p) # Return the nodes with updated positions return _merge_points_with_nodes(nodes, points, p)
true
5985af30ebc10a5f053ac9966866553034bc285e
Python
alexaoh/algdat
/Exercise1/take_pieces.py
UTF-8
122
3.421875
3
[]
no_license
def take_pieces(n_pieces): for i in range(1,8): if (n_pieces - i) % 8 == 1: return i return 2
true
0c72752f6c8f1044dee082c1bce65bbfb06ac9fc
Python
mmunar97/inPYinting
/inPYinting/algorithms/exemplar_based/exemplar_based_inpainting.py
UTF-8
11,317
2.640625
3
[ "MIT" ]
permissive
import numpy import sys import time from typing import List, Tuple from inPYinting.algorithms.exemplar_based.exemplar_based_utils import * from inPYinting.base.result import InpaintingResult class ExemplarBasedInpainter: def __init__(self, image, mask): self.__image = image self.__original_mask = ExemplarBasedInpainter.__reverse_mask(image=mask) self.__mask = ExemplarBasedInpainter.__reverse_mask(image=mask) def inpaint(self, tau: int = 170, size: int = 3) -> InpaintingResult: elapsed_time = time.time() result, _ = self.__inpaint(tau, size) elapsed_time = time.time() - elapsed_time return InpaintingResult(inpainted_image=result, elapsed_time=elapsed_time) def inpaint_with_steps(self, tau: int, size: int = 3) -> Tuple[InpaintingResult, List[numpy.ndarray]]: elapsed_time = time.time() result, steps = self.__inpaint(tau, size) elapsed_time = time.time() - elapsed_time return InpaintingResult(inpainted_image=result, elapsed_time=elapsed_time), steps def __inpaint(self, tau: int, size: int) -> Tuple[numpy.ndarray, List[numpy.ndarray]]: omega, confidence = self.__compute_previous_terms(tau) source, original = numpy.copy(confidence), numpy.copy(confidence) im = numpy.copy(self.__image) data = numpy.ndarray(shape=self.__image.shape[:2]) inpainted_finished = False steps: int = 0 image_steps = [] while not inpainted_finished: steps += 1 print(f"Inpainting with Exemplar-Based – Step {steps}") xsize, ysize = source.shape grayscale_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) gradient_x = numpy.float32(cv2.convertScaleAbs(cv2.Scharr(grayscale_image, cv2.CV_32F, 1, 0))) gradient_y = numpy.float32(cv2.convertScaleAbs(cv2.Scharr(grayscale_image, cv2.CV_32F, 0, 1))) gradient_x[self.__mask == 1] = 0 gradient_y[self.__mask == 1] = 0 gradient_x, gradient_y = gradient_x / 255, gradient_y / 255 d_omega, normal = ExemplarBasedInpainter.__compute_boundary(self.__mask, source) confidence, data, index = ExemplarBasedInpainter.__compute_priority(im, size, self.__mask, d_omega, normal, data, gradient_x, gradient_y, confidence) list, pp = ExemplarBasedInpainter.__get_patch(d_omega, index, im, original, self.__mask, size) im, gradient_x, gradient_y, confidence, source, self.__mask = ExemplarBasedInpainter.__update(im, gradient_x, gradient_y, confidence, source, self.__mask, d_omega, pp, list, index, size) inpainted_finished = True for x in range(xsize): for y in range(ysize): if source[x, y] == 0: inpainted_finished = False image_steps.append(im) return im, image_steps @staticmethod def __reverse_mask(image: numpy.ndarray): """ Converts a mask with black background and white lost pixels into an image with white background and black pixels to recover. Args: image: A two dimensional image, representing the mask with the lost pixels. Returns: A two dimensional image, representing the mask with the lost pixels marked with black. """ return 255-image def __compute_previous_terms(self, tau: int) -> Tuple[List, numpy.ndarray]: """ Computes the list of pixels to be corrected and the matrix of confidence of the image. Args: tau: A threshold to indicate the limit to modify the mask. Returns: A tuple of two elements: the list of pixels and the matrix of confidence. """ omega = [] confidence = numpy.copy(self.__mask) for x in range(self.__image.shape[0]): for y in range(self.__image.shape[1]): mask_value = self.__mask[x, y] if mask_value < tau: omega.append([x, y]) self.__image[x, y] = [255, 255, 255] self.__mask[x, y] = 1 confidence[x, y] = 0 else: self.__mask[x, y] = 0 confidence[x, y] = 1 return omega, confidence @staticmethod def __compute_boundary(mask: numpy.ndarray, source: numpy.ndarray): """ Computes the boundary pixels. """ d_omega = [] normal = [] laplacian = cv2.filter2D(mask, cv2.CV_32F, get_laplacian_operator()) gradient_x = cv2.filter2D(source, cv2.CV_32F, get_derivative_x_operator()) gradient_y = cv2.filter2D(source, cv2.CV_32F, get_derivative_y_operator()) xsize, ysize = laplacian.shape for x in range(xsize): for y in range(ysize): if laplacian[x, y] > 0: d_omega += [(y, x)] dx = gradient_x[x, y] dy = gradient_y[x, y] norm = (dy ** 2 + dx ** 2) ** 0.5 if norm != 0: normal += [(dy / norm, -dx / norm)] else: normal += [(dy, -dx)] return d_omega, normal @staticmethod def __generate_patch_coordinates(image: numpy.ndarray, size: int, point: Tuple[int, int]): """ Computes the extreme points of a patch. """ px, py = point xsize, ysize, c = image.shape x3 = max(px - size, 0) y3 = max(py - size, 0) x2 = min(px + size, ysize - 1) y2 = min(py + size, xsize - 1) return (x3, y3), (x2, y2) @staticmethod def __compute_confidence(confidence, image, size, mask, d_omega): """ Computes the confidence. """ for k in range(len(d_omega)): px, py = d_omega[k] patch = ExemplarBasedInpainter.__generate_patch_coordinates(image=image, size=size, point=d_omega[k]) x3, y3 = patch[0] x2, y2 = patch[1] i = 0 size_psi_p = ((x2 - x3 + 1) * (y2 - y3 + 1)) for x in range(x3, x2 + 1): for y in range(y3, y2 + 1): if mask[y, x] == 0: i += confidence[y, x] confidence[py, px] = i / size_psi_p return confidence @staticmethod def __compute_data(d_omega, normal, data, gradient_x, gradient_y): for k in range(len(d_omega)): x, y = d_omega[k] n_x, n_y = normal[k] data[y, x] = (((gradient_x[y, x] * n_x)**2 + (gradient_y[y, x] * n_y)**2)**0.5) / 255.0 return data @staticmethod def __compute_priority(image, size, mask, d_omega, normal, data, gradient_x, gradient_y, confidence): conf = ExemplarBasedInpainter.__compute_confidence(confidence, image, size, mask, d_omega) dat = ExemplarBasedInpainter.__compute_data(d_omega, normal, data, gradient_x, gradient_y) index = 0 maxi = 0 for i in range(len(d_omega)): x, y = d_omega[i] P = conf[y, x] * dat[y, x] if P > maxi: maxi = P index = i return conf, dat, index @staticmethod def __get_patch(d_omega, cible_index, im, original, mask, size): mini = minvar = sys.maxsize source_patch = [] p = d_omega[cible_index] patch = ExemplarBasedInpainter.__generate_patch_coordinates(im, size, p) x1, y1 = patch[0] x2, y2 = patch[1] x_size, y_size, c = im.shape counter, cibles, ciblem, xsize, ysize = ExemplarBasedInpainter.__crible(y2-y1+1, x2-x1+1, x1, y1, mask) for x in range(x_size - xsize): for y in range(y_size - ysize): if ExemplarBasedInpainter.__is_patch_complete(x, y, xsize, ysize, original): source_patch += [(x, y)] for (y, x) in source_patch: R = V = B = ssd = 0 for (i, j) in cibles: ima = im[y + i, x + j] omega = im[y1 + i, x1 + j] for k in range(3): difference = float(ima[k]) - float(omega[k]) ssd += difference ** 2 R += ima[0] V += ima[1] B += ima[2] ssd /= counter if ssd < mini: variation = 0 for (i, j) in ciblem: ima = im[y + i, x + j] differenceR = ima[0] - R / counter differenceV = ima[1] - V / counter differenceB = ima[2] - B / counter variation += differenceR ** 2 + differenceV ** 2 + differenceB ** 2 if ssd < mini or variation < minvar: minvar = variation mini = ssd pointPatch = (x, y) return ciblem, pointPatch @staticmethod def __crible(x_size, y_size, x1, y1, mask): counter = 0 cibles, ciblem = [], [] for i in range(x_size): for j in range(y_size): if mask[y1 + i, x1 + j] == 0: counter += 1 cibles += [(i, j)] else: ciblem += [(i, j)] return counter, cibles, ciblem, x_size, y_size @staticmethod def __is_patch_complete(x, y, x_size, y_size, original): for i in range(x_size): for j in range(y_size): if original[x + i, y + j] == 0: return False return True @staticmethod def __update(im, gradient_x, gradient_y, confidence, source, mask, d_omega, point, list, index, size): p = d_omega[index] patch = ExemplarBasedInpainter.__generate_patch_coordinates(im, size, p) x1, y1 = patch[0] px, py = point for (i, j) in list: im[y1 + i, x1 + j] = im[py + i, px + j] confidence[y1 + i, x1 + j] = confidence[py, px] source[y1 + i, x1 + j] = 1 mask[y1 + i, x1 + j] = 0 return im, gradient_x, gradient_y, confidence, source, mask
true
8d300fa432ecb3899824c184669d8b9569d1bdb4
Python
kproshakov/SudokuCV
/main.py
UTF-8
1,516
2.796875
3
[ "MIT" ]
permissive
from SudokuCV import SudokuCV import cv2 from tkinter import * from tkinter import filedialog from PIL import Image, ImageTk class GUI(Frame): def __init__(self, master=None): Frame.__init__(self, master) w,h = 400, 500 master.minsize(width=w, height=h) master.maxsize(width=w, height=h) master.title self.pack() self.file = Button(self, text='Browse', command=self.choose) self.choose = Label(self, text="Choose file").pack() #Replace with your image self.image = Image.open('Default.png') self.image = self.image.resize((350, 350)) self.image = ImageTk.PhotoImage(self.image) self.label = Label(image=self.image) self.s = SudokuCV() self.file.pack() self.label.pack() def choose(self): ifile = filedialog.askopenfile(parent=self,mode='rb',title='Choose a file') path = Image.open(ifile) path = path.resize((350, 350)) self.image2 = ImageTk.PhotoImage(path) self.label.configure(image=self.image2) self.label.image=self.image2 solved = self.s.solve_sudoku_pic(str(ifile.name)) solved = cv2.resize(solved, (350, 350)) solved = Image.fromarray(solved) self.image2 = ImageTk.PhotoImage(solved) self.label.configure(image=self.image2) self.label.image=self.image2 root = Tk() root.title("SudokuCV") app = GUI(master=root) app.mainloop() root.destroy() root.mainloop()
true
088a0fb4c0b57af11965ad91e87af83450bd29de
Python
terencesll/AdventOfCode
/2020/02a.py
UTF-8
567
3.109375
3
[]
no_license
file = open("02.txt") numValid = 0 for line in file: tokens = line.split(":") policy = tokens[0].split(" ") policyMinMax = policy[0].split("-") policyMin = int(policyMinMax[0]) policyMax = int(policyMinMax[1]) policyLetter = policy[1] password = tokens[1].strip() count = { policyLetter: 0} for char in password: if char not in count: count[char] = 0 count[char] += 1 #print(count) if count[policyLetter] >= policyMin and count[policyLetter] <= policyMax: numValid += 1 print(numValid)
true
e6ffb1fdba2715f233a2c98c251f8a468a42b994
Python
cfvillalta/postdoc
/UID_in_HMM_out_domain.py
UTF-8
2,542
3.078125
3
[]
no_license
#!/usr/bin/env python #The purpose of this script was to put in a list of IDs from a phylogenetic tree branch and pull their sequecnes from a list of sequecnes I might have. The script then aligns those sequences with Clustal Omega and builds an HMM with the alignment. import phylo_tools import sys import re #list of UIDs, like a list of UIDs I had picked from java tree view input = sys.argv[1] #file with fasta seqs input_2 = sys.argv[2] #split file name at '.' to use name later input_s = input.split(".") #open list of UIDs input_open =open(input, 'rU') #read each line of IDs GIDs= input_open.readlines() #create list I will put IDs into. GID_list = [] #for loop goes through GIDs list from text file. for GID in GIDs: #strip /n from each GID GID=GID.strip() #split each GID by '/' because the GID is a number id, /, and coordinates of domain(in this case tyrosinase domains.) GID_s=GID.split("/") # print GID_s[0] GID_list.append(GID_s[0]) #inputs my txt file with fasta sequences. input_2_open = open(input_2, 'rU') #read each line of the text file into a list called seqs. seqs = input_2_open.readlines() #created an empty dict I will put seqs into with the seq id as the key and the value being the seqeucne. input_seqs ={} #loop through list seq. for seq in seqs: #strip each string in list of trailign whitespace e.g. /n seq=seq.strip() #strings in list that begin with ">" if seq.startswith(">"): #within those will look for pattern of ">" followed by a number \d+ and ending with a backslash /. Search pattern is called gid gid = re.compile(r"(>)(\d+)(/)") #search string for pattern in gid match= gid.search(seq) #if match present if match: #grab the id id = match.group(2) #use the id as the key for sequence in diction input_seqs input_seqs[id]=[] #if no '>' then add to a list of seqs that belong to the id that superceded it. else: input_seqs[id].append(seq) #make a file with the same name as the UID input file but with a .fasta file extenstion. fasta = open('%s.fasta' %(input_s[0]),'w') #Look through each key in the GID_list. for seq in GID_list: #if gid in dictionary if input_seqs[seq]: #write out the id and print joined seqs into new fasta file. fasta.write('>%s\n%s\n' %(seq, ''.join(input_seqs[seq]))) #align fasta file with clustal omega, outputs a clustal alignment phylo_tools.ClustalO(input_s[0]) #build hmm with clustal alignment using hmmbuild phylo_tools.hmmbuild('%s_clustalo' %(input_s[0]))
true
8ca6a7a0868efbd8da3e414e96191f107805b0a3
Python
dcobas/adctest
/PAGE/Waveform.py
UTF-8
1,250
2.875
3
[]
no_license
__author__ = "Federico Asara" __copyright__ = "Copyright 2007, The Cogent Project" __credits__ = ["Federico Asara", "Juan David Gonzalez Cobas"] __license__ = "GPL2" __version__ = "1.0.0" __maintainer__ = "Federico Asara" __email__ = "federico.asara@gmail.com" __status__ = "Production" from numpy import array from Item import * """This class represent a generic waveform. You must implement the generate and generatePeriod methods in order to subclass this. Refer to their docstrings.""" class Waveform(Item): def get(self, what): """Get an attribute value. Supports Pyro4.""" return self.__getattribute__(what) def set(self, what, how): """Set an attribute value. Supports Pyro4.""" self.__setattr__(what, how) def generate(self, nbits, frequency, samples, fsr): """A waveform must provide this method. Create a numeric array which represents the wave.""" return array([]) def generatePeriod(self, nbits, samples, fsr): """A waveform must provide this method. Create a numeric array which represents a period of the wave.""" return array([]) def __init__(self, *args, **kwargs): Item.__init__(self, *args, **kwargs) def getType(self): return type(self)
true
47f8635b536fb7ad614874d5250f29811a2f619f
Python
PolinaAlexandr/python-numeric-types-exercise
/main_test.py
UTF-8
1,354
3.421875
3
[]
no_license
import unittest import main class MainTest(unittest.TestCase): def test_square_area(self): self.assertEqual(main.square_area(5), 25) def test_rectangle_area(self): self.assertEqual(main.rectangle_area(3, 4), 12) def test_triangle_area(self): self.assertEqual(main.triangle_area(2, 3, 4), 24) def test_parallelogram_area_sin(self): self.assertEqual(main.parallelogram_area_sin(2, 4, 60), 480) def test_parallelogram_area_base(self): self.assertEqual(main.parallelogram_area_base(3, 6), 18) def test_degree_to_radians(self): result = main.degree_to_radians(57.29577951308232) expected = 1.0 self.assertTrue(self.is_close(result, expected)) @staticmethod def is_close(a, b, rel_tol=1e-13, abs_tol=0.0): return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def test_radians_to_degrees(self): result = main.radians_to_degrees(1.0) expected = 57.29577951308232 self.assertTrue(self.is_close(result, expected)) def test_square_equation_roots(self): self.assertEqual(main.square_equation_roots(1, 2, -48), (6.0, -8.0)) def test_leap_year(self): self.assertTrue(main.is_leap(2004)) if __name__ == '__main__': unittest.main()
true
bd299caada8e0c8e526eb123af0a4eaf03f4e110
Python
mlavarias/PFB2017
/rnaseq/countingkmers.py
UTF-8
606
2.78125
3
[]
no_license
import re import sys from Bio import SeqIO kmer_length = 8 #sys.argv[1] filename = sys.argv[1] top_kmers = 10 # sys.argv[3] kmerdict = {} def count_kmers(kmerdict, sequence): for i in range(0,len(sequence)-kmer_length+1): kmer = sequence[i:i+kmer_length] if kmer in kmerdict: kmerdict[kmer] += 1 else: kmerdict[kmer] = 1 for record in SeqIO.parse(filename, 'fastq'): # print(record.seq) count_kmers(kmerdict, str(record.seq)) top_sorted = sorted(kmerdict, key= lambda x:kmerdict[x], reverse = True)[0:top_kmers+1] for item in top_sorted: print('{}\t{}'.format(item, kmerdict[item]))
true
a284b512112268f258fbe8c390a0e5286c0f9535
Python
Natquuu/BirdClassification
/gmms/GMM5.py
UTF-8
3,771
2.796875
3
[]
no_license
import numpy as np from scipy.stats import norm import scipy.stats as stats import matplotlib.pyplot as plt import matplotlib def plot_distributions(data, data_sampled, mu, sigma, K, color="green", color_sampled="red", name='plot.png'): matplotlib.rcParams['text.usetex'] = True plt.rcParams.update({'font.size': 16}) data_sampled = np.clip(data_sampled, np.min(data), np.max(data)) plt.hist(data, bins=15, color=color, alpha=0.45, density=True) plt.hist(data_sampled, bins=15, range=(np.min(data), np.max(data)), color=color_sampled, alpha=0.45, density=True) for k in range(K): curve = np.linspace(mu[k] - 10 * sigma[k], mu[k] + 10 * sigma[k], 100) color = np.random.rand(3) plt.plot(curve, stats.norm.pdf( curve, mu[k], sigma[k]), color=color, linestyle="--", linewidth=3) plt.ylabel(r"$p(x)$") plt.xlabel(r"$x$") plt.tight_layout() plt.xlim(20, 120) plt.savefig(name, dpi=200) plt.show() def plot_likelihood(nll_list): matplotlib.rcParams['text.usetex'] = True plt.rcParams.update({'font.size': 16}) plt.plot(np.arange(len(nll_list)), nll_list, color="black", linestyle="--", linewidth=3) plt.ylabel(r"(negative) log-likelihood") plt.xlabel(r"iteration") plt.tight_layout() plt.xlim(0, len(nll_list)) plt.savefig('nll.png', dpi=200) plt.show() def sampler(pi, mu, sigma, N): data = list() for n in range(N): k = np.random.choice(len(pi), p=pi) sample = np.random.normal(loc=mu[k], scale=sigma[k]) data.append(sample) return data def main(): data = np.genfromtxt('./bdims.csv', delimiter=',', skip_header=1) # [:,-2] data = data[:, -3] N = data.shape[0] K = 2 # two components GMM tot_iterations = 100 # stopping criteria # Step-1 (Init) mu = np.random.uniform(low=42.0, high=95.0, size=K) sigma = np.random.uniform(low=5.0, high=10.0, size=K) pi = np.ones(K) * (1.0 / K) # mixing coefficients r = np.zeros([K, N]) # responsibilities nll_list = list() # store the neg log-likelihood for iteration in range(tot_iterations): # Step-2 (E-Step) for k in range(K): r[k, :] = pi[k] * norm.pdf(x=data, loc=mu[k], scale=sigma[k]) r = r / np.sum(r, axis=0) # [K,N] -> [N] # Step-3 (M-Step) N_k = np.sum(r, axis=1) # [K,N] -> [K] for k in range(K): # update means mu[k] = np.sum(r[k, :] * data) / N_k[k] # update variances numerator = r[k] * (data - mu[k]) ** 2 sigma[k] = np.sqrt(np.sum(numerator) / N_k[k]) # update weights pi = N_k / N likelihood = 0.0 for k in range(K): likelihood += pi[k] * norm.pdf(x=data, loc=mu[k], scale=sigma[k]) nll_list.append(-np.sum(np.log(likelihood))) # Check for invalid negative log-likelihood (NLL) # The NLL is invalid if NLL_t-1 < NLL_t # Note that this can happen for round-off errors. if (len(nll_list) >= 2): if (nll_list[-2] < nll_list[-1]): raise Exception("[ERROR] invalid NLL: " + str(nll_list[-2:])) print("Iteration: " + str(iteration) + "; NLL: " + str(nll_list[-1])) print("Mean " + str(mu) + "\nStd " + str(sigma) + "\nWeights " + str(pi) + "\n") # Step-4 (Check) if (iteration == tot_iterations - 1): break # check iteration plot_likelihood(nll_list) data_gmm = sampler(pi, mu, sigma, N=1000) plot_distributions(data, data_gmm, mu, sigma, K, color="green", color_sampled="red", name="plot_sampler.png") if __name__ == "__main__": main()
true
78cb19d858d9bf3bfd2e14b1583873c04fdb1abb
Python
vlbos/bos.oracle-test
/oracle.testenv/test/airdropburn/unionset.py
UTF-8
2,941
2.78125
3
[]
no_license
# coding:utf-8 import csv import re import json airdrop_accounts_file = './dataset/accounts_info_bos_snapshot.airdrop.normal.csv' airdrop_msig_accounts_file = './dataset/accounts_info_bos_snapshot.airdrop.msig.json' nonactive_accounts_file = './dataset/nonactivated_bos_accounts.txt' nonactive_msig_accounts_file = './dataset/nonactivated_bos_accounts.msig' nonactive_airdrop_accounts_file = "./unactive_airdrop_accounts.csv" # txt def loadtxt(txt): f = open(txt, 'r') sourceInline = f.readlines() dataset = [] for line in sourceInline: temp1 = line.strip('\x00') temp1 = temp1.strip('\n') if (temp1 == ''): continue dataset.append(temp1.strip()) f.close return dataset # csv def loadcsv(csvFile): f = open(csvFile, 'r') reader = csv.reader(f) csvset = {} csvlist = [] for item in reader: csvset[item[4]] = item[5] csvlist.append(item[4]) f.close() return csvset, csvlist def unionset(): # 读取txt获取主网未激活账户 tacclist = loadtxt(nonactive_accounts_file) # 读取空投账户 csv集合 caccset, cacclist = loadcsv(airdrop_accounts_file) # 创建数值集合 tc = set(tacclist) & set(cacclist) resCsv = [] sumBurn = 0 # 构造交集结果 for item in tc: resCsv.append([item, caccset[item]]) sumBurn += float(caccset[item].replace('BOS', '').strip()) print('len of unactive', len(resCsv)) msig, sumBurnmsig = intersectmsigset() resCsv += msig sumBurn += sumBurnmsig # 写结果 with open(nonactive_airdrop_accounts_file, 'w') as cfile: writer = csv.writer(cfile) for item in resCsv: writer.writerow(item) cfile.close() print('unactive airdrop accounts count:', len(resCsv)) print('unactive airdrop accounts quantity:', sumBurn) def msigfromjson(): # 由于文件中有多行,直接读取会出现错误,因此一行一行读取 file = open(airdrop_msig_accounts_file, 'r', encoding='utf-8') csvset = {} lst = [] for line in file.readlines(): item = json.loads(line) csvset[item['bos_account']] = item['bos_balance'] lst.append(item['bos_account']) file.close() return csvset,lst def intersectmsigset(): # 读取csv集合 msiglist = loadtxt(nonactive_msig_accounts_file) accquan,unactive_list = msigfromjson() # 创建数值集合 tc = set(msiglist) & set(unactive_list) print('unactive airdrop msig accounts count:', len(tc)) resCsv = [] sumBurn = 0 # 构造交集结果 for item in tc: resCsv.append([item, accquan[item]]) sumBurn += float(accquan[item].replace('BOS', '').strip()) print('unactive airdrop msig accounts count:', len(resCsv)) print('unactive airdrop msig accounts quantity:', sumBurn) return resCsv, sumBurn unionset()
true
3ba0eb687948eb4db2fe69d8b1aafc9d816ccfb5
Python
goareum93/K-digital-training
/01_Python/07_string/string_trans.py
UTF-8
523
4.34375
4
[]
no_license
# # replace() # # text = 'Java Programming' # text = text.replace('Java', 'Python') # print(text) # # # 대문자/소문자 변환 # # upper() lower() capitalize() title() swapcase() # text = 'java programming is Fun' # print(text.upper()) # print(text.lower()) # print(text.title()) # print(text.capitalize()) # print(text.swapcase()) # 공백문자 제거 strip(), lstrip(), rstrip() text = ' java programming is Fun ' print(text + '---') print(text.strip()) print(text.lstrip() ) print(text.rstrip() + '---')
true
b55dbe1c09f1f37308ab23697e81fd9241f76adc
Python
robgoyal/BookSolutions
/PracticalProgramming/Chapter15/code_samples.py
UTF-8
450
3.4375
3
[]
no_license
def double_preceding(values): if values != []: temp = values[0] values[0] = 0 for i in range(1, len(values)): double = 2 * temp temp = values[i] values[i] = double def average(values): count, total = 0, 0 for value in values: if value is not None: total += value count += 1 if count == 0: return total return total / count
true
493c343957b9e6ba6560ef8c8950083e77313792
Python
kitakou0313/cracking-the-code-interview
/cracking-the-code-interview/chap3_3.py
UTF-8
1,534
3.65625
4
[]
no_license
import unittest # 固定版で実装 class MultiStack(): def __init__(self, capacity): self.stacks = [[]] self.capacity = capacity def push(self, val): if len(self.stacks[-1]) == self.capacity: self.stacks.append([]) self.stacks[-1].append(val) def pop(self): havingStackInd = -1 while not(havingStackInd == -len(self.stacks) or len(self.stacks[havingStackInd]) != 0): havingStackInd -= 1 return self.stacks[havingStackInd].pop() if len(self.stacks[havingStackInd]) != 0 else None def pop_at(self, stackAt): return self.stacks[stackAt].pop() if len(self.stacks[stackAt]) != 0 else None class Test(unittest.TestCase): def test_multi_stack(self): stack = MultiStack(3) stack.push(11) stack.push(22) stack.push(33) stack.push(44) stack.push(55) stack.push(66) stack.push(77) stack.push(88) self.assertEqual(stack.pop(), 88) self.assertEqual(stack.pop_at(1), 66) self.assertEqual(stack.pop_at(0), 33) self.assertEqual(stack.pop_at(1), 55) self.assertEqual(stack.pop_at(1), 44) self.assertEqual(stack.pop_at(1), None) stack.push(99) self.assertEqual(stack.pop(), 99) self.assertEqual(stack.pop(), 77) self.assertEqual(stack.pop(), 22) self.assertEqual(stack.pop(), 11) self.assertEqual(stack.pop(), None) if __name__ == "__main__": unittest.main()
true
012955a73c2d0d14c1196f517ea076df37876a99
Python
mdhvkothari/Python-Program
/leetCode/Single Number III.py
UTF-8
348
3.015625
3
[]
no_license
class Solution: def singleNumber(self, nums: List[int]) -> List[int]: dict = {} result= [] for num in nums: if num in dict: dict[num] +=1 else: dict[num] = 1 for i in dict: if dict[i] == 1: result.append(i) return result
true
554d6649ff94bd88b17fe2a56ab6b943e374f8fe
Python
biswasalex410/Python_1st_Part_Subeen_Book
/list add & multiplication operation.py
UTF-8
241
3.6875
4
[]
no_license
li1 = [1, 2, 3] li2 = [4, 5, 6] li = li1 + li2 print(li) li1 = [1, 2, 3] li2 = li1 * 3 print(li2) li = ["a", "b", "c"] print(li) str = "".join(li) print(str) str = ",".join(li) print(str) str = "-".join(li) print(str)
true
d3b72b72c5387ede0d708e9dc0d157a850209558
Python
aelkikhia/portal
/portal/input/jsonstream.py
UTF-8
2,660
2.71875
3
[ "Apache-2.0" ]
permissive
from portal.input.jsonep import JsonEventHandler, JsonEventParser class JsonMessageHandler(object): def header(self, key, value): pass def body(self, body): pass MESSAGE_ROOT = 1 class JsonMessageAssembler(JsonEventHandler): def __init__(self, message_handler): self.message_handler = message_handler self.tree_depth = 0 self.object_stack = list() self.component_name = None self.reading_headers = True self.current_field = None self.current_object = None self.string_buffer = '' def _pop_tree(self): finished = self.object_stack.pop() if self.object_stack: self.current_object = self.object_stack[-1] if self._in_message_root(): self._hand_off(finished) def _assign(self, tree_object): if self.current_field is not None: self.current_object[self.current_field] = tree_object self.current_field = None else: self.current_object.append(tree_object) def _in_message_root(self): return len(self.object_stack) == MESSAGE_ROOT def _hand_off(self, message): if self.reading_headers: self.message_handler.header(self.component_name, message) else: self.message_handler.body(message) def begin_object(self): tree_object = dict() if self.object_stack: self._assign(tree_object) else: self.reading_headers = True self.object_stack.append(tree_object) self.current_object = tree_object def end_object(self): self._pop_tree() def begin_array(self): tree_object = list() if self.object_stack: self._assign(tree_object) else: raise Exception('A JSON stream message may not begin with an array.') self.object_stack.append(tree_object) self.current_object = tree_object def end_array(self): self._pop_tree() def fieldname(self, name): if self._in_message_root(): if name == 'body': self.reading_headers = False self.component_name = name self.current_field = name def string_value_part(self, string): self.string_buffer += string def string_value_end(self, string): self.string_value_part(string) self._assign(self.string_buffer) self.string_buffer = '' def number_value(self, value): self._assign(value) def boolean_value(self, value): self._assign(value) def null_value(self): self._assign(None)
true
4f9635d60dcda56f2e1bad747cf280facea897e2
Python
christmo/zari
/functions/telegram/impl.py
UTF-8
8,223
2.515625
3
[]
no_license
from services.sentimiento import Sentimiento from telegram.productos import consultar_productos, menu_productos, promociones, validar_parametros_producto from database.command import limpiar_carrito, pagar_carrito from database.persitencia import save_shopping_car, save_tarjeta_usuario, save_usuario from entities.df_context import get_carrito_context, get_user_context from entities.df_request import get_name, get_parameter, get_product_from_params, get_username_telegram, get_product_from_params, user_parameters from entities.df_response import DFResponse from database import consultas as query from entities.usuario import Usuario def saludo(request): """ Procesa la respuesta del Intent Welcome de saludo """ response = DFResponse(request) bot_response = request["queryResult"]["fulfillmentText"] name = get_name(request) username = get_username_telegram(request) print(f"username: {username}") if username != None: usuario = query.usuario(username) if usuario != None and len(usuario.get_nombre()) > 1: response.text(bot_response.replace('{name}', usuario.get_nombre())) response.context_usuario(usuario) return response.to_json() nombre = name if name != None else username response.text(bot_response.replace('{name}', nombre)) return response.to_json() def agregar_producto(request): """ Agregar producto al carrito de compras """ response = DFResponse(request) user = get_user_context(request) if user != None: producto = get_product_from_params(request) car = save_shopping_car(user, producto) response.text( f"Productos en el carrito {len(car.detalles)} por un total de {car.total}€") response.context_shoppingcar(car) response.inline_buttons("🤔 Te puedo llevar a ", [ "💶 Pagar", "🛒 Ver Carrito"]) else: print('Enviar a registrar al cliente') response.text( "Necesitamos registrarte como usuario para agregar productos a tu carrito, " "completa las preguntas para poderte dar mejores recomendaciones " "y ajustar las búsquedas a tu información solo tardará 1 minuto." '\n\nPara empezar tu registro dime "zari agregame como cliente"' '\n(Si al iniciar no quieres continuar siempre me puedes decir "cancelar" y detendré las preguntas)' ) response.inline_buttons("🤔 Te puedo llevar a ", [ "📄 Registrarte", "🛍️ Promociones"]) return response.to_json() def eliminar_carrito(request): """ Proceso para desactivar el carrito de compras enviado, y generar uno nuevo """ response = DFResponse(request) car = get_carrito_context(request) result = limpiar_carrito(car.id_car) if result: response.text( "Carrito de compras listo para recibir nuevos productos!") else: response.text( "Tu carrito de compras no se ha podido limpiar, intenta nuevamente!") return response.to_json() def consultar_carrito(request): """ Consultar los productos del carrito y el total a pagar """ response = DFResponse(request) user = get_user_context(request) if user != None: productos = query.shopping_cart(user) response.shopping_cart_text(productos) response.inline_buttons("🤔 Te puedo llevar a ", ["🛒 Limpiar Carrito", "💶 Pagar"]) else: response.register_event() return response.to_json() def tarjetas(request): """ Consultar las tarjetas del cliente para el pago """ response = DFResponse(request) user = get_user_context(request) if user != None: user = query.tarjetas(user) if len(user.get_tarjetas()) > 0: response.quick_replies( 'Con que tarjeta quieres pagar?', user.get_tarjetas() ) else: response.register_card_event(user) else: response.register_event() return response.to_json() def comprar(request): """ Proceso para comprar todos los productos del carrito """ response = DFResponse(request) user = get_user_context(request) if user != None: orden = pagar_carrito(user) if orden != None: tarjeta = get_parameter(request, 'tarjeta') response.text( f"Se ha procesado el pago con tú tarjeta terminada en {tarjeta}, " f"el número de orden es {orden.carrito}, tus productos se entregarán el {orden.fecha_formateada()} " f"en tu dirección registrada: {orden.direccion}" ) response.inline_buttons("🤔 Si quieres puedes calificarme: ", ["⭐ Experiencia", "🛍️ Promociones"]) else: response.text("No haz agregado nada a tu carrito, no se hizo ningún cargo a tu tarjeta.") else: response.register_event() return response.to_json() def registrar_usuario(request): """ Registrar Usuario en el sistema """ response = DFResponse(request) user = user_parameters(request) user = save_usuario(user) usuario = Usuario.parse_usuario(user) response.context_usuario(usuario) response.text( "Genial, ahora puedes agregar productos a tu carrito!!!" ) response.inline_buttons("🤔 Te puedo llevar a", ["🛍️ Promociones"]) return response.to_json() def feedback_sentimiento(request): response = DFResponse(request) comentario = get_parameter(request, 'comentario') sentimiento = Sentimiento(comentario) resultado = sentimiento.clasificar() if resultado == 'positivo': response.sentimiento_positivo_event() if resultado == 'negativo': response.sentimiento_negativo_event() if resultado == 'neutro': response.sentimiento_neutro_event() print(f"sentimiento: {resultado}") return response.to_json() def registrar_tarjeta(request): """ Registrar tarjeta del usuario """ response = DFResponse(request) user = get_user_context(request) tarjeta = get_parameter(request, 'tarjeta') save_tarjeta_usuario(user, tarjeta) response.text( "Genial, ahora ya puedes pagar lo que quieras con tu tarjeta!!!" ) return response.to_json() def gateway(request): """ Unifica la salida de los intents procesados con Webhook Telegram """ response = "" if request["queryResult"]["intent"] != None: intent = request["queryResult"]["intent"]["displayName"] print(f"Intent invocado Telegram: {intent}") if intent == "Welcome": response = saludo(request) if intent == "AgregarProducto": response = agregar_producto(request) if intent == "EliminarCarrito": response = eliminar_carrito(request) if intent == "VerCarrito": response = consultar_carrito(request) if intent == "Comprar": response = tarjetas(request) if intent == "Comprar-tarjeta": response = comprar(request) if intent == "Comprar-registrar-tarjeta": response = registrar_tarjeta(request) if intent == "RegistrarUsuario": response = registrar_usuario(request) if intent == "SolicitarProducto" or intent == "parametros-producto-talla" \ or intent == "parametros-producto-numero" or intent == "producto-root": response = consultar_productos(request) if intent == "parametros-producto": response = validar_parametros_producto(request) if intent == "Productos" or intent == "Ayuda": response = menu_productos(request) if intent == "Productos": response = menu_productos(request) if intent == "Experiencia-sentimiento": response = feedback_sentimiento(request) if intent == "Promociones": response = promociones(request) return response
true
014225a5be06a12304a51d388792de2dca7a911a
Python
big0ren/MalwareInvestigationTool
/Services/TimerCountDown.py
UTF-8
156
2.921875
3
[]
no_license
import time for t in range(120,-1,-1): minutes = t / 60 seconds = t % 60 print "%d:%2d" % (minutes,seconds) # Python v2 only time.sleep(1.0)
true
a6cb4bd1c560abaad1a0deaffc2214891c6453fa
Python
aqlaboratory/openfold
/openfold/model/embedders.py
UTF-8
9,577
2.53125
3
[ "Apache-2.0", "CC-BY-4.0", "LicenseRef-scancode-other-permissive", "CC-BY-NC-4.0" ]
permissive
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from typing import Tuple, Optional from openfold.model.primitives import Linear, LayerNorm from openfold.utils.tensor_utils import add, one_hot class InputEmbedder(nn.Module): """ Embeds a subset of the input features. Implements Algorithms 3 (InputEmbedder) and 4 (relpos). """ def __init__( self, tf_dim: int, msa_dim: int, c_z: int, c_m: int, relpos_k: int, **kwargs, ): """ Args: tf_dim: Final dimension of the target features msa_dim: Final dimension of the MSA features c_z: Pair embedding dimension c_m: MSA embedding dimension relpos_k: Window size used in relative positional encoding """ super(InputEmbedder, self).__init__() self.tf_dim = tf_dim self.msa_dim = msa_dim self.c_z = c_z self.c_m = c_m self.linear_tf_z_i = Linear(tf_dim, c_z) self.linear_tf_z_j = Linear(tf_dim, c_z) self.linear_tf_m = Linear(tf_dim, c_m) self.linear_msa_m = Linear(msa_dim, c_m) # RPE stuff self.relpos_k = relpos_k self.no_bins = 2 * relpos_k + 1 self.linear_relpos = Linear(self.no_bins, c_z) def relpos(self, ri: torch.Tensor): """ Computes relative positional encodings Implements Algorithm 4. Args: ri: "residue_index" features of shape [*, N] """ d = ri[..., None] - ri[..., None, :] boundaries = torch.arange( start=-self.relpos_k, end=self.relpos_k + 1, device=d.device ) reshaped_bins = boundaries.view(((1,) * len(d.shape)) + (len(boundaries),)) d = d[..., None] - reshaped_bins d = torch.abs(d) d = torch.argmin(d, dim=-1) d = nn.functional.one_hot(d, num_classes=len(boundaries)).float() d = d.to(ri.dtype) return self.linear_relpos(d) def forward( self, tf: torch.Tensor, ri: torch.Tensor, msa: torch.Tensor, inplace_safe: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: tf: "target_feat" features of shape [*, N_res, tf_dim] ri: "residue_index" features of shape [*, N_res] msa: "msa_feat" features of shape [*, N_clust, N_res, msa_dim] Returns: msa_emb: [*, N_clust, N_res, C_m] MSA embedding pair_emb: [*, N_res, N_res, C_z] pair embedding """ # [*, N_res, c_z] tf_emb_i = self.linear_tf_z_i(tf) tf_emb_j = self.linear_tf_z_j(tf) # [*, N_res, N_res, c_z] pair_emb = self.relpos(ri.type(tf_emb_i.dtype)) pair_emb = add(pair_emb, tf_emb_i[..., None, :], inplace=inplace_safe ) pair_emb = add(pair_emb, tf_emb_j[..., None, :, :], inplace=inplace_safe ) # [*, N_clust, N_res, c_m] n_clust = msa.shape[-3] tf_m = ( self.linear_tf_m(tf) .unsqueeze(-3) .expand(((-1,) * len(tf.shape[:-2]) + (n_clust, -1, -1))) ) msa_emb = self.linear_msa_m(msa) + tf_m return msa_emb, pair_emb class RecyclingEmbedder(nn.Module): """ Embeds the output of an iteration of the model for recycling. Implements Algorithm 32. """ def __init__( self, c_m: int, c_z: int, min_bin: float, max_bin: float, no_bins: int, inf: float = 1e8, **kwargs, ): """ Args: c_m: MSA channel dimension c_z: Pair embedding channel dimension min_bin: Smallest distogram bin (Angstroms) max_bin: Largest distogram bin (Angstroms) no_bins: Number of distogram bins """ super(RecyclingEmbedder, self).__init__() self.c_m = c_m self.c_z = c_z self.min_bin = min_bin self.max_bin = max_bin self.no_bins = no_bins self.inf = inf self.linear = Linear(self.no_bins, self.c_z) self.layer_norm_m = LayerNorm(self.c_m) self.layer_norm_z = LayerNorm(self.c_z) def forward( self, m: torch.Tensor, z: torch.Tensor, x: torch.Tensor, inplace_safe: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: m: First row of the MSA embedding. [*, N_res, C_m] z: [*, N_res, N_res, C_z] pair embedding x: [*, N_res, 3] predicted C_beta coordinates Returns: m: [*, N_res, C_m] MSA embedding update z: [*, N_res, N_res, C_z] pair embedding update """ # [*, N, C_m] m_update = self.layer_norm_m(m) if(inplace_safe): m.copy_(m_update) m_update = m # [*, N, N, C_z] z_update = self.layer_norm_z(z) if(inplace_safe): z.copy_(z_update) z_update = z # This squared method might become problematic in FP16 mode. bins = torch.linspace( self.min_bin, self.max_bin, self.no_bins, dtype=x.dtype, device=x.device, requires_grad=False, ) squared_bins = bins ** 2 upper = torch.cat( [squared_bins[1:], squared_bins.new_tensor([self.inf])], dim=-1 ) d = torch.sum( (x[..., None, :] - x[..., None, :, :]) ** 2, dim=-1, keepdims=True ) # [*, N, N, no_bins] d = ((d > squared_bins) * (d < upper)).type(x.dtype) # [*, N, N, C_z] d = self.linear(d) z_update = add(z_update, d, inplace_safe) return m_update, z_update class TemplateAngleEmbedder(nn.Module): """ Embeds the "template_angle_feat" feature. Implements Algorithm 2, line 7. """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: Final dimension of "template_angle_feat" c_out: Output channel dimension """ super(TemplateAngleEmbedder, self).__init__() self.c_out = c_out self.c_in = c_in self.linear_1 = Linear(self.c_in, self.c_out, init="relu") self.relu = nn.ReLU() self.linear_2 = Linear(self.c_out, self.c_out, init="relu") def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: [*, N_templ, N_res, c_in] "template_angle_feat" features Returns: x: [*, N_templ, N_res, C_out] embedding """ x = self.linear_1(x) x = self.relu(x) x = self.linear_2(x) return x class TemplatePairEmbedder(nn.Module): """ Embeds "template_pair_feat" features. Implements Algorithm 2, line 9. """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: c_out: Output channel dimension """ super(TemplatePairEmbedder, self).__init__() self.c_in = c_in self.c_out = c_out # Despite there being no relu nearby, the source uses that initializer self.linear = Linear(self.c_in, self.c_out, init="relu") def forward( self, x: torch.Tensor, ) -> torch.Tensor: """ Args: x: [*, C_in] input tensor Returns: [*, C_out] output tensor """ x = self.linear(x) return x class ExtraMSAEmbedder(nn.Module): """ Embeds unclustered MSA sequences. Implements Algorithm 2, line 15 """ def __init__( self, c_in: int, c_out: int, **kwargs, ): """ Args: c_in: Input channel dimension c_out: Output channel dimension """ super(ExtraMSAEmbedder, self).__init__() self.c_in = c_in self.c_out = c_out self.linear = Linear(self.c_in, self.c_out) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: [*, N_extra_seq, N_res, C_in] "extra_msa_feat" features Returns: [*, N_extra_seq, N_res, C_out] embedding """ x = self.linear(x) return x
true
476ac0415ea078851ddaf5e0a1af5e9d0c794735
Python
AJaafer/1.Python-Tutorial-for-Beginners-Full-Course-2019
/36.Return statement.py
UTF-8
64
2.859375
3
[]
no_license
def square(number): return number * number print(square(9))
true
14cc623fd920cb20d689d5306a0f72ef6dc6d96b
Python
WPrendota/WordFrequencyFaster
/word_frequency_faster.py
UTF-8
1,771
3.359375
3
[]
no_license
import time from argparse import ArgumentParser from OperationsOnLinesInDocument import OperationsOnLinesInDocument from OperationsOnWordsInDocument import OperationsOnWordsInDocument # Main function def main(args): if args.w: if args.p: oow = OperationsOnWordsInDocument(args.w, 'utf8') for word in oow.file_frequency_word(): print(word) if args.c: oow = OperationsOnWordsInDocument(args.w, 'utf8') print(oow.file_frequency_word()) if not args.c and not args.p: oow = OperationsOnWordsInDocument(args.w, 'utf8') print(oow.file_word_counter()) if args.l: ool = OperationsOnLinesInDocument(args.l, "utf8") print(ool.file_line_counter()) # Argument Parser: def arg_pars(): parser = ArgumentParser(description='Text document finder.') parser.add_argument('-w', type=str, help='Print number of all words from a text document with utf8 encoding. Usage: [-w][file_name]') parser.add_argument('-p', action='store_true', help='Print all words from word searcher. Usage: [-w][file_name][-p]') parser.add_argument('-c', action='store_true', help='Print all words with frequency from word searcher. Usage: [-w][file_name][-c]') parser.add_argument('-l', help='Print number of all lines from a text document with utf8 encoding. Usage: [-l][file_name]') return parser.parse_args() if __name__ == "__main__": start_time = time.time() main(arg_pars()) #Parsed arguments are moved to main function. elapsed_time = time.time() - start_time print(elapsed_time) #Printing time of program running.
true
e67f358d4d81278dced18c52effc9650aad3c94c
Python
Pavlmir/python-basics-geekbr
/Lesson_2_types_and_operations/les_2_task2.py
UTF-8
946
4.4375
4
[]
no_license
# 2. Для списка реализовать обмен значений соседних элементов, т.е. # Значениями обмениваются элементы с индексами 0 и 1, 2 и 3 и т.д. # При нечетном количестве элементов последний сохранить на своем месте. # Для заполнения списка элементов необходимо использовать функцию input(). array = [] for i in range(1, 10): array.append(int(input(f"Введите - {i}-ое значение списка: "))) print(f"Текущий список - {array}") if len(array) % 2 == 0: len_array = len(array) # четное else: len_array = len(array) - 1 # нечетное for i in range(0, len_array, 2): x = array[i] array[i] = array[i + 1] array[i + 1] = x print(f"Итоговый список - {array}")
true
d9d381b1ecbc86e933c63274a9945fa8ba4e1914
Python
shivasitharaman/python
/py3.py
UTF-8
116
3.625
4
[]
no_license
num1 = 50 num2 = 3 div = int(num1) / int(num2) print('The div of {0} and {1} is {2}'.format(num1, num2, div))
true
0e1fd7888fb2d3c6d5de7415812ab928d475006d
Python
apple/swift-lldb
/packages/Python/lldbsuite/test/python_api/breakpoint/TestBreakpointAPI.py
UTF-8
2,515
2.546875
3
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
""" Test SBBreakpoint APIs. """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class BreakpointAPITestCase(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True @add_test_categories(['pyapi']) def test_breakpoint_is_valid(self): """Make sure that if an SBBreakpoint gets deleted its IsValid returns false.""" self.build() exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint on main.c by name 'AFunction'. breakpoint = target.BreakpointCreateByName('AFunction', 'a.out') #print("breakpoint:", breakpoint) self.assertTrue(breakpoint and breakpoint.GetNumLocations() == 1, VALID_BREAKPOINT) # Now delete it: did_delete = target.BreakpointDelete(breakpoint.GetID()) self.assertTrue( did_delete, "Did delete the breakpoint we just created.") # Make sure we can't find it: del_bkpt = target.FindBreakpointByID(breakpoint.GetID()) self.assertTrue(not del_bkpt, "We did delete the breakpoint.") # Finally make sure the original breakpoint is no longer valid. self.assertTrue( not breakpoint, "Breakpoint we deleted is no longer valid.") @add_test_categories(['pyapi']) def test_target_delete(self): """Make sure that if an SBTarget gets deleted the associated Breakpoint's IsValid returns false.""" self.build() exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint on main.c by name 'AFunction'. breakpoint = target.BreakpointCreateByName('AFunction', 'a.out') #print("breakpoint:", breakpoint) self.assertTrue(breakpoint and breakpoint.GetNumLocations() == 1, VALID_BREAKPOINT) location = breakpoint.GetLocationAtIndex(0) self.assertTrue(location.IsValid()) self.assertTrue(self.dbg.DeleteTarget(target)) self.assertFalse(breakpoint.IsValid()) self.assertFalse(location.IsValid())
true
4012b602f23e219e9757d4c121b7f60975930d95
Python
KBIbiopharma/pybleau
/pybleau/reporting/dash_reporter.py
UTF-8
3,034
2.71875
3
[ "MIT" ]
permissive
""" Class to drive the generation of a data report using Dash as the backend. """ import logging from uuid import uuid4 from flask import Flask import dash import dash_html_components as html from traits.api import Any, Bool, Int, List, Str from .base_reporter import BaseReporter from .section_report_element import SectionReportElement from .image_report_element import ImageReportElement logger = logging.getLogger(__name__) class DashReporter(BaseReporter): """ Base reporter object to generate a report targeting a specific backend. """ #: Flask WSGI application dash builds on flask_app = Any #: Dash top-level application object dash_app = Any #: Port to serve the fask application on port = Int(8053) #: List of CSS style sheets to style the web app stylesheets = List #: Whether to require authentication to access the webapp include_auth = Bool(False) # BaseReport attributes --------------------------------------------------- #: Backend for the reporter backend = Str("dash") #: Title of the report report_title = Str("New Dash Report") def generate_report(self): """ Initialize the report and insert all elements. """ self.initialize_report() self.insert_report_elements() def initialize_report(self): """ Initialize the report by creating a Dash app, adding logo & title. """ self.dash_app = dash.Dash( __name__, external_stylesheets=self.stylesheets, server=self.flask_app ) children = [] if self.report_logo: report_logo_element = ImageReportElement(self.report_logo, align="right").to_dash() children.extend(report_logo_element) if self.report_title: title_element = SectionReportElement(self.report_title, align='center').to_dash() children.extend(title_element) self.dash_app.layout = html.Div(children=children) def insert_report_elements(self): """ Insert all report elements specified. """ for element in self.report_elements: app_elements = element.to_report(self.backend) self.dash_app.layout.children.extend(app_elements) def open_report(self): """ Start the Dash server, and print server info. """ if self.include_auth: import dash_auth pw = str(uuid4()) logger.warning("Password for this session: {}".format(pw)) pass_pairs = [('jrocher', pw)] dash_auth.BasicAuth(self.dash_app, pass_pairs) self.dash_app.run_server(debug=True, port=self.port) # Traits initialization methods ------------------------------------------- def _stylesheets_default(self): return ['https://codepen.io/chriddyp/pen/bWLwgP.css'] def _flask_app_default(self): return Flask(__name__)
true
0289b816d0951aa76680a287a0252c9f7c41f46a
Python
didwns7347/algotest
/알고리즘문제/16566 카드게임 DFS.py
UTF-8
280
2.625
3
[]
no_license
n,m,k = map(int,input().split()) card=list(map(int,input().split())) draw=list(map(int,input().split())) check=[0 for _ in range(n+1)] def find(node): if check[node]==0: check[node]=1 return node return find(node+1) for num in draw: print(find(num+1))
true
bb9aadca4fb1595eb49bd805655e004cc013d9e9
Python
Aprameyo/Competitive-Programming
/CodeChef/ZCO Contest/ZCO14003.py
UTF-8
378
2.75
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Jan 8 22:48:10 2020 @author: Aprameyo """ import numpy as np Solution = [] SolSpace = [] N = int(input()) for i in range(0,N): temp = int(input()) Solution.append(temp) Solution_2 = sorted(Solution) for i in range(0,N): Solution_2[i] = Solution_2[i]*(N-i) ans = max(Solution_2) print(ans)
true
7da19d189ed2b9adf61011dc96d4c76adc82f347
Python
toshiakiasakura/rakutto_collect_project
/prj_input/pyqt5_basic/dist_gui/developing/3_exp_dist.py
UTF-8
5,882
2.609375
3
[]
no_license
# usr/bin/python3 # coding:utf-8 import sys import os import numpy as np import matplotlib.pyplot as plt from PyQt5 import QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import glob from PIL import Image from scipy.stats import norm from scipy.stats import expon def GetNDigit(v,n = 5): v = str(v) if len(v.replace(".","")) < n + 1: return(v) else: ind = 0 s = "" for i in range(1000): if v[i] == "." : s += v[i] continue else: s += v[i] ind += 1 if ind >= n: return(s) class Application(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.initUI() self.initFigure() self.UpdateFigure() self.initSlidebar() # initialize UI def initUI(self): # For FigureWidget self.FigureWidget = QtWidgets.QWidget(self) # make FigureLayout. This FigureLayout will be added by vbox. self.FigureLayout = QtWidgets.QVBoxLayout(self.FigureWidget) # delett margin self.FigureLayout.setContentsMargins(0,0,0,0) self.FileList = QtWidgets.QListWidget(self) # make ButtonsLayout self.ButtonWidget = QtWidgets.QWidget(self) self.SubWidget = QtWidgets.QWidget(self) # alinment self.setGeometry(0,0,900,600) self.FigureWidget.setGeometry(200,0,500,500) self.ButtonWidget.setGeometry(200,500,500,100) self.SubWidget.setGeometry(700,0,200,600) self.FileList.setGeometry(0,0,200,600) def initFigure(self): # make Figure self.Figure = plt.figure() # add Figure to FigureCanvas self.FigureCanvas = FigureCanvas(self.Figure) # add FigureCanvas to Layout self.FigureLayout.addWidget(self.FigureCanvas) self.axis = self.Figure.add_subplot(1,1,1) self.axis.plot([1,2],[2,3]) self.show() def initSlidebar(self): self.inputLine = QtWidgets.QLineEdit() self.outputLine = QtWidgets.QLineEdit() self.outputLine.setReadOnly(True) UpdateButton= QtWidgets.QPushButton("Update") UpdateButton.clicked.connect(self.UpdateGraph) UpdateButton.clicked.connect(self.GetResults) lineLayout = QtWidgets.QGridLayout() lineLayout.addWidget(QtWidgets.QLabel("tau"),0,0) lineLayout.addWidget(self.inputLine,0,1) lineLayout.addWidget(QtWidgets.QLabel("mean"),1,0) lineLayout.addWidget(self.outputLine,1,1) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(UpdateButton) buttonsLayout = QtWidgets.QHBoxLayout(self.ButtonWidget) buttonsLayout.addLayout(lineLayout) buttonsLayout.addLayout(vbox) #### for subwidget results ##### self.MeanDisplay = QtWidgets.QLineEdit() self.VarianceDisplay = QtWidgets.QLineEdit() self.MedianDisplay = QtWidgets.QLineEdit() SubLineLayout = QtWidgets.QGridLayout() SubLineLayout.addWidget(QtWidgets.QLabel("mean"),0,0) SubLineLayout.addWidget(self.MeanDisplay,0,1) SubLineLayout.addWidget(QtWidgets.QLabel("variance"),1,0) SubLineLayout.addWidget(self.VarianceDisplay,1,1) SubLineLayout.addWidget(QtWidgets.QLabel("Median"),2,0) SubLineLayout.addWidget(self.MedianDisplay,2,1) self.SubWidgetLayout = QtWidgets.QVBoxLayout(self.SubWidget) self.SubWidgetLayout.addLayout(SubLineLayout) def UpdateFigure(self): # delete previous figure self.FigureLayout.takeAt(0) self.Figure = plt.figure() self.axis = self.Figure.add_subplot(1,1,1) self.axis.plot([1,4],[4,1]) self.show() self.FigureCanvas = FigureCanvas(self.Figure) self.FigureLayout.addWidget(self.FigureCanvas) def UpdateGraph(self): # delete previous figure self.FigureLayout.takeAt(0) # release memory not to be heavy,and make figure plt.clf() self.Figure = plt.figure() # get random numbers from normal distribution text = self.inputLine.text() try: tau = float(text) except: QtWidgets.QMessageBox.about(self,"Error","Error Message\nput a value to parameter") return(0) ex = expon(scale=tau) x = np.linspace(ex.ppf(0.05),ex.ppf(0.95),1000) y = ex.pdf(x) # show the graph self.axis = self.Figure.add_subplot(1,1,1) self.axis.plot(x,y) self.axis.set_title("Exponential distribution") self.axis.set_xlabel(r"$\frac{1}{\tau}e^{-\frac{x}{tau}}$ ") self.show() self.FigureCanvas = FigureCanvas(self.Figure) self.FigureLayout.addWidget(self.FigureCanvas) def GetResults(self): text = self.inputLine.text() try: tau = float(text) except: QtWidgets.QMessageBox.about(self,"Error","Error Message\nput a value to parameter") return(0) self.MeanDisplay.setText(GetNDigit( tau)) self.VarianceDisplay.setText(GetNDigit(tau**2)) self.MedianDisplay.setText(GetNDigit(tau*np.log(2))) #this function is for reference def clearLayout(self, layout): if layout is not None: while layout.count(): item = layout.takeAt(0) widget = item.widget() if widget is not None: widget.deleteLater() else: self.clearLayout(item.layout()) if __name__=="__main__": app = QtWidgets.QApplication(sys.argv) qapp = Application() qapp.show() sys.exit(app.exec_())
true
7703031c73034b5c0389d03e78073de020a52765
Python
paiv/synasm
/synasm/asm.py
UTF-8
4,032
2.59375
3
[ "MIT" ]
permissive
import ast import array import base64 import fileinput import re import sys class SynasmError(Exception): pass token_rx = re.compile(r'^\s*((?:\s*(?:\-?\'(?:\\.|[^\'])+\'|[^\s;]+))*?)\s*(?:;.*?)?\s*$', re.M) label_rx = re.compile(r'^\s*(\w+\:)?\s*(.*?)\s*$', re.M) def parse(text): for tok in token_rx.findall(text): for label,instr in label_rx.findall(tok): if label: yield ':' + label[:-1] if instr: yield instr instr_rx = re.compile(r'^\s*(\w+)(.*?)\s*$') args_rx = re.compile(r'\s+(\-?\'(?:\\.|[^\'])+\'|[:-]?\w+)') op_table = { # name: code, nargs 'halt': (0, 0), 'set': (1, 2), 'push': (2, 1), 'pop': (3, 1), 'eq': (4, 3), 'gt': (5, 3), 'jmp': (6, 1), 'jt': (7, 2), 'jf': (8, 2), 'add': (9, 3), 'mult': (10, 3), 'mod': (11, 3), 'and': (12, 3), 'or': (13, 3), 'not': (14, 2), 'rmem': (15, 2), 'wmem': (16, 2), 'call': (17, 1), 'ret': (18, 0), 'out': (19, 1), 'in': (20, 1), 'noop': (21, 0), } def unescape(s): u = ast.literal_eval(s) return u if isinstance(u, str) else s def emit(asm, labels=None): def arg(x): if x[0] == '\'': assert x[-1] == '\'' x = unescape(x) if len(x) == 1: x = ord(x) return x elif x[0] == ':': if labels is not None: if x in labels: return labels[x] raise SynasmError('{} label not defined'.format(asm)) return x elif x[:2] == '-\'': assert x[3] == '\'' return -ord(x[2]) % 32768 elif x.isalpha(): return ord(x) - ord('a') + 32768 else: return int(x, 0) % 32768 def explode_str(code, i=1): if i >= len(code): yield code elif isinstance(code[i], str) and code[i][0] != ':': for x in code[i]: for y in explode_str(code[:i] + (ord(x),) + code[i+1:], i + 1): yield y else: for y in explode_str(code, i + 1): yield y name, args = instr_rx.findall(asm)[0] args = tuple(arg(x) for x in args_rx.findall(args) if x) op, n = op_table[name] code = (op,) + args[:n] if len(code) != n + 1: raise SynasmError('{} {} takes {} arguments'.format(asm, name, n)) for x in explode_str(code): yield x def step1(lines): if isinstance(lines, str): lines = lines.splitlines() return list(x for line in lines for x in parse(line)) def step2(ast): labels = dict() prog = [] for x in ast: if x[0] == ':': labels[x] = len(prog) else: prog.append(x) return (prog, labels) def step3(ast): lines, labels = ast asm = list(x for line in lines for x in emit(line)) runlen = [] size = 0 for instr in asm: runlen.append(size) size += len(instr) runlen.append(size) runlen.append(size) labels = {l:runlen[i] for l,i in labels.items()} asm = (x for line in lines for x in emit(line, labels)) return list(filter(None, asm)) def step4(asm): raw = array.array('H', (x for instr in asm for x in instr)) if sys.byteorder != 'little': raw.byteswap() return raw def assemble(text, verbose=False): ast = step1(text) ast = step2(ast) raw = step3(ast) if verbose: sys.stderr.write('{} instructions\n'.format(len(raw))) raw = step4(raw) if verbose: sys.stderr.write('{} bytes\n'.format(len(raw) * raw.itemsize)) return raw def assemble_files(files, outfile, encode=False, verbose=False): raw = assemble(fileinput.input(files), verbose=verbose) if encode: s = base64.b64encode(raw.tobytes()) w = 76 s = b'\n'.join(s[i:i+w] for i in range(0, len(s), w)) outfile.write(s + b'\n') else: raw.tofile(outfile)
true
bdcba38282e5767bf6adf2da937f2fe6ec1eca3c
Python
1047465356/Spider_Armies
/爬取高匿名代理IP/快代理+百度api检测.py
UTF-8
2,559
2.796875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- # @Author : Aiden # @Email : aidenlen@163.com # @Time : 2020-3-11 from logging import exception from os import write import requests from lxml import etree import time from fake_useragent import UserAgent # 文件名 filename='proxy.txt' # 代理容器 proxys_list = [] # 默认 True 开启代理检测(只生成可用proxy) check = True # 检测超时(秒) timeout = 0.2 # 爬取总页数 total_page = 5 def scrape_url(page): time.sleep(1) print('\n===========正在爬取第{}页数据============'.format(page)) url = 'https://www.kuaidaili.com/free/inha/{}'.format(page) headers = {'User-Agent': UserAgent(path='fake_useragent.json').random} try: response = requests.get(url, headers=headers) if response.status_code == 200: return response except Exception as e: print('Exception: {}, url: {}'.format(e, url)) def parse_html(response): tree = etree.HTML(response.text) trs = tree.xpath('//*[@id="list"]/table/tbody/tr') for tr in trs: ip_num = tr.xpath('./td[1]/text()')[0] ip_port = tr.xpath('./td[2]/text()')[0] ip_proxy = ip_num + ':' + ip_port if tr.xpath('./td[4]/text()')[0] == 'HTTP': proxy = {'http': 'http://' + ip_proxy} if tr.xpath('./td[4]/text()')[0] == 'HTTPS': proxy = {'https': 'https://' + ip_proxy} proxys_list.append(proxy) return proxys_list def check_ip(proxys): print('\n===============开启检测================') checked_proxys = [] for proxy in proxys: try: response = requests.get(url = 'https://www.baidu.com', proxies = proxy, timeout = timeout) if response.status_code == 200: checked_proxys.append(proxy) except Exception as e: print('Exception: {}, 检测不合格: {}'.format(e, proxy)) else: print('检测合格: {}'.format(proxy)) return checked_proxys def save_ip(proxys): with open(filename, 'a', encoding='utf-8') as file: for proxy in proxys: file.write(str(proxy) + '\n') print('保存成功: ', filename) if __name__ == '__main__': for page in range(1, total_page + 1): response = scrape_url(page) proxys = parse_html(response) #print(proxys) if check: checked_proxys = check_ip(proxys) save_ip(checked_proxys) else: save_ip(proxys)
true
f2838a80ebc23f373df1263aa4d87ac12fee5c81
Python
ripssr/Code-Combat
/7_Sarven_Desert/273-Operation_Killdeer/killdeer.py
UTF-8
223
3.140625
3
[ "MIT" ]
permissive
def shouldRun(): return hero.health < hero.maxHealth / 2 while True: if shouldRun(): hero.moveXY(75, 37) else: enemy = hero.findNearestEnemy() if (enemy): hero.attack(enemy)
true
841c1374df47c586be86f24746fa5eab50298a72
Python
burck1/tnt-battlesnake
/battlesnake/agent.py
UTF-8
3,862
2.6875
3
[]
no_license
import json import logging import os import time from collections import deque import numpy as np import tensorflow as tf from tensorflow.python.saved_model import loader from .constants import Direction from .snake import Snake from .data_to_state import data_to_state LOGGER = logging.getLogger("Agent") class Agent(Snake): def __init__(self, width: int, height: int, stacked_frames: int, path: str): self.width = width self.height = height self.stacked_frames = stacked_frames self.path = path self.observation_ph, self.q_values = self._load_graph() def _compute_actions(self, observation): q_values = self.sess.run(self.q_values, {self.observation_ph: [observation]})[0] actions = np.argsort(q_values)[::-1] return actions def _load_graph(self): with tf.Graph().as_default() as graph: self.sess = tf.Session(graph=graph) loader.load(self.sess, [tf.saved_model.tag_constants.SERVING], self.path) observation_ph = graph.get_tensor_by_name("snake_0/Placeholder:0") q_values = graph.get_tensor_by_name("snake_0/q_func/Sum:0") return observation_ph, q_values def on_reset(self): self.head_direction = Direction.up self.frames = deque( np.zeros([self.stacked_frames, self.width, self.height], dtype=np.uint8), self.stacked_frames, ) def get_direction(self, data): state = data_to_state(self.width, self.height, data, self.head_direction) self.frames.appendleft(state) observation = np.moveaxis(self.frames, 0, -1) actions = self._compute_actions(observation) self.head_direction = self._find_best_action(actions, data) if self.head_direction == Direction.up: return "up" elif self.head_direction == Direction.left: return "left" elif self.head_direction == Direction.down: return "down" else: return "right" def _find_best_action(self, actions, data): head = data["you"]["body"][0] head = [head["x"] + 1, head["y"] + 1] directions = [self._get_direction(i) for i in actions] next_coords = [self._get_next_head(direction, head) for direction in directions] low_health = data["you"]["health"] <= 75 if low_health: for direction, next_coord in zip(directions, next_coords): coord_is_food = any( [ np.array_equal(next_coord, [coord["x"], coord["y"]]) for coord in data["board"]["food"] ] ) if coord_is_food: return direction for direction, next_coord in zip(directions, next_coords): if not self._check_no_collision(next_coord, data): return direction else: print("Avoided collision! Trying other directions...") continue print("Giving up!") return directions[0] def _check_no_collision(self, head, data): collision = False for s in data["board"]["snakes"]: for body_idx, coord in enumerate(s["body"]): coord = [coord["x"] + 1, coord["y"] + 1] if s["id"] == data["you"]["id"] and body_idx == 0: continue else: if np.array_equal(head, coord): collision = True snake_head_x, snake_head_y = head[0], head[1] hit_wall = ( snake_head_x <= 0 or snake_head_y <= 0 or snake_head_x >= self.width - 1 or snake_head_y >= self.height - 1 ) if hit_wall: collision = True return collision
true
b1c8e56382eaac478d32f3d0e1d765cf2decbf95
Python
rockshaker/leetcodeme
/026_remove_duplicates_from_sorted_array.py
UTF-8
381
3.078125
3
[]
no_license
class Solution(object): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ if not nums: return 0 n = 0 for num in nums[1:]: if num != nums[n]: n += 1 nums[n] = num return n + 1 s = Solution() print s.removeDuplicates([1, 1, 2])
true
b31facace3152d307c1f708642304336be82f643
Python
Lucas-JS/PLP
/Estruturado/olimpiadas.py
UTF-8
4,366
3.375
3
[]
no_license
# Lucas de Jesus Silva - 20731356 - atividade 2 PLP - Estruturado #================================================================================================= # método para determinar vencedor do levantamento de pesos def levantamentoPeso (x,y): vencedor = "" if x["peso"] > y["peso"]: vencedor = x["nome"] else: vencedor = y["nome"] print("Vencedor do levantamento de pesos: "+vencedor) #================================================================================================= # Método para determinar o vencedor do Judo: def judo (x,y): vencedor = "" if x["ippon"] == True : return "Vencedor do judo: " + x["nome"] if y["ippon"] == True : return "Vencedor do judo: " + y["nome"] if x["wazari"] == y["wazari"] : if x["yuko"] > y["yuko"] : vencedor = x["nome"] else: vencedor = y["nome"] if x["wazari"] > y["wazari"]: vencedor = judocaX["nome"] else: vencedor = y["nome"] return "Vencedor do judô: " + vencedor #================================================================================================= # O calculo do vencedor da modalidade de arremesso de pesos foi separado nos 3 proximos metodos # encontra maior arremesso def maiorArremesso(a,b,c): maior = a; if b > maior : maior = b if c > maior : maior = c return maior # encontra segundo maior arremesso def segundoMaior(a,b,c): if a > b : if c > a : return a if b > c : return b else : if c > b : return b if a > c : return a return c # determina vencedor do arremesso de pesos def arremessoPesos (x, y): vencedor = "" xMaior = maiorArremesso(x["arr1"],x["arr2"],x["arr3"]) yMaior = maiorArremesso(y["arr1"],y["arr2"],y["arr3"]) xSegundo = segundoMaior(x["arr1"],x["arr2"],x["arr3"]) ySegundo = segundoMaior(y["arr1"],y["arr2"],y["arr3"]) if xMaior == yMaior: if xSegundo > ySegundo: vencedor = x["nome"] else: vencedor = y["nome"] else: if xMaior > yMaior: vencedor = x["nome"] else: vencedor = y["nome"] return "Vencedor do arremesso de pesos: "+vencedor #================================================================================================= # O calculo da vencedora da modalidade de ginastica artistica foi separado nos 4 proximos metodos # encontra menor nota da ginasta para descarte def menorNota(a,b,c,d,e): menor = a if b < menor : menor = b if c < menor : menor = c if d < menor : menor = d if e < menor : menor = e return menor; # soma notas da ginasta para calculo da media def somaNotas(a,b,c,d,e): return a + b + c + d + e # calcula media de ginasta, descartando menor nota def mediaGinasta(a,b,c,d,e): return (somaNotas(a,b,c,d,e) - menorNota(a,b,c,d,e))/4 # determina vencedora da ginastica artistica def ginasticaArtistica(x,y): vencedora = "" mediaX = mediaGinasta(x["n1"],x["n2"],x["n3"],x["n4"],x["n5"]) mediaY = mediaGinasta(y["n1"],y["n2"],y["n3"],y["n4"],y["n5"]) if mediaX > mediaY : vencedora = x["nome"] else: vencedora = y["nome"] return "Vencedora da ginástica artística: "+vencedora #================================================================================================= # Levantamento de pesos levantadorX = {"nome":"João","peso":310} levantadorY = {"nome":"Carlos","peso":320} levantamentoPeso(levantadorX,levantadorY) #================================================================================================= # Judo judocaX = {"nome":"Thiago","ippon":False,"wazari":6,"yuko":10} judocaY = {"nome":"Lucas","ippon":False,"wazari":5,"yuko":14} print(judo(judocaX,judocaY)) #================================================================================================= # Arremesso de pesos arremessadorX = {"nome":"José","arr1":20.53,"arr2":21.9,"arr3":21.5} arremessadorY = {"nome":"Luiz","arr1":20.78,"arr2":22.6,"arr3":22.7} print(arremessoPesos(arremessadorX,arremessadorY)) #================================================================================================= # Ginastica artistica ginastaX = {"nome":"Beatriz","n1":9.5,"n2":9.0,"n3":9.1,"n4":8.75,"n5":8.8} ginastaY = {"nome":"Lilian","n1":9.3,"n2":8.5,"n3":9.2,"n4":8.9,"n5":9.4} print(ginasticaArtistica(ginastaX,ginastaY))
true
7e3b857f7a07e28425edaa3f21cac527673635fb
Python
jackiboi307/cogpy
/examples/doublebuffer.py
UTF-8
369
2.78125
3
[ "MIT" ]
permissive
from cogpy import * from math import sin, cos # circle animation from random import choice screen = DoubleBufferCanvas((50, 25)) i = 0 while True: # screen.fill(" ") coords = (int(25 * (1 + sin(i))), int(12 * (1 + cos(i)))) screen.draw.pixel(coords, choice(misc.ascii_shade_1)) screen.render(False) i += .01
true
f1849c76d329120bc502fde629914f3b230396f6
Python
yunabe/codelab
/google/gflags_example_test.py
UTF-8
4,561
2.875
3
[]
no_license
import commands import os import sys import unittest class TestGflagsCppProgram(unittest.TestCase): def testDefault(self): self.assertEqual('Hello world.', commands.getoutput('./gflags_example')) def testHelp(self): helpOutput = commands.getoutput('./gflags_example --help') self.assertTrue('-name (Username. Says hello to this user.) ' 'type: string default: "world"' in helpOutput) def testFlags(self): self.assertEqual('Hello foo.', commands.getoutput('./gflags_example --name=foo')) self.assertEqual('Hello foo.', commands.getoutput('./gflags_example --name foo')) self.assertEqual('Hello foo.', commands.getoutput('./gflags_example -name=foo')) self.assertEqual('Hello foo.', commands.getoutput('./gflags_example -name foo')) def testBoolFlag(self): self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example --overwrite_name')) def testPositiveBoolExpressions(self): self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=true')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=yes')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=t')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=y')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=1')) def testNegativeBoolExpressions(self): self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--overwrite_name=false')) self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--overwrite_name=no')) self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--overwrite_name=f')) self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--overwrite_name=n')) self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--overwrite_name=0')) def testBoolFlagWithNo(self): # --no<bool_flag> works as --<bool_flag>=false self.assertEqual('Hello world.', commands.getoutput('./gflags_example --nooverwrite_name')) # The value for --no<bool_flag> seems to be ignored, self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--nooverwrite_name=true')) self.assertEqual('Hello world.', commands.getoutput('./gflags_example ' '--nooverwrite_name=false')) def testBoolFlagCaseInsensitive(self): self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=T')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=Y')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=tRue')) self.assertEqual('Hello %s.' % os.getlogin(), commands.getoutput('./gflags_example ' '--overwrite_name=yEs')) def testFlagValidator(self): self.assertEqual('Hello 0123456789.', commands.getoutput('./gflags_example ' '--name=0123456789')) output = commands.getoutput('./gflags_example ' '--name=01234567890') self.assertTrue('Value for --name: 01234567890 is too long.' in output) if __name__ == '__main__': unittest.main()
true
db0975d89962afc9b06513802c0418284677562d
Python
sainathurankar/Python-programs
/BubbleSort.py
UTF-8
399
3.953125
4
[]
no_license
def BubbleSort(arr): l=len(arr) for i in range(l): flag=0 for j in range(l-1-i): if arr[j]>arr[j+1]: temp=arr[j] arr[j]=arr[j+1] arr[j+1]=temp flag=1 if flag==0:break arr=list(map(int,input("Enter array: ").split())) BubbleSort(arr) print("Sorted Array:",*arr)
true
51df9bf116971974955a47e292912ae67a9e8d8b
Python
lixiang007666/Algorithm_LanQiao
/DP/dayday_up.py
UTF-8
827
2.625
3
[]
no_license
import math import cmath import string import sys import bisect import heapq from queue import Queue, LifoQueue, PriorityQueue from itertools import permutations, combinations from collections import deque, Counter from functools import cmp_to_key if __name__ == "__main__": dp = [[0 for _ in range(2005)] for _ in range(2005)] n = int(input()) a = list(map(int, input().strip().split())) ans = 0 i = n - 1 while i >= 0: dp[i][1] = 1 for j in range(i + 1, n):#比i大1 if a[j] > a[i]: k = 2# 长度 while 1: if dp[j][k - 1] == 0: break dp[i][k] = dp[i][k] + dp[j][k - 1] k += 1 i -= 1 for i in range(n): ans += dp[i][4] print(ans)
true
7c5bb342a98be97fdb8a3949785abdd528ebc1fc
Python
biavidalf/beatriz-vidal-poo-python-ifce-p7
/Presença/atvd03_presenca.py
UTF-8
787
3.875
4
[]
no_license
""" ATIVIDADE 03 - PRESENÇA: POO - P7 DE INFO - BEATRIZ V. ENUNCIADO: Para ganhar o prêmio máximo na Mega Sena, é necessário acertar todos os 6 números em seu bilhete com os 6 números entre 1 e 60 sorteados. Escreva um programa que gere uma seleção aleatória de 6 números para uma aposta. Certifique-se de que os 6 números selecionados não contenham duplicatas. Exibir os números em ordem crescente. """ from random import * # Criando usando o type set porque já automaticamente elimina # os números duplicados numeros = set() def gerar_numeros(): while len(numeros) < 6: numeros.add(randint(1, 60)) return numeros gerar_numeros() numeros_ordenados = sorted(numeros) print(f'Os números gerados foram: {numeros_ordenados}')
true
e013da69e3f47ae73c0df92bfa7223e0d7a8a008
Python
CCNITSilchar/Coding-Club-Contribution-Tracker-and-Leaderboard
/git_repo.py
UTF-8
1,001
2.59375
3
[]
no_license
#!/usr/bin/env python #Learn how this works here: http://youtu.be/pxofwuWTs7c import urllib2 import json import pymysql from json_connection import database from json_connection import json_l conn=database() conn.connect('coding_club') conn.cursor.execute("SELECT name_of_repos FROM git_repos ") list_of_repos=set() repos=conn.cursor.fetchall() for r in repos: list_of_repos.add(r[0]) conn.cursor.execute("SELECT scholar_id,github_h FROM student_info ") repo_q=conn.cursor.fetchall() for q in repo_q: repo_scholar_id=q[0] repo_handle=q[1] points=0 repo_url="https://api.github.com/users/"+q[1]+"/repos" repo_ob=json_l() repo_data=repo_ob.fetch_data_from_api(repo_url) for i in range(len(repo_data)): repo_name=repo_data[i]['name'] repo_stars=int(repo_data[i]['stargazers_count']) fork_status=repo_data[i]['fork'] print repo_name, fork_status if fork_status==False: if repo_name in list_of_repos or repo_stars>=100: points+=25 print q[1],repo_name print q[1], points
true
df197b95860eb81f7d9f6460e3cee77a8a7b3830
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2344/60799/235346.py
UTF-8
185
2.734375
3
[]
no_license
T = int(input()) for hhh in range(0, T): input() aList = [int(i) for i in input().split()] d = int(input()) [print(i, end=' ') for i in aList[d:]+aList[0:d]] print()
true
260f4f1f67458871d22b457cc4fe0f3bdfce5dad
Python
RastogiAbhijeet/NewsReader
/Scrapping.py
UTF-8
4,087
2.90625
3
[ "MIT" ]
permissive
from bs4 import BeautifulSoup from urllib import request # from pymongo import from newspaper import Article import newspaper from textblob import TextBlob from datetime import date import json from databaseHandling import InterfaceClass class ScrapNews(object): def __init__(self): self.listTitleLink = [] self.obj = InterfaceClass() self.listTitleLink = self.obj.validation() self.url = request.urlopen("https://news.google.com/news/?ned=us&hl=en") def fetchLinks(self): soup = BeautifulSoup(self.url,'html.parser') for link in soup.find_all("a"): x = str(link.get('href')) # print(x) if x[0] == 'h' or x[0] == '/': if '/section' in x: print(x) def fetch_news(self): ''' 1. linkAppend : This list is used to avoid the redundancy in fetching the topic links 2. linkAppendNews : This list is used to avoid the redundancy in fetching the links on individual topic page ''' linkAppend = [] listAppendNews = [] soup = BeautifulSoup(self.url,'html.parser') # link is an iterable for all the links present on the main Link for link in soup.find_all("a"): linkLayer_1 = str(link.get('href')) if linkLayer_1[0] == 'h': # if '/news' in linkLayer_1 and '/topic' in linkLayer_1 and '/section' in linkLayer_1: if '/section' in linkLayer_1: linkLayer_1 = 'https://news.google.com/news/' + linkLayer_1 if ('topic/BUSINESS' in linkLayer_1 or 'topic/NATION' in linkLayer_1 or 'topic/WORLD' in linkLayer_1 or 'topic/TECHNOLOGY' in linkLayer_1) and linkLayer_1 not in linkAppend: print(linkLayer_1) try: urlLinkLayer_1 = request.urlopen(linkLayer_1) soupLayer_1 = BeautifulSoup(urlLinkLayer_1,'html.parser') count = 0 linkAppend.append(linkLayer_1) for targetLink in soupLayer_1.find_all('a'): if count < 20: tempLink = str(targetLink.get('href')) # print(tempLink) if (tempLink[0] == 'h' and ('google' not in tempLink) and ('youtube' not in tempLink) and ('headlines/section/topic/' not in tempLink)) and tempLink not in listAppendNews : # print("Hello") print(tempLink) count+=1 listAppendNews.append(tempLink) self.process_item(tempLink) except : pass def process_item(self,url_link): # obj = InterfaceClass() news = Article(url = url_link) news.download() news.parse() x = news.text y = news.title if y not in self.listTitleLink: self.listTitleLink.append(y) print("hello") sentVal, classValue = self.sentiValue(x) jsonObj = {} list = [] list.append(date.today()) jsonObj['Date'] = str(list[0]) jsonObj['NewsData'] = x jsonObj['NewsTitle'] = y jsonObj['Sentiment'] = sentVal jsonObj['Classification'] = classValue self.obj.insertData(jsonObj) def sentiValue(self,x): blob = TextBlob(x) sentVal = blob.sentiment.polarity classificationValue = None#blob.classify() return sentVal, classificationValue scrapObj = ScrapNews() scrapObj.fetch_news() ''' Program Control 1. Fetch News() 2. ProcessItem() 3. SentiValue() '''
true
79073d8e675248cb7a0f870c6830f70466538803
Python
mahendraphd/Python_LD
/AutoDictonary.py
UTF-8
1,783
2.515625
3
[]
no_license
import time import sys import os from selenium.webdriver.chrome.options import Options from selenium import webdriver from bs4 import BeautifulSoup import pandas as pd from time import strftime chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-gpu') driver = webdriver.Chrome(options=chrome_options) sys.path.append(os.path.abspath("SO_site-packages")) import pyperclip recent_value = "" D = time.strftime("%D") r = time.strftime("%r") while True: tmp_value = pyperclip.paste() if tmp_value != recent_value: recent_value = tmp_value word=recent_value.strip('') print(word) driver.get("https://dictionary.cambridge.org/dictionary/english/"+word) content=driver.page_source soup=BeautifulSoup(content,"lxml") for row in soup.find_all('div',attrs={"class" : "def ddef_d db"}): print("...................................................................") string=row.text print(string.strip(' :')) #print("Value changed: %s" % str(recent_value)[:20]) #with open('out_clipboard.txt', '+a') as output: #try: #output.write("[Start]----------------"+D+" "+r+"----------------\n") #output.write("%s\n\n" % str(tmp_value)) #output.write("[End]-----------------------------------------------------------------\n\n\n") #except: #output.write("[Start]----------------" + D + " " + r+"----------------\n") #output.write("%s\n\n" % str(tmp_value.encode('UTF-8'))) #output.write("[End]-----------------------------------------------------------------\n\n\n") time.sleep(0.1)
true
de1721c82366d88c0e358926352ecb8da54bcb2f
Python
guillox/Practica_python
/2013/tp3/tp3part1ej1.py
UTF-8
795
3.3125
3
[]
no_license
"""Manejo de archivos Parte I 1.- Dado un conjunto de números (que se tomarán de la entrada estándar), generar dos archivos: uno con los números pares y otro con los impares.""" L = [1,2,3,4,5,5] conjuntoL = set(L) def creacion(): archimp=open("archivo.txt","w") archimp.close() archpar=open("archivo txt","w") archpar.close() def escpar(listapar): archpar=open("archivopar.txt","a") for p in range(1,len(listapar)): archpar.write(listapar[p]) archpar.close def escimp(listapar): archimp=open("archivoimp.txt","a") for i in range(1,len(listaimpar)): archimp.write(listaimpar[p]) archimp.close creacion() Listapar=[] listaimp=[] for x in range(1,len(L)): if L[x]%2==0: Listapar.append(L[x]) else: listaimp.append(l[x]) escpar(listapar) escimp(listimp)
true
a7874461612ea64782c02c6195def6351edcbb6b
Python
skaidan/burger
/tests/integration/orders/test_order_data_access.py
UTF-8
1,924
2.609375
3
[]
no_license
from django.test import testcases from inventory.models import Inventory from orders.data_access.order_data_access import OrderDataAccess from orders.models import Order, OrderElement, OrderStatus from organizations.models import Restaurant class OrderDataAccessIntegrationTestCase(testcases.TestCase): order = None elements = None def setUp(self): self.order = self._initialize_order() def test_when_data_access_is_called_then_order_is_retrieved_from_origin_of_data(self): order_data_access = OrderDataAccess() order_data_access.get_order(self.order.id) self.assertTrue(order_data_access.order.paid, 'Error, paid status should be True. Check connection to SourceData') def test_when_data_access_is_called_then_order_elements_are_retrieved_from_origin_of_data(self): self.elements = self._initialize_elements() order_data_access = OrderDataAccess() order_data_access.get_order(self.order.id) expected_number_of_elements_in_order = 1 self.assertEqual(expected_number_of_elements_in_order, len(order_data_access.order_items), 'Error, items number should be {expected}'.format( expected=expected_number_of_elements_in_order)) def _initialize_order(self): order = Order() order.paid = True order.status = OrderStatus[0][0] order.save() return order def _initialize_elements(self): restaurant = Restaurant() restaurant.save() inventory = Inventory() inventory.restaurant = restaurant inventory.save() element = OrderElement() element.order_id = self.order.id element.final_price = 5 element.offer_number_in_order = 0 element.price = 5 element.inventory = inventory element.save() return [element, ]
true
f831a0e794ab6bbbe7b5d4bb5c0693505d53ffb0
Python
JenTus/pyalgorithm
/788_rotated_digits.py
UTF-8
705
3.375
3
[]
no_license
range(1, -2, -1) aa = "abdgw" len(aa) [aa[i] for i in range(len(aa)-1, -1, -1)] range(1, 3+1, 1) def reverse(s): if s == "2": return "5" elif s == "5": return "2" elif s == "6": return "9" elif s == "9": return "6" elif (s == "0") or (s == "1") or (s == "8"): return s else: return "00" def rotatedDigits(N): goodlist = [] for n in range(1, N + 1, 1): sn = str(n) newlist = [reverse(i) for i in sn] new = ''.join(newlist) if (len(new) == len(sn)) & (sn != new): goodlist.append(n) return goodlist [reverse(i) for i in "3333"] rotatedDigits(857) len(rotatedDigits(857))
true
c42e1804d4a295eff0fe5006d9c7355d02a3353a
Python
rfelts/wsgi-calculator
/calculator.py
UTF-8
5,314
3.96875
4
[]
no_license
#!/usr/bin/env python3 # Russell Felts # Assignment 04 WSGI Calculator import traceback """ For your homework this week, you'll be creating a wsgi application of your own. You'll create an online calculator that can perform several operations. You'll need to support: * Addition * Subtractions * Multiplication * Division Your users should be able to send appropriate requests and get back proper responses. For example, if I open a browser to your wsgi application at `http://localhost:8080/multiple/3/5' then the response body in my browser should be `15`. Consider the following URL/Response body pairs as tests: ``` http://localhost:8080/multiply/3/5 => 15 http://localhost:8080/add/23/42 => 65 http://localhost:8080/subtract/23/42 => -19 http://localhost:8080/divide/22/11 => 2 http://localhost:8080/ => <html>Here's how to use this page...</html> ``` To submit your homework: * Fork this repository (Session03). * Edit this file to meet the homework requirements. * Your script should be runnable using `$ python calculator.py` * When the script is running, I should be able to view your application in my browser. * I should also be able to see a home page (http://localhost:8080/) that explains how to perform calculations. * Commit and push your changes to your fork. * Submit a link to your Session03 fork repository! """ def info(*args): """ Produces a string that describes the site and how to use it :param args: unused as nothing is being calculated :return: String containing html describing the site """ page = """ <h1>Calculator</h1> <p>This site is a simple calculator that will add, substract, multiply, and divide two numbers.</p> <p>Simply enter a url similar to http://localhost:8080/add/23/42 and the answer will be returned.</p> <p> The possible paths are /add/#/#, /substract/#/#, /multiply/#/#, /divide/#/#</p> """ return page def add(*args): """ Adds to ints in a list :param args: to numbers to add :return: a STRING with the sum of the arguments """ # Convert the args to ints temp_list = contert_to_int(*args) total = sum(temp_list) return str(total) def subtract(*args): """ Subtract two ints :param args: to numbers to subtract :return: a STRING with the sum of the arguments """ # Convert the args to ints temp_list = contert_to_int(*args) total = temp_list[0] - temp_list[1] return str(total) def multiply(*args): """ Multiply two ints :param args: to numbers to multiply :return: a STRING with the sum of the arguments """ # Convert the args to ints temp_list = contert_to_int(*args) total = temp_list[0] * temp_list[1] return str(total) def divide(*args): """ Divides two ints :param args: to numbers to divide :return: a STRING with the sum of the arguments """ temp_list = contert_to_int(*args) try: total = temp_list[0] / temp_list[1] except ZeroDivisionError: raise ZeroDivisionError return str(total) def contert_to_int(*args): """ Converts the string args to a list of ints :param args: Two strings :return: A list of ints """ return [int(arg) for arg in args] def resolve_path(path): """ Take the request and determine the function to call :param path: string representing the requested page :return: func - the name of the requested function, args - iterable of arguments required for the requested function """ funcs = { '': info, 'add': add, 'subtract': subtract, 'multiply': multiply, 'divide': divide } # Split the path to determine what the function and arguments path = path.strip('/').split('/') func_name = path[0] args = path[1:] # Get the requested function from the dictionary or raise an error try: func = funcs[func_name] except KeyError: raise NameError return func, args def application(environ, start_response): """ Handle incoming requests and route them to the appropriate function :param environ: dictionary that contains all of the variables from the WSGI server's environment :param start_response: the start response method :return: the response body """ headers = [('Content-type', 'text/html')] try: path = environ.get('PATH_INFO', None) if path is None: raise NameError func, args = resolve_path(path) body = func(*args) status = "200 OK" except NameError: status = "404 Not Found" body = "<h1>Not Found</h1>" except ZeroDivisionError: status = "400 Bad Request" body = "<h1>Bad Request</h1>" except Exception: status = "500 Internal Server Error" body = "<h1>Internal Server Error</h1>" print(traceback.format_exc()) finally: headers.append(('Content-length', str(len(body)))) start_response(status, headers) return [body.encode('utf8')] if __name__ == '__main__': from wsgiref.simple_server import make_server srv = make_server('localhost', 8080, application) srv.serve_forever()
true
0bbadf9fcefc08b37ffe747886efd5da16288bda
Python
ThQuirino/api-em-flask-com-python
/server.py
UTF-8
2,144
2.546875
3
[]
no_license
from flask import Flask, render_template,request import index import re from src import procurarDados from src import inserir app=Flask("PDF") @app.route('/',methods=["GET","POST"]) def index(): #if __name__=='__main__': if(request.method =='POST'): valor=request.form.get("name") comparar=re.match(r'\s',valor) if(comparar != None or valor ==''): return "o campo nao deve ser nulo" else: ProdutoBanco=procurarDados.bancoDados(valor) if(ProdutoBanco.procurarProduto()=='erro'): return 'produto em falta no estoque' return render_template('dados.html') return render_template('index.html') @app.route('/enviar',methods=['GET','POST']) def enviar_dados(): if(request.method=='POST'): nome=request.form.get("nome") email=request.form.get("email") cpf=request.form.get("cpf") data=request.form.get("data") comparar=re.match(r'[0-9]{3}\.?[0-9]{3}\.?[0-9]{3}\-?[0-9]{2}',cpf) if(comparar == None or cpf ==''): print('cpf invalido') return render_template('dados.html') else: lista={"nome":nome,"email":email,"cpf":cpf,"data":data} ClienteBanco=inserir.inserirBanco().inserCliente(lista) if(ClienteBanco=='Boleto'): return render_template('final.html') else: return render_template('cadastro.html') return render_template('dados.html') @app.route('/cadastrado',methods=['GET','POST']) def enviar_dados_cadastrados(): if(request.method=='POST'): cpf=request.form.get("cpf") comparar=re.match(r'\s',cpf) if(comparar != None or comparar ==''): return "o campo nao deve ser nulo" else: ProdutoBanco=procurarDados.bancoDados(cpf) if(ProdutoBanco.procurarCpf()=='erro'): print('Nome errado. Por favor, digite novamente') return render_template('cadastro.html') return render_template('final.html') return render_template('cadastro.html') app.run()
true
aa087af80234b36325b573274c8bb5e0a76af51b
Python
Heminyildiz/Python-SansOyunlari.py
/SansOyunlari/SansOyunlari.py
UTF-8
1,479
3.8125
4
[]
no_license
import random print("Şanslı Sayı'ya Hoşgeldiniz") input("*****Başlamak için ENTER'a basınız*****") print("-"*30) print("Şans Oyunu Kod") print("-"*15) print("Sayısal Loto: 1") print("Super Loto: 2") print("On Numara: 3") print("Sans Topu: 4") print("-"*30) name = input("Adınız: ") cevap = input("Lütfen oynamak istediğiniz şans oyununun kodunu giriniz: ") listeSay = range(1,49) listeSup = range(1,54) listeOn = range(1,80) listeSans1 = range(1,34) listeSans2 = range(1,14) if cevap == "1": sayi1 = random.sample(listeSay, 6) sayi1.sort(reverse=False) print(f"Sayın {name}, şanslı sayılarınız: {sayi1}") elif cevap == "2": sayi2 = random.sample(listeSay, 6) sayi2.sort(reverse=False) print(f"Sayın {name}, şanlı sayılarınız: {sayi2}") elif cevap == "3": sayi3 = random.sample(listeOn, 10) sayi3.sort(reverse=False) print(f"Sayın {name}, şanslı sayılarınız: {sayi3}") elif cevap == "4": sayi4 = random.sample(listeSans1, 5) sayi4.sort(reverse=False) sayi5 = random.sample(listeSans2, 1) sayi5.sort(reverse=False) print(f"Sayın {name}, şanslı sayılarınız {sayi4} + {sayi5} " ) else: print("Lütfen oynamak istediğiniz oyunun kodunu giriniz!") print("İyi Şanslar!!") input("*****Çıkmak için ENTER'a basınız*****") # Kullanıcıdan farklı kolon seçenekleriyle ilgili veri alınabilir!!
true
721c3cb91d6f94a8f69b49a5e5a74150cd00388f
Python
likeaeike/tts
/tts.py
UTF-8
659
2.765625
3
[]
no_license
#!/usr/bin/python import pyttsx, sys, getopt def main(argv): inputstring = "" try: opts, arg = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) except getopt.GetoptError: print 'test.py -i <inputstring> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'tts -i <inputstring>' sys.exit() elif opt in ("-i", "--ifile"): inputstring = arg return inputstring print 'Input file is "', inputstring if __name__ =="__main__": input = main(sys.argv[1:]) engine = pyttsx.init() engine.say(input) engine.runAndWait()
true
d4f37a0268aac0e28339ee980c5f68fc8e9a336f
Python
davidsongoap/yper
/word.py
UTF-8
2,117
3.046875
3
[]
no_license
# __ __ ____ ______ ____ # \ \/ // __ \ / ____// __ \ # \ // /_/ // __/ / /_/ / # / // ____// /___ / _, _/ # /_//_/ /_____//_/ |_| # # By Davidson Gonçalves # github.com/davidsongoap/yper import pygame from screens.palette import Colors class Word: def __init__(self, text, x, y, font, win): self.text = text self.x = x self.y = y self.win = win self.active = False self.has_error = False self.font = pygame.font.Font(font, 35) self.text_render = self.font.render(self.text, True, Colors.DARK_BLUE1) self.textRect = self.text_render.get_rect() self.textRect.topleft = (self.x, self.y) self.current_char_idx = 0 def toggle_active(self): self.active = not self.active def get_topright(self): return self.textRect.topright def change_pos(self, x, y): self.textRect.topleft = (x, y) def draw(self): background_color = Colors.WHITE1 if self.active else Colors.DARK_BLUE2 if self.has_error and self.active: background_color = Colors.RED horizontal_padding = 5 button_width = (self.textRect.topright[0]-self.textRect.topleft[0]) + horizontal_padding*2 button_height = self.textRect.bottomright[1] - self.textRect.topright[1] button_background_pos = (self.textRect.topleft[0]-horizontal_padding, self.textRect.topleft[1], button_width, button_height) radius = 8 pygame.draw.rect(self.win, background_color, button_background_pos, border_radius=radius) self.win.blit(self.text_render, self.textRect) def process_char(self, char): valid_char = False if char == self.text[self.current_char_idx]: self.current_char_idx += 1 self.has_error = False valid_char = True else: self.has_error = True is_finished = self.current_char_idx == len(self.text) return is_finished, valid_char
true
ee49750e435e8befc0dc1de188039c8268849aed
Python
burakkose/HackerRank
/Challenges/AlternatingCharacters/solve.py
UTF-8
262
3.515625
4
[ "Unlicense" ]
permissive
strings = [] for i in range(int(input(""))): strings.append(input("")) index = 0 deletion = 0 for j in range(1,len(strings[i])): if strings[i][index] == strings[i][j]: deletion += 1 else: index = j print(deletion)
true
89756535f320c86257b886e95823f452f9d82da4
Python
skriser/pythonlearn
/Day24/矩阵的行列式.py
UTF-8
255
3.0625
3
[]
no_license
#!usr/bin/env python # -*- coding:utf-8 -*- """ @time: 2018/05/29 16:39 @author: 柴顺进 @file: 矩阵的行列式.py @software:rongda @note: """ import numpy as np vector = np.mat("3 4;5 6") # 求行列式 det = np.linalg.det(vector) print(det)
true
396d534e8bf1b47d3c33edcade28686b58983b1d
Python
lforet/astroid
/wifi/wifi_graph.py
UTF-8
3,693
2.65625
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import time import thread import math import random from wifi_consume import * from matplotlib import mpl import sys import matplotlib.colors as mcolors class wifi_graph(): def __init__(self, wifi_to_graph): self.wifi_to_graph = wifi_to_graph self.fig = None self.ax = None self.win = None self.run() def drange(self, start, stop, step): r = start while r < stop: yield r r += step def closest(self, target, collection): return min((abs(target - i), i) for i in collection)[1] def calculate_color(self, val): #R=(255*val)/100 R=(255*(100-val))/100; #G=(255*(100-val))/100; G=(255*val)/100 B=0 #print R,G,B to_return = [self.normalize_val(R, 0, 255),self.normalize_val(G, 0, 255),B] return to_return def normalize_val(self, val, floor, ceiling): return float (int(((float(val) - floor) / ceiling) * 100)) / 100 def calculate_color2(self, val): if val > 99: val = 99 temp = int(self.translate(val, 0, 80, 0, 4)) color = [] n = 5 R = (1.0 - (0.25 * temp)) G = (0.25 * temp) B = 0 color = [R,G,B] #print 'val:', val, ' temp:', temp, ' color:', color return color def translate(self, sensor_val, in_from, in_to, out_from, out_to): out_range = out_to - out_from in_range = in_to - in_from in_val = sensor_val - in_from val=(float(in_val)/in_range)*out_range out_val = out_from+val return out_val def animate(self): n= 100 # http://www.scipy.org/Cookbook/Matplotlib/Animations x = [] y = [0] * 100 for i in range(n): x.append(i) cdict = {'red': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)) } cmap = mcolors.LinearSegmentedColormap('my_colormap', cdict, 5) #cmap = mpl.cm.cool #norm = mpl.colors.Normalize(vmin=100, vmax=0) #bounds = [0, 25, 50, 75, 100] #norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cax = self.ax.imshow((x,y), cmap=cmap) cbar = self.fig.colorbar(cax, orientation='vertical') #wifi = consume_wifi('wifi.1', '192.168.1.190') while True: time.sleep(.2) y = y[1:] signal_value = self.wifi_to_graph.signal_strength #print signal_value try: val = int(self.wifi_to_graph.signal_strength) if val < 0: val = 0 #print val except: val = 0 #val = random.randint(0,100) pass y.append(val) plt.cla() plt.xticks(xrange(0,110,10))#, endpoint=True)) plt.yticks(xrange(0,110,10))#, endpoint=True)) plt.xlabel('10 seconds') plt.ylabel('Strength') plt.grid(True) plt.ylim([0,110]) plt.xlim([0,110]) plt.grid(True) #from mpl_toolkits.axes_grid1 import make_axes_locatable #divider = make_axes_locatable(plt.gca()) #cax = plt.append_axes("right", "5%", pad="3%") #cbar = plt.colorbar(fig, orientation='vertical') #plt.tight_layout() colors = [] for i in range(len(x)): #colors.append(calculate_color(y[i])) colors.append(self.calculate_color2(y[i])) #print val , colors[99] plt.bar(x , y, 1, color=colors) self.fig.canvas.draw() def graph(self): self.fig, self.ax = plt.subplots(dpi=60) self.win = self.fig.canvas.manager.window self.win.after(10, self.animate) plt.show () def run(self): self.th = thread.start_new_thread(self.graph, ()) if __name__ == "__main__": IP = 'localhost' if len(sys.argv) > 1: #if sys.argv[1] == 'testmode': IP = str(sys.argv[1]) wifi = consume_wifi('wifi.1', IP) graph_wifi = wifi_graph(wifi) i = 0 while True: time.sleep(1) print 'signal strength:', wifi.signal_strength, i i += 1
true
8e6fece1119c52ecfc8c412d51e067a61d023fac
Python
DenisRang/GradingSystem
/generator_random_works.py
UTF-8
1,157
2.890625
3
[]
no_license
import os import random from mimesis import Person STUDENTS_COUNT = 50 new_directory = os.getcwd() + r'\New works' person = Person('en') for i in range(STUDENTS_COUNT): name_letter = person.name()[0] surname = person.surname() file_name = new_directory + '//' + name_letter + '.' + surname + '.' file_a1 = open(file_name + 'a1', 'w') random_grade = random.randint(30, 100) file_a1.write(str(random_grade)) file_a1.close() file_a2 = open(file_name + 'a2', 'w') random_grade = random.randint(30, 100) file_a2.write(str(random_grade)) file_a2.close() file_a3 = open(file_name + 'a3', 'w') random_grade = random.randint(30, 100) file_a3.write(str(random_grade)) file_a3.close() file_p = open(file_name + 'p', 'w') random_grade = random.randint(30, 100) file_p.write(str(random_grade)) file_p.close() file_m = open(file_name + 'm', 'w') random_grade = random.randint(30, 100) file_m.write(str(random_grade)) file_m.close() file_f = open(file_name + 'f', 'w') random_grade = random.randint(30, 100) file_f.write(str(random_grade)) file_f.close()
true
f3f1d5dae7c58701848798634b105f201374dcd1
Python
crunchiness/rss
/robot/vision/vision.py
UTF-8
2,582
2.578125
3
[]
no_license
"""Main vision class""" from robot.vision.localisation import detect_pieces import numpy as np import cv2 from robot.vision.resource_finder import DetectionConfirmer, CubeDetector, get_mean class Vision: def __init__(self, io): self.io = io self.io.cameraSetResolution('high') self.belief = [] self.model_names = [ 'zoidberg', 'mario', 'wario', 'watching' ] self.detection_confirmers = { 'zoidberg': DetectionConfirmer(), 'mario': DetectionConfirmer(), 'wario': DetectionConfirmer(), 'watching': DetectionConfirmer() } self.cube_detectors = { 'zoidberg': CubeDetector('zoidberg'), 'mario': CubeDetector('mario'), 'wario': CubeDetector('wario'), 'watching': CubeDetector('watching') } def do_image(self): # Pieces identification for i in range(0, 1): self.io.cameraGrab() img = self.io.cameraRead() assert img is not None, 'failed to read image' # self.belief = detect_pieces(img, save=True, display=False) print self.belief def see_resources(self, model_name): self.model_names = [ model_name ] resources = {} # img = None for i in range(0, 5): self.io.cameraGrab() img = self.io.cameraRead() for model_name in self.model_names: # print 'Checking', model_name detection = self.cube_detectors[model_name].detect_cube(img) if detection: # print len(detection['p1']) for (x, y) in np.int32(detection['p1']): cv2.circle(img, (x, y), 2, (0, 255, 255)) cv2.circle(img, get_mean(detection), 2, (255, 0, 0), 10) # self.io.imshow('Window', img) resources[model_name] = {'mean': get_mean(detection), 'found': True} # for model_name in self.model_names: # resources[model_name] = self.detection_confirmers[model_name].get_result() # if detection_temp: # # print resources # for (x, y) in np.int32(detection_temp['p1']): # cv2.circle(img, (x, y), 2, (0, 255, 255)) # if 'mario' in resources and resources['mario']: # cv2.circle(img, get_mean(detection_temp), 2, (255, 0, 0), 10) # cv2.imshow('Window', img) # cv2.waitKey(10) return resources, img
true
eb2ed11302e45fef97339559445b32dedd79e1c2
Python
friendnj/pythonautotest
/unittest1/baidu_unittest.py
UTF-8
1,006
2.796875
3
[]
no_license
from selenium import webdriver import unittest from HTMLTestRunner import HTMLTestRunner import time class Baidu(unittest.TestCase): '''百度搜索测试''' def setUp(self): self.driver = webdriver.Firefox() self.driver.implicitly_wait(10) self.base_url = "https://www.baidu.com/" def test_baidu_search(self): '''搜索关键字:HTMLTestRunner''' driver = self.driver driver.get(self.base_url) driver.find_element_by_id("kw").send_keys("HTMLTestRunner") driver.find_element_by_id("su").click() def tearDown(self): self.driver.quit() if __name__ == "__main__": testunit=unittest.TestSuite() testunit.addTest(Baidu("test_baidu_search")) now=time.strftime("%Y-%m-%d %H-%M-%S") filename='./'+now+'result.html' fp=open(filename, 'wb') runner=HTMLTestRunner(stream=fp, title='百度搜索测试报告', description='用例执行情况:') runner.run(testunit) fp.close()
true