sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def has_face_color(self): """Return True if this data set has face color information""" for v in (self._face_colors, self._face_colors_indexed_by_faces, self._face_colors_indexed_by_edges): if v is not None: return True return False
Return True if this data set has face color information
entailment
def get_face_normals(self, indexed=None): """Get face normals Parameters ---------- indexed : str | None If None, return an array (Nf, 3) of normal vectors for each face. If 'faces', then instead return an indexed array (Nf, 3, 3) (this is just the same array with each vector copied three times). Returns ------- normals : ndarray The normals. """ if self._face_normals is None: v = self.get_vertices(indexed='faces') self._face_normals = np.cross(v[:, 1] - v[:, 0], v[:, 2] - v[:, 0]) if indexed is None: return self._face_normals elif indexed == 'faces': if self._face_normals_indexed_by_faces is None: norms = np.empty((self._face_normals.shape[0], 3, 3), dtype=np.float32) norms[:] = self._face_normals[:, np.newaxis, :] self._face_normals_indexed_by_faces = norms return self._face_normals_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Get face normals Parameters ---------- indexed : str | None If None, return an array (Nf, 3) of normal vectors for each face. If 'faces', then instead return an indexed array (Nf, 3, 3) (this is just the same array with each vector copied three times). Returns ------- normals : ndarray The normals.
entailment
def get_vertex_normals(self, indexed=None): """Get vertex normals Parameters ---------- indexed : str | None If None, return an (N, 3) array of normal vectors with one entry per unique vertex in the mesh. If indexed is 'faces', then the array will contain three normal vectors per face (and some vertices may be repeated). Returns ------- normals : ndarray The normals. """ if self._vertex_normals is None: faceNorms = self.get_face_normals() vertFaces = self.get_vertex_faces() self._vertex_normals = np.empty(self._vertices.shape, dtype=np.float32) for vindex in xrange(self._vertices.shape[0]): faces = vertFaces[vindex] if len(faces) == 0: self._vertex_normals[vindex] = (0, 0, 0) continue norms = faceNorms[faces] # get all face normals norm = norms.sum(axis=0) # sum normals renorm = (norm**2).sum()**0.5 if renorm > 0: norm /= renorm self._vertex_normals[vindex] = norm if indexed is None: return self._vertex_normals elif indexed == 'faces': return self._vertex_normals[self.get_faces()] else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Get vertex normals Parameters ---------- indexed : str | None If None, return an (N, 3) array of normal vectors with one entry per unique vertex in the mesh. If indexed is 'faces', then the array will contain three normal vectors per face (and some vertices may be repeated). Returns ------- normals : ndarray The normals.
entailment
def get_vertex_colors(self, indexed=None): """Get vertex colors Parameters ---------- indexed : str | None If None, return an array (Nv, 4) of vertex colors. If indexed=='faces', then instead return an indexed array (Nf, 3, 4). Returns ------- colors : ndarray The vertex colors. """ if indexed is None: return self._vertex_colors elif indexed == 'faces': if self._vertex_colors_indexed_by_faces is None: self._vertex_colors_indexed_by_faces = \ self._vertex_colors[self.get_faces()] return self._vertex_colors_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Get vertex colors Parameters ---------- indexed : str | None If None, return an array (Nv, 4) of vertex colors. If indexed=='faces', then instead return an indexed array (Nf, 3, 4). Returns ------- colors : ndarray The vertex colors.
entailment
def set_vertex_colors(self, colors, indexed=None): """Set the vertex color array Parameters ---------- colors : array Array of colors. Must have shape (Nv, 4) (indexing by vertex) or shape (Nf, 3, 4) (vertices indexed by face). indexed : str | None Should be 'faces' if colors are indexed by faces. """ colors = _fix_colors(np.asarray(colors)) if indexed is None: if colors.ndim != 2: raise ValueError('colors must be 2D if indexed is None') if colors.shape[0] != self.n_vertices: raise ValueError('incorrect number of colors %s, expected %s' % (colors.shape[0], self.n_vertices)) self._vertex_colors = colors self._vertex_colors_indexed_by_faces = None elif indexed == 'faces': if colors.ndim != 3: raise ValueError('colors must be 3D if indexed is "faces"') if colors.shape[0] != self.n_faces: raise ValueError('incorrect number of faces') self._vertex_colors = None self._vertex_colors_indexed_by_faces = colors else: raise ValueError('indexed must be None or "faces"')
Set the vertex color array Parameters ---------- colors : array Array of colors. Must have shape (Nv, 4) (indexing by vertex) or shape (Nf, 3, 4) (vertices indexed by face). indexed : str | None Should be 'faces' if colors are indexed by faces.
entailment
def get_face_colors(self, indexed=None): """Get the face colors Parameters ---------- indexed : str | None If indexed is None, return (Nf, 4) array of face colors. If indexed=='faces', then instead return an indexed array (Nf, 3, 4) (note this is just the same array with each color repeated three times). Returns ------- colors : ndarray The colors. """ if indexed is None: return self._face_colors elif indexed == 'faces': if (self._face_colors_indexed_by_faces is None and self._face_colors is not None): Nf = self._face_colors.shape[0] self._face_colors_indexed_by_faces = \ np.empty((Nf, 3, 4), dtype=self._face_colors.dtype) self._face_colors_indexed_by_faces[:] = \ self._face_colors.reshape(Nf, 1, 4) return self._face_colors_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Get the face colors Parameters ---------- indexed : str | None If indexed is None, return (Nf, 4) array of face colors. If indexed=='faces', then instead return an indexed array (Nf, 3, 4) (note this is just the same array with each color repeated three times). Returns ------- colors : ndarray The colors.
entailment
def set_face_colors(self, colors, indexed=None): """Set the face color array Parameters ---------- colors : array Array of colors. Must have shape (Nf, 4) (indexed by face), or shape (Nf, 3, 4) (face colors indexed by faces). indexed : str | None Should be 'faces' if colors are indexed by faces. """ colors = _fix_colors(colors) if colors.shape[0] != self.n_faces: raise ValueError('incorrect number of colors %s, expected %s' % (colors.shape[0], self.n_faces)) if indexed is None: if colors.ndim != 2: raise ValueError('colors must be 2D if indexed is None') self._face_colors = colors self._face_colors_indexed_by_faces = None elif indexed == 'faces': if colors.ndim != 3: raise ValueError('colors must be 3D if indexed is "faces"') self._face_colors = None self._face_colors_indexed_by_faces = colors else: raise ValueError('indexed must be None or "faces"')
Set the face color array Parameters ---------- colors : array Array of colors. Must have shape (Nf, 4) (indexed by face), or shape (Nf, 3, 4) (face colors indexed by faces). indexed : str | None Should be 'faces' if colors are indexed by faces.
entailment
def n_faces(self): """The number of faces in the mesh""" if self._faces is not None: return self._faces.shape[0] elif self._vertices_indexed_by_faces is not None: return self._vertices_indexed_by_faces.shape[0]
The number of faces in the mesh
entailment
def get_vertex_faces(self): """ List mapping each vertex index to a list of face indices that use it. """ if self._vertex_faces is None: self._vertex_faces = [[] for i in xrange(len(self.get_vertices()))] for i in xrange(self._faces.shape[0]): face = self._faces[i] for ind in face: self._vertex_faces[ind].append(i) return self._vertex_faces
List mapping each vertex index to a list of face indices that use it.
entailment
def save(self): """Serialize this mesh to a string appropriate for disk storage Returns ------- state : dict The state. """ import pickle if self._faces is not None: names = ['_vertices', '_faces'] else: names = ['_vertices_indexed_by_faces'] if self._vertex_colors is not None: names.append('_vertex_colors') elif self._vertex_colors_indexed_by_faces is not None: names.append('_vertex_colors_indexed_by_faces') if self._face_colors is not None: names.append('_face_colors') elif self._face_colors_indexed_by_faces is not None: names.append('_face_colors_indexed_by_faces') state = dict([(n, getattr(self, n)) for n in names]) return pickle.dumps(state)
Serialize this mesh to a string appropriate for disk storage Returns ------- state : dict The state.
entailment
def restore(self, state): """Restore the state of a mesh previously saved using save() Parameters ---------- state : dict The previous state. """ import pickle state = pickle.loads(state) for k in state: if isinstance(state[k], list): state[k] = np.array(state[k]) setattr(self, k, state[k])
Restore the state of a mesh previously saved using save() Parameters ---------- state : dict The previous state.
entailment
def cubehelix(start=0.5, rot=1, gamma=1.0, reverse=True, nlev=256., minSat=1.2, maxSat=1.2, minLight=0., maxLight=1., **kwargs): """ A full implementation of Dave Green's "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in D.A. Green, 2011, BASI, 39, 289. http://adsabs.harvard.edu/abs/2011arXiv1108.5083G User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples: Default color map settings produce the standard "cubehelix". Create color map in only blues by setting rot=0 and start=0. Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True. Parameters ---------- start : scalar, optional Sets the starting position in the color space. 0=blue, 1=red, 2=green. Defaults to 0.5. rot : scalar, optional The number of rotations through the rainbow. Can be positive or negative, indicating direction of rainbow. Negative values correspond to Blue->Red direction. Defaults to -1.5 gamma : scalar, optional The gamma correction for intensity. Defaults to 1.0 reverse : boolean, optional Set to True to reverse the color map. Will go from black to white. Good for density plots where shade~density. Defaults to False nlev : scalar, optional Defines the number of discrete levels to render colors at. Defaults to 256. sat : scalar, optional The saturation intensity factor. Defaults to 1.2 NOTE: this was formerly known as "hue" parameter minSat : scalar, optional Sets the minimum-level saturation. Defaults to 1.2 maxSat : scalar, optional Sets the maximum-level saturation. Defaults to 1.2 startHue : scalar, optional Sets the starting color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in start parameter endHue : scalar, optional Sets the ending color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in rot parameter minLight : scalar, optional Sets the minimum lightness value. Defaults to 0. maxLight : scalar, optional Sets the maximum lightness value. Defaults to 1. Returns ------- data : ndarray, shape (N, 3) Control points. """ # override start and rot if startHue and endHue are set if kwargs is not None: if 'startHue' in kwargs: start = (kwargs.get('startHue') / 360. - 1.) * 3. if 'endHue' in kwargs: rot = kwargs.get('endHue') / 360. - start / 3. - 1. if 'sat' in kwargs: minSat = kwargs.get('sat') maxSat = kwargs.get('sat') # set up the parameters fract = np.linspace(minLight, maxLight, nlev) angle = 2.0 * pi * (start / 3.0 + rot * fract + 1.) fract = fract**gamma satar = np.linspace(minSat, maxSat, nlev) amp = satar * fract * (1. - fract) / 2. # compute the RGB vectors according to main equations red = fract + amp * (-0.14861 * np.cos(angle) + 1.78277 * np.sin(angle)) grn = fract + amp * (-0.29227 * np.cos(angle) - 0.90649 * np.sin(angle)) blu = fract + amp * (1.97294 * np.cos(angle)) # find where RBB are outside the range [0,1], clip red[np.where((red > 1.))] = 1. grn[np.where((grn > 1.))] = 1. blu[np.where((blu > 1.))] = 1. red[np.where((red < 0.))] = 0. grn[np.where((grn < 0.))] = 0. blu[np.where((blu < 0.))] = 0. # optional color reverse if reverse is True: red = red[::-1] blu = blu[::-1] grn = grn[::-1] return np.array((red, grn, blu)).T
A full implementation of Dave Green's "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in D.A. Green, 2011, BASI, 39, 289. http://adsabs.harvard.edu/abs/2011arXiv1108.5083G User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples: Default color map settings produce the standard "cubehelix". Create color map in only blues by setting rot=0 and start=0. Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True. Parameters ---------- start : scalar, optional Sets the starting position in the color space. 0=blue, 1=red, 2=green. Defaults to 0.5. rot : scalar, optional The number of rotations through the rainbow. Can be positive or negative, indicating direction of rainbow. Negative values correspond to Blue->Red direction. Defaults to -1.5 gamma : scalar, optional The gamma correction for intensity. Defaults to 1.0 reverse : boolean, optional Set to True to reverse the color map. Will go from black to white. Good for density plots where shade~density. Defaults to False nlev : scalar, optional Defines the number of discrete levels to render colors at. Defaults to 256. sat : scalar, optional The saturation intensity factor. Defaults to 1.2 NOTE: this was formerly known as "hue" parameter minSat : scalar, optional Sets the minimum-level saturation. Defaults to 1.2 maxSat : scalar, optional Sets the maximum-level saturation. Defaults to 1.2 startHue : scalar, optional Sets the starting color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in start parameter endHue : scalar, optional Sets the ending color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in rot parameter minLight : scalar, optional Sets the minimum lightness value. Defaults to 0. maxLight : scalar, optional Sets the maximum lightness value. Defaults to 1. Returns ------- data : ndarray, shape (N, 3) Control points.
entailment
def color_to_hex(color): """Convert matplotlib color code to hex color code""" if color is None or colorConverter.to_rgba(color)[3] == 0: return 'none' else: rgb = colorConverter.to_rgb(color) return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))
Convert matplotlib color code to hex color code
entailment
def _many_to_one(input_dict): """Convert a many-to-one mapping to a one-to-one mapping""" return dict((key, val) for keys, val in input_dict.items() for key in keys)
Convert a many-to-one mapping to a one-to-one mapping
entailment
def get_dasharray(obj): """Get an SVG dash array for the given matplotlib linestyle Parameters ---------- obj : matplotlib object The matplotlib line or path object, which must have a get_linestyle() method which returns a valid matplotlib line code Returns ------- dasharray : string The HTML/SVG dasharray code associated with the object. """ if obj.__dict__.get('_dashSeq', None) is not None: return ','.join(map(str, obj._dashSeq)) else: ls = obj.get_linestyle() dasharray = LINESTYLES.get(ls, 'not found') if dasharray == 'not found': warnings.warn("line style '{0}' not understood: " "defaulting to solid line.".format(ls)) dasharray = LINESTYLES['solid'] return dasharray
Get an SVG dash array for the given matplotlib linestyle Parameters ---------- obj : matplotlib object The matplotlib line or path object, which must have a get_linestyle() method which returns a valid matplotlib line code Returns ------- dasharray : string The HTML/SVG dasharray code associated with the object.
entailment
def SVG_path(path, transform=None, simplify=False): """Construct the vertices and SVG codes for the path Parameters ---------- path : matplotlib.Path object transform : matplotlib transform (optional) if specified, the path will be transformed before computing the output. Returns ------- vertices : array The shape (M, 2) array of vertices of the Path. Note that some Path codes require multiple vertices, so the length of these vertices may be longer than the list of path codes. path_codes : list A length N list of single-character path codes, N <= M. Each code is a single character, in ['L','M','S','C','Z']. See the standard SVG path specification for a description of these. """ if transform is not None: path = path.transformed(transform) vc_tuples = [(vertices if path_code != Path.CLOSEPOLY else [], PATH_DICT[path_code]) for (vertices, path_code) in path.iter_segments(simplify=simplify)] if not vc_tuples: # empty path is a special case return np.zeros((0, 2)), [] else: vertices, codes = zip(*vc_tuples) vertices = np.array(list(itertools.chain(*vertices))).reshape(-1, 2) return vertices, list(codes)
Construct the vertices and SVG codes for the path Parameters ---------- path : matplotlib.Path object transform : matplotlib transform (optional) if specified, the path will be transformed before computing the output. Returns ------- vertices : array The shape (M, 2) array of vertices of the Path. Note that some Path codes require multiple vertices, so the length of these vertices may be longer than the list of path codes. path_codes : list A length N list of single-character path codes, N <= M. Each code is a single character, in ['L','M','S','C','Z']. See the standard SVG path specification for a description of these.
entailment
def get_path_style(path, fill=True): """Get the style dictionary for matplotlib path objects""" style = {} style['alpha'] = path.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['edgecolor'] = color_to_hex(path.get_edgecolor()) if fill: style['facecolor'] = color_to_hex(path.get_facecolor()) else: style['facecolor'] = 'none' style['edgewidth'] = path.get_linewidth() style['dasharray'] = get_dasharray(path) style['zorder'] = path.get_zorder() return style
Get the style dictionary for matplotlib path objects
entailment
def get_line_style(line): """Get the style dictionary for matplotlib line objects""" style = {} style['alpha'] = line.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['color'] = color_to_hex(line.get_color()) style['linewidth'] = line.get_linewidth() style['dasharray'] = get_dasharray(line) style['zorder'] = line.get_zorder() return style
Get the style dictionary for matplotlib line objects
entailment
def get_marker_style(line): """Get the style dictionary for matplotlib marker objects""" style = {} style['alpha'] = line.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['facecolor'] = color_to_hex(line.get_markerfacecolor()) style['edgecolor'] = color_to_hex(line.get_markeredgecolor()) style['edgewidth'] = line.get_markeredgewidth() style['marker'] = line.get_marker() markerstyle = MarkerStyle(line.get_marker()) markersize = line.get_markersize() markertransform = (markerstyle.get_transform() + Affine2D().scale(markersize, -markersize)) style['markerpath'] = SVG_path(markerstyle.get_path(), markertransform) style['markersize'] = markersize style['zorder'] = line.get_zorder() return style
Get the style dictionary for matplotlib marker objects
entailment
def get_text_style(text): """Return the text style dict for a text instance""" style = {} style['alpha'] = text.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['fontsize'] = text.get_size() style['color'] = color_to_hex(text.get_color()) style['halign'] = text.get_horizontalalignment() # left, center, right style['valign'] = text.get_verticalalignment() # baseline, center, top style['malign'] = text._multialignment # text alignment when '\n' in text style['rotation'] = text.get_rotation() style['zorder'] = text.get_zorder() return style
Return the text style dict for a text instance
entailment
def get_axis_properties(axis): """Return the property dictionary for a matplotlib.Axis instance""" props = {} label1On = axis._major_tick_kw.get('label1On', True) if isinstance(axis, matplotlib.axis.XAxis): if label1On: props['position'] = "bottom" else: props['position'] = "top" elif isinstance(axis, matplotlib.axis.YAxis): if label1On: props['position'] = "left" else: props['position'] = "right" else: raise ValueError("{0} should be an Axis instance".format(axis)) # Use tick values if appropriate locator = axis.get_major_locator() props['nticks'] = len(locator()) if isinstance(locator, ticker.FixedLocator): props['tickvalues'] = list(locator()) else: props['tickvalues'] = None # Find tick formats formatter = axis.get_major_formatter() if isinstance(formatter, ticker.NullFormatter): props['tickformat'] = "" elif isinstance(formatter, ticker.FixedFormatter): props['tickformat'] = list(formatter.seq) elif not any(label.get_visible() for label in axis.get_ticklabels()): props['tickformat'] = "" else: props['tickformat'] = None # Get axis scale props['scale'] = axis.get_scale() # Get major tick label size (assumes that's all we really care about!) labels = axis.get_ticklabels() if labels: props['fontsize'] = labels[0].get_fontsize() else: props['fontsize'] = None # Get associated grid props['grid'] = get_grid_style(axis) return props
Return the property dictionary for a matplotlib.Axis instance
entailment
def iter_all_children(obj, skipContainers=False): """ Returns an iterator over all childen and nested children using obj's get_children() method if skipContainers is true, only childless objects are returned. """ if hasattr(obj, 'get_children') and len(obj.get_children()) > 0: for child in obj.get_children(): if not skipContainers: yield child # could use `yield from` in python 3... for grandchild in iter_all_children(child, skipContainers): yield grandchild else: yield obj
Returns an iterator over all childen and nested children using obj's get_children() method if skipContainers is true, only childless objects are returned.
entailment
def image_to_base64(image): """ Convert a matplotlib image to a base64 png representation Parameters ---------- image : matplotlib image object The image to be converted. Returns ------- image_base64 : string The UTF8-encoded base64 string representation of the png image. """ ax = image.axes binary_buffer = io.BytesIO() # image is saved in axes coordinates: we need to temporarily # set the correct limits to get the correct image lim = ax.axis() ax.axis(image.get_extent()) image.write_png(binary_buffer) ax.axis(lim) binary_buffer.seek(0) return base64.b64encode(binary_buffer.read()).decode('utf-8')
Convert a matplotlib image to a base64 png representation Parameters ---------- image : matplotlib image object The image to be converted. Returns ------- image_base64 : string The UTF8-encoded base64 string representation of the png image.
entailment
def set_interactive(enabled=True, app=None): """Activate the IPython hook for VisPy. If the app is not specified, the default is used. """ if enabled: inputhook_manager.enable_gui('vispy', app) else: inputhook_manager.disable_gui()
Activate the IPython hook for VisPy. If the app is not specified, the default is used.
entailment
def _resize_buffers(self, font_scale): """Resize buffers only if necessary""" new_sizes = (font_scale,) + self.size if new_sizes == self._current_sizes: # don't need resize return self._n_rows = int(max(self.size[1] / (self._char_height * font_scale), 1)) self._n_cols = int(max(self.size[0] / (self._char_width * font_scale), 1)) self._bytes_012 = np.zeros((self._n_rows, self._n_cols, 3), np.float32) self._bytes_345 = np.zeros((self._n_rows, self._n_cols, 3), np.float32) pos = np.empty((self._n_rows, self._n_cols, 2), np.float32) C, R = np.meshgrid(np.arange(self._n_cols), np.arange(self._n_rows)) # We are in left, top orientation x_off = 4. y_off = 4 - self.size[1] / font_scale pos[..., 0] = x_off + self._char_width * C pos[..., 1] = y_off + self._char_height * R self._position = VertexBuffer(pos) # Restore lines for ii, line in enumerate(self._text_lines[:self._n_rows]): self._insert_text_buf(line, ii) self._current_sizes = new_sizes
Resize buffers only if necessary
entailment
def clear(self): """Clear the console""" if hasattr(self, '_bytes_012'): self._bytes_012.fill(0) self._bytes_345.fill(0) self._text_lines = [] * self._n_rows self._pending_writes = []
Clear the console
entailment
def write(self, text='', wrap=True): """Write text and scroll Parameters ---------- text : str Text to write. ``''`` can be used for a blank line, as a newline is automatically added to the end of each line. wrap : str If True, long messages will be wrapped to span multiple lines. """ # Clear line if not isinstance(text, string_types): raise TypeError('text must be a string') # ensure we only have ASCII chars text = text.encode('utf-8').decode('ascii', errors='replace') self._pending_writes.append((text, wrap)) self.update()
Write text and scroll Parameters ---------- text : str Text to write. ``''`` can be used for a blank line, as a newline is automatically added to the end of each line. wrap : str If True, long messages will be wrapped to span multiple lines.
entailment
def _do_pending_writes(self): """Do any pending text writes""" for text, wrap in self._pending_writes: # truncate in case of *really* long messages text = text[-self._n_cols*self._n_rows:] text = text.split('\n') text = [t if len(t) > 0 else '' for t in text] nr, nc = self._n_rows, self._n_cols for para in text: para = para[:nc] if not wrap else para lines = [para[ii:(ii+nc)] for ii in range(0, len(para), nc)] lines = [''] if len(lines) == 0 else lines for line in lines: # Update row and scroll if necessary self._text_lines.insert(0, line) self._text_lines = self._text_lines[:nr] self._bytes_012[1:] = self._bytes_012[:-1] self._bytes_345[1:] = self._bytes_345[:-1] self._insert_text_buf(line, 0) self._pending_writes = []
Do any pending text writes
entailment
def _insert_text_buf(self, line, idx): """Insert text into bytes buffers""" self._bytes_012[idx] = 0 self._bytes_345[idx] = 0 # Crop text if necessary I = np.array([ord(c) - 32 for c in line[:self._n_cols]]) I = np.clip(I, 0, len(__font_6x8__)-1) if len(I) > 0: b = __font_6x8__[I] self._bytes_012[idx, :len(I)] = b[:, :3] self._bytes_345[idx, :len(I)] = b[:, 3:]
Insert text into bytes buffers
entailment
def replace(self, str1, str2): """ Set verbatim code replacement It is strongly recommended to use function['$foo'] = 'bar' where possible because template variables are less likely to changed than the code itself in future versions of vispy. Parameters ---------- str1 : str String to replace str2 : str String to replace str1 with """ if str2 != self._replacements.get(str1, None): self._replacements[str1] = str2 self.changed(code_changed=True)
Set verbatim code replacement It is strongly recommended to use function['$foo'] = 'bar' where possible because template variables are less likely to changed than the code itself in future versions of vispy. Parameters ---------- str1 : str String to replace str2 : str String to replace str1 with
entailment
def _parse_template_vars(self): """ find all template variables in self._code, excluding the function name. """ template_vars = set() for var in parsing.find_template_variables(self._code): var = var.lstrip('$') if var == self.name: continue if var in ('pre', 'post'): raise ValueError('GLSL uses reserved template variable $%s' % var) template_vars.add(var) return template_vars
find all template variables in self._code, excluding the function name.
entailment
def _get_replaced_code(self, names): """ Return code, with new name, expressions, and replacements applied. """ code = self._code # Modify name fname = names[self] code = code.replace(" " + self.name + "(", " " + fname + "(") # Apply string replacements first -- these may contain $placeholders for key, val in self._replacements.items(): code = code.replace(key, val) # Apply assignments to the end of the function # Collect post lines post_lines = [] for key, val in self._assignments.items(): if isinstance(key, Variable): key = names[key] if isinstance(val, ShaderObject): val = val.expression(names) line = ' %s = %s;' % (key, val) post_lines.append(line) # Add a default $post placeholder if needed if 'post' in self._expressions: post_lines.append(' $post') # Apply placeholders for hooks post_text = '\n'.join(post_lines) if post_text: post_text = '\n' + post_text + '\n' code = code.rpartition('}') code = code[0] + post_text + code[1] + code[2] # Add a default $pre placeholder if needed if 'pre' in self._expressions: m = re.search(fname + r'\s*\([^{]*\)\s*{', code) if m is None: raise RuntimeError("Cound not find beginning of function '%s'" % fname) ind = m.span()[1] code = code[:ind] + "\n $pre\n" + code[ind:] # Apply template variables for key, val in self._expressions.items(): val = val.expression(names) search = r'\$' + key + r'($|[^a-zA-Z0-9_])' code = re.sub(search, val+r'\1', code) # Done if '$' in code: v = parsing.find_template_variables(code) logger.warning('Unsubstituted placeholders in code: %s\n' ' replacements made: %s', v, list(self._expressions.keys())) return code + '\n'
Return code, with new name, expressions, and replacements applied.
entailment
def _clean_code(self, code): """ Return *code* with indentation and leading/trailing blank lines removed. """ lines = code.split("\n") min_indent = 100 for line in lines: if line.strip() != "": indent = len(line) - len(line.lstrip()) min_indent = min(indent, min_indent) if min_indent > 0: lines = [line[min_indent:] for line in lines] code = "\n".join(lines) return code
Return *code* with indentation and leading/trailing blank lines removed.
entailment
def add_chain(self, var): """ Create a new ChainFunction and attach to $var. """ chain = FunctionChain(var, []) self._chains[var] = chain self[var] = chain
Create a new ChainFunction and attach to $var.
entailment
def append(self, function, update=True): """ Append a new function to the end of this chain. """ self._funcs.append(function) self._add_dep(function) if update: self._update()
Append a new function to the end of this chain.
entailment
def insert(self, index, function, update=True): """ Insert a new function into the chain at *index*. """ self._funcs.insert(index, function) self._add_dep(function) if update: self._update()
Insert a new function into the chain at *index*.
entailment
def remove(self, function, update=True): """ Remove a function from the chain. """ self._funcs.remove(function) self._remove_dep(function) if update: self._update()
Remove a function from the chain.
entailment
def add(self, item, position=5): """Add an item to the list unless it is already present. If the item is an expression, then a semicolon will be appended to it in the final compiled code. """ if item in self.items: return self.items[item] = position self._add_dep(item) self.order = None self.changed(code_changed=True)
Add an item to the list unless it is already present. If the item is an expression, then a semicolon will be appended to it in the final compiled code.
entailment
def remove(self, item): """Remove an item from the list. """ self.items.pop(item) self._remove_dep(item) self.order = None self.changed(code_changed=True)
Remove an item from the list.
entailment
def faces(self): """Return an array (Nf, 3) of vertex indexes, three per triangular face in the mesh. If faces have not been computed for this mesh, the function computes them. If no vertices or faces are specified, the function returns None. """ if self._faces is None: if self._vertices is None: return None self.triangulate() return self._faces
Return an array (Nf, 3) of vertex indexes, three per triangular face in the mesh. If faces have not been computed for this mesh, the function computes them. If no vertices or faces are specified, the function returns None.
entailment
def vertices(self): """Return an array (Nf, 3) of vertices. If only faces exist, the function computes the vertices and returns them. If no vertices or faces are specified, the function returns None. """ if self._faces is None: if self._vertices is None: return None self.triangulate() return self._vertices
Return an array (Nf, 3) of vertices. If only faces exist, the function computes the vertices and returns them. If no vertices or faces are specified, the function returns None.
entailment
def convex_hull(self): """Return an array of vertex indexes representing the convex hull. If faces have not been computed for this mesh, the function computes them. If no vertices or faces are specified, the function returns None. """ if self._faces is None: if self._vertices is None: return None self.triangulate() return self._convex_hull
Return an array of vertex indexes representing the convex hull. If faces have not been computed for this mesh, the function computes them. If no vertices or faces are specified, the function returns None.
entailment
def triangulate(self): """ Triangulates the set of vertices and stores the triangles in faces and the convex hull in convex_hull. """ npts = self._vertices.shape[0] if np.any(self._vertices[0] != self._vertices[1]): # start != end, so edges must wrap around to beginning. edges = np.empty((npts, 2), dtype=np.uint32) edges[:, 0] = np.arange(npts) edges[:, 1] = edges[:, 0] + 1 edges[-1, 1] = 0 else: # start == end; no wrapping required. edges = np.empty((npts-1, 2), dtype=np.uint32) edges[:, 0] = np.arange(npts) edges[:, 1] = edges[:, 0] + 1 tri = Triangulation(self._vertices, edges) tri.triangulate() return tri.pts, tri.tris
Triangulates the set of vertices and stores the triangles in faces and the convex hull in convex_hull.
entailment
def find(name): """Locate a filename into the shader library.""" if op.exists(name): return name path = op.dirname(__file__) or '.' paths = [path] + config['include_path'] for path in paths: filename = op.abspath(op.join(path, name)) if op.exists(filename): return filename for d in os.listdir(path): fullpath = op.abspath(op.join(path, d)) if op.isdir(fullpath): filename = op.abspath(op.join(fullpath, name)) if op.exists(filename): return filename return None
Locate a filename into the shader library.
entailment
def get(name): """Retrieve code from the given filename.""" filename = find(name) if filename is None: raise RuntimeError('Could not find %s' % name) with open(filename) as fid: return fid.read()
Retrieve code from the given filename.
entailment
def expect(func, args, times=7, sleep_t=0.5): """try many times as in times with sleep time""" while times > 0: try: return func(*args) except Exception as e: times -= 1 logger.debug("expect failed - attempts left: %d" % times) time.sleep(sleep_t) if times == 0: raise exceptions.BaseExc(e)
try many times as in times with sleep time
entailment
def num(string): """convert a string to float""" if not isinstance(string, type('')): raise ValueError(type('')) try: string = re.sub('[^a-zA-Z0-9\.\-]', '', string) number = re.findall(r"[-+]?\d*\.\d+|[-+]?\d+", string) return float(number[0]) except Exception as e: logger = logging.getLogger('tradingAPI.utils.num') logger.debug("number not found in %s" % string) logger.debug(e) return None
convert a string to float
entailment
def get_number_unit(number): """get the unit of number""" n = str(float(number)) mult, submult = n.split('.') if float(submult) != 0: unit = '0.' + (len(submult)-1)*'0' + '1' return float(unit) else: return float(1)
get the unit of number
entailment
def get_pip(mov=None, api=None, name=None): """get value of pip""" # ~ check args if mov is None and api is None: logger.error("need at least one of those") raise ValueError() elif mov is not None and api is not None: logger.error("mov and api are exclusive") raise ValueError() if api is not None: if name is None: logger.error("need a name") raise ValueError() mov = api.new_mov(name) mov.open() if mov is not None: mov._check_open() # find in the collection try: logger.debug(len(Glob().theCollector.collection)) pip = Glob().theCollector.collection['pip'] if name is not None: pip_res = pip[name] elif mov is not None: pip_res = pip[mov.product] logger.debug("pip found in the collection") return pip_res except KeyError: logger.debug("pip not found in the collection") # ~ vars records = [] intervals = [10, 20, 30] def _check_price(interval=10): timeout = time.time() + interval while time.time() < timeout: records.append(mov.get_price()) time.sleep(0.5) # find variation for interval in intervals: _check_price(interval) if min(records) == max(records): logger.debug("no variation in %d seconds" % interval) if interval == intervals[-1]: raise TimeoutError("no variation") else: break # find longer price for price in records: if 'best_price' not in locals(): best_price = price if len(str(price)) > len(str(best_price)): logger.debug("found new best_price %f" % price) best_price = price # get pip pip = get_number_unit(best_price) Glob().pipHandler.add_val({mov.product: pip}) return pip
get value of pip
entailment
def itemsize(self): """ Individual item sizes """ return self._items[:self._count, 1] - self._items[:self._count, 0]
Individual item sizes
entailment
def reserve(self, capacity): """ Set current capacity of the underlying array""" if capacity >= self._data.size: capacity = int(2 ** np.ceil(np.log2(capacity))) self._data = np.resize(self._data, capacity)
Set current capacity of the underlying array
entailment
def insert(self, index, data, itemsize=None): """ Insert data before index Parameters ---------- index : int Index before which data will be inserted. data : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. itemsize: int or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised. """ if not self._sizeable: raise AttributeError("List is not sizeable") if isinstance(data, (list, tuple)) and isinstance(data[0], (list, tuple)): # noqa itemsize = [len(l) for l in data] data = [item for sublist in data for item in sublist] data = np.array(data, copy=False).ravel() size = data.size # Check item size and get item number if itemsize is not None: if isinstance(itemsize, int): if (size % itemsize) != 0: raise ValueError("Cannot partition data as requested") _count = size // itemsize _itemsize = np.ones(_count, dtype=int) * (size // _count) else: _itemsize = np.array(itemsize, copy=False) _count = len(itemsize) if _itemsize.sum() != size: raise ValueError("Cannot partition data as requested") else: _count = 1 # Check if data array is big enough and resize it if necessary if self._size + size >= self._data.size: capacity = int(2 ** np.ceil(np.log2(self._size + size))) self._data = np.resize(self._data, capacity) # Check if item array is big enough and resize it if necessary if self._count + _count >= len(self._items): capacity = int(2 ** np.ceil(np.log2(self._count + _count))) self._items = np.resize(self._items, (capacity, 2)) # Check index if index < 0: index += len(self) if index < 0 or index > len(self): raise IndexError("List insertion index out of range") # Inserting if index < self._count: istart = index dstart = self._items[istart][0] dstop = self._items[istart][1] # Move data Z = self._data[dstart:self._size] self._data[dstart + size:self._size + size] = Z # Update moved items I = self._items[istart:self._count] + size self._items[istart + _count:self._count + _count] = I # Appending else: dstart = self._size istart = self._count # Only one item (faster) if _count == 1: # Store data self._data[dstart:dstart + size] = data self._size += size # Store data location (= item) self._items[istart][0] = dstart self._items[istart][1] = dstart + size self._count += 1 # Several items else: # Store data dstop = dstart + size self._data[dstart:dstop] = data self._size += size # Store items items = np.ones((_count, 2), int) * dstart C = _itemsize.cumsum() items[1:, 0] += C[:-1] items[0:, 1] += C istop = istart + _count self._items[istart:istop] = items self._count += _count
Insert data before index Parameters ---------- index : int Index before which data will be inserted. data : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. itemsize: int or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised.
entailment
def append(self, data, itemsize=None): """ Append data to the end. Parameters ---------- data : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. itemsize: int or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised. """ self.insert(len(self), data, itemsize)
Append data to the end. Parameters ---------- data : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. itemsize: int or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised.
entailment
def minimize(func, bounds=None, nvar=None, args=(), disp=False, eps=1e-4, maxf=20000, maxT=6000, algmethod=0, fglobal=-1e100, fglper=0.01, volper=-1.0, sigmaper=-1.0, **kwargs ): """ Solve an optimization problem using the DIRECT (Dividing Rectangles) algorithm. It can be used to solve general nonlinear programming problems of the form: .. math:: \min_ {x \in R^n} f(x) subject to .. math:: x_L \leq x \leq x_U Where :math:`x` are the optimization variables (with upper and lower bounds), :math:`f(x)` is the objective function. Parameters ---------- func : objective function called as `func(x, *args)`; does not need to be defined everywhere, raise an Exception where function is not defined bounds : array-like ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. nvar: integer Dimensionality of x (only needed if `bounds` is not defined) eps : float Ensures sufficient decrease in function value when a new potentially optimal interval is chosen. maxf : integer Approximate upper bound on objective function evaluations. .. note:: Maximal allowed value is 90000 see documentation of Fortran library. maxT : integer Maximum number of iterations. .. note:: Maximal allowed value is 6000 see documentation of Fortran library. algmethod : integer Whether to use the original or modified DIRECT algorithm. Possible values: * ``algmethod=0`` - use the original DIRECT algorithm * ``algmethod=1`` - use the modified DIRECT-l algorithm fglobal : float Function value of the global optimum. If this value is not known set this to a very large negative value. fglper : float Terminate the optimization when the percent error satisfies: .. math:: 100*(f_{min} - f_{global})/\max(1, |f_{global}|) \leq f_{glper} volper : float Terminate the optimization once the volume of a hyperrectangle is less than volper percent of the original hyperrectangel. sigmaper : float Terminate the optimization once the measure of the hyperrectangle is less than sigmaper. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. """ if bounds is None: l = np.zeros(nvar, dtype=np.float64) u = np.ones(nvar, dtype=np.float64) else: bounds = np.asarray(bounds) l = bounds[:, 0] u = bounds[:, 1] def _objective_wrap(x, iidata, ddata, cdata, n, iisize, idsize, icsize): """ Wrap the python objective to comply with the signature required by the Fortran library. Returns the function value and a flag indicating whether function is defined. If function is not defined return np.nan """ try: return func(x, *args), 0 except: return np.nan, 1 # # Dummy values so that the python wrapper will comply with the required # signature of the fortran library. # iidata = np.ones(0, dtype=np.int32) ddata = np.ones(0, dtype=np.float64) cdata = np.ones([0, 40], dtype=np.uint8) # # Call the DIRECT algorithm # x, fun, ierror = direct( _objective_wrap, eps, maxf, maxT, l, u, algmethod, 'dummylogfile', fglobal, fglper, volper, sigmaper, iidata, ddata, cdata, disp ) return OptimizeResult(x=x,fun=fun, status=ierror, success=ierror>0, message=SUCCESS_MESSAGES[ierror-1] if ierror>0 else ERROR_MESSAGES[abs(ierror)-1])
Solve an optimization problem using the DIRECT (Dividing Rectangles) algorithm. It can be used to solve general nonlinear programming problems of the form: .. math:: \min_ {x \in R^n} f(x) subject to .. math:: x_L \leq x \leq x_U Where :math:`x` are the optimization variables (with upper and lower bounds), :math:`f(x)` is the objective function. Parameters ---------- func : objective function called as `func(x, *args)`; does not need to be defined everywhere, raise an Exception where function is not defined bounds : array-like ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. nvar: integer Dimensionality of x (only needed if `bounds` is not defined) eps : float Ensures sufficient decrease in function value when a new potentially optimal interval is chosen. maxf : integer Approximate upper bound on objective function evaluations. .. note:: Maximal allowed value is 90000 see documentation of Fortran library. maxT : integer Maximum number of iterations. .. note:: Maximal allowed value is 6000 see documentation of Fortran library. algmethod : integer Whether to use the original or modified DIRECT algorithm. Possible values: * ``algmethod=0`` - use the original DIRECT algorithm * ``algmethod=1`` - use the modified DIRECT-l algorithm fglobal : float Function value of the global optimum. If this value is not known set this to a very large negative value. fglper : float Terminate the optimization when the percent error satisfies: .. math:: 100*(f_{min} - f_{global})/\max(1, |f_{global}|) \leq f_{glper} volper : float Terminate the optimization once the volume of a hyperrectangle is less than volper percent of the original hyperrectangel. sigmaper : float Terminate the optimization once the measure of the hyperrectangle is less than sigmaper. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes.
entailment
def get_dpi(raise_error=True): """Get screen DPI from the OS Parameters ---------- raise_error : bool If True, raise an error if DPI could not be determined. Returns ------- dpi : float Dots per inch of the primary screen. """ try: user32.SetProcessDPIAware() except AttributeError: pass # not present on XP dc = user32.GetDC(0) h_size = gdi32.GetDeviceCaps(dc, HORZSIZE) v_size = gdi32.GetDeviceCaps(dc, VERTSIZE) h_res = gdi32.GetDeviceCaps(dc, HORZRES) v_res = gdi32.GetDeviceCaps(dc, VERTRES) user32.ReleaseDC(None, dc) return (h_res/float(h_size) + v_res/float(v_size)) * 0.5 * 25.4
Get screen DPI from the OS Parameters ---------- raise_error : bool If True, raise an error if DPI could not be determined. Returns ------- dpi : float Dots per inch of the primary screen.
entailment
def build_if_needed(self): """ Reset shader source if necesssary. """ if self._need_build: self._build() self._need_build = False self.update_variables()
Reset shader source if necesssary.
entailment
def nmap(a, b, c, d, curvefn=None, normfn=None): """ Returns a function that maps a number n from range (a, b) onto a range (c, d). If no curvefn is given, linear mapping will be used. Optionally a normalisation function normfn can be provided to transform output. """ if not curvefn: curvefn = lambda x: x def map(n): r = 1.0 * (n - a) / (b - a) out = curvefn(r) * (d - c) + c if not normfn: return out return normfn(out) return map
Returns a function that maps a number n from range (a, b) onto a range (c, d). If no curvefn is given, linear mapping will be used. Optionally a normalisation function normfn can be provided to transform output.
entailment
def link_view(self, view): """Link this axis to a ViewBox This makes it so that the axis's domain always matches the visible range in the ViewBox. Parameters ---------- view : instance of ViewBox The ViewBox to link. """ if view is self._linked_view: return if self._linked_view is not None: self._linked_view.scene.transform.changed.disconnect( self._view_changed) self._linked_view = view view.scene.transform.changed.connect(self._view_changed) self._view_changed()
Link this axis to a ViewBox This makes it so that the axis's domain always matches the visible range in the ViewBox. Parameters ---------- view : instance of ViewBox The ViewBox to link.
entailment
def _view_changed(self, event=None): """Linked view transform has changed; update ticks. """ tr = self.node_transform(self._linked_view.scene) p1, p2 = tr.map(self._axis_ends()) if self.orientation in ('left', 'right'): self.axis.domain = (p1[1], p2[1]) else: self.axis.domain = (p1[0], p2[0])
Linked view transform has changed; update ticks.
entailment
def viewbox_mouse_event(self, event): """ViewBox mouse event handler Parameters ---------- event : instance of Event The mouse event. """ # When the attached ViewBox reseives a mouse event, it is sent to the # camera here. self.mouse_pos = event.pos[:2] if event.type == 'mouse_wheel': # wheel rolled; adjust the magnification factor and hide the # event from the superclass m = self.mag_target m *= 1.2 ** event.delta[1] m = m if m > 1 else 1 self.mag_target = m else: # send everything _except_ wheel events to the superclass super(MagnifyCamera, self).viewbox_mouse_event(event) # start the timer to smoothly modify the transform properties. if not self.timer.running: self.timer.start() self._update_transform()
ViewBox mouse event handler Parameters ---------- event : instance of Event The mouse event.
entailment
def on_timer(self, event=None): """Timer event handler Parameters ---------- event : instance of Event The timer event. """ # Smoothly update center and magnification properties of the transform k = np.clip(100. / self.mag.mag, 10, 100) s = 10**(-k * event.dt) c = np.array(self.mag.center) c1 = c * s + self.mouse_pos * (1-s) m = self.mag.mag * s + self.mag_target * (1-s) # If changes are very small, then it is safe to stop the timer. if (np.all(np.abs((c - c1) / c1) < 1e-5) and (np.abs(np.log(m / self.mag.mag)) < 1e-3)): self.timer.stop() self.mag.center = c1 self.mag.mag = m self._update_transform()
Timer event handler Parameters ---------- event : instance of Event The timer event.
entailment
def glBufferData(target, data, usage): """ Data can be numpy array or the size of data to allocate. """ if isinstance(data, int): size = data data = ctypes.c_voidp(0) else: if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']: data = data.copy('C') data_ = data size = data_.nbytes data = data_.ctypes.data try: nativefunc = glBufferData._native except AttributeError: nativefunc = glBufferData._native = _get_gl_func("glBufferData", None, (ctypes.c_uint, ctypes.c_int, ctypes.c_void_p, ctypes.c_uint,)) res = nativefunc(target, size, data, usage)
Data can be numpy array or the size of data to allocate.
entailment
def next_power_of_2(n): """ Return next power of 2 greater than or equal to n """ n -= 1 # greater than OR EQUAL TO n shift = 1 while (n + 1) & n: # n+1 is not a power of 2 yet n |= n >> shift shift *= 2 return max(4, n + 1)
Return next power of 2 greater than or equal to n
entailment
def append(self, vertices, uniforms=None, indices=None, itemsize=None): """ Parameters ---------- vertices : numpy array An array whose dtype is compatible with self.vdtype uniforms: numpy array An array whose dtype is compatible with self.utype indices : numpy array An array whose dtype is compatible with self.idtype All index values must be between 0 and len(vertices) itemsize: int, tuple or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised. """ # Vertices # ----------------------------- vertices = np.array(vertices).astype(self.vtype).ravel() vsize = self._vertices_list.size # No itemsize given # ----------------- if itemsize is None: index = 0 count = 1 # Uniform itemsize (int) # ---------------------- elif isinstance(itemsize, int): count = len(vertices) / itemsize index = np.repeat(np.arange(count), itemsize) # Individual itemsize (array) # --------------------------- elif isinstance(itemsize, (np.ndarray, list)): count = len(itemsize) index = np.repeat(np.arange(count), itemsize) else: raise ValueError("Itemsize not understood") if self.utype: vertices["collection_index"] = index + len(self) self._vertices_list.append(vertices, itemsize) # Indices # ----------------------------- if self.itype is not None: # No indices given (-> automatic generation) if indices is None: indices = vsize + np.arange(len(vertices)) self._indices_list.append(indices, itemsize) # Indices given # FIXME: variables indices (list of list or ArrayList) else: if itemsize is None: I = np.array(indices) + vsize elif isinstance(itemsize, int): I = vsize + (np.tile(indices, count) + itemsize * np.repeat(np.arange(count), len(indices))) # noqa else: raise ValueError("Indices not compatible with items") self._indices_list.append(I, len(indices)) # Uniforms # ----------------------------- if self.utype: if uniforms is None: uniforms = np.zeros(count, dtype=self.utype) else: uniforms = np.array(uniforms).astype(self.utype).ravel() self._uniforms_list.append(uniforms, itemsize=1) self._need_update = True
Parameters ---------- vertices : numpy array An array whose dtype is compatible with self.vdtype uniforms: numpy array An array whose dtype is compatible with self.utype indices : numpy array An array whose dtype is compatible with self.idtype All index values must be between 0 and len(vertices) itemsize: int, tuple or 1-D array If `itemsize is an integer, N, the array will be divided into elements of size N. If such partition is not possible, an error is raised. If `itemsize` is 1-D array, the array will be divided into elements whose succesive sizes will be picked from itemsize. If the sum of itemsize values is different from array size, an error is raised.
entailment
def _compute_texture_shape(self, size=1): """ Compute uniform texture shape """ # We should use this line but we may not have a GL context yet # linesize = gl.glGetInteger(gl.GL_MAX_TEXTURE_SIZE) linesize = 1024 count = self._uniforms_float_count cols = 4 * linesize // int(count) rows = max(1, int(math.ceil(size / float(cols)))) shape = rows, cols * (count // 4), count self._ushape = shape return shape
Compute uniform texture shape
entailment
def _update(self): """ Update vertex buffers & texture """ if self._vertices_buffer is not None: self._vertices_buffer.delete() self._vertices_buffer = VertexBuffer(self._vertices_list.data) if self.itype is not None: if self._indices_buffer is not None: self._indices_buffer.delete() self._indices_buffer = IndexBuffer(self._indices_list.data) if self.utype is not None: if self._uniforms_texture is not None: self._uniforms_texture.delete() # We take the whole array (_data), not the data one texture = self._uniforms_list._data.view(np.float32) size = len(texture) / self._uniforms_float_count shape = self._compute_texture_shape(size) # shape[2] = float count is only used in vertex shader code texture = texture.reshape(shape[0], shape[1], 4) self._uniforms_texture = Texture2D(texture) self._uniforms_texture.data = texture self._uniforms_texture.interpolation = 'nearest' if len(self._programs): for program in self._programs: program.bind(self._vertices_buffer) if self._uniforms_list is not None: program["uniforms"] = self._uniforms_texture program["uniforms_shape"] = self._ushape
Update vertex buffers & texture
entailment
def get_layout(name, *args, **kwargs): """ Retrieve a graph layout Some graph layouts accept extra options. Please refer to their documentation for more information. Parameters ---------- name : string The name of the layout. The variable `AVAILABLE_LAYOUTS` contains all available layouts. *args Positional arguments which are passed to the layout. **kwargs Keyword arguments which are passed to the layout. Returns ------- layout : callable The callable generator which will calculate the graph layout """ if name not in _layout_map: raise KeyError("Graph layout '%s' not found. Should be one of %s" % (name, AVAILABLE_LAYOUTS)) layout = _layout_map[name] if inspect.isclass(layout): layout = layout(*args, **kwargs) return layout
Retrieve a graph layout Some graph layouts accept extra options. Please refer to their documentation for more information. Parameters ---------- name : string The name of the layout. The variable `AVAILABLE_LAYOUTS` contains all available layouts. *args Positional arguments which are passed to the layout. **kwargs Keyword arguments which are passed to the layout. Returns ------- layout : callable The callable generator which will calculate the graph layout
entailment
def update_viewer_state(rec, context): """ Given viewer session information, make sure the session information is compatible with the current version of the viewers, and if not, update the session information in-place. """ if '_protocol' not in rec: rec.pop('properties') rec['state'] = {} rec['state']['values'] = rec.pop('options') layer_states = [] for layer in rec['layers']: state_id = str(uuid.uuid4()) state_cls = STATE_CLASS[layer['_type'].split('.')[-1]] state = state_cls(layer=context.object(layer.pop('layer'))) properties = set(layer.keys()) - set(['_type']) for prop in sorted(properties, key=state.update_priority, reverse=True): value = layer.pop(prop) value = context.object(value) if isinstance(value, six.string_types) and value == 'fixed': value = 'Fixed' if isinstance(value, six.string_types) and value == 'linear': value = 'Linear' setattr(state, prop, value) context.register_object(state_id, state) layer['state'] = state_id layer_states.append(state) list_id = str(uuid.uuid4()) context.register_object(list_id, layer_states) rec['state']['values']['layers'] = list_id rec['state']['values']['visible_axes'] = rec['state']['values'].pop('visible_box')
Given viewer session information, make sure the session information is compatible with the current version of the viewers, and if not, update the session information in-place.
entailment
def remove_comments(code): """Remove C-style comment from GLSL code string.""" pattern = r"(\".*?\"|\'.*?\')|(/\*.*?\*/|//[^\r\n]*\n)" # first group captures quoted strings (double or single) # second group captures comments (//single-line or /* multi-line */) regex = re.compile(pattern, re.MULTILINE | re.DOTALL) def do_replace(match): # if the 2nd group (capturing comments) is not None, # it means we have captured a non-quoted (real) comment string. if match.group(2) is not None: return "" # so we will return empty to remove the comment else: # otherwise, we will return the 1st group return match.group(1) # captured quoted-string return regex.sub(do_replace, code)
Remove C-style comment from GLSL code string.
entailment
def merge_includes(code): """Merge all includes recursively.""" pattern = '\#\s*include\s*"(?P<filename>[a-zA-Z0-9\_\-\.\/]+)"' regex = re.compile(pattern) includes = [] def replace(match): filename = match.group("filename") if filename not in includes: includes.append(filename) path = glsl.find(filename) if not path: logger.critical('"%s" not found' % filename) raise RuntimeError("File not found", filename) text = '\n// --- start of "%s" ---\n' % filename with open(path) as fh: text += fh.read() text += '// --- end of "%s" ---\n' % filename return text return '' # Limit recursion to depth 10 for i in range(10): if re.search(regex, code): code = re.sub(regex, replace, code) else: break return code
Merge all includes recursively.
entailment
def add_widget(self, widget=None, row=None, col=None, row_span=1, col_span=1, **kwargs): """ Add a new widget to this grid. This will cause other widgets in the grid to be resized to make room for the new widget. Can be used to replace a widget as well Parameters ---------- widget : Widget | None The Widget to add. New widget is constructed if widget is None. row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict parameters sent to the new Widget that is constructed if widget is None Notes ----- The widget's parent is automatically set to this grid, and all other parent(s) are removed. """ if row is None: row = self._next_cell[0] if col is None: col = self._next_cell[1] if widget is None: widget = Widget(**kwargs) else: if kwargs: raise ValueError("cannot send kwargs if widget is given") _row = self._cells.setdefault(row, {}) _row[col] = widget self._grid_widgets[self._n_added] = (row, col, row_span, col_span, widget) self._n_added += 1 widget.parent = self self._next_cell = [row, col+col_span] widget._var_w = Variable("w-(row: %s | col: %s)" % (row, col)) widget._var_h = Variable("h-(row: %s | col: %s)" % (row, col)) # update stretch based on colspan/rowspan # usually, if you make something consume more grids or columns, # you also want it to actually *take it up*, ratio wise. # otherwise, it will never *use* the extra rows and columns, # thereby collapsing the extras to 0. stretch = list(widget.stretch) stretch[0] = col_span if stretch[0] is None else stretch[0] stretch[1] = row_span if stretch[1] is None else stretch[1] widget.stretch = stretch self._need_solver_recreate = True return widget
Add a new widget to this grid. This will cause other widgets in the grid to be resized to make room for the new widget. Can be used to replace a widget as well Parameters ---------- widget : Widget | None The Widget to add. New widget is constructed if widget is None. row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict parameters sent to the new Widget that is constructed if widget is None Notes ----- The widget's parent is automatically set to this grid, and all other parent(s) are removed.
entailment
def remove_widget(self, widget): """Remove a widget from this grid Parameters ---------- widget : Widget The Widget to remove """ self._grid_widgets = dict((key, val) for (key, val) in self._grid_widgets.items() if val[-1] != widget) self._need_solver_recreate = True
Remove a widget from this grid Parameters ---------- widget : Widget The Widget to remove
entailment
def resize_widget(self, widget, row_span, col_span): """Resize a widget in the grid to new dimensions. Parameters ---------- widget : Widget The widget to resize row_span : int The number of rows to be occupied by this widget. col_span : int The number of columns to be occupied by this widget. """ row = None col = None for (r, c, rspan, cspan, w) in self._grid_widgets.values(): if w == widget: row = r col = c break if row is None or col is None: raise ValueError("%s not found in grid" % widget) self.remove_widget(widget) self.add_widget(widget, row, col, row_span, col_span) self._need_solver_recreate = True
Resize a widget in the grid to new dimensions. Parameters ---------- widget : Widget The widget to resize row_span : int The number of rows to be occupied by this widget. col_span : int The number of columns to be occupied by this widget.
entailment
def add_grid(self, row=None, col=None, row_span=1, col_span=1, **kwargs): """ Create a new Grid and add it as a child widget. Parameters ---------- row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict Keyword arguments to pass to the new `Grid`. """ from .grid import Grid grid = Grid(**kwargs) return self.add_widget(grid, row, col, row_span, col_span)
Create a new Grid and add it as a child widget. Parameters ---------- row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict Keyword arguments to pass to the new `Grid`.
entailment
def add_view(self, row=None, col=None, row_span=1, col_span=1, **kwargs): """ Create a new ViewBox and add it as a child widget. Parameters ---------- row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict Keyword arguments to pass to `ViewBox`. """ from .viewbox import ViewBox view = ViewBox(**kwargs) return self.add_widget(view, row, col, row_span, col_span)
Create a new ViewBox and add it as a child widget. Parameters ---------- row : int The row in which to add the widget (0 is the topmost row) col : int The column in which to add the widget (0 is the leftmost column) row_span : int The number of rows to be occupied by this widget. Default is 1. col_span : int The number of columns to be occupied by this widget. Default is 1. **kwargs : dict Keyword arguments to pass to `ViewBox`.
entailment
def find_font(face, bold, italic): """Find font""" bold = FC_WEIGHT_BOLD if bold else FC_WEIGHT_REGULAR italic = FC_SLANT_ITALIC if italic else FC_SLANT_ROMAN face = face.encode('utf8') fontconfig.FcInit() pattern = fontconfig.FcPatternCreate() fontconfig.FcPatternAddInteger(pattern, FC_WEIGHT, bold) fontconfig.FcPatternAddInteger(pattern, FC_SLANT, italic) fontconfig.FcPatternAddString(pattern, FC_FAMILY, face) fontconfig.FcConfigSubstitute(0, pattern, FcMatchPattern) fontconfig.FcDefaultSubstitute(pattern) result = FcType() match = fontconfig.FcFontMatch(0, pattern, byref(result)) fontconfig.FcPatternDestroy(pattern) if not match: raise RuntimeError('Could not match font "%s"' % face) value = FcValue() fontconfig.FcPatternGet(match, FC_FAMILY, 0, byref(value)) if(value.u.s != face): warnings.warn('Could not find face match "%s", falling back to "%s"' % (face, value.u.s)) result = fontconfig.FcPatternGet(match, FC_FILE, 0, byref(value)) if result != 0: raise RuntimeError('No filename or FT face for "%s"' % face) fname = value.u.s return fname.decode('utf-8')
Find font
entailment
def _list_fonts(): """List system fonts""" stdout_, stderr = run_subprocess(['fc-list', ':scalable=true', 'family']) vals = [v.split(',')[0] for v in stdout_.strip().splitlines(False)] return vals
List system fonts
entailment
def _get_vispy_caller(): """Helper to get vispy calling function from the stack""" records = inspect.stack() # first few records are vispy-based logging calls for record in records[5:]: module = record[0].f_globals['__name__'] if module.startswith('vispy'): line = str(record[0].f_lineno) func = record[3] cls = record[0].f_locals.get('self', None) clsname = "" if cls is None else cls.__class__.__name__ + '.' caller = "{0}:{1}{2}({3}): ".format(module, clsname, func, line) return caller return 'unknown'
Helper to get vispy calling function from the stack
entailment
def set_log_level(verbose, match=None, return_old=False): """Convenience function for setting the logging level Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. match : str | None String to match. Only those messages that both contain a substring that regexp matches ``'match'`` (and the ``verbose`` level) will be displayed. return_old : bool If True, return the old verbosity level and old match. Notes ----- If ``verbose=='debug'``, then the ``vispy`` method emitting the log message will be prepended to each log message, which is useful for debugging. If ``verbose=='debug'`` or ``match is not None``, then a small performance overhead is added. Thus it is suggested to only use these options when performance is not crucial. See also -------- vispy.util.use_log_level """ # This method is responsible for setting properties of the handler and # formatter such that proper messages (possibly with the vispy caller # prepended) are displayed. Storing log messages is only available # via the context handler (use_log_level), so that configuration is # done by the context handler itself. if isinstance(verbose, bool): verbose = 'info' if verbose else 'warning' if isinstance(verbose, string_types): verbose = verbose.lower() if verbose not in logging_types: raise ValueError('Invalid argument "%s"' % verbose) verbose = logging_types[verbose] else: raise TypeError('verbose must be a bool or string') logger = logging.getLogger('vispy') old_verbose = logger.level old_match = _lh._vispy_set_match(match) logger.setLevel(verbose) if verbose <= logging.DEBUG: _lf._vispy_set_prepend(True) else: _lf._vispy_set_prepend(False) out = None if return_old: out = (old_verbose, old_match) return out
Convenience function for setting the logging level Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. match : str | None String to match. Only those messages that both contain a substring that regexp matches ``'match'`` (and the ``verbose`` level) will be displayed. return_old : bool If True, return the old verbosity level and old match. Notes ----- If ``verbose=='debug'``, then the ``vispy`` method emitting the log message will be prepended to each log message, which is useful for debugging. If ``verbose=='debug'`` or ``match is not None``, then a small performance overhead is added. Thus it is suggested to only use these options when performance is not crucial. See also -------- vispy.util.use_log_level
entailment
def log_exception(level='warning', tb_skip=2): """ Send an exception and traceback to the logger. This function is used in cases where an exception is handled safely but nevertheless should generate a descriptive error message. An extra line is inserted into the stack trace indicating where the exception was caught. Parameters ---------- level : str See ``set_log_level`` for options. tb_skip : int The number of traceback entries to ignore, prior to the point where the exception was caught. The default is 2. """ stack = "".join(traceback.format_stack()[:-tb_skip]) tb = traceback.format_exception(*sys.exc_info()) msg = tb[0] # "Traceback (most recent call last):" msg += stack msg += " << caught exception here: >>\n" msg += "".join(tb[1:]).rstrip() logger.log(logging_types[level], msg)
Send an exception and traceback to the logger. This function is used in cases where an exception is handled safely but nevertheless should generate a descriptive error message. An extra line is inserted into the stack trace indicating where the exception was caught. Parameters ---------- level : str See ``set_log_level`` for options. tb_skip : int The number of traceback entries to ignore, prior to the point where the exception was caught. The default is 2.
entailment
def _handle_exception(ignore_callback_errors, print_callback_errors, obj, cb_event=None, node=None): """Helper for prining errors in callbacks See EventEmitter._invoke_callback for a use example. """ if not hasattr(obj, '_vispy_err_registry'): obj._vispy_err_registry = {} registry = obj._vispy_err_registry if cb_event is not None: cb, event = cb_event exp_type = 'callback' else: exp_type = 'node' type_, value, tb = sys.exc_info() tb = tb.tb_next # Skip *this* frame sys.last_type = type_ sys.last_value = value sys.last_traceback = tb del tb # Get rid of it in this namespace # Handle if not ignore_callback_errors: raise if print_callback_errors != "never": this_print = 'full' if print_callback_errors in ('first', 'reminders'): # need to check to see if we've hit this yet if exp_type == 'callback': key = repr(cb) + repr(event) else: key = repr(node) if key in registry: registry[key] += 1 if print_callback_errors == 'first': this_print = None else: # reminders ii = registry[key] # Use logarithmic selection # (1, 2, ..., 10, 20, ..., 100, 200, ...) if ii == (2 ** int(np.log2(ii))): this_print = ii else: this_print = None else: registry[key] = 1 if this_print == 'full': logger.log_exception() if exp_type == 'callback': logger.error("Invoking %s for %s" % (cb, event)) else: # == 'node': logger.error("Drawing node %s" % node) elif this_print is not None: if exp_type == 'callback': logger.error("Invoking %s repeat %s" % (cb, this_print)) else: # == 'node': logger.error("Drawing node %s repeat %s" % (node, this_print))
Helper for prining errors in callbacks See EventEmitter._invoke_callback for a use example.
entailment
def _serialize_buffer(buffer, array_serialization=None): """Serialize a NumPy array.""" if array_serialization == 'binary': # WARNING: in NumPy 1.9, tostring() has been renamed to tobytes() # but tostring() is still here for now for backward compatibility. return buffer.ravel().tostring() elif array_serialization == 'base64': return {'storage_type': 'base64', 'buffer': base64.b64encode(buffer).decode('ascii') } raise ValueError("The array serialization method should be 'binary' or " "'base64'.")
Serialize a NumPy array.
entailment
def _vispy_emit_match_andor_record(self, record): """Log message emitter that optionally matches and/or records""" test = record.getMessage() match = self._vispy_match if (match is None or re.search(match, test) or re.search(match, _get_vispy_caller())): if self._vispy_emit_record: fmt_rec = self._vispy_formatter.format(record) self._vispy_emit_list.append(fmt_rec) if self._vispy_print_msg: return logging.StreamHandler.emit(self, record) else: return
Log message emitter that optionally matches and/or records
entailment
def create(self, obj, ref=None): """ Convert *obj* to a new ShaderObject. If the output is a Variable with no name, then set its name using *ref*. """ if isinstance(ref, Variable): ref = ref.name elif isinstance(ref, string_types) and ref.startswith('gl_'): # gl_ names not allowed for variables ref = ref[3:].lower() # Allow any type of object to be converted to ShaderObject if it # provides a magic method: if hasattr(obj, '_shader_object'): obj = obj._shader_object() if isinstance(obj, ShaderObject): if isinstance(obj, Variable) and obj.name is None: obj.name = ref elif isinstance(obj, string_types): obj = TextExpression(obj) else: obj = Variable(ref, obj) # Try prepending the name to indicate attribute, uniform, varying if obj.vtype and obj.vtype[0] in 'auv': obj.name = obj.vtype[0] + '_' + obj.name return obj
Convert *obj* to a new ShaderObject. If the output is a Variable with no name, then set its name using *ref*.
entailment
def dependencies(self, sort=False): """ Return all dependencies required to use this object. The last item in the list is *self*. """ alldeps = [] if sort: def key(obj): # sort deps such that we get functions, variables, self. if not isinstance(obj, Variable): return (0, 0) else: return (1, obj.vtype) deps = sorted(self._deps, key=key) else: deps = self._deps for dep in deps: alldeps.extend(dep.dependencies(sort=sort)) alldeps.append(self) return alldeps
Return all dependencies required to use this object. The last item in the list is *self*.
entailment
def _add_dep(self, dep): """ Increment the reference count for *dep*. If this is a new dependency, then connect to its *changed* event. """ if dep in self._deps: self._deps[dep] += 1 else: self._deps[dep] = 1 dep._dependents[self] = None
Increment the reference count for *dep*. If this is a new dependency, then connect to its *changed* event.
entailment
def _remove_dep(self, dep): """ Decrement the reference count for *dep*. If the reference count reaches 0, then the dependency is removed and its *changed* event is disconnected. """ refcount = self._deps[dep] if refcount == 1: self._deps.pop(dep) dep._dependents.pop(self) else: self._deps[dep] -= 1
Decrement the reference count for *dep*. If the reference count reaches 0, then the dependency is removed and its *changed* event is disconnected.
entailment
def _dep_changed(self, dep, code_changed=False, value_changed=False): """ Called when a dependency's expression has changed. """ self.changed(code_changed, value_changed)
Called when a dependency's expression has changed.
entailment
def changed(self, code_changed=False, value_changed=False): """Inform dependents that this shaderobject has changed. """ for d in self._dependents: d._dep_changed(self, code_changed=code_changed, value_changed=value_changed)
Inform dependents that this shaderobject has changed.
entailment
def eq(a, b): """ The great missing equivalence function: Guaranteed evaluation to a single bool value. """ if a is b: return True if a is None or b is None: return True if a is None and b is None else False try: e = a == b except ValueError: return False except AttributeError: return False except Exception: print("a:", str(type(a)), str(a)) print("b:", str(type(b)), str(b)) raise t = type(e) if t is bool: return e elif t is bool_: return bool(e) elif isinstance(e, ndarray): try: # disaster: if a is empty and b is not, then e.all() is True if a.shape != b.shape: return False except Exception: return False if (hasattr(e, 'implements') and e.implements('MetaArray')): return e.asarray().all() else: return e.all() else: raise Exception("== operator returned type %s" % str(type(e)))
The great missing equivalence function: Guaranteed evaluation to a single bool value.
entailment
def zoom(self, factor, center=None): """ Zoom in (or out) at the given center Parameters ---------- factor : float or tuple Fraction by which the scene should be zoomed (e.g. a factor of 2 causes the scene to appear twice as large). center : tuple of 2-4 elements The center of the view. If not given or None, use the current center. """ assert len(center) in (2, 3, 4) # Get scale factor, take scale ratio into account if np.isscalar(factor): scale = [factor, factor] else: if len(factor) != 2: raise TypeError("factor must be scalar or length-2 sequence.") scale = list(factor) if self.aspect is not None: scale[0] = scale[1] # Init some variables center = center if (center is not None) else self.center # Make a new object (copy), so that allocation will # trigger view_changed: rect = Rect(self.rect) # Get space from given center to edges left_space = center[0] - rect.left right_space = rect.right - center[0] bottom_space = center[1] - rect.bottom top_space = rect.top - center[1] # Scale these spaces rect.left = center[0] - left_space * scale[0] rect.right = center[0] + right_space * scale[0] rect.bottom = center[1] - bottom_space * scale[1] rect.top = center[1] + top_space * scale[1] self.rect = rect
Zoom in (or out) at the given center Parameters ---------- factor : float or tuple Fraction by which the scene should be zoomed (e.g. a factor of 2 causes the scene to appear twice as large). center : tuple of 2-4 elements The center of the view. If not given or None, use the current center.
entailment
def pan(self, *pan): """Pan the view. Parameters ---------- *pan : length-2 sequence The distance to pan the view, in the coordinate system of the scene. """ if len(pan) == 1: pan = pan[0] self.rect = self.rect + pan
Pan the view. Parameters ---------- *pan : length-2 sequence The distance to pan the view, in the coordinate system of the scene.
entailment
def viewbox_mouse_event(self, event): """ The SubScene received a mouse event; update transform accordingly. Parameters ---------- event : instance of Event The event. """ if event.handled or not self.interactive: return # Scrolling BaseCamera.viewbox_mouse_event(self, event) if event.type == 'mouse_wheel': center = self._scene_transform.imap(event.pos) self.zoom((1 + self.zoom_factor) ** (-event.delta[1] * 30), center) event.handled = True elif event.type == 'mouse_move': if event.press_event is None: return modifiers = event.mouse_event.modifiers p1 = event.mouse_event.press_event.pos p2 = event.mouse_event.pos if 1 in event.buttons and not modifiers: # Translate p1 = np.array(event.last_event.pos)[:2] p2 = np.array(event.pos)[:2] p1s = self._transform.imap(p1) p2s = self._transform.imap(p2) self.pan(p1s-p2s) event.handled = True elif 2 in event.buttons and not modifiers: # Zoom p1c = np.array(event.last_event.pos)[:2] p2c = np.array(event.pos)[:2] scale = ((1 + self.zoom_factor) ** ((p1c-p2c) * np.array([1, -1]))) center = self._transform.imap(event.press_event.pos[:2]) self.zoom(scale, center) event.handled = True else: event.handled = False elif event.type == 'mouse_press': # accept the event if it is button 1 or 2. # This is required in order to receive future events event.handled = event.button in [1, 2] else: event.handled = False
The SubScene received a mouse event; update transform accordingly. Parameters ---------- event : instance of Event The event.
entailment
def set_data(self, vol, clim=None): """ Set the volume data. Parameters ---------- vol : ndarray The 3D volume. clim : tuple | None Colormap limits to use. None will use the min and max values. """ # Check volume if not isinstance(vol, np.ndarray): raise ValueError('Volume visual needs a numpy array.') if not ((vol.ndim == 3) or (vol.ndim == 4 and vol.shape[-1] <= 4)): raise ValueError('Volume visual needs a 3D image.') # Handle clim if clim is not None: clim = np.array(clim, float) if not (clim.ndim == 1 and clim.size == 2): raise ValueError('clim must be a 2-element array-like') self._clim = tuple(clim) if self._clim is None: self._clim = vol.min(), vol.max() # Apply clim vol = np.array(vol, dtype='float32', copy=False) if self._clim[1] == self._clim[0]: if self._clim[0] != 0.: vol *= 1.0 / self._clim[0] else: vol -= self._clim[0] vol /= self._clim[1] - self._clim[0] # Apply to texture self._tex.set_data(vol) # will be efficient if vol is same shape self.shared_program['u_shape'] = (vol.shape[2], vol.shape[1], vol.shape[0]) shape = vol.shape[:3] if self._vol_shape != shape: self._vol_shape = shape self._need_vertex_update = True self._vol_shape = shape # Get some stats self._kb_for_texture = np.prod(self._vol_shape) / 1024
Set the volume data. Parameters ---------- vol : ndarray The 3D volume. clim : tuple | None Colormap limits to use. None will use the min and max values.
entailment
def _create_vertex_data(self): """ Create and set positions and texture coords from the given shape We have six faces with 1 quad (2 triangles) each, resulting in 6*2*3 = 36 vertices in total. """ shape = self._vol_shape # Get corner coordinates. The -0.5 offset is to center # pixels/voxels. This works correctly for anisotropic data. x0, x1 = -0.5, shape[2] - 0.5 y0, y1 = -0.5, shape[1] - 0.5 z0, z1 = -0.5, shape[0] - 0.5 pos = np.array([ [x0, y0, z0], [x1, y0, z0], [x0, y1, z0], [x1, y1, z0], [x0, y0, z1], [x1, y0, z1], [x0, y1, z1], [x1, y1, z1], ], dtype=np.float32) """ 6-------7 /| /| 4-------5 | | | | | | 2-----|-3 |/ |/ 0-------1 """ # Order is chosen such that normals face outward; front faces will be # culled. indices = np.array([2, 6, 0, 4, 5, 6, 7, 2, 3, 0, 1, 5, 3, 7], dtype=np.uint32) # Apply self._vertices.set_data(pos) self._index_buffer.set_data(indices)
Create and set positions and texture coords from the given shape We have six faces with 1 quad (2 triangles) each, resulting in 6*2*3 = 36 vertices in total.
entailment
def set_data(self, pos=None, color=None): """Set the data Parameters ---------- pos : list, tuple or numpy array Bounds of the region along the axis. len(pos) must be >=2. color : list, tuple, or array The color to use when drawing the line. It must have a shape of (1, 4) for a single color region or (len(pos), 4) for a multicolor region. """ new_pos = self._pos new_color = self._color if pos is not None: num_elements = len(pos) pos = np.array(pos, dtype=np.float32) if pos.ndim != 1: raise ValueError('Expected 1D array') vertex = np.empty((num_elements * 2, 2), dtype=np.float32) if self._is_vertical: vertex[:, 0] = np.repeat(pos, 2) vertex[:, 1] = np.tile([-1, 1], num_elements) else: vertex[:, 1] = np.repeat(pos, 2) vertex[:, 0] = np.tile([1, -1], num_elements) new_pos = vertex self._changed['pos'] = True if color is not None: color = np.array(color, dtype=np.float32) num_elements = new_pos.shape[0] / 2 if color.ndim == 2: if color.shape[0] != num_elements: raise ValueError('Expected a color for each pos') if color.shape[1] != 4: raise ValueError('Each color must be a RGBA array') color = np.repeat(color, 2, axis=0).astype(np.float32) elif color.ndim == 1: if color.shape[0] != 4: raise ValueError('Each color must be a RGBA array') color = np.repeat([color], new_pos.shape[0], axis=0) color = color.astype(np.float32) else: raise ValueError('Expected a numpy array of shape ' '(%d, 4) or (1, 4)' % num_elements) new_color = color self._changed['color'] = True # Ensure pos and color have the same size if new_pos.shape[0] != new_color.shape[0]: raise ValueError('pos and color does must have the same size') self._color = new_color self._pos = new_pos
Set the data Parameters ---------- pos : list, tuple or numpy array Bounds of the region along the axis. len(pos) must be >=2. color : list, tuple, or array The color to use when drawing the line. It must have a shape of (1, 4) for a single color region or (len(pos), 4) for a multicolor region.
entailment
def _prepare_draw(self, view=None): """This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn. """ if self._changed['pos']: self.pos_buf.set_data(self._pos) self._changed['pos'] = False if self._changed['color']: self.color_buf.set_data(self._color) self._program.vert['color'] = self.color_buf self._changed['color'] = False return True
This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn.
entailment
def refresh_cache(self, cat_id): ''' Repopulate cache ''' self.cache[cat_id] = most_recent_25_posts_by_category(cat_id) self.last_refresh[cat_id] = datetime.now() print ('Cache refresh at...', str(self.last_refresh[cat_id]))
Repopulate cache
entailment
def _merge_intervals(self, min_depth): """ Merge overlapping intervals. This method is called only once in the constructor. """ def add_interval(ret, start, stop): if min_depth is not None: shift = 2 * (29 - min_depth) mask = (int(1) << shift) - 1 if stop - start < mask: ret.append((start, stop)) else: ofs = start & mask st = start if ofs > 0: st = (start - ofs) + (mask + 1) ret.append((start, st)) while st + mask + 1 < stop: ret.append((st, st + mask + 1)) st = st + mask + 1 ret.append((st, stop)) else: ret.append((start, stop)) ret = [] start = stop = None # Use numpy sort method self._intervals.sort(axis=0) for itv in self._intervals: if start is None: start, stop = itv continue # gap between intervals if itv[0] > stop: add_interval(ret, start, stop) start, stop = itv else: # merge intervals if itv[1] > stop: stop = itv[1] if start is not None and stop is not None: add_interval(ret, start, stop) self._intervals = np.asarray(ret)
Merge overlapping intervals. This method is called only once in the constructor.
entailment
def union(self, another_is): """ Return the union between self and ``another_is``. Parameters ---------- another_is : `IntervalSet` an IntervalSet object. Returns ------- interval : `IntervalSet` the union of self with ``another_is``. """ result = IntervalSet() if another_is.empty(): result._intervals = self._intervals elif self.empty(): result._intervals = another_is._intervals else: # res has no overlapping intervals result._intervals = IntervalSet.merge(self._intervals, another_is._intervals, lambda in_a, in_b: in_a or in_b) return result
Return the union between self and ``another_is``. Parameters ---------- another_is : `IntervalSet` an IntervalSet object. Returns ------- interval : `IntervalSet` the union of self with ``another_is``.
entailment