sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def visual_at(self, pos): """Return the visual at a given position Parameters ---------- pos : tuple The position in logical coordinates to query. Returns ------- visual : instance of Visual | None The visual at the position, if it exists. """ tr = self.transforms.get_transform('canvas', 'framebuffer') fbpos = tr.map(pos)[:2] try: id_ = self._render_picking(region=(fbpos[0], fbpos[1], 1, 1)) vis = VisualNode._visual_ids.get(id_[0, 0], None) except RuntimeError: # Don't have read_pixels() support for IPython. Fall back to # bounds checking. return self._visual_bounds_at(pos) return vis
Return the visual at a given position Parameters ---------- pos : tuple The position in logical coordinates to query. Returns ------- visual : instance of Visual | None The visual at the position, if it exists.
entailment
def _visual_bounds_at(self, pos, node=None): """Find a visual whose bounding rect encompasses *pos*. """ if node is None: node = self.scene for ch in node.children: hit = self._visual_bounds_at(pos, ch) if hit is not None: return hit if (not isinstance(node, VisualNode) or not node.visible or not node.interactive): return None bounds = [node.bounds(axis=i) for i in range(2)] if None in bounds: return None tr = self.scene.node_transform(node).inverse corners = np.array([ [bounds[0][0], bounds[1][0]], [bounds[0][0], bounds[1][1]], [bounds[0][1], bounds[1][0]], [bounds[0][1], bounds[1][1]]]) bounds = tr.map(corners) xhit = bounds[:, 0].min() < pos[0] < bounds[:, 0].max() yhit = bounds[:, 1].min() < pos[1] < bounds[:, 1].max() if xhit and yhit: return node
Find a visual whose bounding rect encompasses *pos*.
entailment
def visuals_at(self, pos, radius=10): """Return a list of visuals within *radius* pixels of *pos*. Visuals are sorted by their proximity to *pos*. Parameters ---------- pos : tuple (x, y) position at which to find visuals. radius : int Distance away from *pos* to search for visuals. """ tr = self.transforms.get_transform('canvas', 'framebuffer') pos = tr.map(pos)[:2] id = self._render_picking(region=(pos[0]-radius, pos[1]-radius, radius * 2 + 1, radius * 2 + 1)) ids = [] seen = set() for i in range(radius): subr = id[radius-i:radius+i+1, radius-i:radius+i+1] subr_ids = set(list(np.unique(subr))) ids.extend(list(subr_ids - seen)) seen |= subr_ids visuals = [VisualNode._visual_ids.get(x, None) for x in ids] return [v for v in visuals if v is not None]
Return a list of visuals within *radius* pixels of *pos*. Visuals are sorted by their proximity to *pos*. Parameters ---------- pos : tuple (x, y) position at which to find visuals. radius : int Distance away from *pos* to search for visuals.
entailment
def _render_picking(self, **kwargs): """Render the scene in picking mode, returning a 2D array of visual IDs. """ try: self._scene.picking = True img = self.render(bgcolor=(0, 0, 0, 0), **kwargs) finally: self._scene.picking = False img = img.astype('int32') * [2**0, 2**8, 2**16, 2**24] id_ = img.sum(axis=2).astype('int32') return id_
Render the scene in picking mode, returning a 2D array of visual IDs.
entailment
def on_resize(self, event): """Resize handler Parameters ---------- event : instance of Event The resize event. """ self._update_transforms() if self._central_widget is not None: self._central_widget.size = self.size if len(self._vp_stack) == 0: self.context.set_viewport(0, 0, *self.physical_size)
Resize handler Parameters ---------- event : instance of Event The resize event.
entailment
def on_close(self, event): """Close event handler Parameters ---------- event : instance of Event The event. """ self.events.mouse_press.disconnect(self._process_mouse_event) self.events.mouse_move.disconnect(self._process_mouse_event) self.events.mouse_release.disconnect(self._process_mouse_event) self.events.mouse_wheel.disconnect(self._process_mouse_event)
Close event handler Parameters ---------- event : instance of Event The event.
entailment
def push_viewport(self, viewport): """ Push a viewport (x, y, w, h) on the stack. Values must be integers relative to the active framebuffer. Parameters ---------- viewport : tuple The viewport as (x, y, w, h). """ vp = list(viewport) # Normalize viewport before setting; if vp[2] < 0: vp[0] += vp[2] vp[2] *= -1 if vp[3] < 0: vp[1] += vp[3] vp[3] *= -1 self._vp_stack.append(vp) try: self.context.set_viewport(*vp) except: self._vp_stack.pop() raise self._update_transforms()
Push a viewport (x, y, w, h) on the stack. Values must be integers relative to the active framebuffer. Parameters ---------- viewport : tuple The viewport as (x, y, w, h).
entailment
def pop_viewport(self): """ Pop a viewport from the stack. """ vp = self._vp_stack.pop() # Activate latest if len(self._vp_stack) > 0: self.context.set_viewport(*self._vp_stack[-1]) else: self.context.set_viewport(0, 0, *self.physical_size) self._update_transforms() return vp
Pop a viewport from the stack.
entailment
def push_fbo(self, fbo, offset, csize): """ Push an FBO on the stack. This activates the framebuffer and causes subsequent rendering to be written to the framebuffer rather than the canvas's back buffer. This will also set the canvas viewport to cover the boundaries of the framebuffer. Parameters ---------- fbo : instance of FrameBuffer The framebuffer object . offset : tuple The location of the fbo origin relative to the canvas's framebuffer origin. csize : tuple The size of the region in the canvas's framebuffer that should be covered by this framebuffer object. """ self._fb_stack.append((fbo, offset, csize)) try: fbo.activate() h, w = fbo.color_buffer.shape[:2] self.push_viewport((0, 0, w, h)) except Exception: self._fb_stack.pop() raise self._update_transforms()
Push an FBO on the stack. This activates the framebuffer and causes subsequent rendering to be written to the framebuffer rather than the canvas's back buffer. This will also set the canvas viewport to cover the boundaries of the framebuffer. Parameters ---------- fbo : instance of FrameBuffer The framebuffer object . offset : tuple The location of the fbo origin relative to the canvas's framebuffer origin. csize : tuple The size of the region in the canvas's framebuffer that should be covered by this framebuffer object.
entailment
def pop_fbo(self): """ Pop an FBO from the stack. """ fbo = self._fb_stack.pop() fbo[0].deactivate() self.pop_viewport() if len(self._fb_stack) > 0: old_fbo = self._fb_stack[-1] old_fbo[0].activate() self._update_transforms() return fbo
Pop an FBO from the stack.
entailment
def _update_transforms(self): """Update the canvas's TransformSystem to correct for the current canvas size, framebuffer, and viewport. """ if len(self._fb_stack) == 0: fb_size = fb_rect = None else: fb, origin, fb_size = self._fb_stack[-1] fb_rect = origin + fb_size if len(self._vp_stack) == 0: viewport = None else: viewport = self._vp_stack[-1] self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect=fb_rect)
Update the canvas's TransformSystem to correct for the current canvas size, framebuffer, and viewport.
entailment
def wrapping(self): """ Texture wrapping mode """ value = self._wrapping return value[0] if all([v == value[0] for v in value]) else value
Texture wrapping mode
entailment
def resize(self, shape, format=None, internalformat=None): """Set the texture size and format Parameters ---------- shape : tuple of integers New texture shape in zyx order. Optionally, an extra dimention may be specified to indicate the number of color channels. format : str | enum | None The format of the texture: 'luminance', 'alpha', 'luminance_alpha', 'rgb', or 'rgba'. If not given the format is chosen automatically based on the number of channels. When the data has one channel, 'luminance' is assumed. internalformat : str | enum | None The internal (storage) format of the texture: 'luminance', 'alpha', 'r8', 'r16', 'r16f', 'r32f'; 'luminance_alpha', 'rg8', 'rg16', 'rg16f', 'rg32f'; 'rgb', 'rgb8', 'rgb16', 'rgb16f', 'rgb32f'; 'rgba', 'rgba8', 'rgba16', 'rgba16f', 'rgba32f'. If None, the internalformat is chosen automatically based on the number of channels. This is a hint which may be ignored by the OpenGL implementation. """ return self._resize(shape, format, internalformat)
Set the texture size and format Parameters ---------- shape : tuple of integers New texture shape in zyx order. Optionally, an extra dimention may be specified to indicate the number of color channels. format : str | enum | None The format of the texture: 'luminance', 'alpha', 'luminance_alpha', 'rgb', or 'rgba'. If not given the format is chosen automatically based on the number of channels. When the data has one channel, 'luminance' is assumed. internalformat : str | enum | None The internal (storage) format of the texture: 'luminance', 'alpha', 'r8', 'r16', 'r16f', 'r32f'; 'luminance_alpha', 'rg8', 'rg16', 'rg16f', 'rg32f'; 'rgb', 'rgb8', 'rgb16', 'rgb16f', 'rgb32f'; 'rgba', 'rgba8', 'rgba16', 'rgba16f', 'rgba32f'. If None, the internalformat is chosen automatically based on the number of channels. This is a hint which may be ignored by the OpenGL implementation.
entailment
def _resize(self, shape, format=None, internalformat=None): """Internal method for resize. """ shape = self._normalize_shape(shape) # Check if not self._resizable: raise RuntimeError("Texture is not resizable") # Determine format if format is None: format = self._formats[shape[-1]] # Keep current format if channels match if self._format and \ self._inv_formats[self._format] == self._inv_formats[format]: format = self._format else: format = check_enum(format) if internalformat is None: # Keep current internalformat if channels match if self._internalformat and \ self._inv_internalformats[self._internalformat] == shape[-1]: internalformat = self._internalformat else: internalformat = check_enum(internalformat) # Check if format not in self._inv_formats: raise ValueError('Invalid texture format: %r.' % format) elif shape[-1] != self._inv_formats[format]: raise ValueError('Format does not match with given shape. ' '(format expects %d elements, data has %d)' % (self._inv_formats[format], shape[-1])) if internalformat is None: pass elif internalformat not in self._inv_internalformats: raise ValueError( 'Invalid texture internalformat: %r. Allowed formats: %r' % (internalformat, self._inv_internalformats) ) elif shape[-1] != self._inv_internalformats[internalformat]: raise ValueError('Internalformat does not match with given shape.') # Store and send GLIR command self._shape = shape self._format = format self._internalformat = internalformat self._glir.command('SIZE', self._id, self._shape, self._format, self._internalformat)
Internal method for resize.
entailment
def set_data(self, data, offset=None, copy=False): """Set texture data Parameters ---------- data : ndarray Data to be uploaded offset: int | tuple of ints Offset in texture where to start copying data copy: bool Since the operation is deferred, data may change before data is actually uploaded to GPU memory. Asking explicitly for a copy will prevent this behavior. Notes ----- This operation implicitely resizes the texture to the shape of the data if given offset is None. """ return self._set_data(data, offset, copy)
Set texture data Parameters ---------- data : ndarray Data to be uploaded offset: int | tuple of ints Offset in texture where to start copying data copy: bool Since the operation is deferred, data may change before data is actually uploaded to GPU memory. Asking explicitly for a copy will prevent this behavior. Notes ----- This operation implicitely resizes the texture to the shape of the data if given offset is None.
entailment
def _set_data(self, data, offset=None, copy=False): """Internal method for set_data. """ # Copy if needed, check/normalize shape data = np.array(data, copy=copy) data = self._normalize_shape(data) # Maybe resize to purge DATA commands? if offset is None: self._resize(data.shape) elif all([i == 0 for i in offset]) and data.shape == self._shape: self._resize(data.shape) # Convert offset to something usable offset = offset or tuple([0 for i in range(self._ndim)]) assert len(offset) == self._ndim # Check if data fits for i in range(len(data.shape)-1): if offset[i] + data.shape[i] > self._shape[i]: raise ValueError("Data is too large") # Send GLIR command self._glir.command('DATA', self._id, offset, data)
Internal method for set_data.
entailment
def set_data(self, data, offset=None, copy=False): """Set texture data Parameters ---------- data : ndarray Data to be uploaded offset: int | tuple of ints Offset in texture where to start copying data copy: bool Since the operation is deferred, data may change before data is actually uploaded to GPU memory. Asking explicitly for a copy will prevent this behavior. Notes ----- This operation implicitely resizes the texture to the shape of the data if given offset is None. """ self._set_emulated_shape(data) Texture2D.set_data(self, self._normalize_emulated_shape(data), offset, copy) self._update_variables()
Set texture data Parameters ---------- data : ndarray Data to be uploaded offset: int | tuple of ints Offset in texture where to start copying data copy: bool Since the operation is deferred, data may change before data is actually uploaded to GPU memory. Asking explicitly for a copy will prevent this behavior. Notes ----- This operation implicitely resizes the texture to the shape of the data if given offset is None.
entailment
def resize(self, shape, format=None, internalformat=None): """Set the texture size and format Parameters ---------- shape : tuple of integers New texture shape in zyx order. Optionally, an extra dimention may be specified to indicate the number of color channels. format : str | enum | None The format of the texture: 'luminance', 'alpha', 'luminance_alpha', 'rgb', or 'rgba'. If not given the format is chosen automatically based on the number of channels. When the data has one channel, 'luminance' is assumed. internalformat : str | enum | None The internal (storage) format of the texture: 'luminance', 'alpha', 'r8', 'r16', 'r16f', 'r32f'; 'luminance_alpha', 'rg8', 'rg16', 'rg16f', 'rg32f'; 'rgb', 'rgb8', 'rgb16', 'rgb16f', 'rgb32f'; 'rgba', 'rgba8', 'rgba16', 'rgba16f', 'rgba32f'. If None, the internalformat is chosen automatically based on the number of channels. This is a hint which may be ignored by the OpenGL implementation. """ self._set_emulated_shape(shape) Texture2D.resize(self, self._normalize_emulated_shape(shape), format, internalformat) self._update_variables()
Set the texture size and format Parameters ---------- shape : tuple of integers New texture shape in zyx order. Optionally, an extra dimention may be specified to indicate the number of color channels. format : str | enum | None The format of the texture: 'luminance', 'alpha', 'luminance_alpha', 'rgb', or 'rgba'. If not given the format is chosen automatically based on the number of channels. When the data has one channel, 'luminance' is assumed. internalformat : str | enum | None The internal (storage) format of the texture: 'luminance', 'alpha', 'r8', 'r16', 'r16f', 'r32f'; 'luminance_alpha', 'rg8', 'rg16', 'rg16f', 'rg32f'; 'rgb', 'rgb8', 'rgb16', 'rgb16f', 'rgb32f'; 'rgba', 'rgba8', 'rgba16', 'rgba16f', 'rgba32f'. If None, the internalformat is chosen automatically based on the number of channels. This is a hint which may be ignored by the OpenGL implementation.
entailment
def get_free_region(self, width, height): """Get a free region of given size and allocate it Parameters ---------- width : int Width of region to allocate height : int Height of region to allocate Returns ------- bounds : tuple | None A newly allocated region as (x, y, w, h) or None (if failed). """ best_height = best_width = np.inf best_index = -1 for i in range(len(self._atlas_nodes)): y = self._fit(i, width, height) if y >= 0: node = self._atlas_nodes[i] if (y+height < best_height or (y+height == best_height and node[2] < best_width)): best_height = y+height best_index = i best_width = node[2] region = node[0], y, width, height if best_index == -1: return None node = region[0], region[1] + height, width self._atlas_nodes.insert(best_index, node) i = best_index+1 while i < len(self._atlas_nodes): node = self._atlas_nodes[i] prev_node = self._atlas_nodes[i-1] if node[0] < prev_node[0]+prev_node[2]: shrink = prev_node[0]+prev_node[2] - node[0] x, y, w = self._atlas_nodes[i] self._atlas_nodes[i] = x+shrink, y, w-shrink if self._atlas_nodes[i][2] <= 0: del self._atlas_nodes[i] i -= 1 else: break else: break i += 1 # Merge nodes i = 0 while i < len(self._atlas_nodes)-1: node = self._atlas_nodes[i] next_node = self._atlas_nodes[i+1] if node[1] == next_node[1]: self._atlas_nodes[i] = node[0], node[1], node[2]+next_node[2] del self._atlas_nodes[i+1] else: i += 1 return region
Get a free region of given size and allocate it Parameters ---------- width : int Width of region to allocate height : int Height of region to allocate Returns ------- bounds : tuple | None A newly allocated region as (x, y, w, h) or None (if failed).
entailment
def _fit(self, index, width, height): """Test if region (width, height) fit into self._atlas_nodes[index]""" node = self._atlas_nodes[index] x, y = node[0], node[1] width_left = width if x+width > self._shape[1]: return -1 i = index while width_left > 0: node = self._atlas_nodes[i] y = max(y, node[1]) if y+height > self._shape[0]: return -1 width_left -= node[2] i += 1 return y
Test if region (width, height) fit into self._atlas_nodes[index]
entailment
def _vector_or_scalar(x, type='row'): """Convert an object to either a scalar or a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x
Convert an object to either a scalar or a row or column vector.
entailment
def _vector(x, type='row'): """Convert an object to a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif not isinstance(x, np.ndarray): x = np.array([x], dtype=np.float32) assert x.ndim == 1 if type == 'column': x = x[:, None] return x
Convert an object to a row or column vector.
entailment
def _normalize(x, cmin=None, cmax=None, clip=True): """Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.""" if not isinstance(x, np.ndarray): x = np.array(x) if cmin is None: cmin = x.min() if cmax is None: cmax = x.max() if cmin == cmax: return .5 * np.ones(x.shape) else: cmin, cmax = float(cmin), float(cmax) y = (x - cmin) * 1. / (cmax - cmin) if clip: y = np.clip(y, 0., 1.) return y
Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.
entailment
def _mix_simple(a, b, x): """Mix b (with proportion x) with a.""" x = np.clip(x, 0.0, 1.0) return (1.0 - x)*a + x*b
Mix b (with proportion x) with a.
entailment
def smoothstep(edge0, edge1, x): """ performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1. """ # Scale, bias and saturate x to 0..1 range x = np.clip((x - edge0)/(edge1 - edge0), 0.0, 1.0) # Evaluate polynomial return x*x*(3 - 2*x)
performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1.
entailment
def step(colors, x, controls=None): x = x.ravel() """Step interpolation from a set of colors. x belongs in [0, 1].""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(colors) assert ncolors == len(controls) - 1 assert ncolors >= 2 x_step = _find_controls(x, controls, ncolors-1) return colors[x_step, ...]
Step interpolation from a set of colors. x belongs in [0, 1].
entailment
def _glsl_mix(controls=None): """Generate a GLSL template function from a given interpolation patterns and control points.""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) assert ncolors >= 2 if ncolors == 2: s = " return mix($color_0, $color_1, t);\n" else: s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) adj_t = '(t - %s) / %s' % (controls[i], controls[i+1] - controls[i]) s += ("%s {\n return mix($color_%d, $color_%d, %s);\n} " % (ifs, i, i+1, adj_t)) return "vec4 colormap(float t) {\n%s\n}" % s
Generate a GLSL template function from a given interpolation patterns and control points.
entailment
def _process_glsl_template(template, colors): """Replace $color_i by color #i in the GLSL template.""" for i in range(len(colors) - 1, -1, -1): color = colors[i] assert len(color) == 4 vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color) template = template.replace('$color_%d' % i, vec4_color) return template
Replace $color_i by color #i in the GLSL template.
entailment
def get_colormap(name, *args, **kwargs): """Obtain a colormap Some colormaps can have additional configuration parameters. Refer to their corresponding documentation for more information. Parameters ---------- name : str | Colormap Colormap name. Can also be a Colormap for pass-through. Examples -------- >>> get_colormap('autumn') >>> get_colormap('single_hue', hue=10) """ if isinstance(name, BaseColormap): cmap = name else: if not isinstance(name, string_types): raise TypeError('colormap must be a Colormap or string name') if name not in _colormaps: raise KeyError('colormap name %s not found' % name) cmap = _colormaps[name] if inspect.isclass(cmap): cmap = cmap(*args, **kwargs) return cmap
Obtain a colormap Some colormaps can have additional configuration parameters. Refer to their corresponding documentation for more information. Parameters ---------- name : str | Colormap Colormap name. Can also be a Colormap for pass-through. Examples -------- >>> get_colormap('autumn') >>> get_colormap('single_hue', hue=10)
entailment
def map(self, x): """The Python mapping function from the [0,1] interval to a list of rgba colors Parameters ---------- x : array-like The values to map. Returns ------- colors : list List of rgba colors. """ return self._map_function(self.colors.rgba, x, self._controls)
The Python mapping function from the [0,1] interval to a list of rgba colors Parameters ---------- x : array-like The values to map. Returns ------- colors : list List of rgba colors.
entailment
def visual_border_width(self): """ The border width in visual coordinates """ render_to_doc = \ self.transforms.get_transform('document', 'visual') vec = render_to_doc.map([self.border_width, self.border_width, 0]) origin = render_to_doc.map([0, 0, 0]) visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]] # we need to flip the y axis because coordinate systems are inverted visual_border_width[1] *= -1 return visual_border_width
The border width in visual coordinates
entailment
def run(self, fig): """ Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig)
Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export
entailment
def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code
Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified
entailment
def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax)
Crawl the figure and process all axes
entailment
def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend)
Crawl the axes and process all elements within
entailment
def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not impemented" % child) except NotImplementedError: warnings.warn("Legend element %s not impemented" % child)
Recursively look through objects in legend children
entailment
def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line)
Process a matplotlib line and call renderer.draw_line
entailment
def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text)
Process a matplotlib text object and call renderer.draw_text
entailment
def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch)
Process a matplotlib patch object and call renderer.draw_path
entailment
def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection)
Process a matplotlib collection and call renderer.draw_collection
entailment
def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
Process a matplotlib image object and call renderer.draw_image
entailment
def draw_marked_line(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """ if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj)
Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object.
entailment
def draw_line(self, data, coordinates, style, label, mplobj=None): """ Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line """ pathcodes = ['M'] + (data.shape[0] - 1) * ['L'] pathstyle = dict(facecolor='none', **style) pathstyle['edgecolor'] = pathstyle.pop('color') pathstyle['edgewidth'] = pathstyle.pop('linewidth') self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj)
Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line
entailment
def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection""" N = max(len(paths), len(offsets)) if not path_transforms: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles['linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)
Build an iterator over the elements of the path collection
entailment
def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): """ Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection """ if offset_order == "before": raise NotImplementedError("offset before transform") for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): (path, path_transform, offset, ec, lw, fc) = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) # This is a hack: if path_coordinates == "figure": path_coordinates = "points" style = {"edgecolor": utils.color_to_hex(ec), "facecolor": utils.color_to_hex(fc), "edgewidth": lw, "dasharray": "10,0", "alpha": styles['alpha'], "zorder": styles['zorder']} self.draw_path(data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj)
Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection
entailment
def draw_markers(self, data, coordinates, style, label, mplobj=None): """ Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection """ vertices, pathcodes = style['markerpath'] pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor', 'facecolor', 'zorder', 'edgewidth']) pathstyle['dasharray'] = "10,0" for vertex in data: self.draw_path(data=vertices, coordinates="points", pathcodes=pathcodes, style=pathstyle, offset=vertex, offset_coordinates=coordinates, mplobj=mplobj)
Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection
entailment
def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """ raise NotImplementedError()
Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path
entailment
def from_times(cls, times, delta_t=DEFAULT_OBSERVATION_TIME): """ Create a TimeMOC from a `astropy.time.Time` Parameters ---------- times : `astropy.time.Time` astropy observation times delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC` """ times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((times_arr, times_arr + 1)).T # degrade the TimeMoc to the order computer from ``delta_t`` order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
Create a TimeMOC from a `astropy.time.Time` Parameters ---------- times : `astropy.time.Time` astropy observation times delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC`
entailment
def from_time_ranges(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME): """ Create a TimeMOC from a range defined by two `astropy.time.Time` Parameters ---------- min_times : `astropy.time.Time` astropy times defining the left part of the intervals max_times : `astropy.time.Time` astropy times defining the right part of the intervals delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC` """ min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T # degrade the TimeMoc to the order computer from ``delta_t`` order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
Create a TimeMOC from a range defined by two `astropy.time.Time` Parameters ---------- min_times : `astropy.time.Time` astropy times defining the left part of the intervals max_times : `astropy.time.Time` astropy times defining the right part of the intervals delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC`
entailment
def add_neighbours(self): """ Add all the pixels at max order in the neighbourhood of the moc """ time_delta = 1 << (2*(IntervalSet.HPY_MAX_ORDER - self.max_order)) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0) intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 << 58) - 1) self._interval_set = IntervalSet(intervals_arr)
Add all the pixels at max order in the neighbourhood of the moc
entailment
def remove_neighbours(self): """ Remove all the pixels at max order located at the bound of the moc """ time_delta = 1 << (2*(IntervalSet.HPY_MAX_ORDER - self.max_order)) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 << 58) - 1) intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0) good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0] self._interval_set = IntervalSet(intervals_arr[good_intervals])
Remove all the pixels at max order located at the bound of the moc
entailment
def _process_degradation(self, another_moc, order_op): """ Degrade (down-sampling) self and ``another_moc`` to ``order_op`` order Parameters ---------- another_moc : `~mocpy.tmoc.TimeMoc` order_op : int the order in which self and ``another_moc`` will be down-sampled to. Returns ------- result : (`~mocpy.tmoc.TimeMoc`, `~mocpy.tmoc.TimeMoc`) self and ``another_moc`` degraded TimeMocs """ max_order = max(self.max_order, another_moc.max_order) if order_op > max_order: message = 'Requested time resolution for the operation cannot be applied.\n' \ 'The TimeMoc object resulting from the operation is of time resolution {0} sec.'.format( TimeMOC.order_to_time_resolution(max_order).sec) warnings.warn(message, UserWarning) self_degradation = self.degrade_to_order(order_op) another_moc_degradation = another_moc.degrade_to_order(order_op) result = self_degradation, another_moc_degradation return result
Degrade (down-sampling) self and ``another_moc`` to ``order_op`` order Parameters ---------- another_moc : `~mocpy.tmoc.TimeMoc` order_op : int the order in which self and ``another_moc`` will be down-sampled to. Returns ------- result : (`~mocpy.tmoc.TimeMoc`, `~mocpy.tmoc.TimeMoc`) self and ``another_moc`` degraded TimeMocs
entailment
def intersection(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME): """ Intersection between self and moc. ``delta_t`` gives the possibility to the user to set a time resolution for performing the tmoc intersection Parameters ---------- another_moc : `~mocpy.abstract_moc.AbstractMOC` the MOC/TimeMOC used for performing the intersection with self delta_t : `~astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMoc order to represent the observations. (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``) Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` MOC object whose interval set corresponds to : self & ``moc`` """ order_op = TimeMOC.time_resolution_to_order(delta_t) self_degraded, moc_degraded = self._process_degradation(another_moc, order_op) return super(TimeMOC, self_degraded).intersection(moc_degraded)
Intersection between self and moc. ``delta_t`` gives the possibility to the user to set a time resolution for performing the tmoc intersection Parameters ---------- another_moc : `~mocpy.abstract_moc.AbstractMOC` the MOC/TimeMOC used for performing the intersection with self delta_t : `~astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMoc order to represent the observations. (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``) Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` MOC object whose interval set corresponds to : self & ``moc``
entailment
def total_duration(self): """ Get the total duration covered by the temporal moc Returns ------- duration : `~astropy.time.TimeDelta` total duration of all the observation times of the tmoc total duration of all the observation times of the tmoc """ if self._interval_set.empty(): return 0 total_time_us = 0 # The interval set is checked for consistency before looping over all the intervals for (start_time, stop_time) in self._interval_set._intervals: total_time_us = total_time_us + (stop_time - start_time) duration = TimeDelta(total_time_us / 1e6, format='sec', scale='tdb') return duration
Get the total duration covered by the temporal moc Returns ------- duration : `~astropy.time.TimeDelta` total duration of all the observation times of the tmoc total duration of all the observation times of the tmoc
entailment
def consistency(self): """ Get a percentage of fill between the min and max time the moc is defined. A value near 0 shows a sparse temporal moc (i.e. the moc does not cover a lot of time and covers very distant times. A value near 1 means that the moc covers a lot of time without big pauses. Returns ------- result : float fill percentage (between 0 and 1.) """ result = self.total_duration.jd / (self.max_time - self.min_time).jd return result
Get a percentage of fill between the min and max time the moc is defined. A value near 0 shows a sparse temporal moc (i.e. the moc does not cover a lot of time and covers very distant times. A value near 1 means that the moc covers a lot of time without big pauses. Returns ------- result : float fill percentage (between 0 and 1.)
entailment
def min_time(self): """ Get the `~astropy.time.Time` time of the tmoc first observation Returns ------- min_time : `astropy.time.Time` time of the first observation """ min_time = Time(self._interval_set.min / TimeMOC.DAY_MICRO_SEC, format='jd', scale='tdb') return min_time
Get the `~astropy.time.Time` time of the tmoc first observation Returns ------- min_time : `astropy.time.Time` time of the first observation
entailment
def max_time(self): """ Get the `~astropy.time.Time` time of the tmoc last observation Returns ------- max_time : `~astropy.time.Time` time of the last observation """ max_time = Time(self._interval_set.max / TimeMOC.DAY_MICRO_SEC, format='jd', scale='tdb') return max_time
Get the `~astropy.time.Time` time of the tmoc last observation Returns ------- max_time : `~astropy.time.Time` time of the last observation
entailment
def contains(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME): """ Get a mask array (e.g. a numpy boolean array) of times being inside (or outside) the TMOC instance. Parameters ---------- times : `astropy.time.Time` astropy times to check whether they are contained in the TMOC or not. keep_inside : bool, optional True by default. If so the filtered table contains only observations that are located the MOC. If ``keep_inside`` is False, the filtered table contains all observations lying outside the MOC. delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- array : `~numpy.darray` A mask boolean array """ # the requested order for filtering the astropy observations table is more precise than the order # of the TimeMoc object current_max_order = self.max_order new_max_order = TimeMOC.time_resolution_to_order(delta_t) if new_max_order > current_max_order: message = 'Requested time resolution filtering cannot be applied.\n' \ 'Filtering is applied with a time resolution of {0} sec.'.format( TimeMOC.order_to_time_resolution(current_max_order).sec) warnings.warn(message, UserWarning) rough_tmoc = self.degrade_to_order(new_max_order) pix_arr = (times.jd * TimeMOC.DAY_MICRO_SEC) pix_arr = pix_arr.astype(int) intervals_arr = rough_tmoc._interval_set._intervals inf_arr = np.vstack([pix_arr[i] >= intervals_arr[:, 0] for i in range(pix_arr.shape[0])]) sup_arr = np.vstack([pix_arr[i] <= intervals_arr[:, 1] for i in range(pix_arr.shape[0])]) if keep_inside: res = inf_arr & sup_arr filtered_rows = np.any(res, axis=1) else: res = ~inf_arr | ~sup_arr filtered_rows = np.all(res, axis=1) return filtered_rows
Get a mask array (e.g. a numpy boolean array) of times being inside (or outside) the TMOC instance. Parameters ---------- times : `astropy.time.Time` astropy times to check whether they are contained in the TMOC or not. keep_inside : bool, optional True by default. If so the filtered table contains only observations that are located the MOC. If ``keep_inside`` is False, the filtered table contains all observations lying outside the MOC. delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- array : `~numpy.darray` A mask boolean array
entailment
def plot(self, title='TimeMoc', view=(None, None)): """ Plot the TimeMoc in a time window. This method uses interactive matplotlib. The user can move its mouse through the plot to see the time (at the mouse position). Parameters ---------- title : str, optional The title of the plot. Set to 'TimeMoc' by default. view : (`~astropy.time.Time`, `~astropy.time.Time`), optional Define the view window in which the observations are plotted. Set to (None, None) by default (i.e. all the observation time window is rendered). """ from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt if self._interval_set.empty(): print('Nothing to print. This TimeMoc object is empty.') return plot_order = 15 if self.max_order > plot_order: plotted_moc = self.degrade_to_order(plot_order) else: plotted_moc = self min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd if max_jd < min_jd: raise ValueError("Invalid selection: max_jd = {0} must be > to min_jd = {1}".format(max_jd, min_jd)) fig1 = plt.figure(figsize=(9.5, 5)) ax = fig1.add_subplot(111) ax.set_xlabel('iso') ax.get_yaxis().set_visible(False) size = 2000 delta = (max_jd - min_jd) / size min_jd_time = min_jd ax.set_xticks([0, size]) ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb').iso, rotation=70) y = np.zeros(size) for (s_time_us, e_time_us) in plotted_moc._interval_set._intervals: s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta) e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta) y[s_index:(e_index+1)] = 1.0 # hack in case of full time mocs. if np.all(y): y[0] = 0 z = np.tile(y, (int(size//10), 1)) plt.title(title) color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000']) color_map.set_under('w') color_map.set_bad('gray') plt.imshow(z, interpolation='bilinear', cmap=color_map) def on_mouse_motion(event): for txt in ax.texts: txt.set_visible(False) text = ax.text(0, 0, "", va="bottom", ha="left") time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb') tx = '{0}'.format(time.iso) text.set_position((event.xdata - 50, 700)) text.set_rotation(70) text.set_text(tx) cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion) plt.show()
Plot the TimeMoc in a time window. This method uses interactive matplotlib. The user can move its mouse through the plot to see the time (at the mouse position). Parameters ---------- title : str, optional The title of the plot. Set to 'TimeMoc' by default. view : (`~astropy.time.Time`, `~astropy.time.Time`), optional Define the view window in which the observations are plotted. Set to (None, None) by default (i.e. all the observation time window is rendered).
entailment
def handle(self, client, subhooks=()): """Handle a new update. Fetches new data from the client, then compares it to the previous lookup. Returns: (bool, new_data): whether changes occurred, and the new value. """ new_data = self.fetch(client) # Holds the list of updated fields. updated = {} if not subhooks: # We always want to compare to previous values. subhooks = [self.name] for subhook in subhooks: new_key = self.extract_key(new_data, subhook) if new_key != self.previous_keys.get(subhook): updated[subhook] = new_key if updated: logger.debug("Hook %s: data changed from %r to %r", self.name, self.previous_keys, updated) self.previous_keys.update(updated) return (True, new_data) return (False, None)
Handle a new update. Fetches new data from the client, then compares it to the previous lookup. Returns: (bool, new_data): whether changes occurred, and the new value.
entailment
def _text_to_vbo(text, font, anchor_x, anchor_y, lowres_size): """Convert text characters to VBO""" # Necessary to flush commands before requesting current viewport because # There may be a set_viewport command waiting in the queue. # TODO: would be nicer if each canvas just remembers and manages its own # viewport, rather than relying on the context for this. canvas = context.get_current_canvas() canvas.context.flush_commands() text_vtype = np.dtype([('a_position', np.float32, 2), ('a_texcoord', np.float32, 2)]) vertices = np.zeros(len(text) * 4, dtype=text_vtype) prev = None width = height = ascender = descender = 0 ratio, slop = 1. / font.ratio, font.slop x_off = -slop # Need to make sure we have a unicode string here (Py2.7 mis-interprets # characters like "•" otherwise) if sys.version[0] == '2' and isinstance(text, str): text = text.decode('utf-8') # Need to store the original viewport, because the font[char] will # trigger SDF rendering, which changes our viewport # todo: get rid of call to glGetParameter! orig_viewport = canvas.context.get_viewport() for ii, char in enumerate(text): glyph = font[char] kerning = glyph['kerning'].get(prev, 0.) * ratio x0 = x_off + glyph['offset'][0] * ratio + kerning y0 = glyph['offset'][1] * ratio + slop x1 = x0 + glyph['size'][0] y1 = y0 - glyph['size'][1] u0, v0, u1, v1 = glyph['texcoords'] position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]] texcoords = [[u0, v0], [u0, v1], [u1, v1], [u1, v0]] vi = ii * 4 vertices['a_position'][vi:vi+4] = position vertices['a_texcoord'][vi:vi+4] = texcoords x_move = glyph['advance'] * ratio + kerning x_off += x_move ascender = max(ascender, y0 - slop) descender = min(descender, y1 + slop) width += x_move height = max(height, glyph['size'][1] - 2*slop) prev = char # Also analyse chars with large ascender and descender, otherwise the # vertical alignment can be very inconsistent for char in 'hy': glyph = font[char] y0 = glyph['offset'][1] * ratio + slop y1 = y0 - glyph['size'][1] ascender = max(ascender, y0 - slop) descender = min(descender, y1 + slop) height = max(height, glyph['size'][1] - 2*slop) if orig_viewport is not None: canvas.context.set_viewport(*orig_viewport) # Tight bounding box (loose would be width, font.height /.asc / .desc) width -= glyph['advance'] * ratio - (glyph['size'][0] - 2*slop) dx = dy = 0 if anchor_y == 'top': dy = -ascender elif anchor_y in ('center', 'middle'): dy = -(height / 2 + descender) elif anchor_y == 'bottom': dy = -descender # Already referenced to baseline # elif anchor_y == 'baseline': # dy = -descender if anchor_x == 'right': dx = -width elif anchor_x == 'center': dx = -width / 2. vertices['a_position'] += (dx, dy) vertices['a_position'] /= lowres_size return vertices
Convert text characters to VBO
entailment
def _load_char(self, char): """Build and store a glyph corresponding to an individual character Parameters ---------- char : str A single character to be represented. """ assert isinstance(char, string_types) and len(char) == 1 assert char not in self._glyphs # load new glyph data from font _load_glyph(self._font, char, self._glyphs) # put new glyph into the texture glyph = self._glyphs[char] bitmap = glyph['bitmap'] # convert to padded array data = np.zeros((bitmap.shape[0] + 2*self._spread, bitmap.shape[1] + 2*self._spread), np.uint8) data[self._spread:-self._spread, self._spread:-self._spread] = bitmap # Store, while scaling down to proper size height = data.shape[0] // self.ratio width = data.shape[1] // self.ratio region = self._atlas.get_free_region(width + 2, height + 2) if region is None: raise RuntimeError('Cannot store glyph') x, y, w, h = region x, y, w, h = x + 1, y + 1, w - 2, h - 2 self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h)) u0 = x / float(self._atlas.shape[1]) v0 = y / float(self._atlas.shape[0]) u1 = (x+w) / float(self._atlas.shape[1]) v1 = (y+h) / float(self._atlas.shape[0]) texcoords = (u0, v0, u1, v1) glyph.update(dict(size=(w, h), texcoords=texcoords))
Build and store a glyph corresponding to an individual character Parameters ---------- char : str A single character to be represented.
entailment
def get_font(self, face, bold=False, italic=False): """Get a font described by face and size""" key = '%s-%s-%s' % (face, bold, italic) if key not in self._fonts: font = dict(face=face, bold=bold, italic=italic) self._fonts[key] = TextureFont(font, self._renderer) return self._fonts[key]
Get a font described by face and size
entailment
def stft(x, n_fft=1024, step=512, fs=2*np.pi, window='hann'): """Compute the STFT Parameters ---------- x : array-like 1D signal to operate on. ``If len(x) < n_fft``, x will be zero-padded to length ``n_fft``. n_fft : int Number of FFT points. Much faster for powers of two. step : int | None Step size between calculations. If None, ``n_fft // 2`` will be used. fs : float The sample rate of the data. window : str | None Window function to use. Can be ``'hann'`` for Hann window, or None for no windowing. Returns ------- stft : ndarray Spectrogram of the data, shape (n_freqs, n_steps). See also -------- fft_freqs """ x = np.asarray(x, float) if x.ndim != 1: raise ValueError('x must be 1D') if window is not None: if window not in ('hann',): raise ValueError('window must be "hann" or None') w = np.hanning(n_fft) else: w = np.ones(n_fft) n_fft = int(n_fft) step = max(n_fft // 2, 1) if step is None else int(step) fs = float(fs) zero_pad = n_fft - len(x) if zero_pad > 0: x = np.concatenate((x, np.zeros(zero_pad, float))) n_freqs = n_fft // 2 + 1 n_estimates = (len(x) - n_fft) // step + 1 result = np.empty((n_freqs, n_estimates), np.complex128) for ii in range(n_estimates): result[:, ii] = np.fft.rfft(w * x[ii * step:ii * step + n_fft]) / n_fft return result
Compute the STFT Parameters ---------- x : array-like 1D signal to operate on. ``If len(x) < n_fft``, x will be zero-padded to length ``n_fft``. n_fft : int Number of FFT points. Much faster for powers of two. step : int | None Step size between calculations. If None, ``n_fft // 2`` will be used. fs : float The sample rate of the data. window : str | None Window function to use. Can be ``'hann'`` for Hann window, or None for no windowing. Returns ------- stft : ndarray Spectrogram of the data, shape (n_freqs, n_steps). See also -------- fft_freqs
entailment
def fft_freqs(n_fft, fs): """Return frequencies for DFT Parameters ---------- n_fft : int Number of points in the FFT. fs : float The sampling rate. """ return np.arange(0, (n_fft // 2 + 1)) / float(n_fft) * float(fs)
Return frequencies for DFT Parameters ---------- n_fft : int Number of points in the FFT. fs : float The sampling rate.
entailment
def set_data(self, pos=None, color=None, width=None, connect=None, arrows=None): """Set the data used for this visual Parameters ---------- pos : array Array of shape (..., 2) or (..., 3) specifying vertex coordinates. color : Color, tuple, or array The color to use when drawing the line. If an array is given, it must be of shape (..., 4) and provide one rgba color per vertex. Can also be a colormap name, or appropriate `Function`. width: The width of the line in px. Line widths > 1px are only guaranteed to work when using 'agg' method. connect : str or array Determines which vertices are connected by lines. * "strip" causes the line to be drawn with each vertex connected to the next. * "segments" causes each pair of vertices to draw an independent line segment * numpy arrays specify the exact set of segment pairs to connect. arrows : array A Nx4 matrix where each row contains the x and y coordinate of the first and second vertex of the arrow body. Remember that the second vertex is used as center point for the arrow head, and the first vertex is only used for determining the arrow head orientation. """ if arrows is not None: self._arrows = arrows self._arrows_changed = True LineVisual.set_data(self, pos, color, width, connect)
Set the data used for this visual Parameters ---------- pos : array Array of shape (..., 2) or (..., 3) specifying vertex coordinates. color : Color, tuple, or array The color to use when drawing the line. If an array is given, it must be of shape (..., 4) and provide one rgba color per vertex. Can also be a colormap name, or appropriate `Function`. width: The width of the line in px. Line widths > 1px are only guaranteed to work when using 'agg' method. connect : str or array Determines which vertices are connected by lines. * "strip" causes the line to be drawn with each vertex connected to the next. * "segments" causes each pair of vertices to draw an independent line segment * numpy arrays specify the exact set of segment pairs to connect. arrows : array A Nx4 matrix where each row contains the x and y coordinate of the first and second vertex of the arrow body. Remember that the second vertex is used as center point for the arrow head, and the first vertex is only used for determining the arrow head orientation.
entailment
def strip_html(text): """ Get rid of ugly twitter html """ def reply_to(text): replying_to = [] split_text = text.split() for index, token in enumerate(split_text): if token.startswith('@'): replying_to.append(token[1:]) else: message = split_text[index:] break rply_msg = "" if len(replying_to) > 0: rply_msg = "Replying to " for token in replying_to[:-1]: rply_msg += token+"," if len(replying_to)>1: rply_msg += 'and ' rply_msg += replying_to[-1]+". " return rply_msg + " ".join(message) text = reply_to(text) text = text.replace('@', ' ') return " ".join([token for token in text.split() if ('http:' not in token) and ('https:' not in token)])
Get rid of ugly twitter html
entailment
def post_tweet(user_id, message, additional_params={}): """ Helper function to post a tweet """ url = "https://api.twitter.com/1.1/statuses/update.json" params = { "status" : message } params.update(additional_params) r = make_twitter_request(url, user_id, params, request_type='POST') print (r.text) return "Successfully posted a tweet {}".format(message)
Helper function to post a tweet
entailment
def make_twitter_request(url, user_id, params={}, request_type='GET'): """ Generically make a request to twitter API using a particular user's authorization """ if request_type == "GET": return requests.get(url, auth=get_twitter_auth(user_id), params=params) elif request_type == "POST": return requests.post(url, auth=get_twitter_auth(user_id), params=params)
Generically make a request to twitter API using a particular user's authorization
entailment
def geo_search(user_id, search_location): """ Search for a location - free form """ url = "https://api.twitter.com/1.1/geo/search.json" params = {"query" : search_location } response = make_twitter_request(url, user_id, params).json() return response
Search for a location - free form
entailment
def read_out_tweets(processed_tweets, speech_convertor=None): """ Input - list of processed 'Tweets' output - list of spoken responses """ return ["tweet number {num} by {user}. {text}.".format(num=index+1, user=user, text=text) for index, (user, text) in enumerate(processed_tweets)]
Input - list of processed 'Tweets' output - list of spoken responses
entailment
def search_for_tweets_about(user_id, params): """ Search twitter API """ url = "https://api.twitter.com/1.1/search/tweets.json" response = make_twitter_request(url, user_id, params) return process_tweets(response.json()["statuses"])
Search twitter API
entailment
def add_val(self, val): """add value in form of dict""" if not isinstance(val, type({})): raise ValueError(type({})) self.read() self.config.update(val) self.save()
add value in form of dict
entailment
def read_mesh(fname): """Read mesh data from file. Parameters ---------- fname : str File name to read. Format will be inferred from the filename. Currently only '.obj' and '.obj.gz' are supported. Returns ------- vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates. """ # Check format fmt = op.splitext(fname)[1].lower() if fmt == '.gz': fmt = op.splitext(op.splitext(fname)[0])[1].lower() if fmt in ('.obj'): return WavefrontReader.read(fname) elif not format: raise ValueError('read_mesh needs could not determine format.') else: raise ValueError('read_mesh does not understand format %s.' % fmt)
Read mesh data from file. Parameters ---------- fname : str File name to read. Format will be inferred from the filename. Currently only '.obj' and '.obj.gz' are supported. Returns ------- vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates.
entailment
def write_mesh(fname, vertices, faces, normals, texcoords, name='', format='obj', overwrite=False, reshape_faces=True): """ Write mesh data to file. Parameters ---------- fname : str Filename to write. Must end with ".obj" or ".gz". vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates. name : str Name of the object. format : str Currently only "obj" is supported. overwrite : bool If the file exists, overwrite it. reshape_faces : bool Reshape the `faces` array to (Nf, 3). Set to `False` if you need to write a mesh with non triangular faces. """ # Check file if op.isfile(fname) and not overwrite: raise IOError('file "%s" exists, use overwrite=True' % fname) # Check format if format not in ('obj'): raise ValueError('Only "obj" format writing currently supported') WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name, reshape_faces)
Write mesh data to file. Parameters ---------- fname : str Filename to write. Must end with ".obj" or ".gz". vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates. name : str Name of the object. format : str Currently only "obj" is supported. overwrite : bool If the file exists, overwrite it. reshape_faces : bool Reshape the `faces` array to (Nf, 3). Set to `False` if you need to write a mesh with non triangular faces.
entailment
def _set_config(config): """Set gl configuration""" pyglet_config = pyglet.gl.Config() pyglet_config.red_size = config['red_size'] pyglet_config.green_size = config['green_size'] pyglet_config.blue_size = config['blue_size'] pyglet_config.alpha_size = config['alpha_size'] pyglet_config.accum_red_size = 0 pyglet_config.accum_green_size = 0 pyglet_config.accum_blue_size = 0 pyglet_config.accum_alpha_size = 0 pyglet_config.depth_size = config['depth_size'] pyglet_config.stencil_size = config['stencil_size'] pyglet_config.double_buffer = config['double_buffer'] pyglet_config.stereo = config['stereo'] pyglet_config.samples = config['samples'] return pyglet_config
Set gl configuration
entailment
def set_shaders(self, vert, frag): """ Set the vertex and fragment shaders. Parameters ---------- vert : str Source code for vertex shader. frag : str Source code for fragment shaders. """ if not vert or not frag: raise ValueError('Vertex and fragment code must both be non-empty') # pre-process shader code for #include directives vert, frag = preprocess(vert), preprocess(frag) # Store source code, send it to glir, parse the code for variables self._shaders = vert, frag self._glir.command('SHADERS', self._id, vert, frag) # All current variables become pending variables again for key, val in self._user_variables.items(): self._pending_variables[key] = val self._user_variables = {} # Parse code (and process pending variables) self._parse_variables_from_code()
Set the vertex and fragment shaders. Parameters ---------- vert : str Source code for vertex shader. frag : str Source code for fragment shaders.
entailment
def _parse_variables_from_code(self): """ Parse uniforms, attributes and varyings from the source code. """ # Get one string of code with comments removed code = '\n\n'.join(self._shaders) code = re.sub(r'(.*)(//.*)', r'\1', code, re.M) # Regexp to look for variable names var_regexp = ("\s*VARIABLE\s+" # kind of variable "((highp|mediump|lowp)\s+)?" # Precision (optional) "(?P<type>\w+)\s+" # type "(?P<name>\w+)\s*" # name "(\[(?P<size>\d+)\])?" # size (optional) "(\s*\=\s*[0-9.]+)?" # default value (optional) "\s*;" # end ) # Parse uniforms, attributes and varyings self._code_variables = {} for kind in ('uniform', 'attribute', 'varying', 'const'): regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re.MULTILINE) for m in re.finditer(regex, code): gtype = m.group('type') size = int(m.group('size')) if m.group('size') else -1 this_kind = kind if size >= 1: # uniform arrays get added both as individuals and full for i in range(size): name = '%s[%d]' % (m.group('name'), i) self._code_variables[name] = kind, gtype, name, -1 this_kind = 'uniform_array' name = m.group('name') self._code_variables[name] = this_kind, gtype, name, size # Now that our code variables are up-to date, we can process # the variables that were set but yet unknown. self._process_pending_variables()
Parse uniforms, attributes and varyings from the source code.
entailment
def bind(self, data): """ Bind a VertexBuffer that has structured data Parameters ---------- data : VertexBuffer The vertex buffer to bind. The field names of the array are mapped to attribute names in GLSL. """ # Check if not isinstance(data, VertexBuffer): raise ValueError('Program.bind() requires a VertexBuffer.') # Apply for name in data.dtype.names: self[name] = data[name]
Bind a VertexBuffer that has structured data Parameters ---------- data : VertexBuffer The vertex buffer to bind. The field names of the array are mapped to attribute names in GLSL.
entailment
def _process_pending_variables(self): """ Try to apply the variables that were set but not known yet. """ # Clear our list of pending variables self._pending_variables, pending = {}, self._pending_variables # Try to apply it. On failure, it will be added again for name, data in pending.items(): self[name] = data
Try to apply the variables that were set but not known yet.
entailment
def draw(self, mode='triangles', indices=None, check_error=True): """ Draw the attribute arrays in the specified mode. Parameters ---------- mode : str | GL_ENUM 'points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', or 'triangle_fan'. indices : array Array of indices to draw. check_error: Check error after draw. """ # Invalidate buffer (data has already been sent) self._buffer = None # Check if mode is valid mode = check_enum(mode) if mode not in ['points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', 'triangle_fan']: raise ValueError('Invalid draw mode: %r' % mode) # Check leftover variables, warn, discard them # In GLIR we check whether all attributes are indeed set for name in self._pending_variables: logger.warn('Variable %r is given but not known.' % name) self._pending_variables = {} # Check attribute sizes attributes = [vbo for vbo in self._user_variables.values() if isinstance(vbo, DataBuffer)] sizes = [a.size for a in attributes] if len(attributes) < 1: raise RuntimeError('Must have at least one attribute') if not all(s == sizes[0] for s in sizes[1:]): msg = '\n'.join(['%s: %s' % (str(a), a.size) for a in attributes]) raise RuntimeError('All attributes must have the same size, got:\n' '%s' % msg) # Get the glir queue that we need now canvas = get_current_canvas() assert canvas is not None # Associate canvas canvas.context.glir.associate(self.glir) # Indexbuffer if isinstance(indices, IndexBuffer): canvas.context.glir.associate(indices.glir) logger.debug("Program drawing %r with index buffer" % mode) gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16): 'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'} selection = indices.id, gltypes[indices.dtype], indices.size canvas.context.glir.command('DRAW', self._id, mode, selection) elif indices is None: selection = 0, attributes[0].size logger.debug("Program drawing %r with %r" % (mode, selection)) canvas.context.glir.command('DRAW', self._id, mode, selection) else: raise TypeError("Invalid index: %r (must be IndexBuffer)" % indices) # Process GLIR commands canvas.context.flush_commands()
Draw the attribute arrays in the specified mode. Parameters ---------- mode : str | GL_ENUM 'points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', or 'triangle_fan'. indices : array Array of indices to draw. check_error: Check error after draw.
entailment
def set_data(self, x=None, y=None, z=None, colors=None): """Update the data in this surface plot. Parameters ---------- x : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. y : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. z : ndarray 2D array of height values for each grid vertex. colors : ndarray (width, height, 4) array of vertex colors. """ if x is not None: if self._x is None or len(x) != len(self._x): self.__vertices = None self._x = x if y is not None: if self._y is None or len(y) != len(self._y): self.__vertices = None self._y = y if z is not None: if self._x is not None and z.shape[0] != len(self._x): raise TypeError('Z values must have shape (len(x), len(y))') if self._y is not None and z.shape[1] != len(self._y): raise TypeError('Z values must have shape (len(x), len(y))') self._z = z if (self.__vertices is not None and self._z.shape != self.__vertices.shape[:2]): self.__vertices = None if self._z is None: return update_mesh = False new_vertices = False # Generate vertex and face array if self.__vertices is None: new_vertices = True self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3), dtype=np.float32) self.generate_faces() self.__meshdata.set_faces(self.__faces) update_mesh = True # Copy x, y, z data into vertex array if new_vertices or x is not None: if x is None: if self._x is None: x = np.arange(self._z.shape[0]) else: x = self._x self.__vertices[:, :, 0] = x.reshape(len(x), 1) update_mesh = True if new_vertices or y is not None: if y is None: if self._y is None: y = np.arange(self._z.shape[1]) else: y = self._y self.__vertices[:, :, 1] = y.reshape(1, len(y)) update_mesh = True if new_vertices or z is not None: self.__vertices[..., 2] = self._z update_mesh = True if colors is not None: self.__meshdata.set_vertex_colors(colors) update_mesh = True # Update MeshData if update_mesh: self.__meshdata.set_vertices( self.__vertices.reshape(self.__vertices.shape[0] * self.__vertices.shape[1], 3)) MeshVisual.set_data(self, meshdata=self.__meshdata)
Update the data in this surface plot. Parameters ---------- x : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. y : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. z : ndarray 2D array of height values for each grid vertex. colors : ndarray (width, height, 4) array of vertex colors.
entailment
def simplified(self): """A simplified representation of the same transformation. """ if self._simplified is None: self._simplified = SimplifiedChainTransform(self) return self._simplified
A simplified representation of the same transformation.
entailment
def map(self, coords): """Map coordinates Parameters ---------- coords : array-like Coordinates to map. Returns ------- coords : ndarray Coordinates. """ for tr in reversed(self.transforms): coords = tr.map(coords) return coords
Map coordinates Parameters ---------- coords : array-like Coordinates to map. Returns ------- coords : ndarray Coordinates.
entailment
def imap(self, coords): """Inverse map coordinates Parameters ---------- coords : array-like Coordinates to inverse map. Returns ------- coords : ndarray Coordinates. """ for tr in self.transforms: coords = tr.imap(coords) return coords
Inverse map coordinates Parameters ---------- coords : array-like Coordinates to inverse map. Returns ------- coords : ndarray Coordinates.
entailment
def append(self, tr): """ Add a new transform to the end of this chain. Parameters ---------- tr : instance of Transform The transform to use. """ self.transforms.append(tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
Add a new transform to the end of this chain. Parameters ---------- tr : instance of Transform The transform to use.
entailment
def prepend(self, tr): """ Add a new transform to the beginning of this chain. Parameters ---------- tr : instance of Transform The transform to use. """ self.transforms.insert(0, tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
Add a new transform to the beginning of this chain. Parameters ---------- tr : instance of Transform The transform to use.
entailment
def source_changed(self, event): """Generate a simplified chain by joining adjacent transforms. """ # bail out early if the chain is empty transforms = self._chain.transforms[:] if len(transforms) == 0: self.transforms = [] return # If the change signal comes from a transform that already appears in # our simplified transform list, then there is no need to re-simplify. if event is not None: for source in event.sources[::-1]: if source in self.transforms: self.update(event) return # First flatten the chain by expanding all nested chains new_chain = [] while len(transforms) > 0: tr = transforms.pop(0) if isinstance(tr, ChainTransform) and not tr.dynamic: transforms = tr.transforms[:] + transforms else: new_chain.append(tr) # Now combine together all compatible adjacent transforms cont = True tr = new_chain while cont: new_tr = [tr[0]] cont = False for t2 in tr[1:]: t1 = new_tr[-1] pr = t1 * t2 if (not t1.dynamic and not t2.dynamic and not isinstance(pr, ChainTransform)): cont = True new_tr.pop() new_tr.append(pr) else: new_tr.append(t2) tr = new_tr self.transforms = tr
Generate a simplified chain by joining adjacent transforms.
entailment
def pack_iterable(messages): '''Pack an iterable of messages in the TCP protocol format''' # [ 4-byte body size ] # [ 4-byte num messages ] # [ 4-byte message #1 size ][ N-byte binary data ] # ... (repeated <num_messages> times) return pack_string( struct.pack('>l', len(messages)) + ''.join(map(pack_string, messages)))
Pack an iterable of messages in the TCP protocol format
entailment
def hexify(message): '''Print out printable characters, but others in hex''' import string hexified = [] for char in message: if (char in '\n\r \t') or (char not in string.printable): hexified.append('\\x%02x' % ord(char)) else: hexified.append(char) return ''.join(hexified)
Print out printable characters, but others in hex
entailment
def distribute(total, objects): '''Generator for (count, object) tuples that distributes count evenly among the provided objects''' for index, obj in enumerate(objects): start = (index * total) / len(objects) stop = ((index + 1) * total) / len(objects) yield (stop - start, obj)
Generator for (count, object) tuples that distributes count evenly among the provided objects
entailment
def clean(self): """Clean queue items from a previous session. In case a previous session crashed and there are still some running entries in the queue ('running', 'stopping', 'killing'), we clean those and enqueue them again. """ for _, item in self.queue.items(): if item['status'] in ['paused', 'running', 'stopping', 'killing']: item['status'] = 'queued' item['start'] = '' item['end'] = ''
Clean queue items from a previous session. In case a previous session crashed and there are still some running entries in the queue ('running', 'stopping', 'killing'), we clean those and enqueue them again.
entailment
def clear(self): """Remove all completed tasks from the queue.""" for key in list(self.queue.keys()): if self.queue[key]['status'] in ['done', 'failed']: del self.queue[key] self.write()
Remove all completed tasks from the queue.
entailment
def next(self): """Get the next processable item of the queue. A processable item is supposed to have the status `queued`. Returns: None : If no key is found. Int: If a valid entry is found. """ smallest = None for key in self.queue.keys(): if self.queue[key]['status'] == 'queued': if smallest is None or key < smallest: smallest = key return smallest
Get the next processable item of the queue. A processable item is supposed to have the status `queued`. Returns: None : If no key is found. Int: If a valid entry is found.
entailment
def read(self): """Read the queue of the last pueue session or set `self.queue = {}`.""" queue_path = os.path.join(self.config_dir, 'queue') if os.path.exists(queue_path): queue_file = open(queue_path, 'rb') try: self.queue = pickle.load(queue_file) except Exception: print('Queue file corrupted, deleting old queue') os.remove(queue_path) self.queue = {} queue_file.close() else: self.queue = {}
Read the queue of the last pueue session or set `self.queue = {}`.
entailment
def write(self): """Write the current queue to a file. We need this to continue an earlier session.""" queue_path = os.path.join(self.config_dir, 'queue') queue_file = open(queue_path, 'wb+') try: pickle.dump(self.queue, queue_file, -1) except Exception: print('Error while writing to queue file. Wrong file permissions?') queue_file.close()
Write the current queue to a file. We need this to continue an earlier session.
entailment
def add_new(self, command): """Add a new entry to the queue.""" self.queue[self.next_key] = command self.queue[self.next_key]['status'] = 'queued' self.queue[self.next_key]['returncode'] = '' self.queue[self.next_key]['stdout'] = '' self.queue[self.next_key]['stderr'] = '' self.queue[self.next_key]['start'] = '' self.queue[self.next_key]['end'] = '' self.next_key += 1 self.write()
Add a new entry to the queue.
entailment
def remove(self, key): """Remove a key from the queue, return `False` if no such key exists.""" if key in self.queue: del self.queue[key] self.write() return True return False
Remove a key from the queue, return `False` if no such key exists.
entailment
def restart(self, key): """Restart a previously finished entry.""" if key in self.queue: if self.queue[key]['status'] in ['failed', 'done']: new_entry = {'command': self.queue[key]['command'], 'path': self.queue[key]['path']} self.add_new(new_entry) self.write() return True return False
Restart a previously finished entry.
entailment
def switch(self, first, second): """Switch two entries in the queue. Return False if an entry doesn't exist.""" allowed_states = ['queued', 'stashed'] if first in self.queue and second in self.queue \ and self.queue[first]['status'] in allowed_states\ and self.queue[second]['status'] in allowed_states: tmp = self.queue[second].copy() self.queue[second] = self.queue[first].copy() self.queue[first] = tmp self.write() return True return False
Switch two entries in the queue. Return False if an entry doesn't exist.
entailment