content
stringlengths
22
815k
id
int64
0
4.91M
def create_model(args, vocab_size, num_labels, mode='train'): """create lac model""" # model's input data words = fluid.data(name='words', shape=[-1, 1], dtype='int64', lod_level=1) targets = fluid.data( name='targets', shape=[-1, 1], dtype='int64', lod_level=1) if mode == "train": print("create model mode: ", mode) teacher_crf_decode = fluid.data( name='teacher_crf_decode', shape=[-1, 1], dtype='float32', lod_level=1) else: print("create model mode: ", mode) teacher_crf_decode = None feed_list = [words, targets] if teacher_crf_decode: feed_list.append(teacher_crf_decode) pyreader = fluid.io.DataLoader.from_generator( feed_list=feed_list, capacity=200, use_double_buffer=True, iterable=False) # for test or train process avg_cost, crf_avg_cost, teacher_cost, crf_decode= nets.lex_net( words, args, vocab_size, num_labels, teacher_crf_decode,for_infer=False, target=targets) (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) = fluid.layers.chunk_eval( input=crf_decode, label=targets, chunk_scheme="IOB", num_chunk_types=int(math.ceil((num_labels - 1) / 2.0))) chunk_evaluator = fluid.metrics.ChunkEvaluator() chunk_evaluator.reset() ret = { "pyreader": pyreader, "words": words, "targets": targets, "avg_cost": avg_cost, "crf_avg_cost": crf_avg_cost, "teacher_cost": teacher_cost, "crf_decode": crf_decode, "precision": precision, "recall": recall, "f1_score": f1_score, "chunk_evaluator": chunk_evaluator, "num_infer_chunks": num_infer_chunks, "num_label_chunks": num_label_chunks, "num_correct_chunks": num_correct_chunks } return ret
23,100
def time_nifti_to_numpy(N_TRIALS): """ Times how fast a framework can read a nifti file and convert it to numpy """ img_paths = [ants.get_ants_data('mni')]*10 def test_nibabel(): for img_path in img_paths: array = nib.load(img_path).get_data() def test_itk(): for img_path in img_paths: array = itk.GetArrayFromImage(itk.imread(img_path)) def test_ants(): for img_path in img_paths: array = ants.image_read(img_path, pixeltype='float').numpy() nib_start = time.time() for i in range(N_TRIALS): test_nibabel() nib_end = time.time() print('NIBABEL TIME: %.3f seconds' % (nib_end-nib_start)) itk_start = time.time() for i in range(N_TRIALS): test_itk() itk_end = time.time() print('ITK TIME: %.3f seconds' % (itk_end-itk_start)) ants_start = time.time() for i in range(N_TRIALS): test_ants() ants_end = time.time() print('ANTS TIME: %.3f seconds' % (ants_end-ants_start))
23,101
def escape_string(value): """escape_string escapes *value* but not surround it with quotes. """ value = value.replace('\\', '\\\\') value = value.replace('\0', '\\0') value = value.replace('\n', '\\n') value = value.replace('\r', '\\r') value = value.replace('\032', '\\Z') value = value.replace("'", "\\'") value = value.replace('"', '\\"') return value
23,102
def current_script_path() -> str: """ Return path to where the currently executing script is located """ return os.path.abspath(os.path.dirname(sys.argv[0]))
23,103
def _supports_masking(remask_kernel: bool): """Returns a decorator that turns layers into layers supporting masking. Specifically: 1) `init_fn` is left unchanged. 2) `apply_fn` is turned from a function that accepts a `mask=None` keyword argument (which indicates `inputs[mask]` must be masked), into a function that accepts a `mask_constant=None` keyword argument (which indicates `inputs[inputs == mask_constant]` must be masked). 3) `kernel_fn` is modified to 3.a) propagate the `kernel.mask1` and `kernel.mask2` through intermediary layers, and, 3.b) if `remask_kernel == True`, zeroes-out covariances between entries of which at least one is masked. 4) If the decorated layers has a `mask_fn`, it is used to propagate masks forward through the layer, in both `apply_fn` and `kernel_fn`. If not, it is assumed the mask remains unchanged. Must be applied before the `layer` decorator. Args: remask_kernel: `True` to zero-out kernel covariance entries between masked inputs after applying `kernel_fn`. Some layers don't need this and setting `remask_kernel=False` can save compute. Returns: A decorator that turns functions returning `(init_fn, apply_fn, kernel_fn[, mask_fn])` into functions returning `(init_fn, apply_fn_with_masking, kernel_fn_with_masking)`. """ def supports_masking(layer): @utils.wraps(layer) def layer_with_masking(*args, **kwargs): layer_fns = layer(*args, **kwargs) init_fn, apply_fn, kernel_fn = layer_fns[:3] if len(layer_fns) == 3: # No mask propagation function supplied - use identity. _mask_fn = lambda mask, input_shape: mask elif len(layer_fns) == 4: # Custom mask propagation function supplied. _mask_fn = layer_fns[3] else: raise ValueError(f'Expected 3 (`init_fn`, `apply_fn`, `kernel_fn`) or 4' f' (..., `mask_fn`) layer functions, ' f'got {len(layer_fns)}.') @utils.wraps(_mask_fn) def mask_fn(mask, input_shape): if mask is None: return None return _mask_fn(mask, input_shape) def apply_fn_with_masking(params, inputs, *, mask_constant=None, **kwargs): inputs = utils.get_masked_array(inputs, mask_constant) inputs, mask = inputs.masked_value, inputs.mask outputs = apply_fn(params, inputs, mask=mask, **kwargs) outputs_mask = mask_fn(mask, inputs.shape if isinstance(inputs, np.ndarray) else [i.shape for i in inputs]) if outputs_mask is None: return outputs return utils.MaskedArray(outputs, outputs_mask) def kernel_fn_with_masking(k: Kernels, **user_reqs): if isinstance(k, Kernel): mask1 = mask_fn(k.mask1, k.shape1) mask2 = mask_fn(k.mask2, k.shape2) elif isinstance(k, list): mask1 = mask_fn([k.mask1 for k in k], [k.shape1 for k in k]) mask2 = mask_fn([k.mask2 for k in k], [k.shape2 for k in k]) else: raise TypeError(type(Kernel), Kernel) k = kernel_fn(k, **user_reqs) # type: Kernel if remask_kernel: k = k.mask(mask1, mask2) else: k = k.replace(mask1=mask1, mask2=mask2) return k if hasattr(kernel_fn, _INPUT_REQ): setattr(kernel_fn_with_masking, _INPUT_REQ, getattr(kernel_fn, _INPUT_REQ)) return init_fn, apply_fn_with_masking, kernel_fn_with_masking return layer_with_masking return supports_masking
23,104
def warnings(request: HttpRequest): """Adiciona alguns avisos no content""" warning = list() if hasattr(request, 'user'): user: User = request.user if not user.is_anonymous: # Testa email if user.email is None or user.email == "": warning.append({ 'message': 'Você não possui um e-mail registrado, por favor registre um', 'link_page_name': 'escola:self-email-change' }) else: logger.info("Não há atributo user") return {'warnings': warning}
23,105
def _get_raw_key(args, key_field_name): """Searches for key values in flags, falling back to a file if necessary. Args: args: An object containing flag values from the command surface. key_field_name (str): Corresponds to a flag name or field name in the key file. Returns: The flag value associated with key_field_name, or the value contained in the key file. """ flag_key = getattr(args, key_field_name, None) if flag_key is not None: return flag_key return _read_key_store_file().get(key_field_name)
23,106
def get_images(headers, name, handler_registry=None, handler_override=None): """ This function is deprecated. Use Header.data instead. Load images from a detector for given Header(s). Parameters ---------- fs: RegistryRO headers : Header or list of Headers name : string field name (data key) of a detector handler_registry : dict, optional mapping spec names (strings) to handlers (callable classes) handler_override : callable class, optional overrides registered handlers Example ------- >>> header = DataBroker[-1] >>> images = Images(header, 'my_detector_lightfield') >>> for image in images: # do something """ res = DataBroker.get_images(headers=headers, name=name, handler_registry=handler_registry, handler_override=handler_override) return res
23,107
def compare_outputs(images, questions, vqg, vocab, logging, args, num_show=1): """Sanity check generated output as we train. Args: images: Tensor containing images. questions: Tensor containing questions as indices. vqg: A question generation instance. vocab: An instance of Vocabulary. logging: logging to use to report results. """ vqg.eval() # Forward pass through the model. outputs = vqg.predict_from_image(images) for _ in range(num_show): logging.info(" ") i = random.randint(0, images.size(0) - 1) # Inclusive. # Sample some types. # Log the outputs. output = vocab.tokens_to_words(outputs[i]) question = vocab.tokens_to_words(questions[i]) logging.info('Sampled question : %s\n' 'Target question (%s)' % (output, question)) logging.info(" ")
23,108
def shape_is_ok(sequence: Union[Sequence[Any], Any], expected_shape: Tuple[int, ...]) -> bool: """ Check the number of items the array has and compare it with the shape product """ try: sequence_len = len(flatten(sequence)) except Exception as err: logger.info(f"Error when trying to compare shapes. {err}") return False return prod(expected_shape) == sequence_len
23,109
def ChannelSE(reduction=16, **kwargs): """ Squeeze and Excitation block, reimplementation inspired by https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py Args: reduction: channels squeeze factor """ channels_axis = 3 if backend.image_data_format() == 'channels_last' else 1 def layer(input_tensor): # get number of channels/filters channels = backend.int_shape(input_tensor)[channels_axis] x = input_tensor # squeeze and excitation block in PyTorch style with x = layers.GlobalAveragePooling2D()(x) x = layers.Lambda(expand_dims, arguments={'channels_axis': channels_axis})(x) x = layers.Conv2D(channels // reduction, (1, 1), kernel_initializer='he_uniform')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(channels, (1, 1), kernel_initializer='he_uniform')(x) x = layers.Activation('sigmoid')(x) # apply attention x = layers.Multiply()([input_tensor, x]) return x return layer
23,110
def add_trainingset_flag(cam_parquet, trainingset_pkl_path, cam=None): """ Add to a single-cam parquet the information flags (adding columns) indicating if a given cam view was used in a training set for melting, hydro classif or riming degree Input cam_parquet: parquet file to add the columns to trainingset_pkl_path: path where the pickles of the trainingset flags are locally stored cam = 'cam0', 'cam1' or 'cam2' """ print('CAM: '+cam) # Read the parquet file table = pd.read_parquet(cam_parquet) flake_uid = table.datetime.apply(lambda x: x.strftime('%Y.%m.%d_%H.%M.%S'))+'_flake_'+table.flake_number_tmp.apply(str) # 1 Add hydro columns add = pd.read_pickle(trainingset_pkl_path+'hydro_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.class_id.iloc[ind2] table['hl_snowflake'] = is_in table['hl_snowflake_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for hydro' ) # 2 Add melting columns add = pd.read_pickle(trainingset_pkl_path+'melting_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.melting.iloc[ind2] table['hl_melting'] = is_in table['hl_melting_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for melting' ) # 3 Add riming columns add = pd.read_pickle(trainingset_pkl_path+'riming_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.riming_id.iloc[ind2] table['hl_riming'] = is_in table['hl_riming_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for riming' ) # Overwrite table = pa.Table.from_pandas(table) pq.write_table(table, cam_parquet) return(None)
23,111
def pw_wavy(n_samples=200, n_bkps=3, noise_std=None, seed=None): """Return a 1D piecewise wavy signal and the associated changepoints. Args: n_samples (int, optional): signal length n_bkps (int, optional): number of changepoints noise_std (float, optional): noise std. If None, no noise is added seed (int): random seed Returns: tuple: signal of shape (n_samples, 1), list of breakpoints """ # breakpoints bkps = draw_bkps(n_samples, n_bkps, seed=seed) # we create the signal f1 = np.array([0.075, 0.1]) f2 = np.array([0.1, 0.125]) freqs = np.zeros((n_samples, 2)) for sub, val in zip(np.split(freqs, bkps[:-1]), cycle([f1, f2])): sub += val tt = np.arange(n_samples) # DeprecationWarning: Calling np.sum(generator) is deprecated # Use np.sum(np.from_iter(generator)) or the python sum builtin instead. signal = np.sum([np.sin(2 * np.pi * tt * f) for f in freqs.T], axis=0) if noise_std is not None: rng = np.random.default_rng(seed=seed) noise = rng.normal(scale=noise_std, size=signal.shape) signal += noise return signal, bkps
23,112
def date(): """ ____this is data type for date column____ """ return Column(Date)
23,113
def sell_holdings(symbol, holdings_data): """ Place an order to sell all holdings of a stock. Args: symbol(str): Symbol of the stock we want to sell holdings_data(dict): dict obtained from get_modified_holdings() method """ shares_owned = 0 result = {} for item in holdings_data: if not item: continue if (symbol == item["currency"]["code"]): shares_owned = int(float(item["quantity"])) if not debug: result = rr.order_sell_crypto_by_quantity(symbol, shares_owned) print("####### Selling " + str(shares_owned) + " shares of " + symbol + " #######") send_text("SELL: \nSelling " + str(shares_owned) + " shares of " + symbol) return result
23,114
def get_active_project_path(): """ Arguments: None Return: str: current project folder path """ window = sublime.active_window() folders = window.folders() if len(folders) == 1: return folders[0] else: active_view = window.active_view() active_file_name = active_view.file_name() if active_view else None if not active_file_name: return folders[0] if len(folders) else os.path.expanduser("~") for folder in folders: if active_file_name.startswith(folder): return folder return os.path.dirname(active_file_name)
23,115
def get_people_urls(gedcom_data, apid_full_map): """ Read in all the person URLs for later reference """ people = {} found = False logging.info("Extracting person specific URL information") for line in gedcom_data.split("\n"): if len(line) > 5: tag = line.split(" ")[1] if "@P" in tag: person = tag found = False continue if tag == "_APID" and not found: apid = line.split(" ")[2] if apid in apid_full_map: if "person_url" in apid_full_map[apid]: if apid_full_map[apid]["person_url"] != "": people.update({person: apid_full_map[apid]["person_url"]}) found = True logging.info("Person URL extraction completed") return people
23,116
def permute_masks(old_masks): """ Function to randomly permute the mask in a global manner. Arguments --------- old_masks: List containing all the layer wise mask of the neural network, mandatory. No default. seed: Integer containing the random seed to use for reproducibility. Default is 0 Returns ------- new_masks: List containing all the masks permuted globally """ layer_wise_flatten = [] # maintain the layerwise flattened tensor for i in range(len(old_masks)): layer_wise_flatten.append(old_masks[i].flatten()) global_flatten = [] for i in range(len(layer_wise_flatten)): if len(global_flatten) == 0: global_flatten.append(layer_wise_flatten[i].cpu()) else: global_flatten[-1] = np.append(global_flatten[-1], layer_wise_flatten[i].cpu()) permuted_mask = np.random.permutation(global_flatten[-1]) new_masks = [] idx1 = 0 idx2 = 0 for i in range(len(old_masks)): till_idx = old_masks[i].numel() idx2 = idx2 + till_idx new_masks.append(permuted_mask[idx1:idx2].reshape(old_masks[i].shape)) idx1 = idx2 # Convert to tensor for i in range(len(new_masks)): new_masks[i] = torch.tensor(new_masks[i]) return new_masks
23,117
async def file_clang_formatted_correctly(filename, semaphore, verbose=False): """ Checks if a file is formatted correctly and returns True if so. """ ok = True # -style=file picks up the closest .clang-format cmd = "{} -style=file {}".format(CLANG_FORMAT_PATH, filename) async with semaphore: proc = await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE) # Read back the formatted file. stdout, _ = await proc.communicate() formatted_contents = stdout.decode() # Compare the formatted file to the original file. with open(filename) as orig: orig_contents = orig.read() if formatted_contents != orig_contents: ok = False if verbose: print("{} is not formatted correctly".format(filename)) return ok
23,118
def service_builder(client: Client, is_for_update: bool, endpoint_tag: str, name: str, service_type: str, protocol: str = None, source_port: int = None, destination_port: int = None, protocol_name: str = None, icmp_type: str = None, icmp_code: str = None, icmp_v6_type: str = None, icmp_v6_code: str = None) -> dict: """Builder for the service object - build the body of the request Args: client (Client): Sophos XG Firewall Client is_for_update (bool): True if the object should be updated endpoint_tag (str): The endpoint_tag of the object we want to get data from name (str): The name of the object we want to add/update service_type (str, optional): Service Type information of the service protocol (str, optional): Protocol information of the service source_port (str, optional): Source Port information of the service destination_port (str, optional): Destination Port information of the service protocol_name (str, optional): Protocol Name information of the service icmp_type (str, optional): ICMP Type information of the service icmp_code (str, optional): ICMP Code information of the service icmp_v6_type (str, optional): ICMP V6 Type information of the service icmp_v6_code (str, optional): ICMP V6 Code information of the service Raises: Exception: Missing protocol, source port and destination port Exception: Missing protocol name Exception: Missing icmp_type and icmp_code Exception: Missing icmp_v6_type and icmp_v6_code Returns: dict: returned dictionary """ previous_service_details = [] # if the object need to be updated, merge between old and new information will happen if is_for_update: previous_object = client.get_item_by_name(endpoint_tag, name) previous_object = json.loads(xml2json(previous_object.text)) check_error_on_response(previous_object) service_type = retrieve_dict_item_recursively(previous_object, 'Type') previous_service_details = retrieve_dict_item_recursively(previous_object, 'ServiceDetail') if not previous_service_details: previous_service_details = [] elif not isinstance(previous_service_details, list): previous_service_details = [previous_service_details] json_data = { 'Name': name, 'Type': service_type, } if service_type == 'TCPorUDP': if not (protocol and source_port and destination_port): raise Exception('Please provide protocol, source_port and destination_port') service_details = { 'Protocol': protocol, 'SourcePort': source_port, 'DestinationPort': destination_port } elif service_type == 'IP': if not protocol_name: raise Exception('Please provide protocol_name') service_details = { 'ProtocolName': protocol_name } elif service_type == 'ICMP': if not (icmp_type and icmp_code): raise Exception('Please provide icmp_type and icmp_code') service_details = { 'ICMPType': icmp_type, 'ICMPCode': icmp_code } else: # type == 'ICMPv6' if not (icmp_v6_type and icmp_v6_code): raise Exception('Please provide icmp_v6_type and icmp_v6_code') service_details = { 'ICMPv6Type': icmp_v6_type, 'ICMPv6Code': icmp_v6_code } previous_service_details.append(service_details) json_data.update({ 'ServiceDetails': { 'ServiceDetail': previous_service_details } }) return remove_empty_elements(json_data)
23,119
def fkl( angles ): """ Convert joint angles and bone lenghts into the 3d points of a person. Based on expmap2xyz.m, available at https://github.com/asheshjain399/RNNexp/blob/7fc5a53292dc0f232867beb66c3a9ef845d705cb/structural_rnn/CRFProblems/H3.6m/mhmublv/Motion/exp2xyz.m Args angles: 99-long vector with 3d position and 3d joint angles in expmap format parent: 32-long vector with parent-child relationships in the kinematic tree offset: 96-long vector with bone lenghts rotInd: 32-long list with indices into angles expmapInd: 32-long list with indices into expmap angles Returns xyz: 32x3 3d points that represent a person in 3d space """ parent, offset, posInd, expmapInd = _some_variables() assert len(angles) == 117 # Structure that indicates parents for each joint njoints = 38 xyzStruct = [dict() for x in range(njoints)] for i in np.arange( njoints ): # try: # if not rotInd[i] : # If the list is empty # xangle, yangle, zangle = 0, 0, 0 # else: # xangle = angles[ rotInd[i][2]-1 ] # yangle = angles[ rotInd[i][1]-1 ] # zangle = angles[ rotInd[i][0]-1 ] # except: # print (i) try: if not posInd[i] : # If the list is empty xangle, yangle, zangle = 0, 0, 0 else: xangle = angles[ posInd[i][2]-1 ] yangle = angles[ posInd[i][1]-1 ] zangle = angles[ posInd[i][0]-1 ] except: print (i) r = angles[ expmapInd[i] ] thisRotation = expmap2rotmat(r) thisPosition = np.array([zangle, yangle, xangle]) if parent[i] == -1: # Root node xyzStruct[i]['rotation'] = thisRotation xyzStruct[i]['xyz'] = np.reshape(offset[i,:], (1,3)) + thisPosition else: xyzStruct[i]['xyz'] = (offset[i,:] + thisPosition).dot( xyzStruct[ parent[i] ]['rotation'] ) + xyzStruct[ parent[i] ]['xyz'] xyzStruct[i]['rotation'] = thisRotation.dot( xyzStruct[ parent[i] ]['rotation'] ) xyz = [xyzStruct[i]['xyz'] for i in range(njoints)] xyz = np.array( xyz ).squeeze() xyz = xyz[:,[0,2,1]] return np.reshape( xyz, [-1] )
23,120
def no_matplotlib(monkeypatch): """ Mock an import error for matplotlib""" import_orig = builtins.__import__ def mocked_import(name, globals, locals, fromlist, level): """ """ if name == 'matplotlib.pyplot': raise ImportError("This is a mocked import error") return import_orig(name, globals, locals, fromlist, level) monkeypatch.setattr(builtins, '__import__', mocked_import)
23,121
def profile(func: Callable[..., Any]) -> Callable[..., Any]: """ Create a decorator for wrapping a provided function in a LineProfiler context. Parameters ---------- func : callable The function that is to be wrapped inside the LineProfiler context. Returns ------- wrapper : callable The context containing the wrapped function. """ @wraps(func) def wrapper(*args: Optional[Any], **kwargs: Optional[Any]) -> LineProfiler: prof = LineProfiler() try: return prof(func)(*args, **kwargs) finally: prof.print_stats() return wrapper
23,122
def phase_comp(psi_comp, uwrap=False, dens=None): """Compute the phase (angle) of a single complex wavefunction component. Parameters ---------- psi_comp : NumPy :obj:`array` or PyTorch :obj:`Tensor` A single wavefunction component. Returns ------- angle : NumPy :obj:`array` or PyTorch :obj:`Tensor` The phase (angle) of the component's wavefunction. """ if isinstance(psi_comp, np.ndarray): ang = np.angle(psi_comp) if uwrap: ang = rest.unwrap_phase(ang) elif isinstance(psi_comp, torch.Tensor): ang = torch.angle(psi_comp) if uwrap: raise NotImplementedError("Unwrapping the complex phase is not " "implemented for PyTorch tensors.") if dens is not None: ang[dens < (dens.max() * 1e-6)] = 0 return ang
23,123
def test_config_changed_different_state_absent(mock_module, mock_exec): """ cl-interface - test config_changed with state == noconfig """ instance = mock_module.return_value instance.params.get_return_value = 'lo' iface = {'name': 'lo', 'ifacetype': 'loopback', 'config': { 'alias': 'noconfig' }} mock_exec.return_value = ''.join(open('tests/lo.txt').readlines()) assert_equals(config_changed(instance, iface), True)
23,124
def packets(args): """Show packet info.""" with open(args.infile, 'rb') as tsi: offset = 0 packet_idx = 0 for packet in iter(lambda: tsi.read(args.packet_size), b''): ts_packet = get_ts_packet(packet, args.packet_size) offset += args.packet_size - TS_PACKET_SIZE # Resync # while get_sync_byte(ts_packet) != 0x47: # ts_packet = ts_packet[1:] + tsi.read(1) # offset += 1 pid = get_pid(ts_packet) print('{:012d} [0x{:04X}]'.format(offset, pid)) offset += TS_PACKET_SIZE packet_idx += 1
23,125
def EG(d1,d2,P): """ Méthode permettant de calculer l'esperance de gain du joueur 1 s'il lance d1 dés et que le joueur 2 lance d2 dés ---------------------------------------------------- Args: - d1 : nombre de dés lancés par le joueur 1 - d2 : nombre de dés lancés par le joueur 2 - P : matrice de probabilités """ s = 0 L = np.arange(1,6*d2+1) for k in range(1,6*d1+1): s += np.sum(P[d1,k]*P[d2,L[L<k]]) - np.sum(P[d1,k]*P[d2,L[L>k]]) return s
23,126
def save_current_editor_as(): """ Saves the current editor as (the save as dialog will be shown automatically). """ _window().save_current_as()
23,127
def get_tx_data(request): """ JSON Needed: 1. txid E.g.: {"txid": "hgjsyher6ygfdg"} """ txid = request.data['txid'] try: # req_hex_data = get_tx_data(txid) req_hex_data = api.gettxoutdata(txid,0) # TODO except: return Response(status=status.HTTP_403_FORBIDDEN, data={'status': 'failure', 'message': 'Request Unsuccessful. Error while connecting with blockchain node'}) try: # get requested data from txid req_json_data = hex_to_json(req_hex_data) # TODO: this is LIST return Response(data=req_json_data, status=status.HTTP_202_ACCEPTED) except Exception as e: return Response(data={"status":"failure", "message": "Something Wrong Occurred." # ,"exception":e }, status=status.HTTP_403_FORBIDDEN)
23,128
def roi_max_counts(images_sets, label_array): """ Return the brightest pixel in any ROI in any image in the image set. Parameters ---------- images_sets : array iterable of 4D arrays shapes is: (len(images_sets), ) label_array : array labeled array; 0 is background. Each ROI is represented by a distinct label (i.e., integer). Returns ------- max_counts : int maximum pixel counts """ max_cts = 0 for img_set in images_sets: for img in img_set: max_cts = max(max_cts, ndim.maximum(img, label_array)) return max_cts
23,129
def normalize_full_width(text): """ a function to normalize full width characters """ return unicodedata.normalize('NFKC', text)
23,130
def make_definitions(acronym, words_by_letter, limit=1): """Find definitions an acronym given groupings of words by letters""" definitions = [] for _ in range(limit): definition = [] for letter in acronym.lower(): opts = words_by_letter.get(letter.lower(), []) definition.append(random.choice(opts).title() if opts else "?") definitions.append(" ".join(definition)) return definitions
23,131
def plot_effective_area_from_file(file, all_cuts=False, ax=None, **kwargs): """ """ ax = plt.gca() if ax is None else ax if all_cuts: names = ["", "_NO_CUTS", "_ONLY_GH", "_ONLY_THETA"] else: names = tuple([""]) label_basename = kwargs["label"] if "label" in kwargs else "" kwargs.setdefault("ls", "") for name in names: area = QTable.read(file, hdu="EFFECTIVE_AREA" + name)[0] kwargs["label"] = label_basename + name.replace("_", " ") ax.errorbar( 0.5 * (area["ENERG_LO"] + area["ENERG_HI"]).to_value(u.TeV)[1:-1], area["EFFAREA"].to_value(u.m ** 2).T[1:-1, 0], xerr=0.5 * (area["ENERG_LO"] - area["ENERG_HI"]).to_value(u.TeV)[1:-1], **kwargs, ) # Style settings ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("True energy / TeV") ax.set_ylabel("Effective collection area / m²") ax.grid(which="both") ax.legend() ax.grid(True, which="both") return ax
23,132
def get_spreading_coefficient(dist): """Calculate the spreading coefficient. Args: dist: A Distribution from a direct (GC) spreading simulation. Returns: The dimensionless spreading coefficient (beta*s*A). """ potential = -dist.log_probs valley = np.amin(potential) split = int(0.5 * len(potential)) plateau = np.mean(potential[split:]) return valley - plateau
23,133
def get_config_path() -> Path: """Returns path to the root of the project""" return Path(__file__).parent / "config"
23,134
def round(x): """ Return ``x`` rounded to an ``Integer``. """ return create_RealNumber(x).round()
23,135
def test_delete_record_get_request(client, set_up, login): """test if record confirm delete template is displayed""" record_to_delete = CoupeDay.objects.first() response = client.get(reverse('home:record-delete', kwargs={'pk': record_to_delete.id}), follow=True) delete_txt = f"Confirm delete" assert delete_txt in response.content.decode('UTF-8')
23,136
def test_testclass(ctestdir): """Using test classes """ with get_example("testclass.py").open("rt") as f: ctestdir.makepyfile(f.read()) result = ctestdir.runpytest("--verbose") try: result.assert_outcomes(passed=4, skipped=4, failed=0, xfailed=2) except TypeError: result.assert_outcomes(passed=4, skipped=4, failed=0) result.stdout.re_match_lines(r""" .*::TestClass::test_a (?:XFAIL(?:\s+\(.*\))?|xfail) .*::TestClass::test_b PASSED .*::TestClass::test_c SKIPPED(?:\s+\(.*\))? .*::TestClass::test_d PASSED .*::TestClass::test_e SKIPPED(?:\s+\(.*\))? .*::TestClassNamed::test_a (?:XFAIL(?:\s+\(.*\))?|xfail) .*::TestClassNamed::test_b PASSED .*::TestClassNamed::test_c SKIPPED(?:\s+\(.*\))? .*::TestClassNamed::test_d PASSED .*::TestClassNamed::test_e SKIPPED(?:\s+\(.*\))? """)
23,137
def author(repo, subset, x): """``author(string)`` Alias for ``user(string)``. """ # i18n: "author" is a keyword n = encoding.lower(getstring(x, _("author requires a string"))) return [r for r in subset if n in encoding.lower(repo[r].user())]
23,138
def p_definition (t): """definition : type_def | constant_def""" t[0] = t[1]
23,139
def create_test_example_solution_files(exercise_name, prob_spec_exercise): """ Auto-generates the test file. Function creates the test file in its own right, but also calls the create_example_and_solution_files function. This function also creates the parameters to feed into the create_example_and_solution_files function. Parameter exercise_name: Name of the exercise to be generated. Precondition: exercise_name is a string of a valid exercise. Parameter prob_spec_exercise: A filepath to the location of the exercise folder in the problem-specifications repository. Precondition: prob_spec_exercise is a string of a valid filepath. """ data = None with open(f"{prob_spec_exercise}/canonical-data.json") as file: data = json.load(file) # Boilerplate test code. Multiline docstring format used to maintain # correct indentation and to increase readability. exercise_string = """;; Ensures that {0}.lisp and the testing library are always loaded (eval-when (:compile-toplevel :load-toplevel :execute) (load "{0}") (quicklisp-client:quickload :fiveam)) ;; Defines the testing package with symbols from {0} and FiveAM in scope ;; The `run-tests` function is exported for use by both the user and test-runner (defpackage :{0}-test (:use :cl :fiveam) (:export :run-tests)) ;; Enter the testing package (in-package :{0}-test) ;; Define and enter a new FiveAM test-suite (def-suite* {0}-suite) """.format(exercise_name) # func_name_dict is a dictionary of all function names and their # expected input argument names. func_name_dict, tests_string = create_test(data["cases"], exercise_name) # tests_string is sandwiched between exercise_string and more boilerplate # code at the end of the file. exercise_string += tests_string + """ (defun run-tests (&optional (test-or-suite '{0}-suite)) "Provides human readable results of test run. Default to entire suite." (run! test-or-suite)) """.format(exercise_name) with open(f"{TARGET}/{exercise_name}/{exercise_name}-test.lisp", 'w') as file: file.write(exercise_string) create_example_and_solution_files(exercise_name, func_name_dict)
23,140
def pianoroll_plot_setup(figsize=None, side_piano_ratio=0.025, faint_pr=True, xlim=None): """Makes a tiny piano left of the y-axis and a faint piano on the main figure. This function sets up the figure for pretty plotting a piano roll. It makes a small imshow plot to the left of the main plot that looks like a piano. This piano side plot is aligned along the y-axis of the main plot, such that y values align with MIDI values (y=0 is the lowest C-1, y=11 is C0, etc). Additionally, a main figure is set up that shares the y-axis of the piano side plot. Optionally, a set of faint horizontal lines are drawn on the main figure that correspond to the black keys on the piano (and a line separating B & C and E & F). This function returns the formatted figure, the side piano axis, and the main axis for plotting your data. By default, this will draw 11 octaves of piano keys along the y-axis; you will probably want reduce what is visible using `ax.set_ylim()` on either returned axis. Using with imshow piano roll data: A common use case is for using imshow() on the main axis to display a piano roll alongside the piano side plot AND the faint piano roll behind your data. In this case, if your data is a 2D array you have to use a masked numpy array to make certain values invisible on the plot, and therefore make the faint piano roll visible. Here's an example: midi = np.flipud([ [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], ]) midi_masked = np.ma.masked_values(midi, 0.0) # Mask out all 0.0's fig, ax, sp = plotting.pianoroll_plot_setup() ax.imshow(midi_masked, origin='lower', aspect='auto') # main subplot axis sp.set_ylabel('My favorite MIDI data') # side piano axis fig.show() The other option is to use imshow in RGBA mode, where your data is split into 4 channels. Every alpha value that is 0.0 will be transparent and show the faint piano roll below your data. Args: figsize: Size if the matplotlib figure. Will be passed to `plt.figure()`. Defaults to None. side_piano_ratio: Width of the y-axis piano in terms of raio of the whole figure. Defaults to 1/40th. faint_pr: Whether to draw faint black & white keys across the main plot. Defaults to True. xlim: Tuple containing the min and max of the x values for the main plot. Only used to determine the x limits for the faint piano roll in the main plot. Defaults to (0, 1000). Returns: (figure, main_axis, left_piano_axis) figure: A matplotlib figure object containing both subplots set up with an aligned piano roll. main_axis: A matplotlib axis object to be used for plotting. Optionally has a faint piano roll in the background. left_piano_axis: A matplotlib axis object that has a small, aligned piano along the left side y-axis of the main_axis subplot. """ octaves = 11 # Setup figure and gridspec. fig = plt.figure(figsize=figsize) gs_ratio = int(1 / side_piano_ratio) gs = gridspec.GridSpec(1, 2, width_ratios=[1, gs_ratio]) left_piano_ax = fig.add_subplot(gs[0]) # Make a piano on the left side of the y-axis with imshow(). keys = np.array( [0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0] # notes in descending order; B -> C ) keys = np.tile(keys, octaves)[:, None] left_piano_ax.imshow(keys, cmap='binary', aspect='auto', extent=[0, 0.625, -0.5, octaves*12-0.5]) # Make the lines between keys. for i in range(octaves): left_piano_ax.hlines(i*12 - 0.5, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 1.0, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 3.0, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 4.5, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 6.0, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 8.0, -0.5, 1, colors='black', linewidth=0.5) left_piano_ax.hlines(i*12 + 10.0, -0.5, 1, colors='black', linewidth=0.5) # Set the limits of the side piano and remove ticks so it looks nice. left_piano_ax.set_xlim(0, 0.995) left_piano_ax.set_xticks([]) # Create the aligned axis we'll return to the user. main_ax = fig.add_subplot(gs[1], sharey=left_piano_ax) # Draw a faint piano roll behind the main axes (if the user wants). if faint_pr: xlim = (0, 1000) if xlim is None else xlim x_min, x_max = xlim x_delta = x_max - x_min main_ax.imshow(np.tile(keys, x_delta), cmap='binary', aspect='auto', alpha=0.05, extent=[x_min, x_max, -0.5, octaves*12-0.5]) for i in range(octaves): main_ax.hlines(i * 12 + 4.5, x_min, x_max, colors='black', linewidth=0.5, alpha=0.25) main_ax.hlines(i * 12 - 0.5, x_min, x_max, colors='black', linewidth=0.5, alpha=0.25) main_ax.set_xlim(*xlim) # Some final cosmetic tweaks before returning the axis obj's and figure. plt.setp(main_ax.get_yticklabels(), visible=False) gs.tight_layout(fig) return fig, main_ax, left_piano_ax
23,141
def exercise(request, exercisename): """Show single sport and its totals.""" e = exercisename cur_user = request.user exercises = Exercise.objects.filter(owner=cur_user, sport=e).order_by('-date') context = {'exercises': exercises, 'total': Stats.total(cur_user, sport=e), 'totaltime': Stats.totaltime(cur_user, sport=e)} return render(request, 'distances/exercises.html', context)
23,142
def rng() -> int: """Return a 30-bit hardware generated random number.""" pass
23,143
def randomBinaryMatrix(scale, type): """ Generates a pseudo random BinaryMatrix of a given scale(small,large) and datatype(int). """ if(scale == "small" and type == "int"): nrow = random.randint(1, 10) ncol = random.randint(1, 10) data = [] for i in range(nrow): data.append([]) for _j in range(ncol): data[i].append(random.randint(0, 1)) return BinaryMatrix( nrow=nrow, ncol=ncol, data=data ) if(scale == "large" and type == "int"): nrow = random.randint(10, 100) ncol = random.randint(10, 100) data = [] for i in range(nrow): data.append([]) for _j in range(ncol): data[i].append(random.randint(0, 1)) return BinaryMatrix( nrow=nrow, ncol=ncol, data=data )
23,144
def draw_contours(mat, contours, color=(0, 0, 255), thickness=1): """ Draws contours on the input image. The input image is modified. :param mat: input image :param contours: contours to draw :param color: color of contours :param thickness: thickness of contours, filled if -1 :return: None """ cv2.drawContours(mat, contours, -1, color, thickness=thickness)
23,145
def load_batch(server_context: ServerContext, assay_id: int, batch_id: int) -> Optional[Batch]: """ Loads a batch from the server. :param server_context: A LabKey server context. See utils.create_server_context. :param assay_id: The protocol id of the assay from which to load a batch. :param batch_id: :return: """ load_batch_url = server_context.build_url("assay", "getAssayBatch.api") loaded_batch = None payload = {"assayId": assay_id, "batchId": batch_id} json_body = server_context.make_request(load_batch_url, json=payload) if json_body is not None: loaded_batch = Batch(**json_body["batch"]) return loaded_batch
23,146
def canvas_compose(mode, dst, src): """Compose two alpha premultiplied images https://ciechanow.ski/alpha-compositing/ http://ssp.impulsetrain.com/porterduff.html """ src_a = src[..., -1:] if len(src.shape) == 3 else src dst_a = dst[..., -1:] if len(dst.shape) == 3 else dst if mode == COMPOSE_OVER: return src + dst * (1 - src_a) elif mode == COMPOSE_OUT: return src * (1 - dst_a) elif mode == COMPOSE_IN: return src * dst_a elif mode == COMPOSE_ATOP: return src * dst_a + dst * (1 - src_a) elif mode == COMPOSE_XOR: return src * (1 - dst_a) + dst * (1 - src_a) elif isinstance(mode, tuple) and len(mode) == 4: k1, k2, k3, k4 = mode return (k1 * src * dst + k2 * src + k3 * dst + k4).clip(0, 1) raise ValueError(f"invalid compose mode: {mode}")
23,147
async def get_timelog_user_id( *, user_id: int, epic_id: int, month: int, year: int, session: Session = Depends(get_session), ): """ Get list of timelogs by user_id, month. Parameters ---------- user_id : str ID of user from which to pull timelogs. year_month : int Month and year from which to pull timelog(s). session : Session SQL session that is to be used to get the timelogs. Defaults to creating a dependency on the running SQL model session. """ statement = ( select( TimeLog.id, AppUser.username.label("username"), Epic.name.label("epic_name"), EpicArea.name.label("epic_area_name"), TimeLog.start_time, TimeLog.end_time, TimeLog.count_hours, TimeLog.count_days, ) .join(AppUser) .join(EpicArea) .join(Epic) .where(TimeLog.user_id == user_id) .where(TimeLog.epic_id == epic_id) .where(TimeLog.month == month) .where(TimeLog.year == year) .order_by(TimeLog.end_time.desc()) ) results = session.exec(statement).all() return results
23,148
def _cross( vec1, vec2, ): """Cross product between vec1 and vec2 in R^3""" vec3 = np.zeros((3,)) vec3[0] = +(vec1[1] * vec2[2] - vec1[2] * vec2[1]) vec3[1] = -(vec1[0] * vec2[2] - vec1[2] * vec2[0]) vec3[2] = +(vec1[0] * vec2[1] - vec1[1] * vec2[0]) return vec3
23,149
def _simplex_dot3D(g, x, y, z): """ 3D dot product """ return g[0] * x + g[1] * y + g[2] * z
23,150
def __get_report_failures(test_data: TestData) -> str: """ Gets test report with all failed test soft asserts :param test_data: test data from yaml file :return: str test report with all soft asserts """ test_id = __get_test_id() failed_assert_reports = __FAILED_EXPECTATIONS.get(test_id) meta_info = inspect.stack()[2][1:4] expectation_report = ExpectationReport(test_data.test_name, failed_assert_reports, meta_info) return expectation_report.get_report_message()
23,151
def make_complex_heatmap(df_data, heatmap_cmap='coolwarm', vmax=4, vmin=-4, figsize=(16, 9), row_metadata=None, col_metadata=None, col_colorbar_anchor=[0.12, 0.1, 0.7, 0.05], row_colorbar_anchor=[0.85, 0.15, 0.02, 0.7], figname=None): """Script for making complex heatmaps with sidebars and legends of each colorbar. Row metadata are shown in additional columns of heatmap and col metadata are shown in additional rows. Parameters -------- df_data : pd.DataFrame a table with data. row_metadata, col_metadata : pd.Series or pd.DataFrame metadata of rows and columns that needs to be represented as row and column sidebars. figsize : figure size as in matplotlib. vmax, vmin : : float max or min value in the heatmap function fron Seaborn col_colorbar_anchor, row_colorbar_anchor : list of length of 4 coordinants and size of color bar, first two values are x and y co-ordinnants, third and fourth one are width and height. figname : str path of output figure, if None, print to console. """ # Initialize subplots. row_metadata = pd.DataFrame(row_metadata) col_metadata = pd.DataFrame(col_metadata) n_row = row_metadata.shape[1] + 1 n_col = col_metadata.shape[1] + 1 height_ratios = [15] + [1] * (n_col - 1) width_ratios = [15] + [1] * (n_row - 1) fig, axes = plt.subplots(n_col, n_row, sharex=False, sharey=False, figsize=figsize, gridspec_kw={'height_ratios': height_ratios, 'width_ratios': width_ratios, 'wspace': 0.1, 'hspace': 0}) if n_row * n_col > 1: # Axes are flattened for easier indexing axes = axes.ravel() main_fig = sns.heatmap(df_data, vmax=vmax, vmin=vmin, ax=axes[ 0], cbar=False, cmap=heatmap_cmap, robust=True) else: main_fig = sns.heatmap( df_data, vmax=vmax, vmin=vmin, cbar=False, cmap=heatmap_cmap, robust=True) # Make the main heatmap as the first subplot main_fig_axes = fig.add_axes([0.13, 0.95, 0.7, 0.05]) main_fig_cb = plt.colorbar(main_fig.get_children()[ 0], orientation='horizontal', cax=main_fig_axes) main_fig_cb.ax.set_title("Heatmap", position=(1.06, 0.1), fontsize=16) main_fig.set_xticks([]) main_fig.set_yticks([]) main_fig.set_ylabel( 'logFC change compared with corresponding DMSO', fontsize=14) # Iterate through each metadata dataframe and start ploting the color bar # and heatmaps row-wise or column-wise for metadata, base_anchor, anchor_offset_location in zip([row_metadata, col_metadata], [row_colorbar_anchor, col_colorbar_anchor], [0, 1]): axes_offset = 1 if metadata is None: continue # Iterate through each metadata colorbar for col in metadata.columns: metadata_vector = metadata[col] # Handling continuous heatmap sidebar values try: metadata_vector = metadata_vector.astype(float) metadata_vector = pd.DataFrame(metadata_vector, columns=[col]) levels = metadata_vector[col].sort_values().unique() cmap = 'Blues' cb_type = 'continuous' # Handling descrete heatmap sidebar values, which are factorized. except ValueError: levels = metadata_vector.factorize()[1] metadata_vector = pd.DataFrame( metadata_vector.factorize()[0], columns=[col]) cmap = sns.color_palette("cubehelix_r", levels.shape[0]) cb_type = 'discreet' # Calculate the axes index and location of the "legend" of the # sidebar, which are actually colorbar objects. if anchor_offset_location == 0: offset = 0.1 # Column side bar offsets. ax = axes[axes_offset] cbar_label_orientation = 'vertical' cbar_title_location = (1.03, 1) else: offset = -0.1 # Row side bar offsets. ax = axes[axes_offset * n_row] cbar_label_orientation = 'horizontal' cbar_title_location = (1.03, 0.1) metadata_vector = metadata_vector.transpose() # Plotting the sidebar and its colorbar anchor = base_anchor anchor[anchor_offset_location] = anchor[ anchor_offset_location] + offset colorbar_ax = fig.add_axes(anchor) g = sns.heatmap(metadata_vector, ax=ax, cbar=False, xticklabels=False, yticklabels=False, cmap=cmap, vmax=metadata_vector.values.max() + 1) # g.set_title(col) if cb_type != 'continuous': cb = plt.colorbar( g.get_children()[0], orientation=cbar_label_orientation, cax=colorbar_ax) # Make correct ticks and tick labels, need to offset the lenth # to fix the miss-by-one problem. cb.set_ticks(np.arange(0.5, 0.5 + len(levels), 1)) if anchor_offset_location == 0: cb.ax.set_yticklabels(levels.values, fontsize=14) else: cb.ax.set_xticklabels(levels.values, fontsize=14) else: cb = plt.colorbar( g.get_children()[0], orientation=cbar_label_orientation, cax=colorbar_ax) cb.ax.set_title(col, position=cbar_title_location, fontsize=14) cb.ax.invert_yaxis() # To the next subplot axes axes_offset += 1 # Get rid of empty subplots not used in the figure. valid_axes_id = [x for x in range( n_col)] + [x * n_row for x in range(n_col)] for axes_id in range(len(axes)): if axes_id not in valid_axes_id: fig.delaxes(axes[axes_id]) # This is a hack in order to make the correct X axis label axes[n_row * (n_col - 1)].set_xlabel('Treatments', fontsize=14) if figname is not None: plt.savefig(figname, bbox_inches='tight') plt.close()
23,152
def initialized_sm(registrations, uninitialized_sm): """ The equivalent of an app with commit """ uninitialized_sm.initialize() return uninitialized_sm
23,153
def compute_options( platform: PlatformName, package_dir: Path, output_dir: Path, config_file: Optional[str], args_archs: Optional[str], prerelease_pythons: bool, ) -> BuildOptions: """ Compute the options from the environment and configuration file. """ manylinux_identifiers = { f"manylinux-{build_platform}-image" for build_platform in MANYLINUX_ARCHS } musllinux_identifiers = { f"musllinux-{build_platform}-image" for build_platform in MUSLLINUX_ARCHS } disallow = { "linux": {"dependency-versions"}, "macos": manylinux_identifiers | musllinux_identifiers, "windows": manylinux_identifiers | musllinux_identifiers, } options = ConfigOptions(package_dir, config_file, platform=platform, disallow=disallow) build_config = options("build", env_plat=False, sep=" ") or "*" skip_config = options("skip", env_plat=False, sep=" ") test_skip = options("test-skip", env_plat=False, sep=" ") prerelease_pythons = prerelease_pythons or strtobool( os.environ.get("CIBW_PRERELEASE_PYTHONS", "0") ) deprecated_selectors("CIBW_BUILD", build_config, error=True) deprecated_selectors("CIBW_SKIP", skip_config) deprecated_selectors("CIBW_TEST_SKIP", test_skip) package_files = {"setup.py", "setup.cfg", "pyproject.toml"} if not any(package_dir.joinpath(name).exists() for name in package_files): names = ", ".join(sorted(package_files, reverse=True)) msg = f"cibuildwheel: Could not find any of {{{names}}} at root of package" print(msg, file=sys.stderr) sys.exit(2) # This is not supported in tool.cibuildwheel, as it comes from a standard location. # Passing this in as an environment variable will override pyproject.toml, setup.cfg, or setup.py requires_python_str: Optional[str] = os.environ.get( "CIBW_PROJECT_REQUIRES_PYTHON" ) or get_requires_python_str(package_dir) requires_python = None if requires_python_str is None else SpecifierSet(requires_python_str) build_selector = BuildSelector( build_config=build_config, skip_config=skip_config, requires_python=requires_python, prerelease_pythons=prerelease_pythons, ) test_selector = TestSelector(skip_config=test_skip) return _compute_single_options( options, args_archs, build_selector, test_selector, platform, package_dir, output_dir )
23,154
def coordinateToIndex(coordinate): """Return a raw index (e.g [4, 4]) from board coordinate (e.g. e4)""" return [abs(int(coordinate[1]) - 8), ("a", "b", "c", "d", "e", "f", "g", "h").index(coordinate[0])]
23,155
def parse_page(url): """parge the page and get all the links of images, max number is 100 due to limit by google Args: url (str): url of the page Returns: A set containing the urls of images """ page_content = download_page(url) if page_content: link_list = re.findall('src="(.*?)"', page_content) if len(link_list) == 0: print('get 0 links from page {0}'.format(url)) logging.info('get 0 links from page {0}'.format(url)) return set() else: return set(link_list) else: return set()
23,156
def assert_ndim(arg, ndims): """Raise exception if `arg` has a different number of dimensions than `ndims`.""" if not is_array(arg): arg = np.asarray(arg) if isinstance(ndims, Iterable): if arg.ndim not in ndims: raise AssertionError(f"Number of dimensions must be one of {ndims}, not {arg.ndim}") else: if arg.ndim != ndims: raise AssertionError(f"Number of dimensions must be {ndims}, not {arg.ndim}")
23,157
def full_file_names(file_dir): """ List all full file names(with extension) in target directory. :param file_dir: target directory. :return: a list containing full file names. """ for _, _, files in os.walk(file_dir): return files
23,158
def json_page_resp(name, page, paginator): """ Returns a standardized page response """ page_rows = paginator.get_page(page) return JsonResponse({'page':page, 'pages':paginator.num_pages, name:[x['json'] for x in page_rows], 'size':len(page_rows)}, safe=False)
23,159
def input_house_detail(driver): """进入房源预订页面""" pass
23,160
def get_script_runner(): """ Gets the script runner plugin instance if any otherwise returns None. :rtype: hackedit.api.interpreters.ScriptRunnerPlugin """ from .interpreters import ScriptRunnerPlugin return _window().get_plugin_instance(ScriptRunnerPlugin)
23,161
def detect_peak(a, thresh=0.3): """ Detect the extent of the peak in the array by looking for where the slope changes to flat. The highest peak is detected and data and followed until the slope flattens to a threshold. """ iPk = np.argmax(a) d = np.diff(a) g1 = np.gradient(a) g2 = np.gradient(g1) threshPos = np.nanmax(d) * thresh threshNeg = -1 * threshPos # Start searching away from the peak zone g2L = np.flipud(g2[:iPk]) g2R = g2[iPk+1:] iL = iPk - np.min(np.where(g2L>=0)) iR = iPk + np.min(np.where(g2R>=0)) + 1 g1[iL:iR] = np.nan # Search for the threshold crossing point g1L = np.flipud(g1[:iPk]) g1R = g1[iPk+1:] iL = iPk - np.min(np.where(g1L<=threshPos)) iR = iPk + np.min(np.where(g1R>=threshNeg)) msk = np.zeros_like(a) msk[iL:iR] = 1 # DEBUG if False: pl.plot(a, marker='.') pl.plot(g1, marker='^') pl.plot(msk, marker='o') pl.plot(np.ones_like(a)*threshPos, color='k') pl.plot(np.ones_like(a)*threshNeg, color='k') pl.axhline(0, color='grey') pl.show() return msk
23,162
def latest_version(): """ Returns the latest version, as specified by the Git tags. """ versions = [] for t in tags(): assert t == t.strip() parts = t.split(".") assert len(parts) == 3, t parts[0] = parts[0].lstrip("v") v = tuple(map(int, parts)) versions.append((v, t)) _, latest = max(versions) assert latest in tags() return latest
23,163
def get_age_group(df,n: int=10): """Assigns a category to the age DR Parameters ---------- df : Dataframe n : number of categories Returns ------- Dataset with Age_group column """ df["Age_group"] = pd.cut(df["Age"], n, labels = list(string.ascii_uppercase)[:n]) return df
23,164
def test_thermal_info(duthosts, enum_rand_one_per_hwsku_hostname, snmp_physical_entity_and_sensor_info): """ Verify thermal information in physical entity mib with redis database :param duthost: DUT host object :param snmp_physical_entity_info: Physical entity information from snmp fact :return: """ snmp_physical_entity_info = snmp_physical_entity_and_sensor_info["entity_mib"] snmp_entity_sensor_info = snmp_physical_entity_and_sensor_info["sensor_mib"] duthost = duthosts[enum_rand_one_per_hwsku_hostname] keys = redis_get_keys(duthost, STATE_DB, THERMAL_KEY_TEMPLATE.format('*')) assert keys, 'Thermal information does not exist in DB' for key in keys: thermal_info = redis_hgetall(duthost, STATE_DB, key) if is_null_str(thermal_info['temperature']): continue name = key.split(TABLE_NAME_SEPARATOR_VBAR)[-1] entity_info_key = PHYSICAL_ENTITY_KEY_TEMPLATE.format(name) entity_info = redis_hgetall(duthost, STATE_DB, entity_info_key) if not entity_info or entity_info['parent_name'] != CHASSIS_KEY: continue position = int(entity_info['position_in_parent']) expect_oid = CHASSIS_MGMT_SUB_ID + DEVICE_TYPE_CHASSIS_THERMAL + position * DEVICE_INDEX_MULTIPLE + \ SENSOR_TYPE_TEMP assert expect_oid in snmp_physical_entity_info, 'Cannot find thermal {} in physical entity mib'.format(name) thermal_snmp_fact = snmp_physical_entity_info[expect_oid] assert thermal_snmp_fact['entPhysDescr'] == name assert thermal_snmp_fact['entPhysContainedIn'] == CHASSIS_MGMT_SUB_ID assert thermal_snmp_fact['entPhysClass'] == PHYSICAL_CLASS_SENSOR assert thermal_snmp_fact['entPhyParentRelPos'] == position assert thermal_snmp_fact['entPhysName'] == name assert thermal_snmp_fact['entPhysHwVer'] == '' assert thermal_snmp_fact['entPhysFwVer'] == '' assert thermal_snmp_fact['entPhysSwVer'] == '' assert thermal_snmp_fact['entPhysSerialNum'] == '' assert thermal_snmp_fact['entPhysMfgName'] == '' assert thermal_snmp_fact['entPhysModelName'] == '' assert thermal_snmp_fact['entPhysIsFRU'] == NOT_REPLACEABLE # snmp_entity_sensor_info is only supported in image newer than 202012 if is_sensor_test_supported(duthost): thermal_sensor_snmp_fact = snmp_entity_sensor_info[expect_oid] assert thermal_sensor_snmp_fact['entPhySensorType'] == str(int(EntitySensorDataType.CELSIUS)) assert thermal_sensor_snmp_fact['entPhySensorPrecision'] == '3' assert thermal_sensor_snmp_fact['entPhySensorScale'] == EntitySensorDataScale.UNITS assert thermal_sensor_snmp_fact['entPhySensorOperStatus'] == str(int(EntitySensorStatus.OK)) \ or thermal_sensor_snmp_fact['entPhySensorOperStatus'] == str(int(EntitySensorStatus.NONOPERATIONAL)) \ or thermal_sensor_snmp_fact['entPhySensorOperStatus'] == str(int(EntitySensorStatus.UNAVAILABLE))
23,165
def transformer_encoder_layer(query_input, key_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name=''): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ key_input = pre_process_layer( key_input, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_att') if key_input else None value_input = key_input if key_input else None attn_output = multi_head_attention( pre_process_layer( query_input, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_att'), key_input, value_input, attn_bias, d_key, d_value, d_model, n_head, attention_dropout, param_initializer=param_initializer, name=name + '_multi_head_att') attn_output = post_process_layer( query_input, attn_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_att') ffd_output = positionwise_feed_forward( pre_process_layer( attn_output, preprocess_cmd, prepostprocess_dropout, name=name + '_pre_ffn'), d_inner_hid, d_model, relu_dropout, hidden_act, param_initializer=param_initializer, name=name + '_ffn') return post_process_layer( attn_output, ffd_output, postprocess_cmd, prepostprocess_dropout, name=name + '_post_ffn')
23,166
def generate(ode, lenght=int(2e4)): """ Time series generation from a ODE :param ode: ODE object; :param lenght: serie lenght; :return: time serie. """ state = ode.initial_state data = np.zeros([int(state.shape[0]), lenght]) for i in range(5000): state = runge_kutta(ode, state) for i in range(lenght): state = runge_kutta(ode, state) data[:, i] = state return data
23,167
def complexFormatToRealImag(complexVec): """ A reformatting function which converts a complex vector into real valued array. Let the values in the input array be [r1+j*i1,r 2+j*i2,..., rN+j*iN] then the output array will be [r1, i1, r2, i2,..., rN, iN] :param complexVec: complex numpy ndarray :return: returns a 1D numpy array of a length N containing complex numbers. """ N = len(complexVec) ret = np.empty((2*N,), dtype=np.real(complexVec).dtype) ret[0::2] = complexVec.real ret[1::2] = complexVec.imag return ret
23,168
def send_invoice(order_id): """ 當交易成功時,發送 email 的任務 P.S. 為「PDF 收據」,非 通知訂單成立的文字 email 訊息 """ order = Order.objects.get(id=order_id) subject = "【Cloth2U】 Your invoice" message = "Please kindly find the attached file," +\ " the invoice for your recent purchase." email_message = EmailMessage(subject, message, settings.EMAIL_HOST_USER, [order.email]) # 產生 PDF pdf_file_name = f"order_{order_id}.pdf" content_type = "application/pdf" html = render_to_string("orders/order/pdf.html",\ {"order": order}).encode("utf-8") outstream = BytesIO() stylesheet = weasyprint.CSS(settings.STATIC_ROOT +\ "css/pdf.css") weasyprint.HTML(string=html).write_pdf(outstream, stylesheets=[stylesheet]) # 將渲染好的 html PDF 文件添加為 email 附件 email_message.attach(pdf_file_name, outstream.getvalue(), content_type) # 發送 email email_message.send()
23,169
def displayaction(uid): """ Display the command from the xml file """ tree = ET.parse(OPENSTRIATOFILE) root = tree.getroot() textaction = root.findall("./action[@uid='"+uid+"']") if len(textaction) == 0: return "This UID does not exist!" else: return "UID %s action: %s" % (uid, textaction[0].text)
23,170
def get_parent(inst, rel_type='cloudify.relationships.contained_in'): """ Gets the parent of an instance :param `cloudify.context.NodeInstanceContext` inst: Cloudify instance :param string rel_type: Relationship type :returns: Parent context :rtype: :class:`cloudify.context.RelationshipSubjectContext` or None """ for rel in inst.relationships: if rel_type in rel.type_hierarchy: return rel.target return None
23,171
def _query_param(key, value): """ensure that a query parameter's value is a string of bytes in UTF-8 encoding. """ if isinstance(value, unicode): pass elif isinstance(value, str): value = value.decode('utf-8') else: value = unicode(value) return key, value.encode('utf-8')
23,172
def _create_or_get_dragonnet(embedding, is_training, treatment, outcome, split, getter=None): """ Make predictions for the outcome, using the treatment and embedding, and predictions for the treatment, using the embedding Both outcome and treatment are assumed to be binary Note that we return the loss as a sum (and not a mean). This makes more sense for training dynamics Parameters ---------- bert is_training treatment outcome label_dict split getter custom getter, for polyak averaging support Returns ------- """ treatment_float = tf.cast(treatment, tf.float32) with tf.variable_scope('dragon_net', reuse=tf.AUTO_REUSE, custom_getter=getter): with tf.variable_scope('treatment'): loss_t, per_example_loss_t, logits_t, expectation_t = _make_feedforward_classifier( embedding, treatment, 2, split, num_hidden_layers=2) with tf.variable_scope('outcome_st_treatment'): loss_ot1, per_example_loss_ot1, logits_ot1, expectation_ot1 = _make_feedforward_classifier( embedding, outcome, 2, split=split*treatment_float, num_hidden_layers=0) with tf.variable_scope('outcome_st_no_treatment'): loss_ot0, per_example_loss_ot0, logits_ot0, expectation_ot0 = _make_feedforward_classifier( embedding, outcome, 2, split=split*(1.-treatment_float), num_hidden_layers=0) tf.losses.add_loss(loss_ot0) tf.losses.add_loss(loss_ot1) tf.losses.add_loss(loss_t) training_loss = loss_ot0 + loss_ot1 + loss_t training_loss = training_loss outcome_st_treat = {'per_example_loss': per_example_loss_ot1, 'logits': logits_ot1, 'expectations': expectation_ot1} outcome_st_no_treat = {'per_example_loss': per_example_loss_ot0, 'logits': logits_ot0, 'expectations': expectation_ot0} treat = {'per_example_loss': per_example_loss_t, 'logits': logits_t, 'expectations': expectation_t} return training_loss, outcome_st_treat, outcome_st_no_treat, treat
23,173
def fit_ols(Y, X): """Fit OLS model to both Y and X""" model = sm.OLS(Y, X) model = model.fit() return model
23,174
def compute_modularity_per_code(mutual_information): """Computes the modularity from mutual information.""" # Mutual information has shape [num_codes, num_factors]. squared_mi = np.square(mutual_information) max_squared_mi = np.max(squared_mi, axis=1) numerator = np.sum(squared_mi, axis=1) - max_squared_mi denominator = max_squared_mi * (squared_mi.shape[1] - 1.) delta = numerator / denominator modularity_score = 1. - delta index = (max_squared_mi == 0.) modularity_score[index] = 0. return modularity_score
23,175
def _CheckSemanticColorsReferences(input_api, output_api): """ Checks colors defined in semantic_colors_non_adaptive.xml only referencing resources in color_palette.xml. """ errors = [] color_palette = None for f in IncludedFiles(input_api): if not f.LocalPath().endswith('/semantic_colors_non_adaptive.xml'): continue if color_palette is None: color_palette = _colorXml2Dict( input_api.ReadFile(helpers.COLOR_PALETTE_PATH)) for line_number, line in f.ChangedContents(): r = helpers.COLOR_REFERENCE_PATTERN.search(line) if not r: continue color = r.group() if _removePrefix(color) not in color_palette: errors.append( ' %s:%d\n \t%s' % (f.LocalPath(), line_number, line.strip())) if errors: return [ output_api.PresubmitError( ''' Android Semantic Color Reference Check failed: Your new color values added in semantic_colors_non_adaptive.xml are not defined in ui/android/java/res/values/color_palette.xml, listed below. This is banned. Colors in semantic colors can only reference the existing color resource from color_palette.xml. See https://crbug.com/775198 for more information. ''', errors) ] return []
23,176
def post_new_attending(): """Posts attending physician information to the server This method generates the new attending physician’s dictionary with all of his/her information, then validates that all of the information is the correct type. If the validation stage is satisfied, then the attending’s dictionary is added to the database. Parameters ---------- N/A Returns ------- String result of adding a new attending """ new_dict = request.get_json() validate = validate_new_attending(new_dict) if validate is not True: return validate, 400 attending = add_new_attending(new_dict["attending_username"], new_dict["attending_email"], new_dict["attending_phone"]) if attending is True: logging.info("New Attending Physician Added!") logging.info("Physician User Name: {}".format( new_dict["attending_username"])) logging.info("Physician Email: {}".format( new_dict["attending_email"])) return "New Attending Physician Successfully Added", 200 else: return "Failed to Add New Attending Physician", 400
23,177
def submitFeatureWeightedGridStatistics(geoType, dataSetURI, varID, startTime, endTime, attribute, value, gmlIDs, verbose, coverage, delim, stat, grpby, timeStep, summAttr, weighted, wfs_url, outputfname, sleepSecs, async=False): """ Makes a featureWeightedGridStatistics algorithm call. The web service interface implemented is summarized here: https://my.usgs.gov/confluence/display/GeoDataPortal/Generating+Area+Weighted+Statistics+Of+A+Gridded+Dataset+For+A+Set+Of+Vector+Polygon+Features Note that varID and stat can be a list of strings. """ # test for dods: dataSetURI = dodsReplace(dataSetURI) log.info('Generating feature collection.') featureCollection = _getFeatureCollectionGeoType(geoType, attribute, value, gmlIDs, wfs_url) if featureCollection is None: return processid = 'gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm' if not weighted: processid = 'gov.usgs.cida.gdp.wps.algorithm.FeatureGridStatisticsAlgorithm' solo_inputs = [("FEATURE_ATTRIBUTE_NAME", attribute), ("DATASET_URI", dataSetURI), ("TIME_START", startTime), ("TIME_END", endTime), ("REQUIRE_FULL_COVERAGE", str(coverage).lower()), ("DELIMITER", delim), ("GROUP_BY", grpby), ("SUMMARIZE_TIMESTEP", str(timeStep).lower()), ("SUMMARIZE_FEATURE_ATTRIBUTE", str(summAttr).lower()), ("FEATURE_COLLECTION", featureCollection)] if isinstance(stat, list): num_stats = len(stat) if num_stats > 7: raise Exception('Too many statistics were submitted.') else: num_stats = 1 if isinstance(varID, list): num_varids = len(varID) else: num_varids = 1 inputs = [('', '')] * (len(solo_inputs) + num_varids + num_stats) count = 0 rm_cnt = 0 for solo_input in solo_inputs: if solo_input[1] is not None: inputs[count] = solo_input count += 1 else: rm_cnt += 1 del inputs[count:count + rm_cnt] if num_stats > 1: for stat_in in stat: if stat_in not in ["MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"]: raise Exception('The statistic {} is not in the allowed list: "MEAN", "MINIMUM", "MAXIMUM", ' + '"VARIANCE", "STD_DEV", "SUM", "COUNT"'.format(stat_in)) inputs[count] = ("STATISTICS", stat_in) count += 1 elif num_stats == 1: if stat not in ["MEAN", "MINIMUM", "MAXIMUM", "VARIANCE", "STD_DEV", "SUM", "COUNT"]: raise Exception('The statistic {} is not in the allowed list: "MEAN", "MINIMUM", "MAXIMUM", ' + '"VARIANCE", "STD_DEV", "SUM", "COUNT"'.format(stat)) inputs[count] = ("STATISTICS", stat) count += 1 if num_varids > 1: for var in varID: inputs[count] = ("DATASET_ID", var) count += 1 elif num_varids == 1: inputs[count] = ("DATASET_ID", varID) output = "OUTPUT" return _executeRequest(processid, inputs, output, verbose, outputfname, sleepSecs, async=async)
23,178
def fetch_words(url): """ Fetch a list of words from a URL Args: url: the url of any text document (no decoding to utf-8 added) Returns: A list of strings containing the words in the document """ with urlopen(url) as story: story_words = [] for line in story: line_words = line.split() for word in line_words: story_words.append(word) return story_words
23,179
def generate_fgsm_examples(sess, model, x, y, X, Y, attack_params, verbose, attack_log_fpath): """ Untargeted attack. Y is not needed. """ fgsm = FastGradientMethod(model, back='tf', sess=sess) fgsm_params = {'eps': 0.1, 'ord': np.inf, 'y': None, 'clip_min': 0, 'clip_max': 1} fgsm_params = override_params(fgsm_params, attack_params) X_adv = fgsm.generate_np(X, **fgsm_params) return X_adv
23,180
def add_class(attrs_dict, classes_str): """Adds the classes_str to the 'class' key in attrs_dict, or creates it""" try: attrs_dict["class"] += " " + classes_str except KeyError: attrs_dict["class"] = classes_str
23,181
def s3_bucket_for(bucket_prefix, path): """returns s3 bucket for path""" suffix = s3_bucket_suffix_for(path) return "{}-{}".format(bucket_prefix, suffix)
23,182
def regrid_create_operator(regrid, name, parameters): """Create a new `RegridOperator` instance. :Parameters: regrid: `ESMF.Regrid` The `ESMF` regridding operator between two fields. name: `str` A descriptive name for the operator. parameters: `dict` Parameters that describe the complete coordinate system of the destination grid. :Returns: `RegridOperator` The new regrid operator. """ return RegridOperator(regrid, name, **parameters)
23,183
def _decode_hmc_values(hmc_ref): """Decrypts any sensitive HMC values that were encrypted in the DB""" if hmc_ref is not None: hmc_ref = jsonutils.to_primitive(hmc_ref) #Make sure to DeCrypt the Password after retrieving from the database ## del two lines by lixx #if hmc_ref.get('password') is not None: # hmc_ref['password'] = EncryptHandler().decode(hmc_ref['password']) return hmc_ref
23,184
def config_source_local(src_folder, conanfile, output, conanfile_path, hook_manager): """ Entry point for the "conan source" command. """ conanfile_folder = os.path.dirname(conanfile_path) _run_source(conanfile, conanfile_path, src_folder, hook_manager, output, reference=None, client_cache=None, export_folder=None, export_source_folder=None, local_sources_path=conanfile_folder)
23,185
def init_data(my_data, rp): """ initialize the quadrant problem """ msg.bold("initializing the quadrant problem...") # make sure that we are passed a valid patch object if not isinstance(my_data, patch.CellCenterData2d): print("ERROR: patch invalid in quad.py") print(my_data.__class__) sys.exit() # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) r1 = rp.get_param("quadrant.rho1") u1 = rp.get_param("quadrant.u1") v1 = rp.get_param("quadrant.v1") p1 = rp.get_param("quadrant.p1") r2 = rp.get_param("quadrant.rho2") u2 = rp.get_param("quadrant.u2") v2 = rp.get_param("quadrant.v2") p2 = rp.get_param("quadrant.p2") r3 = rp.get_param("quadrant.rho3") u3 = rp.get_param("quadrant.u3") v3 = rp.get_param("quadrant.v3") p3 = rp.get_param("quadrant.p3") r4 = rp.get_param("quadrant.rho4") u4 = rp.get_param("quadrant.u4") v4 = rp.get_param("quadrant.v4") p4 = rp.get_param("quadrant.p4") cx = rp.get_param("quadrant.cx") cy = rp.get_param("quadrant.cy") gamma = rp.get_param("eos.gamma") # there is probably an easier way to do this, but for now, we # will just do an explicit loop. Also, we really want to set # the pressue and get the internal energy from that, and then # compute the total energy (which is what we store). For now # we will just fake this myg = my_data.grid iq1 = np.logical_and(myg.x2d >= cx, myg.y2d >= cy) iq2 = np.logical_and(myg.x2d < cx, myg.y2d >= cy) iq3 = np.logical_and(myg.x2d < cx, myg.y2d < cy) iq4 = np.logical_and(myg.x2d >= cx, myg.y2d < cy) # quadrant 1 dens[iq1] = r1 xmom[iq1] = r1*u1 ymom[iq1] = r1*v1 ener[iq1] = p1/(gamma - 1.0) + 0.5*r1*(u1*u1 + v1*v1) # quadrant 2 dens[iq2] = r2 xmom[iq2] = r2*u2 ymom[iq2] = r2*v2 ener[iq2] = p2/(gamma - 1.0) + 0.5*r2*(u2*u2 + v2*v2) # quadrant 3 dens[iq3] = r3 xmom[iq3] = r3*u3 ymom[iq3] = r3*v3 ener[iq3] = p3/(gamma - 1.0) + 0.5*r3*(u3*u3 + v3*v3) # quadrant 4 dens[iq4] = r4 xmom[iq4] = r4*u4 ymom[iq4] = r4*v4 ener[iq4] = p4/(gamma - 1.0) + 0.5*r4*(u4*u4 + v4*v4)
23,186
def dtensor_shutdown_tpu_system(): """Shutdown TPU system.""" @def_function.function def _shutdown_tpu_system(): return gen_dtensor_ops.shutdown_tpu_system() success = _shutdown_tpu_system() if context.is_tfrt_enabled() else True if success: logging.info("TPU system shut down.") else: logging.warning("TPU system fails to shut down.")
23,187
def edit_comment(request): """ Edit an existing comment """ response = {"status": "success", "data": {}} if "char_id" in request.POST: char_id = request.POST["char_id"] else: response["status"] = "fail" response["data"]["message"] = "Paste ID was not provided (POST parameter 'char_id')" return HttpResponse(json.dumps(response), status=422) try: paste = Paste.objects.get(char_id=char_id) except ObjectDoesNotExist: response["status"] = "fail" response["data"]["message"] = "The paste couldn't be found." return HttpResponse(json.dumps(response)) if "id" in request.POST: id = int(request.POST["id"]) else: response["status"] = "fail" response["data"]["message"] = "Comment ID was not provided (POST parameter 'id')" return HttpResponse(json.dumps(response), status=422) if "page" in request.POST: page = int(request.POST["page"]) else: page = 0 if not request.user.is_authenticated(): response["status"] = "fail" response["data"]["message"] = "You are not logged in." return HttpResponse(json.dumps(response), status=422) try: comment = Comment.objects.get(id=id) except ObjectDoesNotExist: response["status"] = "fail" response["data"]["message"] = "The comment doesn't exist." return HttpResponse(json.dumps(response), status=400) if comment.user != request.user: response["status"] = "fail" response["data"]["message"] = "You are trying to edit someone else's comment." return HttpResponse(json.dumps(response), status=422) submit_form = SubmitCommentForm(request.POST or None) if submit_form.is_valid(): comment_data = submit_form.cleaned_data comment.text = comment_data["text"] comment.save() total_comment_count = Comment.objects.filter(paste=paste).count() start = page * Comment.COMMENTS_PER_PAGE end = start + Comment.COMMENTS_PER_PAGE response["data"]["edited_comment_id"] = comment.id response["data"]["comments"] = queryset_to_list(Comment.objects.filter(paste=paste) \ .select_related("user") \ [start:end], fields=["id", "text", "submitted", "edited", "user__username=username"]) response["data"]["page"] = page response["data"]["pages"] = math.ceil(float(total_comment_count) / float(Comment.COMMENTS_PER_PAGE)) if response["data"]["pages"] == 0: response["data"]["pages"] = 1 response["data"]["total_comment_count"] = total_comment_count else: response["status"] = "fail" response["data"]["message"] = "Provided text wasn't valid." return HttpResponse(json.dumps(response))
23,188
def aws_get_size(size): """ Get Node Size - Ex: (cmd:<size>)""" conn = util_get_connection() sizes = [i for i in conn.list_sizes()] if size: for i in sizes: if str(i.ram) == size or i.id == size: print >> sys.stderr, ' - '.join([i.id, str(i.ram), str(i.price)]) return i return None
23,189
def make_positions(tensor, padding_idx, onnx_trace=False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return ( (torch.cumsum(mask, dim=1) - 1).type_as(mask) * mask ).long()
23,190
def taubin_curv(coords, resolution): """Curvature calculation based on algebraic circle fit by Taubin. Adapted from: "https://github.com/PmagPy/PmagPy/blob/2efd4a92ddc19c26b953faaa5c08e3d8ebd305c9/SPD/lib /lib_curvature.py" G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) Parameters ---------- coords : list Nested list of paired x and y coordinates for each point of the line where a curve needs to be fited. [[x_1, y_1], [x_2, y_2], ....] resolution : float or int Number of pixels per mm in original image. Returns ------- float or int(0) If the radius of the fitted circle is finite, it will return the curvature (1/radius). If the radius is infinite, it will return 0. """ warnings.filterwarnings("ignore") # suppress RuntimeWarnings from dividing by zero xy = np.array(coords) x = xy[:, 0] - np.mean(xy[:, 0]) # norming points by x avg y = xy[:, 1] - np.mean(xy[:, 1]) # norming points by y avg # centroid = [np.mean(xy[:, 0]), np.mean(xy[:, 1])] z = x * x + y * y zmean = np.mean(z) z0 = ((z - zmean) / (2. * np.sqrt(zmean))) # changed from using old_div to Python 3 native division zxy = np.array([z0, x, y]).T u, s, v = np.linalg.svd(zxy, full_matrices=False) # v = v.transpose() a = v[:, 2] a[0] = (a[0]) / (2. * np.sqrt(zmean)) a = np.concatenate([a, [(-1. * zmean * a[0])]], axis=0) # a, b = (-1 * a[1:3]) / a[0] / 2 + centroid r = np.sqrt(a[1] * a[1] + a[2] * a[2] - 4 * a[0] * a[3]) / abs(a[0]) / 2 if np.isfinite(r): curv = 1 / (r / resolution) if curv >= 0.00001: return curv else: return 0 else: return 0
23,191
def periodic_general(box: Box, fractional_coordinates: bool=True, wrapped: bool=True) -> Space: """Periodic boundary conditions on a parallelepiped. This function defines a simulation on a parallelepiped, $X$, formed by applying an affine transformation, $T$, to the unit hypercube $U = [0, 1]^d$ along with periodic boundary conditions across all of the faces. Formally, the space is defined such that $X = {Tu : u \in [0, 1]^d}$. The affine transformation, $T$, can be specified in a number of different ways. For a parallelepiped that is: 1) a cube of side length $L$, the affine transformation can simply be a scalar; 2) an orthorhombic unit cell can be specified by a vector `[Lx, Ly, Lz]` of lengths for each axis; 3) a general triclinic cell can be specified by an upper triangular matrix. There are a number of ways to parameterize a simulation on $X$. `periodic_general` supports two parametrizations of $X$ that can be selected using the `fractional_coordinates` keyword argument. 1) When `fractional_coordinates=True`, particle positions are stored in the unit cube, $u\in U$. Here, the displacement function computes the displacement between $x, y \in X$ as $d_X(x, y) = Td_U(u, v)$ where $d_U$ is the displacement function on the unit cube, $U$, $x = Tu$, and $v = Tv$ with $u, v\in U$. The derivative of the displacement function is defined so that derivatives live in $X$ (as opposed to being backpropagated to $U$). The shift function, `shift_fn(R, dR)` is defined so that $R$ is expected to lie in $U$ while $dR$ should lie in $X$. This combination enables code such as `shift_fn(R, force_fn(R))` to work as intended. 2) When `fractional_coordinates=False`, particle positions are stored in the parallelepiped $X$. Here, for $x, y\in X$, the displacement function is defined as $d_X(x, y) = Td_U(T^{-1}x, T^{-1}y)$. Since there is an extra multiplication by $T^{-1}$, this parameterization is typically slower than `fractional_coordinates=False`. As in 1), the displacement function is defined to compute derivatives in $X$. The shift function is defined so that $R$ and $dR$ should both lie in $X$. Example: ```python from jax import random side_length = 10.0 disp_frac, shift_frac = periodic_general(side_length, fractional_coordinates=True) disp_real, shift_real = periodic_general(side_length, fractional_coordinates=False) # Instantiate random positions in both parameterizations. R_frac = random.uniform(random.PRNGKey(0), (4, 3)) R_real = side_length * R_frac # Make some shfit vectors. dR = random.normal(random.PRNGKey(0), (4, 3)) disp_real(R_real[0], R_real[1]) == disp_frac(R_frac[0], R_frac[1]) transform(side_length, shift_frac(R_frac, 1.0)) == shift_real(R_real, 1.0) ``` It is often desirable to deform a simulation cell either: using a finite deformation during a simulation, or using an infinitesimal deformation while computing elastic constants. To do this using fractional coordinates, we can supply a new affine transformation as `displacement_fn(Ra, Rb, box=new_box)`. When using real coordinates, we can specify positions in a space $X$ defined by an affine transformation $T$ and compute displacements in a deformed space $X'$ defined by an affine transformation $T'$. This is done by writing `displacement_fn(Ra, Rb, new_box=new_box)`. There are a few caveats when using `periodic_general`. `periodic_general` uses the minimum image convention, and so it will fail for potentials whose cutoff is longer than the half of the side-length of the box. It will also fail to find the correct image when the box is too deformed. We hope to add a more robust box for small simulations soon (TODO) along with better error checking. In the meantime caution is recommended. Args: box: A `(spatial_dim, spatial_dim)` affine transformation. fractional_coordinates: A boolean specifying whether positions are stored in the parallelepiped or the unit cube. wrapped: A boolean specifying whether or not particle positions are remapped back into the box after each step Returns: (displacement_fn, shift_fn) tuple. """ inv_box = inverse(box) def displacement_fn(Ra, Rb, **kwargs): _box, _inv_box = box, inv_box if 'box' in kwargs: _box = kwargs['box'] if not fractional_coordinates: _inv_box = inverse(_box) if 'new_box' in kwargs: _box = kwargs['new_box'] if not fractional_coordinates: Ra = transform(_inv_box, Ra) Rb = transform(_inv_box, Rb) dR = periodic_displacement(f32(1.0), pairwise_displacement(Ra, Rb)) return transform(_box, dR) def u(R, dR): if wrapped: return periodic_shift(f32(1.0), R, dR) return R + dR def shift_fn(R, dR, **kwargs): if not fractional_coordinates and not wrapped: return R + dR _box, _inv_box = box, inv_box if 'box' in kwargs: _box = kwargs['box'] _inv_box = inverse(_box) if 'new_box' in kwargs: _box = kwargs['new_box'] dR = transform(_inv_box, dR) if not fractional_coordinates: R = transform(_inv_box, R) R = u(R, dR) if not fractional_coordinates: R = transform(_box, R) return R return displacement_fn, shift_fn
23,192
def filter( needle: Callable[[T], object], haystack: Iterable[T], parse: None = None, *, allow_mismatch: Literal[False] = False, allow_many: bool = False, allow_duplicates: bool = False, ) -> T: """ `haystack` is a sequence of T elements, and `needle` must accept `T` values. If `parse` is None, and allow_mismatch=False, we return a T. """
23,193
def test_additive_hash_returns_correct_values(key, value): """Test that additive hash returns the correct values.""" from hash import additive_hash assert additive_hash(key) == value
23,194
def calculate_mac(mac_type, credentials, options, url_encode=False): """Calculates a message authentication code (MAC).""" normalized = normalize_string(mac_type, options) digestmod = module_for_algorithm(credentials['algorithm']) result = hmac.new(credentials['key'], normalized, digestmod) if url_encode: mac = urlsafe_b64encode(result.digest()) else: mac = b64encode(result.digest()) return mac
23,195
def run(): """ Test Case - Fbx mesh group Import scaling in Atom: 1. Creates a new level called MeshScalingTemporaryLevel 2. Has a list of 12 meshes, which it will do the following for each one: - Create an entity and attach the mesh to it. - Sets it with an initial offset of x:-15, y:0, z:0 - For each additional mesh the x offset is modified by +3.0 3. Enters game mode to take a screenshot for comparison, then exits game mode. 4. Prints general.log("FBX mesh group scaling test has completed.") 5. Exit the Editor and ends the test. Tests will fail immediately if any of these log lines are found: 1. Trace::Assert 2. Trace::Error 3. Traceback (most recent call last): :return: None """ def after_level_load(): """Function to call after creating/opening a level to ensure it loads.""" # Give everything a second to initialize. general.idle_enable(True) general.update_viewport() general.idle_wait(0.5) # half a second is more than enough for updating the viewport. # Close out problematic windows, FPS meters, and anti-aliasing. if general.is_helpers_shown(): # Turn off the helper gizmos if visible general.toggle_helpers() if general.is_pane_visible("Error Report"): # Close Error Report windows that block focus. general.close_pane("Error Report") if general.is_pane_visible("Error Log"): # Close Error Log windows that block focus. general.close_pane("Error Log") general.run_console("r_displayInfo=0") general.run_console("r_antialiasingmode=0") return True # Create a new test level test_level_name = 'MeshGroupingTemporaryLevel' heightmap_resolution = 128 heightmap_meters_per_pixel = 1 terrain_texture_resolution = 128 use_terrain = False # Return codes are ECreateLevelResult defined in CryEdit.h return_code = general.create_level_no_prompt( test_level_name, heightmap_resolution, heightmap_meters_per_pixel, terrain_texture_resolution, use_terrain) if return_code == 1: general.log(f"{test_level_name} level already exists") elif return_code == 2: general.log("Failed to create directory") elif return_code == 3: general.log("Directory length is too long") elif return_code != 0: general.log("Unknown error, failed to create level") else: general.log(f"{test_level_name} level created successfully") after_level_load() helper.init_idle() helper.open_level(test_level_name) general.idle_wait_frames(1) # These are the meshes that are used to test FBX mesh import scaling. meshes = [ "cube_group.azmodel", "cube_parent.azmodel", "cube_parent_plus_locator.azmodel", "cube_parent_plus_locator_rotatez_90.azmodel", "cube_parent__rotatez_90_locator.azmodel", "cube_parent__scaley_2_locator.azmodel", "cube_parent__transx_100_locator.azmodel" ] # Initial offset values to iterate off of for mesh scaling of meshes. offset = math.Vector3() offset.x = -15.0 offset.y = 0.0 offset.z = 0.0 # For each mesh, create an entity and attach the mesh to it, then scale it using the values in offset. meshIndex = 0 for mesh in meshes: meshIndex = meshIndex + 1 offset.x += 3.0 entityName = "TestEntity{}".format(meshIndex) helper_create_entity_with_mesh("dag_hierarchy/" + mesh, offset, entityName) helper.enter_game_mode(["", ""]) # Example: how to capture a screenshot general.set_viewport_size(1280, 720) general.set_cvar_integer('r_DisplayInfo', 0) general.idle_wait_frames(1) ScreenshotHelper(general.idle_wait_frames).capture_screenshot_blocking( "screenshot_atom_FBXMeshGroupImportScaling.dds") helper.exit_game_mode(["", ""]) general.log("FBX mesh group scaling test has completed.") helper.close_editor()
23,196
def get_prime(num_dict): """获取字典里所有的素数""" prime_dict = {} for key, value in num_dict.items(): if value: prime_dict.update({key: key}) return prime_dict
23,197
def get_shared_keys(param_list): """ For the given list of parameter dictionaries, return a list of the dictionary keys that appear in every parameter dictionary >>> get_shared_keys([{'a':0, 'b':1, 'c':2, 'd':3}, {'a':0, 'b':1, 'c':3}, {'a':0, 'b':'beta'}]) ['a', 'b'] >>> get_shared_keys([{'a':0, 'd':3}, {'a':0, 'b':1, 'c':2, 'd':3}, {'a':0, 'b':1, 'c':2}]) ['a'] """ if not param_list: return keys = set(param_list[0].keys()) for i in range(1, len(param_list)): keys = keys.intersection(param_list[i].keys()) keys = list(keys) keys.sort() return keys
23,198
def labeledTest(*labels): """This decorator mark a class as an integrationTest this is used in the test call for filtering integrationTest and unittest. We mark the difference by the usage of service dependency: * An unittest can run without additional services. * An integration test need additional services (such as redis or postgres). Usage: @labeledTest("integration") class FakeOutputTest(BaseApiTest): pass """ def wrapper(cl): cl._label = set(labels) return cl return wrapper
23,199