blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
bfc449afac945454eec512f803501c963c9ea1de
Python
aidanhayter/spike_train_analysis
/histogram_data.py
UTF-8
1,587
3.109375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from spike_train import create_spikes """histogram_data calls the function from spike_train to create random data, as a Poisson model or MMPP model. This code then creates statistical histograms from the data.""" plt.switch_backend('Qt5Agg') model = 'MMPP' spike_train = create_spikes(model) # Spike Times spike_times = np.where(spike_train) # Spike Intervals spike_intervals = np.diff(spike_times[0]) # Plotting PSTH psth_array = [1] * len(spike_times[0]) plt.title('Peristimulus Time Histogram') plt.ylabel('Spikes') plt.xlabel('Time') y, bin_edges = np.histogram(spike_times, bins=100) bin_centers = (bin_edges - np.diff(bin_edges)[0]/2)[1:] plt.plot(bin_centers, y) # Train of spikes plt.title('Spike Train') plt.ylabel('Spikes') plt.xlabel('Time') plt.yticks([]) plt.scatter(spike_times[0], psth_array, marker='|') # Plotting IIH iih_array = [1] * len(spike_intervals) plt.title('Interspike Interval Histogram') plt.ylabel('Spikes') plt.xlabel('Time') y, bin_edges = np.histogram(spike_intervals, bins=100) bin_centres = (bin_edges - np.diff(bin_edges)[0]/2)[1:] plt.plot(bin_centres, y) # Plotting IDC (FF) np.var(spike_train) / np.mean(spike_train) tau_min = 1 tau_max = 1000 # CORRECT: This is in time bins, need in ms idc = [0] * tau_max num_samples = 100000 for tau in range(tau_min, tau_max): sptr_tau, t_tau = np.histogram(spike_times, bins=int(num_samples/tau)) idc[tau] = np.var(sptr_tau) / np.mean(sptr_tau) plt.title('IDC (FF)') plt.xlabel('Bin Width (ms/10)') plt.ylabel('IDC') plt.plot(idc[1:])
true
407743641565f7e79bd71ac24e0dd744941f39b2
Python
huub8/tol-revolve
/tol/manage/robot.py
UTF-8
5,092
2.90625
3
[]
no_license
import random from sdfbuilder.math import Vector3 from revolve.util import Time from revolve.angle import Robot as RvRobot class Robot(RvRobot): """ Class to manage a single robot """ def __init__(self, conf, name, tree, robot, position, time, battery_level=0.0, parents=None): """ :param conf: :param name: :param tree: :param robot: Protobuf robot :param position: :type position: Vector3 :param time: :type time: Time :param parents: :type parents: tuple(Robot, Robot) :param battery_level: Battery charge for this robot :type battery_level: float :return: """ speed_window = int(conf.evaluation_time * conf.pose_update_frequency) super(Robot, self).__init__(name=name, tree=tree, robot=robot, position=position, time=time, battery_level=battery_level, speed_window=speed_window, warmup_time=conf.warmup_time, parents=parents) # Set of robots this bot has mated with self.mated_with = {} self.last_mate = None self.conf = conf self.size = len(tree) self.battery_level = battery_level self.initial_charge = battery_level def will_mate_with(self, other): """ Decides whether or not to mate with the other given robot based on its position and speed. :param other: :type other: Robot :return: """ if self.age() < self.conf.warmup_time: # Don't mate within the warmup time return False mate_count = self.mated_with.get(other.name, 0) if mate_count > self.conf.max_pair_children: # Maximum number of children with this other parent # has been reached return False if self.last_mate is not None and \ float(self.last_update - self.last_mate) < self.conf.gestation_period: # Don't mate within the cooldown window return False if self.distance_to(other.last_position) > self.conf.mating_distance_threshold: return False my_fitness = self.fitness() other_fitness = other.fitness() # Only mate with robots with nonzero fitness, check for self zero-fitness # to prevent division by zero. return other_fitness > 0 and ( my_fitness == 0 or (other_fitness / my_fitness) >= self.conf.mating_fitness_threshold ) def distance_to(self, vec, planar=True): """ Calculates the Euclidean distance from this robot to the given vector position. :param vec: :type vec: Vector3 :param planar: If true, only x/y coordinates are considered. :return: """ diff = self.last_position - vec if planar: diff.z = 0 return diff.norm() @staticmethod def header(): """ :return: """ return ['run', 'id', 't_birth', 'parent1', 'parent2', 'charge', 'nparts', 'x', 'y', 'z'] def write_robot(self, world, details_file, csv_writer): """ :param world: :param details_file: :param csv_writer: :return: """ with open(details_file, 'w') as f: f.write(self.robot.SerializeToString()) row = [getattr(world, 'current_run', 0), self.robot.id, world.age()] row += [parent.robot.id for parent in self.parents] if self.parents else ['', ''] row += [self.initial_charge, self.size, self.last_position.x, self.last_position.y, self.last_position.z] csv_writer.writerow(row) def fitness(self): """ Fitness is proportional to both the displacement and absolute velocity of the center of mass of the robot, in the formula: 5 dS + S Where dS is the displacement over a direct line between the start and end points of the robot, and S is the distance that the robot has moved. Since we use an active speed window, we use this formula in context of velocities instead. :return: """ age = self.age() if age < (0.25 * self.conf.evaluation_time) or age < self.conf.warmup_time: # We want at least some data return 0.0 return 5.0 * self.displacement_velocity() + self.velocity() def charge(self): """ Returns the remaining battery charge of this robot. :return: """ return self.initial_charge - (float(self.age()) * self.size) def did_mate_with(self, other): """ Called when this robot mated with another robot successfully. :param other: :type other: Robot :return: """ self.last_mate = self.last_update if other.name in self.mated_with: self.mated_with[other.name] += 1 else: self.mated_with[other.name] = 1
true
77e517b8db446f966a27a6b94e4e66a693c7b7be
Python
falcone-gk/Battery
/decorators.py
UTF-8
633
3.1875
3
[]
no_license
""" Decoradores para los scripts del archivo battery.py """ def is_allowed(func): def wrapper(*args, **kwargs): param = args[0] if param == 0: print('Se desactivará el modo de conservación de bateria') elif param == 1: print('Se activará el modo de conservación de bateria') else: print('Parámetro no permitido: {}'.format(param)) return status = func(*args, **kwargs) if status == 0: print('Realizado exitosamente!') elif status == 256: print('Inténtalo de nuevo! :(') return wrapper
true
cd6e415f93f06a8070057820434dd42b11f1ff14
Python
jedrzejkozal/AdventOfCode
/2017/day12/GraphParsing_test.py
UTF-8
2,808
2.609375
3
[]
no_license
import pytest from GraphTestBase import * class TestGraphParsing(GraphTestBase): def test_parse_graph_with_no_node_graph_is_empty(self): arg = [""] self.sut.parseGraph(arg) assert self.sut.empty() == True def test_parse_graph_with_one_node_graph_is_not_empty(self, one_node_graph): self.sut.parseGraph(one_node_graph) assert self.sut.empty() == False def test_parse_graph_with_one_node_graph_contains_vertcies(self, one_node_graph): self.sut.parseGraph(one_node_graph) assert 0 in self.sut def test_parse_graph_with_one_node_graph_contains_edges(self, one_node_graph): self.sut.parseGraph(one_node_graph) assert self.sut.contains_edge((0, [0])) def test_parse_graph_with_two_nodes_graph_is_not_empty(self, two_nodes_graph): self.sut.parseGraph(two_nodes_graph) assert self.sut.empty() == False def test_parse_graph_with_two_nodes_graph_contains_verticies(self, two_nodes_graph): self.sut.parseGraph(two_nodes_graph) assert 0 in self.sut assert 1 in self.sut def test_parse_graph_with_two_nodes_graph_contains_edges(self, two_nodes_graph): self.sut.parseGraph(two_nodes_graph) assert self.sut.contains_edge((0, [1])) assert self.sut.contains_edge((1, [0])) def test_parse_graph_with_two_nodes_and_uneacesseary_connections_edges_are_added_once(self, two_nodes_graph_with_repeated_edge): self.sut.parseGraph(two_nodes_graph_with_repeated_edge) assert self.sut.contains_edge((0, [1])) assert self.sut.contains_edge((1, [0, 0])) def test_parse_graph_with_three_nodes_graph_single_line_is_not_empty(self, three_nodes_graph_single_line): self.sut.parseGraph(three_nodes_graph_single_line) assert self.sut.empty() == False def test_parse_graph_with_three_nodes_graph_single_line_contains_verticies(self, three_nodes_graph_single_line): self.sut.parseGraph(three_nodes_graph_single_line) assert 0 in self.sut assert 1 in self.sut assert 2 in self.sut def test_parse_graph_with_three_nodes_graph_is_not_empty(self, three_nodes_graph): self.sut.parseGraph(three_nodes_graph) assert self.sut.empty() == False def test_parse_graph_with_three_nodes_graph_contains_verticies(self, three_nodes_graph): self.sut.parseGraph(three_nodes_graph) assert 0 in self.sut assert 1 in self.sut assert 2 in self.sut def test_parse_graph_with_three_nodes_graph_contains_edges(self, three_nodes_graph): self.sut.parseGraph(three_nodes_graph) assert self.sut.contains_edge((0, [1, 2])) assert self.sut.contains_edge((1, [0])) assert self.sut.contains_edge((2, [0]))
true
582f6842db3b3fb3457c152c6054f6272763652c
Python
bgruening/galaxytools
/tools/text_processing/column_arrange_by_header/column_arrange.py
UTF-8
996
2.875
3
[ "MIT" ]
permissive
#!/usr/bin/env python import argparse parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", help="Tabular Input File Name") parser.add_argument("-o", "--output", help="Tabular Output File") parser.add_argument("-c", "--columns", nargs="+", help="Column Headers to Sort By") parser.add_argument( "-d", "--discard", action="store_true", help="Discard remaining columns" ) args = parser.parse_args() with open(args.input) as data: hdr = next(data) columns = hdr.rstrip("\n").split("\t") idx = [columns.index(name) for name in args.columns] if not args.discard: idx += [i for i in range(len(columns)) if i not in idx] rearranged_cols = [columns[i] for i in idx] with open(args.output, "w") as out: out.write("\t".join(rearranged_cols) + "\n") for line in data: columns = line.rstrip("\n").split("\t") rearranged_cols = [columns[i] for i in idx] out.write("\t".join(rearranged_cols) + "\n")
true
760a088888488732b17ebf3a310a7a7d5ce4226b
Python
rinkeigun/linux_module
/python_source/windowscontrol.py
UTF-8
1,133
2.609375
3
[]
no_license
# coding: utf-8 from datetime import datetime from pywinauto import application app = application.Application(backend="uia").start("notepad.exe") dlg_spec = app['無題 - メモ帳'] dlg_spec.draw_outline() # Notepad クラス (Notepad のウィンドウ) を探して日時を入力 #dlg_spec.Edit1.SetText(datetime.now()) #dlg_spec.Edit1.SetText("test") #dialog = app[u"ファイル->名前を付けて保存"] # メニューを選択 #app.Notepad.MenuSelect(u"ファイル->名前を付けて保存") dlg_spec.MenuSelect(u"ファイル->名前を付けて保存") # 「名前を付けて保存」のウィンドウを探す dialog = app[u"名前を付けて保存"] # ファイル名を設定 dialog.Edit1.SetText(u"datetime.txt") # 保存ボタンをクリック dialog.Button1.Click() # すでにファイルが存在すれば上書きの確認が求められる confirm = app[u"名前を付けて保存の確認"] if confirm.Exists(): # 確認を求められたかどうか confirm.Button1.Click() # 上書きする # キーストロークを使って終了させる app.Notepad.TypeKeys("%FX") # 終了 (Alt+F X)
true
2f3cfe3728aefadd286a8e3bd37783fe9e5714cc
Python
BusraOzer/InternetofThingsExamples
/PythonBolumu/regexEx.py
UTF-8
710
2.59375
3
[]
no_license
#!/usr/bin/python import re mail = "tolgabuyuktanir@.com"; #regular expression searchObj = re.search( r'(.*)@(.*\.)(.*)', mail) if searchObj: print "searchObj.group() : ", searchObj.group() print "searchObj.group(1) : ", searchObj.group(1) print "searchObj.group(2) : ", searchObj.group(2) print "searchObj.group(3) : ", searchObj.group(3) else: print "Nothing found!!" #mailin valid olup olmadigi #eger mail adresi formata uygun ise yazar degilse bos gosterir searchObj=re.findall(r"\w+@\w+\.(?:com|in)",mail) print "mail : ", searchObj deneme="tolga Buyuktanir.lkngolnobg norgbourtnhgou rtguo hrtuort.uhg.ruhtgu.rthgu hyuhrtyuhgyygygygryegfygrfgy?rggefr" d=re.search(r'(Bi*)',deneme) print d.group()
true
a38d7094d40552433881942568be32d743359f71
Python
vijayaramanp/Guvi-pack1
/coun_spaces.py
UTF-8
73
3.171875
3
[]
no_license
# count spaces x=input() arr=x.split() spaces=(len(arr)-1) print(spaces)
true
16cd61901876435beb788106e8f06c02ae0e83db
Python
1reddymallik1/ETrade-Trading
/Tests/test_EntryMoneyMaker_CalculateStockItemOrders.py
UTF-8
4,358
2.734375
3
[]
no_license
import os import sys import unittest from pathlib import Path from typing import List sys.path.append(str(Path(os.getcwd()).parent)) from BusinessModels.ActiveStockItem import ActiveStockItem from BusinessModels.OrderInfo import OrderInfo from BusinessModels.PortfolioResponse import PortfolioPosition from BusinessModels.PriceCoordinate import BuyDeltaType, PriceCoordinate from BusinessModels.SellDeltaType import SellDeltaType from BusinessModels.Settings import Settings from Entries.EntryHelpers.ManageOrdersHelpers import ManageOrdersHelpers from Entries.EntryInputs.EntryMoneyMakerInput import EntryMoneyMakerInput from Entries.EntryMoneyMaker import MoneyMaker from Entries.ActiveStocks import ActiveStockItems class tests_ManageOrdersHelpers_GeneratePossibleLimitOrders(unittest.TestCase): """ Tests related to GeneratePossibleLimitOrders method of ManagerOrdersHelpers class. """ def setUp(self): # Initialize the object. self.manageOrdersHelpers:ManageOrdersHelpers = ManageOrdersHelpers(Settings()) entryInput = EntryMoneyMakerInput() self.moneyMaker = MoneyMaker(entryInput, self.manageOrdersHelpers) def tearDown(self): pass def test_CalculateStockItemOrders(self): """ CalculateStockItemOrders Symbol = "XXXX" FLAT Buy pricing. SellStepType = SellDeltaType.FIXED StartPrice = 20.55 quantity = 2 BuyStepSize = 1 SellStepSize = 2 QuantityMultiplier = 1 MaxActiveBuy = 2 Portfolio quantity = 9 Expected Cancel Orders = [ OrderInfo(Settings.NewOrderId, symbol, 22.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 21.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 20.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 19.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 18.55, 1, True, True), OrderInfo(Settings.NewOrderId, symbol, 16.55, 1, True, False), OrderInfo(Settings.NewOrderId, symbol, 15.55, 2, False, False) ] Expected Place Orders = [ ] """ symbol = "XXXX" # Create ActiveStockItem activeStockItem = ActiveStockItem(symbol=symbol) quantity = 2 buyStepSize = 1 activeStockItem.SellStepSize = 2 activeStockItem.SellStepType = SellDeltaType.FIXED activeStockItem.StartPrice = 20.55 activeStockItem.QuantityMultiplier = 1 activeStockItem.MaxActiveBuy = 2 priceCoordinates:List[PriceCoordinate] = [] priceCoordinates.append(PriceCoordinate(startPrice=0,quantity=quantity, buyDeltaType=BuyDeltaType.FIXED, fixedBuyDelta=buyStepSize)) activeStockItem.PriceCoordinates = priceCoordinates # Create PortfolioPosition portfolioPosition = PortfolioPosition(symbol=symbol) portfolioPosition.Quantity = 9 expectedLimitOrders:List[OrderInfo] = [ OrderInfo(Settings.NewOrderId, symbol, 22.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 21.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 20.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 19.55, 2, False, True), OrderInfo(Settings.NewOrderId, symbol, 18.55, 1, True, True), OrderInfo(Settings.NewOrderId, symbol, 16.55, 1, True, False), OrderInfo(Settings.NewOrderId, symbol, 15.55, 2, False, False) ] possibleLimitOrders:List[OrderInfo] = self.manageOrdersHelpers.GeneratePossibleLimitOrders(activeStockItem, portfolioPosition.Quantity) self.assertSequenceEqual(expectedLimitOrders, possibleLimitOrders) placeOrders, cancelOrders = self.moneyMaker.CalculateStockItemOrders(activeStockItem, [], portfolioPosition) print(placeOrders) print(cancelOrders) for activeStockItem in ActiveStockItems: print(activeStockItem.Symbol) if __name__ == '__main__': unittest.main()
true
6a4556cf51d831e43cc1a2dd41892922170a5210
Python
guoyu07/pynotes
/tools/douban.py
UTF-8
1,903
3.421875
3
[]
no_license
import urllib.request import re import time def movie(movieTag): tagUrl=urllib.request.urlopen(url) tagUrl_read = tagUrl.read().decode('utf-8') return tagUrl_read def subject(tagUrl_read): ''' 这里还存在问题: ①这只针对单独的一页进行排序,而没有对全部页面的电影进行排序 ②下次更新添加电影链接,考虑添加电影海报 ③需要追加列表 ④导入到本地txt或excel中 ⑤在匹配电影名字时是否可以同时匹配链接与名字、评分、评论组成数组 ⑥ ''' #正则表达式匹配电影的名字(链接)、评分与评论 nameURL = re.findall(r'(http://movie.douban.com/subject/[0-9.]+)\/"\s+title="(.+)"',tagUrl_read) scoreURL = re.findall(r'<span\s+class="rating_nums">([0-9.]+)<\/span>',tagUrl_read) evaluateURL = re.findall(r'<span\s+class="pl">\((\w+)人评价\)<\/span>',tagUrl_read) movieLists = list(zip(nameURL,scoreURL,evaluateURL)) newlist.extend(movieLists) return newlist #用quote处理特殊(中文)字符 movie_type = urllib.request.quote(input('请输入电影类型(如剧情、喜剧、悬疑):')) page_end=int(input('请输入搜索结束时的页码:')) num_end=page_end*20 num=0 page_num=1 newlist=[] while num<num_end: url=r'http://movie.douban.com/tag/%s?start=%d'%(movie_type,num) movie_url = movie(url) subject_url=subject(movie_url) num=page_num*20 page_num+=1 else: #使用sorted函数对列表进行排列,reverse参数为True时升序,默认或False时为降序, key=lambda还不是很明白这里的原理 movieLIST = sorted(newlist, key=lambda movieList : movieList[1],reverse = True) for movie in movieLIST: print(movie) time.sleep(3) print('结束')
true
396023c24a469d9c323197b3c26d3dd29153b81a
Python
disha111/Python_Beginners
/Assignment 1.2/A1.2.py
UTF-8
341
3.890625
4
[]
no_license
def fizz_buzz(no1): if(no1%3 == 0 or no1%5 == 0): op1 = " " op2 = " " if(no1%3 == 0): op1 = "Fizz" if(no1%5 == 0): op2 = "Buzz" result = op1+op2 return result else: return no1 no1 = int(input("Enter The Number : ")) result = fizz_buzz(no1) print(result)
true
0444631b4625cd8aaae4a9fc7aefac009400f6d1
Python
kutsevol/technorely_etl
/etl/encounter.py
UTF-8
1,073
2.734375
3
[]
no_license
import pandas as pd from schemas import encounter_schema from utils.stats import get_stats_of_popular_days_of_week from etl.base import BaseETL class EncounterETL(BaseETL): name = "Encounter" def __init__(self, url, session): super().__init__(url, session) self.schema = encounter_schema self.json_file_name = "Encounter.ndjson" self.table_name = "encounter" def refinement_dataframe(self): self.df.rename( columns={"id": "source_id"}, inplace=True ) self.df["patient_id"] = self.df.subject.apply( pd.Series).reference.str.partition("/")[2] self.df[["start_date", "end_date"]] = self.df.period.apply(pd.Series) self.df[["type_code", "type_code_system"]] = self.df.type.apply( pd.Series)[0].apply(pd.Series).coding.apply(pd.Series)[0].apply( pd.Series)[["code", "system"]] return self.df def get_the_most_and_least_popular_days_by_col(self, col): return get_stats_of_popular_days_of_week(self.df, col)
true
98d02f9aaae3fd251511340d5f14fad4acc2fd0e
Python
santi1991/tic-python
/semana1/clase1/HolaMundo.py
UTF-8
127
3.296875
3
[]
no_license
hola = 'hola' print(hola) # print(“Hello, I’m “, 21, “ years old”) True + False == 0 print(f'{True + False == 0}')
true
696ec36152825ee0bbdc6fabfee85e806940d5ff
Python
nakaken0629/atcoder
/abc157/bingo.py
UTF-8
600
3.15625
3
[]
no_license
A = [] for _ in range(3): A.append(list(map(int, input().split()))) N = int(input()) b = [] for _ in range(N): b.append(int(input())) for num in b: for x in range(3): for y in range(3): if A[x][y] == num: A[x][y] = -1 amount = 0 for x in range(3): if max(A[x]) == -1: amount += 1 for y in range(3): if max([A[0][y], A[1][y], A[2][y]]) == -1: amount += 1 if max([A[0][0], A[1][1], A[2][2]]) == -1: amount += 1 if max([A[2][0], A[1][1], A[0][2]]) == -1: amount += 1 if amount > 0: print("Yes") else: print("No")
true
ea600784265d557c13059ac44dc20dbc96942eb6
Python
setazer/aoc
/aoc2020/d5/solve.py
UTF-8
1,304
3.203125
3
[]
no_license
from itertools import product from aocframework import AoCFramework def decipher(board_pass): row, seat = board_pass[:-3], board_pass[-3:] row = int(row.translate({ord('B'):'1',ord('F'):'0'}), 2) seat = int(seat.translate({ord('R'):'1',ord('L'):'0'}), 2) return row, seat def next_and_prev(seat): next_seat = list(seat) next_seat[1]+=1 if next_seat[1]>7: next_seat[0]+=1 next_seat[1]=0 prev_seat = list(seat) prev_seat[1]-=1 if prev_seat[1]<0: prev_seat[0]-=1 prev_seat[1]=7 return tuple(next_seat), tuple(prev_seat) class DayPart1(AoCFramework): test_cases = ( ("""""", ), ) known_result = 901 def go(self): raw_split = self.linesplitted return max(map(lambda x: x[0] * 8 + x[1],map(decipher, raw_split))) DayPart1() class DayPart2(AoCFramework): test_cases = ( ("""""", ), ) known_result = 661 def go(self): raw_split = self.linesplitted seats = set(map(decipher,raw_split)) all_seats = set(product(range(128), range(8))) difference = all_seats - seats for seat in difference: n, p = next_and_prev(seat) if n in seats and p in seats: return seat[0]*8+seat[1] DayPart2()
true
1a0d8de36e4c816b0d98031803369b6e042e8ea8
Python
tcouch/platform-logs-query
/statsGUI.py
UTF-8
9,231
2.734375
3
[]
no_license
from tkinter import * import datetime as dt import statsFactory as sf class MainMenu(Tk): def __init__(self,parent): Tk.__init__(self,parent) self.parent = parent self.initialize() def initialize(self): self.grid() self.initializePlatformSelector() self.initializeDateSection() #node type selection nodeSelectLabel = Label(self, text="Node type:", fg="white", bg="blue", width="12", anchor="e").grid(column=0,row=4) self.nodeVar = StringVar() self.nodeVar.set('all') nodeList = list(sf.nodeDict.keys()) nodeList.sort() nodeList.insert(0,"all") self.nodeSelector = OptionMenu(self, self.nodeVar, *nodeList) self.nodeSelector.grid(row=4,column=1) #Checkboxes to select statistics self.stats={} rowCount = 5 for statistic in sf.Statistic.__subclasses__(): self.stats[statistic.__name__] = IntVar() Checkbutton(self,text=statistic.__name__, variable=self.stats[statistic.__name__]) \ .grid(column=0,row=rowCount,sticky="W") rowCount += 1 #Add OK button self.OK = Button(self, text="OK", command=self.OnOKClick) \ .grid(column=0,row=rowCount) def initializePlatformSelector(self): #platform selector platformSelectLabel = Label(self, text="Platform:", fg="white", bg="blue", width="12", anchor="e").grid(column=0,row=0) self.platformVar = StringVar() self.platformVar.set('Legion') platformList = list(sf.platform2database.keys()) self.platformSelector = OptionMenu(self, self.platformVar, *platformList) self.platformSelector.grid(row=0,column=1) def initializeDateSection(self): #Top labels self.MonthLabel = Label(self, text="Month (MM)", width="10") self.MonthLabel.grid(column=1,row=1) self.YearLabel = Label(self, text="Year (YYYY)", width="10") self.YearLabel.grid(column=2,row=1) #Start date bits self.startDateLabel = Label(self, text="Start Month:", fg="white", bg="blue", width="12", anchor="e") self.startDateLabel.grid(column=0,row=2) self.startMonth = StringVar() self.startMonthEntry = Entry( self,textvariable=self.startMonth,width="2") self.startMonthEntry.grid(column=1,row=2) self.startYear = StringVar() self.startYearEntry = Entry( self,textvariable=self.startYear,width="4") self.startYearEntry.grid(column=2,row=2) #End date bits self.endDateLabel = Label(self, text="End Month:", fg="white", bg="blue", width="12", anchor="e") self.endDateLabel.grid(column=0,row=3) self.endMonth = StringVar() self.endMonthEntry = Entry( self,textvariable=self.endMonth,width="2") self.endMonthEntry.grid(column=1,row=3) self.endYear = StringVar() self.endYearEntry = Entry( self,textvariable=self.endYear,width="4") self.endYearEntry.grid(column=2,row=3) def OnOKClick(self): if self.validateInput(): platform = self.platformVar.get() startYear = int(self.startYear.get()) startMonth = int(self.startMonth.get()) endYear = int(self.endYear.get()) endMonth = int(self.endMonth.get()) startDate = dt.datetime(startYear,startMonth,1) endDate = dt.datetime(endYear,endMonth,1) node = self.nodeVar.get() stats = [] for statistic in sf.Statistic.__subclasses__(): if self.stats[statistic.__name__].get() == 1: stats.append(statistic.__name__) kwargs = { "startDate":startDate, "endDate":endDate, "node":node, "stats":stats, "db":sf.platform2database[platform] } getRequestedStats(**kwargs) def validateInput(self): if not self.validateMonth(self.startMonthEntry,self.startMonth.get()): return False if not self.validateMonth(self.endMonthEntry,self.endMonth.get()): return False if not self.validateYear(self.startYearEntry,self.startYear.get()): return False if not self.validateYear(self.endYearEntry,self.endYear.get()): return False if not self.validateDates(): return False return True def validateMonth(self,widget,month): valid = True try: month = int(month) except ValueError: messagebox.showerror("Input error!", "You must enter an integer value.") valid = False if month < 1 or month > 12: messagebox.showerror("Input error!", "You must enter a value from 1 to 12.") valid = False if valid == False: widget.focus_set() widget.selection_range(0, END) return valid def validateYear(self,widget,year): valid = True try: year = int(year) except ValueError: messagebox.showerror("Input error!", "You must enter an integer value") valid = False if year < 2011 or year > 2050: messagebox.showerror("Input error!", "You must enter a value from 2011 to 2050.") valid = False if valid == False: widget.focus_set() widget.selection_range(0, END) return valid def validateDates(self): startDate = self.startYear.get() + self.startMonth.get() endDate = self.endYear.get() + self.endMonth.get() if startDate > endDate: messagebox.showerror("Input error!", "The start date must be earlier than or" \ +" equal to the end date.") self.startMonthEntry.focus_set() self.startMonthEntry.selection_range(0, END) return False else: return True def getRequestedStats(**kwargs): intervals = getMonthIntervals(kwargs["startDate"], kwargs["endDate"]) monthCollection = [] for interval in intervals: kwargs["startDate"] = interval["startDate"] kwargs["endDate"] = interval["endDate"] statsDict = {} for statistic in kwargs["stats"]: statsDict[statistic] = sf.statFactory(statistic, **kwargs) \ .getResult() statsDict["Start Date"] = kwargs["startDate"].strftime('%d-%m-%Y') statsDict["End Date"] = kwargs["endDate"].strftime('%d-%m-%Y') statsDict["Node Type"] = kwargs["node"] statsDict = flatten(statsDict) monthCollection.append(statsDict) printStats(monthCollection) def printStats(collection): tempCollection = collection for month in tempCollection: print("Start Date: {}".format(month["Start Date"])) del month["Start Date"] print("End Date: {}".format(month["End Date"])) del month["End Date"] print("Node Type: {}".format(month["Node Type"])) del month["Node Type"] for key in sorted(month): print("{0}: {1}".format(key,month[key])) return 0 def flatten(statsDict): toDelete = [] toAdd = {} for key, value in statsDict.items(): if type(value) is dict: for k, v in value.items(): toAdd["{0}-{1}".format(key, k)] = v toDelete.append(key) for key in toDelete: del statsDict[key] statsDict.update(toAdd) return statsDict def getMonthIntervals(startDate, endDate): intervals = [] while startDate != add_months(endDate,1): interval = { "startDate":startDate, "endDate":add_months(startDate,1) } intervals.append(interval) startDate = add_months(startDate,1) return intervals def add_months(sourcedate,months): month = sourcedate.month - 1 + months year = sourcedate.year + month // 12 month = month % 12 + 1 day = 1 return dt.datetime(year,month,day) if __name__=="__main__": app = MainMenu(None) app.title('my application') app.mainloop()
true
e4ee9509253b00cbd90d5fcf8fc4051d8ee2e5fb
Python
YouEbr/nginx_loadbalancer
/app-scalable/app.py
UTF-8
432
2.75
3
[]
no_license
import flask import socket app1 = flask.Flask(__name__) @app1.route('/') def hello_world(): hostname, ip = get_hostname_and_ip() return 'This web application is running on host:\"{}\" with ip:\"{}\"'.format(hostname, ip) def get_hostname_and_ip(): hostname = socket.gethostname() ip = socket.gethostbyname(hostname) return hostname, ip if __name__ == '__main__': app1.run(debug=True, host='0.0.0.0')
true
d16fe61b8e703b2ebf748ca86bec7010d8d21f31
Python
SandhyaDotel/spiral
/spiral/homework.py
UTF-8
338
3.53125
4
[]
no_license
def spiralize(number): n = 1 step = 2 total_value = 0 matrix_row = 0 while (n <= (number ** 2)): total_value += n n += step matrix_row += 1 if matrix_row == 4: step += 2 matrix_row = 0 return total_value if __name__ == "__main__": print(spiralize(501))
true
400c63daf19c164aea1deec9b50778b12ca2c0c5
Python
freddycervantes/projectZ
/update_database.py
UTF-8
1,678
2.8125
3
[]
no_license
""" """ class Update: def __init__(self): self.__F = self.__fetch() self.__W = self.__write() self.__intra_dates = self.__valid_dates_intra() self.__stock_list = self.__valid_stocks() def __fetch(self): import fetch_data return fetch_data.Fetch() def __write(self): import write_dat return write_dat.Write() def __valid_stocks(self): import whitelist return whitelist.GetItems().approved_stocks() def __valid_dates_intra(self): return self.__F.list_valid_intraday_dates() def update_intra_single(self, name): """ :param name: :return: False if not a valid stock, else true >>> U = Update() >>> U.update_intra_single("SPY") True >>> U.update_intra_single("SLDKHF") False """ if name not in self.__stock_list: return False for i in reversed(self.__intra_dates): if self.__W.day_in_database(i, name): return True print(self.__W.store3(name, i, self.__F.intraday_average_price(name, i))) print(name) return True def update_5_single(self, name): if name not in self.__stock_list: return False self.__W.store5(name) return True def update_all(self): """ >>> U = Update() >>> U.update_all() """ for i in self.__stock_list: if i == 'XRX': continue self.update_intra_single(i) self.update_5_single(i) if __name__=="__main__": import doctest doctest.testmod()
true
1eff8ed58fb2b57b02b72f3c2a265119567a95e2
Python
pyy1988/pyy_test1
/pyy1/.pycharm_helpers/python_stubs/-1550516950/_dbus_bindings/Dictionary.py
UTF-8
2,836
2.921875
3
[ "Apache-2.0" ]
permissive
# encoding: utf-8 # module _dbus_bindings # from /usr/lib/python3/dist-packages/_dbus_bindings.cpython-35m-x86_64-linux-gnu.so # by generator 1.145 """ Low-level Python bindings for libdbus. Don't use this module directly - the public API is provided by the `dbus`, `dbus.service`, `dbus.mainloop` and `dbus.mainloop.glib` modules, with a lower-level API provided by the `dbus.lowlevel` module. """ # imports import dbus.lowlevel as __dbus_lowlevel from .dict import dict class Dictionary(dict): """ An mapping whose keys are similar and whose values are similar, implemented as a subtype of dict. As currently implemented, a Dictionary behaves just like a dict, but with the addition of a ``signature`` property set by the constructor; conversion of its items to D-Bus types is only done when it's sent in a Message. This may change in future so validation is done earlier. Constructor:: Dictionary(mapping_or_iterable=(), signature=None, variant_level=0) ``variant_level`` must be non-negative; the default is 0. ``signature`` is either a string or None. If a string, it must consist of exactly two complete type signatures, representing the 'key' type (which must be a primitive type, i.e. one of "bdginoqstuxy") and the 'value' type. The signature of the whole Dictionary will be ``a{xx}`` where ``xx`` is replaced by the given signature. If it is None (the default), when the Dictionary is sent over D-Bus, the key and value signatures will be guessed from an arbitrary element of the Dictionary. :IVariables: `variant_level` : int Indicates how many nested Variant containers this object is contained in: if a message's wire format has a variant containing a variant containing an array of DICT_ENTRY, this is represented in Python by a Dictionary with variant_level==2. """ def __init__(self, mapping_or_iterable=(), signature=None, variant_level=0): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass signature = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The D-Bus signature of each key in this Dictionary, followed by that of each value in this Dictionary, as a Signature instance.""" variant_level = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The number of nested variants wrapping the real data. 0 if not in a variant."""
true
afe888690d11a9b3712e14b730e9fecc18175131
Python
pzengseu/leetcode
/3Sum.py
UTF-8
672
2.78125
3
[]
no_license
class Solution(object): def threeSum(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ if not nums: return [] nums = sorted(nums) res = [] for i in xrange(len(nums)-2): j = i+1 k = len(nums) - 1 while j < k: if nums[i] + nums[j] + nums[k] == 0: res.append((nums[i], nums[j], nums[k])) if nums[i] + nums[j] + nums[k] < 0: j += 1 else: k -= 1 return [list(l) for l in {}.fromkeys(res).keys()] print Solution().threeSum([12,-14,-5,12,-2,9,0,9,-3,-3,-14,-6,-4,13,-11,-8,0,5,-7])
true
ec7dca5a02323e36316101f48e95b8e99bd74f76
Python
PinmanHuang/CVDL_2020
/Hw2/hw2.py
UTF-8
14,434
2.578125
3
[]
no_license
""" Author : Joyce Date : 2020-12-15 """ from UI.hw2_ui import Ui_MainWindow from PyQt5 import QtWidgets from PyQt5.QtWidgets import QApplication, QMainWindow import sys import cv2 import numpy as np # Q3 import cv2.aruco as aruco from matplotlib import pyplot as plt # Q4 from sklearn.decomposition import PCA from sklearn.preprocessing import normalize class PyMainWindow(QMainWindow, Ui_MainWindow): def __init__(self): super(PyMainWindow, self).__init__() self.setupUi(self) # === push button clicked action === self.pushButton.clicked.connect(self.bg_sub) self.pushButton_2.clicked.connect(self.preprocessing) self.pushButton_3.clicked.connect(self.tracking) self.pushButton_4.clicked.connect(self.transform) self.pushButton_5.clicked.connect(self.reconstruction) self.pushButton_6.clicked.connect(self.error) def bg_sub(self): opencv = OpenCv() opencv.Q1_1() def preprocessing(self): opencv = OpenCv() opencv.Q2_1() def tracking(self): opencv = OpenCv() opencv.Q2_2() def transform(self): opencv = OpenCv() opencv.Q3_1() def reconstruction(self): opencv = OpenCv() opencv.Q4_1() def error(self): opencv = OpenCv() opencv.Q4_2() class OpenCv(object): def __init__(self): super(OpenCv, self).__init__() def Q1_1(self): i = mean = std = 0 frames = [] cv2.namedWindow('1.1 Original Video', cv2.WINDOW_NORMAL) cv2.namedWindow('1.1 Subtraction Video', cv2.WINDOW_NORMAL) # capture video and get fps cap = cv2.VideoCapture('./Q1_Image/bgSub.mp4') fps = cap.get(cv2.CAP_PROP_FPS) # print("fps: {}".format(fps)) while(cap.isOpened()): i = i + 1 # get frames of video and convert to gray # frame shape: (176, 320), type: ndarray ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) result = np.zeros_like(gray) # process according to frame if i < 50: # 1st to 49th frame frames.append(gray) elif i == 50: # 50th frame frames.append(gray) all_frames = np.array(frames) # mean and standard deviation mean = np.mean(all_frames, axis=0) std = np.std(all_frames, axis=0) # print("type: {}, shape: {}, mean: {}, std: {}".format( # type(all_frames), all_frames.shape, mean.shape, std.shape)) # if standard deviation is less then 5, set to 5 std[std < 5] = 5 else: # after 51th frame # subtract diff = np.subtract(gray, mean) diff = np.absolute(diff) result[diff > 5*std] = 255 # print("type: {}, shape: {}, diff_type:{}, diff_shape: {}, mean: {}, std: {}".format( # type(gray), gray.shape, type(diff), diff.shape, mean.shape, std.shape)) cv2.imshow('1.1 Original Video', frame) cv2.imshow('1.1 Subtraction Video', result) if cv2.waitKey(int(1000/fps)) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def Q2_1(self): cv2.namedWindow('2.1 Preprocessing Video', cv2.WINDOW_NORMAL) # Set up the detector with parameters params = cv2.SimpleBlobDetector_Params() params.minThreshold = 10 params.maxThreshold = 200 params.filterByArea = True params.minArea = 35 params.filterByCircularity = True params.minCircularity = 0.8 params.maxCircularity = 0.9 params.filterByConvexity = True params.minConvexity = 0.5 params.filterByInertia = True params.minInertiaRatio = 0.5 detector = cv2.SimpleBlobDetector_create(params) # capture video cap = cv2.VideoCapture('./Q2_Image/opticalFlow.mp4') # get 1st frame of video ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect blobs keypoints = detector.detect(gray) # Draw rectangle and line for kp in keypoints: x, y = (kp.pt) x = int(x) y = int(y) frame = cv2.rectangle(frame, (x-5, y-5), (x+5, y+5), (0, 0, 255), 1) frame = cv2.line(frame, (x, y-5), (x, y+5), (0, 0, 255), 1) frame = cv2.line(frame, (x-5, y), (x+5, y), (0, 0, 255), 1) cv2.imshow('2.1 Preprocessing Video', frame) cv2.waitKey(0) cap.release() cv2.destroyAllWindows() def Q2_2(self): cv2.namedWindow('2.2 Video tracking', cv2.WINDOW_NORMAL) lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) # Create some random colors color = np.random.randint(0,255,(100,3)) # Set up the detector with parameters params = cv2.SimpleBlobDetector_Params() params.filterByArea = True params.minArea = 35 params.filterByCircularity = True params.minCircularity = 0.8 params.maxCircularity = 0.9 params.filterByConvexity = True params.minConvexity = 0.5 params.filterByInertia = True params.minInertiaRatio = 0.5 detector = cv2.SimpleBlobDetector_create(params) # capture video and get fps cap = cv2.VideoCapture('./Q2_Image/opticalFlow.mp4') fps = cap.get(cv2.CAP_PROP_FPS) # get 1st frame of video ret, frame = cap.read() gray_1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect blobs keypoints = detector.detect(gray_1) p0 = np.array([[[kp.pt[0], kp.pt[1]]] for kp in keypoints]).astype(np.float32) mask = np.zeros_like(frame) while(cap.isOpened()): # get frames of video and convert to gray # frame shape: (176, 320), type: ndarray ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) p1, st, err = cv2.calcOpticalFlowPyrLK(gray_1, gray, p0, None, **lk_params) # Select good points good_new = p1[st==1] good_old = p0[st==1] # draw the tracks for i,(new,old) in enumerate(zip(good_new, good_old)): a, b = new.ravel() c, d = old.ravel() mask = cv2.line(mask, (a, b), (c, d), (0, 0, 255), 2) frame = cv2.circle(frame, (a, b), 3, (0, 0, 255), -1) result = cv2.add(frame, mask) cv2.imshow('2.2 Video tracking', result) if cv2.waitKey(int(1000/fps)) & 0xFF == ord('q'): break gray_1 = gray.copy() p0 = good_new.reshape(-1, 1, 2) cap.release() cv2.destroyAllWindows() def Q3_1(self): cv2.namedWindow('3.1 Perspective Transform', cv2.WINDOW_NORMAL) # read image im_src = cv2.imread("./Q3_Image/rl.jpg") size = im_src.shape pts_src = np.array([ [0, 0], [size[1], 0], [size[1], size[0]], [0, size[0]] ], dtype=float) # capture video and get fps cap = cv2.VideoCapture('./Q3_Image/test4perspective.mp4') fps = cap.get(cv2.CAP_PROP_FPS) # get 1st frame of video ret, frame = cap.read() # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter('./Q3_Result/3_1_result.mp4', fourcc, 20.0, (frame.shape[1], frame.shape[0])) while(cap.isOpened()): # get frames of video and convert to gray ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # reading the four code and get its idx and corner aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250) arucoParameters = aruco.DetectorParameters_create() corners, ids, rejectedImgPoints = aruco.detectMarkers( gray, aruco_dict, parameters = arucoParameters ) # doesn't have four corners if len(corners) != 4: continue # have four corners if np.all(ids != None): # index of each markers idx_23 = np.where(ids==23)[0][0] idx_25 = np.where(ids==25)[0][0] idx_30 = np.where(ids==30)[0][0] idx_33 = np.where(ids==33)[0][0] # get four point location p1 = (corners[idx_25][0][1][0], corners[idx_25][0][1][1]) p2 = (corners[idx_33][0][2][0], corners[idx_33][0][2][1]) p3 = (corners[idx_30][0][0][0], corners[idx_30][0][0][1]) p4 = (corners[idx_23][0][0][0], corners[idx_23][0][0][1]) # calculate distance and scale the point location distance = np.linalg.norm(np.subtract(p1, p2)) scaling = round(0.02 * distance) pts_dst = np.array([ [p1[0] - scaling, p1[1] - scaling], [p2[0] + scaling, p2[1] - scaling], [p3[0] + scaling, p3[1] + scaling], [p4[0] - scaling, p4[1] + scaling] ]) # frame image im_dst = frame # find homography and warp perspective h, status = cv2.findHomography(pts_src, pts_dst) temp = cv2.warpPerspective(im_src, h, (im_dst.shape[1], im_dst.shape[0])) # draw cv2.fillConvexPoly(im_dst, pts_dst.astype(int), 0, 16) im_dst = im_dst + temp out.write(im_dst) cv2.imshow('3.1 Perspective Transform', im_dst) if cv2.waitKey(int(1000/fps)) & 0xFF == ord('q'): break cap.release() out.release() cv2.destroyAllWindows() def norm(self, img): img = img.copy() img -= np.min(img) img /= np.max(img) img *= 255. return np.uint8(img) def reconstruction(self, img): # split 3 channels b, g, r = cv2.split(img) # PCA pca = PCA(25) # b # b_norm = normalize(b) lower_dimension_b = pca.fit_transform(b) approximation_b = pca.inverse_transform(lower_dimension_b) # g # g_norm = normalize(g) lower_dimension_g = pca.fit_transform(g) approximation_g = pca.inverse_transform(lower_dimension_g) # r # r_norm = normalize(r) lower_dimension_r = pca.fit_transform(r) approximation_r = pca.inverse_transform(lower_dimension_r) # clip clip_b = np.clip(approximation_b, a_min = 0, a_max = 255) clip_g = np.clip(approximation_g, a_min = 0, a_max = 255) clip_r = np.clip(approximation_r, a_min = 0, a_max = 255) # merge n_img = (cv2.merge([clip_b, clip_g, clip_r])).astype(np.uint8) # n_img = (np.dstack((approximation_b, approximation_g, approximation_r))).astype(np.uint8) # n_img = (cv2.merge([approximation_b, approximation_g, approximation_r])).astype(int) # n_img = cv2.normalize(n_img, None, 0, 255, cv2.NORM_MINMAX) # np_img = n_img.astype(int) # n_img = norm(np.float32(n_img)) ''' X = img.reshape((100, -1)) pca = PCA(25) lower_dimension = pca.fit_transform(X) approximation = pca.inverse_transform(lower_dimension) approximation = approximation.reshape(100, 100, 3) n_img = norm_image(approximation) ''' return n_img def Q4_1(self): fig = plt.figure(figsize=(18, 4)) for idx in range(1, 18, 1): # ====== i ====== img = cv2.imread('./Q4_Image/'+str(idx)+'.jpg')[:, :, ::-1] n_img = self.reconstruction(img) # plot # origin image plt.subplot(4, 17, idx) plt.xticks([]) plt.yticks([]) plt.imshow(img) # reconstruction image plt.subplot(4, 17, idx + 17) plt.xticks([]) plt.yticks([]) plt.imshow(n_img) # =============== # ====== i+17 ====== img = cv2.imread('./Q4_Image/'+str(idx + 17)+'.jpg')[:, :, ::-1] n_img = self.reconstruction(img) # plot # origin image plt.subplot(4, 17, idx + 34) plt.xticks([]) plt.yticks([]) plt.imshow(img) # reconstruction image plt.subplot(4, 17, idx + 51) plt.xticks([]) plt.yticks([]) plt.imshow(n_img) # ================== fig.text(0, 0.9, 'Original', va='center', rotation='vertical') fig.text(0, 0.65, 'Reconstruction', va='center', rotation='vertical') fig.text(0, 0.4, 'Original', va='center', rotation='vertical') fig.text(0, 0.15, 'Reconstruction', va='center', rotation='vertical') plt.tight_layout(pad=0.5) plt.show() def Q4_2(self): for idx in range(1, 35, 1): img = cv2.imread('./Q4_Image/'+str(idx)+'.jpg') n_img = self.reconstruction(img) # convert to gray img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) n_img_gray = cv2.cvtColor(n_img, cv2.COLOR_BGR2GRAY) n_img_gray = cv2.normalize(n_img_gray, None, 0, 255, cv2.NORM_MINMAX) error = np.sum(np.absolute(img_gray-n_img_gray)) print('{}: {}'.format(idx, error)) if __name__ == '__main__': app = QApplication(sys.argv) window = QMainWindow() ui = PyMainWindow() ui.setupUi(window) ui.show() sys.exit(app.exec_())
true
0b5e283f629bdcf2a174a465bf8b04c87524976f
Python
Erniess/pythontutor
/Занятие 4 - Цикл for /Практика/Сумма десяти чисел.py
UTF-8
308
3.390625
3
[]
no_license
# Задача «Сумма десяти чисел» # Условие # Дано 10 целых чисел. Вычислите их сумму. Напишите программу, использующую # наименьшее число переменных. print(sum([int(input()) for _ in range(10)]))
true
f0aaaf75c316fd0cc8cfbac06dbeba2f31df5f42
Python
Cougar/pyxy
/test/test_xy.py
UTF-8
2,834
2.921875
3
[]
no_license
import unittest from xy import Area, XY class AreaTests(unittest.TestCase): def test_area(self): a1 = Area(-1, -2, 1, 2, 'name1') self.assertEqual(a1.xmin, -1) self.assertEqual(a1.ymin, -2) self.assertEqual(a1.xmax, 1) self.assertEqual(a1.ymax, 2) self.assertEqual(a1.name, 'name1') a2 = Area(10, 20, -10, -20, 'name2') self.assertEqual(a2.xmin, -10) self.assertEqual(a2.ymin, -20) self.assertEqual(a2.xmax, 10) self.assertEqual(a2.ymax, 20) self.assertEqual(a2.name, 'name2') def test_area_thin(self): self.assertRaises(Exception, Area, 0, 1, 0, 2, None) self.assertRaises(Exception, Area, 1, 0, 2, 0, None) def test_area_exact(self): a1 = Area(-10, -10, 10, 10, 'name1') a2 = Area(-10, -10, 10, 10, 'name2') a3 = Area(-15, -15, 15, 15, 'name2') self.assertTrue(a1.is_exact(a2)) self.assertTrue(a2.is_exact(a1)) self.assertFalse(a1.is_exact(a3)) self.assertFalse(a3.is_exact(a1)) def test_area_iside_outside(self): a1 = Area(-10, -10, 10, 10, 'name1') a2 = Area(-5, -5, 5, 5, 'name2') a3 = Area(-15, -15, 15, 15, 'name2') self.assertTrue(a2.is_inside(a1)) self.assertFalse(a3.is_inside(a1)) self.assertFalse(a2.is_around(a1)) self.assertTrue(a3.is_around(a1)) def test_area_no_overlap(self): a1 = Area(-10, -10, 10, 10, 'name1') a2 = Area(-15, -15, -10, -10, 'name2') self.assertFalse(a1.is_overlap(a2)) self.assertFalse(a2.is_overlap(a1)) a1 = Area(-10, -10, 10, 10, 'name1') a2 = Area(-15, -10, -10, 0, 'name2') self.assertFalse(a1.is_overlap(a2)) self.assertFalse(a2.is_overlap(a1)) def test_area_overlap(self): a1 = Area(-10, -10, 10, 10, 'name1') a2 = Area(-15, -15, -9, -9, 'name2') self.assertTrue(a1.is_overlap(a2)) self.assertTrue(a2.is_overlap(a1)) class XYTests(unittest.TestCase): def setUp(self): self.m = XY(-100, -100, 100, 100) def test_empty_map(self): self.assertEqual(len(self.m.areas), 1) self.assertEqual(self.m.get_area_count(), (0, 1)) self.assertEqual(self.m.find_area(0, 0).name, None) def test_one_area_replace(self): self.m.add_area(-100, -100, 100, 100, 'test') self.assertEqual(len(self.m.areas), 1) self.assertEqual(self.m.get_area_count(), (1, 0)) self.assertEqual(self.m.find_area(0, 0).name, 'test') def test_one_area(self): m = XY(-100, -100, 100, 100) m.add_area(10, 20, -30, -40, 'test') self.assertEqual(len(m.areas), 5) self.assertEqual(m.get_area_count(), (1, 4)) self.assertEqual(m.find_area(0, 0).name, 'test') self.assertEqual(m.find_area(20, 10).name, None) def test_area_overlaps(self): self.m.add_area(-20, -20, 20, 20, 'test') self.assertRaises(Exception, self.m.add_area, -10, -10, 10, 10, 'test2') self.assertRaises(Exception, self.m.add_area, -30, -30, 30, 30, 'test3') self.assertRaises(Exception, self.m.add_area, -30, -30, 10, 10, 'test4')
true
b9b1162c9cf6e3d52b1d0f0ce2e25ee2a91a6e6a
Python
DHaythem/Competitive-Programming-Solutions
/Codeforces/1200/A. IQ Test.py
UTF-8
611
3.09375
3
[]
no_license
#https://codeforces.com/problemset/problem/287/A a=input() b=input() c=input() d=input() k=0 for i in range(3): L=[a[i],a[i+1],b[i],b[i+1]] if L.count("#")>=3 or L.count(".")>=3: print('YES') k=1 break if k==0: for i in range(3): L=[b[i],b[i+1],c[i],c[i+1]] if L.count("#")>=3 or L.count(".")>=3: print('YES') k=1 break if k==0: for i in range(3): L=[c[i],c[i+1],d[i],d[i+1]] if L.count("#")>=3 or L.count(".")>=3: print('YES') k=1 break if k==0: print('NO')
true
78021570f9c7c95ee3401495603322d711ad340b
Python
furixturi/CTCI
/Round 3/01 arrays and strings/05-oneAway.py
UTF-8
1,015
3.8125
4
[]
no_license
# One Away: There are three types of edits that can be performed on # strings: insert a character, remove a character, or replace a # character. Given two strings, write a function to check if they are # one edit (or zero edits) away. def oneAway(s1, s2): lenDiff = abs(len(s1)-len(s2)) if lenDiff == 0: return oneReplaceAway(s1, s2) elif lenDiff == 1: ss = s1 if len(s1) < len(s2) else s2 sl = s1 if len(s2) < len(s1) else s2 return oneInsertAway(ss, sl) return False def oneReplaceAway(s1, s2): diff = 0 for i in range(len(s1)): if s1[i] != s2[i]: if diff > 0: return False else: diff = 1 return True def oneInsertAway(ss, sl): i1 = 0 i2 = 0 while i2 < len(sl): if ss[i1] != sl[i2]: i2 += 1 if ss[i1] != sl[i2]: return False i1 += 1 i2 += 1 return True if __name__ == '__main__': print(oneAway('aple', 'apple')) print(oneAway('pale', 'ple')) print(oneAway('pale', 'bae')) print(oneAway('apple', 'appde'))
true
d99e613c6f6000c123b63eecab83e3b6fbcc885a
Python
zheugene/pdu
/test_xpt2046.py
UTF-8
2,284
2.640625
3
[]
no_license
# Copyright 2012 Matthew Lowden # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Python proof of concept for interfacing an XPT2046 Touch Screen Controller # to a Raspberry Pi using SPI (via bit-banged GPIO). # This sample uses the SPI pins on the Raspberry Pi Expansion header. # (With the intention that no wiring changes should be required to use SPI # drivers, rather than bit-banged GPIO). # More information on Raspberry Pi GPIO can be found here: # http://elinux.org/RPi_Low-level_peripherals # This sample code is dependent on the RPi.GPIO library available here: # http://pypi.python.org/pypi/RPi.GPIO/ import time from sys import stdout from XPT2046 import XPT2046 import Adafruit_GPIO as GPIO import Adafruit_GPIO.SPI as SPI IRQ = None SPI_PORT = 0 SPI_DEVICE = 1 try: touch = XPT2046(irq=IRQ, spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=500000)) print ("Start") while True: startTime = time.time() x = touch.readX() y = touch.readY() z1 = touch.readZ1() z2 = touch.readZ2() pressure = round(touch.readTouchPressure(),2) temp0 = touch.readTemperature0() temp1 = touch.readTemperature1() vbatt = touch.readBatteryVoltage() aux = touch.readAuxiliary() duration = round((time.time() - startTime) * 1000, 2) print ("\rX: %s " % x + " Y: %s" % y + " Z1: %s" % z1 + " Z2: %s" % z2 + " Pressure: %s" % pressure + " Temp0: %s" % temp0 + " Temp1: %s" % temp1 + " VBatt: %s" % vbatt + " Aux: %s" % aux + " SampleTime: %s ms" % duration +" ") # print ("\rtemp0: %s " % temp0 + " %s" % temp1) stdout.flush () except KeyboardInterrupt: print ("keyInt") print ("\n") except Exception: print ("except") raise
true
7be0f9da17498364e2dca6bb8deeeeab61bd2ceb
Python
n2dah/MATH-2305-Final-Project
/functions.py
UTF-8
3,528
3.453125
3
[ "Unlicense" ]
permissive
# -*- coding: utf-8 -*- """ Created on Sun Dec 6 20:55:28 2020 @authors: Jeremiah Neuneker, Julia Ramirez, Warda Qadeer, Noah V. """ import networkx as nx import os def V(graph): """Takes in a number of vertices. Parameters ---------- Returns ------- A graph with set number of vertices. """ return set(graph.nodes()) def E(graph): """Takes in a number of edges. Parameters ---------- Returns ------- A graph with set number of edges. """ return set(graph.edges()) def prims_initialize(graph , v): """Function to intialize the tree Parameters ---------- graph : NetworkX graph v : starting vertex/node Returns ------- Error if vertix is not found, otherwise graph. """ if v not in V(graph): return 'Error vertex not found' T = nx.Graph() T.add_node(v) return T def is_spanning(graph, subgraph): """Checks to see if graph is spanning. Parameters ---------- Graph Subgraph Returns ------- A graph containing all spanning vertices/nodes """ return V(graph) == V(subgraph) def cost(G, e): """Returns the weight of the edges of G. Parameters ---------- G: NetworkX graph e : the nodes on either side of the edge. Returns ------- Weight of the edges of G. """ return G[e[0]][e[1]]['weight'] def possible_edges(G, T): """Returns the list of possible edges remaining. Parameters ---------- G : NetworkX graph T : Prim's Algorithm Returns ------- List of possible edges remaining. """ return [e for e in list(G.edges(V(T))) if e[0] not in V(T) or e[1] not in V(T)] def min_cost_edge(G, T): """Returns the edge with the lowest cost/weight. Parameters ---------- G : NetworkX graph T : Prim's Algorithm Returns ------- The edge with the lowest cost/weight. """ edge_list = possible_edges(G, T) edge_list.sort(key = lambda e : cost(G, e)) return edge_list[0] def FileSelector(directory): """Returns the file selected based on the user input. Parameters ---------- directory : Directory to look for graphs Returns ------- The file selected by the user. """ entries = os.listdir(directory) entries = [x.upper() for x in entries] print(entries) inputFile = input('Please enter the desired graph file name to solve: ') if not inputFile.endswith('.txt'): inputFile += '.txt' while inputFile.upper() not in entries: print(entries) inputFile = input('The graph file was not found. Please enter the desired graph file name to solve: ') if not inputFile.endswith('.txt'): inputFile += '.txt' return directory + inputFile def InputStartingPoint(G): """Returns the starting vertex based on the user input. Parameters ---------- G : NetworkX graph Returns ------- The starting vertex selected by the user. """ vertices = G.nodes print(vertices) vertex = input('Please enter a vertex listed for the graph: ') while not vertex.isnumeric() or int(vertex) not in vertices: print(vertices) vertex = input('Invalid entry. Please enter a valid vertex listed for the graph: ') return int(vertex)
true
00c5d33b468e64ce07c0bf3ce563650304ebecb7
Python
AndreyPankov89/python-glo
/lesson9/task5.py
UTF-8
81
2.96875
3
[]
no_license
for i in range(7): for j in range(6): print('2', end=' ') print()
true
1a65736239eb4c1b19bdb49ebfdfa0574a10f342
Python
Hash-It-Out/Fake-News-Suspector
/wce/scrapeUrl.py
UTF-8
1,063
2.546875
3
[ "MIT" ]
permissive
from bs4 import BeautifulSoup from newspaper import Article import csv class url_query(): def url_news(sstring): url= sstring print(url) data=[None]*2 try: article = Article(url) article.download() article.html article.parse() data[0]='100' data[1]=article.title print(*data) # with open('real4.csv','a') as w: # writer = csv.writer(w) # writer.writerow(data) # w.close() except Exception as e: print(e) pass url_news('https://www.yahoo.com/news/gop-lawmaker-knocks-trump-putin-call-refuses-distance-president-135204872.html')
true
7eb8bb25546f929a4fdf04c419bc4e5ee3c795f4
Python
kziolkowska/PyEMMA
/pyemma/msm/estimation/dense/tmatrix_sampler_jwrapper_test.py
UTF-8
2,909
2.671875
3
[ "BSD-2-Clause" ]
permissive
''' Created on Jun 6, 2014 @author: marscher ''' import unittest import numpy as np from tmatrix_sampler_jwrapper import ITransitionMatrixSampler def assertSampler2x2(sampler, C, nsample, errtol): """ same function as in stallone.test.mc.MarkovModelFactoryTest """ c1 = float(np.sum(C[0])) c2 = float(np.sum(C[1])) n = C.shape[0] samplesT12 = np.empty(nsample) samplesT21 = np.empty(nsample) for i in xrange(nsample): T = sampler.sample(100) samplesT12[i] = T[0, 1] samplesT21[i] = T[1, 0] # check means true_meanT12 = float(C[0, 1] + 1) / float(c1 + n) sample_meanT12 = np.mean(samplesT12) err_T12 = np.abs(true_meanT12 - sample_meanT12) / true_meanT12 assert float(err_T12) < errtol true_meanT21 = float(C[1, 0] + 1) / float(c2 + n) sample_meanT21 = np.mean(samplesT21) err_T21 = np.abs(true_meanT21 - sample_meanT21) / true_meanT21 assert float(err_T21) < errtol # check variance true_varT12 = true_meanT12 * (1.0 - true_meanT12) / float(c1 + n + 1) sample_varT12 = np.var(samplesT12) err_varT12 = np.abs(true_varT12 - sample_varT12) / true_varT12 assert float(err_varT12) < errtol true_varT21 = true_meanT21 * (1.0 - true_meanT21) / float(c2 + n + 1) sample_varT21 = np.var(samplesT21) err_varT21 = np.abs(true_varT21 - sample_varT21) / true_varT21 assert float(err_varT21) < errtol class TestJavaTransitionMatrixSampler(unittest.TestCase): """ note this is very slow, since it calls nsample times jni methods. """ def setUp(self): self.C = np.array([[5, 2 ], [1, 10]]) self.errtol = 1e-2 self.nsample = 100000 @unittest.SkipTest def testSamplerRev(self): sampler_rev = ITransitionMatrixSampler(self.C, reversible=True) assertSampler2x2(sampler_rev, self.C, self.nsample, self.errtol) @unittest.SkipTest def testSamplerNonRev(self): sampler_nonrev = ITransitionMatrixSampler(self.C, reversible=False) assertSampler2x2(sampler_nonrev, self.C, self.nsample, self.errtol) # @unittest.SkipTest def testSamplerRevPiFix(self): """Mean transition matrix""" mP=(self.C+1.0)/(self.C+1.0).sum(axis=1)[:,np.newaxis] """Stationary distribution of mean-transition matrix""" mu=np.array([6.0/19, 13.0/19]) sampler_rev_pi = ITransitionMatrixSampler(self.C, reversible=True, mu=mu, Tinit=mP) # sampler_rev_pi = ITransitionMatrixSampler(self.C, reversible=True) T=np.zeros((self.nsample, 2, 2)) for i in range(self.nsample): T[i,:,:]=sampler_rev_pi.sample(10) mT=np.mean(T, axis=0) dT=np.sqrt(np.var(T, axis=0)) self.assertTrue(np.all(np.abs(mT-mP)<dT)) if __name__ == "__main__": unittest.main()
true
e1684604ac5625757d83f240c02b4297e3056e20
Python
FredrikBakken/family-tree
/scrape/scrape.py
UTF-8
3,164
3.1875
3
[ "MIT" ]
permissive
import re import time import random import requests from bs4 import BeautifulSoup def getContents(url): time.sleep(2) # Avoid DDoS page = requests.get(url) if (page.status_code == 200): return page.content def website(url): contents = getContents(url) if (contents != None): # Parse information table soup = BeautifulSoup(contents, 'html.parser') table = soup.find('table', {"class": "data_table lengthy"}) table_rows = table.findAll('tr') # Initialize parent variables person = {} parent_urls = [] # Loop through each row in table for table_row in table_rows: if (not table_row.find('td', {"class": "spacer"})): head_cells = table_row.findAll('th') data_cells = table_row.findAll('td') # Some rows has both th and td, others have only td if (len(head_cells) + len(data_cells) == 1): person["Name"] = data_cells[0].text.strip().split("\n")[0] elif (len(head_cells) + len(data_cells) == 2): if (len(head_cells) > 0): key = head_cells[0].text.strip().replace(":", "") value = data_cells[0].text.strip() else: key = data_cells[0].text.strip().replace(":", "") value = re.sub(' +', ' ', data_cells[1].text.strip().replace('\n', '')) # Parse parents from row related to 'Immediate Family' if (key == 'Immediate Family'): family_entities = data_cells[0].find('p') if (family_entities.text.startswith("Son of") or family_entities.text.startswith("Daughter of")): parents_text = family_entities.text.split("\n")[0] all_links = family_entities.findAll('a') # Remove link text from row related to parents (since it may include the 'and' word) # Removing this may cause a infinite loop for all_link in all_links: parents_text = parents_text.replace(all_link.text, "") # Find the number of parents that exists if ("and" in parents_text): number_of_parents = 2 else: number_of_parents = 1 # Fetch the links to the parents parent_links = family_entities.findAll('a') for parent_link in parent_links[:number_of_parents]: parent_urls.append(parent_link['href']) else: parent_urls = [] # Add each row to dictionary person[key] = value # Return results return person, parent_urls else: print("No contents received from Geni...")
true
d9ad6c1c6ca611740773639c414594d305378b4a
Python
zhou11616/myproject
/day1/c.py
UTF-8
585
3.078125
3
[]
no_license
def ling(n): nstr = range(1, 2 * n) for i in nstr[0:n]: for j in nstr[n - i : 0 : - 1]: print(" ", end=" ") for j in nstr[0 : 2 * i - 1]: print("*", end=" ") print("") for i in nstr[0:n-1]: for j in nstr[0:i]: print(" ", end=" ") for j in nstr[2*(n-i)-1:0:-1]: print("*", end=" ") print("") def huan(): for i in range(1, 10): for j in range(1, i + 1): print("%dX%d=%-2d " % (j, i, i * j), end=" ") print() if __name__ == '__main__': ling(9)
true
98ae47f15e089f31c8abddd6f4acfb4e51807c89
Python
RohanAnandPandit/graphite
/src/string_formatting.py
UTF-8
11,035
3.140625
3
[]
no_license
from maths.math_constants import * from maths.math_functions import * from utils import invert constants = ['π', 'φ'] # Superscript numbers,variables and operator characters numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # Regular numbers super_script = ['⁰', '¹', '²', '³', '⁴', '⁵', '⁶', '⁷', '⁸', '⁹', 'ᵃ', 'ᵇ', 'ᶜ', 'ᵈ', 'ᵉ', 'ˢ', 'ˣ', 'ʸ', 'ᶻ', 'ᵗ', 'ᵒ', '⁽', '⁾', '⁻', '⁺', '^', 'ᵍ', 'ᵐ', 'ʰ', 'ᶦ', 'ⁿ', '˚', 'ʳ'] variables = ['a', 'b', 'c', 'd', 'e', 't', 'x', 'y', 'z', 'r'] # Regular variables to_super_script = {'0': '⁰', '1': '¹', '2': '²', '3': '³', '4': '⁴', '5': '⁵', '6': '⁶', '7': '⁷', '8': '⁸', '8': '⁹', 'a': 'ᵃ', 'b': 'ᵇ', 'c': 'ᶜ', 'd': 'ᵈ', 'o': 'ᵒ', 's': 'ˢ', 'e': 'ᵉ', 'x': 'ˣ', 'y': 'ʸ', 'z': 'ᶻ', 't': 'ᵗ', 'g': 'ᵍ', 'm': 'ᵐ', 'h': 'ʰ', 'i': 'ᶦ', 'n': 'ⁿ', 'r': 'ʳ', '(': '⁽', ')': '⁾', '-': '⁻', '*': '*', '/': '/', ' ': ' ', '+': '⁺', '*': '˚', "'": "'", ',': ','} identifiers = {'cos': '[', 'sin': ']', 'tan': '@', 'sec': '~', 'cosec': '#', 'cot': '$', 'gamma': ';', 'asin': '%', 'acos': '_', 'atan': '&', 'sqrt': '¬', 'cbrt': "\\", 'abs': '{', 'sigma': 'Σ', 'integral': '∫', 'fact': '£', 'mandelbrot': '?', 'derivative': 'α', 'newtonRhapson': 'β', 'C': 'δ'} characters = ['[', ']', '@', '~', '#', '$', ';', '%', '_', '&', '¬', "\\", '{', '}', 'Σ', '∫', '£', '?', 'α', 'β', 'δ'] def syntax_correction(equation, replace_functions=True): # This section removes all superfluous spaces from the string equation = list(equation) i = 0 l = len(equation) while i < l: char = equation[i] if char == ' ': del equation[i] l -= 1 else: i += 1 # This section replaces each special character with it' syntax representation i = 0 l = len(equation) while i < l: char = equation[i] if i < l - 1: # This indicates that the base is being raised to the power of the # expression with the supersScript brackets if char not in super_script and equation[i + 1] == '⁽': equation[i + 1] = '**(' if char in operators + constants + super_script: try: equation[i] = key[char] except: pass i = i + 1 # This section inserts the factorial function in the correct position # whenever the '!' symbol is encountered i = 0 equation = list(''.join(equation)) l = len(equation) while i < l: if equation[i] == '!': equation[i] = ')' if i == 0: equation.insert(0, 'fact(') else: j = i - 1 while equation[j] not in operators and j >= 1: j -= 1 equation.insert(j + 1, 'fact(') i += 2 l += 1 else: i += 1 # This section replaces each mathematical function with it's special # identifier equation = list(''.join(equation)) i = 0 l = len(equation) while i < l: for a in range(3, 11): if i + a < l: if ''.join(equation[i:i + a]) in functions: equation = equation[0:i] equation += [identifiers[''.join(equation[i:i + a])]] equation += equation[i + a: l] l = l - (a - 1) i = i + 1 # This section inserts a '*' sign between expression which have been # implicitly multiplied equation = list(''.join(equation)) for i in range(1, len(equation)): char = equation[i] if char in variables and equation[i - 1] not in operators + characters: equation[i] = '*' + equation[i] elif char == '(' and equation[i - 1] == ')': equation[i] = '*' + equation[i] elif char not in variables + operators + ['i'] and equation[i - 1] in variables: equation[i] = '*' + equation[i] elif ((char not in variables + operators + constants + numbers + ['.']) and (equation[i - 1] not in variables + operators + constants + numbers + ['.']) or (char not in variables + operators and equation[i - 1] == ')')): equation[i] = '*' + equation[i] # This section replaces special constants with their variable representation equation = list(''.join(equation)) for i in range(0, len(equation)): if equation[i] == 'π': if i != 0: if equation[i - 1] in operators: equation[i] = 'pi' else: equation[i] = '*pi' else: equation[i] = 'pi' elif equation[i] == 'φ': if i != 0: if equation[i - 1] in operators: equation[i] = 'phi' else: equation[i] = '*phi' else: equation[i] = 'phi' # This replaces the identifier characters with the original function if replace_functions: equation = list(''.join(equation)) for i in range(len(equation)): char = equation[i] for function in functions: if identifiers[function] == char: equation[i] = function # This section inserts the absolute value function whenever the modulus # sign is encountered i = 0 equation = list(''.join(equation)) l = len(equation) tracker = True for i in range(len(equation)): if equation[i] == '|': if tracker: equation[i] = 'abs(' else: equation[i] = ')' elif equation[i] in operators: # A tracker has to be maintained to mdetermine whether the modulus # sign is closing or opening the function # as the open and close modulus signs both are represented by '|' tracker = invert(tracker) return ''.join(equation) # Formats mathematical statements entered into a form def entry_formatter(entry): l = len(entry.get()) i = 0 while i < l: if i != 0: # If the character before the current character is in super_script # then the current character should also be in super_script if entry.get()[i - 1] in super_script and entry.get()[i] not in super_script: s = entry.get()[i] entry.delete(i) entry.insert(i, to_super_script[s]) # If the user wants to raise something to a power then it will be # replaced by super script open bracket if entry.get()[i] == '^' and entry.get()[i - 1] not in super_script: entry.delete(i, i + 1) entry.insert(i, '⁽') entry.icursor(i + 2) if i + 4 < len(entry.get()) + 1: # Ensures there are at least 4 characters left # If the user types sqrt it will be replaces by the symbol for square settings_window if entry.get()[i:i + 4] == 'sqrt': entry.delete(i, i + 4) entry.insert(i, '√()') entry.icursor(i + 2) l = l - 1 # The length of the string is reduced by one # If the user types cbrt it will be replaces by the symbol for cube settings_window elif entry.get()[i:i + 4] == 'cbrt': entry.delete(i, i + 4) entry.insert(i, '∛()') entry.icursor(i + 2) l = l - 1 # The length of the string is reduced by one if i + 2 < len(entry.get()) + 1: # Ensures there are at least 2 characters left # If the user types pi it will be replaced by π if entry.get()[i:i + 2] == 'pi': entry.delete(i, i + 2) entry.insert(i, 'π') l = l - 1 # The length of the string is reduced by one # Ensures there are at least 3 characters left if i + 3 < len(entry.get()) + 1: # If the user types 'sum' it will be replaced by the greek letter sigma if entry.get()[i:i + 3] == 'sum': entry.delete(i, i + 3) entry.insert(i, 'Σ()') entry.icursor(i + 2) # l = l - 0 # The length of the string is reduced by zero # If the user types phi it will be replaced by the greek letter phi if entry.get()[i:i + 3] == 'phi': entry.delete(i, i + 3) entry.insert(i, 'φ') l = l - 2 # The length of the string is reduced by two if i + 5 < len(entry.get()) + 1: # Ensures there are at least 5 characters left # If the user types sigma it will be replaced by the greek letter sigma if entry.get()[i:i + 5] == 'sigma': entry.delete(i, i + 5) entry.insert(i, 'Σ()') entry.icursor(i + 2) l = l - 2 # The length of the string is reduced by two if i + 4 < len(entry.get()) + 1: # Ensures there are at least 4 characters left # If the user types inte it will be replaced by the integral symbol if entry.get()[i:i + 4] == 'inte': entry.delete(i, i + 4) entry.insert(i, '∫()') entry.icursor(i + 2) l = l - 1 # The length of the string is reduced by one i += 1 return def substitute_values(obj, equation): i = 0 equation = list(equation) l = len(equation) while (i < l): for a in range(3, 6): if (i + a < l): if (''.join(equation[i:i + a]) in functions): equation = equation[0:i] equation += [identifiers[''.join(equation[i:i + a])]] equation += equation[i + a:l] l = l - (a - 1) i = i + 1 equation = list(equation) for i in range(0, len(equation)): char = equation[i] if char in ['a', 'b', 'c', 'd']: equation[i] = str(round(eval('obj.' + char), 3)) elif char in numbers: pass else: try: if key[char] in ['a', 'b', 'c', 'd']: equation[i] = str(round(eval('obj.' + key[char]), 3)) except: pass try: if key[char] in numbers: equation[i] = str(key[char]) except: pass equation = list(''.join(equation)) for i in range(len(equation)): char = equation[i] for function in functions: if identifiers[function] == char: equation[i] = function return ''.join(equation)
true
6789c47dd25c8726ed4a62cbf39d57c8e7202513
Python
arunajasti/python_programs
/TypesOfVariablesInOOPS/Static Variables/Employee1.py
UTF-8
1,367
4
4
[]
no_license
class Employee1: company = 'Amazon' #declare static variable outside method/constructor def __init__(self,name): self.name = name Employee1.empLocation = 'DENMARK'# declare static variable inside constructor using className def showDetails(self): Employee1.salary = 10000 #declare static variable inside Instance Method using className @classmethod def companyLocation(cls): Employee1.comLocation = 'USA'#declare static variable inside @classmethod using className or cls print("call static variables in classmethod by using cls or className:",cls.company) #or #cls.comLocation = 'USA' @staticmethod def employeeId(): Employee1.empId = 3003 #declare static variable inside @staticmethod using className e1 = Employee1('aruna') print(e1.__dict__) print("call static variables outside class using className or obj reference:",Employee1.empLocation) print() Employee1.companyLocation() #calling class method Employee1.employeeId() #calling static method e1.showDetails() print(Employee1.__dict__) #using Employee1(className) to retrive static varibales print() print("call static variables outside class using className or obj reference:",Employee1.salary) print() e1.companyLocation() e1.employeeId() print(Employee1.__dict__)
true
5806ea7b2e853f50ead7a72cb4eacebd259122c3
Python
aseemm/crawlers
/src/example.py
UTF-8
3,543
2.75
3
[]
no_license
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.common.exceptions import NoSuchElementException class test(): def __init__(self): chrome_options = webdriver.ChromeOptions() chrome_options.add_argument("--headless") chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--disable-gpu") self.driver = webdriver.Chrome(options=chrome_options) def login_hackernews(self): # Get some information about the page # print(self.driver.page_source) # print(self.driver.title) # print(self.driver.current_url) # Search by tag, class, id, xpath, css selector # h1 = driver.find_element_by_name('h1') # h1 = driver.find_element_by_class_name('someclass') # h1 = driver.find_element_by_xpath('//h1') # h1 = driver.find_element_by_id('greatID') # all_links = driver.find_elements_by_tag_name('a') # Accessing elements # element.text, elementt.click(), element.get_attribute('class'), element.send_keys('mypassword'), element.is_displayed() self.driver.set_window_size(1280, 720) self.driver.get("https://news.ycombinator.com/login") login = self.driver.find_element_by_xpath("//input").send_keys('hello') password = self.driver.find_element_by_xpath("//input[@type='password']").send_keys('world') submit = self.driver.find_element_by_xpath("//input[@value='login']").click() try: logout_button = self.driver.find_element_by_id("logout") print('Successfully logged in') except NoSuchElementException: print('Incorrect login/password') # take a screenshot self.driver.save_screenshot('screenshot.png') def search_google(self): self.driver.set_window_size(1280, 720) self.driver.get("https://www.google.com/?gws_rd=ssl") self.driver.find_element_by_name("q").click() self.driver.find_element_by_name("q").clear() self.driver.find_element_by_name("q").send_keys("cat") self.driver.find_element_by_id("tsf").submit() self.driver.find_element_by_link_text("Images").click() def access_github(self): self.driver.set_window_size(1280, 720) self.driver.get("https://github.com/TheDancerCodes") print(self.driver.title) print(self.driver.current_url) # print(self.driver.page_source) # # Wait 20 seconds for page to load # timeout = 20 # try: # WebDriverWait(self.driver, timeout).until(EC.visibility_of_element_located((By.XPATH, "//img[@class='avatar width-full rounded-2']"))) # except TimeoutException: # print("Timed out waiting for page to load") # self.driver.quit() # get titles of the pinned repos titles_element = self.driver.find_elements_by_xpath("//a[@class='text-bold flex-auto min-width-0 ']") titles = [x.text for x in titles_element] print('titles:') print(titles, '\n') language_element = self.driver.find_elements_by_xpath("//p[@class='mb-0 f6 text-gray']") languages = [x.text for x in language_element] print("languages:") print(languages, '\n') print("RepoName : Language") for title, language in zip(titles, languages): print(title + ": " + language) automate = test() # automate.search_google() # automate.login_hackernews() automate.access_github()
true
b2fa8cb8fa9a9159c9dc2150cdcfd5aae040a4b7
Python
xinyuewang1/hackerrankTests
/makingAnagrams.py
UTF-8
634
3.125
3
[]
no_license
#!/bin/python3 import math import os import random import re import sys from collections import Counter # Complete the makeAnagram function below. def makeAnagram(a, b): a = Counter(a) b = Counter(b) inter = a & b # intersection # print(a.subtract(inter)) # if inter: return sum((a - inter).values()) + sum((b - inter).values()) # else: # return len(a)+len(b) # no intersection if __name__ == '__main__': # fptr = open(os.environ['OUTPUT_PATH'], 'w') a = input() b = input() res = makeAnagram(a, b) print(res) # fptr.write(str(res) + '\n') # # fptr.close()
true
59d202fefeb20b76f0d2f6ef7e9874aa0ed51114
Python
piotroramus/Computational-Geometry-2015
/lab1/matplotlib/main.py
UTF-8
960
3.25
3
[]
no_license
__author__ = 'piotr' from matplotlib import pyplot as plt currentPoints = "D" with open('../points'+currentPoints+'.txt') as inputFile: points = [] for line in inputFile: [x, y] = line.strip().split(';') points.append([x, y]) plt.plot(*zip(*points), marker='.', color='r', ls='', markersize=1) minx = -1000 maxx = 1000 linex1 = minx liney1 = 0.05*minx+0.05 linex2 = maxx liney2 = 0.05*maxx+0.05 aDesc = "10^5 points of [-100;100]" bDesc = "10^5 points of [-10^14;10^14]" cDesc = '1000 points on circle of (X0,Y0)=(0,0) and R=100' dDesc = "1000 points on the line going through [-1.0;0.0] and [1.0;0.1]" plt.xlabel('X') plt.ylabel('Y') plt.title(dDesc) withLine = False if withLine: plt.plot([linex1, linex2], [liney1, liney2], 'b-', lw=1) plt.savefig('/home/piotr/Projects/go/lab1/images/points'+currentPoints+'WithLine.png') else: plt.savefig('/home/piotr/Projects/go/lab1/images/points'+currentPoints+'.png')
true
c143d7553a633c5dc08ba671430a6426a6a66309
Python
saatvikgulati/turtle-python
/race.py
UTF-8
1,246
3.15625
3
[]
no_license
import turtle import time from random import randint window=turtle.Screen() window.bgcolor("brown") tur=turtle.Pen() tur.speed(0) tur.up() stamp_size=20 square_size=15 finish_line=200 tur.color("black") tur.shape("square") tur.shapesize(square_size/stamp_size) tur.up() for i in range(10): tur.setpos(finish_line,(150-(i*square_size*2))) tur.stamp() for j in range(10): tur.setpos(finish_line+square_size,((150-square_size)-(j*square_size*2))) tur.stamp() tur.hideturtle() p1=turtle.Pen() p2=turtle.Pen() p3=turtle.Pen() p4=turtle.Pen() d=turtle.Pen() p1.shape("turtle") p2.shape("turtle") p3.shape("turtle") p4.shape("turtle") p1.speed(0) p1.up() p2.speed(0) p2.up() p3.speed(0) p3.up() p4.speed(0) p4.up() d.speed(0) d.up() d.setpos(-300,-190) d.down() d.left(90) d.forward(400) d.right(90) d.up() d.hideturtle() p1.setpos(-300,0) p2.setpos(-300,-50) p3.setpos(-300,50) p4.setpos(-300,100) d.setpos(-300,0) d.down() d.forward(2000) d.up() d.setpos(-300,-50) d.down() d.forward(2000) d.up() d.setpos(-300,50) d.down() d.forward(2000) d.up() d.setpos(-300,100) d.down() d.forward(2000) d.up() for i in range(145): p2.forward(randint(1,5)) p1.forward(randint(1,5)) p3.forward(randint(1,5)) p4.forward(randint(1,5))
true
57f242252ea28ad0a95e39b2eeff06110cba06c7
Python
xiaoli777/ecs289g_tsne_pres
/build.py
UTF-8
1,893
2.5625
3
[]
no_license
#!/usr/bin/python3 import argparse import os import shutil def handleAutoComplete(): if sys.platform == 'Mac OS X': complete_cmd = 'complete -F _longopt {}'.format(os.path.basename(__file__)) bashrc_path = os.path.expanduser('~/.bashrc') with open(bashrc_path) as f: if not complete_cmd in f.read(): os.system('echo "{}" >> {}'.format(complete_cmd, bashrc_path)) else: pass class BuildDirectory(): def __init__(self): self.script_folder = os.path.abspath(os.path.dirname(__file__)) self.build_root = os.path.join(self.script_folder, 'build') def sourceFilename(self, base_filename_tex): return os.path.join(os.path.join(self.script_folder), base_filename_tex) def outputFilename(self, base_filename_tex): return os.path.join(os.path.join(self.script_folder), os.path.splitext(base_filename_tex)[0] + '.pdf') def runBuild(dirs, tex_filename): os.makedirs(dirs.build_root, exist_ok=True) exit_code = os.system("pdflatex {}".format(dirs.sourceFilename(tex_filename))) if exit_code != 0: quit(1) def runPreview(dirs, tex_filename): os.system("evince {}".format(dirs.outputFilename(tex_filename))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--clean', action='store_true', help='Clean build folder') # parser.add_argument('filename', nargs=1, help="Name of the target LaTeX file") parser.add_argument('--preview', action='store_true', help='Open output file with pdf viewer') args = parser.parse_args() dirs = BuildDirectory() target_name = 'pres.tex' if args.clean: shutil.rmtree(dirs.build_root, ignore_errors=True) quit() runBuild(dirs, target_name) if args.preview: runPreview(dirs, target_name) print("finished")
true
35c02d229b85b1a2a92a9eadf207612f93f61322
Python
LiMichael1/Space_Invaders
/PlayScreen.py
UTF-8
12,890
2.5625
3
[]
no_license
import sys from time import sleep import pygame from bullet import Bullet from Alien1 import Alien1 from Alien2 import Alien2 from Alien3 import Alien3 from pygame.sprite import Group from high_score import High_Score from game_stats import GameStats from scoreboard import Scoreboard from ship import Ship from UFO import UFO from startScreen import StartScreen from Bunker import Bunker from gameover import GameOver import random clock = pygame.time.Clock() class PlayScreen: def __init__(self, ai_settings, screen): self.ai_settings = ai_settings self.screen = screen self.display_start = True self.display_high_score = False self.start_screen = StartScreen(ai_settings=ai_settings, screen=screen) self.stats = GameStats(ai_settings=self.ai_settings) self.sb = Scoreboard(ai_settings=self.ai_settings, screen=self.screen, stats=self.stats) self.ship = Ship(ai_settings=self.ai_settings, screen=self.screen) self.high_score = High_Score(self.ai_settings, self.screen) self.gameover = GameOver(self.ai_settings, self.screen) self.quit = False self.alien1 = Alien1(ai_settings=self.ai_settings, screen=self.screen) self.alien2 = Alien2(ai_settings=self.ai_settings, screen=self.screen) self.alien3 = Alien3(ai_settings=self.ai_settings, screen=self.screen) self.aliens = [self.alien1, self.alien2, self.alien3] self.UFO = UFO(ai_settings=self.ai_settings, screen=self.screen) self.faster = False self.bullets = Group() self.enemy_bullets = Group() self.alien_group = Group() self.play_music = 'sounds/play.mp3' self.play_music_faster = 'sounds/play-faster.mp3' self.missile_sound = pygame.mixer.Sound('sounds/missile.wav') self.bunker = Group() self.create_bunker() def create_bunker(self): for x in range(3): bunk = Bunker(ai_settings=self.ai_settings, screen=self.screen, centerx= x * 400 + 200, centery=self.ai_settings.screen_height - 100) self.bunker.add(bunk) def check_events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: self.check_keydown_events(event) elif event.type == pygame.KEYUP: self.check_keyup_events(event) def check_keyup_events(self, event): if event.key == pygame.K_RIGHT: self.ship.moving_right = False elif event.key == pygame.K_LEFT: self.ship.moving_left = False def check_keydown_events(self, event): if event.key == pygame.K_RIGHT: self.ship.moving_right = True elif event.key == pygame.K_LEFT: self.ship.moving_left = True elif event.key == pygame.K_SPACE: self.fire_bullet() elif event.key == pygame.K_q: sys.exit() def new_game(self): self.ai_settings.initialize_dynamic_settings() pygame.mouse.set_visible(False) self.stats.reset_stats() self.stats.game_active = True self.sb.prep_score() self.sb.prep_ships() self.alien_group.empty() self.bullets.empty() self.enemy_bullets.empty() # create fleet self.create_fleet() self.create_bunker() self.ship.center_ship() def fire_bullet(self): if len(self.bullets) < self.ai_settings.bullets_allowed: new_bullet = Bullet(ai_settings=self.ai_settings, screen=self.screen, ship=self.ship) self.bullets.add(new_bullet) self.missile_sound.play() def fire_enemy_bullet(self): if random.random() < self.ai_settings.probability_to_fire: if len(self.enemy_bullets) < self.ai_settings.enemy_bullets_allowed: alien = random.choice(list(self.alien_group.spritedict.keys())) new_bullet = Bullet(ai_settings=self.ai_settings, screen=self.screen, ship=alien, enemy=True) self.enemy_bullets.add(new_bullet) self.missile_sound.play() def get_number_aliens_x(self): alien_width = self.aliens[0].rect.width available_space_x = self.ai_settings.screen_width - (2 * alien_width) number_aliens_x = int(available_space_x / (2 * alien_width)) return number_aliens_x def get_number_rows(self): alien_height = self.aliens[0].rect.height available_space_y = (self.ai_settings.screen_height - (3 * alien_height) - self.ship.rect.height) number_rows = int(available_space_y / (2 * alien_height)) return number_rows def create_alien(self, which_alien, row_number, alien_number): one_alien = None if which_alien == 0: one_alien = Alien1(ai_settings=self.ai_settings, screen=self.screen) elif which_alien == 1: one_alien = Alien2(ai_settings=self.ai_settings, screen=self.screen) elif which_alien == 2: one_alien = Alien3(ai_settings=self.ai_settings, screen=self.screen) alien_width = one_alien.rect.width one_alien.x = alien_width + 2 * alien_width * alien_number one_alien.rect.x = one_alien.x one_alien.rect.y = one_alien.rect.height + 2 * one_alien.rect.height * row_number self.alien_group.add(one_alien) def create_fleet(self): rows = self.get_number_rows() aliens_per_row = self.get_number_aliens_x() for row_number in range(rows): which_alien = int(row_number / 2) for alien_number in range(aliens_per_row): self.create_alien(which_alien=which_alien, row_number=row_number, alien_number=alien_number) def check_bullet_alien_collisions(self): collisions = pygame.sprite.groupcollide(self.bullets, self.alien_group, True, True) pygame.sprite.groupcollide(self.alien_group, self.bunker, False, True) if self.UFO.alive: if pygame.sprite.spritecollideany(self.UFO, self.bullets): self.UFO.explode() self.UFO.dead() self.stats.score += self.ai_settings.ufo_points self.sb.prep_score() if collisions: for aliens in collisions.values(): for alien in aliens: for x in range(len(self.aliens)): if type(alien) == type(self.aliens[x]): self.stats.score += self.ai_settings.alien_points[x] self.sb.prep_score() alien.explode() sleep(0.05) alien.explosion_timer.reset() # needs to update settings for alien points if len(self.alien_group) < 11 and not self.faster: self.play_game_music(faster=True) if len(self.alien_group) == 0 and not self.UFO.alive: self.bullets.empty() self.ai_settings.increase_speed() self.stats.level += 1 self.sb.prep_level() self.create_fleet() self.UFO.reset() self.play_game_music(faster=False) bunker_collision= pygame.sprite.groupcollide(groupa=self.bunker, groupb=self.enemy_bullets, dokilla=False, dokillb=True, collided=pygame.sprite.collide_rect_ratio(2)) def ship_hit(self): self.stats.ships_left -= 1 print(self.stats.ships_left) if self.stats.ships_left > 0: # Update the scoreboard self.sb.prep_ships() # Empty list of aliens and bullets self.alien_group.empty() self.bullets.empty() self.enemy_bullets.empty() # create_fleet self.create_fleet() self.ship.center_ship() self.create_bunker() # Pause sleep(0.5) else: for i in range(6): self.ship.explode() sleep(0.3) self.ship.explosion_timer.reset() self.stats.game_active = False pygame.mouse.set_visible(True) self.high_score.update_score(self.stats.score) def update_screen(self): self.screen.fill(self.ai_settings.bg_color) self.bullets.draw(self.screen) self.enemy_bullets.draw(self.screen) self.ship.blitme() for alien in self.alien_group: alien.blitme() if self.UFO.alive: self.UFO.blitme() for bunker in self.bunker: bunker.draw() self.sb.show_score() pygame.display.flip() def start_screen_play(self): self.start_screen.play_music() while self.display_start: for e in pygame.event.get(): if e.type == pygame.QUIT: sys.exit() elif e.type == pygame.MOUSEBUTTONDOWN: _mouse_x, _mouse_y = pygame.mouse.get_pos() if self.start_screen.check_play_button(_mouse_x, _mouse_y): self.display_start = False continue if self.start_screen.check_high_score_button(_mouse_x, _mouse_y): self.display_high_score = True elif e.type == pygame.KEYDOWN: if e.key == pygame.K_SPACE: self.display_high_score = False if self.display_high_score: self.high_score.draw() else: self.start_screen.draw() pygame.display.flip() pygame.mixer.music.stop() def gameOver_play(self): self.gameover.draw() for e in pygame.event.get(): if e.type == pygame.KEYDOWN: if e.type == pygame.QUIT: sys.exit() if e.type == pygame.MOUSEBUTTONDOWN: _mouse_x, _mouse_y = pygame.mouse.get_pos() if self.gameover.check_play_button(_mouse_x=_mouse_x, _mouse_y=_mouse_y): self.new_game() self.stats.game_active = True elif self.gameover.check_quit_button(_mouse_x=_mouse_x, _mouse_y=_mouse_y): self.quit = True def play_game_music(self, faster): pygame.mixer.music.stop() if faster: pygame.mixer.music.load(self.play_music_faster) self.faster = True else: pygame.mixer.music.load(self.play_music) self.faster = False pygame.mixer.music.play(-1, 0.0) def update_bullets(self): self.bullets.update() self.enemy_bullets.update() for bullet in self.bullets.copy(): if bullet.rect.bottom <= 0: self.bullets.remove(bullet) for bullet in self.enemy_bullets.copy(): if bullet.rect.top >= self.ai_settings.screen_height: self.enemy_bullets.remove(bullet) self.fire_enemy_bullet() if pygame.sprite.spritecollideany(self.ship, self.enemy_bullets): self.ship_hit() self.check_bullet_alien_collisions() def change_fleet_direction(self): for alien in self.alien_group: alien.rect.y += self.ai_settings.fleet_drop_speed self.ai_settings.fleet_direction *= -1 def check_fleet_edges(self): for alien in self.alien_group: if alien.check_edges(): self.change_fleet_direction() break def check_aliens_bottom(self): screen_rect = self.screen.get_rect() for alien in self.alien_group: if alien.rect.bottom >= screen_rect.bottom: self.ship_hit() break def update_aliens(self): self.check_fleet_edges() self.alien_group.update() if pygame.sprite.spritecollideany(self.ship, self.alien_group): self.ship_hit() if self.UFO.alive: self.update_UFO() self.check_aliens_bottom() def update_UFO(self): if self.UFO.check_edges(): self.ai_settings.UFO_direction *= -1 self.UFO.update() def play(self): self.start_screen_play() self.new_game() self.play_game_music(faster=False) while not self.quit: if self.stats.game_active: self.check_events() self.ship.update() self.update_bullets() self.update_aliens() self.update_screen() else: self.gameOver_play() pygame.display.flip()
true
221e71fa44fc9f71b5c2c61f854db74dfc91d2d1
Python
hxl163630/practice
/31. Next Permutation.py
UTF-8
538
3
3
[]
no_license
class Solution: def nextPermutation(self, nums): """ :type nums: List[int] :rtype: void Do not return anything, modify nums in-place instead. """ if not nums or len(nums) == 1: return i = len(nums) - 2 while i >= 0 and nums[i + 1] <= nums[i]: i -= 1 if i >= 0: j = len(nums) - 1 while j >= i and nums[j] <= nums[i]: j -= 1 nums[i], nums[j] = nums[j], nums[i] nums = nums[::-1] sol = Solution() sol.nextPermutation([1,3,2])
true
24e2252193be0424394912a38d072c232cc4d852
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_135/1028.py
UTF-8
949
3.234375
3
[]
no_license
import sys if __name__ == "__main__": T = int(sys.stdin.readline()) f = open("a.out", 'w') for i in range(T): r1 = int(sys.stdin.readline()) for j in range(1, 5): if j == r1: row = sys.stdin.readline().split() r1_set = set(row) else: sys.stdin.readline() r2 = int(sys.stdin.readline()) for j in range(1,5): if j == r2: row = sys.stdin.readline().split() r2_set = set(row) else: sys.stdin.readline() intersect = r1_set.intersection(r2_set) if len(intersect) == 0: f.write("Case #%d: Volunteer cheated!\n" %(i+1)) elif len(intersect) == 1: el = intersect.pop() f.write("Case #%d: %s\n" %(i+1, el)) else: f.write("Case #%d: Bad magician!\n" %(i+1)) f.close()
true
b5faf9773c21e394401a5b724c92de8c642f690d
Python
harshitbhat/Data-Structures-and-Algorithms
/GeeksForGeeks/DS-Course/002-Recursion/017.print-1-to-n-without-using-loops.py
UTF-8
232
3.078125
3
[]
no_license
class Solution: #Complete this function def printNos(self,N): def print1ToN(n): if n == 0: return print1ToN(n-1) print(n, end=' ') print1ToN(N)
true
db4fb8983298740fcf0bd85ed1bb48c417e372d4
Python
Nitishkumar-S/Cryptocurrency-sentiment-analysis
/cryptocurrency sentiment analysis.py
UTF-8
3,690
3.4375
3
[]
no_license
#Import libraries import tweepy from textblob import TextBlob import pandas as pd import numpy as np import re import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') #Function that cleans tweets def cleanTwt(twt): twt=re.sub("#","",twt) #removes all hash from hashtags twt=re.sub('\\n','',twt) #removes \n from tweets twt=re.sub('https?:\/\/\S+','',twt) #removes hyperlinks from tweets twt=re.sub('@','',twt) #removes all @ from tweets return twt #Function to get Subjectivity def getSubjectivity(twt): return TextBlob(twt).sentiment.subjectivity #Function to get Polarity def getPolarity(twt): return TextBlob(twt).sentiment.polarity #function to get text sentiment def getSentiment(score): if score<0: return 'Negative' elif score==0: return 'Neutral' else: return 'Positive' if __name__=="__main__": login=pd.read_csv("login.csv") #The api credentials were saved in a file named 'login.csv' which had four keys, api key, api consumer secret, access token key, acccess token secret #format of login.csv file: column names are key names and entries are the key values #Get twitter API credentials from login file consumerKey=''.join(login['apikey']) consumerSecret=''.join(login['apisecretkey']) accessToken=''.join(login['accesstoken']) accessTokenSecret=''.join(login['accesstokensecret']) #Create authentication object authenticate= tweepy.OAuthHandler(consumerKey,consumerSecret) #Set access token and access token secret authenticate.set_access_token(accessToken,accessTokenSecret) #Create API object api = tweepy.API(authenticate, wait_on_rate_limit=True) #Gather 2000 tweets about bitcoin and filter out any retweets search_term = "#Dogecoin -filter:retweets" #Create a cursor object tweets= tweepy.Cursor(api.search, q=search_term, lang='en', since='2021-05-07',tweet_mode='extended').items(2000) #Store tweets in variable and get full texts all_tweets = [tweet.full_text for tweet in tweets] #Create a dataframe with the column name "Tweets" to store tweets df = pd.DataFrame(all_tweets, columns=['Tweets']) print("Tweets after pulling from twitter") #First 5 rows of data print(df.head()) print() #to show dimensions df.shape #Clean tweets df['Cleaned_tweets']=df['Tweets'].apply(cleanTwt) print("\nAfter cleaning\n") #show first 5 rows print(df.head(5)) #create two new columns to store 'subjectivity' an 'polarity' by calling above created functions df['Subjectivity']=df['Cleaned_tweets'].apply(getSubjectivity) df['Polarity']=df['Cleaned_tweets'].apply(getPolarity) print("Subjectivity and polarity added\n") #show first 5 rows df.head(5) #create column to store text sentiment df['Sentiment']=df['Polarity'].apply(getSentiment) print("Sentiment column added\n") #show first 5 rows print(df.head()) # create a scatter plot to show the subjectivity and the polarity plt.figure(figsize=(8,6)) for i in range(df.shape[0]): plt.scatter(df["Polarity"][i], df["Subjectivity"][i], color="Purple") plt.title("Sentiment Analysis Scatter Plot") plt.xlabel('Polarity') plt.ylabel('Subjectivity') plt.show() #create a bar plot to show count of positive, neutral and negative tweets df['Sentiment'].value_counts().plot(kind='bar') plt.title('Sentiment Analysis Bar Plot') plt.xlabel('Sentiment') plt.ylabel('Count') plt.show()
true
97f045c216b79fefd9248bb7797772a0ed4f2232
Python
astsu-dev/exapi1
/exapi/channel_creators/binance/spot/market_data/interface.py
UTF-8
2,186
2.625
3
[ "MIT" ]
permissive
from typing import Protocol, Optional class IBinanceSpotMarketDataChannelCreator(Protocol): """Binance spot market data socket channel creator.""" def create_agg_trades_channel(self, symbol: str) -> str: """Creates agg trade channel. Args: symbol (str) Returns: str """ def create_trades_channel(self, symbol: str) -> str: """Creates trade channel. Args: symbol (str) Returns: str """ def create_candles_channel(self, symbol: str) -> str: """Creates candles channel. Args: symbol (str) Returns: str """ def create_mini_ticker_channel(self, symbol: str) -> str: """Creates symbol mini ticker channel. Args: symbol (str) Returns: str """ def create_mini_tickers_channel(self) -> str: """Creates all symbol mini tickers channel. Returns: str """ def create_ticker_channel(self, symbol: str) -> str: """Creates individual symbol ticker channel. Args: symbol (str) Returns: str """ def create_tickers_channel(self) -> str: """Creates all symbol tickers channel. Args: symbol (str) Returns: str """ def create_book_ticker_channel(self, symbol: str) -> str: """Creates symbol book ticker channel. Args: symbol (str) Returns: str """ def create_book_tickers_channel(self) -> str: """Creates all symbol book tickers channel. Returns: str """ def create_order_book_channel(self, symbol: str, levels: Optional[int] = None, update_speed: Optional[int] = None) -> str: """Creates depth channel. Args: symbol (str) levels (Optional[int]): count of bid and ask orders. update_speed (Optional[int]) Returns: str """
true
e92a58a55a7229f0e0ac5cb64ca8613aba8a8773
Python
Sheepp96/ngoquangtruong-fundamentals-c4e17
/Session4/while_ex.py
UTF-8
141
3.84375
4
[]
no_license
n = 0 while n < 3: #sau while là kiểu boolean - true / false #tương đương for i in range(3): print("Hi") n += 1
true
8ebf3969c1ef9a5d48df719b81b5f0f30c3f4ec6
Python
metulburr/random
/pygame_/resizable_surface.py
UTF-8
3,399
3.046875
3
[]
no_license
import pygame as pg import random class Ball: def __init__(self, screen_rect): self.screen_rect = screen_rect self.image = pg.Surface([50,50]).convert() self.image.fill((255,0,0)) self.rect = self.image.get_rect() self.speed_init = 10 self.speed = self.speed_init self.set_ball() def set_ball(self): self.vel = [random.choice([-1,1]), 0] self.rect.center = self.screen_rect.center self.true_pos = list(self.rect.center) self.speed = self.speed_init def move(self): if self.rect.left <= 0: self.vel[0] *= -1 elif self.rect.right >= self.screen_rect.right: self.vel[0] *= -1 self.true_pos[0] += self.vel[0] * self.speed #self.true_pos[1] += self.vel[1] * self.speed self.rect.center = self.true_pos def update(self, screen_rect): self.screen_rect = screen_rect self.move() def draw(self, surf): surf.blit(self.image, self.rect) class Control: def __init__(self): self.resolutions = [(300,200), (600,400),(800, 600), (928, 696)] self.render_size = self.resolutions[-1] #largest self.screen = pg.display.set_mode(self.resolutions[-1], pg.RESIZABLE) self.screen_rect = self.screen.get_rect() self.render_surf = pg.Surface(self.render_size).convert() #pg.event.clear(pg.VIDEORESIZE) self.clock = pg.time.Clock() self.done = False self.fps = 60 self.ball = Ball(self.screen_rect) def event_loop(self): for event in pg.event.get(): if event.type == pg.QUIT: self.done = True elif event.type == pg.VIDEORESIZE: self.on_resize(event.size) #pg.event.clear(pg.VIDEORESIZE) def on_resize(self, size): if size == self.screen_rect.size: return res_index = self.resolutions.index(self.screen_rect.size) adjust = 1 if size > self.screen_rect.size else -1 if 0 <= res_index+adjust < len(self.resolutions): new_size = self.resolutions[res_index+adjust] else: new_size = self.screen_rect.size self.screen = pg.display.set_mode(new_size, pg.RESIZABLE) self.screen_rect.size = new_size self.set_scale() def set_scale(self): w_ratio = self.render_size[0]/float(self.screen_rect.w) h_ratio = self.render_size[1]/float(self.screen_rect.h) self.scale = (w_ratio, h_ratio) def update(self): self.ball.update(self.render_surf.get_rect()) #give obj updated screen size def render(self): if self.render_size != self.screen_rect.size: scale_args = (self.render_surf, self.screen_rect.size, self.screen) pg.transform.smoothscale(*scale_args) else: self.screen.blit(self.render_surf, (0, 0)) self.render_surf.fill((255,255,255)) self.ball.draw(self.render_surf) def game_loop(self): while not self.done: self.event_loop() self.update() self.render() pg.display.update() self.clock.tick(self.fps) pg.init() app = Control() app.game_loop() pg.quit()
true
917530577706bb6c58f0c159fc8561ac4e0dbb57
Python
nashid/magicomplete
/oneshot.py
UTF-8
11,423
2.578125
3
[]
no_license
# One-shot learning algorithms. import random import numpy as np import torch import torch.nn.functional as F from util import batched, Progress from user import User from data import augment class OneShotLearner: def name(self): raise NotImplemented() def learn(self, example): pass def test(self, examples): raise NotImplemented() class OneShotEvaluator: def name(self): raise NotImplemented() def evaluate(self, learner, dataset, save_examples=False): raise NotImplemented() class LearnEvalIterate(OneShotEvaluator): def __init__(self, batch_size=64): self.batch_size = batch_size def name(self): return "LearnEvalIterate" def evaluate(self, learner, dataset, save_examples=False): u = User(conventions_queue=[(row['string'], row['abbreviation']) for row in dataset]) accuracies = [] accuracies_positive, accuracies_negative = [], [] examples = [] p = Progress(len(dataset)) for row in dataset: u.add_next_convention() training_example = row['positive_examples'][0] learner.learn((u.encode(training_example), training_example)) test_positive = list(set(s for s in row['positive_examples'] if s != training_example)) test_negative = list(set(row['negative_examples'])) correct_positive = [] for batch in batched(test_positive, self.batch_size): encoded_batch = [u.encode(s) for s in batch] learner_prediction = learner.test(encoded_batch) correct_positive.extend([int(p == s) for p, s in zip(batch, learner_prediction)]) if save_examples: examples.extend([{'long': l, 'short': s, 'prediction': p} for l, s, p in zip(batch, encoded_batch, learner_prediction)]) correct_negative = [] for batch in batched(test_negative, self.batch_size): encoded_batch = [u.encode(s) for s in batch] learner_prediction = learner.test(encoded_batch) correct_negative.extend([int(p == s) for p, s in zip(batch, learner_prediction)]) if save_examples: examples.extend([{'long': l, 'short': s, 'prediction': p} for l, s, p in zip(batch, encoded_batch, learner_prediction)]) accuracies.append(np.mean(correct_positive + correct_negative)) accuracies_positive.append(np.mean(correct_positive)) accuracies_negative.append(np.mean(correct_negative)) return { 'accuracy': np.mean(accuracies), 'accuracy_positive': np.mean(accuracies_positive), 'accuracy_negative': np.mean(accuracies_negative), 'per_example_accuracy': accuracies, 'per_example_accuracy_positive': accuracies_positive, 'per_example_accuracy_negative': accuracies_negative, 'examples': examples, } class LearnAllThenEval(OneShotEvaluator): def __init__(self, batch_size=64): self.batch_size = batch_size def name(self): return "LearnAllThenEval" def evaluate(self, learner, dataset, save_examples=False): u = User(conventions_queue=[(row['string'], row['abbreviation']) for row in dataset]) accuracies = [] accuracies_positive, accuracies_negative = [], [] train = [] examples = [] p = Progress(len(dataset)) for row in dataset: u.add_next_convention() training_example = row['positive_examples'][0] train.append(training_example) learner.learn((u.encode(training_example), training_example)) for row, training_example in zip(dataset, train): test_positive = list(set(s for s in row['positive_examples'] if s != training_example)) test_negative = list(set(row['negative_examples'])) correct_positive = [] for batch in batched(test_positive, self.batch_size): encoded_batch = [u.encode(s) for s in batch] learner_prediction = learner.test(encoded_batch) correct_positive.extend([int(p == s) for p, s in zip(batch, learner_prediction)]) if save_examples: examples.extend([{'long': l, 'short': s, 'prediction': p} for l, s, p in zip(batch, encoded_batch, learner_prediction)]) correct_negative = [] for batch in batched(test_negative, self.batch_size): encoded_batch = [u.encode(s) for s in batch] learner_prediction = learner.test(encoded_batch) correct_negative.extend([int(p == s) for p, s in zip(batch, learner_prediction)]) if save_examples: examples.extend([{'long': l, 'short': s, 'prediction': p} for l, s, p in zip(batch, encoded_batch, learner_prediction)]) accuracies.append(np.mean(correct_positive + correct_negative)) accuracies_positive.append(np.mean(correct_positive)) accuracies_negative.append(np.mean(correct_negative)) return { 'accuracy': np.mean(accuracies), 'accuracy_positive': np.mean(accuracies_positive), 'accuracy_negative': np.mean(accuracies_negative), 'per_example_accuracy': accuracies, 'per_example_accuracy_positive': accuracies_positive, 'per_example_accuracy_negative': accuracies_negative, 'examples': examples, } class PriorBaseline(OneShotLearner): def __init__(self, prior_decoder, alphabet, parameters={}): self.decoder = prior_decoder.clone(alphabet) self.alphabet = alphabet self.decoder.eval() self.batch_size = parameters.get('batch_size') or 64 def name(self): return 'PriorBaseline' def learn(self, example): pass def test(self, examples): results = [] for batch in batched(examples, self.batch_size): results.extend(self.decoder(batch, self.alphabet)) return results class KGradientSteps(OneShotLearner): def __init__(self, prior_decoder, alphabet, parameters={}): self.decoder = prior_decoder.clone(alphabet) self.alphabet = alphabet self.decoder.eval() self.batch_size = parameters.get('batch_size') or 64 self.learning_rate = parameters.get('learning_rate') or 1e-2 self.k = parameters.get('k') or 1 self.optimizer = torch.optim.SGD(self.decoder.parameters(), lr=self.learning_rate) def name(self): return 'KGradientSteps(K={}, lr={})'.format(self.k, self.learning_rate) def learn(self, example): self.decoder.train() short, long = example for i in range(self.k): self.optimizer.zero_grad() loss = self.decoder([short], self.alphabet, [long]).mean() loss.backward() self.optimizer.step() def test(self, examples): self.decoder.eval() results = [] for batch in batched(examples, self.batch_size): results.extend(self.decoder(batch, self.alphabet)) return results def infer_abbreviation(short, long): # FIXME: This doesn't really disambiguate between all the possible abbreviations... # That doesn't seem possible to do deterministically with a single example. for prefix in range(len(short)): if short[prefix] != long[prefix]: break prefix += 1 for suffix in range(len(short)): if short[-1 - suffix] != long[-1 - suffix]: break suffix += 1 return (short[prefix:-suffix], long[prefix:-suffix]) class StepUntilCorrect(OneShotLearner): def __init__(self, prior_decoder, alphabet, parameters={}, augmentation_dataset=[]): self.decoder = prior_decoder.clone(alphabet) self.alphabet = alphabet self.batch_size = parameters.get('batch_size') or 64 self.learning_rate = parameters.get('learning_rate') or 1e-2 self.max_steps = parameters.get('max_steps') or 8 self.extra_steps = parameters.get('extra_steps') or 0 self.data_augmentation = parameters.get('data_augmentation') or None self.rehearsal_examples = parameters.get('rehearsal_examples') or 0 self.augmentation_dataset = augmentation_dataset self.optimizer = torch.optim.SGD(self.decoder.parameters(), lr=self.learning_rate) self.past_examples = [] def name(self): return ('StepUntilCorrect(lr={}, max={}, extra={}, data_augmentation={}, reheasal_examples={})' .format(self.learning_rate, self.max_steps, self.extra_steps, self.data_augmentation or 'no', self.rehearsal_examples)) def fetch_augmentation_examples(self, short, long): ab_short, ab_long = infer_abbreviation(short, long) for row in self.augmentation_dataset: if long in row['positive_examples']: return ([(s.replace(row['string'], row['abbreviation']), s) for s in row['positive_examples_train']] + [(s, s) for s in row['negative_examples_train']]) def trim_examples(self, batch): return [batch[0]] + random.sample(batch[1:], min(len(batch) - 1, self.batch_size - 1)) def learn(self, example): short, long = example if self.data_augmentation is None: batch = [example] elif self.data_augmentation in ('ast_only_short', 'ast_all'): batch = augment(short, long, only_shortened=(self.data_augmentation == 'only_short')) elif self.data_augmentation == 'fetch_examples': batch = [example] + self.fetch_augmentation_examples(short, long) correct_since = self.max_steps for i in range(self.max_steps): self.decoder.eval() prediction = self.decoder([short], self.alphabet)[0] if prediction == long: correct_since = i if i >= correct_since + self.extra_steps: break rehearsal_batch = random.sample(self.past_examples, min(len(self.past_examples), self.rehearsal_examples)) rehearsal_short, rehearsal_long = (zip(*rehearsal_batch) if len(rehearsal_batch) else ((), ())) self.decoder.train() self.optimizer.zero_grad() batch_short, batch_long = zip(*self.trim_examples(batch)) loss = self.decoder(batch_short + rehearsal_short, self.alphabet, batch_long + rehearsal_long).mean() loss.backward() self.optimizer.step() self.past_examples.extend(batch) def test(self, examples): self.decoder.eval() results = [] for batch in batched(examples, self.batch_size): results.extend(self.decoder(batch, self.alphabet)) return results
true
31e94203b38d4983d907364176e7f3ed256b5166
Python
mukeshkrishna/datastructures
/merge_two_sorted_list.py
UTF-8
1,697
4.4375
4
[]
no_license
"""Problem Statement # Implement a function that merges two sorted lists of m and n elements respectively, into another sorted list. Name it merge_lists(lst1, lst2). Input # Two sorted lists. Output # A merged and sorted list consisting of all elements of both input lists. Sample Input # list1 = [1,3,4,5] list2 = [2,6,7,8] Sample Output # arr = [1,2,3,4,5,6,7,8] """ def merge_lists(list1,list2): i = 0 j = 0 n = len(list1) m = len(list2) tempList = list() while(i<n or j<m): if i == n : tempList.append(list2[j]) j = j + 1 elif j == m : tempList.append(list1[i]) i = i + 1 elif(list1[i]<list2[j]): tempList.append(list1[i]) i = i + 1 elif(list2[j]<list1[i]): tempList.append(list2[j]) j = j + 1 else: tempList.append(list1[i]) i = i + 1 j = j + 1 return tempList def merge_lists2(list1,list2): i = 0 j = 0 n = len(list1) m = len(list2) tempList = list() while(i<n and j<m): if(list1[i]<list2[j]): tempList.append(list1[i]) i = i + 1 elif(list2[j]<list1[i]): tempList.append(list2[j]) j = j + 1 if(i<n): tempList.extend(list1[i:]) elif(j<m): tempList.extend(list2[j:]) return tempList def merge_lists3(list1,list2): list1.extend(list2) print(list1) if(__name__ == "__main__"): list1 = [1,3,4,5] list2 = [2,6,7,8] print(merge_lists(list1,list2)) print(merge_lists2(list1,list2)) merge_lists3(list1,list2)
true
7349268d79c050a6a7b7a33368195e810bdc483a
Python
kimha1030/AirBnB_clone_v2
/web_flask/9-states.py
UTF-8
967
2.828125
3
[]
no_license
#!/usr/bin/python3 """Task 6""" from flask import Flask from flask import render_template from models import storage from models.state import State from models.city import City app = Flask(__name__) @app.route('/states', strict_slashes=False) def states(): """Function that return states""" states = storage.all(State).values() return render_template('7-states_list.html', states=states) @app.route('/states/<id>', strict_slashes=False) def list_states(id): """Function that return states according id""" states = storage.all(State).values() ban = False name_st = "" for state in states: if id in state.id: ban = True name_st = state break else: ban = False return render_template('9-states.html', name_st=name_st, ban=ban) @app.teardown_appcontext def close_session(db): storage.close() if __name__ == "__main__": app.run(host='0.0.0.0', port=5000)
true
b3d913e4fcba86cbd07f96a39ce7cf53fbcd9aeb
Python
microsoft/SparseSC
/src/SparseSC/utils/misc.py
UTF-8
3,069
2.71875
3
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
# Allow capturing output # Modified (to not capture stderr too) from https://stackoverflow.com/questions/5136611/ import contextlib import sys from .print_progress import it_progressbar, it_progressmsg @contextlib.contextmanager def capture(): STDOUT = sys.stdout try: sys.stdout = DummyFile() yield finally: sys.stdout = STDOUT class DummyFile(object): def write(self, x): pass @contextlib.contextmanager def capture_all(): STDOUT, STDERR = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = DummyFile(), DummyFile() yield finally: sys.stdout, sys.stderr = STDOUT, STDERR def par_map(part_fn, it, F, loop_verbose, n_multi=0, header="LOOP"): if n_multi>0: from multiprocessing import Pool with Pool(n_multi) as p: #p.map evals the it so can't use it_progressbar(it) if loop_verbose==1: rets = [] print(header + ":") for ret in it_progressbar(p.imap(part_fn, it), count=F): rets.append(ret) elif loop_verbose==2: rets = [] for ret in it_progressmsg(p.imap(part_fn, it), prefix=header, count=F): rets.append(ret) else: rets = p.map(part_fn, it) else: if loop_verbose==1: print(header + ":") it = it_progressbar(it, count=F) elif loop_verbose==2: it = it_progressmsg(it, prefix=header, count=F) rets = list(map(part_fn, it)) return rets class PreDemeanScaler: """ Units are defined by rows and cols are "pre" and "post" separated. Demeans each row by the "pre" mean. """ # maybe fit should just take Y and T0 (in init())? # Try in sklearn.pipeline with fit() for that and predict (on default Y_post) # might want wrappers around fit to make that work fine with pipeline (given its standard arguments). # maybe call the vars X rather than Y? def __init__(self): self.means = None # self.T0 = T0 def fit(self, Y): """ Ex. fit(Y.iloc[:,0:T0]) """ import numpy as np self.means = np.mean(Y, axis=1) def transform(self, Y): return (Y.T - self.means).T def inverse_transform(self, Y): return (Y.T + self.means).T def _ensure_good_donor_pool(custom_donor_pool, control_units): N0 = custom_donor_pool.shape[1] custom_donor_pool_c = custom_donor_pool[control_units, :] for i in range(N0): custom_donor_pool_c[i, i] = False custom_donor_pool[control_units, :] = custom_donor_pool_c return custom_donor_pool def _get_fit_units(model_type, control_units, treated_units, N): if model_type == "retrospective": return control_units elif model_type == "prospective": return range(N) elif model_type == "prospective-restricted:": return treated_units # model_type=="full": return range(N) # same as control_units
true
c922c9040e1b760db28a07a981f21c40e5155588
Python
osmaralg/mywebpage
/sampleapp/ML_scripts/predict_bankrrupcy/Final_project.py
UTF-8
5,569
2.5625
3
[]
no_license
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split import numpy as np from sklearn.impute import SimpleImputer from sklearn.metrics import f1_score from sklearn.utils import resample from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score from style_functions import * #credits https://towardsdatascience.com/predicting-bankruptcy-f4611afe8d2c d =pd.read_csv("bankruptcy.csv") #d = d.iloc[:, :-1] cols = pd.read_csv("ColumnNames.csv") #cols = cols.iloc[:, :] #d.columns = cols.columns label_column = "class" d[label_column].replace("b'0'", 0b0, inplace=True) d[label_column].replace("b'1'", 0b1, inplace=True) d.replace("?", np.nan, inplace=True) d.replace(r'', np.nan, inplace=True) d = d.replace(r'^\s+$', np.nan, regex=True) #d = (d.drop(cols.columns, axis=1).join(d.apply(pd.to_numeric, errors='coerce'))) d = d.astype(float) feature_columns = [c for c in d.columns if c != label_column] X = d[feature_columns].values y = d[label_column].values ''' from scipy import stats z = (d - d.mean())/d.std(ddof=0) print(z) z_row = np.nanmax(z, axis=1) X = X[z_row < 5] y = y[z_row < 5] ''' print("", X.shape) #Pie chart x = d['class'].value_counts() labels = x sizes = x explode = (0, 0.2) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') plt.title("Pie chart showing imbalance in Dataset. \nOrange: Bankrupt , Blue: Not Bankrupt\n") print(d.describe().T.style.render()) #d.style.apply(highlight_max, color='darkorange', axis=None) describe_table = d.describe().T.style.apply(highlight_max, color='red', axis=0).render() save_str_to_file(describe_table, 'machine_code.html') # Showing only partial data cmap = cmap=sns.diverging_palette(5, 250, as_cmap=True) corr_map_str = d.corr()\ .style.background_gradient(cmap, axis=None)\ .set_properties(**{'max-width': '80px', 'font-size': '1pt'})\ .set_caption("Hover to magnify")\ .set_precision(2)\ .set_table_styles(magnify()).render() save_str_to_file(corr_map_str, 'C:/Users/osmaralg/Desktop/mycompany/deploying-django-master/sampledeploy/sampleapp/templates/machine_corr_table.html') imp = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imp.fit(X) X = imp.transform(X) from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFromModel print("Original feature size") print("X.shape", X.shape) select_features = 1 if select_features: lsvc = LinearSVC(penalty="l1", dual=False, C=0.0025, max_iter=10000).fit(X, y) model = SelectFromModel(lsvc, prefit=True) X = model.transform(X) # select only new features print("Feature size after regularization") print("X.shape", X.shape) names = ["Logistic Regession with Lasso", "Logistic Regression with Ridge", "Logistic Regression Elastic Net", "KNeighbors Classifier", "Decision Tree", "AdaBoost"] C = 0.7 classifiers = [ LogisticRegression(multi_class='ovr', max_iter=5000000, solver='saga'), LogisticRegression(C=C, penalty='l2', tol=0.01, solver='saga'), LogisticRegression(C=C, penalty='elasticnet', solver='saga', l1_ratio=0.5, tol=0.01), KNeighborsClassifier(10), DecisionTreeClassifier(max_depth=200, class_weight='balanced'), AdaBoostClassifier()] scores = [] #data split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) clf = LogisticRegression().fit(X_train,y_train) y_pred = clf.predict(X_test) # Model Evaluation metrics from sklearn.metrics import accuracy_score,recall_score,precision_score,f1_score print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred))) print('Precision Score : ' + str(precision_score(y_test,y_pred))) print('Recall Score : ' + str(recall_score(y_test,y_pred))) print('F1 Score : ' + str(f1_score(y_test,y_pred))) #Logistic Regression Classifier Confusion matrix from sklearn.metrics import confusion_matrix print('Confusion Matrix : \n' + str(confusion_matrix(y_test,y_pred))) from sklearn.model_selection import GridSearchCV clf = LogisticRegression(max_iter=500000, solver='saga') grid_values = {'penalty': ['l1', 'l2'], 'C':[0.01,.09,1,5,9,10,11,25]} grid_clf_acc = GridSearchCV(clf, param_grid = grid_values,scoring = 'recall') grid_clf_acc.fit(X_train, y_train) #Predict values based on new parameters y_pred_acc = grid_clf_acc.predict(X_test) # New Model Evaluation metrics print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred_acc))) print('Precision Score : ' + str(precision_score(y_test,y_pred_acc))) print('Recall Score : ' + str(recall_score(y_test,y_pred_acc))) print('F1 Score : ' + str(f1_score(y_test,y_pred_acc))) #Logistic Regression (Grid Search) Confusion matrix confusion_matrix(y_test,y_pred_acc) model = make_pipeline( StandardScaler(), AdaBoostClassifier() ).fit(X,y)
true
3abf8d7f27d317c01b1bb5cef4190d15c5993453
Python
IgnacioPardo/PythonGalore
/scripts/style-transfer.py
UTF-8
1,530
2.875
3
[ "MIT" ]
permissive
import tensorflow as tf import numpy as np import tensorflow_hub as hub from PIL import Image from argparse import ArgumentParser hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/1') def style_transfer(content_image: np.ndarray, style_image: np.ndarray, *, resize: bool = True) -> np.ndarray: content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255 style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255 if resize: style_image = tf.image.resize(style_image, (256, 256)) result = hub_module(tf.constant(content_image), tf.constant(style_image))[0] result = result * 255 result = np.array(result, dtype=np.uint8) return result[0] if __name__ == "__main__": parser = ArgumentParser(description="Tool that crops an image to a target size") parser.add_argument("input", type=str, help="Input image's filename") parser.add_argument("--style", "-s", type=str, help="Style image's filename") parser.add_argument("--output", '-o', type=str, default="output.jpg", help="Output image's filename") parser.add_argument("--no-resize", help="Disable style image resize", action="store_true", dest="no_resize") args = parser.parse_args() img = np.array(Image.open(args.input).convert("RGB")) style = np.array(Image.open(args.style).convert("RGB")) result = style_transfer(img, style, resize=not args.no_resize) Image.fromarray(result).save(args.output)
true
327e1616ddac8f982f25e04cce486c77830a36c9
Python
felipehv/iic2233
/Actividades/AC14/test_ac14.py
UTF-8
2,097
2.8125
3
[]
no_license
from main import * import pytest class TestSistema(): def setup_method(cls, method): cls.base = Base() cls.ramos = list() cls.alumno = Alumno(cls.base, 0, "Felipe") cls.alumno.tomar_ramo("ICS3902") # 30 creditos cls.alumno.tomar_ramo("ICT2213") # 10 creditos quedan 10 def test_vacantes(cls): cls.base.db[0].vacantes = 0 sigla = cls.base.db[0].sigla assert not cls.base.inscribir(sigla, cls.alumno) def test_vacantes2(cls): cls.base.db[0].vacantes = 19 sigla = cls.base.db[0].sigla assert cls.base.inscribir(sigla, cls.alumno) def test_tomar_repetido(cls): assert not cls.alumno.tomar_ramo("ICT2213") def test_tomar_exceso_creditos(cls): assert not cls.alumno.tomar_ramo("ICT3442") # False por creditos def test_tomar_repeticion_creditos(cls): # Falla por repeticion y creditos assert not cls.alumno.tomar_ramo("ICS3902") def test_tomar_true(cls): assert cls.alumno.tomar_ramo("ICS2523") # Pasa def test_botar_ramo_no_tomado(cls): # False porque no esta tomado assert not cls.alumno.botar_ramo("ICT3352") def test_botar_ramo_tomado(cls): # Pasa porque el ramo esta tomado assert cls.alumno.botar_ramo("ICS3902") def test_botar_ramo_botado(cls): cls.alumno.botar_ramo("ICS3902") assert not cls.alumno.botar_ramo("ICS3902") # Ya se boto el ramo def test_creditos(cls): cls.alumno.botar_ramo("ICS3902") for ramodb in cls.base.db: if ramodb.sigla == "ICS3902": ramo = ramodb break assert ramo.vacantes == 30 def test_repeticion_repetido(cls): cls.alumno.agregar_ramo("ICS3902") # Forzamos la toma de un ramo assert not cls.alumno.chequear_repeticion( "ICS3902") # EL ramo esta dos veces ya def test_repeticion_no_repetido(cls): assert cls.alumno.chequear_repeticion( "IIC2233") # El ramo no esta if __name__ == "__main__": pass
true
96f81075b0694e5033e28e4066cf966cd4225881
Python
cs20-1/cursor-MasonShenner
/Masons_curser/Masons_curser.pyde
UTF-8
278
3.078125
3
[]
no_license
# Mason Shenner # COmputar science # October 2 # Circle with cross def setup(): size(500,500) def draw(): fill(255,0,0) ellipse(mouseX + 250, mouseY + 250, 400, 400) fill(0,0,0) rect(mouseX + 225, mouseY + 50, 50, 400) rect(mouseX + 50, mouseY + 225, 400, 50)
true
538775e59fae3ed7d10996580b7e229c881ae0b2
Python
DeanFujimoto/python
/test.py
UTF-8
1,750
2.671875
3
[]
no_license
from scipy.io import loadmat import numpy as num import math data = loadmat('16_state.mat') data1 = loadmat('exo0.5_endo1.0023_h1.mat') rows, cols = (16, 16) mut = [[0 for i in range(cols)] for j in range(rows)] state = data.get('STATE') eqADD = data1.get('eqADD') QADD = data1.get('QADD') eqPROD = data1.get('eqPROD') def pairwise(num1, num2, s1, s2): su = 0 for i in range(0, 65536): if state[i, num1] == s1 and state[i, num2] == s2: su += eqADD[i] return su pairs = num.zeros((16,16,4)) for row in range (0,16): for col in range (row,16): pairs[row,col,0] =pairwise(row, col, 0,0) pairs[row,col, 1] =pairwise(row, col, 0,1) pairs[row,col, 2] =pairwise(row, col, 1,0) pairs[row,col, 3] =pairwise(row, col, 1,1) ##print(pairs[row,col,0]) ##print(pairs[row,col,1]) ##print(pairs[row,col,2]) ##print(pairs[row,col,3]) def margins(num, s): su = 0 for i in range(0, 65536): if state[i, num] == s: su += eqADD[i] return su marginARR=[] for i in range (0,16): marginARR.append(margins(i,0)) print(marginARR) for row in range(0,16): for col in range(row,16): mutsum = 0 if(row != col): mutsum += pairs[row][col][0] * num.log2((pairs[row][col][0])/(marginARR[row]*marginARR[col])) mutsum += pairs[row][col][1] * num.log2((pairs[row][col][1])/(marginARR[row]*(1-marginARR[col]))) mutsum += pairs[row][col][2] * num.log2((pairs[row][col][2])/((1-marginARR[row])*marginARR[col])) mutsum += pairs[row][col][3] * num.log2((pairs[row][col][3])/((1-marginARR[row])*(1-marginARR[col]))) mut[row][col] = mutsum ##print(mut)
true
28eddf2ac9a45555fc8fafd356e8211e7b8f0918
Python
HiAwesome/python-algorithm
/c05/p185.py
UTF-8
1,048
4.0625
4
[ "Apache-2.0" ]
permissive
def quicksort(alist): quicksortHelper(alist, 0, len(alist) - 1) def quicksortHelper(alist, first, last): if first < last: pivot_value = alist[first] leftmark = first + 1 rightmark = last done = False while not done: while leftmark <= rightmark and alist[leftmark] <= pivot_value: leftmark += 1 while leftmark <= rightmark and alist[rightmark] >= pivot_value: rightmark -= 1 if rightmark < leftmark: done = True else: alist[leftmark], alist[rightmark] = alist[rightmark], alist[leftmark] alist[first], alist[rightmark] = alist[rightmark], alist[first] quicksortHelper(alist, first, rightmark - 1) quicksortHelper(alist, rightmark + 1, last) if __name__ == '__main__': alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] print(alist) quicksort(alist) print(alist) """ [54, 26, 93, 17, 77, 31, 44, 55, 20] [17, 20, 26, 31, 44, 54, 55, 77, 93] """
true
565c21c9784beb95aea35945a4aa994812ffe0e7
Python
JakeStubbs4/MTHE-493
/eigenfaces.py
UTF-8
5,689
3.125
3
[]
no_license
# MTHE-493 Facial Recognition Project # EigenFaces Implementation # Prepared by Jake Stubbs from matplotlib import pyplot as plt import numpy as np import os from utilities import euclideanDistance, importDataSet, FaceImage, EigenPair, KNearestNeighbors # Computes the vector representation of the average face of all of the faces in the provided dataset. def averageVector(face_images): face_images_arrays = [] for image in face_images: face_images_arrays.append(image.image_array) return np.mean(face_images_arrays, axis=0).reshape(-1, 1) # Computes the standard deviation of each face image and returns an array of deviation vectors. def standardDeviation(face_images, average_face): face_deviations = [] for face in face_images: face_deviations.append(face.image_vector - average_face) return face_deviations # Computes the eigenvectors of the provided empirical covariance matrix A. def covarianceEigenvectors(face_deviations, A): L = np.dot(np.transpose(A), A) return np.linalg.eig(L) # Converts eigen vector to face images to be displayed. def getEigenFace(eigen_vector, A): eigen_face = np.dot(A, eigen_vector).reshape(150, 150) return eigen_face # Projects newly introduced face image onto predetermined low dimensional image space. def projectImage(face_image, eigen_pairs, average_face, A): projection = [] for pair in eigen_pairs: omega_k = np.dot(np.dot(A, pair.eigen_vector), face_image - average_face) projection.append(omega_k) return projection # Classify unidentified face image projection based on the projections of the identified K nearest neighbors. def classifyImage(corresponding_faces, new_face_projection): identity_dictionary = dict() for faceImage in corresponding_faces: if identity_dictionary.get(faceImage.identity) == None: identity_dictionary[faceImage.identity] = faceImage else: identity_dictionary[faceImage.identity].OMEGA_k = np.mean([identity_dictionary[faceImage.identity].OMEGA_k, faceImage.OMEGA_k], axis=0) updated_results = [] for key in identity_dictionary: dist = euclideanDistance(new_face_projection, identity_dictionary[key].OMEGA_k) updated_results.append((identity_dictionary[key], dist)) updated_results.sort(key=lambda tup: tup[1]) return updated_results[0][0] def identify(face_images, ms_eigen_pairs, OPTIMAL_K, average_face, A, unidentified_image=None): if (unidentified_image == None): # Introduce new face and classify new_face_file = input("Enter the filename of an image to be classified: ") new_face = FaceImage(new_face_file, None) else: new_face = unidentified_image new_face_projection = projectImage(new_face.image_vector, ms_eigen_pairs, average_face, A) corresponding_faces = KNearestNeighbors(face_images, new_face_projection, OPTIMAL_K) for face in corresponding_faces: print(face.identity) corresponding_face = classifyImage(corresponding_faces, new_face_projection) if (unidentified_image == None): plt.figure(2) plt.title("Unidentified") new_face.displayImage() plt.figure(3) plt.title("Possible Match") corresponding_face.displayImage() plt.show() else: print(f"Corresponding Face: {corresponding_face.identity}") print(f"Unidentified Face: {new_face.identity}") if (corresponding_face.identity == new_face.identity): return 1 else: return 0 def main(): '''IMPORT DATA SET AND TRAIN''' # Import training data set. face_images = importDataSet() # Compute the average of all of the imported face images. average_face = averageVector(face_images) # Compute the deviation of all of the face images. face_deviations = standardDeviation(face_images, average_face) # Calculate A matrix, impirical covariance matrix is given by C = A*AT A = np.concatenate(face_deviations, axis=1) # Calculate eigen vectors and values from the impirical covariance matrix. eigen_values, eigen_vectors = covarianceEigenvectors(face_deviations, A) # Pair the eigenvectors and eigenvalues then order pairs by decreasing eigenvalue magnitude. eigen_pairs = [] for i in range(len(eigen_values)): eigen_pairs.append(EigenPair(eigen_values[i], eigen_vectors[i])) eigen_pairs.sort(key=lambda x: x.magnitude, reverse=True) # Optimal dimension for accuracy of recognition. OPTIMAL_DIM = 7 # Optimal nearest neighbors to consider for accuracy of recognition. OPTIMAL_K = 3 # Choose a subset of eigenpairs corresponding to DIM largest eigenvalues. ms_eigen_pairs = [] for k in range(OPTIMAL_DIM): ms_eigen_pairs.append(eigen_pairs[k]) error = 0 for k in range(OPTIMAL_DIM + 1, len(eigen_pairs) - 1): error += eigen_pairs[k].magnitude print(f"Residual error of eigenfaces is: {error}") # Classify the given training dataset based on the chosen subspace. for face in face_images: face.OMEGA_k = projectImage(face.image_vector, ms_eigen_pairs, average_face, A) print(face.OMEGA_k) unidentified_images = importDataSet(os.getcwd() + "/Face_Images/unidentified", True) performance_vector = [] for unidentified_image in unidentified_images: performance_vector.append(identify(face_images, ms_eigen_pairs, OPTIMAL_K, average_face, A, unidentified_image)) print(f"The resulting algorithm achieves {(sum(performance_vector)/len(performance_vector))*100}% recognition accuracy.") if __name__ == "__main__": main()
true
4b05faeee9cc5e70aa951331a8da1d7f8d7b03ae
Python
nickvirden/deep-learning-portfolio
/Fundamentals/Data Preprocessing/data-preprocessing.py
UTF-8
3,619
3.796875
4
[]
no_license
# Import libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Suppresses automatic format guessing by numpy # I set this option because it changes numbers into scientific notation after they get disproportionately large np.set_printoptions(suppress=True) # Import the dataset dataset = pd.read_csv('Data.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 3].values # Take care of missing data from sklearn.preprocessing import Imputer # Imputer by default replaces NaN values with the mean of the column imputer = Imputer() # Fits Imputer object to Matrix X imputer = imputer.fit(X[:, 1:3]) # Replace the data in the second and third columns with the mean of their column values X[:, 1:3] = imputer.transform(X[:, 1:3]) # View the filled in variables # print X[:, 1:3] # Encoding categorial data from sklearn.preprocessing import LabelEncoder, OneHotEncoder # Create new instance of label encoder for the independent variables label_encoder_X = LabelEncoder() # Encodes categorical variables in the first column # In this case, the first column is the countries # The only problem here is that if we just do encoding on one column, the program will think, for example, France (1) is greater than Germany (0), which makes no sense, so we have to use dummy variables X[:, 0] = label_encoder_X.fit_transform(X[:, 0]) # Print out (incorrect) encoded Matrix X # print X # OneHotEncoder will treat all the columns as categorical variables by default, so we pass an array with the indices into the categorical_features paramter to encode only that column one_hot_encoder = OneHotEncoder(categorical_features=[0]) # Returns three categorical columns - one for each country - as a numpy array (matrix) X = one_hot_encoder.fit_transform(X).toarray() # Print variables rounded to 2 decimal places # print np.around(X[:, :-1], decimals=2) # Create new instance of label encoder for the dependent variable label_encoder_y = LabelEncoder() # Label encode dependent variable "Purchased" y = label_encoder_y.fit_transform(y) # Split the dataset into the Training and Test sets from sklearn.cross_validation import train_test_split # Create Training and Test sets that are associated with each other # As a general rule of thumb, the test size should be somewhere between 20% and 30% of the dataset, and certainly no more than 40% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # print np.around(X_test, decimals=2) # print np.around(X_train, decimals=2) # print np.around(y_test, decimals=2) # print np.around(y_train, decimals=2) # The last step in data preprocessing is normalizing the data so no one feature dominates the fit of the dataset # For example, salary is in $1,000s, whereas age is in 10s, so we need to bring the values to an equal scale in order to get a proper fit # TWO METHODS OF FEATURE SCALING # Standardization => (x - mean(data)) / st-dev(data) # Normalization => (x - min(data)) / (max(data) - min(data)) from sklearn.preprocessing import StandardScaler # Scale X sc_X = StandardScaler() # Fit and transform Training set X_train = sc_X.fit_transform(X_train) # Only need to transform Test set because we already fit the X Matrix X_test = sc_X.transform(X_test) # Sometimes y will need to be fitted, but in this case, it's only 0 and 1, so we don't need to scale it print np.around(X_test, decimals=3) print np.around(X_train, decimals=3) print np.around(y_test, decimals=3) print np.around(y_train, decimals=3)
true
459fd6c77aa5058435f5aa6b418c12fb0cb6e582
Python
dreadlordow/Softuni-Python-Advanced
/02.Tuples_and_Sets-Exrecise/7.Battle_of_names.py
UTF-8
650
3.609375
4
[]
no_license
n = int(input()) even_set = set() odd_set = set() for i in range(1, n + 1): name = input() summed = sum([ord(x) for x in name]) // i if summed % 2 == 0: even_set.add(summed) else: odd_set.add(summed) even_sum = sum(even_set) odd_sum = sum(odd_set) if odd_sum > even_sum: difference_values = odd_set.difference(even_set) print(', '.join([str(x) for x in difference_values])) elif even_sum > odd_sum: sym_values = odd_set.symmetric_difference(even_set) print(', '.join([str(x) for x in sym_values])) else: union_values = odd_set.union(even_set) print(', '.join([str(x) for x in union_values]))
true
f37c8d222d222916a066337a44e933bf61f5f6db
Python
ysachinj99/PythonFile
/Frame.py
UTF-8
84
2.75
3
[]
no_license
from tkinter import * root=Tk() frame=Frame(root) frame.pack() root.mainloop()
true
7c275ced5bd26fa0000aaf344f9b113475596ce6
Python
YuanbenWang/learngit
/android/spy_360.py
UTF-8
1,261
2.734375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri May 12 11:30:11 2017 @author: GXW used """ import re import urllib import os # response=urllib.urlopen('http://zhushou.360.cn/list/index/cid/1?page=1') # html=response.read() # link_list=re.findall(r"(?<=&url=).*?apk",html) # for url in link_list: # print url class testClass: def __init__(self): self.urllist = [] self.k = 1 self.baseurl = 'http://zhushou.360.cn/list/index/cid/1?page=' def geturl(self, pageindex): for i in range(1, pageindex + 1): self.urllist.append(self.baseurl + str(i)) def spider(self): for i in range(len(self.urllist)): response = urllib.urlopen(self.urllist[0]) html = response.read() link_list = re.findall(r"(?<=&url=).*?apk", html) for url in link_list: file_name = "%d.apk" % (self.k) self.k = self.k + 1 file_path = os.path.join("/home/huu/Downloads/apk_360", file_name) urllib.urlretrieve(url, file_path) del self.urllist[0] print (i) def start(self): self.geturl(50) self.spider() a = testClass() a.start()
true
0de9972676b2c6b5e3e69a48ff5573bfdd788c56
Python
kmarkley-ksu/HumanEmotions
/Emotion_Detection_CNN/Source/Emotion_CNN.py
UTF-8
6,600
2.625
3
[]
no_license
#<editor-fold> Import Statements import matplotlib.pyplot as plot #%matplotlib inline import numpy #import tensorflow import tensorflow.compat.v1 as tensorflow tensorflow.disable_v2_behavior() #</editor-fold> Import Statements #<editor-fold> Unzipping the file and getting each picture. CIFAR_DIR = "./cifar-10-batches-py/" def unpickle(file): import pickle with open(file, "rb") as fo: cifar_dict = pickle.load(fo, encoding = "bytes") return cifar_dict #</editor-fold> Unzipping the file and getting each picture. #<editor-fold> Initial Set Up dirs = ["batches.meta", "data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5", "test_batch"] all_data = [0, 1, 2, 3, 4, 5, 6] for i, direc in zip(all_data, dirs): all_data[i] = unpickle(CIFAR_DIR + direc) batch_meta = all_data[0] data_batch1 = all_data[1] data_batch2 = all_data[2] data_batch3 = all_data[3] data_batch4 = all_data[4] data_batch5 = all_data[5] test_batch = all_data[6] #print(CIFAR_DIR + direc) #print(batch_meta) X = data_batch1[b"data"] #Take the data of 10,000 pictures of 3 colors of size 32 by 32 and #reshape the X array so that it now holds 10,000 pictures that are 32 by 32 with colors. #Also limit the data type in the array to 8 bit integers. X = X.reshape(10000, 3, 32, 32).transpose(0, 3, 2, 1).astype("uint8") print(X[0].max()) print((X[0] / 255).max()) #</editor-fold> Initial Set Up #<editor-fold> Helper Functions def one_hot_encode(vector, values = 10): """ For use to one hot encode the 10 possible labels. This will translate the labels from words/strings to a string of ints. Helps the CNN determine which label to apply. """ n = len(vector) out = numpy.zeros( (n, values) ) out[range(n), vector] = 1 return out def init_weights(shape): init_random_dist = tensorflow.truncated_normal(shape, stddev = 0.1) return tensorflow.Variable(init_random_dist) def init_bias(shape): init_bias_values = tensorflow.constant(0.1, shape = shape) return tensorflow.Variable(init_bias_values) def conv2d(x, W): return tensorflow.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = "SAME" ) def max_pool_2by2(x): return tensorflow.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME") def convolutional_layer(input_x, shape): W = init_weights(shape) b = init_bias( [shape[3]] ) return tensorflow.nn.relu(conv2d(input_x, W) + b) def normal_full_layer(input_layer, size): input_size = int( input_layer.get_shape()[1] ) W = init_weights( [input_size, size] ) b = init_bias( [size] ) return tensorflow.matmul(input_layer, W) + b #</editor-fold> Helper Functions #<editor-fold> CIFAR Class class CIFARHelper(): def __init__(self): self.i = 0 self.all_training_batches = [data_batch1, data_batch2, data_batch3, data_batch4, data_batch5] self.test_batch = [test_batch] self.training_images = None self.training_labels = None self.test_images = None self.test_labels = None def set_up_images(self): print("Setting up the training images and labels!") self.training_images = numpy.vstack( [ d[b"data"] for d in self.all_training_batches ] ) training_images_length = len(self.training_images) self.training_images = self.training_images.reshape(training_images_length, 3, 32, 32).transpose(0, 3, 2, 1) / 255 self.training_labels = one_hot_encode(numpy.hstack( [ d[b"labels"] for d in self.all_training_batches ] ), 10) print("Setting up the testing images and labels!") self.test_images = numpy.vstack( [ d[b"data"] for d in self.test_batch ] ) testing_images_length = len(self.test_images) self.test_images = self.test_images.reshape(testing_images_length, 3, 32, 32).transpose(0, 3, 2, 1) / 255 #CNN will give the labels for the testing batch. self.test_labels = one_hot_encode(numpy.hstack( [ d[b"labels"] for d in self.test_batch ] ), 10) def next_batch(self, batch_size): x = self.training_images[self.i: self.i + batch_size].reshape(100, 32, 32, 3) y = self.training_labels[self.i: self.i + batch_size] self.i = (self.i + batch_size) % len(self.training_images) return x, y #</editor-fold> CIFAR Class #<editor-fold> Main Program ch = CIFARHelper() ch.set_up_images() x = tensorflow.placeholder( tensorflow.float32, shape = [None, 32, 32, 3] ) y_true = tensorflow.placeholder( tensorflow.float32, shape = [None, 10] ) hold_prob = tensorflow.placeholder(tensorflow.float32) #Create the convolutional layers convo_1 = convolutional_layer(x, shape = [4, 4, 3, 32]) convo_1_pooling = max_pool_2by2(convo_1) convo_2 = convolutional_layer(convo_1_pooling, shape = [4, 4, 32, 64]) convo_2_pooling = max_pool_2by2(convo_2) #Done creating the convolutional layers. #Flatten the output to a 1D vector. convo_2_flat = tensorflow.reshape(convo_2_pooling, [-1, 8 * 8 * 64]) #Make the fully connected layers. full_layer_one = tensorflow.nn.relu(normal_full_layer(convo_2_flat, 1024)) full_one_dropout = tensorflow.nn.dropout(full_layer_one, keep_prob = hold_prob) #Done making the fully connected layers. #Set up output y_pred = normal_full_layer(full_one_dropout, 10) #Apply loss function cross_entropy = tensorflow.reduce_mean(tensorflow.nn.softmax_cross_entropy_with_logits(labels = y_true, logits = y_pred)) #Create optimizer optimizer = tensorflow.train.AdamOptimizer(learning_rate = 0.001) train = optimizer.minimize(cross_entropy) #Create a variable to initalize all the global tensorflow variables. init = tensorflow.global_variables_initializer() #Run the CNN by using a graph session. with tensorflow.Session() as sess: sess.run(tensorflow.global_variables_initializer()) for i in range(500): batch = ch.next_batch(100) sess.run(train, feed_dict = {x: batch[0], y_true: batch[1], hold_prob: 0.5 }) #Print out a message every 100 steps. if i % 100 == 0: print("Currently on step {}".format(i)) print("Accuracy is: ") #Test the train model matches = tensorflow.equal(tensorflow.argmax(y_pred, 1), tensorflow.argmax(y_true, 1)) acc = tensorflow.reduce_mean(tensorflow.cast(matches, tensorflow.float32)) print( sess.run(acc, feed_dict = {x: ch.test_images, y_true: ch.test_labels, hold_prob: 1.0}) ) print("\n") #Displaying an image from our batch. # plot.imshow(X[0]) # plot.show() #plot.close() #</editor-fold> Main Program
true
ac3434b7717f2bcff37ef0c056f0993c70b4c521
Python
videoturingtest/FALCON2018
/src/train_test/main.py
UTF-8
2,792
2.546875
3
[ "Apache-2.0" ]
permissive
""" FALCON: FAst and Lightweight CONvolution Authors: - Chun Quan (quanchun@snu.ac.kr) - U Kang (ukang@snu.ac.kr) - Data Mining Lab. at Seoul National University. File: train_test/train_test.py - receive arguments and train_test/test the model. Version: 1.0 This software is free of charge under research purposes. For commercial purposes, please contact the authors. """ import sys sys.path.append('../') from train_test.train import train from train_test.test import test from models.model_standardConv import StandardConvModel from models.model_MobileConv import MobileConvModel from models.model_FALCON import FALCONModel from models.model_MobileConv_rank import RankMobileConvModel from models.model_FALCON_rank import RankFALCONModel from utils.default_param import get_default_param from utils.save_restore import save_model from utils.save_restore import load_model from utils.compression_cal import cr_crr def main(args): if args.datasets == "cifar10": num_classes = 10 elif args.datasets == "cifar100": num_classes = 100 # elif args.datasets == "imagenet": # num_classes = 1000 else: pass if args.convolution == "MobileConv": net = MobileConvModel(num_classes=num_classes, which=args.model) elif args.convolution == "FALCON": net = FALCONModel(num_classes=num_classes, which=args.model) elif args.convolution == "RankMobileConv": net = RankMobileConvModel(rank=args.rank, alpha=args.alpha, num_classes=num_classes, which=args.model) elif args.convolution == "RankFALCON": net = RankFALCONModel(rank=args.rank, alpha=args.alpha, num_classes=num_classes, which=args.model) elif args.convolution == "StandardConv": net = StandardConvModel(num_classes=num_classes, which=args.model) else: pass net = net.cuda() if args.is_train: # training best = train(net, lr=args.learning_rate, optimizer_option=args.optimizer, epochs=args.epochs, batch_size=args.batch_size, n_lr_decay=args.no_learning_rate_dacay, is_train=args.is_train, data=args.datasets) save_model(best, args) test(net, batch_size=args.batch_size, data=args.datasets) cr_crr(args) else: # testing load_model(net, args) inference_time = 0 for i in range(10): inference_time += test(net, batch_size=args.batch_size, data=args.datasets) print("Averate Inference Time: %fs" % (float(inference_time) / float(10))) # cr_crr(args) if __name__ == "__main__": parser = get_default_param() args = parser.parse_args() print(args) main(args)
true
bf4b655da24f20bb96859a6276c73ad9e954df79
Python
Shafin-Thiyam/Sound_Content_Test
/baseXmlHelper.py
UTF-8
9,870
2.71875
3
[]
no_license
# Copyright: 2018, Ableton AG, Berlin. All rights reserved. #**************************************************************************************** # # base xml parse functionality # #**************************************************************************************** try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET import fnmatch, re, os from cStringIO import StringIO import gzip import hashlib #---------------------------------------------------------------------------------------- class xml_helper: def __init__(self, filepath=None, tree=None): self.tree = tree self.mFilePath = filepath self.ParentMap = None self.mReplaceNewline = True #---------------------------------------------------------------------------------------- def load_xml(self, filepath=None, escapeNewline=True, maxSize=0, createMap=True): """ load xml from filepath """ if filepath != None: self.mFilePath = filepath self.mReplaceNewline = escapeNewline if not os.path.exists(str(self.mFilePath)): print "Warning: The filepath '%s' does not exist. Please make sure to pass the right path as load_xml('foo/bar')" %filepath return False if not escapeNewline: try: input = StringIO(gzip.open(self.mFilePath, "r").read()) except IOError: input = StringIO(open(self.mFilePath, "r").read()) else: # replace Live's newline string with a dummy ###newline_escape### # we will revert this back on writing. # using the escapeNewline is slow on large documents try: file = gzip.open(self.mFilePath, "r").read() except IOError: file = open(self.mFilePath, "r").read() input = StringIO(re.sub(r"&#x0[DA];", "###newline_escape###", file)) del(file) # save memory if maxSize: maxSize = maxSize*1048576 # in MB if len(input.getvalue()) > maxSize: print "Warning: Large Document - skipping %s" %filepath return False self.tree = ET.ElementTree(file=input) input.close() if createMap: self.child_to_parent_dict() return True def getroot(self): return self.tree.getroot() #---------------------------------------------------------------------------------------- def new_xml(self, root_name): """ create a new (empty) xml tree """ self.tree = ET.ElementTree(ET.fromstring('<?xml version="1.0" encoding="UTF-8"?><%s></%s>'%( root_name, root_name))) return self.tree.getroot() #---------------------------------------------------------------------------------------- def return_tree(self): """ return tree and dict with ParentMap """ return self.tree, self.ParentMap #---------------------------------------------------------------------------------------- def fn_to_reg(self, searchItems): """ return a list of RegEx from searchItems""" return [re.compile(fnmatch.translate(s)) for s in searchItems] #---------------------------------------------------------------------------------------- def find_nodes(self, searchItems, root=None, sortByDepth=False): if root == False: print "Hey, you are passing 'False' as the root to find_nodes. Fix your script." ListOfSearchItems = list(searchItems) if root == None: Parent = ListOfSearchItems.pop(0) Out = [x for x in self.ParentMap.keys() if x.tag == Parent] else: Out = [root] while len(ListOfSearchItems) > 0: Parent = ListOfSearchItems.pop(0) Out = [x for root in Out for x in root.getiterator(Parent)] if sortByDepth == False: return Out TDict = dict((x, len(self.get_path_to_node(x))) for x in Out) return [o[0] for o in sorted(TDict.items(),key=lambda x:x[1])] #---------------------------------------------------------------------------------------- def find_node(self, searchItems, root=None): try: return self.find_nodes(searchItems, root, sortByDepth=True)[0] except IndexError: return False #---------------------------------------------------------------------------------------- def _refind_nodes(self, reSearchItems, root=None, sortByDepth=False): """ Recursive Search for nodes. Same as find_allnodes, except input is a regex """ reListOfSearchItems = list(reSearchItems) if root == None: ReParent = reListOfSearchItems.pop(0) Out = [x for x in self.ParentMap.keys() if ReParent.match(x.tag)] else: Out = [root] while len(reListOfSearchItems) > 0: ReParent = reListOfSearchItems.pop(0) Out = [x for root in Out for x in root.iter() if ReParent.match(x.tag)] if sortByDepth == False: return Out TDict = dict((x, len(self.get_path_to_node(x))) for x in Out) return [o[0] for o in sorted(TDict.items(),key=lambda x:x[1])] #---------------------------------------------------------------------------------------- def child_to_parent_dict(self,): """create a dict to map child to parent for each node. """ self.ParentMap = dict((c, p) for p in self.tree.iter() for c in p) self.ParentMap[self.tree.getroot()] = None return self.ParentMap #---------------------------------------------------------------------------------------- def get_parent_node(self, node): # much more efficient: try: return self.ParentMap[node] except (KeyError, IndexError, TypeError): self.child_to_parent_dict() return self.ParentMap[node] #---------------------------------------------------------------------------------------- def get_path_to_node(self, node): Path = [] Parent = self.get_parent_node(node) while Parent != None: Path.insert(0, Parent) Parent = self.get_parent_node(Parent) return Path #---------------------------------------------------------------------------------------- def set_nodevalue(self, node, value, V="Value", Conditional=False): """ update the value of an xml node if Conditional, then check value first and return None if the old value is already the same as the new value """ if self.mReplaceNewline: value = re.sub("\n", "###newline_escape###",value) if Conditional: if self.get_nodevalue(node, V) == value: return None node.set(V, value) return node #---------------------------------------------------------------------------------------- def add_node(self, parent_node, new_node_name, attributes={}, position=0): """ add a new xml node below parent_node attributes is a dict {"Value":"0.0"} """ for key in attributes: attributes[key] = format(attributes[key]) if position == -1: count_children = len(list(parent_node)) position = count_children new_node = ET.Element(new_node_name, attributes) parent_node.insert(position, new_node) return new_node #---------------------------------------------------------------------------------------- def get_nodevalue(self, node, V="Value"): """ get node value """ if node == False: return node return node.get(V) #---------------------------------------------------------------------------------------- def get_parametervalue(self, nodename=None, node=None, root=None): """ return FloatEvent, BoolEvent or EnumEvent of a parameter node """ if nodename != None: node = self.find_node(nodename, root) node_event = self._refind_nodes(self.fn_to_reg(["Manual"]), root=node)[0] node_event_value = self.get_nodevalue(node_event) return node_event_value #---------------------------------------------------------------------------------------- def set_parametervalue(self, Value, nodename=None, node=None, root=None, ): """ return FloatEvent, BoolEvent or EnumEvent of a parameter node """ if nodename != None: node = self.find_node(nodename, root) node_event = self._refind_nodes(self.fn_to_reg(["Manual"]), root=node)[0] if node_event != False: self.set_nodevalue(node_event, Value) return True return False #---------------------------------------------------------------------------------------- def indent(self, elem, level=0): """proper indent out, copied from http://effbot.org/zone/element-lib.htm""" i = "\n" + level*"\t" if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + "\t" if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: self.indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i #---------------------------------------------------------------------------------------- def write_xml(self, filepath=None, escapeNewline=True, indent=False): """ write new xml out if escapeNewline then we write to a string buffer and replace ###newline_escape### to &#x0A; to enforce correct line breaks """ if not filepath: filepath = self.mFilePath if indent: self.indent(self.tree.getroot()) output = StringIO() self.tree.write(output, encoding="UTF-8") outFile = open(filepath, "w") if escapeNewline: # we need to make sure newline &#x0A; is written correctly print >> outFile, re.sub("###newline_escape###", "&#x0A;", output.getvalue()) else: print >> outFile, output.getvalue() outFile.close #======================================================================================== # end of file #========================================================================================
true
d3a094adf868249681683a5afa54538f249a36f2
Python
Xiaoran807/robot-play
/src/beginner_tutorials/scripts/tempTopic/temperatureClass.py
UTF-8
948
3.203125
3
[]
no_license
#!/usr/bin/env python import rospy from std_msgs.msg import Float64 class TemperatureSensor: def read_temperature_sensor_data(self): # Here you read the data from your sensor # And you return the real value self.temperature = 30.0 def __init__(self): # Create a ROS publisher self.temperature_publisher = rospy.Publisher("/temperature", Float64, queue_size=1) # Initialize temperature data self.temperature = 0 def publish_temperature(self): msg = Float64() msg.data = self.temperature self.temperature_publisher.publish(msg) if __name__ == '__main__': rospy.init_node("your_sensor_node") # Create an instance of Temperature sensor ts = TemperatureSensor() # Create a rate rate = rospy.Rate(10) while not rospy.is_shutdown(): ts.read_temperature_sensor_data() ts.publish_temperature() rate.sleep()
true
684b2b564cd2f21801893326e18a72aa8cf56e7a
Python
michelwandermaas/scheduler_translator
/script_scheduler_writer.py
UTF-8
32,922
2.671875
3
[]
no_license
''' Author: Michel Wan Der Maas Soares (mwandermaassoares@lbl.gov) This class is supposed to serve as a mechanism for the developer to write scripts that will work in multiple schedulers. The project was first developed to work with Univa Grid Engine(UGE) and Simple Linux Utility for Resource Management(SLURM), but it should be quite easy to implement functionaly with other schedulers. This is an open-source project, and any development you make to the file will be reviewed and appreciated. If you want guidelines to include support for other scheduler, do not hesitate to contact me. Functions whose names start with underscore should not be directly accessed by the user. ''' import sys class script_scheduler_writer: def __init__(self, scheduler, name = "Name"): self.jobsType = [] self.dependencies = [] self.dependenciesType = [] #Types: NONE, JOB_NUM, JOB_ID as well as SINGLE or ARRAY. self.header = "" self.commands = [] self.name = name self.shellSet = False self.schedulersSupported = ["UGE","SLURM",""] # "" means run standard syntax, it wont parse the commands. self.defaultCommands = "" self.defaultHeader = "" self.modules = "" self._setScheduler(scheduler) self.ignoreUnkown = True # ignore unknown commands? if not, delete them. self.originalScript = None # list of all commands accepted. it will be used to delete unknown commands, and to translate. # Dependecies/commands are described in the functions responsible for parsing them. self.dependenciesAvail = ["LAST_ADDED","LAST_ADDED_ARRAY", "LAST", "LAST_ID", "LAST_ID_ARRAY", "JOBS_LIST", "JOBS_LIST_ARRAY","ALL_ADDED", "ALL_ADDED_ARRAY"] self.commandsAvail = ["JOB_NAME", "RESOURCE_EXCLUSIVE", "RESOURCE_NODES", "RESOURCE_IB", "JOB_ARRAY", "TASK_ID", "RESOURCE_MEM", "RESOURCE_CCM", "RESOURCE_PRIOR_QUEUE"] def getJobsSize(self): ''' :return: the amount of jobs appended so far ''' return self.jobsType.__len__() def getSchedulers(self): ''' :return: the list of schedulers currently supported ''' return self.schedulersSupported def getScript(self): ''' :return: The script string ready to be written to a file ''' string = "" if (not self.shellSet): self.setShell("") string += self.header string += self.defaultHeader +"\n" string += self.modules +"\n" for x in self.commands: string += x return string def clearCommands(self): ''' Clean all the commands set so far ''' self.commands = [] self.jobsType = [] self.dependencies = [] self.dependenciesType = [] self.defaultCommands = "" def clearAll(self): ''' Clean all variables ''' self.defaultHeader = "" self.clearCommands() self.header = "" self.name = "Name" self._setScheduler("") self.ignoreUnkown = True def _setName(self, name): ''' Set name a name for the object. The name will be used when creating JobID holders in the script. ''' self.name = name def _setScheduler(self, type): ''' Sets a scheduler for the script. See this file header for the names of schedulers supported. ''' if (type not in self.schedulersSupported): sys.stderr.write("Scheduler not supported.\n") sys.exit(1) self.scheduler = type if(type == "UGE"): self.addModule("module load uge\n") def setShell(self,shell): ''' Set shell used by the script ''' if (shell != ""): shell = shell.replace("\n", "") # removes any newline characters shell = shell.replace("#!", "") # removes any #! characters self.header = "#!"+shell+"\n" + self.header else: self.header = "#!/bin/bash -l\n" + self.header self.shellSet = True def addModule(self,module): if (module == ""): return module = module.replace("module ","") module = module.split("\n")[0] if (self.modules.find(module) >= 0): return if (module.find("purge") >= 0): self.modules = ("module "+module+"\n") + self.modules return module = "module "+module+"\n" self.modules += module def addJob(self, command, dependency = "", dependencyType = "", translate = False): ''' Add command to launch a job to the script :param command: command to run if first word of command is RUN or launch otherwise (see parseCommand() and getLauncher()) :param dependency: "LAST_ADDED", "LAST n" (n is a number), "JOB_ID n" (n is the id) (see parseDependency()) :return: True for success and False for failure ''' if (self.scheduler not in self.schedulersSupported): sys.stderr.write("Scheduler not supported.\n") sys.exit(1) self.jobsType.append([]) command = command.replace("\n","") #removes any newline characters self.commands.append(self._getCommandString(command, dependency, dependencyType, translate)) def addLineParsed(self, command): ''' Add a line parsing it with the parseCommand function. Used in special cases when one wants to parse a command but not launch a job. ''' if (self.scheduler not in self.schedulersSupported): sys.stderr.write("Scheduler not supported.\n") sys.exit(1) self.jobsType.append([]) self.commands.append(self._parseCommand(command) + "\n") def setDefaultConfig(self, command): if (self.scheduler not in self.schedulersSupported): sys.stderr.write("Scheduler not supported.\n") sys.exit(1) command = self._parseCommand(command) if (command == ""): return if (self.scheduler == "SLURM"): self.defaultHeader += "#SBATCH "+ command +"\n" elif (self.scheduler == "UGE"): self.defaultHeader += "#$ " + command + "\n" def unsetDefaultConfig(self): self.defaultCommands = "" def _getLauncher(self, command): ''' Get launch command based on the type of scheduler. UGE with the command RUN maps to a local run, as well as not specified schedulers. :return: launch command or "" for local commands ''' commandList = command.split() launcher = "" if (commandList[0] == "RUN"): if (self.scheduler == "SLURM"): launcher = "srun " command = command.replace("RUN "," ",1) else: command = command.replace("RUN ", " ", 1) else: if (commandList[0] == "LAUNCH" or command.find("LAUNCH ") < 0): #if the first command is LAUNCH or there`s no launch command = command.replace("LAUNCH "," ") if (self.scheduler == "UGE"): launcher = "qsub " elif (self.scheduler == "SLURM"): launcher = "sbatch " elif (command.find("LAUNCH ") >= 0): #otherwise, look for a LAUNCH, and replace it with the appropriate launcher. if (self.scheduler == "UGE"): launcher = command.split("LAUNCH")[0]+"qsub " command = command.split("LAUNCH")[1] elif (self.scheduler == "SLURM"): launcher = command.split("LAUNCH")[0]+"sbatch " command = command.split("LAUNCH")[1] return (launcher,command) def addEmail(self, email, type): ''' Add email configuration for the jobs in the script :param type: "END", "START", "ABORT", "SUSPENDED", "ALWAYS", "NEVER"/"", or a combination separated by a whitespace. Combination of opposites will result in error. ("Always" and "Never") ''' if (self.scheduler not in self.schedulersSupported): sys.stderr.write("Scheduler not supported.\n") sys.exit(1) if (email == "" or email == None): return if (self.scheduler == "UGE"): self.header += "#$ -M "+email+"\n" if (type == ""): return self.header += "#$ -m " if(type == "NEVER"): self.header += "n\n" return type = type.split() if ("ALWAYS" in type and "NEVER" in type): print("Conflicting email types.\n") sys.exit() if ("ALWAYS" in type): self.header += "beas\n" return if ("START" in type): self.header += "b" if ("END" in type): self.header += "e" if ("ABORT" in type): self.header += "a" if ("SUSPENDED" in type): self.header += "s" self.header += "\n" elif (self.scheduler == "SLURM"): self.header += "#SBATCH --mail-user="+email+"\n" self.header += "#SBATCH --mail-type=" if(type == "NEVER" or type == ""): self.header += "NONE\n" return type = type.split() set = False if ("ALWAYS" in type and "NEVER" in type): print("Conflicting email types.\n") sys.exit() if ("ALWAYS" in type): self.header += "ALL\n" return if ("START" in type): self.header += "BEGIN" set = True if ("END" in type): if (set): self.header += "," self.header += "END" set = True if ("ABORT" in type or "SUSPENDED" in type): if (set): self.header += "," self.header += "FAIL" set = True self.header += "\n" def addLineHeader(self, line): ''' Add a line to the header ''' line = line.replace("#", "", 1) # removes any shebang characters self.header += "#"+line def addLine(self, line, newline = False): ''' Add a line to the script. By default it does not add a newline character. For script translation the default is to add a newline. ''' ''' if (line.find("module") >= 0): list = line.split("module ") for x in range(1,list.__len__()): self.addModule(list[x]) line = list[0] ''' if (line == "" or line.replace(" ","") == ""): return if (newline): self.commands.append(line+"\n") else: self.commands.append(line) def addComment(self, comment): ''' Add a comment to the script ''' comment = comment.replace("\n", "") # removes any newline characters comment = comment.replace("#", "") # removes any shebang characters self.commands.append("#"+comment+"\n") def _getCommandString(self, command, dependency, dependencyType, translate = False): command = self._getLauncher(command) ret_string = self.name+"_JOB_"+str(self.jobsType.__len__()) + "=`" + command[0] + self._getDependencyString(dependency, dependencyType) + " " + self._parseCommand(command[1]).replace("\n", "") + "`\n" ret_string += self.name+"_JOB_"+str(self.jobsType.__len__()) + "=`echo $" + self.name + "_JOB_" + str(self.jobsType.__len__()) + " | awk 'match($0,/[0-9]+/){print substr($0, RSTART, RLENGTH)}'`\n" return ret_string def _getDependencyString(self, dependency, dependencyType): ''' Parses dependencies and return the appropriate string according to the scheduler :param dependency: string to be parsed :return: list of strings to be added ''' dependencyType = dependencyType.replace(" ","") self._parseDependency(dependency) ret = "" if (dependency == ""): return ret if (self.dependencies[self.jobsType.__len__()-1].__len__()==0): return ret if(self.scheduler=="UGE"): if (self.dependenciesType[self.jobsType.__len__()-1][1] == "SINGLE"): ret = "-hold_jid " else: ret = "-hold_jid_ad " bool = False for n in self.dependencies[self.jobsType.__len__()-1]: if (bool): ret += "," if (self.dependenciesType[self.jobsType.__len__()-1][0] == "JOB_NUM"): ret += "$"+self.name+"_JOB_"+str(n) else: ret += str(n) bool = True ret += " " elif (self.scheduler=="SLURM"): if (dependencyType == "OKAY"): ret = "--dependency=afterok:" elif (dependencyType == "NOT OKAY"): ret = "--dependency=afternotok:" elif (dependencyType == "START"): ret = "--dependency=after:" else: ret = "--dependency=afterany:" bool = False for n in self.dependencies[self.jobsType.__len__()-1]: if (bool): ret += ":" if (self.dependenciesType[self.jobsType.__len__()-1][0] == "JOB_NUM"): ret += "$"+self.name+"_JOB_"+str(n) else: ret += str(n) bool = True ret += " " return ret def _parseDependency(self, dependency): ''' Parses dependencies to self.dependency, to be turned into a string later :param dependency: string to be parsed ''' ''' List of constants: (N stands for a number) (More than one kind of dependency will probably cause errors) LAST_ADDED : depends on the last job added LAST_ADDED_ARRAY : depends on the last job added, and the current job is an array LAST N : depends on the last N jobs added LAST_ARRAY N : depends on the last N jobs added, and the current job is an array JOB_ID N1 N2 N3 N3 : depends on the jobs of ids N1, N2 and so on JOB_ID_ARRAY N1 N2 N3 : depends on the jobs of ids N1, N2... and the current job is an array JOBS_LIST N1 N2 N3 : depends on the N1th job added, N2th job added, and so on. Jobs index start at 1. JOBS_LIST_ARRAY N1 N2 N3 : depends on the N1th job added, N2th job added, and so on. Jobs index start at and the current job is an array. ALL_ADDED : depends on all jobs added so far. ALL_ADDED_ARRAY : depends on all jobs added so far. The current job must be an array. ''' if (dependency == ""): self.dependencies.append([]) self.dependenciesType.append(("NONE","NONE")) else: #SINGLE DEPENDENCY if (dependency.replace(" ","") == "LAST_ADDED"): if (self.jobsType.__len__() == 0): sys.stderr.write("The first job added cannot depend on the last one added.\n") sys.exit() else: self.dependenciesType.append(("JOB_NUM", "SINGLE")) self.dependencies.append([self.jobsType.__len__() - 1]) return if (dependency.replace(" ","") == "LAST_ADDED_ARRAY"): if (self.jobsType.__len__() == 0): sys.stderr.write("The first job added cannot depend on the last one added.\n") sys.exit() else: self.dependenciesType.append(("JOB_NUM", "ARRAY")) self.dependencies.append([self.jobsType.__len__() - 1]) return dependency = dependency.split() if ("LAST" in dependency): pos_dependency = dependency.index("LAST")+1 num_dependency = int(dependency[pos_dependency]) self.dependenciesType.append(("JOB_NUM","SINGLE")) self.dependencies.append([]) for x in range(self.jobsType.__len__()-num_dependency, self.jobsType.__len__()): self.dependencies[self.dependencies.__len__()-1].append(x) elif ("JOB_ID" in dependency): self.dependenciesType.append(("JOB_ID","SINGLE")) self.dependencies.append([]) for x in range(1,dependency.__len__()): if (dependency[x].isdigit()): num_dependency = int(dependency[x]) else: num_dependency = dependency[x] self.dependencies[self.dependencies.__len__()-1].append(num_dependency) elif ("JOBS_LIST" in dependency or "JOB_LIST" in dependency): self.dependencies.append([]) self.dependenciesType.append(("JOB_NUM","SINGLE")) for x in range(1,dependency.__len__()): num_dependency = int(dependency[x]) self.dependencies[self.dependencies.__len__()-1].append(num_dependency) elif ("ALL_ADDED" in dependency): self.dependenciesType.append(("JOB_NUM","SINGLE")) self.dependencies.append([]) for x in range(1, self.jobsType.__len__()): self.dependencies[self.dependencies.__len__()-1].append(x) #JOB ARRAYS DEPENDENCY elif ("LAST_ARRAY" in dependency): pos_dependency = dependency.index("LAST_ARRAY")+1 num_dependency = int(dependency[pos_dependency]) self.dependenciesType.append(("JOB_NUM","ARRAY")) self.dependencies.append([]) for x in range(self.jobsType.__len__()-num_dependency, self.jobsType.__len__()): self.dependencies[self.dependencies.__len__()-1].append(x) elif ("JOB_ID_ARRAY" in dependency): self.dependenciesType.append(("JOB_ID","ARRAY")) self.dependencies.append([]) for x in range(1,dependency.__len__()): num_dependency = int(dependency[x]) self.dependencies[self.dependencies.__len__()-1].append(num_dependency) elif ("JOBS_LIST_ARRAY" in dependency or "JOB_LIST" in dependency): self.dependencies.append([]) self.dependenciesType.append(("JOB_NUM","ARRAY")) for x in range(1,dependency.__len__()): num_dependency = int(dependency[x]) self.dependencies[self.dependencies.__len__()-1].append(num_dependency) elif ("ALL_ADDED_ARRAY" in dependency): self.dependenciesType.append(("JOB_NUM","ARRAY")) self.dependencies.append([]) for x in range(1, self.jobsType.__len__()): self.dependencies[self.dependencies.__len__()-1].append(x) else: sys.stderr.write("Dependency \""+str(dependency)+"\" not supported.\n") sys.exit(1) def _deleteOtherOccurances(self, command, occurance, num_args=0): if (num_args == 0): command = command.replace(occurance, "") else: # delete additional occurances args = 0 list = command.split() auxCommand = "" for x in list: if x == occurance: # delete occurrance args = num_args elif args > 0: # delete argument of the additional occurrance args -= 1 else: auxCommand += x+" " command = auxCommand return command def _parseCommand(self, command): #TODO: ignore unknown commands option (this is currently turned on) #TODO: add other mem and nodes options ''' Parses the input command looking for certain keywords and replacing them with the appropriate string :param command: command to be parsed :return: string to be written in the script ''' ''' List of constants: (N (N1,N2...) stands for a number, and "" stands for a string) JOB_NAME "" : sets the name of the job to "" RESOURCE_EXCLUSIVE : requests for exclusive nodes RESOURCE_NODES N : requests for N nodes RESOURCE_IB : requests infiniband resource JOB_ARRAY N1:N2 : sets a job array from N1 to N2. (N1 > 0) TASK_ID : substituted to the variable set by the scheduler that tells the task id RESOURCE_MEM N : requests N amount of memory. Specify either MB or GB right after N. e.g. "RESOURCE_MEM 200MB" RESOURCE_CCM : request ccm capabality RESOURCE_PRIOR_QUEUE "": requests a certain priority queue OUTPUT_CURRENT_DIR : write jobs output to the current directory ''' if (self.scheduler == "UGE"): command = command.replace("JOB_NAME ","-N ", 1) # replace the first occurrance #delete additional occurances command = self._deleteOtherOccurances(command, "JOB_NAME", 1) elif (self.scheduler == "SLURM"): command = command.replace("JOB_NAME ", "--job-name=", 1) command = self._deleteOtherOccurances(command, "JOB_NAME", 1) if (self.scheduler == "UGE"): command = command.replace("RESOURCE_NODES ","-pe pe_slots ", 1) command = self._deleteOtherOccurances(command, "RESOURCE_NODES", 1) elif (self.scheduler == "SLURM"): command = command.replace("RESOURCE_NODES ","-N ", 1) command = self._deleteOtherOccurances(command, "RESOURCE_NODES", 1) if (self.scheduler == "UGE"): command = command.replace("RESOURCE_IB","-l infiniband.c=1", 1) command = self._deleteOtherOccurances(command, "RESOURCE_IB") elif (self.scheduler == "SLURM"): if (command.find("RESOURCE_IB") >= 0): sys.stderr.write("Command RESOURCE_IB not available for SLURM. Ignored.\n") command = command.replace("RESOURCE_IB", "") if (self.scheduler == "UGE"): command = command.replace("RESOURCE_EXCLUSIVE","-l exclusive.c", 1) command = self._deleteOtherOccurances(command, "RESOURCE_EXCLUSIVE") elif (self.scheduler == "SLURM"): command = command.replace("RESOURCE_EXCLUSIVE","--exclusive", 1) command = self._deleteOtherOccurances(command, "RESOURCE_EXCLUSIVE") if (self.scheduler == "UGE"): command = command.replace("JOB_ARRAY ","-t ", 1) command = self._deleteOtherOccurances(command, "JOB_ARRAY", 1) elif (self.scheduler == "SLURM"): list = command.split() auxCommand = "" found = False for x in list: if x == "JOB_ARRAY": auxCommand += "--array=" found = True elif found: auxCommand += x.replace(":","-",1) break else: auxCommand += x+" " command = auxCommand command = self._deleteOtherOccurances(command, "JOB_ARRAY", 1) if (self.scheduler == "UGE"): command = command.replace("TASK_ID","$SGE_TASK_ID") elif (self.scheduler == "SLURM"): command = command.replace("TASK_ID","$SLURM_TASK_ID") # TW: No support for "-l h_rt" # TW: This seems not to work... if (self.scheduler == "UGE"): command = command.replace("RESOURCE_MEM ", "-l ram.c=", 1) command = self._deleteOtherOccurances(command, "RESOURCE_MEM", 1) if (command.find("-l ram.c=") >= 0): list = command.split("-l ram.c=") listAux = list[1].split(" ") listAux[0] = listAux[0].replace("MB","M") listAux[0] = listAux[0].replace("GB","G") list[1] = " ".join(listAux) command = "-l ram.c=".join(list) elif (self.scheduler == "SLURM"): command = command.replace("RESOURCE_MEM ", "--mem=", 1) command = self._deleteOtherOccurances(command, "RESOURCE_MEM", 1) if (self.scheduler == "UGE"): if (command.find("RESOURCE_CCM") >= 0): sys.stderr.write("Command RESOURCE_CCM not available for UGE.\n") sys.exit(1) elif (self.scheduler == "SLURM"): command = command.replace("RESOURCE_CCM", "-ccm", 1) command = self._deleteOtherOccurances(command, "RESOURCE_CCM") if (self.scheduler == "UGE"): command = command.replace("RESOURCE_PRIOR", "-l", 1) command = self._deleteOtherOccurances(command, "RESOURCE_PRIOR", 1) elif (self.scheduler == "SLURM"): command = command.replace("RESOURCE_PRIOR ", "--qos=", 1) command = self._deleteOtherOccurances(command, "RESOURCE_PRIOR", 1) if (self.scheduler == "UGE"): command = command.replace("OUTPUT_CURRENT_DIR", "-cwd", 1) command = self._deleteOtherOccurances(command, "OUTPUT_CURRENT_DIR", 1) elif (self.scheduler == "SLURM"): #ignore, this is the default in SLURM command = command.replace("OUTPUT_CURRENT_DIR", "", 1) command = self._deleteOtherOccurances(command, "OUTPUT_CURRENT_DIR", 1) # TW: doesn't support UGE "-v environment_variable=value" return command def unitTest(self): #TODO: automatize the result checking, instead of prinnting it ''' Test if the returned script is correct. This functiom should be used to test the implementation of other scheduler following the pattern set here. :return: True if results are correct, False otherwise ''' print "--------------------------------------------------" print "Test 1" print "--------------------------------------------------" # TEST AS LIBRARY #---------------------------------------FIRST TEST----------------------------------------------- #For reference only, it does not map to anything. The dependencies might not make sense. firstExampleScript = \ """"#/bin/bash\n #EMAIL mwandermaassoares@lbl.gov #EMAIL_TYPE START END JOB_NAME First_Job RESOURCE_NODES 8 ./job1.sh\n DEPEND LAST_ADDED JOB_NAME Second_Job JOB_ARRAY 1:10 ./job3.sh\n DEPEND LAST 2 JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB ./job3.sh\n""" #---------------------------------------UGE FIRST TEST___________________________________________ firstUGEScript = \ """ #/bin/bash -l\n #$ -M mwandermaassoares@lbl.gov\n #$ -m be\n qsub -N First_Job -pe pe_slots 8 ./job1.sh\n qsub -hold_jid First_Job -N Second_Job -t 1:10 ./job2.sh\n qsub -hold_jid First_Job Second_Job -N Third_Job -t 3:25 -l infiniband.c=1 ./job3.sh\n""" self._setScheduler("UGE") self.setShell("/bin/bash -l") self.addJob("JOB_NAME First_Job RESOURCE_NODES 8 JOB_NAME RANDOM_JOB ./job1.sh ") self.addJob("JOB_NAME Second_Job JOB_ARRAY 1:10 ./job2.sh","LAST_ADDED") self.addJob("JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB RESOURCE_IB ./job3.sh ", "LAST 2") self.addEmail("mwandermaassoares@lbl.gov","START END") returnScript = self.getScript() print (returnScript) print "--------------------------------------------------" self.clearAll() #---------------------------------------SLURM FIRST TEST--------------------------------------- firstSLURMScript = \ """"#/bin/bash -l\n #SBATCH --mail-user=mwandermaassoares@lbl.gov #SBATCH --mail-type=BEGIN,END $Name_JOB_1=`sbatch ./job1.sh -N First_Job -pe pe_slots 8`\n $Name_JOB_2=`sbatch ./job2.sh -d afterany:$Name_JOB_1 -N Second_Job --array=1-10`\n $Name_JOB_3=`sbatch ./job3.sh -d afterany:$Name_JOB_1:$Name_JOB_2 -N Third_Job -l infiniband.c=1`\n""" self._setScheduler("SLURM") self.setShell("/bin/bash -l") self.addJob("JOB_NAME First_Job RESOURCE_NODES 8 ./job1.sh ") self.addJob("JOB_NAME Second_Job JOB_ARRAY 1:10 ./job2.sh ","LAST_ADDED") self.addJob("JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB ./job3.sh ", "LAST 2") self.addEmail("mwandermaassoares@lbl.gov","START END") returnScript = self.getScript() print (returnScript) print "--------------------------------------------------" self.clearAll() print "Test 2" print "--------------------------------------------------" #---------------------------------------SECOND TEST----------------------------------------------- #For reference only, it does not map to anything. The dependencies might not make sense. secondExampleScript = \ """"#/bin/bash\n #EMAIL mwandermaassoares@lbl.gov\n #EMAIL_TYPE END ABORT START\n JOB_NAME First_Job RESOURCE_NODES 8 RESOURCE_EXCLUSIVE ./job1.sh \n LAST_ADDED JOB_NAME Second_Job JOB_ARRAY 1:10 ./job2.sh \n LAST_ADDED_ARRAY JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB ./job3.sh \n LAST_ARRAY 2 JOB_NAME Fourth_Job JOB_ARRAY 1:1000 RESOURCE_NODES 16 ./job4.sh """ #---------------------------------------UGE SECOND TEST___________________________________________ secondUGEScript = \ """"#/bin/bash -l\n #$ -M mwandermaassoares@lbl.gov\n #$ -m eab\n $Name_JOB_1=`qsub -N First_Job -pe pe_slots 8 -l exclusive.c ./job1.sh `\n $Name_JOB_2=`qsub -hold_jid $Name_JOB_1 -N Second_Job -t 1:10 ./job2.sh `\n $Name_JOB_3=`qsub -hold_jid_ad $Name_JOB_2 -N Third_Job -t 3:25 -l infiniband.c=1 ./job3.sh `\n $Name_JOB_4=`qsub -hold_jid_ad $Name_JOB_2,$Name_JOB_3 -N Fourth_Job -t 1:1000 -pe pe_slots 16 ./job4.sh `""" self._setScheduler("UGE") self.setShell("/bin/bash -l") self.setDefaultConfig("RESOURCE_MEM 200MB RESOURCE_NODES 1") self.addJob("JOB_NAME First_Job RESOURCE_NODES 8 RESOURCE_EXCLUSIVE ./job1.sh ") self.addJob("JOB_NAME Second_Job JOB_ARRAY 1:10 ./job2.sh ","LAST_ADDED") self.addJob("JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB ./job3.sh ", "LAST_ADDED_ARRAY") self.addJob("JOB_NAME Fourth_Job JOB_ARRAY 1:1000 RESOURCE_NODES 16 ./job4.sh ", "LAST_ARRAY 2") self.addEmail("mwandermaassoares@lbl.gov","END ABORT START") returnScript = self.getScript() print (returnScript) print "--------------------------------------------------" self.clearAll() #---------------------------------------SLURM SECOND TEST___________________________________________ secondSLURMcript = \ """"#/bin/bash -l\n #$ -M mwandermaassoares@lbl.gov\n #$ -m eab\n $Name_JOB_1=`sbatch --job-name=First_Job -ntasks-per-node=8 -l exclusive.c ./job1.sh `\n $Name_JOB_2=`sbatch -d afterany:$Name_JOB_1 --job-name=Second_Job --array=1-10 ./job2.sh `\n $Name_JOB_3=`sbtach -d afterany:$Name_JOB_2 -job-name=Third_Job --array:3-25 --contraint=IB ./job3.sh `\n $Name_JOB_4=`sbatch -d afterany:$Name_JOB_2:$Name_JOB_3 --job-name=Fourth_Job --array=1-1000 -pntasks-per-node=16 ./job4.sh `""" self._setScheduler("SLURM") self.setShell("/bin/bash -l") self.setDefaultConfig("RESOURCE_MEM 200MB RESOURCE_NODES 1") self.addJob("JOB_NAME First_Job RESOURCE_NODES 8 RESOURCE_EXCLUSIVE ./job1.sh ") self.addJob("JOB_NAME Second_Job JOB_ARRAY 1:10 ./job2.sh ","LAST_ADDED") self.addJob("JOB_NAME Third_Job JOB_ARRAY 3:25 RESOURCE_IB ./job3.sh ", "LAST_ADDED_ARRAY") self.addJob("JOB_NAME Fourth_Job JOB_ARRAY 1:1000 RESOURCE_NODES 16 ./job4.sh ", "LAST_ARRAY 2") self.addEmail("mwandermaassoares@lbl.gov","END ABORT START") returnScript = self.getScript() print (returnScript) print "--------------------------------------------------" self.clearAll() return True if __name__ == "__main__": # run unit test test = script_scheduler_writer("") test.unitTest()
true
5cc0b0934270492e92dbb799aa2417d716e570aa
Python
ray-project/ray
/python/ray/tune/search/bohb/bohb_search.py
UTF-8
13,731
2.609375
3
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
"""BOHB (Bayesian Optimization with HyperBand)""" import copy import logging import math # use cloudpickle instead of pickle to make BOHB obj # pickleable from ray import cloudpickle from typing import Dict, List, Optional, Union from ray.tune.result import DEFAULT_METRIC from ray.tune.search.sample import ( Categorical, Domain, Float, Integer, LogUniform, Normal, Quantized, Uniform, ) from ray.tune.search import ( UNRESOLVED_SEARCH_SPACE, UNDEFINED_METRIC_MODE, UNDEFINED_SEARCH_SPACE, Searcher, ) from ray.tune.search.variant_generator import parse_spec_vars from ray.tune.utils.util import flatten_dict, unflatten_list_dict try: import ConfigSpace from hpbandster.optimizers.config_generators.bohb import BOHB except ImportError: BOHB = ConfigSpace = None logger = logging.getLogger(__name__) class _BOHBJobWrapper: """Mock object for HpBandSter to process.""" def __init__(self, loss: float, budget: float, config: Dict): self.result = {"loss": loss} self.kwargs = {"budget": budget, "config": config.copy()} self.exception = None class TuneBOHB(Searcher): """BOHB suggestion component. Requires HpBandSter and ConfigSpace to be installed. You can install HpBandSter and ConfigSpace with: ``pip install hpbandster ConfigSpace``. This should be used in conjunction with HyperBandForBOHB. Args: space: Continuous ConfigSpace search space. Parameters will be sampled from this space which will be used to run trials. bohb_config: configuration for HpBandSter BOHB algorithm metric: The training result objective value attribute. If None but a mode was passed, the anonymous metric `_metric` will be used per default. mode: One of {min, max}. Determines whether objective is minimizing or maximizing the metric attribute. points_to_evaluate: Initial parameter suggestions to be run first. This is for when you already have some good parameters you want to run first to help the algorithm make better suggestions for future parameters. Needs to be a list of dicts containing the configurations. seed: Optional random seed to initialize the random number generator. Setting this should lead to identical initial configurations at each run. max_concurrent: Number of maximum concurrent trials. If this Searcher is used in a ``ConcurrencyLimiter``, the ``max_concurrent`` value passed to it will override the value passed here. Set to <= 0 for no limit on concurrency. Tune automatically converts search spaces to TuneBOHB's format: .. code-block:: python config = { "width": tune.uniform(0, 20), "height": tune.uniform(-100, 100), "activation": tune.choice(["relu", "tanh"]) } algo = TuneBOHB(metric="mean_loss", mode="min") bohb = HyperBandForBOHB( time_attr="training_iteration", metric="mean_loss", mode="min", max_t=100) run(my_trainable, config=config, scheduler=bohb, search_alg=algo) If you would like to pass the search space manually, the code would look like this: .. code-block:: python import ConfigSpace as CS config_space = CS.ConfigurationSpace() config_space.add_hyperparameter( CS.UniformFloatHyperparameter("width", lower=0, upper=20)) config_space.add_hyperparameter( CS.UniformFloatHyperparameter("height", lower=-100, upper=100)) config_space.add_hyperparameter( CS.CategoricalHyperparameter( name="activation", choices=["relu", "tanh"])) algo = TuneBOHB( config_space, metric="mean_loss", mode="min") bohb = HyperBandForBOHB( time_attr="training_iteration", metric="mean_loss", mode="min", max_t=100) run(my_trainable, scheduler=bohb, search_alg=algo) """ def __init__( self, space: Optional[Union[Dict, "ConfigSpace.ConfigurationSpace"]] = None, bohb_config: Optional[Dict] = None, metric: Optional[str] = None, mode: Optional[str] = None, points_to_evaluate: Optional[List[Dict]] = None, seed: Optional[int] = None, max_concurrent: int = 0, ): assert ( BOHB is not None ), """HpBandSter must be installed! You can install HpBandSter with the command: `pip install hpbandster ConfigSpace`.""" if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." self.trial_to_params = {} self._metric = metric self._bohb_config = bohb_config if isinstance(space, dict) and space: resolved_vars, domain_vars, grid_vars = parse_spec_vars(space) if domain_vars or grid_vars: logger.warning( UNRESOLVED_SEARCH_SPACE.format(par="space", cls=type(self)) ) space = self.convert_search_space(space) self._space = space self._seed = seed self.running = set() self.paused = set() self._max_concurrent = max_concurrent self._points_to_evaluate = points_to_evaluate super(TuneBOHB, self).__init__( metric=self._metric, mode=mode, ) if self._space: self._setup_bohb() def set_max_concurrency(self, max_concurrent: int) -> bool: self._max_concurrent = max_concurrent return True def _setup_bohb(self): from hpbandster.optimizers.config_generators.bohb import BOHB if self._metric is None and self._mode: # If only a mode was passed, use anonymous metric self._metric = DEFAULT_METRIC if self._mode == "max": self._metric_op = -1.0 elif self._mode == "min": self._metric_op = 1.0 if self._seed is not None: self._space.seed(self._seed) self.running = set() self.paused = set() bohb_config = self._bohb_config or {} self.bohber = BOHB(self._space, **bohb_config) def set_search_properties( self, metric: Optional[str], mode: Optional[str], config: Dict, **spec ) -> bool: if self._space: return False space = self.convert_search_space(config) self._space = space if metric: self._metric = metric if mode: self._mode = mode self._setup_bohb() return True def suggest(self, trial_id: str) -> Optional[Dict]: if not self._space: raise RuntimeError( UNDEFINED_SEARCH_SPACE.format( cls=self.__class__.__name__, space="space" ) ) if not self._metric or not self._mode: raise RuntimeError( UNDEFINED_METRIC_MODE.format( cls=self.__class__.__name__, metric=self._metric, mode=self._mode ) ) max_concurrent = ( self._max_concurrent if self._max_concurrent > 0 else float("inf") ) if len(self.running) >= max_concurrent: return None if self._points_to_evaluate: config = self._points_to_evaluate.pop(0) else: # This parameter is not used in hpbandster implementation. config, _ = self.bohber.get_config(None) self.trial_to_params[trial_id] = copy.deepcopy(config) self.running.add(trial_id) return unflatten_list_dict(config) def on_trial_result(self, trial_id: str, result: Dict): if trial_id not in self.paused: self.running.add(trial_id) if "hyperband_info" not in result: logger.warning( "BOHB Info not detected in result. Are you using " "HyperBandForBOHB as a scheduler?" ) elif "budget" in result.get("hyperband_info", {}): hbs_wrapper = self.to_wrapper(trial_id, result) self.bohber.new_result(hbs_wrapper) def on_trial_complete( self, trial_id: str, result: Optional[Dict] = None, error: bool = False ): del self.trial_to_params[trial_id] self.paused.discard(trial_id) self.running.discard(trial_id) def to_wrapper(self, trial_id: str, result: Dict) -> _BOHBJobWrapper: return _BOHBJobWrapper( self._metric_op * result[self.metric], result["hyperband_info"]["budget"], self.trial_to_params[trial_id], ) # BOHB Specific. # TODO(team-ml): Refactor alongside HyperBandForBOHB def on_pause(self, trial_id: str): self.paused.add(trial_id) self.running.discard(trial_id) def on_unpause(self, trial_id: str): self.paused.discard(trial_id) self.running.add(trial_id) @staticmethod def convert_search_space(spec: Dict) -> "ConfigSpace.ConfigurationSpace": resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec) if grid_vars: raise ValueError( "Grid search parameters cannot be automatically converted " "to a TuneBOHB search space." ) # Flatten and resolve again after checking for grid search. spec = flatten_dict(spec, prevent_delimiter=True) resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec) def resolve_value( par: str, domain: Domain ) -> ConfigSpace.hyperparameters.Hyperparameter: quantize = None sampler = domain.get_sampler() if isinstance(sampler, Quantized): quantize = sampler.q sampler = sampler.sampler if isinstance(domain, Float): if isinstance(sampler, LogUniform): lower = domain.lower upper = domain.upper if quantize: lower = math.ceil(domain.lower / quantize) * quantize upper = math.floor(domain.upper / quantize) * quantize return ConfigSpace.UniformFloatHyperparameter( par, lower=lower, upper=upper, q=quantize, log=True ) elif isinstance(sampler, Uniform): lower = domain.lower upper = domain.upper if quantize: lower = math.ceil(domain.lower / quantize) * quantize upper = math.floor(domain.upper / quantize) * quantize return ConfigSpace.UniformFloatHyperparameter( par, lower=lower, upper=upper, q=quantize, log=False ) elif isinstance(sampler, Normal): return ConfigSpace.hyperparameters.NormalFloatHyperparameter( par, mu=sampler.mean, sigma=sampler.sd, q=quantize, log=False ) elif isinstance(domain, Integer): if isinstance(sampler, LogUniform): lower = domain.lower upper = domain.upper if quantize: lower = math.ceil(domain.lower / quantize) * quantize upper = math.floor(domain.upper / quantize) * quantize else: # Tune search space integers are exclusive upper -= 1 return ConfigSpace.UniformIntegerHyperparameter( par, lower=lower, upper=upper, q=quantize, log=True ) elif isinstance(sampler, Uniform): lower = domain.lower upper = domain.upper if quantize: lower = math.ceil(domain.lower / quantize) * quantize upper = math.floor(domain.upper / quantize) * quantize else: # Tune search space integers are exclusive upper -= 1 return ConfigSpace.UniformIntegerHyperparameter( par, lower=lower, upper=upper, q=quantize, log=False ) elif isinstance(domain, Categorical): if isinstance(sampler, Uniform): return ConfigSpace.CategoricalHyperparameter( par, choices=domain.categories ) raise ValueError( "TuneBOHB does not support parameters of type " "`{}` with samplers of type `{}`".format( type(domain).__name__, type(domain.sampler).__name__ ) ) cs = ConfigSpace.ConfigurationSpace() for path, domain in domain_vars: par = "/".join(str(p) for p in path) value = resolve_value(par, domain) cs.add_hyperparameter(value) return cs def save(self, checkpoint_path: str): save_object = self.__dict__ with open(checkpoint_path, "wb") as outputFile: cloudpickle.dump(save_object, outputFile) def restore(self, checkpoint_path: str): with open(checkpoint_path, "rb") as inputFile: save_object = cloudpickle.load(inputFile) self.__dict__.update(save_object)
true
04bf2ac55986bea800a619467034cd9a61e32141
Python
fosua/Lab_Python_06
/Lab06.py
UTF-8
3,056
3.421875
3
[]
no_license
class Player: def __init__(self,firstname,lastname, team= None): self.first_name = firstname self.last_name = lastname self.score = [] self.team = team def add_score(self, date, score): self.score.append(score) return self.score #print self.score def total_score (self): self.total = 0 for i in range (len(self.score)): self.total = self.total + self.score[i] print self.total def average_score(self): len_score = float(len(self.score)) self.average = float((self.total)/len_score) print self.average torres= Player('Fernando', 'Torres', 'Chelsea') new_score = [0,0,1,0,1] for i in range(len(new_score)): torres_score = torres.add_score ('011/07/09',new_score[i]) print torres_score torres.total_score() torres.average_score() print '' print '' #part III class Team: def __init__(self, name, league, manager_name, points): self.name = name self.league = league self.manger_name = manager_name self.points = points self.players = [] def add_player(self, player): self.players.append(player) print self.players def __str__(self): return 'the name of the team is '+self.name spain = Team( 'spain', 'la liga', 'esta',51) print spain portugal = Team('portugal', 'epl', 'lizzy',46) print portugal torres= Player('Fernando', 'Torres', spain) ronaldo = Player('Christiano', 'Ronaldo', portugal) #print torres.first_name #print ronaldo.team spain.add_player('ronaldo') portugal.add_player('torres') class Match: def __init__(self, home_team, away_team, date): self.home_team = home_team self.away_team = away_team self.date = date self.home_scores = {} self.away_scores = {} def home_score(self): return sum(self.home_scores.values()) def away_score(self): return sum(self.away_scores.values()) def winner(self): if self.home_score() > self.away_score(): return self.home_team.name elif self.home_score() < self.away_score(): return self.away_team.name elif self.home_score() == self.away_score(): return 'draw' def add_score(self, player, score): players_team = player.team if players_team == self.home_team: if player.last_name in self.home_scores: self.home_scores[player.last_name] += score else: self.home_scores [player.last_name]= score elif players_team == self.away_team: if player.last_name in self.away_scores: self.away_scores[player.last_name] += score else: self.away_scores [player.last_name]= score euro_match_final = Match(spain, portugal,'2012/06/27') euro_match_final.add_score(torres, 1) euro_match_final.add_score(ronaldo, 1) euro_match_final.add_score(torres, 1) print euro_match_final.winner()
true
4c83d580d3ed5334b9afad9ab0943a1f5d1fa335
Python
Aasthaengg/IBMdataset
/Python_codes/p02937/s449980375.py
UTF-8
867
2.8125
3
[]
no_license
def main(): import sys import copy from bisect import bisect_right from collections import defaultdict input = sys.stdin.readline s, t = input().strip(), input().strip() lens = len(s) index_list = defaultdict(list) leng = defaultdict(int) for i, ss in enumerate(s): index_list[ss].append(i) for s, i in index_list.items(): if i: leng[s] = len(index_list[s]) prev = -1 ans = 0 for tt in t: if tt not in leng: print(-1) return False p = bisect_right(index_list[tt], prev) # print('tt={}, prev={}, p={}, ans={}'.format(tt, prev, p, ans)) if p < leng[tt]: prev = index_list[tt][p] else: prev = index_list[tt][0] ans += lens print(ans+prev+1) if __name__ == '__main__': main()
true
19632b07fbb4f05c419c7f47636a8e4aa96848a8
Python
rcasas37/PUPS
/ROV/test_uart.py
UTF-8
1,695
3.21875
3
[]
no_license
# Import code modules import time import serial import os import test_uart #def main(): # Open serial port communication ser = serial.Serial(port='/dev/ttyS0', baudrate=9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1) # (physical port, baudrate, timeout interval) ser.flushInput() def write_ser(user): strr = user.encode() ser.write(strr) def read_ser(): line = ser.read(1) return line def read_ser_port(size=None, eol=';'): # Open and read from serial port and save in cmd_message variable len_eol = len(eol) line_str = bytearray() while True: #ser.flushInput() # Flush serial port char = ser.read(1) # Read 1 byte or 1 char if char: #if char != ';': # Is the current char the terminating char? No then append it. line_str += char # Append a single char string to the line_str if line_str[-len_eol:] == eol: # Check if char is terminating character break if size is not None and len(line_str) >= size: # Check if message is even in the buffer break else: break return bytes(line_str) while 1: str_input = "S,1,2,3,4,5,6,7;" line = read_ser_port() write_ser(str_input) #time.sleep(.16) print("This is the received char: ", line) #main()
true
862cba6c0ff1a1a973be4a53de4beba31595b78c
Python
tan506/wordvector
/main.py
UTF-8
929
3.109375
3
[]
no_license
#First open the file location of the text document for proessing the textual schametics #you are trying to derive morpheme embeddings using CNN'schametics #decide on the appropriate CNN models with open("browncorpus.txt") as model_document: try: while True: latin = model_document.next().strip() gloss = model_document.next().strip() trans = model_document.next().strip() #processing the embedded morphing process(latin, gloss, trans) model_document.next() # skip blank line except StopIteration: # reached end of file pass from itertools import chain def chunk(s): return chain(*(c.split("-") for c in s.split())) #processing the CNN's using Natural Language Processing #this leaves the chunks of morpheme and predicts the next wordings def process(latin, gloss, trans): chunks = zip(chunk(latin), chunk(gloss))
true
cc24c1b611c91cc683704352bb128042497179bb
Python
tommasorea/forest_fires_cause_predictions
/src/main.py
UTF-8
171
2.671875
3
[]
no_license
import pandas as pd filepath = "../data/fires2015_train.csv" # Read the file into a variable fifa_data df = pd.read_csv(filepath, parse_dates=True) print(df.head(10))
true
73d5c7ff2861adb81ff3effe699cf2c032d5cd96
Python
pletzer/firstStepsInViz
/scene/coneWithLight.py
UTF-8
958
2.796875
3
[]
no_license
import vtk # create a rendering window and renderer ren = vtk.vtkRenderer() ren.SetBackground(0.5, 0.5, 0.5) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) renWin.SetSize(640, 480) # create lights light = vtk.vtkLight() light.SetPosition(4, 3, 2) light.SetColor(1, 0.5, 0.3) light.SetIntensity(0.3) # create another light light2 = vtk.vtkLight() light2.SetPosition(2, 3, 4) light2.SetColor(1, 0, 1.0) light2.SetIntensity(0.4) # create a renderwindowinteractor iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # create cone cone = vtk.vtkConeSource() cone.SetResolution(60) # mapper coneMapper = vtk.vtkPolyDataMapper() coneMapper.SetInputConnection(cone.GetOutputPort()) # actor coneActor = vtk.vtkActor() coneActor.SetMapper(coneMapper) # assign actor to the renderer ren.AddActor(coneActor) ren.AddLight(light) ren.AddLight(light2) # enable user interface interactor iren.Initialize() renWin.Render() iren.Start()
true
9068842e42ed47adbc77be0374f7050ab70f517b
Python
iTeam-co/pytglib
/pytglib/api/types/file_part.py
UTF-8
522
3.046875
3
[ "MIT" ]
permissive
from ..utils import Object class FilePart(Object): """ Contains a part of a file Attributes: ID (:obj:`str`): ``FilePart`` Args: data (:obj:`bytes`): File bytes Returns: FilePart Raises: :class:`telegram.Error` """ ID = "filePart" def __init__(self, data, **kwargs): self.data = data # bytes @staticmethod def read(q: dict, *args) -> "FilePart": data = q.get('data') return FilePart(data)
true
724adca8ea7b9884cc7d91687f8a213b32f0623e
Python
agi1512/ConnectFourAI
/screenreader.py
UTF-8
5,337
2.765625
3
[]
no_license
import win32gui, win32api, win32con, time, colorsys from win32api import GetSystemMetrics import ImageGrab from connectfour import * from minimax import * from book import * import threading ## TODO HANDLE WHEN TWO STRIPES ARE THE SAME COLOR ## MAKE METHOD FOR FINDING KEYS start = [785, 135] NUM_TABS = 20 tabs = [True] * NUM_TABS lock = threading.Lock() class grabber: def __init__(self): self.image = ImageGrab.grab() def capture(self): self.image = ImageGrab.grab() def get_pixel_color(self, i_x, i_y): return self.image.getpixel((i_x, i_y)) def click(self, x,y): win32api.SetCursorPos((x,y)) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,x,y,0,0) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,x,y,0,0) def get_board(self): columns = [0,0,0,0,0,0,0] for i in range(0, 6): for j in range(0, 7): if self.get_pixel_color(start[0] + 135 * j, start[1] + 135 * i) != (255, 255, 255): columns[j] += 1 return columns def enter_board_string(self, board): for i in board: self.click(start[0] + 135 * int(i), 135) def click_back(self): self.click(475, 780) def reset(self): for i in range(0, 20): self.click_back() def enter_next_move(self): if self.get_pixel_color(585, 875) == (166, 165, 201): self.click(585, 875) self.click(585, 875) else: self.click(585, 975) self.click(585, 975) def get_best_move(self, board_string): self.reset() self.enter_board_string(board_string) time.sleep(0.7) first = self.get_board() self.enter_next_move() time.sleep(0.7) second = self.get_board() for i in range(0, 7): if first[i] != second[i]: return i return -1 def get_tab(self): while True: lock.acquire() for i in range(len(tabs)): if tabs[i]: tabs[i] = False lock.release() return i lock.release() time.sleep(0.1) def release_tab(self, tab): lock.acquire() tabs[tab] = True lock.release() def switch_tab(self, tab): self.click(50 + 83*tab, 15) time.sleep(0.05) transpose = [] bk = book() bk.book = {} found = 0 def generate(node, max_depth, printer=False): global found if max_depth <= 0: return if node.gethash() in transpose: #print("already have a transpose") return if bk.inBook(node.line): #print("already have symmertry") return # if this position isnt useful, give up checker = Search(node) checker.clear_history() checker.allowed_time = 5 checker.start_time = time.time() if abs(checker.minimax(node, 4, -999999, 999999)) > 5000: #print("Aborting line due to bad score") return transpose.append(node.gethash()) # get the best move for this position #bk.book[node.line] = str(foo.get_best_move(node.line)) lock.acquire() if node.line not in bk.opening_book: print(found) found += 1 bk.book[node.line] = "" lock.release() for move in node.legal_moves(): if printer: print(move) child = node.export() child.make_move(move) generate(child, max_depth - 1) def do_sleep(): lock.release() time.sleep(1.1) lock.acquire() def worker(): foo = grabber() while True: my_tab = foo.get_tab() my_key = "" while my_key == "": lock.acquire() for key in bk.book: if bk.book[key] == "": my_key = key bk.book[key] = "taken" break lock.release() time.sleep(0.05) lock.acquire() foo.switch_tab(my_tab) foo.reset() foo.enter_board_string(my_key) do_sleep() foo.switch_tab(my_tab) time.sleep(0.1) foo.capture() lock.release() first = foo.get_board() lock.acquire() foo.switch_tab(my_tab) foo.enter_next_move() do_sleep() foo.switch_tab(my_tab) time.sleep(0.1) foo.capture() lock.release() second = foo.get_board() for i in range(0, 7): if first[i] != second[i]: lock.acquire() bk.book[my_key] = str(i) lock.release() foo.release_tab(my_tab) threads = [] for i in range(0, NUM_TABS): threads.append(threading.Thread(target=worker)) threads[i].daemon = True threads[i].start() startt = time.time() generate(Root_Node(), 7, True) while True: time.sleep(1) lock.acquire() done = True counter = 0 for key in bk.book: if bk.book[key] == "" or bk.book[key] == "taken" and key != "": counter += 1 done = False lock.release() print(counter) if done: break print(time.time() - startt) print(len(bk.book)) filer = open("output.txt", "w") filer.write(str(bk.book)) filer.close()
true
19543e5f564d2a360d140ea427900d80d832b50e
Python
ivombi/Introduction-to-Programming
/assignment7.py
UTF-8
408
2.84375
3
[]
no_license
import sys rating = sys.argv[1:] number_list = [1,2,3,4,5,6,7,8,9] def catapproval(rating): def rating_splitting(rating): iterating_word = rating rating_list=[] rating_len = len(rating) new_rating="" for i in range(rating_len): if i == "0" or i == str(rating_len-1): continue else: new_rating+=rating(i)
true
46f537a00838287b6a647200f1f09aa0d51e8bcd
Python
JosephMcGrath/tidyclipper
/src/tidyclipper/feed_entry.py
UTF-8
3,507
2.96875
3
[ "MIT" ]
permissive
""" Tools to manage individual entries from RSS feeds. """ import datetime import re from urllib import parse import feedparser from bs4 import BeautifulSoup from .templates import ENTRY def sanitise_html(html: str) -> str: """ Removes a set of tags from a HTML string. Intended to return HTML that can be embeded in a larger document. """ if html is None: return "" soup = BeautifulSoup(html, "lxml") # Don't want these tags: for tag_label in ["img", "script", "embed", "iframe", "hr"]: for entry in soup.findAll(tag_label): entry.extract() # Don't want most attributes for tag in soup.recursiveChildGenerator(): if hasattr(tag, "attrs"): tag.attrs = { key: value for key, value in tag.attrs.items() if key == "href" } # Remove tags without text for target_tag in soup.find_all(): if len(target_tag.get_text(strip=True)) == 0: target_tag.extract() output = soup.prettify() # Wipe out unwwanted tags entirely output = re.sub(r"<\/?html>", "", output) output = re.sub(r"<\/?body>", "", output) output = re.sub(r"<\/?div>", "", output) output = re.sub(r"<\/?span>", "", output) output = re.sub(r"(\s)+", r"\1", output) output = re.sub(r"<(\/?)h1>", r"<\1h3>", output) output = re.sub(r"<(\/?)h2>", r"<\1h3>", output) output = output.strip() return output def sanitise_url(url: str) -> str: """ Cleans up a url by removing the query parameter. """ temp = list(parse.urlparse(url)) temp[4] = "" return parse.urlunparse(temp) class FeedEntry: """ A single entry from an RSS feed. """ @classmethod def from_rss( cls, entry: feedparser.FeedParserDict, feed: feedparser.FeedParserDict ) -> "FeedEntry": """ Converts a feedparser entry / feed into a FeedEntry. """ try: time = datetime.datetime(*entry.published_parsed[:6]).isoformat() except (AttributeError, TypeError): time = datetime.datetime.now().isoformat() return cls( title=entry.get("title"), summary=entry.get("summary"), link=sanitise_url(entry.get("link")), time=time, feed=feed.feed.get("title"), source=feed.get("href"), ) def __init__( self, title: str, summary: str, link: str, time: str, feed: str, source: str ): if title is None: self.title: str = "-" else: self.title = title.strip() self.summary = summary self.link = link self.time = time self.feed = feed self.source = source try: self.summary = sanitise_html(self.summary) except TypeError: pass def __hash__(self) -> int: return hash(self.link) def __repr__(self) -> str: return f"<Feed Entry : {self.title[:50]}>" def as_markdown(self) -> str: """ Convert the feed entry to a simple markdown output format. """ output = f"## {self.title}\n\n" output += f"* {self.time}\n* {self.feed}\n* {self.link}\n\n" output += f"{self.summary}\n\n---" return output def as_html(self) -> str: """ Formats the feed entry to a snippet of HTML. """ self.summary = sanitise_html(self.summary) return ENTRY.render(entry=self)
true
2a4f9986bb02606a2946d2e746869a068a000e9f
Python
cu-swe4s-fall-2019/hash-tables-evangallagher
/hash_tables.py
UTF-8
3,024
3.03125
3
[]
no_license
import hash_functions import sys import time import random class LinearProbe: def __init__(self, N, hash_function): """ returns object, size, and keys from hash table N: length of the hash array T: array to hold the (key, value) tuples M: number of indexes occupied by (key, value) """ self.hash_function = hash_function self.N = N self.T = [None for i in range(N)] self.M = 0 def add(self, key, value): """adds keys and values""" start_hash = self.hash(key, self.N) for i in range(self.N): test_slot = (start_hash + i) % self.N if self.T[test_slot] is None: self.T[test_slot] = (key, value) self.M += 1 return True else: return False def search(self, key): """Searches for key in hash table """ hash_slot = self.hash(key, self.N) for i in range(self.N): test_slot = (hash_slot + i) % self.N if self.T[test_slot] is None: return None if self.T[test_slot][0] == key: return self.T[test_slot][1] else: return None class ChainedHash: def __init__(self, N, hash_function): self.hash_function = hash_function self.N = N self.T = [[] for i in range(N)] self.M = 0 def add(self, key, value): start_hash = self.hash_function(key, self.N) self.T[start_hash] = self.hash(key, self.N) self.M += 1 return True def search(self, key): start_hash = self.hash_function(key, self.N) for k, v in self.T[start_hash]: if key == k: return v return None if __name__ == '__main__': N = int(sys.argv[1]) hash_alg = sys.argv[2] collision_strategy = sys.argv[3] data_file_namem = sys.argv[4] keys_to_add = int(sys.argv[5]) ht = None if hash_alg == 'ascii': if collision_strategy == 'linear': ht = LPHashTable(N, hash_functions.h_ascii_sum) elif collision_strategy == 'chain': ht = ChainHashTable(N, hash_functions.h_ascii_sum) elif hash_alg == 'rolling': if collision_strategy == 'linear': ht = LPHashTable(N, hash_functions.h_polynomial_rolling) elif collision_strategy == 'chain': ht = ChainHashTable(N, hash_functions.h_polynomial_rolling) elif hash_alg == 'python': if collision_strategy == 'linear': ht = LPHashTable(N, hash_functions.h_python) elif collision_strategy == 'chain': ht = ChainHashTable(N, hash_functions.h_python) keys_to_search = 100 V = [] for l in open(data_file_name): reservoir_sampling(l, keys_to_search, V) t0 = time.time() ht.insert(l, l) t1 = time.time() print('insert', ht.M/ht.N, t1 - t0) if ht.M == keys_to_add: sys.exit
true
581112f826749be80ac55fca91ed0457280231d9
Python
Aasthaengg/IBMdataset
/Python_codes/p03327/s827607125.py
UTF-8
63
3.078125
3
[]
no_license
N = int(input()) ans = "ABC" if N <= 999 else "ABD" print(ans)
true
b675edd995d0532ca10f820b01faaee8fb22cf47
Python
ringof/pyembc
/pyembc/_pyembc.py
UTF-8
22,202
2.890625
3
[ "MIT" ]
permissive
import sys import ctypes import struct from enum import Enum, auto from typing import Type, Any, Iterable, Dict, Optional, Mapping __all__ = [ "pyembc_struct", "pyembc_union" ] # save the system's endianness _SYS_ENDIANNESS_IS_LITTLE = sys.byteorder == "little" # name for holding pyembc fields and endianness _FIELDS = "__pyembc_fields__" _ENDIAN = "__pyembc_endian__" # name of the field in ctypes instances that hold the struct char _CTYPES_TYPE_ATTR = "_type_" # name of the field in ctypes Structure/Union instances that hold the fields _CTYPES_FIELDS_ATTR = "_fields_" # name of the field in ctypes Structure/Union instances that hold packing value _CTYPES_PACK_ATTR = "_pack_" # name of the field in ctypes Structure instances that are non-native-byteorder _CTYPES_SWAPPED_ATTR = "_swappedbytes_" class PyembcFieldType: """ Class for holding information about the fields """ # noinspection PyProtectedMember def __init__(self, _type, bit_size: int, bit_offset: int): self.base_type = _type self.bit_size = bit_size self.bit_offset = bit_offset @property def is_bitfield(self) -> bool: return self.bit_size is not None @property def is_ctypes_type(self) -> bool: # noinspection PyProtectedMember return issubclass( self.base_type, (ctypes._SimpleCData, ctypes.Structure, ctypes.Union, ctypes.Array) ) @property def is_ctypes_simple_type(self): # noinspection PyProtectedMember return issubclass(self.base_type, ctypes._SimpleCData) @property def is_structure(self): return issubclass(self.base_type, ctypes.Structure) class _PyembcTarget(Enum): """ Target type for pyembc class creation """ STRUCT = auto() UNION = auto() def _check_value_for_type(field_type: PyembcFieldType, value: Any): """ Checks whether a value can be assigned to a field. :param field_type: type class of the field. :param value: value to be written :raises: ValueError """ if field_type.is_ctypes_simple_type: # check for ctypes types, that have the _type_ attribute, containing a struct char. struct_char = getattr(field_type.base_type, _CTYPES_TYPE_ATTR) is_signed = struct_char.islower() # noinspection PyProtectedMember if isinstance(value, ctypes._SimpleCData): _value = value.value else: _value = value try: struct.pack(struct_char, _value) except struct.error as e: raise ValueError( f'{value} cannot be set for {field_type.base_type.__name__} ({repr(e)})!' ) from None if field_type.is_bitfield: if is_signed: max_raw = 2 ** (field_type.bit_size - 1) - 1 min_raw = -(2 ** (field_type.bit_size - 1)) else: max_raw = 2 ** field_type.bit_size - 1 min_raw = 0 if not min_raw <= _value <= max_raw: raise ValueError(f"Cannot set {_value} for this bitfield") else: raise TypeError('Got non-ctypes type!') def _is_little_endian(obj: ctypes.Structure) -> bool: """ Checks whether a Structure instance/class is little endian :param obj: Structure instance/class :return: True if little endian """ is_swapped = hasattr(obj, _CTYPES_SWAPPED_ATTR) if _SYS_ENDIANNESS_IS_LITTLE: return not is_swapped else: return is_swapped def _is_pyembc_type(instance: PyembcFieldType) -> bool: """ Checks if an object/field is a pyembc instance by checking if it has the __pyembc_fields__ attribute :param instance: instance to check :return: True if pyembc instance """ return hasattr(instance.base_type, _FIELDS) # noinspection PyProtectedMember def _short_type_name(typeobj: PyembcFieldType) -> str: """ Returns a short type name for a basic type, like u8, s16, etc... :param typeobj: pyembc type object :return: short name for the type """ # noinspection PyUnresolvedReferences byte_size = struct.calcsize(typeobj.base_type._type_) bit_size = byte_size * 8 # noinspection PyUnresolvedReferences signedness = 'u' if typeobj.base_type._type_.isupper() else 's' if issubclass(typeobj.base_type, (ctypes.c_float, ctypes.c_double)): prefix = 'f' else: prefix = signedness return f"{prefix}{bit_size}" # noinspection PyProtectedMember def _c_type_name(typeobj: PyembcFieldType) -> str: """ Returns an ANSI c type name for a basic type, like unsigned char, signed short, etc... :param typeobj: pyembc type object :return: c type name for the type """ # noinspection PyUnresolvedReferences byte_size = struct.calcsize(typeobj.base_type._type_) if issubclass(typeobj.base_type, (ctypes.c_float, ctypes.c_double)): if byte_size == 4: return "float" elif byte_size == 8: return "double" else: raise ValueError("invalid length for float") else: if byte_size == 1: name = "char" elif byte_size == 2: name = "short" elif byte_size == 4: name = "int" elif byte_size == 8: name = "long" else: raise ValueError("invalid length") # noinspection PyUnresolvedReferences signed = "unsigned" if typeobj.base_type._type_.isupper() else "signed" return f"{signed} {name}" def __len_for_union(self): """ Monkypatch __len__() method for ctypes.Union """ return ctypes.sizeof(self) def _print_field_value(field, typeobj): if issubclass(typeobj.base_type, (ctypes.c_float, ctypes.c_double)): return f"{field:.6f}" else: return f"0x{field:X}" def __repr_for_union(self): """ Monkypatch __repr__() method for ctypes.Union """ _fields = getattr(self, _FIELDS) field_count = len(_fields) s = f'{self.__class__.__name__}(' for i, (field_name, field_type) in enumerate(_fields.items()): _field = getattr(self, field_name) if _is_pyembc_type(field_type): s += f"{field_name}={repr(_field)}" else: if field_type.is_bitfield: bitfield_info = field_type.bit_size else: bitfield_info = '' s += f"{field_name}:{_short_type_name(field_type)}{bitfield_info}={_print_field_value(_field, field_type)}" if i < field_count - 1: s += ", " s += ')' return s # Monkypatch ctypes.Union: it only works like this, because Union is a metaclass, # and the method with exec/setattr does not work for it, as described here: # https://stackoverflow.com/questions/53563561/monkey-patching-class-derived-from-ctypes-union-doesnt-work # However, it only seems to be needed for __len__ and __repr__. ctypes.Union.__len__ = __len_for_union ctypes.Union.__repr__ = __repr_for_union def _add_method( cls: Type, name: str, args: Iterable[str], body: str, return_type: Any, docstring="", _globals: Optional[Dict[str, Any]] = None, _locals: Optional[Mapping] = None, class_method=False ): """ Magic for adding methods dynamically to a class. Yes, it uses exec(). I know. Sorry about that. :param cls: class to extend :param name: name of the method to add :param args: arguments of the method :param body: body code of the method :param return_type: return type of the method :param docstring: optional docstring for the method :param _globals: globals for the method :param _locals: locals for the method :param class_method: if True, generates a classmethod """ # default locals __locals = dict() __locals["_return_type"] = return_type return_annotation = "->_return_type" # default globals: __globals = { "cls": cls, "ctypes": ctypes, "struct": struct, "_is_pyembc_type": _is_pyembc_type, "_short_type_name": _short_type_name, "_c_type_name": _c_type_name, "_is_little_endian": _is_little_endian, "_check_value_for_type": _check_value_for_type, "_print_field_value": _print_field_value } # update globals and locals if _globals is not None: __globals.update(_globals) if _locals is not None: __locals.update(_locals) # final code args = ','.join(args) code = f"def {name}({args}){return_annotation}:\n{body}" # execute it and save to the class exec(code, __globals, __locals) method = __locals[name] method.__doc__ = docstring if class_method: method = classmethod(method) setattr(cls, name, method) def _generate_class(_cls, target: _PyembcTarget, endian=sys.byteorder, pack=4): """ Generates a new class based on the decorated one that we gen in the _cls parameter. Adds methods, sets bases, etc. :param _cls: class to work on :param target: union/struct :param endian: endianness for structures. Default is the system's byteorder. :param pack: packing for structures :return: generated class """ # get the original class' annotations, we will parse these and generate the fields from these. cls_annotations = _cls.__dict__.get('__annotations__', {}) # ctypes currently does not implement the BigEndianUnion and LittleEndianUnion despite its documentation # sais so. Therefore, we use simple Union for now. Details: # https://stackoverflow.com/questions/49524952/bigendianunion-is-not-part-of-pythons-ctypes # https://bugs.python.org/issue33178 if endian == "little": _bases = { _PyembcTarget.STRUCT: ctypes.LittleEndianStructure, _PyembcTarget.UNION: ctypes.Union } elif endian == "big": _bases = { _PyembcTarget.STRUCT: ctypes.BigEndianStructure, _PyembcTarget.UNION: ctypes.Union } else: raise ValueError("Invalid endianness") # create the new class cls = type(_cls.__name__, (_bases[target], ), {}) # set our special attribute to save fields setattr(cls, _FIELDS, {}) _fields = getattr(cls, _FIELDS) # go through the annotations and create fields _ctypes_fields = [] _first_endian = None _bitfield_counter = 0 _bitfield_basetype_bitsize = 0 _bitfield_basetype = None bit_offset = None for field_cnt, (field_name, _field_type) in enumerate(cls_annotations.items()): if isinstance(_field_type, tuple): __field_type, bit_size = _field_type if _bitfield_counter == 0: _bitfield_counter = bit_size _bitfield_basetype_bitsize = struct.calcsize(__field_type._type_) * 8 _bitfield_basetype = __field_type bit_offset = 0 else: _bitfield_counter += bit_size if __field_type != _bitfield_basetype: raise SyntaxError("Bitfields must be of same type!") if _bitfield_counter > _bitfield_basetype_bitsize: raise SyntaxError("Bitfield overflow!") if _bitfield_counter == _bitfield_basetype_bitsize: # full bitfield _bitfield_counter = 0 _bitfield_offset = 0 _bitfield_basetype_bitsize = 0 _bitfield_basetype = None bit_offset = (_bitfield_counter - bit_size) else: if _bitfield_counter > 0: raise SyntaxError("Incomplete bitfield definition!") __field_type = _field_type bit_size = None if field_cnt == len(cls_annotations) - 1: if _bitfield_counter > 0: raise SyntaxError("Incomplete bitfield definition!") field_type = PyembcFieldType(_type=__field_type, bit_size=bit_size, bit_offset=bit_offset) # noinspection PyProtectedMember if not field_type.is_ctypes_type: raise TypeError( f'Invalid type for field "{field_name}". Only ctypes types can be used!' ) if target is _PyembcTarget.UNION: # for unions, check if all sub-struct has the same endianness. if field_type.is_structure: if _first_endian is None: _first_endian = _is_little_endian(field_type.base_type) else: _endian = _is_little_endian(field_type.base_type) if _endian != _first_endian: raise TypeError('Only the same endianness is supported in a Union!') # save the field to our special attribute, and also for the ctypes _fields_ attribute _fields[field_name] = field_type if bit_size is None: _ctypes_fields.append((field_name, field_type.base_type)) else: _ctypes_fields.append((field_name, field_type.base_type, bit_size)) # set the ctypes special attributes, note, _pack_ must be set before _fields_! setattr(cls, _CTYPES_PACK_ATTR, pack) setattr(cls, _CTYPES_FIELDS_ATTR, _ctypes_fields) # save the endianness to us, because union streaming/building will need this setattr(cls, _ENDIAN, endian) # Add the generated methods # --------------------------------------------------- # __init__ # --------------------------------------------------- docstring = "init method for the class" body = f""" fields = getattr(self, '{_FIELDS}') if args: if kwargs: raise TypeError('Either positional arguments, or keyword arguments must be given!') if len(args) == len(fields): for arg_val, field_name in zip(args, fields): setattr(self, field_name, arg_val) else: raise TypeError('Invalid number of arguments!') if kwargs: if args: raise TypeError('Either positional arguments, or keyword arguments must be given!') if len(kwargs) == len(fields): for field_name in fields: try: arg_val = kwargs[field_name] except KeyError: raise TypeError(f'Keyword argument {{field_name}} not specified!') setattr(self, field_name, arg_val) else: raise TypeError('Invalid number of keyword arguments!') """ _add_method( cls=cls, name="__init__", args=('self', '*args', '**kwargs',), body=body, docstring=docstring, return_type=None ) # --------------------------------------------------- # __len__ # --------------------------------------------------- docstring = "Gets the byte length of the structure/union" body = f""" return ctypes.sizeof(self) """ _add_method( cls=cls, name="__len__", args=('self',), body=body, docstring=docstring, return_type=int ) # --------------------------------------------------- # stream() # --------------------------------------------------- docstring = "gets the bytestream of the instance" if issubclass(cls, ctypes.Union): body = f""" if cls.__pyembc_endian__ == sys.byteorder: return bytes(self) else: _bytearray = bytearray(self) _bytearray.reverse() return bytes(_bytearray) """ else: body = f""" return bytes(self) """ _add_method( cls=cls, name="stream", args=('self',), body=body, docstring=docstring, return_type=bytes, _globals={"sys": sys} ) # --------------------------------------------------- # parse() # --------------------------------------------------- docstring = "parses the instance values from a bytestream" body = f""" if not isinstance(stream, bytes): raise TypeError("bytes required") ctypes.memmove(ctypes.addressof(self), stream, len(stream)) """ _add_method( cls=cls, name="parse", args=("self", "stream"), body=body, docstring=docstring, return_type=None ) # --------------------------------------------------- # ccode() # --------------------------------------------------- docstring = "Generates the c representation of the instance. Returns a list of the c code lines." body = f""" code = [] _typename = 'struct' if issubclass(cls, ctypes.Structure) else 'union' code.append(f"typedef {{_typename}} _tag_{{cls.__name__}} {{{{") print(' ') for field_name, field_type in cls.{_FIELDS}.items(): _field = getattr(cls, field_name) if _is_pyembc_type(field_type): subcode = field_type.base_type.ccode() code = subcode + code code.append(f" {{field_type.base_type.__name__}} {{field_name}};") else: if field_type.is_bitfield: code.append(f" {{_c_type_name(field_type)}} {{field_name}} : {{field_type.bit_size}};") else: code.append(f" {{_c_type_name(field_type)}} {{field_name}};") code.append(f"}}}} {{cls.__name__}};") return code """ _add_method( cls=cls, name="ccode", args=("cls",), body=body, docstring=docstring, return_type=Iterable[str], class_method=True ) # --------------------------------------------------- # print_ccode() # --------------------------------------------------- docstring = "Generates the c representation of the instance and prints it to the stdout." body = """ print('\\n'.join(cls.ccode())) """ _add_method( cls=cls, name="print_ccode", args=("cls",), body=body, docstring=docstring, return_type=None, class_method=True ) # --------------------------------------------------- # __repr__ # --------------------------------------------------- docstring = "repr method for the instance" body = f""" field_count = len(self.{_FIELDS}) s = f'{{cls.__name__}}(' for i, (field_name, field_type) in enumerate(self.{_FIELDS}.items()): _field = getattr(self, field_name) if _is_pyembc_type(field_type): s += f'{{field_name}}={{repr(_field)}}' else: if field_type.is_bitfield: bitfield_info = f"@{{field_type.bit_size}}" else: bitfield_info = '' s += f'{{field_name}}:{{_short_type_name(field_type)}}{{bitfield_info}}={{_print_field_value(_field, field_type)}}' if i < field_count - 1: s += ', ' s += ')' return s """ _add_method( cls=cls, name="__repr__", args=('self',), body=body, docstring=docstring, return_type=str ) # --------------------------------------------------- # __setattr__ # --------------------------------------------------- docstring = "Attribute setter. Checks values." body = f""" field = self.__getattribute__(field_name) field_type = self.{_FIELDS}[field_name] if _is_pyembc_type(field_type): if not isinstance(value, field_type): raise TypeError( f'invalid value for field "{{field_name}}"! Must be of type {{field_type}}!' ) super(cls, self).__setattr__(field_name, value) else: _check_value_for_type(field_type, value) if isinstance(value, ctypes._SimpleCData): value = value.value super(cls, self).__setattr__(field_name, value) """ _add_method( cls=cls, name="__setattr__", args=('self', 'field_name', 'value',), body=body, docstring=docstring, return_type=None ) return cls def pyembc_struct(_cls=None, *, endian=sys.byteorder, pack: int = 4): """ Magic decorator to create a user-friendly struct class :param _cls: used for distinguishing between call modes (with or without parens) :param endian: endianness. "little" or "big" :param pack: packing of the fields. :return: """ def wrap(cls): return _generate_class(cls, _PyembcTarget.STRUCT, endian, pack) if _cls is None: # call with parens: @pyembc_struct(...) return wrap else: # call without parens: @pyembc_struct return wrap(_cls) def pyembc_union(_cls=None, *, endian=sys.byteorder): """ Magic decorator to create a user-friendly union class :param _cls: used for distinguishing between call modes (with or without parens) :param endian: endianness. "little" or "big" :return: decorated class """ if endian != sys.byteorder: raise NotImplementedError( f"{endian} endian byteorder is currently not supported for Unions." f"This is because ctypes does not implement the BigEndianUnion and LittleEndianUnion despite its " f"documentation says so. Details:" f"https://stackoverflow.com/questions/49524952/bigendianunion-is-not-part-of-pythons-ctypes, " f"https://bugs.python.org/issue33178" ) def wrap(cls): return _generate_class(cls, _PyembcTarget.UNION, endian) if _cls is None: # call with parens: @pyembc_struct(...) return wrap else: # call without parens: @pyembc_struct return wrap(_cls)
true
954fe6d3523e3f7ca0a815a0770a6f1aeba61823
Python
wangyum/Anaconda
/lib/python2.7/site-packages/networkx/generators/tests/test_degree_seq.py
UTF-8
5,734
2.75
3
[ "Python-2.0", "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
#!/usr/bin/env python from nose.tools import * import networkx from networkx import * from networkx.generators.degree_seq import * from networkx.utils import uniform_sequence,powerlaw_sequence def test_configuration_model_empty(): # empty graph has empty degree sequence deg_seq=[] G=configuration_model(deg_seq) assert_equal(G.degree(), {}) def test_configuration_model(): deg_seq=[5,3,3,3,3,2,2,2,1,1,1] G=configuration_model(deg_seq,seed=12345678) assert_equal(sorted(G.degree().values(),reverse=True), [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]) assert_equal(sorted(G.degree(range(len(deg_seq))).values(), reverse=True), [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]) # test that fixed seed delivers the same graph deg_seq=[3,3,3,3,3,3,3,3,3,3,3,3] G1=configuration_model(deg_seq,seed=1000) G2=configuration_model(deg_seq,seed=1000) assert_true(is_isomorphic(G1,G2)) G1=configuration_model(deg_seq,seed=10) G2=configuration_model(deg_seq,seed=10) assert_true(is_isomorphic(G1,G2)) @raises(NetworkXError) def test_configuation_raise(): z=[5,3,3,3,3,2,2,2,1,1,1] G = configuration_model(z, create_using=DiGraph()) @raises(NetworkXError) def test_configuation_raise_odd(): z=[5,3,3,3,3,2,2,2,1,1] G = configuration_model(z, create_using=DiGraph()) @raises(NetworkXError) def test_directed_configuation_raise_unequal(): zin = [5,3,3,3,3,2,2,2,1,1] zout = [5,3,3,3,3,2,2,2,1,2] G = directed_configuration_model(zin, zout) def test_directed_configuation_mode(): G = directed_configuration_model([],[],seed=0) assert_equal(len(G),0) def test_expected_degree_graph_empty(): # empty graph has empty degree sequence deg_seq=[] G=expected_degree_graph(deg_seq) assert_equal(G.degree(), {}) def test_expected_degree_graph(): # test that fixed seed delivers the same graph deg_seq=[3,3,3,3,3,3,3,3,3,3,3,3] G1=expected_degree_graph(deg_seq,seed=1000) G2=expected_degree_graph(deg_seq,seed=1000) assert_true(is_isomorphic(G1,G2)) G1=expected_degree_graph(deg_seq,seed=10) G2=expected_degree_graph(deg_seq,seed=10) assert_true(is_isomorphic(G1,G2)) def test_expected_degree_graph_selfloops(): deg_seq=[3,3,3,3,3,3,3,3,3,3,3,3] G1=expected_degree_graph(deg_seq,seed=1000, selfloops=False) G2=expected_degree_graph(deg_seq,seed=1000, selfloops=False) assert_true(is_isomorphic(G1,G2)) def test_expected_degree_graph_skew(): deg_seq=[10,2,2,2,2] G1=expected_degree_graph(deg_seq,seed=1000) G2=expected_degree_graph(deg_seq,seed=1000) assert_true(is_isomorphic(G1,G2)) def test_havel_hakimi_construction(): G = havel_hakimi_graph([]) assert_equal(len(G),0) z=[1000,3,3,3,3,2,2,2,1,1,1] assert_raises(networkx.exception.NetworkXError, havel_hakimi_graph, z) z=["A",3,3,3,3,2,2,2,1,1,1] assert_raises(networkx.exception.NetworkXError, havel_hakimi_graph, z) z=[5,4,3,3,3,2,2,2] G=havel_hakimi_graph(z) G=configuration_model(z) z=[6,5,4,4,2,1,1,1] assert_raises(networkx.exception.NetworkXError, havel_hakimi_graph, z) z=[10,3,3,3,3,2,2,2,2,2,2] G=havel_hakimi_graph(z) assert_raises(networkx.exception.NetworkXError, havel_hakimi_graph, z, create_using=DiGraph()) def test_directed_havel_hakimi(): # Test range of valid directed degree sequences n, r = 100, 10 p = 1.0 / r for i in range(r): G1 = nx.erdos_renyi_graph(n,p*(i+1),None,True) din = list(G1.in_degree().values()) dout = list(G1.out_degree().values()) G2 = nx.directed_havel_hakimi_graph(din, dout) assert_true(din == list(G2.in_degree().values())) assert_true(dout == list(G2.out_degree().values())) # Test non-graphical sequence dout = [1000,3,3,3,3,2,2,2,1,1,1] din=[103,102,102,102,102,102,102,102,102,102] assert_raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout) # Test valid sequences dout=[1, 1, 1, 1, 1, 2, 2, 2, 3, 4] din=[2, 2, 2, 2, 2, 2, 2, 2, 0, 2] G2 = nx.directed_havel_hakimi_graph(din, dout) assert_true(din == list(G2.in_degree().values())) assert_true(dout == list(G2.out_degree().values())) # Test unequal sums din=[2, 2, 2, 2, 2, 2, 2, 2, 2, 2] assert_raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout) # Test for negative values din=[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2] assert_raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout) def test_degree_sequence_tree(): z=[1, 1, 1, 1, 1, 2, 2, 2, 3, 4] G=degree_sequence_tree(z) assert_true(len(G.nodes())==len(z)) assert_true(len(G.edges())==sum(z)/2) assert_raises(networkx.exception.NetworkXError, degree_sequence_tree, z, create_using=DiGraph()) z=[1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4] assert_raises(networkx.exception.NetworkXError, degree_sequence_tree, z) def test_random_degree_sequence_graph(): d=[1,2,2,3] G = nx.random_degree_sequence_graph(d) assert_equal(d, list(G.degree().values())) def test_random_degree_sequence_graph_raise(): z=[1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4] assert_raises(networkx.exception.NetworkXUnfeasible, random_degree_sequence_graph, z) def test_random_degree_sequence_large(): G = nx.fast_gnp_random_graph(100,0.1) d = G.degree().values() G = nx.random_degree_sequence_graph(d, seed=0) assert_equal(sorted(d), sorted(list(G.degree().values())))
true
4386612ab017678dc3ef7880c2f3b2dbc7b4f2de
Python
BC-SECURITY/Empire
/empire/scripts/sync_starkiller.py
UTF-8
1,446
2.53125
3
[ "BSD-3-Clause" ]
permissive
import logging import subprocess from pathlib import Path from typing import Dict log = logging.getLogger(__name__) def sync_starkiller(empire_config): """ Syncs the starkiller directory with what is in the config. Using dict access because this script should be able to run with minimal packages, not just within empire server. """ starkiller_config = empire_config["starkiller"] starkiller_dir = starkiller_config["directory"] if not Path(starkiller_dir).exists(): log.info("Starkiller: directory not found. Cloning Starkiller") _clone_starkiller(starkiller_config, starkiller_dir) if starkiller_config.get("auto_update"): log.info("Starkiller: Autoupdate on. Pulling latest ref.") _fetch_checkout_pull( starkiller_config["repo"], starkiller_config["ref"], starkiller_dir ) def _clone_starkiller(starkiller_config: Dict, starkiller_dir: str): subprocess.run( ["git", "clone", starkiller_config["repo"], starkiller_dir], check=True, ) def _fetch_checkout_pull(remote_repo, ref, cwd): subprocess.run( ["git", "remote", "set-url", "origin", remote_repo], cwd=cwd, check=True, ) subprocess.run(["git", "fetch"], cwd=cwd, check=True) subprocess.run( ["git", "checkout", ref], cwd=cwd, check=True, ) subprocess.run(["git", "pull", "origin", ref], cwd=cwd)
true
c23fdb43ac4ea21d0ecb205eca9b837296535837
Python
sgt-nagisa/AtCoder
/ABC006D.py
UTF-8
337
3.203125
3
[]
no_license
# ABC 006 D from bisect import bisect_left N = int(input()) A = [int(input()) for k in range(N)] # Longest Increasing Subsequence INF = float("inf") L = [INF for k in range(N+2)] L[0] = -INF for k in range(N): t = bisect_left(L,A[k]) L[t] = A[k] for k in range(1,N+2): if L[k] == INF: print(N-k+1) exit(0)
true
52060db05a736251f12c76a34f1c7d0c6d12fcb2
Python
Mimik1/study
/pec/lab7/process_raw.py
UTF-8
1,055
2.625
3
[]
no_license
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from usbtmc import UsbtmcDevice import sys PREAMBULE_BYTES = 11 DEVICE_PATH = sys.argv[1] PARAMS = sys.stdin.read().splitlines() RAW_DATA_PATH = 'data.raw' COMMAND = 'wav:data?' if __name__ == '__main__': print('PARAMS: {0}'.format(PARAMS)) print('Obtaining data from device...') with open(RAW_DATA_PATH, 'wb') as file: dev = UsbtmcDevice(DEVICE_PATH) file.write(dev.ask(COMMAND)) print('Processing data...') with open(RAW_DATA_PATH, 'rb') as file: file.seek(PREAMBULE_BYTES) data = bytearray(file.read()) samples = [(x - float(PARAMS[0]) - float(PARAMS[1])) * float(PARAMS[2]) for x in data] plt.plot(samples) axes = plt.gca() axes.get_xaxis().set_major_formatter( FuncFormatter(lambda x, p: format(float(x * float(PARAMS[3]) / 100), ',')) ) axes.set_ylim([min(samples) - 50, max(samples) + 50]) plt.savefig('{0}.png'.format(RAW_DATA_PATH)) print('Plot saved to {0}.png'.format(RAW_DATA_PATH))
true
25d2b9e50e85c95c6c1d1b4006cbb8f453c81786
Python
ryanbeales/logfiledurationprocessor
/processor.py
UTF-8
1,560
2.875
3
[ "MIT" ]
permissive
from collections import defaultdict, namedtuple from glob import glob from datetime import datetime import re filenames = r'*.log' start_string = 'Start' end_string = 'End' uuid_pattern = r'[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}' uuid_times = defaultdict() def process_line(line): linelist = line.split('|') time = linelist[1].strip() uuid = re.search(uuid_pattern, line) if uuid: identifer = '{uuid}'.format(uuid=uuid.group(0)) if start_string in line: uuid_times[identifer] = {'start': time, 'end': None, 'duration': None} return if end_string in line: if identifer not in uuid_times.keys(): # This uuid has not seen a start time, probably in # a previous log file we don't have. return uuid_times[identifer]['end'] = time duration = datetime.strptime(uuid_times[identifer]['end'], '%H:%M:%S.%f') - datetime.strptime(uuid_times[identifer]['start'], '%H:%M:%S.%f') uuid_times[identifer]['duration'] = duration def process_files(filenames): for filename in glob(filenames): with open(filename,'r') as file: for line in file.readlines(): process_line(line) if __name__ == '__main__': # Process the log files: process_files(filenames) # Print out the duration of each uuid: for uuid in uuid_times: print uuid, uuid_times[uuid]['duration']
true
f90b3acbfd92cc770a4dd58a33f1826141eb0e16
Python
rustylocks79/Figgie
/agent/pricers/custom_faded_pricer.py
UTF-8
6,314
2.515625
3
[ "MIT" ]
permissive
from typing import Optional import numpy as np from agent.modular_agent import Pricer from figgie import Figgie, Suit class CustomFadedPricer(Pricer): def get_bidding_price(self, figgie: Figgie, suit: Suit, utils: np.ndarray) -> Optional[int]: market = figgie.markets[suit.value] return self.get_bidding_price_internal(market.buying_price, utils[suit.value], market.last_price) def get_bidding_price_internal(self, market_buying_price, util, last_price): minimum = market_buying_price + 1 if market_buying_price is not None else 1 maximum = util if last_price is not None and minimum < last_price < maximum: maximum = last_price assert minimum <= maximum if market_buying_price is None: if util <= 306.5: if util <= 130.5: if util <= 48.5: return (maximum - minimum) // 4 + minimum else: return (maximum - minimum) // 8 + minimum else: if util <= 220.5: return (maximum - minimum) // 12 + minimum else: return (maximum - minimum) // 12 + minimum else: if util <= 555.5: if util <= 428.5: return (maximum - minimum) // 16 + minimum else: return (maximum - minimum) // 16 + minimum else: if util <= 680.5: return (maximum - minimum) // 32 + minimum else: return (maximum - minimum) // 32 + minimum else: if util <= 44.5: if util <= 24.5: if util <= 15.5: return (maximum - minimum) // 4 + minimum else: return (maximum - minimum) // 4 + minimum else: if util <= 34.5: return (maximum - minimum) // 4 + minimum else: return (maximum - minimum) // 4 + minimum else: if util <= 322.3: if util <= 69.5: return (maximum - minimum) // 4 + minimum else: return (maximum - minimum) // 4 + minimum else: if util < 579.5: return (maximum - minimum) // 4 + minimum else: return (maximum - minimum) // 4 + minimum def get_asking_price(self, figgie: Figgie, suit: Suit, utils: np.ndarray) -> Optional[int]: market = figgie.markets[suit.value] return self.get_asking_price_internal(market.selling_price, utils[suit.value], market.last_price) def get_asking_price_internal(self, market_asking_price, util, last_price): minimum = util maximum = market_asking_price - 1 if market_asking_price else util * 2 if last_price is not None and minimum < last_price < maximum: minimum = last_price assert minimum <= maximum if market_asking_price is None: if util <= 316.5: if util <= 54.5: if util <= 26.5: return maximum - (3 * (maximum - minimum)) // 4 else: return maximum - (3 * (maximum - minimum)) // 4 else: if util <= 156.5: return maximum - (7 * (maximum - minimum)) // 8 else: return maximum - (7 * (maximum - minimum)) // 8 else: if util <= 570.5: if util <= 445.5: return maximum - (11 * (maximum - minimum)) // 12 else: return maximum - (11 * (maximum - minimum)) // 12 else: if util <= 693.5: return maximum - (11 * (maximum - minimum)) // 16 else: return maximum - (11 * (maximum - minimum)) // 16 else: if market_asking_price <= 314.4: if util <= 20.5: if market_asking_price <= 58.5: return maximum - (maximum - minimum) // 4 else: return maximum - (maximum - minimum) // 4 else: if util <= 53.5: return maximum - (maximum - minimum) // 4 else: return maximum - (maximum - minimum) // 4 else: if market_asking_price <= 567.5: if util <= 119.5: return maximum - (maximum - minimum) // 4 else: return maximum - (maximum - minimum) // 4 else: if util <= 195: return maximum - (maximum - minimum) // 4 else: return maximum - (maximum - minimum) // 4 def get_at_price(self, figgie: Figgie, suit: Suit, utils: np.ndarray) -> Optional[tuple]: market = figgie.markets[suit.value] return self.get_at_price_internal(market.buying_price, market.selling_price, utils[suit.value], market.last_price) def get_at_price_internal(self, market_bidding_price, market_asking_price, util, last_price) -> Optional[tuple]: bidding_price = self.get_bidding_price_internal(market_bidding_price, util, last_price) asking_price = self.get_asking_price_internal(market_asking_price, util, last_price) if asking_price == bidding_price: if bidding_price > market_bidding_price if market_bidding_price is not None else 1: bidding_price -= 1 elif asking_price < market_asking_price if market_asking_price is not None else util * 2: asking_price += 1 else: assert False, 'Market chooser should not select action where min util and max equal ' return bidding_price, asking_price
true
8c15d73da8753cabe93e311099007ee4aa764313
Python
debanjan611/Library-Management-System
/Python_prEdit.py
UTF-8
2,076
3.125
3
[ "MIT" ]
permissive
def edit(): import sqlite3 from tabulate import tabulate con=sqlite3.connect('Library.sqlite') cur=con.cursor() print("\n\n********** PRINTING THE CURRENT LIBRARY DATABASE ***********\n\n") cur.execute(" SELECT Book_Name, Author, Quantity, Book_id FROM Main ") curr_lib=cur.fetchall() print(tabulate(curr_lib,headers=['Book Name', 'Author', 'In Stock', 'Book ID'],tablefmt='psql')) BID=int(input("Enter the Book ID for which the details are to be altered: ")) querySelect = "SELECT * FROM Main" queryWhere = " WHERE Book_id = " + str(BID) query = querySelect + queryWhere cur.execute(query) curr_lib=cur.fetchall() print("\n") print(tabulate(curr_lib,headers=['Book Name', 'Author', 'In Stock', 'Book ID'],tablefmt='psql')) print("\n") print("Enter which field you would like to Edit: \n") print("1. Book Name") print("2. Author") print("3. Stock") ch=int(input("\nEnter your choice from above options: ")) if(ch==1): Bname=input("Enter the new Name of the Book: ") sql_update_query = """UPDATE Main SET Book_Name = ? where Book_id = ?""" data=(Bname,BID) if(ch==2): Bauth=input("Enter the new authour of the book: ") sql_update_query = """UPDATE Main SET Author = ? where Book_id = ?""" data = (Bauth, BID) if(ch==3): Bquant=int(input("Enter the new quantity of the Book: ")) sql_update_query = """UPDATE Main SET Quantity = ? where Book_id = ?""" data=(Bquant,BID) cur.execute(sql_update_query, data) con.commit() print("\n Record Updated successfully") print("\n\n********* PRINTING THE UPDATED LIBRARY **********\n\n") cur.execute(" SELECT Book_name, Quantity, Author, Book_id FROM Main ") curr_lib=cur.fetchall() print(tabulate(curr_lib,headers=['Book Name','In Stock','Author','Book ID'],tablefmt='psql'))
true
8306f28381c1b9433b9273dc2101ad2acd9de478
Python
marlboromoo/basinboa
/basinboa/d20/level.py
UTF-8
1,772
3.796875
4
[ "MIT" ]
permissive
#!/usr/bin/env python """ Level system """ import random EXP_BASE = 10 EXP_STEP = 15 class Level(object): """docstring for Level""" def __init__(self): super(Level, self).__init__() self.exp = 0 def increase(self): """docstring for increase""" self.level += 1 def get(self): """docstring for get""" level = 1 while self.exp >= self.require_exp(level): level += 1 return level - 1 if level > 1 else 1 def set(self, level): """docstring for set""" self.exp = self.require_exp(level) def increase_exp(self, value): """docstring for fname""" self.exp += value def decrease_exp(self, value): """docstring for decrease_exp""" self.exp -= value def require_exp(self, level): """ level experience points 2 10 3 40 4 85 5 145 6 220 7 310 8 415 9 535 10 670 11 820 12 985 13 1165 14 1360 15 1570 16 1795 17 2035 18 2290 19 2560 20 2845 """ if level == 1: return 0 else: exp = EXP_BASE i = 2 #. because level 1 don't need exp while i < level: exp += EXP_STEP * i i += 1 return exp if __name__ == '__main__': level = Level() i = 1 while i <= 20: print "%s: %s" % (i, level.require_exp(i)) i += 1 level.increase_exp(random.randint(1, 2845)) print "exp:%s = level:%s" % (level.exp, level.get())
true
a9891ed84a3a7d1940f5933dcb61b7105b36262a
Python
KomissarovSV/Algorithms
/Map/task1.py
UTF-8
2,374
3.6875
4
[]
no_license
class Node(object): def __init__(self,key,value): self.key = key self.value = value def getKey(self): return self.key def getValue(self): return self.value class MapIterator(): def __init__(self,mas): self.mas = mas self.current = 0 self.size = len(mas) def __next__(self): if self.current < self.size: item = self.mas[self.current] self.current += 1 if item is None: return self.__next__() else: return item.getValue() else: raise StopIteration class Map(object): def __init__(self,size): self.mas = [None]*size self.size = size self.count = 0 def put(self, key, value): if self.count / self.size > 0.7: self.resize() hashcode = hash(key) hashKey = hashcode % self.size while self.mas[hashKey] is not None: hashKey = (hashKey + 1) % self.size self.mas[hashKey] = Node(key,value) self.count += 1 def delete(self, key): hashcode = hash(key) hashKey = hashcode % self.size while self.mas[hashKey] is not None: if self.mas[hashKey].getKey() is key: break hashKey = (hashKey + 1) % self.size self.mas[hashKey] = None self.count -= 1 def get(self,key): hashcode = hash(key) hashKey = hashcode % self.size while self.mas[hashKey] is not None: if self.mas[hashKey].getKey() is key: break hashKey = (hashKey + 1) % self.size if self.mas[hashKey] is None: return None else: return self.mas[hashKey].getValue() def __iter__(self): return MapIterator(self.mas) def resize(self): newSize = self.size*2 newMas = [None]*newSize for node in self.mas: if node is not None: hashkey = node.getKey() % newSize newMas[hashkey] = node self.mas = newMas self.size = newSize map = Map(1) map.put(3,"string 3") map.put(6,"string 6") map.put(7,"string 7") map.put(10,"string 10") print(map.get(3)) print(map.get(6)) map.delete(7) print(map.get(7)) print(map.get(10)) for item in map: print(item)
true
fd103e8213de34dbad57ae9b84185e75be660280
Python
AndreiKorzhun/CS50x
/pset6_Python/cash/cash.py
UTF-8
634
4.09375
4
[]
no_license
from cs50 import get_float from math import floor def main(): # converting dollars to cents cents = round(money() * 100) # number of coins number = 0 for i in [25, 10, 5, 1]: # get the number of coins of each denomination number += floor(cents / i) # get the number of cents after deducting coins of each denomination cents = cents % i # print minimum number of coins print(number) # getting a positive number from the user def money(): while True: dollars = get_float("Change owed: ") if dollars > 0: break return dollars main()
true
9e6ee55e9af00bd85696f7f4ce601ff73dccb609
Python
Rohankhadka33/practiceclass
/class(d2,p1).py
UTF-8
418
3.453125
3
[]
no_license
''' The cost of the house is $1M. If the buyer has good credit, they need to put down 10% otherwise they need to put down 20%. print the down payment.''' cost_of_house= 1000000 credit= True if(credit==True): discount=10/100 cost_of_house= cost_of_house-cost_of_house*discount print(cost_of_house) else: discount= 20/100 cost_of_house= cost_of_house-cost_of_house*discount print(cost_of_house)
true
d6c57e2b0e9d3ae3fec291953f6e3c5dbf2a0c89
Python
Shimpa11/PythonTutorial
/linkedlist.py
UTF-8
1,658
4.21875
4
[]
no_license
""" 1.Think of an object song:title,artist,duration """ # 2. create its class class Song: def __init__(self,title,artist,duration): self.title=title self.artist = artist self.duration=duration nextSong=None previousSong=None def showSong(self): print("!!!{}!!! {}!!!{}!!!".format(self.title,self.artist,self.duration)) # from the class create real objects song1=Song("Duniyaa", "Akhil", 2.56) song2=Song("Pachtaoge" , "Arijit Singh", 2.56) song3=Song("Tera Ban Jaunga" ,"Kabir Singh", "2:56") song4=Song("Vaaste" , "Dhvani", "2:56") song5=Song("Tum Hi Aana" , "Payal Dev ","2:56") # print("song1 is:",song1) # print("song2 is:",song2) # print("song3 is:",song3) # print("song4 is:",song4) # print("song5 is:",song5) songs=[song1,song2,song3,song4,song5] for song in songs: print(song) # reference copy operation song1.nextSong=song2 song2.nextSong=song3 song3.nextSong=song4 song4.nextSong=song5 song5.nextSong=song1 song1.previousSong=song5 song2.previousSong=song1 song3.previousSong=song2 song4.previousSong=song3 song5.previousSong=song4 # song1.showSong() # song1.nextSong.showSong() # song1.previousSong.showSong() print("Iterating Forward") temp=song1 while temp.nextSong!=song1: print("------------") temp.showSong() temp=temp.nextSong print("--------------------") # showing the last song temp.showSong() print("-----------------------") print("Iterating backward") current=song5 while current.previousSong!=song5: print("-------------") current.showSong() current=current.previousSong print("--------------") current.showSong() print("--------------")
true
866f891befdaa67b4096bdc4a6e64a8bf315d2d6
Python
mlrequest/sklearn-json
/test/test_classification.py
UTF-8
7,605
2.734375
3
[ "MIT" ]
permissive
from sklearn.datasets import make_classification from sklearn.feature_extraction import FeatureHasher from sklearn import svm, discriminant_analysis from sklearn.linear_model import LogisticRegression, Perceptron from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB, ComplementNB from sklearn.neural_network import MLPClassifier from sklearn.tree import DecisionTreeClassifier import unittest import random import numpy as np from numpy import testing import sklearn_json as skljson class TestAPI(unittest.TestCase): def setUp(self): self.X, self.y = make_classification(n_samples=50, n_features=3, n_classes=3, n_informative=3, n_redundant=0, random_state=0, shuffle=False) feature_hasher = FeatureHasher(n_features=3) features = [] for i in range(0, 100): features.append({'a': random.randint(0, 2), 'b': random.randint(3, 5), 'c': random.randint(6, 8)}) self.y_sparse = [random.randint(0, 2) for i in range(0, 100)] self.X_sparse = feature_hasher.transform(features) def check_model(self, model, abs=False): # Given if abs: model.fit(np.absolute(self.X), self.y) else: model.fit(self.X, self.y) # When serialized_model = skljson.to_dict(model) deserialized_model = skljson.from_dict(serialized_model) # Then expected_predictions = model.predict(self.X) actual_predictions = deserialized_model.predict(self.X) testing.assert_array_equal(expected_predictions, actual_predictions) def check_sparse_model(self, model, abs=False): # Given if abs: model.fit(np.absolute(self.X_sparse), self.y_sparse) else: model.fit(self.X_sparse, self.y_sparse) # When serialized_model = skljson.to_dict(model) deserialized_model = skljson.from_dict(serialized_model) # Then expected_predictions = model.predict(self.X) actual_predictions = deserialized_model.predict(self.X) testing.assert_array_equal(expected_predictions, actual_predictions) def check_model_json(self, model, model_name, abs=False): # Given if abs: model.fit(np.absolute(self.X), self.y) else: model.fit(self.X, self.y) # When serialized_model = skljson.to_json(model, model_name) deserialized_model = skljson.from_json(model_name) # Then expected_predictions = model.predict(self.X) actual_predictions = deserialized_model.predict(self.X) testing.assert_array_equal(expected_predictions, actual_predictions) def check_sparse_model_json(self, model, model_name, abs=False): # Given if abs: model.fit(np.absolute(self.X_sparse), self.y_sparse) else: model.fit(self.X_sparse, self.y_sparse) # When serialized_model = skljson.to_json(model, model_name) deserialized_model = skljson.from_json(model_name) # Then expected_predictions = model.predict(self.X) actual_predictions = deserialized_model.predict(self.X) testing.assert_array_equal(expected_predictions, actual_predictions) def test_bernoulli_nb(self): self.check_model(BernoulliNB()) self.check_sparse_model(BernoulliNB()) model_name = 'bernoulli-nb.json' self.check_model_json(BernoulliNB(), model_name) self.check_sparse_model_json(BernoulliNB(), model_name) def test_guassian_nb(self): self.check_model(GaussianNB()) model_name = 'gaussian-nb.json' self.check_model_json(GaussianNB(), model_name) # No sklearn implementation for sparse matrix def test_multinomial_nb(self): self.check_model(MultinomialNB(), abs=True) self.check_sparse_model(MultinomialNB(), abs=True) model_name = 'multinomial-nb.json' self.check_model_json(MultinomialNB(), model_name, abs=True) self.check_sparse_model_json(MultinomialNB(), model_name, abs=True) def test_complement_nb(self): self.check_model(ComplementNB(), abs=True) model_name = 'complement-nb.json' self.check_model_json(ComplementNB(), model_name, abs=True) # No sklearn implementation for sparse matrix def test_logistic_regression(self): self.check_model(LogisticRegression()) self.check_sparse_model(LogisticRegression()) model_name = 'lr.json' self.check_model_json(LogisticRegression(), model_name) self.check_sparse_model_json(LogisticRegression(), model_name) def test_lda(self): self.check_model(discriminant_analysis.LinearDiscriminantAnalysis()) model_name = 'lda.json' self.check_model_json(discriminant_analysis.LinearDiscriminantAnalysis(), model_name) # No sklearn implementation for sparse matrix def test_qda(self): self.check_model(discriminant_analysis.QuadraticDiscriminantAnalysis()) model_name = 'qda.json' self.check_model_json(discriminant_analysis.QuadraticDiscriminantAnalysis(), model_name) # No sklearn implementation for sparse matrix def test_svm(self): self.check_model(svm.SVC(gamma=0.001, C=100., kernel='linear')) self.check_sparse_model(svm.SVC(gamma=0.001, C=100., kernel='linear')) model_name = 'svm.json' self.check_model_json(svm.SVC(), model_name) self.check_sparse_model_json(svm.SVC(), model_name) def test_decision_tree(self): self.check_model(DecisionTreeClassifier()) self.check_sparse_model(DecisionTreeClassifier()) model_name = 'dt.json' self.check_model_json(DecisionTreeClassifier(), model_name) self.check_sparse_model_json(DecisionTreeClassifier(), model_name) def test_gradient_boosting(self): self.check_model(GradientBoostingClassifier(n_estimators=25, learning_rate=1.0)) self.check_sparse_model(GradientBoostingClassifier(n_estimators=25, learning_rate=1.0)) model_name = 'gb.json' self.check_model_json(GradientBoostingClassifier(), model_name) self.check_sparse_model_json(GradientBoostingClassifier(), model_name) def test_random_forest(self): self.check_model(RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0)) self.check_sparse_model(RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0)) model_name = 'rf.json' self.check_model_json(RandomForestClassifier(), model_name) self.check_sparse_model_json(RandomForestClassifier(), model_name) def test_perceptron(self): self.check_model(Perceptron()) self.check_sparse_model(Perceptron()) model_name = 'perceptron.json' self.check_model_json(Perceptron(), model_name) self.check_sparse_model_json(Perceptron(), model_name) def test_mlp(self): self.check_model(MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)) self.check_sparse_model(MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)) model_name = 'mlp.json' self.check_model_json(MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1), model_name) self.check_sparse_model_json(MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1), model_name)
true
88d9f2f8f4f6123c571c7ce43b4a1f7c4ebde0c0
Python
rafalacerda1530/Python
/atividades/Seção 8/Atividade 2.py
UTF-8
637
4.09375
4
[]
no_license
""" Uma função que recebe a data atual (dia, mês, ano) e exiba na tela em formato de texto """ meses = {1: 'Janeiro', 2: 'Fevereiro', 3: 'Março,', 4: 'Abril', 5: 'Maio', 6: 'Junho', 7: 'Julho', 8: 'Agosto', 9: 'Setembro', 10: 'Outubro', 11: 'Novembro', 12: 'Dezembro'} def data(di, me, an): global meses if me in meses: return f'{di} de {meses.get(me)} de {an}' # Nessa chave estou pesquisando no dicionario meses na parte de chave o que foi digitado em "me" d = input('Digite o dia: ') m = int(input('Digite o mês: ')) a = int(input('Digite o ano: ')) print(data(di=d, me=m, an=a))
true
33d7b59891ebbb3da0d110b90840409b31856c5e
Python
marina90/Distributed-System-Programming-project
/vectors_pair_mapper.py
UTF-8
961
3.109375
3
[]
no_license
#!/usr/bin/python import sys import ast data=[] def main(): with open ("input3.txt") as file: for line in file: if not line == "" and not line == '\t\n' and not line == "\n" and not line == " " : line=line.strip() data.append(line.split('\t')) mapper() def mapper (): for line in sys.stdin: if not line == "" and not line == '\t\n' and not line == "\n" and not line == " ": split_line = line.split('\t') word_value = split_line[0] words_vector = split_line[1] words_vector = ast.literal_eval(words_vector) for i in range(4): words_vector[i].sort() for item in data: if (item[0]==word_value or item[1]==word_value): result = [item[0], item[1], item[2].strip(), str(words_vector)] print '\t'.join(result) if __name__ == '__main__': main()
true
fe546601da6402694b4ae780b766d51bd6510d70
Python
Nordenbox/Nordenbox_Python_Fundmental
/ListenAndSpell.py
UTF-8
1,533
3.453125
3
[]
no_license
""" This is a progame for practice litsen and spell for my daughter""" import os import random import subprocess file_path = ( r"//Users/nordenbox/Documents/GitHub/NordenboxPython/Nordenbox_Python_Fundmental/Speech_US" ) # read mp3 files from my file folder to ready pronunce file_list = [] # build a empty list to standby for i in os.listdir(file_path): # using os module to traverse the mp3 files in the certain path file_list.append(os.path.join(file_path, i)) # creat a list of multipile mp3 paths random.shuffle(file_list) # randoms the orders of list for repeatively use print("---------\n我们开始吧!\n--------------") print("########### LITSEN & SPELL #############") for items in file_list: # traverse the list that randomed order, items = specific path name subprocess.call(["afplay", items]) # for each files recalls os subprocess module to apply afplay to play mp3 files A = True # set the condition of While loop while A: # if condition is True loop runs wait_word = input("输入听到的单词:\n") # variables as inputed words if wait_word != os.path.basename(os.path.splitext(items)[0]): # if word inputed not equal to the specific file name( by using os module function to obtain basename) print("no!!! 再来一遍!") subprocess.call(["afplay", items]) # sounds again else: print("Yes! 下一个") A = False # jump out of loop print("-----------\nOK! We Finished\n-------------")
true
4e002114ea420b2980ee9f0b815144126173c2c0
Python
bunnymonster/personal-code-bits
/python/learningExercises/ControlFlowLoops.py
UTF-8
1,795
4.3125
4
[]
no_license
# #For Loops # #for loops iterate over the set of items in a given list in order. words = ['fox','flop','number','hungry','listing'] for w in words: print(w,len(w)) #To modify a sequence while iterating, first make a copy using slice for w in words[:]: #loop over slice copy of entire list if len(w) > 6: words.insert(0,w) #insert words with len > 6 in front of list. print(words) # #Range functions # #basic range function for i in range(5): print(i) print(range(5,10)) #range(a,b) is a inclusive, b exclusive print(range(0,10,3)) #3rd argument allows increment size print(range(-10,-100,-30)) #range allows negative increment sizes #iterating over indices of sequence, combine range and len a = ['Mar','Bez','lop','Kinlin','blarg'] for i in range(len(a)): #0 Mar #1 Bez #2 lop #3 Kinlin #4 blarg print(i,a[i]) #using 'print(range(10))' prints 'range(10)' print(range(10)) list(range(5)) # iterate over range(5) # # Break, Continue, Pass # #break breaks out of the innermost loop for n in range(2,25): for x in range(2,n): if n % x == 0: print(n, 'equals', x, '*', n//x) break else: #This is correct. This else belongs to the for loop, #not the if statement #loop fell through without finding a factor print(n, 'is a prime number') #continue forwards the code to the next iteration of the loop for num in range(2,25): if num % 2 == 0: print("Found an even number", num) continue print("Found a number", num) # #Pass # while True: pass #busy wait for ctrl-c #pass does nothing. #It is used when a statement is required but no action is needed. #This can be used as a placeholder for functions that yet need to be implemented.
true
28331afc437a6b63c8210e46934c6658db167e54
Python
TomAndy/python_qa
/lesson4/task2.py
UTF-8
345
2.53125
3
[]
no_license
import json from pprint import pprint filename='bugs.json' new_filename='bugs_new.json' def main(): with open(filename) as data_file: data = json.load(data_file) for aaa in data: aaa['Owner']='qa5' with open(new_filename,'w') as new_f: new_f.write(json.dumps(data)) if __name__ == '__main__': main()
true