content
stringlengths
22
815k
id
int64
0
4.91M
def make_dirs(path): """ Creates any folders that are missing and assigns them the permissions of their parents """ logger.log(u"Checking if the path " + path + " already exists", logger.DEBUG) if not ek.ek(os.path.isdir, path): # Windows, create all missing folders if os.name == 'nt' or os.name == 'ce': try: logger.log(u"Folder " + path + " didn't exist, creating it", logger.DEBUG) ek.ek(os.makedirs, path) except (OSError, IOError), e: logger.log(u"Failed creating " + path + " : " + ex(e), logger.ERROR) return False # not Windows, create all missing folders and set permissions else: sofar = '' folder_list = path.split(os.path.sep) # look through each subfolder and make sure they all exist for cur_folder in folder_list: sofar += cur_folder + os.path.sep; # if it exists then just keep walking down the line if ek.ek(os.path.isdir, sofar): continue try: logger.log(u"Folder " + sofar + " didn't exist, creating it", logger.DEBUG) ek.ek(os.mkdir, sofar) # use normpath to remove end separator, otherwise checks permissions against itself chmodAsParent(ek.ek(os.path.normpath, sofar)) # do the library update for synoindex notifiers.synoindex_notifier.addFolder(sofar) except (OSError, IOError), e: logger.log(u"Failed creating " + sofar + " : " + ex(e), logger.ERROR) return False return True
22,900
def download(url, filename, proxies=None): """ Telechargement de l'URL dans le fichier destination :param url: URL a telecharger :param filename: fichier de destination """ error = '' try: req = requests.get(url, proxies=proxies, stream=True) with open(filename, "wb") as f: shutil.copyfileobj(req.raw, f) except FileNotFoundError as fnf: error = f"Error while downloading {url} - I/O Problem with {filename} : FileNotFound -> check path" except Exception as ex: error = f"Error while downloading {url}. {str(ex)}" return len(error) == 0, error, filename
22,901
async def validate_devinfo(hass, data): """检验配置是否缺项。无问题返回[[],[]],有缺项返回缺项。""" # print(result) devtype = data['devtype'] ret = [[],[]] requirements = VALIDATE.get(devtype) if not requirements: return ret else: for item in requirements[0]: if item not in json.loads(data[CONF_MAPPING]): ret[0].append(item) for item in requirements[1]: if item not in json.loads(data[CONF_CONTROL_PARAMS]): ret[1].append(item) return ret
22,902
def plot_artis_spectrum( axes, modelpath, args, scale_to_peak=None, from_packets=False, filterfunc=None, linelabel=None, plotpacketcount=False, **plotkwargs): """Plot an ARTIS output spectrum.""" if not Path(modelpath, 'input.txt').exists(): print(f"Skipping '{modelpath}' (no input.txt found. Not an ARTIS folder?)") return if plotpacketcount: from_packets = True for index, axis in enumerate(axes): if args.multispecplot: (timestepmin, timestepmax, args.timemin, args.timemax) = at.get_time_range( modelpath, timedays_range_str=args.timedayslist[index]) else: (timestepmin, timestepmax, args.timemin, args.timemax) = at.get_time_range( modelpath, args.timestep, args.timemin, args.timemax, args.timedays) modelname = at.get_model_name(modelpath) if timestepmin == timestepmax == -1: return timeavg = (args.timemin + args.timemax) / 2. timedelta = (args.timemax - args.timemin) / 2 if linelabel is None: if len(modelname) < 70: linelabel = f'{modelname}' else: linelabel = f'...{modelname[-67:]}' if not args.hidemodeltime and not args.multispecplot: # todo: fix this for multispecplot - use args.showtime for now linelabel += f' +{timeavg:.0f}d' if not args.hidemodeltimerange and not args.multispecplot: linelabel += r' ($\pm$ ' + f'{timedelta:.0f}d)' # Luke: disabled below because line label has already been formatted with e.g. timeavg values # formatting for a second time makes it impossible to use curly braces in line labels (needed for LaTeX math) # else: # linelabel = linelabel.format(**locals()) if from_packets: spectrum = get_spectrum_from_packets( modelpath, args.timemin, args.timemax, lambda_min=args.xmin, lambda_max=args.xmax, use_comovingframe=args.use_comovingframe, maxpacketfiles=args.maxpacketfiles, delta_lambda=args.deltalambda, useinternalpackets=args.internalpackets, getpacketcount=plotpacketcount) if args.outputfile is None: statpath = Path() else: statpath = Path(args.outputfile).resolve().parent else: spectrum = get_spectrum(modelpath, timestepmin, timestepmax, fnufilterfunc=filterfunc) if args.plotviewingangle: # read specpol res. angles = args.plotviewingangle viewinganglespectra = {} for angle in angles: viewinganglespectra[angle] = get_res_spectrum(modelpath, timestepmin, timestepmax, angle=angle, fnufilterfunc=filterfunc, args=args) elif args.plotvspecpol is not None and os.path.isfile(modelpath/'vpkt.txt'): # read virtual packet files (after running plotartisspectrum --makevspecpol) vpkt_config = at.get_vpkt_config(modelpath) if (vpkt_config['time_limits_enabled'] and ( args.timemin < vpkt_config['initial_time'] or args.timemax > vpkt_config['final_time'])): print(f"Timestep out of range of virtual packets: start time {vpkt_config['initial_time']} days " f"end time {vpkt_config['final_time']} days") quit() angles = args.plotvspecpol viewinganglespectra = {} for angle in angles: viewinganglespectra[angle] = get_vspecpol_spectrum( modelpath, timeavg, angle, args, fnufilterfunc=filterfunc) spectrum.query('@args.xmin <= lambda_angstroms and lambda_angstroms <= @args.xmax', inplace=True) print(f"Plotting '{linelabel}' timesteps {timestepmin} to {timestepmax} " f'({args.timemin:.3f} to {args.timemax:.3f}d)') print(f" modelpath {modelname}") print_integrated_flux(spectrum['f_lambda'], spectrum['lambda_angstroms']) if scale_to_peak: spectrum['f_lambda_scaled'] = spectrum['f_lambda'] / spectrum['f_lambda'].max() * scale_to_peak if args.plotvspecpol is not None: for angle in args.plotvspecpol: viewinganglespectra[angle]['f_lambda_scaled'] = ( viewinganglespectra[angle]['f_lambda'] / viewinganglespectra[angle]['f_lambda'].max() * scale_to_peak) ycolumnname = 'f_lambda_scaled' else: ycolumnname = 'f_lambda' if plotpacketcount: ycolumnname = 'packetcount' supxmin, supxmax = axis.get_xlim() if (args.plotvspecpol is not None and os.path.isfile(modelpath/'vpkt.txt')) or args.plotviewingangle: for angle in angles: if args.binflux: new_lambda_angstroms = [] binned_flux = [] wavelengths = viewinganglespectra[angle]['lambda_angstroms'] fluxes = viewinganglespectra[angle][ycolumnname] nbins = 5 for i in np.arange(0, len(wavelengths - nbins), nbins): new_lambda_angstroms.append(wavelengths[i + int(nbins/2)]) sum_flux = 0 for j in range(i, i + nbins): sum_flux += fluxes[j] binned_flux.append(sum_flux / nbins) plt.plot(new_lambda_angstroms, binned_flux) else: if args.plotvspecpol: if args.viewinganglelabelunits == 'deg': viewing_angle = round(math.degrees(math.acos(vpkt_config['cos_theta'][angle]))) linelabel = fr"$\theta$ = {viewing_angle}$^\circ$" if index == 0 else None elif args.viewinganglelabelunits == 'rad': linelabel = fr"cos($\theta$) = {vpkt_config['cos_theta'][angle]}" if index == 0 else None else: linelabel = f'bin number {angle}' viewinganglespectra[angle].query( '@supxmin <= lambda_angstroms and lambda_angstroms <= @supxmax').plot( x='lambda_angstroms', y=ycolumnname, ax=axis, legend=None, label=linelabel) # {timeavg:.2f} days {at.get_model_name(modelpath)} else: spectrum.query('@supxmin <= lambda_angstroms and lambda_angstroms <= @supxmax').plot( x='lambda_angstroms', y=ycolumnname, ax=axis, legend=None, label=linelabel if index == 0 else None, **plotkwargs) return spectrum[['lambda_angstroms', 'f_lambda']]
22,903
def worldbank_date_to_datetime(date): """Convert given world bank date string to datetime.date object.""" if "Q" in date: year, quarter = date.split("Q") return datetime.date(int(year), (int(quarter) * 3) - 2, 1) if "M" in date: year, month = date.split("M") return datetime.date(int(year), int(month), 1) return datetime.date(int(date), 1, 1)
22,904
def PCopy (inCleanVis, outCleanVis, err): """ Make a shallow copy of input object. Makes structure the same as inCleanVis, copies pointers * inCleanVis = Python CleanVis object to copy * outCleanVis = Output Python CleanVis object, must be defined * err = Python Obit Error/message stack """ ################################################################ # Checks if not PIsA(inCleanVis): raise TypeError("inCleanVis MUST be a Python Obit CleanVis") if not PIsA(outCleanVis): raise TypeError("outCleanVis MUST be a Python Obit CleanVis") if not OErr.OErrIsA(err): raise TypeError("err MUST be an OErr") # Obit.CleanVisCopy (inCleanVis.me, outCleanVis.me, err.me) if err.isErr: OErr.printErrMsg(err, "Error copying CleanVis") # end PCopy
22,905
def isinf(x): """ 判断``x``是否是无限的,是则返回`True` """ pass
22,906
def select( key: bytes, seq: Sequence[BucketType], *, seed: bytes = DEFAULT_SEED ) -> BucketType: """ Select one of the elements in seq based on the hash of ``key``. Example partitioning of input on ``stdin`` into buckets:: bucketed_lines = {} # type: Dict[int, str] for line in sys.stdin: buckets[choice(b, [0, 1, 2, 3, 4, 5])] = line :param key: The bytes to hash. :param seq: The sequence from which to select an element. Must be non-empty. :param seed: Seed to hash prior to hashing b. :raise ValueError: If ``seq`` is empty. :return: One of the elements in ``seq``. """ if not seq: raise ValueError("non-empty sequence required") return seq[range(key, len(seq), seed=seed)]
22,907
def unescape(s): """ unescape html """ html_codes = ( ("'", '&#39;'), ('"', '&quot;'), ('>', '&gt;'), ('<', '&lt;'), ('&', '&amp;') ) for code in html_codes: s = s.replace(code[1], code[0]) return s
22,908
def ua_mnem(*args): """ua_mnem(ea_t ea, char buf) -> char""" return _idaapi.ua_mnem(*args)
22,909
def tic(*names): """ Start timer, use `toc` to get elapsed time in seconds. Parameters ---------- names : str, str, ... Names of timers Returns ------- out : float Current timestamp Examples -------- .. code-block:: python :linenos: :emphasize-lines: 10,11,12 import plazy def foo(): total = 0 for _ in range(100000): total += 1 return total if __name__ == "__main__": plazy.tic() # T1 plazy.tic("B") # T2 plazy.tic("C", "D", "E") # T3 foo() dt1 = plazy.toc() # elapsed time since T1 dt2 = plazy.toc("B") # elapsed time since T2 dt3 = plazy.toc("C", "D") # elapsed time since T3 foo() dt4 = plazy.toc("E") # elapsed time since T3 dt5 = plazy.toc("B") # elapsed time since T2 print(dt1) # 0.009924173355102539 print(dt2) # 0.009925603866577148 print(dt3) # [0.00992727279663086, 0.00992727279663086] print(dt4) # 0.020497798919677734 print(dt5) # 0.020506620407104492 See also -------- toc """ now_ts = time.time() name_arr = list(names) + ( [ g_time_store.default_name, ] if len(names) == 0 else [] ) for n in name_arr: g_time_store.set_time(name=n, value=now_ts) return now_ts
22,910
def convert_func_types_to_type_for_json(functions, types): """Converts parameters and return type of function declaration to json representation.""" for name, f_info in functions.items(): t = parse_type_to_type_for_json(f_info.ret_type_text, types) if t.type_hash not in types: types[t.type_hash] = t f_info.ret_type = t.type_hash parse_params_to_json_types(f_info.params_list, types)
22,911
def tile(fnames, resize=(64,64), textonly=0, rows=None, cols=None): """Tiles the given images (by filename) and returns a tiled image""" maxsize = [0, 0] assert fnames todel = set() for fname in fnames: try: im = Image.open(fname) maxsize = [max(m, s) for m, s in zip(maxsize, im.size)] except Exception: todel.add(fname) continue fnames = [os.path.realpath(f) for f in fnames if f not in todel] # convert symlinks to real paths print >>sys.stderr, "There were %d images (removed %d bad) with maxsize %d x %d" % (len(fnames), len(todel), maxsize[0], maxsize[1]) # now figure out the right size of the output image if not cols and not rows: # if neither dim is given, use the sqrt cols = int(sqrt(len(fnames))) rows = len(fnames)//cols + (0 if len(fnames)%cols == 0 else 1) elif cols and not rows: # only cols is given rows = len(fnames)//cols + (0 if len(fnames)%cols == 0 else 1) elif not cols and rows: # only rows is given cols = len(fnames)//rows + (0 if len(fnames)%rows == 0 else 1) else: # both are given pass if textonly: cur = 0 rows = list(nkgrouper(cols, fnames)) return rows if resize: boxsize = resize else: boxsize = maxsize outsize = tuple([s*n for s, n in zip(boxsize, [cols, rows])]) print >>sys.stderr, "Output will be tiling %d x %d images, with image size %d x %d" % (cols, rows, outsize[0], outsize[1]) out = Image.new(im.mode, outsize) cur = 0 start = time.time() for r in range(rows): for c in range(cols): print >>sys.stderr, ' At col %d, row %d, cur %d, %0.2f secs elapsed...\r ' % (c, r, cur, time.time()-start), im = Image.open(fnames[cur]).resize(boxsize, Image.ANTIALIAS) box = (c*boxsize[0], r*boxsize[1]) out.paste(im, box) cur += 1 if cur >= len(fnames): break print >>sys.stderr return out
22,912
def get_ctrls(controls, timeout=10): """Get various servod controls.""" get_dict = {} cmd = 'dut-control %s' % controls (retval, _, out) = do_cmd(cmd, timeout, flist=['Errno', '- ERROR -']) if retval: for ctrl_line in out.split('\n'): ctrl_line = ctrl_line.strip() if len(ctrl_line): logging.debug('ctrl_line=%s', ctrl_line) try: (name, value) = ctrl_line.strip().split(':') get_dict[name] = value except ValueError: logging.debug("Unable to parse ctrl %s", ctrl_line) return (True, get_dict) return (False, get_dict)
22,913
def retrieve_database(): """Return the contents of MongoDB as a dataframe.""" return pd.DataFrame(list(restaurant_collection.find({})))
22,914
def test_package_inference(): """correctly identify the package name""" name = get_package_name(CachingLogger) assert name == "scitrack"
22,915
def try_download_ted3(target_dir, sample_rate, min_duration, max_duration): """ Method to download ted3 data set. Creates manifest files. Args: target_dir: sample_rate: min_duration: max_duration: Returns: """ path_to_data = os.path.join(os.path.expanduser("~"), target_dir) path_utils.try_create_directory(path_to_data) target_unpacked_dir = os.path.join(path_to_data, "ted3_unpacked") path_utils.try_create_directory(target_unpacked_dir) extracted_dir = os.path.join(path_to_data, "Ted3") if os.path.exists(extracted_dir): shutil.rmtree(extracted_dir) LOGGER.info(f"Start downloading Ted 3 from {TED_LIUM_V2_DL_URL}") file_name = TED_LIUM_V2_DL_URL.split("/")[-1] target_filename = os.path.join(target_unpacked_dir, file_name) path_utils.try_download(target_filename, TED_LIUM_V2_DL_URL) LOGGER.info("Download complete") LOGGER.info("Unpacking...") tar = tarfile.open(target_filename) tar.extractall(extracted_dir) tar.close() os.remove(target_unpacked_dir) assert os.path.exists(extracted_dir), f"Archive {file_name} was not properly uncompressed" LOGGER.info("Converting files to wav and extracting transcripts...") prepare_dir(path_to_data, sample_rate) create_manifest(path_to_data, os.path.join(path_to_data,'ted3_train_manifest.csv'), min_duration, max_duration)
22,916
def readAbstractMethodsFromFile(file: str) -> List[AbstractMethod]: """ Returns a list of `AbstractMethods` read from the given `file`. The file should have one `AbstractMethod` per line with tokens separated by spaces. """ abstractMethods = [] with open(file, "r") as f: for line in f: abstractMethods.append(AbstractMethod(line.strip())) return abstractMethods
22,917
def create_file_object(list_of_files,repo) : """ This function create from the list of files stored in the repo the corresponding file_object """ for e in list_of_files : cat_and_ext = re.split(r'\.',e); f = file_object(e, re.sub('[^a-zA-Z]+', '',cat_and_ext[0]), cat_and_ext[1],repo) yield f
22,918
def _find_possible_tox(path, toxenv): """Given a path and a tox target, see if flake8 is already installed.""" # First try to discover existing flake8 while(path and path != '/'): path = os.path.dirname(path) # the locations of possible flake8 venv = path + "/.tox/%s" % toxenv flake8 = venv + "/bin/flake8" if os.path.isdir(venv) and os.path.exists(flake8): # we found a flake8 in a venv so set that as the running venv ENV["VIRTUAL_ENV"] = venv # parse the ignores to pass them on the command line ENV["CONFIG"] = ignores(path) ENV["IGNORES"] = ENV["CONFIG"].get("ignore", "") # set the working directory so that 'hacking' can pick up # it's config ENV['PWD'] = path LOG.debug("Found flake8 %s, ENV=%s" % (flake8, ENV)) return flake8
22,919
def recursive_descent(data: np.ndarray, function: Callable): """ **Recursivly process an `np.ndarray` until the last dimension.** This function applies a callable to the very last dimension of a numpy multidimensional array. It is foreseen for time series processing expecially in combination with the function `ts_gaf_transform`. + param **data**: multidimensional data, type `np.ndarray`. + param **function**: callable, type `Callable`. + return **function(data)**: all kind of processed data. """ if len(data.shape) == 1: return function(data) for i in range(0, data.shape[0]): return ts_recursive_descent(data[i], function)
22,920
def write_item_mtime(item, mtime): """Write the given mtime to an item's `mtime` field and to the mtime of the item's file. """ if mtime is None: log.warn(u"No mtime to be preserved for item '{0}'", util.displayable_path(item.path)) return # The file's mtime on disk must be in sync with the item's mtime write_file_mtime(util.syspath(item.path), mtime) item.mtime = mtime
22,921
def watt_spectrum(a, b): """ Samples an energy from the Watt energy-dependent fission spectrum. Parameters ---------- a : float Spectrum parameter a b : float Spectrum parameter b Returns ------- float Sampled outgoing energy """ return _dll.watt_spectrum(a, b)
22,922
def get_definition_from_stellarbeat_quorum_set(quorum_set: QuorumSet) -> Definition: """Turn a stellarbeat quorum set into a quorum slice definition""" return { 'threshold': quorum_set['threshold'], 'nodes': set(quorum_set['validators']) if 'validators' in quorum_set else set(), 'children_definitions': [ get_definition_from_stellarbeat_quorum_set(inner_quorum_set) for inner_quorum_set in quorum_set['innerQuorumSets'] ] if 'innerQuorumSets' in quorum_set else set() }
22,923
def values(names): """ Method decorator that allows inject return values into method parameters. It tries to find desired value going deep. For convinience injects list with only one value as value. :param names: dict of "value-name": "method-parameter-name" """ def wrapper(func): @wraps(func) def wrapped_func(*args, **kwargs): if len(args)>1: instance=args[1] else: instance = kwargs['instance'] def findReturnValues(rvalues): for k, v in rvalues.iteritems(): if isinstance(v, dict): findReturnValues(v) #go deep, to find desired name if k in names.keys(): if isinstance(v,list) and len(v)==1: kwargs.update({names[k]: v[0]}) else: kwargs.update({names[k]: v}) findReturnValues(instance.returnValues) #ensure all names was set missing_params = [k for k, v in names.items() if v not in kwargs] if missing_params: raise AttributeError("Parameters {0} for '{1}' were not found".format(missing_params, func.__name__), missing_params) func(*args, **kwargs) return wrapped_func return wrapper
22,924
def select_user(with_dlslots=True): """ Select one random user, if can_download is true then user must have download slots available :returns User """ with session_scope() as db: try: query = db.query(User).filter(User.enabled.is_(True)) if with_dlslots: query = query.filter(or_( User.downloads_limit > User.downloads_today, User.downloads_limit.is_(None) )) user = query.order_by(func.random()).limit(1).one() except NoResultFound: raise OperationInterruptedException('No suitable users found') else: db.expunge(user) return user
22,925
def set_rf_log_level(level): """Set RooFit log level.""" if level not in RooFitLogLevel: return ROOT.RooMsgService.instance().setGlobalKillBelow(level)
22,926
def silero_number_detector(onnx=False): """Silero Number Detector Returns a model with a set of utils Please see https://github.com/snakers4/silero-vad for usage examples """ if onnx: url = 'https://models.silero.ai/vad_models/number_detector.onnx' else: url = 'https://models.silero.ai/vad_models/number_detector.jit' model = Validator(url) utils = (get_number_ts, save_audio, read_audio, collect_chunks, drop_chunks) return model, utils
22,927
def etaCalc(T, Tr = 296.15, S = 110.4, nr = 1.83245*10**-5): """ Calculates dynamic gas viscosity in kg*m-1*s-1 Parameters ---------- T : float Temperature (K) Tr : float Reference Temperature (K) S : float Sutherland constant (K) nr : float Reference dynamic viscosity Returns ------- eta : float Dynamic gas viscosity in kg*m-1*s-1 """ eta = nr * ( (Tr + S) / (T+S) )*(T/Tr)**(3/2) return eta
22,928
def refine_markers_harris(patch, offset): """ Heuristically uses the max Harris response for control point center. """ harris = cv2.cornerHarris(patch, 2, 5, 0.07) edges = np.where(harris < 0, np.abs(harris), 0) point = np.array(np.where(harris == harris.max())).flatten() point += offset return np.float64(point)
22,929
def test_teams_join_post(): """Can a user post /teams/join""" app = create_ctfd(user_mode="teams") with app.app_context(): gen_user(app.db, name="user") gen_team(app.db, name="team") with login_as_user(app) as client: r = client.get('/teams/join') assert r.status_code == 200 with client.session_transaction() as sess: data = { "name": "team", "password": "password", "nonce": sess.get('nonce') } r = client.post('/teams/join', data=data) assert r.status_code == 302 incorrect_data = data incorrect_data['password'] = "" r = client.post('/teams/join', data=incorrect_data) assert r.status_code == 200 destroy_ctfd(app)
22,930
def get_realtime_price(symbol): """ 获取实时股价 :param symbol: :return: """ try: df = get_real_price_dataframe() df_s = df[df['code'] == symbol] if len(df_s['trade'].get_values()): return df_s['trade'].get_values()[0] else: return -1 except: return -1
22,931
def create_employee(db_session: Session, employee: schemas.EmployeeRequest): """ Create new employee """ new_employee = Employee( idir=employee.idir, status=employee.status, location=employee.location, phone=employee.phone) db_session.add(new_employee) db_session.commit() db_session.refresh(new_employee) return db_session.query(Employee).filter(Employee.idir == employee.idir).first()
22,932
def export_xr_as_nc(ds, filename): """ Takes a xarray dataset or array and exports as a netcdf file. Parameters ---------- ds: xarray dataset/array Input xarray dataset or data array with any number of dimensions. filename : str Name of putput path and filename. """ # notify print('Exporting xarray as netcdf file.') # check if xr ds or da if not isinstance(ds, (xr.Dataset, xr.DataArray)): raise TypeError('Only xarray dataset/data array supported.') # check if attrs exist if not hasattr(ds, 'attrs'): print('Warning: xarray is missing attributes.') elif not hasattr(ds, 'geobox'): print('Warning: xarray is missing geobox.') # check if filename valid if not filename: raise ValueError('Did not provide filename.') # check file extension given name, ext = os.path.splitext(filename) if ext != '.nc': raise ValueError('Filename must include .nc extension.') try: # write xr to netcdf ds.to_netcdf(filename) except Exception as e: print('Could not export') raise ValueError('Could not export netcdf: {0}.'.format(e)) # notify print('Exported xarray as netcdf successfully.')
22,933
def sim_categorical(var_dist_params, size): """ Function to simulate data for a categorical/Discrete variable. """ values = var_dist_params[0] freq = var_dist_params[1] data_sim = np.random.choice(a=values, p=freq, size=size) return data_sim
22,934
def make_dirs(path): """ Creates directory and all intermediate parent directories. Does not fail if some of the directories already exist. Basically, it is python version of sh command "mkdir -p path". """ try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): # Tail folder already exists pass else: raise
22,935
def flip_team_observation(observation, result, config, from_team, to_team): """Rotates team-specific observations.""" result['{}_team'.format(to_team)] = rotate_points( observation['{}_team'.format(from_team)]) result['{}_team_direction'.format(to_team)] = rotate_points( observation['{}_team_direction'.format(from_team)]) result['{}_team_tired_factor'.format(to_team)] = observation[ '{}_team_tired_factor'.format(from_team)] result['{}_team_active'.format(to_team)] = observation[ '{}_team_active'.format(from_team)] result['{}_team_yellow_card'.format(to_team)] = observation[ '{}_team_yellow_card'.format(from_team)] result['{}_team_roles'.format(to_team)] = observation['{}_team_roles'.format( from_team)] result['{}_team_active'.format(to_team)] = observation[ '{}_team_active'.format(from_team)] if '{}_agent_controlled_player'.format(from_team) in observation: result['{}_agent_controlled_player'.format(to_team)] = observation[ '{}_agent_controlled_player'.format(from_team)] if '{}_agent_sticky_actions'.format(from_team) in observation: result['{}_agent_sticky_actions'.format(to_team)] = [ rotate_sticky_actions(sticky, config) for sticky in observation['{}_agent_sticky_actions'.format(from_team)] ]
22,936
def test_contains(): """Test that bounds know if a Value is contained within it.""" bounds = CompositionBounds({"C", "H", "O", "N"}) assert bounds.contains(EmpiricalFormula('C2H5OH')._to_bounds()) assert not bounds.contains(EmpiricalFormula('NaCl')._to_bounds())
22,937
def test_load_managed_mode_directory(create_config, monkeypatch, tmp_path): """Validate managed-mode default directory is /root/project.""" monkeypatch.chdir(tmp_path) monkeypatch.setenv("CHARMCRAFT_MANAGED_MODE", "1") # Patch out Config (and Project) to prevent directory validation checks. with patch("charmcraft.config.Config"): with patch("charmcraft.config.Project") as mock_project: with patch("charmcraft.config.load_yaml"): load(None) assert mock_project.call_args.kwargs["dirpath"] == pathlib.Path("/root/project")
22,938
def test_rules(): """ Yield each uri so we get granular results. """ for uri, keys in RULES.items(): yield uri, assert_proper_keys, uri, keys
22,939
def validSolution(board: list) -> bool: """ A function validSolution/ValidateSolution/valid_solution() that accepts a 2D array representing a Sudoku board, and returns true if it is a valid solution, or false otherwise :param board: :return: """ return all([test_horizontally(board), test_vertically(board), test_sub_grids(board)])
22,940
async def test_create_saves_data(manager): """Test creating a config entry.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 5 async def async_step_init(self, user_input=None): return self.async_create_entry(title="Test Title", data="Test Data") await manager.async_init("test") assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 1 entry = manager.mock_created_entries[0] assert entry["version"] == 5 assert entry["handler"] == "test" assert entry["title"] == "Test Title" assert entry["data"] == "Test Data" assert entry["source"] is None
22,941
def get_videos_from_channel(service, channel_id): """Essentially a wrapper (but not really) for get_videos_from_playlist() See get_videos_from_playlist() to see return values. Parameters ---------- service: As obtained from googleapiclient.discovery.build() channel_id: str Can be found in the url of a youtube channel's page. """ response = get_response(service.channels(), 'list', part='contentDetails', id=channel_id, maxResults=50 ) # Id for playlist of this channel's uploads uploads_id = response['items'][0]['contentDetails']['relatedPlaylists']['uploads'] for video in get_videos_from_playlist(service=service, playlist_id=uploads_id): yield video
22,942
def drawingpad(where=None, x=0, y=0, image=None, color=0xffffff, fillingColor=0x000000, thickness=3): """Create a drawing pad. Args: where (np.ndarray) : image/frame where the component should be rendered. x (int) : Position X where the component should be placed. y (int) : Position Y where the component should be placed. image (np.ndarray) : Image to be rendered in the specified destination. color (uint) : Color of the line in the format ``0xRRGGBB``, e.g. ``0xff0000`` for red. fillingColor (uint) : Color of filling in the format `0xAARRGGBB`, e.g. `0x00ff0000` for red, `0xff000000` for transparent filling. thickness (int) : Thickness of the lines used to draw a line. Returns: np.ndarray : The current ``image`` . Examples: >>> import cv2 >>> import numpy as np >>> from pycharmers.opencv import cvui ... >>> WINDOW_NAME = 'Drawing Pad' >>> frame = np.zeros(shape=(400, 650, 3), dtype=np.uint8) >>> image = np.full(shape=(250,250,3), fill_value=255, dtype=np.uint8) >>> bgr = [128, 128, 128] >>> fillingColors = ["White", "Black"] >>> fillingStates = [True, False] >>> thickness = [3] >>> cvui.init(WINDOW_NAME) >>> cv2.moveWindow(winname=WINDOW_NAME, x=0, y=0) ... >>> while (True): ... # Fill the frame with a nice color ... frame[:] = (49, 52, 49) ... cvui.text(where=frame, x=320, y=10, text="Thickness") ... cvui.text(where=frame, x=320, y=100, text="Filling Color") ... thick = cvui.trackbar(where=frame, x=320, y=30, width=300, value=thickness, min=1, max=10, options=cvui.TRACKBAR_DISCRETE, discreteStep=1) ... idx = cvui.radiobox(where=frame, x=350, y=120, labels=fillingColors, states=fillingStates) ... bgr = cvui.colorpalette(where=frame, x=320, y=180, bgr=bgr, width=300, height=50) ... image = cvui.drawingpad(where=frame, x=30, y=50, image=image, color=bgr, fillingColor=[0xffffff, 0x000000][idx], thickness=thick) ... cvui.update() ... # Show everything on the screen ... cv2.imshow(WINDOW_NAME, frame) ... # Check if ESC key was pressed ... if cv2.waitKey(20) == cvui.ESCAPE: ... break >>> cv2.destroyWindow(WINDOW_NAME) >>> # You can draw a picture as follows by executing the following program while running the above program. >>> def drawing(path, dsize=(250,250), thresh=127, sleep=3, drawing_val=0, offset=(30,125)): ... \"\"\" ... Args: ... path (str) : Path to binary image. ... dsize (tuple) : The size of drawing pad. ( ``width`` , ``height`` ) ... thresh (int) : If you prepare the binary (bgr) image, you can use ``cv2.threshold`` to convert it to binary image. (See :meth:`cvPencilSketch <pycharmers.cli.cvPencilSketch.cvPencilSketch>` for more details.) ... sleep (int) : Delay execution for a given number of seconds. (You have to click the OpenCV window before before entering the for-loop.) ... drawing_val (int) : At what value to draw. ... offset (tuple) : Offset from top left ( ``cv2.moveWindow(winname=WINDOW_NAME, x=0, y=0)`` ) to drawing pad. ... \"\"\" ... import cv2 ... import time ... import pyautogui as pgui # Use for controling the mouse. (https://pyautogui.readthedocs.io/en/latest/mouse.html) ... img = cv2.resize(src=cv2.imread(path, 0), dsize=dsize) ... img = cv2.threshold(src=img, thresh=thresh, maxval=255, type=cv2.THRESH_BINARY)[1] ... WINDOW_NAME = "Apotheosis" ... cv2.imshow(winname=v, mat=img) ... width,height = dsize ... x_offset, y_offset = offset ... time.sleep(sleep) ... for i in range(height): ... pgui.moveTo(x_offset, y_offset+i) ... prev_val, prev_pos = (0, 0) ... for j in range(width+1): ... if j<width: ... val = img[i,j] ... else: ... val = -1 # Must be different from ``prev_val`` ... if prev_val != val: ... # Drawing. ... if prev_val == drawing_val: ... pgui.mouseDown() ... pgui.dragRel(xOffset=j-prev_pos, yOffset=0, button="left", duration=0.0, mouseDownUp=True) ... pgui.mouseUp() ... else: ... pgui.moveRel(xOffset=j-prev_pos, yOffset=0, duration=0.0) ... prev_pos = j ... prev_val = val ... key = cv2.waitKey(1) ... if key == 27: break ... if key == 27: break ... cv2.destroyWindow(WINDOW_NAME) +--------------------------------------------------------+-------------------------------------------------------+ | Example | +========================================================+=======================================================+ | .. image:: _images/opencv.cvui.drawingpad-konotaro.gif | .. image:: _images/opencv.cvui.drawingpad-tanziro.gif | +--------------------------------------------------------+-------------------------------------------------------+ """ handleTypeError(types=[np.ndarray, NoneType], where=where) if isinstance(where, np.ndarray): __internal.screen.where = where block = __internal.screen else: block = __internal.topBlock() x += block.anchor.x y += block.anchor.y return __internal.drawingpad(block, x, y, image, color, fillingColor, thickness)
22,943
def json_request(url, **kwargs): """ Request JSON data by HTTP :param url: requested URL :return: the dictionary """ if 'auth_creds' in kwargs and 'authentication_enabled' in kwargs['auth_creds']: if 'sessionToken' in kwargs: url += "&sessionToken=%s" % kwargs['auth_creds']['sessionToken'] else: url += "&ignite.login=%s&ignite.password=%s" % (kwargs['auth_creds']['auth_login'], kwargs['auth_creds']['auth_password']) req = Request(url) decoded = {} try: r = urlopen(req) reply = r.read().decode('UTF-8') decoded = loads(reply) except HTTPError: print('') print("HTTPError %s" % url) except URLError: print('') print("URLError %s" % url) return decoded
22,944
def write_patch(source,target,stream,**kwds): """Generate patch commands to transform source into target. 'source' and 'target' must be paths to a file or directory, and 'stream' an object supporting the write() method. Patch protocol commands to transform 'source' into 'target' will be generated and written sequentially to the stream. """ Differ(stream,**kwds).diff(source,target)
22,945
def list(): """ List all added path """ try: with io.open(FILE_NAME, 'r', encoding='utf-8') as f: data = json.load(f) except: data = {} return data
22,946
def load(filename): """ Load an EigenM object """ with open(filename, 'rb') as f: return pickle.load(f)
22,947
def resize_image_bboxes_with_crop_or_pad(image, bboxes, xs, ys, target_height, target_width, mask_image=None): """Crops and/or pads an image to a target width and height. Resizes an image to a target width and height by either centrally cropping the image or padding it evenly with zeros. If `width` or `height` is greater than the specified `target_width` or `target_height` respectively, this op centrally crops along that dimension. If `width` or `height` is smaller than the specified `target_width` or `target_height` respectively, this op centrally pads with 0 along that dimension. Args: image: 3-D tensor of shape `[height, width, channels]` target_height: Target height. target_width: Target width. Raises: ValueError: if `target_height` or `target_width` are zero or negative. Returns: Cropped and/or padded image of shape `[target_height, target_width, channels]` """ with tf.name_scope('resize_with_crop_or_pad'): image = ops.convert_to_tensor(image, name='image') if mask_image is not None: print('Image: ', image) print('MaskImage: ', mask_image) mask_image = ops.convert_to_tensor(mask_image, name='image') assert_ops = [] assert_ops += _Check3DImage(image, require_static=False) assert_ops += _assert(target_width > 0, ValueError, 'target_width must be > 0.') assert_ops += _assert(target_height > 0, ValueError, 'target_height must be > 0.') image = control_flow_ops.with_dependencies(assert_ops, image) # `crop_to_bounding_box` and `pad_to_bounding_box` have their own checks. # Make sure our checks come first, so that error messages are clearer. if _is_tensor(target_height): target_height = control_flow_ops.with_dependencies( assert_ops, target_height) if _is_tensor(target_width): target_width = control_flow_ops.with_dependencies(assert_ops, target_width) def max_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.maximum(x, y) else: return max(x, y) def min_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.minimum(x, y) else: return min(x, y) def equal_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.equal(x, y) else: return x == y height, width, _ = _ImageDimensions(image) width_diff = target_width - width offset_crop_width = max_(-width_diff // 2, 0) offset_pad_width = max_(width_diff // 2, 0) height_diff = target_height - height offset_crop_height = max_(-height_diff // 2, 0) offset_pad_height = max_(height_diff // 2, 0) # Maybe crop if needed. height_crop = min_(target_height, height) width_crop = min_(target_width, width) cropped = tf.image.crop_to_bounding_box(image, offset_crop_height, offset_crop_width, height_crop, width_crop) if mask_image is not None: cropped_mask_image = tf.image.crop_to_bounding_box(mask_image, offset_crop_height, offset_crop_width, height_crop, width_crop) bboxes, xs, ys = bboxes_crop_or_pad(bboxes, xs, ys, height, width, -offset_crop_height, -offset_crop_width, height_crop, width_crop) # Maybe pad if needed. resized = tf.image.pad_to_bounding_box(cropped, offset_pad_height, offset_pad_width, target_height, target_width) if mask_image is not None: resized_mask_image = tf.image.pad_to_bounding_box(cropped_mask_image, offset_pad_height, offset_pad_width, target_height, target_width) bboxes, xs, ys = bboxes_crop_or_pad(bboxes, xs, ys, height_crop, width_crop, offset_pad_height, offset_pad_width, target_height, target_width) # In theory all the checks below are redundant. if resized.get_shape().ndims is None: raise ValueError('resized contains no shape.') resized_height, resized_width, _ = _ImageDimensions(resized) assert_ops = [] assert_ops += _assert(equal_(resized_height, target_height), ValueError, 'resized height is not correct.') assert_ops += _assert(equal_(resized_width, target_width), ValueError, 'resized width is not correct.') resized = control_flow_ops.with_dependencies(assert_ops, resized) if mask_image is None: return resized, None, bboxes, xs, ys else: return resized, resized_mask_image, bboxes, xs, ys
22,948
def sharpe_ratio(R_p, sigma_p, R_f=0.04): """ :param R_p: 策略年化收益率 :param R_f: 无风险利率(默认0.04) :param sigma_p: 策略收益波动率 :return: sharpe_ratio """ sharpe_ratio = 1.0 * (R_p - R_f) / sigma_p return sharpe_ratio
22,949
def save_table(pgcursor, table, df): """Clear existing data from postgres table and insert data from df.""" clr_str = "TRUNCATE TABLE " + table + ";" pgcursor.execute(clr_str) columns = '' values = '' for col in df.columns.values: columns += col + ', ' values += '%s, ' sql_str = 'INSERT INTO ' \ + table + ' (' \ + columns[:-2] + ') VALUES (' \ + values[:-2] + ');' for row in df.values.tolist(): pgcursor.execute(sql_str, row)
22,950
def xr_vol_int_regional(xa, AREA, DZ, MASK): """ volumen integral with regional MASK input: xa, AREA, DZ .. same as in 'xr_vol_int' MASK .. 2D xr DataArray of booleans with the same dimensions as xa output: integral, int_levels .. same as in 'xr_vol_int' """ assert type(xa)==xr.core.dataarray.DataArray assert type(AREA)==xr.core.dataarray.DataArray assert type(DZ)==xr.core.dataarray.DataArray assert np.shape(AREA)==np.shape(xa)[-2:] assert np.shape(DZ)==np.shape(xa)[-3:] assert np.dtype(MASK)==np.dtype('bool') # determine min/max i/j of masked region (imin, imax, jmin, jmax) = find_regional_coord_extent(MASK) xa_reg = xa.where(MASK)[:,jmin:jmax+1,imin:imax+1] AREA_reg = AREA.where(MASK)[jmin:jmax+1,imin:imax+1] DZ_reg = DZ.where(MASK)[:,jmin:jmax+1,imin:imax+1] integral, int_levels = xr_vol_int(xa_reg, AREA_reg, DZ_reg) return integral, int_levels
22,951
def save_feature(df: pd.DataFrame, feature_name: Union[int, str], directory: str = './features/', with_csv_dump: bool = False, create_directory: bool = True, reference_target_variable: Optional[pd.Series] = None, overwrite: bool = False): """ Save pandas dataframe as feather-format Args: df: The dataframe to be saved. feature_name: The name of the feature. The output file will be ``{feature_name}.f``. directory: The directory where the feature will be stored. with_csv_dump: If True, the first 1000 lines are dumped to csv file for debug. create_directory: If True, create directory if not exists. reference_target_variable: If not None, instant validation will be made on the feature. overwrite: If False and file already exists, RuntimeError will be raised. """ if create_directory: os.makedirs(directory, exist_ok=True) if reference_target_variable is not None: validate_feature(df, reference_target_variable) path = os.path.join(directory, str(feature_name) + '.f') if not overwrite and os.path.exists(path): raise RuntimeError('File already exists') df.to_feather(path) if with_csv_dump: df.head(1000).to_csv(os.path.join(directory, str(feature_name) + '.csv'), index=False)
22,952
def test_nn_functional_interpolate_bicubic_scale_factor_tuple(): """ api: paddle.nn.functional.interpolate op version: 11 """ op = Net(mode='bicubic', scale_factor=(1.5, 1.5)) op.eval() # net, name, ver_list, delta=1e-6, rtol=1e-5 obj = APIOnnx(op, 'nn_functional_interpolate', [11]) obj.set_input_data( "input_data", paddle.to_tensor( randtool("float", -1, 1, [1, 2, 2, 5]).astype('float32'))) obj.run()
22,953
def test( coverage: bool = typer.Option( # noqa: B008 default=False, help='Generate coverage information.' ), html: bool = typer.Option( # noqa: B008 default=False, help='Generate an html coverage report.' ), ) -> List[Result]: """Run tests.""" coverage_flag = [f'--cov={PACKAGE_NAME}'] if coverage else [] return [ execute(['pytest', *coverage_flag, 'tests'], raise_error=False), *(coverage_html() if coverage and html else ()), ]
22,954
def _get_win_folder_from_registry(csidl_name: Any) -> Any: """This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names.""" if PY3: import winreg as _winreg else: import _winreg shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders", ) dir, type = _winreg.QueryValueEx(key, shell_folder_name) return dir
22,955
def transitions2kernelreward(transitions, num_states, num_actions): """Transform a dictionary of transitions to kernel, reward matrices.""" kernel = np.zeros((num_states, num_actions, num_states)) reward = np.zeros((num_states, num_actions)) for (state, action), transition in transitions.items(): for data in transition: kernel[state, action, data["next_state"]] += data["probability"] reward[state, action] += data["reward"] * data["probability"] return kernel, reward
22,956
def _inline_svg(svg: str) -> str: """Encode SVG to be used inline as part of a data URI. Replacements are not complete, but sufficient for this case. See https://codepen.io/tigt/post/optimizing-svgs-in-data-uris for details. """ replaced = ( svg .replace('\n', '%0A') .replace('#', '%23') .replace('<', '%3C') .replace('>', '%3E') .replace('"', '\'') ) return 'data:image/svg+xml,' + replaced
22,957
def delete(email, organization=None): """ Delete user EMAIL. """ if organization: org = models.Organization.get_by_slug(organization) deleted_count = models.User.query.filter( models.User.email == email, models.User.org == org.id ).delete() else: deleted_count = models.User.query.filter(models.User.email == email).delete( synchronize_session=False ) models.db.session.commit() print("Deleted %d users." % deleted_count)
22,958
def update_msgs_name(person_pk): """Back date sender_name field on inbound sms.""" from apostello.models import Recipient, SmsInbound person_ = Recipient.objects.get(pk=person_pk) name = str(person_) number = str(person_.number) for sms in SmsInbound.objects.filter(sender_num=number): sms.sender_name = name sms.save()
22,959
def draw_random_DNA(current_base_turtle, base_index, letter): """ Draw a random sequence to be used later to create the complementary base pair :param current_base_turtle: a turtle object :param base_index: an index, to help position the turtle :param letter: the letter being drawn :return: None """ current_base_turtle.penup() current_base_turtle.right(90) current_base_turtle.setpos(-250 + 95*base_index, 230) # Moves the turtle right the appropriate amount current_base_turtle.pendown() current_base_turtle.shape("square") current_base_turtle.pensize(10) current_base_turtle.forward(50) current_base_turtle.color(nucleotides[letter]) current_base_turtle.pensize(30) current_base_turtle.forward(70) current_base_turtle.backward(40) current_base_turtle.color("black") # draw out the letters for the base_turtles and return back to the center. (xpos, ypos) = current_base_turtle.pos() letter_turtle.setpos(xpos, ypos+5 ) letter_turtle.write(letter,move=False,align='center',font=("Arial",25,("bold","normal"))) letter_turtle.setpos(0,0)
22,960
def plot_extreme_edges(gdf: gpd.geodataframe.GeoDataFrame, aoi: gpd.geodataframe.GeoDataFrame, **kwargs) -> None: """ Plots extreme depths along edges along with an overview map showing current plotted domain versus all other domains. :param gdf: :param aoi: :param \**kwargs: See below :Keyword Arguments: * *mini_map* (gpd.geodataframe.GeoDataFrame) -- Multiple domain perimeters. """ if 'mini_map' in kwargs.keys(): mini_map = list(kwargs.values())[0] fig, (ax_string) = plt.subplots(1, 2, figsize=(20, 8)) ax1 = plt.subplot2grid((1, 2), (0, 0)) aoi.plot(color='k', alpha=0.25, ax=ax1) gdf.plot(column='abs_max', cmap='viridis', legend=True, ax=ax1, markersize=16) ax1.set_title('Cell Locations with Depths > 1 ft\n(Check for Ponding)'.format(len(gdf)), fontsize=12, fontweight='bold') ax1.axis('off') ax2 = plt.subplot2grid((1, 2), (0, 1)) mini_map.plot(color='#BFBFBF', edgecolor='k', ax=ax2, markersize=16) aoi.plot(color='#FFC0CB', edgecolor='k', ax=ax2) ax2.set_title('Current domain (pink) compared to all domains (grey)'.format(len(gdf)), fontsize=12, fontweight='bold') ax2.axis('off') else: fig, ax = plt.subplots(figsize = (7,7)) aoi.plot(color='k', alpha=0.25, ax=ax) gdf.plot(column='abs_max', cmap='viridis', legend=True, ax=ax, markersize=16) ax.set_title('Cell Locations with Depths > 1 ft\n(Check for Ponding)'.format(len(gdf)), fontsize=12, fontweight='bold') ax.axis('off')
22,961
def contact_infectivity_asymptomatic_00x40(): """ Real Name: b'contact infectivity asymptomatic 00x40' Original Eqn: b'contacts per person normal 00x40*infectivity per contact' Units: b'1/Day' Limits: (None, None) Type: component b'' """ return contacts_per_person_normal_00x40() * infectivity_per_contact()
22,962
def implemented_verified_documented(function): """ Common story options """ options = [ click.option( '--implemented', is_flag=True, help='Implemented stories only.'), click.option( '--unimplemented', is_flag=True, help='Unimplemented stories only.'), click.option( '--verified', is_flag=True, help='Stories verified by tests.'), click.option( '--unverified', is_flag=True, help='Stories not verified by tests.'), click.option( '--documented', is_flag=True, help='Documented stories only.'), click.option( '--undocumented', is_flag=True, help='Undocumented stories only.'), click.option( '--covered', is_flag=True, help='Covered stories only.'), click.option( '--uncovered', is_flag=True, help='Uncovered stories only.'), ] for option in reversed(options): function = option(function) return function
22,963
def create_collection(self, name, url, sourceType, **options): """Creates a new collection from a web or S3 url. Automatically kick off default indexes""" (endpoint, method) = self.endpoints['create_collection'] try: headers = {'Authorization': self.token.authorization_header()} data = { 'name': name, 'url': url, 'sourceType': sourceType, 'indexWithDefault': 'true' if options.get('indexWithDefault') else 'false' } return requests.request(method, endpoint, **{'headers': headers, 'data': data}) except Exception as e: raise error.APIConnectionError(message=e)
22,964
def rmse(estimated: np.ndarray, true: np.ndarray) -> Union[np.ndarray, None]: """ Calculate the root-mean-squared error between two arrays. :param estimated: estimated solution :param true: 'true' solution :return: root-mean-squared error """ return np.sqrt(((estimated - true) ** 2).mean(axis=1))
22,965
def use_default_driver(): """ Use the default driver as the current driver. """ global current_driver current_driver = None
22,966
def energy_com(data): """ Calculate the energy center of mass for each day, and use this quantity as an estimate for solar noon. Function infers time stamps from the length of the first axis of the 2-D data array. :param data: PV power matrix as generated by `make_2d` from `solardatatools.data_transforms` :return: A 1-D array, containing the solar noon estimate for each day in the data set """ data = np.copy(data) data[np.isnan(data)] = 0 num_meas_per_hour = data.shape[0] / 24 x = np.arange(0, 24, 1. / num_meas_per_hour) div1 = np.dot(x, data) div2 = np.sum(data, axis=0) com = np.empty_like(div1) com[:] = np.nan msk = div2 != 0 com[msk] = np.divide(div1[msk], div2[msk]) return com
22,967
def cifar_noniid(dataset, no_participants, alpha=0.9): """ Input: Number of participants and alpha (param for distribution) Output: A list of indices denoting data in CIFAR training set. Requires: cifar_classes, a preprocessed class-indice dictionary. Sample Method: take a uniformly sampled 10-dimension vector as parameters for dirichlet distribution to sample number of images in each class. """ np.random.seed(666) random.seed(666) cifar_classes = {} for ind, x in enumerate(dataset): _, label = x if label in cifar_classes: cifar_classes[label].append(ind) else: cifar_classes[label] = [ind] per_participant_list = defaultdict(list) no_classes = len(cifar_classes.keys()) class_size = len(cifar_classes[0]) datasize = {} for n in range(no_classes): random.shuffle(cifar_classes[n]) sampled_probabilities = class_size * np.random.dirichlet( np.array(no_participants * [alpha])) for user in range(no_participants): no_imgs = int(round(sampled_probabilities[user])) datasize[user, n] = no_imgs sampled_list = cifar_classes[n][:min(len(cifar_classes[n]), no_imgs)] per_participant_list[user].extend(sampled_list) cifar_classes[n] = cifar_classes[n][min(len(cifar_classes[n]), no_imgs):] train_img_size = np.zeros(no_participants) for i in range(no_participants): train_img_size[i] = sum([datasize[i,j] for j in range(10)]) clas_weight = np.zeros((no_participants,10)) for i in range(no_participants): for j in range(10): clas_weight[i,j] = float(datasize[i,j])/float((train_img_size[i])) return per_participant_list, clas_weight
22,968
def example_metadata( request, l1_ls5_tarball_md_expected: Dict, l1_ls7_tarball_md_expected: Dict, l1_ls8_folder_md_expected: Dict, ): """ Test against arbitrary valid eo3 documents. """ which = request.param if which == "ls5": return l1_ls5_tarball_md_expected elif which == "ls7": return l1_ls7_tarball_md_expected elif which == "ls8": return l1_ls8_folder_md_expected raise AssertionError
22,969
def register_middleware(app: FastAPI): """ 请求响应拦截 hook https://fastapi.tiangolo.com/tutorial/middleware/ :param app: :return: """ @app.middleware("http") async def logger_request(request: Request, call_next): # https://stackoverflow.com/questions/60098005/fastapi-starlette-get-client-real-ip logger.info(f"request:{request.method} url:{request.url}\nheaders:{request.headers.get('user-agent')}" f"\nIP:{request.client.host}") response = await call_next(request) return response
22,970
def test_dtmc__matrix_copied(): """ Validate that if matrix is passed as an array, it is copied, so changes in the argument don't affect the chain matrix. """ matrix = np.asarray([[0.5, 0.5], [0.5, 0.5]]) chain = DiscreteTimeMarkovChain(matrix) matrix[0, 0] = 0.42 assert chain.matrix[0, 0] == 0.5
22,971
def asfarray(a, dtype=_nx.float_): """ Return an array converted to float type. Parameters ---------- a : array_like Input array. dtype : string or dtype object, optional Float type code to coerce input array `a`. If one of the 'int' dtype, it is replaced with float64. Returns ------- out : ndarray, float Input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a,dtype=dtype)
22,972
def handle_no_cache(context): """Handle lack-of-cache error, prompt user for index process.""" logger.error( f"Could not locate wily cache, the cache is required to provide insights." ) p = input("Do you want to run setup and index your project now? [y/N]") if p.lower() != "y": exit(1) else: revisions = input("How many previous git revisions do you want to index? : ") revisions = int(revisions) path = input("Path to your source files; comma-separated for multiple: ") paths = path.split(",") context.invoke(build, max_revisions=revisions, targets=paths, operators=None)
22,973
def test_single_dihedral(tmpdir): """Test running a torsiondrive for a molecule with one bond.""" with tmpdir.as_cwd(): mol = Ligand.from_file(get_data("ethane.sdf")) # build a scanner with grid spacing 60 and clear out avoided methyl qc_spec = QCOptions(program="rdkit", method="uff", basis=None) local_ops = LocalResource(cores=1, memory=1) tdrive = TorsionDriver( n_workers=1, grid_spacing=60, ) t_scan = TorsionScan1D(torsion_driver=tdrive) t_scan.clear_avoided_torsions() result_mol = t_scan.run(molecule=mol, qc_spec=qc_spec, local_options=local_ops) assert len(result_mol.qm_scans) == 1 # make sure input molecule coords were not changed assert np.allclose(mol.coordinates, result_mol.coordinates)
22,974
def remove_stored_files(srr_file, store_files): """Remove files stored inside a SRR file. srr_file: the SRR file to remove stored files from store_files: list of files to be removed must contain the relative path when necessary raises ArchiveNotFoundError, NotSrrFile, TypeError""" rr = RarReader(srr_file) # ArchiveNotFoundError if rr.file_type() != RarReader.SRR: raise NotSrrFile("Not an SRR file.") # create a temporarily file tmpfd, tmpname = mkstemp(prefix="remove_", suffix=".srr", dir=os.path.dirname(srr_file)) tmpfile = os.fdopen(tmpfd, "wb") try: for block in rr.read_all(): if block.rawtype == BlockType.SrrStoredFile: if block.file_name in store_files: _fire(MsgCode.DEL_STORED_FILE, message="'%s' deleted." % block.file_name) else: # write header and stored file tmpfile.write(block.block_bytes()) tmpfile.write(block.srr_data()) else: # TODO: write better tests here!! tmpfile.write(block.block_bytes()) tmpfile.close() os.remove(srr_file) os.rename(tmpname, srr_file) except BaseException as ex: print(ex) os.unlink(tmpname) raise
22,975
def test_green_color(): """Test GREEN Constant""" assert settings.Colors.GREEN == (0, 255, 0)
22,976
def read_geotransform_s2(path, fname='MTD_TL.xml', resolution=10): """ Parameters ---------- path : string location where the meta data is situated fname : string file name of the meta-data file resolution : {float,integer}, unit=meters, default=10 resolution of the grid Returns ------- geoTransform : tuple, size=(1,6) affine transformation coefficients Notes ----- The metadata is scattered over the file structure of Sentinel-2, L1C .. code-block:: text * S2X_MSIL1C_20XX... ├ AUX_DATA ├ DATASTRIP │ └ DS_XXX_XXXX... │ └ QI_DATA │ └ MTD_DS.xml <- metadata about the data-strip ├ GRANULE │ └ L1C_TXXXX_XXXX... │ ├ AUX_DATA │ ├ IMG_DATA │ ├ QI_DATA │ └ MTD_TL.xml <- metadata about the tile ├ HTML ├ rep_info ├ manifest.safe ├ INSPIRE.xml └ MTD_MSIL1C.xml <- metadata about the product The following acronyms are used: - DS : datastrip - TL : tile - QI : quality information - AUX : auxiliary - MTD : metadata - MSI : multi spectral instrument - L1C : product specification,i.e.: level 1, processing step C """ root = get_root_of_table(path, fname) # image dimensions for meta in root.iter('Geoposition'): res = float(meta.get('resolution')) if res == resolution: ul_X,ul_Y= float(meta[0].text), float(meta[1].text) d_X, d_Y = float(meta[2].text), float(meta[3].text) geoTransform = (ul_X, d_X, 0., ul_Y, 0., d_Y) return geoTransform
22,977
def embed_into_hbox_layout(w, margin=5): """Embed a widget into a layout to give it a frame""" result = QWidget() layout = QHBoxLayout(result) layout.setContentsMargins(margin, margin, margin, margin) layout.addWidget(w) return result
22,978
def make_word_ds(grids, trfiles, bad_words=DEFAULT_BAD_WORDS): """Creates DataSequence objects containing the words from each grid, with any words appearing in the [bad_words] set removed. """ ds = dict() stories = grids.keys() for st in stories: grtranscript = grids[st].tiers[1].make_simple_transcript() ## Filter out bad words goodtranscript = [x for x in grtranscript if x[2].lower().strip("{}").strip() not in bad_words] d = DataSequence.from_grid(goodtranscript, trfiles[st][0]) ds[st] = d return ds
22,979
def fslimage_to_qpdata(img, name=None, vol=None, region=None, roi=False): """ Convert fsl.data.Image to QpData """ if not name: name = img.name if vol is not None: data = img.data[..., vol] else: data = img.data if region is not None: data = (data == region).astype(np.int) return NumpyData(data, grid=DataGrid(img.shape[:3], img.voxToWorldMat), name=name, roi=roi)
22,980
def xgb_cv( data_, test_, y_, max_depth,gamma, reg_lambda , reg_alpha,\ subsample, scale_pos_weight, min_child_weight, colsample_bytree, test_phase=False, stratify=False, ): """XGBoost cross validation. This function will instantiate a XGBoost classifier with parameters such as max_depth, subsample etc. Combined with data and targets this will in turn be used to perform cross validation. The result of cross validation is returned. Our goal is to find combinations of parameters that maximizes AUC. Returns: if test_phase (and new data for validators, just change the test_ param to the new data and make sure that the features are processed): sub_preds : models prediction to get the hold-out score else: validation AUC score Model Notes: XGBoost overfits in this dataset, params should be set accordingly. Parameter Notes gamma : Minimum loss reduction required to make a further partition on a leaf \ node of the tree. The larger gamma is, the more conservative the algorithm will be. min_child_weight : The larger min_child_weight is, the more conservative the algorithm will be. colsample_bytree : The subsample ratio of columns when constructing each tree. scale_pos_weight : A typical value to consider: sum(negative instances) / sum(positive instances) """ oof_preds = np.zeros(data_.shape[0]) sub_preds = np.zeros(test_.shape[0]) if test_phase: max_depth = int(np.round(max_depth)) feats = [f for f in data_.columns if f not in ['bookingid', 'label']] if stratify: folds_ = StratifiedKFold(n_splits=4, shuffle=True, random_state=610) splitted = folds_.split(data_, y_) else: splitted = folds_.split(data_) for n_fold, (trn_idx, val_idx) in enumerate(splitted): trn_x, trn_y = data_[feats].iloc[trn_idx], y_.iloc[trn_idx] val_x, val_y = data_[feats].iloc[val_idx], y_.iloc[val_idx] xg_train = xgb.DMatrix( trn_x.values, label=trn_y.values ) xg_valid = xgb.DMatrix( val_x.values, label=val_y.values ) watchlist = [(xg_train, 'train'),(xg_valid, 'eval')] num_round=10000 param = { 'gamma' : gamma, 'max_depth':max_depth, 'colsample_bytree':colsample_bytree, 'subsample':subsample, 'min_child_weight':min_child_weight, 'objective':'binary:logistic', 'random_state':1029, 'n_jobs':8, 'eval_metric':'auc', 'metric': 'auc', 'scale_pos_weight':scale_pos_weight, 'eta':0.05, 'silent':True } clf = xgb.train(param, xg_train, num_round, watchlist, verbose_eval=100, early_stopping_rounds = 100) oof_preds[val_idx] = clf.predict(xgb.DMatrix(data_[feats].iloc[val_idx].values), ntree_limit=clf.best_ntree_limit) if test_phase: sub_preds += clf.predict(xgb.DMatrix(test_[feats].values), ntree_limit=clf.best_ntree_limit) / folds_.n_splits print('Fold %2d AUC : %.6f' % (n_fold + 1, roc_auc_score(val_y, oof_preds[val_idx]))) del clf, trn_x, trn_y, val_x, val_y gc.collect() print('Full AUC score %.6f' % roc_auc_score(y_, oof_preds)) if test_phase: return sub_preds else: return roc_auc_score(y_, oof_preds)
22,981
def _infer_elem_type(list_var): """ Returns types.tensor. None if failed to infer element type. Example: Given: main(%update: (2,fp32)) { block0() { %list: List[unknown] = tf_make_list(...) # unknown elem type %while_loop_0:0: (i32), %while_loop_0:1: List[(2,fp32)] = while_loop(loop_vars=(...)) while_loop_0_body(...) { %list_write_0: List[(2,fp32)] = list_write(index=..., ls=%list, value=%update) } -> (%add_0, %list_write_0) Result: main(%update: (2,fp32)) { block0() { %list: List[(2,fp32)] = tf_make_list(...) # Get the elem type from list_write %while_loop_0:0: (i32), %while_loop_0:1: List[(2,fp32)] = while_loop(loop_vars=(...)) while_loop_0_body(...) { %list_write_0: List[(2,fp32)] = list_write(index=..., ls=%list, value=%update) } -> (%add_0, %list_write_0) """ # Search for child op that have informative element types for o in list_var.child_ops: if o.op_type in ["list_write", "list_scatter"]: return o.outputs[0].elem_type if o.op_type == "while_loop": idx = list(o.loop_vars).index(list_var) block = o.blocks[0] # the corresponding Var in body block block_var = block.inputs[idx] elem_type = _infer_elem_type(block_var) if elem_type is not None: def _set_types_for_block_inputs(block): block_var = block.inputs[idx] new_block_var = ListVar(name=block_var.name, elem_type=elem_type, init_length=block_var.sym_type.T[1], dynamic_length=block_var.sym_type.T[2]) block._replace_var(block_var, new_block_var) _set_types_for_block_inputs(o.blocks[0]) # condition block _set_types_for_block_inputs(o.blocks[1]) # body block return elem_type # otherwise continue to other block_var (a list_var can be # passed into while_loop twice). return None
22,982
def plot_hairy_mean_binstat_base( list_of_pred_true_weight_label_color, key, spec, is_rel = False, err = 'rms' ): """Plot binstats of means of relative energy resolution vs true energy.""" spec = spec.copy() if spec.title is None: spec.title = 'MEAN + E[ %s ]' % (err.upper()) else: spec.title = '(MEAN + E[ %s ]) ( %s )' % (err.upper(), spec.title) f, ax = plt.subplots() for pred,true,weights,label,color in list_of_pred_true_weight_label_color: x = true[key] y = (pred[key] - true[key]) if is_rel: y = y / x plot_hairy_mean_binstat_single( ax, x, y, weights, spec.bins_x, color, label, err ) ax.axhline(0, 0, 1, color = 'C2', linestyle = 'dashed') spec.decorate(ax) ax.legend() return f, ax
22,983
def log_system_status(): """ Print the status of the system """ module_available=True try: import psutil except ImportError: module_available=False if module_available: try: # record the memory used memory = psutil.virtual_memory() logger.info("Total memory = " + str(byte_to_gigabyte(memory.total)) + " GB") logger.info("Available memory = " + str(byte_to_gigabyte(memory.available)) + " GB") logger.info("Free memory = " + str(byte_to_gigabyte(memory.free)) + " GB") logger.info("Percent memory used = " + str(memory.percent) + " %") # record the cpu info logger.info("CPU percent = " + str(psutil.cpu_percent()) + " %") logger.info("Total cores count = " + str(psutil.cpu_count())) # record the disk usage disk = psutil.disk_usage('/') logger.info("Total disk = " + str(byte_to_gigabyte(disk.total)) + " GB") logger.info("Used disk = "+ str(byte_to_gigabyte(disk.used)) + " GB") logger.info("Percent disk used = " + str(disk.percent) + " %") # record information about this current process process=psutil.Process() process_memory=process.memory_info() process_create_time=datetime.datetime.fromtimestamp( process.create_time()).strftime("%Y-%m-%d %H:%M:%S") process_cpu_times=process.cpu_times() # two calls required to cpu percent for non-blocking as per documentation process_cpu_percent=process.cpu_percent() process_cpu_percent=process.cpu_percent() logger.info("Process create time = " + process_create_time) logger.info("Process user time = " + str(process_cpu_times.user) + " seconds") logger.info("Process system time = " + str(process_cpu_times.system) + " seconds") logger.info("Process CPU percent = " + str(process_cpu_percent) + " %") logger.info("Process memory RSS = " + str(byte_to_gigabyte(process_memory.rss)) + " GB") logger.info("Process memory VMS = " + str(byte_to_gigabyte(process_memory.vms)) + " GB") logger.info("Process memory percent = " + str(process.memory_percent()) + " %") except (AttributeError, OSError, TypeError, psutil.Error): pass
22,984
def del_all(widget, event, data): """ Returns Deletes all parameters from the sheet data table ------- """ sheet.items = []
22,985
def parse_csv_file(file_contents): """ The helper function which converts the csv file into a dictionary where each item's key is the provided value 'id' and each item's value is another dictionary. """ list_of_contents = file_contents.split('\n') key, lines = (list_of_contents[0].split(','), list_of_contents[1:]) objects_dict = {} # Build a dictionary for index, line in enumerate(lines): if line.isspace() or line == u'': continue values = unicode_csv_reader([line]).next() line_dict = dict([(key[i], val) for i, val in enumerate(values)]) media_id = line_dict.get('id') or index objects_dict[media_id] = (line_dict) return objects_dict
22,986
def get_config(): """ Returns the current bot config. """ return BOT_CONFIG
22,987
def SensorLocation_Meta(): """SensorLocation_Meta() -> MetaObject""" return _DataModel.SensorLocation_Meta()
22,988
def plot_sample_eval(images: list, sub_titles=None, main_title=None, vmin=None, vmax=None, label_str=None, pred_str=None, additional_info=None, show_plot=False, save_as=None): """ Plots one or multiple images in a row, including titles and additional information, if given. Recommended to use for visualising network input, prediction, label etc. of a data sample or time step Args: images (list[2D numpy.ndarray]): Images to display in the plot, e.g. sensor frames, flowfronts etc. sub_titles (list[str]): list of titles that will be displayed above the corresponding image. Length should match the number of images main_title (str): the main title displayed at the top vmin (list[float or int]): set the min value for each subplot manually (useful for time series plots). Length should match the number of images vmax (list[float or int]): set the max value for each subplot manually (useful for time series plots). Length should match the number of images label_str: Label as a string (useful if label is a class, not an image) pred_str: Prediction as a string (useful if prediction is a class, not an image) additional_info (list[str]): List of strings that will be displayed at the bottom of the plot. Each list entry is put in a new row. show_plot: if True, the plot will be shown in a window during runtime save_as (pathlib.Path or str): full path, including filename and type (e.g. '/cfs/example/output.png') """ assert bool(images) assert sub_titles is None or len(sub_titles) == len(images) assert vmin is None or len(vmin) == len(images) assert vmin is None or len(vmin) == len(images) plt.rcParams['figure.constrained_layout.use'] = True # set up figure size and basic structure ratio = images[0].shape[0] / images[0].shape[1] base_size = 4 text_space = 0.35 if main_title is not None else 0 text_space += 0.35 if label_str is not None else 0 text_space += 0.35 if pred_str is not None else 0 text_space += 0.35 * len(additional_info) if additional_info is not None else 0 figsize = (base_size * len(images), base_size * ratio + text_space) fig, axs = plt.subplots(1, len(images), figsize=figsize) if len(images) == 1: axs = [axs] if main_title is not None: fig.suptitle(main_title) for i, img in enumerate(images): axs[i].imshow(img, vmin=None if vmin is None else vmin[i], vmax=None if vmax is None else vmax[i]) axs[i].set(xticks=[], yticks=[], title=None if sub_titles is None else sub_titles[i]) text = "" color = 'black' if label_str is not None: text += f"{'Label: ':8}{label_str}" if label_str is not None and pred_str is not None: color = 'green' if label_str == pred_str else 'red' text += '\n' if pred_str is not None: text += f"{'Pred: ':8}{pred_str}" if additional_info is not None: for info in additional_info: text += f"\n{info}" plt.figtext(0.01, 0.01, text, c=color, ha='left') if show_plot: plt.show() if save_as is not None: Path(save_as).parent.mkdir(parents=True, exist_ok=True) plt.savefig(save_as) return fig
22,989
def predict(): """ Get data and do the same processing as when we prototyped, because we need to normalize based on training data summary stats :return: """ data = pd.read_csv('data.csv') df = data.drop("Unnamed: 32", axis=1) df = data.drop("id", axis=1) df.drop(columns=["Unnamed: 32"], inplace=True) X = df.drop(labels="diagnosis", axis=1) input_data = [] for col in cols: input_data.append(float(request.form[col])) df_norm = (input_data - X.mean()) / (X.max() - X.min()) pred = loaded_model.predict(df_norm) if pred == 1: return "Prediction : Benign Tumor Found" else: return "Prediction : Malignant Tumor Found"
22,990
def test_eqpt_creation(tmpdir): """ tests that convert correctly creates equipment according to equipment sheet including all cominations in testTopologyconvert.xls: if a line exists the amplifier should be created even if no values are provided. """ xls_input = DATA_DIR / 'testTopologyconvert.xls' xls_copy = Path(tmpdir) / xls_input.name shutil.copyfile(xls_input, xls_copy) convert_file(xls_copy) actual_json_output = xls_copy.with_suffix('.json') actual = load_json(actual_json_output) unlink(actual_json_output) connections = {elem['from_node']: elem['to_node'] for elem in actual['connections']} jsonconverted = {} for elem in actual['elements']: if 'type' in elem.keys() and elem['type'] == 'Edfa': print(elem['uid']) if 'type_variety' in elem.keys(): jsonconverted[elem['uid']] = Amp(elem['uid'], connections[elem['uid']], elem['type_variety']) else: jsonconverted[elem['uid']] = Amp(elem['uid'], connections[elem['uid']]) with open_workbook(xls_input) as wobo: # reading Eqpt sheet assuming header is node A, Node Z, amp variety # fused should not be recorded as an amp eqpt_sheet = wobo.sheet_by_name('Eqpt') raw_eqpts = {} for row in all_rows(eqpt_sheet, start=5): if row[0].value not in raw_eqpts.keys(): raw_eqpts[row[0].value] = Amp(row[0].value, [row[1].value], [row[2].value], [row[7].value]) else: raw_eqpts[row[0].value].to_node.append(row[1].value) raw_eqpts[row[0].value].eqpt.append(row[2].value) raw_eqpts[row[0].value].west.append(row[7].value) # create the possible names similarly to what convert should do possiblename = [f'east edfa in {xlsname} to {node}' for xlsname, value in raw_eqpts.items() for i, node in enumerate(value.to_node) if value.eqpt[i] != 'fused'] +\ [f'west edfa in {xlsname} to {node}' for xlsname, value in raw_eqpts.items() for i, node in enumerate(value.to_node) if value.west[i] != 'fused'] # check that all lines in eqpt sheet correctly converts to an amp element for name in possiblename: assert name in jsonconverted.keys() # check that all amp in the converted files corresponds to an eqpt line for ampuid in jsonconverted.keys(): assert ampuid in possiblename
22,991
def format_number(number, num_decimals=2): """ Format a number as a string including thousands separators. :param number: The number to format (a number like an :class:`int`, :class:`long` or :class:`float`). :param num_decimals: The number of decimals to render (2 by default). If no decimal places are required to represent the number they will be omitted regardless of this argument. :returns: The formatted number (a string). This function is intended to make it easier to recognize the order of size of the number being formatted. Here's an example: >>> from humanfriendly import format_number >>> print(format_number(6000000)) 6,000,000 > print(format_number(6000000000.42)) 6,000,000,000.42 > print(format_number(6000000000.42, num_decimals=0)) 6,000,000,000 """ integer_part, _, decimal_part = str(float(number)).partition('.') reversed_digits = ''.join(reversed(integer_part)) parts = [] while reversed_digits: parts.append(reversed_digits[:3]) reversed_digits = reversed_digits[3:] formatted_number = ''.join(reversed(','.join(parts))) decimals_to_add = decimal_part[:num_decimals].rstrip('0') if decimals_to_add: formatted_number += '.' + decimals_to_add return formatted_number
22,992
def test_fov_standard(): """ NB: For tests on #STARS section, see test_fov_stare_and_star_list() above.""" fov_name = "Std_SA100" f = fov.Fov("Std_SA100", TEST_FOV_DIRECTORY) assert f.fov_name == fov_name assert f.format_version == CURRENT_SCHEMA_VERSION assert f.ra == util.ra_as_degrees("08:53:14.3") assert f.dec == util.dec_as_degrees("-00:37:56") assert f.chart == "X15687X" assert f.fov_date == "12/20/2015" assert f.period is None assert f.motive == '' assert f.acp_comments == '' assert (f.JD_bright, f.JD_faint, f.JD_second) == (None, None, None) assert (f.mag_V_bright, f.mag_V_faint, f.mag_V_second) == (None, None, None) assert (f.color_VI_bright, f.color_VI_faint, f.color_VI_second) == (None, None, None) assert f.main_target == "Standard" assert f.target_type == "Standard" assert f.observing_style == "Standard" assert f.alert is None assert len(f.observing_list) == 3 assert f.observing_list == [("V", 11.5, 1), ("R", 11.2, 1), ("I", 10.2, 1)] assert f.max_exposure is None assert f.priority is None assert f.gap_score_days is None assert f.punches == [] assert len(f.aavso_stars) == 6 assert all([star.is_valid for star in f.aavso_stars]) assert [star.star_id for star in f.aavso_stars] == \ ['118', '130', '101', '114', '124', '92']
22,993
def query_rockets(): """ request all rockets """ query = ''' { rockets { id } } ''' return query
22,994
def copyfile(path, dest_dir, workspace = ""): """ path the full filepath to a file dest_dir destination for copy returns the full filepath of the new destination removes the workspace from the filepath to give a workspace relative filepath. """ if os.path.isfile(path): head, tail = os.path.split(path) destination = os.path.join(workspace, dest_dir, tail) if not os.path.isfile(destination): shutil.copy(path, destination) print("Added {0}".format(destination)) else: print("Found {0}".format(destination)) return destination.replace(workspace + "\\", "") else: print("{0} is an invalid filepath!".format(path)) return None
22,995
def test_particular_store_search(browser): """This test fails because store finder filter doesn't work.""" pass
22,996
def get_block_len(built_prims, prim_type): """ Calculates the maximum block length for a given primitive type """ retval = 0 for _, p in built_prims: if p.prim_type == prim_type: retval = max(retval, p.block_len) return retval
22,997
def test_cat3(capsys, thresh_files, args): """ Test the behavior of CAT on a simple file and creating a column""" args = ("A=" + str(thresh_files["pass_a.txt"]) + " cat" + args).split() thresh.main(args) out, err = capsys.readouterr() assert out == """ a b c d +7.00000000000000000e+00 +8.00000000000000000e+00 +2.00000000000000000e+00 +1.50000000000000000e+01 +0.00000000000000000e+00 +5.00000000000000000e+00 +0.00000000000000000e+00 +5.00000000000000000e+00 +1.00000000000000000e+00 +2.00000000000000000e+00 +3.00000000000000000e+00 +3.00000000000000000e+00 +3.00000000000000000e+00 +4.00000000000000000e+00 +5.00000000000000000e+00 +7.00000000000000000e+00 +7.00000000000000000e+00 +1.00000000000000000e+00 +4.00000000000000000e+00 +8.00000000000000000e+00 """
22,998
def _interpolate_gather(array, x): """ Like ``torch.gather(-1, array, x)`` but continuously indexes into the rightmost dim of an array, linearly interpolating between array values. """ with torch.no_grad(): x0 = x.floor().clamp(min=0, max=array.size(-1) - 2) x1 = x0 + 1 f0 = _gather(array, -1, x0.long()) f1 = _gather(array, -1, x1.long()) return f0 * (x1 - x) + f1 * (x - x0)
22,999