content
stringlengths
22
815k
id
int64
0
4.91M
def load_data_file(filename): """loads a single file into a DataFrame""" regexp = '^.*/results/([^/]+)/([^/]+)/([^/]+).csv$' optimizer, blackbox, seed = re.match(regexp, filename).groups() f = ROOT + '/results/{}/{}/{}.csv'.format(optimizer, blackbox, seed) result = np.genfromtxt(f, delimiter=',') return get_best(result)
22,700
def get_hub_manager(): """Generate Hub plugin structure""" global _HUB_MANAGER if not _HUB_MANAGER: _HUB_MANAGER = _HubManager(_plugins) return _HUB_MANAGER
22,701
def extract_stimtype( data: pd.DataFrame, stimtype: str, columns: list ) -> pd.DataFrame: """ Get trials with matching label under stimType """ if stimtype not in accept_stimtype: raise ValueError(f"invalid {stimtype}, only accept {accept_stimtype}") get = columns.copy() get += ["participant_id"] get += [i for i in identity_entity if i in data.columns] stimresp = data.query(f"stimType == '{stimtype}'") return stimresp.loc[:, get]
22,702
def compute_rank_clf_loss(hparams, scores, labels, group_size, weight): """ Compute ranking/classification loss Note that the tfr loss is slightly different than our implementation: the tfr loss is sum over all loss and devided by number of queries; our implementation is sum over all loss and devided by the number of larger than 0 labels. """ # Classification loss if hparams.num_classes > 1: labels = tf.cast(labels, tf.int32) labels = tf.squeeze(labels, -1) # Last dimension is max_group_size, which should be 1 return tf.losses.sparse_softmax_cross_entropy(logits=scores, labels=labels, weights=weight) # Expand weight to [batch size, 1] so that in inhouse ranking loss it can be multiplied with loss which is # [batch_size, max_group_size] expanded_weight = tf.expand_dims(weight, axis=-1) # Ranking losses # tf-ranking loss if hparams.use_tfr_loss: weight_name = "weight" loss_fn = tfr.losses.make_loss_fn(hparams.tfr_loss_fn, lambda_weight=hparams.tfr_lambda_weights, weights_feature_name=weight_name) loss = loss_fn(labels, scores, {weight_name: expanded_weight}) return loss # our own implementation if hparams.ltr_loss_fn == 'pairwise': lambdarank = LambdaRank() pairwise_loss, pairwise_mask = lambdarank(scores, labels, group_size) loss = tf.reduce_sum(tf.reduce_sum(pairwise_loss, axis=[1, 2]) * expanded_weight) / tf.reduce_sum(pairwise_mask) elif hparams.ltr_loss_fn == 'softmax': loss = compute_softmax_loss(scores, labels, group_size) * expanded_weight is_positive_label = tf.cast(tf.greater(labels, 0), dtype=tf.float32) loss = tf.div_no_nan(tf.reduce_sum(loss), tf.reduce_sum(is_positive_label)) elif hparams.ltr_loss_fn == 'pointwise': loss = compute_sigmoid_cross_entropy_loss(scores, labels, group_size) * expanded_weight loss = tf.reduce_mean(loss) else: raise ValueError('Currently only support pointwise/pairwise/softmax/softmax_cls.') return loss
22,703
def get_org_image_url(url, insert_own_log=False): """ liefert gegebenenfalls die URL zum Logo der betreffenden Institution """ #n_pos = url[7:].find('/') # [7:] um http:// zu ueberspringen #org_url = url[:n_pos+7+1] # einschliesslich '/' item_containers = get_image_items(ELIXIER_LOGOS_PATH) image_url = image_url_url = '' image_url_extern = True for ic in item_containers: arr = string.splitfields(ic.item.sub_title, '|') for a in arr: b = a.strip() if b != '' and url.find(b) >= 0: image_url = ELIXIER_LOGOS_URL + ic.item.name image_url_url = ic.item.title image_url_extern = True break if image_url != '': break if insert_own_log and image_url == '': image_url = EDUFOLDER_INST_LOGO_URL image_url_url = get_base_site_url() image_url_extern = False return image_url, image_url_url, image_url_extern
22,704
async def download_page(url, file_dir, file_name, is_binary=False): """ Fetch URL and save response to file Args: url (str): Page URL file_dir (pathlib.Path): File directory file_name (str): File name is_binary (bool): True if should download binary content (e.g. images) Returns: HttpResponse: HTTP response content and extension """ response = await fetch(url, is_binary) path = file_dir.joinpath('{}{}'.format(file_name, response.ext)) try: with ThreadPoolExecutor() as pool: await asyncio.get_running_loop().run_in_executor( pool, write_file, str(path), is_binary, response.content ) except OSError: logging.error('Can\'t save file: {}'.format(path)) return response
22,705
def normal_coffee(): """ when the user decides to pick a normal or large cup of coffee :return: template that explains how to make normal coffee """ return statement(render_template('explanation_large_cup', product='kaffee'))
22,706
def _transitive_closure_dense_numpy(A, kind='metric', verbose=False): """ Calculates Transitive Closure using numpy dense matrix traversing. """ C = A.copy() n, m = A.shape # Check if diagonal is all zero if sum(np.diagonal(A)) > 0: raise ValueError("Diagonal has to be zero for matrix computation to be correct") # Compute Transitive Closure for i in range(0, n): if verbose: print('calc row:', i + 1, 'of', m) for j in range(0, n): if kind == 'metric': vec = C[i, :] + C[:, j] C[i, j] = vec.min() elif kind == 'ultrametric': vec = np.maximum(C[i, :], C[:, j]) C[i, j] = vec.min() return np.array(C)
22,707
def _walk_to_root(path): """ Yield directories starting from the given directory up to the root """ if not os.path.exists(path): # pragma: no cover raise IOError('Starting path not found') if os.path.isfile(path): # pragma: no cover path = os.path.dirname(path) last_dir = None current_dir = os.path.abspath(path) while last_dir != current_dir: yield current_dir parent_dir = os.path.abspath(os.path.join(current_dir, os.path.pardir)) last_dir, current_dir = current_dir, parent_dir
22,708
def convert_date(raw_dates: pd.Series) -> pd.Series: """Automatically converts series containing raw dates to specific format. Parameters ---------- raw_dates: Series to be converted. Returns ------- Optimized pandas series. """ raw_dates = pd.to_datetime(raw_dates, utc=True) return raw_dates
22,709
def _feed_subs_to_queue(monitored_sub, queue): """Stream all submissions and put them into the queue. Submissions are stored in a tuple with a 0. Error logging should be established as needed.""" subreddit = reddit.subreddit(monitored_sub) while True: try: for sub in subreddit.stream.submissions(): queue.append((sub, 0)) except Exception as e: print('Submission stream error. Resetting') print(e) continue
22,710
async def get_scorekeeper_by_id(scorekeeper_id: conint(ge=0, lt=2**31)): """Retrieve a Scorekeeper object, based on Scorekeeper ID, containing: Scorekeeper ID, name, slug string, and gender.""" try: scorekeeper = Scorekeeper(database_connection=_database_connection) scorekeeper_info = scorekeeper.retrieve_by_id(scorekeeper_id) if not scorekeeper_info: raise HTTPException(status_code=404, detail=f"Scorekeeper ID {scorekeeper_id} not found") else: return scorekeeper_info except ValueError: raise HTTPException(status_code=404, detail=f"Scorekeeper ID {scorekeeper_id} not found") except ProgrammingError: raise HTTPException(status_code=500, detail="Unable to retrieve scorekeeper information") except DatabaseError: raise HTTPException(status_code=500, detail="Database error occurred while trying to " "retrieve scorekeeper information")
22,711
def check_spelling(data, header_to_print=None): """Checks spelling via Yandex.Speller API""" try: p = Popen(['./yasp'], stdin=PIPE, stdout=PIPE, encoding='UTF-8') p.stdin.write(data) output = p.communicate()[0] if output: if header_to_print: print(header_to_print) print(output, end='') print('-' * 20) p.stdin.close() except Exception as e: print('Cannot communicate with ' 'Yandes Speller API, skipped: %s' % e)
22,712
def modulePath(): """ This will get us the program's directory, even if we are frozen using py2exe """ try: _ = sys.executable if weAreFrozen() else __file__ except NameError: _ = inspect.getsourcefile(modulePath) return os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(_))))
22,713
def get_time(sec_scale): """time since epoch in milisecond """ if sec_scale == 'sec': scale = 0 elif sec_scale == 'msec': scale = 3 else: raise secs = (datetime.utcnow() - datetime.utcfromtimestamp(0)).total_seconds() return int(secs * pow(10, scale))
22,714
def get_json(url): """ Function that retrieves a json from a given url. :return: the json that was received """ with urllib.request.urlopen(url) as response: data = response.readall().decode('utf-8') data = json.loads(data) return data
22,715
def _defaultChangeProvider(variables,wf): """ by default we just forword the message to the change provider """ return variables
22,716
def evaluate_surface_derivatives(surface, params, order=1): """ """ if surface.rational: control_points = np.array(surface.weighted_control_points) else: control_points = np.array(surface.control_points) degree_u, degree_v = surface.degree knot_vector_u, knot_vector_v = surface.knot_vector count_u, count_v = surface.count params_u = [p[0] for p in params] params_v = [p[1] for p in params] spans_u = find_spans(knot_vector_u, count_u, params_u) bases_u = basis_functions_derivatives(degree_u, knot_vector_u, spans_u, params_u, order) spans_v = find_spans(knot_vector_v, count_v, params_v) bases_v = basis_functions_derivatives(degree_v, knot_vector_v, spans_v, params_v, order) dv = min(degree_v, order) derivatives = [] for span_u, basis_u, span_v, basis_v in zip(spans_u, bases_u, spans_v, bases_v): b = control_points[span_u - degree_u:span_u + 1, span_v - degree_v:span_v + 1] temp = np.dot(b.T, np.array(basis_u).T).T dd = min(order, dv) SKL = np.dot(np.array(basis_v[:dd + 1]), temp[:degree_v + 1]).transpose(1, 0, 2) derivatives.append(SKL) if not surface.rational: return np.array(derivatives) else: # TODO: numpify this! D = [] for SKLw in derivatives: dimension = 4 SKL = [[[0.0 for _ in range(dimension)] for _ in range(order + 1)] for _ in range(order + 1)] for k in range(0, order + 1): for l in range(0, order + 1): # noqa E741 v = list(SKLw[k, l])[:] for j in range(1, l + 1): v[:] = [tmp - (binomial_coefficient(l, j) * SKLw[0][j][-1] * drv) for tmp, drv in zip(v, SKL[k][l - j])] for i in range(1, k + 1): v[:] = [tmp - (binomial_coefficient(k, i) * SKLw[i][0][-1] * drv) for tmp, drv in zip(v, SKL[k - i][l])] v2 = [0.0 for _ in range(dimension - 1)] for j in range(1, l + 1): v2[:] = [tmp + (binomial_coefficient(l, j) * SKLw[i][j][-1] * drv) for tmp, drv in zip(v2, SKL[k - i][l - j])] v[:] = [tmp - (binomial_coefficient(k, i) * tmp2) for tmp, tmp2 in zip(v, v2)] SKL[k][l][:] = [tmp / SKLw[0][0][-1] for tmp in v[0:(dimension - 1)]] D.append(SKL) return np.array(D)
22,717
def GPPrediction(y_train, X_train, T_train, eqid_train, sid_train = None, lid_train = None, X_new = None, T_new = None, eqid_new = None, sid_new = None, lid_new = None, dc_0 = 0., Tid_list = None, Hyp_list = None, phi_0 = None, tau_0 = None, sigma_s = None, sigma_e = None): """ Make ground motion predictions at new locations conditioned on the training data Parameters ---------- y_train : np.array(n_train_pt) Array with ground-motion observations associated with training data X_train : np.array(n_train_pt, n_dim) Design matrix for training data. T_train : np.array(n_train_pt, 2x n_coor) Coordinates matrix for training data. eqid_train : np.array(n_train_pt) Earthquake IDs for training data. sid_train : np.array(n_train_pt), optional Station IDs for training data. The default is None. lid_train : np.array(n_train_pt), optional Source IDs for training data. The default is None. X_new : np.array(n_new_pt, n_dim), optional Desing matrix for predictions. The default is None. T_new : np.array(n_new_pt, 2 x n_coor), optional Coordinate matrix for predictions. The default is None. eqid_new : np.array(n_new_pt), optional Earthquake IDs for predictions. The default is None. sid_new : np.array(n_new_pt), optional Station IDs for predictions. The default is None. lid_new : np.array(n_new_pt), optional Source IDs for predictions. The default is None. dc_0 : float, optional Mean offset. The default is zero. Tid_list : n_dim list List to specify the coordinate pair or each dimension. Hyp_list : TYPE, optional List of hyper-parameters for each dimension of the covariance fuction. phi_0 : double Within-event standard deviation. tau_0 : double Between-event standard deviation. sigma_s : double, optional Standard deviation for zero correlation site-to-site term. The default is None. sigma_e : double, optional Standard deviation for zero correlation source-to-source term. The default is None. Returns ------- np.array(n_new_pt) median estimate of new predictions. np.array(n_new_pt, n_new_pt) epistemic uncertainty of new predictions. """ #import pdb; pdb.set_trace() #remove mean offset from conditioning data y_train = y_train - dc_0 #number of grid nodes n_pt_train = X_train.shape[0] n_pt_new = X_new.shape[0] #initialize covariance matrices cov_data = np.zeros([n_pt_train,n_pt_train]) cov_star = np.zeros([n_pt_new,n_pt_train]) cov_star2 = np.zeros([n_pt_new,n_pt_new]) #create covariance matrices for k, (hyp, tid) in enumerate(zip(Hyp_list,Tid_list)): #covariance between train data cov_data += CreateCovMaternDimX(X_train[:,k], X_train[:,k], T_train[tid], T_train[tid], hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2], delta = 1e-6) #covariance between train data and predictions cov_star += CreateCovMaternDimX(X_new[:,k], X_train[:,k], T_new[tid], T_train[tid], hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2], delta = 0) #covariance between prediction data cov_star2 += CreateCovMaternDimX(X_new[:,k], X_new[:,k], T_new[tid], T_new[tid], hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2], delta = 1e-6) #add site to site systematic effects if sigma_s is specified if not (sigma_s is None): assert(not(sid_train is None)), 'Error site id for training data not specified' cov_data += CreateCovS2S(sid_train, sid_train, sigma_s, delta = 1e-6) #add source to source systematic effects if phi_L2L is specified if not (sigma_e is None): assert(not(lid_train is None)), 'Error location id for training data not specified' cov_data += CreateCovL2L(lid_train, lid_train, sigma_e, delta = 1e-6) #add between and within event covariance matrices cov_data += CreateCovWe(eqid_train, eqid_train, phi_0) cov_data += CreateCovBe(eqid_train, eqid_train, tau_0, delta = 1e-6) #consider site to site systematic effects in predictions if sigma_s is specified if not ( (sigma_s is None) or (sid_new is None)): cov_star2 += CreateCovS2S(sid_new, sid_new, sigma_s, delta = 1e-6) cov_star += CreateCovS2S(sid_new, sid_train, sigma_s) #consider site to site systematic effects in predictions if sigma_s is specified if not ( (sigma_e is None) or (lid_new is None)): cov_star2 += CreateCovL2L(lid_new, lid_new, sigma_e, delta = 1e-6) cov_star += CreateCovL2L(lid_new, lid_train, sigma_e) #consider earthquake aleatory terms if eqid_new is specified if not (eqid_new is None): cov_star2 += CreateCovBe(eqid_new, eqid_new, tau_0, delta = 1e-6) cov_star += CreateCovBe(eqid_new, eqid_train, tau_0) #posterior mean and variance at new locations y_new_mu = cov_star.dot(linalg.solve(cov_data, y_train)) #add mean offset to new predictions y_new_mu = y_new_mu + dc_0 y_new_cov = cov_star2 - cov_star.dot(linalg.solve(cov_data, cov_star.transpose())) #posterior standard dev. at new locations y_new_sig = np.sqrt(np.diag(y_new_cov)) return y_new_mu.flatten(), y_new_sig.flatten(), y_new_cov
22,718
def zdotu(x, y): """ This function computes the complex scalar product \M{x^T y} for the vectors x and y, returning the result. """ return _gslwrap.gsl_blas_zdotu(x, y, 1j)
22,719
def music21_to_chord_duration(p, key): """ Takes in a Music21 score, and outputs three lists List for chords (by primeFormString string name) List for chord function (by romanNumeralFromChord .romanNumeral) List for durations """ p_chords = p.chordify() p_chords_o = p_chords.flat.getElementsByClass('Chord') chord_list = [] chord_function_list = [] duration_list = [] for ch in p_chords_o: duration_list.append(ch.duration.quarterLength) ch.closedPosition(forceOctave=4, inPlace=True) rn = roman.romanNumeralFromChord(ch, key) rp = rn.pitches rp_names = ",".join([pi.name + pi.unicodeNameWithOctave[-1] for pi in rp]) chord_list.append(rp_names) chord_function_list.append(rn.figure) return chord_list, chord_function_list, duration_list
22,720
def city_country(city, country, population=''): """Generate a neatly formatted city/country name.""" full_name = city + ', ' + country if population: return full_name.title() + ' - population ' + str(population) else: return full_name.title()
22,721
def generate_headermap(line,startswith="Chr", sep="\t"): """ >>> line = "Chr\\tStart\\tEnd\\tRef\\tAlt\\tFunc.refGene\\tGene.refGene\\tGeneDetail.refGene\\tExonicFunc.refGene\\tAAChange.refGene\\tsnp138\\tsnp138NonFlagged\\tesp6500siv2_ea\\tcosmic70\\tclinvar_20150629\\tOtherinfo" >>> generate_headermap(line) {'Chr': 0, 'Start': 1, 'End': 2, 'Ref': 3, 'Alt': 4, 'Func.refGene': 5, 'Gene.refGene': 6, 'GeneDetail.refGene': 7, 'ExonicFunc.refGene': 8, 'AAChange.refGene': 9, 'snp138': 10, 'snp138NonFlagged': 11, 'esp6500siv2_ea': 12, 'cosmic70': 13, 'clinvar_20150629': 14, 'Otherinfo': 15} """ if not line.startswith(startswith): raise Exception("Header line should start with \"{0}\"".format(startswith)) else: if line.startswith("#"): line = line[1:] return dict([(v, i) for i,v in enumerate(line.rstrip().split(sep))])
22,722
def max(q): """Return the maximum of an array or maximum along an axis. Parameters ---------- q : array_like Input data Returns ------- array_like Maximum of an array or maximum along an axis """ if isphysicalquantity(q): return q.__class__(np.max(q.value), q.unit) else: return np.max(q)
22,723
def make_failure_log(conclusion_pred, premise_preds, conclusion, premises, coq_output_lines=None): """ Produces a dictionary with the following structure: {"unproved sub-goal" : "sub-goal_predicate", "matching premises" : ["premise1", "premise2", ...], "raw sub-goal" : "conclusion", "raw premises" : ["raw premise1", "raw premise2", ...]} Raw sub-goal and raw premises are the coq lines with the premise internal name and its predicates. E.g. H : premise (Acc x1) Note that this function is not capable of returning all unproved sub-goals in coq's stack. We only return the top unproved sub-goal. """ failure_log = OrderedDict() conclusion_base = denormalize_token(conclusion_pred) # failure_log["unproved sub-goal"] = conclusion_base premises_base = [denormalize_token(p) for p in premise_preds] # failure_log["matching premises"] = premises_base # failure_log["raw sub-goal"] = conclusion # failure_log["raw premises"] = premises premise_preds = [] for p in premises: try: pred = p.split()[2] except: continue if pred.startswith('_'): premise_preds.append(denormalize_token(pred)) failure_log["all_premises"] = premise_preds failure_log["other_sub-goals"] = get_subgoals_from_coq_output( coq_output_lines, premises) failure_log["other_sub-goals"].insert(0, { 'subgoal': conclusion_base, 'index': 1, 'raw_subgoal': conclusion, 'matching_premises' : premises_base, 'matching_raw_premises' : premises_base}) failure_log["type_error"] = has_type_error(coq_output_lines) failure_log["open_formula"] = has_open_formula(coq_output_lines) return failure_log
22,724
def request(url=None, json=None, parser=lambda x: x, encoding=None, **kwargs): """ :param url: :param json: :param parser: None 的时候返回r,否则返回 parser(r.json()) :param kwargs: :return: """ method = 'post' if json is not None else 'get' # 特殊情况除外 logger.info(f"Request Method: {method}") headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE ' } r = requests.request(method, url, json=json, headers=headers) r.encoding = encoding if encoding else r.apparent_encoding if parser is None: return r return parser(r.json())
22,725
def dump_all(dashboard_dir): """dump dashboard to specific dir with fhs""" if not os.path.exists(dashboard_dir): print("dump: create dashboard dir %s" % dashboard_dir) os.mkdir(dashboard_dir) dbmeta = list_dashboards() folders = set([i.get('folderUid') for i in dbmeta if 'folderUid' in i and i.get('type') != 'dash-folder']) dashdbs = [(i.get('uid'), i.get('folderUid', '.')) for i in dbmeta if i.get('type') != 'dash-folder'] for d in folders: abs_path = os.path.join(dashboard_dir, d) if os.path.isfile(abs_path): os.remove(abs_path) if not os.path.exists(abs_path): print("dump: %s / dir created" % d) os.mkdir(abs_path) print("dump: create dir %s" % d) for uid, folder in dashdbs: dbpath = os.path.join(dashboard_dir, folder, uid + '.json') if folder == "." or not folder: dbpath = os.path.join(dashboard_dir, uid + '.json') print("dump: %s / %s \t ---> %s" % (folder, uid, dbpath)) dump_dashboard_to_file(get_dashboard(uid), dbpath)
22,726
def log_density_igaussian(z, z_var): """Calculate log density of zero-mean isotropic gaussian distribution given z and z_var.""" assert z.ndimension() == 2 assert z_var > 0 z_dim = z.size(1) return -(z_dim/2)*math.log(2*math.pi*z_var) + z.pow(2).sum(1).div(-2*z_var)
22,727
def denom(r,E,J,model): """solve the denominator""" ur = model.potcurve(r)#model.potcurve[ (abs(r-model.rcurve)).argmin()] return 2.0*(E-ur)*r*r - J*J;
22,728
def approximate_gaussians(confidence_array, mean_array, variance_array): """ Approximate gaussians with given parameters with one gaussian. Approximation is performed via minimization of Kullback-Leibler divergence KL(sum_{j} w_j N_{mu_j, sigma_j} || N_{mu, sigma}). Parameters ---------- confidence_array : ndarray(num_gaussians) confidence values for gaussians. mean_array : ndarray(num_gaussians, 3) (z,y,x) mean values for input gaussians. variance_array : ndarray(num_gaussians) (z,y,x) variances for input gaussians. Returns ------- tuple(ndarray(3), ndarray(3)) mean and sigma for covering gaussian. """ delimiter = np.sum(confidence_array) mu = np.sum(mean_array.T * confidence_array, axis=1) / delimiter sigma = np.sqrt(np.sum((variance_array + (mean_array - mu) ** 2).T * confidence_array, axis=1) / delimiter) return mu, sigma
22,729
def return_loss(apply_fn: Callable[[jnp.ndarray, jnp.ndarray], jnp.ndarray], steps: types.Transition): """Loss wrapper for ReturnMapper. Args: apply_fn: applies a transition model (o_t, a_t) -> (o_t+1, r), expects the leading axis to index the batch and the second axis to index the transition triplet (t-1, t, t+1). steps: RLDS dictionary of transition triplets as prepared by `rlds_loader.episode_to_timestep_batch`. Returns: A scalar loss value as jnp.ndarray. """ observation_t = jax.tree_map(lambda obs: obs[:, dataset.CURRENT, ...], steps.observation) action_t = steps.action[:, dataset.CURRENT, ...] n_step_return_t = steps.extras[dataset.N_STEP_RETURN][:, dataset.CURRENT, ...] predicted_n_step_return_t = apply_fn(observation_t, action_t) return mse(predicted_n_step_return_t, n_step_return_t)
22,730
def part_two(data): """Part two""" array = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p'] commands = data.split(',') for _ in range(1000000000 % 30): dance(array, commands) return ''.join(map(str, array))
22,731
def ts_declare(): """Makes an f5-telemetry-streaming declaration from the supplied metadata""" if is_rest_worker('/mgmt/shared/telemetry/declare') and os.path.isfile( TS_DECLARATION_FILE): tsdf = open(TS_DECLARATION_FILE, 'r') declaration = tsdf.read() tsdf.close() json.loads(declaration) d_url = 'http://localhost:8100/mgmt/shared/telemetry/declare' LOG.debug('POST f5-telemetry-streaming declaration') response = requests.post(d_url, auth=('admin', ''), data=declaration) # initial request if response.status_code < 400: return True LOG.error('f5-telemetry-streaming declaration failed %s - %s', response.status_code, response.text) return False LOG.error( 'f5-telemetry-streaming worker not installed or declaration missing') return False
22,732
def readCSVPremadeGroups(filename, studentProperties=None): """studentProperties is a list of student properties in the order they appear in the CSV. For example, if a CSV row (each group is a row) is as follows: "Rowan Wilson, rowan@harvard.edu, 1579348, Bob Tilano, bob@harvard.edu, 57387294" Then the format is: fullname, email, huid, fullname, email, huid, ... Thus, studentProperties = ['fullname', 'email', 'huid'] """ csv = _readCSV(filename) # Create studentProperties if needed if studentProperties == None: studentProperties = [] firstHeader = None for header in csv['headers']: header = _keepOnlyLetters(header).lower() if firstHeader == header: # Found beginning of repeating sequence break if firstHeader == None: firstHeader = header studentProperties.append(header) # Pull groups from CSV data groups = [] for row in csv['data']: students = [] currStudent = None for i in range(len(row)): if len(row[i].strip()) == 0: break propIndex = i % len(studentProperties) if propIndex == 0: # Just starting a new student currStudent = {} else: currStudent[studentProperties[propIndex]] = row[i] if propIndex == len(studentProperties) - 1: # Just finished adding properties to a student students.append(currStudent) if len(students) > 0: groups.append(students) return groups
22,733
def random_contrast(video, lower, upper, seed=None): """Adjust the contrast of an image or images by a random factor. Equivalent to `adjust_contrast()` but uses a `contrast_factor` randomly picked in the interval `[lower, upper)`. For producing deterministic results given a `seed` value, use `tf.image.stateless_random_contrast`. Unlike using the `seed` param with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the same results given the same seed independent of how many times the function is called, and independent of global seed settings (e.g. tf.random.set_seed). Args: image: An image tensor with 3 or more dimensions. lower: float. Lower bound for the random contrast factor. upper: float. Upper bound for the random contrast factor. seed: A Python integer. Used to create a random seed. See `tf.compat.v1.set_random_seed` for behavior. Usage Example: >>> x = [[[1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0]], ... [[7.0, 8.0, 9.0], ... [10.0, 11.0, 12.0]]] >>> tf.image.random_contrast(x, 0.2, 0.5) <tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...> Returns: The contrast-adjusted image(s). Raises: ValueError: if `upper <= lower` or if `lower < 0`. """ if upper <= lower: raise ValueError("upper must be > lower.") if lower < 0: raise ValueError("lower must be non-negative.") contrast_factor = tf.random.random_uniform([], lower, upper, seed=seed) return adjust_contrast(video, contrast_factor)
22,734
def load(df: DataFrame, config: Dict, logger) -> bool: """Write data in final destination :param df: DataFrame to save. :type df: DataFrame :param config: job configuration :type config: Dict :param logger: Py4j Logger :type logger: Py4j.Logger :return: True :rtype: bool """ df.write.save(path=config['output_path'], mode='overwrite') return True
22,735
def phase_correct_zero(spec, phi): """ Correct the phases of a spectrum by phi radians Parameters ---------- spec : float array of complex dtype The spectrum to be corrected. phi : float Returns ------- spec : float array The phase corrected spectrum Notes ----- [Keeler2005] Keeler, J (2005). Understanding NMR Spectroscopy, 2nd edition. Wiley. Page 88. """ c_factor = np.exp(-1j * phi) # If it's an array, we need to reshape it and broadcast across the # frequency bands in the spectrum. Otherwise, we assume it's a scalar and # apply it to all the dimensions of the spec array: if hasattr(phi, 'shape'): c_factor = c_factor.reshape(c_factor.shape + (1,)) return spec * c_factor
22,736
def upsample(s, n, phase=0): """Increase sampling rate by integer factor n with included offset phase. """ return np.roll(np.kron(s, np.r_[1, np.zeros(n-1)]), phase)
22,737
def close_connection(exception): """ Close DB connection """ db = getattr(g, "_database", None) if db is not None: db.close()
22,738
def _build_plugin_out(name, outdir, options, builder): """Build the --{lang}_out argument for a given plugin.""" arg = outdir if options: arg = ",".join(options) + ":" + arg builder["args"] += ["--%s_out=%s" % (name, arg)]
22,739
def parse_idx_inp(idx_str): """ parse idx string """ idx_str = idx_str.strip() if idx_str.isdigit(): idxs = [int(idx_str)] if '-' in idx_str: [idx_begin, idx_end] = idx_str.split('-') idxs = list(range(int(idx_begin), int(idx_end)+1)) return idxs
22,740
def toggl_request_get(url: str, params: dict = False) -> requests.Response: """Send a GET request to specified url using toggl headers and configured auth""" headers = {"Content-Type": "application/json"} auth = (CONFIG["toggl"]["api_token"], "api_token") response = requests.get(url, headers=headers, auth=auth, params=params) return response
22,741
def sample_point_cloud(source, target, sample_indices=[2]): """ Resamples a source point cloud at the coordinates of a target points Uses the nearest point in the target point cloud to the source point Parameters ---------- source: array Input point cloud target: array Target point cloud for sample locations sample_indices: list List of indices to sample from source. Defaults to 2 (z or height dimension) Returns ------- An array of sampled points """ sample_indices = np.array(sample_indices) tree = cKDTree(source[:, 0:2]) dist, idx = tree.query(target, n_jobs=-1) output = np.hstack( [ target, source[idx[:, None], sample_indices].reshape( (len(idx), len(sample_indices)) ), ] ) return output
22,742
def make_satellite_gsp_pv_map(batch: Batch, example_index: int, satellite_channel_index: int): """Make a animation of the satellite, gsp and the pv data""" trace_times = [] times = batch.satellite.time[example_index] pv = batch.pv for time in times: trace_times.append( make_satellite_gsp_pv_map_one_time_value( batch=batch, example_index=example_index, satellite_channel_index=satellite_channel_index, time_value=time, ) ) frames = [] for i, traces in enumerate(trace_times): frames.append(go.Frame(data=traces, name=f"frame{i+1}")) # make slider labels = [pd.to_datetime(time.data) for time in times] sliders = make_slider(labels=labels) x = pv.x_coords[example_index][pv.x_coords[example_index] != 0].mean() y = pv.y_coords[example_index][pv.y_coords[example_index] != 0].mean() lat, lon = osgb_to_lat_lon(x=x, y=y) fig = go.Figure( data=trace_times[0], layout=go.Layout( title="Start Title", ), frames=frames, ) fig.update_layout(updatemenus=[make_buttons()]) fig.update_layout( mapbox_style="carto-positron", mapbox_zoom=8, mapbox_center={"lat": lat, "lon": lon} ) fig.update_layout(sliders=sliders) return fig
22,743
def raw_to_engineering_product(product, idbm): """Apply parameter raw to engineering conversion for the entire product. Parameters ---------- product : `BaseProduct` The TM product as level 0 Returns ------- `int` How many columns where calibrated. """ col_n = 0 idb_ranges = QTable(rows=[(version, range.start.as_float(), range.end.as_float()) for version, range in product.idb_versions.items()], names=["version", "obt_start", "obt_end"]) idb_ranges.sort("obt_start") idb_ranges['obt_start'][0] = SCETime.min_time().as_float() for i in range(0, len(idb_ranges)-1): idb_ranges['obt_end'][i] = idb_ranges['obt_start'][i+1] idb_ranges['obt_end'][-1] = SCETime.max_time().as_float() for col in product.data.colnames: if (not (hasattr(product.data[col], "meta") and "PCF_CURTX" in product.data[col].meta and product.data[col].meta["PCF_CURTX"] is not None and product.data[col].meta["NIXS"] is not None and hasattr(product, "idb") )): continue col_n += 1 c = 0 # clone the current column into a new column as the content might be replaced chunk wise product.data[CCN] = product.data[col] for idbversion, starttime, endtime in idb_ranges.iterrows(): idb = idbm.get_idb(idbversion) idb_time_period = np.where((starttime <= product.data['time']) & (product.data['time'] < endtime))[0] if len(idb_time_period) < 1: continue c += len(idb_time_period) calib_param = idb.get_params_for_calibration( product.service_type, product.service_subtype, (product.ssid if hasattr(product, "ssid") else None), product.data[col].meta["NIXS"], product.data[col].meta["PCF_CURTX"])[0] raw = Parameter(product.data[col].meta["NIXS"], product.data[idb_time_period][col], None) eng = apply_raw_to_engineering(raw, (calib_param, idb)) # cast the type of the column if needed if product.data[CCN].dtype != eng.engineering.dtype: product.data[CCN] = product.data[CCN].astype(eng.engineering.dtype) # set the unit if needed if hasattr(eng.engineering, "unit") and \ product.data[CCN].unit != eng.engineering.unit: meta = product.data[col].meta product.data[CCN].unit = eng.engineering.unit # restore the meta info setattr(product.data[CCN], "meta", meta) # override the data into the new column product.data[CCN][idb_time_period] = eng.engineering # replace the old column with the converted product.data[col] = product.data[CCN] product.data[col].meta = product.data[CCN].meta # delete the generic column for conversion del product.data[CCN] # delete the calibration key from meta as it is now processed del product.data[col].meta["PCF_CURTX"] if c != len(product.data): logger.warning("Not all time bins got converted to engineering" + "values due to bad idb periods." + f"\n Converted bins: {c}\ntotal bins {len(product.data)}") return col_n
22,744
def paginate(objects, page_num, per_page, max_paging_links): """ Return a paginated page for the given objects, giving it a custom ``visible_page_range`` attribute calculated from ``max_paging_links``. """ paginator = Paginator(objects, per_page) try: page_num = int(page_num) except ValueError: page_num = 1 try: objects = paginator.page(page_num) except (EmptyPage, InvalidPage): objects = paginator.page(paginator.num_pages) page_range = objects.paginator.page_range if len(page_range) > max_paging_links: start = min(objects.paginator.num_pages - max_paging_links, max(0, objects.number - (max_paging_links / 2) - 1)) page_range = page_range[start:start + max_paging_links] objects.visible_page_range = page_range return objects
22,745
def _get_crop_frame(image, max_wiggle, tx, ty): """ Based on on the max_wiggle, determines a cropping frame. """ pic_width, pic_height = image.size wiggle_room_x = max_wiggle * .5 * pic_width wiggle_room_y = max_wiggle * .5 * pic_height cropped_width = pic_width - wiggle_room_x cropped_height = pic_height - wiggle_room_y left = int(tx * wiggle_room_x) top = int(ty * wiggle_room_y) right = left + cropped_width bottom = top + cropped_height return left, top, right, bottom
22,746
def __vigenere(s, key='virink', de=0): """维吉利亚密码""" s = str(s).replace(" ", "").upper() key = str(key).replace(" ", "").upper() res = '' i = 0 while i < len(s): j = i % len(key) k = U.index(key[j]) m = U.index(s[i]) if de: if m < k: m += 26 res += U[m - k] else: res += U[(m + k) % 26] i += 1 return res
22,747
def mask_unit_group(unit_group: tf.Tensor, unit_group_length: tf.Tensor, mask_value=0) -> tf.Tensor: """ Masks unit groups according to their length. Args: unit_group: A tensor of rank 3 with a sequence of unit feature vectors. unit_group_length: The length of the unit group (assumes all unit feature vectors upfront). mask_value: The mask value. Returns: A tensor of rank 3 where indices beyond unit_group_length are zero-masked. """ if unit_group_length is not None: # get rid of last dimensions with size 1 if unit_group.shape.rank - unit_group_length.shape.rank < 2: unit_group_length = tf.squeeze(unit_group_length, axis=-1) # B # mask with mask_value unit_group_mask = tf.sequence_mask( tf.cast(unit_group_length, tf.int32), maxlen=unit_group.shape[1], dtype=unit_group.dtype) # B x T unit_group_mask = tf.expand_dims(unit_group_mask, axis=-1) unit_group *= unit_group_mask if mask_value != 0: mask_value = tf.convert_to_tensor(mask_value) unit_group = tf.cast(unit_group, mask_value.dtype) unit_group_mask = tf.cast(unit_group_mask, mask_value.dtype) unit_group += (1 - unit_group_mask) * mask_value return unit_group
22,748
def fill_session_team(team_id, session_id, dbsession=DBSESSION): """ Use the FPL API to get list of players in an FPL squad with id=team_id, then fill the session team with these players. """ # first reset the team reset_session_team(session_id, dbsession) # now query the API players = fetcher.get_fpl_team_data(get_last_finished_gameweek(), team_id) player_ids = [p["element"] for p in players] for pid in player_ids: add_session_player(pid, session_id, dbsession) team_history = fetcher.get_fpl_team_history_data()["current"] index = ( get_last_finished_gameweek() - 1 ) # as gameweek starts counting from 1 but list index starts at 0 budget = team_history[index]["value"] set_session_budget(budget, session_id) return player_ids
22,749
def create_map(users_info): """ This function builds an HTML map with locations of user's friends on Twitter. """ my_map = folium.Map( location=[49.818396058511645, 24.02258071000576], zoom_start=10) folium.TileLayer('cartodbdark_matter').add_to(my_map) folium.TileLayer('stamentoner').add_to(my_map) folium.TileLayer('openstreetmap').add_to(my_map) fg_friends = folium.FeatureGroup(name='Twitter Friends') for user in users_info: nickname = user[0] user_coord = user[1] fg_friends.add_child(folium.Marker(location=user_coord, popup=nickname, icon=folium.Icon(color='darkred', icon='heart'))) my_map.add_child(fg_friends) my_map.add_child(folium.LayerControl()) return my_map.get_root().render()
22,750
def write_dist_mat_file(mat, pdb, ag, out_folder, tag = ''): """ Writes out a file containing the distance matrix """ # output_folder = 'core_contact_maps/dist_mat_txt_folder/' numpy.set_printoptions(threshold=numpy.inf) dist_mat_file = pdb.split('.')[0] dist_mat_file = out_folder + dist_mat_file + '_full_mat_' + ag.getTitle() + tag + '.txt' with open(dist_mat_file, 'w') as open_file: for i in mat: open_file.write(str(i) + '\n') return
22,751
def l2sq(x): """Sum the matrix elements squared """ return (x**2).sum()
22,752
def normalize(arr, axis=None): """ Normalize a vector between 0 and 1. Parameters ---------- arr : numpy.ndarray Input array axis : integer Axis along which normalization is computed Returns ------- arr : numpy.ndarray Normalized version of the input array """ if not isinstance(arr, np.ndarray): arr = np.asarray(arr) arr = arr - np.min(arr, axis) M = np.max(arr, axis) if np.sum(np.abs(M)) > 0: arr = arr / M return arr
22,753
def successive_substitution(m, T, P, max_iter, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta, K, steps=0): """ Find K-factors by successive substitution Iterate to find a converged set of K-factors defining the gas/liquid partitioning of a mixture using successive substitution. We follow the algorithms in McCain (1990) and Michelsen and Mollerup (2007). Parameters ---------- m : ndarray, size (nc) masses of each component present in the whole mixture (gas plus liquid, kg) T : float temperature (K) P : float pressure (Pa) max_iter : int maximum number of iterations to perform. Set max_iter to np.inf if you want the algorithm to guarantee to iterate to convergenece, but beware that you may create an infinite loop. M : ndarray, size (nc) Molecular weights (kg/mol) Pc : ndarray, size (nc) Critical pressures (Pa) Tc : ndarray, size (nc) Critical temperatures (K) omega : ndarray, size (nc) Acentric factors (--) delta : ndarray, size (nc, nc) Binary interaction coefficients for the Peng-Robinson equation of state. Aij : ndarray, (15, 15) Coefficients in matrix A_ij for the group contribution method for delta_ij following Privat and Jaubert (2012) Bij : ndarray, (15, 15) Coefficients in matrix A_ij for the group contribution method for delta_ij following Privat and Jaubert (2012) delta_groups : ndarray, (nc, 15) Specification of the fractional groups for each component of the mixture for the group contribution method of Privat and Jaubert (2012) for delta_ij calc_delta : int Flag specifying whether or not to compute delta_ij (1: True, -1: False) using the group contribution method K : ndarray, size (nc) Initial guess for the partition coefficients. If K = None, this function will use initial estimates from Wilson (see Michelsen and Mollerup, 2007, page 259, equation 26) steps : int (default = 0) Number of previous iteration steps Returns ------- K : ndarray, size (nc) Final value of the K-factors beta : float Fraction of gas or liquid (--) xi : ndarray, size(2, nc) Mole fraction of each component in the mixture. Row 1 gives the values for the gas phase and Row 2 gives the values for the liquid phase (--) exit_flag : int Flag indicating how the solution finished: 1: converged in the allowable number of iterations, 0: did not converge and did not find any indication that it might be single phase, and -1: did not converge, but it looks like it might be single phase. steps : int Total number of interation steps so far Notes ----- The max_iter parameter controls how many steps of successive iteration are performed. If set to None, the iteration will continue until the tolerance criteria are reached. """ # Update the value of K using successive substitution def update_K(K): """ Evaluate the update function for finding K-factor Evaluates the new guess for K-factor following McCain (1990) p. 426, equation (15-23) as explained on p. 430 in connection with equation (15-31). This is the update equation for the successive substitution method. Parameters ---------- T, P, m_0, M, Pc, Tc, omega, delta = constant and inherited from above K : ndarray The current guess for the K-factor (--) Returns ------- K_new : ndarray New guess for K-factor """ # Get the mixture composition for the current K-factor xi, beta = gas_liq_eq(m, M, K) # Get tha gas and liquid fugacities for the current composition f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[0,:] f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[1,:] # Update K using K = (phi_liq / phi_gas) K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P)) # If the mass of any component in the mixture is zero, make sure the # K-factor is also zero. K_new[np.isnan(K_new)] = 0. # Follow what is said by Michelsen & Mollerup, at page 259, just # above equation 27: if steps==0.: moles = m / M zi = moles / np.sum(moles) if np.sum(zi*K_new) - 1. <= 0.: # Condition 4 page 252 xi[0,:] = K_new * zi / np.sum(K_new*zi) xi[1,:] = zi # Recompute fugacities of gas and liquid: # Get tha gas and liquid fugacities for the current # composition f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[0,:] f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[1,:] # Update K using K = (phi_liq / phi_gas) K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P)) K_new[np.isnan(K_new)] = 0. elif (1.-np.sum(zi/K_new))>=0.: # % Condition 5 page 252 xi[0,:] = zi xi[1,:] = (zi/K_new)/np.sum(zi/K_new) # Recompute fugacities of gas and liquid: # Get tha gas and liquid fugacities for the current # composition f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[0,:] f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega, delta, Aij, Bij, delta_groups, calc_delta)[1,:] # Update K using K = (phi_liq / phi_gas) K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P)) K_new[np.isnan(K_new)] = 0. # Return an updated value for the K factors return (K_new, beta) # Set up the iteration parameters tol = 1.49012e-8 # Suggested by McCain (1990) err = 1. # Iterate to find the final value of K factor using successive # substitution stop = False while err > tol and steps < max_iter and not stop: # Save the current value of K factor K_old = K # Update the estimate of K factor using the present fugacities K, beta = update_K(K) steps += 1 if steps > 3 and (beta == 0. or beta == 1.): stop = True # Compute the current error based on the squared relative error # suggested by McCain (1990) and update the iteration counter err = np.nansum((K - K_old)**2 / (K * K_old)) # Determine the exit condition if stop: # Successive subsitution thinks this is single-phase flag = -1 elif steps < max_iter: # This solution is converged flag = 1 else: # No decision has been reached flag = 0 # Update the equilibrium and return the last value of K-factor xi, beta = gas_liq_eq(m, M, K) return (K, beta, xi, flag, steps)
22,754
def Match(context, pattern, arg=None): """Do a regular expression match against the argument""" if not arg: arg = context.node arg = Conversions.StringValue(arg) bool = re.match(pattern, arg) and boolean.true or boolean.false return bool
22,755
def rr_rectangle(rbins, a, b): """ RR_rect(r; a, b) """ return Frr_rectangle(rbins[1:], a, b) - Frr_rectangle(rbins[:-1], a, b)
22,756
def update_type(title, title_new=None, description=None, col_titles_new={}): """Method creates data type Args: title (str): current type title title_new (str): new type title description (str): type description col_titles_new (dict): new column values (key - col id, value - col value) Returns: bool """ try: db = DBO(_get_dsn())._dbo_driver cnt = db.execute( 'SELECT count(*) FROM data_type WHERE title = \'{0}\''.format(title)).fetchone()[0] if (cnt == 0): raise Error('Type {0} does not exist'.format(title)) query = 'UPDATE data_type SET ' if (title_new != None): query += 'title = \'{0}\', '.format(title_new) if (description != None): query += 'description = \'{0}\', '.format(description) for key, value in col_titles_new.items(): query += 'col{0}_title = \'{1}\', '.format(key, value) query = query[:-2] query += ' WHERE title = \'{0}\''.format(title) db.execute(query) db.commit() return True except Error as ex: print(ex) db.rollback() return False
22,757
def api(repos_path): """Glottolog instance from shared directory for read-only tests.""" return pyglottolog.Glottolog(str(repos_path))
22,758
def get_all_paginated_data(url, token): """ Get all data for the requesting user. Parameters ---------- url : str URL to the current data to get token: str User's OSF token Returns ------- Data dictionary of the data points gathered up until now. """ headers = {'Authorization': 'Bearer {}'.format(token)} # Get initial data response = requests.get(url, headers=headers) if response.status_code == 200: response_json = response.json() elif response.status_code == 410: raise PresQTResponseException("The requested resource is no longer available.", status.HTTP_410_GONE) elif response.status_code == 404: raise OSFNotFoundError("Resource not found.", status.HTTP_404_NOT_FOUND) elif response.status_code == 403: raise OSFForbiddenError( "User does not have access to this resource with the token provided.", status.HTTP_403_FORBIDDEN) data = response_json['data'] meta = response_json['links']['meta'] # Calculate pagination pages if '?filter' in url or '?page' in url: # We already have all the data we need for this request return data else: page_total = get_page_total(meta['total'], meta['per_page']) url_list = ['{}?page={}'.format(url, number) for number in range(2, page_total + 1)] # Call all pagination pages asynchronously from presqt.targets.osf.utilities.utils.async_functions import run_urls_async children_data = run_urls_async(url_list, headers) [data.extend(child['data']) for child in children_data] return data
22,759
def alaw_decode(x_a, quantization_channels, input_int=True, A=87.6): """alaw_decode(x_a, quantization_channels, input_int=True) input ----- x_a: np.array, mu-law waveform quantization_channels: int, Number of channels input_int: Bool True: convert x_mu (int) from int to float, before mu-law decode False: directly decode x_mu (float) A: float, parameter for a-law, default 87.6 output ------ x: np.array, waveform """ num = quantization_channels - 1.0 if input_int: x = x_a / num * 2 - 1.0 else: x = x_a sign = np.sign(x) x_a_abs = np.abs(x) x = x_a_abs * (1 + np.log(A)) flag = x >= 1 x[flag] = np.exp(x[flag] - 1) x = sign * x / A return x
22,760
def incoming(ui, repo, source="default", **opts): """show new changesets found in source Show new changesets found in the specified path/URL or the default pull location. These are the changesets that would have been pulled if a pull at the time you issued this command. For remote repository, using --bundle avoids downloading the changesets twice if the incoming is followed by a pull. See pull for valid source format details. """ limit = cmdutil.loglimit(opts) source, branches = hg.parseurl(ui.expandpath(source), opts.get('branch')) other = hg.repository(cmdutil.remoteui(repo, opts), source) ui.status(_('comparing with %s\n') % url.hidepassword(source)) revs, checkout = hg.addbranchrevs(repo, other, branches, opts.get('rev')) if revs: revs = [other.lookup(rev) for rev in revs] common, incoming, rheads = repo.findcommonincoming(other, heads=revs, force=opts["force"]) if not incoming: try: os.unlink(opts["bundle"]) except: pass ui.status(_("no changes found\n")) return 1 cleanup = None try: fname = opts["bundle"] if fname or not other.local(): # create a bundle (uncompressed if other repo is not local) if revs is None and other.capable('changegroupsubset'): revs = rheads if revs is None: cg = other.changegroup(incoming, "incoming") else: cg = other.changegroupsubset(incoming, revs, 'incoming') bundletype = other.local() and "HG10BZ" or "HG10UN" fname = cleanup = changegroup.writebundle(cg, fname, bundletype) # keep written bundle? if opts["bundle"]: cleanup = None if not other.local(): # use the created uncompressed bundlerepo other = bundlerepo.bundlerepository(ui, repo.root, fname) o = other.changelog.nodesbetween(incoming, revs)[0] if opts.get('newest_first'): o.reverse() displayer = cmdutil.show_changeset(ui, other, opts) count = 0 for n in o: if limit is not None and count >= limit: break parents = [p for p in other.changelog.parents(n) if p != nullid] if opts.get('no_merges') and len(parents) == 2: continue count += 1 displayer.show(other[n]) displayer.close() finally: if hasattr(other, 'close'): other.close() if cleanup: os.unlink(cleanup)
22,761
def test_failure(database): """ Test failure for PrimaryPlaceOfPerformanceCode for aggregate records (i.e., when RecordType = 1) must be in countywide format (XX**###). """ det_award_1 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="00**333", record_type="1") det_award_2 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="AB**33", record_type="1") det_award_3 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="00*****", record_type="1") errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3]) assert errors == 3
22,762
def test_jujuconfig_missing_file(tmp_path): """No config.yaml file at all.""" result = JujuConfig().run(tmp_path) assert result == JujuConfig.Result.ok
22,763
def _ec_2d(X): """Function for computing the empirical Euler characteristic of a given thresholded data array. Input arguments: ================ Y : ndarray of floats The thresholded image. Ones correspond to activated regions. Output arguments: ================= ec : float The empirical Euler characteristic. """ # TODO: check for holes in the activated regions. _, ec = label(X, neighbors=None, background=0, return_num=True, connectivity=2) return ec
22,764
def swap_year_for_time(df, inplace): """Internal implementation to swap 'year' domain to 'time' (as datetime)""" if not df.time_col == "year": raise ValueError("Time domain must be 'year' to use this method") ret = df.copy() if not inplace else df index = ret._data.index order = [v if v != "year" else "time" for v in index.names] if "subannual" in df.extra_cols: order = order.remove("subannual") time_values = zip(*[index.get_level_values(c) for c in ["year", "subannual"]]) time = list(map(dateutil.parser.parse, [f"{y}-{s}" for y, s in time_values])) index = index.droplevel(["year", "subannual"]) ret.extra_cols.remove("subannual") else: time = index.get_level_values("year") index = index.droplevel(["year"]) # add new index column, assign data and other attributes index = append_index_col(index, time, "time", order=order) ret._data.index = index ret.time_col = "time" ret._set_attributes() delattr(ret, "year") if not inplace: return ret
22,765
def get_orders( db: Session, skip: int = 0, limit: int = 50, moderator: str = None, owner: str = None, desc: bool = True, ) -> Optional[List[entities.Order]]: """ Get the registed orders using filters. Args: - db: the database session. - skip: the number of filtered entities to skip. - limit: the number of entities to limit the query. - moderadtor: the moderator name that create the order. - owner: the owner name that receive the order. - desc: order by request_at datetime. Returns: - the list of orders or `None` if there are no orders to return using the filter specified. """ order_by = ( entities.Order.requested_at.desc() if desc else entities.Order.requested_at.asc() ) query = db.query(entities.Order).order_by(order_by) if moderator: query = query.filter_by(mod_display_name=moderator) if owner: query = query.filter_by(owner_display_name=owner) return query.offset(skip).limit(limit).all()
22,766
def create_data_loader(img_dir, info_csv_path, batch_size): """Returns a data loader for the model.""" img_transform = transforms.Compose([transforms.Resize((120, 120), interpolation=Image.BICUBIC), transforms.ToTensor()]) img_dataset = FashionDataset(img_dir, img_transform, info_csv_path) data_loader = DataLoader(img_dataset, batch_size=batch_size, shuffle=True, num_workers=12, pin_memory=True) return data_loader
22,767
def comp_number_phase_eq(self): """Compute the equivalent number of phase Parameters ---------- self : LamSquirrelCage A LamSquirrelCage object Returns ------- qb: float Zs/p """ return self.slot.Zs / float(self.winding.p)
22,768
def exprOps(expr): """This operation estimation is not handling some simple optimizations that should be done (i.e. y-x is treated as -1*x+y) and it is overestimating multiplications in situations such as divisions. This is as a result of the simple method of implementing this function given the rudimentary form of the expression tree. It should only be overestimating the number of operations though, so it is a viable way to see how much optimization is improving the computational load of the generated Kalman filters""" ops = OperationCounts() if isinstance(expr, sympy.Symbol) or isinstance(expr, sympy.Number): #print('--> {}'.format(expr)) ops.reads += 1 else: func = expr.func num = len(expr.args) - 1 #print('--> ({}, {})'.format(func, expr.args)) process = True if func == sympy.Add: ops.addsubs += num elif func == sympy.Mul: ops.mults += num elif func == sympy.Pow: if expr.args[1] == -1: ops.divs += 1 process = False elif expr.args[1] > 0: ops.mults += int(expr.args[1].evalf()-1) process = False else: print('Error: Unknown how to map expression {} to operation counts'.format(expr)) else: print('Unknown function {}'.format(func)) if process: for arg in expr.args: o = exprOps(arg) ops += o return ops
22,769
def ellipsis_reformat(source: str) -> str: """ Move ellipses (``...``) for type stubs onto the end of the stub definition. Before: .. code-block:: python def foo(value: str) -> int: ... After: .. code-block:: python def foo(value: str) -> int: ... :param source: The source to reformat. :return: The reformatted source. """ if "..." not in source: return source return EllipsisRewriter(source).rewrite()
22,770
def build_wtk_filepath(region, year, resolution=None): """ A utility for building WIND Toolkit filepaths. Args: region (str): region in which the lat/lon point is located (see `get_regions`) year (int): year to be accessed (see `get_regions`) resolution (:obj:`str`, optional): data resolution (see `get_regions`) Returns: str: The filepath for the requested resource. """ wtk = _load_wtk() base_url = '/nrel/wtk/' assert region in wtk, 'region not found: %s' % region year_range = wtk[region]['year_range'] year_range = range(year_range[0], year_range[1]+1) assert isinstance(year, int), '"year" must be an integer' msg = 'year %s not available for region: %s' % (year, region) assert year in year_range, msg if resolution: msg = 'resolution "%s" not available for region: %s' % ( resolution, region) assert resolution in wtk[region]['resolutions'], msg base = wtk[region].get('base') if resolution == '5min': url_region = '%s-%s/' % (region, resolution) else: url_region = region + '/' if base: file = '%s_%s.h5' % (base, year) else: file = 'wtk_%s_%s.h5' % (region, year) return base_url + url_region + file
22,771
def init_doc(args: dict) -> dict: """ Initialize documentation variable :param args: A dictionary containing relevant documentation fields :return: """ doc = {} try: doc[ENDPOINT_PORT_KEY] = args[ENDPOINT_PORT_KEY] except KeyError: logging.warning("No port for documentation specified, default one will be used: "+str(DEFAULT_REST_PORT)) doc[ENDPOINT_PORT_KEY] = DEFAULT_REST_PORT try: doc[ENDPOINT_URL_KEY] = args[ENDPOINT_URL_KEY] except KeyError: logging.warning("No URL for documentation specified, default one will be used: " + DEFAULT_URL) doc[ENDPOINT_URL_KEY] = DEFAULT_URL try: doc[MODULE_NAME_KEY] = args[MODULE_NAME_KEY] except KeyError: logging.warning("No module name for documentation specified, default one will be used: " + DEFAULT_MODULE_NAME) doc[MODULE_NAME_KEY] = DEFAULT_MODULE_NAME return doc
22,772
def decode_entities(string): """ Decodes HTML entities in the given string ("&lt;" => "<"). """ # http://snippets.dzone.com/posts/show/4569 def replace_entity(match): hash, hex, name = match.group(1), match.group(2), match.group(3) if hash == "#" or name.isdigit(): if hex == "": return unichr(int(name)) # "&#38;" => "&" if hex.lower() == "x": return unichr(int("0x" + name, 16)) # "&#x0026;" = > "&" else: cp = name2codepoint.get(name) # "&amp;" => "&" return unichr(cp) if cp else match.group() # "&foo;" => "&foo;" if isinstance(string, basestring): return RE_UNICODE.subn(replace_entity, string)[0] return string
22,773
def test_get_or_create_auth_tokens(mocker, settings, user): """ get_or_create_auth_tokens will contact our plugin's API to get a refresh token for a user, or to create one """ settings.OPEN_DISCUSSIONS_REDDIT_URL = "http://fake" refresh_token_url = urljoin( settings.OPEN_DISCUSSIONS_REDDIT_URL, "/api/v1/generate_refresh_token" ) get_session_stub = mocker.patch("channels.api._get_session", autospec=True) refresh_token_value = "refresh_token" access_token_value = "access_token" get_session_stub.return_value.get.return_value.json.return_value = { "refresh_token": refresh_token_value, "access_token": access_token_value, "expires_in": 123, } assert RedditAccessToken.objects.filter(user=user).count() == 0 assert RedditRefreshToken.objects.filter(user=user).count() == 0 refresh_token, access_token = api.get_or_create_auth_tokens(user) assert refresh_token.token_value == refresh_token_value assert access_token.token_value == access_token_value get_session_stub.return_value.get.assert_called_once_with( refresh_token_url, params={"username": user.username} ) get_session_stub.return_value.get.return_value.json.assert_called_once_with() assert RedditAccessToken.objects.filter(user=user).count() == 1 assert RedditRefreshToken.objects.filter(user=user).count() == 1
22,774
def convert2board(chrom, rows, cols): """ Converts the chromosome represented in a list into a 2D numpy array. :param rows: number of rows associated with the board. :param cols: number of columns associated with the board. :param chrom: chromosome to be converted. :return: 2D numpy array. """ # Initialise the variables to be used idx = int(0) # Chromosome index board = np.zeros((rows, cols), 'uint8') board.fill(CELL_UNASSIGNED) # Now loop through the board adding the shapes and checking validity. # Start at top left corner, processing each row in turn. for row in range(rows): for col in range(cols): # Retrieve the next shape shape = chrom[idx] # Skip the cell if it is already occupied. if board[row][col] != CELL_UNASSIGNED: continue # Have we run out of shapes... if shape == CELL_UNASSIGNED: idx = idx + 1 if idx >= len(chrom): return board continue # Attempt to place the shape on the board. if shape == CELL_SPACE: # Place the hole if valid. if not ((col > 0 and board[row][col - 1] == CELL_SPACE) or (row > 0 and board[row - 1][col] == CELL_SPACE)): board[row][col] = CELL_SPACE elif shape == CELL_HDOMINO: # Are we ok to have a horizontal domino? if col < cols - 1 and board[row][col + 1] == CELL_UNASSIGNED: board[row][col] = CELL_HDOMINO board[row][col + 1] = CELL_HDOMINO else: # shape == CELL_VDOMINO: # Are we ok to have a vertical domino? if row < rows - 1: board[row][col] = CELL_VDOMINO board[row + 1][col] = CELL_VDOMINO # Move on to the next shape idx = idx + 1 if idx >= len(chrom): return board return board
22,775
def dots(it, label="", hide=None, every=1): """Progress iterator. Prints a dot for each item being iterated""" count = 0 if not hide: STREAM.write(label) for i, item in enumerate(it): if not hide: if i % every == 0: # True every "every" updates STREAM.write(DOTS_CHAR) sys.stderr.flush() count += 1 yield item STREAM.write("\n") STREAM.flush()
22,776
def _assert_common_properties(dev, notice_level, msg_file, num_cpu_threads=None): """Assert the properties common to all devices are correct.""" assert dev.notice_level == notice_level assert dev.msg_file == msg_file if num_cpu_threads is not None: if hoomd.version.tbb_enabled: assert dev.num_cpu_threads == num_cpu_threads else: assert dev.num_cpu_threads == 1 assert type(dev.communicator) == hoomd.communicator.Communicator
22,777
def filter_halo_pnum(data, Ncut=1000): """ Returns indicies of halos with more than Ncut particles""" npart = np.array(data['np'][0]) ind =np.where(npart > Ncut)[0] print("# of halos:",len(ind)) return ind
22,778
def _preprocess_sgm(line, is_sgm): """Preprocessing to strip tags in SGM files.""" if not is_sgm: return line # In SGM files, remove <srcset ...>, <p>, <doc ...> lines. if line.startswith("<srcset") or line.startswith("</srcset"): return "" if line.startswith("<refset") or line.startswith("</refset"): return "" if line.startswith("<doc") or line.startswith("</doc"): return "" if line.startswith("<p>") or line.startswith("</p>"): return "" # Strip <seg> tags. line = line.strip() if line.startswith("<seg") and line.endswith("</seg>"): i = line.index(">") return line[i + 1:-6]
22,779
def discover(using, index="*"): """ :param using: Elasticsearch client :param index: Comma-separated list or wildcard expression of index names used to limit the request. """ indices = Indices() for index_name, index_detail in using.indices.get(index=index).items(): indices[index_name] = Index( client=using, name=index_name, mappings=index_detail["mappings"], settings=index_detail["settings"], aliases=index_detail["aliases"], ) return indices
22,780
def quote_sql_value(cursor: Cursor, value: SQLType) -> str: """ Use the SQL `quote()` function to return the quoted version of `value`. :returns: the quoted value """ if isinstance(value, (int, float, datetime)): return str(value) if value is None: return "NULL" if isinstance(value, (str, bytes)): cursor.execute("SELECT quote(?);", (value,)) result = cursor.fetchall()[0][0] assert isinstance(result, str) return result raise ValueError(f"Do not know how to quote value of type {type(value)}")
22,781
def create_admin_nova_client(context): """ Creates client that uses trove admin credentials :return: a client for nova for the trove admin """ client = create_nova_client(context, password=CONF.nova_proxy_admin_pass) return client
22,782
def page_cache(timeout=1800): """ page cache param: timeout:the deadline of cache default is 1800 """ def _func(func): def wrap(request, *a, **kw): key = request.get_full_path() #pass chinese try: key = mkey.encode("utf-8") except Exception, e: key = str(key) data = None try: data = mclient.get(key) if not data: data = func(request, *a, **kw) if data: mclient.set(key, data, timeout) return HttpResponse(data, content_type=request.META.get("CONTENT_TYPE", "text/plain")) except Exception, e: if data: HttpResponse(data, content_type=request.META.get("CONTENT_TYPE", "text/plain")) else: return HttpResponse("<objects><error>%s</error></objects>" % e, content_type=request.META.get("CONTENT_TYPE", "text/plain")) return wrap return _funcs
22,783
def get_available_games(): """Get a list of games that are available to join.""" games = Game.objects.filter(started=False) #pylint: disable=no-member if len(games) == 0: options = [('', '- None -')] else: options = [('', '- Select -')] for game in games: options.append((game.name, game.name)) return options
22,784
def test_unstructure_attrs_lists(benchmark, converter_cls, unstructure_strat): """ Benchmark a large (30 attributes) attrs class containing lists of primitives. """ class E(IntEnum): ONE = 1 TWO = 2 @attr.define class C: a: List[int] b: List[float] c: List[str] d: List[bytes] e: List[E] f: List[int] g: List[float] h: List[str] i: List[bytes] j: List[E] k: List[int] l: List[float] m: List[str] n: List[bytes] o: List[E] p: List[int] q: List[float] r: List[str] s: List[bytes] t: List[E] u: List[int] v: List[float] w: List[str] x: List[bytes] y: List[E] z: List[int] aa: List[float] ab: List[str] ac: List[bytes] ad: List[E] c = converter_cls(unstruct_strat=unstructure_strat) benchmark( c.unstructure, C( [1] * 3, [1.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.ONE] * 3, [2] * 3, [2.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.TWO] * 3, [3] * 3, [3.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.ONE] * 3, [4] * 3, [4.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.TWO] * 3, [5] * 3, [5.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.ONE] * 3, [6] * 3, [6.0] * 3, ["a small string"] * 3, ["test".encode()] * 3, [E.TWO] * 3, ), )
22,785
def _add_rays_single_cam( camera_data: TensorDict, *, scene_from_frame: tf_geometry.Isometry, ) -> TensorDict: """Returns the camera, eventually with the rays added.""" if _has_precomputed_rays(camera_data): return camera_data else: # Logic below for generating camera rays only applies to perspective # cameras. It will produce incorrect camera rays for other types of # cameras (e.g. those with distortions). camera_type = camera_data['intrinsics']['type'] tf.debugging.assert_equal(camera_type, 'PERSPECTIVE') # Pinhole camera model below does not know how to handle lens distortion. # Ensure that no distortion exists here. radial_distortion = camera_data['intrinsics']['distortion']['radial'] tf.debugging.assert_near(radial_distortion, tf.zeros_like(radial_distortion)) tangential_distortion = ( camera_data['intrinsics']['distortion']['tangential']) tf.debugging.assert_near(tangential_distortion, tf.zeros_like(tangential_distortion)) h, w, _ = camera_data['color_image'].shape # Compute camera pose w.r.t scene (camera to scene transform). camera_from_frame = tf_geometry.Isometry(**camera_data['extrinsics']) scene_from_camera = scene_from_frame * camera_from_frame.inverse() # Get rays w.r.t scene passing through every pixel center of the camera. camera_intrinsics = camera_data['intrinsics'] ray_origins, ray_directions = tf_geometry.rays_from_image_grid( camera=tf_geometry.PinholeCamera( K=camera_intrinsics['K'], # Use static shape if available image_width=w or camera_intrinsics['image_width'], image_height=h or camera_intrinsics['image_height']), world_from_camera=scene_from_camera, ) camera_data['ray_origins'] = ray_origins camera_data['ray_directions'] = ray_directions return camera_data
22,786
def add_vendor_suboption(sender_type, code, data): """ After adding Vendor Specific Option we can decide to add suboptions to it. Please make sure which are supported and if it's necessary add suboption by yourself. """ dhcpmsg.add_vendor_suboption(int(code), data)
22,787
def test_print_albumdata_80(capsys, monkeypatch, albumdata): """Try to print albumdata to width 80 correctly.""" expected = """\ ================================================================================ Test Artist Test album test ================================================================================ Track Track Artist Suggested filename -------------------------------------------------------------------------------- Test track Test Artist /home/user/Music/Test Artist/Test [...] -------------------------------------------------------------------------------- """ monkeypatch.setattr('shutil.get_terminal_size', lambda: (80, 24)) albumdata.Albumdata._print_albumdata(testdata) out, err = capsys.readouterr() assert out == expected
22,788
def read_file(filename=""): """reads filename with utf-8""" with open(filename, encoding='utf-8') as f: print(f.read(), end="")
22,789
def process_ps_stdout(stdout): """ Process the stdout of the ps command """ return [i.split()[0] for i in filter(lambda x: x, stdout.decode("utf-8").split("\n")[1:])]
22,790
def _cleanup_archive_dir(tm_env): """Delete old files from archive directory if space exceeds the threshold. """ archives = glob.glob(os.path.join(tm_env.archives_dir, '*')) infos = [] dir_size = 0 for archive in archives: stat = os.stat(archive) dir_size += stat.st_size infos.append((stat.st_mtime, stat.st_size, archive)) if dir_size <= _ARCHIVE_LIMIT: _LOGGER.info('Archive directory below threshold: %s', dir_size) return _LOGGER.info('Archive directory above threshold: %s gt %s', dir_size, _ARCHIVE_LIMIT) infos.sort() while dir_size > _ARCHIVE_LIMIT: ctime, size, archive = infos.pop(0) dir_size -= size _LOGGER.info('Unlink old archive %s: ctime: %s, size: %s', archive, ctime, size) fs.rm_safe(archive)
22,791
def chpasswd(path, oldpassword, newpassword): """Change password of a private key. """ if len(newpassword) != 0 and not len(newpassword) > 4: return False cmd = shlex.split('ssh-keygen -p') child = pexpect.spawn(cmd[0], cmd[1:]) i = child.expect(['Enter file in which the key is', pexpect.EOF]) if i == 1: if child.isalive(): child.wait() return False child.sendline(path) i = child.expect(['Enter old passphrase', 'Enter new passphrase', pexpect.EOF]) if i == 0: child.sendline(oldpassword) i = child.expect(['Enter new passphrase', 'Bad passphrase', pexpect.EOF]) if i != 0: if child.isalive(): child.wait() return False elif i == 2: if child.isalive(): child.wait() return False child.sendline(newpassword) i = child.expect(['Enter same passphrase again', pexpect.EOF]) if i == 1: if child.isalive(): child.wait() return False child.sendline(newpassword) child.expect(pexpect.EOF) if child.isalive(): return child.wait() == 0 return True
22,792
def get_display_limits(VarInst, data=None): """Get limits to resize the display of Variables. Function takes as argument a `VariableInstance` from a `Section` or `Planform` and an optional :obj:`data` argument, which specifies how to determine the limits to return. Parameters ---------- VarInst : :obj:`~deltametrics.section.BaseSectionVariable` subclass The `Variable` instance to visualize. May be any subclass of :obj:`~deltametrics.section.BaseSectionVariable` or :obj:`~deltametrics.plan.BasePlanformVariable`. data : :obj:`str`, optional The type of data to compute limits for. Typically this will be the same value used with either :obj:`get_display_arrays` or :obj:`get_display_lines`. Supported options are `'spacetime'`, `'preserved'`, and `'stratigraphy'`. Returns ------- xmin, xmax, ymin, ymax : :obj:`float` Values to use as limits on a plot. Use with, for example, ``ax.set_xlim((xmin, xmax))``. """ # # # SectionVariables # # # if issubclass(type(VarInst), section.BaseSectionVariable): # # DataSection # # if isinstance(VarInst, section.DataSectionVariable): data = data or VarInst._default_data if data in VarInst._spacetime_names: return np.min(VarInst._S), np.max(VarInst._S), \ np.min(VarInst._Z), np.max(VarInst._Z) elif data in VarInst._preserved_names: VarInst._check_knows_stratigraphy() # need to check explicitly return np.min(VarInst._S), np.max(VarInst._S), \ np.min(VarInst._Z), np.max(VarInst._Z) elif data in VarInst._stratigraphy_names: VarInst._check_knows_stratigraphy() # need to check explicitly _strata = np.copy(VarInst.strat_attr['strata']) return np.min(VarInst._S), np.max(VarInst._S), \ np.min(_strata), np.max(_strata) * 1.5 else: raise ValueError('Bad data argument: %s' % str(data)) # # StratigraphySection # # elif isinstance(VarInst, section.StratigraphySectionVariable): data = data or VarInst._default_data if data in VarInst._spacetime_names: VarInst._check_knows_spacetime() # always False elif data in VarInst._preserved_names: VarInst._check_knows_spacetime() # always False elif data in VarInst._stratigraphy_names: return np.min(VarInst._S), np.max(VarInst._S), \ np.min(VarInst._Z), np.max(VarInst._Z) * 1.5 else: raise ValueError('Bad data argument: %s' % str(data)) else: raise TypeError # # # PlanformVariables # # # elif False: # issubclass(type(VarInst), plan.BasePlanformVariable): raise NotImplementedError else: raise TypeError('Invaid "VarInst" type: %s' % type(VarInst))
22,793
def plot_layer_consistency_example(eigval_col, eigvec_col, layernames, layeridx=[0,1,-1], titstr="GAN", figdir="", savelabel="", use_cuda=False): """ Note for scatter plot the aspect ratio is set fixed to one. :param eigval_col: :param eigvec_col: :param nsamp: :param titstr: :param figdir: :return: """ nsamp = len(layeridx) # Hnums = len(eigval_col) # eiglist = sorted(np.random.choice(Hnums, nsamp, replace=False)) # range(5) print("Plot hessian of layers : ", [layernames[idx] for idx in layeridx]) fig = plt.figure(figsize=[10, 10], constrained_layout=False) spec = fig.add_gridspec(ncols=nsamp, nrows=nsamp, left=0.075, right=0.975, top=0.9, bottom=0.05) for axi, Li in enumerate(layeridx): eigval_i, eigvect_i = eigval_col[Li], eigvec_col[Li] for axj, Lj in enumerate(layeridx): eigval_j, eigvect_j = eigval_col[Lj], eigvec_col[Lj] inpr = eigvect_i.T @ eigvect_j vHv_ij = np.diag((inpr @ np.diag(eigval_j)) @ inpr.T) ax = fig.add_subplot(spec[axi, axj]) if axi == axj: ax.hist(np.log10(eigval_j), 20) else: ax.scatter(np.log10(eigval_j), np.log10(vHv_ij), s=15, alpha=0.6) ax.set_aspect(1, adjustable='datalim') if axi == nsamp-1: ax.set_xlabel("eigvals @ %s" % layernames[Lj]) if axj == 0: ax.set_ylabel("vHv eigvec @ %s" % layernames[Li]) ST = plt.suptitle("Consistency of %s Hessian Across Layers\n" "Cross scatter of EigenValues and vHv values for Hessian at %d Layers"%(titstr, nsamp), fontsize=18) # plt.subplots_adjust(left=0.175, right=0.95 ) RND = np.random.randint(1000) plt.savefig(join(figdir, "Hess_layer_consistency_example_%s_rnd%03d.jpg" % (savelabel, RND)), bbox_extra_artists=[ST]) # plt.savefig(join(figdir, "Hess_layer_consistency_example_%s_rnd%03d.pdf" % (savelabel, RND)), bbox_extra_artists=[ST]) # return fig
22,794
def min_vertex_cover(left_v, right_v): """ Use the Hopcroft-Karp algorithm to find a maximum matching or maximum independent set of a bipartite graph. Next, find a minimum vertex cover by finding the complement of a maximum independent set. The function takes as input two dictionaries, one for the left vertices and one for the right vertices. Each key in the left dictionary is a left vertex with a value equal to a list of the right vertices that are connected to the key by an edge. The right dictionary is structured similarly. The output is a dictionary with keys equal to the vertices in a minimum vertex cover and values equal to lists of the vertices connected to the key by an edge. For example, using the following simple bipartite graph: 1000 2000 1001 2000 where vertices 1000 and 1001 each have one edge and 2000 has two edges, the input would be: left = {1000: [2000], 1001: [2000]} right = {2000: [1000, 1001]} and the ouput or minimum vertex cover would be: {2000: [1000, 1001]} with vertex 2000 being the minimum vertex cover. """ data_hk = bipartiteMatch(left_v) left_mis = data_hk[1] right_mis = data_hk[2] mvc = left_v.copy() mvc.update(right_v) # junta os dicionarios num so for v in left_mis: try: del (mvc[v]) except KeyError: pass for v in right_mis: try: del (mvc[v]) except KeyError: pass return mvc
22,795
def neighbor_dist(x1, y1, x2, y2): """Return distance of nearest neighbor to x1, y1 in x2, y2""" m1, m2, d12 = match_xy(x2, y2, x1, y1, neighbors=1) return d12
22,796
def add_artist_subscription(auth, userid, artist_mbid): """ Add an artist to the list of subscribed artists. :param tuple auth: authentication data (username, password) :param str userid: user ID (must match auth data) :param str artist_mbid: musicbrainz ID of the artist to add :return: True on success :raises: HTTPError """ url = '%s/artists/%s/%s' % (API_BASE_URL, userid, artist_mbid) response = requests.put(url, auth=auth) response.raise_for_status() return True
22,797
def get_built_vocab(dataset: str) -> Vocab: """load vocab file for `dataset` to get Vocab based on selected client and data in current directory Args: dataset (str): string of dataset name to get vocab Returns: if there is no built vocab file for `dataset`, return None, else return Vocab """ vocab_file_path = Path(__file__).parent.resolve() / f'{dataset}_vocab.pickle' if not vocab_file_path.exists(): print('There is no built vocab file for {} dataset, please run `main` or `build_vocab.sh` to build it firstly.' .format(dataset)) return None vocab_file = open(vocab_file_path, 'rb') # get vocab based on sample data vocab = pickle.load(vocab_file) return vocab
22,798
def binidx(num: int, width: Optional[int] = None) -> Iterable[int]: """ Returns the indices of bits with the value `1`. Parameters ---------- num : int The number representing the binary state. width : int, optional Minimum number of digits used. The default is the global value `BITS`. Returns ------- binidx : list """ fill = width or 0 return list(sorted(i for i, char in enumerate(f"{num:0{fill}b}"[::-1]) if char == "1"))
22,799