content
stringlengths
22
815k
id
int64
0
4.91M
def controllerWalkLeft(node, add=False, multi=False): """Pick walks the next sibling to the left using controller tag Arguments: node (TYPE): Description add (bool, optional): If true add to selection multi (bool, optional): If true, selects all the siblings """ nodes = _getControllerWalkSiblings(pm.selected(), "left", multi) pm.select(nodes, add=add)
22,400
def register_remap(remap_function, overwrite=False): """ Register a remap function for general usage. Parameters ---------- remap_function : RemapFunction|Type overwrite : bool Should we overwrite any currently existing remap of the given name? Returns ------- None """ if isinstance(remap_function, type) and issubclass(remap_function, RemapFunction): remap_function = remap_function() if not isinstance(remap_function, RemapFunction): raise TypeError('remap_function must be an instance of RemapFunction.') remap_name = remap_function.name if remap_name not in _REMAP_DICT: _REMAP_DICT[remap_name] = remap_function elif overwrite: logger.info('Overwriting the remap {}'.format(remap_name)) _REMAP_DICT[remap_name] = remap_function else: logger.info('Remap {} already exists and is not being replaced'.format(remap_name))
22,401
def ape_insert_new_fex(cookie, in_device_primary_key, in_model, in_serial, in_vendor): """ Auto-generated UCS XML API Method. """ method = ExternalMethod("ApeInsertNewFex") method.cookie = cookie method.in_device_primary_key = in_device_primary_key method.in_model = in_model method.in_serial = in_serial method.in_vendor = in_vendor xml_request = method.to_xml(option=WriteXmlOption.DIRTY) return xml_request
22,402
def save_data(df, database_file_path): """Save the data frame into a SQL database file in the specified path. Parameters: df (pandas.core.frame.DataFrame): The data frame to be saved as a SQL database file. database_file_path (str): The path to save the SQL database file. Returns: None. Example: save_data(df, 'disaster_response.db') """ database_file_name = os.path.basename(database_file_path) database_file_name = os.path.splitext(database_file_name)[0] engine = create_engine('sqlite:///' + database_file_path) df.to_sql(database_file_name, engine, index=False, if_exists='replace')
22,403
async def get_pool_info(address, api_url="https://rest.stargaze-apis.com/cosmos"): """Pool value and current rewards via rest API. Useful links: https://api.akash.smartnodes.one/swagger/#/ https://github.com/Smart-Nodes/endpoints """ rewards_url = f"{api_url}/distribution/v1beta1/delegators/{ADDRESS}/rewards" delegated_url = f"{api_url}/staking/v1beta1/delegations/{ADDRESS}" async with aiohttp.ClientSession() as session: rewards_data, pool_data = await asyncio.gather( gather_json(session, rewards_url), gather_json(session, delegated_url) ) rewards = float(rewards_data["rewards"][0]["reward"][0]["amount"]) / 1_000_000 pool_value = ( float(pool_data["delegation_responses"][0]["balance"]["amount"]) / 1_000_000 ) return pool_value, rewards
22,404
def check_for_unused_inames(kernel): """ Check if there are any unused inames in the kernel. """ # Warn if kernel has unused inames from loopy.transform.iname import get_used_inames unused_inames = kernel.all_inames() - get_used_inames(kernel) if unused_inames: warn_with_kernel( kernel, "unused_inames", "Found unused inames in kernel: %s " "Unused inames during linearization will be prohibited in " "Loopy version 2021.X." % unused_inames)
22,405
def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. with tf.gfile.FastGFile(filename, 'rb') as f: image_data = f.read() # Convert any PNG to JPEG's for consistency. if _is_png(filename): print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width
22,406
def mnist_reader(numbers): """ Read MNIST dataset with specific numbers you needed :param numbers: A list of number from 0 - 9 as you needed :return: A tuple of a numpy array with specific numbers MNIST training dataset, labels of the training set and the length of the training dataset. """ # Training Data f = open('./data/train-images.idx3-ubyte') loaded = np.fromfile(file=f, dtype=np.uint8) trainX = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float32) / 127.5 - 1 f = open('./data/train-labels.idx1-ubyte') loaded = np.fromfile(file=f, dtype=np.uint8) trainY = loaded[8:].reshape((60000)).astype(np.int32) _trainX = [] for idx in range(0, len(trainX)): if trainY[idx] in numbers: _trainX.append(trainX[idx]) return np.array(_trainX), trainY, len(_trainX)
22,407
def _ensure_list(alist): # {{{ """ Ensure that variables used as a list are actually lists. """ # Authors # ------- # Phillip J. Wolfram, Xylar Asay-Davis if isinstance(alist, six.string_types): # print 'Warning, converting %s to a list'%(alist) alist = [alist] return alist
22,408
def _parse_einsum_input(operands): """Parses einsum operands. This function is based on `numpy.core.einsumfunc._parse_einsum_input` function in NumPy 1.14. Returns ------- input_strings : str Parsed input strings output_string : str Parsed output string operands : list of array_like The operands to use in the numpy contraction Examples -------- The operand list is simplified to reduce printing: >>> a = np.random.rand(4, 4) >>> b = np.random.rand(4, 4, 4) >>> _parse_einsum_input(('...a,...a->...', a, b)) ('@a,@a', '@', [a, b]) >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) ('@a,@a', '@', [a, b]) """ if not operands: raise ValueError('No input operands') if isinstance(operands[0], str): subscripts = operands[0].replace(' ', '') operands = operands[1:] # Ensure all characters are valid for s in subscripts: if s in '.,->': continue if s not in einsum_symbols: raise ValueError('Character %s is not a valid symbol.' % s) # Check for proper "->" if ('-' in subscripts) or ('>' in subscripts): if any(( subscripts.count('-') > 1, subscripts.count('>') > 1, subscripts.count('->') != 1, )): raise ValueError('Subscripts can only contain one \'->\'.') # Parse "..." subscripts = subscripts.replace('...', '@') if '.' in subscripts: raise ValueError('Invalid Ellipses.') else: tmp_operands = list(operands) operand_list = [] subscript_list = [] for p in range(len(operands) // 2): operand_list.append(tmp_operands.pop(0)) subscript_list.append(tmp_operands.pop(0)) output_list = tmp_operands[-1] if len(tmp_operands) else None operands = operand_list subscripts = '' last = len(subscript_list) - 1 for num, sub in enumerate(subscript_list): for s in sub: if s is Ellipsis: subscripts += '@' elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError('For this input type lists must contain ' 'either int or Ellipsis') if num != last: subscripts += ',' if output_list is not None: subscripts += '->' for s in output_list: if s is Ellipsis: subscripts += '@' elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError('For this input type lists must contain ' 'either int or Ellipsis') # Build output string if does not exist if '->' in subscripts: input_subscripts, output_subscript = subscripts.split('->') # Make sure output subscripts are in the input for char in output_subscript: if char not in input_subscripts: raise ValueError( 'Output character %s did not appear in the input' % ('...' if char == '@' else char)) else: input_subscripts = subscripts # Build output subscripts tmp_subscripts = subscripts.replace(',', '') output_subscript = '' for s in sorted(set(tmp_subscripts)): if s == '@' or tmp_subscripts.count(s) == 1: output_subscript += s # Make sure number operands is equivalent to the number of terms if len(input_subscripts.split(',')) != len(operands): raise ValueError('Number of einsum subscripts must be equal to the ' 'number of operands.') return input_subscripts, output_subscript, operands
22,409
def convert_to_numpy(*args, **kwargs): """ Converts all tf tensors in args and kwargs to numpy array Parameters ---------- *args : positional arguments of arbitrary number and type **kwargs : keyword arguments of arbitrary number and type Returns ------- list converted positional arguments dict converted keyboard arguments """ args = recursively_convert_elements(args, tf.Tensor, _single_element_tensor_conversion) kwargs = recursively_convert_elements(kwargs, tf.Tensor, _single_element_tensor_conversion) return convert_to_numpy_identity(*args, **kwargs)
22,410
async def delete_contact( contact_key: int, hash: str, resource: Resource = Depends(get_json_resource) ): """ Delete the contact with the given key. If the record has changed since the hash was obtained, a 409 error is returned. """ try: await resource.delete(contact_key, hash) except SirixServerError: return Response(status_code=status.HTTP_409_CONFLICT) return Response(status_code=status.HTTP_204_NO_CONTENT)
22,411
def update_model_instance_meta_schema(request, file_type_id, **kwargs): """copies the metadata schema from the associated model program aggregation over to the model instance aggregation """ # Note: decorator 'authorise_for_aggregation_edit' sets the error_response key in kwargs if 'error_response' in kwargs and kwargs['error_response']: error_response = kwargs['error_response'] return JsonResponse(error_response, status=status.HTTP_400_BAD_REQUEST) # Note: decorator 'authorise_for_aggregation_edit' sets the logical_file key in kwargs logical_file = kwargs['logical_file'] metadata = logical_file.metadata if not metadata.executed_by: msg = "No associated model program was found" error_response = {"status": "error", "message": msg} return JsonResponse(error_response, status=status.HTTP_400_BAD_REQUEST) elif not metadata.executed_by.metadata_schema_json: msg = "Associated model program has no metadata schema" error_response = {"status": "error", "message": msg} return JsonResponse(error_response, status=status.HTTP_400_BAD_REQUEST) logical_file.metadata_schema_json = metadata.executed_by.metadata_schema_json if metadata.metadata_json: # validate json data against metadata schema: try: metadata_json_schema = logical_file.metadata_schema_json jsonschema.Draft4Validator(metadata_json_schema).validate(metadata.metadata_json) except jsonschema.ValidationError as ex: # delete existing invalid metadata metadata.metadata_json = {} logical_file.save() metadata.is_dirty = True metadata.save() resource = logical_file.resource resource_modified(resource, request.user, overwrite_bag=False) ajax_response_data = {'status': 'success', 'logical_file_type': logical_file.type_name(), 'element_name': 'metadata_schema_json', 'message': "Update was successful"} return JsonResponse(ajax_response_data, status=status.HTTP_200_OK)
22,412
def mypy_run(args): """Run mypy with given arguments and return the result.""" logger.log_cmd(["mypy"] + args) try: stdout, stderr, exit_code = run(args) except BaseException: logger.print_exc() else: for line in stdout.splitlines(): yield line, False for line in stderr.splitlines(): yield line, True
22,413
def _calculate_permutation_scores_per_col(estimator, X, y, sample_weight, col_idx, random_state, n_repeats, scorer): """Calculate score when `col_idx` is permuted.""" random_state = check_random_state(random_state) # Work on a copy of X to to ensure thread-safety in case of threading based # parallelism. Furthermore, making a copy is also useful when the joblib # backend is 'loky' (default) or the old 'multiprocessing': in those cases, # if X is large it will be automatically be backed by a readonly memory map # (memmap). X.copy() on the other hand is always guaranteed to return a # writable data-structure whose columns can be shuffled inplace. X_permuted = X.copy() scores = np.zeros(n_repeats) shuffling_idx = np.arange(X.shape[0]) for n_round in range(n_repeats): random_state.shuffle(shuffling_idx) if hasattr(X_permuted, "iloc"): col = X_permuted.iloc[shuffling_idx, col_idx] col.index = X_permuted.index X_permuted.iloc[:, col_idx] = col else: X_permuted[:, col_idx] = X_permuted[shuffling_idx, col_idx] feature_score = _weights_scorer( scorer, estimator, X_permuted, y, sample_weight ) scores[n_round] = feature_score return scores
22,414
def get_statement_at_line(source: str, lineno: int, checker): """Get statements at line *lineno* from a source string. :param source: The source to get the statements from. :param lineno: Line number which the statement must include. Counted from 1. :param checker: A function that checks each statement. It must return *None* if the check fails. If anything else is returned, that becomes the return value of this function. :returns: A list of tuples of string with the found statements and and offset between the beginning of the match and *lineno*. """ module = ast_utils.cached_parse(source) for stmt in module.body: position = ast_utils.get_position(source, stmt) if position.lineno <= lineno <= position.end_lineno: res = checker(stmt, source) if res is not None: return res raise RuntimeError('Statement not found.')
22,415
def ptrace(Q, sel): """ Partial trace of the Qobj with selected components remaining. Parameters ---------- Q : :class:`qutip.Qobj` Composite quantum object. sel : int/list An ``int`` or ``list`` of components to keep after partial trace. Returns ------- oper : :class:`qutip.Qobj` Quantum object representing partial trace with selected components remaining. Notes ----- This function is for legacy compatibility only. It is recommended to use the ``ptrace()`` Qobj method. """ if not isinstance(Q, Qobj): raise TypeError("Input is not a quantum object") return Q.ptrace(sel)
22,416
def createConformations(outputfile, forcefield, smiles, sid): """Generate the conformations for a molecule and save them to disk.""" print(f'Generating {index}: {smiles}') try: mol = Molecule.from_smiles(smiles, allow_undefined_stereo=True) fftop = Topology() fftop.add_molecule(mol) mmtop = fftop.to_openmm() system = forcefield.create_openmm_system(fftop) except: print(' failed to parametrize') return # Generate 10 diverse starting points. Run MD from each one to generate a total # of 100 high energy conformations. mol.generate_conformers(n_conformers=10, rms_cutoff=0*unit.nanometers) assert len(mol.conformers) == 10 def simulate(pos): integrator = openmm.LangevinMiddleIntegrator(500*unit.kelvin, 1/unit.picosecond, 0.001*unit.picosecond) simulation = app.Simulation(mmtop, system, integrator, openmm.Platform.getPlatformByName('Reference')) simulation.context.setPositions(pos) simulation.minimizeEnergy() simulation.context.setVelocitiesToTemperature(500*unit.kelvin) states = [] for i in range(10): simulation.step(10000) state = simulation.context.getState(getPositions=True, getEnergy=True) if state.getPotentialEnergy() < 1e4*unit.kilojoules_per_mole: states.append(state) return states futures = [] with ThreadPoolExecutor() as executor: for pos in mol.conformers: futures.append(executor.submit(simulate, pos)) states = [] for future in futures: states += future.result() # Select 25 that are most different from each other. if len(states) < 25: print(' failed to generate states') return states = filterByRMSD(states, mmtop) # Create a nearby, lower energy conformation from each one. integrator = openmm.LangevinMiddleIntegrator(100*unit.kelvin, 1/unit.picosecond, 0.001*unit.picosecond) simulation = app.Simulation(mmtop, system, integrator, openmm.Platform.getPlatformByName('Reference')) for state in states[:]: simulation.context.setState(state) simulation.minimizeEnergy(maxIterations=5) simulation.context.setVelocitiesToTemperature(100*unit.kelvin) simulation.step(1000) states.append(simulation.context.getState(getPositions=True)) saveToFile(outputfile, mol, states, sid)
22,417
def two_angle_circular_correlation_coef(angles1, angles2, mean1, mean2): """ Circular correlation measure. SenGupta 2001 """ centered_a = angles1-mean1 centered_b = angles2-mean2 sin_centered_a = numpy.sin(centered_a) sin_centered_b = numpy.sin(centered_b) sin2_a = sin_centered_a*sin_centered_a sin2_b = sin_centered_b*sin_centered_b return numpy.dot(sin_centered_a, sin_centered_b) / math.sqrt(numpy.dot(sin2_a, sin2_b))
22,418
def format_data(data: Union[dict, list]) -> str: """ :param data: input data :return: pretty formatted yaml representation of a dictionary """ return yaml.dump(data, sort_keys=False, default_flow_style=False)
22,419
def fasta2select(fastafilename, is_aligned=False, ref_resids=None, target_resids=None, ref_offset=0, target_offset=0, verbosity=3, alnfilename=None, treefilename=None, clustalw="clustalw2"): """Return selection strings that will select equivalent residues. The function aligns two sequences provided in a FASTA file and constructs MDAnalysis selection strings of the common atoms. When these two strings are applied to the two different proteins they will generate AtomGroups of the aligned residues. `fastafilename` contains the two un-aligned sequences in FASTA format. The reference is assumed to be the first sequence, the target the second. ClustalW_ produces a pairwise alignment (which is written to a file with suffix ``.aln``). The output contains atom selection strings that select the same atoms in the two structures. Unless `ref_offset` and/or `target_offset` are specified, the resids in the structure are assumed to correspond to the positions in the un-aligned sequence, namely the first residue has resid == 1. In more complicated cases (e.g., when the resid numbering in the input structure has gaps due to missing parts), simply provide the sequence of resids as they appear in the topology in `ref_resids` or `target_resids`, e.g. :: target_resids = [a.resid for a in trj.select_atoms('name CA')] (This translation table *is* combined with any value for `ref_offset` or `target_offset`!) Parameters ---------- fastafilename : str, path to filename FASTA file with first sequence as reference and second the one to be aligned (ORDER IS IMPORTANT!) is_aligned : bool (optional) ``False`` (default) run clustalw for sequence alignment; ``True`` use the alignment in the file (e.g. from STAMP) [``False``] ref_offset : int (optional) add this number to the column number in the FASTA file to get the original residue number, default: 0 target_offset : int (optional) add this number to the column number in the FASTA file to get the original residue number, default: 0 ref_resids : str (optional) sequence of resids as they appear in the reference structure target_resids : str (optional) sequence of resids as they appear in the target alnfilename : str (optional) filename of ClustalW alignment (clustal format) that is produced by *clustalw* when *is_aligned* = ``False``. default ``None`` uses the name and path of *fastafilename* and subsititutes the suffix with '.aln'. treefilename: str (optional) filename of ClustalW guide tree (Newick format); if default ``None`` the the filename is generated from *alnfilename* with the suffix '.dnd' instead of '.aln' clustalw : str (optional) path to the ClustalW (or ClustalW2) binary; only needed for `is_aligned` = ``False``, default: "ClustalW2" Returns ------- select_dict : dict dictionary with 'reference' and 'mobile' selection string that can be used immediately in :class:`AlignTraj` as ``select=select_dict``. See Also -------- :func:`sequence_alignment`, which does not require external programs. .. _ClustalW: http://www.clustal.org/ .. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/ """ protein_gapped = Bio.Alphabet.Gapped(Bio.Alphabet.IUPAC.protein) if is_aligned: logger.info("Using provided alignment {}".format(fastafilename)) with open(fastafilename) as fasta: alignment = Bio.AlignIO.read( fasta, "fasta", alphabet=protein_gapped) else: if alnfilename is None: filepath, ext = os.path.splitext(fastafilename) alnfilename = filepath + '.aln' if treefilename is None: filepath, ext = os.path.splitext(alnfilename) treefilename = filepath + '.dnd' run_clustalw = Bio.Align.Applications.ClustalwCommandline( clustalw, infile=fastafilename, type="protein", align=True, outfile=alnfilename, newtree=treefilename) logger.debug( "Aligning sequences in %(fastafilename)r with %(clustalw)r.", vars()) logger.debug("ClustalW commandline: %r", str(run_clustalw)) try: stdout, stderr = run_clustalw() except: logger.exception("ClustalW %(clustalw)r failed", vars()) logger.info( "(You can get clustalw2 from http://www.clustal.org/clustal2/)") raise with open(alnfilename) as aln: alignment = Bio.AlignIO.read( aln, "clustal", alphabet=protein_gapped) logger.info( "Using clustalw sequence alignment {0!r}".format(alnfilename)) logger.info( "ClustalW Newick guide tree was also produced: {0!r}".format(treefilename)) nseq = len(alignment) if nseq != 2: raise ValueError( "Only two sequences in the alignment can be processed.") # implict assertion that we only have two sequences in the alignment orig_resids = [ref_resids, target_resids] offsets = [ref_offset, target_offset] for iseq, a in enumerate(alignment): # need iseq index to change orig_resids if orig_resids[iseq] is None: # build default: assume consecutive numbering of all # residues in the alignment GAP = a.seq.alphabet.gap_char length = len(a.seq) - a.seq.count(GAP) orig_resids[iseq] = np.arange(1, length + 1) else: orig_resids[iseq] = np.asarray(orig_resids[iseq]) # add offsets to the sequence <--> resid translation table seq2resids = [resids + offset for resids, offset in zip( orig_resids, offsets)] del orig_resids del offsets def resid_factory(alignment, seq2resids): """Return a function that gives the resid for a position ipos in the nseq'th alignment. resid = resid_factory(alignment,seq2resids) r = resid(nseq,ipos) It is based on a look up table that translates position in the alignment to the residue number in the original sequence/structure. The first index of resid() is the alignmment number, the second the position in the alignment. seq2resids translates the residues in the sequence to resid numbers in the psf. In the simplest case this is a linear map but if whole parts such as loops are ommitted from the protein the seq2resids may have big gaps. Format: a tuple of two numpy arrays; the first array is for the reference, the second for the target, The index in each array gives the consecutive number of the amino acid in the sequence, the value the resid in the structure/psf. Note: assumes that alignments have same length and are padded if necessary. """ # could maybe use Bio.PDB.StructureAlignment instead? nseq = len(alignment) t = np.zeros((nseq, alignment.get_alignment_length()), dtype=int) for iseq, a in enumerate(alignment): GAP = a.seq.alphabet.gap_char t[iseq, :] = seq2resids[iseq][np.cumsum(np.where( np.array(list(a.seq)) == GAP, 0, 1)) - 1] # -1 because seq2resid is index-1 based (resids start at 1) def resid(nseq, ipos, t=t): return t[nseq, ipos] return resid resid = resid_factory(alignment, seq2resids) res_list = [] # collect individual selection string # could collect just resid and type (with/without CB) and # then post-process and use ranges for continuous stretches, eg # ( resid 1:35 and ( backbone or name CB ) ) or ( resid 36 and backbone ) # should be the same for both seqs GAP = alignment[0].seq.alphabet.gap_char if GAP != alignment[1].seq.alphabet.gap_char: raise ValueError( "Different gap characters in sequence 'target' and 'mobile'.") for ipos in range(alignment.get_alignment_length()): aligned = list(alignment[:, ipos]) if GAP in aligned: continue # skip residue template = "resid %i" if 'G' not in aligned: # can use CB template += " and ( backbone or name CB )" else: template += " and backbone" template = "( " + template + " )" res_list.append([template % resid(iseq, ipos) for iseq in range(nseq)]) sel = np.array(res_list).transpose() ref_selection = " or ".join(sel[0]) target_selection = " or ".join(sel[1]) return {'reference': ref_selection, 'mobile': target_selection}
22,420
def eval_on_dataset( model, state, dataset, pmapped_eval_step): """Evaluates the model on the whole dataset. Args: model: The model to evaluate. state: Current state associated with the model (contains the batch norm MA). dataset: Dataset on which the model should be evaluated. Should already being batched. pmapped_eval_step: A pmapped version of the `eval_step` function (see its documentation for more details). Returns: A dictionary containing the loss and error rate on the batch. These metrics are averaged over the samples. """ eval_metrics = [] total_num_samples = 0 for eval_batch in dataset: # Load and shard the TF batch. eval_batch = load_and_shard_tf_batch(eval_batch) # Compute metrics and sum over all observations in the batch. metrics = pmapped_eval_step(model, state, eval_batch) eval_metrics.append(metrics) # Number of samples seen in num_replicas * per_replica_batch_size. total_num_samples += ( eval_batch['label'].shape[0] * eval_batch['label'].shape[1]) # Metrics are all the same across all replicas (since we applied psum in the # eval_step). The next line will fetch the metrics on one of them. eval_metrics = common_utils.get_metrics(eval_metrics) # Finally, we divide by the number of samples to get the mean error rate and # cross entropy. eval_summary = jax.tree_map(lambda x: x.sum() / total_num_samples, eval_metrics) return eval_summary
22,421
def create_directory(path): """Creates the given directory and returns the path.""" if not os.path.isdir(path): os.makedirs(path) return path
22,422
def factorize(n): """ Prime factorises n """ # Loop upto sqrt(n) and check for factors ret = [] sqRoot = int(n ** 0.5) for f in xrange(2, sqRoot+1): if n % f == 0: e = 0 while n % f == 0: n, e = n / f, e + 1 ret.append((f, e)) if n > 1: ret.append((n, 1)) return ret
22,423
def createSimpleDataSet( numOfAttr, numOfObj ): """ This creates a simple data base with 3 attributes The second one is 2 times the first one with some Gauss noise. The third one is just random noise. """ database = [] for i in range(numOfObj): data = dataObject(numOfAttr) w=[random.gauss(2.0, 2.0)] w.append(w[0]*3+random.gauss(0.0, 0.05)) w.append(random.random()*6) data.setAttributes(w) database.append(data) return database
22,424
def clean_data( data, isz=None, r1=None, dr=None, edge=0, bad_map=None, add_bad=None, apod=True, offx=0, offy=0, sky=True, window=None, darkfile=None, f_kernel=3, verbose=False, *, mask=None, ): """Clean data. Parameters: ----------- `data` {np.array} -- datacube containing the NRM data\n `isz` {int} -- Size of the cropped image (default: {None})\n `r1` {int} -- Radius of the rings to compute background sky (default: {None})\n `dr` {int} -- Outer radius to compute sky (default: {None})\n `edge` {int} -- Patch the edges of the image (VLT/SPHERE artifact, default: {200}),\n `checkrad` {bool} -- If True, check the resizing and sky substraction parameters (default: {False})\n Returns: -------- `cube` {np.array} -- Cleaned datacube. """ n_im = data.shape[0] cube_cleaned = [] # np.zeros([n_im, isz, isz]) l_bad_frame = [] bad_map, add_bad = _get_3d_bad_pixels(bad_map, add_bad, data) for i in tqdm(range(n_im), ncols=100, desc="Cleaning", leave=False): img0 = data[i] img0 = _apply_edge_correction(img0, edge=edge) if bad_map is not None: img1 = fix_bad_pixels(img0, bad_map[i], add_bad=add_bad[i]) else: img1 = img0.copy() img1 = _remove_dark(img1, darkfile=darkfile, verbose=verbose) if isz is not None: # Get expected center for sky correction filtmed = f_kernel is not None center = find_max(img1, filtmed=filtmed, f=f_kernel) else: center = None if sky and (r1 is not None or mask is not None): img_biased = sky_correction( img1, r1=r1, dr=dr, verbose=verbose, center=center, mask=mask )[0] elif sky: warnings.warn( "sky is set to True, but r1 and mask are set to None. Skipping sky correction", RuntimeWarning, ) img_biased = img1.copy() else: img_biased = img1.copy() img_biased[img_biased < 0] = 0 # Remove negative pixels if isz is not None: # Get expected center for sky correction filtmed = f_kernel is not None im_rec_max = crop_max( img_biased, isz, offx=offx, offy=offy, filtmed=filtmed, f=f_kernel )[0] else: im_rec_max = img_biased.copy() if ( (im_rec_max.shape[0] != im_rec_max.shape[1]) or (isz is not None and im_rec_max.shape[0] != isz) or (isz is None and im_rec_max.shape[0] != img0.shape[0]) ): l_bad_frame.append(i) else: if apod and window is not None: img = apply_windowing(im_rec_max, window=window) elif apod: warnings.warn( "apod is set to True, but window is None. Skipping apodisation", RuntimeWarning, ) img = im_rec_max.copy() else: img = im_rec_max.copy() cube_cleaned.append(img) if verbose: print("Bad centering frame number:", l_bad_frame) cube_cleaned = np.array(cube_cleaned) return cube_cleaned
22,425
def describe_dataset_group(datasetGroupArn=None): """ Describes the given dataset group. For more information on dataset groups, see CreateDatasetGroup . See also: AWS API Documentation Exceptions :example: response = client.describe_dataset_group( datasetGroupArn='string' ) :type datasetGroupArn: string :param datasetGroupArn: [REQUIRED]\nThe Amazon Resource Name (ARN) of the dataset group to describe.\n :rtype: dict ReturnsResponse Syntax{ 'datasetGroup': { 'name': 'string', 'datasetGroupArn': 'string', 'status': 'string', 'roleArn': 'string', 'kmsKeyArn': 'string', 'creationDateTime': datetime(2015, 1, 1), 'lastUpdatedDateTime': datetime(2015, 1, 1), 'failureReason': 'string' } } Response Structure (dict) -- datasetGroup (dict) --A listing of the dataset group\'s properties. name (string) --The name of the dataset group. datasetGroupArn (string) --The Amazon Resource Name (ARN) of the dataset group. status (string) --The current status of the dataset group. A dataset group can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING roleArn (string) --The ARN of the IAM role that has permissions to create the dataset group. kmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key used to encrypt the datasets. creationDateTime (datetime) --The creation date and time (in Unix time) of the dataset group. lastUpdatedDateTime (datetime) --The last update date and time (in Unix time) of the dataset group. failureReason (string) --If creating a dataset group fails, provides the reason why. Exceptions Personalize.Client.exceptions.InvalidInputException Personalize.Client.exceptions.ResourceNotFoundException :return: { 'datasetGroup': { 'name': 'string', 'datasetGroupArn': 'string', 'status': 'string', 'roleArn': 'string', 'kmsKeyArn': 'string', 'creationDateTime': datetime(2015, 1, 1), 'lastUpdatedDateTime': datetime(2015, 1, 1), 'failureReason': 'string' } } :returns: Personalize.Client.exceptions.InvalidInputException Personalize.Client.exceptions.ResourceNotFoundException """ pass
22,426
def test_update_nonexisting_subscription(rest_client, auth_token): """ SUBSCRIPTION (REST): Test the update of a non-existing subscription """ subscription_name = uuid() data = {'options': {'filter': {'project': ['toto', ]}}} response = rest_client.put('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 404 assert response.headers.get('ExceptionClass') == 'SubscriptionNotFound'
22,427
def select_points(): """ Select points (empty) objects. Parameters: None Returns: list: Empty objects or None. """ selected = bpy.context.selected_objects if selected: return [object for object in selected if object.type == 'EMPTY'] print('***** Point (empty) objects were not selected *****') return None
22,428
def _get_best_encoding(stream): """Returns the default stream encoding if not found.""" rv = getattr(stream, 'encoding', None) or sys.getdefaultencoding() if _is_ascii_encoding(rv): return 'utf-8' return rv
22,429
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end = printEnd) # Print New Line on Complete if iteration == total: print()
22,430
def mask_conv1d1(in_channels, out_channels, strides=1, groups=1, use_bias=False, data_format="channels_last", **kwargs): """ Masked 1-dim kernel version of the 1D convolution layer. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int, default 1 Strides of the convolution. groups : int, default 1 Number of groups. use_bias : bool, default False Whether the layer uses a bias vector. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ return MaskConv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, strides=strides, groups=groups, use_bias=use_bias, data_format=data_format, **kwargs)
22,431
def isready_cluster(ctx, project_name, cluster_name): """Check if the Atlas Cluster is 'IDLE'.""" project = ctx.obj.groups.byName[project_name].get().data state = ctx.obj.groups[project.id].clusters[cluster_name].get().data.stateName if state == "IDLE": click.echo("True") exit(0) click.echo("False", err=True) exit(1)
22,432
def decimal_from_tuple(signed, digits, expo): """Build `Decimal` objects from components of decimal tuple. Parameters ---------- signed : bool True for negative values. digits : iterable of ints digits of value each in [0,10). expo : int or {'F', 'n', 'N'} exponent of decimal. Returns ------- y : Decimal corresponding decimal object. """ # Get everything in correct type because the Py3 decimal package is anal signed = int(signed) digits = ensure_tuple_of_ints(digits) expo = expo if expo in ("F", "n", "N") else int(expo) y = decimal.Decimal(decimal.DecimalTuple(signed, digits, expo)) return y
22,433
def metadata_update( repo_id: str, metadata: Dict, *, repo_type: str = None, overwrite: bool = False, token: str = None, ) -> str: """ Updates the metadata in the README.md of a repository on the Hugging Face Hub. Example: >>> from huggingface_hub import metadata_update >>> metadata = {'model-index': [{'name': 'RoBERTa fine-tuned on ReactionGIF', ... 'results': [{'dataset': {'name': 'ReactionGIF', ... 'type': 'julien-c/reactiongif'}, ... 'metrics': [{'name': 'Recall', ... 'type': 'recall', ... 'value': 0.7762102282047272}], ... 'task': {'name': 'Text Classification', ... 'type': 'text-classification'}}]}]} >>> update_metdata("julien-c/reactiongif-roberta", metadata) Args: repo_id (`str`): The name of the repository. metadata (`dict`): A dictionary containing the metadata to be updated. repo_type (`str`, *optional*): Set to `"dataset"` or `"space"` if updating to a dataset or space, `None` or `"model"` if updating to a model. Default is `None`. overwrite (`bool`, *optional*, defaults to `False`): If set to `True` an existing field can be overwritten, otherwise attempting to overwrite an existing field will cause an error. token (`str`, *optional*): The Hugging Face authentication token. Returns: `str`: URL of the commit which updated the card metadata. """ filepath = hf_hub_download( repo_id, filename=REPOCARD_NAME, repo_type=repo_type, use_auth_token=token, force_download=True, ) existing_metadata = metadata_load(filepath) for key in metadata: # update model index containing the evaluation results if key == "model-index": if "model-index" not in existing_metadata: existing_metadata["model-index"] = metadata["model-index"] else: # the model-index contains a list of results as used by PwC but only has one element thus we take the first one existing_metadata["model-index"][0][ "results" ] = _update_metadata_model_index( existing_metadata["model-index"][0]["results"], metadata["model-index"][0]["results"], overwrite=overwrite, ) # update all fields except model index else: if key in existing_metadata and not overwrite: if existing_metadata[key] != metadata[key]: raise ValueError( f"""You passed a new value for the existing meta data field '{key}'. Set `overwrite=True` to overwrite existing metadata.""" ) else: existing_metadata[key] = metadata[key] # save and push to hub metadata_save(filepath, existing_metadata) return HfApi().upload_file( path_or_fileobj=filepath, path_in_repo=REPOCARD_NAME, repo_id=repo_id, repo_type=repo_type, identical_ok=False, token=token, )
22,434
async def test_command_with_optional_arg(hass, client): """Test generic command functionality.""" await setup_webostv(hass) data = { ATTR_ENTITY_ID: ENTITY_ID, ATTR_COMMAND: "test", ATTR_PAYLOAD: {"target": "https://www.google.com"}, } await hass.services.async_call(DOMAIN, SERVICE_COMMAND, data) await hass.async_block_till_done() client.request.assert_called_with( "test", payload={"target": "https://www.google.com"} )
22,435
def add_children_layer_before_parent_layer(cur_layer: tf.keras.layers.Layer, node_layer_map: dict, layer_out_node_map: dict, visited_layers: set, reversed_ordered_layers: list): """ Function to use topological sorting for finding all the layers which are accessible from the specific input_layer in the opposite order of occurrence :param cur_layer:nlayer that we want to find path from :param node_layer_map: dictionary includes node_ref as a key, in_layers and out_layer as value :param layer_out_node_map: dictionary includes layer_ref as a key, outbound nodes as value :param visited_layers: Set of all layers that have been visited :param reversed_ordered_layers: List of layers in the opposite order of occurrence for the layers that we have visited so far :return: """ # Mark the current layer as visited. visited_layers.add(cur_layer) if cur_layer in layer_out_node_map: # Recur for all the layers adjacent to this layer for next_node in layer_out_node_map[cur_layer]: next_layer = node_layer_map[next_node][1] if next_layer not in visited_layers: add_children_layer_before_parent_layer(next_layer, node_layer_map, layer_out_node_map, visited_layers, reversed_ordered_layers) reversed_ordered_layers.append(cur_layer) else: reversed_ordered_layers.append(cur_layer)
22,436
def test_baked_django_with_git_initiated(cookies): """Test Django git init has generated correctly.""" default_django = cookies.bake() assert ".git" in os.listdir(default_django.project_path) git_remote = bake_checker( "git", "remote", "-v", cwd=default_django.project_path, ) assert "git@github.com:imAsparky/django-boilerplate.git (fetch)" in git_remote
22,437
def convertStringToArabic(numStr, stripChars=0): """ Convert a string to an arabic number; Always returns numeric! 12-09-2004: Changed default stripChars to 0, because otherwise a roman I was stripped before processing! Need to watch for programs that need to now explicitly set stripChars to 1 >>> convertStringToArabic("IV") 4 >>> convertStringToArabic("123") 123 >>> convertStringToArabic("MC") 1100 """ num = 0 if type(numStr) == type(1): num = numStr # already numeric, arabic elif isinstance(numStr, str): numStr = trimPunctAndSpaces(numStr) if stripChars: numStr = trimNonDigits(numStr) if numStr != "": if isRoman(numStr.upper()): num = convRomanToArabic(numStr.upper()) else: try: num = int(numStr) except Exception as e: raise ValueError("Cannot convert: %s" % numStr) else: # try not causing an exception on this. If there's no numeric, then return None. logger.debug("Empty String. convertStringToArabic Conversion error") else: try: num = int(numStr) except Exception as e: raise ValueError(e) if num is None: num = 0 raise ValueError("Cannot convert: %s" % numStr) return num
22,438
def _process_location(loc: location.NormalizedLocation) -> None: """Run through all of the methods to enrich the location""" _add_provider_from_name(loc) _add_source_link(loc) _add_provider_tag(loc) _normalize_phone_format(loc)
22,439
def set_logging(): """Sets additional logging to file for debug.""" logger_migrator = logging.getLogger('migrator') logger_migrator.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - ' '%(message)s - \n ' '[in %(pathname)s:%(lineno)d]') fh = logging.FileHandler('migrator.log') fh.setFormatter(formatter) fh.setLevel(logging.DEBUG) logger_migrator.addHandler(fh) logger_matcher = logging.getLogger('cds_dojson.matcher.dojson_matcher') logger_matcher.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - ' '%(message)s - \n ' '[in %(pathname)s:%(lineno)d]') fh = logging.FileHandler('matcher.log') fh.setFormatter(formatter) fh.setLevel(logging.DEBUG) logger_matcher.addHandler(fh) return logger_migrator
22,440
def system_types(): """ 系统类型(工作空间类型) :return: """ return Workspace.sys_types().values()
22,441
def get_rnd_simplex(dimension, random_state): """ Uniform random point on a simplex, i.e. x_i >= 0 and sum of the coordinates is 1. Donald B. Rubin, The Bayesian bootstrap Ann. Statist. 9, 1981, 130-134. https://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex Parameters ---------- dimension: int Dimensionality of the simplex random_state: optional, RandomState object Returns ------- numpy array corresponding to random sample in dimension of space """ t = random_state.uniform(0, 1, dimension - 1) t = np.append(t, [0, 1]) t.sort() return np.array([(t[i + 1] - t[i]) for i in range(len(t) - 1)])
22,442
def backup_generate_metadata(request, created_at='', secret=''): """ Generates metadata code for the backup. Meant to be called by the local handler only with shared secret (not directly). """ if not secret == settings.GAEBAR_SECRET_KEY: return HttpResponseForbidden() backup = models.GaebarBackup.all().filter('created_at = ', timestamp_to_datetime(created_at)).get() if not backup: raise Http404 context = dict(backup = backup) response = HttpResponse(loader.render_to_string('gaebar/metadata.py', context), 'text/plain') response['Content-Disposition'] = 'attachment; filename=metadata.py' return response
22,443
def test_bs_godec_trained_noise(noise_path, gif_name, preview): """Test bs_godec Implementation with trained noise Keyword Arguments: noise_path {string} gif_name {string} preview {boolean} --- This test shows you how to run the bs_godec method. """ N = get_frame(noise_path) M, R = bs_godec_trained(files, N) plot_bs_results(M, N, R, bs_pics_path, preview=preview)
22,444
def hard_prune_repo(repo_path): """ 1. Delete all files, except git metadata and files with names that match *.py. 2. Delete all empty folders. 3. Delete all symbolic links. 4. Set permission for all files to 440. """ assert os.path.exists(repo_path) prune_commands = ( "find {} -type f ! -name '*.py' -not -iwholename '*.git*' -delete", "find {} -type d -empty -delete", "find {} -type l -delete", "find {} -type f -exec chmod 440 {{}} \;") for command in prune_commands: command = command.format(repo_path) print(command) subprocess.run(command, shell=True, check=True)
22,445
def contains_conv(module: torch.nn.Module) -> bool: """ Returns `True` if given `torch.nn.Module` contains at least one convolution module/op (based on `deepcv.meta.nn.is_conv` for convolution definition) """ return any(map(module.modules, lambda m: is_conv(m)))
22,446
def _construct_cell(empty=False): """Constructs a test cell.""" cell = scheduler.Cell('top') if empty: return cell rack1 = scheduler.Bucket('rack:rack1', traits=0, level='rack') rack2 = scheduler.Bucket('rack:rack2', traits=0, level='rack') cell.add_node(rack1) cell.add_node(rack2) srv1 = scheduler.Server('srv1', [10, 20, 30], traits=1, valid_until=1000, label='part') srv2 = scheduler.Server('srv2', [10, 20, 30], traits=3, valid_until=2000, label='part') srv3 = scheduler.Server('srv3', [10, 20, 30], traits=0, valid_until=3000, label='_default') srv4 = scheduler.Server('srv4', [10, 20, 30], traits=0, valid_until=4000, label='_default') rack1.add_node(srv1) rack1.add_node(srv2) rack2.add_node(srv3) rack2.add_node(srv4) tenant1 = scheduler.Allocation() cell.partitions['_default'].allocation.add_sub_alloc('t1', tenant1) tenant11 = scheduler.Allocation() tenant1.add_sub_alloc('t11', tenant11) alloc1 = scheduler.Allocation([10, 10, 10], rank=100, traits=0) tenant11.add_sub_alloc('a1', alloc1) tenant2 = scheduler.Allocation() cell.partitions['part'].allocation.add_sub_alloc('t2', tenant2) alloc2 = scheduler.Allocation([10, 10, 10], rank=100, traits=3) tenant2.add_sub_alloc('a2', alloc2) return cell
22,447
def gaussian_kernel(F: np.ndarray) -> np.ndarray: """Compute dissimilarity matrix based on a Gaussian kernel.""" D = squared_dists(F) return np.exp(-D/np.mean(D))
22,448
def _parse_yearweek(yearweek): """Utility function to convert internal string representations of calender weeks into datetime objects. Uses strings of format `<year>-KW<week>`. Weeks are 1-based.""" year, week = yearweek_regex.search(yearweek).groups() # datetime.combine(isoweek.Week(int(year), int(week)).wednesday(),time(0)) return isoweek.Week(int(year), int(week))
22,449
def correction_file(namefile, namefile_corrected): """ Correct the orthograph of a tokenized file""" out = open(namefile_corrected, 'w') with open(namefile, 'r') as f: for line in f: new_line = line.replace('\n', '') new_line = new_line.split(';') out.write(new_line[0] + ";") # keep the index sent = new_line[1].split(' ') for wrd in sent: if wrd!='' and wrd != '\xc2\xa0' and wrd!=' ': if dictionnary_french.check(wrd.lower()): out.write(wrd.lower() + " ") else: out.write(correction(wrd.lower()) + " ") out.write("\n") out.close()
22,450
def exportSchemaAsJSONSchema(schema, versionNumber, filePath): """ Exports the given schema as a JSON Schemas document. Parameters ---------- schema : Schema The schema to export. versionNumber : string The version number of the schema. filePath : string The path to which to save the JSON Schemas file. Returns ------- None """ jsonSchemasExporter = JSONSchemasExporter() jsonSchemasExporter.exportSchema(schema, versionNumber, filePath)
22,451
def classified_triplets(ctx: callable, config: callable, statsd: callable, logger: callable, run_id: int, conn: callable, metadata_conn: callable, command: str, metrics_root: callable, metrics_run_root: callable, output_dir: str, conditions: list) -> None: """Generate per-condition classified triplets list. Arguments: ctx: click context object config: DIRBS config object statsd: DIRBS statsd connection object logger: DIRBS custom logger object run_id: run id of the current job conn: DIRBS PostgreSQL connection object metadata_conn: DIRBS PostgreSQL metadata connection object command: name of the command metrics_root: root object for the statsd metrics metrics_run_root: root object for the statsd run metrics output_dir: output directory path conditions: list of conditions for classified triplets Returns: None """ metadata.add_optional_job_metadata(metadata_conn, command, run_id, report_schema_version=report_schema_version, output_dir=os.path.abspath(str(output_dir))) report_dir = make_report_directory(ctx, output_dir, run_id, conn, config) with utils.CodeProfiler() as cp: report_metadata = write_classified_triplets(logger, conditions, report_dir, conn) statsd.gauge('{0}runtime.per_report.classified_triplets'.format(metrics_run_root), cp.duration) metadata.add_optional_job_metadata(metadata_conn, command, run_id, report_outputs=report_metadata)
22,452
def test_scs_invalid_params(dev, apdev): """SCS command invalid parameters""" tests = ["", "scs_id=1", "scs_id=1 foo", "scs_id=1 add ", "scs_id=1 add scs_up=8", "scs_id=1 add scs_up=7", "scs_id=1 add scs_up=7 classifier_type=1", "scs_id=1 add scs_up=7 classifier_type=4", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4 src_ip=q", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4 dst_ip=q", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4 src_port=q", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4 dst_port=q", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv4 protocol=foo", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv6 protocol=foo", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv6 next_header=foo", "scs_id=1 add scs_up=7 classifier_type=4 ip_version=ipv6 flow_label=ffffff", "scs_id=1 add scs_up=7 classifier_type=10", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11223344", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=qq", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11223344 filter_mask=ffffff", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11223344 filter_mask=qqqqqqqq", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11223344 filter_mask=ffffffff", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=foo filter_value=11223344 filter_mask=ffffffff", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11 filter_mask=ee classifier_type=10 prot_instance=2 prot_number=udp filter_value=22 filter_mask=ff", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11 filter_mask=ee classifier_type=10 prot_instance=2 prot_number=udp filter_value=22 filter_mask=ff tclas_processing=2", "scs_id=1 add scs_up=7 classifier_type=10 prot_instance=1 prot_number=udp filter_value=11 filter_mask=ee classifier_type=10 prot_instance=2 prot_number=udp filter_value=22 filter_mask=ff tclas_processing=0", "scs_id=1 add scs_up=6 classifier_type=4 ip_version=ipv4 src_ip=1.2.3.4 dst_ip=5.6.7.8 src_port=12345 dst_port=23456 dscp=5 protocol=udp scs_id=1 add scs_up=6 classifier_type=4 ip_version=ipv4 src_ip=1.2.3.4 dst_ip=5.6.7.8 src_port=12345 dst_port=23456 dscp=5 protocol=tcp" "scs_id=1 remove", "scs_id=1 change "] for t in tests: if "FAIL" not in dev[0].request("SCS " + t): raise Exception("Invalid SCS parameters accepted: " + t)
22,453
def save_as_pdf_pages(plots, filename=None, path=None, verbose=True, **kwargs): """ Save multiple :class:`ggplot` objects to a PDF file, one per page. Parameters ---------- plots : collection or generator of :class:`ggplot` Plot objects to write to file. `plots` may be either a collection such as a :py:class:`list` or :py:class:`set`: >>> base_plot = ggplot(…) >>> plots = [base_plot + ggtitle('%d of 3' % i) for i in range(1, 3)] >>> save_as_pdf_pages(plots) or, a generator that yields :class:`ggplot` objects: >>> def myplots(): >>> for i in range(1, 3): >>> yield ggplot(…) + ggtitle('%d of 3' % i) >>> save_as_pdf_pages(myplots()) filename : :py:class:`str`, optional File name to write the plot to. If not specified, a name like “plotnine-save-<hash>.pdf” is used. path : :py:class:`str`, optional Path to save plot to (if you just want to set path and not filename). verbose : :py:class:`bool` If ``True``, print the saving information. kwargs : :py:class:`dict` Additional arguments to pass to :py:meth:`matplotlib.figure.Figure.savefig`. Notes ----- Using pandas' :meth:`~pandas.DataFrame.groupby` methods, tidy data can be “faceted” across pages: >>> from plotnine.data import mtcars >>> def facet_pages(column) >>> base_plot = [ >>> aes(x='wt', y='mpg', label='name'), >>> geom_text(), >>> ] >>> for label, group_data in mtcars.groupby(column): >>> yield ggplot(group_data) + base_plot + ggtitle(label) >>> save_as_pdf_pages(facet_pages('cyl')) Unlike :meth:`ggplot.save`, :meth:`save_as_pdf_pages` does not process arguments for `height` or `width`. To set the figure size, add :class:`~plotnine.themes.themeable.figure_size` to the theme for some or all of the objects in `plots`: >>> plot = ggplot(…) >>> # The following are equivalent >>> plot.save('filename.pdf', height=6, width=8) >>> save_as_pdf_pages([plot + theme(figure_size=(8, 6))]) """ # as in ggplot.save() fig_kwargs = {'bbox_inches': 'tight'} fig_kwargs.update(kwargs) # If plots is already an iterator, this is a no-op; otherwise # convert a list, etc. to an iterator plots = iter(plots) # filename, depends on the object if filename is None: # Take the first element from the iterator, store it, and # use it to generate a file name peek = [next(plots)] plots = chain(peek, plots) filename = peek[0]._save_filename('pdf') if path: filename = os.path.join(path, filename) if verbose: warn('Filename: {}'.format(filename), PlotnineWarning) with PdfPages(filename) as pdf: # Re-add the first element to the iterator, if it was removed for plot in plots: fig = plot.draw() # Save as a page in the PDF file pdf.savefig(fig, **fig_kwargs) # To conserve memory when plotting a large number of pages, # close the figure whether or not there was an exception plt.close(fig)
22,454
def get_subpixel_indices(galtable, hpix=[], border=0.0, nside=0): """ Routine to get subpixel indices from a galaxy table. Parameters ---------- galtable: `redmapper.Catalog` A redmapper galaxy table master catalog hpix: `list`, optional Healpix number (ring format) of sub-region. Default is [] (full catalog) border: `float`, optional Border around hpix (in degrees) to find pixels. Default is 0.0. Only works if hpix is a single-length list nside: `int`, optional Nside of healpix subregion. Default is 0 (full catalog). Returns ------- indices: `np.array` Integer array of indices of galaxy table pixels in the subregion. """ if len(hpix) == 0 or nside == 0: return np.arange(galtable.filenames.size) theta, phi = hp.pix2ang(galtable.nside, galtable.hpix) ipring_big = hp.ang2pix(nside, theta, phi) _, indices = esutil.numpy_util.match(hpix, ipring_big) # Ignore border if using full catalog if border > 0.0 and len(hpix) > 0: if len(hpix) != 1: raise NotImplementedError("Cannot do boundary around a pixel list.") # now we need to find the extra boundary... boundaries = hp.boundaries(nside, hpix[0], step=galtable.nside // nside) inhpix = galtable.hpix[indices] for i in range(boundaries.shape[1]): pixint = hp.query_disc(galtable.nside, boundaries[:, i], border*np.pi/180., inclusive=True, fact=8) inhpix = np.append(inhpix, pixint) inhpix = np.unique(inhpix) _, indices = esutil.numpy_util.match(inhpix, galtable.hpix) return indices
22,455
def main(): """creating the function in order to call all other functions inside of it""" make_bear(bear_size, bear_color, sun_or_cloud) make_sun()
22,456
def is_common_secret_key(key_name: str) -> bool: """Return true if the key_name value matches a known secret name or pattern.""" if key_name in COMMON_SECRET_KEYS: return True return any( [ key_name.lower().endswith(key_suffix) for key_suffix in COMMON_SECRET_KEY_SUFFIXES ] )
22,457
def check_md5(func): """ A decorator that checks if a file has been changed. """ @wraps(func) def wrapper(*args, **kwargs): ret = func(*args, **kwargs) assert _check_md5(path, original_path), 'The file has been changed after {}().'.format(func.__name__) return ret return wrapper
22,458
def showgraphwidth(context, mapping): """Integer. The width of the graph drawn by 'log --graph' or zero.""" # just hosts documentation; should be overridden by template mapping return 0
22,459
def test_get_scores_from_invalid_ratings_dataframe(tenor): """Tests if function can correctly handle pd.DataFrame objects.""" act = rtg.get_scores_from_ratings(ratings=conftest.input_invalid_df, tenor=tenor) expectations = conftest.exp_invalid_df expectations.columns = ["rtg_score_Fitch", "rtg_score_DBRS"] # noinspection PyTypeChecker assert_frame_equal(act, expectations)
22,460
def set_hud_visibility(bool_value, displays = None): """ Set the viewport hud display visibility. Args: bool_value (bool): True turns visiliblity on, False turns it off. displays (list): List of heads up displays by name. """ if not displays: displays = cmds.headsUpDisplay(q = True, lh = True) for display in displays: cmds.headsUpDisplay(display, e = True, vis = bool_value)
22,461
def diff_last_filter(trail, key=lambda x: x['pid']): """ Filter out trails with last two key different """ return trail if key(trail[-1]) != key(trail[-2]) else None
22,462
def read_items(source, n, target): """This function reads and prints n items from the given iterable, also putting them to the given target queue.""" for i in range(0, n): item = source.__next__() print((i, item)) target.put((i, item))
22,463
def cli(): """Command Line Interface for the Reproducible Open Benchmark REANA workflow controller.""" pass
22,464
def cpu_times(): """Return a named tuple representing the following system-wide CPU times: (user, nice, system, idle, iowait, irq, softirq [steal, [guest, [guest_nice]]]) Last 3 fields may not be available on all Linux kernel versions. """ procfs_path = get_procfs_path() set_scputimes_ntuple(procfs_path) with open_binary('%s/stat' % procfs_path) as f: values = f.readline().split() fields = values[1:len(scputimes._fields) + 1] fields = [float(x) / CLOCK_TICKS for x in fields] return scputimes(*fields)
22,465
def calc_centeroid(x, network: DTClustering, n_clusters: int): """クラスタ中心を計算します. Notes: Input x: [batch, sequence, feature, 1] Output: [n_clusters, hidden sequence, hidden feature, 1] """ code = network.encode(x) feature = code.view(code.shape[0], -1) # [batch, sequence * feature] feature = feature.detach().cpu().numpy() km = cluster.KMeans(n_clusters=n_clusters, n_init=10) km.fit(feature) centers = km.cluster_centers_.reshape(n_clusters, code.shape[1], code.shape[2], 1) centers = centers.astype(np.float32) return centers
22,466
def start_run(): """ Starts at test run.. TODO all of it. """ uuid = request.form.get('uuid', default='none', type=str) print('Starting a run: %s' % uuid) return "ok"
22,467
def softXrayMono1(eV, k, m, c, rb_mm, bounce, inOff_deg, outOff_deg, verbose): """ # calculate premirror and grating angles for NSLS-II soft xray monos # eV: energy # k: central line density in mm-1 # m: diffraction order # c: cff 0 < cff < infinity # bounce = 'up' or 'down' # inOff_deg - input beam angle relative to horizontal, NSLSII sense # outOff_deg - output beam angle relative to horizontal, NSLSII sense """ # correct for several energies for Centurion # correctly reverses sign of angles if geometry is flipped upside-down # consider bounce direction if bounce == "up": a = -1 elif bounce == "down": a = +1 else: a = float("nan") # calculate angles, no offsets alpha_deg = ruben2005eqn8m(eV, c, k, m) beta_deg = getBetaDeg(eV, alpha_deg, k, m) # include offsets thetaPMinc_deg = abs( +0.5 * (outOff_deg - inOff_deg + a * (180.0 - alpha_deg + beta_deg)) ) thetaPM_deg = +0.5 * (outOff_deg + inOff_deg + a * (180.0 - alpha_deg + beta_deg)) thetaGR_deg = a * (90.0 + beta_deg) + outOff_deg disp = getLinDisp(alpha_deg, beta_deg, k, m, rb_mm) if verbose: # alpha, beta both relative to normal and surface print("eV=", eV, "c=", c) print("alpha=", alpha_deg, 90.0 - alpha_deg) print("beta=", beta_deg, (90 + beta_deg)) print("incident angle on pm=", thetaPMinc_deg) print("dispersion (eV/mm) =", disp) # grating and premirror rotation angles print("rotation angles relative to horizontal") print(" premirror", thetaPM_deg) print(" grating", thetaGR_deg) return (thetaPM_deg, thetaGR_deg, alpha_deg, beta_deg, thetaPMinc_deg, disp)
22,468
def createHelmholtz3dExteriorCalderonProjector( context, hminusSpace, hplusSpace, waveNumber, label=None, useInterpolation=False, interpPtsPerWavelength=5000): """ Create and return the exterior Calderon projector for the Helmholtz equation in 3D. *Parameters:* - context (Context) A Context object to control the assembly of the weak form of the newly constructed operator. - hminusSpace (Space) Function space representing functions in H^{-1/2}. - hplusSpace (Space) Function space representing functions in H^{+1/2}. - waveNumber (float or complex) Wave number, i.e. the number k in the Helmholtz equation nabla^2 u + k^2 u = 0. - label (string) Textual label of the operator. If set to None (default), a unique label will be generated automatically. - useInterpolation (bool) If set to False (default), the standard exp() function will be used to evaluate the exponential factor occurring in the kernel. If set to True, the exponential factor will be evaluated by piecewise-cubic interpolation of values calculated in advance on a regular grid. This normally speeds up calculations, but might result in a loss of accuracy. This is an experimental feature: use it at your own risk. - interpPtsPerWavelength (int) If useInterpolation is set to True, this parameter determines the number of points per "effective wavelength" (defined as 2 pi / abs(waveNumber)) used to construct the interpolation grid. The default value (5000) is normally enough to reduce the relative or absolute error, *whichever is smaller*, below 100 * machine precision. If useInterpolation is set to False, this parameter is ignored. *Returns* a newly constructed BoundaryOperator_BasisFunctionType_ResultType object, with BasisFunctionType and ResultType determined automatically from the context argument and equal to either float32, float64, complex64 or complex128. """ basisFunctionType = context.basisFunctionType() if (basisFunctionType != hminusSpace.basisFunctionType() or basisFunctionType != hplusSpace.basisFunctionType()): raise TypeError("BasisFunctionType of context and all spaces must be the same") resultType = context.resultType() # construct object if not label: label = "" result = _constructObjectTemplatedOnBasis( core, 'helmholtz3dExteriorCalderonProjector', basisFunctionType, context, hminusSpace, hplusSpace, waveNumber, label, useInterpolation, interpPtsPerWavelength) result._context = context result._hminusSpace = hminusSpace result._hplusSpace = hplusSpace return result
22,469
def setup(bot: commands.Bot) -> None: """ This is a necessary method to make the cog loadable. Returns ------- None """ bot.add_cog(Timeline(bot))
22,470
def prepare_xrf_map(data, chunk_pixels=5000, n_chunks_min=4): """ Convert XRF map from it's initial representation to properly chunked Dask array. Parameters ---------- data: da.core.Array, np.ndarray or RawHDF5Dataset (this is a custom type) Raw XRF map represented as Dask array, numpy array or reference to a dataset in HDF5 file. The XRF map must have dimensions `(ny, nx, ne)`, where `ny` and `nx` define image size and `ne` is the number of spectrum points chunk_pixels: int The number of pixels in a single chunk. The XRF map will be rechunked so that each block contains approximately `chunk_pixels` pixels and contain all `ne` spectrum points for each pixel. n_chunks_min: int Minimum number of chunks. The algorithm will try to split the map into the number of chunks equal or greater than `n_chunks_min`. If HDF5 dataset is not chunked, then the whole map is treated as one chunk. This should happen only to very small files, so parallelism is not important. Returns ------- data: da.core.Array XRF map represented as Dask array with proper chunk size. The XRF map may be loaded block by block when processing using `dask.array.map_blocks` and `dask.array.blockwise` functions with Dask multiprocessing scheduler. file_obj: h5py.File object File object that points to HDF5 file. `None` if input parameter `data` is Dask or numpy array. Note, that `file_obj` must be kept alive until processing is completed. Closing the file will invalidate references to the dataset in the respective Dask array. Raises ------ TypeError if input parameter `data` is not one of supported types. """ file_obj = None # It will remain None, unless 'data' is 'RawHDF5Dataset' if isinstance(data, da.core.Array): chunk_size = _compute_optimal_chunk_size( chunk_pixels=chunk_pixels, data_chunksize=data.chunksize[0:2], data_shape=data.shape[0:2], n_chunks_min=n_chunks_min, ) data = data.rechunk(chunks=(*chunk_size, data.shape[2])) elif isinstance(data, np.ndarray): data = _array_numpy_to_dask(data, chunk_pixels=chunk_pixels, n_chunks_min=n_chunks_min) elif isinstance(data, RawHDF5Dataset): fpath, dset_name = data.abs_path, data.dset_name # Note, that the file needs to remain open until the processing is complete !!! file_obj = h5py.File(fpath, "r") dset = file_obj[dset_name] if dset.ndim != 3: raise TypeError( f"Dataset '{dset_name}' in file '{fpath}' has {dset.ndim} dimensions: 3D dataset is expected" ) ny, nx, ne = dset.shape if dset.chunks: chunk_size = _compute_optimal_chunk_size( chunk_pixels=chunk_pixels, data_chunksize=dset.chunks[0:2], data_shape=(ny, nx), n_chunks_min=n_chunks_min, ) else: # The data is not chunked. Process data as one chunk. chunk_size = (ny, nx) data = da.from_array(dset, chunks=(*chunk_size, ne)) else: raise TypeError(f"Type of parameter 'data' is not supported: type(data)={type(data)}") return data, file_obj
22,471
def colorbar_factory(cax, mappable, **kwargs): """ Create a colorbar on the given axes for the given mappable. .. note:: This is a low-level function to turn an existing axes into a colorbar axes. Typically, you'll want to use `~.Figure.colorbar` instead, which automatically handles creation and placement of a suitable axes as well. Parameters ---------- cax : `~matplotlib.axes.Axes` The `~.axes.Axes` to turn into a colorbar. mappable : `~matplotlib.cm.ScalarMappable` The mappable to be described by the colorbar. **kwargs Keyword arguments are passed to the respective colorbar class. Returns ------- `.Colorbar` The created colorbar instance. """ return Colorbar(cax, mappable, **kwargs)
22,472
def fourth_measurer_I_R(uniquePairsDf): """ fourth_measurer_I_R: computes the measure I_R that is based on the minimal number of tuples that should be removed from the database for the constraints to hold. The measure is computed via an ILP and the Gurobi optimizer is used to solve the ILP. - There is a binary variable x for every tuple in the database. - The constraints are of the form x + y >= 1 where x and y represent two tuples that jointly vioalte a constraint. - The objective function is to minimize the sum of all x's. Parameters ---------- uniquePairsDf : dataframe the result of the query that finds all pairs of tuples that jointly violate a constraint. Returns ------- list of two int variables: database_measurer.objVal is the minimal number of tuples that should be removed for the constraints to hold. end1 - start is the running time of the function. """ start = time.time() rows_violations = uniquePairsDf.values varsDict2 = {} database_measurer = gp.Model('Minimal deletions of tuples') database_measurer.setParam('OutputFlag', 0) # do not show any comments on the screen # variables for i in rows_violations : varsDict2[i[0]] = database_measurer.addVar(vtype=GRB.BINARY, name="x") varsDict2[i[1]] = database_measurer.addVar(vtype=GRB.BINARY, name="x") # constraints for i in rows_violations : database_measurer.addConstr(varsDict2[i[0]]+varsDict2[i[1]]>=1, name='con') vars= [] for i in varsDict2: vars.append(varsDict2[i]) # objective function database_measurer.setObjective(sum(vars), GRB.MINIMIZE) opt = database_measurer.optimize() end1 = time.time() return database_measurer.objVal , end1 - start
22,473
def import_hopdb_fossil_elements(path): """ Function to import fossil elements from xml file downloaded from the HOP DB. This function populates both the FossilElement table and the Fossils table. Fossils are aggregated from elements based on values in the HomininElement field :param path: :return: """ xml_file = open(path, 'U') tree = etree.parse(xml_file) # tree is an lxml ElementTree object element_tree = tree.getroot() xml_file.close() africa_list = [u'Chad', u'Libya', u'South Africa', u'Tanzania', u'Morocco', u'Malawi', u'Ethiopia', u'Algeria', u'Namibia', u'Kenya', u'Zambia'] asia_list = [u'Israel', u'Indonesia', u'China', u'Vietnam', u'Iraq'] item_count = 0 for specimen in element_tree: new_fossil_element = FossilElement() # specimen_name = specimen.find('HomininElement').text specimen_dict = {e.tag: e.text for e in specimen} for element in specimen: new_fossil_element.__setattr__(element.tag, element.text) new_fossil_element.save() # try: # print 'created new specimen {} {}'.format(new_fossil_element.id, specimen_name) # except UnicodeEncodeError: # print 'created new specimen {}'.format(new_fossil_element.id) item_count += 1 obj, created = Fossil.objects.get_or_create(HomininElement=new_fossil_element.HomininElement, defaults=specimen_dict) if created: if obj.Country: if obj.Country in africa_list: obj.continent = 'Africa' elif obj.Country in asia_list: obj.continent = 'Asia' obj.save() new_fossil_element.fossil = obj print('Successfully imported {} fossil elements from the HOPDB'.format(item_count))
22,474
def is_sublist_equal(list_one, list_two): """ Compare the values of two lists of equal length. :param list_one: list - A list :param list_two: list - A different list :return EQUAL or UNEQUAL - If all values match, or not. >>> is_sublist_equal([0], [0]) EQUAL >>> is_sublist_equal([1], [0]) UNEQUAL Iterate over values in each list and compare them Assumes lists are of equal sizes """ for index, value in enumerate(list_one): if value != list_two[index]: return UNEQUAL # Otherwise, all values matched, so it's equal return EQUAL
22,475
def black_box_function(x, y): """Function with unknown internals we wish to maximize. This is just serving as an example, for all intents and purposes think of the internals of this function, i.e.: the process which generates its output values, as unknown. """ return -x ** 2 - (y - 1) ** 2 + 1
22,476
def convert( *, csv, tfrecords_template, volume_shape, examples_per_shard, to_ras, gzip, verify_volumes, num_parallel_calls, multi_resolution, start_resolution, verbose, ): """Convert medical imaging volumes to TFRecords. Volumes must all be the same shape. This will overwrite existing TFRecord files. Labels can be volumetric or scalar. """ # TODO: improve docs. volume_filepaths = _read_csv(csv) num_parallel_calls = ( get_num_parallel() if num_parallel_calls == -1 else num_parallel_calls ) _dirname = os.path.dirname(tfrecords_template) if not os.path.exists(_dirname): raise ValueError("directory does not exist: {}".format(_dirname)) if verify_volumes: invalid_pairs = _verify_features_labels( volume_filepaths=volume_filepaths, volume_shape=volume_shape, check_shape=True, check_labels_int=True, check_labels_gte_zero=True, num_parallel_calls=None, verbose=1, ) if not invalid_pairs: click.echo(click.style("Passed verification.", fg="green")) else: click.echo(click.style("Failed verification.", fg="red")) click.echo( f"Found {len(invalid_pairs)} invalid pairs of volumes. These files" " might not all have shape {volume_shape}, the labels might not be an" " integer type or coercible to integer type, or the labels might not" " be >= 0." ) for pair in invalid_pairs: click.echo(pair[0]) click.echo(pair[1]) sys.exit(-1) if multi_resolution: start_resolution_log = np.log2(start_resolution).astype(np.int32) target_resolution_log = np.log2(volume_shape[0]).astype(np.int32) resolutions = [ 2 ** res for res in range(start_resolution_log, target_resolution_log + 1) ] else: resolutions = None _write_tfrecord( features_labels=volume_filepaths, filename_template=tfrecords_template, examples_per_shard=examples_per_shard, to_ras=to_ras, compressed=gzip, processes=num_parallel_calls, multi_resolution=multi_resolution, resolutions=resolutions, verbose=verbose, ) click.echo(click.style("Finished conversion to TFRecords.", fg="green"))
22,477
def reduce_wires_to_segments(wires, segments): """ Reduce wire names to segment definitions. For purposes of creating the routing heuristic, it is assumed that if two source wires share a prefix, they can be considered segments for the purposes of the routing heuristic. This is definitely true for wires like SR1BEG1 or LV18. This may apply to the local fanout wires like GFAN0 or FAN_BOUNCE0. """ WIRE_PARTS = re.compile('^(.*?)([0-9]+)$') for wire in wires: m = WIRE_PARTS.match(wire) assert m is not None segment = m.group(1) if segment not in segments: segments[segment] = set() segments[segment].add(wire)
22,478
def test_vmrun_begin_replay(): """Test begin_replay method.""" vmrun = mech.vmrun.VMrun('/tmp/first/some.vmx', executable='/tmp/vmrun', provider='ws', test_mode=True) expected = ['/tmp/vmrun', '-T', 'ws', 'beginReplay', '/tmp/first/some.vmx', 'a_name'] got = vmrun.begin_replay('a_name') assert got == expected
22,479
def file_extension(path): """Lower case file extension.""" return audeer.file_extension(path).lower()
22,480
def locate(verbose): """Print location of the current workspace. :param verbose: Unused. """ if not os.path.islink(ws_file): print('no current workspace found, see "ros-get ws-create --help" how to create one') return 1 else: print(os.path.realpath(ws_file))
22,481
def motion(x, u, dt): """ motion model """ x[2] += u[1] * dt x[0] += u[0] * math.cos(x[2]) * dt x[1] += u[0] * math.sin(x[2]) * dt x[3] = u[0] x[4] = u[1] return x
22,482
def sweep( sweep: Union[dict, Callable], entity: str = None, project: str = None, ) -> str: """Initialize a hyperparameter sweep. To generate hyperparameter suggestions from the sweep and use them to train a model, call `wandb.agent` with the sweep_id returned by this command. For command line functionality, see the command line tool `wandb sweep` (https://docs.wandb.ai/ref/cli/wandb-sweep). Args: sweep: dict, SweepConfig, or callable. The sweep configuration (or configuration generator). If a dict or SweepConfig, should conform to the W&B sweep config specification (https://docs.wandb.ai/guides/sweeps/configuration). If a callable, should take no arguments and return a dict that conforms to the W&B sweep config spec. entity: str (optional). An entity is a username or team name where you're sending runs. This entity must exist before you can send runs there, so make sure to create your account or team in the UI before starting to log runs. If you don't specify an entity, the run will be sent to your default entity, which is usually your username. Change your default entity in [Settings](wandb.ai/settings) under "default location to create new projects". project: str (optional). The name of the project where you're sending the new run. If the project is not specified, the run is put in an "Uncategorized" project. Returns: sweep_id: str. A unique identifier for the sweep. Examples: Basic usage <!--yeadoc-test:one-parameter-sweep--> ```python import wandb sweep_configuration = { "name": "my-awesome-sweep", "metric": {"name": "accuracy", "goal": "maximize"}, "method": "grid", "parameters": { "a": { "values": [1, 2, 3, 4] } } } def my_train_func(): # read the current value of parameter "a" from wandb.config wandb.init() a = wandb.config.a wandb.log({"a": a, "accuracy": a + 1}) sweep_id = wandb.sweep(sweep_configuration) # run the sweep wandb.agent(sweep_id, function=my_train_func) ``` """ if callable(sweep): sweep = sweep() """Sweep create for controller api and jupyter (eventually for cli).""" if entity: env.set_entity(entity) if project: env.set_project(project) # Make sure we are logged in wandb_login._login(_silent=True) api = InternalApi() sweep_id, warnings = api.upsert_sweep(sweep) handle_sweep_config_violations(warnings) print("Create sweep with ID:", sweep_id) sweep_url = _get_sweep_url(api, sweep_id) if sweep_url: print("Sweep URL:", sweep_url) return sweep_id
22,483
def connection_end_point (id, node_uuid, nep_uuid, cep_uuid): """Retrieve NodeEdgePoint by ID :param topo_uuid: ID of Topology :type uuid: str :param node_uuid: ID of Node :type node_uuid: str :param nep_uuid: ID of NodeEdgePoint :type nep_uuid: str :param cep_uuid: ID of ConnectionEndPoint :type cep_uuid: str :rtype: ConnectionEndPoint """ for topo in context.topology_context.topology: if topo.uuid == topo_uuid: for node in topo.node: if node.uuid == node_uuid: for nep in node.owned_node_edge_point: if nep.uuid == nep_uuid: for cep in nep.cep_list.connection_end_point: if cep.uuid == cep_uuid: return cep
22,484
def remove_melt_from_perplex(perplex,melt_percent=-1): """ Extrapolate high temperature values to remove melt content using sub-solidus values. The assumption is that alpha and beta are constant and temperature-independent at high temperature.""" Tref = 273 Pref = 0 rho = perplex.rho.reshape( int(perplex.np), int(perplex.nt)) rhoresidual = perplex.rhoresidual.reshape( int(perplex.np), int(perplex.nt)) rhomelt = perplex.rhomelt.reshape( int(perplex.np), int(perplex.nt)) T = perplex.T.reshape( int(perplex.np), int(perplex.nt)) P = perplex.P.reshape( int(perplex.np), int(perplex.nt)) alpha = perplex.alpha.reshape(int(perplex.np), int(perplex.nt)) alpharesidual = perplex.alpharesidual.reshape(int(perplex.np), int(perplex.nt)) alphamelt = perplex.alphamelt.reshape(int(perplex.np), int(perplex.nt)) beta = perplex.beta.reshape( int(perplex.np), int(perplex.nt)) betaresidual = perplex.betaresidual.reshape( int(perplex.np), int(perplex.nt)) betamelt = perplex.betamelt.reshape( int(perplex.np), int(perplex.nt)) cp = perplex.cp.reshape( int(perplex.np), int(perplex.nt)) cpmelt = perplex.cpmelt.reshape( int(perplex.np), int(perplex.nt)) cpresidual = perplex.cpresidual.reshape( int(perplex.np), int(perplex.nt)) melt = perplex.melt.reshape( int(perplex.np), int(perplex.nt)) # smoothing alpha and beta along the boundaries to avoid vertical discontinuities not suitable n_smooth = 3 rho_smooth = [] rhomelt_smooth = [] rhoresidual_smooth = [] alpha_smooth = [] beta_smooth = [] cp_smooth = [] alphamelt_smooth = [] betamelt_smooth = [] cpmelt_smooth = [] alpharesidual_smooth = [] betaresidual_smooth = [] cpresidual_smooth = [] i_smooth = 0 i_int = 0 #alpha_beta_values = False for j in range(0,int(perplex.np)): if (melt_percent<0): are_values = False for i in range(int(perplex.nt)-1,-1,-1): #print('None T {} P {} melt {}'.format(T[j,i],P[j,i],melt[j,i])) if ( melt[j,i] > 0.0e0 ): #print('None T {} P {}'.format(T[j,i],P[j,i])) pass else: if (i_smooth<n_smooth): alpha_smooth.append(alpha[j,i]) beta_smooth.append(beta[j,i]) cp_smooth.append(cp[j,i]) cpmelt_smooth.append(cpmelt[j,i]) cpresidual_smooth.append(cpresidual[j,i]) alphamelt_smooth.append(alphamelt[j,i]) betamelt_smooth.append(betamelt[j,i]) alpharesidual_smooth.append(alpharesidual[j,i]) betaresidual_smooth.append(betaresidual[j,i]) rho_smooth.append(rho[j,i]) rhomelt_smooth.append(rhomelt[j,i]) rhoresidual_smooth.append(rhoresidual[j,i]) i_smooth = i_smooth + 1 else: alpha_smooth[i_int] = alpha[j,i] beta_smooth[i_int] = beta[j,i] cp_smooth[i_int] = cp[j,i] cpmelt_smooth[i_int] = cpmelt[j,i] cpresidual_smooth[i_int] = cpresidual[j,i] alphamelt_smooth[i_int] = alphamelt[j,i] betamelt_smooth[i_int] = betamelt[j,i] alpharesidual_smooth[i_int] = alpharesidual[j,i] betaresidual_smooth[i_int] = betaresidual[j,i] rho_smooth[i_int] = rho[j,i] rhomelt_smooth[i_int] = rhomelt[j,i] rhoresidual_smooth[i_int] = rhoresidual[j,i] i_int = i_int + 1 if (i_int>=n_smooth): i_int = 0 alpha_used = sum(alpha_smooth)/len(alpha_smooth) beta_used = sum(beta_smooth)/len(beta_smooth) cp_used = sum(cp_smooth)/len(cp_smooth) rho_ref = sum(rho_smooth)/len(rho_smooth) / ( (1+beta_used*(P[j,i]-Pref)) * (1-alpha_used*(T[j,i]-Tref)) ) alpha_used_melt = sum(alphamelt_smooth)/len(alphamelt_smooth) beta_used_melt = sum(betamelt_smooth)/len(betamelt_smooth) cp_used_melt = sum(cpmelt_smooth)/len(cpmelt_smooth) rho_ref_melt = sum(rhomelt_smooth)/len(rhomelt_smooth) / ( (1+beta_used_melt*(P[j,i]-Pref)) * (1-alpha_used_melt*(T[j,i]-Tref)) ) alpha_used_residual = sum(alpharesidual_smooth)/len(alpharesidual_smooth) beta_used_residual = sum(betaresidual_smooth)/len(betaresidual_smooth) cp_used_residual = sum(cpresidual_smooth)/len(cpresidual_smooth) rho_ref_residual = sum(rhoresidual_smooth)/len(rhoresidual_smooth) / ( (1+beta_used_residual*(P[j,i]-Pref)) * (1-alpha_used_residual*(T[j,i]-Tref)) ) #if ( not alpha_beta_values): # # we use low pressure value for alpha and beta - upper-bound estimation of it then # alpha_used = alpha[j,i] # beta_used = beta[j,i] # alpha_beta_values = True #rho_ref = rho[j,i] / ( (1+beta_used*(P[j,i]-Pref)) * (1-alpha_used*(T[j,i]-Tref)) ) melt_ref = 0.0e0 are_values = True break if (are_values): for i in range(int(perplex.nt)-1,-1,-1): if ( melt[j,i] > 0.0e0 ): # rho[j,i] = rho_ref*(1+beta_used*(P[j,i]-Pref))*(1-alpha_used*(T[j,i]-Tref)) rho[j,i] = rho_ref*(1+betaresidual[j,i]*(P[j,i]-Pref))*(1-alpharesidual[j,i]*(T[j,i]-Tref)) #alpha[j,i] = alpha_used #beta[j,i] = beta_used # we do not extrapolate alpha and beta but only rho_ref # we keep alpha and beta from residual in order to keep them P,T dependant alpha[j,i] = alpharesidual[j,i] beta[j,i] = betaresidual[j,i] cp[j,i] = cpresidual[j,i] melt[j,i] = melt_ref rhomelt[j,i] = float('nan') alphamelt[j,i] = float('nan') betamelt[j,i] = float('nan') cpmelt[j,i] = float('nan') else: melt[j,i] = melt_ref rhomelt[j,i] = float('nan') alphamelt[j,i] = float('nan') betamelt[j,i] = float('nan') cpmelt[j,i] = float('nan') break else: for i in range(int(perplex.nt)-1,-1,-1): # print('melt[j,i] {}'.format(melt[j,i])) if (melt[j,i]>melt_percent/100.0e0): melt[j,i] = melt_percent/100.0e0 rho[j,i] = rhoresidual[j,i]*(100.0e0-melt_percent)/100.0e0 + rhomelt[j,i]*melt_percent/100.0e0 alpha[j,i] = alpharesidual[j,i]*(100.0e0-melt_percent)/100.0e0 + alphamelt[j,i]*melt_percent/100.0e0 beta[j,i] = betaresidual[j,i]*(100.0e0-melt_percent)/100.0e0 + betamelt[j,i]*melt_percent/100.0e0 cp[j,i] = cpresidual[j,i]*(100.0e0-melt_percent)/100.0e0 + cpmelt[j,i]*melt_percent/100.0e0 if (np.isnan(rho[j,i])): print('NaN melt {} rho {} rhoresidual {} rhomelt {} alpha {} beta {}'.format( melt[j,i],rho[j,i],rhoresidual[j,i], rhomelt[j,i], alpha[j,i], beta[j,i])) quit() perplex.rho = rho.reshape(perplex.np*perplex.nt) perplex.T = T.reshape(perplex.np*perplex.nt) perplex.P = P.reshape(perplex.np*perplex.nt) perplex.alpha = alpha.reshape(perplex.np*perplex.nt) perplex.beta = beta.reshape(perplex.np*perplex.nt) perplex.cp = cp.reshape(perplex.np*perplex.nt) perplex.melt = melt.reshape(perplex.np*perplex.nt) perplex.melt = np.zeros_like(perplex.melt) perplex.rhomelt = rhomelt.reshape(perplex.np*perplex.nt) perplex.alphamelt = alphamelt.reshape(perplex.np*perplex.nt) perplex.betamelt = betamelt.reshape(perplex.np*perplex.nt) perplex.cpmelt = cpmelt.reshape(perplex.np*perplex.nt) perplex.rhoresidual = rhoresidual.reshape(perplex.np*perplex.nt) perplex.alpharesidual = alpharesidual.reshape(perplex.np*perplex.nt) perplex.betaresidual = betaresidual.reshape(perplex.np*perplex.nt) perplex.cpresidual = cpresidual.reshape(perplex.np*perplex.nt) return perplex
22,485
def _delete_empty_source_bucket(cloud_logger, source_bucket): """Delete the empty source bucket Args: cloud_logger: A GCP logging client instance source_bucket: The bucket object for the original source bucket in the source project """ spinner_text = 'Deleting empty source bucket' cloud_logger.log_text(spinner_text) with yaspin(text=spinner_text) as spinner: source_bucket.delete() spinner.ok(_CHECKMARK)
22,486
def similarity_score(text_small, text_large, min_small = 10, min_large = 50): """ complexity: len(small) * len(large) @param text_small: the smaller text (in this case the text which's validity is being checked) @param text_large: the larger text (in this case the scientific study) returns: a number (-1 <= n <= 100) representing the similarity -1 if the data isn't populated enough for reliability """ # cleaning text: filtered_small = clean(text_small) filtered_large = clean(text_large) fSmallLen = len(filtered_small) fLargeLen = len(filtered_large) if (fSmallLen < min_small) or (fLargeLen < min_large): return -1 max_rating = fLargeLen * fSmallLen hits = 0 for sm_word in filtered_small: for big_word in filtered_large: if sm_word == big_word: hits += 1 return 100. * hits / max_rating
22,487
def consume(command): """ Example of how to consume standard output and standard error of a subprocess asynchronously without risk on deadlocking. """ # Launch the command as subprocess. process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Launch the asynchronous readers of the process' stdout and stderr. stdout = AsynchronousFileReader(process.stdout, autostart=True) stderr = AsynchronousFileReader(process.stderr, autostart=True) # Check the readers if we received some output (until there is nothing more to get). while not stdout.eof() or not stderr.eof(): # Show what we received from standard output. for line in stdout.readlines(): print('Received line on standard output: ' + repr(line)) # Show what we received from standard error. for line in stderr.readlines(): print('Received line on standard error: ' + repr(line)) # Sleep a bit before polling the readers again. time.sleep(.1) # Let's be tidy and join the threads we've started. stdout.join() stderr.join() # Close subprocess' file descriptors. process.stdout.close() process.stderr.close()
22,488
def print_status(exp, offset=0, all_trials=False, collapse=False): """Print the status of the current experiment. Parameters ---------- offset: int, optional The number of tabs to the right this experiment is. all_trials: bool, optional Print all trials individually collapse: bool, optional Fetch trials for entire EVCTree. Defaults to False. """ trials = exp.fetch_trials(with_evc_tree=collapse) exp_title = exp.node.tree_name print(" " * offset, exp_title, sep="") print(" " * offset, "=" * len(exp_title), sep="") if all_trials: print_all_trials(trials, offset=offset) else: print_summary(trials, offset=offset)
22,489
def abline(a_coords, b_coords, ax=None, **kwargs): """Draw a line connecting a point `a_coords` with a point `b_coords`. Parameters ---------- a_coords : array-like, shape (2,) xy coordinates of the start of the line. b_coords : array-like, shape(2,) xy coordiantes of the end of the line. ax : matplotlib axis Axe to plot the line **kwargs : dict Arguments to pass along to the matplotlib `plot` function. """ if ax is None: ax = plt.gca() line_start, line_end = list(zip(a_coords, b_coords)) line, = ax.plot(line_start, line_end, **kwargs) return line
22,490
def get_extensions(): """ Returns supported extensions of the DCC :return: list(str) """ return ['.hip', '.hiplc', '.hipnc', '.hip*']
22,491
def precheck_data_format(idir, hlsp_name): """ Generates parameter file for check_metadata_format based on file endings. :param idir: The directory containing HLSP files to check. :type idir: str :param hlsp_name: The name of the HLSP. :type hlsp_name: str """ # Start logging to an output file. logname = "precheck_data_format.log" precheck_log = new_logger(logname) precheck_log.info('Started at ' + datetime.datetime.now().isoformat()) # Initialize a new HLSPFile object. new_file = HLSPFile(name=hlsp_name) new_file.update_filepaths(input=os.path.realpath(idir)) # Get unique set of file endings. all_file_endings = get_all_file_endings(idir) # Sort these based on the extension type. file_endings = set([x.split('.')[-1] for x in all_file_endings]) for fe in all_file_endings: new_type = FileType(fe) new_file.add_filetype(new_type) precheck_log.info("Found the following file type: {0}".format(fe)) # Create the output file, based on the name of the HLSP. new_file.toggle_ingest(1, state=True) filename = new_file.save(caller=__file__) #make_parameter_file(filename, file_endings, all_file_endings, idir) precheck_log.info('Finished at ' + datetime.datetime.now().isoformat()) return filename
22,492
def calc_spatially_diffusion_factors( regions, fuel_disagg, real_values, low_congruence_crit, speed_con_max, p_outlier ): """ Calculate spatial diffusion values Arguments --------- regions : dict Regions fuel_disagg : dict Disaggregated fuel per region real_values : dict Real values p_outlier : float Percentage of min and max outliers are flattened Returns ------- f_reg_norm_abs : dict Diffusion values with normed population. If no value is larger than 1, the total sum of all shares calculated for every region is identical to the defined scenario variable. spatial_diff_values : dict Spatial diffusion values (not normed, only considering differences in speed and congruence values) Explanation ============ (I) Load diffusion values (II) Calculate diffusion factors (III) Calculate sigmoid diffusion values for technology specific enduse service shares for every region """ # ----- # I. Diffusion diffusion values # ----- spatial_diff_values = spatial_diffusion_values( regions=regions, real_values=real_values, speed_con_max=speed_con_max, low_congruence_crit=low_congruence_crit, p_outlier=p_outlier) # ----- # II. Calculation of diffusion factors (Not weighted with demand) # ----- # Not weighted with demand max_value_diffusion = max(list(spatial_diff_values.values())) f_reg = {} for region in regions: f_reg[region] = spatial_diff_values[region] / max_value_diffusion # Weighted with demand f_reg_norm_abs, f_reg_norm = calc_diffusion_f( regions, f_reg, spatial_diff_values, [fuel_disagg['residential'], fuel_disagg['service'], fuel_disagg['industry']]) return f_reg, f_reg_norm, f_reg_norm_abs
22,493
def get_set(path): """Returns a matrix of data given the path to the CSV file. The heading row and NaN values are excluded.""" df = pd.read_csv(path, sep=';', encoding='latin') return df.dropna(subset=['PMID1', 'PMID2', 'Authorship'], how='any').values
22,494
def add_landmark(soup: BeautifulSoup, textf: str, landmarks: list): """ Adds an item to landmark list with appropriate details. INPUTS: soup: BeautifulSoup representation of the file we are indexing in ToC textf: path to the file landmarks: the list of landmark items we are building OUTPUTS: None """ epub_type = get_epub_type(soup) landmark = TocItem() if epub_type != "": landmark.epub_type = epub_type landmark.file_link = textf landmark.place = get_place(soup) title_tag = soup.find("title") if title_tag is not None: landmark.title = title_tag.string if landmark.title is None: # This is a bit desperate, use this only if there's no proper <title> tag in file. landmark.title = landmark.epub_type.capitalize else: landmark.title = landmark.epub_type.capitalize landmarks.append(landmark)
22,495
def _client_get(client_create_fn: Callable[..., Any], params: ClientGetParams) -> Any: """ :param client_create_fn: the `boto3.client` or `boto3.resource` function """ which_service = params.boto3_client_name endpoint_url = os.getenv(params.endpoint_url_key) access_key_id = os.getenv(params.access_key_id_key) access_key_secret = os.getenv(params.access_key_secret_key) access_session_token = os.getenv(params.access_session_token) # AWS_REGION is Fargate-specific, most AWS stuff uses AWS_DEFAULT_REGION. region = os.getenv("AWS_REGION") or os.getenv("AWS_DEFAULT_REGION") if not region: raise FromEnvException("Please set AWS_REGION= or AWS_DEFAULT_REGION=") # Not needed long term, more to help migrate to `env_helpers`. # Notably, when `is_local` is not set, it won't break anything. is_local = os.getenv("IS_LOCAL", None) # Unlike Rust FromEnv, we rely on boto3's built in region handling. if _running_in_localstack(): return _localstack_client(client_create_fn, params) elif all((endpoint_url, access_key_id, access_key_secret)): # Local, all are passed in from docker-compose.yml logging.info(f"Creating a local client for {which_service}") assert ( is_local != False ), f"You must pass in credentials for a local {which_service} client" return client_create_fn( params.boto3_client_name, endpoint_url=endpoint_url, aws_access_key_id=access_key_id, aws_secret_access_key=access_key_secret, aws_session_token=access_session_token, region_name=region, ) elif endpoint_url and not any((access_key_id, access_key_secret)): # Local or AWS doing cross-region stuff return client_create_fn( params.boto3_client_name, endpoint_url=endpoint_url, region_name=region, ) elif not any((endpoint_url, access_key_id, access_key_secret)): # AWS logging.info("Creating a prod client") assert ( is_local != True ), f"You can't pass in credentials for a prod {which_service} client" return client_create_fn( params.boto3_client_name, region_name=region, ) else: raise FromEnvException( f"You specified access key but not endpoint for {params.boto3_client_name}?" )
22,496
def parse_metadata_from_sensorcommunity_csv_filename(filename): """Parse sensor id, sensor type and date from a raw luftdaten.info AQ .csv filename. Parameters: filename (path): the file to parse. Format of the file is expected to be the one used by the luftdaten.info project and saved by sensor.community, for example as in the one below: https://archive.sensor.community/2020-01-13/ 2020-01-12_sds011_sensor_35233.csv Return: tuple: (sensor_id, sensor_type, date) if possible, (None, None, None) otherwise """ tokens = os.path.basename(os.path.splitext(filename)[0]).split("_") if len(tokens) == 4 and tokens[2] == "sensor": try: date = datetime.strptime(tokens[0], "%Y-%m-%d") except ValueError: date = None sensor_type = tokens[1] sensor_id = int(tokens[3]) return (sensor_id, sensor_type, date) # failure return (None, None, None)
22,497
def gaussian_target(img_shape, t, MAX_X=0.85, MIN_X=-0.85, MAX_Y=0.85, MIN_Y=-0.85, sigma2=10): """ Create a gaussian bivariate tensor for target or robot position. :param t: (th.Tensor) Target position (or robot position) """ X_range = img_shape[1] Y_range = img_shape[2] XY_range = np.arange(X_range*Y_range) for i in range(t.size(0)): X_t = int((MAX_X+t[i][1])*(img_shape[1]/(MAX_X-MIN_X))) Y_t = int((MAX_Y-t[i][0])*(img_shape[2]/(MAX_Y-MIN_Y))) bi_var_gaussian = -0.5 * (((XY_range // X_range)- X_t)**2 + (XY_range - (XY_range//Y_range)*Y_range - Y_t)**2)/sigma2 img_target = th.from_numpy((np.exp(bi_var_gaussian)/(2*np.pi*sigma2)).reshape(X_range, Y_range)) img_target = img_target[None,...][None,...] if i==0: output = img_target else: output = th.cat([output,img_target],0) return output
22,498
def _old_process_multipart(entity): """The behavior of 3.2 and lower. Deprecated and will be changed in 3.3.""" process_multipart(entity) params = entity.params for part in entity.parts: if part.name is None: key = ntou('parts') else: key = part.name if part.filename is None: # It's a regular field value = part.fullvalue() else: # It's a file upload. Retain the whole part so consumer code # has access to its .file and .filename attributes. value = part if key in params: if not isinstance(params[key], list): params[key] = [params[key]] params[key].append(value) else: params[key] = value
22,499