blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
a4ee1ab4b5c9ea9f311c299832626bdd964c6ed0
Python
dilipRathoreRepo/Selenium_Game_Playing_Bot
/cookie_cutter_main.py
UTF-8
1,550
3.078125
3
[]
no_license
from selenium import webdriver from datetime import datetime as dt selenium_driver_path = "/Users/diliprathore/Downloads/chromedriver" driver = webdriver.Chrome(executable_path=selenium_driver_path) driver.get("http://orteil.dashnet.org/experiments/cookie/") cookie = driver.find_element_by_id("cookie") store_item_prices = driver.find_elements_by_css_selector("#store b") item_details = [price.text for price in store_item_prices] item_details_dict = {} for item in item_details: if item: name = ''.join(item.split('-')[0]).strip() price = int(''.join(item.split('-')[1].replace(',', '')).strip()) item_details_dict[name] = price print(item_details_dict) def count_cookies(): return int(driver.find_element_by_id("money").text) def buy_item(): money = count_cookies() max_value_item = "" for itm, price in item_details_dict.items(): if money >= price: max_value_item = f'{"buy"}{itm}' f'money available was {money} and chosen item is {max_value_item}' f'Buying item {max_value_item}' chosen_item = driver.find_element_by_id(max_value_item) chosen_item.click() now = dt.now() original_time = now print(f'time is {now}') running = True while running: cookie.click() new_time = dt.now() updated_time = new_time - now time_since_original = new_time - original_time if time_since_original.total_seconds() > 60: running = False if updated_time.total_seconds() > 5: buy_item() now = new_time driver.quit()
true
098c937482faa2a65dec482bcfb179ba64ef31df
Python
VitorArthur/Pratica-Python
/ex014.py
UTF-8
112
3.953125
4
[]
no_license
c = float(input('Informe a temperatura em °C: ')) print(f'A temperatura de {c}ºC correponde a {9*c/5+32}ºF')
true
39f02cf7ad5b6925f28cf97a72be1d3c37dfed09
Python
201600050-comillas/TFG-Business-Analytics--201600050
/Graficos (3).py
UTF-8
2,153
2.8125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[35]: #CARGA DE LIBRERÍAS import pandas as pd import matplotlib.pyplot as plt # In[36]: #CARGA DE DATOS DJSI Europe y S&P Europe BMI dfES = pd.read_excel (r'/Users/rocioartiaga/Desktop/indices/djsi-returns.xlsx') # In[37]: #DETERMINACIÓN DE LOS EJES dfES.set_axis(['Date', 'DJ Sustainability Europe', 'S&P Europe BMI'], axis='columns', inplace=True) # In[38]: #CAMBIO DE FORMATO DE LA VARIABLE FECHA A FORMATO DATETIME dfES['Date']= pd.to_datetime(dfES['Date']) # In[39]: #ESTABLECER EL ÍNDICE dfES.set_index('Date',inplace=True) # In[40]: #GRÁFICO DJSI Europe y S&P Europe BMI ax=dfES['S&P Europe BMI'].plot(title='EVOLUCIÓN DEL RENDIMIENTO DE ÍNDICES EUROPEOS',figsize=(20, 12),c='blue',legend='S&P Europe BMI') dfES['DJ Sustainability Europe'].plot(ax=ax,c="grey",legend='DJ Sustainability Europe') # In[52]: #CARGA DE DATOS EURO STOXX Sustainability y Euro Stoxx dfES = pd.read_excel (r'/Users/rocioartiaga/Desktop/indices/return-EuroStoxx.xlsx') # In[53]: #ESTABLECER EJES dfES.set_axis(['Date', 'Euro Stoxx Sustainability', 'Euro Stoxx'], axis='columns', inplace=True) # In[54]: #CAMBIO DE FORMATO dfES['Date']= pd.to_datetime(dfES['Date']) # In[55]: #ESTABLECER ÍNDICE dfES.set_index('Date',inplace=True) # In[57]: #GRÁFICO ax=dfES['Euro Stoxx Sustainability'].plot(title='EVOLUCIÓN DEL RENDIMIENTO DE ÍNDICES EUROPEOS',figsize=(20, 12),c='grey',legend='Euro Stoxx Sustainability') dfES['Euro Stoxx'].plot(ax=ax,c="blue",legend='Euro Stoxx') ax.legend() # In[58]: #CARGA DATOS FTSE 4GOOD IBEX e IBEX35 dfIBEX = pd.read_excel (r'/Users/rocioartiaga/Desktop/indices/ibex/ibex-juntos.xlsx') # In[59]: #EJES dfIBEX.set_axis(['Date', 'FTSE4GOOD_IBEX', 'IBEX35'], axis='columns', inplace=True) # In[60]: #ÍNDICE dfIBEX.set_index('Date',inplace=True) # In[61]: #GRÁFICO ax=dfIBEX['FTSE4GOOD_IBEX'].plot(title='RENDIMIENTO ÍNDICES ESPAÑOLES',figsize=(20, 12),c='grey',legend='FTSE 4 Good IBEX') dfIBEX['IBEX35'].plot(ax=ax,c="blue",legend='IBEX35') ax.legend() # In[ ]:
true
0734c67455e1a1be16c45ffa2b0879320c0f7346
Python
AndreyRysistov/BeeVSWasp
/dataloaders/datagenerator.py
UTF-8
1,691
2.75
3
[]
no_license
import tensorflow as tf import os class DataLoader: def __init__(self, config): self.config = config self.path = './datasets/data' self.class_names = os.listdir(self.path) self.ds = self.set_generator() def get_data(self): train, val = self.split_data() return train, val def split_data(self): data = self.ds.shuffle(1000) labeled_all_length = [i for i,_ in enumerate(data)][-1] + 1 train_size = int(self.config.dataloader.train_size * labeled_all_length) val_size = int(self.config.dataloader.validation_size * labeled_all_length) print('Train: ', train_size) print('Validation :', val_size) train = data.take(train_size).cache().repeat().batch(self.config.glob.batch_size) val = data.skip(train_size).cache().batch(val_size) return train, val def set_generator(self): filenames = tf.data.Dataset.list_files("./datasets/data/*/*.jpg") ds = filenames.map(self.process_path).shuffle(buffer_size=1000) return ds def get_label(self, file_path): parts = tf.strings.split(file_path, os.path.sep) one_hot = parts[-2] == self.class_names return tf.cast(one_hot, 'float64', name=None) def decode_img(self, img): img = tf.image.decode_jpeg(img, self.config.glob.image_channels) img = tf.image.convert_image_dtype(img, tf.float32) / 255 return tf.image.resize(img, self.config.glob.image_size) def process_path(self, file_path): label = self.get_label(file_path) img = tf.io.read_file(file_path) img = self.decode_img(img) return img, label
true
10c0e4ea39701d08cbbd1aa513db6c784a035f2e
Python
letitbezh/redis-mongodb-cache
/main.py
UTF-8
278
2.5625
3
[]
no_license
import process import os import processinsert choose = raw_input("what you want to do ") choose = int(choose) if choose==1: print process.find() elif choose==2: processinsert.insert() elif choose==3: flag = process.find() if(flag): processinsert.delete()
true
c77a7050ddc9fe0781091fa12430cafc8cddac68
Python
WRansohoff/nmigen_ice40_spi_flash
/helpers.py
UTF-8
643
2.828125
3
[ "MIT" ]
permissive
# Convert a 32-bit word to little-endian byte format. # 0x1234ABCD -> 0xCDAB3412 def LITTLE_END( v ): return ( ( ( v & 0x000000FF ) << 24 ) | ( ( v & 0x0000FF00 ) << 8 ) | ( ( v & 0x00FF0000 ) >> 8 ) | ( ( v & 0xFF000000 ) >> 24 ) ) # Helper methods / values for generating test ROM images. R_ON = LITTLE_END( 0x00000009 ) R_OFF = LITTLE_END( 0x00000001 ) G_ON = LITTLE_END( 0x0000000A ) G_OFF = LITTLE_END( 0x00000002 ) B_ON = LITTLE_END( 0x0000000B ) B_OFF = LITTLE_END( 0x00000003 ) RET = LITTLE_END( 0x00000000 ) def DELAY( cycles ): return LITTLE_END( ( 0x4 | ( cycles << 4 ) ) & 0xFFFFFFFF )
true
6cf16136cd35f69714f4c93c3059f3b450f6fd22
Python
GuilhermeLaraRusso/python_work
/ch_10_files_and_exceptions/10_1_reading_an_entire_file.py
UTF-8
2,826
4.625
5
[]
no_license
# To try the following examples yourself, you can enter these lines in an # editor and save the file as pi_digits.txt, or you can download the file from the # book’s resources through https://www.nostarch.com/pythoncrashcourse/. Save # the file in the same directory where you’ll store this chapter’s programs. # Here’s a program that opens this file, reads it, and prints the contents # of the file to the screen: with open('pi_digits.txt') as file_object: contents = file_object.read() print(contents.rstrip()) # The first line of this program has a lot going on. Let’s start by looking # at the open() function. To do any work with a file, even just printing its contents, # you first need to open the file to access it. The open() function needs # one argument: the name of the file you want to open. Python looks for this # file in the directory where the program that’s currently being executed is # stored. In this example, file_reader.py is currently running, so Python looks # for pi_digits.txt in the directory where file_reader.py is stored. The open() # function returns an object representing the file. Here, open('pi_digits.txt') # returns an object representing pi_digits.txt. Python stores this object in # file_object, which we’ll work with later in the program. # The keyword with closes the file once access to it is no longer needed. # Notice how we call open() in this program but not close(). You could open # Files and Exceptions 191 # and close the file by calling open() and close(), but if a bug in your program # prevents the close() statement from being executed, the file may never # close. This may seem trivial, but improperly closed files can cause data # to be lost or corrupted. And if you call close() too early in your program, # you’ll find yourself trying to work with a closed file (a file you can’t access), # which leads to more errors. It’s not always easy to know exactly when you # should close a file, but with the structure shown here, Python will figure that # out for you. All you have to do is open the file and work with it as desired, # trusting that Python will close it automatically when the time is right. # Once we have a file object representing pi_digits.txt, we use the read() # method in the second line of our program to read the entire contents of # the file and store it as one long string in contents. When we print the value # of contents, we get the entire text file back: # # The only difference between this output and the original file is the # extra blank line at the end of the output. The blank line appears because # read() returns an empty string when it reaches the end of the file; this empty # string shows up as a blank line. If you want to remove the extra blank line, # you can use rstrip() in the print statement:
true
440089dd4e3ee613b0a2cffba2af747867327d98
Python
katiepicha/Numpy_Project
/MyArrays1.py
UTF-8
3,345
4.125
4
[]
no_license
import numpy as np import random # two dimensional array (has rows and columns) # [1,2,3] is the first row with 3 elements and [4,5,6] is the second row with 3 more elements arr01 = np.array([[1,2,3], [4,5,6]]) # one dimensional array arr02 = np.array([0.0, 0.1, 0.2, 0.3, 0.4]) for row in arr01: print(row) for col in row: print(col, end = ' ') print() # flat disregards elements in rows and just prints each element one at a time for i in arr01.flat: print(i) arr03 = np.zeros(5) arr04 = np.ones((2, 4), dtype = int) arr05 = np.full((3, 5), 13) # ------------------------- EXERCISE ------------------------------ # create a 2 dimensional array of 5 integer elements each using the random module and list comprehension a = np.array([[random.randint(1,10) for n in range(5)], [random.randint(1,10) for n in range(5)]]) print(a) b = np.array(np.random.randint(1, 10, size = (2, 5))) print(b) # ---------------------------------------------------------------- # range function in numpy is known as arange() # start at 0, end at 5 (not included) arr06 = np.arange(5) # 5 is start value, but 10 is end value (not included) arr07 = np.arange(5,10) # start at 10, end at 1 (not included) and goes down by 2 arr08 = np.arange(10, 1, -2) # ---------------------------------------------------------------- # linspace() allows you to create an array of numbers that are equally spaced out # starting number and end number ARE included arr09 = np.linspace(0.0, 1.0, num = 5) # reshape must be a factor/multiple of the number arr10 = np.arange(1, 21).reshape(4, 5) # broadcasting - takes a scalar value and expands it to match the number of elements in the original array # broadcasting does not affect the original array num01 = np.arange(1, 6) num02 = num01 * 2 # multiplies the number two with every element in num01 num03 = num01 ** 3 # augmented assignment changes the original array num01 += 10 num04 = num01 * num02 # arrays must be the same size/length # will return True or False if it meets criteria num05 = num01 > 13 num06 = num03 > num01 # Here we have an array of 4 students grades on 3 exams # row = student # col = exam grades = np.array([[87, 96, 70], [100, 87, 90], [94, 77, 90], [100, 81, 82]]) # summaries/aggregate functions across the board - NOT for a particular student print(grades.sum()) print(grades.mean()) print(grades.std()) print(grades.var()) # calculate average on all rows for each column (specific for exam) grades_by_exam = grades.mean(axis = 0) # will produce a 1 dimensional array with 3 elements (averages for each exam) # calculate average on all columns for each row (specific for student) grades_by_student = grades.mean(axis = 1) # will produce a 1 dimensional array with 4 elements (averages for each student) # universal functions in Numpy # square root num07 = np.array([1, 4, 9, 16, 25, 36]) num08 = np.sqrt(num07) # add (same as concatenation) num09 = np.array([10, 20, 30, 40, 50, 60]) num10 = np.add(num07, num09) # same as num10 = num07 + num09 # multiply num11 = np.multiply(num09, 5) # same as num11 = num09 * 5 # number of rows do NOT have to match up, but the number of columns do num12 = num09.reshape(2,3) num13 = np.array([2, 4, 6]) num14 = np.multiply(num12, num13) print()
true
8301dab1fff11110c7001f30776c3ed5916acd6a
Python
addam/pyg
/examples/tetris.py
UTF-8
2,300
2.734375
3
[]
no_license
import pyg from random import choice as randchoice #TODO vyresit: je Square pozicovany od sveho stredu, nebo od leveho spodniho rohu? # Jak jsou pozicovane drawables? Ktere pozicovani je defaultni a ktere se musi nastavit rucne? #Pro inspiraci: v pripade rucniho pozicovani nekterych actoru by se hodilo spustit transakci a zrusit v pripade kolize view, game = pyg.createGame(12, 6) box = pyg.Actor(kinetics=pyg.kinetics.Fixed()) #mozna: box = pyg.Actor(pyg.kinetics.FIXED) box.drawable = pyg.drawables.Square(gameSize=(1,1)) # the first parameter means: no input connected yet; save to a user-defined variable box.var.outlineShader = pyg.Shaders.Outline(None, 3, "#000") # fancy bubble reflection shading box.drawable.shader = pyg.Shaders.Bubble(box.var.outlineShader, pointLight) def resetBrick(brick): brickShapes = [[(0,0), (1,0), (2,0), (3,0)], [(0,0), (1,0), (1,1), (2,1)], [(0,0), (1,0), (1,1), (2,0)]] colors = [(1,0,0), (0,1,0), (0,0,1)] randColor = randchoice(colors) for x, y in randchoice(brickShapes): newBox = box.clone() newBox.position = x, y # connect the free socket box.var.outlineShader.inputs[0] = pyg.Shaders.Color(randColor) brick.children.append(newBox) brick.position = 3, 12 brick = pyg.Actor() kinetics = pyg.kinetics.Quantized(ticksPerSecond=1.0) kinetics.addForce(pyg.forces.Gravity(-1)) brick.kinetics = kinetics bottom = pyg.Actor(kinetics=pyg.kinetics.Fixed()) bottom.shape = pyg.shapes.halfPlane("y<0") game.append(bottom) brick = pyg.Actor() resetBrick(brick) @pyg.collide(selfParent=brick, parent=bottom) # parent: parent node of the obstacle @pyg.collide(selfParent=brick, hit=bottom) def land(collision): if collision.direction.y == 0: return bottom.children.extend(brick.children) for box in brick.children: box.position = pyg.relPosition(bottom, collision.previousPosition) + box.position brick.children.clear() brick = randomBrick() bottomRow = [box for box in bottom.children if box.y == 0] if len(bottomRow) == game.width: # clear the bottom row and shift everything down bottom.children.removeAll(bottomRow) for box in bottom.children: box.y -= 1 @pyg.input(self=brick, gesture='QUANTIZED_MOVEMENT') def move(event): brick.x += event.direction.x game.append(brick) pyg.launch(game, windowSize='FULL')
true
201626bfed3023c3286c747b496e34e6a246f908
Python
amishapagare25/python_codes
/main.py
UTF-8
594
2.6875
3
[]
no_license
from tkinter import * window = Tk() Label(window,text='Fullname').grid(row=0) Label(window,text='email').grid(row=1) Label(window,text='age').grid(row=2) Label(window,text='Gender').grid(row=3) e1= Entry(window) e2= Entry(window) e3=Entry(window) e5=Radiobutton(window,text="male",value=0) e4=Button(window,text='submit',width=10) e6=Radiobutton(window,text="female",value=1) e4=Button(window,text='submit',width=10) e1.grid(row=0,column=1) e2.grid(row=1,column=1) e3.grid(row=2,column=1) e4.grid(row=5,column=2) e5.grid(row=3,column=1) e6.grid(row=4,column=1) mainloop()
true
466e108165fd0ae24790087d8a5e60762ccbe9af
Python
pradeepshetty1/python-Pandas-and-Numpy-
/Module3/4_exception.py
UTF-8
378
3.515625
4
[]
no_license
try: import mylib except ImportError as ie: print 'module not found: ',ie def exception_example(a,b): c = 0 try: c=a/b print 'result is ',c except Exception as exp: print 'encountered exception',exp return c #exception_example(10,3) #print 'printing while calling the function',exception_example(10,3) exception_example(10,0)
true
2911b22b0e1aafc5afcc5bd5bfbc2f70f13ce99c
Python
CCorazza/Intra42
/users/Ldap.py
UTF-8
2,234
2.53125
3
[]
no_license
import ldap class Ldap(object): """Surcouche du module ldap""" __host = 'ldaps://ldap.42.fr:636' __base_dn = 'uid=%s,ou=2013,ou=people,dc=42,dc=fr' def __init__(self, username, password): 'Constructeur: Ldap(username, password)' self.handler = None self.username = username self.password = password self.dn = self.__base_dn % username def __del__(self): 'Destructeur' self.disconnect() def connect(self): 'Retourne True si la connexion reussit ou False si elle echoue' try: self.handler = ldap.initialize(self.__host) self.handler.simple_bind_s(self.dn, self.password) return True except ldap.LDAPError, e: self.handler = None return False def disconnect(self): 'Interrompt la connexion avec le ldap' if (self.handler is not None): self.handler.unbind() self.handler = None def get_by_uid(self, uid=None): 'Retourne tous les champs disponibles dans le ldap pour un login donne' ret = [] if (self.handler is None): return {} if (uid is None): uid = self.username result = self.handler.search(self.__base_dn[7:], ldap.SCOPE_SUBTREE, 'uid=%s' % uid, ['*']) while (True): r_type, r_data = self.handler.result(result, 0) if (r_data == []): break elif (r_type == ldap.RES_SEARCH_ENTRY): ret.append(r_data) if (ret != []): ret = ret[0][0][1] clean_ret = {} for (k, v) in ret.items(): clean_ret[k.replace('-', '_')] = v[0] return clean_ret return {} def search(self, search_attr=['*'], search_filter='uid=*'): 'Retourne les champs demandes pour un filtre donne' ret = [] data = [] if (self.handler is None): return [] result = self.handler.search(self.__base_dn[7:], ldap.SCOPE_SUBTREE, search_filter, search_attr) while (True): r_type, r_data = self.handler.result(result, 0) if (r_data == []): break elif (r_type == ldap.RES_SEARCH_ENTRY): data.append(r_data) for user in data: dico = {} for k,v in user[0][1].items(): dico[k.replace('-', '_')] = v[0] ret.append(dico) return ret
true
85b9b1bee7ce98ba5d3860efa8c89541328d352f
Python
LUMC/OvoGrowth-dataprocessor
/scripts/validate_input_files.py
UTF-8
468
2.921875
3
[ "MIT" ]
permissive
import sys from os import path arg = sys.argv def validate_input(files_dataset, required_files): if len(files_dataset) < 1: print("No valid dataset files detected") for file_set in files_dataset: for rfile in required_files: if (not path.exists(file_set+"/"+rfile)): print(file_set+"/"+rfile+ " are required but missing") return True if (validate_input(arg[0], arg[1])): open(arg[2], 'w').write("correct")
true
2802744bdb6ba909cbfd96435ace75bcf266b514
Python
akshayravichandran/Foundations-of-Software-Science
/w5/unsuper.py
UTF-8
2,038
2.640625
3
[]
no_license
from w3.num import Num from w4.w4 import rows from w4.w4 import Data class Unsuper: def __init__(self, data): """ Initialize an unsupervised learner. """ self.rows = data.rows.values() self.enough = len(self.rows) ** 0.5 # magic constant def band(self, c, lo, hi): if lo == 0: return '..' + str(self.rows[hi][c]) elif hi == most: return str(self.rows[lo][c]) + '..' else: return str(self.rows[lo][c]) + '..' + str(self.rows[hi][c]) def argmin(self, c, lo, hi): cut = False if hi - lo > 2*self.enough: l, r = Num(), Num() for i in range(lo, hi+1): r.numInc(self.rows[i][c]) best = r.sd for i in range(lo, hi+1): x = self.rows[i][c] l.numInc(x) r.numDec(x) if l.n >= self.enough and r.n >= self.enough: tmp = Num.numXpect(l,r) * 1.05 # magic constant if tmp < best: cut, best = i, tmp return cut def cuts(self, c, lo, hi, pre): txt = pre + str(self.rows[lo][c]) + '..' + str(self.rows[hi][c]) cut = self.argmin(c, lo, hi) if cut: print(txt) self.cuts(c, lo, cut, pre + '|..') self.cuts(c, cut+1, hi, pre + '|..') else: b = self.band(c, lo, hi) print(txt + ' (' + b + ') ') for r in range (lo, hi+1): self.rows[r][c] = b def stop(c, t): for i in range(len(t)-1, -1, -1): if t[i][c] != '?': return i return 0 if __name__== "__main__": data = rows("w5\\weatherLong.csv") u = Unsuper(data) for c in data.use: if data.indep(c) and c in data.nums: u.rows = sorted(u.rows, key=lambda r: r[c]) most = stop(c, u.rows) print('\n-- ', data.name[c], most, '----------') u.cuts(c, 0, most, "|.. ") for _, name in data.name.items(): print(name.replace('$','') + '\t', end = '') print() for row in u.rows: for i, v in enumerate(row.values()): if i == 1: print(v.ljust(10), end = "\t") else: print(v, end = "\t") print()
true
a9389dd4e93d9c1a13b9911d032ffa9b85bb9964
Python
danielfrgs/python-machine-learning
/adaline-gd.py
UTF-8
2,285
3.28125
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt from mlxtend.evaluate import plot_decision_regions class AdalineGD(object): """ADAptive LInear NEuron classifier""" def __init__(self, eta=0.01, n_iter=50): self.eta = eta self.n_iter = n_iter def fit(self, X, y): self.w_ = np.zeros(1 + X.shape[1]) self.cost_ = [] for i in range(self.n_iter): output = self.net_input(X) errors = (y - output) self.w_[1:] += self.eta * X.T.dot(errors) self.w_[0] += self.eta * errors.sum() cost = (errors**2).sum() / 2.0 self.cost_.append(cost) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, X): return self.net_input(X) def predict(self, X): return np.where(self.activation(X) >= 0.0, 1, -1) df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data') y = df.iloc[0:100, 4].values y = np.where( y == 'Iris-setosa', -1, 1) X = df.iloc[0:100, [0, 2]].values # Without feature scaling # fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) # ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y) # ax[0].plot(range(1, len(ada1.cost_) + 1), # np.log10(ada1.cost_), marker='o') # ax[0].set_xlabel('Epoches') # ax[0].set_ylabel('log(Sum-squared-error)') # ax[0].set_title('Adaline - Learning rate 0.01') # ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y) # ax[1].plot(range(1, len(ada1.cost_) + 1), # np.log10(ada2.cost_), marker='o') # ax[1].set_xlabel('Epoches') # ax[1].set_ylabel('log(Sum-squared-error)') # ax[1].set_title('Adaline - Learning rate 0.0001') # plt.show() # With feature scaling X_std = np.copy(X) X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std() X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std() ada = AdalineGD(n_iter=15, eta=0.01) ada.fit(X_std, y) plot_decision_regions(X_std, y, clf=ada) plt.title('Adaline - Gradient descent') plt.xlabel('sepal length [standardized]') plt.ylabel('petal length [standardized]') plt.legend(loc='upper left') plt.show() plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') plt.xlabel('Epochs') plt.ylabel('Sum-square-error') plt.show()
true
e15d010d84b29cde52dfcbe8541c183972291e58
Python
GeorgiyZhuravlevRudn/gzhuravlev.pfur
/2020-2021/Pr./lab03/ex 5.1.py
UTF-8
333
4.03125
4
[]
no_license
arr_1 = [] num_of_elements_arr_1 = int(input('Input a number of elements for array: ')) for i in range(num_of_elements_arr_1): k = int(input(f"element { i } of an array = ")) arr_1.append(k) print("the largest number in array is ", max(arr_1)) print("normal array", arr_1) print("reversed array", list(reversed(arr_1)))
true
f83c84cbcdc3c18f94be97c0d406db8b9dfb1050
Python
jackrushie/02m
/02m/PDF_editting/PDF_Merger.py
UTF-8
382
2.75
3
[]
no_license
import PyPDF2 import sys import os filepath = './02m/PDF_editting/PDFs/' inputs = os.listdir(filepath) print(inputs) def pdf_combined(filepath): merger = PyPDF2.PdfFileMerger() for pdf in os.listdir(filepath): if pdf.endswith((".pdf")): print(pdf) merger.append(f'{filepath}{pdf}') merger.write('MergedFile.pdf') pdf_combined(filepath)
true
63313c60c690b38fe8220131dbcf592af96a7e22
Python
efchakim/Python
/mastermind.py
UTF-8
2,741
4.125
4
[]
no_license
#This program simulates the code-breaking game Mastermind. #This program checks the players guess against the initial for random numbers between 1-6. #Enter four guesses from 1-6, example: 1234. #By: Diana Hakim def GenCode(): 'generate four random numbers in a list' import random List =[] for i in range(4): ran =random.randrange(1,7) List += [int(ran)] #List = [4,2,4,6];#List = [2,1,4,5];#List = [2,4,3,1] return list(List) def blackbox(gen, sguess): #works 'compares two lists and finds if the index and value if the same for each value' ans = gen[0:] #ans cannot change guess = [] for i in (list(sguess)): i = int(i) guess += [i] list(guess) for i in range(len(guess)): if gen[i] == guess[i]: #if correct or gen[i] == int(str(numinp[i])) gen[i]=u"\u25A0" guess[i]="x" return gen, list(guess), ans def whitebox(gen, guess, ans): 'compares two lists and finds if values are the same' #print(gen) for i in gen: if i in guess: new= gen.index(i) newguess= guess.index(i) guess[newguess]="x" gen[new]=u"\u25A1" #print(guess) #print(gen) return gen, guess, ans def mastermind(): 'this game checks the players guess against the initial for random numbers between 1-6, ex to be entered is 1436.' print('\n{:^30}\n{}\n1. {}\n2. {}'.format('Mastermind','Type four guesses from 1-6 ex. 1236',u"\u25A0 means 1 of your ans is in the right position",u"\u25A1 means 1 of your ans is in the wrong position")) guessnumber = 0; gen = GenCode() List = gen[0:] #'Variables & Assignments' lists are mutable while True: boxlist = [] guessnumber += 1 guess=(input('Enter your guess: ')) gen = List [0:] gen, guess, ans = blackbox(gen, guess) if guess == [7,7,7,7]: print(ans) final = whitebox(gen, guess, ans) gen, guess, ans = final #print(gen) #testing [6, '□', '□', '■'] #print(List) #testing [6, 1, 4, 4] for i in gen: if type(i).__name__ == 'str': boxlist += [i] for i in sorted(boxlist): #print out all boxes print(i, end=' ') print() if gen.count(u"\u25A0")==4: if guessnumber == 1: #1st try print('Hey! Good job! You won in {} try!'.format(guessnumber)) break else: #many tries print('Hey! Good job! You won in {} tries!'.format(guessnumber)) break mastermind()
true
f33f4b069a7def053f2ae0c97bc892ee8f22e8d6
Python
CoderQingli/MyLeetCode
/290. Word Pattern.py
UTF-8
601
3.140625
3
[]
no_license
def wordPattern(self, pattern, str): """ :type pattern: str :type str: str :rtype: bool """ map = {} map_rev = {} if not pattern and not str: return True if (not pattern and str) or (pattern and not str): return False str_l = str.split() if len(pattern) != len(str_l): return False for c, word in zip(pattern, str_l): if c not in map: if word in map_rev: return False map[c] = word map_rev[word] = c elif map[c] != word: return False return True
true
b82abf1f80c4375dc0c9508b32e7b04d24df58b7
Python
StarkTan/Python
/Pandas/multiple_data.py
UTF-8
3,542
3.25
3
[]
no_license
import pandas as pd import numpy as np def _append(): """ DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None) """ df = pd.DataFrame(np.arange(6).reshape(2, 3), index=[0, 1], columns=list('ABC')) print(df) df = df.append([{'A': 6, 'B': 7, 'C': 8}]) print(df) df = df.append(pd.Series({'A': 9, 'B': 10, 'C': 11}, name=0), ignore_index=True) print(df) df['D'] = list("1234") print(df) return def _concat(): """ pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) """ df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], 'B': ['B8', 'B9', 'B10', 'B11'], 'C': ['C8', 'C9', 'C10', 'C11'], 'D': ['D8', 'D9', 'D10', 'D11']}, index=[8, 9, 10, 11]) frames = [df1, df2, df3] result = pd.concat(frames) print(result) result = pd.concat(frames, keys=['x', 'y', 'z']) print(result) print('-' * 20) df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'], 'D': ['D2', 'D3', 'D6', 'D7'], 'F': ['F2', 'F3', 'F6', 'F7']}, index=[2, 3, 6, 7]) result = pd.concat([df1, df4], axis=1) print(result) print('*' * 40) result = pd.concat([df1, df4], axis=1, join='inner') # 取交集 print(result) result = pd.concat([df1, df4], axis=1, join_axes=[df1.index]) print(result) def _join(): """ join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): """ df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'B': ['B0', 'B1', 'B2']}) print(df.join(other, lsuffix='_caller', rsuffix='_other')) # 为重复 column 添加前缀 print(df.set_index('key').join(other.set_index('key'))) print(df.join(other.set_index('key'), on='key', how='right')) # left,right表示以哪边的index为准 print(df.join(other.set_index('key'), on='key', how='inner')) # inner,outer 表示交集、并集 def _merge(): """ merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None): """ df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 5]}) df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], 'value': [5, 6, 7, 8]}) print(df1) print(df2) print(df1.merge(df2, left_on='lkey', right_on='rkey')) print(df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=('_left', '_right'))) # _append() # _concat() # _join() _merge()
true
9a3a1dff2994dd37e225916b40221c64af366245
Python
huffmp2/python
/numbers.py
UTF-8
887
3.578125
4
[]
no_license
for value in range(1,5): print(value) numbers= list(range(1,6)) print (numbers) evenumbers= list(range(2,11,2)) print (evenumbers) squares=[] for value in range(1,11): square=value**2 squares.append(square) print (squares) squares = [] for value in range(1,11): squares.append(value**2) print(squares) digits = [1,2,3,4,5,6,7,8,9,0] print (min(digits)) print (max(digits)) print (sum(digits)) squares= [value**2 for value in range (1,11)] print (squares) numbers=[list for list in range(1,21)] print (numbers) mill= [list for list in range(1,1000001)] print (min(mill)) print (max(mill)) print (sum(mill)) odds= list(range(1,21,2)) print (odds) threes= list(range(0,31,3)) print (threes) squares = [] for value in range(1,11): squares.append(value**3) print (squares) squares= [value**3 for value in range (1,11)] print (squares)
true
311e7afb428f755aaa666b624dc4190595b06673
Python
thomasvangoidsenhoven/Raytracer-3D-Cplus
/mesh/meshpython/lib/lib/meshwriter.py
UTF-8
1,788
2.96875
3
[]
no_license
import json def writeJson(data, outfile="C:\\Users\\Thomas\\Desktop\\3D 2019\\3dcg1819-team\\mesh\\meshpython\\lib\\bunnyOP2.json"): arr = make_array(data) arr.reverse() file = open(outfile, "w") for line in arr: file.write(line + " \n") file.close() def make_array(data): nodes = [data[0]] array = [] while len(nodes) > 0: node = nodes.pop(0) if "children" in node: # depth first so first insert right el, then left nodes.insert(0, data[node["children"][1]]) nodes.insert(0, data[node["children"][0]]) array.append("box " + str(node["id"])) continue elif "triangles" in node: array.append("box " + str(node["id"])) for triangle in node["triangles"]: p1 = triangle[0] p2 = triangle[1] p3 = triangle[2] p1x = '{:f}'.format(p1[0]) p1y = '{:f}'.format(p1[1]) p1z = '{:f}'.format(p1[2]) p2x = '{:f}'.format(p2[0]) p2y = '{:f}'.format(p2[1]) p2z = '{:f}'.format(p2[2]) p3x = '{:f}'.format(p3[0]) p3y = '{:f}'.format(p3[1]) p3z = '{:f}'.format(p3[2]) s = "[["+p1x+" "+p1y+" "+p1z+"],["+ \ p2x+" "+p2y+" "+p2z+"],["+ \ p3x+" "+p3y+" "+p3z+"]]" array.append("triangle " + s) continue else: print("wtf?") return array # write to file format # box -> root # box -> root child 1 # triangle # triangle # triangle # box -> root child 2 # box -> child2 child # triangle # triangle # triangle # box -> child2 child # triangle # triangle # triangle
true
247f26de58c53246d4f814c439b03829a022cf98
Python
todokku/deepsea-frameextractor
/src/main/extractor.py
UTF-8
18,390
2.875
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python __author__ = "Danelle Cline, Nathanial Yee" __copyright__ = "Copyright 2020, MBARI" __credits__ = ["MBARI"] __license__ = "GPL" __maintainer__ = "Danelle Cline" __email__ = "dcline at mbari.org" __doc__ = ''' Utility module for converting video to still frames and deinterlacing using the ffmpeg module @author: __author__ @status: __status__ @license: __license__ ''' import logging from logging import handlers import sys import os import utils import multiprocessing import subprocess import cv2 import signal import re from datetime import datetime, timedelta import glob class Extractor(): def __init__(self, input_video_path, output_dir, deinterlace='drop', step=5, duration=1000, start=None, end=None, prefix=None): ''' the Extractor class contains all the necessary information to extract images from a video using ffmpeg. By default, it will extract a frame every step (5) seconds from the video :param input_video_path: full path to the video :param output_dir: directory to store transcoded frames to :param step: extract a frame every 'step' seconds :param duration: duration in milliseconds to extract every step seconds :param start: starting time to extracting images :param end: ending time to finish extracting images :param prefix: frame starting prefix to prepend to extracted frames :Example: Extract every 5th frame using drop deinterlacing Extractor('/Volumes/data/D008_03HD.mov', '/Volumes/data/out/D008_03HD', 'drop', 5) ''' self.input_video_path = input_video_path _, fname = os.path.split(input_video_path) self.key = fname.split('.')[0] self.output_dir = '{0}/{1}/imgs'.format(output_dir, self.key) utils.ensure_dir(self.output_dir) self.seconds_counter = 0 self.duration = duration self.step = step self.start = start self.end = end self.prefix = prefix self.video_length = utils.get_length(input_video_path) self.fps = 29.97 #utils.get_framerate(input_video_path) self.single_frame = False if duration is None: self.duration = 1e3/self.fps + 1 # default to a single frame self.single_frame = True if prefix is None: self.prefix = "f" # To time methods, uncomment line below #self.times = [] self.deinterlace = deinterlace self.start_iso_time = datetime.now() self.dive = 'Unknown' p = fname.split('_') for f in p: if utils.validate_iso8601(f): self.start_iso_time = datetime.strptime(f, '%Y%m%dT%H%M%SZ') break if 'D' in fname: p = re.compile(r'(?P<dive>\w+)_(?P<timecode>\w+)?') match = re.search(pattern=p, string=fname) if (match): if match.group('timecode') and utils.validate_iso8601(match.group('timecode')): self.start_iso_time = datetime.strptime(match.group('timecode'), '%Y%m%dT%H%M%SZ') else: self.start_iso_time = datetime.now() if match.group('dive'): self.dive = match.group('dive') print('Dive {} timecode start {} length {} seconds'.format(self.dive, self.start_iso_time, self.video_length)) def __del__(self): print('Done') # To time methods, uncomment line below #if self.times and len(self.times) > 0: # import numpy as np # m = np.array(self.times) # print('Mean {}'.format(m.mean())) def extract_all_images(self, start, end): ''' extracts image(s) from video between timecodes and saves it to output_path :param start: starting time :param end: ending time :return: total frames extracted :Example: self.extract_all_images('00:11:40', '00:11:41') ''' timecode_str = '{0:02}:{1:02}:{2:02}.{3:03}'.format(start.hour, start.minute, start.second, int(start.microsecond / 1e3)) output_path = '{}/{}%06d.png'.format(self.output_dir, self.prefix) frames = int((end - start).total_seconds() * self.fps) if self.deinterlace == 'drop': shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -an -frames:v {} {}'.format(timecode_str, self.input_video_path, frames, output_path) print(shell_string) subprocess.call(shell_string, shell=True) for i in glob.glob('{}/{}*.png'.format(self.output_dir, self.prefix)): # retain 16-bit depth if exists img = cv2.imread(i, cv2.IMREAD_UNCHANGED) de_interlaced_img = img[::2, 1::2] cv2.imwrite(i, de_interlaced_img) elif self.deinterlace == 'yadif': shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -vf yadif=1:-1:0 -an -frames:v {} {}'.\ format(timecode_str, self.input_video_path, frames, output_path) subprocess.call(shell_string, shell=True) else: shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -an -frames:v {} {}'.format(timecode_str, self.input_video_path, frames, output_path) subprocess.call(shell_string, shell=True) return int((end - start).total_seconds() * self.fps) '''frames = int((end - start).total_seconds() * self.fps) inc_microseconds = int(1e6/self.fps) dt = self.start_iso_time + timedelta(seconds=start.second) for i in range(frames): output_path = '{0}/{1}_{2:03}.png'.format(self.output_dir,filename_prefix, i+1) s = dt.strftime('%Y%m%dT%H%M%S.%f') dt_iso_str = s[:-3] + 'Z' #here we simply truncate; this may be off by by half a millisecond print('Datetime {}'.format(dt_iso_str)) shell_string = 'exiftool -config mbari.config -PNG:Dive="{}" -PNG:Datetime="{}" {}'.format(self.dive, dt_iso_str, output_path) subprocess.call(shell_string, shell=True, stdout=file_out, stderr=file_out) output_path_original = '{}_original'.format(output_path) os.remove(output_path_original) dt += timedelta(microseconds=inc_microseconds)''' def extract_images(self, start, end): '''' extracts image(s) from video at timecode and saves it to output_path :param start: starting time :param end: ending time :return: :Example: self.extract_images('00:11:40', '00:11:41') ''' file_out = open('/dev/null', 'w') filename_prefix = '{0}_{1:02}-{2:02}-{3:02}'.format(self.key, start.hour, start.minute, start.second) timecode_str = '{0:02}:{1:02}:{2:02}.{3:03}'.format(start.hour, start.minute, start.second, int(start.microsecond/1e3)) frames = int((end - start).total_seconds() * self.fps) if self.single_frame: output_path = '{0}/{1}.png'.format(self.output_dir,filename_prefix) else: output_path = '{0}/{1}_%03d.png'.format(self.output_dir,filename_prefix) if self.deinterlace == 'drop': shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -frames:v {} -an {}'.format(timecode_str, self.input_video_path, frames, output_path) subprocess.call(shell_string, shell=True, stdout=file_out, stderr=file_out) for i in glob.glob('{}/f*.png'.format(self.output_dir)): img = cv2.imread(i) de_interlaced_img = img[::2, 1::2] cv2.imwrite(i, de_interlaced_img) elif self.deinterlace == 'yadif': shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -vf yadif=1:-1:0 -frames:v {} -an {}'.format(timecode_str, self.input_video_path, frames, output_path) subprocess.call(shell_string, shell=True, stdout=file_out, stderr=file_out) else: shell_string = 'ffmpeg -y -re -loglevel error -accurate_seek -ss {} -i {} -frames:v {} -an {}'.format(timecode_str, self.input_video_path, frames, output_path) print(shell_string) subprocess.call(shell_string, shell=True, stdout=file_out, stderr=file_out) inc_microseconds = int(1e6/self.fps) dt = self.start_iso_time + timedelta(seconds=start.second) for i in range(frames): if self.single_frame: output_png = '{0}/{1}.png'.format(self.output_dir, filename_prefix) else: output_png = '{0}/{1}_{2:03}.png'.format(self.output_dir, filename_prefix, i+1) s = dt.strftime('%Y%m%dT%H%M%S.%f') dt_iso_str = s[:-3] + 'Z' #here we simply truncate; this may be off by by half a millisecond print('Datetime {}'.format(dt_iso_str)) shell_string = 'exiftool -config /app/mbari.config -PNG:Dive="{}" -PNG:Datetime="{}" {}'.format(self.dive, dt_iso_str, output_png) print(shell_string) subprocess.call(shell_string, shell=True, stdout=file_out, stderr=file_out) original = '{}_original'.format(output_png) os.remove(original) dt += timedelta(microseconds=inc_microseconds) return frames def process_video(self): ''' extract all the frames from video_name specified in __init__ :return: ''' try: # if not stepping through incrementally, process the range if self.step is None: if self.end: end = self.end #TODO put in check if this is within bounds of ending else: end = self.start + timedelta(milliseconds=self.duration*1e3) start_str = self.start.strftime('%H:%M:%S.%f')[:-3] end_str = end.strftime('%H:%M:%S.%f')[:-3] print('Extracting image frames {} from {} to {} and saving to {}'.format(self.input_video_path, start_str, end_str, self.output_dir)) total = self.extract_all_images(self.start, end) else: self.seconds_counter += self.start.hour*3600 * self.start.minute*60 + self.start.second start = self.start end = start + timedelta(milliseconds=self.duration) total = 0 while self.seconds_counter < self.video_length: # To time methods, uncomment line below # import timeit #func = utils.wrapper(self.extract_images, output_path, timecode) #self.times.append(timeit.timeit(func, number=1)) if self.end and end > self.end: break start_str = start.strftime('%H:%M:%S.%f')[:-3] end_str = end.strftime('%H:%M:%S.%f')[:-3] print('Extracting image frame {} from {} to {} and saving to {}'.format(start_str, end_str, self.input_video_path, self.output_dir)) frames = self.extract_images(start, end) start = start + timedelta(seconds=self.step) end = start + timedelta(milliseconds=self.duration) self.seconds_counter += self.step print('Seconds {}'.format(self.seconds_counter)) total += frames print('Extracted {} total frames'.format(total)) return True except Exception as ex: print(ex) return False def process_command_line(): import argparse from argparse import RawTextHelpFormatter examples = 'Examples:' + '\n\n' examples += sys.argv[0] + "-s 'python extractor.py' " \ "-i /Volumes/DeepLearningTests/benthic/ " \ "-o /Volumes/Tempbox/danelle/benthic/" \ "-k D0232_03HD_10s \n" examples += sys.argv[0] + "-s 'python extractor.py' " \ "-i /Volumes/DeepLearningTests/benthic/D0232_03HD_10s.mov " \ "-o /Volumes/Tempbox/danelle/benthic/ \n" parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description='Extract still jpeg frames from video', epilog=examples) parser.add_argument('-i', '--input', action='store', help='full path to base directory where video files are, or single video file. If using directory, specify glob to search for files', default='', required=True) parser.add_argument('-o', '--output_dir', action='store', help='full path to output directory to store frames', default='', required=False) # default to drop fields interlace if none specified parser.add_argument('-d', '--deinterlace', action='store', help='deinterlace choice, drop = drop fields, yadif = ffmpeg filter', required=False) parser.add_argument('-g', '--glob', action='store', help='List of glob search parameters to use to find files', nargs='*', required=False) parser.add_argument('-m', '--milliseconds', action='store', help='Number of milliseconds to capture every step', required=False, type=int) parser.add_argument('-s', '--step', action='store', help='Step size in seconds to grab a frame', required=False, type=int) parser.add_argument('-t', '--start', action='store', help='Start time in HH:MM:SS format', default="00:00:00", required=False) parser.add_argument('-e', '--end', action='store', help='End time in HH:MM:SS format', required=False) parser.add_argument('-p', '--prefix', action='store', help='Optional prefix to prepend to extracted filest', required=False) args = parser.parse_args() return args def process_video(video, output_dir, deinterlace, milliseconds, step, start_time=None, end_time=None, prefix='f'): ''' processes a video given its the name of the video :param video: absolute path or url to the input video to be processed :param output_dir: absolute path of the output file :param deinterlace: deinterlacing method: drop or yadif :param milliseconds: total milliseconds to extract every step seconds :param step: total in seconds to step through the video :param start_time: starting time to extracting images :param end_time: ending time to finish extracting images :param prefix: frame starting prefix to prepend to extracted frames :return: True is success, False is exception :Example: process_video('/Volumes/DeepLearningTests/benthic/D0232_03HD_10s/D0232_03HD_10s.mov', '/Volumes/Tempbox/danelle/benthic/D0232_03HD_10s) ''' print("Starting: {} saving to {} using deinterlacing method {} prefix {}".format(video, output_dir, deinterlace, prefix)) extractor = Extractor(input_video_path=video, output_dir=output_dir, deinterlace=deinterlace, step=step, duration=milliseconds, start=start_time, end=end_time, prefix=prefix) result = extractor.process_video() print("Finished: {}".format(video)) return result def process_helper(args): print('Running process helper with args {}'.format(args)) return process_video(*args) def sigterm_handler(signal, frame): print("extractor.py done") exit(0) if __name__ == '__main__': args = process_command_line() if len(args.input) < 1: print ('Need to specify input directory -i or --input option') exit(-1) start_time = None end_time = None if args.start: if '.' in args.start: start_time = datetime.strptime(args.start, '%H:%M:%S.%f') else: start_time = datetime.strptime(args.start, '%H:%M:%S') if args.end: if '.' in args.end: end_time = datetime.strptime(args.end, '%H:%M:%S.%f') else: end_time = datetime.strptime(args.end, '%H:%M:%S') if not args.output_dir: output_dir = os.getcwd() else: output_dir = args.output_dir deinterlace_choices = ['drop', 'yadif'] if args.deinterlace and args.deinterlace not in deinterlace_choices: print('{} not in {}'.format(args.deinterlace, deinterlace_choices)) exit(-1) signal.signal(signal.SIGTERM, sigterm_handler) utils.ensure_dir(output_dir) try: if args.glob: print('CPU pool count {}; using {} CPUs'.format(multiprocessing.cpu_count(), multiprocessing.cpu_count() - 1)) pool = multiprocessing.Pool(processes=multiprocessing.cpu_count() - 1) for pattern in args.glob: video_files = glob.iglob('{}/{}'.format(args.input,pattern)) print(video_files) process_args = [(f, output_dir, args.deinterlace, args.milliseconds, args.step, start_time, end_time, args.prefix) for f in video_files] results = pool.map(process_helper, process_args) else: process_video(args.input, output_dir, args.deinterlace, args.milliseconds, args.step, start_time, end_time, args.prefix) except Exception as ex: print(ex)
true
543931a3694b8f78753b64d48ef72022a232e6f2
Python
xiaosean/leetcode_python
/Q692_Top-K-Frequent-Words.py
UTF-8
256
3.046875
3
[ "MIT" ]
permissive
class Solution: def topKFrequent(self, words: List[str], k: int) -> List[str]: c = Counter(words) data = [(k, v) for k, v in c.items()] data = sorted(data, key= lambda x:(-x[1], x[0])) return [key for key, _ in data[:k]]
true
f0fb22e559b1c9efc8ebe8b8e12105f7507017f8
Python
lisennku/web_spider
/practise 1: simplified web scraper.py
UTF-8
3,173
3.28125
3
[]
no_license
#coding: utf-8 # update: 1.去掉了与书籍相关字符串左右的空格 # update: 2.采用了OOP的方式进行统计 # update:3 利用各个书籍的链接去统计详细信息,并分别写入文件中 ''' 针对豆瓣读书中“新书速递”(URL:http://book.douban.com/latest?icn=index-latestbook-all)进行简单的爬虫,并生成TXT文件, 纪录书名、作者以及短评 简单的实现,仍然需要对代码进行优化,现存问题是由于网页源代码中含有过多的换行符('\n'),由此产生的正则表达式结果也会有影响, 需要去解决 ''' # coding: utf-8 import re import requests import os import time class Douban(object): def __init__(self): print u'这次是详细的喽~~~' #获取网页源代码,添加header防止服务器禁止访问,cookie添加成自己的就可以 def get_html(self, url): header = { 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate, sdch', 'Accept-Language':'zh-CN,zh;q=0.8,en;q=0.6', 'Cache-Control':'max-age=0', 'Connection':'keep-alive', #'cookie': 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.85 Safari/537.36', 'Host': 'book.douban.com', 'Upgrade-Insecure-Requests': '1' } response = requests.get(url, headers=header) return response.text # 通过正则表达式获取各个图书的超链接 def get_detailed_url(self, html): link = [] l = re.findall('(http://book.douban.com/subject/[0-9]{8})', html, re.S) print len(l) for i in l: i = i.encode('utf-8') #获取的原始字符串为Unicode编码 link.append(i) print len(link) return link # 或取图书的信息 def get_book_detail(self, book_url): book_info = {} book_html = requests.get(book_url) book_info['Title'] = re.search('<span property="v:itemreviewed">(.*?)</span>', book_html.text, re.S).group(1) People = re.findall('<a class="" href="/search/.*?">(.*?)</a>', book_html.text, re.S) book_info['Author'] = People[0] book_info['Translator'] = People[1:] return book_info # 将图书信息单独保存为TXT文件 def save_info(self, book_info): filename = book_info['Title'] + '.txt' f = open(filename, 'w') f.writelines(('title:' + ''.join(book_info['Title']) +'\n').encode('utf-8')) f.writelines(('author' + ''.join(book_info['Author']) + '\n').encode('utf-8')) f.writelines(('tanslator' + ''.join(book_info['Translator']) + '\n').encode('utf-8')) f.close() os.chdir('C:\Users\zhangla\PycharmProjects\PydoubanFM\dbbook') db = Douban() url = "http://book.douban.com/latest?icn=index-latestbook-all" html = db.get_html(url) link = db.get_detailed_url(html) for item in link: print "now system is processing ", print item each = db.get_book_detail(item) db.save_info(each) time.sleep(1)
true
10e288e9ccba90b5bc31eb71380adfc42fca69ec
Python
alanbato/proyecto-sisops
/SRT.py
UTF-8
6,078
2.859375
3
[ "MIT" ]
permissive
''' Sistemas Operativos LuJu 10 Proyecto Final Equipo #8 SRT: Se corre el proceso con el menor tiempo estimado restante (expropiativo). Si llega un proceso con un menor tiempo restante expulsa al proceso en ejecucion. ''' import iohelp as io def srt_scheduling(setup, processes): '''Política de Scheduling de SRT''' # Obtención de los parámetros del simulador policy, context_switch, cpus = setup cpu_dict = {'cpu_{}'.format(i): None for i in range(1, cpus + 1)} context_dict = {'cpu_{}'.format(i): 0 for i in range(1, cpus + 1)} # Verifica que la política sea SRT assert(policy == 'SRT') # Cola de listos ordenados pro SRT. processes_ready = [] # Cola de procesos bloqueados por I/O. processes_blocked = [] # Lista con los procesos que ya han terminado su ejecución. processes_finished = [] # Tiempo total de ejecución time = 0 # Tabla con para mostrar los resultados output_table = io.OutputTable(num_cpus=cpus) # Función que revisa si aún hay procesos que procesar def pending_processes(): return (len(processes) + len(processes_ready) + len(processes_blocked) + len([proc for proc in cpu_dict.values() if proc is not None])) # Ejecución de los procesos while pending_processes() > 0: for cpu, process in cpu_dict.items(): if process is not None: # Aplicar el cambio de contexto de ser necesario if context_dict[cpu] > 0: context_dict[cpu] -= 1 continue else: process.remaining_time -= 1 # Aplicar políticas para quitar procesos del cpu if process.remaining_time == 0: cpu_dict[cpu] = None process.finish_time = time processes_finished.append(process) # Revisa si el proceso tiene IO, en caso de que sí, lo bloquea elif process.has_io(): cpu_dict[cpu] = None process.perform_io() processes_blocked.append(process) # Revisa si hay un proceso con un remaining time menor elif (len(processes_ready) > 0 and process.remaining_time > processes_ready[-1].remaining_time): cpu_dict[cpu] = None processes_ready.append(process) # Agrega los procesos que terminaron su IO a la cola de listos for process in processes_blocked: process.io_operation_duration -= 1 if process.io_operation_duration < 0: processes_ready.append(process) # Remueve todos los que terminaron su IO de la lista de bloqueados processes_blocked = [process for process in processes_blocked if process.io_operation_duration >= 0] # Añadir los procesos a medida que pasa el tiempo. for process in processes: if process.arrival_time <= time: processes_ready.append(process) # Remueve los procesos que acaban de agregados processes = [process for process in processes if process not in processes_ready] # Ordenar los procesos en la cola de listos por su tiempo restante de # ejecución (SRT), si hay un empate, desempatar con tiempo de llegada, # Si sigue habiendo empate, desempatar don el PID processes_ready.sort(key=lambda x: (x.remaining_time, x.arrival_time, x.pid), reverse=True) # Cargar los primeros "N" elementos de la cola de listos, # donde "N" es la cantidad de CPU's disponibles, for cpu, slot in cpu_dict.items(): if slot is None and len(processes_ready) > 0: cpu_dict[cpu] = processes_ready.pop() context_dict[cpu] = context_switch output_data = {} waiting_status_list = [proc.status() for proc in processes] output_data['waiting'] = [', '.join(waiting_status_list)] ready_status_list = [proc.status() for proc in processes_ready] output_data['ready'] = [', '.join(ready_status_list)] # Agrega los cpus al output for cpu, process in cpu_dict.items(): if process is not None: output_data[cpu] = [process.status()] else: output_data[cpu] = '' blocked_status_list = [proc.status() for proc in processes_blocked] output_data['blocked'] = [', '.join(blocked_status_list)] output_table.update(output_data) time += 1 # Imprime el resultado de la política print(output_table) # Imprime los tiempos de retorno de los procesos y el tiempo de retorno # promedio. turnaround_time_total = 0 print("Turnaround Times:") for process in processes_finished: turnaround_time_total += process.finish_time - process.arrival_time print("Process {}: {}".format(process.pid, process.finish_time - process.arrival_time)) print("Average: {}".format(turnaround_time_total / len(processes_finished))) print("\n") # Imprime los tiempos de espera de los procesos y el tiempo de espera # promedio. wait_time_total = 0 print("\nWaiting Times:") for process in processes_finished: wait_time = process.finish_time - process.arrival_time - process.cpu_time if process.io_operations is not None: wait_time -= sum(process.io_operations.values()) wait_time_total += wait_time print("Process {}: {}".format(process.pid, wait_time)) print("Average: {}".format(wait_time_total / len(processes_finished))) print("\n") return (turnaround_time_total / len(processes_finished), wait_time_total / len(processes_finished))
true
02130d5c8fde80a3cd0043fc51975079c14fba17
Python
WSHoekstra/experiments_in_reinforcement_learning
/experiments/01_cartpole/cartpole.py
UTF-8
2,007
2.71875
3
[]
no_license
# -*- coding: utf-8 -*- # import os # os.chdir('C:/Users/Walter/Documents/GitHub/experiments_in_reinforcement_learning') import gym import numpy as np from experiments.agents.dqn import DQNAgent env = gym.make('CartPole-v0') state = env.reset() agent = DQNAgent(observation_space_size=env.observation_space.shape[0], action_space_size=env.action_space.n, load_model_from_disk=True, model_filepath='experiments/01_cartpole/model.h5') done = False max_n_steps = 2000 render_every_n_episodes = 20 save_model_every_n_episodes = 10 episodes = range(1000) for episode in episodes: episode_rewards = 0 state = np.reshape(env.reset(), [1, agent.observation_space_size]) done = False step_i = 0 while step_i < max_n_steps and not done: action = agent.choose_action(state) next_state, reward, done, info = env.step(action) next_state = np.reshape(next_state, [1,agent.observation_space_size]) agent.memorybank.commit_experience_to_memory(state, action, reward, next_state, done) episode_rewards += reward step_i += 1 state = next_state if episode % render_every_n_episodes == 0: env.render() if episode % render_every_n_episodes != 0: agent.learn_from_memories() # learning + rendering = lag if done: agent.memorybank.commit_rewards_to_memory(episode_rewards) calculate_avg_rewards_over_n_episodes = 100 running_avg_rewards = agent.memorybank.calculate_running_avg_of_recent_rewards(calculate_avg_rewards_over_n_episodes) print(f'episode {episode} / epsilon {agent.epsilon} / reward: {episode_rewards} / running avg rewards {running_avg_rewards} ({calculate_avg_rewards_over_n_episodes} episodes)') if episode % save_model_every_n_episodes == 0 and episode > 0: agent.save_model_to_disk() env.close()
true
40011d3e5b5eb2be9f5c700d4ccf5c4096434200
Python
renjieliu/leetcode
/0600_0999/606.py
UTF-8
3,141
3.78125
4
[]
no_license
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def tree2str(self, root: 'Optional[TreeNode]') -> str: # O( N | N ) def helper(output, node): output[0] += str(node.val) if node else "" if node.left: # left subtree exist output[0] += "(" helper(output, node.left) output[0] += ")" if node.right: # right subtree exist output[0] += "()" if node.left == None else "" #if left tree not exists,other wise left tree is added with previous code output[0] += "(" helper(output, node.right) output[0] += ")" output = [""] helper(output, root) return output[0] # previous solution # # Definition for a binary tree node. # # class TreeNode: # # def __init__(self, val=0, left=None, right=None): # # self.val = val # # self.left = left # # self.right = right # class Solution: # def tree2str(self, root: 'Optional[TreeNode]') -> str: # O( N | N ) # def helper(output, node): # output[0] += str(node.val) if node else "" # if node.left and node.right: #if both subtree exist # output[0] += "(" # helper(output, node.left) # output[0] += ")" # output[0] += "(" # helper(output, node.right) # output[0] += ")" # elif node.left == None and node.right: #only right subtree exists # output[0] += "()" # output[0] += "(" # helper(output, node.right) # output[0] += ")" # elif node.left and node.right == None: #only left subtree exists # output[0] += "(" # helper(output, node.left) # output[0] += ")" # output = [""] # helper(output, root) # return output[0] # previous solution # # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None # class Solution: # def tree2str(self, t: TreeNode) -> str: # def dfs(output, node): # if node.left == None and node.right == None: # output.append(str(node.val)) # else: # output.append(str(node.val)) # if node.left != None: # output.append("(") # dfs(output, node.left) # output.append(")") # else: # output.append("()") # if node.right != None: # output.append("(") # dfs(output, node.right) # output.append(")") # if t == None: return "" # output = [] # dfs(output, t) # return "".join(output)
true
ea55f70ff55535b0a7007647ec6f1a09f29db5d5
Python
mihahauke/scinol_icml2019
/plot_distributions.py
UTF-8
1,875
2.859375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 from distributions import normal_dist_outliers, normal_scaled import numpy as np from argparse import ArgumentParser from matplotlib import pyplot as plt import seaborn as sns plt.style.use("ggplot") def plot_dist(x, labels, probs, jitter, alpha, name): print("Noise:",np.mean(np.minimum(probs, 1 - probs))) # plt.scatter(probs, labels, alpha=0.1) # plt.gcf().canvas.set_window_title(name + " probs/labels") # plt.yticks([0, 1]) # plt.xlabel("probability") # plt.ylabel("label") # plt.show() plt.hist(probs, bins=20, normed=True) plt.xlabel("(probability dist)") plt.gcf().canvas.set_window_title(name + "probabilities") plt.show() sns.stripplot(data=x, jitter=jitter, alpha=alpha) plt.gcf().canvas.set_window_title(name + "(features)") plt.show() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("-n", "--size", default=10000, help="dataset size", type=int) parser.add_argument("-f", "--num-features", default=10, type=int) parser.add_argument("-s", "--seed", default=None) parser.add_argument("-nj", "--no-jitter", dest="no_jitter", action="store_true") parser.add_argument("-a", "--alpha", default=0.5, type=float) args = parser.parse_args() def plot(dist_func,name, **kwargs): x, labels, probs = dist_func( size=args.size, num_features=args.num_features, loc=0, seed=args.seed, return_probs=True, **kwargs) plot_dist(x, labels, probs, not args.no_jitter, alpha=args.alpha, name=name) plot(normal_dist_outliers,name="Normal with outliers") # plot(normal_scaled, name="Normal scaled 2^10", max_exponent=10)
true
d4357cfac8facf3e6e56ea419751e6a6a1c717dc
Python
rzhou10/Leetcode
/300/349.py
UTF-8
196
3.0625
3
[]
no_license
''' Intersection of Two Arrays Runtime: 40 ms ''' class Solution: def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]: return list(set(nums1) & set(nums2))
true
8441a11e3aead242f895cce7aa2b8379813b68bd
Python
camilogs1/Scripts_UCLA
/Taller1/Parte1/punto3.py
UTF-8
503
3.8125
4
[]
no_license
horas = float(input("Ingrese el total de horas trabajadas: ")) valor = float(input("Ingrese el valor por cada hora: ")) sueldo = horas * valor print("El salario bruto es de: ", sueldo) aux = sueldo * 0.31 print("Las deducciones son de: ", aux) sueldo -= aux if (sueldo <= 300): aux = sueldo * 0.2 print("El salario neto sin la bonificación es de: ", sueldo) sueldo += aux print("El salario neto más la bonificación es de: ", sueldo) else: print("El salario neto es de: ", sueldo)
true
fd7b47e7ef5e60f76f0358134b069d1a81e40215
Python
DrDrei/Project-Ueler-Solutions
/python/Problem024.py
UTF-8
599
3.171875
3
[]
no_license
import sys import math numbers = list(range(0,10)) def inc(numbers): #find largest index = len(numbers)-1 maxi = max(numbers) while True: if numbers[index] > numbers[index-1]: pivot = index-1 new = numbers[pivot:] new.sort() piv_val = numbers[pivot] piv_index = new.index(piv_val) new_piv_val = new[piv_index+1] for x in new: numbers.remove(x) numbers.append(new_piv_val) new.remove(new_piv_val) for x in new: numbers.append(x) break else: index -= 1 return numbers count = 0 while count != 999999: inc(numbers) count += 1 print(numbers)
true
87afa4be82aaa18e5f66cfe120e7b7aa6dcaef75
Python
chrstphrbtchr/01-Introduction
/main.py
UTF-8
865
3.109375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import utils utils.check_version((3,7)) utils.clear() print('Hello, my name is Christopher Butcher!') import random gamez = ['Earthbound','Mother 3','Until Dawn','The Legend of Zelda: A Link to the Past','Castlevania: Symphony of the Night', 'Super Mario World','Fallout 4','Borderlands 2','Horizon Zero Dawn'] favgame = random.choice(gamez) print('My favorite game is',favgame, ', but this will change if you ask me again.') print('I am slightly concerned about keeping up with learning these new languages and concepts.') print('However, I am excited to learn and to be surrounded by those who can help me!') print('I enjoy performing and writing music, mostly for myself and my dog.') print('My stackoverflow.com user number is 11981611') print('Find me on GITHUB at https://github.com/chrstphrbtchr (That is my name without vowels if that helps) ')
true
337340cc9cdd16f2b90ed46a1513decfba546716
Python
ptq204/LearningPython
/ServerClientSelect/client.py
UTF-8
420
2.828125
3
[]
no_license
import sys import socket import os s = socket.socket() host = socket.gethostname() port = 5000 print("client will be connected to {}".format(host)) s.connect(('127.0.0.1',port)) print("connected to server") while(1): incoming_msg = s.recv(1024) incoming_msg = incoming_msg.decode() print("server: {}".format(incoming_msg)) msg = input("your: ") msg = msg.encode() s.send(msg) print("sent")
true
905be0589b5a3638c845bbcf5ed35573dfaf700b
Python
ZubritskiyAlex/Python-Tasks
/HW_10/task 10_03.py
UTF-8
465
3.75
4
[]
no_license
"""Дан файл, содержащий различные даты. Каждая дата - это число, месяц и год. Найти самую раннюю дату. [02-8.1-ML-29]""" from datetime import datetime import csv with open("10_03.csv",'r') as csv_file: csvreader = csv.reader(csv_file) data = [] for line in csvreader: data.append(datetime.strptime(line[0], "%d.%m.%Y")) print(f"The earliest date is {min(data)}")
true
85ca295170863177a9a2c03aa1e921145e65b2eb
Python
betty29/code-1
/recipes/Python/436229_RecordJar_Parser/recipe-436229.py
UTF-8
2,013
3.328125
3
[ "MIT", "Python-2.0" ]
permissive
#!/usr/bin/env python # recordjar.py - Parse a Record-Jar into a list of dictionaries. # Copyright 2005 Lutz Horn <lutz.horn@gmx.de> # Licensed unter the same terms as Python. def parse_jar(flo): """Parse a Record-Jar from a file like object into a list of dictionaries. This method parses a file like object as described in "The Art of Unix Programming" <http://www.faqs.org/docs/artu/ch05s02.html#id2906931>. The records are divided by lines containing '%%'. Each record consists of one or more lines, each containing a key, a colon, and a value. Whitespace around both key and value are ignored. >>> import StringIO >>> flo = StringIO.StringIO("a:b\\nc:d\\n%%\\nx:y\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': 'y'}] If a record contains a key more than once, the value for this key is a list containing the values in their order of occurence. >>> flo = StringIO.StringIO("a:b\\nc:d\\n%%\\nx:y\\nx:z\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': ['y', 'z']}] Leading or trailing separator lines ('%%') and lines containing only whitespace are ignored. >>> flo = StringIO.StringIO("%%\\na:b\\nc:d\\n%%\\n\\nx:y\\nx:z\\n") >>> out = parse_jar(flo) >>> print out [{'a': 'b', 'c': 'd'}, {'x': ['y', 'z']}] """ records = [] for record in flo.read().split("%%"): dict = {} for line in [line for line in record.split("\n") if line.strip() != ""]: key, value = line.split(":", 1) key, value = key.strip(), value.strip() try: dict[key].append(value) except AttributeError: dict[key] = [dict[key], value] except KeyError: dict[key] = value if len(dict) > 0: records.append(dict) return records def _test(): import doctest, recordjar return doctest.testmod(recordjar) if __name__ == "__main__": _test()
true
cce75c91dc41565e359fe6e142de44c5ff800ab2
Python
jharman25/python-for-scientists
/docs/_examples/plot_sns_hist.py
UTF-8
365
3.40625
3
[]
no_license
""" Histogram ============= Example histogram """ import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set() # Initialize a figure and axes object fig, ax = plt.subplots(figsize=(3,3)) # Data x = np.random.normal(0, 0.1, 1000) # Add data a scatter points onto axes ax.hist(x) # Name axes ax.set_xlabel('x') # Show figure. fig.show()
true
4c4d6b4b5267d61d547b2c87d969703a01592ff1
Python
laCorse/ReTracker
/models/ResNet.py
UTF-8
1,491
2.578125
3
[]
no_license
from __future__ import absolute_import import torch import torchvision from torch import nn from torch.nn import functional as F # For debug from IPython import embed class ResNet50(nn.Module): def __init__(self, num_classes, loss = {'softmax', 'metric'}, **kwargs): super(ResNet50, self).__init__() resnet50 = torchvision.models.resnet50(pretrained=True) # 去掉下面两层(即原先网络的最后两层) # (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) # (fc): Linear(in_features=2048, out_features=1000, bias=True) self.base = nn.Sequential(*list(resnet50.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.loss = loss def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) x = x.view(x.size(0), -1) # 归一化 # x = 1. * x / (torch.norm(x, 2, dim=-1, keepdim=True).expand_as(x) + 1e-12) if not self.training: return x if self.loss == {'softmax'}: y = self.classifier(x) return y elif self.loss == {'metric'}: return x elif self.loss == {'softmax', 'metric'}: y = self.classifier(x) return y, x else: raise NotImplementedError("No such loss function!") # embed() if __name__ == '__main__': model = ResNet50(num_classes=751) imgs = torch.Tensor(32, 3, 256, 128) f = model(imgs)
true
ea5b48e19dbcead768e17ccce99c7fd2e550c722
Python
PRIYANSUPULAK/Face_Detector
/face_recognition.py
UTF-8
480
2.5625
3
[]
no_license
import cv2 import sys image_path=sys.argv[1] cascPath = "haarcascade_frontalface_default.xml" faceCascade=cv2.CascadeClassifier(cascPath) image=cv2.imread(image_path) gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) faces= faceCascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=9, minSize=(30, 30), flags= cv2.CASCADE_SCALE_IMAGE) for (x,y,w,h) in faces: cv2.rectangle(image, (x,y),(x+w,y+h),(0,255,0),2) cv2.imshow("Faces found",image) #cv2.waitkey(0) cv2.waitKey(0)
true
2b1cd918865e93de587e78a2404aa7fbaeb51280
Python
eguerrero13/MovieTrailerWebsite
/entertainment_center.py
UTF-8
2,679
3.3125
3
[]
no_license
import media import fresh_tomatoes # Create PI movie object pi = media.Movie("PI: faith in chaos", "The story about a mathematician and the obsession with " "mathematical regularity contrasts two seemingly " "irreconcilable entities: the imperfect, irrational " "humanity and the rigor and regularity of mathematics, " "specifically number theory.", "https://upload.wikimedia.org/wikipedia/en/5/5a/Piposter.jpg", "https://www.youtube.com/watch?v=GsAHXMcXgFA") # Create School of Rock movie object school_of_rock = media.Movie("School of Rock", "Using rock music to learn", "https://upload.wikimedia.org/wikipedia/en/1/11/School_of_Rock_Poster.jpg", # NOQA "https://www.youtube.com/watch?v=XCwy6lW5Ixc") # Create Dobermann movie object dobermann = media.Movie("Dobermann", "The charismatic criminal Dobermann, leads a gang of " "brutal robbers.", "https://upload.wikimedia.org/wikipedia/en/1/17/DobermannPoster.jpg", # NOQA "https://www.youtube.com/watch?v=eijRyGWoSW4") # Create The Godfather movie object godfather = media.Movie("The Godfather", "Chronicles the family under the patriarch Vito " "Corleone", "https://upload.wikimedia.org/wikipedia/en/1/1c/Godfather_ver1.jpg", # NOQA "https://www.youtube.com/watch?v=sY1S34973zA") # Create Pulp Fiction movie object pulp_fiction = media.Movie("Pulp Fiction", "Connects intersecting storylines of LA mobsters, " "fringe players and small-time criminals", "https://upload.wikimedia.org/wikipedia/en/3/3b/Pulp_Fiction_%281994%29_poster.jpg", # NOQA "https://www.youtube.com/watch?v=s7EdQ4FqbhY") # Create Requiem For A Dream movie object requiem_dream = media.Movie("Requiem for a Dream", "The film depicts four different forms of drug " "addiction", "https://upload.wikimedia.org/wikipedia/en/9/92/Requiem_for_a_dream.jpg", # NOQA "https://www.youtube.com/watch?v=jzk-lmU4KZ4") # Create array and add movies to it movies = [dobermann, godfather, pi, school_of_rock, pulp_fiction, requiem_dream] # Create webpage with favorite movies array fresh_tomatoes.open_movies_page(movies)
true
9dcc31941d937312d6f3a834f4c26884a1bcb4ee
Python
jie-meng/jie-meng.github.io
/tools/image2webp.py
UTF-8
716
2.71875
3
[]
no_license
import os def findFilesRecursively(path, pred = None, ls = None): if ls == None: ls = [] for p in os.listdir(path): p = os.path.join(path, p) if os.path.isdir(p): findFilesRecursively(p, pred, ls) elif os.path.isfile(p): if not pred or pred(p): ls.append(p) return ls def processImagesInDirRecursively(dir): ls = findFilesRecursively(dir, lambda x: x.lower().endswith('.png') or x.lower().endswith('jpg') or x.lower().endswith('jpeg')) for f in ls: print('\n\n>>> Process {} ... '.format(f)) os.system('cwebp -m 6 -pass 10 -mt -lossless -v {0} -o {1}.webp'.format(f, os.path.splitext(f)[0]))
true
6727bdc422920e3e15e9e2a1708eb0cfd0380f25
Python
lucasfazzib/covid19_python_chart
/project1.py
UTF-8
3,732
2.96875
3
[]
no_license
from typing import final import requests as r import datetime as dt import csv from PIL import Image from IPython.display import display from urllib.parse import quote url = 'https://api.covid19api.com/dayone/country/brazil' resp = r.get(url) #print(resp.status_code) raw_data = resp.json() #print(raw_data[0]) #{'ID': '5b679794-2952-4c4c-a873-af6ff457b0fd', 'Country': 'Brazil', 'CountryCode': 'BR', 'Province': '', 'City': '', 'CityCode': '', 'Lat': '-14.24', 'Lon': '-51.93', 'Confirmed': 1, 'Deaths': 0, 'Recovered': 0, 'Active': 1, 'Date': '2020-02-26T00:00:00Z'} final_data = [] for obs in raw_data: final_data.append([obs['Confirmed'], obs['Deaths'], obs['Recovered'], obs['Active'], obs['Date']]) final_data.insert(0, ['confirmados', 'obitos', 'recuperados', 'ativos', 'data']) #print(final_data) CONFIRMADOS = 0 OBITOS = 1 RECUPERADOS = 2 ATIVOS = 3 DATA = 4 for i in range(1, len(final_data)): final_data[i][DATA] = final_data[i][DATA][:10] #print(final_data) #print(dt.time(12, 6, 21, 7), 'Hora:minuto:segundo.microsegundo') #print('---------') #print(dt.date(2020, 4, 25), 'Ano-mês-dia') #print('---------') #print(dt.datetime(2020, 4, 25, 12, 6, 21, 7), 'Ano-mês-dia Hora:minuto:segundo.microsegundo') natal = dt.date(2020, 12, 25) reveillon = dt.date(2011, 1, 1) #print(reveillon - natal) #print((reveillon - natal).days) #print((reveillon - natal).seconds) #print((reveillon - natal).microseconds) with open('brasil-covid.csv', 'w') as file: writer = csv.writer(file) writer.writerows(final_data) for i in range(1, len(final_data)): final_data[i][DATA] = dt.datetime.strptime(final_data[i][DATA], '%Y-%m-%d') #print(final_data) def get_dataset(y, labels): if type(y[0]) == list: datasets = [] for i in range(len(y)): datasets.append({ 'label': labels[i], 'data' : y[i] }) return datasets else: return [ { 'label': labels[0], 'data' : y } ] def set_title(title=''): if title != '': display = 'true' else: display = 'false' return { 'title' : title, 'display': display } def create_chart(x, y, labels, kind='bar', title=''): dataset = get_dataset(y, labels) options = set_title(title) chart = { 'type': kind, 'data': { 'labels': x, 'datasets' : dataset }, 'options' : options } return chart def get_api_chart(chart): url_base = 'https://quickchart.io/chart' resp = r.get(f'{url_base}?c={str(chart)}') return resp.content def save_image(path, content): with open(path, 'wb') as image: image.write(content) def display_image(path): img_pil = Image.open(path) display(img_pil) y_data_1 = [] for obs in final_data[1::10]: y_data_1.append(obs[CONFIRMADOS]) y_data_2 = [] for obs in final_data[1::10]: y_data_2.append(obs[RECUPERADOS]) labels = ['Confirmados', 'Recuperados'] x = [] for obs in final_data[1::10]: x.append(obs[DATA].strftime('%d/%m/%Y')) chart = create_chart(x, [y_data_1, y_data_2], labels, title='Gráfico Confirmados vs Recuperados') chart_content = get_api_chart(chart) save_image('meu-grafico-covid.png', chart_content) display_image('meu-grafico-covid.png') def get_api_qrcode(link): text = quote(link) #parsing the link to url url_base = 'https://quickchart.io/qr' resp = r.get(f'{url_base}?text={text}') return resp.content url_base = 'https://quickchart.io/chart' link = f'{url_base}?c={str(chart)}' save_image('qr-code.png', get_api_qrcode(link))
true
1a0dc49074129f9c77237499ff5a0a0bc93dc0d7
Python
dizpers/python-address-book-assignment
/address_book/person.py
UTF-8
3,766
3.234375
3
[ "MIT" ]
permissive
__all__ = ['Person'] class Person(object): searchable_fields = ['first_name', 'last_name', 'email', 'emails'] def __init__(self, first_name, last_name, addresses, phone_numbers, emails): """ Constructor of Person class :param first_name: first name of the person :type first_name: str or unicode :param last_name: last name of the person :type last_name: str or unicode :param addresses: list of person's addresses (list of strings) :type addresses: list :param phone_numbers: list of person's phone numbers (list of strings) :type phone_numbers: list :param emails: list of person's emails (list of strings) :type emails: list """ self.first_name = first_name self.last_name = last_name self.addresses = addresses self.phone_numbers = phone_numbers self.emails = emails self.groups = [] def add_address(self, address): """ Add the address string to the list of addresses of current person :param address: address string to be added :type address: str or unicode """ self.addresses.append(address) def add_phone_number(self, phone_number): """ Add the phone number string to the list of phone numbers of current person :param phone_number: phone number string to be added :type phone_number: str or unicode """ self.phone_numbers.append(phone_number) def add_email(self, email): """ Add email string to the list of emails of current person :param email: email to be added :type email: str or unicode """ self.emails.append(email) def add_to_group(self, group, update_group=True): """ Connects current person and given group :param group: group to be extended with current person instance :param update_group: indicates if we also must update give group with current person :type group: address_book.Group :type update_group: bool """ self.groups.append(group) if update_group: group.add_person(self, update_person=False) def match(self, **match_fields): """ Match curren person object with set of fields :param match_fields: set of fields to be matched with current instance :return: does current person match given set of fields or not :rtype: bool """ matches = {} for field, value in match_fields.iteritems(): #TODO: sounds like the hack :3 if field == 'email': field = 'emails' value = [value] self_value = getattr(self, field) if type(value) == list: if field == 'emails': matched = True for search_email in value: for actual_email in self_value: if actual_email.startswith(search_email): break else: matched = False break else: matched = set(self_value).issuperset(set(value)) else: matched = self_value == value matches[field] = matched if all(matches.values()): return True return False def __unicode__(self): return u'Person<{first_name} {last_name}>'.format( first_name=self.first_name, last_name=self.last_name ) def __str__(self): return unicode(self) def __repr__(self): return unicode(self)
true
2621df087984fbba914d70dd5bd22417f814f42f
Python
matthewmjm/100-days-of-code-days-1-through-10
/day4/main.py
UTF-8
1,275
3.890625
4
[]
no_license
import random rock = ''' _______ ---' ____) (_____) (_____) (____) ---.__(___) ''' paper = ''' _______ ---' ____)____ ______) _______) _______) ---.__________) ''' scissors = ''' _______ ---' ____)____ ______) __________) (____) ---.__(___) ''' opponent = random.randint(1, 3) yourself = int(input("What do you choose? Type 1 for Rock, 2 for Paper, and 3 for Scissors.\n")) if opponent == 1: opponent_choice = rock elif opponent == 2: opponent_choice = paper else: opponent_choice = scissors if yourself == 1: yourself_choice = rock elif yourself == 2: yourself_choice = paper else: yourself_choice = scissors print(yourself_choice) print("\nComputer chose:\n") print(opponent_choice) if yourself == 1: if opponent == 1: print("It is a DRAW!") elif opponent == 2: print("You LOSE!") else: print("You WIN!") elif yourself == 2: if opponent == 1: print("You WIN!") elif opponent == 2: print("It is a DRAW!") else: print("You LOSE!") else: if opponent == 1: print("You LOSE!") elif opponent == 2: print("You WIN!") else: print("It is a DRAW!")
true
74be2eba6fa3cdabcb8076e6c651fea89420686f
Python
kamyu104/LeetCode-Solutions
/Python/linked-list-random-node.py
UTF-8
766
3.71875
4
[ "MIT" ]
permissive
# Time: O(n) # Space: O(1) from random import randint class Solution(object): def __init__(self, head): """ @param head The linked list's head. Note that the head is guanranteed to be not null, so it contains at least one node. :type head: ListNode """ self.__head = head # Proof of Reservoir Sampling: # https://discuss.leetcode.com/topic/53753/brief-explanation-for-reservoir-sampling def getRandom(self): """ Returns a random node's value. :rtype: int """ reservoir = -1 curr, n = self.__head, 0 while curr: reservoir = curr.val if randint(1, n+1) == 1 else reservoir curr, n = curr.next, n+1 return reservoir
true
47990e21d654f85580ca9b07ce38535128895112
Python
ek360/Movie-web-app-with-sql-database
/movie/domain/movie.py
UTF-8
4,256
2.890625
3
[]
no_license
from movie.domain.genre import Genre from movie.domain.actor import Actor from movie.domain.director import Director from movie.domain.review import Review from datetime import date, datetime from typing import List, Iterable class Movie: def __init__(self, rank, title: str, year: int, description, director, runtime_minutes, rating, metascore): self.__rank = rank if title == "" or type(title) is not str: self.__title = None else: self.__title = title.strip() if year < 1900: self.__year = None else: self.__year = year self.__description: str = description self.__director: Director = director self.__actors: list[Actor] = [] self.__genres: list[Genre] = [] self.__runtime_minutes: int = runtime_minutes self.__rating: float = rating self.__metascore: str = metascore self.__reviews: list[Review] = [] @property def reviews(self) -> Iterable[Review]: return iter(self.__reviews) @property def number_of_reviews(self) -> int: return len(self.__reviews) @property def metascore(self): return self.__metascore @property def rating(self): return self.__rating @property def rank(self): return self.__rank @property def title(self): return self.__title @title.setter def title(self, title): if title == "" or type(title) is not str: self.__title = None else: self.__title = title.strip() @property def year(self): return self.__year @year.setter def year(self, year): if year < 1900: self.__year = None else: self.__year = year @property def description(self): return self.__description @description.setter def description(self, description): if description == "" or type(description) is not str: self.__description = None else: self.__description = description @property def director(self): return self.__director @director.setter def director(self, director): if type(director) == Director: self.__director = director else: self.__director = None @property def actors(self): return self.__actors @actors.setter def actors(self, actors): for act in actors: if type(act) == Actor: self.__actors.append(act) @property def genres(self): return self.__genres @genres.setter def genres(self, genres): for gen in genres: if type(gen) == Genre: self.__genres.append(gen) @property def runtime_minutes(self): return self.__runtime_minutes @runtime_minutes.setter def runtime_minutes(self, runtime_minutes): if runtime_minutes > 0: self.__runtime_minutes = runtime_minutes else: raise ValueError("runtime should be a positive number") def __repr__(self): return f"<Movie {self.__title}, {self.__year},{self.__rank}>" def __eq__(self, other): return self.__rank == other.__rank def __lt__(self, other): if self.__rank < other.__rank: return True elif self.__rank > other.__rank: return False else: if self.__year < other.__year: return True else: return False def __hash__(self): return hash((self.__title, self.__year)) def add_actor(self, actor): if type(actor) == Actor: self.__actors.append(actor) def remove_actor(self, actor): if type(actor) == Actor: if actor in self.__actors: self.__actors.remove(actor) def add_genre(self, genre): if type(genre) == Genre: self.__genres.append(genre) def remove_genre(self, genre): if type(genre) == Genre: if genre in self.__genres: self.__genres.remove(genre) def add_review(self, review: Review): self.__reviews.append(review)
true
e36b5345d8450aba39c6e6ba93cf9642ce42c056
Python
deepbuzin/humpback-whale-identification
/loss/triplet_loss.py
UTF-8
16,295
2.703125
3
[ "MIT" ]
permissive
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # def euclidean_distance(embeddings): # """Compute the 2D matrix of pairwise euclidean distances between embeddings. # # :param embeddings: tensor of shape (batch_size, embedding_size) # :return dist: tensor of shape (batch_size, batch_size) # """ # prod = tf.matmul(embeddings, tf.transpose(embeddings)) # sq_norms = tf.diag_part(prod) # # dist = tf.expand_dims(sq_norms, 0) - 2.0*prod + tf.expand_dims(sq_norms, 1) # dist = tf.maximum(dist, 0.0) # # zeros_mask = tf.to_float(tf.equal(dist, 0.0)) # dist = tf.sqrt(dist + zeros_mask*1e-16) # dist = dist * (1.0-zeros_mask) # return dist # def valid_triplets_mask(labels): # """Compute the 3D boolean mask where mask[a, p, n] is True if (a, p, n) is a valid triplet, # as in a, p, n are distinct and labels[a] == labels[p], labels[a] != labels[n]. # # :param labels: tensor of shape (batch_size,) # :return mask: tf.bool tensor of shape (batch_size, batch_size, batch_size) # """ # indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) # indices_not_equal = tf.logical_not(indices_equal) # i_not_equal_j = tf.expand_dims(indices_not_equal, 2) # i_not_equal_k = tf.expand_dims(indices_not_equal, 1) # j_not_equal_k = tf.expand_dims(indices_not_equal, 0) # distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k) # # label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) # i_equal_j = tf.expand_dims(label_equal, 2) # i_equal_k = tf.expand_dims(label_equal, 1) # valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k)) # # mask = tf.logical_and(distinct_indices, valid_labels) # return mask # def valid_anchor_positive_mask(labels): # """Compute a 2D boolean mask where mask[a, p] is True if a and p are distinct and have the same label. # # :param labels: tensor of shape (batch_size,) # :return mask: tf.bool tensor of shape (batch_size, batch_size) # """ # indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) # indices_not_equal = tf.logical_not(indices_equal) # # labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) # mask = tf.logical_and(indices_not_equal, labels_equal) # return mask # # # def valid_anchor_negative_mask(labels): # """Compute a 2D boolean mask where mask[a, n] is True if a and n have distinct label. # # :param labels: tensor of shape (batch_size,) # :return mask: tf.bool tensor of shape (batch_size, batch_size) # """ # labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) # mask = tf.logical_not(labels_equal) # return mask # def triplet_loss_(margin=0.2, strategy='batch_all', metric=euclidean_distance): # """Compute the triplet loss over the batch of embeddings. # # :param margin: margin that is going to be enforced by the triplet loss # :param strategy: string, that indicated whether we're using the 'batch hard' or the 'batch all' mining strategy # :param metric: a callback function that we use to calculate the distance between each pair of vectors # :return: a callback function that calculates the loss according to the specified mining strategy # """ # def batch_all(labels, embeddings): # """Compute the loss by generating all the valid triplets and averaging over the positive ones # # :param labels: tensor of shape (batch_size,) # :param embeddings: tensor of shape (batch_size, embedding_size) # :return loss: scalar tensor # """ # dist = metric(embeddings) # # anchor_positive_dist = tf.expand_dims(dist, 2) # anchor_negative_dist = tf.expand_dims(dist, 1) # # loss = anchor_positive_dist - anchor_negative_dist + margin # # mask = tf.to_float(valid_triplets_mask(labels)) # loss = tf.multiply(loss, mask) # loss = tf.maximum(loss, 0.0) # # num_non_easy_triplets = tf.reduce_sum(tf.to_float(tf.greater(loss, 1e-16))) # loss = tf.reduce_sum(loss) / (num_non_easy_triplets + 1e-16) # return loss # # def batch_hard(labels, embeddings): # """Compute the loss on the triplet consisting of the hardest positive and the hardest negative # # :param labels: tensor of shape (batch_size,) # :param embeddings: tensor of shape (batch_size, embedding_size) # :return loss: scalar tensor # """ # dist = metric(embeddings) # # ap_mask = tf.to_float(valid_anchor_positive_mask(labels)) # ap_dist = tf.multiply(dist, ap_mask) # hardest_positive_dist = tf.reduce_max(ap_dist, axis=1, keepdims=True) # # an_mask = tf.to_float(valid_anchor_negative_mask(labels)) # an_dist = dist + tf.reduce_max(dist, axis=1, keepdims=True) * (1.0-an_mask) # hardest_negative_dist = tf.reduce_min(an_dist, axis=1, keepdims=True) # # loss = tf.reduce_mean(tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)) # return loss # # if strategy == 'batch_all': # return batch_all # elif strategy == 'batch_hard': # return batch_hard # else: # raise ValueError('unknown strategy: %s' % strategy) # def euclidean_dist(embeddings): # prod = tf.matmul(embeddings, tf.transpose(embeddings)) # #sq_norms = tf.reduce_sum(tf.square(embeddings), axis=1) # sq_norms = tf.diag_part(prod) # dist = tf.reshape(sq_norms, (-1, 1)) - 2 * prod + tf.reshape(sq_norms, (1, -1)) # return dist # # # def soft_margin_triplet_loss(labels, embeddings): # inf = tf.constant(1e+9, tf.float32) # epsilon = tf.constant(1e-6, tf.float32) # zero = tf.constant(0, tf.float32) # # #dist = tf.sqrt(tf.maximum(zero, epsilon + euclidean_dist(embeddings))) # dist = tf.maximum(zero, epsilon + euclidean_dist(embeddings)) # sqeuclidean # # mask matrix showing equal labels of embeddings # equal_label_mask = tf.cast(tf.equal(tf.reshape(labels, (-1, 1)), tf.reshape(labels, (1, -1))), tf.float32) # # pos_dist = tf.reduce_max(equal_label_mask * dist, axis=1) # neg_dist = tf.reduce_min((equal_label_mask * inf) + dist, axis=1) # # loss = tf.reduce_mean(tf.nn.softplus(pos_dist - neg_dist)) # # #hard loss # #margin = tf.constant(1.5, tf.float32) # #loss = tf.reduce_mean(tf.maximum(pos_dist - neg_dist + margin, 0.0)) # return loss # ---------------------------------------------------------------------------------------------------------------------- def valid_triplets_mask(labels): """Compute the 3D boolean mask where mask[a, p, n] is True if (a, p, n) is a valid triplet, as in a, p, n are distinct and labels[a] == labels[p], labels[a] != labels[n]. :param labels: tensor of shape (batch_size,) :return mask: tf.bool tensor of shape (batch_size, batch_size, batch_size) """ indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool) indices_not_equal = tf.logical_not(indices_equal) i_not_equal_j = tf.expand_dims(indices_not_equal, 2) i_not_equal_k = tf.expand_dims(indices_not_equal, 1) j_not_equal_k = tf.expand_dims(indices_not_equal, 0) distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k) label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1)) i_equal_j = tf.expand_dims(label_equal, 2) i_equal_k = tf.expand_dims(label_equal, 1) valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k)) mask = tf.logical_and(distinct_indices, valid_labels) return mask def euclidean_distance(embeddings, squared=False): """Computes pairwise euclidean distance matrix with numerical stability. output[i, j] = || feature[i, :] - feature[j, :] ||_2 :param embeddings: 2-D Tensor of size [number of data, feature dimension]. :param squared: Boolean, whether or not to square the pairwise distances. :return dist: 2-D Tensor of size [number of data, number of data]. """ dist_squared = tf.add(tf.reduce_sum(tf.square(embeddings), axis=1, keepdims=True), tf.reduce_sum(tf.square(tf.transpose(embeddings)), axis=0, keepdims=True) ) - 2.0 * tf.matmul(embeddings, tf.transpose(embeddings)) # Deal with numerical inaccuracies. Set small negatives to zero. dist_squared = tf.maximum(dist_squared, 0.0) # Get the mask where the zero distances are at. error_mask = tf.less_equal(dist_squared, 0.0) # Optionally take the sqrt. dist = dist_squared if squared else tf.sqrt(dist_squared + tf.cast(error_mask, dtype=tf.float32) * 1e-16) # Undo conditionally adding 1e-16. dist = tf.multiply(dist, tf.cast(tf.logical_not(error_mask), dtype=tf.float32)) n_data = tf.shape(embeddings)[0] # Explicitly set diagonals to zero. mask_offdiagonals = tf.ones_like(dist) - tf.diag(tf.ones([n_data])) dist = tf.multiply(dist, mask_offdiagonals) return dist def masked_maximum(data, mask, dim=1): """Computes the axis wise maximum over chosen elements. :param data: 2-D float `Tensor` of size [n, m]. :param mask: 2-D Boolean `Tensor` of size [n, m]. :param dim: The dimension over which to compute the maximum. :return masked_maximums: N-D `Tensor`. The maximized dimension is of size 1 after the operation. """ axis_minimums = tf.reduce_min(data, axis=dim, keepdims=True) masked_maximums = tf.reduce_max(tf.multiply(data - axis_minimums, mask), axis=dim, keepdims=True) + axis_minimums return masked_maximums def masked_minimum(data, mask, dim=1): """Computes the axis wise minimum over chosen elements. :param data: 2-D float `Tensor` of size [n, m]. :param mask: 2-D Boolean `Tensor` of size [n, m]. :param dim: The dimension over which to compute the minimum. :return masked_minimums: N-D `Tensor`. The minimized dimension is of size 1 after the operation. """ axis_maximums = tf.reduce_max(data, axis=dim, keepdims=True) masked_minimums = tf.reduce_min(tf.multiply(data - axis_maximums, mask), axis=dim, keepdims=True) + axis_maximums return masked_minimums def triplet_loss(margin=1.0, strategy='batch_semi_hard'): """Compute the triplet loss over the batch of embeddings. tf contrib inspired: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py :param margin: margin that is going to be enforced by the triplet loss :param strategy: string, that indicated whether we're using the 'batch hard', 'batch all' or 'batch_semi_hard' mining strategy :return: a callback function that calculates the loss according to the specified strategy """ def get_loss_tensor(positive_dists, negative_dists): """Compute the triplet loss function tensor using specified margin: :param positive_dists: positive distances tensor :param negative_dists: negative distances tensor :return: resulting triplet loss tensor """ if margin == 'soft': return tf.nn.softplus(positive_dists - negative_dists) return tf.maximum(positive_dists - negative_dists + margin, 0.0) def batch_semi_hard(labels, embeddings): """Computes the triplet loss with semi-hard negative mining. The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than the minimum negative distance among which are at least greater than the positive distance plus the margin constant (called semi-hard negative) in the mini-batch. If no such negative exists, uses the largest negative distance instead. See: https://arxiv.org/abs/1503.03832. :param labels: 1-D tf.int32 `Tensor` with shape [batch_size] of multiclass integer labels. :param embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should be l2 normalized. :return loss: tf.float32 scalar. """ labels = tf.reshape(labels, [-1, 1]) batch_size = tf.size(labels) # Build pairwise squared distance matrix. dist = euclidean_distance(embeddings, squared=True) # Build pairwise binary adjacency matrix (equal label mask). adjacency = tf.equal(labels, tf.transpose(labels)) # Invert so we can select negatives only. adjacency_not = tf.logical_not(adjacency) # Compute the mask. dist_tile = tf.tile(dist, [batch_size, 1]) # stack dist matrix batch_size times, axis=0 mask = tf.logical_and(tf.tile(adjacency_not, [batch_size, 1]), tf.greater(dist_tile, tf.reshape(dist, [-1, 1]))) mask = tf.cast(mask, dtype=tf.float32) is_negatives_outside = tf.reshape(tf.greater(tf.reduce_sum(mask, axis=1, keepdims=True), 0.0), [batch_size, batch_size]) is_negatives_outside = tf.transpose(is_negatives_outside) # negatives_outside: smallest D_an where D_an > D_ap. negatives_outside = tf.reshape(masked_minimum(dist_tile, mask), [batch_size, batch_size]) negatives_outside = tf.transpose(negatives_outside) # negatives_inside: largest D_an. adjacency_not = tf.cast(adjacency_not, dtype=tf.float32) negatives_inside = tf.tile(masked_maximum(dist, adjacency_not), [1, batch_size]) semi_hard_negatives = tf.where(is_negatives_outside, negatives_outside, negatives_inside) # In lifted-struct, the authors multiply 0.5 for upper triangular # in semihard, they take all positive pairs except the diagonal. mask_positives = tf.cast(adjacency, dtype=tf.float32) - tf.diag(tf.ones([batch_size])) n_positives = tf.reduce_sum(mask_positives) loss_mat = get_loss_tensor(dist, semi_hard_negatives) loss = tf.div_no_nan(tf.reduce_sum(tf.multiply(loss_mat, mask_positives)), n_positives) return loss def batch_all(labels, embeddings): """Compute the loss by generating all the valid triplets and averaging over the positive ones :param labels: 1-D tf.int32 `Tensor` with shape [batch_size] of multiclass integer labels. :param embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should be l2 normalized. :return loss: tf.float32 scalar. """ dist = euclidean_distance(embeddings, squared=True) mask = tf.to_float(valid_triplets_mask(labels)) anchor_positive_dist = tf.expand_dims(dist, 2) anchor_negative_dist = tf.expand_dims(dist, 1) loss_tensor = get_loss_tensor(anchor_positive_dist, anchor_negative_dist) loss_tensor = tf.multiply(loss_tensor, mask) num_non_easy_triplets = tf.reduce_sum(tf.to_float(tf.greater(loss_tensor, 1e-16))) loss = tf.div_no_nan(tf.reduce_sum(loss_tensor), num_non_easy_triplets) return loss def batch_hard(labels, embeddings): """Compute the loss by generating only hardest valid triplets and averaging over the positive ones. One triplet per embedding, i.e. per anchor :param labels: 1-D tf.int32 `Tensor` with shape [batch_size] of multiclass integer labels. :param embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should be l2 normalized. :return loss: tf.float32 scalar. """ dist = euclidean_distance(embeddings, squared=True) adjacency = tf.cast(tf.equal(tf.reshape(labels, (-1, 1)), tf.reshape(labels, (1, -1))), tf.float32) pos_dist = tf.reduce_max(adjacency * dist, axis=1) inf = tf.constant(1e+9, tf.float32) neg_dist = tf.reduce_min((adjacency * inf) + dist, axis=1) loss_mat = get_loss_tensor(pos_dist, neg_dist) num_non_easy_triplets = tf.reduce_sum(tf.to_float(tf.greater(loss_mat, 1e-16))) loss = tf.div_no_nan(tf.reduce_sum(loss_mat), num_non_easy_triplets) return loss if strategy == 'batch_semi_hard': return batch_semi_hard elif strategy == 'batch hard': return batch_hard else: return batch_all
true
112415cde6d3dc34c54456edc40a4f05697a18ed
Python
pooja89299/list
/list tatola even.py
UTF-8
294
3.203125
3
[]
no_license
# num=[23,14,56,12,19,9,15,31,42,43] # i=0 # y=[] # a=[] # sum=0 # sum1=0 # while i<len(num): # b=num[i] # if b%2==0: # sum=sum+b # y.append(b) # else: # a.append(b) # sum1=sum1+b # i=i+1 # print("even",y,"sum:",sum) # print("odd",a,"sum1:",sum1)
true
a545b1861ad7812848066fb74f9d16db4b1b3df2
Python
wrschneider/project-euler
/p006.py
UTF-8
161
3.296875
3
[]
no_license
n = 100 sum_of_squares = sum(i*i for i in range(1, n+1)) _sum = sum(i for i in range(1, n+1)) square_of_sum = _sum * _sum print(square_of_sum - sum_of_squares)
true
bae1ef8ffb49baa3ff27acb58af57f2f8a5a68fb
Python
hucarlos/OptimalControl
/Scripts/Plots/BoxPlotSELQR.py
UTF-8
1,257
2.859375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import matplotlib if __name__ == '__main__': matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 data = np.loadtxt('Results4.txt') # print data.shape # data = [data[m] for d, m in zip(data.T, mask.T)] # mask = ~np.isinf(data) # Filter data using np.isnan times = [data[:, 0], data[:, 1]] mask = ~np.isinf(data[:, 2]) costSELQR = data[:, 2] costSELQR = costSELQR[mask] costRSELQR = data[:, 3] costRSELQR = costRSELQR[mask] cost = [costSELQR, costRSELQR] iters = [data[:, 4], data[:, 5]] # multiple box plots on one figure f, (ax1, ax2) = plt.subplots(1, 2, sharex=False, sharey=False) bp = ax1.boxplot(cost, showmeans=True, showfliers=False) ax1.set_xticklabels(['E-LQR', 'RE-LQR']) ax1.set_title("Cost") ax1.grid() ax2.boxplot(times, showmeans=True, showfliers=False) ax2.set_xticklabels(['E-LQR', 'RE-LQR']) ax2.set_title("Time (ms)") ax2.grid() print 'Mean iters: ', np.mean(data[:, 4]), np.mean(data[:, 5]) print 'Mean costs: ', np.mean(costSELQR), np.mean(costRSELQR) print 'Mean time: ', np.mean(data[:, 0]), np.mean(data[:, 1]) plt.show()
true
efead44c4d9c3ea1b6de8a1868cffc3030911343
Python
mateenjameel/Python-Course-Mathematics-Department
/Week 14_Integration with Plotting Responses/integration_six.py
UTF-8
301
3.296875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,3,1000) def f(x): return x**2 plt.plot(x,f(x)) plt.axhline(color='red') plt.fill_between(x, f(x), where = [(x>0) and (x<2) for x in x], color='blue', alpha =0.3) # alpha is for transparency plt.show()
true
a0681bfc4259002b7e739bfa27cff2773b738834
Python
ras-2004-shaikh/MultiLang
/multilang.py
UTF-8
1,974
2.9375
3
[]
no_license
import os import time import json #solutions=[wherever the solutions are maybe discord?? this will be a list of strings] test_solution='''java public static int solution(){ return 5; } ''' test_solution_2='''brainf*ck >+++++[<++++++++++>-]<+++. ''' solutions=[test_solution,test_solution_2] test_file='tests.json' temp_files={'java':'java_temp.java'} result_files={'java':'test_fails.dat'} temporary='Main' #this must be the name of the class in java_temp.java remove_files={'java':[temporary+'.java',temporary+'.class',"MySecurity.class"]} line_no_java=76 i=1 while solutions: sol=solutions.pop() print(f"Solution: {i}") i+=1 sol_lines=[*map(lambda s:s+'\n',sol.split('\n'))] if sol_lines[0]=='java\n': lines=[] with open(temp_files['java'],'r')as f: lines=f.readlines() lines[line_no_java:line_no_java+1]=sol_lines[1:] with open(temporary+'.java','w')as f: f.writelines(lines) os.system(f'javac {temporary+".java"}') os.system(f'java {temporary} {test_file}') for s in remove_files['java']: os.remove(s) with open(result_files['java'],'r')as f: res=f.readlines() print(res[0]) for line in res[1:10]: print(line) os.remove(result_files['java']) elif sol_lines[0]=='brainf*ck\n': interpreter=__import__('brainF_temp').interpret code=''.join(sol_lines[1:]) with open(test_file,'r') as f: cases=json.load(f)['cases'] failed_cases=[] start=time.time() for test in cases: try: ans=interpreter(code,str(test[0])) if(ans!=str(test[1])): failed_cases.append(test+["Your answer: "+ans]) except Exception as e: failed_cases.append(test+["Error: "+str(e)]) end=time.time() print(f"""Passed : {len(cases)-len(failed_cases)}/{len(cases)} time: {end-start}""") if len(failed_cases): print('Some failed cases.') for test in failed_cases[:3]: print(f"""Input: {test[0]} Actual answer: {test[1]} {test[2]}""")
true
c1db36698c2c90c7b0338b39f8442b83178938ef
Python
kleinerman/dobie
/server/back_end/crudresndr.py
UTF-8
11,251
2.671875
3
[]
no_license
import pymysql import queue import logging import json import re import time import threading import genmngr import database from config import * from msgheaders import * class CrudReSndr(genmngr.GenericMngr): ''' This thread has two responsibilities. It periodically check which controllers has some CRUD not yet committed and send to them a RRC (Request Resend CRUD) message. When a controller which now is alive answer to the previous message with a RRRC (Ready to Receive Resended CRUD) message, this thread send the not comitted CRUDs to this controller. ''' def __init__(self, exitFlag): #Invoking the parent class constructor, specifying the thread name, #to have a understandable log file. super().__init__('CrudReSender', exitFlag) #Database object to answer the CRUDs not committed. #The creation of this object was moved to the run method to avoid #freezing the main thread when there is no connection to database. self.dataBase = None #Controller Messanger to resend the corresponding CRUDs. #As the "ctrllerMsger" use the only "netMngr" object and the "netMngr" has to #know this object to send the RRRE message. This attribute is setted after #creating this object in the main thread. self.ctrllerMsger = None #When the network thread receives a RRRC message it puts the #MAC of the controller which sent this message in this queue. #Also, MsgReceiver thread can put the MAC of the controller #which need to be resynced here. self.toCrudReSndr = queue.Queue() #Calculating the number of iterations before sending the message to request #resync the controller. self.ITERATIONS = RE_SEND_TIME // EXIT_CHECK_TIME #This is the actual iteration. This value is incremented in each iteration #and is initializated to 0. self.iteration = 0 #Lock to protect self.iteration attribute self.lockIteration = threading.Lock() def resetReSendTime(self): ''' This method will be executed by network thread reseting the iterations everytime the network thread sends a message to the controller. This is to avoid "CrudReSender" thread resends CRUDs when a CRUD message has just been sent to the controller and the controller didn't answer yet. ''' #self.iteration is protected with self.lockIteration lock as it is #modified by this thread (CrudReSender) and by NetMngr Thread with self.lockIteration: self.iteration = 0 def run(self): ''' This is the main method of the thread. Most of the time it is blocked waiting for queue messages coming from the "Network" thread. The queue message is the MAC address of the controller which need CRUDs to be resended. When a MAC address is received, this method send all the doors, access, limited access and persons CRUDs for this controller in this order to avoid inconsistency in the controller database. Also, after "self.ITERATIONS" times, it send a RRRE message to all the controllers which have uncommitted CRUDs ''' #First of all, the database should be connected by the execution of this thread self.dataBase = database.DataBase(DB_HOST, DB_USER, DB_PASSWD, DB_DATABASE, self) while True: try: #Blocking until Network thread sends an msg or EXIT_CHECK_TIME expires ctrllerMac = self.toCrudReSndr.get(timeout=EXIT_CHECK_TIME) self.checkExit() try: for door in self.dataBase.getUncmtDoors(ctrllerMac, database.TO_ADD): door.pop('name') door.pop('controllerId') door.pop('zoneId') door.pop('isVisitExit') self.ctrllerMsger.addDoor(ctrllerMac, door) for door in self.dataBase.getUncmtDoors(ctrllerMac, database.TO_UPDATE): door.pop('name') door.pop('controllerId') door.pop('zoneId') door.pop('isVisitExit') self.ctrllerMsger.updDoor(ctrllerMac, door) for door in self.dataBase.getUncmtDoors(ctrllerMac, database.TO_DELETE): self.ctrllerMsger.delDoor(ctrllerMac, door['id']) self.checkExit() for unlkDoorSkd in self.dataBase.getUncmtUnlkDoorSkds(ctrllerMac, database.TO_ADD): self.ctrllerMsger.addUnlkDoorSkd(ctrllerMac, unlkDoorSkd) for unlkDoorSkd in self.dataBase.getUncmtUnlkDoorSkds(ctrllerMac, database.TO_UPDATE): unlkDoorSkd.pop('doorId') self.ctrllerMsger.updUnlkDoorSkd(ctrllerMac, unlkDoorSkd) for unlkDoorSkd in self.dataBase.getUncmtUnlkDoorSkds(ctrllerMac, database.TO_DELETE): self.ctrllerMsger.delUnlkDoorSkd(ctrllerMac, unlkDoorSkd['id']) self.checkExit() for excDayUds in self.dataBase.getUncmtExcDayUdss(ctrllerMac, database.TO_ADD): self.ctrllerMsger.addExcDayUds(ctrllerMac, excDayUds) for excDayUds in self.dataBase.getUncmtExcDayUdss(ctrllerMac, database.TO_UPDATE): excDayUds.pop('doorId') self.ctrllerMsger.updExcDayUds(ctrllerMac, excDayUds) for excDayUds in self.dataBase.getUncmtExcDayUdss(ctrllerMac, database.TO_DELETE): self.ctrllerMsger.delExcDayUds(ctrllerMac, excDayUds['id']) self.checkExit() for access in self.dataBase.getUncmtAccesses(ctrllerMac, database.TO_ADD): self.ctrllerMsger.addAccess(ctrllerMac, access) for access in self.dataBase.getUncmtAccesses(ctrllerMac, database.TO_UPDATE): #The following parameters should not be sent when updating an access. access.pop('doorId') access.pop('personId') access.pop('allWeek') access.pop('cardNumber') self.ctrllerMsger.updAccess(ctrllerMac, access) for access in self.dataBase.getUncmtAccesses(ctrllerMac, database.TO_DELETE): self.ctrllerMsger.delAccess(ctrllerMac, access['id']) self.checkExit() for liAccess in self.dataBase.getUncmtLiAccesses(ctrllerMac, database.TO_ADD): self.ctrllerMsger.addLiAccess(ctrllerMac, liAccess) for liAccess in self.dataBase.getUncmtLiAccesses(ctrllerMac, database.TO_UPDATE): #The following parameters should not be sent when updating an access. liAccess.pop('accessId') liAccess.pop('doorId') liAccess.pop('personId') liAccess.pop('cardNumber') self.ctrllerMsger.updLiAccess(ctrllerMac, liAccess) for liAccess in self.dataBase.getUncmtLiAccesses(ctrllerMac, database.TO_DELETE): self.ctrllerMsger.delLiAccess(ctrllerMac, liAccess['id']) self.checkExit() #Persons never colud be in state TO_ADD. For this reason, #only TO_UPDATE or TO_DELETE state is retrieved for person in self.dataBase.getUncmtPersons(ctrllerMac, database.TO_UPDATE): person.pop('names') person.pop('lastName') person.pop('orgId') person.pop('visitedOrgId') person.pop('isProvider') #"updPerson" method receive a list of MAC addresses to update. Because in this case only one #controller is being updated, a list with only the MAC address of the controller is created. self.ctrllerMsger.updPerson([ctrllerMac], person) for person in self.dataBase.getUncmtPersons(ctrllerMac, database.TO_DELETE): #"delPerson" method receive a list of MAC addresses to update. Because in this case only one #controller is being updated, a list with only the MAC address of the controller is created. self.ctrllerMsger.delPerson([ctrllerMac], person['id']) self.checkExit() except database.DoorError as doorError: logMsg = 'Error retransmitting uncommitted doors: {}'.format(str(doorError)) self.logger.warning(logMsg) except database.AccessError as accessError: logMsg = 'Error retransmitting uncommitted accesses: {}'.format(str(accessError)) self.logger.warning(logMsg) except database.PersonError as personError: logMsg = 'Error retransmitting uncommitted persons: {}'.format(str(personError)) self.logger.warning(logMsg) except queue.Empty: #Cheking if Main thread ask as to finish. self.checkExit() #self.iteration is protected with self.lockIteration lock every time it is #accessed, as it is modified by this thread (CrudReSender) and by NetMngr Thread #Keep "self.iteration" locked during all below code block won't be optimal as #there are methods inside this block which may spend some time accessing to #database or sending things over the network. (Sending things over the network #keeping the lock would cause a deadlock if not using queues) #To avoid keeping "self.iteration" locked too much time, it is copied. with self.lockIteration: iteration = self.iteration if iteration >= self.ITERATIONS: logMsg = 'Checking if there are controllers which need to be resynced.' self.logger.debug(logMsg) #Getting the MAC addresses of controllers which has uncommitted CRUDs. unCmtCtrllers = self.dataBase.getUnCmtCtrllers() unCmtCtrllersMacs = [unCmtCtrller['macAddress'] for unCmtCtrller in unCmtCtrllers] if unCmtCtrllersMacs: logMsg = 'Sending Request Resync Message to: {}'.format(', '.join(unCmtCtrllersMacs)) self.logger.info(logMsg) self.ctrllerMsger.requestReSendCruds(unCmtCtrllersMacs) with self.lockIteration: self.iteration = 0 else: with self.lockIteration: self.iteration +=1
true
de4d2ecf7c2e79f6003c26c4c1dccac8305feb8d
Python
tmacjx/flask-quickstart
/common/utils/date_formatter.py
UTF-8
2,123
3.03125
3
[]
no_license
""" # @Author wk # @Time 2020/4/23 10:39 """ from datetime import datetime, date import time import numbers DATE_FORMAT_DEFAULT = "%Y-%m-%d" DATETIME_FORMAT_DEFAULT = "%Y-%m-%d %H:%M:%S" def format_date(dt, formatter=DATE_FORMAT_DEFAULT): """ :param dt: :param formatter: :return: """ if isinstance(dt, datetime): return datetime.strftime(dt, formatter) elif isinstance(dt, date): return date.strftime(dt, formatter) else: return None def format_datetime(dt, formatter=DATETIME_FORMAT_DEFAULT): """ :param dt: :param formatter: :return: """ if isinstance(dt, numbers.Real): dt = datetime.fromtimestamp(float(dt)) if isinstance(dt, datetime): return datetime.strftime(dt, formatter) else: return None def to_timestamp(dt=None, formatter=DATETIME_FORMAT_DEFAULT): """ datetime转为timestamp :param dt: :param formatter :return: """ if dt: if isinstance(dt, str): dt = datetime.strptime(dt, formatter) else: dt = datetime.now() stamp = time.mktime(dt.timetuple()) return str(int(stamp) * 1000) def to_datetime(o, formatter=DATETIME_FORMAT_DEFAULT): if isinstance(o, str): dt = datetime.strptime(o, formatter) return dt else: return None def to_date(o, formatter=DATE_FORMAT_DEFAULT): if isinstance(o, str): dt = datetime.strptime(o, formatter).date() return dt else: return None # if __name__ == "__main__": # # res = format_date(datetime.now()) # # print(res) # # res = format_date(datetime.now().date()) # # print(res) # # res = format_datetime(datetime.now()) # # print(res) # # res = format_datetime(1587623323.000) # # print(res) # # res = to_timestamp(datetime.now()) # # print(res) # # res = to_timestamp() # # print(res) # # res = to_datetime("2020-02-02 11:11:11") # # print(res) # # res = to_date("2020-02-02") # # print(res) # res = to_timestamp("2020-02-02 11:11:11") # print(res)
true
62458a8e3381f5b20e953d97dc710696ee030b65
Python
peterbarla/AlgoExpertExercises
/ArraysCategory/ZigzagTraverse/my_solution.py
UTF-8
1,670
4.125
4
[]
no_license
# O(n) time | O(n) space def zigzagTraverse(array): i, j = 0, 0 number_of_elements_in_the_array = len(array) * len(array[0]) result = [] if number_of_elements_in_the_array != 0: result.append(array[i][j]) added_elements = 1 down = False up = True if len(array) > 1: i += 1 else: j += 1 while added_elements < number_of_elements_in_the_array: if up: if i == 0 or j == len(array[0]) - 1: result.append(array[i][j]) added_elements += 1 up = False down = True if j + 1 < len(array[0]): j += 1 else: i += 1 else: result.append(array[i][j]) added_elements += 1 i -= 1 j += 1 elif down: if j == 0 or i == len(array) - 1: result.append(array[i][j]) added_elements += 1 up = True down = False if i + 1 < len(array): i += 1 else: j += 1 else: result.append(array[i][j]) added_elements += 1 i += 1 j -= 1 return result '''arr = [ [1, 3, 4, 10, 3, 3], [2, 5, 9, 11, 4, 4], [6, 8, 12, 15, 4, 4], [7, 13, 14, 16, 4, 4]]''' '''arr = [ [1, 3, 4, 10, 11], [2, 5, 9, 12, 20], [6, 8, 13, 19, 21], [7, 14, 18, 22, 27], [15, 17, 23, 26, 28], [16, 24, 25, 29, 30] ]''' arr = [[1, 2, 3, 4, 5]] print(zigzagTraverse(arr))
true
6515f4dfbe4531a4db69bdf1b95dfa34b9f2e0a7
Python
KunBaoLin/coding-dojo-hw
/band_together/flask_app/models/band.py
UTF-8
2,417
2.953125
3
[]
no_license
from flask_app.config.mysqlconnection import connectToMySQL from flask import flash class Band: db = 'band_together' def __init__(self,data): self.id = data['id'] self.name = data['name'] self.genre = data['genre'] self.city = data['city'] self.created_at = data['created_at'] self.updated_at = data['updated_at'] self.user_id = data['user_id'] @classmethod #save query new band def save(cls,data): query = "INSERT INTO bands (name, genre, city, user_id) VALUES (%(name)s,%(genre)s,%(city)s,%(user_id)s);" return connectToMySQL(cls.db).query_db(query, data) @classmethod # get all from table bands def get_all(cls): query = "SELECT * FROM bands;" results = connectToMySQL(cls.db).query_db(query) all_bands = [] for row in results: all_bands.append( cls(row) ) return all_bands @classmethod #get one band by id def get_one(cls,data): query = "SELECT * FROM bands WHERE id = %(id)s;" results = connectToMySQL(cls.db).query_db(query,data) return cls( results[0] ) @classmethod #update band def update(cls, data): query = "UPDATE bands SET name=%(name)s, genre=%(genre)s, city=%(city)s, updated_at=NOW() WHERE id = %(id)s;" return connectToMySQL(cls.db).query_db(query,data) @classmethod #delete bands def destroy(cls,data): query = "DELETE FROM bands WHERE id = %(id)s;" return connectToMySQL(cls.db).query_db(query,data) @classmethod #get bands that relate to user def get_user_bands(cls,data): query = 'select * from bands left join users on bands.user_id = users.id where users.id = %(id)s;' results = connectToMySQL(cls.db).query_db(query,data) bands = [] for band in results: bands.append(cls(band)) return bands @staticmethod def validate_band(band): is_valid = True if len(band['name']) < 3: is_valid = False flash("Band Name must be at least 3 characters","band") if len(band['genre']) < 3: is_valid = False flash("Music Genre must be at least 3 characters","band") if len(band['city']) < 3: is_valid = False flash("Home City must be at least 3 characters","band") return is_valid
true
5b9d05ac39b7bb38e425ec1c6c6965d177038173
Python
Ayhan-Huang/CMDB
/auto_client/src/plugin/memory.py
UTF-8
1,915
2.6875
3
[]
no_license
from lib.config import settings import os from lib import convert # 转化MB显示的 class Memory: def __init__(self): pass @classmethod # 日后可以附加其它逻辑 def initial(cls): return cls() def process(self, execute_cmd, debug): if debug: with open(os.path.join(settings.BASE_DIR, 'files/memory.out'), 'r', encoding='utf-8')as f: output = f.read() else: output = execute_cmd('命令') res = self.parse(output) # return "memory info ................" return res def parse(self, content): """ 解析shell命令返回结果 :param content: shell 命令结果 :return:解析后的结果 """ ram_dict = {} key_map = { 'Size': 'capacity', 'Locator': 'slot', 'Type': 'model', 'Speed': 'speed', 'Manufacturer': 'manufacturer', 'Serial Number': 'sn', } devices = content.split('Memory Device') for item in devices: item = item.strip() if not item: continue if item.startswith('#'): continue segment = {} lines = item.split('\n\t') for line in lines: if not line.strip(): continue if len(line.split(':')): key, value = line.split(':') else: key = line.split(':')[0] value = "" if key in key_map: if key == 'Size': segment[key_map['Size']] = convert.convert_mb_to_gb(value, 0) else: segment[key_map[key.strip()]] = value.strip() ram_dict[segment['slot']] = segment return ram_dict
true
d755b3439b762747c9e100fde6e67a7a8ca09bb4
Python
approximata/greenfox-weeks
/week-04/day-4/4.py
UTF-8
263
3.765625
4
[]
no_license
# 4. Given base and n that are both 1 or more, compute recursively (no loops) # the value of base to the n power, so powerN(3, 2) is 9 (3 squared). def power(x, n): if n <= 2: return x * x else: return x * power(x, n-1) print(power(2, 4))
true
66607c860f0a213e0b516abcb5a667a21bc162b5
Python
carlos3g/URI-solutions
/categorias/iniciante/python/1019.py
UTF-8
119
3
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- t = int(input()) m = t%3600//60 h = t//3600 s = t%3600%60 print('{}:{}:{}'.format(h, m, s))
true
9b562e802acbb135f0ddf0dbda4b3f999fa65ec4
Python
codio-content/ms-m12-conditionals-and-repetition
/.guides/content/ExFor1.py
UTF-8
136
3.21875
3
[]
no_license
for i in range(1,10): print("pump bellows") for i in range(1,10,2): print("Example of stepping by 2") print (i)
true
f21e5e1b717aafdc415ce0384e76b2bf8551dfef
Python
kenaryn/arkheia
/book.py
UTF-8
970
3.734375
4
[ "BSD-3-Clause" ]
permissive
"""Define a set of classes representing a book.""" class Book: """A simple class book.""" def __init__(self, title, author, publisher, year): self.title = title self.author = author self.publisher = publisher self.year = year def read_book(self): """Show information about a single book.""" print(f"Title: {self.title.capitalize()}") print(f"Author: {self.author.title()}") print(f"Publisher: {self.publisher.title()}") print(f"Year: {self.year}") def remove_book(self, title): """Remove a title-related book from the library.""" file_path = 'text_files/' with open({file_path}book) as file_object: library = file_object.readlines() for book in library: if title in books: books.remove(title) else: print(f"'{title.capitalize()}' does not exist in your library.")
true
a43ecb53122e03529f7d603ddf61f650b75fbdb1
Python
goldan/pytils
/pytils/test/test_utils.py
UTF-8
5,129
2.765625
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Unit-tests for pytils.utils """ import unittest import pytils import decimal class ASPN426123TestCase(unittest.TestCase): """ Test case for third-party library from ASPN cookbook recipe #426123 This unit-test don't cover all code from recipe """ def testTakesPositional(self): @pytils.utils.takes(int, str) def func(i, s): return i + len(s) self.assertEquals(func(2, 'var'), 5) self.assertEquals(func(2, 'var'), 5) self.assertRaises(pytils.err.InputParameterError, func, 2, 5) self.assertRaises(pytils.err.InputParameterError, func, 2, ('var',)) self.assertRaises(pytils.err.InputParameterError, func, 'var', 5) def testTakesNamed(self): @pytils.utils.takes(int, s=str) def func(i, s): return i + len(s) self.assertEquals(func(2, s='var'), 5) self.assertEquals(func(2, s='var'), 5) self.assertRaises(pytils.err.InputParameterError, func, 2, 'var') self.assertRaises(pytils.err.InputParameterError, func, 2, 5) self.assertRaises(pytils.err.InputParameterError, func, 2, ('var',)) self.assertRaises(pytils.err.InputParameterError, func, 'var', 5) def testTakesOptional(self): @pytils.utils.takes(int, pytils.utils.optional(str), s=pytils.utils.optional(str)) def func(i, s=''): return i + len(s) self.assertEquals(func(2, 'var'), 5) self.assertEquals(func(2, s='var'), 5) self.assertEquals(func(2, s='var'), 5) self.assertRaises(pytils.err.InputParameterError, func, 2, 5) self.assertRaises(pytils.err.InputParameterError, func, 2, ('var',)) self.assertRaises(pytils.err.InputParameterError, func, 'var', 5) def testTakesMultiplyTypesAndTupleOf(self): @pytils.utils.takes((int, int), pytils.utils.tuple_of(str)) def func(i, t=tuple()): return i + sum(len(s) for s in t) self.assertEquals(func(2, ('var', 'var2')), 9) self.assertEquals(func(2, ('var', 'var2')), 9) self.assertEquals(func(2, t=('var', 'var2')), 9) self.assertEquals(func(2, t=('var', 'var2')), 9) self.assertRaises(pytils.err.InputParameterError, func, 2, (2, 5)) class ChecksTestCase(unittest.TestCase): """ Test case for check_* utils """ def testCheckLength(self): """ Unit-test for pytils.utils.check_length """ self.assertEquals(pytils.utils.check_length("var", 3), None) self.assertRaises(ValueError, pytils.utils.check_length, "var", 4) self.assertRaises(ValueError, pytils.utils.check_length, "var", 2) self.assertRaises(ValueError, pytils.utils.check_length, (1,2), 3) self.assertRaises(TypeError, pytils.utils.check_length, 5) def testCheckPositive(self): """ Unit-test for pytils.utils.check_positive """ self.assertEquals(pytils.utils.check_positive(0), None) self.assertEquals(pytils.utils.check_positive(1), None) self.assertEquals(pytils.utils.check_positive(1, False), None) self.assertEquals(pytils.utils.check_positive(1, strict=False), None) self.assertEquals(pytils.utils.check_positive(1, True), None) self.assertEquals(pytils.utils.check_positive(1, strict=True), None) self.assertEquals(pytils.utils.check_positive(decimal.Decimal("2.0")), None) self.assertEquals(pytils.utils.check_positive(2.0), None) self.assertRaises(ValueError, pytils.utils.check_positive, -2) self.assertRaises(ValueError, pytils.utils.check_positive, -2.0) self.assertRaises(ValueError, pytils.utils.check_positive, decimal.Decimal("-2.0")) self.assertRaises(ValueError, pytils.utils.check_positive, 0, True) class SplitValuesTestCase(unittest.TestCase): def testClassicSplit(self): """ Unit-test for pytils.utils.split_values, classic split """ self.assertEquals(("Раз", "Два", "Три"), pytils.utils.split_values("Раз,Два,Три")) self.assertEquals(("Раз", "Два", "Три"), pytils.utils.split_values("Раз, Два,Три")) self.assertEquals(("Раз", "Два", "Три"), pytils.utils.split_values(" Раз, Два, Три ")) self.assertEquals(("Раз", "Два", "Три"), pytils.utils.split_values(" Раз, \nДва,\n Три ")) def testEscapedSplit(self): """ Unit-test for pytils.utils.split_values, split with escaping """ self.assertEquals(("Раз,Два", "Три,Четыре", "Пять,Шесть"), pytils.utils.split_values("Раз\,Два,Три\,Четыре,Пять\,Шесть")) self.assertEquals(("Раз, Два", "Три", "Четыре"), pytils.utils.split_values("Раз\, Два, Три, Четыре")) if __name__ == '__main__': unittest.main()
true
44054cf9c1dbd5b2698d5f0f081e2d97b3f51265
Python
suryakencana007/kensaku
/rak/example-mongo.py
UTF-8
2,053
2.59375
3
[]
no_license
""" # Copyright (c) 11 2014 | surya # 17/11/14 nanang.ask@kubuskotak.com # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # example-mongo.py """ import os from whoosh.fields import Schema, ID, KEYWORD, TEXT from whoosh.index import create_in from whoosh.query import Term from pymongo import Connection from bson.objectid import ObjectId # Set index, we index title and content as texts and tags as keywords. # We store inside index only titles and ids. schema = Schema(title=TEXT(stored=True), content=TEXT, nid=ID(stored=True), tags=KEYWORD) # Create index dir if it does not exists. if not os.path.exists("index"): os.mkdir("index") # Initialize index index = create_in("index", schema) # Initiate db connection connection = Connection('localhost', 27017) db = connection["cozy-home"] posts = db.posts # Fill index with posts from DB writer = index.writer() for post in posts.find(): writer.update_document(title=post["title"], content=post["content"], nid=str(post["_id"]), tags=post["tags"]) writer.commit() # Search inside index for post containing "test", then it displays # results. with index.searcher() as searcher: result = searcher.search(Term("content", u"test"))[0] post = posts.find_one(ObjectId(result["nid"])) print(result["title"]) print(post["content"])
true
277d54c6dd709bea99cc2d9d8315910e5af524d4
Python
Madhur0/MGNREGA
/venv/src/run.py
UTF-8
1,746
3.296875
3
[]
no_license
""" Initial file for stating the project.""" from block_development_officer import BlockDevelopmentOfficer from gram_panchayat_member import GramPanchayatMember from member import Member from schema import Schema import sqlite3 def sql_connection(): """ Setup connection with sqlite3 backend. :return: sqlite3 connection object """ return sqlite3.connect('database.db') class Run: def __init__(self, connection): self.conn = connection def login_menu(self): """ Display Login options for users to choose. :return: True """ print("\n**** LOGIN MENU ****") print("1. Login as BDO \n2. Login as GPM \n3. Login as Member\n4. Exit") choice = input("Choose: ") if choice == '1': BlockDevelopmentOfficer(self.conn).login_bdo() elif choice == '2': GramPanchayatMember(self.conn).login_gpm() elif choice == '3': Member(self.conn).login_member() elif choice == '4': print("\nExiting...") self.conn.close() else: print("\nWrong Input! Try again.") if choice != '4': self.login_menu() return True def main(): """ :return: True/False """ try: conn = sql_connection() if conn is None: print("Error while connecting with database") print("Retry after sometime!!!") else: Schema(conn).setup_admin() Schema(conn).create_tables() Run(conn).login_menu() conn.close() return True except sqlite3.Error as e: print(type(e), ": ", e) return False if __name__ == "__main__": main()
true
775842cce700a5ce8c6cebefc8d6a4fec794fcb7
Python
Chetchita641/QT_Tutorials
/advancedpyqt5/examples/modelview/modelindex.py
UTF-8
2,178
3.21875
3
[]
no_license
#!/usr/bin/python3 # -*- coding: utf-8 -*- ''' ZetCode Advanced PyQt5 tutorial In this example, we work with QModelIndex and QTreeView. Author: Jan Bodnar Website: zetcode.com Last edited: August 2017 ''' from PyQt5.QtWidgets import (QWidget, QApplication, QTreeView, QVBoxLayout, QAbstractItemView, QLabel) from PyQt5.QtGui import QStandardItemModel, QStandardItem import sys data = ( ["Jessica Alba", "Pomona", "1981"], ["Angelina Jolie", "New York", "1975"], ["Natalie Portman", "Yerusalem", "1981"], ["Scarlett Jonahsson", "New York", "1984"] ) class Example(QWidget): def __init__(self): super().__init__() self.setGeometry(300, 300, 350, 250) self.setWindowTitle("Actresses") self.initData() self.initUI() def initData(self): self.model = QStandardItemModel() labels = ("Name", "Place", "Born") self.model.setHorizontalHeaderLabels(labels) for i in range(len(data)): name = QStandardItem(data[i][0]) place = QStandardItem(data[i][1]) born = QStandardItem(data[i][2]) self.model.appendRow((name, place, born)) def initUI(self): tv = QTreeView(self) tv.setRootIsDecorated(False) tv.setModel(self.model) behavior = QAbstractItemView.SelectRows tv.setSelectionBehavior(behavior) self.label = QLabel(self) layout = QVBoxLayout() layout.addWidget(tv) layout.addWidget(self.label) self.setLayout(layout) tv.clicked.connect(self.onClicked) def onClicked(self, idx): row = idx.row() cols = self.model.columnCount() data = [] for col in range(cols): item = self.model.item(row, col) data.append(item.text()) self.label.setText((", ".join(data))) app = QApplication([]) ex = Example() ex.show() sys.exit(app.exec_())
true
242590806441f1028cad9f22db706671fa613550
Python
krishnadhara/programs-venky
/decorators_py/func_dec.py
UTF-8
384
3.546875
4
[]
no_license
def smart_division(func): def inner(a,b): print("i am going to divide",a,"and",b) if b == 0: print("b canot be divided by zero") return return func(a,b) return inner @smart_division def division(a,b): return a/b '''val = smart_division(division) print(val) babu = val(10,0) print(babu)''' val = division(10,20) print(val)
true
0297a1268aeb6d959b4a46065fb3e97b37f99c7b
Python
Roberto-Mota/CursoemVideo
/exercicios/ex087.py
UTF-8
2,261
3.890625
4
[ "MIT" ]
permissive
# Desafio 087 -> Aprimore o desafio anterior, mostrando no final: # A) A soma de todos os valores pares digitados. # B)A soma dos valores da terceira coluna # C)O maior valor da segunda coluna posição = [[], [], []] linha = 0 coluna = 0 soma_par = 0 soma_coluna3 = 0 maior_coluna2 = 0 for pos, valor in enumerate(range(0, 9)): if pos % 3 == 0: linha = 0 linha += 1 valor = int(input(f'Digite um valor para a Coluna ({coluna+1}), Linha ({linha}):')) if valor % 2 == 0: soma_par += valor if pos == 1: maior_coluna2 = valor if pos == 4 or pos == 7 and valor > maior_coluna2: maior_coluna2 = valor if 0 <= pos <= 2: posição[0].append(valor) if pos == 2: coluna = 1 elif 3 <= pos <= 5: posição[1].append(valor) if pos == 5: coluna = 2 elif 6 <= pos <= 8: posição[2].append(valor) soma_coluna3 = posição[0][2] + posição[1][2] + posição[2][2] print(f'.____.____.____.\n' f'|{posição[0][0]:^4}|{posição[0][1]:^4}|{posição[0][2]:^4}|\n' f'|____|____|____|\n' f'|{posição[1][0]:^4}|{posição[1][1]:^4}|{posição[1][2]:^4}|\n' f'|____|____|____|\n' f'|{posição[2][0]:^4}|{posição[2][1]:^4}|{posição[2][2]:^4}|\n' f'|____|____|____|\n') print('-=-'*10) print(f'A soma de todos os valores pares digitados: {soma_par}.\n' f'A soma dos valores da terceira coluna: {soma_coluna3}\n' f'O maior valor da segunda coluna: {maior_coluna2}') #Jeito do professor matriz = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] spar = mai = scol = 0 for l in range(0, 3): for c in range(0, 3): matriz[l][c] = int(input(f'Digite um valor para a posição [{c},{l}]: ')) print('-=-'*20) for l in range(0, 3): for c in range(0, 3): print(f'[{matriz[l][c]:^4}]', end='') if matriz[l][c] % 2 == 0: spar += matriz[l][c] print() print(f'A soma dos pares é: {spar}') for l in range(0, 3): scol += matriz[l][2] print(f'A soma dos valores da terceira coluna: {scol}') for c in range(0, 3): if c == 0 or matriz[1][c] > mai: mai = matriz[1][c] print(f'O maior valor da segunda linha é: {mai}')
true
9ab7485c142dea162a0f202654570032071551a5
Python
yurigsilva/modulo_introducao_python_e_programacao_python_full
/23_listas.py
UTF-8
87
3.078125
3
[]
no_license
x = [1, 2, 3] y = x z = x.copy() print(hex(id(x))) print(hex(id(y))) print(hex(id(z)))
true
750cf2ba192a6334f69ef5c806dc015e0edb5e9e
Python
wlh320/shuaOJ
/AdventOfCode/2020/day21/21.py
UTF-8
1,287
2.6875
3
[]
no_license
from collections import defaultdict from copy import deepcopy lines = open('input').readlines() def split_input(line): line = line.strip() gres, als = line.split('(contains ') gres = gres.split() als = als[:-1].split(', ') return gres, als Gs = set() As = set() cnt = defaultdict(int) for line in lines: # count gres, als = split_input(line) Gs |= set(gres) As |= set(als) for g in gres: cnt[g] += 1 notin = {g: set() for g in Gs} for line in lines: gres, als = split_input(line) for a in als: # this al for g in Gs: if g not in gres: # ingrediants not in this line must have no this al notin[g].add(a) ans = 0 for g in Gs: if notin[g] == As: ans += cnt[g] print(ans) # 2 # just like this year's another problem that match ticket field suspect = {g: deepcopy(As)-notin[g] for g in Gs if notin[g] != As} kv = [] while len(kv) != len(As): for g in suspect: if len(suspect[g]) == 1: kv.append((g, suspect[g].pop())) for gg in suspect: if g != gg: if kv[-1][-1] in suspect[gg]: suspect[gg].remove(kv[-1][-1]) ans2 = ','.join(map(lambda x: x[0], sorted(kv, key=lambda x: x[1]))) print(ans2)
true
016d45ae3c7c74966b720b451ac9fb71ad6c953c
Python
pariyapariya/pariya_GW_HW_Python
/Part-1-Mini-Assignment/02-HW_CerealCleaner/solved_pariya/cereal_solved.py
UTF-8
348
3.03125
3
[]
no_license
import os import csv cereal_csv = os.path.join('..','Resources', 'cereal.csv') with open(cereal_csv) as csv_file: csv_reader = csv.reader(csv_file) next(csv_reader, None) for x in csv_reader: if float(x[7]) >= 5: print(x[0] + ' has ' + x[7] + ' of Fiber.')
true
bb93f0b4b259da7469e20fe28f5cbf26b81530c3
Python
kapilnegi67/PythonSeleniumDemo
/src/test_folder/raise_exception.py
UTF-8
226
3.53125
4
[]
no_license
a = int(input("Enter a dividend: ")) try: if a == 0: raise ZeroDivisionError("Can not divide by number 0") # raise ValueError("That is not a positive number!") except ZeroDivisionError as ve: print(ve)
true
caec599dce7de63937b4de300c978a0ddb9a7960
Python
fedebrest/curso_python
/Resoluciones/TP 3/simpson.py
UTF-8
264
3.953125
4
[]
no_license
simpson=[] cantidad=int(input("ingrese la cantidad de personajes que reconozcas: ")) for i in range(cantidad): personaje=input("ingrese el nombre del personaje que reconozca: ") simpson.append(personaje) print("Los personajes reconocidos son:", simpson)
true
291fdf6e87e2c3189ec318e1b05408053a361058
Python
chatterjeelab2022/VADER
/v2_plotting_tools.py
UTF-8
6,674
3.03125
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import math def heat_map(data, colormap, ** keywords): # keywords # colormap # Title # X_title # Y_title # X_labels # Y_labels # FigSize return None def scatter_plot(x_data, y_data, **keywords): #expects list for y_data '''keywords: Colors = 'rainbow' 'ACGT' 'AGTN' Title X_title Y_title FigSize Y_log ''' # colors Colors = keywords.pop('Colors','rainbow') if Colors == 'rainbow': color_list = ['xkcd:red','xkcd:orange','xkcd:yellow', 'xkcd:green','xkcd:blue','xkcd:purple'] Colors = color_list[:len(y_data)] elif Colors == 'ACGT': Colors = ['g','b','0','r'] elif Colors == 'ACGTN': Colors = ['g','b','0','r','0.6'] # plotting keywords FigSize = keywords.pop('FigSize',None) Marker = keywords.pop('Marker','o') MarkerSize = keywords.pop('MarkerSize',5) LineStyle = keywords.pop('LineStyle','') Y_log = keywords.pop('Y_log',False) # plot each series, find bounds y_min, y_max = 1, 0 x_min, x_max = min(x_data), max(x_data) fig, ax = plt.subplots(figsize = FigSize) for y_series, color in zip (y_data, Colors): y_series_min, y_series_max = min(y_series), max(y_series) if y_series_min < y_min: y_min = y_series_min if y_series_max > y_max: y_max = y_series_max ax.plot(x_data, y_series, marker=Marker, markersize=MarkerSize, markerfacecolor=color, linestyle=LineStyle, markeredgewidth=0) if Y_log: lower_bound_y = 10**(int(math.log10(y_min))-1) upper_bound_y = 10**(int(math.log10(y_max))) ax.set_yscale('log') else: lower_bound_y = int(y_min) - int(y_min)*0.05 upper_bound_y = int(y_max)*1.05 if upper_bound_y < y_max: upper_bound_y = int(y_max)+1 if lower_bound_y == 0: lower_bound_y = upper_bound_y*-0.05 lower_bound_x = int(x_min) - int(x_min)*0.05 upper_bound_x = int(x_max) + int(x_max)*0.05 if upper_bound_x < x_max: upper_bound_x = int(x_max)+1 if lower_bound_x == 0: lower_bound_x = upper_bound_x*-0.05 ax.set_ylim(lower_bound_y, upper_bound_y) ax.set_xlim(lower_bound_x, upper_bound_x) # axis labels and titles Title = keywords.pop('Title',None) if Title: ax.set_title(Title) X_title = keywords.pop('X_title',None) if X_title: ax.set_xlabel(X_title) Y_title = keywords.pop('Y_title',None) if Y_title: ax.set_ylabel(Y_title) plt.tight_layout() return fig, ax def bar_chart(category_labels, data_series, ** keywords): '''keywords: Colors = 'rainbow' 'ACGT' 'AGTN' Title X_title Y_title FigSize Y_log ''' # colors Colors = keywords.pop('Colors','rainbow') if Colors == 'rainbow': color_list = ['xkcd:red','xkcd:orange','xkcd:yellow', 'xkcd:green','xkcd:blue','xkcd:purple'] Colors = color_list[:len(data_series)] elif Colors == 'ACGT': Colors = ['g','b','0.2','r'] elif Colors == 'ACGTN': Colors = ['g','b','0.2','r','0.6'] # plotting keywords FigSize = keywords.pop('FigSize',None) Marker = keywords.pop('Marker','o') MarkerSize = keywords.pop('MarkerSize',5) LineStyle = keywords.pop('LineStyle','') Y_log = keywords.pop('Y_log',False) # plot each series y_max = 0 x_pos = np.arange(len(data_series[0])) series_count = len(data_series) + 1 x_pos_subs = np.arange(0,1,1/series_count) fig, ax = plt.subplots() for series, Color, x_pos_sub in zip(data_series, Colors, x_pos_subs): plt.bar(x_pos + x_pos_sub, series, color=Color, edgecolor='0', width=(1/len(x_pos_subs)), align='edge') if max(series) > y_max: y_max = max(series) if Y_log: ax.set_yscale('log') # axis labels and titles Title = keywords.pop('Title',None) if Title: ax.set_title(Title) X_title = keywords.pop('X_title',None) if X_title: ax.set_xlabel(X_title) Y_title = keywords.pop('Y_title',None) if Y_title: ax.set_ylabel(Y_title) # x axis labels x_label_pos = [] for x in x_pos: x_label_pos.append(x+0.5-(1/len(x_pos_subs)/2)) ax.set_xticks(x_label_pos) ax.set_xticklabels(category_labels) # add error bar capability, log capability plt.tight_layout() return fig, ax def stacked_bar_chart(category_labels, data_series, ** keywords): '''keywords: Colors = 'rainbow' 'ACGT' 'AGTN' Title X_title Y_title FigSize Y_log ''' # colors Colors = keywords.pop('Colors','rainbow') if Colors == 'rainbow': color_list = ['xkcd:red','xkcd:orange','xkcd:yellow', 'xkcd:green','xkcd:blue','xkcd:purple'] Colors = color_list[:len(data_series)] elif Colors == 'ACGT': Colors = ['g','b','0.2','r'] elif Colors == 'ACGTN': Colors = ['g','b','0.2','r','0.6'] # plotting keywords FigSize = keywords.pop('FigSize',None) Marker = keywords.pop('Marker','o') MarkerSize = keywords.pop('MarkerSize',5) LineStyle = keywords.pop('LineStyle','') Y_log = keywords.pop('Y_log',False) # plot each series x_pos = np.arange(len(data_series[0])) bottoms = list(np.zeros(len(data_series[0]))) fig, ax = plt.subplots() for series, Color in zip(data_series, Colors): plt.bar(x_pos, series, color=Color, edgecolor='0', bottom=bottoms) for d in range(len(series)): bottoms[d] += series[d] # axis labels and titles Title = keywords.pop('Title',None) if Title: ax.set_title(Title) X_title = keywords.pop('X_title',None) if X_title: ax.set_xlabel(X_title) Y_title = keywords.pop('Y_title',None) if Y_title: ax.set_ylabel(Y_title) # x axis labels ax.set_xticks(x_pos) ax.set_xticklabels(category_labels) plt.tight_layout() return fig, ax if __name__ == "__main__": test_x_data = [10,20,30] test_y_data = [[1,2,3],[4,5,6],[7,7,7],[1,1,6]] fig, ax = scatter_plot(test_x_data, test_y_data, FigSize=(4, 2), Y_log=False)
true
392304d39b990da1668bb8fc41a1a484e7e09a39
Python
17621251436/leetcode_program
/1数组/offer 矩阵中的路径.py
UTF-8
652
2.8125
3
[]
no_license
class Solution: def exist(self, board: List[List[str]], word: str) -> bool: ##不越界 访问了 与目标不匹配 def dfs(i,j,k): if not 0<=i<len(board) or not 0<=j<len(board) or board[i][j]!=word[k]: return False if k== len(word)-1 : return True tmp,board[i][j]=board[i][j],'/' res=dfs(i+1,j,k+1) or dfs(i,j+1,k+1) or dfs(i-1,j,k+1) or dfs(i,j-1,k+1) board[i][j]=tmp return res for i in range(len(board)): for j in range(len(board[0])): if dfs(i,j,0):return True return False
true
387097535d42180522d5336ce4efe33a721be3e9
Python
gomkyungmin/KMTNet_MVC
/LoadData.py
UTF-8
2,892
2.609375
3
[]
no_license
from os.path import dirname from os.path import join import numpy as np from astropy.io import fits from sklearn import preprocessing class Bunch(dict): """Container object for datasets: dictionary-like object that exposes its keys as attributes.""" def __init__(self, **kwargs): dict.__init__(self, kwargs) self.__dict__ = self def LoadData(**args): module_path = dirname(__file__) base_dir = module_path print "Data is loaded from %s" % (join(base_dir,args['data_file'])) hdulist = fits.open(join(base_dir,args['data_file'])) catalog_data = hdulist[2].data classes_original = catalog_data['CLASS_STAR'] classes_filtered = classes_original >= args['class_cut'] target = classes_filtered.astype(np.int) features = np.genfromtxt(join(base_dir, args['feature_file']), delimiter=',', dtype=str) print "# of data: %d, # of features: %d" % (len(catalog_data),len(features)) print "features:" print features for j,feature in enumerate(features): if j == 0: flat_data = catalog_data[feature].reshape((len(catalog_data),1)) else: flat_data = np.append(flat_data,catalog_data[feature].reshape((len(catalog_data),1)),1) return Bunch(features=features,\ data=flat_data,\ target=target) def DataScaler(X_train, X_test, scaler): if scaler == 'Standard': scaler = preprocessing.StandardScaler() elif scaler == 'MinMax': scaler = preprocessing.MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) return X_train, X_test def DataGeneration(samples,**args): X = samples.data y = samples.target train_samples = len(samples.data)*args['training_size'] if args['training_part'] == 'first': X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] elif args['training_part'] == 'second': X_train = X[train_samples:] X_test = X[:train_samples] y_train = y[train_samples:] y_test = y[:train_samples] dataset = Bunch(X_train=X_train,\ X_test=X_test,\ y_train=y_train,\ y_test=y_test) # Preprocessing (Scaling) for X_train and X_test if args['scaler'] is not None: if 'param_search_file' in args: pass else: print "\nA scaler, %s, is applied in data generation." % args['scaler'] dataset.X_train, dataset.X_test\ = DataScaler(dataset.X_train, dataset.X_test, args['scaler']) else: if 'param_search_file' in args: pass else: print "\nNo scaler is applied in data generation." return dataset
true
f4cefb05a7e40ea8e86ef22debee7f864960e933
Python
NathanHenrySchneider/personalForFun
/CellularAutomata/brians_brain.py
UTF-8
4,738
2.984375
3
[]
no_license
#Brian's Brain import time global on on = 1 global dying dying = 2 global off off = 3 import colorama import sys import random def print_finite_map(): str_prnt = "" y = 0 while (y < y_bound + 1): x = 0 str_prnt += " " while (x < x_bound + 1): chr_num = map_instances[len(map_instances) - 1][x + (y * (x_bound + 1))] str_X_O = "" if (chr_num == on): str_X_O = "X" if (chr_num == dying): str_X_O = "*" if (chr_num == off): str_X_O = " " str_prnt += str_X_O + " " x += 1 str_prnt += "\n" y += 1 print(str_prnt) def generate_initial_table(l, side_one, side_two): global map_instances map_instances = [] global x_bound x_bound = side_one - 1 global y_bound y_bound = side_two - 1 global finite_map finite_map = [off] * (side_one * side_two) global len_map len_map = len(finite_map) if(type(l) != type([])): return if(len(l) == 0): return n = 0 while (n < len(l)): point = l[n] if (type(point) != type([]) or len(point) != 2): print("invalid entry: "+str(point)) n += 1 continue x = point[0] y = point[1] if (x > x_bound or y > y_bound): print("invalid point: "+str(point)) else: finite_map[x + ((y_bound + 1) * y)] = 1 n += 1 map_instances.append(finite_map) def generate_initial_table_square(l, square): generate_initial_table(l, square, square) def generate_initial_table_random(side): random_points = [] x = 0 while(x < side): y = 0 while (y < side): rand_num = random.randint(0,3) if (rand_num % 2 == 0): random_points.append([x,y]) y += 1 x += 1 generate_initial_table(random_points,side,side) def find_score_for_point(point): x = point % (x_bound + 1) y = (point - x) / (x_bound + 1) current_map = map_instances[len(map_instances) - 1] value = current_map[point] score = 0 if (y != 0): top = current_map[point - x_bound - 1] if (top == on): score += 1 if (x != x_bound and y != 0): top_right = current_map[point - x_bound] if (top_right == on): score += 1 if (x != x_bound): right = current_map[point + 1] if (right == on): score += 1 if (x != x_bound and y != y_bound): bottom_right = current_map[point + x_bound + 2] if (bottom_right == on): score += 1 if (y != y_bound): bottom = current_map[point + x_bound + 1] if (bottom == on): score += 1 if (y != y_bound and x != 0): bottom_left = current_map[point + x_bound] if (bottom_left == on): score += 1 if (x != 0): left = current_map[point - 1] if (left == on): score += left if (x != 0 and y != 0): top_left = current_map[point - x_bound - 2] if (top_left == on): score += 1 return(score, value) def new_value_from_score(point): score_value = find_score_for_point(point) score = score_value[0] value = score_value[1] if (value == on): return dying if (value == dying): return off if (value == off and score >1): return on else: return off def run_tick(): temp_new_finite_map = [off] * ((x_bound + 1) * (y_bound + 1)) n = 0 while (n < len_map): temp_new_finite_map[n] = new_value_from_score(n) n += 1 map_instances.append(temp_new_finite_map) def run_cycle(): str_clear_screen = "\n" * (x_bound + 25) print(str_clear_screen) cycles_count = 0 while (on in map_instances[cycles_count] and cycles_count < 100): #print("cycle:"+str(cycles_count)) print_finite_map() run_tick() cycles_count += 1 time.sleep(.3) sys.stdout.write("\033[1000000;3H"+"\n") print("\nEND\n") #generate_initial_table_square([[25,20],[26,20],[25,21],[26,21],[25,22],[26,22],[25,23],[26,23],[25,24],[26,24],[25,25],[26,25],[25,26],[26,26],[25,27],[26,27],[25,28],[26,28],[25,29],[26,29],[25,30],[26,30], [12,12],[13,12],[12,13],[13,13],[37,37],[38,37],[37,38],[38,38],[37,12],[38,12],[37,13],[38,13],[12,37],[13,37],[12,38],[13,38]],52) generate_initial_table_random(25) run_cycle() #print("butt") #cross looking thing [25,25],[26,25],[25,26],[26,26],[12,12],[13,12],[12,13],[13,13],[37,37],[38,37],[37,38],[38,38],[37,12],[38,12],[37,13],[38,13],[12,37],[13,37],[12,38],[13,38]
true
120cc6b59c89cb9efbea5d955934a940ffd6f27a
Python
joaothomaz23/Basic_Python_Journey
/embaralha_string.py
UTF-8
302
3.953125
4
[]
no_license
import random def embaralhaString(a): b = [] for i in range(0,len(a),1): b.append(a[i]) random.shuffle(b) c = '' for i in range(0,len(b),1): c = c + b[i] return c val = input('Entre com uma string aleatoria: ') aux = embaralhaString(val) print(aux)
true
002cb10ee3c772a3b05215a69ec734faf48b40b5
Python
abpocklington/AtomSortingAlgorithms
/AlgorithmTest.py
UTF-8
2,297
3.015625
3
[]
no_license
import BalanceCompressAlgorithm import Snake import Hungarian import MakeBoolArray import datetime import xlsxwriter import matplotlib from Animator import Animator # these are the 'settings' title = "practice" ArrayDim = 10 TargetDim = 'max' trials = 1 LoadProbability = .6 algorithm = 2 RecordData = False MakeAnimation = True # Algorithm number's: # 1 -> Balance&Compress # 2 -> Hungarian # 3 -> snake time = [] fidelity = [] moves = [] StaticArray = [] DummyRow = [] DummyVar = True i = 0 while i < trials: Array = MakeBoolArray.MakeBoolArray(ArrayDim,LoadProbability) k = 0 j = 0 while j < ArrayDim: while k < ArrayDim: DummyVar = Array[j][k] DummyRow.append(DummyVar) k += 1 StaticArray.append(DummyRow) DummyRow = [] k = 0 j += 1 if algorithm == 1: placeholder = BalanceCompressAlgorithm.BalanceCompress(Array, ArrayDim,TargetDim) if algorithm == 2: placeholder = Hungarian.Hungarian(Array,ArrayDim,TargetDim) if algorithm == 3: placeholder = Snake.snake(Array,ArrayDim,TargetDim) time.append(placeholder[0].microseconds + placeholder[0].seconds*(10**6)) moves.append(placeholder[1]) fidelity.append(placeholder[2]) i += 1 if RecordData == True: i = 0 j = 0 workbook = xlsxwriter.Workbook(title) worksheet = workbook.add_worksheet() while i<trials: worksheet.write(0,3*i,"Trial:") worksheet.write(0,3*i + 1,i) worksheet.write(1,3*i,"Time:") worksheet.write(1,3*i + 1,time[i]) worksheet.write(2,3*i,"Fidelity:") worksheet.write(2,3*i + 1,fidelity[i]) worksheet.write(3,3*i, "Moves:") worksheet.write(3,3*i + 1,len(moves[i])) while j < len(moves[i]): if len(moves[i][j]) == 2: worksheet.write(4+j,3*i,str(moves[i][j][0])) worksheet.write(4+j,3*i + 1,str(moves[i][j][1])) else: worksheet.write(4+j,3*i,moves[i][j]) j += 1 i += 1 j = 0 workbook.close() if MakeAnimation == True: moves = moves[0] Animator(StaticArray,moves,ArrayDim)
true
3a6b789120ab1a4e5387bb370b5309770154f361
Python
SlidingSteven/Portfolio
/NumericalAnalysis-lab1.py
UTF-8
2,222
3.953125
4
[]
no_license
#!/usr/bin/env python3 #not sure if the shebang above is necessary but I want to be as thorough as possible #Name: Steven Tucker #Date: 9/12/19 arr = [ [1, 3, 2, 1, -2], [4, 2, 1, 2, 2], [2, 1, 2, 3, 1], [1, 2, 4, 1, -1]] # function to print the matrix from GeeksForGeeks https://www.geeksforgeeks.org/take-matrix-input-from-user-in-python/ def printMat(mat): n = len(mat) for i in range(n): for j in range(n+1): print(mat[i][j] , " ", end="") print() #function to print the array def printarr(arr): n = len(arr) for i in range(n): print(arr[i] , " ", end="") print() print("Original Matrix:") printMat(arr) def NaiveGauss(arr): for col in range(0,len(arr)): for row in range(0, len(arr)): if arr[col][row] < arr[0][0]: temp = arr[0] arr[0] = arr[col] arr[col]=temp for row in range(0, len(arr)-1): for col in range(row+1, len(arr)): alpha = - arr[col][row]/arr[row][row] for k in range (0, len(arr)+1): arr[col][k] = arr[col][k] + (alpha * arr[row][k]) return(arr) def BackwardsSubstitution(mat): returnArray=[1] * len(mat) i = len(mat) -1 returnArray[i] = mat[i][i+1]/mat[i][i] i -=1 while i >= 0: for col in range(i+1, len(mat)): if mat[i][col] > 0: num = mat[i][col] * returnArray[col] newNum = mat[i][len(mat)]-num mat[i][len(mat)] = newNum mat[i][col] = 0 #BackwardsSubstitution(mat) else: returnArray[i] = mat[i][len(mat)]/mat[i][i] i-=1 return(returnArray) arr1 = NaiveGauss(arr) print("After NGE: ") printMat(arr1) end = BackwardsSubstitution(arr1) print("Final Array: ") printarr(end) #---Output--- """Original Matrix: 1 3 2 1 -2 4 2 1 2 2 2 1 2 3 1 1 2 4 1 -1 After NGE: 1 3 2 1 -2 0.0 -10.0 -7.0 -2.0 10.0 0.0 0.0 1.5 2.0 0.0 0.0 0.0 0.0 -3.4 0.0 Final Array: 1 -1.0 1 -0.0"""
true
debe494df348b2fcdd14ea5f636ec472005052a5
Python
PexoDev/Python_2048
/main.py
UTF-8
2,638
3.171875
3
[]
no_license
import GameManager from os import system import random from Block import Block map = [] freeSpots = [] isGameOver = False def clearMap(): for i in range(4): m = [] for j in range(4): m.append(None) freeSpots.append((i, j)) map.append(m) def generateBlocks(count): for i in range(count): block = Block(); rand = random.randint(0,len(freeSpots)-1) spot = freeSpots[rand] map[spot[0]][spot[1]] = block freeSpots.remove(spot); def move(): def MoveBlocksProcess(i,j, direction): if map[i][j] is not None: if i + direction[0] > 3: return if j + direction[1] > 3: return if i + direction[0] < 0: return if j + direction[1] < 0: return nextI = i + direction[0] nextJ = j + direction[1] if (map[nextI][nextJ] is None): map[nextI][nextJ] = map[i][j] freeSpots.remove((nextI, nextJ)) map[i][j] = None freeSpots.append((i, j)) else: if map[nextI][nextJ].value == map[i][j].value: map[nextI][nextJ].Stack(map[i][j]) map[i][j] = None freeSpots.append((i, j)) else: return def MoveVertically(i,direction): if direction[1] >= 0: for j in range(len(map[i])): MoveBlocksProcess(i, j, direction) else: for j in range(len(map[i]) - 1, -1, -1): MoveBlocksProcess(i, j, direction) def MoveBlocks(direction): if direction[0] >= 0: for i in range(len(map)): MoveVertically(i,direction) else: for i in range(len(map)-1,-1,-1): MoveVertically(i,direction) userInput = input() if userInput == 'd': MoveBlocks([0, 1]) if userInput == 'a': MoveBlocks([0, -1]) if userInput == 'w': MoveBlocks([-1, 0]) if userInput == 's': MoveBlocks([1, 0]) def render(): system('mode con: cols=100 lines=40') system("cls") for i in range(len(map)): for j in range(len(map[i])): if(map[i][j] is not None): print("["+str(map[i][j].value)+"]", end='') else: print ("[ ]", end='') print("\n", end='') clearMap() generateBlocks(2) while not isGameOver: render() move() generateBlocks(1) if len(freeSpots) <= 0: isGameOver = True print("GAME OVER! \n Your score: " + GameManager.Score) input();
true
e7eba81e0f7c097c51bd2c9ef2218606d48d93dc
Python
NickYuu/Python-YouTube
/modles/item.py
UTF-8
2,450
2.53125
3
[]
no_license
import re import requests from bs4 import BeautifulSoup import youtube_dl def find_search_content(name): request = requests.get("https://www.youtube.com/results?search_query={}".format(name)) content = request.content soup = BeautifulSoup(content, 'html.parser') return soup def find_page_content(search): request = requests.get("https://www.youtube.com/results?{}".format(search)) content = request.content soup = BeautifulSoup(content, 'html.parser') return soup def find_all_video(soup: BeautifulSoup) -> list: all_item = list() for element in soup.find_all('a', {"rel": "spf-prefetch"}): title = element.get("title") link = element.get("href") img_name = element.get("href").split("=")[1] all_image = soup.find_all("img", {"width": True, "alt": True, "height": True, "data-ytimg": True, "onload": True}) img = re.findall("https://i.ytimg.com/vi/{}/[\S]+".format(img_name), str(all_image)) img = img[0].strip("\"") img = img.replace("&amp;", "&") all_item.append({"title": title, "link": "https://www.youtube.com{}".format(link), "img": img}) for index, time in enumerate(soup.find_all("span", {"class": "video-time"})): all_item[index]["time"] = str(time.text) return all_item def page_bar(soup: BeautifulSoup) -> dict: page_dic = {} for page in soup.find_all("a", {"class": True, "data-sessionlink": True, "data-visibility-tracking": True, "aria-label": True}): page_dic[page.text] = page.get("href") return page_dic def download_mp3(url: str): ydl_opts = { 'format': 'bestaudio/best', "outtmpl": "music/%(title)s.%(ext)s", 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }] } with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) def download_mp4(url: str): ydl_opts = {'format': 'best', "outtmpl": "video/%(title)s.%(ext)s"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([url])
true
5949f2aab324a374a649f495ad2cf2d5398e630c
Python
vasilisbaltas/Customer-Risk-Profiling-and-Loan-Default-Prediction
/Data_Cleaning#1.py
UTF-8
3,706
2.828125
3
[]
no_license
# -*- coding: utf-8 -*- import pandas as pd import numpy as np ################ checking the Loan_Attributes csv file ################### loan_attributes = pd.read_csv('Loan_Attributes.csv') ### we will replace the NaNs in ACCSTARTDATE column with the values of FIRST_MONTH ### column since they are almost identical loan_attributes['ACCSTARTDATE'] = loan_attributes['ACCSTARTDATE'].fillna(loan_attributes[loan_attributes['ACCSTARTDATE'].isna()]['FIRST_MONTH']) ### replace NaNs of OPENBALANCE and REPAYPERIOD with the respective mean feature values loan_attributes['OPENBALANCE'] = loan_attributes['OPENBALANCE'].fillna(int(loan_attributes['OPENBALANCE'].mean())) loan_attributes['REPAYPERIOD'] = loan_attributes['REPAYPERIOD'].fillna(int(loan_attributes['REPAYPERIOD'].mean())) ### removing outliers with respect to the OPENBALANCE and REPAYPERIOD attributes low_balance = loan_attributes['OPENBALANCE'].quantile(0.05) ### subjectively choose quantiles high_balance = loan_attributes['OPENBALANCE'].quantile(0.99) loan_attributes = loan_attributes[(loan_attributes['OPENBALANCE'] > low_balance) & (loan_attributes['OPENBALANCE'] < high_balance)] loan_attributes = loan_attributes[(loan_attributes['REPAYPERIOD'] >= 12) & (loan_attributes['REPAYPERIOD'] <= 60)] ### according to the case study ### drop the FIRST_MONTH column since it's almost identical to the ACCSTARTDATE column ### and the SEARCHDATE column because its data does not make sense and does not add value ### to the analysis final_loan_attributes = loan_attributes.drop(['FIRST_MONTH','SEARCHDATE'],axis=1) #final_loan_attributes.to_csv('Modified_Loan_Attributes.csv',encoding='utf-8',index=False) ################ checking the Client_Features csv file ################### client_features = pd.read_csv('Client_Features.csv') ### deleting duplicate columns client_features = client_features.T.drop_duplicates().T ### defining columns to remove because of high correlation or low variance columns_to_remove = ['F_2','F_22','F_29','F_42','F_41','F_45','F_46','F_47','F_48','F_49','F_50','F_51','F_52', 'F_54','F_55','F_56','F_57','F_58','F_60','F_61','F_63','F_64','F_66','F_73','F_76','F_86', 'F_93','F_96','F_99','F_105','F_106','F_111','F_110','F_113','F_115','F_116','F_117','F_118', 'F_119','F_120','F_121','F_122','F_124','F_24','F_25','F_26','F_27','F_28','F_126','F_127', 'F_129','F_130','F_139','F_140','F_145','F_150','F_151','F_152','F_153','F_155','F_156', 'F_157','F_158','F_167','F_170','F_171','F_174','F_175','F_176','F_177','F_178','F_179', 'F_180','F_181','F_182','F_184','F_185','F_187','F_188','F_190','F_191','F_192','F_194', 'F_195','F_198','F_201','F_203','F_204','F_205','F_206','F_215','F_216','F_219','F_220', 'F_221','F_222','F_223','F_224','F_225','F_226','F_227','F_228','F_231','F_232','F_233', 'F_234','F_235','F_237','F_243','F_249','F_255','F_256','F_261','F_267','F_273'] client_features = client_features.drop(columns = columns_to_remove) ### replace -999997 and -999999 that don't make sense with features' median values ### replacing with mean value would still give us a negative number making no sense for col in client_features.columns: client_features[col] = client_features[col].apply(lambda x: int(client_features[col].median()) if x ==-999997 or x ==-999999 else x ) #client_features.to_csv('Modified_Client_Features.csv',encoding='utf-8',index=False)
true
74e1b5e4877ca274f3e19b4614f66a4bd1cc12df
Python
nowa360/my_leetcode
/JulyChallenge/IslandPerimeter.py
UTF-8
1,941
4.0625
4
[]
no_license
""" July 7 Challenge - 463. Island Perimeter You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 represents water. Grid cells are connected horizontally/vertically (not diagonally). The grid is completely surrounded by water, and there is exactly one island (i.e., one or more connected land cells). The island doesn't have "lakes" (water inside that isn't connected to the water around the island). One cell is a square with side length 1. The grid is rectangular, width and height don't exceed 100. Determine the perimeter of the island. Example: Input: [[0,1,0,0], [1,1,1,0], [0,1,0,0], [1,1,0,0]] Output: 16 """ class IslandPerimeter(object): def __init__(self): self.visited = set() def islandPerimeter(self, grid): """ :type grid: List[List[int]] :rtype: int """ def do_traverse(y, x): count = 0 if (x, y) in self.visited: return count self.visited.add((x, y)) # if it borders left, right if x == 0: count += 1 if x == len(grid[0]) - 1: count += 1 # if it borders top, bottom if y == 0: count += 1 if y == len(grid) - 1: count += 1 for add_x, add_y in [(0, 1), (0, -1), (1, 0), (-1, 0)]: new_x, new_y = x + add_x, y + add_y if 0 <= new_x < len(grid[0]) and 0 <= new_y < len(grid): if grid[new_y][new_x] == 0: count += 1 # it's a land else: count += do_traverse(new_y, new_x) return count for ri, row in enumerate(grid): for ci, sq in enumerate(row): if sq == 1: return do_traverse(ri, ci) return 0
true
8f2a69eda834820102763a4e4eb8b08887f18e9c
Python
srinisekaran/anthrolink
/RF Detector/scripts/voltage_plot.py
UTF-8
166
2.796875
3
[]
no_license
import matplotlib.pyplot as plt voltage_data = open('values.txt').read().splitlines() plt.ylabel('Voltage (V)') plt.plot(voltage_data) plt.ylim(0.8, 1.3) plt.show()
true
e79afffb7fbe4e215715cdddaa4758ac18aebd4e
Python
gariel/lazyetl
/etl/steps/file.py
UTF-8
1,131
2.71875
3
[ "MIT" ]
permissive
import abc import io import os from typing import List, Optional from etl.common import StatefulStepController class File(StatefulStepController, abc.ABC): filename: str = "" def __init__(self, mode: str): super().__init__() self.mode = mode self.file: Optional[io.TextIOWrapper] = None def __start__(self): self.file = io.open(self.filename, self.mode) def __finish__(self): self.file.flush() self.file.close() class FileRead(File): def __init__(self): super().__init__("r") def read(self) -> str: return self.file.read() def read_lines(self) -> List[str]: return self.file.readlines() class FileWrite(File): def __init__(self): super().__init__("w") def write(self, data: str) -> None: self.file.write(data) def write_lines(self, data: List[str]) -> None: self.write(os.linesep.join([d.rstrip(os.linesep) for d in data])) def new_line(self) -> None: self.file.write(os.linesep) class FileAppend(FileWrite): def __init__(self): File.__init__(self, "a")
true
6ada8c884b99f653a0cecc8ed8c13848f7b4c824
Python
Uthmanhere/RPiWorkshop
/face2.py
UTF-8
506
2.640625
3
[]
no_license
import cv2 img = cv2.imread('league.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) haar_cascade_face = cv2.CascadeClassifier('/home/pi/opencv/data/haarcascades/haarcascade_frontalface_default.xml') faces_rects = haar_cascade_face.detectMultiScale(img_gray, scaleFactor=1.1, minNeighbors=2) print('Faces found: ', len(faces_rects)) for (x,y,w,h) in faces_rects : cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2) #cv2.imshow('face', img) #cv2.waitKey(0) cv2.imwrite('faceDetect.jpg', img)
true
75f80454c8d5eda2d3b17e33c04bfde4c795b562
Python
15327311512/driver-analysis
/Desktop/code/my_driving/gradient
UTF-8
1,854
2.890625
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 21 20:50:05 2019 @author: cyq """ ## 1 gradient ''' from sympy import S from sympy.calculus import finite_diff_weights if __name__ == "__main__": g2 = x**2 + 3*y l=g2.diff(x) print(l) ''' import scipy.io as scio from sympy import symbols, sin, cos, pi from sympy.diffgeom import Manifold, Patch, CoordSystem from sympy.simplify import simplify if __name__ == '__main__': dataFile = '/home/cyq/Desktop/code/my_driving/data/encourter_data.mat' data1 = scio.loadmat(dataFile) dataFile2 = '/home/cyq/Desktop/code/my_driving/data/encourter_name.mat' data2 = scio.loadmat(dataFile2) print (type(data1)) print(data1['encourter_data'][8][8]) ''' r, theta1,theta2 = symbols('r, theta1,theta2') m = Manifold('M', 3) patch = Patch('P', m) rect = CoordSystem('rect', patch) polar = CoordSystem('polar', patch) rect in patch.coord_systems polar.connect_to(rect, [r, theta1,theta2], [r*cos(theta1), r*sin(theta2),cos(theta1), sin(theta2)]) print(polar.jacobian(rect, [r, theta1,theta2])) print(polar.jacobian(rect, [1, theta1,theta2])) ''' #def jabi() ''' r,theta1,theta2 = symbols('r, theta1,theta2') m = Manifold('M', 2) patch = Patch('P', m) rect = CoordSystem('rect', patch) polar = CoordSystem('polar', patch) rect in patch.coord_systems #polar.connect_to(rect, [theta1,theta2], [r*cos(theta1), r*sin(theta2),cos(theta1), sin(theta2)]) polar.connect_to(rect, [theta1,theta2], [r*cos(theta1)+r*sin(theta2)+cos(theta1)+sin(theta2)]) g=polar.jacobian(rect, [theta1,theta2]) print(polar.jacobian(rect, [theta1,theta2])) print(g.shape()) ''' x=Matrix([r*cos(theta1)+r*sin(theta2)+cos(theta1)+sin(theta2)]) y=Matrix([theta1]) print(x.jacobian(y))
true
777c7215714f43fa2dec1b299a3d76ef87f65b77
Python
raviolican/HTML-Builder
/HTML-Builder.py
UTF-8
2,833
2.984375
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- from mods import * myObjects = {} while True: # Split the command typedCMD = input("> ") cmd = typedCMD.split(" ",1) # Initiate table object and store it in the list if(cmd[0] == "table"): name = cmd.pop(1) try: myObjects[name] = TableGen(name) except IndexError: myObjects[name] = TableGen(name) continue # Get ID's of current objects elif(cmd[0] == "idinfo"): cmd.pop(0) try: # Stripping spacers inptObjects = list(map(str.strip, cmd[0].split(","))) if not all(inptObjects): raise IndexError except IndexError: # Trying to fix False instances in list length = len(inptObjects) newitems = [] for v in range(length): if inptObjects[v]: newitems.append(inptObjects[v]) # String is false else: continue else: # List empty now? Stop this process if len(inptObjects) == 0: raise AttributeError inptObjects = newitems except AttributeError: print("Please provide one or more name(s) seperated by comma of " + "your table or use tables() to get all tables.") continue finally: for i in inptObjects: if i not in myObjects: print ("Cannot find table \""+i +"\"") else: idinfo = list(myObjects[i].get_ids()) print("Id for table \""+idinfo[0]+"\"",format(idinfo[1])) # Is it an object? elif cmd[0] in myObjects: cmd = typedCMD.split(" ") if cmd[1] == "getclass": print(myObjects[cmd[0]]._ClassName) elif cmd[1] == "setclass": if(cmd[2] in cmd): myObjects[cmd[0]]._ClassName = cmd[2] else: print("Expecting 3rd paramenter") # Add a new Tag to the table elif cmd[1] == "add": if cmd[2] == "header": result = myObjects[cmd[0]].add_html("header",cmd[3:]) print(result) elif cmd[2] == "row": try: result = myObjects[cmd[0]].add_html("row",cmd[3],cmd[4]) except: result = myObjects[cmd[0]].add_html("row",cmd[3]) print(result) elif cmd[1] == "mkcode": print(myObjects[cmd[0]].HtmlCode[0]) pass else: print("Command not found") continue else: print("Command not found") continue
true
d3b8a4db3ba671bc0a35e27c6d4568008f29dc6f
Python
prativadas/python-basics
/5. Chapter 5/07_sets.py
UTF-8
224
3.59375
4
[]
no_license
n1 = input('number 1 is:') n2 = input('number 2 is:') n3 = input('number 3 is:') n4 = input('number 4 is:') n5 = input('number 5 is:') my_set = {n1, n2, n3, n4, n5} # set always prints unique numbers print(my_set)
true
9d490c1b9a27d680e966b2d76a92389a93353d1c
Python
djanshuman/Algorithms-Data-Structures
/Hashing/Linear_Probing_Remove_modified.py
UTF-8
2,305
3.53125
4
[]
no_license
''' Created on 26-Jan-2021 @author: dibyajyoti ''' ''' Open Addressing method for Hashing . Below is the Linear probing implementation''' def OpenAddressing(list1): for i in range(0,len(list1)): print(i ,"->",list1[i]) def hash_calc(key): return key % len(list1) def insert(key): if(list1.count(-1) ==0): print("Hash table is full") return index=hash_calc(key) if(list1[index]==key): print("Element " +str(key)+" is already present in the table") return if(list1[index] ==-1): list1[index]=key print("Element "+str(key)+" is inserted in hash table at index "+ str(index)) else: while(list1[index] !=-1): if(index==len(list1)-1): index=0 index+=1 list1[index]=key print("Element "+str(key)+" is inserted in hash table at index "+ str(index)) def Search(key): index=hash_calc(key) j=0 if(list1[index]==key): print( "Element "+str(key) +" found at index "+ str(index)) return index else: while(list1[index] !=-1 and j!=len(list1)): if(list1[index]==key): print( "Element "+str(key) +" found at index "+ str(index)) return index elif(index==len(list1)-1): index=0 j+=1 index+=1 j+=1 print(str(key) +" not found") return False def remove(key): index_of_element=Search(key) if(index_of_element != False): list1[index_of_element]=-2 print("Element " + str(key) + " removed at index " + str(index_of_element)) return True else: return False list1=[] for i in range(10): list1.append(-1) insert(10) insert(20) insert(90) #insert(6) insert(99) insert(69) #insert(66) insert(89) insert(3) print("\n") OpenAddressing(list1) remove(3) OpenAddressing(list1) insert(65) print("\n") OpenAddressing(list1) remove(99) print("\n") OpenAddressing(list1) Search(99) remove(69) print("\n") OpenAddressing(list1) Search(20) Search(69) remove(20) print("\n") OpenAddressing(list1) insert(909) insert(9091) print("\n") OpenAddressing(list1) Search(1) remove(69) remove(99) print("\n") OpenAddressing(list1)
true
10340763d2c2740bc07a38e15d93f50a58851813
Python
Environmental-Informatics/building-more-complex-programs-with-python-aggarw82
/program_7.1.py
UTF-8
1,010
4.15625
4
[]
no_license
""" Program to generate a table of comparison for own sqrt function vs math.sqrt() Implementation of Exercise 7.1 Book: Think Python 2nd Edition by Allen B. Downey Edition: 2e Link: https://greenteapress.com/wp/think-python-2e/ """ import math def mysqrt(a): x = a - 0.9 # initial guess for x # calculate square root until estimate stops updating while True: y = (x + a/x) / 2 if y == x: break x = y return x def test_square_root(): a = 1 # format output print('\n\na mysqrt(a) math.sqrt(a) diff') print('- --------- ------------ ----') # calculate and print for a = 1 to 9 while a != 10: second_col = mysqrt(a) third_col = math.sqrt(a) diff = abs(third_col - second_col) print('{0:.1f} {1:.5f} {2:.5f} {3}'.format(a,second_col,third_col,diff)) a += 1 print('\n') test_square_root() """ Author: Varun Aggarwal Username: aggarw82 Github: https://github.com/Environmental-Informatics/building-more-complex-programs-with-python-aggarw82 """
true
e877b10abe8b7ed82d2603df89bba0c7db5eb348
Python
jimmesh518/Python_beginner
/while.py
UTF-8
115
3.8125
4
[]
no_license
for num in (1,13,11,45,35,25,): if num % 2 == 0: print("Even ",num) else: print("Odd ",num)
true
9c62af5ea532c9859b224771374f5b1113546fdd
Python
RadkaValkova/SoftUni-Web-Developer
/Programming Fundamentals Python/08 Data Types and Variables Exercise/Print Part of the ASCII Table.py
UTF-8
166
3.765625
4
[]
no_license
start_index = int(input()) last_index = int(input()) for i in range(start_index, last_index + 1): current_symbol = chr(i) print(f'{current_symbol}', end=' ')
true
74edcdf95d9856fefdba675a458946b6643e3aad
Python
mkumarsgnr/python-reff
/divide apple.py
UTF-8
631
4.0625
4
[]
no_license
try: n = int(input("Enter the Number of Apples Harry has Got :")) mn = int(input("\nEnter the Minimum Range :")) mx = int(input("\nEnter the Maximum Range :")) except ValueError: print("Intiger values Only!") exit() if mx<mn: print("Maximum value can not be less then Minimum!") elif mx==mn: if n%mn==0: print(f"Number {mn} is a Divisor of {n}") else: print(f"Number {mn} is not a Divisor of {n}") else: for i in range(mn,mx+1): if n%i==0 : print(f"--Number {i} is a Divisor of {n}") else: print(f"Number {i} is not a Divisor of {n}")
true
40220aa94ff13233f90c0f5e491fb13e3d43de26
Python
alexcrawford0927/rainonsnow
/7D_ChiSquareDistance_RelativeTrackDen.py
UTF-8
9,086
2.8125
3
[]
no_license
''' Author: Alex Crawford Date Created: 24 Apr 2019 Date Modified: 31 May 2019 --> Added more parameterizaton 11 Jun 2019 --> Switch from absolute to relative measure of storm density for determining area of interest 4 Jul 2019 --> Make it relative Purpose: Runs a chi-square distance test for grid cells around Alaska for storm track presence/absence. ''' '''******************** Import Modules ********************''' import numpy as np import pandas as pd from osgeo import gdal, gdalnumeric import CycloneModule_11_1 as md def chidist(inArr): '''Calculates the chi-square distance for an array of counts with rows representing profiles for each observation and columns representing the measured parameters. The input array should be discrete count data. Warning: This is not the best distance metric for binary data or for continuous data, but the function will run on any numerical data. Returns a square 2-D numpy array with dimensions equal to the number of rows (i.e., observations or sites) of the input. NaNs are filled in for the diagonal and upper-right section of the matrix because removing the redundancy makes the process run faster. ''' # Step 0: Identify number of rows and columns Nr, Nc = inArr.shape # Step 1: Calculate relative proportions for each row tots = [float(np.sum(inArr[row,:])) for row in range(Nr)] tots = np.repeat(tots,Nc).reshape(Nr,Nc) arr = inArr/tots # Step 2: Establish mean proporation for each parameter (each column) means = [np.mean(arr[:,col]) for col in range(Nc)] # Step 3: Calculate chi distance for each pair of of rows chi = np.zeros((Nr,Nr))*np.nan for ii in range(Nr): for jj in range(ii): chi[ii,jj] = np.nansum([(((arr[ii,col]-arr[jj,col]))**2/means[col]) for col in range(len(means))])**0.5 return chi '''******************************************* Define Variables *******************************************''' ### Location Variables ### v = 19 # (0-4, 5-9, 10-15, 16-19) names = ["Aniak","Pargon Creek","Kelly Station","Fort Yukon","Teuchet Creek",\ "Indian Pass","Monument Creek","Cooper Lake","Kenai Moose Pens","Mt Ryan",\ "Bethel","Nome","Anchorage","Juneau","Fairbanks","Utqiagvik",\ "Prudhoe Bay","Coleville Village","Kotzebue","Galena"] rows = [122, 129, 135, 132, 129, 121, 129, 120, 120, 129,\ 121, 128, 121, 116, 129, 142, 140, 140, 133, 127] cols = [33, 27, 28, 56, 55, 49, 55, 48, 47, 54,\ 29, 23, 48, 73, 51, 37, 50, 47, 28, 37] kSize = 2 # smoothing radius of cyclone tracks sigma = 1000. # std dev for Gaussian; larger means slower fall-off td_thresh = 5 # Relative Threshold for area of interest (between 0 and 100) -- exclusive ct_thresh = 2 # Absolute Threshold for area of interest (between 0 and positive infinity) -- inclusive nMC = 1000 # Number of Monte Carlo Simulations V = "V6" T1, T2 = "ROS", "SOS" ### Path Variables ### path = "/Volumes/Miranda/RainOnSnow" inpath = path+"/PrecipDetection_Aggregation/" cpath = "/Volumes/Ferdinand/ArcticCyclone/detection11_3AM2/SystemTracks" dtype = gdal.GDT_Float64 suppath = "/Volumes/Ferdinand/Projections" latN = "EASE2_N0_100km_Lats.tif" ### Time Variables ### starttime = [1980,1,1,0,0,0] endtime = [2019,1,1,0,0,0] reftime = [1900,1,1,0,0,0] months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"] mons = ["01","02","03","04","05","06","07","08","09","10","11","12"] days = ["01","02","03","04","05","06","07","08","09","10","11","12","13",\ "14","15","16","17","18","19","20","21","22","23","24","25","26","27",\ "28","29","30","31"] hours = ["0000","0100","0200","0300","0400","0500","0600","0700","0800",\ "0900","1000","1100","1200","1300","1400","1500","1600","1700","1800",\ "1900","2000","2100","2200","2300"] '''******************************************* Main Analysis *******************************************''' ########## READ IN ROS DATA ############ print("Load Data") SDAY = str(starttime[0]) + mons[starttime[1]-1] + days[starttime[2]-1] EDAY = str(endtime[0]) + mons[endtime[1]-1] + days[endtime[2]-1] name = names[v] pdf1 = pd.read_csv(inpath+"/"+name+"_"+V+"/"+T1+"_AggregatedStats"+SDAY+"_"+EDAY+".csv") pdf2 = pd.read_csv(inpath+"/"+name+"_"+V+"/"+T2+"_AggregatedStats"+SDAY+"_"+EDAY+".csv") # Identify the number of storms in each category n1 = pdf1.shape[0] n2 = pdf2.shape[0] # Create Gaussian Kernel x = np.arange(-1*kSize,kSize+1,1) y = np.arange(-1*kSize,kSize+1,1) xx, yy = np.meshgrid(x,y) k = np.exp(-1/(2*sigma**2) * (xx**2 + yy**2)) # Identify Locations of Interest td1 = gdalnumeric.LoadFile(inpath+"/"+name+"_"+V+"/"+T1+"_trkdenField"+SDAY+"_"+EDAY+".tif") td2 = gdalnumeric.LoadFile(inpath+"/"+name+"_"+V+"/"+T2+"_trkdenField"+SDAY+"_"+EDAY+".tif") ref = gdal.Open(suppath+"/"+latN) ########### AGGREGATE CYCLONE LOCATIONS ############ print("Calculate Observed Dissimilarity") # create an list to store the counts counts1 = [] # For First Category counts2 = [] # For Second Category # Find each storm for PDF #1 print (T1 + " Count: " + str(n1)) for i in range(n1): if i%10 == 0: print(i) sid = pdf1.iloc[i]['sid'] y = int(pdf1.iloc[i]['year']) m = int(pdf1.iloc[i]['month']) # Read in Cyclone data, extract the data frame for locations cycs = pd.read_pickle(cpath+"/"+str(y)+"/systemtracks"+str(y)+mons[m-1]+".pkl") cyc = [c for c in cycs if c.sid == sid][0] cdata = cyc.data.loc[cyc.data.type != 0] counts1a = np.zeros_like(td1) # Create empty count field for storm # For each observation... for j in range(cdata.shape[0]): col = int(cdata.iloc[j].x) row = int(cdata.iloc[j].y) # Add to the count counts1a[(row-kSize):(row+kSize+1),(col-kSize):(col+kSize+1)] = k + counts1a[(row-kSize):(row+kSize+1),(col-kSize):(col+kSize+1)] # Append to list counts1.append(counts1a > 0) # Find each storm for PDF #2 print (T2 + " Count: " + str(n2)) for i in range(n2): if i%10 == 0: print(i) sid = pdf2.iloc[i]['sid'] y = int(pdf2.iloc[i]['year']) m = int(pdf2.iloc[i]['month']) # Read in Cyclone data, extract the data frame for locations cycs = pd.read_pickle(cpath+"/"+str(y)+"/systemtracks"+str(y)+mons[m-1]+".pkl") cyc = [c for c in cycs if c.sid == sid][0] cdata = cyc.data.loc[cyc.data.type != 0] counts2a = np.zeros_like(td2) # Create empty count field for storm # For each observation... for j in range(cdata.shape[0]): col = int(cdata.iloc[j].x) row = int(cdata.iloc[j].y) # Add to the count counts2a[(row-kSize):(row+kSize+1),(col-kSize):(col+kSize+1)] = k + counts2a[(row-kSize):(row+kSize+1),(col-kSize):(col+kSize+1)] # Append to list counts2.append(counts2a > 0) # Find total counts for both categories of storm sum1 = np.apply_along_axis(np.sum,0,np.array(counts1)) sum2 = np.apply_along_axis(np.sum,0,np.array(counts2)) # Write to File md.writeNumpy_gdalObj(sum1,inpath+"/"+name+"_"+V+"/"+T1+"_trkdenRAW_"+SDAY+"_"+EDAY+".tif",ref,dtype) md.writeNumpy_gdalObj(sum2,inpath+"/"+name+"_"+V+"/"+T2+"_trkdenRAW_"+SDAY+"_"+EDAY+".tif",ref,dtype) aoi = np.where( ( (sum1+sum2)/(n1+n2)*100 > td_thresh) & (sum1+sum2 >= ct_thresh) ) sums = np.vstack((sum1[aoi],sum2[aoi])) # Calculate Dissimilarity of Real Data chi = chidist(sums)[1,0] # Remove unnecessary files #del sum1, sum2, sums, col, row, i, j, cdata, cycs, sid, counts1a, counts2a ############ MONTE CARLO ############ print("Start Monte Carlo Simulation") # Combine all storms into one list counts = np.array(counts1 + counts2) # Create array to fill with chi distance results from Monte Carlo chiMC = np.zeros((nMC)) # Perform Monte Carlo Simulation for mc in range(nMC): if mc%10 == 0: print(mc) # Generate a set of random integers to subsample the full cyclone population i1 = np.random.choice(n1+n2,size=n1,replace=0) i2 = np.delete(np.arange(n1+n2),i1) # Subset the total population mcounts1 = counts[i1] mcounts2 = counts[i2] # Recount storms from MC population 1 sum1 = np.apply_along_axis(np.sum,0,mcounts1[:,aoi[0],aoi[1]]) sum2 = np.apply_along_axis(np.sum,0,mcounts2[:,aoi[0],aoi[1]]) sums = np.vstack((sum1,sum2)) # Calculate Dissimilarity of MC Data chiMC[mc] = chidist(sums)[1,0] # Write output to file, making the observations the first row of the file output = pd.DataFrame(data=np.hstack((np.array(chi),chiMC)),columns=["chi"]) output.to_csv(inpath+"/"+name+"_"+V+"/MonteCarloRelativeTrackDen"+str(td_thresh)+"_Tracks_"+T1+"v"+T2+"_"+SDAY+"_"+EDAY+".csv",index=False) print(names[v]+": " + T1 + " v. " + T2) print("Observed Chi: " + str(round(chi,2))) print("Percentile: " + str(np.sum(chiMC <= chi)/10)) print("Max Monte Carlo Chi: " + str(np.round(np.max(chiMC),2))) print("TrkDen (" + str(td_thresh) + "), AOI: " + str(aoi[0].shape[0]))
true
6c5a3fe050cbf818b7ef4badfd3c5d23e036df8c
Python
olanseverson/feature_detection
/feature_detection.py
UTF-8
5,256
2.671875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Sep 30 11:50:31 2019 @author: olanseverson https://realpython.com/python-logging/ https://pysource.com/2018/03/23/feature-matching-brute-force-opencv-3-4-with-python-3-tutorial-26/ https://www.life2coding.com/resize-opencv-window-according-screen-resolution/ https://computer-vision-talks.com/2011-07-13-comparison-of-the-opencv-feature-detection-algorithms/ https://arxiv.org/pdf/1710.02726.pdf """ import cv2 import logging #%% Initiate logger for DEBUGGING logging.basicConfig(level = logging.WARNING, format='[%(levelname)s] => (%(name)s||%(threadName)-s): %(message)s') # logging.root.setLevel(logging.WARNING) FORMATTER = logging.Formatter("[%(levelname)s] => (%(name)s||%(threadName)-s): %(message)s") c_handler = logging.StreamHandler() # handler c_handler.setFormatter(FORMATTER) logger = logging.getLogger(__name__) # logger.addHandler(c_handler) # ADD HANDLER TO LOGGER logger.setLevel(logging.DEBUG) # change DEBUG to another value to remove the debug logger MAX_CTRL_FRAME = 13 # number of control frame SKIPPED_NUM = 3 #skip reading the frame every Skipped_num frame ## GET THE IMAGE list_img = [] th_dict = {'n_match': [100,280,170,130,200,120,250,150,180,100,200,210,170], #[180,280,170,130,240,120,250,150,180,100,200,210,170], 'distance': [35,35,30,35,20,35,35,35,40,20,35,35,30]} print(th_dict['distance'][0]) for i in range (1,MAX_CTRL_FRAME + 1): temp = {} temp['img'] = cv2.imread("./control_frame/" + str(i) + ".jpg") # get control image temp['isFound'] = False temp['foundIdx'] = 0 temp['matchVal'] = 0 temp['foundImg'] = None list_img.append(temp) cv2.waitKey(0) matches_list = [] max_match = 0 ## GET THE VIDEO try: cap = cv2.VideoCapture('tet.mp4') # read Video that we want to check if not cap.isOpened(): raise NameError("can not open") except cv2.error as e: print("cv2.error:", e) except Exception as e: logger.error("Exception: %s", e) else: logger.info('frame count: %d', cap.get(cv2.CAP_PROP_FRAME_COUNT)) logger.info('fps : %d', cap.get(cv2.CAP_PROP_FPS)) idx = 0 while True: _, frame = cap.read() logger.debug("frame nth: %d", cap.get(cv2.CAP_PROP_POS_FRAMES)) if frame is None: break ## SHOW FRAME cv2.namedWindow('app', cv2.WINDOW_NORMAL) cv2.resizeWindow('app', 400,600) cv2.imshow('app', frame) ## ORB Detector orb = cv2.ORB_create() ctrl_image = list_img[idx]['img'] kp1, des1 = orb.detectAndCompute(ctrl_image, None) kp2, des2 = orb.detectAndCompute(frame, None) ## Brute Force Matching bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) # logger.debug('%d %d', th_dict['distance'][idx], th_dict['n_match'][idx]) matches = list(filter(lambda x: x.distance<th_dict['distance'][idx], matches)) # ignore value if smaller than match_distance logger.debug('feature found: %d', len(matches)) ## Find most similar picture if(len(matches)>th_dict['n_match'][idx]): list_img[idx]['isFound'] = True list_img[idx]['foundIdx'] = cap.get(cv2.CAP_PROP_POS_FRAMES) list_img[idx]['matchVal'] = len(matches) list_img[idx]['foundImg'] = frame logger.info("frame %d is found at idx %d", idx, list_img[idx]['foundIdx']) idx = idx + 1 if cv2.waitKey(1) & 0xFF == ord('q'): break if (idx>=MAX_CTRL_FRAME): break cap.set(cv2.CAP_PROP_POS_FRAMES, cap.get(cv2.CAP_PROP_POS_FRAMES)+SKIPPED_NUM) # skip every SKIPPED_NUM frames #end while #cv2.destroyWindow('app') ## SHOW FRAME #for img in list_img: # # cv2.namedWindow('CONTROL IMG', cv2.WINDOW_NORMAL) # cv2.resizeWindow('CONTROL IMG', 500,700) # cv2.moveWindow('CONTROL IMG', 0,0) # cv2.imshow('CONTROL IMG', img['img']) # # if (img['isFound'] == True): # # cv2.namedWindow('FOUND', cv2.WINDOW_NORMAL) # cv2.resizeWindow('FOUND', 500,700) # cv2.moveWindow('FOUND', 600,0) # cv2.imshow('FOUND', img['foundImg']) # # cv2.waitKey(0) # cv2.destroyAllWindows() def drawing_feature(img1, img2): # ORB Detector orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1, None) kp2, des2 = orb.detectAndCompute(img2, None) # Brute Force Matching bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) matches = sorted(matches, key = lambda x:x.distance) matches = list(filter(lambda x: x.distance<35, matches)) # ignore value if smaller than match_distance matching_result = cv2.drawMatches(img1, kp1, img2, kp2, matches, None, flags=2) logger.debug("total value is [%d]", len(matches)) ## Draw cv2.namedWindow('result', cv2.WINDOW_NORMAL) cv2.resizeWindow('result', 800,800) cv2.moveWindow('result', 300,0) cv2.imshow("result", img2) cv2.imshow("result", matching_result) cv2.waitKey(0) cv2.destroyAllWindows() #cap.set(cv2.CAP_PROP_POS_FRAMES, 13) #_, img2 = cap.read() #drawing_feature(list_img[0]['img'], img2) cap.release
true
02035e8430752e3cbf92cd1a7378754106c4ff0a
Python
jyu001/Old_LeetCode_Python_solutions
/085_maximal_rectangle.py
UTF-8
2,609
3.671875
4
[]
no_license
""" Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area. For example, given the following matrix: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 Return 6 """ class Solution(object): def maximalRectangle(self, matrix): """ :type matrix: List[List[str]] :rtype: int """ # idea 1 : build a hashmap for every non 0 dots, key is the index, value is a hash map, {i, j} i is the width, j is depth # calculate the max square available from each dot this way: # let width = 1, scan the dot below dot x, if it is 1, then depth 1 -> 2, and mark this dot y, # let y {i, j} has value 1: 1 too, when we iterate to dot y, it ignores the width 1 scan as key 1 exists # let width = w, (all w - 1 dots on the right of dot x is 1) # scan depth 2, if for all w-1 dots, it is still 1, then for dot x, change value {2: 1} to {2: 2} and then # also mark the value of all w-1, dots on 2nd layer with {w: 1} # # idea 2: iterate # 1: find 0's, and then devide matrix into up, down, left, right four zones. iterate for each. # all = [] for i in matrix: all.extend(i) print all row = len(matrix) # number of rows col = len(all)/len(matrix) # number of columns # print row nums = [] for index, value in enumerate(all): nums.append(int(value)) print "answer: ", print self.check(nums, col, 0, row, 0, col) def check(self, nums, ncol, rowu, rowd, coll, colr): # nums is the original nums, rowl, colu is minimum index of row, col, rowr, cold are maximum number + 1 or row/col if rowu == rowd or coll == colr: return 0 for i in range(rowu, rowd): for j in range(coll, colr): index = i * ncol + j if nums[index] == 0: return max(self.check(nums, ncol, rowu, i, coll, colr), self.check(nums, ncol, i+1, rowd, coll, colr), \ self.check(nums, ncol, rowu, rowd, coll, j), self.check(nums, ncol, rowu, rowd, j+1, colr)) #print rowd, rowu, colr, coll return (rowd-rowu)*(colr-coll) solution = Solution() matrix = [ "01101", "11010", "01110", "11110", "11111", "00000"] solution.maximalRectangle(matrix) matrix = [ "111", "011", "111",] solution.maximalRectangle(matrix)
true
b4e1ef8f58b322c3b51abcd551159c9a75e03fa9
Python
alinkak311/10-
/Домашняя работа/number_1_42.py
UTF-8
116
3.40625
3
[]
no_license
a=int(input()) b=int(input()) c=int(input()) if a<=b>=c: print(b) elif b<=a>=c: print(a) else: print(c)
true
19f792c1c691c43c8ad39cf80bf3a4a40a4400d1
Python
Asurada2015/Python-Data-Analysis-Learning-Notes
/Pythontutorials/18_19class_demo.py
UTF-8
666
4.15625
4
[ "MIT" ]
permissive
"""讲解关于类的定义和使用""" class Calculator: name = 'Good calculator' # 固有属性,但是如果在init函数中被赋值的话则固有属性会被覆盖掉 price = 18 # 定义类的属性 def __init__(self, name, price, height, width, weight): self.name = name self.price = price self.h = height self.wi = width self.we = weight def add(self, x, y): # 定义类的方法,其中self是一个保留参数 print(x+y) def minus(self, x, y): print(x-y) def times(self, x, y): print(x*y) def divide(self, x, y): print(x/y) """init"""
true
00145335fc8519340b16ad2e287b4b9fc6ce8a06
Python
Marllonviny/progr1ads
/Media1URI.py
UTF-8
190
3.203125
3
[]
no_license
a = float(input('')) b = float(input('')) x = a * 3.5 y = b * 7.5 media = (x + y) / 11 media2 = 10 if media <= 10: print('MEDIA = %.5f' % media) else: print('MEDIA = %.5f' % media2)
true