content
stringlengths
22
815k
id
int64
0
4.91M
def _removeSimpleAnnotation(ro_config, ro_dir, rofile, attrname, attrvalue): """ Remove a simple annotation or multiple matching annotations a research object. ro_config is the research object manager configuration, supplied as a dictionary ro_dir is the research object root directory rofile names the annotated file or resource, possibly relative to the RO. attrname names the attribute in a form recognized by getAnnotationByName attrvalue is the attribute value to be deleted, or Nomne to delete all vaues """ log.debug("removeSimpleAnnotation: ro_dir %s, rofile %s, attrname %s, attrvalue %s"% (ro_dir, rofile, attrname, attrvalue)) # Enumerate annotations # For each: # if annotation is only one in graph then: # remove aggregated annotation # else: # create new annotation graph witj annotation removed # update aggregated annotation ro_graph = ro_manifest.readManifestGraph(ro_dir) subject = ro_manifest.getComponentUri(ro_dir, rofile) (predicate,valtype) = getAnnotationByName(ro_config, attrname) val = attrvalue and makeAnnotationValue(ro_config, attrvalue, valtype) #@@TODO refactor common code with getRoAnnotations, etc. add_annotations = [] remove_annotations = [] for ann_node in ro_graph.subjects(predicate=RO.annotatesAggregatedResource, object=subject): ann_uri = ro_graph.value(subject=ann_node, predicate=AO.body) ann_graph = readAnnotationBody(ro_dir, ro_manifest.getComponentUriRel(ro_dir, ann_uri)) if (subject, predicate, val) in ann_graph: ann_graph.remove((subject, predicate, val)) if (subject, None, None) in ann_graph: # Triples remain in annotation body: write new body and update RO graph ann_name = createAnnotationGraphBody(ro_config, ro_dir, rofile, ann_graph) remove_annotations.append(ann_node) add_annotations.append(ann_name) else: # Remove annotation from RO graph remove_annotations.append(ann_node) # Update RO graph if needed if add_annotations or remove_annotations: for a in remove_annotations: _removeAnnotationBodyFromRoGraph(ro_graph, a) for a in add_annotations: _addAnnotationBodyToRoGraph(ro_graph, ro_dir, rofile, a) ro_manifest.writeManifestGraph(ro_dir, ro_graph) return
23,000
def modify_column_cell_content(content, value_to_colors): """ Function to include colors in the cells containing values. Also removes the index that was used for bookkeeping. """ idx, value = content if type(value) == int or type(value) == float: color = value_to_colors[content] return ' '.join(['\cellcolor{{{}}}'.format(color), str(value)]) else: return value
23,001
def ReversePolishSolver(expression): """ Solves a given problem in reverse polish notation :param expression - tuple of strings """ # Create empty stack rp_calculator = Stack() for c in expression: # Check if next part of expression is an operator or a number operator = {'+', '-', '*', '/'} if c in operator: if rp_calculator.count < 2: print('Error: Not enough operands') else: # Pop two values right_operand = rp_calculator.pop() left_operand = rp_calculator.pop() # Evaluate and push result back to stack if c == '+': rp_calculator.push(left_operand + right_operand) elif c == '-': rp_calculator.push(left_operand - right_operand) elif c == '*': rp_calculator.push(left_operand * right_operand) elif c == '/': rp_calculator.push(left_operand / right_operand) elif c.isnumeric(): # Operand: add to stack rp_calculator.push(int(c)) else: print('Error: invalid character') if rp_calculator.count > 1: print('Error: too many operands') return rp_calculator.pop()
23,002
def _make_selection(stdscr, classes, message='(select one)'): """ This function was originally branched from https://stackoverflow.com/a/45577262/5009004 :return: option, classes index :rtype: (str, int) """ attributes = {} curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLACK) attributes['normal'] = curses.color_pair(1) curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_WHITE) attributes['highlighted'] = curses.color_pair(2) c = 0 # last character read option = 0 # the current option that is marked while c != 10: # Enter in ascii stdscr.erase() stdscr.addstr(f"{message}\n", curses.A_UNDERLINE) for i in range(len(classes)): if i == option: attr = attributes['highlighted'] else: attr = attributes['normal'] try: stdscr.addstr(f"{i + 1}. ") stdscr.addstr(classes[i] + '\n', attr) except curses.error as e: print(f"Curses error {classes[i]} {attr}") print(e) return None, None c = stdscr.getch() if c == curses.KEY_UP and option > 0: option -= 1 elif c == curses.KEY_DOWN and option < len(classes) - 1: option += 1 # stdscr.addstr("You chose {0}".format(classes[option])) # stdscr.getch() return classes[option], option
23,003
def add_newword(cleaned_word, cleaned_meaning, file_name = 'words.txt'): """ Takes the preprocessed word, its meaning and default txt file argument as input. Updates the txt file with the temporary dict containing word and meaning as key:value pair. Also, handles the condition where the file doesn't exist or contains no serialised data """ #Storing it into a temporary dict to append to the file above tmp = {cleaned_word : cleaned_meaning} #Checking whether the above file_name exists or not -- To append the dict to it if os.path.isfile(file_name): #Above file already exists -- append the tmp dict in the file #Opening the file in 'r+' mode for reading and writing simultaneously with open(file_name, 'r+') as file: #Loading the data from the file using json.load data = json.load(file) #Checking whether the cleaned_word is part of the english dictionary or not #Only allow when word if it is not already present if cleaned_word in data.keys(): #Handling the condition where word is already present in dictionary and this is a redundant task print("\033[1m" + '\nThe word "{}" is already present in the dictionary.'.format(cleaned_word) + "\033[0m") print("\033[1m" + 'Returning back to the main menu...' + "\033[0m") #Printing a boundary to act as separator print('\n' + '-x-' * 30) else: #Appending the tmp dict into data data.update(tmp) #Reverting the cursor of the file to 0 (Original position) file.seek(0) #Writing the data file object back into the file using concept of serialisation json.dump(data, file) #Printing a message when the data is successfully stored in words.txt print("\033[1m" + '\nThe word "{}" and its meaning "{}" have been successfully stored !!\n'.format(cleaned_word, cleaned_meaning) + "\033[0m") #Printing a boundary to act as separator print('\n' + '-x-' * 30) #Logic when the file does not exist or doesn't contain any data in it else: #Opening the file in appending mode to handle both scenarios above file = open(file_name, 'a') #Writing the temporary dict as a json object into the file json.dump(tmp, file) #Closing the file file.close() #Printing the message when file and data has been successfully added print("\033[1m" + '\nThe word "{}" and its meaning "{}" was added to the file.'.format(cleaned_word, cleaned_meaning) + "\033[0m" ) print("\033[1m" + 'Continue adding words to build dictionary !!' + "\033[0m") #Printing a boundary to act as separator print('\n' + '-x-' * 30)
23,004
def cmorization(in_dir, out_dir, cfg, _): """Cmorization func call.""" cmor_table = cfg['cmor_table'] glob_attrs = cfg['attributes'] logger.info("Starting cmorization for Tier%s OBS files: %s", glob_attrs['tier'], glob_attrs['dataset_id']) logger.info("Input data from: %s", in_dir) logger.info("Output will be written to: %s", out_dir) # run the cmorization for var, vals in cfg['variables'].items(): inpfile = os.path.join(in_dir, vals['file']) logger.info("CMORizing var %s from file %s", var, inpfile) var_info = cmor_table.get_variable(vals['mip'], var) raw_info = {'name': vals['raw'], 'file': inpfile, 'iTr': vals['iTr']} glob_attrs['mip'] = vals['mip'] with catch_warnings(): filterwarnings( action='ignore', message=('WARNING: missing_value not used since it\n' 'cannot be safely cast to variable data type'), category=UserWarning, module='iris', ) extract_variable(var_info, raw_info, out_dir, glob_attrs)
23,005
def evaluate_model(epoch, controller, shared_cnn, data_loaders, n_samples=10): """Print the validation and test accuracy for a controller and shared_cnn. Args: epoch: Current epoch. controller: Controller module that generates architectures to be trained. shared_cnn: CNN that contains all possible architectures, with shared weights. data_loaders: Dict containing data loaders. n_samples: Number of architectures to test when looking for the best one. Returns: Nothing. """ controller.eval() shared_cnn.eval() print('Here are ' + str(n_samples) + ' architectures:') best_arc, _ = get_best_arc(controller, shared_cnn, data_loaders, n_samples, verbose=True) valid_loader = data_loaders['valid_subset'] test_loader = data_loaders['test_dataset'] valid_acc = get_eval_accuracy(valid_loader, shared_cnn, best_arc) test_acc = get_eval_accuracy(test_loader, shared_cnn, best_arc) print('Epoch ' + str(epoch) + ': Eval') print('valid_accuracy: %.4f' % (valid_acc)) print('test_accuracy: %.4f' % (test_acc)) controller.train() shared_cnn.train()
23,006
def _check_keys(keys, spec): """Check a list of ``keys`` equals ``spec``. Sorts both keys and spec before checking equality. Arguments: keys (``list``): The list of keys to compare to ``spec`` spec (``list``): The list of keys to compare to ``keys`` Returns: ``bool`` Raises: ``exceptions.InvalidListError``: Raised if ``keys`` is not equal to ``spec``. """ if not sorted(keys) == sorted(spec): raise exceptions.InvalidListError('{} does not equal {}'.format( keys, spec )) return True
23,007
def get_snmp_table(hostname, table_oid, community, index=False): """ hostname : <str> table_oid : <str> community : <str> index : <bool> append index to every row, snmptable Option -Ci call snmptable command and get output ooutput will be transferred to list of dictionaries, key names are taken from output at line 3 to function properly, the MIB of the mentioned table must be present and installed, under ubuntu use user specific diectory under ~/.snmp/mibs to store vendor specific files every dataset - aka row of data - is prependet with key "hostname" and "ts" : timestamp of call """ # field should be extra separated, not the default space cmd = "" if index is False: cmd = "snmptable -v2c -c %s -Cf \; %s %s" % (community, hostname, table_oid) else: cmd = "snmptable -v2c -c %s -Ci -Cf \; %s %s" % (community, hostname, table_oid) logging.info(cmd) output = subprocess.check_output((cmd, ), shell=True) lines_to_ignore = 1 # ignore first two line header_line = True # next is header line headers = [] # headers are stored in list data = [] # result keys = { "hostname" : hostname, "ts" : time.time() } for line in output.split("\n"): if line == "": continue # ignore blank lines if lines_to_ignore > 0: lines_to_ignore -= 1 continue else: if header_line is True: headers = line.strip().split(";") header_line = False else: subindex = 0 values = keys.copy() for col in line.strip().split(";"): values[headers[subindex]] = col.replace("\"", "") subindex += 1 data.append(values) return data
23,008
def hangToJamo(hangul: str): """한글을 자소 단위(초, 중, 종성)로 분리하는 모듈입니다. @status `Accepted` \\ @params `"안녕하세요"` \\ @returns `"ㅇㅏㄴㄴㅕㅇㅎㅏ_ㅅㅔ_ㅇㅛ_"` """ result = [] for char in hangul: char_code = ord(char) if not 0xAC00 <= char_code <= 0xD7A3: result.append(char) continue initial_idx = int((((char_code - 0xAC00) / 28) / 21) % 19) midial_idx = int(((char_code - 0xAC00) / 28) % 21) final_idx = int((char_code - 0xAC00) % 28) initial = chosung[initial_idx] midial = jungsung[midial_idx] final = jongsung[final_idx] result.append(initial) result.append(midial) result.append(final) return ''.join(result)
23,009
def build_metadata_pairs(samples=100): """ Build sample data in format: isbn, title_a, authors_a, title_b, authors_b Where: isbn is in both datasets title_a + authors_a != title_b + authors_b """ from itertools import cycle import gc gc.enable() combos = [c for c in combinations(ALL_READERS, 2)] samples_per_combo = int(samples / len(combos)) print("Creating ~%s samples per data source pair" % samples_per_combo) fp = os.path.join(iscc_bench.DATA_DIR, "metapairs_%s.sample" % samples) total_samples = 0 seen_isbns = set() with open(fp, "wb") as outf: for combo in combos: gc.collect() combo_name = "%s-%s" % (combo[0].__name__, combo[1].__name__) a_isbns = set(load_isbns(combo[0])) b_isbns = set(load_isbns(combo[1])) relevant_isbns = a_isbns.intersection(b_isbns) data = {} counter = 0 reader_combo = cycle((combo[0](), combo[1]())) print("Collecting %s combo" % combo_name) for reader in reader_combo: try: entry = next(reader) except StopIteration: print("!!!! StopIteration") break isbn = int(entry.isbn) if isbn in relevant_isbns and isbn not in seen_isbns: title = entry.title author = entry.author if isbn not in data: data[isbn] = {"title": title, "author": author} continue if title != data[isbn]["title"] or author != data[isbn]["author"]: row = data[isbn] out_data = "{}|{}|{}|{}|{}\n".format( isbn, row["title"].replace("|", ""), row["author"].replace("|", ""), title.replace("|", ""), author.replace("|", ""), ) print(out_data) outf.write(out_data.encode("utf-8")) seen_isbns.add(isbn) total_samples += 1 relevant_isbns.remove(isbn) del data[isbn] if counter == samples_per_combo: print("Finished samples for %s" % combo_name) break if not relevant_isbns: print( "Out of relevant ISBNs at %s samples for %s", (counter, combo_name), ) break counter += 1 print("Collected %s total samples" % total_samples)
23,010
def get_config(config_path): """ Open a Tiler config and return it as a dictonary """ with open(config_path) as config_json: config_dict = json.load(config_json) return config_dict
23,011
def groupby_index(iter: Iterable[T],n:int) -> Iterable[Iterable[T]]: """group list by index Args: iter (Iterable[T]): iterator to group by index n (int): The size of groups Returns: Iterable[Iterable[T]]: iterable object to group by index >>> [*map(lambda x:[*x],groupby_index([1,2,3,4],2))] [[1, 2], [3, 4]] """ def keyfunc(x: Tuple[int,T]) -> int: k, _ = x return (k // n) def mapper(x: Tuple[int, Tuple[int, T]]): _, v = x return map(lambda y: y[1],v) g = itertools.groupby(enumerate(iter), keyfunc) return map(mapper,g)
23,012
def create(ctx, name, company, email, position): """Create a new Client""" client = Client(name, company, email, position) client_service = ClientService(ctx.obj['clients_table']) client_service.create_client(client)
23,013
def _build_message_classes(message_name): """ Create a new subclass instance of DIMSEMessage for the given DIMSE `message_name`. Parameters ---------- message_name : str The name/type of message class to construct, one of the following: * C-ECHO-RQ * C-ECHO-RSP * C-STORE-RQ * C-STORE-RSP * C-FIND-RQ * C-FIND-RSP * C-GET-RQ * C-GET-RSP * C-MOVE-RQ * C-MOVE-RSP * C-CANCEL-RQ * N-EVENT-REPORT-RQ * N-EVENT-REPORT-RSP * N-GET-RQ * N-GET-RSP * N-SET-RQ * N-SET-RSP * N-ACTION-RQ * N-ACTION-RSP * N-CREATE-RQ * N-CREATE-RSP * N-DELETE-RQ * N-DELETE-RSP """ def __init__(self): DIMSEMessage.__init__(self) # Create new subclass of DIMSE Message using the supplied name # but replace hyphens with underscores cls = type(message_name.replace('-', '_'), (DIMSEMessage,), {"__init__": __init__}) # Create a new Dataset object for the command_set attributes d = Dataset() for elem_tag in command_set_elem[message_name]: tag = Tag(elem_tag) vr = dcm_dict[elem_tag][0] # If the required command set elements are expanded this will need # to be checked to ensure it functions OK try: d.add_new(tag, vr, None) except: d.add_new(tag, vr, '') cls.command_set = d globals()[cls.__name__] = cls return cls
23,014
def valid_string(s, min_len=None, max_len=None, allow_blank=False, auto_trim=True, pattern=None): """ @param s str/unicode 要校验的字符串 @param min_len None/int @param max_len None/int @param allow_blank boolean @param auto_trim boolean @:param pattern re.pattern @return boolean is_ok @return string/int value 若是ok,返回int值,否则返回错误信息 """ if s is None: return False, u'不能为None' if not isinstance(s, basestring): return False, u"参数类型需要是字符串" if auto_trim: s = s.strip() str_len = len(s) if not allow_blank and str_len < 1: return False, u"参数不允许为空" if max_len is not None and str_len > max_len: return False, u"参数长度需小于%d" % max_len if min_len is not None and str_len < min_len: return False, u"参数长度需大于 %d" % min_len if pattern is not None and s and not _match_pattern(pattern, s): return False, u'参数包含的字符: %s' % pattern return True, s
23,015
def update_visitor(visitor_key, session_key=None): """ update the visitor using the visitor key """ visitor = get_visitor(visitor_key) if visitor: visitor.mark_visit() if session_key: visitor.last_session_key = session_key visitor.save() return visitor
23,016
def test_receive_payment_with_travel_rule_metadata_and_invalid_reference_id( sender_account: AccountResource, receiver_account: AccountResource, currency: str, hrp: str, stub_config: AppConfig, diem_client: jsonrpc.Client, pending_income_account: AccountResource, invalid_ref_id: Optional[str], ) -> None: """ There is no way to create travel rule metadata with invalid reference id when the payment amount meets travel rule threshold, because the metadata signature is verified by transaction script. Also, if metadata signature is provided, transaction script will also verify it regardless whether the amount meets travel rule threshold, thus no need to test invalid metadata signature case. This test bypasses the transaction script validation by sending payment amount under the travel rule threshold without metadata signature, and receiver should handle it properly and refund. Test Plan: 1. Generate a valid payment URI from receiver account. 2. Submit payment under travel rule threshold transaction from sender to receiver on-chain account. 3. Wait for the transaction executed successfully. 4. Assert the payment is refund eventually. Note: the refund payment will be received by pending income account of the MiniWallet Stub, because no account owns the original invalid payment transaction which is sent by test. """ receiver_uri = receiver_account.generate_payment_uri() receiver_account_address: diem_types.AccountAddress = receiver_uri.intent(hrp).account_address sender_uri = sender_account.generate_payment_uri() sender_address = sender_uri.intent(hrp).account_address metadata, _ = txnmetadata.travel_rule(invalid_ref_id, sender_address, amount) # pyre-ignore original_payment_txn: jsonrpc.Transaction = stub_config.account.submit_and_wait_for_txn( diem_client, stdlib.encode_peer_to_peer_with_metadata_script( currency=utils.currency_code(currency), amount=amount, payee=receiver_account_address, metadata=metadata, metadata_signature=b"", ), ) pending_income_account.wait_for_event( "created_transaction", status=Transaction.Status.completed, refund_diem_txn_version=original_payment_txn.version, ) assert receiver_account.balance(currency) == 0
23,017
def PNewUVTable (inUV, access, tabType, tabVer, err): """ Obsolete use PGetTable """ if ('myClass' in inUV.__dict__) and (inUV.myClass=='AIPSUVData'): raise TypeError("Function unavailable for "+inUV.myClass) return PGetTable (inUV, access, tabType, tabVer, err)
23,018
def fmt_hex(bytes): """Format the bytes as a hex string, return upper-case version. """ # This is a separate function so as to not make the mistake of # using the '%X' format string with an ints, which will not # guarantee an even-length string. # # binascii works on all versions of Python, the hex encoding does not. hex = binascii.hexlify(bytes) hex = hex.decode() # Returns bytes, which makes no sense to me return hex.upper()
23,019
def pressure_filename(): """ Return the filename used to represent the state of the emulated sense HAT's pressure sensor. On UNIX we try ``/dev/shm`` then fall back to ``/tmp``; on Windows we use whatever ``%TEMP%`` contains """ fname = 'rpi-sense-emu-pressure' if sys.platform.startswith('win'): # just use a temporary file on Windows return os.path.join(os.environ['TEMP'], fname) else: if os.path.exists('/dev/shm'): return os.path.join('/dev/shm', fname) else: return os.path.join('/tmp', fname)
23,020
def getTracksAudioFeatures(access_token, id_string): """ getTracksAudioFeatures() retrieves the track list audio features, this includes danceability, energy, loudness, etc.. """ # URL to pass a list of tracks to get their audio features audio_features_url = f"/audio-features" # Header parameter to allow the application to make requests to the Spotify Web API header = { "Authorization" : "Bearer " + access_token, } # Query parameters: # ids: string of song ids separated by a comma param = { "ids" : id_string, } # GET request to recieve track audio information response = requests.get(BASE_URL + audio_features_url, headers=header, params=param) return response
23,021
def list_model_evaluations( project_id, compute_region, model_display_name, filter_=None ): """List model evaluations.""" result = [] # [START automl_tables_list_model_evaluations] # TODO(developer): Uncomment and set the following variables # project_id = 'PROJECT_ID_HERE' # compute_region = 'COMPUTE_REGION_HERE' # model_display_name = 'MODEL_DISPLAY_NAME_HERE' # filter_ = 'filter expression here' from google.cloud import automl_v1beta1 as automl client = automl.TablesClient(project=project_id, region=compute_region) # List all the model evaluations in the model by applying filter. response = client.list_model_evaluations( model_display_name=model_display_name, filter_=filter_ ) print("List of model evaluations:") for evaluation in response: print("Model evaluation name: {}".format(evaluation.name)) print("Model evaluation id: {}".format(evaluation.name.split("/")[-1])) print( "Model evaluation example count: {}".format( evaluation.evaluated_example_count ) ) print("Model evaluation time:") print("\tseconds: {}".format(evaluation.create_time.seconds)) print("\tnanos: {}".format(evaluation.create_time.nanos)) print("\n") # [END automl_tables_list_model_evaluations] result.append(evaluation) return result
23,022
def tan(x): """Element-wise `tangent`.""" return sin(x) / cos(x)
23,023
def scalingImage(img, minVal, maxVal): """ Scale image given a range. Parameters: img, image to be scaled; minVal, lower value for range; maxVal, upper value for range. Returns: imgScaled, image scaled. """ imax = np.max(img) imin = np.min(img) std = (img - imin) / (imax - imin) imgScaled = std * (maxVal - minVal) + minVal return imgScaled
23,024
def test_python_module_ctia_positive_incident_search(get_entity): """Perform testing for incident/search entity of custom threat intelligence python module ID: CCTRI-2848 - 8fc6ba46-a610-4432-a72b-af92836fa560 Steps: 1. Send POST request to create new incident entity using custom python module 2. Send GET request using custom python module to read just created entity back. 3. Count entities after entity created 4. Delete entity from the system 5. Repeat GET request using python module and validate that entity was deleted 6. Count entities after entity deleted 7. Compare the amount of entities after creating and deleting entities Expected results: Incident entity can be created, fetched, counted and deleted using custom python module. Data stored in the entity is the same no matter you access it directly or using our tool Importance: Critical """ incident = get_entity('incident') # Create new entity using provided payload post_tool_response = incident.post(payload=INCIDENT_PAYLOAD, params={'wait_for': 'true'}) entity_id = post_tool_response['id'].rpartition('/')[-1] # Validate that GET request return same data for direct access and access # through custom python module get_incident_search = incident.search.get( params={'id': entity_id}) assert get_incident_search[0]['type'] == 'incident' assert get_incident_search[0]['schema_version'] == '1.1.3' # Count entities after entity created count_incident_before_deleted = incident.search.count() # Delete the entity and make attempt to get it back to validate it is # not there anymore delayed_return(incident.search.delete( params={'id': entity_id, 'REALLY_DELETE_ALL_THESE_ENTITIES': 'true'})) # Repeat GET request and validate that entity was deleted assert incident.search.get(params={'id': entity_id}) == [] # Count entities after entity deleted count_incident_after_deleted = incident.search.count() # Compare results of count_incident_before_deleted # and count_incident_after_deleted assert count_incident_before_deleted != count_incident_after_deleted
23,025
def forcestr(name): """ returns `name` as string, even if it wasn't before """ return name if isinstance(name, bytes) else name.encode(RAW_ENCODING, ENCODING_ERROR_HANDLING)
23,026
def IsGitSVNDirty(directory): """ Checks whether our git-svn tree contains clean trunk or some branch. Errors are swallowed. """ # For git branches the last commit message is either # some local commit or a merge. return LookupGitSVNRevision(directory, 1) is None
23,027
def read_attr( attr_desc: str, package_dir: Optional[Mapping[str, str]] = None, root_dir: Optional[_Path] = None ): """Reads the value of an attribute from a module. This function will try to read the attributed statically first (via :func:`ast.literal_eval`), and only evaluate the module if it fails. Examples: read_attr("package.attr") read_attr("package.module.attr") :param str attr_desc: Dot-separated string describing how to reach the attribute (see examples above) :param dict[str, str] package_dir: Mapping of package names to their location in disk (represented by paths relative to ``root_dir``). :param str root_dir: Path to directory containing all the packages in ``package_dir`` (current directory by default). :rtype: str """ root_dir = root_dir or os.getcwd() attrs_path = attr_desc.strip().split('.') attr_name = attrs_path.pop() module_name = '.'.join(attrs_path) module_name = module_name or '__init__' _parent_path, path, module_name = _find_module(module_name, package_dir, root_dir) spec = _find_spec(module_name, path) try: return getattr(StaticModule(module_name, spec), attr_name) except Exception: # fallback to evaluate module module = _load_spec(spec, module_name) return getattr(module, attr_name)
23,028
def create_pyfunc_dataset(batch_size=32, repeat_size=1, num_parallel_workers=1, num_samples=None): """ Create Cifar10 dataset pipline with Map ops containing only Python functions and Python Multiprocessing enabled """ # Define dataset cifar10_ds = ds.Cifar10Dataset(DATA_DIR, num_samples=num_samples) cifar10_ds = cifar10_ds.map(operations=[py_vision.ToType(np.int32)], input_columns="label", num_parallel_workers=num_parallel_workers, python_multiprocessing=True) # Setup transforms list which include Python ops / Pyfuncs transforms_list = [ py_vision.ToPIL(), py_vision.RandomGrayscale(prob=0.2), np.array] # need to convert PIL image to a NumPy array to pass it to C++ operation compose_op = py_transforms.Compose(transforms_list) cifar10_ds = cifar10_ds.map(operations=compose_op, input_columns="image", num_parallel_workers=num_parallel_workers, python_multiprocessing=True) # Apply Dataset Ops buffer_size = 10000 cifar10_ds = cifar10_ds.shuffle(buffer_size=buffer_size) cifar10_ds = cifar10_ds.batch(batch_size, drop_remainder=True) cifar10_ds = cifar10_ds.repeat(repeat_size) return cifar10_ds
23,029
def test_collect_runtime_dependencies_driver(instr_workbench): """Test the collection of drivers as runtime dependencies. """ instr_workbench.register(InstrContributor1()) d_p = instr_workbench.get_plugin('exopy.app.dependencies') d_c = d_p.run_deps_collectors.contributions['exopy.instruments.drivers'] dep = dict.fromkeys(('instruments.test.FalseDriver', 'dummy')) err = {} un = set() d_c.collect(instr_workbench, 'tests', dep, un, err) assert len(err) == 1 assert 'instruments.test.FalseDriver' not in err['unknown-drivers'] assert 'dummy' in err['unknown-drivers'] assert not un assert dep['instruments.test.FalseDriver'] is not None assert dep['dummy'] is None
23,030
def test_invalid_server_oneshot(tmpworkdir): # pylint: disable=unused-argument,redefined-outer-name """test to raise exception in oneshot""" result = agent_main(['--server', 'http://localhost:0', '--debug', '--oneshot']) assert result == 1
23,031
def serve(args): """ Create the grpc service server for processing measurement groups """ channel = grpc.insecure_channel(args.sendserver) stub = measurement_pb2_grpc.TrackProducerStub(channel) server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) measurement_pb2_grpc.add_MeasurementProducerServicer_to_server(Tracker(stub, args.filter), server) server.add_insecure_port('[::]:' + str(args.recvport)) server.start() server.wait_for_termination()
23,032
def _infer_structured_outs( op_config: LinalgStructuredOpConfig, in_arg_defs: Sequence[OperandDefConfig], ins: Sequence[Value], out_arg_defs: Sequence[OperandDefConfig], outs: Union[Sequence[Value], OpResultList]) -> Tuple[ValueList, List[Type]]: """Infers implicit outs and output types. Respects existing contents of outs if not empty. Returns: normalized outs, output types """ # If outs were explicitly provided, we accept them verbatim. if outs: return outs, [out.type for out in outs] raise NotImplementedError(f"Output tensor inference not yet supported for " "structured ops")
23,033
def event_source(method: t.Callable, name: t.Optional[str] = None): """A decorator which makes the function act as a source of before and after call events. You can later subscribe to these event with :py:func:`before` and :py:func`after` decorators. :param method: Target class method :param: Name of for the join point. If not given use the function name. """ # We must use function name instead of function pointer for the registry, because function object changes with unbound vs. bound Python class methods if not name: name = method.__name__ @functools.wraps(method) def _inner(*args, **kwargs): _self = args[0] fire_advisor_event(_self, name, AdvisorRole.before) retval = method(*args, **kwargs) fire_advisor_event(_self, name, AdvisorRole.after) return retval assert name not in _event_source_hooks, "There already exist event_source with same name" _event_source_hooks.append(name) method._event_source_name = name return _inner
23,034
def lst_blocks(uvp, blocks=2, lst_range=(0., 2.*np.pi)): """ Split a UVPSpec object into multiple objects, each containing spectra within different contiguous LST ranges. There is no guarantee that each block will contain the same number of spectra or samples. N.B. This function uses the `lst_avg_array` property of an input UVPSpec object to split the LSTs (and not the LSTs of the individual visibilities that went into creating each delay spectrum). Parameters ---------- uvp : UVPSpec Object containing delay spectra. blocks : int, optional How many blocks to return. Default: 2. lst_range : tuple, optional Tuple containing the minimum and maximum LST to retain. This is the range that will be split up into blocks. Default: (0., 2*pi) Returns ------- uvp_list : list of UVPSpec List of UVPSpec objects, one for each LST range. Empty blocks will appear as None in the list. lst_bins : array_like Array of LST bin edges. This has dimension (blocks+1,). """ # Check validity of inputs if not isinstance(uvp, hp.UVPSpec): raise TypeError("uvp must be a single UVPSpec object.") if not (lst_range[0] >= 0. and lst_range[1] <= 2.*np.pi): raise ValueError("lst_range must be in the interval (0, 2*pi)") if not isinstance(blocks, (int, np.int, np.integer)): raise TypeError("'blocks' must be an integer") if not blocks > 0: raise ValueError("Must have blocks >= 1") # Get LSTs lsts = np.unique(uvp.lst_avg_array) # Define bin edges lst_bins = np.linspace(lst_range[0], lst_range[1], blocks+1) # Loop over bins and select() the LST ranges required uvp_list = [] for i in range(lst_bins.size - 1): idxs = np.where( np.logical_and(lsts >= lst_bins[i], lsts < lst_bins[i+1]) )[0] _uvp = None if idxs.size > 0: # Select LSTs in this range _uvp = uvp.select(lsts=lsts[idxs], inplace=False) uvp_list.append(_uvp) return uvp_list, lst_bins
23,035
def test_list_customers(client, response): """Retrieve a list of existing customers.""" response.get("https://api.mollie.com/v2/customers", "customers_list") customers = client.customers.list() assert_list_object(customers, Customer)
23,036
def is_completed(book): """Determine if the book is completed. Args: book: Row instance representing a book. """ return True if book.status == BOOK_STATUS_ACTIVE \ and not book.complete_in_progress \ and book.release_date \ else False
23,037
def compute_encryption_key_AESV3(password : 'str', encryption_dict : 'dict'): """ Derives the key to be used with encryption/decryption algorithms from a user-defined password. Parameters ---------- password : bytes Bytes representation of the password string. encryption_dict : dict The dictionary containing all the information about the encryption procedure. Returns ------- A bytes sequence representing the encryption key. """ U = encryption_dict["U"] U = U.value if isinstance(U, PDFLiteralString) else unhexlify(U.value) O = encryption_dict["O"] O = O.value if isinstance(O, PDFLiteralString) else unhexlify(O.value) prepped = sals_stringprep(password) truncated = prepped.encode("utf8")[:127] digest = sha256(truncated + O[32:32+8] + U).digest() from binascii import hexlify if digest == O[:32]: intermediate = sha256(truncated + O[-8:] + U).digest() OE = encryption_dict["OE"] OE = OE.value if isinstance(OE, PDFLiteralString) else unhexlify(OE.value) file_encryption_key = cbc_decrypt(OE, intermediate, b'\x00'*16, padding = False) else: digest = sha256(truncated + U[32:32+8]).digest() if digest == U[:32]: intermediate = sha256(truncated + U[-8:]).digest() UE = encryption_dict["UE"] UE = UE.value if isinstance(UE, PDFLiteralString) else unhexlify(UE.value) file_encryption_key = cbc_decrypt(UE, intermediate, b'\x00'*16, padding = False) else: raise PDFWrongPasswordError() return file_encryption_key
23,038
def list_group(group_name, recursive=True): """Returns all members, all globs and all nested groups in a group. The returned lists are unordered. Returns: GroupListing object. """ return get_request_cache().auth_db.list_group(group_name, recursive)
23,039
def test_num_iterations(): """ test values are given in the following order: theta, interval_width, confidence_level=1-alpha, n_pearson, n_spearman, n_kendall where theta is the value of the correlation coefficient References ---------- Sample size requirements for estimating Pearson, Kendall and Spearman correlations Bonett, Douglas G and Wright, Thomas A, 2000 http://doi.org/10.1007/BF02294183 Test values are taken from Table 1. """ test = [ (0.1, 0.1, 0.95, 1507, 1517, 661), (0.3, 0.1, 0.95, 1274, 1331, 560), (0.4, 0.2, 0.95, 273, 295, 122), (0.5, 0.3, 0.99, 168, 189, 76), (0.6, 0.2, 0.99, 276, 325, 123), (0.7, 0.3, 0.99, 82, 101, 39), (0.8, 0.1, 0.95, 205, 269, 93), (0.9, 0.2, 0.99, 34, 46, 18), ] for element in test: theta, width, conf_level, n_pearson, n_spearman, n_kendall = ( element[0], element[1], element[2], element[3], element[4], element[5], ) corrcoef_dict = get_corrcoef_num_iterations( theta=theta, interval_width=width, confidence_level=conf_level ) n_pearson_comp = corrcoef_dict["pearson"]["num_iterations"] n_spearman_comp = corrcoef_dict["spearman"]["num_iterations"] n_kendall_comp = corrcoef_dict["kendall"]["num_iterations"] print(element) assert abs(n_pearson_comp - n_pearson) < 2 assert abs(n_spearman_comp == n_spearman) < 2 assert abs(n_kendall_comp == n_kendall) < 2
23,040
def list_tickets(result: typing.List[typing.List] = None) -> None: """Lists the tickets created on this session. Args: result (typing.List[typing.List]): Result received from the decorator. Defaults to None. """ if result is not None: if len(result) != 0: headers = ["Name", "Connection ID"] table = tabulate(result, headers=headers, tablefmt="grid") Logger().log("The active tickets are:\n\n{}\n".format(table), LoggedMessageTypes.INFORMATION) else: Logger().log("No tickets were opened yet.", LoggedMessageTypes.FAIL)
23,041
def pi(): """Compute Pi to the current precision. >>> print(pi()) 3.141592653589793238462643383 """ getcontext().prec += 2 # extra digits for intermediate steps three = Decimal(3) # substitute "three=3.0" for regular floats lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24 while s != lasts: lasts = s n, na = n + na, na + 8 d, da = d + da, da + 32 t = (t * n) / d s += t getcontext().prec -= 2 return +s # unary plus applies the new precision
23,042
def test_reactivate_and_save(): """Test that the reactivate_and_save method in enrollment models sets properties and saves""" course_run_enrollment = CourseRunEnrollmentFactory.create( active=False, change_status=ENROLL_CHANGE_STATUS_REFUNDED ) program_enrollment = ProgramEnrollmentFactory.create( active=False, change_status=ENROLL_CHANGE_STATUS_REFUNDED ) enrollments = [course_run_enrollment, program_enrollment] for enrollment in enrollments: enrollment.reactivate_and_save() enrollment.refresh_from_db() enrollment.active = True enrollment.change_status = None
23,043
def molecule_rot(axis,degree,XYZ): """ molecular rotation use axis to specify x,y,z vectors """ atlist=range(0,len(XYZ)) rad=radians(degree) p2=np.array([0,0,0]) for i in sorted(atlist[:]): print 'rotating...',i v=XYZ[i,:] Rmat= RotMatArb(axis,rad,p2,v) XYZ[i,:]=RmatxVec(Rmat,v)
23,044
def load_cifar_data(limit=None) -> np.ndarray: """ :param limit: :return: """ # cifar10 data (integrated in TensorFlow, downloaded on first use) cifar10_data = tf.keras.datasets.cifar10 # split into training and test data train_data, test_data = cifar10_data.load_data() # split dta into image and label (not yet desired format c.f. PreProc) x_train, label_train = train_data x_test, label_test = test_data if limit is not None: # optional limit to develop/test faster x_train = x_train[:limit, :, :, :] label_train = label_train[:limit] x_test = x_test[:limit, :, :, :] label_test = label_test[:limit] # provide some basic information about data print('Number of images in training set', len(x_train)) print('Number of images in testing set', len(x_test)) print('Input image size', x_train.shape[1], 'x', x_train.shape[2], 'in', x_train.shape[-1], 'channels') return x_train, label_train, x_test, label_test
23,045
def set_goal_orientation(delta, current_orientation, orientation_limit=None, set_ori=None): """ Calculates and returns the desired goal orientation, clipping the result accordingly to @orientation_limits. @delta and @current_orientation must be specified if a relative goal is requested, else @set_ori must be specified to define a global orientation position """ # directly set orientation if set_ori is not None: goal_orientation = set_ori # otherwise use delta to set goal orientation else: rotation_mat_error = trans.euler2mat(-delta) goal_orientation = np.dot(rotation_mat_error.T, current_orientation) #check for orientation limits if np.array(orientation_limit).any(): if orientation_limit.shape != (2,3): raise ValueError("Orientation limit should be shaped (2,3) " "but is instead: {}".format(orientation_limit.shape)) # Convert to euler angles for clipping euler = trans.mat2euler(goal_orientation) # Clip euler angles according to specified limits limited = False for idx in range(3): if orientation_limit[0][idx] < orientation_limit[1][idx]: # Normal angle sector meaning if orientation_limit[0][idx] < euler[idx] < orientation_limit[1][idx]: continue else: limited = True dist_to_lower = euler[idx] - orientation_limit[0][idx] if dist_to_lower > np.pi: dist_to_lower -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_lower += 2 * np.pi dist_to_higher = euler[idx] - orientation_limit[1][idx] if dist_to_lower > np.pi: dist_to_higher -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_higher += 2 * np.pi if dist_to_lower < dist_to_higher: euler[idx] = orientation_limit[0][idx] else: euler[idx] = orientation_limit[1][idx] else: # Inverted angle sector meaning if (orientation_limit[0][idx] < euler[idx] or euler[idx] < orientation_limit[1][idx]): continue else: limited = True dist_to_lower = euler[idx] - orientation_limit[0][idx] if dist_to_lower > np.pi: dist_to_lower -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_lower += 2 * np.pi dist_to_higher = euler[idx] - orientation_limit[1][idx] if dist_to_lower > np.pi: dist_to_higher -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_higher += 2 * np.pi if dist_to_lower < dist_to_higher: euler[idx] = orientation_limit[0][idx] else: euler[idx] = orientation_limit[1][idx] if limited: goal_orientation = trans.euler2mat(np.array([euler[1], euler[0], euler[2]])) return goal_orientation
23,046
def report(args, unreconciled, reconciled, explanations, column_types): """Generate the report.""" # Everything as strings reconciled = reconciled.applymap(str) unreconciled = unreconciled.applymap(str) # Convert links into anchor elements reconciled = reconciled.applymap(create_link) unreconciled = unreconciled.applymap(create_link) # Get the report template env = Environment(loader=PackageLoader('reconcile', '.')) template = env.get_template('lib/summary/template.html') # Create the group dataset groups = get_groups(args, unreconciled, reconciled, explanations) # Create filter lists filters = get_filters(args, groups, column_types) # Get transcriber summary data transcribers = user_summary(args, unreconciled) # Build the summary report summary = template.render( args=vars(args), header=header_data(args, unreconciled, reconciled, transcribers), groups=iter(groups.items()), filters=filters, columns=util.sort_columns(args, unreconciled, column_types), transcribers=transcribers, reconciled=reconciled_summary(explanations, column_types), problem_pattern=PROBLEM_PATTERN) # Output the report with open(args.summary, 'w', encoding='utf-8') as out_file: out_file.write(summary)
23,047
def get_fixed_income_index(): """获取固定收益及中债总财富指数对比走势""" return get_stg_index('fixed_income', '037.CS')
23,048
def ignoreQtMessageHandler(msgs): """A context that ignores specific qMessages for all bindings Args: msgs: list of message strings to ignore """ from Qt import QtCompat def messageOutputHandler(msgType, logContext, msg): if msg in msgs: return sys.stderr.write("{0}\n".format(msg)) QtCompat.qInstallMessageHandler(messageOutputHandler) try: yield finally: QtCompat.qInstallMessageHandler(None)
23,049
def get_jobid(db): """ Ask MongoDB for the a valid jobid. All processing jobs should have a call to this function at the beginning of the job script. It simply queries MongoDB for the largest current value of the key "jobid" in the history collection. If the history collection is empty it returns 1 under a bias that a jobid of 0 is illogical. :param db: database handle :type db: top level database handle returned by a call to MongoClient.database """ hiscol=db.history hist_size=hiscol.find().count() if(hist_size<=0): return 1 else: maxcur=hiscol.find().sort([('jobid',pymongo.DESCENDING)]).limit(1) maxcur.rewind() # may not be necessary but near zero cost maxdoc=maxcur[0] return maxdoc['jobid']+1
23,050
def collect_input_arguments(): """ Collecting input arguments at the command line for use later. """ parser = argparse.ArgumentParser(prog= 'Alignseq', description='Align Codon Sequences', usage='%(prog)s [options]', epilog="And that's how you make an Alignment!") parser.add_argument('-inf', metavar='Infile', action='store', help='A input file of codons') parser.add_argument('-outf', metavar='Outfile', action='store', help='An Output file (desired path) of codon Alignment') parser.add_argument('-prog', metavar='Program', action='store', help='Desired program to Align Sequences', default='mafft') parser.add_argument('-outtranslated', metavar='Outfile for Translated Data', action='store', help='An Output file (desired path) for translated data') parser.add_argument('-outtransaligned', metavar='Outfile for Translated and Aligned Data', action='store', help='An Output file (desired path) for translated and aligned data') parser.add_argument('-outformat', metavar='Output Format', action='store', help='An Output Format', default = "fasta") # Will print the help menu if no arguments are passed to alignseq.py. if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) # Returns arguments for use in classes. return parser.parse_args()
23,051
def isA(token, tt=None, tv=None): """ function to check if a token meets certain criteria """ # Row and column info may be useful? for error messages try: tokTT, tokTV, _row, _col = token except: return False if tt is None and tv is None: return True elif tv is None: return tt == tokTT elif tt is None: return tv == tokTV else: return tv == tokTV and tt == tokTT
23,052
def authenticate( *, token: str, key: str, ) -> Tuple[bool, Dict]: """Authenticate user by token""" try: token_header = jwt.get_unverified_header(token) decoded_token = jwt.decode(token, key, algorithms=token_header.get("alg")) except JWTError: return False, {} else: return True, decoded_token
23,053
def backup(source, destination, *, return_wrappers=False): """ Backup the selected source(s) into the destination(s) provided. Source and destination will be converted into ``Source`` and ``Destination`` respectively. If this conversion fails, an exception will be raised. :param return_wrappers: If True, the Source and Destination objects will be returned. :param source: The source(s) to backup. :param destination: The destination(s) of backup. """ boa = Boa() _source = get_any_source(source) _destination = get_any_destination(destination) boa.backup(_source, _destination) if return_wrappers: return _source, _destination
23,054
def _prepare_data(cfg, imgs): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): Either image files or loaded images. Returns: result (dict): Predicted results. """ if isinstance(imgs, (list, tuple)): if not isinstance(imgs[0], (np.ndarray, str)): raise AssertionError('imgs must be strings or numpy arrays') elif isinstance(imgs, (np.ndarray, str)): imgs = [imgs] else: raise AssertionError('imgs must be strings or numpy arrays') is_ndarray = isinstance(imgs[0], np.ndarray) if is_ndarray: cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromNdarray' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if is_ndarray: # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) # get tensor from list to stack for batch mode (text detection) datas.append(data) if isinstance(datas[0]['img'], list) and len(datas) > 1: raise Exception('aug test does not support ' f'inference with batch size ' f'{len(datas)}') data = collate(datas, samples_per_gpu=len(imgs)) # process img_metas if isinstance(data['img_metas'], list): data['img_metas'] = [ img_metas.data[0] for img_metas in data['img_metas'] ] else: data['img_metas'] = data['img_metas'].data if isinstance(data['img'], list): data['img'] = [img.data for img in data['img']] if isinstance(data['img'][0], list): data['img'] = [img[0] for img in data['img']] else: data['img'] = data['img'].data return data
23,055
def test_update_email_change_request_existing_email(user): """Test that update change email request gives validation error for existing user email""" new_user = UserFactory.create() change_request = ChangeEmailRequest.objects.create( user=user, new_email=new_user.email ) serializer = ChangeEmailRequestUpdateSerializer(change_request, {"confirmed": True}) with pytest.raises(ValidationError): serializer.is_valid() serializer.save()
23,056
def test_sx(params=''): """ Execute all tests in docker container printing output and terminating tests at first failure :param params: parameters to py.test """ docker_exec('py.test -sx {}'.format(params))
23,057
def _HandleJsonList(response, service, method, errors): """Extracts data from one *List response page as JSON and stores in dicts. Args: response: str, The *List response in JSON service: The service which responded to *List request method: str, Method used to list resources. One of 'List' or 'AggregatedList'. errors: list, Errors from response will be appended to this list. Returns: Pair of: - List of items returned in response as dicts - Next page token (if present, otherwise None). """ items = [] response = json.loads(response) # If the request is a list call, then yield the items directly. if method == 'List': items = response.get('items', []) # If the request is an aggregatedList call, then do all the # magic necessary to get the actual resources because the # aggregatedList responses are very complicated data # structures... elif method == 'AggregatedList': items_field_name = service.GetMethodConfig( 'AggregatedList').relative_path.split('/')[-1] for scope_result in six.itervalues(response['items']): # If the given scope is unreachable, record the warning # message in the errors list. warning = scope_result.get('warning', None) if warning and warning['code'] == 'UNREACHABLE': errors.append((None, warning['message'])) items.extend(scope_result.get(items_field_name, [])) return items, response.get('nextPageToken', None)
23,058
def gray_arrays_to_rgb_sequence_array(arrays, start_rgb, end_rgb, normalise_input=False, normalise_output=True): """Returns an RGB array that is mean of grayscale arrays mapped to linearly spaced RGB colors in a range. :param list arrays: list of numpy.ndarrays of shape (N, M) :param tuple start_rgb: (R, G, B) mapping of first array in `arrays` :param tuple end_rgb: (R, G, B) mapping of last array in `arrays` :param bool normalise_input: if True, input arrays are normalised concurrently to max value of 1. Default is False. :param bool normalise_output: if True (default), output is normalised to range between 0 and 1. :return: rgb_sequence_array shape (N, M, 3) :rtype: numpy.ndarray """ if normalise_input: max_gray_value = max([np.max(array) for array in arrays]) arrays = [array / max_gray_value for array in arrays] colors = np.array([np.linspace(start, end, len(arrays)) for start, end in zip(start_rgb, end_rgb)]).T color_arrays = [color[np.newaxis, np.newaxis, :] * array[:, :, np.newaxis] for color, array in zip(colors, arrays)] rgb_sequence_array = np.mean(np.stack(color_arrays, axis=3), axis=3) if normalise_output: rgb_sequence_array = rgb_sequence_array / np.nanmax(rgb_sequence_array) return rgb_sequence_array
23,059
def normalize_inputs(df, metrics): """Normalize all inputs around mean and standard deviation. """ for m in metrics: mean = np.mean(df[m]) stdev = np.std(df[m]) def std_normalize(x): return (x - mean) / stdev #df[m] = df[m].map(std_normalize) xmin = min(df[m]) xmax = max(df[m]) def minmax_normalize(x): return (x - xmin) / (xmax - xmin) df[m] = df[m].map(minmax_normalize) return df
23,060
def calc_z_rot_from_right(right): """ Calculates z rotation of an object based on its right vector, relative to the positive x axis, which represents a z rotation euler angle of 0. This is used for objects that need to rotate with the HMD (eg. VrBody), but which need to be robust to changes in orientation in the HMD. """ # Project right vector onto xy plane r = np.array([right[0], right[1], 0]) z_zero_vec = np.array([1, 0, 0]) # Get angle in radians z = np.arccos(np.dot(r, z_zero_vec)) # Flip sign if on the right side of the xy plane if r[1] < 0: z *= -1 # Add pi/2 to get forward direction, but need to deal with jumping # over quadrant boundaries if 0 <= z and z <= np.pi / 2: return z + np.pi / 2 elif np.pi / 2 < z and z <= np.pi: angle_from_ax = np.pi / 2 - (np.pi - z) return -np.pi + angle_from_ax elif -np.pi <= z and z <= -np.pi / 2: return z + np.pi / 2 else: return np.pi / 2 + z
23,061
def poisson_interval(data, alpha=0.32): """Calculates the confidence interval for the mean of a Poisson distribution. Parameters ---------- data: array_like Data giving the mean of the Poisson distributions. alpha: float Significance level of interval. Defaults to one sigma (0.32). Returns ------- low, high: array_like Lower and higher limits for the interval.""" a = alpha low, high = (chi2.ppf(a / 2, 2 * data) / 2, chi2.ppf(1 - a / 2, 2 * data + 2) / 2) low = np.nan_to_num(low) return low, high
23,062
def sales_administrative_expense(ticker, frequency): """ :param ticker: e.g., 'AAPL' or MULTIPLE SECURITIES :param frequency: 'A' or 'Q' for annual or quarterly, respectively :return: obvious.. """ df = financials_download(ticker, 'is', frequency) return (df.loc["Sales, General and administrative"])
23,063
def clip(x, min_, max_): """Clip value `x` by [min_, max_].""" return min_ if x < min_ else (max_ if x > max_ else x)
23,064
async def test_get_triggers(hass): """Test triggers work.""" gateway = await setup_deconz(hass, options={}) device_id = gateway.events[0].device_id triggers = await async_get_device_automations(hass, "trigger", device_id) expected_triggers = [ { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_SHORT_PRESS, "subtype": device_trigger.CONF_TURN_ON, }, { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_LONG_PRESS, "subtype": device_trigger.CONF_TURN_ON, }, { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_LONG_RELEASE, "subtype": device_trigger.CONF_TURN_ON, }, { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_SHORT_PRESS, "subtype": device_trigger.CONF_TURN_OFF, }, { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_LONG_PRESS, "subtype": device_trigger.CONF_TURN_OFF, }, { "device_id": device_id, "domain": "deconz", "platform": "device", "type": device_trigger.CONF_LONG_RELEASE, "subtype": device_trigger.CONF_TURN_OFF, }, ] assert triggers == expected_triggers
23,065
def generate_code(): """Generate a URL-compatible short code.""" return ''.join(random.choice(ALPHABET) for _ in range(10))
23,066
def prox_pos(v, t = 1, *args, **kwargs): """Proximal operator of :math:`tf(ax-b) + c^Tx + d\\|x\\|_2^2`, where :math:`f(x) = \\max(x,0)` applied elementwise for scalar t > 0, and the optional arguments are a = scale, b = offset, c = lin_term, and d = quad_term. We must have t > 0, a = non-zero, and d >= 0. By default, t = 1, a = 1, b = 0, c = 0, and d = 0. """ return prox_scale(prox_pos_base, *args, **kwargs)(v, t)
23,067
def delete_mapping(module, sdk, cloud, mapping): """ Attempt to delete a Mapping returns: the "Changed" state """ if mapping is None: return False if module.check_mode: return True try: cloud.identity.delete_mapping(mapping) except sdk.exceptions.OpenStackCloudException as ex: module.fail_json(msg='Failed to delete mapping: {0}'.format(str(ex))) return True
23,068
def insert_target(x, segment_size): """ Creates segments of surrounding words for each word in x. Inserts a zero token halfway the segment to mark the end of the intended token. Parameters ---------- x: list(int) A list of integers representing the whole data as one long encoded sentence. Each integer is an encoded subword. segment_size: int The size of the output samples. Returns ------- np.array: A numpy matrix representing window of `segment_size` moving over the input sample `x`. """ X = [] #pad the start & end of x x_pad = x[-((segment_size-1)//2-1):] + x + x[:segment_size//2] for i in range(len(x_pad)-segment_size+2): segment = x_pad[i:i+segment_size-1] #zero at the middle to mark the end of intended token segment.insert((segment_size-1)//2, 0) X.append(segment) return np.array(X)
23,069
def find_nearest_network(ipa, nets): """ :param ipa: An ip address string :param nets: A of str gives and ip address with prefix, e.g. 10.0.1.0/24 >>> net1 = "192.168.122.0/24" >>> net2 = "192.168.0.0/16" >>> net3 = "192.168.1.0/24" >>> net4 = "192.168.254.0/24" >>> net5 = "0.0.0.0/32" >>> find_nearest_network(net1, [net1, net5]) '192.168.122.0/24' >>> find_nearest_network(net2, [net1, net5]) '192.168.122.0/24' >>> find_nearest_network(net1, [net2, net3]) '192.168.0.0/16' >>> find_nearest_network(net3, [net1, net4]) '192.168.122.0/24' """ return sorted(nets, key=functools.partial(distance, ipa))[0]
23,070
def find_lines(image, show_image, logger): """Find lines in the *image*.""" logger("preprocessing") show_image(image, "original image") im_h = prepare(image, show_image, logger) hough = Hough.default(im_h) logger("hough transform") im_h2 = transform(im_h, hough, show_image) logger("finding the lines") r_lines, l1, l2 = run_ransac(im_h2) lines = map(hough.lines_from_list, r_lines) # TODO refactor gridf to get rid of this: bounds = sum(map(lambda l: [l[0], l[-1]], r_lines), []) # sum(list, []) = flatten list # TODO do this only if show_all is true: image_g = image.copy() draw = ImageDraw.Draw(image_g) for line in [l for s in lines for l in s]: draw.line(line_from_angl_dist(line, image.size), fill=(120, 255, 120)) show_image(image_g, "lines") return lines, l1, l2, bounds, hough
23,071
def set_action_translation( language_id: int, action_id: int, name: str, description: str = '', short_description: str = '', ) -> ActionTranslation: """ Create or update an action translation. :param language_id: the ID of an existing language :param action_id: the ID of an existing action :param name: the name of the action :param description: a (possibly empty) description for the action :param short_description: the new (possibly empty) short description :return: the created action translation :raise errors.LanguageDoesNotExistError: if no language with the given ID exists :raise errors.ActionDoesNotExistError: if no action with the given ID exists """ action_translation = models.ActionTranslation.query.filter_by( language_id=language_id, action_id=action_id ).first() if action_translation is None: actions.get_action(action_id) languages.get_language(language_id) action_translation = models.ActionTranslation( language_id=language_id, action_id=action_id, name=name, description=description, short_description=short_description, ) else: action_translation.name = name action_translation.description = description action_translation.short_description = short_description db.session.add(action_translation) db.session.commit() return ActionTranslation.from_database(action_translation)
23,072
def partialSVD(batch, S, VT, ratio = 1, solver = 'full', tol = None, max_iter = 'auto'): """ Fits a partial SVD after given old singular values S and old components VT. Note that VT will be used as the number of old components, so when calling truncated or randomized, will output a specific number of eigenvectors and singular values. Checks if new batch's size matches that of the old VT. Note that PartialSVD has different solvers. Either choose: 1. full Solves full SVD on the data. This is the most stable and will guarantee the most robust results. You can select the number of components to keep within the model later. 2. truncated This keeps the top K right eigenvectors and top k right singular values, as determined by n_components. Note full SVD is not called for the truncated case, but rather ARPACK is called. 3. randomized Same as truncated, but instead of using ARPACK, uses randomized SVD. Notice how Batch = U @ S @ VT. However, partialSVD returns S, VT, and not U. In order to get U, you might consider using the relation that X = U @ S @ VT, and approximating U by: X = U @ S @ VT X @ V = U @ S (X @ V)/S = U So, U = (X @ V)/S, so you can output U from (X @ V)/S You can also get U partially and slowly using reverseU. """ data, k, __ = _utilSVD(batch, S, VT, eig = False) if solver == 'full': U, S, VT = svd(data) elif solver == 'truncated': U, S, VT = truncatedSVD(data, n_components = k, tol = tol) else: U, S, VT = randomizedSVD(data, n_components = k, max_iter = max_iter) return U[k:,:k], S[:k], VT[:k]
23,073
def can_move_in_direction(node: Node, direction: Direction, factory: Factory): """If an agent has a neighbour in the specified direction, add a 1, else 0 to the observation space. If that neighbour is free, add 1, else 0 (a non-existing neighbour counts as occupied). """ has_direction = node.has_neighbour(direction) is_free = False if has_direction: neighbour: Node = node.get_neighbour(direction) if neighbour.is_rail: neighbour_rail = factory.get_rail(neighbour) is_free = neighbour_rail.is_free() or node in neighbour_rail.nodes else: is_free = not neighbour.has_table() return is_free
23,074
def render_list_end(token, body, stack, loop): """Pops the pushed ``urwid.Pile()`` from the stack (decreases indentation) See :any:`lookatme.tui.SlideRenderer.do_render` for argument and return value descriptions. """ stack.pop()
23,075
def action(plugin_name: str, with_client: bool = False): """ アクション定義メソッドに使うデコレータ """ def _action(func): def wrapper(client: BaseClient, *args, **kwargs): logger.debug("%s called '%s'", client.get_send_user(), plugin_name) logger.debug("%s app called '%s'", client.get_type(), plugin_name) if with_client: func(client, *args, **kwargs) else: return_val = func(*args, **kwargs) if isinstance(return_val, str): client.post(return_val) return wrapper return _action
23,076
def main(architecture: str = DEFAULT_ARCHITECTURE, clean: bool = False, mirror_url: str = DEFAULT_MIRROR_URL, number: int = DEFAULT_NUMBER, output_dir: str = DEFAULT_OUTPUT_DIR, reuse_contents_file: bool = DEFAULT_REUSE_CONTENTS_FILE, sort_descending: bool = DEFAULT_SORT_DESCENDING, include_udeb: bool = DEFAULT_INCLUDE_UDEB) -> None: """ This is the dprs function that manages this application. Arguments: architecture: CPU Architecture for the Debian Contents-*.gz file. clean: If clean option set, output directory will be removed. mirror_url: Debian Package Repository Address number: Number of the top packages to show. output_dir: Output directory where the file will be downloaded and extracted. reuse_contents_file: Reuse a previously downloaded Debian Contents-*.gz file. sort_descending:Sort package statistics by descending order. include_udeb: Debian Contents-*.gz file URL. Returns: None: Returns None. """ # If clean option set, output directory will be removed. if clean: # Check output directory if exists if os.path.exists(output_dir): shutil.rmtree(DEFAULT_OUTPUT_DIR) exit(0) # Get a list of Contents-*.gz file(s) URL(s) contents_file_url = get_contents_file_url(architecture=architecture, mirror_url=mirror_url, include_udeb=include_udeb) if len(contents_file_url) == 0: # If the application couldn't find given architecture, # output an error with a list of architectures. contents_file_list = get_contents_file_list(mirror_url) found_architectures = sorted({item["architecture"] for item in contents_file_list}) found_architectures = ", ".join(found_architectures) # Raise a custom ArchitectureNotFound exception raise ArchitectureNotFound( f"Architecture: {architecture} was not found in the given Debian Package Repository. " f"Available architectures are: {found_architectures}" ) complete_package_data = {} for url in contents_file_url: contents_file = download_contents_file( contents_file_url=url, output_dir=output_dir, reuse_contents_file=reuse_contents_file) print(contents_file) package_data = parse_contents_file(contents_file) complete_package_data.update(**package_data) package_list = complete_package_data.keys() # Sort them in the descending order of the number of packages # Unless the user wants the ascending order package_list = sorted(package_list, key=lambda x: len(complete_package_data[x]), reverse=not sort_descending) # Print the output for ix, package in enumerate(package_list): if ix == 0: print(f"{'Order':<10}\t{'Package Name':<40}\t{'Number of Files':>20}") print(f"{ix+1:<10}\t{package:<40}\t{len(complete_package_data[package]):>20}") if ix+1 == number: break
23,077
def setup_helper_functions(app): """Sets up the helper functions. Args: app (werkzeug.local.LocalProxy): The current application's instance. """ import helper functions = { "get_project_category": helper.get_project_category, "get_blurred_cover_image_path": helper.get_blurred_cover_image_path, } app.jinja_env.globals.update(**functions)
23,078
def Usable(entity_type,entity_ids_arr): """Only for Linux modules""" filNam = entity_ids_arr[0] return filNam.endswith(".ko.xz")
23,079
def detection_collate(batch): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (list of tensors) annotations for a given image are stacked on 0 dim """ targets = [] imgs = [] for _, sample in enumerate(batch): for _, tup in enumerate(sample): if torch.is_tensor(tup): imgs.append(tup) elif isinstance(tup, type(np.empty(0))): annos = torch.from_numpy(tup).float() targets.append(annos) return (torch.stack(imgs, 0), targets)
23,080
def write_gct(matrix, filepath, descriptions=None): """ Establish .gct filepath and write matrix to it. :param matrix: DataFrame or Serires; (n_samples, m_features) :param filepath: str; filepath; adds .gct suffix if missing :param descriptions: iterable; (n_samples); description column :return: None """ # Copy obj = matrix.copy() # Work with only DataFrame if isinstance(obj, Series): obj = DataFrame(obj).T # Add description column if missing if obj.columns[0] != 'Description': if descriptions: obj.insert(0, 'Description', descriptions) else: obj.insert(0, 'Description', obj.index) # Set row and column name obj.index.name = 'Name' obj.columns.name = None # Save as .gct if not filepath.endswith('.gct'): filepath += '.gct' establish_filepath(filepath) with open(filepath, 'w') as f: f.writelines('#1.2\n{}\t{}\n'.format(obj.shape[0], obj.shape[1] - 1)) obj.to_csv(f, sep='\t')
23,081
def SkipUntilNewLine(handle): """Skips data until a new-line character is received. This is needed so that the first sample is read from a complete line. """ logging.debug("Skipping until the end of a new line.") while not handle.readline(4096).endswith('\n'): pass
23,082
def assert_allclose( actual: scipy.stats.mstats_basic.Ttest_1sampResult, desired: scipy.stats.mstats_basic.Ttest_1sampResult, ): """ usage.scipy: 1 """ ...
23,083
def get_total_invites_in_mempool(): """ Call merit-cli subprocess and get the number of free invites in mempool :rtype: int """ invites_in_mempool = json.loads( (subprocess.check_output(['merit-cli', '-conf={}'.format(config.MERIT_CONF), '-datadir={}'.format(config.MERIT_DATA_DIR), 'getaddressbalance', '{"addresses":["' + config.MERIT_MEMPOOL_ADDRESS + '"], "invites":true}'])) .decode("utf-8")) return invites_in_mempool['balance']
23,084
def _apply_fft_high_pass_filter(data, fmin, fs=None, workers=None, detrend=True, time_name=None): """Apply high-pass filter to FFT of given data. Parameters ---------- data : xarray.DataArray Data to filter. fmin : float Lowest frequency in pass band. fs : float Sampling frequency. workers : int Number of parallel jobs to use in computing FFT. detrend : bool If True, remove linear trend from data before computing FFT. time_name : str Name of the time coordinate. Returns ------- filtered : xarray.DataArray Array containing the high-pass filtered data. """ data = rdu.ensure_data_array(data) time_name = time_name if time_name is not None else rdu.get_time_name(data) feature_dims = [d for d in data.dims if d != time_name] # Handle case in which data is simply a time-series if not feature_dims: original_shape = None else: original_shape = [data.sizes[d] for d in feature_dims] time_dim_pos = data.get_axis_num(time_name) if time_dim_pos != 0: data = data.transpose(*([time_name] + feature_dims)) # Convert to 2D array n_samples = data.sizes[time_name] if feature_dims: n_features = np.product(original_shape) else: n_features = 1 flat_data = data.values.reshape((n_samples, n_features)) rdu.check_fixed_missing_values(flat_data, axis=0) valid_data, missing_features = rdu.remove_missing_features(flat_data) valid_features = [d for d in range(n_features) if d not in missing_features] valid_data = valid_data.swapaxes(0, 1) if detrend: valid_data = scipy.signal.detrend( valid_data, axis=-1, type='linear') # Compute spectrum and apply high-pass filter spectrum = rfft(valid_data, axis=-1, workers=workers) fft_freqs = rfftfreq(n_samples, d=(1.0 / fs)) filter_mask = fft_freqs < fmin spectrum[..., filter_mask] = 0.0 filtered_valid_data = irfft( spectrum, n=n_samples, axis=-1, workers=workers).swapaxes(0, 1) if rdu.is_dask_array(flat_data): filtered_cols = [None] * n_features pos = 0 for j in range(n_features): if j in valid_features: filtered_cols[j] = filtered_valid_data[:, pos].reshape( (n_samples, 1)) pos += 1 else: filtered_cols[j] = da.full((n_samples, 1), np.NaN) filtered_data = da.hstack(filtered_cols) else: filtered_data = np.full((n_samples, n_features), np.NaN) filtered_data[:, valid_features] = filtered_valid_data if original_shape: filtered_data = filtered_data.reshape([n_samples] + original_shape) filtered_dims = [time_name] + feature_dims else: filtered_data = filtered_data.ravel() filtered_dims = [time_name] filtered_coords = deepcopy(data.coords) result = xr.DataArray( filtered_data, coords=filtered_coords, dims=filtered_dims) if time_dim_pos != 0: result = result.transpose(*data.dims) return result
23,085
def load_inputs(mod, switch_data, inputs_dir): """ Import project-specific data. The following files are expected in the input directory. all_projects.tab PROJECT, proj_dbid, proj_gen_tech, proj_load_zone, proj_connect_cost_per_mw existing_projects.tab PROJECT, build_year, proj_existing_cap cap_limited_projects is optional because some systems will not have capacity limited projects. cap_limited_projects.tab PROJECT, proj_capacity_limit_mw The following files are optional because they override generic values given by descriptions of generation technologies. proj_heat_rate.tab PROJECT, proj_heat_rate Note: Load-zone cost adjustments will not be applied to any costs specified in project_specific_costs. project_specific_costs.tab PROJECT, build_year, proj_overnight_cost, proj_fixed_om """ switch_data.load_aug( filename=os.path.join(inputs_dir, 'all_projects.tab'), select=('PROJECT', 'proj_dbid', 'proj_gen_tech', 'proj_load_zone', 'proj_connect_cost_per_mw'), index=mod.PROJECTS, param=(mod.proj_dbid, mod.proj_gen_tech, mod.proj_load_zone, mod.proj_connect_cost_per_mw)) switch_data.load_aug( filename=os.path.join(inputs_dir, 'existing_projects.tab'), select=('PROJECT', 'build_year', 'proj_existing_cap'), index=mod.EXISTING_PROJ_BUILDYEARS, param=(mod.proj_existing_cap)) switch_data.load_aug( optional=True, filename=os.path.join(inputs_dir, 'cap_limited_projects.tab'), select=('PROJECT', 'proj_capacity_limit_mw'), index=mod.PROJECTS_CAP_LIMITED, param=(mod.proj_capacity_limit_mw)) switch_data.load_aug( optional=True, filename=os.path.join(inputs_dir, 'proj_heat_rate.tab'), select=('PROJECT', 'full_load_heat_rate'), param=(mod.proj_full_load_heat_rate)) switch_data.load_aug( optional=True, filename=os.path.join(inputs_dir, 'project_specific_costs.tab'), select=('PROJECT', 'build_year', 'proj_overnight_cost', 'proj_fixed_om'), param=(mod.proj_overnight_cost, mod.proj_fixed_om))
23,086
def plot_cospectrum(fnames, figname=None, xlog=None, ylog=None, output_data_file=None): """Plot the cospectra from a list of CPDSs, or a single one.""" if is_string(fnames): fnames = [fnames] figlabel = fnames[0] for i, fname in enumerate(fnames): pds_obj = load_pds(fname, nosub=True) models = [] if hasattr(pds_obj, 'best_fits') and pds_obj.best_fits is not None: models = pds_obj.best_fits if np.allclose(np.diff(pds_obj.freq), pds_obj.df): freq = pds_obj.freq xlog = _assign_value_if_none(xlog, False) ylog = _assign_value_if_none(ylog, False) else: flo = pds_obj.freq - pds_obj.df / 2 fhi = pds_obj.freq + pds_obj.df / 2 freq = (fhi + flo) / 2 xlog = _assign_value_if_none(xlog, True) ylog = _assign_value_if_none(ylog, True) cpds = pds_obj.power cospectrum = cpds.real if xlog and ylog: plt.figure('Cospectrum - Loglog ' + figlabel) else: plt.figure('Cospectrum ' + figlabel) ax = plt.gca() if xlog: ax.set_xscale('log', nonposx='clip') if ylog: ax.set_yscale('log', nonposy='clip') plt.xlabel('Frequency') if xlog and ylog: y = freq[1:] * cospectrum[1:] plt.plot(freq[1:], y, drawstyle='steps-mid', label=fname) for i, func in enumerate(models): plt.plot(freq, freq * func(freq), label='Model {}'.format(i + 1)) plt.ylabel('Cospectrum * Frequency') else: y = cospectrum[1:] plt.plot(freq[1:], cospectrum[1:], drawstyle='steps-mid', label=fname) plt.ylabel('Cospectrum') for i, func in enumerate(models): plt.plot(freq, func(freq), label='Model {}'.format(i + 1)) if output_data_file is not None: save_as_qdp([freq[1:], y], filename=output_data_file, mode='a') plt.legend() if figname is not None: plt.savefig(figname)
23,087
def truncate(array:np.ndarray, intensity_profile:np.ndarray, seedpos:int, iso_split_level:float)->np.ndarray: """Function to truncate an intensity profile around its seedposition. Args: array (np.ndarray): Input array. intensity_profile (np.ndarray): Intensities for the input array. seedpos (int): Seedposition. iso_split_level (float): Split level. Returns: np.ndarray: Truncated array. """ minima = int_list_to_array(get_minpos(intensity_profile, iso_split_level)) if len(minima) > 0: left_minima = minima[minima < seedpos] right_minima = minima[minima > seedpos] # If the minimum is smaller than the seed if len(left_minima) > 0: minpos = left_minima[-1] else: minpos = 0 if len(right_minima) > 0: maxpos = right_minima[0] else: maxpos = len(array) array = array[minpos:maxpos+1] return array
23,088
def stac2ds( items: Iterable[pystac.Item], cfg: Optional[ConversionConfig] = None ) -> Iterator[Dataset]: """ Given a lazy sequence of STAC :class:`pystac.Item` turn it into a lazy sequence of :class:`datacube.model.Dataset` objects """ products: Dict[str, DatasetType] = {} for item in items: product = products.get(item.collection_id) # Have not seen this collection yet, figure it out if product is None: product = infer_dc_product(item, cfg) products[item.collection_id] = product yield item_to_ds(item, product)
23,089
def fitting_process_parent(scouseobject, SAA, key, spec, parent_model): """ Pyspeckit fitting of an individual spectrum using the parent SAA model Parameters ---------- scouseobject : Instance of the scousepy class SAA : Instance of the saa class scousepy spectral averaging area key : number index of the individual spectrum spec : pyspeckit spectrum the spectrum to fit parent_model : instance of the fit class best-fitting model solution to the parent SAA """ # Check the model happy = False initfit = True fit_dud = False while not happy: if np.all(np.isfinite(np.array(spec.flux))): if initfit: guesses = np.asarray(parent_model.params) if np.sum(guesses) != 0.0: with warnings.catch_warnings(): warnings.simplefilter('ignore') old_log = log.level log.setLevel('ERROR') spec.specfit(interactive=False, \ clear_all_connections=True,\ xmin=scouseobject.ppv_vol[0], \ xmax=scouseobject.ppv_vol[1], \ fittype = scouseobject.fittype, \ guesses = guesses,\ verbose=False,\ use_lmfit=True) log.setLevel(old_log) modparnames = spec.specfit.fitter.parnames modncomps = spec.specfit.npeaks modparams = spec.specfit.modelpars moderrors = spec.specfit.modelerrs modrms = spec.error[0] _inputs = [modparnames, [modncomps], modparams, moderrors, [modrms]] happy, guesses = check_spec(scouseobject, parent_model, _inputs, happy) initfit = False else: # If no satisfactory model can be found - fit a dud! fit_dud=True happy = True else: # If no satisfactory model can be found - fit a dud! fit_dud = True happy = True if fit_dud: bf = fitting_process_duds(scouseobject, SAA, key, spec) else: bf = fit(spec, idx=key, scouse=scouseobject) return bf
23,090
def train_logistic_model(sess: tf.Session, model: Model, train_feeder: FileFeeder, val_feeder: FileFeeder): """Train via scikit-learn because it seems to train logistic regression models more effectively""" train_data = _get_dataset(train_feeder) val_data = _get_dataset(val_feeder) logging.info("read {} train records and {} validation records".format( train_data.num_records(), val_data.num_records())) logging.info("Features for train data : "+str(train_data.features.shape)) clf: LogisticRegression = LogisticRegression(solver='lbfgs').fit(train_data.features, train_data.labels) logging.info("sklearn classifier intercept: {}, weights: {}".format(clf.intercept_, clf.coef_)) val_predictions = clf.predict_proba(val_data.features)[:, 1] auc = roc_auc_score(val_data.labels, val_predictions) logging.info("AUC: {}".format(auc)) weights = _get_classifier_weights(clf) model.set_weights(sess, weights)
23,091
def run(args: Namespace): """ run function which is the start point of program Args: args: program arguments """ tgr = PosTagger(args.model_dir) for line_num, line in enumerate(sys.stdin, start=1): if line_num % 100000 == 0: logging.info('%d00k-th line..', (line_num // 100000)) line = line.rstrip('\r\n') if not line: print() continue pos_sent = tgr.tag_raw(line) for pos_word in pos_sent.pos_tagged_words: print(pos_word.raw, end='\t') print(' + '.join([str(m) for m in pos_word.pos_tagged_morphs])) print()
23,092
def _load_grammar(grammar_path): """Lee una gramática libre de contexto almacenada en un archivo .cfg y la retorna luego de realizar algunas validaciones. Args: grammar_path (str): Ruta a un archivo .cfg conteniendo una gramática libre de contexto en el formato utilizado por NLTK. Raises: InvalidGrammarException: en caso de que la gramática no sea válida. Returns: nltk.CFG: Gramática libre de contexto leída del archivo. """ grammar = nltk.data.load('file:{}'.format(grammar_path)) if grammar.start().symbol() != _START_PRODUCTION: raise InvalidGrammarException('Start rule must be "{}"'.format( _START_PRODUCTION)) if not grammar.is_nonempty(): raise InvalidGrammarException('Empty productions are not allowed') nonterminals = set() terminals = {token_name for token_name, _ in _TOKEN_TYPES} for production in grammar.productions(): nonterminals.add(production.lhs().symbol()) for production in grammar.productions(): for element in production.rhs(): symbol = str(element) if nltk.grammar.is_nonterminal(element): if symbol not in nonterminals: raise InvalidGrammarException( 'Invalid nonterminal: {}'.format(symbol)) elif symbol not in terminals: raise InvalidGrammarException( 'Invalid terminal: {}'.format(symbol)) return grammar
23,093
def time_span(ts): """计算时间差""" delta = datetime.now() - ts.replace(tzinfo=None) if delta.days >= 365: return '%d年前' % (delta.days / 365) elif delta.days >= 30: return '%d个月前' % (delta.days / 30) elif delta.days > 0: return '%d天前' % delta.days elif delta.seconds < 60: return "%d秒前" % delta.seconds elif delta.seconds < 60 * 60: return "%d分钟前" % (delta.seconds / 60) else: return "%d小时前" % (delta.seconds / 60 / 60)
23,094
def check_point(point_a, point_b, alpha, mask): """ Test the point "alpha" of the way from P1 to P2 See if it is on a face of the cube Consider only faces in "mask" """ plane_point_x = lerp(alpha, point_a[0], point_b[0]) plane_point_y = lerp(alpha, point_a[1], point_b[1]) plane_point_z = lerp(alpha, point_a[2], point_b[2]) plane_point = (plane_point_x, plane_point_y, plane_point_z) return face_plane(plane_point) & mask
23,095
def gIndex(df, query_txt, coluna_citacoes:str): """Calcula índice g""" df = df.query(query_txt).sort_values(by=[coluna_citacoes],ascending=False) df = df.reset_index(drop=True) df.index+= 1 df['g^2'] = df.index**2 df['citações acumuladas'] = df[coluna_citacoes].cumsum() df['corte'] = abs(df['g^2'] - df['citações acumuladas']) posicao_g = df['corte'].idxmin() return df.loc[posicao_g]['g^2']
23,096
def dockerize_cli_args(arg_str: str, container_volume_root="/home/local") -> str: """Return a string with all host paths converted to their container equivalents. Parameters ---------- arg_str : str The cli arg string to convert container_volume_root : str, optional The container directory which is mapped to local working directory, by default "/home/local" Returns ------- str A string with host paths converted to container paths. """ args = arg_str.split(" ") newargs: List[str] = [] for arg in args: if uio.file_exists(arg): newargs.append(_dockerize_path(arg, container_volume_root)) elif "=" in arg: left, right = arg.split("=")[0], "=".join(arg.split("=")[1:]) if uio.file_exists(right): newargs.append( f"{left}={_dockerize_path(right, container_volume_root)}" ) else: newargs.append(arg) return " ".join(newargs)
23,097
def _invert_monoms(p1): """ Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import _invert_monoms >>> R, x = ring('x', ZZ) >>> p = x**2 + 2*x + 3 >>> _invert_monoms(p) 3*x**2 + 2*x + 1 See Also ======== sympy.polys.densebasic.dup_reverse """ terms = list(p1.items()) terms.sort() deg = p1.degree() R = p1.ring p = R.zero cv = p1.listcoeffs() mv = p1.listmonoms() for i in range(len(mv)): p[(deg - mv[i][0],)] = cv[i] return p
23,098
def cleaned_picker_data(date: dt.date) -> Dict: """Retrieve and process data about Podcast Picker visits from Webtrekk API for a specific date. Args: date (dt.date): Date to request data for. Returns: Dict: Reply from API. """ config = AnalysisConfig( [ AnalysisObject("Seiten"), ], metrics=[ Metric( "Visits", sort_order="desc", ), Metric( "Visits", metric_filter=Filter( filter_rules=[ FilterRule("Werbemittel", "=", "*"), ] ), ), Metric( "Ausstiege", ), ], analysis_filter=Filter( filter_rules=[ FilterRule("Seiten", "=", "*Podcast-Picker*"), ], ), start_time=date, stop_time=date, row_limit=10000, ) webtrekk = Webtrekk() with webtrekk.session(): analysis = webtrekk.get_analysis_data(dict(config)) data = analysis["analysisData"] date_start = analysis["timeStart"] date_end = analysis["timeStop"] logger.info("Start scraping Webtrekk Data between {} and {}.", date_start, date_end) data_dict = {} for element in data[:-1]: name = normalize_name(element[0].split("_")[-1]) item = dict( visits=int(element[1]), visits_campaign=int(element[2]), exits=int(element[3]), ) if name in data_dict: data_dict[name]["visits"] += item["visits"] data_dict[name]["visits_campaign"] += item["visits_campaign"] data_dict[name]["exits"] += item["exits"] else: data_dict[name] = item return data_dict
23,099