sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def _hex_to_rgba(hexs): """Convert hex to rgba, permitting alpha values in hex""" hexs = np.atleast_1d(np.array(hexs, '|U9')) out = np.ones((len(hexs), 4), np.float32) for hi, h in enumerate(hexs): assert isinstance(h, string_types) off = 1 if h[0] == '#' else 0 assert len(h) in (6+off, 8+off) e = (len(h)-off) // 2 out[hi, :e] = [int(h[i:i+2], 16) / 255. for i in range(off, len(h), 2)] return out
Convert hex to rgba, permitting alpha values in hex
entailment
def _rgb_to_hex(rgbs): """Convert rgb to hex triplet""" rgbs, n_dim = _check_color_dim(rgbs) return np.array(['#%02x%02x%02x' % tuple((255*rgb[:3]).astype(np.uint8)) for rgb in rgbs], '|U7')
Convert rgb to hex triplet
entailment
def _rgb_to_hsv(rgbs): """Convert Nx3 or Nx4 rgb to hsv""" rgbs, n_dim = _check_color_dim(rgbs) hsvs = list() for rgb in rgbs: rgb = rgb[:3] # don't use alpha here idx = np.argmax(rgb) val = rgb[idx] c = val - np.min(rgb) if c == 0: hue = 0 sat = 0 else: if idx == 0: # R == max hue = ((rgb[1] - rgb[2]) / c) % 6 elif idx == 1: # G == max hue = (rgb[2] - rgb[0]) / c + 2 else: # B == max hue = (rgb[0] - rgb[1]) / c + 4 hue *= 60 sat = c / val hsv = [hue, sat, val] hsvs.append(hsv) hsvs = np.array(hsvs, dtype=np.float32) if n_dim == 4: hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1) return hsvs
Convert Nx3 or Nx4 rgb to hsv
entailment
def _hsv_to_rgb(hsvs): """Convert Nx3 or Nx4 hsv to rgb""" hsvs, n_dim = _check_color_dim(hsvs) # In principle, we *might* be able to vectorize this, but might as well # wait until a compelling use case appears rgbs = list() for hsv in hsvs: c = hsv[1] * hsv[2] m = hsv[2] - c hp = hsv[0] / 60 x = c * (1 - abs(hp % 2 - 1)) if 0 <= hp < 1: r, g, b = c, x, 0 elif hp < 2: r, g, b = x, c, 0 elif hp < 3: r, g, b = 0, c, x elif hp < 4: r, g, b = 0, x, c elif hp < 5: r, g, b = x, 0, c else: r, g, b = c, 0, x rgb = [r + m, g + m, b + m] rgbs.append(rgb) rgbs = np.array(rgbs, dtype=np.float32) if n_dim == 4: rgbs = np.concatenate((rgbs, hsvs[:, 3]), axis=1) return rgbs
Convert Nx3 or Nx4 hsv to rgb
entailment
def _lab_to_rgb(labs): """Convert Nx3 or Nx4 lab to rgb""" # adapted from BSD-licensed work in MATLAB by Mark Ruzon # Based on ITU-R Recommendation BT.709 using the D65 labs, n_dim = _check_color_dim(labs) # Convert Lab->XYZ (silly indexing used to preserve dimensionality) y = (labs[:, 0] + 16.) / 116. x = (labs[:, 1] / 500.) + y z = y - (labs[:, 2] / 200.) xyz = np.concatenate(([x], [y], [z])) # 3xN over = xyz > 0.2068966 xyz[over] = xyz[over] ** 3. xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787 # Convert XYZ->LAB rgbs = np.dot(_xyz2rgb_norm, xyz).T over = rgbs > 0.0031308 rgbs[over] = 1.055 * (rgbs[over] ** (1. / 2.4)) - 0.055 rgbs[~over] *= 12.92 if n_dim == 4: rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1) rgbs = np.clip(rgbs, 0., 1.) return rgbs
Convert Nx3 or Nx4 lab to rgb
entailment
def get(self, tags): """Find an adequate value for this field from a dict of tags.""" # Try to find our name value = tags.get(self.name, '') for name in self.alternate_tags: # Iterate of alternates until a non-empty value is found value = value or tags.get(name, '') # If we still have nothing, return our default value = value or self.default return value
Find an adequate value for this field from a dict of tags.
entailment
def parse_function_signature(code): """ Return the name, arguments, and return type of the first function definition found in *code*. Arguments are returned as [(type, name), ...]. """ m = re.search("^\s*" + re_func_decl + "\s*{", code, re.M) if m is None: print(code) raise Exception("Failed to parse function signature. " "Full code is printed above.") rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split(',')] return name, args, rtype
Return the name, arguments, and return type of the first function definition found in *code*. Arguments are returned as [(type, name), ...].
entailment
def find_functions(code): """ Return a list of (name, arguments, return type) for all function definition2 found in *code*. Arguments are returned as [(type, name), ...]. """ regex = "^\s*" + re_func_decl + "\s*{" funcs = [] while True: m = re.search(regex, code, re.M) if m is None: return funcs rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split(',')] funcs.append((name, args, rtype)) code = code[m.end():]
Return a list of (name, arguments, return type) for all function definition2 found in *code*. Arguments are returned as [(type, name), ...].
entailment
def find_prototypes(code): """ Return a list of signatures for each function prototype declared in *code*. Format is [(name, [args], rtype), ...]. """ prots = [] lines = code.split('\n') for line in lines: m = re.match("\s*" + re_func_prot, line) if m is not None: rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split(',')] prots.append((name, args, rtype)) return prots
Return a list of signatures for each function prototype declared in *code*. Format is [(name, [args], rtype), ...].
entailment
def find_program_variables(code): """ Return a dict describing program variables:: {'var_name': ('uniform|attribute|varying', type), ...} """ vars = {} lines = code.split('\n') for line in lines: m = re.match(r"\s*" + re_prog_var_declaration + r"\s*(=|;)", line) if m is not None: vtype, dtype, names = m.groups()[:3] for name in names.split(','): vars[name.strip()] = (vtype, dtype) return vars
Return a dict describing program variables:: {'var_name': ('uniform|attribute|varying', type), ...}
entailment
def _set_config(c): """Set gl configuration for SDL2""" func = sdl2.SDL_GL_SetAttribute func(sdl2.SDL_GL_RED_SIZE, c['red_size']) func(sdl2.SDL_GL_GREEN_SIZE, c['green_size']) func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size']) func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size']) func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size']) func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size']) func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0) samps = c['samples'] func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0) func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0) func(sdl2.SDL_GL_STEREO, c['stereo'])
Set gl configuration for SDL2
entailment
def create_response(self, message=None, end_session=False, card_obj=None, reprompt_message=None, is_ssml=None): """ message - text message to be spoken out by the Echo end_session - flag to determine whether this interaction should end the session card_obj = JSON card object to substitute the 'card' field in the raw_response """ response = dict(self.base_response) if message: response['response'] = self.create_speech(message, is_ssml) response['response']['shouldEndSession'] = end_session if card_obj: response['response']['card'] = card_obj if reprompt_message: response['response']['reprompt'] = self.create_speech(reprompt_message, is_ssml) return Response(response)
message - text message to be spoken out by the Echo end_session - flag to determine whether this interaction should end the session card_obj = JSON card object to substitute the 'card' field in the raw_response
entailment
def create_card(self, title=None, subtitle=None, content=None, card_type="Simple"): """ card_obj = JSON card object to substitute the 'card' field in the raw_response format: { "type": "Simple", #COMPULSORY "title": "string", #OPTIONAL "subtitle": "string", #OPTIONAL "content": "string" #OPTIONAL } """ card = {"type": card_type} if title: card["title"] = title if subtitle: card["subtitle"] = subtitle if content: card["content"] = content return card
card_obj = JSON card object to substitute the 'card' field in the raw_response format: { "type": "Simple", #COMPULSORY "title": "string", #OPTIONAL "subtitle": "string", #OPTIONAL "content": "string" #OPTIONAL }
entailment
def intent(self, intent): ''' Decorator to register intent handler''' def _handler(func): self._handlers['IntentRequest'][intent] = func return func return _handler
Decorator to register intent handler
entailment
def request(self, request_type): ''' Decorator to register generic request handler ''' def _handler(func): self._handlers[request_type] = func return func return _handler
Decorator to register generic request handler
entailment
def route_request(self, request_json, metadata=None): ''' Route the request object to the right handler function ''' request = Request(request_json) request.metadata = metadata # add reprompt handler or some such for default? handler_fn = self._handlers[self._default] # Set default handling for noisy requests if not request.is_intent() and (request.request_type() in self._handlers): ''' Route request to a non intent handler ''' handler_fn = self._handlers[request.request_type()] elif request.is_intent() and request.intent_name() in self._handlers['IntentRequest']: ''' Route to right intent handler ''' handler_fn = self._handlers['IntentRequest'][request.intent_name()] response = handler_fn(request) response.set_session(request.session) return response.to_json()
Route the request object to the right handler function
entailment
def _viewbox_set(self, viewbox): """ Friend method of viewbox to register itself. """ self._viewbox = viewbox # Connect viewbox.events.mouse_press.connect(self.viewbox_mouse_event) viewbox.events.mouse_release.connect(self.viewbox_mouse_event) viewbox.events.mouse_move.connect(self.viewbox_mouse_event) viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event) viewbox.events.resize.connect(self.viewbox_resize_event)
Friend method of viewbox to register itself.
entailment
def _viewbox_unset(self, viewbox): """ Friend method of viewbox to unregister itself. """ self._viewbox = None # Disconnect viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event) viewbox.events.resize.disconnect(self.viewbox_resize_event)
Friend method of viewbox to unregister itself.
entailment
def set_range(self, x=None, y=None, z=None, margin=0.05): """ Set the range of the view region for the camera Parameters ---------- x : tuple | None X range. y : tuple | None Y range. z : tuple | None Z range. margin : float Margin to use. Notes ----- The view is set to the given range or to the scene boundaries if ranges are not specified. The ranges should be 2-element tuples specifying the min and max for each dimension. For the PanZoomCamera the view is fully defined by the range. For e.g. the TurntableCamera the elevation and azimuth are not set. One should use reset() for that. """ # Flag to indicate that this is an initializing (not user-invoked) init = self._xlim is None # Collect given bounds bounds = [None, None, None] if x is not None: bounds[0] = float(x[0]), float(x[1]) if y is not None: bounds[1] = float(y[0]), float(y[1]) if z is not None: bounds[2] = float(z[0]), float(z[1]) # If there is no viewbox, store given bounds in lim variables, and stop if self._viewbox is None: self._set_range_args = bounds[0], bounds[1], bounds[2], margin return # There is a viewbox, we're going to set the range for real self._resetting = True # Get bounds from viewbox if not given if all([(b is None) for b in bounds]): bounds = self._viewbox.get_scene_bounds() else: for i in range(3): if bounds[i] is None: bounds[i] = self._viewbox.get_scene_bounds(i) # Calculate ranges and margins ranges = [b[1] - b[0] for b in bounds] margins = [(r*margin or 0.1) for r in ranges] # Assign limits for this camera bounds_margins = [(b[0]-m, b[1]+m) for b, m in zip(bounds, margins)] self._xlim, self._ylim, self._zlim = bounds_margins # Store center location if (not init) or (self._center is None): self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)] # Let specific camera handle it self._set_range(init) # Finish self._resetting = False self.view_changed()
Set the range of the view region for the camera Parameters ---------- x : tuple | None X range. y : tuple | None Y range. z : tuple | None Z range. margin : float Margin to use. Notes ----- The view is set to the given range or to the scene boundaries if ranges are not specified. The ranges should be 2-element tuples specifying the min and max for each dimension. For the PanZoomCamera the view is fully defined by the range. For e.g. the TurntableCamera the elevation and azimuth are not set. One should use reset() for that.
entailment
def get_state(self): """ Get the current view state of the camera Returns a dict of key-value pairs. The exact keys depend on the camera. Can be passed to set_state() (of this or another camera of the same type) to reproduce the state. """ D = {} for key in self._state_props: D[key] = getattr(self, key) return D
Get the current view state of the camera Returns a dict of key-value pairs. The exact keys depend on the camera. Can be passed to set_state() (of this or another camera of the same type) to reproduce the state.
entailment
def set_state(self, state=None, **kwargs): """ Set the view state of the camera Should be a dict (or kwargs) as returned by get_state. It can be an incomlete dict, in which case only the specified properties are set. Parameters ---------- state : dict The camera state. **kwargs : dict Unused keyword arguments. """ D = state or {} D.update(kwargs) for key, val in D.items(): if key not in self._state_props: raise KeyError('Not a valid camera state property %r' % key) setattr(self, key, val)
Set the view state of the camera Should be a dict (or kwargs) as returned by get_state. It can be an incomlete dict, in which case only the specified properties are set. Parameters ---------- state : dict The camera state. **kwargs : dict Unused keyword arguments.
entailment
def link(self, camera): """ Link this camera with another camera of the same type Linked camera's keep each-others' state in sync. Parameters ---------- camera : instance of Camera The other camera to link. """ cam1, cam2 = self, camera # Remove if already linked while cam1 in cam2._linked_cameras: cam2._linked_cameras.remove(cam1) while cam2 in cam1._linked_cameras: cam1._linked_cameras.remove(cam2) # Link both ways cam1._linked_cameras.append(cam2) cam2._linked_cameras.append(cam1)
Link this camera with another camera of the same type Linked camera's keep each-others' state in sync. Parameters ---------- camera : instance of Camera The other camera to link.
entailment
def view_changed(self): """ Called when this camera is changes its view. Also called when its associated with a viewbox. """ if self._resetting: return # don't update anything while resetting (are in set_range) if self._viewbox: # Set range if necessary if self._xlim is None: args = self._set_range_args or () self.set_range(*args) # Store default state if we have not set it yet if self._default_state is None: self.set_default_state() # Do the actual update self._update_transform()
Called when this camera is changes its view. Also called when its associated with a viewbox.
entailment
def on_canvas_change(self, event): """Canvas change event handler Parameters ---------- event : instance of Event The event. """ # Connect key events from canvas to camera. # TODO: canvas should keep track of a single node with keyboard focus. if event.old is not None: event.old.events.key_press.disconnect(self.viewbox_key_event) event.old.events.key_release.disconnect(self.viewbox_key_event) if event.new is not None: event.new.events.key_press.connect(self.viewbox_key_event) event.new.events.key_release.connect(self.viewbox_key_event)
Canvas change event handler Parameters ---------- event : instance of Event The event.
entailment
def _set_scene_transform(self, tr): """ Called by subclasses to configure the viewbox scene transform. """ # todo: check whether transform has changed, connect to # transform.changed event pre_tr = self.pre_transform if pre_tr is None: self._scene_transform = tr else: self._transform_cache.roll() self._scene_transform = self._transform_cache.get([pre_tr, tr]) # Mark the transform dynamic so that it will not be collapsed with # others self._scene_transform.dynamic = True # Update scene self._viewbox.scene.transform = self._scene_transform self._viewbox.update() # Apply same state to linked cameras, but prevent that camera # to return the favor for cam in self._linked_cameras: if cam is self._linked_cameras_no_update: continue try: cam._linked_cameras_no_update = self cam.set_state(self.get_state()) finally: cam._linked_cameras_no_update = None
Called by subclasses to configure the viewbox scene transform.
entailment
def _set_config(c): """Set the OpenGL configuration""" glformat = QGLFormat() glformat.setRedBufferSize(c['red_size']) glformat.setGreenBufferSize(c['green_size']) glformat.setBlueBufferSize(c['blue_size']) glformat.setAlphaBufferSize(c['alpha_size']) if QT5_NEW_API: # Qt5 >= 5.4.0 - below options automatically enabled if nonzero. glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer'] else glformat.SingleBuffer) else: # Qt4 and Qt5 < 5.4.0 - buffers must be explicitly requested. glformat.setAccum(False) glformat.setRgba(True) glformat.setDoubleBuffer(True if c['double_buffer'] else False) glformat.setDepth(True if c['depth_size'] else False) glformat.setStencil(True if c['stencil_size'] else False) glformat.setSampleBuffers(True if c['samples'] else False) glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0) glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0) glformat.setSamples(c['samples'] if c['samples'] else 0) glformat.setStereo(c['stereo']) return glformat
Set the OpenGL configuration
entailment
def get_window_id(self): """ Get the window id of a PySide Widget. Might also work for PyQt4. """ # Get Qt win id winid = self.winId() # On Linux this is it if IS_RPI: nw = (ctypes.c_int * 3)(winid, self.width(), self.height()) return ctypes.pointer(nw) elif IS_LINUX: return int(winid) # Is int on PySide, but sip.voidptr on PyQt # Get window id from stupid capsule thingy # http://translate.google.com/translate?hl=en&sl=zh-CN&u=http://www.cnb #logs.com/Shiren-Y/archive/2011/04/06/2007288.html&prev=/search%3Fq%3Dp # yside%2Bdirectx%26client%3Dfirefox-a%26hs%3DIsJ%26rls%3Dorg.mozilla:n #l:official%26channel%3Dfflb%26biw%3D1366%26bih%3D614 # Prepare ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object] ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p] # Extract handle from capsule thingy name = ctypes.pythonapi.PyCapsule_GetName(winid) handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name) return handle
Get the window id of a PySide Widget. Might also work for PyQt4.
entailment
def obj(x): """Six-hump camelback function""" x1 = x[0] x2 = x[1] f = (4 - 2.1*(x1*x1) + (x1*x1*x1*x1)/3.0)*(x1*x1) + x1*x2 + (-4 + 4*(x2*x2))*(x2*x2) return f
Six-hump camelback function
entailment
def PathCollection(mode="agg", *args, **kwargs): """ mode: string - "raw" (speed: fastest, size: small, output: ugly, no dash, no thickness) - "agg" (speed: medium, size: medium output: nice, some flaws, no dash) - "agg+" (speed: slow, size: big, output: perfect, no dash) """ if mode == "raw": return RawPathCollection(*args, **kwargs) elif mode == "agg+": return AggPathCollection(*args, **kwargs) return AggFastPathCollection(*args, **kwargs)
mode: string - "raw" (speed: fastest, size: small, output: ugly, no dash, no thickness) - "agg" (speed: medium, size: medium output: nice, some flaws, no dash) - "agg+" (speed: slow, size: big, output: perfect, no dash)
entailment
def map(self, coords): """Map coordinates Parameters ---------- coords : array-like Coordinates to map. Returns ------- coords : ndarray Coordinates. """ m = np.empty(coords.shape) m[:, :3] = (coords[:, :3] * self.scale[np.newaxis, :3] + coords[:, 3:] * self.translate[np.newaxis, :3]) m[:, 3] = coords[:, 3] return m
Map coordinates Parameters ---------- coords : array-like Coordinates to map. Returns ------- coords : ndarray Coordinates.
entailment
def move(self, move): """Change the translation of this transform by the amount given. Parameters ---------- move : array-like The values to be added to the current translation of the transform. """ move = as_vec4(move, default=(0, 0, 0, 0)) self.translate = self.translate + move
Change the translation of this transform by the amount given. Parameters ---------- move : array-like The values to be added to the current translation of the transform.
entailment
def zoom(self, zoom, center=(0, 0, 0), mapped=True): """Update the transform such that its scale factor is changed, but the specified center point is left unchanged. Parameters ---------- zoom : array-like Values to multiply the transform's current scale factors. center : array-like The center point around which the scaling will take place. mapped : bool Whether *center* is expressed in mapped coordinates (True) or unmapped coordinates (False). """ zoom = as_vec4(zoom, default=(1, 1, 1, 1)) center = as_vec4(center, default=(0, 0, 0, 0)) scale = self.scale * zoom if mapped: trans = center - (center - self.translate) * zoom else: trans = self.scale * (1 - zoom) * center + self.translate self._set_st(scale=scale, translate=trans)
Update the transform such that its scale factor is changed, but the specified center point is left unchanged. Parameters ---------- zoom : array-like Values to multiply the transform's current scale factors. center : array-like The center point around which the scaling will take place. mapped : bool Whether *center* is expressed in mapped coordinates (True) or unmapped coordinates (False).
entailment
def from_mapping(cls, x0, x1): """ Create an STTransform from the given mapping See `set_mapping` for details. Parameters ---------- x0 : array-like Start. x1 : array-like End. Returns ------- t : instance of STTransform The transform. """ t = cls() t.set_mapping(x0, x1) return t
Create an STTransform from the given mapping See `set_mapping` for details. Parameters ---------- x0 : array-like Start. x1 : array-like End. Returns ------- t : instance of STTransform The transform.
entailment
def set_mapping(self, x0, x1, update=True): """Configure this transform such that it maps points x0 => x1 Parameters ---------- x0 : array-like, shape (2, 2) or (2, 3) Start location. x1 : array-like, shape (2, 2) or (2, 3) End location. update : bool If False, then the update event is not emitted. Examples -------- For example, if we wish to map the corners of a rectangle:: >>> p1 = [[0, 0], [200, 300]] onto a unit cube:: >>> p2 = [[-1, -1], [1, 1]] then we can generate the transform as follows:: >>> tr = STTransform() >>> tr.set_mapping(p1, p2) >>> assert tr.map(p1)[:,:2] == p2 # test """ # if args are Rect, convert to array first if isinstance(x0, Rect): x0 = x0._transform_in()[:3] if isinstance(x1, Rect): x1 = x1._transform_in()[:3] x0 = np.asarray(x0) x1 = np.asarray(x1) if (x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or x1.shape[0] != 2): raise TypeError("set_mapping requires array inputs of shape " "(2, N).") denom = x0[1] - x0[0] mask = denom == 0 denom[mask] = 1.0 s = (x1[1] - x1[0]) / denom s[mask] = 1.0 s[x0[1] == x0[0]] = 1.0 t = x1[0] - s * x0[0] s = as_vec4(s, default=(1, 1, 1, 1)) t = as_vec4(t, default=(0, 0, 0, 0)) self._set_st(scale=s, translate=t, update=update)
Configure this transform such that it maps points x0 => x1 Parameters ---------- x0 : array-like, shape (2, 2) or (2, 3) Start location. x1 : array-like, shape (2, 2) or (2, 3) End location. update : bool If False, then the update event is not emitted. Examples -------- For example, if we wish to map the corners of a rectangle:: >>> p1 = [[0, 0], [200, 300]] onto a unit cube:: >>> p2 = [[-1, -1], [1, 1]] then we can generate the transform as follows:: >>> tr = STTransform() >>> tr.set_mapping(p1, p2) >>> assert tr.map(p1)[:,:2] == p2 # test
entailment
def translate(self, pos): """ Translate the matrix The translation is applied *after* the transformations already present in the matrix. Parameters ---------- pos : arrayndarray Position to translate by. """ self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))
Translate the matrix The translation is applied *after* the transformations already present in the matrix. Parameters ---------- pos : arrayndarray Position to translate by.
entailment
def scale(self, scale, center=None): """ Scale the matrix about a given origin. The scaling is applied *after* the transformations already present in the matrix. Parameters ---------- scale : array-like Scale factors along x, y and z axes. center : array-like or None The x, y and z coordinates to scale around. If None, (0, 0, 0) will be used. """ scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3]) if center is not None: center = as_vec4(center)[0, :3] scale = np.dot(np.dot(transforms.translate(-center), scale), transforms.translate(center)) self.matrix = np.dot(self.matrix, scale)
Scale the matrix about a given origin. The scaling is applied *after* the transformations already present in the matrix. Parameters ---------- scale : array-like Scale factors along x, y and z axes. center : array-like or None The x, y and z coordinates to scale around. If None, (0, 0, 0) will be used.
entailment
def rotate(self, angle, axis): """ Rotate the matrix by some angle about a given axis. The rotation is applied *after* the transformations already present in the matrix. Parameters ---------- angle : float The angle of rotation, in degrees. axis : array-like The x, y and z coordinates of the axis vector to rotate around. """ self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))
Rotate the matrix by some angle about a given axis. The rotation is applied *after* the transformations already present in the matrix. Parameters ---------- angle : float The angle of rotation, in degrees. axis : array-like The x, y and z coordinates of the axis vector to rotate around.
entailment
def set_mapping(self, points1, points2): """ Set to a 3D transformation matrix that maps points1 onto points2. Parameters ---------- points1 : array-like, shape (4, 3) Four starting 3D coordinates. points2 : array-like, shape (4, 3) Four ending 3D coordinates. """ # note: need to transpose because util.functions uses opposite # of standard linear algebra order. self.matrix = transforms.affine_map(points1, points2).T
Set to a 3D transformation matrix that maps points1 onto points2. Parameters ---------- points1 : array-like, shape (4, 3) Four starting 3D coordinates. points2 : array-like, shape (4, 3) Four ending 3D coordinates.
entailment
def set_ortho(self, l, r, b, t, n, f): """Set ortho transform Parameters ---------- l : float Left. r : float Right. b : float Bottom. t : float Top. n : float Near. f : float Far. """ self.matrix = transforms.ortho(l, r, b, t, n, f)
Set ortho transform Parameters ---------- l : float Left. r : float Right. b : float Bottom. t : float Top. n : float Near. f : float Far.
entailment
def set_perspective(self, fov, aspect, near, far): """Set the perspective Parameters ---------- fov : float Field of view. aspect : float Aspect ratio. near : float Near location. far : float Far location. """ self.matrix = transforms.perspective(fov, aspect, near, far)
Set the perspective Parameters ---------- fov : float Field of view. aspect : float Aspect ratio. near : float Near location. far : float Far location.
entailment
def set_frustum(self, l, r, b, t, n, f): """Set the frustum Parameters ---------- l : float Left. r : float Right. b : float Bottom. t : float Top. n : float Near. f : float Far. """ self.matrix = transforms.frustum(l, r, b, t, n, f)
Set the frustum Parameters ---------- l : float Left. r : float Right. b : float Bottom. t : float Top. n : float Near. f : float Far.
entailment
def log2_lut(v): """ See `this algo <https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup>`__ for computing the log2 of a 32 bit integer using a look up table Parameters ---------- v : int 32 bit integer Returns ------- """ res = np.zeros(v.shape, dtype=np.int32) tt = v >> 16 tt_zero = (tt == 0) tt_not_zero = ~tt_zero t_h = tt >> 8 t_zero_h = (t_h == 0) & tt_not_zero t_not_zero_h = ~t_zero_h & tt_not_zero res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16 res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24 t_l = v >> 8 t_zero_l = (t_l == 0) & tt_zero t_not_zero_l = ~t_zero_l & tt_zero res[t_zero_l] = LogTable256[v[t_zero_l]] res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8 return res
See `this algo <https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup>`__ for computing the log2 of a 32 bit integer using a look up table Parameters ---------- v : int 32 bit integer Returns -------
entailment
def uniq2orderipix_lut(uniq): """ ~30% faster than the method below Parameters ---------- uniq Returns ------- """ order = log2_lut(uniq >> 2) >> 1 ipix = uniq - (1 << (2 * (order + 1))) return order, ipix
~30% faster than the method below Parameters ---------- uniq Returns -------
entailment
def uniq2orderipix(uniq): """ convert a HEALPix pixel coded as a NUNIQ number to a (norder, ipix) tuple """ order = ((np.log2(uniq//4)) // 2) order = order.astype(int) ipix = uniq - 4 * (4**order) return order, ipix
convert a HEALPix pixel coded as a NUNIQ number to a (norder, ipix) tuple
entailment
def glBufferData(target, data, usage): """ Data can be numpy array or the size of data to allocate. """ if isinstance(data, int): size = data data = None else: size = data.nbytes GL.glBufferData(target, size, data, usage)
Data can be numpy array or the size of data to allocate.
entailment
def set_data(self, data=None, **kwargs): """Set the line data Parameters ---------- data : array-like The data. **kwargs : dict Keywoard arguments to pass to MarkerVisual and LineVisal. """ if data is None: pos = None else: if isinstance(data, tuple): pos = np.array(data).T.astype(np.float32) else: pos = np.atleast_1d(data).astype(np.float32) if pos.ndim == 1: pos = pos[:, np.newaxis] elif pos.ndim > 2: raise ValueError('data must have at most two dimensions') if pos.size == 0: pos = self._line.pos # if both args and keywords are zero, then there is no # point in calling this function. if len(kwargs) == 0: raise TypeError("neither line points nor line properties" "are provided") elif pos.shape[1] == 1: x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis] pos = np.concatenate((x, pos), axis=1) # if args are empty, don't modify position elif pos.shape[1] > 3: raise TypeError("Too many coordinates given (%s; max is 3)." % pos.shape[1]) # todo: have both sub-visuals share the same buffers. line_kwargs = {} for k in self._line_kwargs: if k in kwargs: k_ = self._kw_trans[k] if k in self._kw_trans else k line_kwargs[k] = kwargs.pop(k_) if pos is not None or len(line_kwargs) > 0: self._line.set_data(pos=pos, **line_kwargs) marker_kwargs = {} for k in self._marker_kwargs: if k in kwargs: k_ = self._kw_trans[k] if k in self._kw_trans else k marker_kwargs[k_] = kwargs.pop(k) if pos is not None or len(marker_kwargs) > 0: self._markers.set_data(pos=pos, **marker_kwargs) if len(kwargs) > 0: raise TypeError("Invalid keyword arguments: %s" % kwargs.keys())
Set the line data Parameters ---------- data : array-like The data. **kwargs : dict Keywoard arguments to pass to MarkerVisual and LineVisal.
entailment
def set_data(self, pos=None, color=None): """Set the data Parameters ---------- pos : float Position of the line along the axis. color : list, tuple, or array The color to use when drawing the line. If an array is given, it must be of shape (1, 4) and provide one rgba color per vertex. """ if pos is not None: pos = float(pos) xy = self._pos if self._is_vertical: xy[0, 0] = pos xy[0, 1] = -1 xy[1, 0] = pos xy[1, 1] = 1 else: xy[0, 0] = -1 xy[0, 1] = pos xy[1, 0] = 1 xy[1, 1] = pos self._changed['pos'] = True if color is not None: color = np.array(color, dtype=np.float32) if color.ndim != 1 or color.shape[0] != 4: raise ValueError('color must be a 4 element float rgba tuple,' ' list or array') self._color = color self._changed['color'] = True
Set the data Parameters ---------- pos : float Position of the line along the axis. color : list, tuple, or array The color to use when drawing the line. If an array is given, it must be of shape (1, 4) and provide one rgba color per vertex.
entailment
def _compute_bounds(self, axis, view): """Return the (min, max) bounding values of this visual along *axis* in the local coordinate system. """ is_vertical = self._is_vertical pos = self._pos if axis == 0 and is_vertical: return (pos[0, 0], pos[0, 0]) elif axis == 1 and not is_vertical: return (self._pos[0, 1], self._pos[0, 1]) return None
Return the (min, max) bounding values of this visual along *axis* in the local coordinate system.
entailment
def curve3_bezier(p1, p2, p3): """ Generate the vertices for a quadratic Bezier curve. The vertices returned by this function can be passed to a LineVisual or ArrowVisual. Parameters ---------- p1 : array 2D coordinates of the start point p2 : array 2D coordinates of the first curve point p3 : array 2D coordinates of the end point Returns ------- coords : list Vertices for the Bezier curve. See Also -------- curve4_bezier Notes ----- For more information about Bezier curves please refer to the `Wikipedia`_ page. .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve """ x1, y1 = p1 x2, y2 = p2 x3, y3 = p3 points = [] _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3) dx, dy = points[0][0] - x1, points[0][1] - y1 if (dx * dx + dy * dy) > 1e-10: points.insert(0, (x1, y1)) dx, dy = points[-1][0] - x3, points[-1][1] - y3 if (dx * dx + dy * dy) > 1e-10: points.append((x3, y3)) return np.array(points).reshape(len(points), 2)
Generate the vertices for a quadratic Bezier curve. The vertices returned by this function can be passed to a LineVisual or ArrowVisual. Parameters ---------- p1 : array 2D coordinates of the start point p2 : array 2D coordinates of the first curve point p3 : array 2D coordinates of the end point Returns ------- coords : list Vertices for the Bezier curve. See Also -------- curve4_bezier Notes ----- For more information about Bezier curves please refer to the `Wikipedia`_ page. .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
entailment
def curve4_bezier(p1, p2, p3, p4): """ Generate the vertices for a third order Bezier curve. The vertices returned by this function can be passed to a LineVisual or ArrowVisual. Parameters ---------- p1 : array 2D coordinates of the start point p2 : array 2D coordinates of the first curve point p3 : array 2D coordinates of the second curve point p4 : array 2D coordinates of the end point Returns ------- coords : list Vertices for the Bezier curve. See Also -------- curve3_bezier Notes ----- For more information about Bezier curves please refer to the `Wikipedia`_ page. .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve """ x1, y1 = p1 x2, y2 = p2 x3, y3 = p3 x4, y4 = p4 points = [] _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4) dx, dy = points[0][0] - x1, points[0][1] - y1 if (dx * dx + dy * dy) > 1e-10: points.insert(0, (x1, y1)) dx, dy = points[-1][0] - x4, points[-1][1] - y4 if (dx * dx + dy * dy) > 1e-10: points.append((x4, y4)) return np.array(points).reshape(len(points), 2)
Generate the vertices for a third order Bezier curve. The vertices returned by this function can be passed to a LineVisual or ArrowVisual. Parameters ---------- p1 : array 2D coordinates of the start point p2 : array 2D coordinates of the first curve point p3 : array 2D coordinates of the second curve point p4 : array 2D coordinates of the end point Returns ------- coords : list Vertices for the Bezier curve. See Also -------- curve3_bezier Notes ----- For more information about Bezier curves please refer to the `Wikipedia`_ page. .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
entailment
def render_to_texture(self, data, texture, offset, size): """Render a SDF to a texture at a given offset and size Parameters ---------- data : array Must be 2D with type np.ubyte. texture : instance of Texture2D The texture to render to. offset : tuple of int Offset (x, y) to render to inside the texture. size : tuple of int Size (w, h) to render inside the texture. """ assert isinstance(texture, Texture2D) set_state(blend=False, depth_test=False) # calculate the negative half (within object) orig_tex = Texture2D(255 - data, format='luminance', wrapping='clamp_to_edge', interpolation='nearest') edf_neg_tex = self._render_edf(orig_tex) # calculate positive half (outside object) orig_tex[:, :, 0] = data edf_pos_tex = self._render_edf(orig_tex) # render final product to output texture self.program_insert['u_texture'] = orig_tex self.program_insert['u_pos_texture'] = edf_pos_tex self.program_insert['u_neg_texture'] = edf_neg_tex self.fbo_to[-1].color_buffer = texture with self.fbo_to[-1]: set_viewport(tuple(offset) + tuple(size)) self.program_insert.draw('triangle_strip')
Render a SDF to a texture at a given offset and size Parameters ---------- data : array Must be 2D with type np.ubyte. texture : instance of Texture2D The texture to render to. offset : tuple of int Offset (x, y) to render to inside the texture. size : tuple of int Size (w, h) to render inside the texture.
entailment
def _render_edf(self, orig_tex): """Render an EDF to a texture""" # Set up the necessary textures sdf_size = orig_tex.shape[:2] comp_texs = [] for _ in range(2): tex = Texture2D(sdf_size + (4,), format='rgba', interpolation='nearest', wrapping='clamp_to_edge') comp_texs.append(tex) self.fbo_to[0].color_buffer = comp_texs[0] self.fbo_to[1].color_buffer = comp_texs[1] for program in self.programs[1:]: # program_seed does not need this program['u_texh'], program['u_texw'] = sdf_size # Do the rendering last_rend = 0 with self.fbo_to[last_rend]: set_viewport(0, 0, sdf_size[1], sdf_size[0]) self.program_seed['u_texture'] = orig_tex self.program_seed.draw('triangle_strip') stepsize = (np.array(sdf_size) // 2).max() while stepsize > 0: self.program_flood['u_step'] = stepsize self.program_flood['u_texture'] = comp_texs[last_rend] last_rend = 1 if last_rend == 0 else 0 with self.fbo_to[last_rend]: set_viewport(0, 0, sdf_size[1], sdf_size[0]) self.program_flood.draw('triangle_strip') stepsize //= 2 return comp_texs[last_rend]
Render an EDF to a texture
entailment
def _add_intent_interactive(self, intent_num=0): ''' Interactively add a new intent to the intent schema object ''' print ("Name of intent number : ", intent_num) slot_type_mappings = load_builtin_slots() intent_name = read_from_user(str) print ("How many slots?") num_slots = read_from_user(int) slot_list = [] for i in range(num_slots): print ("Slot name no.", i+1) slot_name = read_from_user(str).strip() print ("Slot type? Enter a number for AMAZON supported types below," "else enter a string for a Custom Slot") print (json.dumps(slot_type_mappings, indent=True)) slot_type_str = read_from_user(str) try: slot_type = slot_type_mappings[int(slot_type_str)]['name'] except: slot_type = slot_type_str slot_list += [self.build_slot(slot_name, slot_type)] self.add_intent(intent_name, slot_list)
Interactively add a new intent to the intent schema object
entailment
def from_filename(self, filename): ''' Build an IntentSchema from a file path creates a new intent schema if the file does not exist, throws an error if the file exists but cannot be loaded as a JSON ''' if os.path.exists(filename): with open(filename) as fp: return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict)) else: print ('File does not exist') return IntentSchema()
Build an IntentSchema from a file path creates a new intent schema if the file does not exist, throws an error if the file exists but cannot be loaded as a JSON
entailment
def launch_request_handler(request): """ Annotate functions with @VoiceHandler so that they can be automatically mapped to request types. Use the 'request_type' field to map them to non-intent requests """ user_id = request.access_token() if user_id in twitter_cache.users(): user_cache = twitter_cache.get_user_state(user_id) user_cache["amzn_id"]= request.user_id() base_message = "Welcome to Twitter, {} . How may I help you today ?".format(user_cache["screen_name"]) print (user_cache) if 'pending_action' in user_cache: base_message += " You have one pending action . " print ("Found pending action") if 'description' in user_cache['pending_action']: print ("Found description") base_message += user_cache['pending_action']['description'] return r.create_response(base_message) card = r.create_card(title="Please log into twitter", card_type="LinkAccount") return r.create_response(message="Welcome to twitter, looks like you haven't logged in!" " Log in via the alexa app.", card_obj=card, end_session=True)
Annotate functions with @VoiceHandler so that they can be automatically mapped to request types. Use the 'request_type' field to map them to non-intent requests
entailment
def post_tweet_intent_handler(request): """ Use the 'intent' field in the VoiceHandler to map to the respective intent. """ tweet = request.get_slot_value("Tweet") tweet = tweet if tweet else "" if tweet: user_state = twitter_cache.get_user_state(request.access_token()) def action(): return post_tweet(request.access_token(), tweet) message = "I am ready to post the tweet, {} ,\n Please say yes to confirm or stop to cancel .".format(tweet) user_state['pending_action'] = {"action" : action, "description" : message} return r.create_response(message=message, end_session=False) else: # No tweet could be disambiguated message = " ".join( [ "I'm sorry, I couldn't understand what you wanted to tweet .", "Please prepend the message with either post or tweet ." ] ) return alexa.create_response(message=message, end_session=False)
Use the 'intent' field in the VoiceHandler to map to the respective intent.
entailment
def tweet_list_handler(request, tweet_list_builder, msg_prefix=""): """ This is a generic function to handle any intent that reads out a list of tweets""" # tweet_list_builder is a function that takes a unique identifier and returns a list of things to say tweets = tweet_list_builder(request.access_token()) print (len(tweets), 'tweets found') if tweets: twitter_cache.initialize_user_queue(user_id=request.access_token(), queue=tweets) text_to_read_out = twitter_cache.user_queue(request.access_token()).read_out_next(MAX_RESPONSE_TWEETS) message = msg_prefix + text_to_read_out + ", say 'next' to hear more, or reply to a tweet by number." return alexa.create_response(message=message, end_session=False) else: return alexa.create_response(message="Sorry, no tweets found, please try something else", end_session=False)
This is a generic function to handle any intent that reads out a list of tweets
entailment
def focused_on_tweet(request): """ Return index if focused on tweet False if couldn't """ slots = request.get_slot_map() if "Index" in slots and slots["Index"]: index = int(slots['Index']) elif "Ordinal" in slots and slots["Index"]: parse_ordinal = lambda inp : int("".join([l for l in inp if l in string.digits])) index = parse_ordinal(slots['Ordinal']) else: return False index = index - 1 # Going from regular notation to CS notation user_state = twitter_cache.get_user_state(request.access_token()) queue = user_state['user_queue'].queue() if index < len(queue): # Analyze tweet in queue tweet_to_analyze = queue[index] user_state['focus_tweet'] = tweet_to_analyze return index + 1 # Returning to regular notation twitter_cache.serialize() return False
Return index if focused on tweet False if couldn't
entailment
def next_intent_handler(request): """ Takes care of things whenver the user says 'next' """ message = "Sorry, couldn't find anything in your next queue" end_session = True if True: user_queue = twitter_cache.user_queue(request.access_token()) if not user_queue.is_finished(): message = user_queue.read_out_next(MAX_RESPONSE_TWEETS) if not user_queue.is_finished(): end_session = False message = message + ". Please, say 'next' if you want me to read out more. " return alexa.create_response(message=message, end_session=end_session)
Takes care of things whenver the user says 'next'
entailment
def use_app(backend_name=None, call_reuse=True): """ Get/create the default Application object It is safe to call this function multiple times, as long as backend_name is None or matches the already selected backend. Parameters ---------- backend_name : str | None The name of the backend application to use. If not specified, Vispy tries to select a backend automatically. See ``vispy.use()`` for details. call_reuse : bool Whether to call the backend's `reuse()` function (True by default). Not implemented by default, but some backends need it. For example, the notebook backends need to inject some JavaScript in a notebook as soon as `use_app()` is called. """ global default_app # If we already have a default_app, raise error or return if default_app is not None: names = default_app.backend_name.lower().replace('(', ' ').strip(') ') names = [name for name in names.split(' ') if name] if backend_name and backend_name.lower() not in names: raise RuntimeError('Can only select a backend once, already using ' '%s.' % names) else: if call_reuse: default_app.reuse() return default_app # Current backend matches backend_name # Create default app default_app = Application(backend_name) return default_app
Get/create the default Application object It is safe to call this function multiple times, as long as backend_name is None or matches the already selected backend. Parameters ---------- backend_name : str | None The name of the backend application to use. If not specified, Vispy tries to select a backend automatically. See ``vispy.use()`` for details. call_reuse : bool Whether to call the backend's `reuse()` function (True by default). Not implemented by default, but some backends need it. For example, the notebook backends need to inject some JavaScript in a notebook as soon as `use_app()` is called.
entailment
def glBufferData(target, data, usage): """ Data can be numpy array or the size of data to allocate. """ if isinstance(data, int): size = data data = ctypes.c_voidp(0) else: if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']: data = data.copy('C') data_ = data size = data_.nbytes data = data_.ctypes.data res = _lib.glBufferData(target, size, data, usage)
Data can be numpy array or the size of data to allocate.
entailment
def set_data(self, vertices=None, faces=None, vertex_colors=None, face_colors=None, color=None, meshdata=None): """Set the mesh data Parameters ---------- vertices : array-like | None The vertices. faces : array-like | None The faces. vertex_colors : array-like | None Colors to use for each vertex. face_colors : array-like | None Colors to use for each face. color : instance of Color The color to use. meshdata : instance of MeshData | None The meshdata. """ if meshdata is not None: self._meshdata = meshdata else: self._meshdata = MeshData(vertices=vertices, faces=faces, vertex_colors=vertex_colors, face_colors=face_colors) self._bounds = self._meshdata.get_bounds() if color is not None: self._color = Color(color) self.mesh_data_changed()
Set the mesh data Parameters ---------- vertices : array-like | None The vertices. faces : array-like | None The faces. vertex_colors : array-like | None Colors to use for each vertex. face_colors : array-like | None Colors to use for each face. color : instance of Color The color to use. meshdata : instance of MeshData | None The meshdata.
entailment
def bounds(self, axis, view=None): """Get the bounds of the Visual Parameters ---------- axis : int The axis. view : instance of VisualView The view to use. """ if view is None: view = self if axis not in self._vshare.bounds: self._vshare.bounds[axis] = self._compute_bounds(axis, view) return self._vshare.bounds[axis]
Get the bounds of the Visual Parameters ---------- axis : int The axis. view : instance of VisualView The view to use.
entailment
def set_gl_state(self, preset=None, **kwargs): """Define the set of GL state parameters to use when drawing Parameters ---------- preset : str Preset to use. **kwargs : dict Keyword arguments to `gloo.set_state`. """ self._vshare.gl_state = kwargs self._vshare.gl_state['preset'] = preset
Define the set of GL state parameters to use when drawing Parameters ---------- preset : str Preset to use. **kwargs : dict Keyword arguments to `gloo.set_state`.
entailment
def update_gl_state(self, *args, **kwargs): """Modify the set of GL state parameters to use when drawing Parameters ---------- *args : tuple Arguments. **kwargs : dict Keyword argments. """ if len(args) == 1: self._vshare.gl_state['preset'] = args[0] elif len(args) != 0: raise TypeError("Only one positional argument allowed.") self._vshare.gl_state.update(kwargs)
Modify the set of GL state parameters to use when drawing Parameters ---------- *args : tuple Arguments. **kwargs : dict Keyword argments.
entailment
def _get_hook(self, shader, name): """Return a FunctionChain that Filters may use to modify the program. *shader* should be "frag" or "vert" *name* should be "pre" or "post" """ assert name in ('pre', 'post') key = (shader, name) if key in self._hooks: return self._hooks[key] hook = StatementList() if shader == 'vert': self.view_program.vert[name] = hook elif shader == 'frag': self.view_program.frag[name] = hook self._hooks[key] = hook return hook
Return a FunctionChain that Filters may use to modify the program. *shader* should be "frag" or "vert" *name* should be "pre" or "post"
entailment
def attach(self, filt, view=None): """Attach a Filter to this visual Each filter modifies the appearance or behavior of the visual. Parameters ---------- filt : object The filter to attach. view : instance of VisualView | None The view to use. """ if view is None: self._vshare.filters.append(filt) for view in self._vshare.views.keys(): filt._attach(view) else: view._filters.append(filt) filt._attach(view)
Attach a Filter to this visual Each filter modifies the appearance or behavior of the visual. Parameters ---------- filt : object The filter to attach. view : instance of VisualView | None The view to use.
entailment
def detach(self, filt, view=None): """Detach a filter. Parameters ---------- filt : object The filter to detach. view : instance of VisualView | None The view to use. """ if view is None: self._vshare.filters.remove(filt) for view in self._vshare.views.keys(): filt._detach(view) else: view._filters.remove(filt) filt._detach(view)
Detach a filter. Parameters ---------- filt : object The filter to detach. view : instance of VisualView | None The view to use.
entailment
def add_subvisual(self, visual): """Add a subvisual Parameters ---------- visual : instance of Visual The visual to add. """ visual.transforms = self.transforms visual._prepare_transforms(visual) self._subvisuals.append(visual) visual.events.update.connect(self._subv_update) self.update()
Add a subvisual Parameters ---------- visual : instance of Visual The visual to add.
entailment
def remove_subvisual(self, visual): """Remove a subvisual Parameters ---------- visual : instance of Visual The visual to remove. """ visual.events.update.disconnect(self._subv_update) self._subvisuals.remove(visual) self.update()
Remove a subvisual Parameters ---------- visual : instance of Visual The visual to remove.
entailment
def draw(self): """Draw the visual """ if not self.visible: return if self._prepare_draw(view=self) is False: return for v in self._subvisuals: if v.visible: v.draw()
Draw the visual
entailment
def set_gl_state(self, preset=None, **kwargs): """Define the set of GL state parameters to use when drawing Parameters ---------- preset : str Preset to use. **kwargs : dict Keyword arguments to `gloo.set_state`. """ for v in self._subvisuals: v.set_gl_state(preset=preset, **kwargs)
Define the set of GL state parameters to use when drawing Parameters ---------- preset : str Preset to use. **kwargs : dict Keyword arguments to `gloo.set_state`.
entailment
def update_gl_state(self, *args, **kwargs): """Modify the set of GL state parameters to use when drawing Parameters ---------- *args : tuple Arguments. **kwargs : dict Keyword argments. """ for v in self._subvisuals: v.update_gl_state(*args, **kwargs)
Modify the set of GL state parameters to use when drawing Parameters ---------- *args : tuple Arguments. **kwargs : dict Keyword argments.
entailment
def attach(self, filt, view=None): """Attach a Filter to this visual Each filter modifies the appearance or behavior of the visual. Parameters ---------- filt : object The filter to attach. view : instance of VisualView | None The view to use. """ for v in self._subvisuals: v.attach(filt, v)
Attach a Filter to this visual Each filter modifies the appearance or behavior of the visual. Parameters ---------- filt : object The filter to attach. view : instance of VisualView | None The view to use.
entailment
def detach(self, filt, view=None): """Detach a filter. Parameters ---------- filt : object The filter to detach. view : instance of VisualView | None The view to use. """ for v in self._subvisuals: v.detach(filt, v)
Detach a filter. Parameters ---------- filt : object The filter to detach. view : instance of VisualView | None The view to use.
entailment
def addMov(self, product, quantity=None, mode="buy", stop_limit=None, auto_margin=None, name_counter=None): """main function for placing movements stop_limit = {'gain': [mode, value], 'loss': [mode, value]}""" # ~ ARGS ~ if (not isinstance(product, type('')) or (not isinstance(name_counter, type('')) and name_counter is not None)): raise ValueError('product and name_counter have to be a string') if not isinstance(stop_limit, type({})) and stop_limit is not None: raise ValueError('it has to be a dictionary') # exclusive args if quantity is not None and auto_margin is not None: raise ValueError("quantity and auto_margin are exclusive") elif quantity is None and auto_margin is None: raise ValueError("need at least one quantity") # ~ MAIN ~ # open new window mov = self.new_mov(product) mov.open() mov.set_mode(mode) # set quantity if quantity is not None: mov.set_quantity(quantity) # for best performance in long times try: margin = mov.get_unit_value() * quantity except TimeoutError: mov.close() logger.warning("market closed for %s" % mov.product) return False # auto_margin calculate quantity (how simple!) elif auto_margin is not None: unit_value = mov.get_unit_value() mov.set_quantity(auto_margin * unit_value) margin = auto_margin # stop limit (how can be so simple!) if stop_limit is not None: mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1]) mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1]) # confirm try: mov.confirm() except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e: logger.warning(e.err) # resolve immediately mov.set_quantity(e.quant) mov.confirm() except Exception: logger.exception('undefined error in movement confirmation') mov_logger.info(f"added {mov.product} movement of {mov.quantity} " + f"with margin of {margin}") mov_logger.debug(f"stop_limit: {stop_limit}")
main function for placing movements stop_limit = {'gain': [mode, value], 'loss': [mode, value]}
entailment
def checkPos(self): """check all positions""" soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser') poss = [] for label in soup.find_all("tr"): pos_id = label['id'] # init an empty list # check if it already exist pos_list = [x for x in self.positions if x.id == pos_id] if pos_list: # and update it pos = pos_list[0] pos.update(label) else: pos = self.new_pos(label) pos.get_gain() poss.append(pos) # remove old positions self.positions.clear() self.positions.extend(poss) logger.debug("%d positions update" % len(poss)) return self.positions
check all positions
entailment
def checkStock(self): """check stocks in preference""" if not self.preferences: logger.debug("no preferences") return None soup = BeautifulSoup( self.xpath(path['stock-table'])[0].html, "html.parser") count = 0 # iterate through product in left panel for product in soup.select("div.tradebox"): prod_name = product.select("span.instrument-name")[0].text stk_name = [x for x in self.preferences if x.lower() in prod_name.lower()] if not stk_name: continue name = prod_name if not [x for x in self.stocks if x.product == name]: self.stocks.append(Stock(name)) stock = [x for x in self.stocks if x.product == name][0] if 'tradebox-market-closed' in product['class']: stock.market = False if not stock.market: logger.debug("market closed for %s" % stock.product) continue sell_price = product.select("div.tradebox-price-sell")[0].text buy_price = product.select("div.tradebox-price-buy")[0].text sent = int(product.select(path['sent'])[0].text.strip('%')) / 100 stock.new_rec([sell_price, buy_price, sent]) count += 1 logger.debug(f"added %d stocks" % count) return self.stocks
check stocks in preference
entailment
def clearPrefs(self): """clear the left panel and preferences""" self.preferences.clear() tradebox_num = len(self.css('div.tradebox')) for i in range(tradebox_num): self.xpath(path['trade-box'])[0].right_click() self.css1('div.item-trade-contextmenu-list-remove').click() logger.info("cleared preferences")
clear the left panel and preferences
entailment
def addPrefs(self, prefs=[]): """add preference in self.preferences""" if len(prefs) == len(self.preferences) == 0: logger.debug("no preferences") return None self.preferences.extend(prefs) self.css1(path['search-btn']).click() count = 0 for pref in self.preferences: self.css1(path['search-pref']).fill(pref) self.css1(path['pref-icon']).click() btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper') if not self.css1('svg', btn)['class'] is None: btn.click() count += 1 # remove window self.css1(path['pref-icon']).click() # close finally self.css1(path['back-btn']).click() self.css1(path['back-btn']).click() logger.debug("updated %d preferences" % count) return self.preferences
add preference in self.preferences
entailment
def _load_glyph(f, char, glyphs_dict): """Load glyph from font into dict""" from ...ext.freetype import (FT_LOAD_RENDER, FT_LOAD_NO_HINTING, FT_LOAD_NO_AUTOHINT) flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT face = _load_font(f['face'], f['bold'], f['italic']) face.set_char_size(f['size'] * 64) # get the character of interest face.load_char(char, flags) bitmap = face.glyph.bitmap width = face.glyph.bitmap.width height = face.glyph.bitmap.rows bitmap = np.array(bitmap.buffer) w0 = bitmap.size // height if bitmap.size > 0 else 0 bitmap.shape = (height, w0) bitmap = bitmap[:, :width].astype(np.ubyte) left = face.glyph.bitmap_left top = face.glyph.bitmap_top advance = face.glyph.advance.x / 64. glyph = dict(char=char, offset=(left, top), bitmap=bitmap, advance=advance, kerning={}) glyphs_dict[char] = glyph # Generate kerning for other_char, other_glyph in glyphs_dict.items(): kerning = face.get_kerning(other_char, char) glyph['kerning'][other_char] = kerning.x / 64. kerning = face.get_kerning(char, other_char) other_glyph['kerning'][char] = kerning.x / 64.
Load glyph from font into dict
entailment
def _set_clipper(self, node, clipper): """Assign a clipper that is inherited from a parent node. If *clipper* is None, then remove any clippers for *node*. """ if node in self._clippers: self.detach(self._clippers.pop(node)) if clipper is not None: self.attach(clipper) self._clippers[node] = clipper
Assign a clipper that is inherited from a parent node. If *clipper* is None, then remove any clippers for *node*.
entailment
def _update_trsys(self, event): """Transform object(s) have changed for this Node; assign these to the visual's TransformSystem. """ doc = self.document_node scene = self.scene_node root = self.root_node self.transforms.visual_transform = self.node_transform(scene) self.transforms.scene_transform = scene.node_transform(doc) self.transforms.document_transform = doc.node_transform(root) Node._update_trsys(self, event)
Transform object(s) have changed for this Node; assign these to the visual's TransformSystem.
entailment
def cfnumber_to_number(cfnumber): """Convert CFNumber to python int or float.""" numeric_type = cf.CFNumberGetType(cfnumber) cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type: c_int16, kCFNumberSInt32Type: c_int32, kCFNumberSInt64Type: c_int64, kCFNumberFloat32Type: c_float, kCFNumberFloat64Type: c_double, kCFNumberCharType: c_byte, kCFNumberShortType: c_short, kCFNumberIntType: c_int, kCFNumberLongType: c_long, kCFNumberLongLongType: c_longlong, kCFNumberFloatType: c_float, kCFNumberDoubleType: c_double, kCFNumberCFIndexType: CFIndex, kCFNumberCGFloatType: CGFloat} if numeric_type in cfnum_to_ctype: t = cfnum_to_ctype[numeric_type] result = t() if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)): return result.value else: raise Exception( 'cfnumber_to_number: unhandled CFNumber type %d' % numeric_type)
Convert CFNumber to python int or float.
entailment
def cftype_to_value(cftype): """Convert a CFType into an equivalent python type. The convertible CFTypes are taken from the known_cftypes dictionary, which may be added to if another library implements its own conversion methods.""" if not cftype: return None typeID = cf.CFGetTypeID(cftype) if typeID in known_cftypes: convert_function = known_cftypes[typeID] return convert_function(cftype) else: return cftype
Convert a CFType into an equivalent python type. The convertible CFTypes are taken from the known_cftypes dictionary, which may be added to if another library implements its own conversion methods.
entailment
def cfset_to_set(cfset): """Convert CFSet to python set.""" count = cf.CFSetGetCount(cfset) buffer = (c_void_p * count)() cf.CFSetGetValues(cfset, byref(buffer)) return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])
Convert CFSet to python set.
entailment
def cfarray_to_list(cfarray): """Convert CFArray to python list.""" count = cf.CFArrayGetCount(cfarray) return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i))) for i in range(count)]
Convert CFArray to python list.
entailment
def ctype_for_encoding(self, encoding): """Return ctypes type for an encoded Objective-C type.""" if encoding in self.typecodes: return self.typecodes[encoding] elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes: return POINTER(self.typecodes[encoding[1:]]) elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding, NSZoneEncoding]: return c_void_p elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes: return self.typecodes[encoding[1:]] elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes: return POINTER(self.typecodes[encoding[2:]]) else: raise Exception('unknown encoding for %s: %s' % (self.name, encoding))
Return ctypes type for an encoded Objective-C type.
entailment
def classmethod(self, encoding): """Function decorator for class methods.""" # Add encodings for hidden self and cmd arguments. encoding = ensure_bytes(encoding) typecodes = parse_type_encoding(encoding) typecodes.insert(1, b'@:') encoding = b''.join(typecodes) def decorator(f): def objc_class_method(objc_cls, objc_cmd, *args): py_cls = ObjCClass(objc_cls) py_cls.objc_cmd = objc_cmd args = convert_method_arguments(encoding, args) result = f(py_cls, *args) if isinstance(result, ObjCClass): result = result.ptr.value elif isinstance(result, ObjCInstance): result = result.ptr.value return result name = f.__name__.replace('_', ':') self.add_class_method(objc_class_method, name, encoding) return objc_class_method return decorator
Function decorator for class methods.
entailment
def append(self, P0, P1, itemsize=None, **kwargs): """ Append a new set of segments to the collection. For kwargs argument, n is the number of vertices (local) or the number of item (shared) Parameters ---------- P : np.array Vertices positions of the path(s) to be added itemsize: int or None Size of an individual path caps : list, array or 2-tuple Path start /end cap color : list, array or 4-tuple Path color linewidth : list, array or float Path linewidth antialias : list, array or float Path antialias area """ itemsize = itemsize or 1 itemcount = len(P0) // itemsize V = np.empty(itemcount, dtype=self.vtype) # Apply default values on vertices for name in self.vtype.names: if name not in ['collection_index', 'P0', 'P1', 'index']: V[name] = kwargs.get(name, self._defaults[name]) V['P0'] = P0 V['P1'] = P1 V = V.repeat(4, axis=0) V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize) I = np.ones((itemcount, 6), dtype=int) I[:] = 0, 1, 2, 0, 2, 3 I[:] += 4 * np.arange(itemcount)[:, np.newaxis] I = I.ravel() # Uniforms if self.utype: U = np.zeros(itemcount, dtype=self.utype) for name in self.utype.names: if name not in ["__unused__"]: U[name] = kwargs.get(name, self._defaults[name]) else: U = None Collection.append( self, vertices=V, uniforms=U, indices=I, itemsize=4 * itemcount)
Append a new set of segments to the collection. For kwargs argument, n is the number of vertices (local) or the number of item (shared) Parameters ---------- P : np.array Vertices positions of the path(s) to be added itemsize: int or None Size of an individual path caps : list, array or 2-tuple Path start /end cap color : list, array or 4-tuple Path color linewidth : list, array or float Path linewidth antialias : list, array or float Path antialias area
entailment
def get_frag_shader(volumes, clipped=False, n_volume_max=5): """ Get the fragment shader code - we use the shader_program object to determine which layers are enabled and therefore what to include in the shader code. """ declarations = "" before_loop = "" in_loop = "" after_loop = "" for index in range(n_volume_max): declarations += "uniform $sampler_type u_volumetex_{0:d};\n".format(index) before_loop += "dummy = $sample(u_volumetex_{0:d}, loc).g;\n".format(index) declarations += "uniform $sampler_type dummy1;\n" declarations += "float dummy;\n" for label in sorted(volumes): index = volumes[label]['index'] # Global declarations declarations += "uniform float u_weight_{0:d};\n".format(index) declarations += "uniform int u_enabled_{0:d};\n".format(index) # Declarations before the raytracing loop before_loop += "float max_val_{0:d} = 0;\n".format(index) # Calculation inside the main raytracing loop in_loop += "if(u_enabled_{0:d} == 1) {{\n\n".format(index) if clipped: in_loop += ("if(loc.r > u_clip_min.r && loc.r < u_clip_max.r &&\n" " loc.g > u_clip_min.g && loc.g < u_clip_max.g &&\n" " loc.b > u_clip_min.b && loc.b < u_clip_max.b) {\n\n") in_loop += "// Sample texture for layer {0}\n".format(label) in_loop += "val = $sample(u_volumetex_{0:d}, loc).g;\n".format(index) if volumes[label].get('multiply') is not None: index_other = volumes[volumes[label]['multiply']]['index'] in_loop += ("if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\n" .format(index_other)) in_loop += "max_val_{0:d} = max(val, max_val_{0:d});\n\n".format(index) if clipped: in_loop += "}\n\n" in_loop += "}\n\n" # Calculation after the main loop after_loop += "// Compute final color for layer {0}\n".format(label) after_loop += ("color = $cmap{0:d}(max_val_{0:d});\n" "color.a *= u_weight_{0:d};\n" "total_color += color.a * color;\n" "max_alpha = max(color.a, max_alpha);\n" "count += color.a;\n\n").format(index) if not clipped: before_loop += "\nfloat val3 = u_clip_min.g + u_clip_max.g;\n\n" # Code esthetics before_loop = indent(before_loop, " " * 4).strip() in_loop = indent(in_loop, " " * 16).strip() after_loop = indent(after_loop, " " * 4).strip() return FRAG_SHADER.format(declarations=declarations, before_loop=before_loop, in_loop=in_loop, after_loop=after_loop)
Get the fragment shader code - we use the shader_program object to determine which layers are enabled and therefore what to include in the shader code.
entailment
def eglGetDisplay(display=EGL_DEFAULT_DISPLAY): """ Connect to the EGL display server. """ res = _lib.eglGetDisplay(display) if not res or res == EGL_NO_DISPLAY: raise RuntimeError('Could not create display') return res
Connect to the EGL display server.
entailment
def eglInitialize(display): """ Initialize EGL and return EGL version tuple. """ majorVersion = (_c_int*1)() minorVersion = (_c_int*1)() res = _lib.eglInitialize(display, majorVersion, minorVersion) if res == EGL_FALSE: raise RuntimeError('Could not initialize') return majorVersion[0], minorVersion[0]
Initialize EGL and return EGL version tuple.
entailment
def eglQueryString(display, name): """ Query string from display """ out = _lib.eglQueryString(display, name) if not out: raise RuntimeError('Could not query %s' % name) return out
Query string from display
entailment
def get_edges(self, indexed=None): """Edges of the mesh Parameters ---------- indexed : str | None If indexed is None, return (Nf, 3) array of vertex indices, two per edge in the mesh. If indexed is 'faces', then return (Nf, 3, 2) array of vertex indices with 3 edges per face, and two vertices per edge. Returns ------- edges : ndarray The edges. """ if indexed is None: if self._edges is None: self._compute_edges(indexed=None) return self._edges elif indexed == 'faces': if self._edges_indexed_by_faces is None: self._compute_edges(indexed='faces') return self._edges_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Edges of the mesh Parameters ---------- indexed : str | None If indexed is None, return (Nf, 3) array of vertex indices, two per edge in the mesh. If indexed is 'faces', then return (Nf, 3, 2) array of vertex indices with 3 edges per face, and two vertices per edge. Returns ------- edges : ndarray The edges.
entailment
def set_faces(self, faces): """Set the faces Parameters ---------- faces : ndarray (Nf, 3) array of faces. Each row in the array contains three indices into the vertex array, specifying the three corners of a triangular face. """ self._faces = faces self._edges = None self._edges_indexed_by_faces = None self._vertex_faces = None self._vertices_indexed_by_faces = None self.reset_normals() self._vertex_colors_indexed_by_faces = None self._face_colors_indexed_by_faces = None
Set the faces Parameters ---------- faces : ndarray (Nf, 3) array of faces. Each row in the array contains three indices into the vertex array, specifying the three corners of a triangular face.
entailment
def get_vertices(self, indexed=None): """Get the vertices Parameters ---------- indexed : str | None If Note, return an array (N,3) of the positions of vertices in the mesh. By default, each unique vertex appears only once. If indexed is 'faces', then the array will instead contain three vertices per face in the mesh (and a single vertex may appear more than once in the array). Returns ------- vertices : ndarray The vertices. """ if indexed is None: if (self._vertices is None and self._vertices_indexed_by_faces is not None): self._compute_unindexed_vertices() return self._vertices elif indexed == 'faces': if (self._vertices_indexed_by_faces is None and self._vertices is not None): self._vertices_indexed_by_faces = \ self._vertices[self.get_faces()] return self._vertices_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
Get the vertices Parameters ---------- indexed : str | None If Note, return an array (N,3) of the positions of vertices in the mesh. By default, each unique vertex appears only once. If indexed is 'faces', then the array will instead contain three vertices per face in the mesh (and a single vertex may appear more than once in the array). Returns ------- vertices : ndarray The vertices.
entailment
def get_bounds(self): """Get the mesh bounds Returns ------- bounds : list A list of tuples of mesh bounds. """ if self._vertices_indexed_by_faces is not None: v = self._vertices_indexed_by_faces elif self._vertices is not None: v = self._vertices else: return None bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])] return bounds
Get the mesh bounds Returns ------- bounds : list A list of tuples of mesh bounds.
entailment
def set_vertices(self, verts=None, indexed=None, reset_normals=True): """Set the mesh vertices Parameters ---------- verts : ndarray | None The array (Nv, 3) of vertex coordinates. indexed : str | None If indexed=='faces', then the data must have shape (Nf, 3, 3) and is assumed to be already indexed as a list of faces. This will cause any pre-existing normal vectors to be cleared unless reset_normals=False. reset_normals : bool If True, reset the normals. """ if indexed is None: if verts is not None: self._vertices = verts self._vertices_indexed_by_faces = None elif indexed == 'faces': self._vertices = None if verts is not None: self._vertices_indexed_by_faces = verts else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'") if reset_normals: self.reset_normals()
Set the mesh vertices Parameters ---------- verts : ndarray | None The array (Nv, 3) of vertex coordinates. indexed : str | None If indexed=='faces', then the data must have shape (Nf, 3, 3) and is assumed to be already indexed as a list of faces. This will cause any pre-existing normal vectors to be cleared unless reset_normals=False. reset_normals : bool If True, reset the normals.
entailment
def has_vertex_color(self): """Return True if this data set has vertex color information""" for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces, self._vertex_colors_indexed_by_edges): if v is not None: return True return False
Return True if this data set has vertex color information
entailment