content
stringlengths
22
815k
id
int64
0
4.91M
def XMLToPython (pattern): """Convert the given pattern to the format required for Python regular expressions. @param pattern: A Unicode string defining a pattern consistent with U{XML regular expressions<http://www.w3.org/TR/xmlschema-2/index.html#regexs>}. @return: A Unicode string specifying a Python regular expression that matches the same language as C{pattern}.""" new_pattern_elts = [] new_pattern_elts.append('^') position = 0 while position < len(pattern): cg = MaybeMatchCharacterClass(pattern, position) if cg is None: new_pattern_elts.append(pattern[position]) position += 1 else: (cps, position) = cg new_pattern_elts.append(cps.asPattern()) new_pattern_elts.append('$') return ''.join(new_pattern_elts)
22,500
def test_bad_color_array(): """Test adding shapes to InfiniteLineList.""" np.random.seed(0) data = np.random.random(1) vert = VerticalLine(data) line_list = InfiniteLineList() line_list.add(vert) # test setting color with a color array of the wrong shape bad_color_array = np.array([[0, 0, 0, 1], [1, 1, 1, 1]]) with pytest.raises(ValueError): setattr(line_list, "color", bad_color_array)
22,501
def write_deterministic_to_file(configuration, nowcast_data, filename=None, metadata=None): """Write deterministic output in ODIM HDF5 format.. Input: configuration -- Object containing configuration parameters nowcast_data -- generated deterministic nowcast filename -- filename for output deterministic HDF5 file metadata -- dictionary containing nowcast metadata (optional) """ #Output filename if filename is None: filename = os.path.join(defaults["output_options"]["path"], "deterministic.h5") _write(nowcast_data, filename, metadata, configuration=configuration, optype="det")
22,502
def __termios(fd): """Try to discover terminal width with fcntl, struct and termios.""" #noinspection PyBroadException try: import fcntl import termios import struct cr = struct.unpack('hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234')) except Exception: return None return cr
22,503
def encode(numbers, GCE=GCE): """ do extended encoding on a list of numbers for the google chart api >>> encode([1690, 90,1000]) 'chd=e:aaBaPo' """ encoded = [] for number in numbers: if number > 4095: raise ValueError('too large') first, second = divmod(number, len(GCE)) encoded.append("%s%s" % (GCE[first], GCE[second])) return "chd=e:%s" % ''.join(encoded)
22,504
def compute_f_mat(mat_rat,user_count,movie_count): """ compute the f matrix :param mat_rat: user`s rating matrix([user number,movie number]) where 1 means user likes the index movie. :param user_count: statistics of moive numbers that user have watch. :param movie_count: statistics of user numbers that movie have been rated. :return: f matrix """ temp = (mat_rat / user_count.reshape([-1,1]) )/ movie_count.reshape([1,-1]) D = np.dot(mat_rat.T, temp) f = np.dot(D, mat_rat.T).T return f
22,505
def main(device, transfer_json, test_mode): """ Main """ release_josn = f"metadata/release-{device}.json" if test_mode: log.warn("Test mode is active") mount_point = "test/" else: mount_point = MOUNT_POINT define_tag_from_json(release_josn) copy_metadata_files() copy_release_files(mount_point, transfer_json)
22,506
def metadata(path="xdress/metadata.json"): """Build a metadata file.""" md = {} md.update(INFO) # FIXME: Add the contents of CMakeCache.txt to the metadata dictionary # write the metadata file with open(path, 'w') as f: json.dump(md, f, indent=2) return md
22,507
def query_assemblies(organism, output, quiet=False): """from a taxid or a organism name, download all refseq assemblies """ logger = logging.getLogger(__name__) assemblies = [] genomes = Entrez.read(Entrez.esearch( "assembly", term=f"{organism}[Organism]", retmax=10000))["IdList"] logger.info( f"Found {len(genomes)} organisms in ncbi assemblies for {organism}") logger.info("Downloading the assemblies. Please be patient.") for id in tqdm(genomes, disable=quiet): try: entrez_assembly = Entrez.read( Entrez.esummary( db="assembly", id=id))["DocumentSummarySet"]["DocumentSummary"][0] except KeyError as e: entrez_assembly = Entrez.read( Entrez.esummary(db="assembly", id=id))["DocumentSummarySet"] print(entrez_assembly.keys()) raise else: assembly = Assembly(entrez_assembly) output_file = f"{output}/{assembly.accession}.fasta" download(assembly.ftp_refseq, output_file) assemblies.append(assembly) return assemblies
22,508
def setup_autoscale(): """Setup AWS autoscale""" my_id = 'wedding_plattform' kwargs = { "ami_id": 'ami-3fec7956', # Official Ubuntu 12.04.1 LTS US-EAST-1 "instance_type": "t1.micro", "key_name": my_id, "security_groups": [my_id], "availability_zones": ["us-east-1a", "us-east-1b", "us-east-1d"], "min_instances": 0, "sp_up_adjustment": 1, "load_balancers": [my_id] } ec2.setup_autoscale(my_id, **kwargs)
22,509
def main(params): """Loads the file containing the collation results from Wdiff. Then, identifies various kinds of differences that can be observed. Assembles this information for each difference between the two texts.""" print("\n== coleto: running text_analyze. ==") difftext = get_difftext(params["wdiffed_file"]) analysisresults = analyse_diffs(difftext, params) analysissummary = save_summary(difftext, analysisresults, params["analysissummary_file"]) save_analysis(analysisresults, params["analysis_file"]) return analysissummary
22,510
def test__get_title_failure(_root_errors, _ns): """ GIVEN a XML root Element of an METS/XML file with missing title values and a dictionary with the mets namespace WHEN calling the method _get_title() THEN check that the returned string is correct """ expected = "" actual = _get_title(_root_errors, _ns) assert actual == expected
22,511
def test_stacking(): """Assert that the stacking method creates a Stack model.""" atom = ATOMClassifier(X_bin, y_bin, experiment="test", random_state=1) pytest.raises(NotFittedError, atom.stacking) atom.run(["LR", "LGB"]) atom.stacking() assert hasattr(atom, "stack") assert "Stack" in atom.models assert atom.stack._run
22,512
def matrix_horizontal_stack(matrices: list, _deepcopy: bool = True): """ stack matrices horizontally. :param matrices: (list of Matrix) :param _deepcopy: (bool) :return: (Matrix) """ assert matrices for _i in range(1, len(matrices)): assert matrices[_i].basic_data_type() == matrices[0].basic_data_type() assert matrices[_i].size()[0] == matrices[0].size()[0] if _deepcopy: _matrices = deepcopy(matrices) else: _matrices = matrices _kernel = [] for _i in range(_matrices[0].size()[0]): _kernel.append([]) for _j in range(len(_matrices)): for _k in range(_matrices[_j].size()[1]): _kernel[_i].append(_matrices[_j].kernel[_i][_k]) return Matrix(_kernel)
22,513
def inds_to_invmap_as_array(inds: np.ndarray): """ Returns a mapping that maps global indices to local ones as an array. Parameters ---------- inds : numpy.ndarray An array of global indices. Returns ------- numpy.ndarray Mapping from global to local. """ res = np.zeros(inds.max() + 1, dtype=inds.dtype) for i in prange(len(inds)): res[inds[i]] = i return res
22,514
def install_plugin_urls(): """ urlpatterns - bCTF original urlpatterns """ urls = [] for plugin in list_plugins(): urls.append(path('{0}/'.format(plugin), include('plugins.{0}.urls'.format(plugin)))) return urls
22,515
def ident_keys(item, cfg): """Returns the list of keys in item which gives its identity :param item: dict with type information :param cfg: config options :returns: a list of fields for item that give it its identity :rtype: list """ try: return content.ident_keys(item) except Exception as e: logger.error('Failed to extract ident keys for %s' % (item), e) raise e
22,516
def playlists_by_date(formatter, albums): """Returns a single playlist of favorite tracks from albums sorted by decreasing review date. """ sorted_tracks = [] sorted_albums = sorted(albums, key=lambda x: x["date"], reverse=True) for album in sorted_albums: if album["picks"] is None: continue tracks = [ { "artist_tag": album["artist_tag"], "album_tag": album["album_tag"], "artist": album["artist"], "album": album["album"], "track": album["tracks"][p], } for p in album["picks"] ] sorted_tracks.extend(tracks) return formatter.parse_list(sorted_tracks, formatter.format_track)
22,517
def cryptdisks_start(target, context=None): """ Execute :man:`cryptdisks_start` or emulate its functionality. :param target: The mapped device name (a string). :param context: See :func:`.coerce_context()` for details. :raises: :exc:`~executor.ExternalCommandFailed` when a command fails, :exc:`~exceptions.ValueError` when no entry in `/etc/crypttab`_ matches `target`. """ context = coerce_context(context) logger.debug("Checking if `cryptdisks_start' program is installed ..") if context.find_program('cryptdisks_start'): logger.debug("Using the real `cryptdisks_start' program ..") context.execute('cryptdisks_start', target, sudo=True) else: logger.debug("Emulating `cryptdisks_start' functionality (program not installed) ..") for entry in parse_crypttab(context=context): if entry.target == target and 'luks' in entry.options: logger.debug("Matched /etc/crypttab entry: %s", entry) if entry.is_unlocked: logger.debug("Encrypted filesystem is already unlocked, doing nothing ..") else: unlock_filesystem(context=context, device_file=entry.source_device, key_file=entry.key_file, options=entry.options, target=entry.target) break else: msg = "Encrypted filesystem not listed in /etc/crypttab! (%r)" raise ValueError(msg % target)
22,518
def attach_ipv6_raguard_policy_to_interface(device, interface, policy_name): """ Attach IPv6 RA Guard Policy to an interface Args: device (`obj`): Device object interface (`str`): Interface to attach policy policy_name (`str`): Policy name to be attached to interface Returns: None Raises: SubCommandFailure """ cmd_1 = "interface {intf}".format(intf=interface) cmd_2 = "ipv6 nd raguard attach-policy {policy_name}".format(policy_name=policy_name) # Configure device try: device.configure([cmd_1, cmd_2]) except SubCommandFailure as e: raise SubCommandFailure( "Failed to attach IPv6 RA Guard policy {policy_name} on interface " "{interface} on device {dev}. Error:\n{error}".format( policy_name=policy_name, interface=interface, dev=device.name, error=e, ) )
22,519
def merge_two_sorted_array(l1, l2): """ Time Complexity: O(n+m) Space Complexity: O(n+m) :param l1: List[int] :param l2: List[int] :return: List[int] """ if not l1: return l2 if not l2: return l1 merge_list = [] i1 = 0 i2 = 0 l1_len = len(l1) - 1 l2_len = len(l2) - 1 while i1 <= l1_len and i2 <= l2_len: if l1[i1] < l2[i2]: merge_list.append(l1[i1]) i1 += 1 else: merge_list.append(l2[i2]) i2 += 1 while i1 <= l1_len: merge_list.append(l1[i1]) i1 += 1 while i2 <= l2_len: merge_list.append(l2[i2]) i2 += 1 return merge_list
22,520
def regression_metrics(y_true,y_pred): """ param1: pandas.Series/pandas.DataFrame/numpy.darray param2: pandas.Series/pandas.DataFrame/numpy.darray return: dictionary Function accept actual prediction labels from the dataset and predicted values from the model and utilizes this two values/data to calculate r2 score, mean absolute error, mean squared error, and root mean squared error at same time add them to result dictionary. Finally return the result dictionary """ result=dict() result['R2']=round(r2_score(y_true, y_pred),3) result['MAE']=round(mean_absolute_error(y_true, y_pred),3) result['MSE']=round(mean_squared_error(y_true, y_pred),3) result['RMSE']=round(mean_squared_error(y_true, y_pred,squared=False),3) return result
22,521
def test_auto_id(): """Tests auto_id option.""" acc = mm.MOTAccumulator(auto_id=True) acc.update([1, 2, 3, 4], [], []) acc.update([1, 2, 3, 4], [], []) assert acc.events.index.levels[0][-1] == 1 acc.update([1, 2, 3, 4], [], []) assert acc.events.index.levels[0][-1] == 2 with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [], frameid=5) acc = mm.MOTAccumulator(auto_id=False) with pytest.raises(AssertionError): acc.update([1, 2, 3, 4], [], [])
22,522
def convert_from_quint8(arr): """ Dequantize a quint8 NumPy ndarray into a float one. :param arr: Input ndarray. """ assert isinstance(arr, np.ndarray) assert ( "mgb_dtype" in arr.dtype.metadata and arr.dtype.metadata["mgb_dtype"]["name"] == "Quantized8Asymm" ), "arr should be a ndarray with quint8 dtype" scale, zp = ( arr.dtype.metadata["mgb_dtype"]["scale"], arr.dtype.metadata["mgb_dtype"]["zero_point"], ) return (arr.astype(np.float32) - zp) * scale
22,523
def _process_payment_id(state: State, tsx_data: MoneroTransactionData): """ Writes payment id to the `extra` field under the TX_EXTRA_NONCE = 0x02 tag. The second tag describes if the payment id is encrypted or not. If the payment id is 8 bytes long it implies encryption and therefore the TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID = 0x01 tag is used. If it is not encrypted, we use TX_EXTRA_NONCE_PAYMENT_ID = 0x00. Since Monero release 0.13 all 2 output payments have encrypted payment ID to make BC more uniform. See: - https://github.com/monero-project/monero/blob/ff7dc087ae5f7de162131cea9dbcf8eac7c126a1/src/cryptonote_basic/tx_extra.h """ # encrypted payment id / dummy payment ID view_key_pub_enc = None if not tsx_data.payment_id or len(tsx_data.payment_id) == 8: view_key_pub_enc = _get_key_for_payment_id_encryption( tsx_data, state.change_address(), state.client_version > 0 ) if not tsx_data.payment_id: return elif len(tsx_data.payment_id) == 8: view_key_pub = crypto.decodepoint(view_key_pub_enc) payment_id_encr = _encrypt_payment_id( tsx_data.payment_id, view_key_pub, state.tx_priv ) extra_nonce = payment_id_encr extra_prefix = 1 # TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID # plain text payment id elif len(tsx_data.payment_id) == 32: extra_nonce = tsx_data.payment_id extra_prefix = 0 # TX_EXTRA_NONCE_PAYMENT_ID else: raise ValueError("Payment ID size invalid") lextra = len(extra_nonce) if lextra >= 255: raise ValueError("Nonce could be 255 bytes max") # write it to extra extra_buff = bytearray(3 + lextra) extra_buff[0] = 2 # TX_EXTRA_NONCE extra_buff[1] = lextra + 1 extra_buff[2] = extra_prefix extra_buff[3:] = extra_nonce state.extra_nonce = extra_buff
22,524
def classpartial(*args, **kwargs): """Bind arguments to a class's __init__.""" cls, args = args[0], args[1:] class Partial(cls): __doc__ = cls.__doc__ def __new__(self): return cls(*args, **kwargs) Partial.__name__ = cls.__name__ return Partial
22,525
def load_xml(xml_path): """ Загружает xml в etree.ElementTree """ if os.path.exists(xml_path): xml_io = open(xml_path, 'rb') else: raise ValueError(xml_path) xml = objectify.parse(xml_io) xml_io.close() return xml
22,526
def alphabetize_concat(input_list): """ Takes a python list. List can contain arbitrary objects with .__str__() method (so string, int, float are all ok.) Sorts them alphanumerically. Returns a single string with result joined by underscores. """ array = np.array(input_list, dtype=str) array.sort() return '_'.join(array)
22,527
def kick(state, ai, ac, af, cosmology=cosmo, dtype=np.float32, name="Kick", **kwargs): """Kick the particles given the state Parameters ---------- state: tensor Input state tensor of shape (3, batch_size, npart, 3) ai, ac, af: float """ with tf.name_scope(name): state = tf.convert_to_tensor(state, name="state") fac = 1 / (ac ** 2 * E(cosmo,ac)) * (Gf(cosmo,af) - Gf(cosmo,ai)) / gf(cosmo,ac) indices = tf.constant([[1]]) #indices = tf.constant([1]) Xjl = tf.multiply(fac, state[2]) update = tf.expand_dims(Xjl, axis=0) shape = state.shape update = tf.scatter_nd(indices, update, shape) state = tf.add(state, update) return state
22,528
def check_similarity(var1, var2, error): """ Check the simulatiry between two numbers, considering a error margin. Parameters: ----------- var1: float var2: float error: float Returns: ----------- similarity: boolean """ if((var1 <= (var2 + error)) and (var1 >= (var2 - error))): return True else: return False
22,529
def model_type_by_code(algorithm_code): """ Method which return algorithm type by algorithm code. algorithm_code MUST contain any 'intable' type :param algorithm_code: code of algorithm :return: algorithm type name by algorithm code or None """ # invalid algorithm code case if algorithm_code not in ALGORITHM[ALGORITHM_CODE].keys(): return None return ALGORITHM[TYPE][algorithm_code]
22,530
def getCasing(word): """ Returns the casing of a word""" if len(word) == 0: return 'other' elif word.isdigit(): #Is a digit return 'numeric' elif word.islower(): #All lower case return 'allLower' elif word.isupper(): #All upper case return 'allUpper' elif word[0].isupper(): #is a title, initial char upper, then all lower return 'initialUpper' return 'other'
22,531
def normalize_angle(deg): """ Take an angle in degrees and return it as a value between 0 and 360 :param deg: float or int :return: float or int, value between 0 and 360 """ angle = deg while angle > 360: angle -= 360 while angle < 360: angle += 360 return angle
22,532
def test_staging_different_volumes_with_the_same_staging_target_path(): """Staging different volumes with the same staging_target_path."""
22,533
def current_global_irradiance(site_properties, solar_properties, timestamp): """Calculate the clear-sky POA (plane of array) irradiance for a specific time (seconds timestamp).""" dt = datetime.datetime.fromtimestamp(timestamp=timestamp, tz=tz.gettz(site_properties.tz)) n = dt.timetuple().tm_yday sigma = math.radians(solar_properties.tilt) rho = solar_properties.get('rho', 0.0) C = 0.095 + 0.04 * math.sin(math.radians((n - 100) / 365)) sin_sigma = math.sin(sigma) cos_sigma = math.cos(sigma) altitude = get_altitude(latitude_deg=site_properties.latitude, longitude_deg=site_properties.longitude, when=dt) beta = math.radians(altitude) sin_beta = math.sin(beta) cos_beta = math.cos(beta) azimuth = get_azimuth(latitude_deg=site_properties.latitude, longitude_deg=site_properties.longitude, when=dt) phi_s = math.radians(180 - azimuth) phi_c = math.radians(180 - solar_properties.azimuth) phi = phi_s - phi_c cos_phi = math.cos(phi) # Workaround for a quirk of pvsolar since the airmass for the sun ele===altitude of zero # is infinite and very small numbers close to zero result in NaNs being returned rather # than zero if altitude < 0.0: altitude = -1.0 cos_theta = cos_beta * cos_phi * sin_sigma + sin_beta * cos_sigma ib = get_radiation_direct(when=dt, altitude_deg=altitude) ibc = ib * cos_theta idc = C * ib * (1 + cos_sigma) / 2 irc = rho * ib * (sin_beta + C) * ((1 - cos_sigma) / 2) igc = ibc + idc + irc # If we still get a bad result just return 0 if math.isnan(igc): igc = 0.0 return igc
22,534
def agglomeration_energy_gather(bundle_activities, nonbundle_activities, n_bundles, agglomeration_energy): """ Accumulate the energy binding a new feature to an existing bundle.. This formulation takes advantage of loops and the sparsity of the data. The original arithmetic looks like coactivities = bundle_activities * nonbundle_activities.T agglomeration_energy += coactivities * agglomeration_energy_rate Parameters ---------- bundle_activities : array of floats The activity level of each bundle. nonbundle_activities : array of floats The current activity of each input feature that is not explained by or captured in a bundle. n_bundles : int The number of bundles that have been created so far. agglomeration_energy : 2D array of floats The total energy that has been accumulated between each input feature and each bundle. Results ------- Returned indirectly by modifying `agglomeration_energy. """ for i_col, _ in enumerate(nonbundle_activities): activity = nonbundle_activities[i_col] if activity > 0.: # Only decay bundles that have been created for i_row in range(n_bundles): if bundle_activities[i_row] > 0.: coactivity = activity * bundle_activities[i_row] agglomeration_energy[i_row, i_col] += coactivity
22,535
def add_glider(i, j, grid): """adds a glider with top left cell at (i, j)""" glider = np.array([[0, 0, 255], [255, 0, 255], [0, 255, 255]]) grid[i:i+3, j:j+3] = glider
22,536
def date_formatting(format_date, date_selected): """Date formatting management. Arguments: format_date {str} -- Date date_selected {str} -- Date user input Returns: str -- formatted date """ if len(date_selected) == 19: date_selected = datetime.strptime( date_selected, "%d/%m/%Y %H:%M:%S") elif len(date_selected) == 10: date_selected = datetime.strptime(date_selected, "%d/%m/%Y") try: if "yyyy" in format_date: format_date = format_date.replace( "yyyy", date_selected.strftime("%Y")) elif "yy" in format_date: format_date = format_date.replace( "yy", date_selected.strftime("%y")) if "mm" in format_date: format_date = format_date.replace( "mm", date_selected.strftime("%m")) if "dd" in format_date: format_date = format_date.replace( "dd", date_selected.strftime("%d")) if "hh" in format_date: format_date = format_date.replace( "hh", date_selected.strftime("%H")) if "nn" in format_date: format_date = format_date.replace( "nn", date_selected.strftime("%M")) if "ss" in format_date: format_date = format_date.replace( "ss", date_selected.strftime("%S")) return (format_date, None) except AttributeError: return ( None, _("Date entry error, format is dd/mm/yyyy or dd/mm/yyyy hh:mm:ss") )
22,537
def update_validationsets_sources(validation_dict, date_acquired=False): """Adds or replaces metadata dictionary of validation reference dataset to the validation sets sources file :param validation_dict: dictionary of validation metadata :param date_acquired: """ if not date_acquired: date = datetime.today().strftime('%d-%b-%Y') validation_dict['Date Acquired'] = date v_table = read_ValidationSets_Sources() existing = v_table.loc[(v_table['Inventory'] == validation_dict['Inventory']) & (v_table['Year'] == validation_dict['Year'])] if len(existing)>0: i = existing.index[0] v_table = v_table.loc[~v_table.index.isin(existing.index)] line = pd.DataFrame.from_records([validation_dict], index=[(i)]) else: inventories = list(v_table['Inventory']) i = max(loc for loc, val in enumerate(inventories) if val == validation_dict['Inventory']) line = pd.DataFrame.from_records([validation_dict], index=[(i+0.5)]) v_table = v_table.append(line, ignore_index=False) v_table = v_table.sort_index().reset_index(drop=True) log.info('updating ValidationSets_Sources.csv with %s %s', validation_dict['Inventory'], validation_dict['Year']) v_table.to_csv(data_dir + 'ValidationSets_Sources.csv', index=False)
22,538
def test_search(runner): """ Test search """ res = runner.invoke(search, ["author=wangonya"]) assert res.exit_code == 0 assert "Status code: 200" in res.output res = runner.invoke(search, ["auonya"]) assert res.exit_code == 0 assert "Status code: 400" in res.output
22,539
def parse_activity_from_metadata(metadata): """Parse activity name from metadata Args: metadata: List of metadata from log file Returns Activity name from metadata""" return _parse_type_metadata(metadata)[1]
22,540
def mask_data_by_FeatureMask(eopatch, data_da, mask): """ Creates a copy of array and insert 0 where data is masked. :param data_da: dataarray :type data_da: xarray.DataArray :return: dataaray :rtype: xarray.DataArray """ mask = eopatch[FeatureType.MASK][mask] if len(data_da.values.shape) == 4: mask = np.repeat(mask, data_da.values.shape[-1], -1) else: mask = np.squeeze(mask, axis=-1) data_da = data_da.copy() data_da.values[~mask] = 0 return data_da
22,541
def makeFields(prefix, n): """Generate a list of field names with this prefix up to n""" return [prefix+str(n) for n in range(1,n+1)]
22,542
def process_input_dir(input_dir): """ Find all image file paths in subdirs, convert to str and extract labels from subdir names :param input_dir Path object for parent directory e.g. train :returns: list of file paths as str, list of image labels as str """ file_paths = list(input_dir.rglob('*.png')) file_path_strings = [str(path) for path in file_paths] label_strings = [path.parent.name for path in file_paths] return file_path_strings, label_strings
22,543
def test_kappa_RTA_aln_with_sigma(aln_lda): """Test RTA with smearing method by AlN.""" aln_lda.sigmas = [ 0.1, ] aln_lda.sigma_cutoff = 3 kappa_P_RTA, kappa_C = _get_kappa_RTA(aln_lda, [7, 7, 5]) np.testing.assert_allclose(aln_lda_kappa_P_RTA_with_sigmas, kappa_P_RTA, atol=0.5) np.testing.assert_allclose(aln_lda_kappa_C_with_sigmas, kappa_C, atol=0.02) aln_lda.sigmas = None aln_lda.sigma_cutoff = None
22,544
def plot_2d_projection_many_mp(ax, mp): """ Plot many motion primitives projected onto the x-y axis, independent of original dimension. """ n_dim = mp[0]['p0'].shape[0] for m in mp: if m['is_valid']: st, sj, sa, sv, sp = min_time_bvp.uniformly_sample( m['p0'], m['v0'], m['a0'], m['t'], m['j'], dt=0.001) if n_dim > 1: ax.plot(sp[0,:], sp[1,:]) else: ax.plot(sp[0,:], np.zeros_like(sp[0,:])) ax.axis('equal')
22,545
def main(): """ Entry of module :return: """ setup_logger() config = None try: config = create_config(FLAGS.config_source, FLAGS.json_file) _LOGGER.info('Begin to compile model, config: %s', config) except Exception as error: # pylint:disable=broad-except _LOGGER.fatal("create config fail, error: %s, and can't send response", error) exit(1) try: compiler = create_compiler(config) _LOGGER.info('Create compiler: %s', compiler) result = compiler.compile() _LOGGER.info('Compile result: %s', result) send_response(config.get_attribute('callback'), result) except Exception as error: # pylint:disable=broad-except _LOGGER.error('Model compiler failed, error: %s', error) _LOGGER.exception(error) send_response(config.get_attribute('callback'), fail(str(error)))
22,546
def fak(n): """ Berechnet die Fakultaet der ganzen Zahl n. """ erg = 1 for i in range(2, n+1): erg *= i return erg
22,547
def save(data, destination_path, **kwargs): """Generate a csv file from a datastructure. :param data: Currently data must be a list of dicts. :type data: list of dict :param destination_path: Path of the resulting CSV file. :type destination_path: str :raises ValueError: If the format of data cannot be determined. :return: Returns True on success. :rtype: bool :Keyword Arguments: Currently None """ if isinstance(data, list): if isinstance(data[0], dict): with open(destination_path, "w") as f: writer = csv.DictWriter(f, fieldnames=data[0].keys(), dialect=csv.excel) writer.writeheader() writer.writerows(data) log.debug( f"successfully written {len(data)} lines of data to {destination_path}" ) return True raise ValueError(f"csv save not implemented for list of {type(data[0])}") raise ValueError(f"csv save not implemented for {type(data)}")
22,548
def create_sequences_sonnets(sonnets): """ This creates sequences as done in Homework 6, by mapping each word to an integer in order to create a series of sequences. This function specifically makes entire sonnets into individual sequences and returns the list of processed sonnets back to be used in the basic HMM notebook for generation. """ sequences = [] obs_counter = 0 obs_map = {} for sonnet in sonnets: sequence = [] for i, line in enumerate(sonnet): split = line.split() for word in split: word = re.sub(r'[^\w]', '', word).lower() if word not in obs_map: # Add unique words to the observations map. obs_map[word] = obs_counter obs_counter += 1 # Add the encoded word. sequence.append(obs_map[word]) # Add the encoded sequence. sequences.append(sequence) return obs_map, sequences
22,549
def detect_venv_command(command_name: str) -> pathlib.Path: """Detect a command in the same venv as the current utility.""" venv_path = pathlib.Path(sys.argv[0]).parent.absolute() expected_command_path = venv_path / command_name if expected_command_path.is_file(): result = expected_command_path else: # assume command in the PATH when run... found = shutil.which(command_name) if found: result = pathlib.Path(found) else: raise CommandError( "Command not in users path or venv, {0}".format(command_name) ) return result
22,550
def l_to_rgb(img_l): """ Convert a numpy array (l channel) into an rgb image :param img_l: :return: """ lab = np.squeeze(255 * (img_l + 1) / 2) return color.gray2rgb(lab) / 255
22,551
def plotLogsInteract(d2, d3, rho1, rho2, rho3, v1, v2, v3, usingT=False): """ interactive wrapper of plotLogs """ d = np.array((0., d2, d3), dtype=float) rho = np.array((rho1, rho2, rho3), dtype=float) v = np.array((v1, v2, v3), dtype=float) plotLogs(d, rho, v, usingT)
22,552
def blockchain_assert_absolute_time_exceeds(condition: ConditionWithArgs, timestamp): """ Checks if current time in millis exceeds the time specified in condition """ try: expected_mili_time = int_from_bytes(condition.vars[0]) except ValueError: return Err.INVALID_CONDITION current_time = timestamp if current_time <= expected_mili_time: return Err.ASSERT_SECONDS_ABSOLUTE_FAILED return None
22,553
def test_check_phi(): """Tests the _check_phi function""" numeaf = 175 def set_phi(f): tm.phi = f # First check that None is properly converted tm._phi = None assert_is(tm.phi, None) tm.phi = np.ones(numeaf) assert_array_equal(tm.phi, np.ones(numeaf)) # Check that incorrect number of entries raises an exception assert_raises(ValueError, set_phi, np.ones((50, 1))) # Check that a negative entry raises an exception x = np.ones(numeaf) x[123] = -1 assert_raises(ValueError, set_phi, x)
22,554
def show_aip(mets_file): """Show a METS file""" mets_instance = METS.query.filter_by(metsfile='%s' % (mets_file)).first() level = mets_instance.level original_files = mets_instance.metslist dcmetadata = mets_instance.dcmetadata divs = mets_instance.divs filecount = mets_instance.originalfilecount aip_uuid = mets_file for element in dcmetadata: tag = element.get('element') if tag and tag == 'ark identifier': aip_uuid = element['value'] break return render_template( 'aip.html', original_files=original_files, mets_file=mets_file, level=level, dcmetadata=dcmetadata, divs=divs, filecount=filecount, aip_uuid=aip_uuid )
22,555
def testCartesianEpehemeris( ephemeris_actual, ephemeris_desired, position_tol=1*u.m, velocity_tol=(1*u.mm/u.s), magnitude=True, raise_error=True ): """ Tests that the two sets of cartesian ephemeris are within the desired absolute tolerances of each other. The absolute difference is calculated as |actual - desired|. Parameters ---------- ephemeris_actual : `~numpy.ndarray` (N, 3) or (N, 6) Array of ephemeris to compare to the desired ephemeris, may optionally include velocities. Assumed units for: positions : AU, velocities : AU per day ephemeris_desired : `~numpy.ndarray` (N, 3) or (N, 6) Array of desired ephemeris to which to compare the actual ephemeris to, may optionally include velocities. Assumed units for: positions : AU, velocities : AU per day position_tol : `~astropy.units.quantity.Quantity` (1) Absolute tolerance positions need to satisfy (x, y, z, r). velocity_tol : `~astropy.units.quantity.Quantity` (1) Absolute tolerance velocity need to satisfy. (vx, vy, vz, v). magnitude : bool Test the magnitude of the position difference and velocity difference vectors as opposed to testing per individual coordinate. Raises ------ AssertionError: If |ephemeris_actual - ephemeris_desired| > tolerance. ValueError: If ephemeris shapes are not equal. ValueError: If coordinate dimensions are not one of 3 or 6. Returns ------- None """ any_error = False error_message = "\n" differences = {} statistics = {} if ephemeris_actual.shape != ephemeris_desired.shape: err = ( "The shapes of the actual and desired ephemeris should be the same." ) raise ValueError(err) N, D = ephemeris_actual.shape if D not in (3, 6): err = ( "The number of coordinate dimensions should be one of 3 or 6.\n" "If 3 then the expected inputs are x, y, z positions in AU.\n" "If 6 then the expected inputs are x, y, z postions in AU\n" "and vx, vy, vz velocities in AU per day." ) raise ValueError(err) # Test positions if magnitude: names = ["r"] else: names = ["x", "y", "z"] diff, stats, error = _evaluateDifference( ephemeris_actual[:, :3], ephemeris_desired[:, :3], u.AU, position_tol, magnitude=magnitude ) for i, n in enumerate(names): differences[n] = diff[:, i] statistics[n] = {k : v[i] for k, v in stats.items()} # If any of the differences between desired and actual are # greater than the allowed tolerance set any_error to True # and build the error message if error: any_error = True error_message += "{} difference (|actual - desired|) is not within {}.\n".format(names, position_tol) error_message = __statsToErrorMessage( stats, error_message ) if D == 6: # Test velocities if magnitude: names = ["v"] else: names = ["vx", "vy", "vz"] diff, stats, error = _evaluateDifference( ephemeris_actual[:, 3:], ephemeris_desired[:, 3:], (u.AU / u.d), velocity_tol, magnitude=magnitude ) for i, n in enumerate(names): differences[n] = diff[:, i] statistics[n] = {k : v[i] for k, v in stats.items()} # If any of the differences between desired and actual are # greater than the allowed tolerance set any_error to True # and build the error message if error: any_error = True error_message += "{} difference (|actual - desired|) is not within {}.\n".format(names, velocity_tol) error_message = __statsToErrorMessage( stats, error_message ) if any_error and raise_error: raise AssertionError(error_message) return differences, statistics, error
22,556
def test_fuse_circuit_two_qubit_gates(backend): """Check circuit fusion in circuit with two-qubit gates only.""" c = Circuit(2) c.add(gates.CNOT(0, 1)) c.add(gates.RX(0, theta=0.1234).controlled_by(1)) c.add(gates.SWAP(0, 1)) c.add(gates.fSim(1, 0, theta=0.1234, phi=0.324)) c.add(gates.RY(1, theta=0.1234).controlled_by(0)) fused_c = c.fuse() K.assert_allclose(fused_c(), c())
22,557
def mixin_post_create(cls, sender, instance, created, *args, **kwargs): """ Create or update services without indetifiers """ if not created: return user = instance service_classes = tuple( c for c in SERVICES if not getattr(c, 'IDENTIFIER_FIELD', None) ) for service_class in service_classes: values = {'user': user} try: d = service_class.objects.get(**values) except service_class.DoesNotExist: d = None if not d: service_class.objects.create(**values)
22,558
def get_longitude_latitude(city_info, station): """ 利用高德地图查询对应的地铁站经纬度信息,下面的key需要自己去高德官网申请 https://lbs.amap.com/api/webservice/guide/api/georegeo :param city_info: 具体城市的地铁,如:广州市地铁 :param station: 具体的地铁站名称,如:珠江新城站 :return: 经纬度 """ addr = city_info + station print('*要查找的地点:' + addr) parameters = {'address': addr, 'key': '98a3444618af14c0f20c601f5a442000'} base = 'https://restapi.amap.com/v3/geocode/geo' response = requests.get(base, parameters, timeout=10) # 超时设置为10s,翻墙开了全局代理会慢点的 if response.status_code == 200: answer = response.json() x, y = answer['geocodes'][0]['location'].split(',') coor = (float(x), float(y)) print('*' + station + '的坐标是:', coor) return coor else: return (None, None)
22,559
def make_resource_object(resource_type, credentials_path): """Creates and configures the service object for operating on resources. Args: resource_type: [string] The Google API resource type to operate on. credentials_path: [string] Path to credentials file, or none for default. """ try: api_name, resource = resource_type.split('.', 1) except ValueError: raise ValueError('resource_type "{0}" is not in form <api>.<resource>' .format(resource_type)) version = determine_version(api_name) service = make_service(api_name, version, credentials_path) path = resource.split('.') node = service for elem in path: try: node = getattr(node, elem)() except AttributeError: path_str = '.'.join(path[0:path.index(elem)]) raise AttributeError('"{0}{1}" has no attribute "{2}"'.format( api_name, '.' + path_str if path_str else '', elem)) return node
22,560
def AreBenchmarkResultsDifferent(result_dict_1, result_dict_2, test=MANN, significance_level=0.05): """Runs the given test on the results of each metric in the benchmarks. Checks if the dicts have been created from the same benchmark, i.e. if metric names match (e.g. first_non_empty_paint_time). Then runs the specified statistical test on each metric's samples to find if they vary significantly. Args: result_dict_1: Benchmark result dict of format {metric: list of values}. result_dict_2: Benchmark result dict of format {metric: list of values}. test: Statistical test that is used. significance_level: The significance level the p-value is compared against. Returns: test_outcome_dict: Format {metric: (bool is_different, p-value)}. """ AssertThatKeysMatch(result_dict_1, result_dict_2) test_outcome_dict = {} for metric in result_dict_1: is_different, p_value = AreSamplesDifferent(result_dict_1[metric], result_dict_2[metric], test, significance_level) test_outcome_dict[metric] = (is_different, p_value) return test_outcome_dict
22,561
def _load_pascal_annotation(image_index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ #image_index = _load_image_set_index() classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') num_classes = len(classes) _class_to_ind = dict(zip(classes, xrange(num_classes))) _data_path = "/var/services/homes/kchakka/py-faster-rcnn/VOCdevkit/VOC2007" image_index = [image_index] for index in image_index: filename = os.path.join(_data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') if True: # Exclude the samples labeled as difficult non_diff_objs = [ obj for obj in objs if int(obj.find('difficult').text) == 0] # if len(non_diff_objs) != len(objs): # print 'Removed {} difficult objects'.format( # len(objs) - len(non_diff_objs)) objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) ## # commented below by chaitu ## #overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) ## # commented above by chaitu ## # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 cls = _class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls #overlaps[ix, cls] = 1.0 #seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) #overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes' : gt_classes}
22,562
def virsh_memtune_conf(params, env): """ """ pass
22,563
def create_global_var(shape, value, dtype, persistable=False, force_cpu=False, name=None): """ This function creates a new tensor variable with value in the global block(block 0). Parameters: shape (list of int): Shape of the variable value (float): The value of the variable. The new created variable will be filled with it. dtype (str): Data type of the variable persistable (bool, optional): If this variable is persistable. Default: False force_cpu (bool, optional): Force this variable to be on CPU. Default: False name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: Variable: The created Variable Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32', persistable=True, force_cpu=True, name='new_var') """ helper = LayerHelper("global_var", **locals()) var = helper.create_global_variable( dtype=dtype, shape=shape, persistable=persistable, name=name, stop_gradient=True) helper.set_variable_initializer( var, initializer=Constant( value=float(value), force_cpu=force_cpu)) return var
22,564
def select(population, fitness_val): """ 选择操作,用轮盘赌法进行选择 :param population: 种群基因型 :param fitness_val: 种群适应度 :return selected_pop: 选择后的种群 """ f_sum = sum(fitness_val) cumulative = [] for i in range(1, len(fitness_val)+1): cumulative.append(sum(fitness_val[:i]) / f_sum) selected_pop = [] for i in range(len(fitness_val)): rand = np.random.rand() prand = [(c - rand) for c in cumulative] j = 0 while prand[j] < 0: j = j+1 selected_pop.append(population[j]) return selected_pop
22,565
def _nan_helper(y, nan=False, inf=False, undef=None): """ Helper to handle indices and logical indices of NaNs, Infs or undefs. Definition ---------- def _nan_helper(y, nan=False, inf=False, undef=None): Input ----- y 1d numpy array with possible missing values Optional Input -------------- At least one of the following has to be given nan if True, check only for NaN and not Inf. inf if True, check only for Inf and not NaN. undef if given then check for undef value rather than NaN and Inf. Output ------ ind logical indices of missing values find function, with signature indices = find(ind), to convert logical indices of NaNs to 'equivalent' indices Examples -------- >>> # linear interpolation of NaNs >>> y = np.array([1, np.nan, 3]) >>> nans, z = _nan_helper(y, nan=True) >>> y[nans] = np.interp(z(nans), z(~nans), y[~nans]) History ------- Written, Matthias Cuntz, Jul 2013 - modified from http://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array Modified, Matthias Cuntz, Apr 2014 - assert Matthias Cuntz, Sep 2021 - code refactoring """ assert not ((not nan) & (not inf) & (undef is None)), ( 'at least one of nan, inf or undef has to be given.') out = np.zeros(y.shape, dtype=bool) if nan: out = out | np.isnan(y) if inf: out = out | np.isinf(y) if undef is not None: out = out | (y == undef) return out, lambda ind: ind.nonzero()[0]
22,566
def unpacking(block_dets, *, repeat=False, **_kwargs): """ Identify name unpacking e.g. x, y = coord """ unpacked_els = block_dets.element.xpath(ASSIGN_UNPACKING_XPATH) if not unpacked_els: return None title = layout("""\ ### Name unpacking """) summary_bits = [] for unpacked_el in unpacked_els: unpacked_names = [ name_el.get('id') for name_el in unpacked_el.xpath('elts/Name')] if not unpacked_names: continue nice_str_list = gen_utils.get_nice_str_list(unpacked_names, quoter='`') summary_bits.append(layout(f"""\ Your code uses unpacking to assign names {nice_str_list} """)) summary = ''.join(summary_bits) if not repeat: unpacking_msg = get_unpacking_msg() else: unpacking_msg = '' message = { conf.Level.BRIEF: title + summary, conf.Level.EXTRA: unpacking_msg, } return message
22,567
def load_training_data(): """Loads the Fashion-MNIST dataset. Returns: Tuple of Numpy arrays: `(x_train, y_train)`. License: The copyright for Fashion-MNIST is held by Zalando SE. Fashion-MNIST is licensed under the [MIT license]( https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE). """ download_directory = tempfile.mkdtemp() base = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" files = [ "train-labels-idx1-ubyte.gz", "train-images-idx3-ubyte.gz", ] paths = [] for fname in files: paths.append(get_file(fname, origin=base + fname, cache_subdir=download_directory)) with gzip.open(paths[0], "rb") as lbpath: y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8) with gzip.open(paths[1], "rb") as imgpath: x_train = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28) return x_train, y_train
22,568
def set_difference(tree, context, attribs): """A meta-feature that will produce the set difference of two boolean features (will have keys set to 1 only for those features that occur in the first set but not in the second). @rtype: dict @return: dictionary with keys for key occurring with the first feature but not the second, and \ keys equal to 1 """ ret = {} for key, val in context['feats'][attribs[0]].items(): if key not in context['feats'][attribs[1]]: ret[key] = val return ret
22,569
def _output_to_new(parsed_file: parse.PyTestGenParsedFile, output_dir: str, include: List[str] = []) -> None: """Output the tests in 'parsed_file' to an output directory, optionally only including a whitelist of functions to output tests for. Args: parsed_file: The parsed file to output. output_dir: The path to the dir to output test files in. include: The list of function names to generate tests for. If empty, all functions will be used. """ test_file_path = parsed_file.input_file.get_test_file_path(output_dir) module_name = parsed_file.input_file.get_module() _ensure_dir(test_file_path) with open(test_file_path, "w", encoding="utf-8") as test_file: test_file.write( generator.generate_test_file(TEST_FILE_MODULES, module_name)) for testable_func in parsed_file.testable_funcs: if testable_func.function_def.name in UNTESTABLE_FUNCTIONS: continue # skip the function if it isn't in the include list (if we have one) if any(include) and testable_func.function_def.name not in include: continue test_file.write( generator.generate_test_func(testable_func, module_name))
22,570
def create_STATES(us_states_location): """ Create shapely files of states. Args: us_states_location (str): Directory location of states shapefiles. Returns: States data as cartopy feature for plotting. """ proj = ccrs.LambertConformal(central_latitude = 25, central_longitude = 265, standard_parallels = (25, 25)) reader = shpreader.Reader( f'{us_states_location}/ne_50m_admin_1_states_provinces_lines.shp') states = list(reader.geometries()) STATES = cfeature.ShapelyFeature(states, ccrs.PlateCarree()) return STATES
22,571
def get_name_by_url(url): """Returns the name of a stock from the instrument url. Should be located at ``https://api.robinhood.com/instruments/<id>`` where <id> is the id of the stock. :param url: The url of the stock as a string. :type url: str :returns: Returns the simple name of the stock. If the simple name does not exist then returns the full name. """ data = helper.request_get(url) if not data: return(None) # If stock doesn't have a simple name attribute then get the full name. filter = helper.filter(data, info = 'simple_name') if not filter or filter == "": filter = helper.filter(data, info = 'name') return(filter)
22,572
def reducer(event, context): """Combine results from workers into a single result.""" format_reducer_fn = FORMAT_HANDLERS[event["format"]]["reducer"] format_reducer_fn(event["request_id"]) increment_state_field(event["request_id"], "CompletedReducerExecutions", 1) record_timing_event(event["request_id"], "ReduceComplete")
22,573
def recursively_replace(original, replacements, include_original_keys=False): """Clones an iterable and recursively replaces specific values.""" # If this function would be called recursively, the parameters 'replacements' and 'include_original_keys' would have to be # passed each time. Therefore, a helper function with a reduced parameter list is used for the recursion, which nevertheless # can access the said parameters. def _recursion_helper(obj): #Determine if the object should be replaced. If it is not hashable, the search will throw a TypeError. try: if obj in replacements: return replacements[obj] except TypeError: pass # An iterable is recursively processed depending on its class. if hasattr(obj, "__iter__") and not isinstance(obj, (str, bytes, bytearray)): if isinstance(obj, dict): contents = {} for key, val in obj.items(): new_key = _recursion_helper(key) if include_original_keys else key new_val = _recursion_helper(val) contents[new_key] = new_val else: contents = [] for element in obj: new_element = _recursion_helper(element) contents.append(new_element) # Use the same class as the original. return obj.__class__(contents) # If it is not replaced and it is not an iterable, return it. return obj return _recursion_helper(original)
22,574
def test_indexLengthCheck(wkwdataset): """Test whether the dataset length matches the length of train, validation and test datasets""" indexStrings = getIndsPropString(wkwdataset) indexList = getIndices(wkwdataset, indexStrings) lengthSeparate = [len(index) for index in indexList] assert sum(lengthSeparate) == len(wkwdataset)
22,575
def set_default_node_as(as_num): """ Set the default node BGP AS Number. :param as_num: The default AS number :return: None. """ client.set_default_node_as(as_num)
22,576
def destructure(hint: t.Any) -> t.Tuple[t.Any, t.Tuple[t.Any, ...]]: """Return type hint origin and args.""" return get_origin(hint), get_args(hint)
22,577
def f_x_pbe(x, kappa=0.804, mu=0.2195149727645171): """Evaluates PBE exchange enhancement factor. 10.1103/PhysRevLett.77.3865 Eq. 14. F_X(x) = 1 + kappa ( 1 - 1 / (1 + mu s^2)/kappa ) kappa, mu = 0.804, 0.2195149727645171 (PBE values) s = c x, c = 1 / (2 (3pi^2)^(1/3) ) Args: x: Float numpy array with shape (num_grids,), the reduced density gradient. kappa: Float, parameter. mu: Float, parameter. Returns: Float numpy array with shape (num_grids,), the PBE exchange enhancement factor. """ c = 1 / (2 * (3 * jnp.pi ** 2) ** (1 / 3)) s = c * x f_x = 1 + kappa - kappa / (1 + mu * s ** 2 / kappa) return f_x
22,578
def index(): """ if no browser and no platform: it's a CLI request. """ if g.client['browser'] is None or g.client['platform'] is None: string = "hello from API {} -- in CLI Mode" msg = {'message': string.format(versions[0]), 'status': 'OK', 'mode': 200} r = Response(j.output(msg)) r.headers['Content-type'] = 'application/json; charset=utf-8' return r, 200 """ ELSE: it's obviously on a web browser """ string = "<h1>hello from API v1 | {} | {} | {} | {}</h1>" return string.format(g.client['browser'], g.client['platform'], g.client['version'], g.client['language'])
22,579
def getKeyWait(opCode): """ A key press is awaited, and then stored in VX. (Blocking Operation. All instruction halted until next key event) OPCODE: FX0A Parameters: opCode: (16 bit hexadecimal number) """ global PC, register press = False # STATE OF KEYSTROKE for keys in KEYBOARD: if current_key[KEYBOARD[keys]]: # CHECK IF ON press = True register[(opCode & 0x0F00) >> 8] = keys # VX TO KEYSTROKE if not press: PC -= 4 # ELSE SKIP
22,580
def prompt_yes_no(question, default=None): """Asks a yes/no question and returns either True or False.""" prompt = (default is True and 'Y/n') or (default is False and 'y/N') or 'y/n' valid = {'yes': True, 'ye': True, 'y': True, 'no': False, 'n': False} while True: choice = input(question + prompt + ': ').lower() if not choice and default is not None: return default if choice in valid: return valid[choice] else: sys.stdout.write("Invalid reponse\n")
22,581
def attention_resnet20(**kwargs): """Constructs a ResNet-20 model. """ model = CifarAttentionResNet(CifarAttentionBasicBlock, 3, **kwargs) return model
22,582
def download_data(download_path: str) -> None: """ Downloads data from kaggle. Requires kaggle API key to be set up. Args: download_path : str Download destination """ system( "kaggle competitions download " + "-c tpu-getting-started " + f'-p "{download_path}"' )
22,583
def get_basename(name): """ [pm/cmds] オブジェクト名からベースネームを取得する """ fullpath = get_fullpath(name) return re(r"^.*\|", "", fullpath)
22,584
def get_live_token(resource_uri: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetLiveTokenResult: """ The response to a live token query. :param str resource_uri: The identifier of the resource. """ __args__ = dict() __args__['resourceUri'] = resource_uri if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:insights/v20200602preview:getLiveToken', __args__, opts=opts, typ=GetLiveTokenResult).value return AwaitableGetLiveTokenResult( live_token=__ret__.live_token)
22,585
def load_subspace_vectors(embd, subspace_words): """Loads all word vectors for the particular subspace in the list of words as a matrix Arguments embd : Dictonary of word-to-embedding for all words subspace_words : List of words representing a particular subspace Returns subspace_embd_mat : Matrix of word vectors stored row-wise """ subspace_embd_mat = [] ind = 0 for word in subspace_words: if word in embd: subspace_embd_mat.append(embd[word]) ind = ind+1 return subspace_embd_mat
22,586
def _safe_filename(filename): """ Generates a safe filename that is unlikely to collide with existing objects in Google Cloud Storage. ``filename.ext`` is transformed into ``filename-YYYY-MM-DD-HHMMSS.ext`` """ filename = secure_filename(filename) date = datetime.datetime.utcnow().strftime("%Y-%m-%d-%H%M%S") basename, extension = filename.rsplit('.', 1) return "{0}-{1}.{2}".format(basename, date, extension)
22,587
def get_raw(contents: List[str]) -> Tuple[sections.Raw, List[str]]: """Parse the \\*RAW section""" raw_dict, rest = get_section(contents, "raw") remarks = raw_dict[REMARKS] if REMARKS in raw_dict else "" raw_info = sections.Raw( remarks=remarks, raw=raw_dict, ) return raw_info, rest
22,588
async def add(ctx): """Country Name Add a player to the game as country""" command, country, player = ctx.message.content.split(" ") if country in Country.__members__: member = discord.utils.find(lambda m: m.name == player, ctx.message.channel.server.members) if member != None: with session_scope() as session: if session.query(Movelist).filter(Movelist.country == country).one_or_none() is None: new_movelist = Movelist(country=country, playername=player, discord_id=member.id, moveset=None) session.add(new_movelist) userlist.append(member) await bot.say('Player added') else: await bot.say('That country has already been allocated') else: await bot.say('Invalid Player') else: await bot.say('Invalid Country')
22,589
def requireIsExisting( path ): """ Throws an AssertionError if 'path' does not exist. """ requireIsTextNonEmpty( path ) requireMsg( isExisting( path ), path + ": No such file or directory" )
22,590
def transfers_from_stops( stops, stop_times, transfer_type=2, trips=False, links_from_stop_times_kwargs={'max_shortcut': False, 'stop_id': 'stop_id'}, euclidean_kwargs={'latitude': 'stop_lat', 'longitude': 'stop_lon'}, seek_traffic_redundant_paths=True, seek_transfer_redundant_paths=True, max_distance=800, euclidean_speed=5 * 1000 / 3600 / 1.4, geometry=False, gtfs_only=False ): """ Builds a relevant footpath table from the stop_times and stops tables of a transitfeed. The trips table may be used to spot the "dominated" footpaths that offer no new connection (compared to the pool of stops), for example: * line A stops at station i and station k; * line B stops at station j and station k; * no other line stops at a or b; * the footpath F goes from i to j; * In our understanding : F is dominated by the station k :param stops: DataFrame consistent with the GTFS table "trips" :param stop_times: DataFrame consistent with the GTFS table "trips" :param transfer_type: how to fill the 'transfer_type' column of the feed :param trips: DataFrame consistent with the GTFS table "trips" :param links_from_stop_times_kwargs: kwargs to pass to transitlinks.links_from_stop_times, called on stop_times :param euclidean_kwargs: kwargs to pass to skims.euclidean (the name of the latitude and longitude column) :param seek_traffic_redundant_paths: if True, only the footpaths that do not belong to the transit links are kept. the transit links are built from the stop times using transitlinks.links_from_stop_times. The maximum number of transit links to concatenate in order to look for redundancies may be passed in the kwargs ('max_shortcut'). For example, if max_shortcut = 5: the footpath that can be avoided be taking a five stations ride will be tagged as "dominated". :param seek_transfer_redundant_paths: if True, the "trips" table is used to look for the dominated footpaths :param max_distance: maximum distance of the footpaths (meters as the crows fly) :param euclidean_speed: speed as the crows fly on the footpaths. :param geometry: If True, a geometry column (shapely.geometry.linestring.Linestring object) is added to the table :return: footpaths data with optional "dominated" tag """ stop_id = links_from_stop_times_kwargs['stop_id'] origin = stop_id + '_origin' destination = stop_id + '_destination' euclidean = skims.euclidean(stops.set_index(stop_id), **euclidean_kwargs) euclidean.reset_index(drop=True, inplace=True) euclidean['tuple'] = pd.Series(list(zip(list(euclidean['origin']), list(euclidean['destination'])))) short_enough = euclidean[euclidean['euclidean_distance'] < max_distance] short_enough = short_enough[short_enough['origin'] != short_enough['destination']] footpath_tuples = {tuple(path) for path in short_enough[['origin', 'destination']].values.tolist()} paths = euclidean[euclidean['tuple'].isin(footpath_tuples)] paths['dominated'] = False _stop_times = stop_times if stop_id in stops.columns and stop_id not in stop_times.columns: _stop_times = pd.merge( stop_times, stops[['id', stop_id]], left_on='stop_id', right_on='id', suffixes=['', '_merged']) if seek_traffic_redundant_paths: links = feed_links.link_from_stop_times(_stop_times, **links_from_stop_times_kwargs).reset_index() in_links_tuples = {tuple(path) for path in links[[origin, destination]].values.tolist()} paths['trafic_dominated'] = paths['tuple'].isin(in_links_tuples) paths['dominated'] = paths['dominated'] | paths['trafic_dominated'] stop_routes = {} stop_set = set(_stop_times[stop_id]) # if two routes are connected by several footpaths we only keep the shortest one # if routes a and b are connected to route c, d and e by several footpaths : # we keep only the shortest one that does the job. if trips is not False: grouped = pd.merge(_stop_times, trips, left_on='trip_id', right_on='id').groupby(stop_id)['route_id'] stop_routes = grouped.aggregate(lambda x: frozenset(x)).to_dict() def get_routes(row): return tuple((stop_routes[row['origin']], stop_routes[row['destination']])) paths = paths[(paths['origin'].isin(stop_set) & paths['destination'].isin(stop_set))] paths['trips'] = paths.apply(get_routes, axis=1) paths = paths.sort('euclidean_distance').groupby(['trips', 'dominated'], as_index=False).first() paths['min_transfer_time'] = paths['euclidean_distance'] / euclidean_speed paths = paths[paths['origin'] != paths['destination']] if seek_transfer_redundant_paths: paths['frozen'] = paths['trips'].apply(lambda a: frozenset(a[0]).union(frozenset(a[1]))) max_length = max([len(f) for f in list(paths['frozen'])]) to_beat = [] for length in range(max_length + 1): for stop in stop_routes.values(): for c in list(itertools.combinations(stop, length)): to_beat.append(frozenset(c)) to_beat = set(to_beat) paths['transfer_dominated'] = paths['frozen'].apply(lambda f: f in to_beat) paths['dominated'] = paths['dominated'] | paths['transfer_dominated'] if geometry and not gtfs_only: paths['geometry'] = paths.apply(linestring_geometry, axis=1) paths['from_stop_id'] = paths['origin'] paths['to_stop_id'] = paths['destination'] paths['transfer_type'] = transfer_type if gtfs_only: paths = paths[~paths['dominated']] paths = paths[['from_stop_id', 'to_stop_id', 'transfer_type', 'min_transfer_time']] return paths
22,591
def export_retinanet(args: argparse.Namespace) -> None: """ Loads, converts and export retinanet as tf serving model. """ weights_path = args.weights version = args.version num_classes = args.num_classes export_path = args.output_path backbone_name = args.backbone_name anchors_file = args.anchors anchors = AnchorParametersWrap.from_conf(anchors_file) input_model = string_input_model() retina_model = load_retina( weights_path, num_classes, anchors, backbone_name) final_model = merge_models(retina_model, input_model) log.info(f'merged retinanet and input model') final_model.summary() retina_export = RetinaServingExporter(final_model, ServingSignature()) retina_export.export(export_path, version)
22,592
def PySequence_ITEM(space, w_obj, i): """Return the ith element of o or NULL on failure. Macro form of PySequence_GetItem() but without checking that PySequence_Check(o)() is true and without adjustment for negative indices. This function used an int type for i. This might require changes in your code for properly supporting 64-bit systems.""" # XXX we should call Py*_GET_ITEM() instead of Py*_GetItem() # from here, but we cannot because we are also called from # PySequence_GetItem() py_obj = as_pyobj(space, w_obj) if isinstance(w_obj, tupleobject.W_TupleObject): from pypy.module.cpyext.tupleobject import PyTuple_GetItem py_res = PyTuple_GetItem(space, py_obj, i) incref(space, py_res) keepalive_until_here(w_obj) return py_res if isinstance(w_obj, W_ListObject): from pypy.module.cpyext.listobject import PyList_GetItem py_res = PyList_GetItem(space, py_obj, i) incref(space, py_res) keepalive_until_here(w_obj) return py_res as_sequence = py_obj.c_ob_type.c_tp_as_sequence if as_sequence and as_sequence.c_sq_item: ret = generic_cpy_call(space, as_sequence.c_sq_item, w_obj, i) return make_ref(space, ret) w_ret = space.getitem(w_obj, space.newint(i)) return make_ref(space, w_ret)
22,593
def run_model_pipeline(process_number, uuid_list): """ Run the modeling stage of the pipeline. """ for uuid in uuid_list: if uuid is None: continue try: run_model_pipeline_for_user(uuid) except Exception as e: print "dang flabbit failed on error %s" % e
22,594
def decode_hex(data): """Decodes a hex encoded string into raw bytes.""" try: return codecs.decode(data, 'hex_codec') except binascii.Error: raise TypeError()
22,595
def network(ipaddress, info_type): """Show IP (IPv4) BGP network""" command = 'sudo vtysh -c "show ip bgp' if ipaddress is not None: if '/' in ipaddress: # For network prefixes then this all info_type(s) are available pass else: # For an ipaddress then check info_type, exit if specified option doesn't work. if info_type in ['longer-prefixes']: click.echo('The parameter option: "{}" only available if passing a network prefix'.format(info_type)) click.echo("EX: 'show ip bgp network 10.0.0.0/24 longer-prefixes'") raise click.Abort() command += ' {}'.format(ipaddress) # info_type is only valid if prefix/ipaddress is specified if info_type is not None: command += ' {}'.format(info_type) command += '"' run_command(command)
22,596
def crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols): """Crop a bounding box using the provided coordinates of bottom-left and top-right corners in pixels and the required height and width of the crop. """ bbox = denormalize_bbox(bbox, rows, cols) x_min, y_min, x_max, y_max = bbox x1, y1, x2, y2 = crop_coords cropped_bbox = [x_min - x1, y_min - y1, x_max - x1, y_max - y1] return normalize_bbox(cropped_bbox, crop_height, crop_width)
22,597
def computeDateGranularity(ldf): """ Given a ldf, inspects temporal column and finds out the granularity of dates. Example ---------- ['2018-01-01', '2019-01-02', '2018-01-03'] -> "day" ['2018-01-01', '2019-02-01', '2018-03-01'] -> "month" ['2018-01-01', '2019-01-01', '2020-01-01'] -> "year" Parameters ---------- ldf : lux.luxDataFrame.LuxDataFrame LuxDataFrame with a temporal field Returns ------- field: str A str specifying the granularity of dates for the inspected temporal column """ dateFields = ["day", "month", "year"] if ldf.dataType["temporal"]: dateColumn = ldf[ldf.dataType["temporal"][0]] # assumes only one temporal column, may need to change this function to recieve multiple temporal columns in the future dateIndex = pd.DatetimeIndex(dateColumn) for field in dateFields: if hasattr(dateIndex,field) and len(getattr(dateIndex, field).unique()) != 1 : #can be changed to sum(getattr(dateIndex, field)) != 0 return field
22,598
def next_pending_location(user_id: int, current_coords: Optional[Tuple[int, int]] = None) -> Optional[Tuple[int, int]]: """ Retrieves the next pending stone's coordinates. If current_coords is not specified (or is not pending), retrieves the longest-pending stone's coordinates. The order for determining which stone is "next" is defined by how long stones have been pending -- successive applications of this function will retrieve successively younger pending stones. If there is no younger pending stone, the coordinates of the oldest pending stone are returned. If there are no pending stones at all, None is returned. """ with sqlite3.connect(db_file) as db: cur = db.cursor() current_stone_pending_since = 0 # Will always be older than any stone. if current_coords is not None: current_stone = get_stone(*current_coords) if current_stone is not None and current_stone["player"] == user_id and current_stone["status"] == "Pending": # The current stone belongs to the player and is pending. current_stone_pending_since = current_stone["last_status_change_time"] query = """SELECT x, y FROM stones WHERE player = ? AND status = 'Pending' AND last_status_change_time > ? ORDER BY last_status_change_time ASC;""" cur.execute(query, [user_id, current_stone_pending_since]) next_pending_coords = cur.fetchone() # A younger pending stone exists. if next_pending_coords is not None: return next_pending_coords # Otherwise, a younger pending stone does not exist. # Retrieve the oldest stone. cur.execute(query, [user_id, 0]) next_pending_coords = cur.fetchone() # Return either the coords of the oldest pending stone, or None if no such stone exists. return next_pending_coords
22,599