sentence1
stringlengths 52
3.87M
| sentence2
stringlengths 1
47.2k
| label
stringclasses 1
value |
|---|---|---|
def _hex_to_rgba(hexs):
"""Convert hex to rgba, permitting alpha values in hex"""
hexs = np.atleast_1d(np.array(hexs, '|U9'))
out = np.ones((len(hexs), 4), np.float32)
for hi, h in enumerate(hexs):
assert isinstance(h, string_types)
off = 1 if h[0] == '#' else 0
assert len(h) in (6+off, 8+off)
e = (len(h)-off) // 2
out[hi, :e] = [int(h[i:i+2], 16) / 255.
for i in range(off, len(h), 2)]
return out
|
Convert hex to rgba, permitting alpha values in hex
|
entailment
|
def _rgb_to_hex(rgbs):
"""Convert rgb to hex triplet"""
rgbs, n_dim = _check_color_dim(rgbs)
return np.array(['#%02x%02x%02x' % tuple((255*rgb[:3]).astype(np.uint8))
for rgb in rgbs], '|U7')
|
Convert rgb to hex triplet
|
entailment
|
def _rgb_to_hsv(rgbs):
"""Convert Nx3 or Nx4 rgb to hsv"""
rgbs, n_dim = _check_color_dim(rgbs)
hsvs = list()
for rgb in rgbs:
rgb = rgb[:3] # don't use alpha here
idx = np.argmax(rgb)
val = rgb[idx]
c = val - np.min(rgb)
if c == 0:
hue = 0
sat = 0
else:
if idx == 0: # R == max
hue = ((rgb[1] - rgb[2]) / c) % 6
elif idx == 1: # G == max
hue = (rgb[2] - rgb[0]) / c + 2
else: # B == max
hue = (rgb[0] - rgb[1]) / c + 4
hue *= 60
sat = c / val
hsv = [hue, sat, val]
hsvs.append(hsv)
hsvs = np.array(hsvs, dtype=np.float32)
if n_dim == 4:
hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1)
return hsvs
|
Convert Nx3 or Nx4 rgb to hsv
|
entailment
|
def _hsv_to_rgb(hsvs):
"""Convert Nx3 or Nx4 hsv to rgb"""
hsvs, n_dim = _check_color_dim(hsvs)
# In principle, we *might* be able to vectorize this, but might as well
# wait until a compelling use case appears
rgbs = list()
for hsv in hsvs:
c = hsv[1] * hsv[2]
m = hsv[2] - c
hp = hsv[0] / 60
x = c * (1 - abs(hp % 2 - 1))
if 0 <= hp < 1:
r, g, b = c, x, 0
elif hp < 2:
r, g, b = x, c, 0
elif hp < 3:
r, g, b = 0, c, x
elif hp < 4:
r, g, b = 0, x, c
elif hp < 5:
r, g, b = x, 0, c
else:
r, g, b = c, 0, x
rgb = [r + m, g + m, b + m]
rgbs.append(rgb)
rgbs = np.array(rgbs, dtype=np.float32)
if n_dim == 4:
rgbs = np.concatenate((rgbs, hsvs[:, 3]), axis=1)
return rgbs
|
Convert Nx3 or Nx4 hsv to rgb
|
entailment
|
def _lab_to_rgb(labs):
"""Convert Nx3 or Nx4 lab to rgb"""
# adapted from BSD-licensed work in MATLAB by Mark Ruzon
# Based on ITU-R Recommendation BT.709 using the D65
labs, n_dim = _check_color_dim(labs)
# Convert Lab->XYZ (silly indexing used to preserve dimensionality)
y = (labs[:, 0] + 16.) / 116.
x = (labs[:, 1] / 500.) + y
z = y - (labs[:, 2] / 200.)
xyz = np.concatenate(([x], [y], [z])) # 3xN
over = xyz > 0.2068966
xyz[over] = xyz[over] ** 3.
xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787
# Convert XYZ->LAB
rgbs = np.dot(_xyz2rgb_norm, xyz).T
over = rgbs > 0.0031308
rgbs[over] = 1.055 * (rgbs[over] ** (1. / 2.4)) - 0.055
rgbs[~over] *= 12.92
if n_dim == 4:
rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1)
rgbs = np.clip(rgbs, 0., 1.)
return rgbs
|
Convert Nx3 or Nx4 lab to rgb
|
entailment
|
def get(self, tags):
"""Find an adequate value for this field from a dict of tags."""
# Try to find our name
value = tags.get(self.name, '')
for name in self.alternate_tags:
# Iterate of alternates until a non-empty value is found
value = value or tags.get(name, '')
# If we still have nothing, return our default
value = value or self.default
return value
|
Find an adequate value for this field from a dict of tags.
|
entailment
|
def parse_function_signature(code):
"""
Return the name, arguments, and return type of the first function
definition found in *code*. Arguments are returned as [(type, name), ...].
"""
m = re.search("^\s*" + re_func_decl + "\s*{", code, re.M)
if m is None:
print(code)
raise Exception("Failed to parse function signature. "
"Full code is printed above.")
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]
return name, args, rtype
|
Return the name, arguments, and return type of the first function
definition found in *code*. Arguments are returned as [(type, name), ...].
|
entailment
|
def find_functions(code):
"""
Return a list of (name, arguments, return type) for all function
definition2 found in *code*. Arguments are returned as [(type, name), ...].
"""
regex = "^\s*" + re_func_decl + "\s*{"
funcs = []
while True:
m = re.search(regex, code, re.M)
if m is None:
return funcs
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]
funcs.append((name, args, rtype))
code = code[m.end():]
|
Return a list of (name, arguments, return type) for all function
definition2 found in *code*. Arguments are returned as [(type, name), ...].
|
entailment
|
def find_prototypes(code):
"""
Return a list of signatures for each function prototype declared in *code*.
Format is [(name, [args], rtype), ...].
"""
prots = []
lines = code.split('\n')
for line in lines:
m = re.match("\s*" + re_func_prot, line)
if m is not None:
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' '))
for arg in args.split(',')]
prots.append((name, args, rtype))
return prots
|
Return a list of signatures for each function prototype declared in *code*.
Format is [(name, [args], rtype), ...].
|
entailment
|
def find_program_variables(code):
"""
Return a dict describing program variables::
{'var_name': ('uniform|attribute|varying', type), ...}
"""
vars = {}
lines = code.split('\n')
for line in lines:
m = re.match(r"\s*" + re_prog_var_declaration + r"\s*(=|;)", line)
if m is not None:
vtype, dtype, names = m.groups()[:3]
for name in names.split(','):
vars[name.strip()] = (vtype, dtype)
return vars
|
Return a dict describing program variables::
{'var_name': ('uniform|attribute|varying', type), ...}
|
entailment
|
def _set_config(c):
"""Set gl configuration for SDL2"""
func = sdl2.SDL_GL_SetAttribute
func(sdl2.SDL_GL_RED_SIZE, c['red_size'])
func(sdl2.SDL_GL_GREEN_SIZE, c['green_size'])
func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size'])
func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size'])
func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size'])
func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size'])
func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0)
samps = c['samples']
func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0)
func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0)
func(sdl2.SDL_GL_STEREO, c['stereo'])
|
Set gl configuration for SDL2
|
entailment
|
def create_response(self, message=None, end_session=False, card_obj=None,
reprompt_message=None, is_ssml=None):
"""
message - text message to be spoken out by the Echo
end_session - flag to determine whether this interaction should end the session
card_obj = JSON card object to substitute the 'card' field in the raw_response
"""
response = dict(self.base_response)
if message:
response['response'] = self.create_speech(message, is_ssml)
response['response']['shouldEndSession'] = end_session
if card_obj:
response['response']['card'] = card_obj
if reprompt_message:
response['response']['reprompt'] = self.create_speech(reprompt_message, is_ssml)
return Response(response)
|
message - text message to be spoken out by the Echo
end_session - flag to determine whether this interaction should end the session
card_obj = JSON card object to substitute the 'card' field in the raw_response
|
entailment
|
def create_card(self, title=None, subtitle=None, content=None, card_type="Simple"):
"""
card_obj = JSON card object to substitute the 'card' field in the raw_response
format:
{
"type": "Simple", #COMPULSORY
"title": "string", #OPTIONAL
"subtitle": "string", #OPTIONAL
"content": "string" #OPTIONAL
}
"""
card = {"type": card_type}
if title: card["title"] = title
if subtitle: card["subtitle"] = subtitle
if content: card["content"] = content
return card
|
card_obj = JSON card object to substitute the 'card' field in the raw_response
format:
{
"type": "Simple", #COMPULSORY
"title": "string", #OPTIONAL
"subtitle": "string", #OPTIONAL
"content": "string" #OPTIONAL
}
|
entailment
|
def intent(self, intent):
''' Decorator to register intent handler'''
def _handler(func):
self._handlers['IntentRequest'][intent] = func
return func
return _handler
|
Decorator to register intent handler
|
entailment
|
def request(self, request_type):
''' Decorator to register generic request handler '''
def _handler(func):
self._handlers[request_type] = func
return func
return _handler
|
Decorator to register generic request handler
|
entailment
|
def route_request(self, request_json, metadata=None):
''' Route the request object to the right handler function '''
request = Request(request_json)
request.metadata = metadata
# add reprompt handler or some such for default?
handler_fn = self._handlers[self._default] # Set default handling for noisy requests
if not request.is_intent() and (request.request_type() in self._handlers):
''' Route request to a non intent handler '''
handler_fn = self._handlers[request.request_type()]
elif request.is_intent() and request.intent_name() in self._handlers['IntentRequest']:
''' Route to right intent handler '''
handler_fn = self._handlers['IntentRequest'][request.intent_name()]
response = handler_fn(request)
response.set_session(request.session)
return response.to_json()
|
Route the request object to the right handler function
|
entailment
|
def _viewbox_set(self, viewbox):
""" Friend method of viewbox to register itself.
"""
self._viewbox = viewbox
# Connect
viewbox.events.mouse_press.connect(self.viewbox_mouse_event)
viewbox.events.mouse_release.connect(self.viewbox_mouse_event)
viewbox.events.mouse_move.connect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event)
viewbox.events.resize.connect(self.viewbox_resize_event)
|
Friend method of viewbox to register itself.
|
entailment
|
def _viewbox_unset(self, viewbox):
""" Friend method of viewbox to unregister itself.
"""
self._viewbox = None
# Disconnect
viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event)
viewbox.events.resize.disconnect(self.viewbox_resize_event)
|
Friend method of viewbox to unregister itself.
|
entailment
|
def set_range(self, x=None, y=None, z=None, margin=0.05):
""" Set the range of the view region for the camera
Parameters
----------
x : tuple | None
X range.
y : tuple | None
Y range.
z : tuple | None
Z range.
margin : float
Margin to use.
Notes
-----
The view is set to the given range or to the scene boundaries
if ranges are not specified. The ranges should be 2-element
tuples specifying the min and max for each dimension.
For the PanZoomCamera the view is fully defined by the range.
For e.g. the TurntableCamera the elevation and azimuth are not
set. One should use reset() for that.
"""
# Flag to indicate that this is an initializing (not user-invoked)
init = self._xlim is None
# Collect given bounds
bounds = [None, None, None]
if x is not None:
bounds[0] = float(x[0]), float(x[1])
if y is not None:
bounds[1] = float(y[0]), float(y[1])
if z is not None:
bounds[2] = float(z[0]), float(z[1])
# If there is no viewbox, store given bounds in lim variables, and stop
if self._viewbox is None:
self._set_range_args = bounds[0], bounds[1], bounds[2], margin
return
# There is a viewbox, we're going to set the range for real
self._resetting = True
# Get bounds from viewbox if not given
if all([(b is None) for b in bounds]):
bounds = self._viewbox.get_scene_bounds()
else:
for i in range(3):
if bounds[i] is None:
bounds[i] = self._viewbox.get_scene_bounds(i)
# Calculate ranges and margins
ranges = [b[1] - b[0] for b in bounds]
margins = [(r*margin or 0.1) for r in ranges]
# Assign limits for this camera
bounds_margins = [(b[0]-m, b[1]+m) for b, m in zip(bounds, margins)]
self._xlim, self._ylim, self._zlim = bounds_margins
# Store center location
if (not init) or (self._center is None):
self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)]
# Let specific camera handle it
self._set_range(init)
# Finish
self._resetting = False
self.view_changed()
|
Set the range of the view region for the camera
Parameters
----------
x : tuple | None
X range.
y : tuple | None
Y range.
z : tuple | None
Z range.
margin : float
Margin to use.
Notes
-----
The view is set to the given range or to the scene boundaries
if ranges are not specified. The ranges should be 2-element
tuples specifying the min and max for each dimension.
For the PanZoomCamera the view is fully defined by the range.
For e.g. the TurntableCamera the elevation and azimuth are not
set. One should use reset() for that.
|
entailment
|
def get_state(self):
""" Get the current view state of the camera
Returns a dict of key-value pairs. The exact keys depend on the
camera. Can be passed to set_state() (of this or another camera
of the same type) to reproduce the state.
"""
D = {}
for key in self._state_props:
D[key] = getattr(self, key)
return D
|
Get the current view state of the camera
Returns a dict of key-value pairs. The exact keys depend on the
camera. Can be passed to set_state() (of this or another camera
of the same type) to reproduce the state.
|
entailment
|
def set_state(self, state=None, **kwargs):
""" Set the view state of the camera
Should be a dict (or kwargs) as returned by get_state. It can
be an incomlete dict, in which case only the specified
properties are set.
Parameters
----------
state : dict
The camera state.
**kwargs : dict
Unused keyword arguments.
"""
D = state or {}
D.update(kwargs)
for key, val in D.items():
if key not in self._state_props:
raise KeyError('Not a valid camera state property %r' % key)
setattr(self, key, val)
|
Set the view state of the camera
Should be a dict (or kwargs) as returned by get_state. It can
be an incomlete dict, in which case only the specified
properties are set.
Parameters
----------
state : dict
The camera state.
**kwargs : dict
Unused keyword arguments.
|
entailment
|
def link(self, camera):
""" Link this camera with another camera of the same type
Linked camera's keep each-others' state in sync.
Parameters
----------
camera : instance of Camera
The other camera to link.
"""
cam1, cam2 = self, camera
# Remove if already linked
while cam1 in cam2._linked_cameras:
cam2._linked_cameras.remove(cam1)
while cam2 in cam1._linked_cameras:
cam1._linked_cameras.remove(cam2)
# Link both ways
cam1._linked_cameras.append(cam2)
cam2._linked_cameras.append(cam1)
|
Link this camera with another camera of the same type
Linked camera's keep each-others' state in sync.
Parameters
----------
camera : instance of Camera
The other camera to link.
|
entailment
|
def view_changed(self):
""" Called when this camera is changes its view. Also called
when its associated with a viewbox.
"""
if self._resetting:
return # don't update anything while resetting (are in set_range)
if self._viewbox:
# Set range if necessary
if self._xlim is None:
args = self._set_range_args or ()
self.set_range(*args)
# Store default state if we have not set it yet
if self._default_state is None:
self.set_default_state()
# Do the actual update
self._update_transform()
|
Called when this camera is changes its view. Also called
when its associated with a viewbox.
|
entailment
|
def on_canvas_change(self, event):
"""Canvas change event handler
Parameters
----------
event : instance of Event
The event.
"""
# Connect key events from canvas to camera.
# TODO: canvas should keep track of a single node with keyboard focus.
if event.old is not None:
event.old.events.key_press.disconnect(self.viewbox_key_event)
event.old.events.key_release.disconnect(self.viewbox_key_event)
if event.new is not None:
event.new.events.key_press.connect(self.viewbox_key_event)
event.new.events.key_release.connect(self.viewbox_key_event)
|
Canvas change event handler
Parameters
----------
event : instance of Event
The event.
|
entailment
|
def _set_scene_transform(self, tr):
""" Called by subclasses to configure the viewbox scene transform.
"""
# todo: check whether transform has changed, connect to
# transform.changed event
pre_tr = self.pre_transform
if pre_tr is None:
self._scene_transform = tr
else:
self._transform_cache.roll()
self._scene_transform = self._transform_cache.get([pre_tr, tr])
# Mark the transform dynamic so that it will not be collapsed with
# others
self._scene_transform.dynamic = True
# Update scene
self._viewbox.scene.transform = self._scene_transform
self._viewbox.update()
# Apply same state to linked cameras, but prevent that camera
# to return the favor
for cam in self._linked_cameras:
if cam is self._linked_cameras_no_update:
continue
try:
cam._linked_cameras_no_update = self
cam.set_state(self.get_state())
finally:
cam._linked_cameras_no_update = None
|
Called by subclasses to configure the viewbox scene transform.
|
entailment
|
def _set_config(c):
"""Set the OpenGL configuration"""
glformat = QGLFormat()
glformat.setRedBufferSize(c['red_size'])
glformat.setGreenBufferSize(c['green_size'])
glformat.setBlueBufferSize(c['blue_size'])
glformat.setAlphaBufferSize(c['alpha_size'])
if QT5_NEW_API:
# Qt5 >= 5.4.0 - below options automatically enabled if nonzero.
glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer']
else glformat.SingleBuffer)
else:
# Qt4 and Qt5 < 5.4.0 - buffers must be explicitly requested.
glformat.setAccum(False)
glformat.setRgba(True)
glformat.setDoubleBuffer(True if c['double_buffer'] else False)
glformat.setDepth(True if c['depth_size'] else False)
glformat.setStencil(True if c['stencil_size'] else False)
glformat.setSampleBuffers(True if c['samples'] else False)
glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0)
glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size']
else 0)
glformat.setSamples(c['samples'] if c['samples'] else 0)
glformat.setStereo(c['stereo'])
return glformat
|
Set the OpenGL configuration
|
entailment
|
def get_window_id(self):
""" Get the window id of a PySide Widget. Might also work for PyQt4.
"""
# Get Qt win id
winid = self.winId()
# On Linux this is it
if IS_RPI:
nw = (ctypes.c_int * 3)(winid, self.width(), self.height())
return ctypes.pointer(nw)
elif IS_LINUX:
return int(winid) # Is int on PySide, but sip.voidptr on PyQt
# Get window id from stupid capsule thingy
# http://translate.google.com/translate?hl=en&sl=zh-CN&u=http://www.cnb
#logs.com/Shiren-Y/archive/2011/04/06/2007288.html&prev=/search%3Fq%3Dp
# yside%2Bdirectx%26client%3Dfirefox-a%26hs%3DIsJ%26rls%3Dorg.mozilla:n
#l:official%26channel%3Dfflb%26biw%3D1366%26bih%3D614
# Prepare
ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p
ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object]
ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p
ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object,
ctypes.c_char_p]
# Extract handle from capsule thingy
name = ctypes.pythonapi.PyCapsule_GetName(winid)
handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name)
return handle
|
Get the window id of a PySide Widget. Might also work for PyQt4.
|
entailment
|
def obj(x):
"""Six-hump camelback function"""
x1 = x[0]
x2 = x[1]
f = (4 - 2.1*(x1*x1) + (x1*x1*x1*x1)/3.0)*(x1*x1) + x1*x2 + (-4 + 4*(x2*x2))*(x2*x2)
return f
|
Six-hump camelback function
|
entailment
|
def PathCollection(mode="agg", *args, **kwargs):
"""
mode: string
- "raw" (speed: fastest, size: small, output: ugly, no dash,
no thickness)
- "agg" (speed: medium, size: medium output: nice, some flaws, no dash)
- "agg+" (speed: slow, size: big, output: perfect, no dash)
"""
if mode == "raw":
return RawPathCollection(*args, **kwargs)
elif mode == "agg+":
return AggPathCollection(*args, **kwargs)
return AggFastPathCollection(*args, **kwargs)
|
mode: string
- "raw" (speed: fastest, size: small, output: ugly, no dash,
no thickness)
- "agg" (speed: medium, size: medium output: nice, some flaws, no dash)
- "agg+" (speed: slow, size: big, output: perfect, no dash)
|
entailment
|
def map(self, coords):
"""Map coordinates
Parameters
----------
coords : array-like
Coordinates to map.
Returns
-------
coords : ndarray
Coordinates.
"""
m = np.empty(coords.shape)
m[:, :3] = (coords[:, :3] * self.scale[np.newaxis, :3] +
coords[:, 3:] * self.translate[np.newaxis, :3])
m[:, 3] = coords[:, 3]
return m
|
Map coordinates
Parameters
----------
coords : array-like
Coordinates to map.
Returns
-------
coords : ndarray
Coordinates.
|
entailment
|
def move(self, move):
"""Change the translation of this transform by the amount given.
Parameters
----------
move : array-like
The values to be added to the current translation of the transform.
"""
move = as_vec4(move, default=(0, 0, 0, 0))
self.translate = self.translate + move
|
Change the translation of this transform by the amount given.
Parameters
----------
move : array-like
The values to be added to the current translation of the transform.
|
entailment
|
def zoom(self, zoom, center=(0, 0, 0), mapped=True):
"""Update the transform such that its scale factor is changed, but
the specified center point is left unchanged.
Parameters
----------
zoom : array-like
Values to multiply the transform's current scale
factors.
center : array-like
The center point around which the scaling will take place.
mapped : bool
Whether *center* is expressed in mapped coordinates (True) or
unmapped coordinates (False).
"""
zoom = as_vec4(zoom, default=(1, 1, 1, 1))
center = as_vec4(center, default=(0, 0, 0, 0))
scale = self.scale * zoom
if mapped:
trans = center - (center - self.translate) * zoom
else:
trans = self.scale * (1 - zoom) * center + self.translate
self._set_st(scale=scale, translate=trans)
|
Update the transform such that its scale factor is changed, but
the specified center point is left unchanged.
Parameters
----------
zoom : array-like
Values to multiply the transform's current scale
factors.
center : array-like
The center point around which the scaling will take place.
mapped : bool
Whether *center* is expressed in mapped coordinates (True) or
unmapped coordinates (False).
|
entailment
|
def from_mapping(cls, x0, x1):
""" Create an STTransform from the given mapping
See `set_mapping` for details.
Parameters
----------
x0 : array-like
Start.
x1 : array-like
End.
Returns
-------
t : instance of STTransform
The transform.
"""
t = cls()
t.set_mapping(x0, x1)
return t
|
Create an STTransform from the given mapping
See `set_mapping` for details.
Parameters
----------
x0 : array-like
Start.
x1 : array-like
End.
Returns
-------
t : instance of STTransform
The transform.
|
entailment
|
def set_mapping(self, x0, x1, update=True):
"""Configure this transform such that it maps points x0 => x1
Parameters
----------
x0 : array-like, shape (2, 2) or (2, 3)
Start location.
x1 : array-like, shape (2, 2) or (2, 3)
End location.
update : bool
If False, then the update event is not emitted.
Examples
--------
For example, if we wish to map the corners of a rectangle::
>>> p1 = [[0, 0], [200, 300]]
onto a unit cube::
>>> p2 = [[-1, -1], [1, 1]]
then we can generate the transform as follows::
>>> tr = STTransform()
>>> tr.set_mapping(p1, p2)
>>> assert tr.map(p1)[:,:2] == p2 # test
"""
# if args are Rect, convert to array first
if isinstance(x0, Rect):
x0 = x0._transform_in()[:3]
if isinstance(x1, Rect):
x1 = x1._transform_in()[:3]
x0 = np.asarray(x0)
x1 = np.asarray(x1)
if (x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or
x1.shape[0] != 2):
raise TypeError("set_mapping requires array inputs of shape "
"(2, N).")
denom = x0[1] - x0[0]
mask = denom == 0
denom[mask] = 1.0
s = (x1[1] - x1[0]) / denom
s[mask] = 1.0
s[x0[1] == x0[0]] = 1.0
t = x1[0] - s * x0[0]
s = as_vec4(s, default=(1, 1, 1, 1))
t = as_vec4(t, default=(0, 0, 0, 0))
self._set_st(scale=s, translate=t, update=update)
|
Configure this transform such that it maps points x0 => x1
Parameters
----------
x0 : array-like, shape (2, 2) or (2, 3)
Start location.
x1 : array-like, shape (2, 2) or (2, 3)
End location.
update : bool
If False, then the update event is not emitted.
Examples
--------
For example, if we wish to map the corners of a rectangle::
>>> p1 = [[0, 0], [200, 300]]
onto a unit cube::
>>> p2 = [[-1, -1], [1, 1]]
then we can generate the transform as follows::
>>> tr = STTransform()
>>> tr.set_mapping(p1, p2)
>>> assert tr.map(p1)[:,:2] == p2 # test
|
entailment
|
def translate(self, pos):
"""
Translate the matrix
The translation is applied *after* the transformations already present
in the matrix.
Parameters
----------
pos : arrayndarray
Position to translate by.
"""
self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))
|
Translate the matrix
The translation is applied *after* the transformations already present
in the matrix.
Parameters
----------
pos : arrayndarray
Position to translate by.
|
entailment
|
def scale(self, scale, center=None):
"""
Scale the matrix about a given origin.
The scaling is applied *after* the transformations already present
in the matrix.
Parameters
----------
scale : array-like
Scale factors along x, y and z axes.
center : array-like or None
The x, y and z coordinates to scale around. If None,
(0, 0, 0) will be used.
"""
scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])
if center is not None:
center = as_vec4(center)[0, :3]
scale = np.dot(np.dot(transforms.translate(-center), scale),
transforms.translate(center))
self.matrix = np.dot(self.matrix, scale)
|
Scale the matrix about a given origin.
The scaling is applied *after* the transformations already present
in the matrix.
Parameters
----------
scale : array-like
Scale factors along x, y and z axes.
center : array-like or None
The x, y and z coordinates to scale around. If None,
(0, 0, 0) will be used.
|
entailment
|
def rotate(self, angle, axis):
"""
Rotate the matrix by some angle about a given axis.
The rotation is applied *after* the transformations already present
in the matrix.
Parameters
----------
angle : float
The angle of rotation, in degrees.
axis : array-like
The x, y and z coordinates of the axis vector to rotate around.
"""
self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))
|
Rotate the matrix by some angle about a given axis.
The rotation is applied *after* the transformations already present
in the matrix.
Parameters
----------
angle : float
The angle of rotation, in degrees.
axis : array-like
The x, y and z coordinates of the axis vector to rotate around.
|
entailment
|
def set_mapping(self, points1, points2):
""" Set to a 3D transformation matrix that maps points1 onto points2.
Parameters
----------
points1 : array-like, shape (4, 3)
Four starting 3D coordinates.
points2 : array-like, shape (4, 3)
Four ending 3D coordinates.
"""
# note: need to transpose because util.functions uses opposite
# of standard linear algebra order.
self.matrix = transforms.affine_map(points1, points2).T
|
Set to a 3D transformation matrix that maps points1 onto points2.
Parameters
----------
points1 : array-like, shape (4, 3)
Four starting 3D coordinates.
points2 : array-like, shape (4, 3)
Four ending 3D coordinates.
|
entailment
|
def set_ortho(self, l, r, b, t, n, f):
"""Set ortho transform
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
"""
self.matrix = transforms.ortho(l, r, b, t, n, f)
|
Set ortho transform
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
|
entailment
|
def set_perspective(self, fov, aspect, near, far):
"""Set the perspective
Parameters
----------
fov : float
Field of view.
aspect : float
Aspect ratio.
near : float
Near location.
far : float
Far location.
"""
self.matrix = transforms.perspective(fov, aspect, near, far)
|
Set the perspective
Parameters
----------
fov : float
Field of view.
aspect : float
Aspect ratio.
near : float
Near location.
far : float
Far location.
|
entailment
|
def set_frustum(self, l, r, b, t, n, f):
"""Set the frustum
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
"""
self.matrix = transforms.frustum(l, r, b, t, n, f)
|
Set the frustum
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
|
entailment
|
def log2_lut(v):
"""
See `this algo <https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup>`__ for
computing the log2 of a 32 bit integer using a look up table
Parameters
----------
v : int
32 bit integer
Returns
-------
"""
res = np.zeros(v.shape, dtype=np.int32)
tt = v >> 16
tt_zero = (tt == 0)
tt_not_zero = ~tt_zero
t_h = tt >> 8
t_zero_h = (t_h == 0) & tt_not_zero
t_not_zero_h = ~t_zero_h & tt_not_zero
res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16
res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24
t_l = v >> 8
t_zero_l = (t_l == 0) & tt_zero
t_not_zero_l = ~t_zero_l & tt_zero
res[t_zero_l] = LogTable256[v[t_zero_l]]
res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8
return res
|
See `this algo <https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup>`__ for
computing the log2 of a 32 bit integer using a look up table
Parameters
----------
v : int
32 bit integer
Returns
-------
|
entailment
|
def uniq2orderipix_lut(uniq):
"""
~30% faster than the method below
Parameters
----------
uniq
Returns
-------
"""
order = log2_lut(uniq >> 2) >> 1
ipix = uniq - (1 << (2 * (order + 1)))
return order, ipix
|
~30% faster than the method below
Parameters
----------
uniq
Returns
-------
|
entailment
|
def uniq2orderipix(uniq):
"""
convert a HEALPix pixel coded as a NUNIQ number
to a (norder, ipix) tuple
"""
order = ((np.log2(uniq//4)) // 2)
order = order.astype(int)
ipix = uniq - 4 * (4**order)
return order, ipix
|
convert a HEALPix pixel coded as a NUNIQ number
to a (norder, ipix) tuple
|
entailment
|
def glBufferData(target, data, usage):
""" Data can be numpy array or the size of data to allocate.
"""
if isinstance(data, int):
size = data
data = None
else:
size = data.nbytes
GL.glBufferData(target, size, data, usage)
|
Data can be numpy array or the size of data to allocate.
|
entailment
|
def set_data(self, data=None, **kwargs):
"""Set the line data
Parameters
----------
data : array-like
The data.
**kwargs : dict
Keywoard arguments to pass to MarkerVisual and LineVisal.
"""
if data is None:
pos = None
else:
if isinstance(data, tuple):
pos = np.array(data).T.astype(np.float32)
else:
pos = np.atleast_1d(data).astype(np.float32)
if pos.ndim == 1:
pos = pos[:, np.newaxis]
elif pos.ndim > 2:
raise ValueError('data must have at most two dimensions')
if pos.size == 0:
pos = self._line.pos
# if both args and keywords are zero, then there is no
# point in calling this function.
if len(kwargs) == 0:
raise TypeError("neither line points nor line properties"
"are provided")
elif pos.shape[1] == 1:
x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis]
pos = np.concatenate((x, pos), axis=1)
# if args are empty, don't modify position
elif pos.shape[1] > 3:
raise TypeError("Too many coordinates given (%s; max is 3)."
% pos.shape[1])
# todo: have both sub-visuals share the same buffers.
line_kwargs = {}
for k in self._line_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
line_kwargs[k] = kwargs.pop(k_)
if pos is not None or len(line_kwargs) > 0:
self._line.set_data(pos=pos, **line_kwargs)
marker_kwargs = {}
for k in self._marker_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
marker_kwargs[k_] = kwargs.pop(k)
if pos is not None or len(marker_kwargs) > 0:
self._markers.set_data(pos=pos, **marker_kwargs)
if len(kwargs) > 0:
raise TypeError("Invalid keyword arguments: %s" % kwargs.keys())
|
Set the line data
Parameters
----------
data : array-like
The data.
**kwargs : dict
Keywoard arguments to pass to MarkerVisual and LineVisal.
|
entailment
|
def set_data(self, pos=None, color=None):
"""Set the data
Parameters
----------
pos : float
Position of the line along the axis.
color : list, tuple, or array
The color to use when drawing the line. If an array is given, it
must be of shape (1, 4) and provide one rgba color per vertex.
"""
if pos is not None:
pos = float(pos)
xy = self._pos
if self._is_vertical:
xy[0, 0] = pos
xy[0, 1] = -1
xy[1, 0] = pos
xy[1, 1] = 1
else:
xy[0, 0] = -1
xy[0, 1] = pos
xy[1, 0] = 1
xy[1, 1] = pos
self._changed['pos'] = True
if color is not None:
color = np.array(color, dtype=np.float32)
if color.ndim != 1 or color.shape[0] != 4:
raise ValueError('color must be a 4 element float rgba tuple,'
' list or array')
self._color = color
self._changed['color'] = True
|
Set the data
Parameters
----------
pos : float
Position of the line along the axis.
color : list, tuple, or array
The color to use when drawing the line. If an array is given, it
must be of shape (1, 4) and provide one rgba color per vertex.
|
entailment
|
def _compute_bounds(self, axis, view):
"""Return the (min, max) bounding values of this visual along *axis*
in the local coordinate system.
"""
is_vertical = self._is_vertical
pos = self._pos
if axis == 0 and is_vertical:
return (pos[0, 0], pos[0, 0])
elif axis == 1 and not is_vertical:
return (self._pos[0, 1], self._pos[0, 1])
return None
|
Return the (min, max) bounding values of this visual along *axis*
in the local coordinate system.
|
entailment
|
def curve3_bezier(p1, p2, p3):
"""
Generate the vertices for a quadratic Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve4_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
points = []
_curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x3, points[-1][1] - y3
if (dx * dx + dy * dy) > 1e-10:
points.append((x3, y3))
return np.array(points).reshape(len(points), 2)
|
Generate the vertices for a quadratic Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve4_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
|
entailment
|
def curve4_bezier(p1, p2, p3, p4):
"""
Generate the vertices for a third order Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the second curve point
p4 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve3_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
points = []
_curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x4, points[-1][1] - y4
if (dx * dx + dy * dy) > 1e-10:
points.append((x4, y4))
return np.array(points).reshape(len(points), 2)
|
Generate the vertices for a third order Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the second curve point
p4 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve3_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
|
entailment
|
def render_to_texture(self, data, texture, offset, size):
"""Render a SDF to a texture at a given offset and size
Parameters
----------
data : array
Must be 2D with type np.ubyte.
texture : instance of Texture2D
The texture to render to.
offset : tuple of int
Offset (x, y) to render to inside the texture.
size : tuple of int
Size (w, h) to render inside the texture.
"""
assert isinstance(texture, Texture2D)
set_state(blend=False, depth_test=False)
# calculate the negative half (within object)
orig_tex = Texture2D(255 - data, format='luminance',
wrapping='clamp_to_edge', interpolation='nearest')
edf_neg_tex = self._render_edf(orig_tex)
# calculate positive half (outside object)
orig_tex[:, :, 0] = data
edf_pos_tex = self._render_edf(orig_tex)
# render final product to output texture
self.program_insert['u_texture'] = orig_tex
self.program_insert['u_pos_texture'] = edf_pos_tex
self.program_insert['u_neg_texture'] = edf_neg_tex
self.fbo_to[-1].color_buffer = texture
with self.fbo_to[-1]:
set_viewport(tuple(offset) + tuple(size))
self.program_insert.draw('triangle_strip')
|
Render a SDF to a texture at a given offset and size
Parameters
----------
data : array
Must be 2D with type np.ubyte.
texture : instance of Texture2D
The texture to render to.
offset : tuple of int
Offset (x, y) to render to inside the texture.
size : tuple of int
Size (w, h) to render inside the texture.
|
entailment
|
def _render_edf(self, orig_tex):
"""Render an EDF to a texture"""
# Set up the necessary textures
sdf_size = orig_tex.shape[:2]
comp_texs = []
for _ in range(2):
tex = Texture2D(sdf_size + (4,), format='rgba',
interpolation='nearest', wrapping='clamp_to_edge')
comp_texs.append(tex)
self.fbo_to[0].color_buffer = comp_texs[0]
self.fbo_to[1].color_buffer = comp_texs[1]
for program in self.programs[1:]: # program_seed does not need this
program['u_texh'], program['u_texw'] = sdf_size
# Do the rendering
last_rend = 0
with self.fbo_to[last_rend]:
set_viewport(0, 0, sdf_size[1], sdf_size[0])
self.program_seed['u_texture'] = orig_tex
self.program_seed.draw('triangle_strip')
stepsize = (np.array(sdf_size) // 2).max()
while stepsize > 0:
self.program_flood['u_step'] = stepsize
self.program_flood['u_texture'] = comp_texs[last_rend]
last_rend = 1 if last_rend == 0 else 0
with self.fbo_to[last_rend]:
set_viewport(0, 0, sdf_size[1], sdf_size[0])
self.program_flood.draw('triangle_strip')
stepsize //= 2
return comp_texs[last_rend]
|
Render an EDF to a texture
|
entailment
|
def _add_intent_interactive(self, intent_num=0):
'''
Interactively add a new intent to the intent schema object
'''
print ("Name of intent number : ", intent_num)
slot_type_mappings = load_builtin_slots()
intent_name = read_from_user(str)
print ("How many slots?")
num_slots = read_from_user(int)
slot_list = []
for i in range(num_slots):
print ("Slot name no.", i+1)
slot_name = read_from_user(str).strip()
print ("Slot type? Enter a number for AMAZON supported types below,"
"else enter a string for a Custom Slot")
print (json.dumps(slot_type_mappings, indent=True))
slot_type_str = read_from_user(str)
try: slot_type = slot_type_mappings[int(slot_type_str)]['name']
except: slot_type = slot_type_str
slot_list += [self.build_slot(slot_name, slot_type)]
self.add_intent(intent_name, slot_list)
|
Interactively add a new intent to the intent schema object
|
entailment
|
def from_filename(self, filename):
'''
Build an IntentSchema from a file path
creates a new intent schema if the file does not exist, throws an error if the file
exists but cannot be loaded as a JSON
'''
if os.path.exists(filename):
with open(filename) as fp:
return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict))
else:
print ('File does not exist')
return IntentSchema()
|
Build an IntentSchema from a file path
creates a new intent schema if the file does not exist, throws an error if the file
exists but cannot be loaded as a JSON
|
entailment
|
def launch_request_handler(request):
""" Annotate functions with @VoiceHandler so that they can be automatically mapped
to request types. Use the 'request_type' field to map them to non-intent requests """
user_id = request.access_token()
if user_id in twitter_cache.users():
user_cache = twitter_cache.get_user_state(user_id)
user_cache["amzn_id"]= request.user_id()
base_message = "Welcome to Twitter, {} . How may I help you today ?".format(user_cache["screen_name"])
print (user_cache)
if 'pending_action' in user_cache:
base_message += " You have one pending action . "
print ("Found pending action")
if 'description' in user_cache['pending_action']:
print ("Found description")
base_message += user_cache['pending_action']['description']
return r.create_response(base_message)
card = r.create_card(title="Please log into twitter", card_type="LinkAccount")
return r.create_response(message="Welcome to twitter, looks like you haven't logged in!"
" Log in via the alexa app.", card_obj=card,
end_session=True)
|
Annotate functions with @VoiceHandler so that they can be automatically mapped
to request types. Use the 'request_type' field to map them to non-intent requests
|
entailment
|
def post_tweet_intent_handler(request):
"""
Use the 'intent' field in the VoiceHandler to map to the respective intent.
"""
tweet = request.get_slot_value("Tweet")
tweet = tweet if tweet else ""
if tweet:
user_state = twitter_cache.get_user_state(request.access_token())
def action():
return post_tweet(request.access_token(), tweet)
message = "I am ready to post the tweet, {} ,\n Please say yes to confirm or stop to cancel .".format(tweet)
user_state['pending_action'] = {"action" : action,
"description" : message}
return r.create_response(message=message, end_session=False)
else:
# No tweet could be disambiguated
message = " ".join(
[
"I'm sorry, I couldn't understand what you wanted to tweet .",
"Please prepend the message with either post or tweet ."
]
)
return alexa.create_response(message=message, end_session=False)
|
Use the 'intent' field in the VoiceHandler to map to the respective intent.
|
entailment
|
def tweet_list_handler(request, tweet_list_builder, msg_prefix=""):
""" This is a generic function to handle any intent that reads out a list of tweets"""
# tweet_list_builder is a function that takes a unique identifier and returns a list of things to say
tweets = tweet_list_builder(request.access_token())
print (len(tweets), 'tweets found')
if tweets:
twitter_cache.initialize_user_queue(user_id=request.access_token(),
queue=tweets)
text_to_read_out = twitter_cache.user_queue(request.access_token()).read_out_next(MAX_RESPONSE_TWEETS)
message = msg_prefix + text_to_read_out + ", say 'next' to hear more, or reply to a tweet by number."
return alexa.create_response(message=message,
end_session=False)
else:
return alexa.create_response(message="Sorry, no tweets found, please try something else",
end_session=False)
|
This is a generic function to handle any intent that reads out a list of tweets
|
entailment
|
def focused_on_tweet(request):
"""
Return index if focused on tweet False if couldn't
"""
slots = request.get_slot_map()
if "Index" in slots and slots["Index"]:
index = int(slots['Index'])
elif "Ordinal" in slots and slots["Index"]:
parse_ordinal = lambda inp : int("".join([l for l in inp if l in string.digits]))
index = parse_ordinal(slots['Ordinal'])
else:
return False
index = index - 1 # Going from regular notation to CS notation
user_state = twitter_cache.get_user_state(request.access_token())
queue = user_state['user_queue'].queue()
if index < len(queue):
# Analyze tweet in queue
tweet_to_analyze = queue[index]
user_state['focus_tweet'] = tweet_to_analyze
return index + 1 # Returning to regular notation
twitter_cache.serialize()
return False
|
Return index if focused on tweet False if couldn't
|
entailment
|
def next_intent_handler(request):
"""
Takes care of things whenver the user says 'next'
"""
message = "Sorry, couldn't find anything in your next queue"
end_session = True
if True:
user_queue = twitter_cache.user_queue(request.access_token())
if not user_queue.is_finished():
message = user_queue.read_out_next(MAX_RESPONSE_TWEETS)
if not user_queue.is_finished():
end_session = False
message = message + ". Please, say 'next' if you want me to read out more. "
return alexa.create_response(message=message,
end_session=end_session)
|
Takes care of things whenver the user says 'next'
|
entailment
|
def use_app(backend_name=None, call_reuse=True):
""" Get/create the default Application object
It is safe to call this function multiple times, as long as
backend_name is None or matches the already selected backend.
Parameters
----------
backend_name : str | None
The name of the backend application to use. If not specified, Vispy
tries to select a backend automatically. See ``vispy.use()`` for
details.
call_reuse : bool
Whether to call the backend's `reuse()` function (True by default).
Not implemented by default, but some backends need it. For example,
the notebook backends need to inject some JavaScript in a notebook as
soon as `use_app()` is called.
"""
global default_app
# If we already have a default_app, raise error or return
if default_app is not None:
names = default_app.backend_name.lower().replace('(', ' ').strip(') ')
names = [name for name in names.split(' ') if name]
if backend_name and backend_name.lower() not in names:
raise RuntimeError('Can only select a backend once, already using '
'%s.' % names)
else:
if call_reuse:
default_app.reuse()
return default_app # Current backend matches backend_name
# Create default app
default_app = Application(backend_name)
return default_app
|
Get/create the default Application object
It is safe to call this function multiple times, as long as
backend_name is None or matches the already selected backend.
Parameters
----------
backend_name : str | None
The name of the backend application to use. If not specified, Vispy
tries to select a backend automatically. See ``vispy.use()`` for
details.
call_reuse : bool
Whether to call the backend's `reuse()` function (True by default).
Not implemented by default, but some backends need it. For example,
the notebook backends need to inject some JavaScript in a notebook as
soon as `use_app()` is called.
|
entailment
|
def glBufferData(target, data, usage):
""" Data can be numpy array or the size of data to allocate.
"""
if isinstance(data, int):
size = data
data = ctypes.c_voidp(0)
else:
if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:
data = data.copy('C')
data_ = data
size = data_.nbytes
data = data_.ctypes.data
res = _lib.glBufferData(target, size, data, usage)
|
Data can be numpy array or the size of data to allocate.
|
entailment
|
def set_data(self, vertices=None, faces=None, vertex_colors=None,
face_colors=None, color=None, meshdata=None):
"""Set the mesh data
Parameters
----------
vertices : array-like | None
The vertices.
faces : array-like | None
The faces.
vertex_colors : array-like | None
Colors to use for each vertex.
face_colors : array-like | None
Colors to use for each face.
color : instance of Color
The color to use.
meshdata : instance of MeshData | None
The meshdata.
"""
if meshdata is not None:
self._meshdata = meshdata
else:
self._meshdata = MeshData(vertices=vertices, faces=faces,
vertex_colors=vertex_colors,
face_colors=face_colors)
self._bounds = self._meshdata.get_bounds()
if color is not None:
self._color = Color(color)
self.mesh_data_changed()
|
Set the mesh data
Parameters
----------
vertices : array-like | None
The vertices.
faces : array-like | None
The faces.
vertex_colors : array-like | None
Colors to use for each vertex.
face_colors : array-like | None
Colors to use for each face.
color : instance of Color
The color to use.
meshdata : instance of MeshData | None
The meshdata.
|
entailment
|
def bounds(self, axis, view=None):
"""Get the bounds of the Visual
Parameters
----------
axis : int
The axis.
view : instance of VisualView
The view to use.
"""
if view is None:
view = self
if axis not in self._vshare.bounds:
self._vshare.bounds[axis] = self._compute_bounds(axis, view)
return self._vshare.bounds[axis]
|
Get the bounds of the Visual
Parameters
----------
axis : int
The axis.
view : instance of VisualView
The view to use.
|
entailment
|
def set_gl_state(self, preset=None, **kwargs):
"""Define the set of GL state parameters to use when drawing
Parameters
----------
preset : str
Preset to use.
**kwargs : dict
Keyword arguments to `gloo.set_state`.
"""
self._vshare.gl_state = kwargs
self._vshare.gl_state['preset'] = preset
|
Define the set of GL state parameters to use when drawing
Parameters
----------
preset : str
Preset to use.
**kwargs : dict
Keyword arguments to `gloo.set_state`.
|
entailment
|
def update_gl_state(self, *args, **kwargs):
"""Modify the set of GL state parameters to use when drawing
Parameters
----------
*args : tuple
Arguments.
**kwargs : dict
Keyword argments.
"""
if len(args) == 1:
self._vshare.gl_state['preset'] = args[0]
elif len(args) != 0:
raise TypeError("Only one positional argument allowed.")
self._vshare.gl_state.update(kwargs)
|
Modify the set of GL state parameters to use when drawing
Parameters
----------
*args : tuple
Arguments.
**kwargs : dict
Keyword argments.
|
entailment
|
def _get_hook(self, shader, name):
"""Return a FunctionChain that Filters may use to modify the program.
*shader* should be "frag" or "vert"
*name* should be "pre" or "post"
"""
assert name in ('pre', 'post')
key = (shader, name)
if key in self._hooks:
return self._hooks[key]
hook = StatementList()
if shader == 'vert':
self.view_program.vert[name] = hook
elif shader == 'frag':
self.view_program.frag[name] = hook
self._hooks[key] = hook
return hook
|
Return a FunctionChain that Filters may use to modify the program.
*shader* should be "frag" or "vert"
*name* should be "pre" or "post"
|
entailment
|
def attach(self, filt, view=None):
"""Attach a Filter to this visual
Each filter modifies the appearance or behavior of the visual.
Parameters
----------
filt : object
The filter to attach.
view : instance of VisualView | None
The view to use.
"""
if view is None:
self._vshare.filters.append(filt)
for view in self._vshare.views.keys():
filt._attach(view)
else:
view._filters.append(filt)
filt._attach(view)
|
Attach a Filter to this visual
Each filter modifies the appearance or behavior of the visual.
Parameters
----------
filt : object
The filter to attach.
view : instance of VisualView | None
The view to use.
|
entailment
|
def detach(self, filt, view=None):
"""Detach a filter.
Parameters
----------
filt : object
The filter to detach.
view : instance of VisualView | None
The view to use.
"""
if view is None:
self._vshare.filters.remove(filt)
for view in self._vshare.views.keys():
filt._detach(view)
else:
view._filters.remove(filt)
filt._detach(view)
|
Detach a filter.
Parameters
----------
filt : object
The filter to detach.
view : instance of VisualView | None
The view to use.
|
entailment
|
def add_subvisual(self, visual):
"""Add a subvisual
Parameters
----------
visual : instance of Visual
The visual to add.
"""
visual.transforms = self.transforms
visual._prepare_transforms(visual)
self._subvisuals.append(visual)
visual.events.update.connect(self._subv_update)
self.update()
|
Add a subvisual
Parameters
----------
visual : instance of Visual
The visual to add.
|
entailment
|
def remove_subvisual(self, visual):
"""Remove a subvisual
Parameters
----------
visual : instance of Visual
The visual to remove.
"""
visual.events.update.disconnect(self._subv_update)
self._subvisuals.remove(visual)
self.update()
|
Remove a subvisual
Parameters
----------
visual : instance of Visual
The visual to remove.
|
entailment
|
def draw(self):
"""Draw the visual
"""
if not self.visible:
return
if self._prepare_draw(view=self) is False:
return
for v in self._subvisuals:
if v.visible:
v.draw()
|
Draw the visual
|
entailment
|
def set_gl_state(self, preset=None, **kwargs):
"""Define the set of GL state parameters to use when drawing
Parameters
----------
preset : str
Preset to use.
**kwargs : dict
Keyword arguments to `gloo.set_state`.
"""
for v in self._subvisuals:
v.set_gl_state(preset=preset, **kwargs)
|
Define the set of GL state parameters to use when drawing
Parameters
----------
preset : str
Preset to use.
**kwargs : dict
Keyword arguments to `gloo.set_state`.
|
entailment
|
def update_gl_state(self, *args, **kwargs):
"""Modify the set of GL state parameters to use when drawing
Parameters
----------
*args : tuple
Arguments.
**kwargs : dict
Keyword argments.
"""
for v in self._subvisuals:
v.update_gl_state(*args, **kwargs)
|
Modify the set of GL state parameters to use when drawing
Parameters
----------
*args : tuple
Arguments.
**kwargs : dict
Keyword argments.
|
entailment
|
def attach(self, filt, view=None):
"""Attach a Filter to this visual
Each filter modifies the appearance or behavior of the visual.
Parameters
----------
filt : object
The filter to attach.
view : instance of VisualView | None
The view to use.
"""
for v in self._subvisuals:
v.attach(filt, v)
|
Attach a Filter to this visual
Each filter modifies the appearance or behavior of the visual.
Parameters
----------
filt : object
The filter to attach.
view : instance of VisualView | None
The view to use.
|
entailment
|
def detach(self, filt, view=None):
"""Detach a filter.
Parameters
----------
filt : object
The filter to detach.
view : instance of VisualView | None
The view to use.
"""
for v in self._subvisuals:
v.detach(filt, v)
|
Detach a filter.
Parameters
----------
filt : object
The filter to detach.
view : instance of VisualView | None
The view to use.
|
entailment
|
def addMov(self, product, quantity=None, mode="buy", stop_limit=None,
auto_margin=None, name_counter=None):
"""main function for placing movements
stop_limit = {'gain': [mode, value], 'loss': [mode, value]}"""
# ~ ARGS ~
if (not isinstance(product, type('')) or
(not isinstance(name_counter, type('')) and
name_counter is not None)):
raise ValueError('product and name_counter have to be a string')
if not isinstance(stop_limit, type({})) and stop_limit is not None:
raise ValueError('it has to be a dictionary')
# exclusive args
if quantity is not None and auto_margin is not None:
raise ValueError("quantity and auto_margin are exclusive")
elif quantity is None and auto_margin is None:
raise ValueError("need at least one quantity")
# ~ MAIN ~
# open new window
mov = self.new_mov(product)
mov.open()
mov.set_mode(mode)
# set quantity
if quantity is not None:
mov.set_quantity(quantity)
# for best performance in long times
try:
margin = mov.get_unit_value() * quantity
except TimeoutError:
mov.close()
logger.warning("market closed for %s" % mov.product)
return False
# auto_margin calculate quantity (how simple!)
elif auto_margin is not None:
unit_value = mov.get_unit_value()
mov.set_quantity(auto_margin * unit_value)
margin = auto_margin
# stop limit (how can be so simple!)
if stop_limit is not None:
mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1])
mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1])
# confirm
try:
mov.confirm()
except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e:
logger.warning(e.err)
# resolve immediately
mov.set_quantity(e.quant)
mov.confirm()
except Exception:
logger.exception('undefined error in movement confirmation')
mov_logger.info(f"added {mov.product} movement of {mov.quantity} " +
f"with margin of {margin}")
mov_logger.debug(f"stop_limit: {stop_limit}")
|
main function for placing movements
stop_limit = {'gain': [mode, value], 'loss': [mode, value]}
|
entailment
|
def checkPos(self):
"""check all positions"""
soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser')
poss = []
for label in soup.find_all("tr"):
pos_id = label['id']
# init an empty list
# check if it already exist
pos_list = [x for x in self.positions if x.id == pos_id]
if pos_list:
# and update it
pos = pos_list[0]
pos.update(label)
else:
pos = self.new_pos(label)
pos.get_gain()
poss.append(pos)
# remove old positions
self.positions.clear()
self.positions.extend(poss)
logger.debug("%d positions update" % len(poss))
return self.positions
|
check all positions
|
entailment
|
def checkStock(self):
"""check stocks in preference"""
if not self.preferences:
logger.debug("no preferences")
return None
soup = BeautifulSoup(
self.xpath(path['stock-table'])[0].html, "html.parser")
count = 0
# iterate through product in left panel
for product in soup.select("div.tradebox"):
prod_name = product.select("span.instrument-name")[0].text
stk_name = [x for x in self.preferences
if x.lower() in prod_name.lower()]
if not stk_name:
continue
name = prod_name
if not [x for x in self.stocks if x.product == name]:
self.stocks.append(Stock(name))
stock = [x for x in self.stocks if x.product == name][0]
if 'tradebox-market-closed' in product['class']:
stock.market = False
if not stock.market:
logger.debug("market closed for %s" % stock.product)
continue
sell_price = product.select("div.tradebox-price-sell")[0].text
buy_price = product.select("div.tradebox-price-buy")[0].text
sent = int(product.select(path['sent'])[0].text.strip('%')) / 100
stock.new_rec([sell_price, buy_price, sent])
count += 1
logger.debug(f"added %d stocks" % count)
return self.stocks
|
check stocks in preference
|
entailment
|
def clearPrefs(self):
"""clear the left panel and preferences"""
self.preferences.clear()
tradebox_num = len(self.css('div.tradebox'))
for i in range(tradebox_num):
self.xpath(path['trade-box'])[0].right_click()
self.css1('div.item-trade-contextmenu-list-remove').click()
logger.info("cleared preferences")
|
clear the left panel and preferences
|
entailment
|
def addPrefs(self, prefs=[]):
"""add preference in self.preferences"""
if len(prefs) == len(self.preferences) == 0:
logger.debug("no preferences")
return None
self.preferences.extend(prefs)
self.css1(path['search-btn']).click()
count = 0
for pref in self.preferences:
self.css1(path['search-pref']).fill(pref)
self.css1(path['pref-icon']).click()
btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper')
if not self.css1('svg', btn)['class'] is None:
btn.click()
count += 1
# remove window
self.css1(path['pref-icon']).click()
# close finally
self.css1(path['back-btn']).click()
self.css1(path['back-btn']).click()
logger.debug("updated %d preferences" % count)
return self.preferences
|
add preference in self.preferences
|
entailment
|
def _load_glyph(f, char, glyphs_dict):
"""Load glyph from font into dict"""
from ...ext.freetype import (FT_LOAD_RENDER, FT_LOAD_NO_HINTING,
FT_LOAD_NO_AUTOHINT)
flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT
face = _load_font(f['face'], f['bold'], f['italic'])
face.set_char_size(f['size'] * 64)
# get the character of interest
face.load_char(char, flags)
bitmap = face.glyph.bitmap
width = face.glyph.bitmap.width
height = face.glyph.bitmap.rows
bitmap = np.array(bitmap.buffer)
w0 = bitmap.size // height if bitmap.size > 0 else 0
bitmap.shape = (height, w0)
bitmap = bitmap[:, :width].astype(np.ubyte)
left = face.glyph.bitmap_left
top = face.glyph.bitmap_top
advance = face.glyph.advance.x / 64.
glyph = dict(char=char, offset=(left, top), bitmap=bitmap,
advance=advance, kerning={})
glyphs_dict[char] = glyph
# Generate kerning
for other_char, other_glyph in glyphs_dict.items():
kerning = face.get_kerning(other_char, char)
glyph['kerning'][other_char] = kerning.x / 64.
kerning = face.get_kerning(char, other_char)
other_glyph['kerning'][char] = kerning.x / 64.
|
Load glyph from font into dict
|
entailment
|
def _set_clipper(self, node, clipper):
"""Assign a clipper that is inherited from a parent node.
If *clipper* is None, then remove any clippers for *node*.
"""
if node in self._clippers:
self.detach(self._clippers.pop(node))
if clipper is not None:
self.attach(clipper)
self._clippers[node] = clipper
|
Assign a clipper that is inherited from a parent node.
If *clipper* is None, then remove any clippers for *node*.
|
entailment
|
def _update_trsys(self, event):
"""Transform object(s) have changed for this Node; assign these to the
visual's TransformSystem.
"""
doc = self.document_node
scene = self.scene_node
root = self.root_node
self.transforms.visual_transform = self.node_transform(scene)
self.transforms.scene_transform = scene.node_transform(doc)
self.transforms.document_transform = doc.node_transform(root)
Node._update_trsys(self, event)
|
Transform object(s) have changed for this Node; assign these to the
visual's TransformSystem.
|
entailment
|
def cfnumber_to_number(cfnumber):
"""Convert CFNumber to python int or float."""
numeric_type = cf.CFNumberGetType(cfnumber)
cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type: c_int16,
kCFNumberSInt32Type: c_int32,
kCFNumberSInt64Type: c_int64,
kCFNumberFloat32Type: c_float,
kCFNumberFloat64Type: c_double,
kCFNumberCharType: c_byte, kCFNumberShortType: c_short,
kCFNumberIntType: c_int, kCFNumberLongType: c_long,
kCFNumberLongLongType: c_longlong,
kCFNumberFloatType: c_float,
kCFNumberDoubleType: c_double,
kCFNumberCFIndexType: CFIndex,
kCFNumberCGFloatType: CGFloat}
if numeric_type in cfnum_to_ctype:
t = cfnum_to_ctype[numeric_type]
result = t()
if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)):
return result.value
else:
raise Exception(
'cfnumber_to_number: unhandled CFNumber type %d' % numeric_type)
|
Convert CFNumber to python int or float.
|
entailment
|
def cftype_to_value(cftype):
"""Convert a CFType into an equivalent python type.
The convertible CFTypes are taken from the known_cftypes
dictionary, which may be added to if another library implements
its own conversion methods."""
if not cftype:
return None
typeID = cf.CFGetTypeID(cftype)
if typeID in known_cftypes:
convert_function = known_cftypes[typeID]
return convert_function(cftype)
else:
return cftype
|
Convert a CFType into an equivalent python type.
The convertible CFTypes are taken from the known_cftypes
dictionary, which may be added to if another library implements
its own conversion methods.
|
entailment
|
def cfset_to_set(cfset):
"""Convert CFSet to python set."""
count = cf.CFSetGetCount(cfset)
buffer = (c_void_p * count)()
cf.CFSetGetValues(cfset, byref(buffer))
return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])
|
Convert CFSet to python set.
|
entailment
|
def cfarray_to_list(cfarray):
"""Convert CFArray to python list."""
count = cf.CFArrayGetCount(cfarray)
return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i)))
for i in range(count)]
|
Convert CFArray to python list.
|
entailment
|
def ctype_for_encoding(self, encoding):
"""Return ctypes type for an encoded Objective-C type."""
if encoding in self.typecodes:
return self.typecodes[encoding]
elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes:
return POINTER(self.typecodes[encoding[1:]])
elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding,
NSZoneEncoding]:
return c_void_p
elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes:
return self.typecodes[encoding[1:]]
elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes:
return POINTER(self.typecodes[encoding[2:]])
else:
raise Exception('unknown encoding for %s: %s'
% (self.name, encoding))
|
Return ctypes type for an encoded Objective-C type.
|
entailment
|
def classmethod(self, encoding):
"""Function decorator for class methods."""
# Add encodings for hidden self and cmd arguments.
encoding = ensure_bytes(encoding)
typecodes = parse_type_encoding(encoding)
typecodes.insert(1, b'@:')
encoding = b''.join(typecodes)
def decorator(f):
def objc_class_method(objc_cls, objc_cmd, *args):
py_cls = ObjCClass(objc_cls)
py_cls.objc_cmd = objc_cmd
args = convert_method_arguments(encoding, args)
result = f(py_cls, *args)
if isinstance(result, ObjCClass):
result = result.ptr.value
elif isinstance(result, ObjCInstance):
result = result.ptr.value
return result
name = f.__name__.replace('_', ':')
self.add_class_method(objc_class_method, name, encoding)
return objc_class_method
return decorator
|
Function decorator for class methods.
|
entailment
|
def append(self, P0, P1, itemsize=None, **kwargs):
"""
Append a new set of segments to the collection.
For kwargs argument, n is the number of vertices (local) or the number
of item (shared)
Parameters
----------
P : np.array
Vertices positions of the path(s) to be added
itemsize: int or None
Size of an individual path
caps : list, array or 2-tuple
Path start /end cap
color : list, array or 4-tuple
Path color
linewidth : list, array or float
Path linewidth
antialias : list, array or float
Path antialias area
"""
itemsize = itemsize or 1
itemcount = len(P0) // itemsize
V = np.empty(itemcount, dtype=self.vtype)
# Apply default values on vertices
for name in self.vtype.names:
if name not in ['collection_index', 'P0', 'P1', 'index']:
V[name] = kwargs.get(name, self._defaults[name])
V['P0'] = P0
V['P1'] = P1
V = V.repeat(4, axis=0)
V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize)
I = np.ones((itemcount, 6), dtype=int)
I[:] = 0, 1, 2, 0, 2, 3
I[:] += 4 * np.arange(itemcount)[:, np.newaxis]
I = I.ravel()
# Uniforms
if self.utype:
U = np.zeros(itemcount, dtype=self.utype)
for name in self.utype.names:
if name not in ["__unused__"]:
U[name] = kwargs.get(name, self._defaults[name])
else:
U = None
Collection.append(
self, vertices=V, uniforms=U, indices=I, itemsize=4 * itemcount)
|
Append a new set of segments to the collection.
For kwargs argument, n is the number of vertices (local) or the number
of item (shared)
Parameters
----------
P : np.array
Vertices positions of the path(s) to be added
itemsize: int or None
Size of an individual path
caps : list, array or 2-tuple
Path start /end cap
color : list, array or 4-tuple
Path color
linewidth : list, array or float
Path linewidth
antialias : list, array or float
Path antialias area
|
entailment
|
def get_frag_shader(volumes, clipped=False, n_volume_max=5):
"""
Get the fragment shader code - we use the shader_program object to determine
which layers are enabled and therefore what to include in the shader code.
"""
declarations = ""
before_loop = ""
in_loop = ""
after_loop = ""
for index in range(n_volume_max):
declarations += "uniform $sampler_type u_volumetex_{0:d};\n".format(index)
before_loop += "dummy = $sample(u_volumetex_{0:d}, loc).g;\n".format(index)
declarations += "uniform $sampler_type dummy1;\n"
declarations += "float dummy;\n"
for label in sorted(volumes):
index = volumes[label]['index']
# Global declarations
declarations += "uniform float u_weight_{0:d};\n".format(index)
declarations += "uniform int u_enabled_{0:d};\n".format(index)
# Declarations before the raytracing loop
before_loop += "float max_val_{0:d} = 0;\n".format(index)
# Calculation inside the main raytracing loop
in_loop += "if(u_enabled_{0:d} == 1) {{\n\n".format(index)
if clipped:
in_loop += ("if(loc.r > u_clip_min.r && loc.r < u_clip_max.r &&\n"
" loc.g > u_clip_min.g && loc.g < u_clip_max.g &&\n"
" loc.b > u_clip_min.b && loc.b < u_clip_max.b) {\n\n")
in_loop += "// Sample texture for layer {0}\n".format(label)
in_loop += "val = $sample(u_volumetex_{0:d}, loc).g;\n".format(index)
if volumes[label].get('multiply') is not None:
index_other = volumes[volumes[label]['multiply']]['index']
in_loop += ("if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\n"
.format(index_other))
in_loop += "max_val_{0:d} = max(val, max_val_{0:d});\n\n".format(index)
if clipped:
in_loop += "}\n\n"
in_loop += "}\n\n"
# Calculation after the main loop
after_loop += "// Compute final color for layer {0}\n".format(label)
after_loop += ("color = $cmap{0:d}(max_val_{0:d});\n"
"color.a *= u_weight_{0:d};\n"
"total_color += color.a * color;\n"
"max_alpha = max(color.a, max_alpha);\n"
"count += color.a;\n\n").format(index)
if not clipped:
before_loop += "\nfloat val3 = u_clip_min.g + u_clip_max.g;\n\n"
# Code esthetics
before_loop = indent(before_loop, " " * 4).strip()
in_loop = indent(in_loop, " " * 16).strip()
after_loop = indent(after_loop, " " * 4).strip()
return FRAG_SHADER.format(declarations=declarations,
before_loop=before_loop,
in_loop=in_loop,
after_loop=after_loop)
|
Get the fragment shader code - we use the shader_program object to determine
which layers are enabled and therefore what to include in the shader code.
|
entailment
|
def eglGetDisplay(display=EGL_DEFAULT_DISPLAY):
""" Connect to the EGL display server.
"""
res = _lib.eglGetDisplay(display)
if not res or res == EGL_NO_DISPLAY:
raise RuntimeError('Could not create display')
return res
|
Connect to the EGL display server.
|
entailment
|
def eglInitialize(display):
""" Initialize EGL and return EGL version tuple.
"""
majorVersion = (_c_int*1)()
minorVersion = (_c_int*1)()
res = _lib.eglInitialize(display, majorVersion, minorVersion)
if res == EGL_FALSE:
raise RuntimeError('Could not initialize')
return majorVersion[0], minorVersion[0]
|
Initialize EGL and return EGL version tuple.
|
entailment
|
def eglQueryString(display, name):
""" Query string from display
"""
out = _lib.eglQueryString(display, name)
if not out:
raise RuntimeError('Could not query %s' % name)
return out
|
Query string from display
|
entailment
|
def get_edges(self, indexed=None):
"""Edges of the mesh
Parameters
----------
indexed : str | None
If indexed is None, return (Nf, 3) array of vertex indices,
two per edge in the mesh.
If indexed is 'faces', then return (Nf, 3, 2) array of vertex
indices with 3 edges per face, and two vertices per edge.
Returns
-------
edges : ndarray
The edges.
"""
if indexed is None:
if self._edges is None:
self._compute_edges(indexed=None)
return self._edges
elif indexed == 'faces':
if self._edges_indexed_by_faces is None:
self._compute_edges(indexed='faces')
return self._edges_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
Edges of the mesh
Parameters
----------
indexed : str | None
If indexed is None, return (Nf, 3) array of vertex indices,
two per edge in the mesh.
If indexed is 'faces', then return (Nf, 3, 2) array of vertex
indices with 3 edges per face, and two vertices per edge.
Returns
-------
edges : ndarray
The edges.
|
entailment
|
def set_faces(self, faces):
"""Set the faces
Parameters
----------
faces : ndarray
(Nf, 3) array of faces. Each row in the array contains
three indices into the vertex array, specifying the three corners
of a triangular face.
"""
self._faces = faces
self._edges = None
self._edges_indexed_by_faces = None
self._vertex_faces = None
self._vertices_indexed_by_faces = None
self.reset_normals()
self._vertex_colors_indexed_by_faces = None
self._face_colors_indexed_by_faces = None
|
Set the faces
Parameters
----------
faces : ndarray
(Nf, 3) array of faces. Each row in the array contains
three indices into the vertex array, specifying the three corners
of a triangular face.
|
entailment
|
def get_vertices(self, indexed=None):
"""Get the vertices
Parameters
----------
indexed : str | None
If Note, return an array (N,3) of the positions of vertices in
the mesh. By default, each unique vertex appears only once.
If indexed is 'faces', then the array will instead contain three
vertices per face in the mesh (and a single vertex may appear more
than once in the array).
Returns
-------
vertices : ndarray
The vertices.
"""
if indexed is None:
if (self._vertices is None and
self._vertices_indexed_by_faces is not None):
self._compute_unindexed_vertices()
return self._vertices
elif indexed == 'faces':
if (self._vertices_indexed_by_faces is None and
self._vertices is not None):
self._vertices_indexed_by_faces = \
self._vertices[self.get_faces()]
return self._vertices_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
Get the vertices
Parameters
----------
indexed : str | None
If Note, return an array (N,3) of the positions of vertices in
the mesh. By default, each unique vertex appears only once.
If indexed is 'faces', then the array will instead contain three
vertices per face in the mesh (and a single vertex may appear more
than once in the array).
Returns
-------
vertices : ndarray
The vertices.
|
entailment
|
def get_bounds(self):
"""Get the mesh bounds
Returns
-------
bounds : list
A list of tuples of mesh bounds.
"""
if self._vertices_indexed_by_faces is not None:
v = self._vertices_indexed_by_faces
elif self._vertices is not None:
v = self._vertices
else:
return None
bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])]
return bounds
|
Get the mesh bounds
Returns
-------
bounds : list
A list of tuples of mesh bounds.
|
entailment
|
def set_vertices(self, verts=None, indexed=None, reset_normals=True):
"""Set the mesh vertices
Parameters
----------
verts : ndarray | None
The array (Nv, 3) of vertex coordinates.
indexed : str | None
If indexed=='faces', then the data must have shape (Nf, 3, 3) and
is assumed to be already indexed as a list of faces. This will
cause any pre-existing normal vectors to be cleared unless
reset_normals=False.
reset_normals : bool
If True, reset the normals.
"""
if indexed is None:
if verts is not None:
self._vertices = verts
self._vertices_indexed_by_faces = None
elif indexed == 'faces':
self._vertices = None
if verts is not None:
self._vertices_indexed_by_faces = verts
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
if reset_normals:
self.reset_normals()
|
Set the mesh vertices
Parameters
----------
verts : ndarray | None
The array (Nv, 3) of vertex coordinates.
indexed : str | None
If indexed=='faces', then the data must have shape (Nf, 3, 3) and
is assumed to be already indexed as a list of faces. This will
cause any pre-existing normal vectors to be cleared unless
reset_normals=False.
reset_normals : bool
If True, reset the normals.
|
entailment
|
def has_vertex_color(self):
"""Return True if this data set has vertex color information"""
for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces,
self._vertex_colors_indexed_by_edges):
if v is not None:
return True
return False
|
Return True if this data set has vertex color information
|
entailment
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.