content
stringlengths
22
815k
id
int64
0
4.91M
def ht_pairtree(request): """Override django settings for **HATHI_DATA**and create a temporary directory structure mirroring top-level of hathi pairtree data (currently has no pairtree content). Sets list of `hathi_prefixes` on the calling class.""" # create temporary directories mocking hathi pairtree structure with tempfile.TemporaryDirectory(prefix="ht_data_") as tmpdir_name: prefixes = ["ab", "cd", "ef1", "g23"] request.cls.hathi_prefixes = prefixes with override_settings(HATHI_DATA=tmpdir_name): for prefix in prefixes: os.mkdir(os.path.join(tmpdir_name, prefix)) # use yield to ensure tests operate with the overridden settings yield prefixes
22,200
def summarize_single_OLS(regression, col_dict, name, is_regularized=False): """Return dataframe aggregating over-all stats from a dictionary-like object containing OLS result objects.""" reg = regression try: col_dict['rsquared'][name] = reg.rsquared except AttributeError: col_dict['rsquared'][name] = 'NA' try: col_dict['rsquared_adj'][name] = reg.rsquared_adj except AttributeError: col_dict['rsquared_adj'][name] = 'NA' col_dict['f_pvalue'][name] = reg.f_pvalue col_dict['condition_number'][name] = reg.condition_number col_dict['regularized'][name] = is_regularized if not is_regularized: outliers = reg.outlier_test(method='fdr_bh')['fdr_bh(p)'] <= 0.05 col_dict['n_outliers'][name] = (outliers).sum() col_dict['outliers'][name] = ','.join(outliers.index[outliers].values) else: col_dict['n_outliers'][name] = "NA" col_dict['outliers'][name] = "NA" col_dict['aic'][name] = reg.aic return col_dict
22,201
def simplify(polynom): """Simplifies a function with binary variables """ polynom = Poly(polynom) new_polynom = 0 variables = list(polynom.free_symbols) for var_i in variables: coefficient_i = polynom.as_expr().coeff(var_i)/2 coefficient_i += polynom.as_expr().coeff(var_i ** 2) new_polynom += coefficient_i.as_coefficients_dict()[1] * var_i for var_j in variables: if var_j != var_i: coefficient_j = coefficient_i.coeff(var_j) new_polynom += coefficient_j.as_coefficients_dict()[1] *\ var_i * var_j return new_polynom + polynom.as_expr().as_coefficients_dict()[1]
22,202
def get_universe_planets_planet_id(*, planet_id, if_none_match=None): """ :param if_none_match: ETag from a previous request. A 304 will be returned if this matches the current ETag :param planet_id: planet_id integer Get information on a planet --- Alternate route: `/dev/universe/planets/{planet_id}/` Alternate route: `/legacy/universe/planets/{planet_id}/` Alternate route: `/v1/universe/planets/{planet_id}/` --- This route expires daily at 11:05 """ ESI_request.request(if_none_match=if_none_match, planet_id=planet_id, data_source='tranquility', version='latest', HTTP_method='GET', path=f'/universe/planets/{planet_id}/')
22,203
def process_login(): """Log user into site. Find the user's login credentials located in the 'request', look up the user, and store them in the session. """ user_login = request.get_json() if crud.get_user_by_email(user_login['email']): current_user = crud.get_user_by_email(user_login['email']) print(current_user) if current_user.password == user_login['password']: session['user'] = current_user.user_name flash("You've logged in successfully. Welcome to your Shelve-It account.") return(jsonify({'status': "ok. you are logged in!", "user" : current_user.user_name})) else: session['user'] = 'unknown' return (jsonify({'status': "incorrect password"})) else: session['user'] = 'needs_to_register' flash("No account with that email exists. Please create one or try again") return(jsonify({'status': "no user with that email"}))
22,204
def cli(): """A small tool for download HRSL data""" pass
22,205
def verify_sha256sum_stream(ioobj, target_hash): """Verify the SHA256 hash sum of a file like object""" verify_hashsum_stream(ioobj, target_hash, hashlib.sha256())
22,206
def is_int(var): """ is this an integer (ie, not a float)? """ return isinstance(var, int)
22,207
def returnstringpacket(pkt): """Returns a packet as hex string""" myString = "" for c in pkt: myString += "%02x" % c return myString
22,208
def GetIndicesMappingFromTree( tree ): """ GetIndicesMappingFromTree ========================= reuse bill's idea to gives the indexes of all nodes (may they be a sub tree or a single leaf) gives a list of indices of every sublist. To do that, I add one thing: the last element of an index is the length of the present list. e.g. - get_indices_mapping_from_tree([1,2,3,4,5,6,7,8,9]) gives: [([0], 9)] - get_indices_mapping_from_tree([1,[2,3],4,5,6,7,8,9]) gives: [([0], 8), ([1], 2)] - get_indices_mapping_from_tree([1,[2,3,7],4,5,6,7,8,9]) gives: [([0], 8), ([1], 3)] - get_indices_mapping_from_tree([1,[2,3,7],4,[5,[6,[7,8,9]]]]) gives: [([0], 4), ([1], 3), ([3], 2), ([3, 1], 2), ([3, 1, 1], 3)] @param tree: a nested list representing a tree @return: a nested list representing the indexes of the nested lists by depth """ q = deque([ ([],tree) ]) list_of_index_lists = [([0],len(tree))] while q: (indices, sub_tree) = q.popleft() list_of_index_lists.append((indices,len(sub_tree))) for (ordinal, sst) in enumerate( sub_tree[1:] ): if isinstance( sst, list ): idxs = indices[:] idxs.append(ordinal+1) q.append( (idxs, sst) ) list_of_index_lists.pop(1) return list_of_index_lists
22,209
def preprocess_labs(lab_df: pd.DataFrame, material_to_include: list = ['any_blood'], verbose: bool = True) -> pd.DataFrame: """ Preprocess the labs dataframe :param lab_df: :param material_to_include: list of materials to include where material is one of the following: 'any_blood', 'urine' :param verbose: print preprocessing safety details :return: """ lab_df = lab_df.copy() lab_df['patient_admission_id'] = lab_df['patient_id'].astype(str) + '_' + lab_df['begin_date'].apply( lambda bd: ''.join(bd.split(' ')[0].split('.'))) lab_df.drop(columns_to_drop, axis=1, inplace=True) lab_names = set([c.split('_')[0] for c in lab_df.columns if c not in identification_columns]) new_lab_column_headers = set( ['_'.join(c.split('_')[1:]) for c in lab_df.columns if c not in identification_columns]) print('Labs measured:', lab_names) # split lab df into individual lab dfs for every lab name lab_df_split_by_lab_name = [] for _, lab_name in enumerate(lab_names): selected_columns = identification_columns + [c for c in lab_df.columns if c.split('_')[0] == lab_name] individual_lab_df = lab_df[selected_columns].dropna(subset=[f'{lab_name}_value']) individual_lab_df.columns = identification_columns + ['_'.join(c.split('_')[1:]) for c in individual_lab_df.columns if c.startswith(lab_name)] individual_lab_df['lab_name'] = lab_name lab_df_split_by_lab_name.append(individual_lab_df) reorganised_lab_df = pd.concat(lab_df_split_by_lab_name, ignore_index=True) equalized_reorganised_lab_df = reorganised_lab_df.copy() for equivalence_list in equivalence_lists: equalized_reorganised_lab_df.loc[ reorganised_lab_df['dosage_label'].isin(equivalence_list[1:]), 'dosage_label'] = equivalence_list[0] equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['dosage_label'].isin(dosage_labels_to_exclude)] # check that units correspond for dosage_label in equalized_reorganised_lab_df['dosage_label'].unique(): units_for_dosage_label = \ equalized_reorganised_lab_df[equalized_reorganised_lab_df['dosage_label'] == dosage_label][ 'unit_of_measure'].unique() print(dosage_label, units_for_dosage_label) if len(units_for_dosage_label) > 1: warnings.warn(f'{dosage_label} has different units: {units_for_dosage_label}') raise ValueError(f'{dosage_label} has different units: {units_for_dosage_label}') # fixing material equivalents and materials to exclude # raise error if pO2, pCO2 or pH come from arterial and venous blood for dosage_label in ['pO2', 'pCO2', 'pH']: dosage_label_materials = \ equalized_reorganised_lab_df[equalized_reorganised_lab_df['dosage_label'].str.contains(dosage_label)][ 'material_label'].unique() if 'sga' in dosage_label_materials and len(dosage_label_materials) > 1: raise ValueError(f'{dosage_label} has arterial and other materials: {dosage_label_materials}') equalized_reorganised_lab_df.loc[ reorganised_lab_df['material_label'].isin(blood_material_equivalents), 'material_label'] = 'any_blood' equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['material_label'].isin(material_to_exclude)] equalized_reorganised_lab_df = equalized_reorganised_lab_df[ equalized_reorganised_lab_df['material_label'].isin(material_to_include)] # correct non numeric values equalized_reorganised_lab_df = correct_non_numerical_values(equalized_reorganised_lab_df) # remove non numerical values in value column equalized_reorganised_lab_df = equalized_reorganised_lab_df[ ~equalized_reorganised_lab_df['value'].isin(non_numerical_values_to_remove)] equalized_reorganised_lab_df.dropna(subset=['value'], inplace=True) remaining_non_numerical_values = \ equalized_reorganised_lab_df[pd.to_numeric(equalized_reorganised_lab_df['value'], errors='coerce').isnull()][ 'value'].unique() print('Remaining non-numerical values:', remaining_non_numerical_values) if len(remaining_non_numerical_values) > 0: raise ValueError(f'Remaining non-numerical values: {remaining_non_numerical_values}') equalized_reorganised_lab_df['value'] = pd.to_numeric(equalized_reorganised_lab_df['value'], errors='coerce') # correct negative values # set negative values for dosage label 'hémoglobine' to NaN (NaN values will be removed later) equalized_reorganised_lab_df.loc[(equalized_reorganised_lab_df['dosage_label'] == 'hémoglobine') & ( equalized_reorganised_lab_df['value'] < 0), 'value'] = np.NAN # set negative values for dosage label 'glucose' to NaN (NaN values will be removed later) equalized_reorganised_lab_df.loc[(equalized_reorganised_lab_df['dosage_label'] == 'glucose') & ( equalized_reorganised_lab_df['value'] < 0), 'value'] = np.NAN equalized_reorganised_lab_df.dropna(subset=['value'], inplace=True) # warn if negative values are still present if len(equalized_reorganised_lab_df[equalized_reorganised_lab_df['value'] < 0]) > 0: warnings.warn('Negative values are present. Check data.') # remove all french accents and cedillas equalized_reorganised_lab_df = remove_french_accents_and_cedillas_from_dataframe(equalized_reorganised_lab_df) # restrict to possible value ranges possible_value_ranges_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'possible_ranges_for_variables.xlsx') possible_value_ranges = pd.read_excel(possible_value_ranges_file) for variable in possible_value_ranges['variable_label'].dropna().unique(): possible_value_ranges_for_variable = possible_value_ranges[ possible_value_ranges['variable_label'] == variable] equalized_reorganised_lab_df.loc[(equalized_reorganised_lab_df['dosage_label'] == variable) & (~equalized_reorganised_lab_df['value'].between( possible_value_ranges_for_variable['Min'].values[0], possible_value_ranges_for_variable['Max'].values[0])), 'value'] = np.NAN if verbose: print(f'Excluding {equalized_reorganised_lab_df["value"].isna().sum()} observations because out of range') equalized_reorganised_lab_df.dropna(subset=['value'], inplace=True) # get mean number of values per dosage label patient admission id median_observations_per_patient_admission_id = \ equalized_reorganised_lab_df.groupby(['patient_admission_id', 'dosage_label'])['value'].count().reset_index() if verbose: print(median_observations_per_patient_admission_id.groupby('dosage_label').median()) print(equalized_reorganised_lab_df.groupby('dosage_label')['value'].describe()) return equalized_reorganised_lab_df
22,210
def find_option(command, name): """ Helper method to find command option by its name. :param command: string :param name: string :return: CommandOption """ # TODO: use all_options if command in COMMAND_OPTIONS: if name == 'help': return OPTION_HELP for opt in COMMAND_OPTIONS[command]: if name in [opt.short_name, opt.long_name]: return opt return None
22,211
def generate_pairwise(params, n_comparisons=10): """Generate pairwise comparisons from a Bradley--Terry model. This function samples comparisons pairs independently and uniformly at random over the ``len(params)`` choose 2 possibilities, and samples the corresponding comparison outcomes from a Bradley--Terry model parametrized by ``params``. Parameters ---------- params : array_like Model parameters. n_comparisons : int Number of comparisons to be returned. Returns ------- data : list of (int, int) Pairwise-comparison samples (see :ref:`data-pairwise`). """ n = len(params) items = tuple(range(n)) params = np.asarray(params) data = list() for _ in range(n_comparisons): # Pick the pair uniformly at random. a, b = random.sample(items, 2) if compare((a, b), params) == a: data.append((a, b)) else: data.append((b, a)) return tuple(data)
22,212
def render_json(fun): """ Decorator for views which return a dictionary that encodes the dictionary into a JSON string and sets the mimetype of the response to application/json. """ @wraps(fun) def wrapper(request, *args, **kwargs): response = fun(request, *args, **kwargs) try: return JSONResponse(response) except TypeError: # The response isn't JSON serializable. return response return wrapper
22,213
def count_smileys_concise(arr: List[str]) -> int: """ Another person's implementation. Turns the list into an string, then uses findall() on that string. Turning the result into a list makes it possible to return the length of that list. So this version is more concise, but uses more space. O(n) where n is length of arr. """ return len(list(findall(r"[:;][-~]?[)D]", " ".join(arr))))
22,214
def transform_dead_op_vars(graph, translator=None): """Remove dead operations and variables that are passed over a link but not used in the target block. Input is a graph.""" return transform_dead_op_vars_in_blocks(list(graph.iterblocks()), [graph], translator)
22,215
def test_reconstruction_torch(): """Test that input reconstruction via backprop has decreasing loss.""" if skip_all: return None if run_without_pytest else pytest.skip() if cant_import('torch'): return None if run_without_pytest else pytest.skip() import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' J = 6 Q = 8 N = 1024 n_iters = 30 jtfs = TimeFrequencyScattering1D(J, N, Q, J_fr=4, average_fr=False, frontend='torch', out_type='array', sampling_filters_fr=('exclude', 'resample'), max_pad_factor=1, max_pad_factor_fr=2, pad_mode_fr='conj-reflect-zero', ).to(device) y = torch.from_numpy(echirp(N, fmin=1).astype('float32')).to(device) Sy = jtfs(y) div = Sy.max() Sy /= div torch.manual_seed(0) x = torch.randn(N, device=device) x /= torch.max(torch.abs(x)) x.requires_grad = True optimizer = torch.optim.SGD([x], lr=140000, momentum=.9, nesterov=True) loss_fn = torch.nn.MSELoss() losses, losses_recon = [], [] for i in range(n_iters): optimizer.zero_grad() Sx = jtfs(x) Sx /= div loss = loss_fn(Sx, Sy) loss.backward() optimizer.step() losses.append(float(loss.detach().cpu().numpy())) xn, yn = x.detach().cpu().numpy(), y.detach().cpu().numpy() losses_recon.append(float(rel_l2(yn, xn))) # unsure why CPU's worse th = 1e-5 if device == 'cuda' else 2e-5 th_end_ratio = 50 if device == 'cuda' else 30 th_recon = 1.05 end_ratio = losses[0] / losses[-1] assert end_ratio > th_end_ratio, end_ratio assert min(losses) < th, "{:.2e} > {}".format(min(losses), th) assert min(losses_recon) < th_recon, "{:.2e} > {}".format(min(losses_recon), th_recon) if metric_verbose: print(("\nReconstruction (torch):\n(end_start_ratio, min_loss, " "min_loss_recon) = ({:.1f}, {:.2e}, {:.2f})").format( end_ratio, min(losses), min(losses_recon)))
22,216
def to_pixels(Hinv, loc): """ Given H^-1 and (x, y, z) in world coordinates, returns (c, r) in image pixel indices. """ loc = to_image_frame(Hinv, loc).astype(int) return (loc[1], loc[0])
22,217
def fetch(params, seqid=None, db=None, update=False): """ Obtains data from NCBI """ for p in params: # Skip if exists (or not update). if p.json and not update: continue # The JSON representation of the data. json_name = resolve_fname(name=p.acc, format="json") # GenBank representation of the data. gbk_name = resolve_fname(name=p.acc, format="gb") # Fetch and store genbank from remote site. ncbi_efetch(p.acc, db=db, gbk_name=gbk_name) # Convert genbank to JSON. data = jsonrec.parse_file(fname=gbk_name, seqid=seqid) # Save JSON file. save_json_file(fname=json_name, data=data)
22,218
def temporary_upload(request): """ Accepts an image upload to server and saves it in a temporary folder. """ if not 'image' in request.FILES: return HttpResponse(simplejson.dumps({'status': 'no image uploaded'})) filename = request.FILES['image']._get_name().strip().lower() imgdata = StringIO(request.FILES['image'].read()) imgdata.seek(0) try: im = Image.open(imgdata) im.size if im.size < (480, 250): return HttpResponse(simplejson.dumps({'status': "Image size should be minimum 480 width and 250 height.\n\nYours is %dx%d." % (im.size[0], im.size[1]) })) except Exception: return HttpResponse(simplejson.dumps({'status': 'couldn\'t open the image'})) local_dir = os.path.join(settings.MEDIA_ROOT, 'tmp', request.session.session_key) try: shutil.rmtree(local_dir, onerror=lambda f, p, e: None) os.makedirs(local_dir) except IOError: pass local_filename = os.path.join(local_dir, filename) url = os.path.join(settings.MEDIA_URL, 'tmp', request.session.session_key, filename) f = open(local_filename, 'wb') f.write(imgdata.getvalue()) f.close() request.session['temporary_filename'] = local_filename ret = simplejson.dumps({'status': 'ok', 'link': url, 'filename': local_filename}) return HttpResponse(ret)
22,219
def pin_to_pinata(filename: str, config: tp.Dict[str, tp.Dict[str, tp.Any]]) -> None: """ :param filename: full name of a recorded video :type filename: str :param config: dictionary containing all the configurations :type config: dict pinning files in pinata to make them broadcasted around ipfs """ pinata_api = config["pinata"]["pinata_api"] # pinata credentials pinata_secret_api = config["pinata"]["pinata_secret_api"] if pinata_api and pinata_secret_api: pinata = PinataPy(pinata_api, pinata_secret_api) pinata.pin_file_to_ipfs(filename) # here we actually send the entire file to pinata, not just its hash. It will # remain the same as if published locally, cause the content is the same. logging.info("File published to Pinata")
22,220
def adf_test(path): """ Takes a csv file path as input (as a string) This file must have one heading as Dates and the other as Close This csv file will be converted into a series and then the ADF test will be completed using data from that csv file (Optional: will plot the data using matplotlib as a line graph) """ if not os.path.exists(path): raise Exception("The path specified does not exist") df = pd.read_csv(path, parse_dates=['Time']) series = df.loc[:, 'Close'].values # # Plotting the graph of the date against the close # df.plot(figsize=(14,8), label="Close Price", title='Series', marker=".") # plt.ylabel("Close Prices") # plt.legend() # plt.show() # ADF test result = adfuller(series, autolag="AIC") print(f"ADF Statistic = {result[0]}") print(f"p_value = {result[1]}") print(f"usedlags = {result[2]}") # Result 4 is a dictionary that contains the critical values for k, v in result[4].items(): print(f"Critical Values are:\n {k}, {v}") print(result) return result[0], result[1], result[2]
22,221
def add_dependency(key, value, dict): """ Add dependency to appropriate dictionary ToDo: check if defaultdict would eliminate this function """ if key in dict: if value not in dict[key]: dict[key].append(value) else: dict[key] = [value]
22,222
def calc_distance_between_points_two_vectors_2d(v1, v2): """calc_distance_between_points_two_vectors_2d [pairwise distance between vectors points] Arguments: v1 {[np.array]} -- [description] v2 {[type]} -- [description] Raises: ValueError -- [description] ValueError -- [description] ValueError -- [description] Returns: [type] -- [description] testing: >>> v1 = np.zeros((2, 5)) >>> v2 = np.zeros((2, 5)) >>> v2[1, :] = [0, 10, 25, 50, 100] >>> d = calc_distance_between_points_two_vectors_2d(v1.T, v2.T) """ # Check dataformats if not isinstance(v1, np.ndarray) or not isinstance(v2, np.ndarray): raise ValueError("Invalid argument data format") if not v1.shape[1] == 2 or not v2.shape[1] == 2: raise ValueError("Invalid shape for input arrays") if not v1.shape[0] == v2.shape[0]: raise ValueError("Error: input arrays should have the same length") # Calculate distance if v1.shape[1] < 20000 and v1.shape[0] < 20000: # For short vectors use cdist dist = distance.cdist(v1, v2, "euclidean") dist = dist[:, 0] else: dist = [ calc_distance_between_points_2d(p1, p2) for p1, p2 in zip(v1, v2) ] return dist
22,223
def get_nearest_list_index(node_list, guide_node): """ Finds nearest nodes among node_list, using the metric given by weighted_norm and chooses one of them at random. Parameters ---------- node_list : list list of nodes corresponding to one of the two search trees growing towards each other. guide_node : dict node that has been randomly chosen to expand towards Returns ------- min_ind : int index of the chosen node min_dist_choice : float distance between the chosen node and the guide_node """ k_nearest = int(len(node_list) / 100) + 1 dlist = [weighted_norm(node, guide_node) for node in node_list] k_min_dist_list = heapq.nsmallest(k_nearest, dlist) min_dist_choice = random.choice(k_min_dist_list) min_ind = dlist.index(min_dist_choice) return min_ind, min_dist_choice
22,224
def get_extensions_from_dir(path: str) -> list[str]: """Gets all files that end with ``.py`` in a directory and returns a python dotpath.""" dirdotpath = ".".join(path.split(sep)[1:]) # we ignore the first part because we don't want to add the ``./``. return [f"{dirdotpath}.{file}" for file in listdir(path) if file.endswith(".py")]
22,225
def to_normalized_exacta_dividends(x,scr=-1): """ Convert 2-d representation of probabilities to dividends :param x: :param scr: :return: """ fx = to_normalized_dividends( to_flat_exacta(x), scr=scr ) return from_flat_exacta(fx, diag_value=scr)
22,226
def CSVcreation(): """This functions allows to access to page for the creation of csv""" if "logged_in" in session and session["logged_in"] == True: print("User login", session["username"]) try: count1 = managedb.getCountLoginDB(session["username"]) if count1 == 0: return redirect(url_for('index')) return render_template('CSVcreation.html',data=data) except Exception as e: print("Error DB:",str(e)) return redirect(url_for('index')) return redirect(url_for('index'))
22,227
def aws_services(): """List or search for services by attribute.""" pass
22,228
def filter_perm(user, queryset, role): """Filter a queryset. Main authorization business logic goes here. """ # Called outside of view if user is None: # TODO: I think this is used if a user isn't logged in and hits our endpoints which is a problem return queryset # Must be logged in if not user.is_active or user.is_anonymous: return queryset.none() # Superusers can see all (not staff users) if user.is_active and user.is_superuser: return queryset # Check permissions conditions = [] model = queryset.model paths_to_checksumfile = [*get_paths(model, models.ChecksumFile)] if model == models.Collection: # Add custom reverse relationships field = model._meta.get_field('checksumfiles') path = Path(field) paths_to_checksumfile.append(path) for path in paths_to_checksumfile: # A user can read/write a file if they are the creator is_creator = path.q(created_by=user) conditions.append(is_creator) if ( getattr(settings, 'RGD_GLOBAL_READ_ACCESS', False) and role == models.CollectionPermission.READER ): # A user can read any file by default has_no_owner = path.q(created_by__isnull=True) conditions.append(has_no_owner) for path in get_paths(model, models.Collection): # Check collection permissions has_permission = path.q(collection_permissions__user=user) has_role_level = path.q(collection_permissions__role__gte=role) conditions.append(has_permission & has_role_level) whitelist = ( queryset.none() .union(*(queryset.filter(condition) for condition in conditions), all=True) .values('pk') ) return queryset.filter(pk__in=whitelist)
22,229
def generate_copies(func, phis): """ Emit stores to stack variables in predecessor blocks. """ builder = Builder(func) vars = {} loads = {} # Allocate a stack variable for each phi builder.position_at_beginning(func.startblock) for block in phis: for phi in phis[block]: vars[phi] = builder.alloca(types.Pointer(phi.type)) # Generate loads in blocks containing the phis for block in phis: leaders = list(block.leaders) last_leader = leaders[-1] if leaders else block.head builder.position_after(last_leader) for phi in phis[block]: loads[phi] = builder.load(vars[phi]) # Generate copies (store to stack variables) for block in phis: for phi in phis[block]: preds, args = phi.args var = vars[phi] phi_args = [loads.get(arg, arg) for arg in args] for pred, arg in zip(preds, phi_args): builder.position_before(pred.terminator) builder.store(arg, var) # Replace phis for block in phis: for phi in phis[block]: phi.replace_uses(loads[phi]) phi.delete() return vars, loads
22,230
def poll_and_notify(): """ Check for updated results, and send a notification if a change is detected. """ # query the API for the latest result new_results = get_status(MYSEJAHTERA_USERNAME, MYSEJAHTERA_PASSWORD) # load the previous results from file try: with open(RESULTS_FILENAME) as resultsfile: old_results = json.load(resultsfile) except: # the first run, there probably won"t be such a file # imagine a default old_results = { 'Health Facility:': '', 'Vaccination Location:': '', 'Date:': '', 'Time:': ''} if new_results == "DONE": print("Congratulations, you have received all your vaccinations.") return # compare the results: elif new_results and old_results != new_results: # send notification print("Found updated results for your vaccination.") NOTIFIER.notify(*messages.update_message(new_results)) # update the results file for next time with open(RESULTS_FILENAME, "w") as resultsfile: json.dump(new_results, resultsfile, indent=2) else: # no change to results to vaccination status. ignore it! print("No changes to your vaccination status.") for key, value in old_results.items(): print(key, value)
22,231
def calculate_dv(wave: Sequence): """ Given a wavelength array, calculate the minimum ``dv`` of the array. Parameters ---------- wave : array-like The wavelength array Returns ------- float delta-v in units of km/s """ return C.c_kms * np.min(np.diff(wave) / wave[:-1])
22,232
def check_link_errors(*args, visit=(), user="user", **kwargs): """ Craw site starting from the given base URL and raise an error if the resulting error dictionary is not empty. Notes: Accept the same arguments of the :func:`crawl` function. """ errors, visited = crawl(*args, **kwargs) for url in visit: if url not in visited: errors[url] = f"URL was not visited by {user}" if errors: for url, code in errors.items(): if isinstance(code, int): print(f"URL {url} returned invalid status code: {code}") else: print(f"Invalid URL {url} encountered at {code}") raise AssertionError(errors, visited) return visited
22,233
def cart3_to_polar2(xyz_array): """ Convert 3D cartesian coordinates into 2D polar coordinates. This is a simple routine for converting a set of 3D cartesian vectors into spherical coordinates, where the position (0, 0) lies along the x-direction. Parameters ---------- xyz_array : ndarray of float Cartesian coordinates, need not be of unit vector length. Shape is (3, coord_shape). Returns ------- lon_array : ndarray of float Longitude coordinates, which increases in the counter-clockwise direction. Units of radians, shape is (coord_shape,). lat_array : ndarray of float Latitude coordinates, where 0 falls on the equator of the sphere. Units of radians, shape is (coord_shape,). """ if not isinstance(xyz_array, np.ndarray): raise ValueError("xyz_array must be an ndarray.") if xyz_array.ndim == 0: raise ValueError("xyz_array must have ndim > 0") if xyz_array.shape[0] != 3: raise ValueError("xyz_array must be length 3 across the zeroth axis.") # The longitude coord is relatively easy to calculate, just take the X and Y # components and find the arctac of the pair. lon_array = np.mod(np.arctan2(xyz_array[1], xyz_array[0]), 2.0 * np.pi, dtype=float) # If we _knew_ that xyz_array was always of length 1, then this call could be a much # simpler one to arcsin. But to make this generic, we'll use the length of the XY # component along with arctan2. lat_array = np.arctan2( xyz_array[2], np.sqrt((xyz_array[0:2] ** 2.0).sum(axis=0)), dtype=float ) # Return the two arrays return lon_array, lat_array
22,234
def deploy_release(rel_id, env_id): """deploy_release will start deploying a release to a given environment""" uri = config.OCTOPUS_URI + "/api/deployments" r = requests.post(uri, headers=config.OCTOPUS_HEADERS, verify=False, json={'ReleaseId': rel_id, 'EnvironmentId': env_id}) return r.json()
22,235
def create_static_route(dut, next_hop=None, static_ip=None, shell="vtysh", family='ipv4', interface = None, vrf = None): """ To create static route Author: Prudvi Mangadu (prudvi.mangadu@broadcom.com) :param dut: :param next_hop: :param static_ip: :param shell: sonic|vtysh :param family: ipv4|ipv6 :return: """ if not static_ip: st.log("Provide static_ip") return False if shell == "vtysh": if family.lower() == "ipv4" or family.lower() == "": if next_hop: command = "ip route {} {}".format(static_ip, next_hop) else: command = "ip route {}".format(static_ip) elif family.lower() == "ipv6": command = "ipv6 route {} {}".format(static_ip, next_hop) if interface: command +=" {}".format(interface) if vrf: command +=" vrf {}".format(vrf) st.config(dut, command, type='vtysh') else: if family.lower() == "ipv4" or family.lower() == "": if next_hop: command = "ip route add {} via {}".format(static_ip, next_hop) else: command = "ip route add {}".format(static_ip) elif family.lower() == "ipv6": if next_hop: command = "ip -6 route add {} via {}".format(static_ip, next_hop) else: command = "ip -6 route add {}".format(static_ip) if interface: command +=" dev {}".format(interface) st.config(dut, command)
22,236
def _markfoundfiles(arg, initargs, foundflags): """Mark file flags as found.""" try: pos = initargs.index(arg) - 1 except ValueError: pos = initargs.index("../" + arg) - 1 # In cases where there is a single input file as the first parameter. This # should cover cases such as: # exec input.file # exec input.file > output.file if arg == initargs[0]: foundflags.append("<") # Other cases should pretty much be formats like: # exec -flag file -flag file -flag file elif (len(initargs) > 1 and initargs[pos][0] == "-" and initargs[pos] not in foundflags): foundflags.append(initargs[pos]) # Or cases like exec -flag file -flag file inputfile > outputfile elif (len(initargs) > 1 and initargs[pos][0] != "-" and initargs[pos] not in foundflags): foundflags.append("<") return foundflags
22,237
def part_a(puzzle_input): """ Calculate the answer for part_a. Args: puzzle_input (list): Formatted as the provided input from the website. Returns: string: The answer for part_a. """ recipes_to_make = int(''.join(puzzle_input)) elf_index_1 = 0 elf_index_2 = 1 recipies = [3, 7] while len(recipies) < recipes_to_make + 10: new_recipes = recipies[elf_index_1] + recipies[elf_index_2] if new_recipes >= 10: recipies.append(1) recipies.append(new_recipes - 10) else: recipies.append(new_recipes) elf_index_1 = (elf_index_1 + (recipies[elf_index_1] + 1)) % len(recipies) elf_index_2 = (elf_index_2 + (recipies[elf_index_2] + 1)) % len(recipies) return ''.join(map(str, recipies[recipes_to_make:recipes_to_make + 10]))
22,238
def _CompareFields(field, other_field): """Checks if two ProtoRPC fields are "equal". Compares the arguments, rather than the id of the elements (which is the default __eq__ behavior) as well as the class of the fields. Args: field: A ProtoRPC message field to be compared. other_field: A ProtoRPC message field to be compared. Returns: Boolean indicating whether the fields are equal. """ field_attrs = _GetFieldAttributes(field) other_field_attrs = _GetFieldAttributes(other_field) if field_attrs != other_field_attrs: return False return field.__class__ == other_field.__class__
22,239
def classpath_dest_filename(coord: str, src_filename: str) -> str: """Calculates the destination filename on the classpath for the given source filename and coord. TODO: This is duplicated in `COURSIER_POST_PROCESSING_SCRIPT`. """ dest_name = coord.replace(":", "_") _, ext = os.path.splitext(src_filename) return f"{dest_name}{ext}"
22,240
def loadtxt_rows(filename, rows, single_precision=False): """ Load only certain rows """ # Open the file f = open(filename, "r") # Storage results = {} # Row number i = 0 # Number of columns ncol = None while(True): # Read the line and split by commas line = f.readline() cells = line.split(",") # Quit when you see a different number of columns if ncol is not None and len(cells) != ncol: break # Non-comment lines if cells[0] != "#": # If it's the first one, get the number of columns if ncol is None: ncol = len(cells) # Otherwise, include in results if i in rows: if single_precision: results[i] = np.array([float(cell) for cell in cells],\ dtype="float32") else: results[i] = np.array([float(cell) for cell in cells]) i += 1 results["ncol"] = ncol return results
22,241
def create_signal(frequencies, amplitudes, number_of_samples, sample_rate): """Create a signal of given frequencies and their amplitudes. """ timesamples = arange(number_of_samples) / sample_rate signal = zeros(len(timesamples)) for frequency, amplitude in zip(frequencies, amplitudes): signal += amplitude * sin(2*pi*frequency*timesamples) return signal, timesamples
22,242
def serp_goog(q, cx, key, c2coff=None, cr=None, dateRestrict=None, exactTerms=None, excludeTerms=None, fileType=None, filter=None, gl=None, highRange=None, hl=None, hq=None, imgColorType=None, imgDominantColor=None, imgSize=None, imgType=None, linkSite=None, lowRange=None, lr=None, num=None, orTerms=None, relatedSite=None, rights=None, safe=None, searchType=None, siteSearch=None, siteSearchFilter=None, sort=None, start=None): """Query Google and get search results in a DataFrame. For each parameter, you can supply single or multiple values / arguments. If you pass multiple arguments, all the possible combinations of arguments (the product) will be requested, and you will get one DataFrame combining all queries. See examples below. :param q: The search expression. :param cx: The custom search engine ID to use for this request. :param key: The API key of your custom search engine. :param c2coff: Enables or disables Simplified and Traditional Chinese Search. The default value for this parameter is 0 (zero), meaning that the feature is enabled. Supported values are:1: Disabled0: Enabled (default) :param cr: Restricts search results to documents originating in a particular country. You may use Boolean operators in the cr parameter's value.Google Search determines the country of a document by analyzing:the top- level domain (TLD) of the document's URLthe geographic location of the Web server's IP addressSee the Country Parameter Values page for a list of valid values for this parameter. :param dateRestrict: Restricts results to URLs based on date. Supported values include:d[number]: requests results from the specified number of past days. - d[number]: requests results from the specified number of past days. - w[number]: requests results from the specified number of past weeks. - m[number]: requests results from the specified number of past months. - y[number]: requests results from the specified number of past years. :param exactTerms: Identifies a phrase that all documents in the search results must contain. :param excludeTerms: Identifies a word or phrase that should not appear in any documents in the search results. :param fileType: Restricts results to files of a specified extension. A list of file types indexable by Google can be found in Search Console Help Center. :param filter: Controls turning on or off the duplicate content filter.See Automatic Filtering for more information about Google's search results filters. Note that host crowding filtering applies only to multi-site searches.By default, Google applies filtering to all search results to improve the quality of those results. Acceptable values are: "0": Turns off duplicate content filter. "1": Turns on duplicate content filter. :param gl: Geolocation of end user. The gl parameter value is a two-letter country code. The gl parameter boosts search results whose country of origin matches the parameter value. See the Country Codes page for a list of valid values.Specifying a gl parameter value should lead to more relevant results. This is particularly true for international customers and, even more specifically, for customers in English- speaking countries other than the United States. :param highRange: Specifies the ending value for a search range.Use lowRange and highRange to append an inclusive search range of lowRange...highRange to the query. :param hl: Sets the user interface language. Explicitly setting this parameter improves the performance and the quality of your search results.See the Interface Languages section of Internationalizing Queries and Results Presentation for more information, and Supported Interface Languages for a list of supported languages. :param hq: Appends the specified query terms to the query, as if they were combined with a logical AND operator. :param imgColorType: Returns black and white, grayscale, or color images: mono, gray, and color. Acceptable values are: "color": color "gray": gray "mono": mono :param imgDominantColor: Returns images of a specific dominant color. Acceptable values are: "black": black "blue": blue "brown": brown "gray": gray "green": green "orange": orange "pink": pink "purple": purple "red": red "teal": teal "white": white "yellow": yellow :param imgSize: Returns images of a specified size. Acceptable values are: "huge": huge "icon": icon "large": large "medium": medium "small": small "xlarge": xlarge "xxlarge": xxlarge :param imgType: Returns images of a type. Acceptable values are: "clipart": clipart "face": face "lineart": lineart "news": news "photo": photo :param linkSite: Specifies that all search results should contain a link to a particular URL :param lowRange: Specifies the starting value for a search range. Use lowRange and highRange to append an inclusive search range of lowRange...highRange to the query. :param lr: Restricts the search to documents written in a particular language (e.g., lr=lang_ja). Acceptable values are: "lang_ar": Arabic "lang_bg": Bulgarian "lang_ca": Catalan "lang_cs": Czech "lang_da": Danish "lang_de": German "lang_el": Greek "lang_en": English "lang_es": Spanish "lang_et": Estonian "lang_fi": Finnish "lang_fr": French "lang_hr": Croatian "lang_hu": Hungarian "lang_id": Indonesian "lang_is": Icelandic "lang_it": Italian "lang_iw": Hebrew "lang_ja": Japanese "lang_ko": Korean "lang_lt": Lithuanian "lang_lv": Latvian "lang_nl": Dutch "lang_no": Norwegian "lang_pl": Polish "lang_pt": Portuguese "lang_ro": Romanian "lang_ru": Russian "lang_sk": Slovak "lang_sl": Slovenian "lang_sr": Serbian "lang_sv": Swedish "lang_tr": Turkish "lang_zh- CN": Chinese (Simplified) "lang_zh-TW": Chinese (Traditional) :param num: Number of search results to return.Valid values are integers between 1 and 10, inclusive. :param orTerms: Provides additional search terms to check for in a document, where each document in the search results must contain at least one of the additional search terms. :param relatedSite: Specifies that all search results should be pages that are related to the specified URL. :param rights: Filters based on licensing. Supported values include: cc_publicdomain, cc_attribute, cc_sharealike, cc_noncommercial, cc_nonderived, and combinations of these. :param safe: Search safety level. Acceptable values are: "active": Enables SafeSearch filtering. "off": Disables SafeSearch filtering. (default) :param searchType: Specifies the search type: image. If unspecified, results are limited to webpages. Acceptable values are: "image": custom image search. :param siteSearch: Specifies all search results should be pages from a given site. :param siteSearchFilter: Controls whether to include or exclude results from the site named in the siteSearch parameter. Acceptable values are: "e": exclude "i": include :param sort: The sort expression to apply to the results. :param start: The index of the first result to return.Valid value are integers starting 1 (default) and the second result is 2 and so forth. For example &start=11 gives the second page of results with the default "num" value of 10 results per page.Note: No more than 100 results will ever be returned for any query with JSON API, even if more than 100 documents match the query, so setting (start + num) to more than 100 will produce an error. Note that the maximum value for num is 10. The following function call will produce two queries: "hotel" in the USA, and "hotel" in France >>> serp_goog(q='hotel', gl=['us', 'fr'], cx='YOUR_CX', key='YOUR_KEY') The below function call will prouce four queries and make four requests: "fligts" in UK "fligts" in Australia "tickets" in UK "tickets" in Australia 'cr' here refers to 'country restrict', which focuses on content originating from the specified country. >>> serp_goog(q=['flights', 'tickets'], cr=['countryUK', 'countryAU'], cx='YOUR_CX', key='YOUR_KEY') """ params = locals() supplied_params = {k: v for k, v in params.items() if params[k] is not None} for p in supplied_params: if isinstance(supplied_params[p], (str, int)): supplied_params[p] = [supplied_params[p]] for p in supplied_params: if p in SERP_GOOG_VALID_VALS: if not set(supplied_params[p]).issubset(SERP_GOOG_VALID_VALS[p]): raise ValueError('Please make sure you provide a' ' valid value for "{}", valid values:\n' '{}'.format(p, sorted(SERP_GOOG_VALID_VALS[p]))) params_list = _dict_product(supplied_params) base_url = 'https://www.googleapis.com/customsearch/v1?' specified_cols = ['searchTerms', 'rank', 'title', 'snippet', 'displayLink', 'link', 'queryTime', 'totalResults'] responses = [] for param in params_list: param_log = ', '.join([k + '=' + str(v) for k, v in param.items()]) logging.info(msg='Requesting: ' + param_log) resp = requests.get(base_url, params=param) if resp.status_code >= 400: raise Exception(resp.json()) responses.append(resp) result_df = pd.DataFrame() for i, resp in enumerate(responses): request_metadata = resp.json()['queries']['request'][0] del request_metadata['title'] search_info = resp.json()['searchInformation'] if int(search_info['totalResults']) == 0: df = pd.DataFrame(columns=specified_cols, index=range(1)) df['searchTerms'] = request_metadata['searchTerms'] # These keys don't appear in the response so they have to be # added manually for missing in ['lr', 'num', 'start', 'c2coff']: if missing in params_list[i]: df[missing] = params_list[i][missing] else: df = pd.DataFrame(resp.json()['items']) df['cseName'] = resp.json()['context']['title'] start_idx = request_metadata['startIndex'] df['rank'] = range(start_idx, start_idx + len(df)) for missing in ['lr', 'num', 'start', 'c2coff']: if missing in params_list[i]: df[missing] = params_list[i][missing] meta_columns = {**request_metadata, **search_info} df = df.assign(**meta_columns) df['queryTime'] = datetime.datetime.now(tz=datetime.timezone.utc) df['queryTime'] = pd.to_datetime(df['queryTime']) if 'image' in df: img_df = json_normalize(df['image']) img_df.columns = ['image.' + c for c in img_df.columns] df = pd.concat([df, img_df], axis=1) result_df = result_df.append(df, sort=False, ignore_index=True) ordered_cols = (list(set(params_list[i]).difference({'q', 'key', 'cx'})) + specified_cols) non_ordered = result_df.columns.difference(set(ordered_cols)) final_df = result_df[ordered_cols + list(non_ordered)] if 'pagemap' in final_df: pagemap_df = pd.DataFrame() for p in final_df['pagemap']: try: temp_pagemap_df = json_normalize(p) pagemap_df = pagemap_df.append(temp_pagemap_df, sort=False) except Exception as e: temp_pagemap_df = pd.DataFrame({'delete_me': None}, index=range(1)) pagemap_df = pagemap_df.append(temp_pagemap_df, sort=False) pagemap_df = pagemap_df.reset_index(drop=True) if 'delete_me' in pagemap_df: del pagemap_df['delete_me'] for col in pagemap_df: if col in final_df: pagemap_df = pagemap_df.rename(columns={col: 'pagemap_' + col}) final_df = pd.concat([final_df, pagemap_df], axis=1) if 'metatags' in pagemap_df: metatag_df = pd.DataFrame() for m in pagemap_df['metatags']: try: temp_metatags_df = json_normalize(m) metatag_df = metatag_df.append(temp_metatags_df, sort=False) except Exception as e: temp_metatags_df = pd.DataFrame({'delete_me': None}, index=range(1)) metatag_df = metatag_df.append(temp_metatags_df, sort=False) metatag_df = metatag_df.reset_index(drop=True) if 'delete_me' in metatag_df: del metatag_df['delete_me'] for col in metatag_df: if col in final_df: metatag_df = metatag_df.rename(columns={col: 'metatag_' + col}) final_df = pd.concat([final_df, metatag_df], axis=1) return final_df
22,243
def get_git_revision(): """ Get the number of revisions since the beginning. """ revision = "0" if os.path.isdir(os.path.join(basedir, '.git')): try: proc = subprocess.Popen( ['git', '-C', basedir, 'rev-list', '--count', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) rev, err = proc.communicate() if proc.returncode == 0: revision = rev.strip().decode('ascii') except OSError: pass return revision
22,244
def get_wiki_modal_data(term): """ runs the wikiperdia helper functions and created the wikipedia data ready for the modal """ return_data = False summary_data = get_wiki_summary(term=term) related_terms = get_similar_search(term=term) if summary_data: return_data = { 'wiki_term': term, 'summary_data': summary_data, 'related_terms': related_terms } return return_data
22,245
def format_taxa_to_js(otu_coords, lineages, prevalence, min_taxon_radius=0.5, max_taxon_radius=5, radius=1.0): """Write a string representing the taxa in a PCoA plot as javascript Parameters ---------- otu_coords : array_like Numpy array where the taxa is positioned lineages : array_like Label for each of these lineages prevalence : array_like Score of prevalence for each of the taxa that is drawn min_taxon_radius : float, optional Smallest radius for a sphere. max_taxon_radius : float, optional Largest radius for a spehere. radius : float, optional Base radius for a sphere. Outputs ------- str JavaScript string where the taxa information is written to create the spheres representing each of these, will return only the variable declaration if the inputs are empty. Notes ----- These parameters should work more as constants and once we find out that there's a value that is too big to be presented, the proper checks should be put into place. Currently we haven't found such cases in any study* min_taxon_radius: minimum value for the radius of the spheres on the plot max_taxon_radious: maximum value for the radius of the spheres on the plot radius: default value size """ js_biplots_string = [] js_biplots_string.append('\nvar g_taxaPositions = new Array();\n') # if we have prevalence scores, calculate the taxa radii values if len(prevalence): taxa_radii = radius * (min_taxon_radius + (max_taxon_radius - min_taxon_radius) * prevalence) else: taxa_radii = [] index = 0 # write the data in the form of a dictionary for taxa_label, taxa_coord, t_radius in zip(lineages, otu_coords, taxa_radii): js_biplots_string.append("g_taxaPositions['%d'] = { 'lineage': '%s', " "'x': %f, 'y': %f, 'z': %f, 'radius': %f};\n" % (index, taxa_label, taxa_coord[0], taxa_coord[1], taxa_coord[2], t_radius)) index += 1 js_biplots_string.append('\n') # join the array of strings as a single string return ''.join(js_biplots_string)
22,246
def _get_symbols_from_args(args: argparse.Namespace) -> List[icmsym.Symbol]: """ Get list of symbols to extract. """ # If all args are specified to extract only one symbol, return this symbol. if args.symbol and args.exchange and args.asset_class and args.currency: return [ icmsym.Symbol( ticker=args_symbol, exchange=args.exchange, asset_class=args.asset_class, contract_type=args.contract_type, currency=args.currency, ) for args_symbol in args.symbol ] # Find all matched symbols otherwise. file_path_generator = iasfil.FilePathGeneratorFactory.get_file_path_generator( args.provider ) latest_symbols_file = file_path_generator.get_latest_symbols_file() symbol_universe = iassym.SymbolUniverseFactory.get_symbol_universe( args.provider, symbols_file=latest_symbols_file ) if args.symbol is None: args_symbols = [args.symbol] else: args_symbols = args.symbol symbols: List[icmsym.Symbol] = [] for symbol in args_symbols: symbols.extend( symbol_universe.get( ticker=symbol, exchange=args.exchange, asset_class=args.asset_class, contract_type=args.contract_type, currency=args.currency, is_downloaded=True, frequency=args.frequency, path_generator=file_path_generator, ) ) return symbols
22,247
def compute_heading(mag_read): """ Computes the compass heading from the magnetometer X and Y. Returns a float in degrees between 0 and 360. """ return ((atan2(mag_read[1], mag_read[0]) * 180) / pi) + 180
22,248
def data_loader(filename, input_directory, input_directory_processed, fs_resampled, p_and_t_waves=False): """Convert data and header_data to .npy and dict format.""" # Dataset lookup lookup = {'A': 'A', 'Q': 'B', 'I': 'C', 'S': 'D', 'H': 'E', 'E': 'F'} # Get datset dataset = lookup[filename[0]] # Import header file header = _load_header_file(filename=filename, input_directory=input_directory) # Get labels labels = Labels(labels_SNOMEDCT=header['labels_SNOMEDCT']) # Import matlab file waveforms = _load_mat_file(filename=filename, input_directory=input_directory) # Resample waveforms samples = int(waveforms.shape[0] * fs_resampled / header['fs']) waveforms = signal.resample(x=waveforms, num=samples, axis=0) # Compute heart rate hr = _compute_heart_rate(waveforms=waveforms, fs=fs_resampled) # Get rpeaks rpeaks = _get_rpeaks(waveforms=waveforms, fs=fs_resampled) rpeak_array = _get_peak_array(waveforms=waveforms, peaks=rpeaks) rpeak_times = _get_peak_times(waveforms=waveforms, peak_array=rpeak_array, fs=fs_resampled) # Get P-waves and T-waves if p_and_t_waves: p_waves, t_waves = _get_p_and_t_waves(waveforms=waveforms, rpeaks=rpeaks) else: p_waves = None t_waves = None p_wave_array = _get_peak_array(waveforms=waveforms, peaks=p_waves) p_wave_times = _get_peak_times(waveforms=waveforms, peak_array=p_wave_array, fs=fs_resampled) t_wave_array = _get_peak_array(waveforms=waveforms, peaks=t_waves) t_wave_times = _get_peak_times(waveforms=waveforms, peak_array=t_wave_array, fs=fs_resampled) os.makedirs(os.path.join(input_directory_processed, dataset, 'formatted'), exist_ok=True) # Save waveform data npy file np.save(os.path.join(input_directory_processed, dataset, 'formatted', '{}.npy'.format(filename)), waveforms) # Save meta data JSON with open(os.path.join(input_directory_processed, dataset, 'formatted', '{}.json'.format(filename)), 'w') as file: json.dump({'filename': filename, 'dataset': dataset, 'datetime': header['datetime'], 'channel_order': header['channel_order'], 'age': header['age'], 'sex': header['sex'], 'amp_conversion': header['amp_conversion'], 'fs': header['fs'], 'fs_resampled': fs_resampled, 'length': header['length'], 'num_leads': header['num_leads'], 'labels_SNOMEDCT': labels.labels_SNOMEDCT, 'labels_short': labels.labels_short, 'labels_full': labels.labels_full, 'labels_int': labels.labels_int, 'labels_training': labels.labels_training, 'labels_training_merged': labels.labels_training_merged, 'shape': waveforms.shape, 'hr': hr, 'rpeaks': rpeaks, 'rpeak_array': rpeak_array.tolist(), 'rpeak_times': rpeak_times, 'p_waves': p_waves, 'p_wave_array': p_wave_array.tolist(), 'p_wave_times': p_wave_times, 't_waves': t_waves, 't_wave_array': t_wave_array.tolist(), 't_wave_times': t_wave_times, 'labels_unscored_SNOMEDCT': labels.labels_unscored_SNOMEDCT, 'labels_unscored_short': labels.labels_unscored_short, 'labels_unscored_full': labels.labels_unscored_full, 'p_and_t_waves': p_and_t_waves }, file, sort_keys=False, indent=4)
22,249
def generate_all_commands( configs_path, commands_file, n_repeats, row_wise=True, optimize_access=True ): """ Parameters: row_wise: if True, commands are generated s.t. all configs (columns) are evaluated for one dataset (rows) first before moving on to the next dataset. If False, all datasets are run for one config file before moving on to the next config file. optimize_access: shuffle the commands at random for a window of 20 configs x n datasets in the table to reduce number of simultaenous dataset accesses. n=20 per default """ with Path(configs_path.parent, "default.yaml").open() as in_stream: config = yaml.safe_load(in_stream) print("using {} as default config file".format(str(configs_path.parent) + "/default.yaml")) base_datasets_dir = config["cluster_datasets_dir"] all_configs = [config_path.name for config_path in configs_path.glob("*")] if row_wise: def _chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] all_datasets_chunks = list(_chunks(all_datasets, 20)) commands = [] for dataset_chunk in all_datasets_chunks: sub_list_commands = [] for dataset in dataset_chunk: for config in all_configs: sub_list_commands.append((config, dataset)) if optimize_access: shuffle(sub_list_commands) for sub_cmd in sub_list_commands: for repeat in range(n_repeats): commands.append( construct_command( sub_cmd[0], sub_cmd[1], base_datasets_dir, repeat, configs_path ) ) else: commands = [ construct_command(config, dataset, base_datasets_dir, repeat, configs_path) for config, dataset, repeat in it.product(all_configs, all_datasets, range(n_repeats)) ] commands_file.write_text("\n".join(commands))
22,250
def ConvertTrieToFlatPaths(trie, prefix=None): """Flattens the trie of paths, prepending a prefix to each.""" result = {} for name, data in trie.items(): if prefix: name = prefix + '/' + name if len(data) != 0 and not 'results' in data: result.update(ConvertTrieToFlatPaths(data, name)) else: result[name] = data return result
22,251
def get_root_version_for_subset_version(root_dataset_path: str, sub_dataset_version: str, sub_dataset_path: MetadataPath ) -> List[str]: """ Get the versions of the root that contains the given sub_dataset_version at the given sub_dataset_path, if any exists. If the configuration does not exist return an empty iterable. """ root_path = Path(root_dataset_path).resolve() current_path = (root_path / sub_dataset_path).resolve() # Ensure that the sub-dataset path is under the root-dataset path current_path.relative_to(root_path) current_version = sub_dataset_version current_path = current_path.parent while len(current_path.parts) >= len(root_path.parts): # Skip intermediate directories, i.e. check only on git # repository roots. if len(tuple(current_path.glob(".git"))) == 0: current_path = current_path.parent continue current_version = find_version_containing(current_path, current_version) if current_version == "": return [] current_path = current_path.parent return [current_version]
22,252
def tojson(input, pretty, echo, strip_whitespace, strip_namespace, strip_attribute, **kwargs): """ Converts the XML input to JSON output. Requires valid input. """ # output = xml2json.json2xml(input) if not input: input = '-' with click.open_file(input, mode='rb') as f: xmlstring = f.read() if echo: click.echo('\nXML:') click.echo(xmlstring) click.echo('\nJSON:') output = xml_utils.xml_to_json(xmlstring, strip_whitespace=strip_whitespace, strip_namespace=strip_namespace, strip_attribute=strip_attribute, pretty=pretty) # output = xml2json.elem2json(dom, options=options, strip_ns=None, strip=None) # click.echo('\nJSON:\n{}\n'.format(output)) click.echo(output)
22,253
def subject() -> JsonCommandTranslator: """Get a JsonCommandTranslator test subject.""" return JsonCommandTranslator()
22,254
def acquire(arn: Optional[str]): """Aquire SUDO privileges. This requires that the AWS_SUDO_RULE_ARN environment variable be set. If the system was using environment variables they will be lost. It is recommended that the credentials file be used for standard credentials. """ if not arn: arn = os.environ.get("AWS_SUDO_ROLE_ARN") assert arn, "AWS_SUDO_ROLE_ARN environment variable must be set or --arn used." sudo_params = boto3.client("sts").assume_role(RoleArn=arn, RoleSessionName="SUDO") for cred_name, cred_value in sudo_params["Credentials"].items(): cred_var = f"AWS_{inflection.underscore(cred_name).upper()}" if cred_var not in CREDENTIAL_VARS: continue print(f"export {cred_var}={cred_value}")
22,255
def accuracy(output, target, cuda_enabled=True): """ Compute accuracy. Args: output: [batch_size, 10, 16, 1] The output from DigitCaps layer. target: [batch_size] Labels for dataset. Returns: accuracy (float): The accuracy for a batch. """ batch_size = target.size(0) v_length = torch.sqrt((output**2).sum(dim=2, keepdim=True)) softmax_v = F.softmax(v_length, dim=1) assert softmax_v.size() == torch.Size([batch_size, 10, 1]) _, max_index = softmax_v.max(dim=1) assert max_index.size() == torch.Size([batch_size, 1]) pred = max_index.view(batch_size) # max_index.squeeze() # assert pred.size() == torch.Size([batch_size]) if cuda_enabled: target = target.cuda() pred = pred.cuda() correct_pred = torch.eq(target, pred.data) # tensor # correct_pred_sum = correct_pred.sum() # scalar. e.g: 6 correct out of 128 images. acc = correct_pred.float().mean() # e.g: 6 / 128 = 0.046875 return acc
22,256
def save_message(my_dict): """ Saves a message if it is not a duplicate. """ conn = sqlite3.connect(DB_STRING) # Create a query cursor on the db connection queryCurs = conn.cursor() if my_dict.get('message_status') == None: my_dict['message_status'] = "Unconfirmed" queryCurs.execute("SELECT rowid FROM Messages WHERE sender = ? and destination = ? and stamp = ? and hash = ?", (my_dict.get('sender'), my_dict.get('destination'), my_dict.get('stamp'), my_dict.get('hash'),)) data = queryCurs.fetchone() if data == None: queryCurs.execute('''INSERT INTO Messages (sender, destination, message, stamp, markdown, encoding, encryption, hashing, hash, decryption_key, file, filename, content_type, message_status) VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)''', (my_dict.get('sender'), my_dict.get('destination'), my_dict.get('message'), my_dict.get('stamp'), my_dict.get('markdown'), my_dict.get('encoding'), my_dict.get('encryption'), my_dict.get('hashing'), my_dict.get('hash'), my_dict.get('decryptionKey'), my_dict.get('file'), my_dict.get('filename'), my_dict.get('content_type'), my_dict.get('message_status'))) conn.commit() conn.close() return True
22,257
def write_feats_space(fpath): """ Writes the features configuration in *fpath*. Args: fpath (str): Path to write Returns: None """ with open(fpath, 'w') as file: writer = csv.writer(file) writer.writerow(['feature', 'normalized']) for f in Config.included_features: writer.writerow([f, True if f in Config.normalized_features else False])
22,258
def getKFolds(train_df: pd.DataFrame, seeds: List[str]) -> List[List[List[int]]]: """Generates len(seeds) folds for train_df Usage: # 5 folds folds = getKFolds(train_df, [42, 99, 420, 120, 222]) for fold, (train_idx, valid_idx, test_idx) in enumerate(folds): train_fold = train.iloc[train_idx] valid_fold = train.iloc[valid_idx] ... Returns: folds: list of [train, val, test] indices for each """ folds = [] for seed in seeds: train, val, test = split_into_train_val_test(train_df, seed=seed) folds.append([list(train), list(val), list(test)]) return folds
22,259
def redownload_window() -> str: """The number of days for which the performance data will be redownloaded""" return '30'
22,260
def p_addtotals_opt(p): """wc_string : ADDTOTALS_OPT EQ value""" p[0] = ParseTreeNode('EQ', raw='assign') p[1] = ParseTreeNode('OPTION', raw=p[1]) if p[1].raw in ['row', 'col']: p[3].role = 'VALUE' p[3].nodetype = 'BOOLEAN' if p[1].raw in ['fieldname', 'labelfield']: p[3].role = 'FIELD' p[1].values.append(p[3]) p[0].add_children([p[1],p[3]])
22,261
def _write_snapshot(timewsync_data_dir: str, monthly_data: Dict[str, str]) -> None: """Creates a backup of the written files as a tar archive in gz compression. Takes the file name specified in the timewsync config, defaults to 'snapshot.tgz'. Args: timewsync_data_dir: The timewsync data directory. monthly_data: A dictionary containing the file names and corresponding data for every month. """ # Find timewsync data directory, create if not present os.makedirs(timewsync_data_dir, exist_ok=True) snapshot_path = os.path.join(timewsync_data_dir, "snapshot.tgz") # Write data to files in snapshot with tarfile.open(snapshot_path, mode="w:gz") as snapshot: for file_name in monthly_data.keys(): snapshot.add(os.path.join(DATA_FOLDER, file_name), arcname=file_name)
22,262
def clean_flight_probs(flight_probs: np.ndarray, rng: np.random.Generator) -> np.ndarray: """ Round off probabilities in flight_probs to 0 or 1 with random bias of the current probability :param flight_probs: a vector of inclusion probabilities after the landing phase :param rng: a random number generator :returns: a vector of inclusion probabilities that have been rounded off """ for i in range(len(flight_probs)): if flight_probs[i] - 0 > tol and flight_probs[i] < 1 - tol: flight_probs[i] = 1 if rng.random() < flight_probs[i] else 0 return flight_probs
22,263
def file_scan_validation(file): """ This validator sends the file to ClamAV for scanning and returns returns to the form. By default, if antivirus service is not available or there are errors, the validation will fail. Usage: class UploadForm(forms.Form): file = forms.FileField(validators=[file_scan_validation]) :param file: :return: """ logger.debug("starting file scanning with clamav") if not settings.CLAMAV_ENABLED: logger.warning('File scanning has been disabled.') return # make sure we're at the beginning of the file stream file.seek(0) # we're just going to assume a network connection to clamav here .. no local unix socket support scanner = clamd.ClamdNetworkSocket(settings.CLAMAV_HOST, settings.CLAMAV_PORT) try: result = scanner.instream(file) except Exception: # it doesn't really matter what the actual error is .. log it and raise validation error logger.error('Error occurred while trying to scan file. %s', sys.exc_info()[0]) raise ValidationError('Unable to scan file.', code='scanerror') finally: # reset file stream file.seek(0) if result and result['stream'][0] == 'FOUND': logger.warning('Virus found: %s', file.name) raise ValidationError('Infected file found.', code='infected')
22,264
async def question(session: AskSession): """ Ask user for his answer on which LeetCode problem he whats to anticipate. """ return await session.prompt( message="Enter the problem URL from LeetCode site: ", validator=LeetCodeUrlValidator(session) )
22,265
def mongo_instance(instance_dict, ts_dt): """An instance as a model.""" dict_copy = copy.deepcopy(instance_dict) dict_copy["status_info"]["heartbeat"] = ts_dt return Instance(**dict_copy)
22,266
def remove(path, force=False): """ Remove the named file or directory Args: path (str): The path to the file or directory to remove. force (bool): Remove even if marked Read-Only. Default is False Returns: bool: True if successful, False if unsuccessful CLI Example: .. code-block:: bash salt '*' file.remove C:\\Temp """ # This must be a recursive function in windows to properly deal with # Symlinks. The shutil.rmtree function will remove the contents of # the Symlink source in windows. path = os.path.expanduser(path) if not os.path.isabs(path): raise HubbleInvocationError("File path must be absolute: {0}".format(path)) # Does the file/folder exists if not os.path.exists(path) and not is_link(path): raise CommandExecutionError("Path not found: {0}".format(path)) # Remove ReadOnly Attribute if force: # Get current file attributes file_attributes = win32api.GetFileAttributes(path) win32api.SetFileAttributes(path, win32con.FILE_ATTRIBUTE_NORMAL) try: if os.path.isfile(path): # A file and a symlinked file are removed the same way os.remove(path) elif is_link(path): # If it's a symlink directory, use the rmdir command os.rmdir(path) else: for name in os.listdir(path): item = "{0}\\{1}".format(path, name) # If its a normal directory, recurse to remove it's contents remove(item, force) # rmdir will work now because the directory is empty os.rmdir(path) except (OSError, IOError) as exc: if force: # Reset attributes to the original if delete fails. win32api.SetFileAttributes(path, file_attributes) raise CommandExecutionError("Could not remove '{0}': {1}".format(path, exc)) return True
22,267
def get_conversion_option(shape_records): """Prompts user for conversion options""" print("1 - Convert to a single zone") print("2 - Convert to one zone per shape (%d zones) (this can take a while)" % (len(shape_records))) import_option = int(input("Enter your conversion selection: ")) return import_option
22,268
def main(flags=None): """ Script main function """ if not flags: flags = sys.argv module_name = flags[0] module_args = flags[1:] log(logging.INFO, DataCategory.PUBLIC, "Read parameters...") # construct the argument parser parser = get_arg_parser() args = parser.parse_args(module_args) log(logging.INFO, DataCategory.PUBLIC, "Finished reading parameters.") execute(args, module_name)
22,269
def base_conditional(Kmn, Lm, Knn, f, *, full_cov=False, q_sqrt=None, white=False): """ Given a g1 and g2, and distribution p and q such that p(g2) = N(g2;0,Kmm) p(g1) = N(g1;0,Knn) p(g1|g2) = N(g1;0,Knm) And q(g2) = N(g2;f,q_sqrt*q_sqrt^T) This method computes the mean and (co)variance of q(g1) = \int q(g2) p(g1|g2) :param Kmn: M x N :param Kmm: M x M :param Knn: N x N or N :param f: M x R :param full_cov: bool :param q_sqrt: None or R x M x M (lower triangular) :param white: bool :return: N x R or R x N x N """ # compute kernel stuff num_func = tf.shape(f)[1] # R # Compute the projection matrix A A = tf.matrix_triangular_solve(Lm, Kmn, lower=True) # compute the covariance due to the conditioning if full_cov: fvar = Knn - tf.matmul(A, A, transpose_a=True) fvar = tf.tile(fvar[None, :, :], [num_func, 1, 1]) # R x N x N else: fvar = Knn - tf.reduce_sum(tf.square(A), 0) fvar = tf.tile(fvar[None, :], [num_func, 1]) # R x N # another backsubstitution in the unwhitened case if not white: A = tf.matrix_triangular_solve(tf.transpose(Lm), A, lower=False) # construct the conditional mean fmean = tf.matmul(A, f, transpose_a=True) if q_sqrt is not None: if q_sqrt.get_shape().ndims == 2: LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # R x M x N elif q_sqrt.get_shape().ndims == 3: L = q_sqrt A_tiled = tf.tile(tf.expand_dims(A, 0), tf.stack([num_func, 1, 1])) LTA = tf.matmul(L, A_tiled, transpose_a=True) # R x M x N else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" % str(q_sqrt.get_shape().ndims)) if full_cov: fvar = fvar + tf.matmul(LTA, LTA, transpose_a=True) # R x N x N else: fvar = fvar + tf.reduce_sum(tf.square(LTA), 1) # R x N if not full_cov: fvar = tf.transpose(fvar) # N x R return fmean, fvar
22,270
def find_shortest_dijkstra_route(graph, journey): """ all_pairs_dijkstra_path() and all_pairs_dijkstra_path_length both return a generator, hense the use of dict(). """ all_paths = dict(nx.all_pairs_dijkstra_path(graph)) all_lengths = dict(nx.all_pairs_dijkstra_path_length(graph)) if len(all_paths) != len(all_lengths): print("Path count is not equal to path length count, " "maybe some links are missing a weight?") return False shortest_path = [] for destination, path in all_paths[journey[0]].items(): # If all nodes in our journey are in the current path being checked if all(node in path for node in journey): if (len(shortest_path) == 0) or (len(path) < len(shortest_path)): shortest_path = path total = 0 for section in shortest_path: total += len(section) - 1 print("\nShortest dijkstra journey: {} connection(s)".format(total)) if len(shortest_path) < 1: print("No shortest dijkstra path found!\n") return False else: print("{} hop(s) {}\n".format(len(shortest_path) - 1, shortest_path)) return shortest_path
22,271
def product_consec_digits(number, consecutive): """ Returns the largest product of "consecutive" consecutive digits from number """ digits = [int(dig) for dig in str(number)] max_start = len(digits) - consecutive return [reduce(operator.mul, digits[i:i + consecutive]) for i in range(max_start + 1)]
22,272
def alpha_161(code, end_date=None, fq="pre"): """ 公式: MEAN(MAX(MAX((HIGH-LOW),ABS(DELAY(CLOSE,1)-HIGH)),ABS(DELAY(CLOSE,1)-LOW)),12) Inputs: code: 股票池 end_date: 查询日期 Outputs: 因子的值 """ end_date = to_date_str(end_date) func_name = sys._getframe().f_code.co_name return JQDataClient.instance().get_alpha_191(**locals())
22,273
def log_info(who, text): """Helper logging abstract to be redone later.""" print datetime.datetime.utcnow(),\ '{} {}'.format(who, current_process().pid),\ text
22,274
def WeightedCrossEntropyLoss(alpha=0.5): """ Calculates the Weighted Cross-Entropy Loss, which applies a factor alpha, allowing one to trade off recall and precision by up- or down-weighting the cost of a positive error relative to a negative error. A value alpha > 1 decreases the false negative count, hence increasing the recall. Conversely, setting alpha < 1 decreases the false positive count and increases the precision. """ def _gradient(yhat, dtrain, alpha): """Compute the weighted cross-entropy gradient. Args: yhat (np.array): Margin predictions dtrain: The XGBoost / LightGBM dataset alpha (float): Scale applied Returns: grad: Weighted cross-entropy gradient """ y = dtrain.get_label() yhat = clip_sigmoid(yhat) grad = (y * yhat * (alpha - 1)) + yhat - (alpha * y) return grad def _hessian(yhat, dtrain, alpha): """Compute the weighted cross-entropy hessian. Args: yhat (np.array): Margin predictions dtrain: The XGBoost / LightGBM dataset alpha (float): Scale applied Returns: hess: Weighted cross-entropy Hessian """ y = dtrain.get_label() yhat = clip_sigmoid(yhat) hess = (y * (alpha - 1) + 1) * yhat * (1 - yhat) return hess def weighted_cross_entropy( yhat, dtrain, alpha=alpha ): """ Calculate gradient and hessian for weight cross-entropy, Args: yhat (np.array): Predictions dtrain: The XGBoost / LightGBM dataset alpha (float): Scale applied Returns: grad: Weighted cross-entropy gradient hess: Weighted cross-entropy Hessian """ grad = _gradient(yhat, dtrain, alpha=alpha) hess = _hessian(yhat, dtrain, alpha=alpha) return grad, hess return weighted_cross_entropy
22,275
def expand_stylesheet(abbr: str, config: Config): """ Expands given *stylesheet* abbreviation (a special Emmet abbreviation designed for stylesheet languages like CSS, SASS etc.) and outputs it according to options provided in config """ return stringify_stylesheet(stylesheet_abbreviation(abbr, config), config)
22,276
def generate_legacy_dir(ctx, config, manifest, layers): """Generate a intermediate legacy directory from the image represented by the given layers and config to /image_runfiles. Args: ctx: the execution context config: the image config file manifest: the image manifest file layers: the list of layer tarballs Returns: The filepaths generated and runfiles to be made available. config: the generated config file. layers: the generated layer tarball files. temp_files: all the files generated to be made available at runtime. """ # Construct image runfiles for input to pusher. image_files = [] + layers if config: image_files += [config] if manifest: image_files += [manifest] path = "image_runfiles/" layer_files = [] # Symlink layers to ./image_runfiles/<i>.tar.gz for i in range(len(layers)): layer_symlink = ctx.actions.declare_file(path + str(i) + ".tar.gz") layer_files.append(layer_symlink) ctx.actions.run_shell( outputs = [layer_symlink], inputs = [layers[i]], command = "ln {src} {dst}".format( src = layers[i].path, dst = layer_symlink.path, ), ) # Symlink config to ./image_runfiles/config.json config_symlink = ctx.actions.declare_file(path + "config.json") ctx.actions.run_shell( outputs = [config_symlink], inputs = [config], command = "ln {src} {dst}".format( src = config.path, dst = config_symlink.path, ), ) return { "config": config_symlink, "layers": layer_files, "temp_files": [config_symlink] + layer_files, }
22,277
def workflow_key(workflow): """Return text search key for workflow""" # I wish tags were in the manifest :( elements = [workflow['name']] elements.extend(workflow['tags']) elements.extend(workflow['categories']) elements.append(workflow['author']) return ' '.join(elements)
22,278
def get_logits(input_ids,mems,input_mask,target_mask): """Builds the graph for calculating the final logits""" is_training = False cutoffs = [] train_bin_sizes = [] eval_bin_sizes = [] proj_share_all_but_first = True n_token = FLAGS.n_token batch_size = FLAGS.batch_size features = {"input": input_ids} inp = tf.transpose(features["input"], [1, 0]) input_mask = tf.transpose(input_mask, [1, 0]) target_mask = tf.transpose(target_mask, [1, 0]) tgt = None inp_perms, tgt_perms, head_tgt = None, None, None if FLAGS.init == "uniform": initializer = tf.initializers.random_uniform( minval=-FLAGS.init_range, maxval=FLAGS.init_range, seed=None) elif FLAGS.init == "normal": initializer = tf.initializers.random_normal( stddev=FLAGS.init_std, seed=None) proj_initializer = tf.initializers.random_normal( stddev=FLAGS.proj_init_std, seed=None) tie_projs = [False for _ in range(len(cutoffs) + 1)] if proj_share_all_but_first: for i in range(1, len(tie_projs)): tie_projs[i] = True tf.logging.info("Vocab size : {}".format(n_token)) tf.logging.info("Batch size : {}".format(batch_size)) logits, new_mems = model.transformer( dec_inp=inp, target=tgt, mems=mems, n_token=n_token, n_layer=FLAGS.n_layer, d_model=FLAGS.d_model, d_embed=FLAGS.d_embed, n_head=FLAGS.n_head, d_head=FLAGS.d_head, d_inner=FLAGS.d_inner, dropout=0, dropatt=0, initializer=initializer, is_training=is_training, mem_len=FLAGS.seq_len+FLAGS.max_decode_length, cutoffs=cutoffs, div_val=1, tie_projs=tie_projs, input_perms=inp_perms, target_perms=tgt_perms, head_target=head_tgt, same_length=FLAGS.same_length, clamp_len=FLAGS.clamp_len, use_tpu=FLAGS.use_tpu, untie_r=FLAGS.untie_r, proj_same_dim=True, bidirectional_mask=FLAGS.bi_mask, infer=True, target_mask=target_mask, input_mask=input_mask, tgt_len=1) return logits,new_mems
22,279
def serve_protocols(environ, start_response): """Serve a list of all protocols. """ status = '200 OK' response_headers = [('Content-type', 'text/html')] start_response(status, response_headers) repo = os.path.join(APP_ROOT, 'storage') protocols = [f_name for f_name in os.listdir(repo) if f_name.endswith('.protocol')] if not check_test_index(): add_ids_test_index() doc = [PROTOCOL_LIST % write_protocols(protocols)] return doc
22,280
def download_tar(local_path, dropbox_paths, download_q): """ Downloads files (tar.gz.aes) from dropbox, decrypts them, then extracts the chunks files inside and merges them into single files, finally decrypts the files and builds a bozorth list file. This method is used for charge operations :param local_path: str, where the files will be downloaded :param dropbox_paths: str, dropbox's path files :param download_q: queue, communication queue (pipe) :return: None """ try: # get the files from the cloud (dropbox accounts) __get_folders_processes(local_path, dropbox_paths) # decrypts tar.gz and extract files in local_path enc.decrypt_chunks_parallel(local_path, key_path_2, enc_format) files = os.listdir(local_path) for file_name in files: if file_name.rfind(suffix_chunk_tar): __extract_tarfile(file_name, local_path) # merges and decrypts files enc.decrypt_to_file_parallel(local_path, key_path_1, enc_format) # build the file .lis __buid_bozorth_lis_file(local_path, name_lis) except (OSError, IOError): logging.error('error ') download_q.put(1) else: download_q.put('done')
22,281
def _api_get_scripts(name, output, kwargs): """ API: accepts output """ return report(output, keyword="scripts", data=list_scripts())
22,282
def dump_iowawfo(fn): """A region with the Iowa WFOs""" pgconn = get_dbconn("postgis", user="nobody") df = read_postgis( """ SELECT ST_Simplify(ST_Union(the_geom), 0.01) as geom from cwa WHERE wfo in ('DMX', 'ARX', 'DVN', 'OAX', 'FSD')""", pgconn, geom_col="geom", ) df.to_parquet(fn)
22,283
def WriteNewIRC(FilePath): """Writes correctly the irc in a .xyz file""" fwrite = open(FilePath.split(".")[0] + "NewIRC.xyz","w") #If a irc reversed is asked, reverse will equal True for key in sorted(DictLines,reverse=Reversed): fwrite.writelines(DictLines[key]) fwrite.close()
22,284
def get_children(key): """ Lists all direct child usages for a name usage :return: list of species """ api_url = 'http://api.gbif.org/v1/species/{key}/children'.format( key=key ) try: response = requests.get(api_url) json_response = response.json() if json_response['results']: return json_response['results'] return None except (HTTPError, KeyError) as e: print(e) return None
22,285
def test_alias(): """Test alias functionality in help commands.""" from commands import help commands = help.alias() assert 'help' in commands
22,286
def _extend(obj, *args): """ adapted from underscore-py Extend a given object with all the properties in passed-in object(s). """ args = list(args) for src in args: obj.update(src) for k, v in src.items(): if v is None: del obj[k] return obj
22,287
async def test_offers_no_records(http_client): """Request offers for a product is registered, but has no offer records.""" prod_id = await create_product(http_client) await set_reg_token_hash(prod_id) resp = await http_client.get(f"/products/{prod_id}/offers") assert resp.status_code == 200 assert resp.json() == []
22,288
def async_test(func): """ Wrap async_to_sync with another function because Pytest complains about collecting the resulting callable object as a test because it's not a true function: PytestCollectionWarning: cannot collect 'test_foo' because it is not a function. """ # inner import because for Python 3.6+ tests only from asgiref.sync import async_to_sync sync_func = async_to_sync(func) @functools.wraps(func) def wrapper(*args, **kwargs): return sync_func(*args, **kwargs) return wrapper
22,289
def get_logger(lname, logfile): """logging setup logging config - to be moved to file at some point """ logger = logging.getLogger(lname) logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': '%(levelname)s:\t%(message)s' }, 'verbose': { 'format': '%(levelname)s:\t%(message)s\tFROM: %(name)s' } }, 'handlers': { 'stdout': { 'level': 'INFO', 'formatter': 'verbose', 'class': 'logging.StreamHandler' }, 'logfile': { 'level': 'INFO', 'formatter': 'standard', 'class': 'logging.FileHandler', 'filename': logfile } }, 'loggers': { '': { 'handlers': ['stdout', 'logfile'], 'level': 'INFO', 'propagate': True } } }) return logger
22,290
def get_percentiles(data, percentiles, integer_valued=True): """Returns a dict of percentiles of the data. Args: data: An unsorted list of datapoints. percentiles: A list of ints or floats in the range [0, 100] representing the percentiles to compute. integer_valued: Whether or not the values are all integers. If so, interpolate to the nearest datapoint (instead of computing a fractional value between the two nearest datapoints). Returns: A dict mapping each element of percentiles to the computed result. """ # Ensure integer datapoints for cleaner binning if necessary. interpolation = 'nearest' if integer_valued else 'linear' results = np.percentile(data, percentiles, interpolation=interpolation) return {percentiles[i]: results[i] for i in range(len(percentiles))}
22,291
def estimate_poster_dedpul(diff, alpha=None, quantile=0.05, alpha_as_mean_poster=False, max_it=100, **kwargs): """ Estimates posteriors and priors alpha (if not provided) of N in U with dedpul method :param diff: difference of densities f_p / f_u for the sample U, np.array (n,), output of estimate_diff() :param alpha: priors, share of N in U (estimated if None) :param quantile: if alpha is None, relaxation of the estimate of alpha; here alpha is estimaeted as infinum, and low quantile is its relaxed version; share of posteriors probabilities that we allow to be negative (with the following zeroing-out) :param kwargs: dummy :return: tuple (alpha, poster), e.g. (priors, posteriors) of N in U for the U sample, represented by diff """ if alpha_as_mean_poster and (alpha is not None): poster = 1 - diff * (1 - alpha) poster[poster < 0] = 0 cur_alpha = np.mean(poster) if cur_alpha < alpha: left_border = alpha right_border = 1 else: left_border = 0 right_border = alpha poster_zero = 1 - diff poster_zero[poster_zero < 0] = 0 if np.mean(poster_zero) > alpha: left_border = -50 right_border = 0 # return 0, poster_zero it = 0 try_alpha = cur_alpha while (abs(cur_alpha - alpha) > kwargs.get('tol', 10 ** -5)) and (it < max_it): try_alpha = (left_border + (right_border - left_border) / 2) poster = 1 - diff * (1 - try_alpha) poster[poster < 0] = 0 cur_alpha = np.mean(poster) if cur_alpha > alpha: right_border = try_alpha else: left_border = try_alpha it += 1 alpha = try_alpha if it >= max_it: print('Exceeded maximal number of iterations in finding mean_poster=alpha') else: if alpha is None: alpha = 1 - 1 / max(np.quantile(diff, 1 - quantile, interpolation='higher'), 1) poster = 1 - diff * (1 - alpha) poster[poster < 0] = 0 return alpha, poster
22,292
def test(): """Run the unit tests.""" raise SystemExit(helper.test())
22,293
def get_short_topic_name(test_run_name): """Returns the collection name for the DLQ. Keyword arguments: test_run_name -- the unique id for this test run """ return test_run_name[3:] if test_run_name.startswith("db.") else test_run_name
22,294
def cut_in_two(line): """ Cuts input line into two lines of equal length Parameters ---------- line : shapely.LineString input line Returns ---------- list (LineString, LineString, Point) two lines and the middle point cutting input line """ from shapely.geometry import Point, LineString # Get final distance value distance = line.length / 2 # Cuts a line in two at a distance from its starting point if distance <= 0.0 or distance >= line.length: return [LineString(line)] coords = list(line.coords) for i, p in enumerate(coords): pd = line.project(Point(p)) if pd == distance: return [LineString(coords[: i + 1]), LineString(coords[i:]), pd] if pd > distance: cp = line.interpolate(distance) return [ LineString(coords[:i] + [(cp.x, cp.y)]), LineString([(cp.x, cp.y)] + coords[i:]), cp, ]
22,295
def local_input_loop(): """ Initialize the local input channels (fifo and socket). Then poll on those and forward messages to Telegram. """ # Cleanup socket # Use a separate lockfile to avoid locking the socket # If lockfile can be locked, redo the socket # If lockfile can't be locked, exit with error. lock = open(lock_file, 'w') try: fcntl.lockf(lock, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: print('Server is already running') die() thread.start_new_thread(read_socket, ()) thread.start_new_thread(read_fifo, ())
22,296
def get_processor(aid): """ Return the processor module for a given achievement. Args: aid: the achievement id Returns: The processor module """ try: path = get_achievement(aid)["processor"] base_path = api.config.get_settings()["achievements"]["processor_base_path"] return SourceFileLoader(path[:-3], join(base_path, path)).load_module() except FileNotFoundError: raise PicoException("Achievement processor is offline.")
22,297
def parse_price(price): """ Convert string price to numbers """ if not price: return 0 price = price.replace(',', '') return locale.atoi(re.sub('[^0-9,]', "", price))
22,298
def _validate_keys(connection_string_parts): """Raise ValueError if incorrect combination of keys """ host_name = connection_string_parts.get(HOST_NAME) shared_access_key_name = connection_string_parts.get(SHARED_ACCESS_KEY_NAME) shared_access_key = connection_string_parts.get(SHARED_ACCESS_KEY) device_id = connection_string_parts.get(DEVICE_ID) if host_name and device_id and shared_access_key: pass elif host_name and shared_access_key and shared_access_key_name: pass else: raise ValueError("Invalid Connection String - Incomplete")
22,299