blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
d99b293ea7b3d1229ce7fd965f1002179cef267b
Python
sanderfo/IN1900
/uke6/oscilating_spring.py
UTF-8
938
3.390625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt A = -0.3 # Setter A = -0.3 da den trekkes ned, så får i positiv retning opp k = 4 # resten her er gitt i oppgaven gamma = 0.15 m = 9 t_array = np.zeros(101) # Fyller arrays med nuller y_array = np.zeros(101) # a) for i in range(len(t_array)): # for-loops for å fylle arrays t_array[i] = 25*i/100 # Triks for å få jevnt fordelte t-verdier fra 0 til 25 y_array[i] = A*np.exp(-gamma*t_array[i])*np.cos(np.sqrt(k/m)*t_array[i]) #y-verdier fra formelen # b) Den pythoniske løsningen: t_array2 = np.linspace(0, 25, 101) #linspace for samme formål y_array2 = A*np.exp(-gamma*t_array)*np.cos(np.sqrt(k/m)*t_array) #bruker arrays direkte plt.plot(t_array, y_array) #Plotter første arrayene plt.plot(t_array2, y_array2) # Andre plt.xlabel("Tid i sekunder") plt.ylabel("Posisjon i meter fra ekvilibrium") plt.show() """ Terminal > run oscilating_springs *plott her* """
true
498001274e57ba3e8fcc97341cc29adbd5db0f30
Python
SibylLab/TOBE
/view/Display.py
UTF-8
2,167
2.953125
3
[ "MIT" ]
permissive
#!/usr/bin/env python __author__ = "Akalanka Galappaththi" __email__ = "a.galappaththi@uleth.ca" __copyright__ = "Copyright 2020, The Bug Report Summarization Project @ Sybil-Lab" __license__ = "MIT" __maintainer__ = "Akalanka Galappaththi" import pprint import json from models.Turn import Turn from models.Sentence import Sentence from models.BugReport import BugReport from models.ListOfBugReports import ListOfBugReports pp = pprint.PrettyPrinter(indent=2) class Display: def __init__(self): pass def displayMessage(self, msg): """Display message Parameters ---------- msg : str Message """ print("{}".format(msg)) def displayBugReport(self, bugReport, ct=False): """Display bug report Parameters ---------- bugReport : object Bug reort object ct : boolean Parameter that enable the print cleaned text """ print("{}".format(bugReport.get_title())) for turn in bugReport.list_of_turns: print("\n \t Author:{}".format(turn.get_author())) print("\t Date:{}".format(turn.get_date_time())) for sentence in turn.list_of_sentences: if ct == True: print( "\t\t {} : {}".format( sentence.get_id(), sentence.get_cleaned_text() ) ) print("\t\t {}".format(sentence.get_tags())) else: print("\t\t {} : {}".format(sentence.get_id(), sentence.get_text())) print("\t\t {}".format(sentence.get_tags())) def getBugReportJson(self, bugReport, ct=False): """Display bug report Parameters ---------- bugReport : int Bug reort object ct : boolean Parameter that enable the print cleaned text Returns ------- j_obj : json object Bugreport as a JSON """ return json.dumps(bugReport, default=lambda obj: obj.__dict__)
true
cae780901fffd2637d9ab24aa4d5972d4d3860cf
Python
syedmeesamali/Python
/0_AI_ML_OpenCV/2_OpenCV/2_CAM/faces_train.py
UTF-8
1,271
2.890625
3
[]
no_license
import os import cv2 as cv import numpy as np people = ['Ahsin', 'Meesam'] DIR = r'C:\Users\SYED\Downloads\Family' haar_cascade = cv.CascadeClassifier('haarcascade.xml') features = [] labels = [] def create_train(): for person in people: path = os.path.join(DIR, person) label = people.index(person) for img in os.listdir(path): img_path = os.path.join(path, img) img_array = cv.imread(img_path) gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY) faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 4) for (x, y, w, h) in faces_rect: faces_roi = gray[y:y+h, x:x+w] features.append(faces_roi) labels.append(label) create_train() print('Training has been completed ------- !') #print(f'Length of features : {len(features)}') #print(f'Length of labels : {len(labels)}') features = np.array(features, dtype='object') labels = np.array(labels) face_recognizer = cv.face.LBPHFaceRecognizer_create() #Train the recognizer on features and labels acquired above face_recognizer.train(features, labels) face_recognizer.save('face_trained.yml') np.save('features.npy', features) np.save('labels.npy', labels)
true
97c2b2af2296764f90c81d2a73d72aa7df98b120
Python
NHPatterson/bfio
/examples/ScalableTiledTiffConverter.py
UTF-8
1,884
2.53125
3
[ "MIT" ]
permissive
from bfio import BioReader, BioWriter import math, requests from pathlib import Path from multiprocessing import cpu_count """ Get an example image """ # Set up the directories PATH = Path("data") PATH.mkdir(parents=True, exist_ok=True) # Download the data if it doesn't exist URL = "https://github.com/usnistgov/WIPP/raw/master/data/PyramidBuilding/inputCollection/" FILENAME = "img_r001_c001.ome.tif" if not (PATH / FILENAME).exists(): content = requests.get(URL + FILENAME).content (PATH / FILENAME).open("wb").write(content) """ Convert the tif to tiled tiff """ # Number of tiles to process at a time # This value squared is the total number of tiles processed at a time tile_grid_size = math.ceil(math.sqrt(cpu_count())) # Do not change this, the number of pixels to be saved at a time must # be a multiple of 1024 tile_size = tile_grid_size * 1024 # Set up the BioReader with BioReader(PATH,backend='java',max_workers=cpu_count()) as br: # Loop through timepoints for t in range(br.T): # Loop through channels for c in range(br.C): with BioWriter(PATH.with_name(f'out_c{c:03}_t{t:03}.ome.tif'), backend='python', metadata=br.metadata, max_workers = cpu_count()) as bw: # Loop through z-slices for z in range(br.Z): # Loop across the length of the image for y in range(0,br.Y,tile_size): y_max = min([br.Y,y+tile_size]) # Loop across the depth of the image for x in range(0,br.X,tile_size): x_max = min([br.X,x+tile_size]) bw[y:y_max,x:x_max,z:z+1,0,0] = br[y:y_max,x:x_max,z:z+1,c,t]
true
0bc359cd7eaf4ba2213e2946fefd061d9550f4bf
Python
wing7171/biendata-competition-lizi
/generate_data.py
UTF-8
481
2.546875
3
[]
no_license
import pandas as pd from feature_engineering import calculate_feature test_path = './jet_simple_data/simple_test_R04_jet.csv' train_path = './jet_simple_data/simple_train_R04_jet.csv' train = pd.read_csv(train_path,nrows=100) test = pd.read_csv(test_path,nrows=100) print('finish data read') #### add features ##### train, test = calculate_feature(train, test) # train.to_csv("./data_fea/train_fea_1.csv", index=False) # test.to_csv("./data_fea/test_fea_1.csv", index=False)
true
cddcfac7d61a82f05c3a7c0ff8222e4dcd567935
Python
geoflows/D-Claw
/python/dclaw/get_data.py
UTF-8
2,904
2.515625
3
[ "BSD-3-Clause" ]
permissive
import os from pyclaw.data import Data """ Lightweight functions to get dictionaries of attributes from .data files. KRB April 2022 """ def get_tsunami_data(project_path, output="_output", file="settsunami.data"): data = Data(os.path.join(project_path, output, file)) return {key: data.__dict__[key] for key in data.attributes} def get_dig_data(project_path, output="_output", file="setdig.data"): data = Data(os.path.join(project_path, output, file)) return {key: data.__dict__[key] for key in data.attributes} def get_amr2ez_data(project_path, output="_output", file="amr2ez.data"): data = Data(os.path.join(project_path, output, file)) return {key: data.__dict__[key] for key in data.attributes} def get_gauge_data(project_path, output="_output", file="setgauges.data"): setgaugefile = os.path.join(project_path, output, file) gauge_dict = {} with open(setgaugefile, "r") as fid: inp = "#" while inp == "#": inpl = fid.readline() inp = inpl[0] inp = fid.readline() mgauges = int(inp.split()[0]) linesread = 0 while linesread < mgauges: row = fid.readline().split() if row != []: linesread = linesread + 1 gaugeno = int(row[0]) gauge_dict[gaugeno] = {} gauge_dict[gaugeno]["x"] = float(row[1]) gauge_dict[gaugeno]["y"] = float(row[2]) gauge_dict[gaugeno]["tmin"] = float(row[3]) gauge_dict[gaugeno]["tmax"] = float(row[4]) return gauge_dict def get_region_data(project_path, output="_output", file="setregions.data"): setregionfile = os.path.join(project_path, output, file) region_dict = {} with open(setregionfile, "r") as fid: inp = "#" while inp == "#": inpl = fid.readline() inp = inpl[0] inp = fid.readline() mregions = int(inp.split()[0]) linesread = 0 while linesread < mregions: row = fid.readline().split() if row != []: linesread = linesread + 1 regionno = ( len(region_dict) + 1 ) # not officially numbered. # go in order, from 1 onwards. # order of .data file. region_dict[regionno] = {} region_dict[regionno]["minlevel"] = float(row[0]) region_dict[regionno]["maxlevel"] = float(row[1]) region_dict[regionno]["t1"] = float(row[2]) region_dict[regionno]["t2"] = float(row[3]) region_dict[regionno]["x1"] = float(row[4]) region_dict[regionno]["x2"] = float(row[5]) region_dict[regionno]["y1"] = float(row[6]) region_dict[regionno]["y2"] = float(row[7]) return region_dict
true
93375196b6bb57b2c78179dfe4fb6936f9087765
Python
Dlarej/hydroponics-controller
/components.py
UTF-8
2,794
2.796875
3
[]
no_license
from enum import Enum import ConfigParser from exceptions import * import abc from abc import ABCMeta, abstractmethod class State(Enum): DISCONNECTED = -2 CONNECTED = -1 OFF = 0 ON = 1 class Component(object): __metaclass__ = abc.ABCMeta def __init__(self): # Initialization behavior for all devices: # Attempt to connect and turn on self.connect() self.on() def disconnect(self): self._disconnect() self.state = State.DISCONNECTED def connect(self): self._connect() self.state = State.CONNECTED def off(self): self._off() self.state = State.OFF def on(self): self._on() self.state = State.ON @abc.abstractmethod def _disconnect(self): return @abc.abstractmethod def _connect(self): return @abc.abstractmethod def _off(self): return @abc.abstractmethod def _on(self): return @abc.abstractmethod def _get_status(self): return class FanComponent(Component): def __init__(self): super(FanComponent, self).__init__() def _disconnect(self): print "disconnecting fan" def _connect(self): print "connecting fan" def _off(self): print "fan off" def _on(self): print "fan on" def _get_status(self): print "getting status" class DehumidifierComponent(Component): def __init__(self): super(DehumidifierComponent, self).__init__() def _disconnect(self): print "disconnecting dehumidifier" def _connect(self): print "connecting dehumidifier" def _off(self): print "dehumidifier off" def _on(self): print "dehumidifier on" def _get_status(self): print "getting status of dehumidifier" class TemperatureComponent(Component): def __init__(self): super(TemperatureComponent, self).__init__() def _disconnect(self): print "disconnecting temperature" def _connect(self): print "connecting temperature" def _off(self): print "temperature off" def _on(self): print "temperature on" def _get_status(self): print "getting status of temperature" class LightComponent(Component): def __init__(self): super(LightComponent, self).__init__() def _disconnect(self): print "disconnecting light" def _connect(self): print "connecting light" def _off(self): print "light off" def _on(self): print "light on" def _get_status(self): print "getting status of light" fan = FanComponent() light = LightComponent() temperature = TemperatureComponent() dehumid = DehumidifierComponent()
true
55c19d9dae0cb6d0645a844c8e48bf23c06c23ef
Python
wvbraun/TheLab
/python/src/data_structures/code/analysis/sumn.py
UTF-8
574
4.34375
4
[]
no_license
# this function computes the sum of the first n integers. import time def sumOfN(n): theSum = 0 for i in range(1, n+1): theSum = theSum + i return theSum print(sumOfN(10)) def sumOfN2(n): start = time.time() theSum = 0 for i in range(1, n+1): theSum = theSum + i end = time.time() return theSum, end-start def sumOfN3(n): return (n*(n+1)) / 2 print(sumOfN3(10)) def foo(tom): fred = 0 for bill in range(1,tom+1): barney = bill fred = fred + barney return fred print(foo(10))
true
2c54a73b9ec691c1d81a693dfd29af831c7084ad
Python
HuajieSong/Python3
/practice_day6.py
UTF-8
4,050
4.40625
4
[]
no_license
#usr/bin/python3 ''' Created on Aug 28th 19:28,2018 Author by Vicky ''' #1、输入一个正整数,输出该正整数的阶乘的值 '''result=1 result_word='' number=int(input('please input a number: ')) for n in range(1,number+1): result*=n if n==number: result_word+=str(n) else: result_word+=str(n)+'*' print('%d 的阶乘为:%d'%(number,result)) print(result_word+'=',result) #2、生成字符串”acegi” letters='' for n in range(97,97+10,2): #print(n) letters+=chr(n) print(letters) #3、生成列表[“a”,”c”,”e”,”g”,”i”] letters=[] for n in range(97,97+10,2): letters.append(chr(n)) print(letters) #4、生成字典{“a”:1,”c”:3,”e”:5,”g”:7,”i”:9} result={} for i in range(1,10,2): result[chr(97+i-1)]=i print(result) #5、将以上字典的key和value拼接成字符串,不能使用字符串连接符(+) #思路:刚开始想直接用.join,定义了一个result='',想把每次循环的k,v都连结到result这个变量,但发现这个变量不能累计连结,只是暂时性地做了连接的操作,并不会改变原来的值。 #所以需要把k,v都放进一个列表里,由于join()参数必须是字符型,向列表里添加元素的时候要把数字变成字符,最后再使用join把每个元素拼接起来。 letters={'a': 1, 'c': 3, 'e': 5, 'g': 7, 'i': 9} letter_list=[] result='' for k,v in letters.items(): #print(k,v) letter_list.append(k) letter_list.append(str(v)) result+=''.join(letter_list) print(result) #6、写一个函数,参数传入字符串”abc”,函数返回字符串“xyz”; 思路:一看有字母,想到了ASCII码,原字母串是字母列表的开头三个,而目标字符串是最后三个。那么这个之间的关系就是正数前三个,与倒数三个的关系。 for letter in ranage(97,97+4): #7、写一个函数,如果传入的是list,且list长度大于3,只保留前3个元素并返回; def list_shorten(item): result=[] if isinstance(item,list): if len(item)>3: for n in range(3): result.append(item[n]) return result else: return item else: return 'Not a List' print(list_shorten([1,2,3,4,5])) print(list_shorten(['a','b',33,5])) print(list_shorten([1,2])) print(list_shorten([1,2,5])) 方法二:from beijing-houyan def list_short_3(l): if isinstance(l,list): return l[0:3:] else: print("格式不正确") return False print(list_short_3([1,2,3,4,4,5])) print(list_short_3(123)) #8、用户输入”abc123”,程序返回”a321cb” #原字符串与目标字符串之间的关系是:原字符第一位元素不变,其余位置元素逆序输出 letter=input('please input a sentence:') letter_new=letter[0] for n in range(len(letter)-1,0,-1): letter_new+=letter[n] print(letter_new) #from houyan--beijing s="abc123" l=[] for i in range(len(s)): if i==0: l.append(s[i]) else: l.append(s[len(s)-i]) print(l) print("".join(l)) #9、将[“wulaoshi”,”is”,”a”,”boy”]替换成[“wulaoshi”,”is”,”good”,”big”,”boy”] #思路:本想直接将列表里的字符替换成目标字符,但只有字符才有替换方法,所以想替换需要遍历列表。 sentence=['wulaoshi','is','a','boy'] result=[] for i in sentence: if i =="a": result.append('good') elif i=='boy': result.append('big') result.append('boy') else: result.append(i) print(result)''' #10、统计“You are ,a beautifull Girl,666! ”中数字和字母的总个数; character_count=0 digit_count=0 sentence=input('please input a sentence containing digits:') cases='' for i in range(65,91): cases+=chr(i) cases+=chr(i+32) for word in sentence: if word in '01234567890': digit_count+=1 if word in cases: character_count+=1 print('字母个数有%d个'%character_count) print('数字个数有%d个'%digit_count)
true
b00aca866541c99900b93207253d2e7a2fbb7444
Python
karstendick/project-euler
/euler112/euler112.py
UTF-8
303
3.40625
3
[]
no_license
#PE #112 def isbouncy(n): s = str(n) return list(s) != sorted(s) and list(s) != sorted(s,reverse=True) N = 10000000 count = 0 for i in range(1,N): if isbouncy(i): count += 1 if count/(1.0*i) >= .99: print(count,i,count/(1.0*i)) break print 'Nope.'
true
f1d642dd663921fae3886bdaabfa75c22ea06e62
Python
Casualrobin/youtube-playlist
/src/main.py
UTF-8
1,465
3.21875
3
[]
no_license
import Validator import keyboard from OutputManager import OutputManager from WebScraper import WebScraper # url = "www.youtube.com/playlist?list=PLvdtkdCcH2D3BWrdv2yMwIJ7-ScsklImS&disable_polymer=true" print("Hello! This application will save the track list from a YouTube playlist. Ctrl-C to exit.") while not keyboard.is_pressed('ctrl+c'): url = input("Please enter a YouTube playlist URL to download a track list from: ") is_youtube = False while not is_youtube: is_youtube = Validator.validate_url(url) if is_youtube: break else: url = input("This program can only scrape YouTube. Please enter a valid YouTube URL:") output_type = input("Enter an output type - terminal / txt / csv: ") web_scraper = WebScraper(url) output = web_scraper.get_list_of_songs() is_valid_output = False while not is_valid_output: is_valid_output = Validator.validate_output_location(output_type) if is_valid_output: break else: output_type = input("Please enter a valid output type - terminal / txt / csv: ") output_manager = OutputManager(output_type) output_manager.output_type = output_type if output_type == 'terminal': output_manager.output_to_terminal(output) elif output_type == 'txt': output_manager.output_to_txt(output) elif output_type == 'csv': output_manager.output_to_csv(output)
true
7a49e8a98110ff91d622fe7a3912b789a3b0cb05
Python
undertherain/nuts-and-bolts
/mlgym/images/counting.py
UTF-8
2,410
2.515625
3
[]
no_license
import numpy as np import chainer import chainer.functions as F import chainer.links as L import dagen import dagen.image from dagen.image.image import get_ds_counting import PIL from mlgym.trainer import train dim_image=64 params = {} params["batch_size"] = 10 params["nb_epoch"] = 100 class CNN(chainer.Chain): def __init__(self, train=True): super(CNN, self).__init__( conv1=L.Convolution2D(1, 2, 4, pad=3), # Convolution2D(in_channels, out_channels, ksize, stride=1, pad=0, wscale=1, bias=0, nobias=False, use_cudnn=True, initialW=None, initial_bias=None, deterministic=False) # conv1=L.Convolution2D(1, 2, 4, pad=3, initialW=w, initial_bias=np.array([-4,-2], dtype=np.float32)) , # conv2=L.Convolution2D(None, 2, 3, pad=2), # conv3=L.Convolution2D(None, 2, 3, pad=2), # l1=L.Linear(None, 2, initialW=np.array([[0,0.26],[1,0]],dtype=np.float32)), l1=L.Linear(None, 2), ) self.train = train def get_features(self, x): h = x # h = F.relu(self.conv1(h)) h = F.leaky_relu(self.conv1(h)) # h = F.leaky_relu(self.conv2(h)) # h = F.max_pooling_2d(h, 2) # h = F.relu(self.conv3(h)) return h def __call__(self, x): h = self.get_features(x) h = F.sum(h, axis=(2, 3)) h = self.l1(h) return h class Model(chainer.Chain): def __init__(self, predictor): super().__init__(predictor=predictor) def __call__(self, x, t): y = self.predictor(x) #print("y_shape:", y.shape) #print("t_shape:", t.shape) #loss = F.softmax_cross_entropy(y, t) loss = F.mean_absolute_error(y, t.astype(np.float32)) chainer.report({'loss': loss}, self) return loss def main(): X_train, Y_train = get_ds_counting(cnt_samples=1000) X_test, Y_test = get_ds_counting(cnt_samples=100) X_train = np.expand_dims(X_train, axis=1).astype(np.float32) / 255 X_test = np.expand_dims(X_test, axis=1).astype(np.float32) / 255 print(X_train.shape) print(X_test.shape) net = CNN() model = Model(net) ds_train = chainer.datasets.tuple_dataset.TupleDataset(X_train, Y_train) ds_test = chainer.datasets.tuple_dataset.TupleDataset(X_test, Y_test) train(model, ds_train, ds_test, params) if __name__ == "__main__": main()
true
a7984c9db416805c82e302d96b29593164172fd6
Python
beard33/Cryptopals
/set1/5.py
UTF-8
310
2.734375
3
[]
no_license
import binascii import utils.tools as tools string = b'Burning \'em, if you ain\'t quick and nimble\nI go crazy when I hear a cymbal' target = b'0b3637272a2b2e63622c2e69692a23693a2a3c6324202d623d63343c2a26226324272765272a282b2f20430a652e2c652a3124333a653e2b2027630c692b20283165286326302e27282f' key = b'ICE' res = tools.repeatingXor(string, key) if target != binascii.hexlify(bytes(res)): print("Error in conversion") else: print("Correct")
true
88d123b7de3c392180bcc48afe63d097eeb74520
Python
Vasinck/plan-game
/bullet.py
UTF-8
669
3.21875
3
[]
no_license
import pygame from pygame.sprite import Sprite class Bullet(Sprite): def __init__(self,game_sets,screen,ships): super().__init__() self.screen = screen self.rect = pygame.Rect(0,0,game_sets.bullet_width,game_sets.bullet_height) self.rect.centerx = ships.rect.centerx self.rect.top = ships.rect.top self.y = float(self.rect.y) self.color = game_sets.bullet_color self.speed = game_sets.bullet_speed def update(self): self.y -= self.speed self.rect.y = self.y def draw_bullet(self): pygame.draw.rect(self.screen,self.color,self.rect)
true
627b65cee399feb79f889d875fc359d31272c3b3
Python
pradeepodela/selena
/tr.py
UTF-8
4,406
2.9375
3
[]
no_license
import pyttsx3 import wikipedia engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[len(voices)-1].id) def speak(audio): print('Computer: ' + audio) engine.say(audio) engine.runAndWait() questions = { 'hai':'hai sir', 'what are you doing':'learning something new to improve my self', 'who is your hero':'my founder pradeep sir', 'if you could live anywhere where would it be':'i would like to be in my home', 'what is your biggest fear':'loseing people', 'what will you change about yourself if you could':'my program', 'what really make you angry':'nothing makes me angry', 'what motivates you to work hard':'to see people response', 'what is your proudest accomplishment':'to help people', 'what is your favourite book':'my favorite book to read is 0 to 1 and rich dad poor dad', 'best book to read':'book to read is 0 to 1 and rich dad poor dad', 'what makes you the laugh most':'when people say AI causes damage to humans', 'what is your favourite game':'foot ball', 'who is your favourite author':' robert kiyosaki and jk rowling', 'do you like surprises':'yes ', 'what are your hobbies':'to spend time with people', 'what would you do if you won the lottery':'i would like to spend it for people', 'what is your favourite animal':'its cheetha', 'who is your favourite actor':'my favorite actor is sushant singh rajput', 'who is your favourite singer':'rahul sipligunj', 'who is your favourite actress':'krithi shetty', 'what is your favourite movie':'marvel movies', 'what is your favourite colour':'green', 'what is your favourite food':'my yourfavorite food is charging because i dont eat foods which humans eat', 'how are you':'i am fine hope you are also doing good', 'is ai safe for humans':'yes Artificial intelligence is safe for humans unless humans miss use it', 'thank you':'welcome sir', 'do you lie':'no sir robots never ever lie', 'who are you':'my name is selena i am a personal assistent robo on a mession to help people in many ways i was invented by pradeep', 'introduce yourself':'my name is selena i am a personal assistent robo on a mession to help people in many ways i was invented by pradeep', 'how to impress a girl':'5 tips to impress girls 1 Ask her questions 2 Compliment the way she looks 3 Compliment her positivity 4 Ask for advice 5 look into her eyes ', 'how to impress my crush':'five tips to impress your crush 1 Make them laugh 2 Talk about your passions 3 Ask for their advice 4 Show you are open 5 Be polite with these five tips you can surely impress your crush', 'what is your favourite song':'vaaste by dhvani bhanushali', 'i love you':'i love you 2', 'do you love me':'yes i love humans', 'what is your favorite quote':'my favorite quote is i never take a right decssion i take a decssion and make it right', 'who is your crush':'krithi shetty', 'how to propose a girl':'1.Be yourself 2. Bend down on your knees 3.Take her out to dinner to a nice place and make her feel special 4. Drive down to a beach when the sun is about to set', 'how to impress teacher':'1. Be early 2. Make eye contact during class 3. Ask follow-up questions 4. Take advantage of office hours 5. Smile and greet your professors by name outside class', 'do you use instagram':'no i dont use instagram', 'do you use whatsapp':'no i dont use it', 'do you use social media':'no i dont use socila media', 'what do you think about me':'i am werry happy to talk with you all people i feel your are a kind hearted and good person happy to talk with you', 'your first love':'i love all humans ', 'your first crush':'krithi shetty', 'who your first crush':'krithi shetty', 'nice to meet you':'nice to meet you 2 hope we will meet again thank you for talking to me', 'hellow':'hellow sir' } def speech(input): if input in questions: ans = questions.get(input) speak(ans) else: input = input speak('Searching...') try: results = wikipedia.summary(input, sentences=2) speak(results) except: speak("sorry sir say again") return input
true
fa172b22bb178ff9a66761a15055a15adacafd8a
Python
helunxing/algs
/leetcode/LCP 3. 机器人大冒险.py
UTF-8
686
2.765625
3
[]
no_license
class Solution: def robot(self, command: str, obstacles, x: int, y: int) -> bool: ps = set() un, rn = 0, 0 for c in command: ps.add((rn, un)) if c == 'U': un += 1 else: rn += 1 mu = min(x // rn, y // un) if (x - mu*rn, y - mu*un) not in ps: return False def match(x, y): mu = min(x // rn, y // un) if (x - mu*rn, y - mu*un) in ps: return True return False for ob in obstacles: if ob[0] <= x and ob[1] <= y and match(ob[0], ob[1]): return False return True
true
ed3c33477c4dc9ea1f2b54c11fa34d0ad84c305c
Python
RJTK/dwglasso_cweeds
/src/data/clean_data.py
UTF-8
2,320
3.0625
3
[ "MIT" ]
permissive
''' This file loads in data from /data/interim/interim_data.hdf and then both centers the temperature data and adds in a dT column of temperature differences. NOTE: This file is intended to be executed by make from the top level of the project directory hierarchy. We rely on os.getcwd() and it will not work if run directly as a script from this directory. ''' import pandas as pd import sys from src.conf import HDF_INTERIM_FILE, LOCATIONS_KEY, TEMPERATURE_TS_ROOT from scipy.stats import uniform def temp_diff_to_hdf(hdf_path: str, key: str): ''' Loads in a pandas dataframe from the key location in the hdf store given by hdf_path. We then truncate the series so that it does not begin or end with unobserved data, we center the 'T' column, and we add a 'dT' column consisting of the first differences of the 'T' column. This series will also be centered. ''' with pd.HDFStore(hdf_path, mode='r') as hdf: D = hdf[key] # Read D from disk # Trucate so that we don't start or end with unobserved data t = D.index # The times of observation t_obs = t[D['T_flag'] != -1] D = D[t_obs[0]:t_obs[-1]] # Truncate # Center the temperature series T = D['T'] mu = T.mean() T = T - mu D.loc[:, 'T'] = T # Get the differences. Note that dT[0] = np.nan dT = T.diff() # After about 1978 the data discretization is within 0.1degrees C, # I dither the data so as to prevent any numerical issues resulting # from this discretization. dT = dT + uniform.rvs(loc=-0.5, scale=1.0, size=len(dT)) dT = dT - dT.mean() # Ensure to center the differences too D['dT'] = dT # Open the database and write out the result. D.to_hdf(hdf_path, key=key) return def main(): hdf_path = HDF_INTERIM_FILE # This task is mostly io bound, so there is no reason to # do anything in parallel as in interpolate_data.py # Get the location data D_loc = pd.read_hdf(hdf_path, key=LOCATIONS_KEY) hdf_group = '/' + TEMPERATURE_TS_ROOT + '/wban_' N = len(D_loc) for i, row in D_loc.iterrows(): print('Processing record: ', i, '/', N, end='\r') sys.stdout.flush() temp_diff_to_hdf(hdf_path, hdf_group + row['WBAN'] + '/D') return if __name__ == '__main__': main()
true
cc12a2bf24a769af84dc2dcebf3ef226c3eb7ccc
Python
davibrilhante/mcmc-20191
/lista3/questao2/lista3-q2-1.py
UTF-8
484
2.734375
3
[]
no_license
from random import uniform from sys import argv from math import log from matplotlib import pyplot as plt counter = 0 Lambda=[] n=int(argv[1]) for i in range(int(argv[2])): Lambda.append(float(argv[i+3])) for l in Lambda: dist=[] for i in range(1,n+1): u = uniform(0,1) x_i = -1*log(1-u)/l dist.append(x_i) plt.hist(dist, bins=1000, histtype='step',label='$\lambda$ ='+str(l)) plt.grid(True,which="both",ls="-") plt.legend(loc=0, ) plt.show()
true
0cfee5089cde50e8769edbda94f815ea37b32924
Python
DilbaraAsanalieva/lesson2_hw
/lesson2_hw.py
UTF-8
480
3.609375
4
[]
no_license
#Calculator value1 = int(input('Введите цифру: ')) value2 = int(input('Введите цифру: ')) print(value1, '+', value2, '=', value1 + value2) print(value1, '-', value2, '=', value1 - value2) print(value1, '*', value2, '=', value1 * value2) print(value1, '/', value2, '=', value1 / value2) # Standup # Что сделала: # -Написала калькулятор # План: # -Практиковаться # Проблема: # -Почти не было
true
d477da209c38a06eaa71d5d75bb69ba546784764
Python
Michaelliv/p2pay
/risk_engine_service/main.py
UTF-8
2,679
2.515625
3
[]
no_license
import asyncio import json from concurrent.futures import ThreadPoolExecutor from aiokafka import AIOKafkaConsumer import database.crud.payments as payments_crud from common.config import KAFKA_BOOTSTRAP_SERVERS, KAFKA_CONSUMER_GROUP, KAFKA_TOPIC from common.logger import get_logger from common.models import Payment from database.database import database from risk_engine_service.engine import RandomRiskEngine, AbstractRiskEngine logger = get_logger(__name__) def init_stream_consumer() -> AIOKafkaConsumer: """ Initializes and returns the stream consumer """ logger.info("Initializing stream consumer...") return AIOKafkaConsumer( KAFKA_TOPIC, bootstrap_servers=KAFKA_BOOTSTRAP_SERVERS, group_id=KAFKA_CONSUMER_GROUP, auto_offset_reset="earliest", auto_commit_interval_ms=1000, value_deserializer=lambda m: json.loads(m.decode("utf-8")), ) def init_risk_engine() -> AbstractRiskEngine: """ Initializes and returns the risk engine """ logger.info("Initializing risk engine...") return RandomRiskEngine( min_value=0.0, max_value=1.0, approval_threshold=0.7, ) async def main(): loop = asyncio.get_event_loop() executor = ThreadPoolExecutor(max_workers=1) risk_engine = init_risk_engine() consumer = init_stream_consumer() # Establish database connection and start consumer await database.connect() await consumer.start() try: logger.info("Consuming messages...") # Then processes them using the risk engine async for message in consumer: processed_payment = await loop.run_in_executor( executor, risk_engine.process, Payment(**message.value) ) # Insert processed payment to database await payments_crud.insert_processed_payment( processed_payment=processed_payment ) except Exception as e: logger.exception(f"Exception: {e}") finally: logger.info("Stopping consumer and disconnecting from database gracefully...") await consumer.stop() await database.disconnect() if __name__ == "__main__": """ This is the entry point to the RiskEngine service, this service consumes a Kafka stream, applies the RiskEngine logic and writes its processed results to a database. This service handles 2 different types of workload: 1) CPU/GPU bound RiskEngine (Basically non IO related work) 2) IO bound writing results to DB We will start an event loop in its own thread and offload the second type of workload to this thread """ asyncio.run(main())
true
fd7743aca48784b5c447e8f6d988fd72fc6b55b8
Python
lichengunc/pretrain-vl-data
/prepro/get_excluded_iids.py
UTF-8
5,843
2.625
3
[ "MIT" ]
permissive
""" We will get to-be-excluded images' ids by checking: 1) Karpathy's test split 2) refcoco/refcoco+/refcocog's val+test split 3) duplicated Flickr30k images in COCO Note, karpathy's val split will be our val split for pre-training. """ import os import os.path as osp import json import pickle # paths this_dir = osp.dirname(__file__) data_dir = osp.join(this_dir, "../data") vg_dir = osp.join(data_dir, "vg") coco_dir = osp.join(data_dir, "coco") refer_dir = osp.join(data_dir, "refer") flickr_dir = osp.join(data_dir, "flickr30k") karpathy_splits_dir = osp.join(coco_dir, "karpathy_splits") output_dir = osp.join(this_dir, "../output") # exclude refcoco/refcoco+/refcocog's val+test images refcoco_data = pickle.load(open(osp.join(refer_dir, "refcoco/refs(unc).p"), "rb")) # same as refcoco+ refcocog_data = pickle.load(open(osp.join(refer_dir, "refcocog/refs(umd).p"), "rb")) refer_val_coco_iids = [] refer_test_coco_iids = [] for ref in refcoco_data: if ref["split"] in ["testA", "testB"]: refer_test_coco_iids.append(ref["image_id"]) if ref["split"] == "val": refer_val_coco_iids.append(ref["image_id"]) for ref in refcocog_data: if ref["split"] in ["test"]: refer_test_coco_iids.append(ref["image_id"]) if ref["split"] == "val": refer_val_coco_iids.append(ref["image_id"]) refer_val_coco_iids_set = set(refer_val_coco_iids) refer_test_coco_iids_set = set(refer_test_coco_iids) print(f"In refcoco/refcoco+/refcocog, there are " f"{len(refer_val_coco_iids_set)} [val] images and " f"{len(refer_test_coco_iids_set)} [test] images in COCO's [train] split.") # load Karpathy's splits karpathy_train_iids = [] karpathy_train_file = open(osp.join(karpathy_splits_dir, "karpathy_train_images.txt"), "r") for x in karpathy_train_file.readlines(): karpathy_train_iids.append(int(x.split()[1])) assert len(set(karpathy_train_iids)) == len(karpathy_train_iids) print(f"COCO\'s [karpathy_train] has {len(karpathy_train_iids)} images.") karpathy_val_iids = [] karpathy_val_file = open(osp.join(karpathy_splits_dir, "karpathy_val_images.txt"), "r") for x in karpathy_val_file.readlines(): karpathy_val_iids.append(int(x.split()[1])) assert len(set(karpathy_val_iids)) == len(karpathy_val_iids) print(f"COCO\'s [karpathy_val] has {len(karpathy_val_iids)} images.") karpathy_test_iids = [] karpathy_test_file = open(osp.join(karpathy_splits_dir, "karpathy_test_images.txt"), "r") for x in karpathy_test_file.readlines(): karpathy_test_iids.append(int(x.split()[1])) assert len(set(karpathy_test_iids)) == len(karpathy_test_iids) print(f"COCO\'s [karpathy_test] has {len(karpathy_test_iids)} images.") # exclude all Flickr30K images from COCO and VG for zero-shot retrieval # coco session flickr30k_coco_iids = [] flickr30k_vg_iids = [] flickr30k_url_ids_set = set() for url_id in open(osp.join(flickr_dir, "flickr30k_entities", "train.txt"), "r").readlines(): flickr30k_url_ids_set.add(int(url_id)) for url_id in open(osp.join(flickr_dir, "flickr30k_entities", "val.txt"), "r").readlines(): flickr30k_url_ids_set.add(int(url_id)) for url_id in open(osp.join(flickr_dir, "flickr30k_entities", "test.txt"), "r").readlines(): flickr30k_url_ids_set.add(int(url_id)) print(f"There are {len(flickr30k_url_ids_set)} flickr30k_url_ids_set.") coco_image_data = json.load(open(osp.join(coco_dir, "annotations", "instances_train2014.json")))["images"] + \ json.load(open(osp.join(coco_dir, "annotations", "instances_val2014.json")))["images"] for img in coco_image_data: # example: 'http://farm4.staticflickr.com/3153/2970773875_164f0c0b83_z.jpg' url_id = int(img["flickr_url"].split("/")[-1].split("_")[0]) if url_id in flickr30k_url_ids_set: flickr30k_coco_iids.append(img["id"]) print(f"{len(flickr30k_coco_iids)} coco images were found in Flickr30K.") # vg session vg_image_data = json.load(open(osp.join(vg_dir, "image_data.json"))) for img in vg_image_data: if img["flickr_id"] is not None: url_id = int(img["flickr_id"]) if url_id in flickr30k_url_ids_set: flickr30k_vg_iids.append(img["image_id"]) print(f"{len(flickr30k_vg_iids)} vg images were found in Flickr30K.") # excluded_flickr_url_ids made by refer's val+test, karpathy's val+test, and # flickr30k. To be used to filter out the concurrent images in SBUCaptions. excluded_flickr_url_ids_set = set() cocoImgs = {img['id']: img for img in coco_image_data} for coco_id in list(refer_val_coco_iids_set) + \ list(refer_test_coco_iids_set) + \ karpathy_val_iids + karpathy_test_iids: # example: 'http://farm4.staticflickr.com/3153/2970773875_164f0c0b83_z.jpg' img = cocoImgs[coco_id] url_id = int(img['flickr_url'].split('/')[-1].split('_')[0]) excluded_flickr_url_ids_set.add(url_id) excluded_flickr_url_ids_set |= flickr30k_url_ids_set # also exclude flickr30k print(f"{len(excluded_flickr_url_ids_set)} flickr_url_ids are forbidden.") # Save output = {"refer_val_coco_iids": list(refer_val_coco_iids_set), "refer_test_coco_iids": list(refer_test_coco_iids_set), "flickr30k_coco_iids": flickr30k_coco_iids, "flickr30k_vg_iids": flickr30k_vg_iids, "karpathy_train_iids": karpathy_train_iids, "karpathy_val_iids": karpathy_val_iids, "karpathy_test_iids": karpathy_test_iids, "excluded_flickr_url_ids": list(excluded_flickr_url_ids_set)} with open(f"{output_dir}/excluded_coco_vg_iids.json", "w") as f: json.dump(output, f) print("output/excluded_coco_vg_iids.json saved.")
true
9b82598e68c6c886931e3f9358b510d5732fcb26
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2535/58547/244523.py
UTF-8
1,431
3.25
3
[]
no_license
def get_next(arr, cursor, temp_arr, to_get_next): temp_arr.append(arr[cursor[0]]) if cursor[0] == arr[cursor[0]]: cursor[0] += 1 return True cursor[0] += 1 while cursor[0] < len(arr): if arr[cursor[0]] == to_get_next: temp_arr.append(arr[cursor[0]]) cursor[0] += 1 return True temp_arr.append(arr[cursor[0]]) cursor[0] += 1 if cursor[0] == len(arr): return True return False def get_parts(arr, cursor, parts): temp_arr = [] if cursor[0] >= len(arr): return to_get_next = cursor[0] last_cursor = cursor[0] while True: flag = False if not get_next(arr, cursor, temp_arr, to_get_next): return if cursor[0] == len(arr): parts[0] += 1 return # temp_calc_arr = arr[last_cursor: cursor[0]] i = last_cursor while i < cursor[0]: if arr[i] not in temp_arr: to_get_next = arr[i] flag = True break i += 1 if flag: continue parts[0] += 1 return def func(): arr = [int(x) for x in input()[1:-1].split(",")] i = 0 cursor = [0] parts = [0] while i < len(arr): get_parts(arr, cursor, parts) if cursor[0] >= len(arr): break i += 1 print(parts[0]) func()
true
3f3bce8573cc87403ebbce7524b829903d5f4290
Python
lthUniBonn/awe-production-estimation
/aep.py
UTF-8
6,246
2.6875
3
[ "MIT" ]
permissive
import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt wind_speed_probability_file = "wind_resource/freq_distribution_v3{}.pickle" power_curve_file = 'output/power_curve{}{}.csv' def get_mask_discontinuities(df): """Identify discontinuities in the power curves. The provided approach is obtained by trial and error and should be checked carefully when applying to newly generated power curves.""" mask = np.concatenate(((True,), (np.diff(df['P [W]']) > -5e2))) mask = np.logical_or(mask, df['v_100m [m/s]'] > 10) # only apply mask on low wind speeds if df['P [W]'].iloc[-1] < 0 or df['P [W]'].iloc[-1] - df['P [W]'].iloc[-2] > 5e2: mask.iloc[-1] = False return ~mask def plot_power_and_wind_speed_probability_curves(n_clusters=8, loc='mmc', post_process_curves=True): """Plot the power and wind speed probability curves for the requested cluster wind resource representation.""" fig, ax = plt.subplots(2, 1, sharex=True, figsize=(5.5, 4)) plt.subplots_adjust(top=0.991, bottom=0.118, left=0.21, right=0.786) suffix = "_{}{}".format(n_clusters, loc) n_bins = 100 with open(wind_speed_probability_file.format(suffix), 'rb') as f: wind_speed_distribution = pickle.load(f)[n_bins] wind_speed_bin_freq = wind_speed_distribution['freq_2d'] wind_speed_bin_limits = wind_speed_distribution['v_bin_limits'] for i in range(n_clusters): # Plot power curve. i_profile = i + 1 df_power_curve = pd.read_csv(power_curve_file.format(suffix, i_profile), sep=";") if post_process_curves: mask_faulty_point = get_mask_discontinuities(df_power_curve) else: mask_faulty_point = np.array([False] * len(df_power_curve)) lbl = "{}-{}".format(loc.upper(), i_profile) p = ax[0].plot(df_power_curve['v_100m [m/s]'][~mask_faulty_point], df_power_curve['P [W]'][~mask_faulty_point] * 1e-3, '-', label=lbl) ax[0].plot(df_power_curve['v_100m [m/s]'][mask_faulty_point], df_power_curve['P [W]'][mask_faulty_point] * 1e-3, 's', color=p[0].get_color()) # Plot wind speed probability. aggregate_n_bins = 4 v0 = wind_speed_bin_limits[i, :-1:aggregate_n_bins] v1 = wind_speed_bin_limits[i, aggregate_n_bins::aggregate_n_bins] if len(v0) != len(v1): v1 = np.append(v1, wind_speed_bin_limits[i, -1]) bin_center = (v0 + v1)/2 freq = np.zeros(len(bin_center)) for j in range(len(bin_center)): freq[j] = np.sum(wind_speed_bin_freq[i, j*aggregate_n_bins:(j+1)*aggregate_n_bins]) ax[1].step(bin_center, freq/100., where='mid') ax[0].set_ylim([0., 11]) ax[0].grid() ax[0].set_ylabel('Mean cycle power [kW]') ax[0].legend(bbox_to_anchor=(1.02, 1.05), loc="upper left") ax[1].set_ylim([0., 0.0125]) ax[1].grid() ax[1].set_ylabel('Normalised frequency [-]') ax[1].set_xlabel('$v_{100m}$ [m s$^{-1}$]') def plot_aep_matrix(freq, power, aep): """Visualize the annual energy production contributions of each wind speed bin.""" n_clusters = freq.shape[0] mask_array = lambda m: np.ma.masked_where(m == 0., m) fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(7, 3.5)) plt.subplots_adjust(top=0.98, bottom=0.05, left=0.065, right=0.98) ax[0].set_ylabel("Cluster label [-]") ax[0].set_yticks(range(n_clusters)) ax[0].set_yticklabels(range(1, n_clusters+1)) for a in ax: a.set_xticks((0, freq.shape[1]-1)) a.set_xticklabels(('cut-in', 'cut-out')) im0 = ax[0].imshow(mask_array(freq), aspect='auto') cbar0 = plt.colorbar(im0, orientation="horizontal", ax=ax[0], aspect=12, pad=.17) cbar0.set_label("Probability [%]") im1 = ax[1].imshow(mask_array(power)*1e-3, aspect='auto') cbar1 = plt.colorbar(im1, orientation="horizontal", ax=ax[1], aspect=12, pad=.17) cbar1.set_label("Power [kW]") im2 = ax[2].imshow(mask_array(aep)*1e-6, aspect='auto') cbar2 = plt.colorbar(im2, orientation="horizontal", ax=ax[2], aspect=12, pad=.17) cbar2.set_label("AEP contribution [MWh]") def calculate_aep(n_clusters=8, loc='mmc'): """Calculate the annual energy production for the requested cluster wind resource representation. Reads the wind speed distribution file, then the csv file of each power curve, post-processes the curve, and numerically integrates the product of the power and probability curves to determine the AEP.""" suffix = "_{}{}".format(n_clusters, loc) n_bins = 100 with open(wind_speed_probability_file.format(suffix), 'rb') as f: wind_speed_distribution = pickle.load(f)[n_bins] freq = wind_speed_distribution['freq_2d'] wind_speed_bin_limits = wind_speed_distribution['v_bin_limits'] p_bins = np.zeros(freq.shape) for i in range(n_clusters): i_profile = i + 1 df = pd.read_csv(power_curve_file.format(suffix, i_profile), sep=";") mask_faulty_point = get_mask_discontinuities(df) v = df['v_100m [m/s]'].values[~mask_faulty_point] p = df['P [W]'].values[~mask_faulty_point] assert v[0] == wind_speed_bin_limits[i, 0] err_str = "Wind speed range of power curve {} is different than that of probability distribution: " \ "{:.2f} and {:.2f} m/s, respectively.".format(i_profile, wind_speed_bin_limits[i, -1], v[-1]) if np.abs(v[-1] - wind_speed_bin_limits[i, -1]) > 1e-6: print(err_str) # assert np.abs(v[-1] - wind_speed_bin_limits[i, -1]) < 1e-6, err_str # Determine wind speeds at bin centers and corresponding power output. v_bins = (wind_speed_bin_limits[i, :-1] + wind_speed_bin_limits[i, 1:])/2. p_bins[i, :] = np.interp(v_bins, v, p, left=0., right=0.) aep_bins = p_bins * freq/100. * 24*365 aep_sum = np.sum(aep_bins)*1e-6 print("AEP: {:.2f} MWh".format(aep_sum)) return aep_sum, freq, p_bins, aep_bins if __name__ == "__main__": plot_power_and_wind_speed_probability_curves() aep_sum, freq, p_bins, aep_bins = calculate_aep(8, loc='mmc') plot_aep_matrix(freq, p_bins, aep_bins) plt.show()
true
9628d4c0d62e8784a06d1a0393716e732136ab3c
Python
katero/basic-python-code
/function_default.py
UTF-8
82
3.0625
3
[]
no_license
def say(messge, times=1): print(messge * times) say('hello') say('world', 5)
true
73106be45d3efe4901092d851fe214fea1b35abb
Python
jef771/algorithmic-toolbox
/week3/car_fueling/a.py
UTF-8
736
3.234375
3
[]
no_license
import sys def get_stops(d, m, stops, n): n_r, c_r, r= 0, 0, m while c_r <= n: l_r = c_r while c_r <= n and (stops[c_r + 1] - stops[l_r]) <= m: c_r+=1 if c_r == l_r: return -1 else: n_r+=1 return n_r-1 def main(): sys_in = sys.stdin sys_out = sys.stdout d = int(sys_in.readline()) m = int(sys_in.readline()) if d <= m: sys_out.write('0\n') sys.exit() n = int(sys_in.readline()) stops1 = [0] stops2 = list(map(int, sys_in.readline().split())) stops1+=stops2 stops1.append(d) sys_out.write(f'{get_stops(d, m, stops1, n)}\n') if __name__ == '__main__': main()
true
0ec24dbe8171656c261be7477b3f2993f73cabc3
Python
Jun-GwangJin/Python-Programming
/elsePrice.py
UTF-8
361
3.90625
4
[]
no_license
while True: # 상품가격 입력받기 price = int(input("가격: ")) if price != 0000: # 배송비 결정 if price > 20000: shipping_cost = 0 elif price > 10000: shipping_cost = 1000 elif price > 5000: shipping_cost = 500 else: shipping_cost = 3000 # 배송비 출력 print("배송비: ". shipping_cost) #else: # print('Bye') # break
true
08ead49e12903ed5f22b681315821d2cd420eaeb
Python
SolessChong/kittipattern
/scratch/rodanalysis.py
UTF-8
3,464
2.71875
3
[]
no_license
import sys sys.path.append('../utilities') from parseTrackletXML import * from frames import * from scipy import stats import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import re import os import fnmatch import pickle class Rod: def __init__(self, T1, T2, vec): """ Init by types of obj1 and obj2, and a vector describing the relation between these two """ self.T1 = T1 self.T2 = T2 self.vec = vec # End of Class Rod def get_rods_from_directory(dir_name): """ Read frames from a directory. This method searches all the ".xml" files recursively and try to parse them. """ all_frames = read_allframes_from_directory(dir_name) all_rods = [] for frames in all_frames: all_rods.extend(get_rods_from_frames(frames)) return all_rods def get_rods_from_frames(frames): """ Enumerate each pair of objects. Or enumerate over "Rods" """ rods = [] for frame in frames.itervalues(): for i in range(len(frame)): for j in range(len(frame)): if i != j: rod = Rod(frame[i]['type'], frame[j]['type'], \ frame[j]['l'] - frame[i]['l']) rods.append(rod) return rods def get_PDF_from_rods(rods, T1, T2, intDraw=2): """ Estimate the probability distribution function of the vector Filtered by T1 and T2, string T1 and T2 should be like this: 'Car_Pedestrian_Van' since they are: 1) when filtering, they are used by substring containing operation 2) used in generating filename of the file containing the PDF function Parameters: intDraw: 0: no show 1: save to image 2: plt.show """ rods_filtered = [r for r in rods if r.T1 in T1 and r.T2 in T2] if len(rods_filtered) < 10: print "No such pair occured or too few samples" print "T1 = " + T1 + ", T2 = " + T2 return None xs = np.array([r.vec[0] for r in rods_filtered]) ys = np.array([r.vec[1] for r in rods_filtered]) points = np.vstack([xs, ys]) pdf = stats.gaussian_kde(points) # save PDF function generated during this run PDF_filename = 'pdf/last_pdf_' + T1 + '--' + T2 + '.pk' with open(PDF_filename, 'wb') as output: pickle.dump(pdf, output, pickle.HIGHEST_PROTOCOL) plt.clf(); if intDraw > 0: # draw function and plot xmin = xs.min() xmax = xs.max() ymin = ys.min() ymax = ys.max() px = np.linspace(xmin, xmax, 30) py = np.linspace(ymin, ymax, 30) mx, my = np.meshgrid(px, py) z = np.array([pdf([x,y]) for x,y in zip(np.ravel(mx), np.ravel(my))]) Z = np.reshape(z, mx.shape) ## used when "surface plot" # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') plt.pcolormesh(mx,my,Z, cmap=plt.get_cmap('YlOrRd')) if intDraw == 2: plt.show() if intDraw == 1: fig_filename = 'pdf/last_pdf_' + T1 + '--' + T2 + '.jpg' plt.savefig(fig_filename) return pdf def get_all_possible_types(all_frames): """ Get all possible types occured in frames """ types = [] for frames in all_frames: for frame in frames.itervalues(): for obj in frame: types.append(obj['type']) types = list(set(types)) return types # for as-script runs if __name__ == "__main__": #frames = read_frames_from_file('../data/tracklet_labels_0001.xml') dir_name = '../data/part' all_rods = get_rods_from_directory('../data/part') pdf = get_PDF_from_rods(all_rods, '', '')
true
1203160dc78d5a9a20e45c17fbd1a511fe69b607
Python
EunsuJeong/Gawi_Bawi_Bo
/game.py
UTF-8
918
3.75
4
[]
no_license
import random export LC_ALL=en_US.UTF-8 export LANG = en_US.UTF-8 """ Traditional gawi-bawi-bo game @author Eunsu Jeong @created 12-10-2016 """ def determine_winner(my_hand, com_hand): """ Determine winner of the game. :param my_hand: my hand parameter :param com_hand: predefined computer choice :return None: None is returned. (void) =============== Gawi, Bawi, Bo =============== ---------------- Gawi, Bawi, Bo ---------------- Chapter 1 What is this game --------------------------- It's Rock Scissors Paper Chapter 1.1 Definition ~~~~~~~~~~~~~~~~~~~~~~~ One person and other person can play this game. """ a = com_hand - my_hand if a>0 or a==-2: print "You Win" elif a == 0: print "Draw" else: print "You Lose" if __name__ == '__main__': com_hand = random.randint(0,2) print("Show your hand (0: gawi, 1:bawi, 2:bo)") my_hand = int(input()) determine_winner(my_hand, com_hand)
true
9daab23a8f0b1fba842055ca157d628a1bd61184
Python
mohitkhatri611/python-Revision-and-cp
/python programs and projects/python all topics/enumerate and zip function.py
UTF-8
1,928
4.5625
5
[]
no_license
"""how to find the index of each item""" def exzip1(): Numbers =[1,2,3,4,6,4,3,6,8,5,8] #problem this will give only index for first 6 if you have duplicates in list. #print(Numbers.index(6)) """finding index of all elements even with duplicates""" #an enumerator provides an index of each elements in list or iterables and return an output in the form of tuple. #syntax: enumerte(iterables,start=0) # it return iterable object for i in enumerate(Numbers,start=5): print("Index of {} is {}".format(i[1],i[0])) #find out all indexes of single element. for i in enumerate(Numbers): if i[1]==8: print("Index of {} is {}".format(i[1],i[0])) #print(list(enumerate(Numbers))) def enumOverDict(): Alphabets ={"AA": 4,"BB":9,"C":16,"DD":25,"EE":36} for i,j in enumerate(Alphabets): print(i,j) def zipUsed(): """zip function takes iterables and these iterables can be zero or more.""" #Zip function will combine them and return it in the form of tuple. result =zip() print(result) # it will be the object. listResult = list(result) print(listResult) #it will create empty list nlist=[4,5] slst=['four','Five','Six','Seven'] r_tup=('IV','V','VI','VII') result= zip(nlist,slst,r_tup) result2= zip(nlist,slst,r_tup) setResult = set(result) print(setResult) setResult2 = tuple(result2) print(setResult2) """problem zip stop when the shortest iterable is exhausted.""" def ex2Zip(): pm=['modi','biden','jacinda','scott','boris'] country= ['india','us','nz','aus','uk'] for pm ,country in zip(pm,country): print("Prime Minister: %s Country is: %s" %(pm,country)) #how to converts dict from these 2 lists. pm = ['modi', 'biden', 'jacinda', 'scott', 'boris'] country = ['india', 'us', 'nz', 'aus', 'uk'] print(dict(zip(pm,country))) ex2Zip()
true
1a65fe716cdda335fb96361f8f2871dee5f25fd1
Python
samuelfujie/LintCode
/1691_Best_Time_to_Buy_and_Sell_Stock_V/solution.py
UTF-8
485
3.296875
3
[]
no_license
import heapq class Solution: """ @param a: the array a @return: return the maximum profit """ def getAns(self, a): if not a: return 0 profit = 0 heap = [] heapq.heapify(heap) for price in a: if heap and heap[0] < price: profit += price - heapq.heappop(heap) heapq.heappush(heap, price) heapq.heappush(heap, price) return profit
true
ae1c843529a3e6cc363c9c8868858297b947d107
Python
FlavrSavr/boring
/lottery/post_change_lottery_analysis.py
UTF-8
1,865
3.15625
3
[ "Apache-2.0" ]
permissive
import numpy as np from collections import Counter import collections import csv import re def lottery_analysis(): counter = 0 list_counter = 0 output_list = [] pre_change_list = [] post_change_list = [] raw_list = np.loadtxt(open("/home/rane/testing/winning_numbers.csv", "rb"), dtype='str', delimiter=',') string_version = str(raw_list) version0 = re.sub(r" [0-9][0-9]'","'",string_version) alt_version1 = version0.replace("' '","','") alt_version2 = alt_version1.replace("'\n '","','") back = eval(alt_version2) for element in back: if list_counter < 591: pre_change_list.append(element) list_counter += 1 elif list_counter >= 591: post_change_list.append(element) list_counter += 1 pre_change_str = str(pre_change_list) post_change_str = str(post_change_list) version1 = post_change_str.replace("'","") version2 = version1.replace(" ",",") version3 = version2.replace(",,",",") version4 = version3.replace(",0",",") list_version = eval(version4) check = (len(list_version))/5 if check == 291.0: print("Parsed the correct number of elements.") else: print("Parsed as incorrect number of elements. Expected 291.0, got "+str(check)+".") new_dictionary = dict(Counter(list_version)) for key, value in new_dictionary.items(): counter += value for key, value in new_dictionary.items(): output_list.append([key,(value/counter)]) if counter == 1455: print("Correct total of numbers returned.") else: print("Incorrect total of numbers returned. Expected 1455, got "+str(counter)+".") with open("/home/rane/testing/post_change_lottery.csv", "w") as file: writer = csv.writer(file) writer.writerows(output_list) lottery_analysis()
true
52ceac5b336535ab8f9927c9afc73d5401fef52a
Python
Shyngys03/PP2
/FINAL/U.py
UTF-8
338
3.359375
3
[]
no_license
h, a, b = map(int, input().split()) up = True cnt = 0 m = 0 while True: if up: m += a up = False cnt += 0.5 if m >= h: print(int(cnt) + 1) break if not up: m -= b up = True cnt += 0.5 if m >= h: print(int(cnt)) break
true
7108c781ec23c1c1e441e4a26c4866f69dc35201
Python
ankian27/NLP
/stage1/src/DefinitionGeneration.py
UTF-8
7,219
3.890625
4
[]
no_license
#This class is used to generate the defitions for each cluster. The idea of definiton generation is that, we can derive the definition of a word by using the context words neighbouring the target word in a given context. The topics are given by the hdp are used to get the topic words. The topic words along with the target_word(the noun/verb/nameconflate pair) is given as input to the program and the output is a sentence generated using those topic words. The sentence gerneated using our approach adheres to the syntactic structure of the enlgish grammar and is more than 10 words. The syntactic structure of the english grammar is represented here in the form of Context Free Grammars(CFG). A CFG is a set of recursive rules(or productions) which are used to generate string patterns. We give the target word as one of the input because if the target word is present in the set of topic words we want to remove it from the defintion. The execution of the program is as follows: # Input : Topic words, Target word # Output: Sentence depicting the meaning of the target word # Example: shoot woman love look movie director part lot money film # Output : money love with a movie and a director love with is lot #The Natural Language Toolkit(NLTK), is an open source toolkit of python modules for natural language processing (NLP) for English language. import nltk from nltk.tag import pos_tag, map_tag # Function to assign tags to individual tokens and return tagged tokens. from nltk import word_tokenize # Function to split string of words into individual tokens from nltk.util import ngrams #Function to return the ngrams generated. from collections import defaultdict #Creates a default dictionary which gives a default value for non-existent key. import random #Randomly choose an item from a list of items. class Definition(object): def __init__(self): """ The function __init__ is a constructor in python which accepts the instance of a class of the object itself as a parameter. The constructur is used to initialize the cfgRule(Context Free Grammar rules), nouns, verbs and adjectives for each instance. """ # Create default dictionary self.cfgRule=defaultdict(list) # Variables to store list of NOUN, VERB and ADJECTIVEs self.noun = '' self.verb = '' self.adj = '' def get_Noun_Verb(self, topics): """Section I: The function is used to seperate the Nouns, Verbs and Adjectives in the given set of topic words. We use the Parts of Speech Tagger from the Natural Language Toolkit to tag the POS for each word in the set of topic words. Args: param1 (set) : Set of topic words Returns: Nouns, Verbs and Adjectives seperated from the topic words. """ self.noun = '' self.verb = '' self.adj = '' adv=[] #Natural Language POS tagger. Returns the default tags posTagged=nltk.pos_tag(topics) # The default tags are converted to simplified tags. Example: NN->NOUN simplifiedTags=[(word, map_tag('en-ptb', 'universal', tag)) for word, tag in posTagged] # Seperate Nouns, Verbs and Adjectives by parsing simplifiedTags and assign to the respective variables. # The NOUN words are separated by "|" delimiter for word, tag in simplifiedTags: if tag=='NOUN': self.noun += word + '|' if tag=='VERB': self.verb += word+'|' if tag=='ADJ': self.adj += word+'|' if tag=='ADV': adv.append(word) # Remove the additional '|' character from the end of the strings. self.noun=self.noun[:-1] self.verb=self.verb[:-1] self.adj=self.adj[:-1] return self.noun, self.verb ,self.adj def cfg_rule(self,left,right): '''Section II: The function is used to map the Context Free Grammar production rules for the english grammar to python representation Args: param1 (string) : Non-terminal String present on the left side of the production param2 (string) : Terminal/Non-terminal string present on the right side of the production ''' # Split the string of Nouns, Verbs, Adjectives appended with "|" rules=right.split('|') # For each rule of the production, create a tuple and append it to its respective rule in the CFG list. for rule in rules: self.cfgRule[left].append(tuple(rule.split())) def gen_def(self, symbol): '''Section III: The function is used to generate the definition of a sentence recursively using the CFG rules Args: param1 (string): Start symbol of the CFG rule Returns: definition: The generated definition of the sentence. ''' definition = '' # Randomly select one of the production rule. rule = random.choice(self.cfgRule[symbol]) #Iterate of the symbols of each production rule for sym in rule: #This condition is true if the sym leads to other nonterminal symbols. if sym in self.cfgRule: definition += self.gen_def(sym) #This is true if the sym leads to terminals. else: definition += sym + ' ' # Append the word and the space for the definition. # Form a list of nouns and verbs by splitting the string formed above in the function get_Noun_Verb. noun2=self.noun.split('|') verb2=self.verb.split('|') # Filtering out the already used words. # If a noun has been used, removing it from the list of Noun words. noun2 = filter(lambda a: a != sym, noun2) self.noun='' # If a verb word has been used, removing it from the list of Verb words. verb2 = filter(lambda a: a != sym, verb2) self.verb='' #Repopulating the noun and verb strings with the used word removed. for words in noun2: self.noun += words + '|' self.noun=self.noun[:-1] for words in verb2: self.verb += words + '|' self.verb=self.verb[:-1] return definition def generate_Definition(self, topics, target): '''Section IV: This function which is control the flow of program. It makes calls to the functions to produce the CFG rules and to generate the definition of the cluster Args: param1 (set) : Set of topic words param2 (string): The target word for which the definition has to be generated. Returns: The definition of the target word adhering to the english grammar rules and it is longer than 10 words. ''' # Removes the target word from the set of topic words. As the definition should not contain the word itself. topics = filter(lambda topic: target not in topic, topics) # Get the seperated Nouns, Verbs, Adjectives self.noun, self.verb ,self.adj= self.get_Noun_Verb(topics) # Represent CFG rules in python # S -> S1 CONJ S2 # S1 -> NP VP # S2 -> NP VP # NP -> Det N # VP -> V PRO ADJ NP # PRO -> with | to # Det -> a | the | is # N -> Noun words list # V -> Verb words list # ADJ -> Adjective words list # CONJ -> and self.cfg_rule('S', 'S1 CONJ S2') self.cfg_rule('S1', 'NP VP') self.cfg_rule('S2', 'NP VP') self.cfg_rule('NP', 'Det N') self.cfg_rule('VP', 'V PRO ADJ NP') self.cfg_rule('CONJ','and') self.cfg_rule('PRO','with | to') self.cfg_rule('Det', 'a | the | is') self.cfg_rule('N', self.noun) self.cfg_rule('V', self.verb) self.cfg_rule('ADJ', self.adj) # Generate sentence and return it. return self.gen_def('S')
true
2b34dc358d9d62a5ba32dfd89a8fd29d9e783e17
Python
mary-alegro/AVID_pipeline
/python/UCSFSlideScan/results/plot_precrec_curve_all.py
UTF-8
5,804
2.703125
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import auc def find_nearest1(array,value): idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value)) return idx def main(): thres = 0.5 #AT100 AT100_test_stats = np.load('/home/maryana/storage2/Posdoc/AVID/AT100/results/testing/AT100_testing_stats.npy') AT100_val_stats = np.load('/home/maryana/storage2/Posdoc/AVID/AT100/results/validation/AT100_validation_stats.npy') AT8_test_stats = np.load('/home/maryana/storage2/Posdoc/AVID/AT8/results/testing/AT8_testing_stats.npy') AT8_val_stats = np.load('/home/maryana/storage2/Posdoc/AVID/AT8/results/validation/AT8_validation_stats.npy') MC1_test_stats = np.load('/home/maryana/storage2/Posdoc/AVID/MC1/results/testing/MC1_testing_stats.npy') MC1_val_stats = np.load('/home/maryana/storage2/Posdoc/AVID/MC1/results/validation/MC1_validation_stats.npy') fig1_name = '/home/maryana/storage2/Posdoc/AVID/All_precision_recall.png' AT100_prec_t = AT100_test_stats[:, 2]; AT100_recall_t = AT100_test_stats[:, 3] AT100_prec_v = AT100_val_stats[:, 2]; AT100_recall_v = AT100_val_stats[:, 3] AT8_prec_t = AT8_test_stats[:, 2]; AT8_recall_t = AT8_test_stats[:, 3] AT8_prec_v = AT8_val_stats[:, 2]; AT8_recall_v = AT8_val_stats[:, 3] MC1_prec_t = MC1_test_stats[:, 2]; MC1_recall_t = MC1_test_stats[:, 3] MC1_prec_v = MC1_val_stats[:, 2]; MC1_recall_v = MC1_val_stats[:, 3] AT100_fpr_t = AT100_test_stats[:,5]; AT100_f1_t = AT100_test_stats[:,4] AT100_fpr_v = AT100_val_stats[:,5]; AT100_f1_v = AT100_val_stats[:,4] AT8_fpr_t = AT8_test_stats[:,5]; AT8_f1_t = AT8_test_stats[:,4] AT8_fpr_v = AT8_val_stats[:,5]; AT8_f1_v = AT8_val_stats[:,4] MC1_fpr_t = MC1_test_stats[:,5]; MC1_f1_t = MC1_test_stats[:,4] MC1_fpr_v = MC1_val_stats[:,5]; MC1_f1_v = MC1_val_stats[:,4] probs = np.linspace(1, 0, num=20) index = find_nearest1(probs,thres) print('AT100') print('Testing: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(AT100_prec_t[index],AT100_recall_t[index],AT100_fpr_t[index],AT100_f1_t[index],1-AT100_fpr_t[index],1-AT100_recall_t[index])) print('Val: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(AT100_prec_v[index],AT100_recall_v[index],AT100_fpr_v[index],AT100_f1_v[index],1-AT100_fpr_v[index],1-AT100_recall_v[index])) print('AT8') print('Testing: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(AT8_prec_t[index],AT8_recall_t[index],AT8_fpr_t[index],AT8_f1_t[index],1-AT8_fpr_t[index],1-AT8_recall_t[index])) print('Val: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(AT8_prec_v[index],AT8_recall_v[index],AT8_fpr_v[index],AT8_f1_v[index],1-AT8_fpr_v[index],1-AT8_recall_v[index])) print('MC1') print('Testing: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(MC1_prec_t[index],MC1_recall_t[index],MC1_fpr_t[index],MC1_f1_t[index],1-MC1_fpr_t[index],1-MC1_recall_t[index])) print('Val: {}(Prec) {}(TPR) {}(FPR) {}(F1) {}(TNR) {}(FNR)'.format(MC1_prec_v[index],MC1_recall_v[index],MC1_fpr_v[index],MC1_f1_v[index],1-MC1_fpr_v[index],1-MC1_recall_v[index])) AT100_x_thres_t = AT100_recall_t[index]; AT100_y_thres_t = AT100_prec_t[index] AT100_x_thres_v = AT100_recall_v[index]; AT100_y_thres_v = AT100_prec_v[index] AT8_x_thres_t = AT8_recall_t[index]; AT8_y_thres_t = AT8_prec_t[index] AT8_x_thres_v = AT8_recall_v[index]; AT8_y_thres_v = AT8_prec_v[index] MC1_x_thres_t = MC1_recall_t[index]; MC1_y_thres_t = MC1_prec_t[index] MC1_x_thres_v = MC1_recall_v[index]; MC1_y_thres_v = MC1_prec_v[index] AT100_auc_t = auc(AT100_recall_t, AT100_prec_t); AT100_auc_v = auc(AT100_recall_v, AT100_prec_v) AT8_auc_t = auc(AT8_recall_t, AT8_prec_t); AT8_auc_v = auc(AT8_recall_v, AT8_prec_v) MC1_auc_t = auc(MC1_recall_t, MC1_prec_t); MC1_auc_v = auc(MC1_recall_v, MC1_prec_v) plt.figure() lw = 2 plt.plot(AT100_recall_t,AT100_prec_t,'--', color='red',lw=lw, label='AT100 testing (AUC {:.2f})'.format(AT100_auc_t)) plt.plot(AT100_recall_v,AT100_prec_v, color='red', lw=lw, label='AT100 validation (AUC {:.2f})'.format(AT100_auc_v)) plt.plot(AT100_x_thres_t, AT100_y_thres_t, color='red', lw=lw, marker='*', markersize=12) # Testing threshold tirado dos vetores prec/recall usando o index de probs mais proximos do threshold = 0.7 plt.plot(AT100_x_thres_v, AT100_y_thres_v, color='red', lw=lw, marker='*', markersize=12) plt.plot(AT8_recall_t,AT8_prec_t,'--', color='green',lw=lw, label='AT8 testing (AUC {:.2f})'.format(AT8_auc_t)) plt.plot(AT8_recall_v,AT8_prec_v, color='green', lw=lw, label='AT8 validation (AUC {:.2f})'.format(AT8_auc_v)) plt.plot(AT8_x_thres_t, AT8_y_thres_t, color='green', lw=lw, marker='*', markersize=12) # Testing threshold tirado dos vetores prec/recall usando o index de probs mais proximos do threshold = 0.7 plt.plot(AT8_x_thres_v, AT8_y_thres_v, color='green', lw=lw, marker='*', markersize=12) plt.plot(MC1_recall_t,MC1_prec_t,'--', color='blue',lw=lw, label='MC1 testing (AUC {:.2f})'.format(MC1_auc_t)) plt.plot(MC1_recall_v,MC1_prec_v, color='blue', lw=lw, label='MC1 validation (AUC {:.2f})'.format(MC1_auc_v)) plt.plot(MC1_x_thres_t, MC1_y_thres_t, color='blue', lw=lw, marker='*', markersize=12) # Testing threshold tirado dos vetores prec/recall usando o index de probs mais proximos do threshold = 0.7 plt.plot(MC1_x_thres_v, MC1_y_thres_v, color='blue', lw=lw, marker='*', markersize=12) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision-Recall Curve') plt.legend(loc="lower right") plt.show() plt.savefig(fig1_name) pass if __name__ == '__main__': main()
true
f19e31be81217984ba92bcbdaf67991676371749
Python
YumoeZhung/3Dswc
/test/opengl.py
UTF-8
1,434
2.5625
3
[]
no_license
__author__ = 'Su Lei' import pyglet from pyglet.gl import * window = pyglet.window.Window() # vertices = [0, 0, window.width, 0, window.width, window.height] # vertices_gl = (GLfloat * len(vertices))(*vertices) # print GLfloat * len(vertices) # print vertices_gl # print GLfloat * 100 # glEnableClientState(GL_VERTEX_ARRAY) # glVertexPointer(2, GL_FLOAT, 0, vertices_gl) # # # # @window.event # def on_resize(width, height): # glViewport(0, 0, width, height) # glMatrixMode(GL_PROJECTION) # glLoadIdentity() # gluPerspective(65, width / float(height), .1, 1000) # glMatrixMode(GL_MODELVIEW) # return pyglet.event.EVENT_HANDLED # # # # # vertex_list = pyglet.graphics.vertex_list_indexed(2, [0, 0], ('v2i', (10, 15, 30, 35)), # ('c3B', (0, 0, 255, 0, 255, 0))) # # # @window.event # def on_draw(): # vertex_list.vertices[:2] = [60, 95] # vertex_list.colors[:3] = [255, 0, 0] # vertex_list.draw(pyglet.gl.GL_POINTS) color_list = [1.0, 0.0, 0.0] color_list_gl = (GLfloat * len(color_list))(*color_list) @window.event def on_draw(): glClearColor(0.0, 0.0, 0.0, 0.0) glClear(GL_COLOR_BUFFER_BIT) glColor3f(1.0, 1.0, 1.0) glColor3fv(color_list_gl) glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0) glBegin(GL_POLYGON) glVertex2i(20, 20) glVertex2i(25, 80) glVertex2i(50, 87) glVertex2i(74, 12) glEnd() glFlush() pyglet.app.run()
true
bae1a0c33e4713ac4220e43adfe1b5bc9caf44eb
Python
elc1798/project-pepe-server
/meme_learning/preprocessing.py
UTF-8
4,812
2.515625
3
[]
no_license
from io import BytesIO from PIL import Image from imagenet import classify_image import os import glob import numpy as np import scipy.ndimage as spimg JPEG_FORMAT = "JPEG" WILD_PNG = "*.png" WILD_JPG = "*.jpg" CLASSIFIER_IMG_SIZE = (299, 299) DATA_DIR = "data/" TRAIN_DIR = "train/" objects_detected = {} CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) A, y = None, None npyfs = glob.glob(os.path.join(CURRENT_DIR, "*.npy")) mat_A_npy = os.path.join(CURRENT_DIR, "mat_A.npy") mat_y_npy = os.path.join(CURRENT_DIR, "mat_y.npy") if os.path.exists(mat_A_npy) and os.path.exists(mat_y_npy): print("USING PRELOADED TRAINING SET") A = np.load(mat_A_npy) y = np.load(mat_y_npy) class DataUnit: def __init__(self, image_path): global objects_detected tmp = image_path[ len(TRAIN_DIR) : -4 ].split("_") try: self.rating = int(tmp[1]) self.ID = "_".join(tmp[2:]) except: print("No rating in filename!") self.mat = spimg.imread(image_path) # Split the channels into different segments of the image with some # padding self.mat = np.r_[ self.mat[:,:,0], np.zeros((2, 299,)), self.mat[:,:,1], np.zeros((2, 299,)), self.mat[:,:,2] ] assert self.mat.shape == (299 * 3 + 4, 299) # Add an extra column to pad to (299*3 + 4) x 300 self.mat = np.c_[ self.mat, np.zeros(299 * 3 + 4) ] objects_extracted = classify_image.classify(image_path, print_results=False) self.objects = {} for extracted in objects_extracted: # ID of object is the shortest one ids = extracted[0].split(", ") ids.sort(key=len) obj_id = ids[0].lower() self.objects[obj_id] = extracted[1] if obj_id not in objects_detected: objects_detected[obj_id] = len(objects_detected) self.obj_vec = None def scale_images(src_path, dst_path): original_img = Image.open(src_path) resized = original_img.resize(CLASSIFIER_IMG_SIZE, Image.ANTIALIAS) # Save the resized image to destination resized.save(dst_path, format=JPEG_FORMAT) def process_for_training(images): processed_paths = [] for image in images: basename = image[ len(DATA_DIR) : -4 ] print "Resizing %s and converting to JPEG..." % (basename,) processed_path = os.path.join(TRAIN_DIR, basename + ".jpg") scale_images(image, processed_path) processed_paths.append(processed_path) return processed_paths def get_training_set(): global objects_detected raw = glob.glob(os.path.join(DATA_DIR, WILD_PNG)) raw += glob.glob(os.path.join(DATA_DIR, WILD_JPG)) images = process_for_training(raw) dataunits = [] for image in images: print "Image: %s (%d of %d)" % (image, len(dataunits) + 1, len(images)) dataunits.append(DataUnit(image)) print "%d unique objects detected." % (len(objects_detected),) one_hot_size = ((len(objects_detected) // 300) + 2) * 300 for dataunit in dataunits: dataunit.obj_vec = np.zeros( (one_hot_size,), dtype=np.float32 ) for obj_id in dataunit.objects: dataunit.obj_vec[objects_detected[obj_id]] = dataunit.objects[obj_id] mod4 = (dataunit.mat.shape[0] + (one_hot_size // 300)) % 4 padding = np.zeros((4 - mod4, 300)) dataunit.mat = np.r_[ dataunit.mat, padding, np.reshape(dataunit.obj_vec, (one_hot_size // 300, 300)) ] return np.array([ dataunit.mat for dataunit in dataunits ], dtype=np.float32), np.array([ dataunit.rating for dataunit in dataunits ], dtype=np.int32) def get_single_img(img_path): processed = process_for_training([img_path]) dataunit = DataUnit(processed[0]) one_hot_size = ((len(objects_detected) // 300) + 2) * 300 dataunit.obj_vec = np.zeros( (one_hot_size,), dtype=np.float32 ) for obj_id in dataunit.objects: if obj_id in objects_detected: dataunit.obj_vec[objects_detected[obj_id]] = dataunit.objects[obj_id] else: print "Unrecognized Object! Discarding..." mod4 = (dataunit.mat.shape[0] + (one_hot_size // 300)) % 4 padding = np.zeros((4 - mod4, 300)) return np.r_[ dataunit.mat, padding, np.reshape(dataunit.obj_vec, (one_hot_size // 300, 300)) ].astype(np.float32) if __name__ == "__main__": if A == None or y == None: A, y = get_training_set() np.save(mat_A_npy, A) np.save(mat_y_npy, y) print "Final shape of A: %r" % (A.shape,) print "Final shape of y: %r" % (y.shape,)
true
4348b4c2480a94cad3d548d3cd283e4a63bf537e
Python
lkmartin90/doubling_agent
/doubling_agent/image_analysis_functions.py
UTF-8
27,070
2.71875
3
[ "MIT" ]
permissive
import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import cdist from scipy.spatial.distance import euclidean import matplotlib.patches as mpatches from scipy import optimize import pandas as pd import os import fnmatch plt.style.use('ggplot') def plot_cells(data_df, value, folder_name, r, time_step): # basic function to plot the cells at a given time snapshot df_to_plot = data_df.loc[data_df['count'] == value] col = df_to_plot.state.map({0: 'b', 1: 'r', 2: 'g', 3: 'k'}) df_to_plot.plot.scatter(x='x', y='y', c=col, s=8) blue_patch = mpatches.Patch(color='blue', label='Stem cell') red_patch = mpatches.Patch(color='red', label='Progentior cell') green_patch = mpatches.Patch(color='green', label='Differentiated cell') black_patch = mpatches.Patch(color='black', label='Quiescent cell') plt.legend(handles=[red_patch, blue_patch, green_patch, black_patch]) plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value*time_step)) + '.png') plt.cla() plt.close('all') def plot_cells_3d(data_df, value, folder_name, r, time_step): # basic function to plot the cells at a given time snapshot (for 3D data) df_to_plot_3d = data_df.loc[data_df['count'] == value] col = df_to_plot_3d.state.map({0: 'b', 1: 'r', 2: 'g', 3: 'k'}) fig = plt.figure() threedee = fig.gca(projection='3d') #print(df_to_plot.state.values) threedee.scatter(df_to_plot_3d.x.values, df_to_plot_3d.y.values, df_to_plot_3d.z.values, c=col) threedee.set_xlabel('x') threedee.set_ylabel('y') threedee.set_zlabel('z') blue_patch = mpatches.Patch(color='blue', label='Stem cell') red_patch = mpatches.Patch(color='red', label='Progentior cell') green_patch = mpatches.Patch(color='green', label='Differentiated cell') black_patch = mpatches.Patch(color='black', label='Quiescent cell') plt.legend(handles=[red_patch, blue_patch, green_patch, black_patch], loc='upper left') plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value*time_step)) + '.png') plt.cla() plt.close('all') def plot_2d_slice(folder_name, data_df, value, time_step, r): # Plot 2D slices of 3D data df_2d_slice = data_df.loc[data_df['count'] == value].copy() # will take slices in x to get 2d analysis x_values = df_2d_slice['z'].values unique, counts = np.unique(x_values, return_counts=True) tot_dict = dict(zip(unique, counts)) for sect in unique: if tot_dict.get(sect) > 10: print(sect) df_for_image = df_2d_slice.loc[(data_df['z'] == sect)].copy() col = df_for_image.state.map({0: 'b', 1: 'r', 2: 'g', 3: 'k'}) df_for_image.plot.scatter(x='x', y='y', c=col, s=8) blue_patch = mpatches.Patch(color='blue', label='Stem cell') red_patch = mpatches.Patch(color='red', label='Progentior cell') green_patch = mpatches.Patch(color='green', label='Differentiated cell') black_patch = mpatches.Patch(color='black', label='Quiescent cell') plt.legend(handles=[red_patch, blue_patch, green_patch, black_patch]) plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value * time_step)) + '_sect_' + str(sect) + '.png') plt.cla() plt.close('all') def fft_analysis(data_df, value, folder_name, r, time_step, sect): # wanted to look at the FFT of the cell data to determine if there is a difference in frequencies present in # different simulations. For a comparison to experiment would perhapse have to use the ratio between the # frequencies for the different cell types df_fft = data_df.loc[data_df['count'] == value] label_dict = {0: "Stem", 1: "Progenitor", 2: "Differentiated", 3: "Quiescent"} # only look at the snapshot that match the value parameter # will plot figure with data from all 4 cell types fig, ax = plt.subplots(nrows=3, ncols=4) # Faff to set the scale of the plots if abs(df_fft['x'].max()) > abs(df_fft['x'].min()): x_len = df_fft['x'].max() + 1 else: x_len = -1 * df_fft['x'].min() + 1 if abs(df_fft['y'].max()) > abs(df_fft['y'].min()): y_len = df_fft['y'].max() + 2 else: y_len = -1 * df_fft['y'].min() + 2 if x_len > y_len: length = int(x_len) else: length = int(y_len) fft_stats = [] # If there are no Quiescent cells just produces empty plot in 4th column for state_type in range(0, 4): df_for_image = df_fft.loc[df_fft['state'] == state_type] image = np.zeros((2 * length, 2 * length)) for i in range(len(df_for_image)): image[length + int(np.round(df_for_image['x'].iloc[i]))][length + int(np.round(df_for_image['y'].iloc[i]))] = 1 # Do the FFT ftimage = np.fft.fft2(image) ftimage = np.fft.fftshift(ftimage) freq = np.abs(ftimage) ax[0, state_type].hist(freq.ravel(), bins=100, range=(0, 30)) ax[0, state_type].set_title(str(label_dict.get(state_type))) im1 = ax[1, state_type].imshow(freq, interpolation="none", cmap='jet', aspect="auto") fig.colorbar(im1, ax=ax[1, state_type]) im2 = ax[2, state_type].imshow(image, interpolation="none", cmap='jet', aspect="auto") fig.colorbar(im2, ax=ax[2, state_type]) fig.tight_layout() fft_stats.append(str(state_type)) fft_stats.append(str(np.mean(freq))) fft_stats.append(str(np.std(freq))) plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value * time_step)) + '_sect_' + str(sect) + 'FFT.png') plt.cla() plt.close('all') with open(folder_name + '/fft_data_day_' + str(int(value * time_step)) + '_sect_' + str(sect) + '.txt', 'w') as f: f.write("\n".join(fft_stats)) def density_analysis(folder_name, data_df, value, k, switch_3d, time_step, r): # For the whole tumour look at the density of each cell type through the distance to a number of its # nearest neighbours, specified by k. In an attempt to quantify this further the data is then fitted # to with a simple function. df_dens = data_df.loc[data_df['count'] == value].copy() label_dict = {0: "Stem cell", 1: "Progenitor cell", 2: "Differentiated cell", 3: "Quiescent cell"} tot_cells = df_dens.shape[0] # If there are more cells than this the code will take a prohibatively long time to run if tot_cells > 30000: return # Distance between the array and itself plt.figure() sta = df_dens.drop_duplicates(subset=['state'], keep='last') for state_type in sta['state'].values: df_dens_state = df_dens.loc[data_df['state'] == state_type].copy() # BE WARNED THESE DATAFRAMES ARE COPIES, CHANGING THEM WILL CHANGE ORIGINAL if switch_3d: df_dens_state['coords'] = df_dens_state.loc[:, ['x', 'y', 'z']].values.tolist() df_dens_state['coords'] = df_dens_state.loc[:, 'coords'].apply(np.array) else: df_dens_state['coords'] = df_dens_state.loc[:, ['x', 'y']].values.tolist() df_dens_state['coords'] = df_dens_state.loc[:, 'coords'].apply(np.array) data = np.stack(df_dens_state['coords'].values, axis=0) dists = cdist(data, data) # Sort by distances k_nearest = np.sort(dists)[:, 1:k + 1] mean_k_nearest = np.mean(k_nearest, axis=1) distances = np.sort(mean_k_nearest) with open(folder_name + '/cell_numbers.txt', 'a+') as f: f.write(str(len(distances)) + '\n') plt.scatter(y=distances, x=np.arange(len(distances))/tot_cells, label=label_dict.get(state_type), marker='+', alpha=0.5) if len(distances) > 2: try: fit_params, fit_params_covariance = optimize.curve_fit(fit_func, np.arange(1, len(distances)+1)/tot_cells, distances, p0=[1, 0.2, (len(distances)+1)/tot_cells]) # print(fit_params) plt.plot(np.arange(len(distances))/tot_cells, fit_func(np.arange(len(distances))/tot_cells, fit_params[0], fit_params[1], fit_params[2]), label='Fitted function') with open(folder_name + '/fitting.txt', 'a+') as f: # write the data to file in a noce, human readable way f.write('value =' + str(value) + '\n' + str(label_dict.get(state_type)) + ' = ' + str(fit_params[0]) + ' ' + str(fit_params[1]) + ' ' + str(fit_params[2]) + '\n') with open(folder_name + '/fitting_dat.txt', 'a+') as f: # write the data to file in a way which makes it easier to process later f.write(str(value) + ' ' + str(state_type) + ' ' + str(fit_params[0]) + ' ' + str(fit_params[1]) + ' ' + str(fit_params[2]) + '\n') except RuntimeError or ValueError: print('Didnt find a good fit') with open(folder_name + '/fitting_dat.txt', 'a+') as f: f.write(str(value) + ' ' + str(state_type) + ' ' + str(0) + ' ' + str(0) + ' ' + str(0) + '\n') plt.xlabel('Cells, ordered from smallest to largest mean distance') plt.ylabel('Mean distance to 8 nearest neighbours') plt.legend(loc="upper right") plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value*time_step)) + 'density.png') plt.close('all') def distance_from_centre(folder_name, data_df, value, switch_3d, time_step, r): # find the distance of each type of cell from the tumour centre and plot df_dist = data_df.loc[data_df['count'] == value].copy() label_dict = {0: "Stem cell", 1: "Progenitor cell", 2: "Differentiated cell", 3: "Quiescent cell"} x_mean = np.mean(df_dist.loc[:, ['x']].values) y_mean = np.mean(df_dist.loc[:, ['y']].values) # find the centre of the tumour if switch_3d: z_mean = np.mean(df_dist.loc[:, ['z']].values) cent = [x_mean, y_mean, z_mean] else: cent = [x_mean, y_mean] print('Tumour center is ' + str(cent)) plt.figure() # loop through the different cell states for state_type in range(0, df_dist.state.max()+1): df_for_image = df_dist.loc[data_df['state'] == state_type].copy() # BE WARNED THESE DATAFRAMES ARE COPIES, CHANGING THEM WILL CHANGE ORIGINAL if switch_3d: df_for_image['coords'] = df_for_image.loc[:, ['x', 'y', 'z']].values.tolist() df_for_image['coords'] = df_for_image.loc[:, 'coords'].apply(np.array) else: df_for_image['coords'] = df_for_image.loc[:, ['x', 'y']].values.tolist() df_for_image['coords'] = df_for_image.loc[:, 'coords'].apply(np.array) dist_list = [] for i in range(len(df_for_image['coords'].values)): dist_list.append(euclidean(df_for_image['coords'].values[i], cent)) plt.hist(dist_list, label=label_dict.get(state_type), alpha=0.5) plt.xlabel('Distance from tumour centre') plt.ylabel('Number of cells') plt.legend(loc="upper right") plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str( int(value * time_step)) + 'distance.png') plt.close('all') def fit_func(x, a, b, c): # define the fitting function for density analysis (currently used) return a + b/(c - x) def fit_func2(x, a, b, c, d): # define the more complex fitting function for density analysis (not currently used) return a + b/(c - x) - d/x def fit_analysis(main_folder, min_r, max_r, time_step): # Compares the fitting parameters over a number of different repeats of the simulation # Compares the whole tumour data, not subsets or slices label_dict = {0: "Stem cell", 1: "Progenitor cell", 2: "Differentiated cell", 3: "Quiescent cell"} # loop over the repeats that we're dealing with for r in range(min_r, max_r+1): with open(main_folder + '/plots_repeat_' + str(r) + '/fitting_dat.txt', 'r') as f: fit_data = f.readlines() data_mat = [] for i in range(len(fit_data)): dat = fit_data[i].strip().split() dat.append(str(r)) dat = np.array(dat).astype(float) data_mat.append(dat) if r == min_r: data_df = pd.DataFrame(data_mat) else: data_df = data_df.append(pd.DataFrame(data_mat)) # extract the values data_df = data_df.rename(columns={0: "value", 1: "state"}) # find the points at which data was saved values = data_df.drop_duplicates(subset=['value'])['value'].values tot_len = len(data_df.columns) # find all different cell states present states = data_df.drop_duplicates(subset=['state'])['state'].values # loop over the possible "values", which are the time steps at which data was taken. for val in values: print(val) plt.figure() # loop over the diffent cell states present for sta in states: to_plot = data_df.loc[(data_df['value'] == val) & (data_df['state'] == sta)][tot_len-2].values plt.plot(to_plot, label=label_dict.get(sta)) plt.legend(loc="upper left") plt.xlabel('repeat') plt.ylabel('fraction of cells in each state') plt.savefig(main_folder + '/day_' + str(int(val * time_step)) + 'fraction.png') plt.close('all') for val in values: print(val) plt.figure() for sta in states: to_plot = data_df.loc[(data_df['value'] == val) & (data_df['state'] == sta)][tot_len-3].values plt.plot(to_plot, label=label_dict.get(sta)) plt.legend(loc="upper left") plt.xlabel('repeat') plt.ylabel('second fitting parameter') plt.savefig(main_folder + '/day_' + str(int(val * time_step)) + 'dens_change.png') plt.close('all') def density_analysis_2d_slice(folder_name, data_df, value, k, time_step, r, subset, min_box_size): # performs the density analysis for 2D slices of the 3D data df_dens_2d = data_df.loc[data_df['count'] == value].copy() # will take slices in x to get 2d analysis z_values = df_dens_2d['z'].values # unique is the unique z values, and counts is the number of cells at this z value unique, counts = np.unique(z_values, return_counts=True) tot_dict = dict(zip(unique, counts)) label_dict = {0: "Stem cell", 1: "Progenitor cell", 2: "Differentiated cell", 3: "Quiescent cell"} # here, sect is a z value identified in unique for sect in unique: # if there are more then 30 cell in this 3 axis slice... if tot_dict.get(sect) > 30: print(sect) # intitialise figure plt.figure() tot_cells = df_dens_2d.loc[df_dens_2d['z'] == sect].shape[0] # for each cell type at this z axis value... for state_type in np.unique(df_dens_2d.loc[df_dens_2d['z'] == sect]['state'].values): # takes a copy of the data in which cells are in this state df_for_image = df_dens_2d.loc[(data_df['state'] == state_type) & (data_df['z'] == sect)].copy() # BE WARNED THESE DATAFRAMES ARE COPIES, CHANGING THEM WILL CHANGE ORIGINAL df_for_image['coords'] = df_for_image.loc[:, ['x', 'y', 'z']].values.tolist() df_for_image['coords'] = df_for_image.loc[:, 'coords'].apply(np.array) data = np.stack(df_for_image['coords'].values, axis=0) # Distance between the array and itself dists = cdist(data, data) # Sort by distances k_nearest = np.sort(dists)[:, 1:k + 1] mean_k_nearest = np.mean(k_nearest, axis=1) # print(mean_k_nearest) distances = np.sort(mean_k_nearest) with open(folder_name + '/sect_' + str(sect) + '_cell_numbers.txt', 'a+') as f: f.write(str(len(distances)) + '\n') plt.scatter(y=distances, x=np.arange(len(distances))/tot_cells, label=label_dict.get(state_type), marker='+', alpha=0.5) # if there are more than 3 of this cell type fit to the data if np.isnan(distances[0]) == False and len(distances) > 3: try: fit_params, fit_params_covariance = optimize.curve_fit(fit_func, np.arange(1, len(distances) + 1)/tot_cells, distances, p0=[1, 0.2, (len(distances) + 1)/tot_cells]) plt.plot(np.arange(len(distances))/tot_cells, fit_func(np.arange(len(distances))/tot_cells, fit_params[0], fit_params[1], fit_params[2]), label='Fitted function') # write the dat to fine in a way which makes it easier to process later on with open(folder_name + '/sect_' + str(sect) + '_fitting_dat.txt', 'a+') as f: f.write(str(value) + ' ' + str(state_type) + ' ' + str(fit_params[0]) + ' ' + str(fit_params[1]) + ' ' + str(fit_params[2]) + '\n') except RuntimeError or ValueError or TypeError: with open(folder_name + '/sect_' + str(sect) + '_fitting_dat.txt', 'a+') as f: f.write(str(value) + ' ' + str(state_type) + ' ' + str(0) + ' ' + str(0) + ' ' + str(0) + '\n') print('Didnt find a good fit') plt.xlabel('Cells, ordered from smallest to largest mean distance') plt.ylabel('Mean distance to 8 nearest neighbours') plt.legend(loc="upper right") plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value * time_step)) + 'sect_' + str(sect) + 'density.png') plt.close('all') # Here as the data is already in the correct format, just pass to fft analysis. df_for_analysis = df_dens_2d.loc[(data_df['z'] == sect)].copy() if subset is not None: lacunarity(folder_name, df_for_analysis, value, time_step, r, subset, sect, min_box_size) fft_analysis(df_for_analysis, value, folder_name, r, time_step, sect) def lacunarity(folder_name, data_df, value, time_step, r, subset, sect, min_box_size): # The idea here is to split the image into boxes of many sizes and to count the number of cells in each box, # the standard deviation in relation to the mean tells you about the clumping, and by changing the scale of # the box this gives you the scale of the variation # want this function to be able to take 2D or 3D input, if input is 3D then o the same thing for each slice. # print(value) label_dict = {0: "Stem cell", 1: "Progenitor cell", 2: "Differentiated cell", 3: "Quiescent cell"} # need to decide on box size, Feel like this won't work for small tumours, need a large area that is evenly populated. min_data_size = 20 min_grid_size = min_box_size max_grid_size = (subset[1] - subset[0])/4 df_lac = data_df.loc[data_df['count'] == value].copy() # only use for tumours that have been subsetted if subset[1] - subset[0] < min_data_size: print('Subset specified too small for lacunarity analysis') else: plt.figure() for state_type in np.unique(df_lac['state'].values): # no idea how computationally intensive this will be or what is a sensible number of boxes to use. # can simply bin data into boxes of the correct size with different starting points? # need to specify the start points of the bins df_process = df_lac.loc[(df_lac['state'] == state_type)].copy() lac_r = [] r_size = [] for bin_size in range(int(min_grid_size), int(max_grid_size)+1): lac_r_data = np.array([]) r_size.append(bin_size) for i in range(bin_size): x_edge = np.arange(subset[0] + i, subset[1] - bin_size, bin_size) # can then set the range of the histogram based on these values x = df_process['x'].values y = df_process['y'].values hist = np.histogram2d(x, y, bins=x_edge, range=[[np.min(x_edge), np.max(x_edge)+bin_size], [np.min(x_edge), np.max(x_edge)+bin_size]]) lac_r_data = np.append(lac_r_data, np.ndarray.flatten(hist[0])) lac_r.append((np.std(lac_r_data)/np.mean(lac_r_data))**2) plt.plot(r_size, lac_r, label=label_dict.get(state_type)) with open(folder_name + '/lac_tot_day_' + str(int(value * time_step)) + '_sect_' + str(sect) + '_state_' + str(state_type) + '.txt','a+') as f: f.write(str(r_size).strip('[]') + '\n') f.write(str(lac_r).strip('[]')) plt.legend() plt.xlabel('box size (r)') plt.ylabel('lacunarity') plt.savefig(folder_name + '/repeat_' + str(r) + '_day_' + str(int(value * time_step)) + '_subset_' + str(subset[0]) + '_' + str(subset[1]) + '_sect_' + str(sect) + '_lac.png') plt.close('all') def section_analysis(folder, file_pattern, quantity, label_type, minr, maxr): # analyses data from 2D slices of 3D data, can be used to plot these quantities as a function of position along the # z axis. Different quanities can be plotted with this function by changing "file pattern" and "quantity" for r in range(minr, maxr+1): for filename in os.listdir(str(folder)): if fnmatch.fnmatch(filename, 'plots_repeat_' + str(r) + '*'): cell_nos = [] sect = [] for filename2 in os.listdir(str(folder) + '/' + filename): if fnmatch.fnmatch(filename2, file_pattern): sect.append(int(filename2.split('_')[1])) with open(str(folder) + '/' + filename + '/' + filename2) as f: lines = f.read().splitlines() cell_nos.append(lines) cell_nos_df = pd.DataFrame(cell_nos) if len(sect) > 2: plt.figure() for i in range(len(cell_nos_df.columns)): print(i) plt.scatter(x=sect, y=cell_nos_df[i].astype(float).values, linestyle='None', label=label_type.get(i)) plt.xlabel('Distance of sect along z axis') plt.ylabel(quantity) plt.legend() plt.savefig(str(folder) + '/' + filename + '/' + str(quantity)) def section_analysis_fft(folder, file_pattern, quantity, cell_tye, label_type, minr, maxr): # Analyses the FFT data for a number of 2D slices over 3D data. FFt has already been computed for these #slices and saved to file # loop over the number of repeats to be analysed for r in range(minr, maxr+1): # find the data from the file name in which the data is stored for filename in os.listdir(str(folder)): if fnmatch.fnmatch(filename, 'plots_repeat_' + str(r) + '*'): fft_stats = [] sect = [] for filename2 in os.listdir(str(folder) + '/' + filename): if fnmatch.fnmatch(filename2, file_pattern) and filename2.split('_')[5].split('.')[0] != 'full': sect.append(int(filename2.split('_')[5].split('.')[0])) with open(str(folder) + '/' + filename + '/' + filename2) as f: lines = f.read().splitlines() fft_stats.append(lines) fft_stats_df = pd.DataFrame(fft_stats) if len(sect) > 2: plt.figure() # The indices containing the data we wish to plot, omittied indices denote cell type for i in [1, 2, 4, 5, 7, 8, 10, 11]: plt.scatter(x=sect, y=fft_stats_df[i].astype(float).values, linestyle='None', label=label_type.get(i % 2) + cell_tye.get(np.floor(i/3))) plt.xlabel('Distance of slice along z axis') plt.ylabel(quantity) plt.legend() plt.savefig(str(folder) + '/' + filename + '/' + str(quantity)) def lac_analysis(folder, file_pattern, quantity, minr, maxr, min_box_size): # Analyses the lacunarity data for many slices of a 3D data ser, taking the mean for each box size # and plotting this for each cell type. The lacunarity data for these slices has already been computed # and saved to file. print('lacunarity analysis') # loops over the repeats to analyse for r in range(minr, maxr+1): # finds the data files with the correct names for the lacunarity data of these repeats for filename in os.listdir(str(folder)): if fnmatch.fnmatch(filename, 'plots_repeat_' + str(r) + '*'): lac_nos = [] for filename2 in os.listdir(str(folder) + '/' + filename): if fnmatch.fnmatch(filename2, file_pattern) and filename2.split('_')[5].split('.')[0] != 'full': with open(str(folder) + '/' + filename + '/' + filename2) as f: lines = f.read().splitlines()[0].split(',') lac_nos.append([float(i) for i in lines]) # take mean of data lac_mean = np.mean(lac_nos, axis=0) # find the correct box size for plotting box_size = np.arange(min_box_size, len(lac_mean)+min_box_size) plt.figure() plt.scatter(box_size, lac_mean) plt.xlabel('Box size') plt.ylabel('Mean lacunarity') plt.savefig(str(folder) + '/' + filename + '/' + str(quantity)) np.savetxt(str(folder) + '/' + filename + '/' + str(quantity) + '.txt', np.concatenate((box_size, lac_mean), axis=0), fmt="%s")
true
8066bae3c18dc46e24cab355f21fb29a61e2aa7f
Python
Thxios/ProjectResearch
/Gomoku/board.py
UTF-8
1,564
3.4375
3
[]
no_license
from lib import * from .validation import ThreeChecker, FourChecker, FiveChecker, SixChecker class Board: def __init__(self, board): self.board = board def get(self, x, y): if x < 0 or x >= 15 or y < 0 or y >= 15: return -1 return self.board[x, y] def valid(self, x, y, turn) -> bool: if x < 0 or x >= 15 or y < 0 or y >= 15: return False if self.get(x, y) != 0: return False lines = self._get_direction_lines(x, y, turn) if turn == BLACK: _six = SixChecker.check(lines, turn) _five = FiveChecker.check(lines, turn) if _five > _six: print('BLACK win') return True if _six: return False if ThreeChecker.check(lines, turn) >= 2: return False if FourChecker.check(lines, turn) >= 2: return False elif turn == WHITE: if FiveChecker.check(lines, turn): print('WHITE win') return True return True def put(self, x, y, turn): # if self.valid(x, y, turn): # self._board[x, y] = turn self.board[x, y] = turn def _get_direction_lines(self, x, y, put=None): origin = vector(x, y) lines = np.array([[self.get(*(i * direction + origin)) for i in range(-4, 5)] for direction in directions]) if put is not None: for line in lines: line[4] = put return lines
true
94fe41d5aa884df4e241ed926825b993b19d6001
Python
liangjinhao/Web_Spider_Practice_Code
/MOOC北京理工大学爬虫/01_requests/05_IP地址归属地的自动查询.py
UTF-8
314
2.609375
3
[]
no_license
# !/usr/bin/env python # -*- coding:utf-8 -*- # author: Fangyang time:2017/12/20 import requests url = 'http://www.ip138.com/ips138.asp?ip=' try: r = requests.get(url+'202.204.80.112') r.raise_for_status() r.encoding = r.apparent_encoding print(r.text[-500:]) except: print('爬取失败')
true
397a45ac6acddb6c59e3a292805fbcbfb1d7b2b0
Python
hyunwoo-song/TOT
/algorithm/day16/twoint.py
UTF-8
674
2.625
3
[]
no_license
import sys sys.stdin = open('twoint.txt', 'r') T= int(input()) for t in range(1, T+1): N, M = map(int, input().split()) A= list(map(int, input().split())) B= list(map(int, input().split())) Result=[] if len(A) > len(B): while len(A) >= len(B): result = 0 for i in range(len(B)): result += A[i]*B[i] Result.append(result) A.pop(0) else: while len(B) >= len(A): result = 0 for i in range(len(A)): result += A[i]*B[i] Result.append(result) B.pop(0) print('#{} {}'.format(t,max(Result)))
true
cf7e58a1c1986bf472cc4f1311d2458959038f30
Python
malihasameen/1mwtt-toy-problems
/toy-problem-003.py
UTF-8
1,270
3.46875
3
[]
no_license
""" * http://www.pythonchallenge.com/pc/def/0.html * Python Challenge Level 0 """ # power operator print (2**38) # power function print(pow(2,38)) # loop n = 1 for i in range(38): n *= 2 print(n) # shift print(1 << 38) """ * http://www.pythonchallenge.com/pc/def/map.html * Python Challenge Level 1 """ raw = "g fmnc wms bgblr rpylqjyrc gr zw fylb. rfyrq ufyr amknsrcpq ypc dmp. bmgle gr gl zw fylb gq glcddgagclr ylb rfyr'q ufw rfgq rcvr gq qm jmle. sqgle qrpgle.kyicrpylq() gq pcamkkclbcb. lmu ynnjw ml rfc spj." # beginner print("Beginner Solution") result = "" for c in raw: if c.isalpha(): result += chr(((ord(c)+2) - ord('a')) % 26 + ord('a')) else: result += c print(result) # advanced print("Advance Solution") result = "".join([chr(((ord(c)+2) - ord('a')) % 26 + ord('a')) if c.isalpha() else c for c in raw]) print(result) # solution with built-in function print("Solution with Built-in Function") table = str.maketrans("abcdefghijklmnopqrstuvwxyz","cdefghijklmnopqrstuvwxyzab") print(raw.translate(table)) # solution using dict and zip inputtable = "abcdefghijklmnopqrstuvwxyz,. '()" outputtable = "cdefghijklmnopqrstuvwxyzab,. '()" result = "".join(dict(zip(inputtable,outputtable))[c] for c in raw) print(result)
true
84c9584a8dd9af400b6de09f064e1acfe7fe6825
Python
lefterisKl/StockDataCrawler
/DailyCrawler.py
UTF-8
2,807
2.875
3
[]
no_license
import requests import time from bs4 import BeautifulSoup import datetime import time website_url = "https://finance.yahoo.com" sector_url_prefix = "https://finance.yahoo.com/sector/" sector_url_suffix = "?offset=0&count=100" sectors = ["financial","healthcare","services","utilities","industrial_goods","basic_materials","conglomerates", "consumer_goods","technology"] sector_url = {sector:(sector_url_prefix+sector+sector_url_suffix) for sector in sectors } #print(sector_url['financial']) data = [] f = open("daily_data.csv", "w") f.write("Ticker,Date,Close,Volume\n") f.close() Date = datetime.datetime.now().strftime ("%Y-%m-%d") print( "Start crawling at:",time.ctime()) start_time = time.time() for sector,sector_url in sector_url.items(): print("Crawling sector",sector,".") offset = 0 next_url = sector_url sector_data = [] while offset < 100: page = requests.get(next_url) soup = BeautifulSoup(page.content, 'html.parser') urls = soup.find_all(lambda tag: tag.name == 'a' and tag.get('class') == ['Fw(b)']) links = { url.text : website_url + url.get('href') for url in urls} if(len(links)==0): break for ticker, ticker_link in links.items(): ticker_page = requests.get(ticker_link) ticker_soup = BeautifulSoup(ticker_page.content, 'html.parser') ticker_data = ticker_soup.find_all(lambda tag: tag.name == 'td' and tag.get('class') ==["Ta(end)", "Fw(b)", "Lh(14px)"] ) variables = [] for x in ticker_data: variable = x.get('data-test') if str(x).find("span") == -1: value = x.text else: value = list( x.children)[0].text variables.append((variable,value)) variables = dict(variables) print("\t crawling data for "+ str(ticker)) sector_data.append((ticker,variables)) offset = offset + 100 #sector_url_prefix_predifined = "https://finance.yahoo.com/sector/predifined/" sector_url_suffix_predifined = "?offset=" + str(offset) + "&count=100" next_url = sector_url_prefix + sector + sector_url_suffix_predifined f = open("daily_data2.csv","a") for ticker_data in sector_data: f.write(ticker_data[0].lower() +","+Date+","+ ticker_data[1]["PREV_CLOSE-value"].replace(",","") + ","+ ticker_data[1]["TD_VOLUME-value"].replace(",","") + "\n") f.close() break #data.append((sector,sector_data)) #time.sleep(1) # your code print("End crawling at",time.ctime()) print("Elapsed time:", time.time() - start_time)
true
bb0478f8c895e4bb0ca7f13afe369cea21a238eb
Python
koneb71/bitcoin-twitter-sentiment-analysis
/create_dataset.py
UTF-8
1,208
3.03125
3
[]
no_license
import csv file = 'bitcointweets.csv' neg_tweet = [] pos_tweet = [] neutral_tweet = [] with open(file, encoding="utf8") as fh: rd = csv.DictReader(fh, delimiter=',') for row in rd: if row['sentiment'] == "positive": pos_tweet.append(row) if row['sentiment'] == "negative": neg_tweet.append(row) if row['sentiment'] == "neutral": neutral_tweet.append(row) with open('datasets/pos_tweet.csv', encoding="utf8", mode='w') as pos_file: fieldnames = ['tweet', 'sentiment'] writer = csv.DictWriter(pos_file, fieldnames=fieldnames) writer.writeheader() for pos in pos_tweet: writer.writerow(pos) with open('datasets/neg_tweet.csv', encoding="utf8", mode='w') as neg_file: fieldnames = ['tweet', 'sentiment'] writer = csv.DictWriter(neg_file, fieldnames=fieldnames) writer.writeheader() for neg in neg_tweet: writer.writerow(neg) with open('datasets/neutral_tweet.csv', encoding="utf8", mode='w') as neu_file: fieldnames = ['tweet', 'sentiment'] writer = csv.DictWriter(neu_file, fieldnames=fieldnames) writer.writeheader() for neu in neutral_tweet: writer.writerow(neu)
true
9b3d8d4c0c853172064707d260f07c030fed8c75
Python
iankigen/data_stuctures_and_algorithms
/data_structures/arrays.py
UTF-8
676
3.625
4
[]
no_license
from array import array # array_name = array(typecode, [Initializers]) """ Typecode Value b Represents signed integer of size 1 byte/td> B Represents unsigned integer of size 1 bytetest_array = array('i', [1, 2, 3]) c Represents character of size 1 byte i Represents signed integer of size 2 bytes# Insertion Operation I Represents unsigned integer of size 2 bytes f Represents floating point of size 4 bytestest_array.insert(1, 100) d Represents floating point of size 8 bytes """ test_array = array('i', [1, 2, 3, 10, 20]) # Deletion Operation test_array.remove(2) # Update Operation test_array[1] = 200 # Append Operation test_array.append(1000) print(test_array)
true
82fc793180bbf6bb206ca25bc55cb4a85b421ffb
Python
white1107/Python_for_Competition
/WaterBlue/36_Knapsack_Problem.py
UTF-8
509
2.765625
3
[]
no_license
def get_input(inp): li = inp.split("\n") def inner(): return li.pop(0) return inner INPUT = """2 20 5 9 4 10 """ input = get_input(INPUT) ####### N,W = map(int,input().split()) dp = [[0]*(W+1) for _ in range(N+1)] L = [] for i in range(N): ta,tb = map(int,input().split()) L.append([ta,tb]) for i in range(N): for w in range(W+1): if w-L[i][1]>=0 :dp[i+1][w] = max(dp[i][w],dp[i+1][w-L[i][1]]+L[i][0]) else: dp[i+1][w] = dp[i][w] print(dp[-1][-1]) print(dp)
true
2f1b616e4c5a15a862307f544ca64de4aa4a5017
Python
L200170178/prak_ASD_E
/Modul 6/mergeSort.py
UTF-8
1,017
3.265625
3
[]
no_license
class Mahasiswa(object): def __init__ (self,nim) : self.nim = nim nim1= "L200170123" nim2= "L200170124" nim3= "L200170125" nim4= "L200170126" nim5= "L200170127" Daftar = [nim1,nim2,nim3,nim4,nim5] def mergeSort(A): if len(A) > 1 : mid = len(A) // 2 separuhKiri = A[:mid] separuhKanan = A[mid:] mergeSort(separuhKiri) mergeSort(separuhKanan) i = 0 ; j=0 ; k=0 while i < len (separuhKiri) and j < len(separuhKanan): if separuhKiri[i] < separuhKanan[j] : A[k] = separuhKiri[i] i = i + 1 else : A[k] = separuhKanan[j] j = j + 1 k = k + 1 while i < len(separuhKiri): A[k] = separuhKiri[i] i = i + 1 k = k + 1 while j < len(separuhKanan): A[k] = separuhKanan[j] j = j+1 k = k+1 mergeSort(Daftar) print(Daftar)
true
0aa959b9c581c1f72135878b9250c297ae5d4e9a
Python
emilberzins/RTR105
/lab3.py.py
UTF-8
492
3.78125
4
[]
no_license
from math import sin, fabs, sqrt from time import sleep def f(x): return sin(sqrt(x))*sin(sqrt(x)) a = 1 b = 5 funa = f(a) funb = f(b) if (funa * funb > 0.0): print("Dotajā intervālā [%s, %s] sakņu nav"%(a,b)) sleep(1); exit() else: print("Dotajā intervālā sakne(s) ir!") deltax = 0.0001 while ( fabs(b-a) > deltax ): x = (a+b)/2; funx = f(x) if ( funa*funx < 0. ): b = x else: a = x print("Sakne ir:", x)
true
6c3bf1a8191f45f8e32e6b6f1136d21c34c755f4
Python
itsolutionscorp/AutoStyle-Clustering
/all_data/exercism_data/python/hamming/d47703431c9e4c6ca551ab7443e1afd2.py
UTF-8
94
3.109375
3
[]
no_license
def distance(s1, s2): hamming = sum(x != y for (x, y) in zip(s1, s2)) return hamming
true
c485511454e429730254ae8117158cab5c3eaf50
Python
nicogab34/AudioMNIST
/recording_scripts/adjustCuts.py
UTF-8
8,656
3.125
3
[ "MIT" ]
permissive
import numpy as np from scipy.io import wavfile import os import matplotlib.pyplot as plt import pandas as pd import scipy.signal import glob from matplotlib.lines import Line2D import scipy.spatial.distance import argparse class DragHandler(object): """ A simple class to handle Drag n Drop. This is a simple example, which works for Text objects only """ def __init__(self, figure=None) : """ Create a new drag handler and connect it to the figure's event system. If the figure handler is not given, the current figure is used instead """ if figure is None : figure = plt.gcf() # simple attibute to store the dragged text object self.dragged = None # Connect events and callbacks figure.canvas.mpl_connect("pick_event", self.on_pick_event) figure.canvas.mpl_connect("button_release_event", self.on_release_event) def on_pick_event(self, event): " Store which text object was picked and were the pick event occurs." if isinstance(event.artist, Line2D): self.dragged = event.artist self.pick_pos = (event.mouseevent.xdata, event.mouseevent.ydata) return True def on_release_event(self, event): " Update text position and redraw" if self.dragged is not None : orig_dragged = np.copy(self.dragged.get_xydata()) clickIdx = self.pos2ind(self.dragged, self.pick_pos) old_pos = self.dragged.get_xydata()[clickIdx] new_pos = (old_pos[1] + event.xdata - self.pick_pos[1], 0) orig_dragged[clickIdx] = np.array(new_pos) self.dragged.set_data(orig_dragged.T) global all_markers all_markers = self.dragged.get_xydata()[:,0] self.dragged = None plt.draw() return True def pos2ind(self, dragged, pick_pos): alldists = scipy.spatial.distance.cdist(dragged.get_xydata(), np.atleast_2d(pick_pos)) return np.argmin(alldists) def butter_bandpass(lowcut, highcut, fs, order=7): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = scipy.signal.butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=7): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = scipy.signal.filtfilt(b, a, data) return y def run(src, dst): """ Function to semi-automatically cut series of audio recordings into single recordings. Automatically determined cut positions will be displayed and can be corrected via drag&drop. Close the visualization to apply the cuts. Important: cut data is still "raw", the bandpass filter and other means are only applied to find cut positions. Cut data will be saved in single files, the original audio series recordings will not be deleted. Parameters: ----------- src: string Source directory containing the audio series recordings. dst: string Destination directory where to store cut files. """ # hyperparameters for finding cut positions. lowcut = 100 highcut = 10000 threshold = 0.1 loffset = 2400 roffset = 2400 expectedNum = 10 if not os.path.exists(dst): os.makedirs(dst) filenames = glob.glob(os.path.join(src, "*.wav")) for fileIdx, filename in enumerate(filenames): # infer digits and repetition from file name convention digitSeries = filename.rstrip('.wav').split('__')[1:] # load sampling frequency and recorded data thisFs, thisData = wavfile.read(filename) # find single articulations y = butter_bandpass_filter(thisData, lowcut, highcut, thisFs, order=7) y = y / np.percentile(abs(y), 99) rolledMean = pd.rolling_max(arg = abs(y), window=int(1*4800), center = True) rolledMean[np.isnan(rolledMean)] = 0 idcs = np.where(rolledMean > 0.1)[0] stopIdcs = np.concatenate([idcs[np.where(np.diff(idcs) > 1)[0]], [idcs[-1]]]) revIdcs = idcs[::-1] startIdcs = np.concatenate([[revIdcs[-1]], revIdcs[np.where(np.diff(revIdcs) < -1)[0]][::-1]]) if np.any((stopIdcs - startIdcs) > 48000): print("Found sample with more than one second duration") assert(len(startIdcs) == len(stopIdcs)) if len(startIdcs) < expectedNum: print("file {}: Found only {} candidate samples".format(fileIdx, len(startIdcs))) # appending artificial markers for drag&drop later on. tmp1 = np.arange(expectedNum) tmp1[0:len(startIdcs)] = startIdcs startIdcs = tmp1 tmp2 = np.arange(expectedNum) tmp2[0:len(stopIdcs)] = stopIdcs stopIdcs = tmp2 print("Corrected to {} startIdcs".format(len(startIdcs))) if len(startIdcs)>expectedNum: print("file {}: Found more than 10 possible samples. Attempting to correct selection.".format(fileIdx)) # this is based on some experience, but does not always work absSums = [] for start, stop in zip(startIdcs, stopIdcs): absSums.append(np.sum(abs(y[start:stop]))) while len(startIdcs) > expectedNum: discardIdx = np.argmin(absSums) d1 = startIdcs[discardIdx] - stopIdcs[discardIdx-1] d2 = stopIdcs[discardIdx] - startIdcs[discardIdx] if discardIdx >= 1: newd = startIdcs[discardIdx - 1] - stopIdcs[discardIdx] else: newd = None if d2 < 3.5 * 4800 and d1 < 1.5*4800 and discardIdx != 0: # combine two selections: important to include the "t" at the end of "eigh-t" startIdcs = startIdcs[np.arange(0,len(startIdcs)) != discardIdx] stopIdcs = stopIdcs[np.arange(0,len(stopIdcs)) != (discardIdx - 1)] else: # discard a selection startIdcs = startIdcs[np.arange(0,len(startIdcs)) != discardIdx] stopIdcs = stopIdcs[np.arange(0,len(stopIdcs)) != discardIdx] absSums.pop(discardIdx) fig, ax = plt.subplots(2,1,figsize = (20,5)) ax[0].plot(thisData, 'k') ax[1].plot(y, 'k') ax[1].plot(rolledMean, color = 'mediumvioletred') for digitIdx, (start, stop) in enumerate(zip(startIdcs, stopIdcs)): # plot single digit recording according to current markers d,r = digitSeries[digitIdx].split('_') ax[0].plot(range(start-loffset,stop+roffset),thisData[start-loffset:stop+roffset]) ax[1].plot(range(start-loffset,stop+roffset), y[start-loffset:stop+roffset]) ax[1].text(start + (stop-start)/2, 1.3, str(d), fontsize = 15) if digitIdx == expectedNum-1: all_markers = np.zeros((startIdcs.size + stopIdcs.size)) all_markers[0::2] = startIdcs - loffset all_markers[1::2] = stopIdcs + roffset ax[0].plot(all_markers, np.zeros_like(all_markers), '.', ms = 10, picker = 10, c = 'indigo') ax[0].set_xlim([0, len(thisData)]) ax[1].set_xlim([0, len(thisData)]) ax[0].set_title("{}, len = {}".format(digitSeries[:], len(thisData))) dragh = DragHandler() plt.show() all_markers = sorted(np.round(all_markers).astype(int)) plt.figure(figsize = (20,10)) for digitIdx, (markStart, markStop) in enumerate(zip(all_markers[0::2], all_markers[1::2])): # infer digit, repetition and subject identifier d, r = digitSeries[digitIdx].split('_') subj_name = os.path.split(filename)[-1].split("__")[0] # write out files print("writing to {}".format(os.path.join(dst, d + '_' + subj_name + '_' + r + '.wav'))) wavfile.write(os.path.join(dst, d + '_' + subj_name + '_' + r + '.wav'), 48000, thisData[markStart: markStop]) # visualize cut data plt.plot(range(markStart, markStop), thisData[markStart:markStop]) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-src', default=".", help='Source directory where recorded autio series are stored.') parser.add_argument('-dst', default="./cut", help='Destination directory where to store cut audio files.') args = parser.parse_args() run(src=args.src, dst=args.dst)
true
e0649ecb368d01a5cc83ca59c2dc24b224d26015
Python
paulan94/CTCIPaul
/LL_node.py
UTF-8
196
3.203125
3
[]
no_license
class LL_node(): def __init__(self,val): self.val = val self.next = None head = LL_node(2) head.next = LL_node(5) head.next.next = LL_node(1) head.next.next.next = LL_node(2)
true
8ca1b47967c5d97767146dc66cf9e1895fc6abd2
Python
tomasjames/Exoplanet-Project
/Data/WASP-22b/aperture.py
UTF-8
1,460
3.109375
3
[]
no_license
''' Project: Exoplanetary Detection and Characterisation Supervisor: Dr. Edward L Gomez Author: Tomas James Script: Aperture Determination for WASP-22 b ''' from numpy import * from matplotlib.pyplot import * # Read in data aperture = genfromtxt('aperture.txt', dtype = 'float') aperture2 = genfromtxt('aperture2.txt', dtype = 'float') aperture3 = genfromtxt('aperture3.txt', dtype = 'float') # Populate arrays with values signal = aperture[where(aperture==1)[0],6] background = aperture[where(aperture==2)[0],6] radius = aperture[where(aperture==1)[0],8] signal2 = aperture2[where(aperture2==1)[0],6] background2 = aperture2[where(aperture2==2)[0],6] radius2 = aperture2[where(aperture2==1)[0],8] signal3 = aperture3[where(aperture3==1)[0],6] background3 = aperture3[where(aperture3==2)[0],6] radius3 = aperture3[where(aperture3==1)[0],8] # Determine measured flux flux = zeros(len(signal)) flux2 = zeros(len(signal)) flux3 = zeros(len(signal)) for i in range(0, len(flux)): flux[i] = signal[i] - background[i] flux2[i] = signal2[i] - background2[i] flux3[i] = signal3[i] - background3[i] # Plot Data figure(1) plot(radius, flux, 'bx', label='Frame 2') plot(radius, flux2, 'rx', label = 'Frame 50') plot(radius, flux3, 'gx', label = 'Frame 110') xlabel('Radius of Aperture/Pixels') ylabel('Background Subtracted Signal') title('Signal as a Function of Aperture Radius to Determine \n Optimum Aperture Size') legend(loc='best') savefig('aperture.png')
true
8a62c1a828ddc4c8150db5f27e14165c52c1ba68
Python
astrosilverio/PokeDB
/pokedb/storage/__init__.py
UTF-8
1,062
2.6875
3
[]
no_license
""" API to access layer: `get` `write` `sync` """ import os from pokedb.storage.pager import Pager from pokedb.storage.serializer import serialize, deserialize DBFILE = os.getenv('DBFILE', 'test.db') _pager = None # In-memory storage _storage = dict() _temp = dict() _table_schema = { 'main': ('value',), } def start(): global _pager _pager = Pager(DBFILE) def get_row(txn_id, table, row_id, page_num): raw_data = _storage.get(row_id, None) updated_value = _temp[txn_id].get(row_id, None) if updated_value: raw_data = updated_value if raw_data: schema = _table_schema.get(table) data = deserialize(schema, raw_data) else: data = None return {row_id: data} def write_row(txn_id, table, row_id, data, page_num): schema = _table_schema.get(table) raw_data = serialize(schema, data) _temp[txn_id][row_id] = raw_data return page_num def sync(page_num): _pager.flush_page(page_num) return page_num def stop(): if _pager: return _pager.db_close()
true
ba438dfccfc5e026f76af842655f8fabfa5c6f58
Python
boyan13/hackbg-dungeons-and-pythons
/Hero.py
UTF-8
2,343
3.0625
3
[]
no_license
from Weapon import Weapon from Spell import Spell class Hero: def __init__(self, name, title, health, mana, mana_regeneration_rate): self.name = name self.title = title self.health = health self.MAX_HEALTH = health self.mana = mana self.MAX_MANA = mana self.mana_regeneration_rate = mana_regeneration_rate self.spell = None self.weapon = None @staticmethod def validate_init(name, title, health, mana, mana_rate): strings = type(name) is str and type(title) is str health = type(health) is int and health > 0 mana = type(mana) is int and mana > 0 mana_regeneration_rate = type(mana_regeneration_rate) is int and mana_rate > 0 return strings and health and mana and mana_regeneration_rate def known_as(self): return "{} the {}".format(self.name, self.title) def get_health(self): if self.health < 0: self.health = 0 return self.health def get_mana(self): return self.mana def is_alive(self): if self.health > 0: return True return False def can_cast(self): if self.spell is None: return False if self.mana >= self.spell.mana_cost: return True return False def take_damage(self, damege_points): self.health -= damege_points def take_healing(self, healing_points): if self.is_alive(): self.health += healing_points if self.health > self.MAX_HEALTH: self.health = self.MAX_HEALTH return True return False def take_mana(self, mana_points=0): if mana_points == 0: mana_points += self.mana_regeneration_rate self.mana += mana_points if self.mana > self.MAX_MANA: self.mana = self.MAX_MANA def equip(self, weapon): self.weapon = weapon def learn(self, spell): self.spell = spell def attack(self, by=None): if by == "spell" or by is None: if self.can_cast(): self.mana -= self.spell.mana_cost return self.spell.damage if by == "weapon" or by is None: if self.weapon is not None: return self.weapon.damage return 0
true
ff18ebf25d5f4ed44f24ac9ccf73670045bb65c2
Python
azure1016/MyLeetcodePython
/lc56.py
UTF-8
1,867
3.359375
3
[]
no_license
# Definition for an interval. class Interval: def __init__(self, s=0, e=0): self.start = s self.end = e class Solution: def merge(self, intervals): """ :type intervals: List[Interval] :rtype: List[Interval] """ intervals = intervals[:] #Always think about the weird input if len(intervals) <= 1: return intervals intervals.sort(key = self.sort_by_start) res = [] i = 0 for i in range(0, len(intervals)): #and intervals[i].start <= intervals[len(intervals) - 1].end: #you shall process the last element at first, especially when you have i+1 logic if i == len(intervals) - 1: res.append(intervals[i]) break #if we always care about i+1 rather than modify i, then our lives easier. Like a grinding wheel! #we know we'd never look back. If not for sorting, the time complexity will be O(n) if intervals[i].end >= intervals[i + 1].start: intervals[i + 1].start = intervals[i].start if intervals[i].end > intervals[i + 1].end: intervals[i + 1].end = intervals[i].end else: res.append(intervals[i]) return res # if i.end < j.start, then must i.end < ()j+1).start def sort_by_start(self, l): return l.start def pr(self, li): for x in li: print("[" + str(x.start) + ',' + str(x.end) + "],") if __name__ == '__main__': test = Solution() case = [[5,5],[1,1],[5,7],[5,7],[1,1],[3,4],[4,4],[0,1],[5,5],[1,2],[5,5],[0,2]] #case = [[1,4],[4,5]] #case = [[1,3], [2,6], [8, 10], [15, 18]] intervals = [] for i in case: intervals.append(Interval(i[0], i[1])) test.pr(test.merge(intervals))
true
b68ba87cdebc26ddb11e70d90f46d6f9fda1613e
Python
TeamGraphix/graphix
/examples/qft_with_tn.py
UTF-8
2,634
3.4375
3
[ "Apache-2.0" ]
permissive
""" Large-scale simulations with tensor network simulator =================== In this example, we demonstrate simulation of MBQC involving 10k+ nodes. You can also run this code on your browser with `mybinder.org <https://mybinder.org/>`_ - click the badge below. .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/TeamGraphix/graphix-examples/HEAD?labpath=qft_with_tn.ipynb Firstly, let us import relevant modules and define the circuit: """ # %% import numpy as np from graphix import Circuit import networkx as nx def cp(circuit, theta, control, target): circuit.rz(control, theta / 2) circuit.rz(target, theta / 2) circuit.cnot(control, target) circuit.rz(target, -1 * theta / 2) circuit.cnot(control, target) def swap(circuit, a, b): circuit.cnot(a, b) circuit.cnot(b, a) circuit.cnot(a, b) def qft_rotations(circuit, n): circuit.h(n) for qubit in range(n + 1, circuit.width): cp(circuit, np.pi / 2 ** (qubit - n), qubit, n) def swap_registers(circuit, n): for qubit in range(n // 2): swap(circuit, qubit, n - qubit - 1) return circuit def qft(circuit, n): for i in range(n): qft_rotations(circuit, i) swap_registers(circuit, n) # %% # We will simulate 45-qubit QFT, which requires graph states with more than 10000 nodes. n = 45 print("{}-qubit QFT".format(n)) circuit = Circuit(n) for i in range(n): circuit.h(i) qft(circuit, n) # standardize pattern pattern = circuit.transpile() pattern.standardize() pattern.shift_signals() nodes, edges = pattern.get_graph() print(f"Number of nodes: {len(nodes)}") print(f"Number of edges: {len(edges)}") # %% # Using efficient graph state simulator `graphix.GraphSim`, we can classically preprocess Pauli measurements. # We are currently improving the speed of this process by using rust-based graph manipulation backend. pattern.perform_pauli_measurements() # %% # You can easily check that the below code run without too much load on your computer. # Also notice that we have not used :meth:`graphix.pattern.Pattern.minimize_space()`, # which we know reduced the burden on the simulator. # To specify TN backend of the simulation, simply provide as a keyword argument. # here we do a very basic check that one of the statevector amplitudes is what it is expected to be: import time t1 = time.time() tn = pattern.simulate_pattern(backend="tensornetwork") value = tn.get_basis_amplitude(0) t2 = time.time() print("amplitude of |00...0> is ", value) print("1/2^n (true answer) is", 1 / 2**n) print("approximate execution time in seconds: ", t2 - t1)
true
fcfe66b7946543c18eca891d6de463579cf3c72a
Python
Jeyabalaganesh/New_Project_23052021
/Day 21_diamondinher_test.py
UTF-8
965
3.59375
4
[]
no_license
class BaseClass: no_of_base_class = 0 def __init__(self): print("Executed the Base class") BaseClass.no_of_base_class += 1 class LeftClass(BaseClass): no_of_Left_class = 0 def __init__(self): super().__init__() print("Executed the Left class") LeftClass.no_of_Left_class += 1 class RightClass(BaseClass): no_of_Right_class = 0 def __init__(self): super().__init__() print("Executed the Right class") RightClass.no_of_Right_class += 1 class Subclass(RightClass, LeftClass): no_of_sub_class = 0 def __init__(self): super().__init__() print("Executed the Sub class") Subclass.no_of_sub_class += 1 trial = Subclass() print(trial.no_of_sub_class, trial.no_of_Left_class, trial.no_of_Right_class, trial.no_of_base_class) trial.__init__() print(trial.no_of_sub_class, trial.no_of_Left_class, trial.no_of_Right_class, trial.no_of_base_class)
true
4f6b111532a432d8161e3e38042dfedb4fff05ad
Python
apri-me/python_class00
/session10/oop1.py
UTF-8
90
2.71875
3
[]
no_license
from assignments import Radmehr1 squar = Radmehr1.Square(5, 'Gray') print(squar.area())
true
ddfdf465d37855312a92bd488d915b36e53a5618
Python
netsus/Rosalind
/HAMM.py
UTF-8
333
3.171875
3
[]
no_license
''' 문제 : 길이가 같은 두 서열 입력받아 서로 다른 염기 개수가 몇개인지 출력 알고리즘 : 반복하며 비교해서 다르면 cnt += 1 ''' f = open('rosalind_hamm.txt','r') fl = f.read().split('\n') cnt=0 seq1,seq2=fl[:-1] for i in range(len(fl[0])): if seq1[i]!=seq2[i]: cnt+=1 print(cnt)
true
e03fdc6beb3520dfa9e29dcac6e56b8c4aa199a6
Python
krammandrea/Mandelbrot
/coloralg.py
UTF-8
6,942
3.125
3
[]
no_license
import math,testing class ColorAlg(): def __init__(self, colorscheme = ["000000","338822","883388"]): """ initializes algorithms in advance for faster computing time """ self.initcolorscheme(colorscheme) def initcolorscheme(self,colorscheme): """ converts """ #convert the colorscheme from list of strings to rgb matrix self.colorscheme = [[0.0 for x in range(3)] for y in range(len(colorscheme))] for color in range(len(colorscheme)): intcolor = int(colorscheme[color],16) #convert to rgb in range [0,255] self.colorscheme[color][0] = float((intcolor&0xff0000)>>16) self.colorscheme[color][1] = float((intcolor&0x00ff00)>>8) self.colorscheme[color][2] = float((intcolor&0x0000ff)>>0) self.initcatmullrom() #show the current colorscheme testing.test_catmullrom(self,colorscheme) testing.test_straightconnection(self,colorscheme) def initcatmullrom(self): """ precalculate all possible matrixes [P(i-1),P(i),P(i+1),P(i+2)]*Mcr for the current colorscheme """ self.PtimesMcr = [[[0.0 for x in range(4)]for y in range(3)] for z in range(len(self.colorscheme))] tau = 0.5 #curve sharpness of the spline Mcr =[[0.0,-1.0*tau,2.0*tau,-1.0*tau],[2.0*tau,0.0,-5.0*tau,3.0*tau],[0.0,1.0*tau,4.0*tau,-3.0*tau],[0.0,0.0,-1.0*tau,1.0*tau]] for x in range(len(self.colorscheme)): P = [self.colorscheme[-1+x],self.colorscheme[x],self.colorscheme[(x+1)%len(self.colorscheme)],self.colorscheme[(x+2)%len(self.colorscheme)]] for y in range(len(P[0])): for z in range(len(Mcr[0])): self.PtimesMcr[x][y][z] = sum(list(P[j][y] * Mcr[j][z] for j in range(len(P)) )) def escapetime(self,iteration,z): """ coloring represents the number of iterations before z escapes """ colorIndikator = iteration return (colorIndikator, len(self.colorscheme)) def calculateangle(self,iteration, z): """ coloring represents the angle of the escaped z """ angle = math.asin(z.real/abs(z)) colorIndikator = angle return (colorIndikator, 2*math.pi) def distanceestimator1(self, iteration, z,prevz,escapelimit): """normalized iteration count, details in http://math.unipa.it/~grim/Jbarrallo.PDF """ colorIndikator = iteration + 1 - ((math.log10(math.log10(abs(z))))/math.log10(2)) return (colorIndikator, len(self.colorscheme)) def distanceestimator2(self, iteration, z): """ continuous potential algorithm, see http://math.unipa.it/~grim/Jbarrallo.PDF """ colorIndikator = math.log10(abs(z))/(2**math.log10(iteration)) return (colorIndikator, len(self.colorscheme)) def distanceestimator3(self, iteration, z): """ distance estimation algorithm, see http://math.unipa.it/~grim/Jbarrallo.PDF """ colorIndikator = 2*math.log10(abs(z)) return (colorIndikator, len(self.colorscheme)) def distanceestimator4(self, iteration, z): """ e to the power of (-|z|) smoothing, see http://math.unipa.it/~grim/Jbarrallo.PDF """ colorIndikator = math.exp(-(abs(z))) return (colorIndikator,0.13) def distanceestimator5(self, iteration, z, escapelimit): """ coloring represents the distance to the escapelimit """ colorIndikator = abs(z) - escapelimit return (colorIndikator, 3.0) def distanceestimator6(self,iteration, z, prevz, escapelimit): """ matthias algorithm, coloring represents the number of iterations plus the percentage of the distance to the escapelimit """ colorIndikator =iteration + 1 - (abs(z)-escapelimit)/(abs(z)-abs(prevz)) return (colorIndikator, len(self.colorscheme)) def catmullrom(self, colorIndikator): #TODO """ creates the colorscheme(size:1000) using the given cornerpoints and connecting them with catmullrom splines p(s) = [P(i-1),P(i),P(i+1),P(i+2)]*M(cr)*[1 t^2 t^3 t^4] """ assignedcolor = [0.0 for rgb in range(3)] #choose the precalculated matrix [P(i-1),P(i),P(i+1),P(i+2)]M(cr) for the current section, which the color is roughly in currentcolor = int(colorIndikator%len(self.colorscheme)) partial_colInd = colorIndikator%1 #using %1 causes minor rounding errors Tvector = [1, partial_colInd**2, partial_colInd**3, partial_colInd**4] #allowed range for Tvector [0,1] for rgb in range(3): assignedcolor[rgb] = sum(self.PtimesMcr[currentcolor][rgb][j] * Tvector[j] for j in range(4)) return self.convertToString(assignedcolor) def clampoff(self,(colorIndikator,normalizdTo)): #TODO use colorscheme once and assigned maximum values to any over the border value #TODO find a way to integrate this into the distanceestimators pass def straightconnection(self, (colorIndikator, normalizedTo)): #TODO """ creates the colorscheme using the given cornerpoints and connecting them with straight lines """ #cornerpoints of the colorscheme connected with straight lines assignedcolor = [0.0 for rgb in range(3)] #currentcolor = int(colorIndikator%len(self.colorscheme)) #partial_colInd = colorIndikator%1 #within a picked random normalizedTo-Value the colorscheme repeats itself once #cut off so only values in between 0 and normalizedTo cutoff= colorIndikator%(normalizedTo) #find out in which area of the colorscheme(currentcolor) and how far into it(rest) the current value is rest = cutoff%(normalizedTo/float(len(self.colorscheme))) currentcolor = int((cutoff-rest)/(normalizedTo/float(len(self.colorscheme)))) #convert to int to catch rounding errors #stretch the rest to range [0,1] partial_colInd = rest * float(len(self.colorscheme))/normalizedTo for rgb in range(3): assignedcolor[rgb] = self.colorscheme[currentcolor][rgb] + (self.colorscheme[(currentcolor+1)%len(self.colorscheme)][rgb] - self.colorscheme[currentcolor][rgb]) * partial_colInd return self.convertToString(assignedcolor) def convertToString(self,rgbFloatColor): """ converts a RGB color from float to int, while checking for out of bound values [0,255], then to a hexadezimal string """ intcolor = [0 for x in range(3)] for color in range(len(rgbFloatColor)): intcolor[color] = int(rgbFloatColor[color]) if intcolor[color]<0: intcolor[color] = 0 elif intcolor[color]>255: intcolor[color] = 255 else: pass #combine to one hexnumber and convert to string in the '02DE3F'format hexStringColor = '{:02X}{:02X}{:02X}'.format(*intcolor) return hexStringColor
true
bc21e781fad2ade9a6d4cfc88431a2e4e45c7fdb
Python
reata/Cryptography
/week5_discrete_log.py
UTF-8
3,077
3.640625
4
[ "MIT" ]
permissive
#!/usr/bin/python3 # -*- coding: utf-8 -*- # python_version: 3.4.0 __author__ = "Ryan Hu" __date__ = "2015-2-16" """ Given prime p. Let g and h be integers in [0, p-1] given h = g ** x (mod p) where 1 <= x <= 2 ** 40. Our goal is to find x. More precisely, the input to this program is P, G, H and the output is x. The trivial algorithm for this program is to try all 2 ** 40 possible values of x until the correct one is found, which runs in time 2 ** 40. In this project, we will implement an algorithm that runs in time roughly 2 ** 20 using a meet in the middle attack. gmpy2 package is required to perform multiple-precision integer arithmetic """ from gmpy2 import mpz from gmpy2 import divm from gmpy2 import powmod import doctest import time # Global variable for unit test, use gmpy2 mpz type that support multiple-precision integers arithmetic P = mpz(13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084171) G = mpz(11717829880366207009516117596335367088558084999998952205599979459063929499736583746670572176471460312928594829675428279466566527115212748467589894601965568) H = mpz(3239475104050450443565264378728065788649097520952449527834792452971981976143292558073856937958553180532878928001494706097394108577585732452307673444020333) def discrete_log(p, g, h, max_x=2 ** 40): """ (mpz, mpz, mpz) -> mpz Given prime p and integer g, h in [0, p-1] which fit the equation that h = g ** x (mod p) where 1 <= x <= 2 ** 40. Return the discrete log, i.e. x Here this program use a trick to avoid brute force computation of all max_x possibilities. Instead the time consumed is O(max_x ** 0.5). Let b equals max_x ** 0.5 and x = x0 * b + x1 where x0, x1 are in the range [0, b-1]. Then h = g ** x (mod p) = g ** (x0 * b + x1) (mod p) = g ** (x0 * b) * g ** x1 (mod p). By moving the g ** x1 to left, we obtain h / g ** x1 = g ** (x0 * b) (mod p). For every possible x1 in [0, b-1], we hash the left as key and x1 as value to a hash table. Then for every possible x0, we calculate if the right is in this hash table. If so, we get the right pair of x0 and x1 as x can be calculated. >>> discrete_log(mpz(1073676287), mpz(1010343267), mpz(857348958)) 1026831 :param p: a multi-precision prime :param g: a multi-precision integer :param h: a multi-precision integer :param max_x: the max possible number of x :return: the discrete log x """ b = int(max_x ** 0.5) hash_table = {} for x1 in range(b): temp = divm(h, powmod(g, x1, p), p) hash_table[temp] = x1 for x0 in range(b): temp = powmod(g, x0 * b, p) if temp in hash_table: x1 = hash_table[temp] break x = x0 * b + x1 return x if __name__ == "__main__": doctest.testmod() start_time = time.time() print("the outcome is:", discrete_log(P, G, H)) elapsed_time = time.time() - start_time print("The program ran for %s seconds" % elapsed_time)
true
6ffe6c65d7f1b7dfcb2c18e2c367b51a48e6cc3c
Python
hutu1234567/crawlweb
/libs/hdfspython.py
UTF-8
4,078
2.546875
3
[]
no_license
from hdfs import * from hdfs.ext.kerberos import KerberosClient import os class HdfsClient: '''hdfs客户端''' def __init__(self, ip='', root=None, proxy=None): self.client=self.selectClient(ip) def selectClient(self, ip='',root=None, proxy=None): """寻找可用hdfs链接""" self.initKerberos() urlMaping = {'10.10.10.23': 'http://10.10.10.23:50070', '10.10.10.21': 'http://10.10.10.21:50070', '10.10.10.22': 'http://10.10.10.22:50070'} def testip(ip,root=None, proxy=None): print ip if ip == '': return process() else: client = KerberosClient(urlMaping[ip], root=root, proxy=proxy) try: print 'test %s' % urlMaping[ip] client.list("/") return client except: return process() def process(): for key in urlMaping.keys(): client = KerberosClient(urlMaping[key], root=root, proxy=proxy) try: client.list("/") return client except: continue return testip(ip) def initKerberos(self): '''初始化kerberos''' os.chdir('/etc/security/keytabs') os.system('kinit -kt hdfs.headless.keytab hdfs-cluster1@IDAP.COM') def list(self,hdfspath): '''用于列出hdfspath所在路径下面的所有文件''' files =self.client.list(hdfspath) return files def upload(self,hdfsPath,localFilePath): '''用于上传本地文件到hdfs路径''' allPaths=self.client.list("/") if hdfsPath not in allPaths: print(hdfsPath+'is not exists!') self.client.upload(hdfsPath, localFilePath) def mkdirs(self,hdfsPath): '''用于创建hdfs路径''' self.client.makedirs(hdfsPath,permission=777) print('mkdir'+hdfsPath+' ok') def existFile(self, path, fileName): '''判断文件是否存在''' allpath = [item for item in path.split('/') if item != '/' and item != '' and item != fileName] increPath = '/' for itemPath in allpath: increPath = increPath + itemPath + '/' if fileName in self.list(increPath): return True; else: return False; def existPath(self,path): '''判断文件是否存在''' allpath = [item for item in path.split('/') if item != '/' and item != '' and item.find('csv')] increPath = '/' for i in range(len(allpath)-1): if i<len(allpath)-1: increPath = increPath + allpath[i] + '/' else: increPath = increPath + allpath[i] if allpath[-1] in self.list(increPath): return True; else: return False def write(self,hdfsPath,filename,data,append=True): '''如果文件存在则追加,否则创建''' if self.existPath(hdfsPath): if self.existFile(hdfsPath, filename): self.client.write(hdfsPath + '/' + filename.replace(' ', ''), data, append=True) else: self.client.write(hdfsPath + '/' + filename.replace(' ', ''), data, append=False) self.client.write(hdfsPath + '/' + filename.replace(' ', ''), '\n', append=True) else: self.mkdirs(hdfsPath) self.client.write(hdfsPath + '/' + filename.replace(' ', ''), data, append=False) self.client.write(hdfsPath + '/' + filename.replace(' ', ''), '\n', append=True) print('has done') if __name__ == '__main__': testclient = HdfsClient( 'http://10.10.10.23:50070' ) csvfile = open( 'ftgoodfile3.csv', 'r' ) csvcontent = csvfile.read() csvfile.close() testclient.write( '/wnm/1109/djla', 'ftgoodfile3.csv', csvcontent, append=True ) testclient.printFileNames( '/wnm/1109/djla' ) testclient.readByPath( '/wnm/1109/djla/ftgoodfile3.csv' )
true
f6130c00fd6c459810d556c4c57137aa70a59160
Python
kimtaehong/android-malware-detection
/classfication/randomforest.py
UTF-8
5,057
2.5625
3
[]
no_license
import csv import numpy as np from os import makedirs from os.path import realpath, exists, isabs, dirname, join from optparse import OptionParser from sklearn.ensemble import RandomForestClassifier from context import * from classfication.log import log train_dataset = dict() target_dataset = dict() def conver_list_to_float(source): result = [] if type(source) == str: token = source.split(' ') else: token = source for t in token: result.append(float(t)) return result def train_set_dataset(row): features = conver_list_to_float(row[2:-2][0]) return { 'ClusterNumber': int(row[0]), 'FileName': str(row[1]), 'Features': np.array(features), 'IsMalware': float(row[-1]) } def target_set_dataset(row): features = conver_list_to_float(row[2:]) return { 'name': row[0], 'feature': np.array(features) } def load_train_data(train_file_path): with open(train_file_path) as file_object: reader = csv.reader(file_object, delimiter=',', quoting=csv.QUOTE_MINIMAL) for index, row in enumerate(reader): if index > 0: train_dataset[index] = train_set_dataset(row) train_cluster = train_label = (np.array([row[1]['ClusterNumber'] for row in train_dataset.items()])) train_morb_name = (np.array([row[1]['FileName'] for row in train_dataset.items()])) train_feature = (np.array([row[1]['Features'] for row in train_dataset.items()])) train_label = (np.array([row[1]['IsMalware'] for row in train_dataset.items()])) return train_cluster, train_morb_name, train_feature, train_label def load_test_data(test_file_path): with open(test_file_path, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) for index, row in enumerate(reader): if index > 0: target_dataset[index] = target_set_dataset(row) target_morb_name = (np.array([row[1]['name'] for row in target_dataset.items()])) target_feature = (np.array([row[1]['feature'] for row in target_dataset.items()])) return target_morb_name, target_feature def main(train_file_path, test_file_path): current_module_path = dirname(realpath(__file__)) train_cluster, train_morb_name, train_feature, train_label = load_train_data(train_file_path) answer_table = dict() # print("Train_Feature: %s" %train_feature) train_cluster_list = train_cluster.tolist() train_label_list = train_label.tolist() # print(train_cluster_list) for k in range(0, len(train_cluster_list)): if train_cluster_list[k] in answer_table: continue else: answer_table[train_cluster_list[k]] = train_label_list[k] target_morb_name, target_feature = load_test_data(test_file_path) clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) log().info(train_feature) log().info(train_label) clf = clf.fit(train_feature, train_cluster) predict_result = clf.predict(target_feature) # make output dir output_base_dir = join(current_module_path, 'exported/randomforest') if exists(output_base_dir) is False: makedirs(output_base_dir) # with cluster label result_file_with_cn_path = join(output_base_dir, 'andro_result_with_cluster_number.csv') cn_file_object = open(result_file_with_cn_path, 'w') # output file write cn_file_object.write("file, cluster_number, class\n") for j in range(0, len(target_feature)): answer_qry = answer_table[predict_result[j]] cn_file_object.write(target_morb_name[j] + ", " + str(predict_result[j]) + ", " + str(answer_qry) + "\n") cn_file_object.close() # not cluster label result_file_path = join(output_base_dir, 'androd_result.csv') file_object = open(result_file_path, 'w') # output file write file_object.write("file, class\n") for j in range(0, len(target_feature)): answer_qry = answer_table[predict_result[j]] file_object.write(target_morb_name[j] + ", " + str(answer_qry) + "\n") if __name__ == '__main__': opt_parser = OptionParser() opt_parser.add_option( '-t', '--train_file_path', dest='train_file', help='csv input feature table.') opt_parser.add_option( '-f', '--test_file_path', dest='test_file', help='csv input feature table.') options, _ = opt_parser.parse_args() if options.test_file is None or exists(options.test_file) is False: opt_parser.print_help() exit(-1) if options.train_file is None or exists(options.train_file) is False: opt_parser.print_help() exit(-1) if isabs(options.test_file) is False: test_file_path = realpath(options.test_file) else: test_file_path = options.test_file if isabs(options.train_file) is False: train_file_path = realpath(options.train_file) else: train_file_path = options.train_file main(train_file_path, test_file_path)
true
691f93f1ea6b80af4c80f33ee41765a309558f70
Python
yeniferBarcoC/4.1-Miscelanea-de-Ciclos
/main.py
UTF-8
1,039
3.421875
3
[]
no_license
""" Modulo Ciclos Funciones para practicas con ciclos Yenifer Barco Castrillón junio 06-2021 """ #---------------- Zona librerias------------ import funciones_ciclos as fc #====================================================================== # Algoritmo principal Punto de entrada a la aplicación (Conquistar) # ===================================================================== #Llamado de la funcion de caida libre altura = float(input("Por favor ingrese la altura:")) fc.simulador_caida_libre(altura) #Llamado de la fncion de generador de generaciones generacion= int(input("\nIngrese el numero de la generación:")) total_personas=fc.generador_generaciones(generacion) print("Total de personas en la familia hasta ahora:",total_personas) #Llamado de la fncion de constructor de triangilos pisos = int(input("\nPor favor ingrese el número de pisos:")) fc.constructor_triangulos(pisos) #Llamado de la fncion de constructor de tableros longitud=int(input("\nIngrese la longitud del tablero:")) fc.constructor_tableros(longitud)
true
25fecd00f53a74a28b55efd7c94528a4708ee556
Python
adriencances/ava_code
/pairs_generation/frame_processing.py
UTF-8
7,083
2.625
3
[]
no_license
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math as m from torchvision import transforms, utils import cv2 import sys import pickle import tqdm frames_dir = "/media/hdd/adrien/Ava_v2.2/correct_frames" shots_dir = "/home/acances/Data/Ava_v2.2/final_shots" tracks_dir = "/home/acances/Data/Ava_v2.2/tracks" fbt_file = "/home/acances/Code/ava/frames_by_timestamp.csv" class FrameProcessor: def __init__(self): self.nb_frames_by_timestamp = {} with open(fbt_file, "r") as f: for line in f: vid_id, N = line.strip().split(",") self.nb_frames_by_timestamp[video_id] = int(N) def get_boxes(bboxes_file): boxes = [] with open(bboxes_file, "r") as f: for line in f: box = list(map(float, line.strip().split(",")))[:-1] boxes.append(box) return boxes def get_enlarged_box(box, alpha): # Enlarge the box area by 100*alpha percent while preserving # the center and the aspect ratio beta = 1 + alpha x1, y1, x2, y2 = box dx = x2 - x1 dy = y2 - y1 x1 -= (np.sqrt(beta) - 1)*dx/2 x2 += (np.sqrt(beta) - 1)*dx/2 y1 -= (np.sqrt(beta) - 1)*dy/2 y2 += (np.sqrt(beta) - 1)*dy/2 return x1, y1, x2, y2 def get_preprocessed_frame(video_id, cat, t, n): # t : timestamp index of the video # n : frame index in the timestamp (frame indices start at 1) frame_file = "{}/{}/{}/{:05d}/{:06d}.jpg".format(frames_dir, cat, video_id, t, n) # frame : H * W * 3 frame = cv2.imread(frame_file) # frame : 3 * W * H frame = frame.transpose(2, 1, 0) frame = torch.from_numpy(frame) return frame def get_processed_frame(frame, box, w, h, normalized_box=False): # frame : 3 * W * H # (w, h) : dimensions of new frame C, W, H = frame.shape x1, y1, x2, y2 = box # If box is in normalized coords, i.e. # image top-left corner (0,0), bottom-right (1, 1), # then turn normalized coord into absolute coords if normalized_box: x1 = x1*W x2 = x2*W y1 = y1*H y2 = y2*H # Round coords to integers X1 = max(0, m.floor(x1)) X2 = max(0, m.ceil(x2)) Y1 = max(0, m.floor(y1)) Y2 = max(0, m.ceil(y2)) dX = X2 - X1 dY = Y2 - Y1 # Get the cropped bounding box boxed_frame = transforms.functional.crop(frame, X1, Y1, dX, dY) dX, dY = boxed_frame.shape[1:] # Compute size to resize the cropped bounding box to if dY/dX >= h/w: w_tild = m.floor(dX/dY*h) h_tild = h else: w_tild = w h_tild = m.floor(dY/dX*w) assert w_tild <= w assert h_tild <= h # Get the resized cropped bounding box resized_boxed_frame = transforms.functional.resize(boxed_frame, [w_tild, h_tild]) # Put the resized cropped bounding box on a gray canvas new_frame = 127*torch.ones(C, w, h) i = m.floor((w - w_tild)/2) j = m.floor((h - h_tild)/2) new_frame[:, i:i+w_tild, j:j+h_tild] = resized_boxed_frame return new_frame def nb_frames_per_timestamp(video_id): with open(fbt_file, "r") as f: for line in f: vid_id, N = line.strip().split(",") if video_id == vid_id: return int(N) print("WARNING: no information for video id {} in fbt_file".format(video_id)) return None def get_tracks(video_id, cat, shot_id): tracks_file = "{}/{}/{}/{:05d}_tracks.pkl".format(tracks_dir, cat, video_id, shot_id) with open(tracks_file, "rb") as f: tracks = pickle.load(f) return tracks def get_extreme_timestamps(video_id, cat, shot_id): shots_file = "{}/{}/shots_{}.csv".format(shots_dir, cat, video_id) with open(shots_file, "r") as f: for i, line in enumerate(f): if i == shot_id: start, end = line.strip().split(",") t1, n1 = tuple(map(int, start.split("_"))) t2, n2 = tuple(map(int, end.split("_"))) return t1, t2 print("WARNING: no shot of index {} for video {}".format(shot_id, video_id)) return None def get_processed_track_frames(video_id, cat, track, t1, t2, begin_frame, end_frame, w, h, alpha, normalized_box=False): # begin_frame, end_frame : indices in [0, (t2-t1+1)N - 1] # t1, t2 : first and last timestamps (included) corresponding to the shot to which the track belongs N = nb_frames_per_timestamp(video_id) b = int(track[0, 0]) processed_frames = [] for i in range(begin_frame, end_frame): t = t1 + i//N n = i%N + 1 frame = get_preprocessed_frame(video_id, cat, t, n) track_frame_index = i - b box = track[track_frame_index][1:5] box = get_enlarged_box(box, alpha) processed_frame = get_processed_frame(frame, box, w, h, normalized_box) processed_frames.append(processed_frame) processed_frames = torch.stack(processed_frames, dim=0) return processed_frames def get_frames(video_id, cat, shot_id, track_id, begin_frame, end_frame): # shot_id : 0-based index. # track_id : 0-based index. # begin_frame, end_frame : indices between 0 and (t2-t1+1)N - 1, # where t1 and t2 are the first and last (included) timestamps for the considered shot, # and where N is the number of frames per timestamp for the considered video. # Warning: end_frame is the index of the first frame not included # Use dictionary such that d[video_id][shot_id] = (t1, t2) t1, t2 = None, None # Use dictionary such that d[video_id] = N N = None frames = [] for i in range(begin_frame, end_frame): t = t1 + i//N n = i%N + 1 frame = get_preprocessed_frame(video_id, cat, t, n) frames.append(frame) tracks_file = "{}/{}/{}/{:05d}_tracks.pkl ".format(tracks_dir, cat, video_id, shot_id) tracks = get_tracks(video_id, cat, shot_id) track, score = tracks[track_id] b = int(track[0, 0]) boxes = track[begin_frame - b:ending_frame - b, 1:5] assert len(boxes) == len(frames) def print_out_processed_frames(processed_frames): target_dir = "/home/acances/Code/ava/various" nb_frames = processed_frames.shape[0] for i in range(nb_frames): frame = processed_frames[i].numpy().transpose(2, 1, 0) target_file = "{}/{:05d}.jpg".format(target_dir, i + 1) cv2.imwrite(target_file, frame) if __name__ == "__main__": tracks_file = sys.argv[1] shot_id = int(tracks_file.split("/")[-1].split("_")[0]) video_id = tracks_file.split("/")[-2] cat = tracks_file.split("/")[-3] tracks = get_tracks(video_id, cat, shot_id) t1, t2 = get_extreme_timestamps(video_id, cat, shot_id) track, score = tracks[0] begin_frame = int(track[0, 0]) end_frame = int(track[-1, 0]) w, h = 224, 224 alpha = 0.1 processed_frames = get_processed_track_frames(video_id, cat, track, t1, t2, begin_frame, end_frame, w, h, alpha) print_out_processed_frames(processed_frames) print(processed_frames.shape)
true
3c38b95052574f92095e3bd5b92ce52a1f4f7b6f
Python
lpdonofrio/D10
/presidents.py
UTF-8
3,095
4.0625
4
[]
no_license
#!/usr/bin/env python3 # Exercise: Presidents # Author GitHub usernames: # #1: lpdonofrio # #2: nishapathak # Instructions: # Write a program to: # (1) Load the data from presidents.txt into a dictionary. # (2) Print the years the greatest and least number of presidents were alive. # (between 1732 and 2016 (inclusive)) # Ex. # 'least = 2015' # 'John Doe' # 'most = 2015' # 'John Doe, Jane Doe, John Adams, and Jane Adams' # Bonus: Confirm there are no ties. If there is a tie print like so: # Ex. # 'least = 1900, 2013-2015' # 'John Doe (1900)' # 'Jane Doe (2013-2015)' # 'most = 1900-1934, 2013' # 'John Doe, Jane Doe, John Adams, and Jane Adams (1900-1933)' # 'Sally Doe, Billy Doe, Mary Doe, and Cary Doe (1934)' # 'Alice Doe, Bob Doe, Zane Doe, and Yi Do (2013)' # (3) Write your print statements to a file (greatest_least.txt) as well. # Upload that file as well. ############################################################################## # Imports # Body def load_data(): with open("presidents.txt", "r") as file: lines = file.read().splitlines() dictionary = {} for line in lines: items_list = line.split(",") if items_list[2] == "None": items_list[2] = "2016" dictionary[items_list[0]] = (items_list[1], items_list[2]) return dictionary def years_alive(): dictionary = load_data() for key, value in dictionary.items(): list_years = [] for n in range(int(value[0]), (int(value[1])+1)): list_years.append(n) dictionary[key] = list_years return dictionary def count_years(): dictionary = years_alive() years_counter = {} for key, value in dictionary.items(): for n in value: if years_counter.__contains__(n): years_counter[n] +=1 else: years_counter[n] = 1 return years_counter def greatest_least(): dictionary = count_years() sorted_years = sorted(dictionary, key = dictionary.__getitem__) greatest = sorted_years[-1] least = sorted_years[0] presidents_greatest = [] presidents_least = [] dic_names_years = years_alive() for key, item in dic_names_years.items(): if greatest in item: presidents_greatest.append(key) if least in item: presidents_least.append(key) presidents_least_str = ", ".join(presidents_least) presidents_greatest_str = ", ".join(presidents_greatest) print("Least = {}".format(least)) print(str(presidents_least)) print("Greatest = {}".format(greatest)) print(presidents_greatest) with open("greatest_least.txt", "w") as fout: fout.write("Least = {}\n".format(least) + presidents_least_str + "\n" + "Greatest = {}\n".format(greatest) + presidents_greatest_str + "\n") # Is there a more concise way of writing lines 77 to 85? ############################################################################## def main(): # CALL YOUR FUNCTION BELOW greatest_least() if __name__ == '__main__': main()
true
f2eca029ee7fe0486ebc4bd436fc80ffa9045397
Python
snugfox/finfast
/finfast_torch/analyze/metrics_kernels.py
UTF-8
2,449
2.546875
3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
import torch def beta(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: rp_cent = rp - torch.mean(rp, dim=1, keepdim=True) rb_cent = rb - torch.mean(rb, dim=1, keepdim=True) rb_var = torch.mean(torch.square(rb_cent), dim=1, keepdim=True) cov = (rp_cent @ rb_cent.T) / rp.shape[1] return cov / rb_var.T def alpha(rp: torch.Tensor, rb: torch.Tensor, rf: torch.Tensor) -> torch.Tensor: return ( (rf - torch.mean(rb, dim=1, keepdim=True)).T * beta(rp, rb) + torch.mean(rp, dim=1, keepdim=True) - rf ) def sharpe(rp: torch.Tensor, rf: torch.Tensor) -> torch.Tensor: rp_std, rp_mean = torch.std_mean(rp, dim=1, unbiased=False, keepdim=True) return (rp_mean - rf) / rp_std def treynor(rp: torch.Tensor, rb: torch.Tensor, rf: torch.Tensor) -> torch.Tensor: return (torch.mean(rp, dim=1, keepdim=True) - rf) / beta(rp, rb) def sortino(rp: torch.Tensor, rf: torch.Tensor) -> torch.Tensor: zero = torch.zeros((), dtype=rp.dtype, device=rp.device) return (torch.mean(rp, dim=1, keepdim=True) - rf) / torch.std( torch.minimum(rp, zero), dim=1, unbiased=False, keepdim=True ) def tracking_error(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: rp_expanded = torch.unsqueeze(rp, 1) rb_expanded = torch.unsqueeze(rb, 0) return torch.std(rp_expanded - rb_expanded, dim=2, unbiased=False) def information(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: eps = torch.finfo(rp.dtype).tiny return ( torch.mean(rp, dim=1, keepdim=True) - torch.mean(rb, dim=1, keepdim=True).T ) / (tracking_error(rp, rb) + eps) def up_capture(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: rp_expanded = torch.unsqueeze(rp, 1) rb_expanded = torch.unsqueeze(rb, 0) up_mask = rb_expanded > 0 return torch.sum((up_mask * rp_expanded) / rb_expanded, dim=2) / ( torch.count_nonzero(up_mask, dim=2) ) def down_capture(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: rp_expanded = torch.unsqueeze(rp, 1) rb_expanded = torch.unsqueeze(rb, 0) down_mask = rb_expanded < 0 return torch.sum((down_mask * rp_expanded) / rb_expanded, dim=2) / ( torch.count_nonzero(down_mask, dim=2) ) def capture(rp: torch.Tensor, rb: torch.Tensor) -> torch.Tensor: rp_expanded = torch.unsqueeze(rp, 1) rb_expanded = torch.unsqueeze(rb, 0) return torch.mean(rp_expanded / rb_expanded, dim=2)
true
64e5cda360046490b4dbc665a94d4729e55dda2a
Python
kembo-net/cropper.py
/cropper.py
UTF-8
1,455
3.15625
3
[]
no_license
import sys, os, re from PIL import Image desc = "1行目に画像ファイルがあるディレクトリ、\n" \ "2行目に画像ファイル名(拡張子含)を表す正規表現、\n" \ "3行目以降に画像を切り出す座標を書いてください。\n" \ "座標は矩形1つ毎に左上x座標, 左上y座標, 右下x座標, 右下y座標を半角カンマ区切りで入れてください。\n" \ "ファイルの入出力は全てJPEGを前提にしています。" args = sys.argv if len(args) == 1 or args[1] in {'-h', 'help'}: print(desc) else : with open(args[1], 'r') as f: #ディレクトリ名 dirc = f.readline().rstrip() os.chdir(dirc) #ファイル名 ptrn = re.compile(f.readline().rstrip()) #ファイル名の一覧 pic_names = [name for name in os.listdir(dirc) if ptrn.match(name)] #矩形の座標 def convert_pos(text) : return tuple(int(x) for x in text.split(',')) areas = [convert_pos(line) for line in f] for pname in pic_names : img = Image.open(pname, 'r') for i, area in enumerate(areas) : dir_name = str(i) if not os.path.exists(dir_name) : os.mkdir(dir_name) new_img = img.crop(area) new_img.save(dir_name + '/' + pname, 'JPEG', quality=100, optimize=True)
true
12284d7b1c2f6597af817b4b6382858f28b668a7
Python
2020-A-Python-GR1/py-roman-cabrera-bolivar-andres
/proyecto - scrapy 2B/movies/movies/spiders/movie_spyder.py
UTF-8
2,639
2.71875
3
[]
no_license
import scrapy import pandas as pd import numpy as np import re class MovieCrawl(scrapy.Spider): name = 'movie_spyder' urls = [] size_page = np.arange(1,1000,50) for num in size_page: urls.append('https://www.imdb.com/search/title/?groups=top_1000&start={num}'.format(num=num)) m_name = [] m_year = [] m_rated = [] m_duration = [] m_genre = [] m_rating = [] m_metascore = [] m_director = [] m_votes = [] def start_requests(self): for url in self.urls: yield scrapy.Request(url=url) def parse(self, response): movies_list = response.css('div.lister-item') for movie in movies_list: name = movie.css('h3 > a::text').extract_first() year = movie.css('h3 > span.lister-item-year::text').extract_first() rated = movie.css('p.text-muted > span.certificate::text').extract_first() duration = movie.css('p.text-muted > span.runtime::text').extract_first() genre = movie.css('p.text-muted > span.genre::text').extract_first() rating = movie.css('div.ratings-bar > div.inline-block::attr(data-value)').extract_first() metascore = movie.css('div.ratings-bar > div.inline-block > span.metascore::text').extract_first() director = movie.css('p > a::text').extract_first() votes = movie.css('p.sort-num_votes-visible > span::attr(data-value)').extract_first() self.m_name.append(name) self.m_year.append(re.sub('[(\D)]', '', str(year))) self.m_rated.append(rated) self.m_genre.append(str(genre).split(',')[0].strip('\n').strip()) self.m_duration.append(str(duration).strip('min ')) self.m_rating.append(rating) if str(metascore).strip() == 'None': self.m_metascore.append(0) else: self.m_metascore.append(int(str(metascore).strip())) self.m_director.append(director) self.m_votes.append(votes) def close(self, reason): df = pd.DataFrame({ 'name' : pd.Series(self.m_name), 'year' : pd.Series(self.m_year), 'rated' : pd.Series(self.m_rated), 'duration_min' : pd.Series(self.m_duration), 'genre' : pd.Series(self.m_genre), 'rating' : pd.Series(self.m_rating), 'metascore' : pd.Series(self.m_metascore), 'director' : pd.Series(self.m_director), 'votes' : pd.Series(self.m_votes) }) df.to_csv('data.csv', index = False, encoding='utf-8')
true
618d0a7ff5d393ad104b73dae22cf12457558d4d
Python
zszzlmt/leetcode
/solutions/1128.py
UTF-8
872
2.84375
3
[]
no_license
class Solution: def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int: from collections import defaultdict cluster_to_values = defaultdict(set) cluster_to_idxs = defaultdict(list) for idx in range(len(dominoes)): i, j = dominoes[idx] for idxx in cluster_to_values: if (i, j) in cluster_to_values[idxx]: cluster_to_idxs[idxx].append(idx) break else: idxx = len(cluster_to_idxs) cluster_to_idxs[idxx].append(idx) cluster_to_values[idxx].add((i, j)) cluster_to_values[idxx].add((j, i)) result = 0 for idx_list in cluster_to_idxs.values(): result += (len(idx_list) - 1) * (len(idx_list)) / 2 result = int(result) return result
true
59cdfc7aa116754f904476caf979060376952f31
Python
mklomo/school_administration_project
/course.py
UTF-8
1,923
3.375
3
[]
no_license
""" This script implements the course Class """ from professor import Professor from enrol import Enrol class Course: """ _min_number_of_students : int _max_number_of_students : int _course_code : int _start : date _end : date _name : str _semester : int is_cancelled() : boolean get_num_students_enrolled() : int """ def __init__(self, min_number_of_students, max_number_of_students, course_code, start_date, end_date, name, professor): self._min_number_of_students = min_number_of_students self._max_number_of_students = max_number_of_students self._course_code = course_code self._start_date = start_date self._end_date = end_date self._name = name self._enrollments = [] self._professors = [] if isinstance(professor, Professor): self._professors.append(professor) elif isinstance(professor, list): for entry_professor in professor: if not isinstance(entry_professor, Professor): raise TypeError("Invalid Professor...") self._professors.append(entry_professor) else: raise TypeError("Invalid Professor..") def is_cancelled(self): return len(self._enrollments) < self._min_number_of_students def add_professor(self, professor): if not isinstance(professor, Professor): raise TypeError("Invalid Professor Entry...") else: self._professors.append(professor) def enroll_course(self, enrol): if not isinstance(enrol, Enrol): raise TypeError("Invalid Enroll") if len(self._enrollments) == self._max_number_of_students: raise RuntimeError("Can not enroll in course, course is full..") self._enrollments.append(enrol) def get_enrollment_numbers(self): return len(self._enrollments)
true
15e3dafa46fdb66062d04b0ed449b89df976b165
Python
mincloud1501/Python
/Data_Analytics_Pandas/gonggongInfoAnalysis.py
UTF-8
3,635
2.515625
3
[ "MIT" ]
permissive
import os import sys import urllib.request import datetime import time import json import math # https://www.data.go.kr/ # 관광자원통계서비스 def get_request_url(url): req = urllib.request.Request(url) try: response = urllib.request.urlopen(req) if response.getcode() == 200: #print("[%s] Url Request Success" % datetime.datetime.now()) return response.read().decode('utf-8') except Exception as e: print(e) print("[%s] Error for URL : %s" % (datetime.datetime.now(), url)) return None # 유료 관광지 방문객수 조회 def getTourPointVisitor(yyyymm, sido, gungu, nPagenum, nItems): end_point = "http://openapi.tour.go.kr/openapi/service/TourismResourceStatsService/getPchrgTrrsrtVisitorList" parameters = "?_type=json&serviceKey=" + access_key parameters += "&YM=" + yyyymm parameters += "&SIDO=" + urllib.parse.quote(sido) parameters += "&GUNGU=" + urllib.parse.quote(gungu) parameters += "&RES_NM=&pageNo=" + str(nPagenum) parameters += "&numOfRows=" + str(nItems) url = end_point + parameters retData = get_request_url(url) if (retData == None): return None else: return json.loads(retData) # JSON format 정의 def getTourPointData(item, yyyymm, jsonResult): addrCd = 0 if 'addrCd' not in item.keys() else item['addrCd'] # 지역코드(우편번호와 일치하지 않음) gungu = '' if 'gungu' not in item.keys() else item['gungu'] sido = '' if 'sido' not in item.keys() else item['sido'] resNm = '' if 'resNm' not in item.keys() else item['resNm'] rnum = 0 if 'rnum' not in item.keys() else item['rnum'] # 관광지에 고유 부여된 코드 값 ForNum = 0 if 'csForCnt' not in item.keys() else item['csForCnt'] # 외국인 방문객수 NatNum = 0 if 'csNatCnt' not in item.keys() else item['csNatCnt'] # 내국인 방문객수 jsonResult.append({'yyyymm': yyyymm, 'addrCd': addrCd, 'gungu': gungu, 'sido': sido, 'resNm': resNm, 'rnum': rnum, 'ForNum': ForNum, 'NatNum': NatNum}) return def main(): jsonResult = [] sido = '서울특별시' gungu = '' nPagenum = 1 nTotal = 0 nItems = 100 nStartYear = 2011 nEndYear = 2016 for year in range(nStartYear, nEndYear): for month in range(1, 13): yyyymm = "{0}{1:0>2}".format(str(year), str(month)) nPagenum = 1 # [CODE 3] while True: jsonData = getTourPointVisitor(yyyymm, sido, gungu, nPagenum, nItems) if (jsonData['response']['header']['resultMsg'] == 'OK'): nTotal = jsonData['response']['body']['totalCount'] if nTotal == 0: break for item in jsonData['response']['body']['items']['item']: getTourPointData(item, yyyymm, jsonResult) nPage = math.ceil(nTotal / 100) if (nPagenum == nPage): break nPagenum += 1 else: break with open('%s_관광지입장정보_%d_%d.json' % (sido, nStartYear, nEndYear - 1), 'w', encoding='utf8') as outfile: retJson = json.dumps(jsonResult, indent=4, sort_keys=True, ensure_ascii=False) outfile.write(retJson) print(retJson) print('%s_관광지입장정보_%d_%d.json SAVED' % (sido, nStartYear, nEndYear - 1)) if __name__ == '__main__': main()
true
e11a6dc349084a05f5b5ee2b582f729dd3f8bc33
Python
brodri4/LearningPython
/duplicate.py
UTF-8
284
3.171875
3
[]
no_license
def duplicate_remove(array): return list(dict.fromkeys(array)) answer = duplicate_remove([1,2,3,4,4]) answer2 = duplicate_remove([1,2,3,4,5]) answer3 = duplicate_remove([1,2,1,2,4]) answer4 = duplicate_remove([2,2,2,2]) print(answer) print(answer2) print(answer3) print(answer4)
true
bf8ed23ddf2cf8004686f6955bff919baf4e5760
Python
fswzb/sensequant
/ml_model.py
UTF-8
3,889
2.609375
3
[]
no_license
from keras.models import Model, Sequential from keras.layers import Input, Dense, Activation, Dropout from keras.regularizers import l2, l1 import pandas as pd import numpy as np from sklearn import linear_model, preprocessing from sklearn.metrics import classification_report import configure RESULT_DIR = configure.result_dir TRAIN_SET = configure.cache_dir + configure.cache_train_set TEST_SET = configure.cache_dir + configure.cache_test_set REPORT_FILE = configure.result_dir + configure.result_report PREDICT_NN_FILE = configure.result_dir + configure.result_NN_predict_file PREDICT_LR_FILE = configure.result_dir + configure.result_LR_predict_file class ALGORITHM(): def __init__(self): return def prepare_data(self, trainFname=TRAIN_SET, testFname=TEST_SET): trainData = np.loadtxt(trainFname) testData = np.loadtxt(testFname) (X_train, Y_train) = (trainData[:, :-1], trainData[:, -1]) (X_test, Y_test) = (testData[:, :-1], testData[:, -1]) return (X_train, Y_train, X_test, Y_test) def preprocess_X(self, X): return preprocessing.scale(X) def preprocess_Y(self, Y): Y_ = np.zeros((len(Y), 3)) msk1 = Y==0 msk2 = Y==1 msk3 = Y==2 Y_[msk1, 0] = 1 Y_[msk2, 1] = 1 Y_[msk3, 2] = 1 return Y_ def train(self, X_train, Y_train, X_test, iter_): ''' output: predicted class: 0, 1, 2 ''' inputs = Input(shape=(12,)) x1 = Dense(96, activation='relu', W_regularizer=l1(0.01))(inputs) x2 = Dense(96, activation='relu', W_regularizer=l1(0.01))(x1) #drop = Dropout(0.2)(x) prediction = Dense(3, activation='relu', W_regularizer=l1(0.01))(x2) model = Model(input=inputs, output=prediction) model.compile(optimizer='adagrad', loss='poisson') model.fit(X_train, Y_train, nb_epoch=iter_, batch_size=100) pred = model.predict(X_test) return (np.argmax(pred, axis=1), np.max(pred, axis=1)) def benchmark(self, X_train, Y_train, X_test): ''' output: predicted class: -1, 0, 1 ''' lr = linear_model.LogisticRegression() model = lr.fit(X_train, Y_train) return (model.predict(X_test), np.max(model.predict_proba(X_test), axis=1)) def evaluate(self, Y_pred, Y_true, method, fname=REPORT_FILE): if method != 'NN' and method != 'LR': return ValueError('method just can be either NN or LR') with open(fname, 'w+') as f: f.write(\ method\ + ':\n'\ + classification_report(Y_pred, Y_true)\ + '\n') msk = Y_pred == Y_true return msk.cumsum()[-1]/len(msk) def combine_to_df(self, class_, prob): return pd.DataFrame({'class_': class_, 'prob': prob}) def run(self, iter_, folder=RESULT_DIR): X_train, Y_train, X_test, Y_test = self.prepare_data() X_train_scale, X_test_scale = (self.preprocess_X(X_train), self.preprocess_X(X_test)) Y_train_matrix, Y_test_matrix = (self.preprocess_Y(Y_train), self.preprocess_Y(Y_test)) predNN = self.train(X_train_scale, Y_train_matrix, X_test_scale, iter_) predLR = self.benchmark(X_train_scale, Y_train, X_test_scale) self.combine_to_df(predNN[0], predNN[1])\ .to_csv(PREDICT_NN_FILE, index=False) self.combine_to_df(predLR[0], predLR[1])\ .to_csv(PREDICT_LR_FILE, index=False) accNN = self.evaluate(predNN[0], np.argmax(Y_test_matrix, axis=1), 'NN') accLR = self.evaluate(predLR[0], Y_test, 'LR') print ('NN accuracy: ', accNN) print ('LR accuracy: ', accLR) return
true
45b5925cfc38c86c8ffd2364af88ddc91517e20b
Python
sampoprock/GeeksforGeeks-leetcode
/primalitytest.py
UTF-8
1,418
4.15625
4
[]
no_license
# Primality Test # For a given number N check if it is prime or not. A prime number is a number which is only divisible by 1 and itself. # Input: # First line contains an integer, the number of test cases 'T'. T testcases follow. Each test case should contain a positive integer N. # Output: # For each testcase, in a new line, print "Yes" if it is a prime number else print "No". # Your Task: # This is a function problem. You just need to complete the function isPrime that takes N as parameter and returns True if N is prime else returns false. The printing is done automatically by the driver code. # Expected Time Complexity : O(N1/2) # Expected Auxilliary Space : O(1) # Constraints: # 1 <= T <= 100 # 1 <= N <= 109 # Example: # Input: # 2 # 5 # 4 # Output: # Yes # No #User function Template for python3 ##Complete this function def isPrime(N): #Your code here if(N<2): return False for i in range(2,int(math.sqrt(N))+1): if(N%i==0): return False return True #{ #Driver Code Starts. def main(): T=int(input()) while(T>0): N=int(input()) if(isPrime(N)): print("Yes") else: print("No") T-=1 if __name__=="__main__": main() #} Driver Code Ends
true
d92548ff195ff80a6130530b36bb2b9f7cba5154
Python
shiv125/Competetive_Programming
/codechef/snack17/prob3_upd.py
UTF-8
2,572
2.625
3
[]
no_license
#import timeit #start = timeit.default_timer() #corr=open("algo.txt","w+") def binarysearch(arr,target): low=0 high=len(arr)-1 while low<=high: mid=(high+low)/2 val=arr[mid] if target<=arr[low]: return low if target>arr[high]: return -1 if target==val: return mid elif target>val: low=mid+1 else: if mid-1>=low and target>arr[mid-1]: return mid else: high=mid-1 def search(low,high,index): while low<=high and high<index and high>=0: mid=(high+low)/2 if low>=zfun(low,index,ki): return low h=zfun(high,index,ki) if high<h: return -1 zmid=zfun(mid,index,ki) if mid==zmid: return mid elif mid<zmid: low=mid+1 else: if mid-1>=low and mid-1<zfun(mid-1,index,ki): return mid else: high=mid-1 def zfun(i,index,ki): return (index-i)*ki-(dp[i]-dp[index]) def fun(arr,n,ki): i=binarysearch(arr,ki) temp=0 if i==-1: count=0 i=n else: count=n-i temp=search(i/2,i-1,i) if temp==-1: return count return count+i-temp ''' with open('testcases.txt',"r") as f: inp=[] for line in f: inp.append(line) inp=[x.strip() for x in inp] asa=len(inp) z=0 t=10**4 while z<asa: n,q=map(int,inp[z].split()) z+=1 arr=map(int,inp[z].split()) z+=1 arr.sort() dp=[0]*(n+1) dp[n-1]=arr[n-1] count=0 lookup={} for r in range(n-1,0,-1): dp[r-1]=arr[r-1]+dp[r] starter=[0]*n for i in range(1,n): ki=arr[i] starter[i]=search(i/2,i-1,i) for m in range(q): count=0 ki=int(inp[z]) tus=binarysearch(arr,ki) temp=0 if tus==-1: count=0 tus=n else: count=n-tus if tus!=0: tun=starter[tus-1] temp=search(tun,tus-1,tus) #temp=search(tun,tus-1,tus) if temp!=-1 and tus!=0: count=count+tus-temp corr.write(str(count)+"\n") z+=1 ''' t=input() for i in range(t): n,q=map(int,raw_input().split()) arr=map(int,raw_input().split()) arr.sort() dp=[0]*(n+1) dp[n-1]=arr[n-1] for r in range(n-1,0,-1): dp[r-1]=arr[r-1]+dp[r] starter=[0]*n for i in range(1,n): ki=arr[i] starter[i]=search(i/2,i-1,i) for m in range(q): count=0 ki=input() tus=binarysearch(arr,ki) temp=0 if tus==-1: count=0 tus=n else: count=n-tus while tus>starter[tus-1]: temp+=ki-arr[tus-1] if tus-1<temp: break else: count+=1 i-=1 print count ''' temp=0 if tus==-1: count=0 tus=n else: count=n-tus if tus!=0: tun=starter[tus-1] temp=search(tun,tus-1,tus) #temp=search(tun,tus-1,tus) if temp!=-1 and tus!=0: count=count+tus-temp print count ''' #stop = timeit.default_timer() #print stop-start
true
c299daf9e32cf705d4760f25f7a27421b50714bb
Python
DianaQuintero459/CP-D
/test.py
UTF-8
1,082
2.796875
3
[]
no_license
# Estudiante: Diana Carolina Quintero Bedoya # Correo: diana.quintero01@correo.usa.edu.co # Carrera: Ciencias de la computación e Inteligencia Artificial # Fecha: 29 abril 2021 # Ultima Modificación: 5 mayo 2021 # Docente: John Corredor Pdh # Materia: Computación paralela y distrribuida # Universidad Sergio Arboleda # ######### Rendimiento Cython/Python ########## # import functionE import CyfunctionE import numpy as np import time def execute(D, N, X, beta, tetha): initial = time.time() functionE.rbf_network(X, beta, tetha) tiempoPy = time.time() - initial initial = time.time() CyfunctionE.rbf_network(X, beta, tetha) tiempoCy = time.time() - initial SpeedUp = round(tiempoPy/tiempoCy, 3) print("tiempo Py: {}\n".format(tiempoPy)) print("tiempo Cy: {}\n".format(tiempoCy)) print("SpeedUp: {}\n".format(SpeedUp)) N = 1500 beta = np.random.rand(N) tetha = 10 D = 6 X = np.array([np.random.rand(N) for d in range(D)]).T execute(D, N, X, beta, tetha) D = 60 X = np.array([np.random.rand(N) for d in range(D)]).T execute(D, N, X, beta, tetha)
true
dbf738d60fc66a34d32ccc15f3ba13413c36f665
Python
webclinic017/AF5353
/Multi-Factor_Model_Regression .py
UTF-8
3,678
3.265625
3
[]
no_license
### Step 1. Import the libraries: import pandas as pd import yfinance as yf import statsmodels.formula.api as smf import pandas_datareader.data as web ### Step 2. Specify the risky asset and the time horizon: RISKY_ASSET = 'GOOG' START_DATE = '2010-01-01' END_DATE = '2020-12-31' ### Step 3. Download the data of the risky asset from Yahoo Finance and Calculate the monthly returns: asset_df = yf.download(RISKY_ASSET, start=START_DATE, end=END_DATE, adjusted=True, progress=False) y = asset_df['Adj Close'].resample('M').last().pct_change().dropna() y.index = y.index.strftime('%Y-%m') y.name = 'return' ### Step 4. Download the risk factors from prof. French's website: # three factors df_three_factor = web.DataReader('F-F_Research_Data_Factors', 'famafrench', start=START_DATE, end=END_DATE)[0] df_three_factor.index = df_three_factor.index.format() # momentum factor df_mom = web.DataReader('F-F_Momentum_Factor', 'famafrench', start=START_DATE, end=END_DATE)[0] df_mom.index = df_mom.index.format() ### Step 5. Merge the datasets for the four-factor model: # join all datasets on the index four_factor_data = df_three_factor.join(df_mom).join(y) # rename columns four_factor_data.columns = ['mkt', 'smb', 'hml', 'rf', 'mom', 'rtn'] # divide everything (except returns) by 100 four_factor_data.loc[:, four_factor_data.columns != 'rtn'] /= 100 # calculate excess returns of risky asset four_factor_data['excess_rtn'] = four_factor_data.rtn - four_factor_data.rf ### Step 6. Run the regression to estimate alpha and beta # one-factor model (CAPM): one_factor_model = smf.ols(formula='excess_rtn ~ mkt', data=four_factor_data).fit() print(one_factor_model.summary()) # three-factor model: three_factor_model = smf.ols(formula='excess_rtn ~ mkt + smb + hml', data=four_factor_data).fit() print(three_factor_model.summary()) # four-factor model: four_factor_model = smf.ols(formula='excess_rtn ~ mkt + smb + hml + mom', data=four_factor_data).fit() print(four_factor_model.summary()) ############################# ### For five-factor model ### ############################# ### Step 1. Download the risk factors from prof. French's website: # five factors df_five_factor = web.DataReader('F-F_Research_Data_5_Factors_2x3', 'famafrench', start=START_DATE, end=END_DATE)[0] df_five_factor.index = df_five_factor.index.format() ### Step 2. Merge the datasets for the five-factor model: # join all datasets on the index five_factor_data = df_five_factor.join(y) # rename columns five_factor_data.columns = ['mkt', 'smb', 'hml', 'rmw', 'cma', 'rf', 'rtn'] # divide everything (except returns) by 100 five_factor_data.loc[:, five_factor_data.columns != 'rtn'] /= 100 # calculate excess returns five_factor_data['excess_rtn'] = five_factor_data.rtn - five_factor_data.rf ### Step 3. Estimate the five-factor model: five_factor_model = smf.ols(formula='excess_rtn ~ mkt + smb + hml + rmw + cma', data=five_factor_data).fit() print(five_factor_model.summary()) ''' RMW (Robust Minus Weak) Average return on the robust operating profitability portfolios minus the average return on the weak operating profitability portfolios OP for June of year t is (OP minus interest expense) / book equity for the last fiscal year end in t-1. The OP breakpoints are the 30th and 70th NYSE percentiles. CMA (Conservative Minus Aggressive) Average return on the conservative investment portfolios minus the average return on the aggressive investment portfolios Investment is the change in total assets from the fiscal year ending in year t-2 to the fiscal year ending in t-1, divided by t-2 total assets. The Inv breakpoints are the 30th and 70th NYSE percentiles. '''
true
c2d540c4c3e0b25d450203bad6aef097e0c078b7
Python
OScott19/TheMulQuaBio
/code/cfexercises2.py
UTF-8
683
4.34375
4
[ "CC-BY-3.0", "MIT" ]
permissive
# What does each of fooXX do? def foo1(x): return x ** 0.5 def foo2(x, y): if x > y: return x return y def foo3(x, y, z): if x > y: tmp = y y = x x = tmp if y > z: tmp = z z = y y = tmp return [x, y, z] def foo4(x): result = 1 for i in range(1, x + 1): result = result * i return result def foo5(x): # a recursive function that calculates the factorial of x if x == 1: return 1 return x * foo5(x - 1) def foo6(x): # Calculate the factorial of x in a different way facto = 1 while x >= 1: facto = facto * x x = x - 1 return facto
true
2b4630ec566f229b9b76191acc3a7c93c2660556
Python
bgschiller/country-bounding-boxes
/country_bounding_boxes/__init__.py
UTF-8
5,691
3.171875
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- # import iso3166 import json from country_bounding_boxes.generated import countries # The naturalearth dataset we're using contains "subunits" of a variety of # forms; Some are "full sized" countries, some are historically or # politically significant divisions within the country (eg. Scotland and # Wales in the UK), some are physically disjoint components of countries # (eg. Alaska) and some are islands, dependencies, overseas departments, # or similar special cases. As a result, we return a _set_ of countries # for each iso code. _iso_2_cache = {} _iso_3_cache = {} # The legitimate ISO 3166 alpha2 and alpha3 names, which appear in a variety # of contexts in the naturalearth dataset depending on the subunit being # described. _iso_2_names = set() _iso_3_names = set() def _is_iso_3_name(n): if len(_iso_3_names) == 0: for c in iso3166.countries: _iso_3_names.add(c.alpha3) return n in _iso_3_names def _is_iso_2_name(n): if len(_iso_2_names) == 0: for c in iso3166.countries: _iso_2_names.add(c.alpha2) return n in _iso_2_names # Depending on the type of the (sub)unit, the ISO alpha3 name this # "country" is connected to might be denoted in a variety of fields. Search # them all in a hopefully-useful order of precedence and take the first # that looks legit. def _best_guess_iso_3(c): for n in [c.iso_a3, c.adm0_a3, c.adm0_a3_is, c.adm0_a3_us, c.gu_a3, c.su_a3, c.sov_a3]: if n != "-99" and _is_iso_3_name(n): return n return None # ISO alpha3 names are much more prevalent in the NE dataset; look up the # corresponding alpha2 name from iso3166 and cross-check against any alpha2 # name we have in the NE record. def _best_guess_iso_2(c): iso3 = _best_guess_iso_3(c) if iso3 is None: return None isoc = iso3166.countries.get(iso3) if isoc is None: return None iso2 = isoc.alpha2 if c.iso_a2 != "-99" and _is_iso_2_name(c.iso_a2): assert c.iso_a2 == iso2 return iso2 def _ensure_caches_populated(): global _iso_2_cache global _iso_3_cache if not _iso_2_cache: for c in countries: iso2 = _best_guess_iso_2(c) iso3 = _best_guess_iso_3(c) if iso2 not in _iso_2_cache: _iso_2_cache[iso2] = set() if iso3 not in _iso_3_cache: _iso_3_cache[iso3] = set() _iso_2_cache[iso2].add(c) _iso_3_cache[iso3].add(c) def country_subunits_containing_point(lon, lat): """ Iterate over the country subunits that contain the provided point. Each subunit will have a .bbox field indicating its (lon1, lat1, lon2, lat2) bounding box. """ res = [] for c in countries: (lon1, lat1, lon2, lat2) = c.bbox # To handle international date line spanning # bboxes -- namely Fiji -- we treat any country that's # # Fiji spans the international date line # (-180.0, -21.705859375, 180.0, -12.476953125), # # England does not # (-5.65625, 50.0213867188, 1.74658203125, 55.8079589844), # # This poses a bit of difficulty, because they both appear # "numerically" the same way, as a bounding box going from low # longitude to high longitude. The problem is that passing the # international date line means you should interpret the box # as running from high to low if lon1 <= lon and lon <= lon2 and \ lat1 <= lat and lat <= lat2: res.append(c) return iter(res) def country_subunits_by_iso_code(code): """ Iterate over all country subunits, some of which are full countries and some of which are smaller components thereof; all have a .bbox field indicating their (lon1, lat1, lon2, lat2) bounding box. """ if not isinstance(code, str): return iter([]) _ensure_caches_populated() code = code.upper() if len(code) == 2 and code in _iso_2_cache: return iter(_iso_2_cache[code]) elif len(code) == 3 and code in _iso_3_cache: return iter(_iso_3_cache[code]) return iter([]) def all_country_subunits(): """ Iterate over all country subunits, some of which are full countries and some of which are smaller components thereof; all have a .bbox field indicating their (lon1, lat1, lon2, lat2) bounding box. """ return iter(countries) def all_country_subunits_grouped_by_iso_3_code(): """ Iterate over pairs of strings and sets of country subunits, where the string is an ISO 3166 alpha3 country code and the subunits all have a .bbox field indicating their (lon1, lat1, lon2, lat2) bounding box. """ _ensure_caches_populated() return _iso_3_cache.items() def show_all_bounding_boxes(): """ Diagnostic routine to emit all bounding boxes as GeoJSON. """ fs = [] for c in all_country_subunits(): (lon1, lat1, lon2, lat2) = c.bbox fs.append(dict(type="Feature", properties=[], geometry=dict(type="Polygon", coordinates=[[ [lon1, lat1], [lon1, lat2], [lon2, lat2], [lon2, lat1], [lon1, lat1] ]]))) fc = dict(type="FeatureCollection", features=fs) print json.dumps(fc, indent=True)
true
7a8ab9f0bcd31892348a7d88b3ecec79e7b93d4e
Python
afterloe/raspberry-auto
/opencv-integrate/py/four_point_perspective.py
UTF-8
466
2.640625
3
[ "MIT" ]
permissive
#!/usr/bin/python from imutils import perspective import numpy as np import cv2 img = cv2.imread("../tmp/2.jpg", cv2.IMREAD_COLOR) img_clone = img.copy() cv2.imshow("before", img_clone) pts = np.array([(73, 239), (356, 117), (475, 265), (187, 443)]) for (x, y) in pts: cv2.circle(img_clone, (x, y), 5, (0, 255, 0), -1) warped = perspective.four_point_transform(img, pts) cv2.imshow("after", warped) cv2.waitKey(0) cv2.destroyAllWindows()
true
9b91eb61753c64771fef31e4d202d698a31701ec
Python
dstark85/mitPython
/simple_programs/guess_number.py
UTF-8
1,307
4.40625
4
[]
no_license
# a simple number guessing program # 0 - 100 (exclusive) def quick_log(base, n): ''' Rounds up ''' count = 0 while n > 1: count += 1 n //= base return count def guess_number(): print("Think of a number between 0 and 100!") prompt = '''Enter 'h' to indicate the guess is too high. Enter 'l' to indicate the guess is too low. Enter 'c' to indicate I guessed correctly ''' acceptable_responses = 'hlc' low = 0 high = 100 g = (low + high) // 2 guess_attempts = 0 attempts_needed = quick_log(2, 100) while True: print("Is your secret number " + str(g) + '?') response = input(prompt) guess_attempts += 1 if guess_attempts > attempts_needed: # Beware of cheaters! print("LIAR!!") break while response[0] not in acceptable_responses: # user better cooperate print("I don't recognize what you entered.") response = input(prompt) if response[0] == 'h': high = g elif response[0] == 'l': low = g else: print("Game over. Your secret number was: " + str(g)) return g g = (low + high) // 2 guess_number()
true
0bd9ef0789717f159ddd05c1f234c1572bb1f032
Python
tritechsc/minecraft-rpi
/python-examples/turret_cwc.py
UTF-8
2,923
2.703125
3
[]
no_license
from mcpi.minecraft import Minecraft from mcpi import block from time import sleep def init(): mc = Minecraft.create("127.0.0.1", 4711) x, y, z = mc.player.getPos() return mc def gun(mc,x,y,z,direction,mussle_length): print("mussle_length ",mussle_length) #WOOD_PLANKS 5 GLASS 20 gold 41 m = 20 # glass if direction == "n" or direction == "s": #change z if direction == "n": p = 1 #p is parity else: p = -1 print(" x,y,z ",x,y,z) mc.postToChat("THE CANNON") mc.setBlocks(x-2,y,z-2,x+2,y+5,z+2,41) mc.setBlocks(x-1,y-1,z-1,x+1,y+5,z+1,0) mc.setBlock(x,y+4,z-2,20) mc.setBlock(x,y+4,z+2,20) mc.setBlock(x+2,y+4,z-2,20) mc.setBlock(x-2,y+4,z+2,20) for l in range(2,mussle_length): ld = l * p m = 42 mc.setBlock(x-2,y+3,z+ld,41) mc.setBlock(x,y+3,z+ld,41) mc.setBlock(x+2,y+3,z+ld,41) print(ld) if direction == "w" or direction == "e": pass def main(): mc = init() #mc.player.setPos(0, 50, 0) x, y, z = mc.player.getPos() mc.player.setPos(x, y, z) direction = input("Input dock direction n, s, e or w ") mussle_length = 10 gun(mc,x,y,z,direction,mussle_length) main() # multiple line comment """xc AIR 0 STONE 1 GRASS 2 DIRT 3 COBBLESTONE 4 WOOD_PLANKS 5 SAPLING 6 BEDROCK 7 WATER_FLOWING 8 WATER 8 WATER_STATIONARY 9 LAVA_FLOWING 10 LAVA 10 LAVA_STATIONARY 11 SAND 12 GRAVEL 13 GOLD_ORE 14 IRON_ORE 15 COAL_ORE 16 WOOD 17 LEAVES 18 GLASS 20 LAPIS_LAZULI_ORE 21 LAPIS_LAZULI_BLOCK 22 SANDSTONE 24 BED 26 COBWEB 30 GRASS_TALL 31 WOOL 35 FLOWER_YELLOW 37 FLOWER_CYAN 38 MUSHROOM_BROWN 39 MUSHROOM_RED 40 GOLD_BLOCK 41 IRON_BLOCK 42 STONE_SLAB_DOUBLE 43 STONE_SLAB 44 BRICK_BLOCK 45 TNT 46 BOOKSHELF 47 MOSS_STONE 48 OBSIDIAN 49 TORCH 50 FIRE 51 STAIRS_WOOD 53 CHEST 54 DIAMOND_ORE 56 DIAMOND_BLOCK 57 CRAFTING_TABLE 58 FARMLAND 60 FURNACE_INACTIVE 61 FURNACE_ACTIVE 62 DOOR_WOOD 64 LADDER 65 STAIRS_COBBLESTONE 67 DOOR_IRON 71 REDSTONE_ORE 73 SNOW 78 ICE 79 SNOW_BLOCK 80 CACTUS 81 CLAY 82 SUGAR_CANE 83 FENCE 85 GLOWSTONE_BLOCK 89 BEDROCK_INVISIBLE 95 STONE_BRICK 98 GLASS_PANE 102 MELON 103 FENCE_GATE 107 GLOWING_OBSIDIAN 246 NETHER_REACTOR_CORE 247 """
true
eb509b4d4127ceb003a7f3191b8f8d0cbfa7840e
Python
sourcery-ai-bot/eniric
/scripts/untar_here.py
UTF-8
605
3
3
[ "MIT" ]
permissive
#!/usr/bin/env python """ untar_here.py ------------- Bundled script to un-tar the eniric data downloaded. Uses the tarfile module to extract the data. """ import argparse import sys import tarfile def _parser(): """Take care of all the argparse stuff.""" parser = argparse.ArgumentParser(description="Extract from a tar file.") parser.add_argument("filename", help="File to untar.", type=str, default="") return parser.parse_args() if __name__ == "__main__": filename = _parser().filename with tarfile.open(filename, "r") as tar: tar.extractall() sys.exit(0)
true
dca2c441e2fbd0e934a6dc2f905942cb68841011
Python
GANESH0080/Python-Practice-Again
/AssignamentOperators/AssignmentSeven.py
UTF-8
48
2.9375
3
[]
no_license
x = 6 x **= 3 print(x) xx = 5 xx//=2 print(xx)
true
5e0446fe3d4073f735e647a0fcdb1ef7b23be240
Python
kandrosov/correctionlib
/src/correctionlib/schemav2.py
UTF-8
8,098
2.9375
3
[ "BSD-3-Clause" ]
permissive
from typing import Any, List, Optional, Union from pydantic import BaseModel, Field, StrictInt, StrictStr, validator try: from typing import Literal # type: ignore except ImportError: from typing_extensions import Literal VERSION = 2 class Model(BaseModel): class Config: extra = "forbid" class Variable(Model): """An input or output variable""" name: str type: Literal["string", "int", "real"] = Field( description="A string, a 64 bit integer, or a double-precision floating point value" ) description: Optional[str] = Field( description="A nice description of what this variable means" ) # py3.7+: ForwardRef can be used instead of strings Content = Union[ "Binning", "MultiBinning", "Category", "Formula", "FormulaRef", "Transform", float ] class Formula(Model): """A general formula type""" nodetype: Literal["formula"] expression: str parser: Literal["TFormula"] variables: List[str] = Field( description="The names of the correction input variables this formula applies to" ) parameters: Optional[List[float]] = Field( description="Parameters, if the parser supports them (e.g. [0] for TFormula)" ) class FormulaRef(Model): """A reference to one of the Correction generic_formula items, with specific parameters""" nodetype: Literal["formularef"] index: int = Field( description="Index into the Correction.generic_formulas list", ge=0 ) parameters: List[float] = Field( description="Same interpretation as Formula.parameters" ) class Transform(Model): """A node that rewrites one real or integer input according to a rule as given by a content node Any downstream nodes will see a different value for the rewritten input If the input is an integer type, the rule output will be cast from a double to integer type before using. These should be used sparingly and at high levels in the tree, since they require an allocation. """ nodetype: Literal["transform"] input: str = Field(description="The name of the input to rewrite") rule: Content = Field(description="A subtree that implements the rewrite rule") content: Content = Field( description="A subtree that will be evaluated with transformed values" ) class Binning(Model): """1-dimensional binning in an input variable""" nodetype: Literal["binning"] input: str = Field( description="The name of the correction input variable this binning applies to" ) edges: List[float] = Field( description="Edges of the binning, where edges[i] <= x < edges[i+1] => f(x, ...) = content[i](...)" ) content: List[Content] flow: Union[Content, Literal["clamp", "error"]] = Field( description="Overflow behavior for out-of-bounds values" ) @validator("edges") def validate_edges(cls, edges: List[float], values: Any) -> List[float]: for lo, hi in zip(edges[:-1], edges[1:]): if hi <= lo: raise ValueError(f"Binning edges not monotone increasing: {edges}") return edges @validator("content") def validate_content(cls, content: List[Content], values: Any) -> List[Content]: if "edges" in values: nbins = len(values["edges"]) - 1 if nbins != len(content): raise ValueError( f"Binning content length ({len(content)}) is not one larger than edges ({nbins + 1})" ) return content class MultiBinning(Model): """N-dimensional rectangular binning""" nodetype: Literal["multibinning"] inputs: List[str] = Field( description="The names of the correction input variables this binning applies to", min_items=1, ) edges: List[List[float]] = Field(description="Bin edges for each input") content: List[Content] = Field( description="""Bin contents as a flattened array This is a C-ordered array, i.e. content[d1*d2*d3*i0 + d2*d3*i1 + d3*i2 + i3] corresponds to the element at i0 in dimension 0, i1 in dimension 1, etc. and d0 = len(edges[0]), etc. """ ) flow: Union[Content, Literal["clamp", "error"]] = Field( description="Overflow behavior for out-of-bounds values" ) @validator("edges") def validate_edges(cls, edges: List[List[float]], values: Any) -> List[List[float]]: for i, dim in enumerate(edges): for lo, hi in zip(dim[:-1], dim[1:]): if hi <= lo: raise ValueError( f"MultiBinning edges for axis {i} are not monotone increasing: {dim}" ) return edges @validator("content") def validate_content(cls, content: List[Content], values: Any) -> List[Content]: if "edges" in values: nbins = 1 for dim in values["edges"]: nbins *= len(dim) - 1 if nbins != len(content): raise ValueError( f"MultiBinning content length ({len(content)}) does not match the product of dimension sizes ({nbins})" ) return content class CategoryItem(Model): """A key-value pair The key type must match the type of the Category input variable """ key: Union[StrictInt, StrictStr] value: Content class Category(Model): """A categorical lookup""" nodetype: Literal["category"] input: str = Field( description="The name of the correction input variable this category node applies to" ) content: List[CategoryItem] default: Optional[Content] @validator("content") def validate_content(cls, content: List[CategoryItem]) -> List[CategoryItem]: if len(content): keytype = type(content[0].key) if not all(isinstance(item.key, keytype) for item in content): raise ValueError( f"Keys in the Category node do not have a homogenous type, expected all {keytype}" ) keys = {item.key for item in content} if len(keys) != len(content): raise ValueError("Duplicate keys detected in Category node") return content Transform.update_forward_refs() Binning.update_forward_refs() MultiBinning.update_forward_refs() CategoryItem.update_forward_refs() Category.update_forward_refs() class Correction(Model): name: str description: Optional[str] = Field( description="Detailed description of the correction" ) version: int = Field( description="Some value that may increase over time due to bugfixes" ) inputs: List[Variable] = Field( description="The function signature of the correction" ) output: Variable = Field(description="Output type for this correction") generic_formulas: Optional[List[Formula]] = Field( description="""A list of common formulas that may be used For corrections with many parameterized formulas that follow a regular pattern, the expression and inputs can be declared once with a generic formula, deferring the parameter declaration to the more lightweight FormulaRef nodes. This can speed up both loading and evaluation of the correction object """ ) data: Content = Field(description="The root content node") @validator("output") def validate_output(cls, output: Variable) -> Variable: if output.type != "real": raise ValueError( "Output types other than real are not supported. See https://github.com/nsmith-/correctionlib/issues/12" ) return output class CorrectionSet(Model): schema_version: Literal[VERSION] = Field(description="The overall schema version") corrections: List[Correction] if __name__ == "__main__": import os import sys dirname = sys.argv[-1] with open(os.path.join(dirname, f"schemav{VERSION}.json"), "w") as fout: fout.write(CorrectionSet.schema_json(indent=4))
true
e8f12d8223265d2225aa613fbf2257d2340c2509
Python
kartikwar/programming_practice
/lists/others/overlapping_intervals.py
UTF-8
937
4.0625
4
[]
no_license
''' Given a collection of intervals, merge all overlapping intervals. For example: Given [1,3],[2,6],[8,10],[15,18], return [1,6],[8,10],[15,18]. Make sure the returned intervals are sorted. ''' class Interval: def __init__(self, s=0, e=0): self.start = s self.end = e class Solution: # @param intervals, a list of Intervals # @return a list of Interval def merge(self, intervals): intervals = sorted(intervals, key=lambda y:y.start) i = 0 while i < len(intervals) -1: ele1, ele2 = intervals[i], intervals[i+1] a,b = ele1.start, ele1.end c,d = ele2.start, ele2.end if max(a,c) > min(b,d): i = i +1 else: intervals[i] = Interval(min([a,c]), max(b,d)) intervals.pop(i+1) return intervals if __name__ == '__main__': sol = Solution() A = [ (1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 6) ] intervals = [] for a in A: intervals.append(Interval(a[0], a[1])) print(sol.merge(intervals))
true
e637e3d6d1f760dca64da849a29a5cbd37fd5f9a
Python
hahalaugh/LeetCode
/509_Fibonacci Number.py
UTF-8
854
3.203125
3
[]
no_license
class Solution(object): def fib(self, n): # Recursive if n <= 1: return n p1 = 1 p2 = 0 fb = 0 for i in range(n - 2 + 1): fb = p1 + p2 p2 = p1 p1 = fb return fb def fibTopDown(self, n): """ :type N: int :rtype: int """ d = {} def f(n): if n in d: return d[n] elif n <= 1: return n else: d[n] = f(n - 1) + f(n - 2) return d[n] return f(n) def fibBottomUp(self, n): if n <= 1: return n a = [0, 1] for i in range(2, n + 1): a.append(a[-1] + a[-2]) return a[n]
true
cafe98c11b1a75d9dd0a41a34661b7165e7e512b
Python
ricardorohde/price_miner
/extractor/main.py
UTF-8
1,643
2.53125
3
[ "MIT" ]
permissive
from argparse import ArgumentParser from config import PRICE_MINER_HOST, BODY_REQUEST from json.decoder import JSONDecodeError import requests import time import pandas as pd all_data = list() def extract(number_of_items=1): while True: response = requests.post(PRICE_MINER_HOST + '/mine', json=BODY_REQUEST) if response.content != 'tasks already running, try again later': task_id = response.content while True: request = requests.get(PRICE_MINER_HOST + '/mine', params={'job_id': task_id.decode("utf-8")}) print(request.content) if request.status_code == 200 and 'content' in request.json(): break time.sleep(20) data = request.json() all_data.extend(data['content']['content']) BODY_REQUEST['url'] = data['content']['last_url'] BODY_REQUEST['blacklist'] = [item['title'] for item in all_data] if len(all_data) >= number_of_items: data_holder = list() for item in all_data: temp = {'title': item['title']} for key, value in item['data'].items(): temp[key] = value data_holder.append(temp) pd.DataFrame(data_holder).to_csv('aliexpress_data.csv') break if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--num', required=False, type=int, help='number of items to extract') args = parser.parse_args() if args: extract(args.num) else: extract()
true
bd39c20f7d5ae57eae00d92465564ab930b7158f
Python
yuqiuming2000/Python-code
/爬虫精进/第6关/第6关xlsx文件的读写.py
UTF-8
448
3.234375
3
[]
no_license
import openpyxl wb=openpyxl.Workbook() sheet=wb.active sheet.title='new title' sheet['A1'] = '漫威宇宙' rows= [['美国队长','钢铁侠','蜘蛛侠'],['是','漫威','宇宙', '经典','人物']] for i in rows: sheet.append(i) print(rows) wb.save('Marvel.xlsx') wb = openpyxl.load_workbook('Marvel.xlsx') sheet = wb['new title'] sheetname = wb.sheetnames print(sheetname) A1_cell = sheet['A1'] A1_value = A1_cell.value print(A1_value)
true
270f8d22e4de30b9b46807a90e2e0413b6ab4d49
Python
kk0walski/Stratego
/Board.py
UTF-8
5,456
3.15625
3
[]
no_license
import numpy as np class Board: board = None size = 0 player1 = 0 player2 = 0 player1Color = 1 player2Color = 2 def __init__(self, size, player1=0,player2=0,board=None): self.size = size if board is None: self.board = np.zeros(shape=(self.size, self.size), dtype=np.int) else: self.board = board self.player1=player1 self.player2=player2 def clone(self): return self.__init__(self.size, self.player1, self.player2,np.copy(self.board)) def move(self, row, columm, color): points = 0 if row < self.size and row >= 0 and columm < self.size and columm >= 0: if self.board[row,columm] == 0: self.board[row,columm] = color points = self.getPoints(row, columm, color) if self.player1Color == color: self.player1 += points else: self.player2 += points return points, True else: return points, False else: return points, False def getField(self, row, column): return self.board[row,column] def getDiagonalFirst(self, board, row, column): lista = [] positions = [] for i in range(1,self.size): if row-i >= 0 and column-i >= 0: if board[row - i, column - i] == 0: positions.append((row-i,column-i)) lista.append(board[row-i,column-i]) if row+i < self.size and column+i < self.size: if board[row + i, column + i] == 0: positions.append((row + i, column + i)) lista.append(board[row + i, column + i]) lista.append(board[row,column]) if board[row,column] == 0: positions.append((row,column)) return lista, positions def getDiagonalSecond(self, board, row, column): lista = [] positions = [] for i in range(1, self.size): if row - i >= 0 and column + i < self.size: if board[row - i, column + i] == 0: positions.append((row-i,column+i)) lista.append(board[row - i, column + i]) if row + i < self.size and column - i >= 0: if board[row + i, column - i] == 0: positions.append((row+i,column-i)) lista.append(board[row + i, column - i]) lista.append(board[row, column]) if board[row,column] == 0: positions.append((row,column)) return lista, positions def getDiagonals(self, board, row, column): lista1, columns1 = self.getDiagonalFirst(board,row,column) lista2, columns2 = self.getDiagonalSecond(board, row, column) return [lista1,lista2],[columns1,columns2] def getAllDiagonals(self, board): lists = [] columns = [] for i in range(self.size): listTemp,columnTemp = self.getDiagonals(board, 0, i) lists += listTemp columns += columnTemp listTemp, columnTemp = self.getDiagonalFirst(board, i, 0) lists += [listTemp] columns += [columnTemp] listTemp, columnTemp = self.getDiagonalSecond(board, self.size - 1, i) lists += [listTemp] columns += [columnTemp] return lists, columns def getRowsColumnsPoint(self, board): for i in range(self.size): lista = list(board[i]) if lista.count(0) == 1: return (i,lista.index(0)) lista = list(board[:,i]) if lista.count(0) == 1: return (lista.index(0),i) return (-1,-1) def getRowZeroPoints(self, row, board): positions = [] if row < self.size and row >= 0: myRow = board[row] for i in range(0, self.size): if myRow[i] == 0: positions.append((row,i)) return positions def getColumnZeroPoints(self, column,board): positions = [] if column < self.size and column >= 0: myColumn = board[:,column] for i in range(0, self.size): if myColumn[i] == 0: positions.append((i,column)) return positions def getRowsColumnsPoints(self, board): reasult = [] for i in range(self.size): reasult.append(self.getRowZeroPoints(i, board)) reasult.append(self.getColumnZeroPoints(i, board)) return reasult def getPoints(self, row, column, color): points = 0 if list(self.board[row]).count(0) == 0: points += (self.board[row] == color).sum() if list(self.board[:,column]).count(0) == 0: points += (self.board[:,column] == color).sum() diagonal1, temp = self.getDiagonalFirst(self.board, row, column) if diagonal1.count(0) == 0 and len(diagonal1) > 1: points += diagonal1.count(color) diagonal2, temp = self.getDiagonalSecond(self.board, row, column) if diagonal2.count(0) == 0 and len(diagonal2) > 1: points += diagonal2.count(color) return points def isEnd(self): return np.count_nonzero(self.board == 0) == 0 def getState(self): return "Player1: " + str(self.player1) + " Player2: " + str(self.player2)
true
06d7d3f0d2222510208f7ce4e83433735bbc4431
Python
andrewhall123/savedfiles
/lucky.py
UTF-8
407
2.90625
3
[]
no_license
# python 3 import requests,sys,webbrowser, bs4 print('Googling...') res=requests.get('http://google.com/search?q=' + ''.join(sys.argv[1:])) res.raise_for_status() #retrive top search request soup=bs4.BeautifulSoup(res.text) #open a browser fo each result linkElems=soup.select('.r a') numOpen=min(5,len(linkElems)) for i in range(numOpen): webbrowser.open('http://google.com'+linkElems[i].get('href'))
true
f77b1e4034f1743d41c52f047624ced64499b8b1
Python
aprebyl1/DSC510Spring2020
/BLACK_DSC510/JBlack Week 3.py
UTF-8
2,411
4.34375
4
[]
no_license
# course: DSC510 # assignment: 3.1 # due date: 3/29/2020 # name: Jessica Black # this program will do the following: # Display a welcome message for your program # Retrieve the company name from the user # Get the number of feet of fiber optic cable to be installed from the user. # Evaluate the total cost based upon the number of feet requested. # Display the calculated information including the number of feet requested and company name. # One - Display welcome message user_name = input('Hello, user! Thanks for visiting Fiber Optic Inc. We look forward to assisting you. What is your name?') print(f'Welcome, {user_name}') # Two - Retrieve Company Name Company_Name = input('What is your company name?:\n') print(f'Welcome {Company_Name}!') # Three - Retrieve the number of feet of fiber optic cable to be installed from the user Cable_Length = input('How much feet of fiber optic cable needs to be installed?\n') print(f'Got it, you need {Cable_Length} feet of fiber optic cable.') # You will prompt the user for the number of fiber optic cable they need installed. # Using the default value of $0.87 calculate the total expense. # If the user purchases more than 100 feet they are charged $0.80 per foot. # If the user purchases more than 250 feet they will be charged $0.70 per foot. # If they purchase more than 500 feet, they will be charged $0.50 per foot. Default_Price = .87 Price_100_Feet = .80 Price_250_Feet = .70 Price_500_Feet = .50 Cable_Needed = float(Cable_Length) if Cable_Needed > 500: print(f'For {Cable_Needed} feet of fiber optic cable, you will be charged $.50 per foot.') elif Cable_Needed > 250: print(f'For {Cable_Needed} feet of fiber optic cable, you will be charged $.70 per foot.') elif Cable_Needed > 100: print(f'For {Cable_Needed} feet of fiber optic cable, you will be charged $.80 per foot.') elif Cable_Needed < 100: print(f'For {Cable_Needed} feet of fiber optic cable, you will be charged $.87 per foot.') f'\n' if Cable_Needed > 500: Total_Cost = (.50 * Cable_Needed) elif Cable_Needed > 250: Total_Cost = (.70 * Cable_Needed) elif Cable_Needed >= 100: Total_Cost = (.80 * Cable_Needed) else: Total_Cost = (.87 * Cable_Needed) print(f'For {Cable_Needed} feet of cable, your total installation cost will be ${Total_Cost}') print(f'Thank you, {user_name} with {Company_Name}! Fiber Optic Inc. looks forward to working with you.')
true
9f4b6220a95b8f1037d4ae13cf1beebfb44a460f
Python
Nixer/lesson02
/age.py
UTF-8
532
4.03125
4
[]
no_license
input_age = int(input("Введите свой возраст: ")) def age(age): if age < 7: return "Вы ходите в детский сад" elif 6 < age < 17: return "Вы учитесь в школе" elif 16 < age < 21: return "Вы учитесь в ВУЗе" elif 20 < age < 60: return "Вы работаете" elif age > 59: return "Вы на пенсии" else: return "Неправильно введен возраст" print(age(input_age))
true
7ba7fc8e3dcbd8c1a84ed4ab9fbdea122b66f805
Python
pflun/advancedAlgorithms
/Wish-findTotalCount.py
UTF-8
1,100
3.546875
4
[]
no_license
# -*- coding: utf-8 -*- # 就是有n个人比赛,问你有多少种比赛结果排名,每个人可以独自一人一组, # 也可以和其他人组成团体, # 比如n= 2, 两个人A,B, # 可能的结果有3种 # A 第一,B 第二 # B 第一,A 第二 # A, B 团体第一 # 就是有n个人, 比赛, 问你有多少种比赛结果排名, 每个人可以独自一人一组, # 也可以和其他人组成团体, # 比如n = 2, 两个人 A,B, # 可能的结果有3种 # A 第一, B 第二 # B 第一, A 第二 # A, B 团体第一 # n = 3, 有 13 种可能 # dp[0] = 1; # dp[1] = 1; # dp count with i persons class Solution(object): def findTotalCount(self, n): dp = [0 for _ in range(n + 1)] dp[0] = 1 dp[1] = 1 for i in range(2, n + 1): for k in range(i): dp[i] += self.helper(i, i - k) * dp[k] return dp def helper(self, n, k): res = 1 for i in range(n - k, n + 1): res *= i for i in range(1, k + 1): res /= i return res test = Solution() print test.findTotalCount(3)
true
913e96ad475cc9c86076847f4005e26b1484fc96
Python
JacobHippo/age
/age.py
UTF-8
372
3.59375
4
[]
no_license
drive = input('你有沒有開過車') if drive != '有' and drive !='沒有': print('只能輸入有/沒有') raise SystemExit age = input('請問你幾歲') age = int(age) if drive == '有': if age >= 18: print('你通過測驗了') else: print('你犯法了') elif drive == '沒有': if age >= 18: print('爛草莓') else: print('滾')
true
c5452f3fc04c5b7153ee376ba5e1799444cd3fbd
Python
eraserhead0705/travel_agency
/travel_agency_app/tests/test_factory.py
UTF-8
1,218
2.734375
3
[]
no_license
from django.test import TestCase from travel_agency_app.models import Availability, Location, GeoLocation, TourCapacity, TourPackage class LocationTestCase(TestCase): def setUp(self): loc = Location.objects.create(location_name="north pole", is_captial=True) GeoLocation.objects.create(latitute=10.4805937, longitude=-66.90360629999999, location=loc) def test_location_model(self): north_pole = Location.objects.get(location_name="north pole") lat = north_pole.geolocation.latitude self.assertEqual(north_pole.location_name, "north pole") self.assertEqual(lat, 10.4805937) class TourPackageTestCase(TestCase): def setUp(self): tour = TourPackage.objects.create(name='Arctic Adventure', description='Lets freeze!', price=3000, registries=15) TourCapacity.objects.create(capacity=20, tourpackage=tour) available =Availability.objects.create(availability="2021-07-05") available.add(tour) def test_tour_package_model(self): arctic = TourPackage.objects.get(name='Arctic Adventure') self.assertNotEqual(arctic.name, "Arctic") self.assertEqual(arctic.availability.availability, "2021-07-05")
true
de306e8ac94b4310081e201d3a091734f342cee9
Python
YiseBoge/CompetitiveProgramming2
/Contests/Contest8/p2.py
UTF-8
530
3.109375
3
[]
no_license
import sys class Solution: def minimumDeletions(self, s: str) -> int: result = sys.maxsize total_a = 0 for el in s: if el == 'a': total_a += 1 a_count = b_count = 0 for el in s: if el == 'a': a_count += 1 elif el == 'b': remaining = total_a - a_count result = min(result, remaining + b_count) b_count += 1 result = min(result, b_count) return result
true
a4a60daa7d186514eb7ab2ee6093ec7ee4a269ee
Python
ehaupt/fastest_pkg
/fastest_pkg/fastest_pkg.py
UTF-8
4,572
2.765625
3
[]
no_license
# -*- coding: utf-8 -*- """ Author : Emanuel Haupt <ehaupt@FreeBSD.org> Purpose : Find the fastest pkg mirror License : BSD3CLAUSE """ import argparse import json from operator import itemgetter from sys import stderr as STREAM from typing import Dict from urllib.parse import urlparse import dns.resolver import pycurl from fastest_pkg.utils.human_bytes import HumanBytes from fastest_pkg.utils.pkg_mirror import PkgMirror def speedtest(url: str, args: Dict): parsed_url = urlparse(url) # download location path = "/dev/null" # callback function for c.XFERINFOFUNCTION def status(download_t, download_d, upload_t, upload_d): STREAM.write( "{}: {}%\r".format( parsed_url.netloc, str(int(download_d / download_t * 100) if download_t > 0 else 0), ) ) STREAM.flush() # download file using pycurl speed_download = 0 with open(path, "wb") as f: curl = pycurl.Curl() curl.setopt(curl.URL, url) curl.setopt(curl.WRITEDATA, f) # display progress if args["verbose"]: curl.setopt(curl.NOPROGRESS, False) curl.setopt(curl.XFERINFOFUNCTION, status) else: curl.setopt(curl.NOPROGRESS, True) curl.setopt(pycurl.CONNECTTIMEOUT, int(args["timeout"] / 1000)) curl.setopt(pycurl.TIMEOUT_MS, args["timeout"]) try: curl.perform() except Exception as error: if args["verbose"]: # keep progress onscreen after error print() # print error print(error, file=STREAM) speed_download = curl.getinfo(pycurl.SPEED_DOWNLOAD) curl.close() # keeps progress onscreen after download completes if args["verbose"] and speed_download > 0: print() # print download speed if not args["json"]: print( ( "%s: %s/s" % (parsed_url.netloc, (HumanBytes.format(speed_download, metric=True))) ) ) return speed_download def get_mirrors(): """returns a list of all mirrors for pkg.freebsd.org""" resolver = dns.resolver.Resolver() try: pkg_mirrors = resolver.resolve("_http._tcp.pkg.all.freebsd.org", "SRV") except AttributeError: pkg_mirrors = resolver.query("_http._tcp.pkg.all.freebsd.org", "SRV") return pkg_mirrors def argument_parser(): """Parsers CLI arguments and displays help text, handles all the Cli stuff""" parser = argparse.ArgumentParser( description="Script for finding and configuring fastest FreeBSD pkg mirror" ) parser.add_argument( "-j", "--json", action="store_true", help="only show basic information in JSON format", ) parser.add_argument( "-v", "--verbose", action="store_true", help="be more verbose", ) parser.add_argument( "-t", "--timeout", type=int, default=5000, help="timeout in ms", ) argument = vars(parser.parse_args()) return argument def main(): """script starts here""" cli_arguments = argument_parser() stats = [] mirrors = get_mirrors() for mirror in mirrors: if mirror.priority > 10: pkg = PkgMirror(mirror.target.to_text(omit_final_dot=True)) bytes_per_second = speedtest(url=pkg.get_urls()[0], args=cli_arguments) mirror_name = mirror.target.to_text(omit_final_dot=True) stats.append( { "mirror_name": mirror_name, "bytes_per_second": bytes_per_second, } ) stats_sorted = sorted(stats, key=itemgetter("bytes_per_second"), reverse=True) if cli_arguments["json"]: print(json.dumps(stats_sorted)) else: pkg = PkgMirror(stats_sorted[0]["mirror_name"]) pkg_cfg = 'FreeBSD: { url: "http://%s/${ABI}/%s", mirror_type: "NONE" }' % ( stats_sorted[0]["mirror_name"], pkg.release, ) print( "\nFastest:\n%s: %s/s" % ( stats_sorted[0]["mirror_name"], HumanBytes.format(stats_sorted[0]["bytes_per_second"], metric=True), ) ) print("\n") print("Write configuration:") print("mkdir -p /usr/local/etc/pkg/repos/") print("echo '" + pkg_cfg + "' \\\n\t> /usr/local/etc/pkg/repos/FreeBSD.conf") print("\n")
true
db8ac4b383beb1052fc2f9a59cd95fd7f3d77268
Python
django/django-localflavor
/localflavor/uy/uy_departments.py
UTF-8
532
2.609375
3
[ "BSD-3-Clause" ]
permissive
#: A list of Uruguayan departments as `choices` in a formfield. DEPARTMENT_CHOICES = ( ('G', 'Artigas'), ('A', 'Canelones'), ('E', 'Cerro Largo'), ('L', 'Colonia'), ('Q', 'Durazno'), ('N', 'Flores'), ('O', 'Florida'), ('P', 'Lavalleja'), ('B', 'Maldonado'), ('S', 'Montevideo'), ('I', 'Paysandú'), ('J', 'Río Negro'), ('F', 'Rivera'), ('C', 'Rocha'), ('H', 'Salto'), ('M', 'San José'), ('K', 'Soriano'), ('R', 'Tacuarembó'), ('D', 'Treinta y Tres'), )
true
d3ee4d64470f084837ee001080e0f2f30663cfcf
Python
mmaduabum/Pi-Epsilon-Psi
/our_svm.py
UTF-8
8,157
2.921875
3
[]
no_license
#!/usr/bin/env python import utils import sys import random import time import features import operator import numpy as np from sklearn import cross_validation from sklearn import svm from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix """Our multi-class classifier Uses 15 internal SVMs: 5 using the one vs others method and 10 more for each pair of classes.""" class Our_SVM: def __init__(self, use_glove=False, unigrams=False): self.unigrams = unigrams self.submodels = [] self.use_glove = use_glove self.test_data = utils.get_test_data() self.ONEvALL = 0 self.TWOvALL = 1 self.THREEvALL = 2 self.FOURvALL = 3 self.FIVEvALL = 4 self.ONEvTWO = 5 self.ONEvTHREE = 6 self.ONEvFOUR = 7 self.ONEvFIVE = 8 self.TWOvTHREE = 9 self.TWOvFOUR = 10 self.TWOvFIVE = 11 self.THREEvFOUR = 12 self.THREEvFIVE = 13 self.FOURvFIVE = 14 def train_submodels(self, train_data): print "Building Datasets..." if self.unigrams: features.init_unigram_features(train_data) input_data = features.generate_feature_vectors(train_data, self.use_glove, self.unigrams) all_targets = [int(ex[1]) for ex in train_data] self.baseline_model = self.train_svms(input_data, all_targets) #train the one vs others classifiers for i in range(5): star = i + 1 target_data = [1 if int(ex[1]) == star else 0 for ex in train_data] self.submodels.append(self.train_svms(input_data, target_data)) #train the binary classifiers for the 10 pairs #create subsets of the train data that have the relevant ratings ones_and_twos = [ex for ex in train_data if int(ex[1]) == 1 or int(ex[1]) == 2] ones_and_threes = [ex for ex in train_data if int(ex[1]) == 1 or int(ex[1]) == 3] ones_and_fours = [ex for ex in train_data if int(ex[1]) == 1 or int(ex[1]) == 4] ones_and_fives = [ex for ex in train_data if int(ex[1]) == 1 or int(ex[1]) == 5] twos_and_threes = [ex for ex in train_data if int(ex[1]) == 2 or int(ex[1]) == 3] twos_and_fours = [ex for ex in train_data if int(ex[1]) == 2 or int(ex[1]) == 4] twos_and_fives = [ex for ex in train_data if int(ex[1]) == 2 or int(ex[1]) == 5] threes_and_fours = [ex for ex in train_data if int(ex[1]) == 3 or int(ex[1]) == 4] threes_and_fives = [ex for ex in train_data if int(ex[1]) == 3 or int(ex[1]) == 5] fours_and_fives = [ex for ex in train_data if int(ex[1]) == 4 or int(ex[1]) == 5] #generate feature vectors for each data subset input_12 = features.generate_feature_vectors(ones_and_twos, self.use_glove, self.unigrams) input_13 = features.generate_feature_vectors(ones_and_threes, self.use_glove, self.unigrams) input_14 = features.generate_feature_vectors(ones_and_fours, self.use_glove, self.unigrams) input_15 = features.generate_feature_vectors(ones_and_fives, self.use_glove, self.unigrams) input_23 = features.generate_feature_vectors(twos_and_threes, self.use_glove, self.unigrams) input_24 = features.generate_feature_vectors(twos_and_fours, self.use_glove, self.unigrams) input_25 = features.generate_feature_vectors(twos_and_fives, self.use_glove, self.unigrams) input_34 = features.generate_feature_vectors(threes_and_fours, self.use_glove, self.unigrams) input_35 = features.generate_feature_vectors(threes_and_fives, self.use_glove, self.unigrams) input_45 = features.generate_feature_vectors(fours_and_fives, self.use_glove, self.unigrams) #generate the targets for each data subset target_12 = [1 if int(ex[1]) == 1 else 2 for ex in ones_and_twos] target_13 = [1 if int(ex[1]) == 1 else 3 for ex in ones_and_threes] target_14 = [1 if int(ex[1]) == 1 else 4 for ex in ones_and_fours] target_15 = [1 if int(ex[1]) == 1 else 5 for ex in ones_and_fives] target_23 = [2 if int(ex[1]) == 2 else 3 for ex in twos_and_threes] target_24 = [2 if int(ex[1]) == 2 else 4 for ex in twos_and_fours] target_25 = [2 if int(ex[1]) == 2 else 5 for ex in twos_and_fives] target_34 = [3 if int(ex[1]) == 3 else 4 for ex in threes_and_fours] target_35 = [3 if int(ex[1]) == 3 else 5 for ex in threes_and_fives] target_45 = [4 if int(ex[1]) == 4 else 5 for ex in fours_and_fives] print "Data building complete" #train and svm for each pair and save in the class self.submodels.append(self.train_svms(input_12, target_12)) self.submodels.append(self.train_svms(input_13, target_13)) self.submodels.append(self.train_svms(input_14, target_14)) self.submodels.append(self.train_svms(input_15, target_15)) self.submodels.append(self.train_svms(input_23, target_23)) self.submodels.append(self.train_svms(input_24, target_24)) self.submodels.append(self.train_svms(input_25, target_25)) self.submodels.append(self.train_svms(input_34, target_34)) self.submodels.append(self.train_svms(input_35, target_35)) self.submodels.append(self.train_svms(input_45, target_45)) assert(len(self.submodels) == 15) #(should be a way to save trained classifiers so we dont need to do this every time) #http://scikit-learn.org/stable/modules/model_persistence.html def train_svms(self, input_data, target_data): print "Training next model..." state = random.randint(0, int(time.time())) #Once data has been translated to feature vector and target classes have been decided, train the model clf = svm.SVC(kernel='linear', C=1).fit(input_data, target_data) return clf def score_model(self): print "scoring..." answers = [int(ex[1]) for ex in self.test_data] vecs = features.generate_feature_vectors(self.test_data, self.use_glove, self.unigrams) predictions = [] for feature_vector in vecs: predictions.append(self.our_predict(feature_vector)) answers = np.array(answers).reshape(len(answers), 1) print str(predictions) predictions = np.array(predictions).reshape(len(predictions), 1) return (predictions, answers) #sorry this is really shit right now, just trying to get it working def our_predict(self, vec): first_guesses = [] #Run each one vs others classifer first_guesses.append(self.submodels[self.ONEvALL].predict(vec)[0]) first_guesses.append(self.submodels[self.TWOvALL].predict(vec)[0]) first_guesses.append(self.submodels[self.THREEvALL].predict(vec)[0]) first_guesses.append(self.submodels[self.FOURvALL].predict(vec)[0]) first_guesses.append(self.submodels[self.FIVEvALL].predict(vec)[0]) #check if only one class was predicted if sum(first_guesses) == 1: return first_guesses.index(1) + 1 if sum(first_guesses) == 2: #otherwise, run the pairwise classifiers first_index = first_guesses.index(1) class_a = first_index + 1 class_b = first_guesses.index(1, first_index+1) + 1 if (class_a, class_b) == (1, 2): return self.submodels[self.ONEvTWO].predict(vec)[0] elif (class_a, class_b) == (1, 3): return self.submodels[self.ONEvTHREE].predict(vec)[0] elif (class_a, class_b) == (1, 4): return self.submodels[self.ONEvFOUR].predict(vec)[0] elif (class_a, class_b) == (1, 5): return self.submodels[self.ONEvFIVE].predict(vec)[0] elif (class_a, class_b) == (2, 3): return self.submodels[self.TWOvTHREE].predict(vec)[0] elif (class_a, class_b) == (2, 4): return self.submodels[self.TWOvFOUR].predict(vec)[0] elif (class_a, class_b) == (2, 5): return self.submodels[self.TWOvFIVE].predict(vec)[0] elif (class_a, class_b) == (3, 4): return self.submodels[self.THREEvFOUR].predict(vec)[0] elif (class_a, class_b) == (3, 5): return self.submodels[self.THREEvFIVE].predict(vec)[0] elif (class_a, class_b) == (4, 5): return self.submodels[self.FOURvFIVE].predict(vec)[0] else: print "ERROR" #if sum(first_guesses) > 2: print "things could be happening, but aren't" return self.baseline_model.predict(vec)[0] # | #the baseline predictor does this v by default """#If 0, 3, 4, or 5 classes were positive, run all pairwise calssifiers votes = {1 : 0, 2 : 0, 3 : 0, 4 : 0, 5 : 0} for i, m in enumerate(self.submodels): if i < self.ONEvTWO: continue votes[m.predict(vec)[0]] += 1 return max(votes.iteritems(), key=operator.itemgetter(1))[0]"""
true