sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def _get_k_p_a(font, left, right): """This actually calculates the kerning + advance""" # http://lists.apple.com/archives/coretext-dev/2010/Dec/msg00020.html # 1) set up a CTTypesetter chars = left + right args = [None, 1, cf.kCFTypeDictionaryKeyCallBacks, cf.kCFTypeDictionaryValueCallBacks] attributes = cf.CFDictionaryCreateMutable(*args) cf.CFDictionaryAddValue(attributes, kCTFontAttributeName, font) string = cf.CFAttributedStringCreate(None, CFSTR(chars), attributes) typesetter = ct.CTTypesetterCreateWithAttributedString(string) cf.CFRelease(string) cf.CFRelease(attributes) # 2) extract a CTLine from it range = CFRange(0, 1) line = ct.CTTypesetterCreateLine(typesetter, range) # 3) use CTLineGetOffsetForStringIndex to get the character positions offset = ct.CTLineGetOffsetForStringIndex(line, 1, None) cf.CFRelease(line) cf.CFRelease(typesetter) return offset
This actually calculates the kerning + advance
entailment
def set_data(self, xs=None, ys=None, zs=None, colors=None): '''Update the mesh data. Parameters ---------- xs : ndarray | None A 2d array of x coordinates for the vertices of the mesh. ys : ndarray | None A 2d array of y coordinates for the vertices of the mesh. zs : ndarray | None A 2d array of z coordinates for the vertices of the mesh. colors : ndarray | None The color at each point of the mesh. Must have shape (width, height, 4) or (width, height, 3) for rgba or rgb color definitions respectively. ''' if xs is None: xs = self._xs self.__vertices = None if ys is None: ys = self._ys self.__vertices = None if zs is None: zs = self._zs self.__vertices = None if self.__vertices is None: vertices, indices = create_grid_mesh(xs, ys, zs) self._xs = xs self._ys = ys self._zs = zs if self.__vertices is None: vertices, indices = create_grid_mesh(self._xs, self._ys, self._zs) self.__meshdata.set_vertices(vertices) self.__meshdata.set_faces(indices) if colors is not None: self.__meshdata.set_vertex_colors(colors.reshape( colors.shape[0] * colors.shape[1], colors.shape[2])) MeshVisual.set_data(self, meshdata=self.__meshdata)
Update the mesh data. Parameters ---------- xs : ndarray | None A 2d array of x coordinates for the vertices of the mesh. ys : ndarray | None A 2d array of y coordinates for the vertices of the mesh. zs : ndarray | None A 2d array of z coordinates for the vertices of the mesh. colors : ndarray | None The color at each point of the mesh. Must have shape (width, height, 4) or (width, height, 3) for rgba or rgb color definitions respectively.
entailment
def _make_png(data, level=6): """Convert numpy array to PNG byte array. Parameters ---------- data : numpy.ndarray Data must be (H, W, 3 | 4) with dtype = np.ubyte (np.uint8) level : int https://docs.python.org/2/library/zlib.html#zlib.compress An integer from 0 to 9 controlling the level of compression: * 1 is fastest and produces the least compression, * 9 is slowest and produces the most. * 0 is no compression. The default value is 6. Returns ------- png : array PNG formatted array """ # Eventually we might want to use ext/png.py for this, but this # routine *should* be faster b/c it's speacialized for our use case def mkchunk(data, name): if isinstance(data, np.ndarray): size = data.nbytes else: size = len(data) chunk = np.empty(size + 12, dtype=np.ubyte) chunk.data[0:4] = np.array(size, '>u4').tostring() chunk.data[4:8] = name.encode('ASCII') chunk.data[8:8 + size] = data # and-ing may not be necessary, but is done for safety: # https://docs.python.org/3/library/zlib.html#zlib.crc32 chunk.data[-4:] = np.array(zlib.crc32(chunk[4:-4]) & 0xffffffff, '>u4').tostring() return chunk if data.dtype != np.ubyte: raise TypeError('data.dtype must be np.ubyte (np.uint8)') dim = data.shape[2] # Dimension if dim not in (3, 4): raise TypeError('data.shape[2] must be in (3, 4)') # www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IHDR if dim == 4: ctyp = 0b0110 # RGBA else: ctyp = 0b0010 # RGB # www.libpng.org/pub/png/spec/1.2/PNG-Structure.html header = b'\x89PNG\x0d\x0a\x1a\x0a' # header h, w = data.shape[:2] depth = data.itemsize * 8 ihdr = struct.pack('!IIBBBBB', w, h, depth, ctyp, 0, 0, 0) c1 = mkchunk(ihdr, 'IHDR') # www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IDAT # insert filter byte at each scanline idat = np.empty((h, w * dim + 1), dtype=np.ubyte) idat[:, 1:] = data.reshape(h, w * dim) idat[:, 0] = 0 comp_data = zlib.compress(idat, level) c2 = mkchunk(comp_data, 'IDAT') c3 = mkchunk(np.empty((0,), dtype=np.ubyte), 'IEND') # concatenate lh = len(header) png = np.empty(lh + c1.nbytes + c2.nbytes + c3.nbytes, dtype=np.ubyte) png.data[:lh] = header p = lh for chunk in (c1, c2, c3): png[p:p + len(chunk)] = chunk p += chunk.nbytes return png
Convert numpy array to PNG byte array. Parameters ---------- data : numpy.ndarray Data must be (H, W, 3 | 4) with dtype = np.ubyte (np.uint8) level : int https://docs.python.org/2/library/zlib.html#zlib.compress An integer from 0 to 9 controlling the level of compression: * 1 is fastest and produces the least compression, * 9 is slowest and produces the most. * 0 is no compression. The default value is 6. Returns ------- png : array PNG formatted array
entailment
def read_png(filename): """Read a PNG file to RGB8 or RGBA8 Unlike imread, this requires no external dependencies. Parameters ---------- filename : str File to read. Returns ------- data : array Image data. See also -------- write_png, imread, imsave """ x = Reader(filename) try: alpha = x.asDirect()[3]['alpha'] if alpha: y = x.asRGBA8()[2] n = 4 else: y = x.asRGB8()[2] n = 3 y = np.array([yy for yy in y], np.uint8) finally: x.file.close() y.shape = (y.shape[0], y.shape[1] // n, n) return y
Read a PNG file to RGB8 or RGBA8 Unlike imread, this requires no external dependencies. Parameters ---------- filename : str File to read. Returns ------- data : array Image data. See also -------- write_png, imread, imsave
entailment
def write_png(filename, data): """Write a PNG file Unlike imsave, this requires no external dependencies. Parameters ---------- filename : str File to save to. data : array Image data. See also -------- read_png, imread, imsave """ data = np.asarray(data) if not data.ndim == 3 and data.shape[-1] in (3, 4): raise ValueError('data must be a 3D array with last dimension 3 or 4') with open(filename, 'wb') as f: f.write(_make_png(data))
Write a PNG file Unlike imsave, this requires no external dependencies. Parameters ---------- filename : str File to save to. data : array Image data. See also -------- read_png, imread, imsave
entailment
def imread(filename, format=None): """Read image data from disk Requires imageio or PIL. Parameters ---------- filename : str Filename to read. format : str | None Format of the file. If None, it will be inferred from the filename. Returns ------- data : array Image data. See also -------- imsave, read_png, write_png """ imageio, PIL = _check_img_lib() if imageio is not None: return imageio.imread(filename, format) elif PIL is not None: im = PIL.Image.open(filename) if im.mode == 'P': im = im.convert() # Make numpy array a = np.asarray(im) if len(a.shape) == 0: raise MemoryError("Too little memory to convert PIL image to " "array") return a else: raise RuntimeError("imread requires the imageio or PIL package.")
Read image data from disk Requires imageio or PIL. Parameters ---------- filename : str Filename to read. format : str | None Format of the file. If None, it will be inferred from the filename. Returns ------- data : array Image data. See also -------- imsave, read_png, write_png
entailment
def imsave(filename, im, format=None): """Save image data to disk Requires imageio or PIL. Parameters ---------- filename : str Filename to write. im : array Image data. format : str | None Format of the file. If None, it will be inferred from the filename. See also -------- imread, read_png, write_png """ # Import imageio or PIL imageio, PIL = _check_img_lib() if imageio is not None: return imageio.imsave(filename, im, format) elif PIL is not None: pim = PIL.Image.fromarray(im) pim.save(filename, format) else: raise RuntimeError("imsave requires the imageio or PIL package.")
Save image data to disk Requires imageio or PIL. Parameters ---------- filename : str Filename to write. im : array Image data. format : str | None Format of the file. If None, it will be inferred from the filename. See also -------- imread, read_png, write_png
entailment
def _check_img_lib(): """Utility to search for imageio or PIL""" # Import imageio or PIL imageio = PIL = None try: import imageio except ImportError: try: import PIL.Image except ImportError: pass return imageio, PIL
Utility to search for imageio or PIL
entailment
def read_from_user(input_type, *args, **kwargs): ''' Helper function to prompt user for input of a specific type e.g. float, str, int Designed to work with both python 2 and 3 Yes I know this is ugly. ''' def _read_in(*args, **kwargs): while True: try: tmp = raw_input(*args, **kwargs) except NameError: tmp = input(*args, **kwargs) try: return input_type(tmp) except: print ('Expected type', input_type) return _read_in(*args, **kwargs)
Helper function to prompt user for input of a specific type e.g. float, str, int Designed to work with both python 2 and 3 Yes I know this is ugly.
entailment
def load_builtin_slots(): ''' Helper function to load builtin slots from the data location ''' builtin_slots = {} for index, line in enumerate(open(BUILTIN_SLOTS_LOCATION)): o = line.strip().split('\t') builtin_slots[index] = {'name' : o[0], 'description' : o[1] } return builtin_slots
Helper function to load builtin slots from the data location
entailment
def timer(logger=None, level=logging.INFO, fmt="function %(function_name)s execution time: %(execution_time).3f", *func_or_func_args, **timer_kwargs): """ Function decorator displaying the function execution time All kwargs are the arguments taken by the Timer class constructor. """ # store Timer kwargs in local variable so the namespace isn't polluted # by different level args and kwargs def wrapped_f(f): @functools.wraps(f) def wrapped(*args, **kwargs): with Timer(**timer_kwargs) as t: out = f(*args, **kwargs) context = { 'function_name': f.__name__, 'execution_time': t.elapsed, } if logger: logger.log( level, fmt % context, extra=context) else: print(fmt % context) return out return wrapped if (len(func_or_func_args) == 1 and isinstance(func_or_func_args[0], collections.Callable)): return wrapped_f(func_or_func_args[0]) else: return wrapped_f
Function decorator displaying the function execution time All kwargs are the arguments taken by the Timer class constructor.
entailment
def append(self, points, indices, **kwargs): """ Append a new set of vertices to the collection. For kwargs argument, n is the number of vertices (local) or the number of item (shared) Parameters ---------- points : np.array Vertices composing the triangles indices : np.array Indices describing triangles color : list, array or 4-tuple Path color """ itemsize = len(points) itemcount = 1 V = np.empty(itemcount * itemsize, dtype=self.vtype) for name in self.vtype.names: if name not in ['collection_index', 'position']: V[name] = kwargs.get(name, self._defaults[name]) V["position"] = points # Uniforms if self.utype: U = np.zeros(itemcount, dtype=self.utype) for name in self.utype.names: if name not in ["__unused__"]: U[name] = kwargs.get(name, self._defaults[name]) else: U = None I = np.array(indices).ravel() Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=itemsize)
Append a new set of vertices to the collection. For kwargs argument, n is the number of vertices (local) or the number of item (shared) Parameters ---------- points : np.array Vertices composing the triangles indices : np.array Indices describing triangles color : list, array or 4-tuple Path color
entailment
def _mpl_to_vispy(fig): """Convert a given matplotlib figure to vispy This function is experimental and subject to change! Requires matplotlib and mplexporter. Parameters ---------- fig : instance of matplotlib Figure The populated figure to display. Returns ------- canvas : instance of Canvas The resulting vispy Canvas. """ renderer = VispyRenderer() exporter = Exporter(renderer) with warnings.catch_warnings(record=True): # py3k mpl warning exporter.run(fig) renderer._vispy_done() return renderer.canvas
Convert a given matplotlib figure to vispy This function is experimental and subject to change! Requires matplotlib and mplexporter. Parameters ---------- fig : instance of matplotlib Figure The populated figure to display. Returns ------- canvas : instance of Canvas The resulting vispy Canvas.
entailment
def show(block=False): """Show current figures using vispy Parameters ---------- block : bool If True, blocking mode will be used. If False, then non-blocking / interactive mode will be used. Returns ------- canvases : list List of the vispy canvases that were created. """ if not has_matplotlib(): raise ImportError('Requires matplotlib version >= 1.2') cs = [_mpl_to_vispy(plt.figure(ii)) for ii in plt.get_fignums()] if block and len(cs) > 0: cs[0].app.run() return cs
Show current figures using vispy Parameters ---------- block : bool If True, blocking mode will be used. If False, then non-blocking / interactive mode will be used. Returns ------- canvases : list List of the vispy canvases that were created.
entailment
def _mpl_ax_to(self, mplobj, output='vb'): """Helper to get the parent axes of a given mplobj""" for ax in self._axs.values(): if ax['ax'] is mplobj.axes: return ax[output] raise RuntimeError('Parent axes could not be found!')
Helper to get the parent axes of a given mplobj
entailment
def random(adjacency_mat, directed=False, random_state=None): """ Place the graph nodes at random places. Parameters ---------- adjacency_mat : matrix or sparse The graph adjacency matrix directed : bool Whether the graph is directed. If this is True, is will also generate the vertices for arrows, which can be passed to an ArrowVisual. random_state : instance of RandomState | int | None Random state to use. Can be None to use ``np.random``. Yields ------ (node_vertices, line_vertices, arrow_vertices) : tuple Yields the node and line vertices in a tuple. This layout only yields a single time, and has no builtin animation """ if random_state is None: random_state = np.random elif not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) if issparse(adjacency_mat): adjacency_mat = adjacency_mat.tocoo() # Randomly place nodes, visual coordinate system is between 0 and 1 num_nodes = adjacency_mat.shape[0] node_coords = random_state.rand(num_nodes, 2) line_vertices, arrows = _straight_line_vertices(adjacency_mat, node_coords, directed) yield node_coords, line_vertices, arrows
Place the graph nodes at random places. Parameters ---------- adjacency_mat : matrix or sparse The graph adjacency matrix directed : bool Whether the graph is directed. If this is True, is will also generate the vertices for arrows, which can be passed to an ArrowVisual. random_state : instance of RandomState | int | None Random state to use. Can be None to use ``np.random``. Yields ------ (node_vertices, line_vertices, arrow_vertices) : tuple Yields the node and line vertices in a tuple. This layout only yields a single time, and has no builtin animation
entailment
def isocurve(data, level, connected=False, extend_to_edge=False): """ Generate isocurve from 2D data using marching squares algorithm. Parameters ---------- data : ndarray 2D numpy array of scalar values level : float The level at which to generate an isosurface connected : bool If False, return a single long list of point pairs If True, return multiple long lists of connected point locations. (This is slower but better for drawing continuous lines) extend_to_edge : bool If True, extend the curves to reach the exact edges of the data. """ # This function is SLOW; plenty of room for optimization here. if extend_to_edge: d2 = np.empty((data.shape[0]+2, data.shape[1]+2), dtype=data.dtype) d2[1:-1, 1:-1] = data d2[0, 1:-1] = data[0] d2[-1, 1:-1] = data[-1] d2[1:-1, 0] = data[:, 0] d2[1:-1, -1] = data[:, -1] d2[0, 0] = d2[0, 1] d2[0, -1] = d2[1, -1] d2[-1, 0] = d2[-1, 1] d2[-1, -1] = d2[-1, -2] data = d2 side_table = [ [], [0, 1], [1, 2], [0, 2], [0, 3], [1, 3], [0, 1, 2, 3], [2, 3], [2, 3], [0, 1, 2, 3], [1, 3], [0, 3], [0, 2], [1, 2], [0, 1], [] ] edge_key = [ [(0, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 0), (1, 1)], [(1, 1), (0, 1)] ] level = float(level) lines = [] # mark everything below the isosurface level mask = data < level ## make four sub-fields and compute indexes for grid cells index = np.zeros([x-1 for x in data.shape], dtype=np.ubyte) fields = np.empty((2, 2), dtype=object) slices = [slice(0, -1), slice(1, None)] for i in [0, 1]: for j in [0, 1]: fields[i, j] = mask[slices[i], slices[j]] vertIndex = i+2*j index += (fields[i, j] * 2**vertIndex).astype(np.ubyte) # add lines for i in range(index.shape[0]): # data x-axis for j in range(index.shape[1]): # data y-axis sides = side_table[index[i, j]] for l in range(0, len(sides), 2): # faces for this grid cell edges = sides[l:l+2] pts = [] for m in [0, 1]: # points in this face # p1, p2 are points at either side of an edge p1 = edge_key[edges[m]][0] p2 = edge_key[edges[m]][1] # v1 and v2 are the values at p1 and p2 v1 = data[i+p1[0], j+p1[1]] v2 = data[i+p2[0], j+p2[1]] f = (level-v1) / (v2-v1) fi = 1.0 - f # interpolate between corners p = (p1[0]*fi + p2[0]*f + i + 0.5, p1[1]*fi + p2[1]*f + j + 0.5) if extend_to_edge: # check bounds p = (min(data.shape[0]-2, max(0, p[0]-1)), min(data.shape[1]-2, max(0, p[1]-1))) if connected: gridKey = (i + (1 if edges[m] == 2 else 0), j + (1 if edges[m] == 3 else 0), edges[m] % 2) # give the actual position and a key identifying the # grid location (for connecting segments) pts.append((p, gridKey)) else: pts.append(p) lines.append(pts) if not connected: return lines # turn disjoint list of segments into continuous lines points = {} # maps each point to its connections for a, b in lines: if a[1] not in points: points[a[1]] = [] points[a[1]].append([a, b]) if b[1] not in points: points[b[1]] = [] points[b[1]].append([b, a]) # rearrange into chains for k in list(points.keys()): try: chains = points[k] except KeyError: # already used this point elsewhere continue for chain in chains: x = None while True: if x == chain[-1][1]: break # nothing left to do on this chain x = chain[-1][1] if x == k: # chain has looped; we're done and can ignore the opposite # chain break y = chain[-2][1] connects = points[x] for conn in connects[:]: if conn[1][1] != y: chain.extend(conn[1:]) del points[x] if chain[0][1] == chain[-1][1]: # looped chain; no need to continue the other direction chains.pop() break # extract point locations lines = [] for chain in points.values(): if len(chain) == 2: # join together ends of chain chain = chain[1][1:][::-1] + chain[0] else: chain = chain[0] lines.append([pt[0] for pt in chain]) return lines
Generate isocurve from 2D data using marching squares algorithm. Parameters ---------- data : ndarray 2D numpy array of scalar values level : float The level at which to generate an isosurface connected : bool If False, return a single long list of point pairs If True, return multiple long lists of connected point locations. (This is slower but better for drawing continuous lines) extend_to_edge : bool If True, extend the curves to reach the exact edges of the data.
entailment
def pos(self): """ The position of this event in the local coordinate system of the visual. """ if self._pos is None: tr = self.visual.get_transform('canvas', 'visual') self._pos = tr.map(self.mouse_event.pos) return self._pos
The position of this event in the local coordinate system of the visual.
entailment
def last_event(self): """ The mouse event immediately prior to this one. This property is None when no mouse buttons are pressed. """ if self.mouse_event.last_event is None: return None ev = self.copy() ev.mouse_event = self.mouse_event.last_event return ev
The mouse event immediately prior to this one. This property is None when no mouse buttons are pressed.
entailment
def press_event(self): """ The mouse press event that initiated a mouse drag, if any. """ if self.mouse_event.press_event is None: return None ev = self.copy() ev.mouse_event = self.mouse_event.press_event return ev
The mouse press event that initiated a mouse drag, if any.
entailment
def check_enum(enum, name=None, valid=None): """ Get lowercase string representation of enum. """ name = name or 'enum' # Try to convert res = None if isinstance(enum, int): if hasattr(enum, 'name') and enum.name.startswith('GL_'): res = enum.name[3:].lower() elif isinstance(enum, string_types): res = enum.lower() # Check if res is None: raise ValueError('Could not determine string represenatation for' 'enum %r' % enum) elif valid and res not in valid: raise ValueError('Value of %s must be one of %r, not %r' % (name, valid, enum)) return res
Get lowercase string representation of enum.
entailment
def draw_texture(tex): """Draw a 2D texture to the current viewport Parameters ---------- tex : instance of Texture2D The texture to draw. """ from .program import Program program = Program(vert_draw, frag_draw) program['u_texture'] = tex program['a_position'] = [[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]] program['a_texcoord'] = [[0., 1.], [0., 0.], [1., 1.], [1., 0.]] program.draw('triangle_strip')
Draw a 2D texture to the current viewport Parameters ---------- tex : instance of Texture2D The texture to draw.
entailment
def _get_dpi_from(cmd, pattern, func): """Match pattern against the output of func, passing the results as floats to func. If anything fails, return None. """ try: out, _ = run_subprocess([cmd]) except (OSError, CalledProcessError): pass else: match = re.search(pattern, out) if match: return func(*map(float, match.groups()))
Match pattern against the output of func, passing the results as floats to func. If anything fails, return None.
entailment
def get_dpi(raise_error=True): """Get screen DPI from the OS Parameters ---------- raise_error : bool If True, raise an error if DPI could not be determined. Returns ------- dpi : float Dots per inch of the primary screen. """ # If we are running without an X server (e.g. OSMesa), use a fixed DPI if 'DISPLAY' not in os.environ: return 96. from_xdpyinfo = _get_dpi_from( 'xdpyinfo', r'(\d+)x(\d+) dots per inch', lambda x_dpi, y_dpi: (x_dpi + y_dpi) / 2) if from_xdpyinfo is not None: return from_xdpyinfo from_xrandr = _get_dpi_from( 'xrandr', r'(\d+)x(\d+).*?(\d+)mm x (\d+)mm', lambda x_px, y_px, x_mm, y_mm: 25.4 * (x_px / x_mm + y_px / y_mm) / 2) if from_xrandr is not None: return from_xrandr if raise_error: raise RuntimeError('could not determine DPI') else: logger.warning('could not determine DPI') return 96
Get screen DPI from the OS Parameters ---------- raise_error : bool If True, raise an error if DPI could not be determined. Returns ------- dpi : float Dots per inch of the primary screen.
entailment
def set_data(self, adjacency_mat=None, **kwargs): """Set the data Parameters ---------- adjacency_mat : ndarray | None The adjacency matrix. **kwargs : dict Keyword arguments to pass to the arrows. """ if adjacency_mat is not None: if adjacency_mat.shape[0] != adjacency_mat.shape[1]: raise ValueError("Adjacency matrix should be square.") self._adjacency_mat = adjacency_mat for k in self._arrow_attributes: if k in kwargs: translated = (self._arrow_kw_trans[k] if k in self._arrow_kw_trans else k) setattr(self._edges, translated, kwargs.pop(k)) arrow_kwargs = {} for k in self._arrow_kwargs: if k in kwargs: translated = (self._arrow_kw_trans[k] if k in self._arrow_kw_trans else k) arrow_kwargs[translated] = kwargs.pop(k) node_kwargs = {} for k in self._node_kwargs: if k in kwargs: translated = (self._node_kw_trans[k] if k in self._node_kw_trans else k) node_kwargs[translated] = kwargs.pop(k) if len(kwargs) > 0: raise TypeError("%s.set_data() got invalid keyword arguments: %S" % (self.__class__.__name__, list(kwargs.keys()))) # The actual data is set in GraphVisual.animate_layout or # GraphVisual.set_final_layout self._arrow_data = arrow_kwargs self._node_data = node_kwargs if not self._animate: self.set_final_layout()
Set the data Parameters ---------- adjacency_mat : ndarray | None The adjacency matrix. **kwargs : dict Keyword arguments to pass to the arrows.
entailment
def calc_size(rect, orientation): """Calculate a size Parameters ---------- rect : rectangle The rectangle. orientation : str Either "bottom" or "top". """ (total_halfx, total_halfy) = rect.center if orientation in ["bottom", "top"]: (total_major_axis, total_minor_axis) = (total_halfx, total_halfy) else: (total_major_axis, total_minor_axis) = (total_halfy, total_halfx) major_axis = total_major_axis * (1.0 - ColorBarWidget.major_axis_padding) minor_axis = major_axis * ColorBarWidget.minor_axis_ratio # if the minor axis is "leaking" from the padding, then clamp minor_axis = np.minimum(minor_axis, total_minor_axis * (1.0 - ColorBarWidget.minor_axis_padding)) return (major_axis, minor_axis)
Calculate a size Parameters ---------- rect : rectangle The rectangle. orientation : str Either "bottom" or "top".
entailment
def dtype_reduce(dtype, level=0, depth=0): """ Try to reduce dtype up to a given level when it is possible dtype = [ ('vertex', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]), ('normal', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]), ('color', [('r', 'f4'), ('g', 'f4'), ('b', 'f4'), ('a', 'f4')])] level 0: ['color,vertex,normal,', 10, 'float32'] level 1: [['color', 4, 'float32'] ['normal', 3, 'float32'] ['vertex', 3, 'float32']] """ dtype = np.dtype(dtype) fields = dtype.fields # No fields if fields is None: if len(dtype.shape): count = reduce(mul, dtype.shape) else: count = 1 # size = dtype.itemsize / count if dtype.subdtype: name = str(dtype.subdtype[0]) else: name = str(dtype) return ['', count, name] else: items = [] name = '' # Get reduced fields for key, value in fields.items(): l = dtype_reduce(value[0], level, depth + 1) if type(l[0]) is str: items.append([key, l[1], l[2]]) else: items.append(l) name += key + ',' # Check if we can reduce item list ctype = None count = 0 for i, item in enumerate(items): # One item is a list, we cannot reduce if type(item[0]) is not str: return items else: if i == 0: ctype = item[2] count += item[1] else: if item[2] != ctype: return items count += item[1] if depth >= level: return [name, count, ctype] else: return items
Try to reduce dtype up to a given level when it is possible dtype = [ ('vertex', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]), ('normal', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]), ('color', [('r', 'f4'), ('g', 'f4'), ('b', 'f4'), ('a', 'f4')])] level 0: ['color,vertex,normal,', 10, 'float32'] level 1: [['color', 4, 'float32'] ['normal', 3, 'float32'] ['vertex', 3, 'float32']]
entailment
def fetchcode(utype, prefix=""): """ Generate the GLSL code needed to retrieve fake uniform values from a texture. uniforms : sampler2D Texture to fetch uniforms from uniforms_shape: vec3 Size of texture (width,height,count) where count is the number of float to be fetched. collection_index: float Attribute giving the index of the uniforms to be fetched. This index relates to the index in the uniform array from python side. """ utype = np.dtype(utype) _utype = dtype_reduce(utype, level=1) header = """ uniform sampler2D uniforms; uniform vec3 uniforms_shape; attribute float collection_index; """ # Header generation (easy) types = {1: 'float', 2: 'vec2 ', 3: 'vec3 ', 4: 'vec4 ', 9: 'mat3 ', 16: 'mat4 '} for name, count, _ in _utype: if name != '__unused__': header += "varying %s %s%s;\n" % (types[count], prefix, name) # Body generation (not so easy) body = """\nvoid fetch_uniforms() { float rows = uniforms_shape.x; float cols = uniforms_shape.y; float count = uniforms_shape.z; float index = collection_index; int index_x = int(mod(index, (floor(cols/(count/4.0))))) * int(count/4.0); int index_y = int(floor(index / (floor(cols/(count/4.0))))); float size_x = cols - 1.0; float size_y = rows - 1.0; float ty = 0.0; if (size_y > 0.0) ty = float(index_y)/size_y; int i = index_x; vec4 _uniform;\n""" _utype = dict([(name, count) for name, count, _ in _utype]) store = 0 # Be very careful with utype name order (_utype.keys is wrong) for name in utype.names: if name == '__unused__': continue count, shift = _utype[name], 0 size = count while count: if store == 0: body += "\n _uniform = texture2D(uniforms, vec2(float(i++)/size_x,ty));\n" # noqa store = 4 if store == 4: a = "xyzw" elif store == 3: a = "yzw" elif store == 2: a = "zw" elif store == 1: a = "w" if shift == 0: b = "xyzw" elif shift == 1: b = "yzw" elif shift == 2: b = "zw" elif shift == 3: b = "w" i = min(min(len(b), count), len(a)) if size > 1: body += " %s%s.%s = _uniform.%s;\n" % (prefix, name, b[:i], a[:i]) # noqa else: body += " %s%s = _uniform.%s;\n" % (prefix, name, a[:i]) count -= i shift += i store -= i body += """}\n\n""" return header + body
Generate the GLSL code needed to retrieve fake uniform values from a texture. uniforms : sampler2D Texture to fetch uniforms from uniforms_shape: vec3 Size of texture (width,height,count) where count is the number of float to be fetched. collection_index: float Attribute giving the index of the uniforms to be fetched. This index relates to the index in the uniform array from python side.
entailment
def create_cube(): """ Generate vertices & indices for a filled and outlined cube Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. filled : array Indices to use to produce a filled cube. outline : array Indices to use to produce an outline of the cube. """ vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np.float32, 4)] itype = np.uint32 # Vertices positions p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]]) # Face Normals n = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0], [-1, 0, 1], [0, -1, 0], [0, 0, -1]]) # Vertice colors c = np.array([[1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]]) # Texture coords t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]]) faces_p = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2, 4, 7, 6, 5] faces_c = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2, 4, 7, 6, 5] faces_n = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5] faces_t = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 0, 1, 2, 3] vertices = np.zeros(24, vtype) vertices['position'] = p[faces_p] vertices['normal'] = n[faces_n] vertices['color'] = c[faces_c] vertices['texcoord'] = t[faces_t] filled = np.resize( np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3)) filled += np.repeat(4 * np.arange(6, dtype=itype), 6) filled = filled.reshape((len(filled) // 3, 3)) outline = np.resize( np.array([0, 1, 1, 2, 2, 3, 3, 0], dtype=itype), 6 * (2 * 4)) outline += np.repeat(4 * np.arange(6, dtype=itype), 8) return vertices, filled, outline
Generate vertices & indices for a filled and outlined cube Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. filled : array Indices to use to produce a filled cube. outline : array Indices to use to produce an outline of the cube.
entailment
def create_plane(width=1, height=1, width_segments=1, height_segments=1, direction='+z'): """ Generate vertices & indices for a filled and outlined plane. Parameters ---------- width : float Plane width. height : float Plane height. width_segments : int Plane segments count along the width. height_segments : float Plane segments count along the height. direction: unicode ``{'-x', '+x', '-y', '+y', '-z', '+z'}`` Direction the plane will be facing. Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. faces : array Indices to use to produce a filled plane. outline : array Indices to use to produce an outline of the plane. References ---------- .. [1] Cabello, R. (n.d.). PlaneBufferGeometry.js. Retrieved May 12, 2015, from http://git.io/vU1Fh """ x_grid = width_segments y_grid = height_segments x_grid1 = x_grid + 1 y_grid1 = y_grid + 1 # Positions, normals and texcoords. positions = np.zeros(x_grid1 * y_grid1 * 3) normals = np.zeros(x_grid1 * y_grid1 * 3) texcoords = np.zeros(x_grid1 * y_grid1 * 2) y = np.arange(y_grid1) * height / y_grid - height / 2 x = np.arange(x_grid1) * width / x_grid - width / 2 positions[::3] = np.tile(x, y_grid1) positions[1::3] = -np.repeat(y, x_grid1) normals[2::3] = 1 texcoords[::2] = np.tile(np.arange(x_grid1) / x_grid, y_grid1) texcoords[1::2] = np.repeat(1 - np.arange(y_grid1) / y_grid, x_grid1) # Faces and outline. faces, outline = [], [] for i_y in range(y_grid): for i_x in range(x_grid): a = i_x + x_grid1 * i_y b = i_x + x_grid1 * (i_y + 1) c = (i_x + 1) + x_grid1 * (i_y + 1) d = (i_x + 1) + x_grid1 * i_y faces.extend(((a, b, d), (b, c, d))) outline.extend(((a, b), (b, c), (c, d), (d, a))) positions = np.reshape(positions, (-1, 3)) texcoords = np.reshape(texcoords, (-1, 2)) normals = np.reshape(normals, (-1, 3)) faces = np.reshape(faces, (-1, 3)).astype(np.uint32) outline = np.reshape(outline, (-1, 2)).astype(np.uint32) direction = direction.lower() if direction in ('-x', '+x'): shift, neutral_axis = 1, 0 elif direction in ('-y', '+y'): shift, neutral_axis = -1, 1 elif direction in ('-z', '+z'): shift, neutral_axis = 0, 2 sign = -1 if '-' in direction else 1 positions = np.roll(positions, shift, -1) normals = np.roll(normals, shift, -1) * sign colors = np.ravel(positions) colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0], 1)))) colors[..., neutral_axis] = 0 vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np.float32, 4)]) vertices['position'] = positions vertices['texcoord'] = texcoords vertices['normal'] = normals vertices['color'] = colors return vertices, faces, outline
Generate vertices & indices for a filled and outlined plane. Parameters ---------- width : float Plane width. height : float Plane height. width_segments : int Plane segments count along the width. height_segments : float Plane segments count along the height. direction: unicode ``{'-x', '+x', '-y', '+y', '-z', '+z'}`` Direction the plane will be facing. Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. faces : array Indices to use to produce a filled plane. outline : array Indices to use to produce an outline of the plane. References ---------- .. [1] Cabello, R. (n.d.). PlaneBufferGeometry.js. Retrieved May 12, 2015, from http://git.io/vU1Fh
entailment
def create_box(width=1, height=1, depth=1, width_segments=1, height_segments=1, depth_segments=1, planes=None): """ Generate vertices & indices for a filled and outlined box. Parameters ---------- width : float Box width. height : float Box height. depth : float Box depth. width_segments : int Box segments count along the width. height_segments : float Box segments count along the height. depth_segments : float Box segments count along the depth. planes: array_like Any combination of ``{'-x', '+x', '-y', '+y', '-z', '+z'}`` Included planes in the box construction. Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. faces : array Indices to use to produce a filled box. outline : array Indices to use to produce an outline of the box. """ planes = (('+x', '-x', '+y', '-y', '+z', '-z') if planes is None else [d.lower() for d in planes]) w_s, h_s, d_s = width_segments, height_segments, depth_segments planes_m = [] if '-z' in planes: planes_m.append(create_plane(width, depth, w_s, d_s, '-z')) planes_m[-1][0]['position'][..., 2] -= height / 2 if '+z' in planes: planes_m.append(create_plane(width, depth, w_s, d_s, '+z')) planes_m[-1][0]['position'][..., 2] += height / 2 if '-y' in planes: planes_m.append(create_plane(height, width, h_s, w_s, '-y')) planes_m[-1][0]['position'][..., 1] -= depth / 2 if '+y' in planes: planes_m.append(create_plane(height, width, h_s, w_s, '+y')) planes_m[-1][0]['position'][..., 1] += depth / 2 if '-x' in planes: planes_m.append(create_plane(depth, height, d_s, h_s, '-x')) planes_m[-1][0]['position'][..., 0] -= width / 2 if '+x' in planes: planes_m.append(create_plane(depth, height, d_s, h_s, '+x')) planes_m[-1][0]['position'][..., 0] += width / 2 positions = np.zeros((0, 3), dtype=np.float32) texcoords = np.zeros((0, 2), dtype=np.float32) normals = np.zeros((0, 3), dtype=np.float32) faces = np.zeros((0, 3), dtype=np.uint32) outline = np.zeros((0, 2), dtype=np.uint32) offset = 0 for vertices_p, faces_p, outline_p in planes_m: positions = np.vstack((positions, vertices_p['position'])) texcoords = np.vstack((texcoords, vertices_p['texcoord'])) normals = np.vstack((normals, vertices_p['normal'])) faces = np.vstack((faces, faces_p + offset)) outline = np.vstack((outline, outline_p + offset)) offset += vertices_p['position'].shape[0] vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np.float32, 4)]) colors = np.ravel(positions) colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0], 1)))) vertices['position'] = positions vertices['texcoord'] = texcoords vertices['normal'] = normals vertices['color'] = colors return vertices, faces, outline
Generate vertices & indices for a filled and outlined box. Parameters ---------- width : float Box width. height : float Box height. depth : float Box depth. width_segments : int Box segments count along the width. height_segments : float Box segments count along the height. depth_segments : float Box segments count along the depth. planes: array_like Any combination of ``{'-x', '+x', '-y', '+y', '-z', '+z'}`` Included planes in the box construction. Returns ------- vertices : array Array of vertices suitable for use as a VertexBuffer. faces : array Indices to use to produce a filled box. outline : array Indices to use to produce an outline of the box.
entailment
def create_sphere(rows=10, cols=10, depth=10, radius=1.0, offset=True, subdivisions=3, method='latitude'): """Create a sphere Parameters ---------- rows : int Number of rows (for method='latitude' and 'cube'). cols : int Number of columns (for method='latitude' and 'cube'). depth : int Number of depth segments (for method='cube'). radius : float Sphere radius. offset : bool Rotate each row by half a column (for method='latitude'). subdivisions : int Number of subdivisions to perform (for method='ico') method : str Method for generating sphere. Accepts 'latitude' for latitude- longitude, 'ico' for icosahedron, and 'cube' for cube based tessellation. Returns ------- sphere : MeshData Vertices and faces computed for a spherical surface. """ if method == 'latitude': return _latitude(rows, cols, radius, offset) elif method == 'ico': return _ico(radius, subdivisions) elif method == 'cube': return _cube(rows, cols, depth, radius) else: raise Exception("Invalid method. Accepts: 'latitude', 'ico', 'cube'")
Create a sphere Parameters ---------- rows : int Number of rows (for method='latitude' and 'cube'). cols : int Number of columns (for method='latitude' and 'cube'). depth : int Number of depth segments (for method='cube'). radius : float Sphere radius. offset : bool Rotate each row by half a column (for method='latitude'). subdivisions : int Number of subdivisions to perform (for method='ico') method : str Method for generating sphere. Accepts 'latitude' for latitude- longitude, 'ico' for icosahedron, and 'cube' for cube based tessellation. Returns ------- sphere : MeshData Vertices and faces computed for a spherical surface.
entailment
def create_cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False): """Create a cylinder Parameters ---------- rows : int Number of rows. cols : int Number of columns. radius : tuple of float Cylinder radii. length : float Length of the cylinder. offset : bool Rotate each row by half a column. Returns ------- cylinder : MeshData Vertices and faces computed for a cylindrical surface. """ verts = np.empty((rows+1, cols, 3), dtype=np.float32) if isinstance(radius, int): radius = [radius, radius] # convert to list # compute vertices th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols) # radius as a function of z r = np.linspace(radius[0], radius[1], num=rows+1, endpoint=True).reshape(rows+1, 1) verts[..., 2] = np.linspace(0, length, num=rows+1, endpoint=True).reshape(rows+1, 1) # z if offset: # rotate each row by 1/2 column th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1, 1)) verts[..., 0] = r * np.cos(th) # x = r cos(th) verts[..., 1] = r * np.sin(th) # y = r sin(th) # just reshape: no redundant vertices... verts = verts.reshape((rows+1)*cols, 3) # compute faces faces = np.empty((rows*cols*2, 3), dtype=np.uint32) rowtemplate1 = (((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])) % cols) + np.array([[0, 0, cols]])) rowtemplate2 = (((np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])) % cols) + np.array([[cols, 0, cols]])) for row in range(rows): start = row * cols * 2 faces[start:start+cols] = rowtemplate1 + row * cols faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols return MeshData(vertices=verts, faces=faces)
Create a cylinder Parameters ---------- rows : int Number of rows. cols : int Number of columns. radius : tuple of float Cylinder radii. length : float Length of the cylinder. offset : bool Rotate each row by half a column. Returns ------- cylinder : MeshData Vertices and faces computed for a cylindrical surface.
entailment
def create_cone(cols, radius=1.0, length=1.0): """Create a cone Parameters ---------- cols : int Number of faces. radius : float Base cone radius. length : float Length of the cone. Returns ------- cone : MeshData Vertices and faces computed for a cone surface. """ verts = np.empty((cols+1, 3), dtype=np.float32) # compute vertexes th = np.linspace(2 * np.pi, 0, cols+1).reshape(1, cols+1) verts[:-1, 2] = 0.0 verts[:-1, 0] = radius * np.cos(th[0, :-1]) # x = r cos(th) verts[:-1, 1] = radius * np.sin(th[0, :-1]) # y = r sin(th) # Add the extremity verts[-1, 0] = 0.0 verts[-1, 1] = 0.0 verts[-1, 2] = length verts = verts.reshape((cols+1), 3) # just reshape: no redundant vertices # compute faces faces = np.empty((cols, 3), dtype=np.uint32) template = np.array([[0, 1]]) for pos in range(cols): faces[pos, :-1] = template + pos faces[:, 2] = cols faces[-1, 1] = 0 return MeshData(vertices=verts, faces=faces)
Create a cone Parameters ---------- cols : int Number of faces. radius : float Base cone radius. length : float Length of the cone. Returns ------- cone : MeshData Vertices and faces computed for a cone surface.
entailment
def create_arrow(rows, cols, radius=0.1, length=1.0, cone_radius=None, cone_length=None): """Create a 3D arrow using a cylinder plus cone Parameters ---------- rows : int Number of rows. cols : int Number of columns. radius : float Base cylinder radius. length : float Length of the arrow. cone_radius : float Radius of the cone base. If None, then this defaults to 2x the cylinder radius. cone_length : float Length of the cone. If None, then this defaults to 1/3 of the arrow length. Returns ------- arrow : MeshData Vertices and faces computed for a cone surface. """ # create the cylinder md_cyl = None if cone_radius is None: cone_radius = radius*2.0 if cone_length is None: con_L = length/3.0 cyl_L = length*2.0/3.0 else: cyl_L = max(0, length - cone_length) con_L = min(cone_length, length) if cyl_L != 0: md_cyl = create_cylinder(rows, cols, radius=[radius, radius], length=cyl_L) # create the cone md_con = create_cone(cols, radius=cone_radius, length=con_L) verts = md_con.get_vertices() nbr_verts_con = verts.size//3 faces = md_con.get_faces() if md_cyl is not None: trans = np.array([[0.0, 0.0, cyl_L]]) verts = np.vstack((verts+trans, md_cyl.get_vertices())) faces = np.vstack((faces, md_cyl.get_faces()+nbr_verts_con)) return MeshData(vertices=verts, faces=faces)
Create a 3D arrow using a cylinder plus cone Parameters ---------- rows : int Number of rows. cols : int Number of columns. radius : float Base cylinder radius. length : float Length of the arrow. cone_radius : float Radius of the cone base. If None, then this defaults to 2x the cylinder radius. cone_length : float Length of the cone. If None, then this defaults to 1/3 of the arrow length. Returns ------- arrow : MeshData Vertices and faces computed for a cone surface.
entailment
def create_grid_mesh(xs, ys, zs): '''Generate vertices and indices for an implicitly connected mesh. The intention is that this makes it simple to generate a mesh from meshgrid data. Parameters ---------- xs : ndarray A 2d array of x coordinates for the vertices of the mesh. Must have the same dimensions as ys and zs. ys : ndarray A 2d array of y coordinates for the vertices of the mesh. Must have the same dimensions as xs and zs. zs : ndarray A 2d array of z coordinates for the vertices of the mesh. Must have the same dimensions as xs and ys. Returns ------- vertices : ndarray The array of vertices in the mesh. indices : ndarray The array of indices for the mesh. ''' shape = xs.shape length = shape[0] * shape[1] vertices = np.zeros((length, 3)) vertices[:, 0] = xs.reshape(length) vertices[:, 1] = ys.reshape(length) vertices[:, 2] = zs.reshape(length) basic_indices = np.array([0, 1, 1 + shape[1], 0, 0 + shape[1], 1 + shape[1]], dtype=np.uint32) inner_grid_length = (shape[0] - 1) * (shape[1] - 1) offsets = np.arange(inner_grid_length) offsets += np.repeat(np.arange(shape[0] - 1), shape[1] - 1) offsets = np.repeat(offsets, 6) indices = np.resize(basic_indices, len(offsets)) + offsets indices = indices.reshape((len(indices) // 3, 3)) return vertices, indices
Generate vertices and indices for an implicitly connected mesh. The intention is that this makes it simple to generate a mesh from meshgrid data. Parameters ---------- xs : ndarray A 2d array of x coordinates for the vertices of the mesh. Must have the same dimensions as ys and zs. ys : ndarray A 2d array of y coordinates for the vertices of the mesh. Must have the same dimensions as xs and zs. zs : ndarray A 2d array of z coordinates for the vertices of the mesh. Must have the same dimensions as xs and ys. Returns ------- vertices : ndarray The array of vertices in the mesh. indices : ndarray The array of indices for the mesh.
entailment
def _straight_line_vertices(adjacency_mat, node_coords, directed=False): """ Generate the vertices for straight lines between nodes. If it is a directed graph, it also generates the vertices which can be passed to an :class:`ArrowVisual`. Parameters ---------- adjacency_mat : array The adjacency matrix of the graph node_coords : array The current coordinates of all nodes in the graph directed : bool Wether the graph is directed. If this is true it will also generate the vertices for arrows which can be passed to :class:`ArrowVisual`. Returns ------- vertices : tuple Returns a tuple containing containing (`line_vertices`, `arrow_vertices`) """ if not issparse(adjacency_mat): adjacency_mat = np.asarray(adjacency_mat, float) if (adjacency_mat.ndim != 2 or adjacency_mat.shape[0] != adjacency_mat.shape[1]): raise ValueError("Adjacency matrix should be square.") arrow_vertices = np.array([]) edges = _get_edges(adjacency_mat) line_vertices = node_coords[edges.ravel()] if directed: arrows = np.array(list(_get_directed_edges(adjacency_mat))) arrow_vertices = node_coords[arrows.ravel()] arrow_vertices = arrow_vertices.reshape((len(arrow_vertices)/2, 4)) return line_vertices, arrow_vertices
Generate the vertices for straight lines between nodes. If it is a directed graph, it also generates the vertices which can be passed to an :class:`ArrowVisual`. Parameters ---------- adjacency_mat : array The adjacency matrix of the graph node_coords : array The current coordinates of all nodes in the graph directed : bool Wether the graph is directed. If this is true it will also generate the vertices for arrows which can be passed to :class:`ArrowVisual`. Returns ------- vertices : tuple Returns a tuple containing containing (`line_vertices`, `arrow_vertices`)
entailment
def _rescale_layout(pos, scale=1): """ Normalize the given coordinate list to the range [0, `scale`]. Parameters ---------- pos : array Coordinate list scale : number The upperbound value for the coordinates range Returns ------- pos : array The rescaled (normalized) coordinates in the range [0, `scale`]. Notes ----- Changes `pos` in place. """ pos -= pos.min(axis=0) pos *= scale / pos.max() return pos
Normalize the given coordinate list to the range [0, `scale`]. Parameters ---------- pos : array Coordinate list scale : number The upperbound value for the coordinates range Returns ------- pos : array The rescaled (normalized) coordinates in the range [0, `scale`]. Notes ----- Changes `pos` in place.
entailment
def get_handle(): ''' Get unique FT_Library handle ''' global __handle__ if not __handle__: __handle__ = FT_Library() error = FT_Init_FreeType(byref(__handle__)) if error: raise RuntimeError(hex(error)) return __handle__
Get unique FT_Library handle
entailment
def version(): ''' Return the version of the FreeType library being used as a tuple of ( major version number, minor version number, patch version number ) ''' amajor = FT_Int() aminor = FT_Int() apatch = FT_Int() library = get_handle() FT_Library_Version(library, byref(amajor), byref(aminor), byref(apatch)) return (amajor.value, aminor.value, apatch.value)
Return the version of the FreeType library being used as a tuple of ( major version number, minor version number, patch version number )
entailment
def make_camera(cam_type, *args, **kwargs): """ Factory function for creating new cameras using a string name. Parameters ---------- cam_type : str May be one of: * 'panzoom' : Creates :class:`PanZoomCamera` * 'turntable' : Creates :class:`TurntableCamera` * None : Creates :class:`Camera` Notes ----- All extra arguments are passed to the __init__ method of the selected Camera class. """ cam_types = {None: BaseCamera} for camType in (BaseCamera, PanZoomCamera, PerspectiveCamera, TurntableCamera, FlyCamera, ArcballCamera): cam_types[camType.__name__[:-6].lower()] = camType try: return cam_types[cam_type](*args, **kwargs) except KeyError: raise KeyError('Unknown camera type "%s". Options are: %s' % (cam_type, cam_types.keys()))
Factory function for creating new cameras using a string name. Parameters ---------- cam_type : str May be one of: * 'panzoom' : Creates :class:`PanZoomCamera` * 'turntable' : Creates :class:`TurntableCamera` * None : Creates :class:`Camera` Notes ----- All extra arguments are passed to the __init__ method of the selected Camera class.
entailment
def set_data_values(self, label, x, y, z): """ Set the position of the datapoints """ # TODO: avoid re-allocating an array every time self.layers[label]['data'] = np.array([x, y, z]).transpose() self._update()
Set the position of the datapoints
entailment
def SegmentCollection(mode="agg-fast", *args, **kwargs): """ mode: string - "raw" (speed: fastest, size: small, output: ugly, no dash, no thickness) - "agg" (speed: slower, size: medium, output: perfect, no dash) """ if mode == "raw": return RawSegmentCollection(*args, **kwargs) return AggSegmentCollection(*args, **kwargs)
mode: string - "raw" (speed: fastest, size: small, output: ugly, no dash, no thickness) - "agg" (speed: slower, size: medium, output: perfect, no dash)
entailment
def surface(func, umin=0, umax=2 * np.pi, ucount=64, urepeat=1.0, vmin=0, vmax=2 * np.pi, vcount=64, vrepeat=1.0): """ Computes the parameterization of a parametric surface func: function(u,v) Parametric function used to build the surface """ vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3)] itype = np.uint32 # umin, umax, ucount = 0, 2*np.pi, 64 # vmin, vmax, vcount = 0, 2*np.pi, 64 vcount += 1 ucount += 1 n = vcount * ucount Un = np.repeat(np.linspace(0, 1, ucount, endpoint=True), vcount) Vn = np.tile(np.linspace(0, 1, vcount, endpoint=True), ucount) U = umin + Un * (umax - umin) V = vmin + Vn * (vmax - vmin) vertices = np.zeros(n, dtype=vtype) for i, (u, v) in enumerate(zip(U, V)): vertices["position"][i] = func(u, v) vertices["texcoord"][:, 0] = Un * urepeat vertices["texcoord"][:, 1] = Vn * vrepeat indices = [] for i in range(ucount - 1): for j in range(vcount - 1): indices.append(i * (vcount) + j) indices.append(i * (vcount) + j + 1) indices.append(i * (vcount) + j + vcount + 1) indices.append(i * (vcount) + j + vcount) indices.append(i * (vcount) + j + vcount + 1) indices.append(i * (vcount) + j) indices = np.array(indices, dtype=itype) vertices["normal"] = normals(vertices["position"], indices.reshape(len(indices) / 3, 3)) return vertices, indices
Computes the parameterization of a parametric surface func: function(u,v) Parametric function used to build the surface
entailment
def PointCollection(mode="raw", *args, **kwargs): """ mode: string - "raw" (speed: fastest, size: small, output: ugly) - "agg" (speed: fast, size: small, output: beautiful) """ if mode == "raw": return RawPointCollection(*args, **kwargs) return AggPointCollection(*args, **kwargs)
mode: string - "raw" (speed: fastest, size: small, output: ugly) - "agg" (speed: fast, size: small, output: beautiful)
entailment
def roll_data(self, data): """Append new data to the right side of every line strip and remove as much data from the left. Parameters ---------- data : array-like A data array to append. """ data = data.astype('float32')[..., np.newaxis] s1 = self._data_shape[1] - self._offset if data.shape[1] > s1: self._pos_tex[:, self._offset:] = data[:, :s1] self._pos_tex[:, :data.shape[1] - s1] = data[:, s1:] self._offset = (self._offset + data.shape[1]) % self._data_shape[1] else: self._pos_tex[:, self._offset:self._offset+data.shape[1]] = data self._offset += data.shape[1] self.shared_program['offset'] = self._offset self.update()
Append new data to the right side of every line strip and remove as much data from the left. Parameters ---------- data : array-like A data array to append.
entailment
def set_data(self, index, data): """Set the complete data for a single line strip. Parameters ---------- index : int The index of the line strip to be replaced. data : array-like The data to assign to the selected line strip. """ self._pos_tex[index, :] = data self.update()
Set the complete data for a single line strip. Parameters ---------- index : int The index of the line strip to be replaced. data : array-like The data to assign to the selected line strip.
entailment
def add_program(self, name=None): """Create a program and add it to this MultiProgram. It is the caller's responsibility to keep a reference to the returned program. The *name* must be unique, but is otherwise arbitrary and used for debugging purposes. """ if name is None: name = 'program' + str(self._next_prog_id) self._next_prog_id += 1 if name in self._programs: raise KeyError("Program named '%s' already exists." % name) # create a program and update it to look like the rest prog = ModularProgram(self._vcode, self._fcode) for key, val in self._set_items.items(): prog[key] = val self.frag._new_program(prog) self.vert._new_program(prog) self._programs[name] = prog return prog
Create a program and add it to this MultiProgram. It is the caller's responsibility to keep a reference to the returned program. The *name* must be unique, but is otherwise arbitrary and used for debugging purposes.
entailment
def _new_program(self, p): """New program was added to the multiprogram; update items in the shader. """ for k, v in self._set_items.items(): getattr(p, self._shader)[k] = v
New program was added to the multiprogram; update items in the shader.
entailment
def attach(self, canvas): """Attach this tranform to a canvas Parameters ---------- canvas : instance of Canvas The canvas. """ self._canvas = canvas canvas.events.resize.connect(self.on_resize) canvas.events.mouse_wheel.connect(self.on_mouse_wheel) canvas.events.mouse_move.connect(self.on_mouse_move)
Attach this tranform to a canvas Parameters ---------- canvas : instance of Canvas The canvas.
entailment
def on_resize(self, event): """Resize handler Parameters ---------- event : instance of Event The event. """ if self._aspect is None: return w, h = self._canvas.size aspect = self._aspect / (w / h) self.scale = (self.scale[0], self.scale[0] / aspect) self.shader_map()
Resize handler Parameters ---------- event : instance of Event The event.
entailment
def on_mouse_move(self, event): """Mouse move handler Parameters ---------- event : instance of Event The event. """ if event.is_dragging: dxy = event.pos - event.last_event.pos button = event.press_event.button if button == 1: dxy = self.canvas_tr.map(dxy) o = self.canvas_tr.map([0, 0]) t = dxy - o self.move(t) elif button == 2: center = self.canvas_tr.map(event.press_event.pos) if self._aspect is None: self.zoom(np.exp(dxy * (0.01, -0.01)), center) else: s = dxy[1] * -0.01 self.zoom(np.exp(np.array([s, s])), center) self.shader_map()
Mouse move handler Parameters ---------- event : instance of Event The event.
entailment
def on_mouse_wheel(self, event): """Mouse wheel handler Parameters ---------- event : instance of Event The event. """ self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos)
Mouse wheel handler Parameters ---------- event : instance of Event The event.
entailment
def _frenet_frames(points, closed): '''Calculates and returns the tangents, normals and binormals for the tube.''' tangents = np.zeros((len(points), 3)) normals = np.zeros((len(points), 3)) epsilon = 0.0001 # Compute tangent vectors for each segment tangents = np.roll(points, -1, axis=0) - np.roll(points, 1, axis=0) if not closed: tangents[0] = points[1] - points[0] tangents[-1] = points[-1] - points[-2] mags = np.sqrt(np.sum(tangents * tangents, axis=1)) tangents /= mags[:, np.newaxis] # Get initial normal and binormal t = np.abs(tangents[0]) smallest = np.argmin(t) normal = np.zeros(3) normal[smallest] = 1. vec = np.cross(tangents[0], normal) normals[0] = np.cross(tangents[0], vec) # Compute normal and binormal vectors along the path for i in range(1, len(points)): normals[i] = normals[i-1] vec = np.cross(tangents[i-1], tangents[i]) if norm(vec) > epsilon: vec /= norm(vec) theta = np.arccos(np.clip(tangents[i-1].dot(tangents[i]), -1, 1)) normals[i] = rotate(-np.degrees(theta), vec)[:3, :3].dot(normals[i]) if closed: theta = np.arccos(np.clip(normals[0].dot(normals[-1]), -1, 1)) theta /= len(points) - 1 if tangents[0].dot(np.cross(normals[0], normals[-1])) > 0: theta *= -1. for i in range(1, len(points)): normals[i] = rotate(-np.degrees(theta*i), tangents[i])[:3, :3].dot(normals[i]) binormals = np.cross(tangents, normals) return tangents, normals, binormals
Calculates and returns the tangents, normals and binormals for the tube.
entailment
def max_order(self): """ Depth of the smallest HEALPix cells found in the MOC instance. """ # TODO: cache value combo = int(0) for iv in self._interval_set._intervals: combo |= iv[0] | iv[1] ret = AbstractMOC.HPY_MAX_NORDER - (utils.number_trailing_zeros(combo) // 2) if ret < 0: ret = 0 return ret
Depth of the smallest HEALPix cells found in the MOC instance.
entailment
def intersection(self, another_moc, *args): """ Intersection between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used for performing the intersection with self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the intersection with. Returns ------- result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC` The resulting MOC. """ interval_set = self._interval_set.intersection(another_moc._interval_set) for moc in args: interval_set = interval_set.intersection(moc._interval_set) return self.__class__(interval_set)
Intersection between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used for performing the intersection with self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the intersection with. Returns ------- result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC` The resulting MOC.
entailment
def union(self, another_moc, *args): """ Union between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used for performing the union with self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the union with. Returns ------- result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC` The resulting MOC. """ interval_set = self._interval_set.union(another_moc._interval_set) for moc in args: interval_set = interval_set.union(moc._interval_set) return self.__class__(interval_set)
Union between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used for performing the union with self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the union with. Returns ------- result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC` The resulting MOC.
entailment
def difference(self, another_moc, *args): """ Difference between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used that will be substracted to self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the difference with. Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC. """ interval_set = self._interval_set.difference(another_moc._interval_set) for moc in args: interval_set = interval_set.difference(moc._interval_set) return self.__class__(interval_set)
Difference between the MOC instance and other MOCs. Parameters ---------- another_moc : `~mocpy.moc.MOC` The MOC used that will be substracted to self. args : `~mocpy.moc.MOC` Other additional MOCs to perform the difference with. Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC.
entailment
def _neighbour_pixels(hp, ipix): """ Returns all the pixels neighbours of ``ipix`` """ neigh_ipix = np.unique(hp.neighbours(ipix).ravel()) # Remove negative pixel values returned by `~astropy_healpix.HEALPix.neighbours` return neigh_ipix[np.where(neigh_ipix >= 0)]
Returns all the pixels neighbours of ``ipix``
entailment
def from_cells(cls, cells): """ Creates a MOC from a numpy array representing the HEALPix cells. Parameters ---------- cells : `numpy.ndarray` Must be a numpy structured array (See https://docs.scipy.org/doc/numpy-1.15.0/user/basics.rec.html). The structure of a cell contains 3 attributes: - A `ipix` value being a np.uint64 - A `depth` value being a np.uint32 - A `fully_covered` flag bit stored in a np.uint8 Returns ------- moc : `~mocpy.moc.MOC` The MOC. """ shift = (AbstractMOC.HPY_MAX_NORDER - cells["depth"]) << 1 p1 = cells["ipix"] p2 = cells["ipix"] + 1 intervals = np.vstack((p1 << shift, p2 << shift)).T return cls(IntervalSet(intervals))
Creates a MOC from a numpy array representing the HEALPix cells. Parameters ---------- cells : `numpy.ndarray` Must be a numpy structured array (See https://docs.scipy.org/doc/numpy-1.15.0/user/basics.rec.html). The structure of a cell contains 3 attributes: - A `ipix` value being a np.uint64 - A `depth` value being a np.uint32 - A `fully_covered` flag bit stored in a np.uint8 Returns ------- moc : `~mocpy.moc.MOC` The MOC.
entailment
def from_json(cls, json_moc): """ Creates a MOC from a dictionary of HEALPix cell arrays indexed by their depth. Parameters ---------- json_moc : dict(str : [int] A dictionary of HEALPix cell arrays indexed by their depth. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` the MOC. """ intervals = np.array([]) for order, pix_l in json_moc.items(): if len(pix_l) == 0: continue pix = np.array(pix_l) p1 = pix p2 = pix + 1 shift = 2 * (AbstractMOC.HPY_MAX_NORDER - int(order)) itv = np.vstack((p1 << shift, p2 << shift)).T if intervals.size == 0: intervals = itv else: intervals = np.vstack((intervals, itv)) return cls(IntervalSet(intervals))
Creates a MOC from a dictionary of HEALPix cell arrays indexed by their depth. Parameters ---------- json_moc : dict(str : [int] A dictionary of HEALPix cell arrays indexed by their depth. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` the MOC.
entailment
def _uniq_pixels_iterator(self): """ Generator giving the NUNIQ HEALPix pixels of the MOC. Returns ------- uniq : the NUNIQ HEALPix pixels iterator """ intervals_uniq_l = IntervalSet.to_nuniq_interval_set(self._interval_set)._intervals for uniq_iv in intervals_uniq_l: for uniq in range(uniq_iv[0], uniq_iv[1]): yield uniq
Generator giving the NUNIQ HEALPix pixels of the MOC. Returns ------- uniq : the NUNIQ HEALPix pixels iterator
entailment
def from_fits(cls, filename): """ Loads a MOC from a FITS file. The specified FITS file must store the MOC (i.e. the list of HEALPix cells it contains) in a binary HDU table. Parameters ---------- filename : str The path to the FITS file. Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC. """ table = Table.read(filename) intervals = np.vstack((table['UNIQ'], table['UNIQ']+1)).T nuniq_interval_set = IntervalSet(intervals) interval_set = IntervalSet.from_nuniq_interval_set(nuniq_interval_set) return cls(interval_set)
Loads a MOC from a FITS file. The specified FITS file must store the MOC (i.e. the list of HEALPix cells it contains) in a binary HDU table. Parameters ---------- filename : str The path to the FITS file. Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC.
entailment
def from_str(cls, value): """ Create a MOC from a str. This grammar is expressed is the `MOC IVOA <http://ivoa.net/documents/MOC/20190215/WD-MOC-1.1-20190215.pdf>`__ specification at section 2.3.2. Parameters ---------- value : str The MOC as a string following the grammar rules. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> moc = MOC.from_str("2/2-25,28,29 4/0 6/") """ # Import lark parser when from_str is called # at least one time from lark import Lark, Transformer class ParsingException(Exception): pass class TreeToJson(Transformer): def value(self, items): res = {} for item in items: if item is not None: # Do not take into account the "sep" branches res.update(item) return res def sep(self, items): pass def depthpix(self, items): depth = str(items[0]) pixs_l = items[1:][0] return {depth: pixs_l} def uniq_pix(self, pix): if pix: return [int(pix[0])] def range_pix(self, range_pix): lower_bound = int(range_pix[0]) upper_bound = int(range_pix[1]) return np.arange(lower_bound, upper_bound + 1, dtype=int) def pixs(self, items): ipixs = [] for pix in items: if pix is not None: # Do not take into account the "sep" branches ipixs.extend(pix) return ipixs # Initialize the parser when from_str is called # for the first time if AbstractMOC.LARK_PARSER_STR is None: AbstractMOC.LARK_PARSER_STR = Lark(r""" value: depthpix (sep+ depthpix)* depthpix : INT "/" sep* pixs pixs : pix (sep+ pix)* pix : INT? -> uniq_pix | (INT "-" INT) -> range_pix sep : " " | "," | "\n" | "\r" %import common.INT """, start='value') try: tree = AbstractMOC.LARK_PARSER_STR.parse(value) except Exception as err: raise ParsingException("Could not parse {0}. \n Check the grammar section 2.3.2 of http://ivoa.net/documents/MOC/20190215/WD-MOC-1.1-20190215.pdf to see the correct syntax for writing a MOC from a str".format(value)) moc_json = TreeToJson().transform(tree) return cls.from_json(moc_json)
Create a MOC from a str. This grammar is expressed is the `MOC IVOA <http://ivoa.net/documents/MOC/20190215/WD-MOC-1.1-20190215.pdf>`__ specification at section 2.3.2. Parameters ---------- value : str The MOC as a string following the grammar rules. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> moc = MOC.from_str("2/2-25,28,29 4/0 6/")
entailment
def _to_json(uniq): """ Serializes a MOC to the JSON format. Parameters ---------- uniq : `~numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. Returns ------- result_json : {str : [int]} A dictionary of HEALPix cell lists indexed by their depth. """ result_json = {} depth, ipix = utils.uniq2orderipix(uniq) min_depth = np.min(depth[0]) max_depth = np.max(depth[-1]) for d in range(min_depth, max_depth+1): pix_index = np.where(depth == d)[0] if pix_index.size: # there are pixels belonging to the current order ipix_depth = ipix[pix_index] result_json[str(d)] = ipix_depth.tolist() return result_json
Serializes a MOC to the JSON format. Parameters ---------- uniq : `~numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. Returns ------- result_json : {str : [int]} A dictionary of HEALPix cell lists indexed by their depth.
entailment
def _to_str(uniq): """ Serializes a MOC to the STRING format. HEALPix cells are separated by a comma. The HEALPix cell at order 0 and number 10 is encoded by the string: "0/10", the first digit representing the depth and the second the HEALPix cell number for this depth. HEALPix cells next to each other within a specific depth can be expressed as a range and therefore written like that: "12/10-150". This encodes the list of HEALPix cells from 10 to 150 at the depth 12. Parameters ---------- uniq : `~numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. Returns ------- result : str The serialized MOC. """ def write_cells(serial, a, b, sep=''): if a == b: serial += '{0}{1}'.format(a, sep) else: serial += '{0}-{1}{2}'.format(a, b, sep) return serial res = '' if uniq.size == 0: return res depth, ipixels = utils.uniq2orderipix(uniq) min_depth = np.min(depth[0]) max_depth = np.max(depth[-1]) for d in range(min_depth, max_depth+1): pix_index = np.where(depth == d)[0] if pix_index.size > 0: # Serialize the depth followed by a slash res += '{0}/'.format(d) # Retrieve the pixel(s) for this depth ipix_depth = ipixels[pix_index] if ipix_depth.size == 1: # If there is only one pixel we serialize it and # go to the next depth res = write_cells(res, ipix_depth[0], ipix_depth[0]) else: # Sort them in case there are several ipix_depth = np.sort(ipix_depth) beg_range = ipix_depth[0] last_range = beg_range # Loop over the sorted pixels by tracking the lower bound of # the current range and the last pixel. for ipix in ipix_depth[1:]: # If the current pixel does not follow the previous one # then we can end a range and serializes it if ipix > last_range + 1: res = write_cells(res, beg_range, last_range, sep=',') # The current pixel is the beginning of a new range beg_range = ipix last_range = ipix # Write the last range res = write_cells(res, beg_range, last_range) # Add a ' ' separator before writing serializing the pixels of the next depth res += ' ' # Remove the last ' ' character res = res[:-1] return res
Serializes a MOC to the STRING format. HEALPix cells are separated by a comma. The HEALPix cell at order 0 and number 10 is encoded by the string: "0/10", the first digit representing the depth and the second the HEALPix cell number for this depth. HEALPix cells next to each other within a specific depth can be expressed as a range and therefore written like that: "12/10-150". This encodes the list of HEALPix cells from 10 to 150 at the depth 12. Parameters ---------- uniq : `~numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. Returns ------- result : str The serialized MOC.
entailment
def _to_fits(self, uniq, optional_kw_dict=None): """ Serializes a MOC to the FITS format. Parameters ---------- uniq : `numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. optional_kw_dict : dict Optional keywords arguments added to the FITS header. Returns ------- thdulist : `astropy.io.fits.HDUList` The list of HDU tables. """ depth = self.max_order if depth <= 13: fits_format = '1J' else: fits_format = '1K' tbhdu = fits.BinTableHDU.from_columns( fits.ColDefs([ fits.Column(name='UNIQ', format=fits_format, array=uniq) ])) tbhdu.header['PIXTYPE'] = 'HEALPIX' tbhdu.header['ORDERING'] = 'NUNIQ' tbhdu.header.update(self._fits_header_keywords) tbhdu.header['MOCORDER'] = depth tbhdu.header['MOCTOOL'] = 'MOCPy' if optional_kw_dict: for key in optional_kw_dict: tbhdu.header[key] = optional_kw_dict[key] thdulist = fits.HDUList([fits.PrimaryHDU(), tbhdu]) return thdulist
Serializes a MOC to the FITS format. Parameters ---------- uniq : `numpy.ndarray` The array of HEALPix cells representing the MOC to serialize. optional_kw_dict : dict Optional keywords arguments added to the FITS header. Returns ------- thdulist : `astropy.io.fits.HDUList` The list of HDU tables.
entailment
def serialize(self, format='fits', optional_kw_dict=None): """ Serializes the MOC into a specific format. Possible formats are FITS, JSON and STRING Parameters ---------- format : str 'fits' by default. The other possible choice is 'json' or 'str'. optional_kw_dict : dict Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'. Returns ------- result : `astropy.io.fits.HDUList` or JSON dictionary The result of the serialization. """ formats = ('fits', 'json', 'str') if format not in formats: raise ValueError('format should be one of %s' % (str(formats))) uniq_l = [] for uniq in self._uniq_pixels_iterator(): uniq_l.append(uniq) uniq = np.array(uniq_l) if format == 'fits': result = self._to_fits(uniq=uniq, optional_kw_dict=optional_kw_dict) elif format == 'str': result = self.__class__._to_str(uniq=uniq) else: # json format serialization result = self.__class__._to_json(uniq=uniq) return result
Serializes the MOC into a specific format. Possible formats are FITS, JSON and STRING Parameters ---------- format : str 'fits' by default. The other possible choice is 'json' or 'str'. optional_kw_dict : dict Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'. Returns ------- result : `astropy.io.fits.HDUList` or JSON dictionary The result of the serialization.
entailment
def write(self, path, format='fits', overwrite=False, optional_kw_dict=None): """ Writes the MOC to a file. Format can be 'fits' or 'json', though only the fits format is officially supported by the IVOA. Parameters ---------- path : str, optional The path to the file to save the MOC in. format : str, optional The format in which the MOC will be serialized before being saved. Possible formats are "fits" or "json". By default, ``format`` is set to "fits". overwrite : bool, optional If the file already exists and you want to overwrite it, then set the ``overwrite`` keyword. Default to False. optional_kw_dict : optional Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'. """ serialization = self.serialize(format=format, optional_kw_dict=optional_kw_dict) if format == 'fits': serialization.writeto(path, overwrite=overwrite) else: import json with open(path, 'w') as h: h.write(json.dumps(serialization, sort_keys=True, indent=2))
Writes the MOC to a file. Format can be 'fits' or 'json', though only the fits format is officially supported by the IVOA. Parameters ---------- path : str, optional The path to the file to save the MOC in. format : str, optional The format in which the MOC will be serialized before being saved. Possible formats are "fits" or "json". By default, ``format`` is set to "fits". overwrite : bool, optional If the file already exists and you want to overwrite it, then set the ``overwrite`` keyword. Default to False. optional_kw_dict : optional Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'.
entailment
def degrade_to_order(self, new_order): """ Degrades the MOC instance to a new, less precise, MOC. The maximum depth (i.e. the depth of the smallest HEALPix cells that can be found in the MOC) of the degraded MOC is set to ``new_order``. Parameters ---------- new_order : int Maximum depth of the output degraded MOC. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The degraded MOC. """ shift = 2 * (AbstractMOC.HPY_MAX_NORDER - new_order) ofs = (int(1) << shift) - 1 mask = ~ofs adda = int(0) addb = ofs iv_set = [] for iv in self._interval_set._intervals: a = (iv[0] + adda) & mask b = (iv[1] + addb) & mask if b > a: iv_set.append((a, b)) return self.__class__(IntervalSet(np.asarray(iv_set)))
Degrades the MOC instance to a new, less precise, MOC. The maximum depth (i.e. the depth of the smallest HEALPix cells that can be found in the MOC) of the degraded MOC is set to ``new_order``. Parameters ---------- new_order : int Maximum depth of the output degraded MOC. Returns ------- moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` The degraded MOC.
entailment
def set_name(self, name): """ Set Screen Name """ self.name = name self.server.request("screen_set %s name %s" % (self.ref, self.name))
Set Screen Name
entailment
def set_width(self, width): """ Set Screen Width """ if width > 0 and width <= self.server.server_info.get("screen_width"): self.width = width self.server.request("screen_set %s wid %i" % (self.ref, self.width))
Set Screen Width
entailment
def set_height(self, height): """ Set Screen Height """ if height > 0 and height <= self.server.server_info.get("screen_height"): self.height = height self.server.request("screen_set %s hgt %i" % (self.ref, self.height))
Set Screen Height
entailment
def set_cursor_x(self, x): """ Set Screen Cursor X Position """ if x >= 0 and x <= self.server.server_info.get("screen_width"): self.cursor_x = x self.server.request("screen_set %s cursor_x %i" % (self.ref, self.cursor_x))
Set Screen Cursor X Position
entailment
def set_cursor_y(self, y): """ Set Screen Cursor Y Position """ if y >= 0 and y <= self.server.server_info.get("screen_height"): self.cursor_y = y self.server.request("screen_set %s cursor_y %i" % (self.ref, self.cursor_y))
Set Screen Cursor Y Position
entailment
def set_duration(self, duration): """ Set Screen Change Interval Duration """ if duration > 0: self.duration = duration self.server.request("screen_set %s duration %i" % (self.ref, (self.duration * 8)))
Set Screen Change Interval Duration
entailment
def set_timeout(self, timeout): """ Set Screen Timeout Duration """ if timeout > 0: self.timeout = timeout self.server.request("screen_set %s timeout %i" % (self.ref, (self.timeout * 8)))
Set Screen Timeout Duration
entailment
def set_priority(self, priority): """ Set Screen Priority Class """ if priority in ["hidden", "background", "info", "foreground", "alert", "input"]: self.priority = priority self.server.request("screen_set %s priority %s" % (self.ref, self.priority))
Set Screen Priority Class
entailment
def set_backlight(self, state): """ Set Screen Backlight Mode """ if state in ["on", "off", "toggle", "open", "blink", "flash"]: self.backlight = state self.server.request("screen_set %s backlight %s" % (self.ref, self.backlight))
Set Screen Backlight Mode
entailment
def set_heartbeat(self, state): """ Set Screen Heartbeat Display Mode """ if state in ["on", "off", "open"]: self.heartbeat = state self.server.request("screen_set %s heartbeat %s" % (self.ref, self.heartbeat))
Set Screen Heartbeat Display Mode
entailment
def set_cursor(self, cursor): """ Set Screen Cursor Mode """ if cursor in ["on", "off", "under", "block"]: self.cursor = cursor self.server.request("screen_set %s cursor %s" % (self.ref, self.cursor))
Set Screen Cursor Mode
entailment
def clear(self): """ Clear Screen """ widgets.StringWidget(self, ref="_w1_", text=" " * 20, x=1, y=1) widgets.StringWidget(self, ref="_w2_", text=" " * 20, x=1, y=2) widgets.StringWidget(self, ref="_w3_", text=" " * 20, x=1, y=3) widgets.StringWidget(self, ref="_w4_", text=" " * 20, x=1, y=4)
Clear Screen
entailment
def add_string_widget(self, ref, text="Text", x=1, y=1): """ Add String Widget """ if ref not in self.widgets: widget = widgets.StringWidget(screen=self, ref=ref, text=text, x=x, y=y) self.widgets[ref] = widget return self.widgets[ref]
Add String Widget
entailment
def add_title_widget(self, ref, text="Title"): """ Add Title Widget """ if ref not in self.widgets: widget = widgets.TitleWidget(screen=self, ref=ref, text=text) self.widgets[ref] = widget return self.widgets[ref]
Add Title Widget
entailment
def add_hbar_widget(self, ref, x=1, y=1, length=10): """ Add Horizontal Bar Widget """ if ref not in self.widgets: widget = widgets.HBarWidget(screen=self, ref=ref, x=x, y=y, length=length) self.widgets[ref] = widget return self.widgets[ref]
Add Horizontal Bar Widget
entailment
def add_vbar_widget(self, ref, x=1, y=1, length=10): """ Add Vertical Bar Widget """ if ref not in self.widgets: widget = widgets.VBarWidget(screen=self, ref=ref, x=x, y=y, length=length) self.widgets[ref] = widget return self.widgets[ref]
Add Vertical Bar Widget
entailment
def add_frame_widget(self, ref, left=1, top=1, right=20, bottom=1, width=20, height=4, direction="h", speed=1): """ Add Frame Widget """ if ref not in self.widgets: widget = widgets.FrameWidget( screen=self, ref=ref, left=left, top=top, right=right, bottom=bottom, width=width, height=height, direction=direction, speed=speed, ) self.widgets[ref] = widget return self.widgets[ref]
Add Frame Widget
entailment
def add_number_widget(self, ref, x=1, value=1): """ Add Number Widget """ if ref not in self.widgets: widget = widgets.NumberWidget(screen=self, ref=ref, x=x, value=value) self.widgets[ref] = widget return self.widgets[ref]
Add Number Widget
entailment
def del_widget(self, ref): """ Delete/Remove A Widget """ self.server.request("widget_del %s %s" % (self.name, ref)) del(self.widgets[ref])
Delete/Remove A Widget
entailment
def orbit(self, azim, elev): """ Orbits the camera around the center position. Parameters ---------- azim : float Angle in degrees to rotate horizontally around the center point. elev : float Angle in degrees to rotate vertically around the center point. """ self.azimuth += azim self.elevation = np.clip(self.elevation + elev, -90, 90) self.view_changed()
Orbits the camera around the center position. Parameters ---------- azim : float Angle in degrees to rotate horizontally around the center point. elev : float Angle in degrees to rotate vertically around the center point.
entailment
def _update_rotation(self, event): """Update rotation parmeters based on mouse movement""" p1 = event.mouse_event.press_event.pos p2 = event.mouse_event.pos if self._event_value is None: self._event_value = self.azimuth, self.elevation self.azimuth = self._event_value[0] - (p2 - p1)[0] * 0.5 self.elevation = self._event_value[1] + (p2 - p1)[1] * 0.5
Update rotation parmeters based on mouse movement
entailment
def _rotate_tr(self): """Rotate the transformation matrix based on camera parameters""" up, forward, right = self._get_dim_vectors() self.transform.rotate(self.elevation, -right) self.transform.rotate(self.azimuth, up)
Rotate the transformation matrix based on camera parameters
entailment
def _dist_to_trans(self, dist): """Convert mouse x, y movement into x, y, z translations""" rae = np.array([self.roll, self.azimuth, self.elevation]) * np.pi / 180 sro, saz, sel = np.sin(rae) cro, caz, cel = np.cos(rae) dx = (+ dist[0] * (cro * caz + sro * sel * saz) + dist[1] * (sro * caz - cro * sel * saz)) dy = (+ dist[0] * (cro * saz - sro * sel * caz) + dist[1] * (sro * saz + cro * sel * caz)) dz = (- dist[0] * sro * cel + dist[1] * cro * cel) return dx, dy, dz
Convert mouse x, y movement into x, y, z translations
entailment
def _set_config(c): """Set gl configuration for GLFW """ glfw.glfwWindowHint(glfw.GLFW_RED_BITS, c['red_size']) glfw.glfwWindowHint(glfw.GLFW_GREEN_BITS, c['green_size']) glfw.glfwWindowHint(glfw.GLFW_BLUE_BITS, c['blue_size']) glfw.glfwWindowHint(glfw.GLFW_ALPHA_BITS, c['alpha_size']) glfw.glfwWindowHint(glfw.GLFW_ACCUM_RED_BITS, 0) glfw.glfwWindowHint(glfw.GLFW_ACCUM_GREEN_BITS, 0) glfw.glfwWindowHint(glfw.GLFW_ACCUM_BLUE_BITS, 0) glfw.glfwWindowHint(glfw.GLFW_ACCUM_ALPHA_BITS, 0) glfw.glfwWindowHint(glfw.GLFW_DEPTH_BITS, c['depth_size']) glfw.glfwWindowHint(glfw.GLFW_STENCIL_BITS, c['stencil_size']) # glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MAJOR, c['major_version']) # glfw.glfwWindowHint(glfw.GLFW_CONTEXT_VERSION_MINOR, c['minor_version']) # glfw.glfwWindowHint(glfw.GLFW_SRGB_CAPABLE, c['srgb']) glfw.glfwWindowHint(glfw.GLFW_SAMPLES, c['samples']) glfw.glfwWindowHint(glfw.GLFW_STEREO, c['stereo']) if not c['double_buffer']: raise RuntimeError('GLFW must double buffer, consider using a ' 'different backend, or using double buffering')
Set gl configuration for GLFW
entailment
def _process_mod(self, key, down): """Process (possible) keyboard modifiers GLFW provides "mod" with many callbacks, but not (critically) the scroll callback, so we keep track on our own here. """ if key in MOD_KEYS: if down: if key not in self._mod: self._mod.append(key) elif key in self._mod: self._mod.pop(self._mod.index(key)) return self._mod
Process (possible) keyboard modifiers GLFW provides "mod" with many callbacks, but not (critically) the scroll callback, so we keep track on our own here.
entailment
def _patch(): """ Monkey-patch pyopengl to fix a bug in glBufferSubData. """ import sys from OpenGL import GL if sys.version_info > (3,): buffersubdatafunc = GL.glBufferSubData if hasattr(buffersubdatafunc, 'wrapperFunction'): buffersubdatafunc = buffersubdatafunc.wrapperFunction _m = sys.modules[buffersubdatafunc.__module__] _m.long = int # Fix missing enum try: from OpenGL.GL.VERSION import GL_2_0 GL_2_0.GL_OBJECT_SHADER_SOURCE_LENGTH = GL_2_0.GL_SHADER_SOURCE_LENGTH except Exception: pass
Monkey-patch pyopengl to fix a bug in glBufferSubData.
entailment
def _get_function_from_pyopengl(funcname): """ Try getting the given function from PyOpenGL, return a dummy function (that shows a warning when called) if it could not be found. """ func = None # Get function from GL try: func = getattr(_GL, funcname) except AttributeError: # Get function from FBO try: func = getattr(_FBO, funcname) except AttributeError: func = None # Try using "alias" if not bool(func): # Some functions are known by a slightly different name # e.g. glDepthRangef, glClearDepthf if funcname.endswith('f'): try: func = getattr(_GL, funcname[:-1]) except AttributeError: pass # Set dummy function if we could not find it if func is None: func = _make_unavailable_func(funcname) logger.warning('warning: %s not available' % funcname) return func
Try getting the given function from PyOpenGL, return a dummy function (that shows a warning when called) if it could not be found.
entailment
def _inject(): """ Copy functions from OpenGL.GL into _pyopengl namespace. """ NS = _pyopengl2.__dict__ for glname, ourname in _pyopengl2._functions_to_import: func = _get_function_from_pyopengl(glname) NS[ourname] = func
Copy functions from OpenGL.GL into _pyopengl namespace.
entailment
def _get_vispy_font_filename(face, bold, italic): """Fetch a remote vispy font""" name = face + '-' name += 'Regular' if not bold and not italic else '' name += 'Bold' if bold else '' name += 'Italic' if italic else '' name += '.ttf' return load_data_file('fonts/%s' % name)
Fetch a remote vispy font
entailment
def _check_color_dim(val): """Ensure val is Nx(n_col), usually Nx3""" val = np.atleast_2d(val) if val.shape[1] not in (3, 4): raise RuntimeError('Value must have second dimension of size 3 or 4') return val, val.shape[1]
Ensure val is Nx(n_col), usually Nx3
entailment