content
stringlengths
22
815k
id
int64
0
4.91M
def check_disabled(func): """ Decorator to wrap up checking if the Backdrop connection is set to disabled or not """ @wraps(func) def _check(*args, **kwargs): if _DISABLED: return else: return func(*args, **kwargs) return _check
16,900
def debug(message): #pragma: no cover """ Utility debug function to ease logging. """ _leverage_logger.debug(message)
16,901
def bbox_from_points(points): """Construct a numeric list representing a bounding box from polygon coordinates in page representation.""" xys = [[int(p) for p in pair.split(',')] for pair in points.split(' ')] return bbox_from_polygon(xys)
16,902
def return_true(): """Return True Simple function used to check liveness of workers. """ return True
16,903
def create_list(input_list): """Construct the list of items to turn into a table. File and string inputs supported""" if os.path.isfile(input_list): with open(input_list, 'r', encoding='UTF-8') as ifile: return [line.rstrip() for line in ifile] return input_list.split(',')
16,904
def get_active_test_suite(): """ Returns the test suite that was last ran >>> get_active_test_suite() "Hello" """ return TEST_RUNNER_STATE.test_suite
16,905
def go_test(name, library = None, **kwargs): """This macro wraps the go_test rule provided by the Bazel Go rules to silence a deprecation warning for use of the "library" attribute. It is otherwise equivalent in function to a go_test. """ # For internal tests (defined in the same package), we need to embed # the library under test, but this is not needed for external tests. embed = [library] if library else [] _go_test( name = name, embed = embed, **kwargs )
16,906
def header_from_stream(stream, _magic=None) -> (dict, list, int): """ Parse SAM formatted header from stream. Dict of header values returned is structured as such: {Header tag:[ {Attribute tag: value}, ]}. Header tags can occur more than once and so each list item represents a different tag line. :param stream: Stream containing header data. :param _magic: Data consumed from stream while peeking. Will be prepended to read data. :return: Tuple containing (Dict of header values, list of Reference objects, placeholder to keep return value consistent with header_from_buffer()). """ header = defaultdict(list) while stream.peek(1)[0] == b'@': line = stream.readline() tag = line[1:2] if tag == b'CO': header[tag].append(line[4:]) else: header[tag].append({m[0]: m[1] for m in header_re.findall(line)}) return header, [bam.Reference(ref[b'SN'], int(ref[b'LN'])) for ref in header.pop(b'SQ')] if b'SQ' in header else [], 0
16,907
def walk_binary_file_or_stdin(filepath, buffer_size = 32768): """ Yield 'buffer_size' bytes from filepath until EOF, or from standard input when 'filepath' is '-'. """ if filepath == '-': return walk_binary_stdin(buffer_size) else: return walk_binary_file(filepath, buffer_size)
16,908
def register_device() -> device_pb2.DeviceResponse: """ Now that the client credentials are set, the device can be registered. The device is registered by instantiating an OauthService object and using the register() method. The OauthService requires a Config object and an ISecureCredentialStore object to be constructed. Once the register method is called, a DeviceResponse object will be returned. NOTE: This function will check if the device id set in config.json has already been registered. If it has, then the DeviceResponse for the existing registered device will be returned. Otherwise, the registration will proceed and the DeviceResponse for the new registration will be returned. Returns: A DeviceResponse object indicating whether or not the device registration was successful """ oauth_service: OauthService = helpers.get_oauth_service() if check_device_is_registered(): print( f"Registration already exists for device_id = {helpers.environment_config['device_id']}" ) device_response: device_pb2.DeviceResponse = oauth_service.get_who_am_i() else: print(f"Registering device_id = {helpers.environment_config['device_id']}") device_response: device_pb2.DeviceResponse = oauth_service.register( device_id=helpers.environment_config["device_id"], device_name=helpers.environment_config["device_name"], credential=helpers.environment_config["tenant_secret"], ) save_environment_config() return device_response
16,909
def _sto_to_graph(agent: af.SubTaskOption) -> subgraph.Node: """Convert a `SubTaskOption` to a `Graph`.""" node_label = '{},{},{}'.format(agent.name or 'SubTask Option', agent.subtask.name or 'SubTask', agent.agent.name or 'Policy') return subgraph.Node(label=node_label, type='sub_task_option')
16,910
def _hdf5_write_data(filename, data, tablename=None, mode='w', append=False, header={}, units={}, comments={}, aliases={}, **kwargs): """ Write table into HDF format Parameters ---------- filename : file path, or tables.File instance File to write to. If opened, must be opened and writable (mode='w' or 'a') data: recarray data to write to the new file tablename: str path of the node including table's name mode: str in ('w', 'a') mode to open the file append: bool if set, tends to append data to an existing table header: dict table header units: dict dictionary of units alias: dict aliases comments: dict comments/description of keywords .. note:: other keywords are forwarded to :func:`tables.open_file` """ if hasattr(filename, 'read'): raise Exception("HDF backend does not implement stream") if append is True: mode = 'a' silent = kwargs.pop('silent', False) if isinstance(filename, tables.File): if (filename.mode != mode) & (mode != 'r'): raise tables.FileModeError('The file is already opened in a different mode') hd5 = filename else: hd5 = tables.open_file(filename, mode=mode) # check table name and path tablename = tablename or header.get('NAME', None) if tablename in ('', None, 'Noname', 'None'): tablename = '/data' w = tablename.split('/') where = '/'.join(w[:-1]) name = w[-1] if where in ('', None): where = '/' if where[0] != '/': where = '/' + where if append: try: t = hd5.get_node(where + name) t.append(data.astype(t.description._v_dtype)) t.flush() except tables.NoSuchNodeError: if not silent: print(("Warning: Table {0} does not exists. \n A new table will be created").format(where + name)) append = False if not append: # t = hd5.createTable(where, name, data, **kwargs) t = hd5.create_table(where, name, data, **kwargs) # update header for k, v in header.items(): if (k == 'FILTERS') & (float(t.attrs['VERSION']) >= 2.0): t.attrs[k.lower()] = v else: t.attrs[k] = v if 'TITLE' not in header: t.attrs['TITLE'] = name # add column descriptions and units for e, colname in enumerate(data.dtype.names): _u = units.get(colname, None) _d = comments.get(colname, None) if _u is not None: t.attrs['FIELD_{0:d}_UNIT'] = _u if _d is not None: t.attrs['FIELD_{0:d}_DESC'] = _d # add aliases for i, (k, v) in enumerate(aliases.items()): t.attrs['ALIAS{0:d}'.format(i)] = '{0:s}={1:s}'.format(k, v) t.flush() if not isinstance(filename, tables.File): hd5.flush() hd5.close()
16,911
def filter_input(self, forced=False, context=None): """ Passes each hunk (file or code) to the 'input' methods of the compressor filters. """ content = [] for hunk in self.hunks(forced, context=context): content.append(hunk) return content
16,912
def create_venn3(df, comparison_triple): """ Create a 3 circle venn diagram Parameters ---------- df: DataFrame df contains all option ratins for each feature comparison_pair: list Three strings. Determines which options to compare. """ list_of_dicts = df[comparison_triple].T.to_dict('records') list_of_strings = [] for key, value in list_of_dicts[0].items(): list_of_strings.append(str(key)+':'+str(value)) set_A = set(list_of_strings) try: list_of_strings = [] for key, value in list_of_dicts[1].items(): list_of_strings.append(str(key)+':'+str(value)) set_B = set(list_of_strings) except: set_B = set_A try: list_of_strings = [] for key, value in list_of_dicts[2].items(): list_of_strings.append(str(key)+':'+str(value)) set_C = set(list_of_strings) except: set_C = set_A list_of_sets = [set_A, set_B, set_C] # Careful! set_A is associated with 100, set_B is associated with 010, set_C is associated with 001 strings_100 = list(set_A.difference(set_B).difference(set_C)) strings_010 = list(set_B.difference(set_A).difference(set_C)) strings_001 = list(set_C.difference(set_A).difference(set_B)) strings_110 = list(set_A.intersection(set_B).difference(set_C)) strings_101 = list(set_A.intersection(set_C).difference(set_B)) strings_011 = list(set_B.intersection(set_C).difference(set_A)) strings_111 = list(set_A.intersection(set_B).intersection(set_C)) plt.figure(figsize=(10,10)) # Again, careful! the ordering is backwards in the same way as above v=venn3(subsets = (len(strings_100), len(strings_010), len(strings_110), len(strings_001), len(strings_101), len(strings_011), len(strings_111)), set_labels = comparison_triple) v.get_label_by_id('001').set_text('\n'.join(strings_001)) v.get_label_by_id('010').set_text('\n'.join(strings_010)) v.get_label_by_id('100').set_text('\n'.join(strings_100)) try: v.get_label_by_id('011').set_text('\n'.join(strings_011)) except: pass #v.get_label_by_id('011').set_text('no overlap') try: v.get_label_by_id('101').set_text('\n'.join(strings_101)) except: pass #v.get_label_by_id('101').set_text('no overlap') try: v.get_label_by_id('110').set_text('\n'.join(strings_110)) except: pass #v.get_label_by_id('110').set_text('no overlap') try: v.get_label_by_id('111').set_text('\n'.join(strings_111)) except: pass #v.get_label_by_id('111').set_text('no overlap') plt.title('Venn Diagram') plt.show() return
16,913
def delete(request, user): """ Deletes a poll """ poll_id = request.POST.get('poll_id') try: poll = Poll.objects.get(pk=poll_id) except: return JsonResponse({'error': 'Invalid poll_id'}, status=404) if poll.user.id != user.id: return JsonResponse({'error': 'You cannot delete this poll'}, status=403) poll.delete() return JsonResponse({'message': 'Poll was deleted'})
16,914
def get_nodes(collection: str, node_link: Optional[str] = None): """Get the Node based on its ID or kind""" # pylint: disable=too-many-locals,too-many-return-statements,too-many-branches user_id = to_object_id(g.user._id) can_view_others_operations = g.user.check_role(IAMPolicies.CAN_VIEW_OTHERS_OPERATIONS) can_view_others_workflows = g.user.check_role(IAMPolicies.CAN_VIEW_OTHERS_WORKFLOWS) can_view_operations = g.user.check_role(IAMPolicies.CAN_VIEW_OPERATIONS) can_view_workflows = g.user.check_role(IAMPolicies.CAN_VIEW_WORKFLOWS) can_create_operations = g.user.check_role(IAMPolicies.CAN_CREATE_OPERATIONS) can_create_workflows = g.user.check_role(IAMPolicies.CAN_CREATE_WORKFLOWS) if node_link in executor_manager.kind_to_executor_class and collection == Collections.TEMPLATES: # if node_link is a base node # i.e. /templates/basic-bash kind = node_link if kind in workflow_manager.kind_to_workflow_dict and (not can_view_workflows or not can_create_workflows): return make_permission_denied() if kind in operation_manager.kind_to_operation_dict and (not can_view_operations or not can_create_operations): return make_permission_denied() node: Node = executor_manager.kind_to_executor_class[kind].get_default_node( is_workflow=kind in workflow_manager.kind_to_workflow_dict ) if isinstance(node, tuple): data = node[0].to_dict() tour_steps = node[1] else: data = node.to_dict() tour_steps = [] data['kind'] = kind return make_success_response({ 'node': data, 'tour_steps': tour_steps, 'plugins_dict': PLUGINS_DICT, }) else: # when node_link is an id of the object try: node_id = to_object_id(node_link) except bson.objectid.InvalidId: # type: ignore return make_fail_response('Invalid ID'), 404 node_dict = node_collection_managers[collection].get_db_node(node_id, user_id) logger.debug(node_dict) if node_dict: is_owner = node_dict['author'] == user_id kind = node_dict['kind'] if kind in workflow_manager.kind_to_workflow_dict and not can_view_workflows: return make_permission_denied() if kind in operation_manager.kind_to_operation_dict and not can_view_operations: return make_permission_denied() if kind in workflow_manager.kind_to_workflow_dict and not can_view_others_workflows and not is_owner: return make_permission_denied() if kind in operation_manager.kind_to_operation_dict and not can_view_others_operations and not is_owner: return make_permission_denied() return make_success_response({ 'node': node_dict, 'plugins_dict': PLUGINS_DICT, }) else: return make_fail_response(f"Node `{node_link}` was not found"), 404
16,915
def get_loader(path): """Gets the configuration loader for path according to file extension. Parameters: path: the path of a configuration file, including the filename extension. Returns the loader associated with path's extension within LOADERS. Throws an UnknownConfigurationException if no such loader exists. """ for ext, loader in LOADERS: fullext = '.' + ext if path[-len(fullext):] == fullext: return loader raise exception.UnknownConfigurationException, "No configuration loader found for path '%s'" % path
16,916
def mat_stretch(mat, target): """ Changes times of `mat` in-place so that it has the same average BPM and initial time as target. Returns `mat` changed in-place. """ in_times = mat[:, 1:3] out_times = target[:, 1:3] # normalize in [0, 1] in_times -= in_times.min() in_times /= in_times.max() # restretch new_start = out_times.min() in_times *= (out_times.max() - new_start) in_times += new_start return mat
16,917
def parse_range(cpu_range): """Create cpu range object""" if '-' in cpu_range: [x, y] = cpu_range.split('-') # pylint: disable=invalid-name cpus = range(int(x), int(y)+1) if int(x) >= int(y): raise ValueError("incorrect cpu range: " + cpu_range) else: cpus = [int(cpu_range)] return cpus
16,918
def causal_parents(node, graph): """ Returns the nodes (string names) that are causal parents of the node (have the edge type "causes_or_promotes"), else returns empty list. Parameters node - name of the node (string) graph - networkx graph object """ node_causal_parents = [] if list(graph.predecessors(node)): possibleCausalParents = graph.predecessors(node) for possibleCausalParent in possibleCausalParents: if graph[possibleCausalParent][node]["type"] == "causes_or_promotes": node_causal_parents.append(possibleCausalParent) return node_causal_parents
16,919
def create_app(settings_override=None): """ Create a test application. :param settings_override: Override settings :type settings_override: dict :return: Flask app """ app = Flask(__name__) params = { 'DEBUG': True, 'WEBPACK_MANIFEST_PATH': './build/manifest.json' } app.config.update(params) if settings_override: app.config.update(settings_override) webpack.init_app(app) return app
16,920
async def user_me(current_user=Depends(get_current_active_user)): """ Get own user """ return current_user
16,921
def _check_3dt_version(): """ The function checks if cluster has diagnostics capability. :raises: DCOSException if cluster does not have diagnostics capability """ cosmos = packagemanager.PackageManager(get_cosmos_url()) if not cosmos.has_capability('SUPPORT_CLUSTER_REPORT'): raise DCOSException( 'DC/OS backend does not support diagnostics capabilities in this ' 'version. Must be DC/OS >= 1.8')
16,922
def get_password_hash(password: str, salt: Optional[str] = None) -> Tuple[str, str]: """Get user password hash.""" salt = salt or crypt.mksalt(crypt.METHOD_SHA256) return salt, crypt.crypt(password, salt)
16,923
def find_iamrole_changes(accounts): """ Runs watchers/iamrole""" sm_find_iamrole_changes(accounts)
16,924
def start_at(gra, key): """ start a v-matrix at a specific atom Returns the started vmatrix, along with keys to atoms whose neighbors are missing from it """ symb_dct = atom_symbols(gra) ngb_keys_dct = atoms_sorted_neighbor_atom_keys( gra, symbs_first=('X', 'C',), symbs_last=('H',), ords_last=(0.1,)) ngb_keys = ngb_keys_dct[key] if not ngb_keys: zma_keys = [] elif len(ngb_keys) == 1: # Need special handling for atoms with only one neighbor if symb_dct[key] in ('H', 'X'): key2 = ngb_keys[0] zma_keys = (key2,) + ngb_keys_dct[key2] else: key2 = ngb_keys[0] ngb_keys = tuple(k for k in ngb_keys_dct[key2] if k != key) zma_keys = (key, key2) + ngb_keys else: zma_keys = (key,) + ngb_keys_dct[key] vma = () for row, key_ in enumerate(zma_keys): idx1 = idx2 = idx3 = None if row > 0: key1 = next(k for k in ngb_keys_dct[key_] if k in zma_keys[:row]) idx1 = zma_keys.index(key1) if row > 1: key2 = next(k for k in ngb_keys_dct[key1] if k in zma_keys[:row] and k != key_) idx2 = zma_keys.index(key2) if row > 2: key3 = next(k for k in zma_keys[:row] if k not in (key_, key1, key2)) idx3 = zma_keys.index(key3) sym = symb_dct[key_] key_row = [idx1, idx2, idx3] vma = automol.vmat.add_atom(vma, sym, key_row) return vma, zma_keys
16,925
def test_scenariooutline_set_rule_on_all_examples(mocker): """A ScenarioOutline should forward a set Rule to all its Examples""" # given rule_mock = mocker.MagicMock(name="Rule") scenario = ScenarioOutline( 1, "Scenario Outline", "My ScenarioOutline", [], None, None, [], [] ) first_example = mocker.MagicMock(name="First Example") second_example = mocker.MagicMock(name="Second Example") scenario.examples = [first_example, second_example] # when scenario.set_rule(rule_mock) # then assert scenario.rule is rule_mock first_example.set_rule.assert_called_once_with(rule_mock) second_example.set_rule.assert_called_once_with(rule_mock)
16,926
def nested_lookup(key, document): """ nested document lookup, works on dicts and lists :param key: string of key to lookup :param document: dict or list to lookup :return: yields item """ if isinstance(document, list): for d in document: for result in nested_lookup(key, d): yield result if isinstance(document, dict): for k, v in document.items(): if k == key: yield v elif isinstance(v, dict): for result in nested_lookup(key, v): yield result elif isinstance(v, list): for d in v: for result in nested_lookup(key, d): yield result
16,927
def test_kubernetes_resource_get_status_value_incomplete(): """ This test verifies that KubernetesResource.get_status_value() returns None for an undefined resource. """ assert KubernetesResource(dict()).get_status_value("replicas") is None
16,928
def associate_kitti(detections, trackers, det_cates, iou_threshold, velocities, previous_obs, vdc_weight): """ @param detections: """ if (len(trackers) == 0): return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int) """ Cost from the velocity direction consistency """ Y, X = velocity_direction_batch(detections, previous_obs) inertia_Y, inertia_X = velocities[:, 0], velocities[:, 1] inertia_Y = np.repeat(inertia_Y[:, np.newaxis], Y.shape[1], axis=1) inertia_X = np.repeat(inertia_X[:, np.newaxis], X.shape[1], axis=1) diff_angle_cos = inertia_X * X + inertia_Y * Y diff_angle_cos = np.clip(diff_angle_cos, a_min=-1, a_max=1) diff_angle = np.arccos(diff_angle_cos) diff_angle = (np.pi / 2.0 - np.abs(diff_angle)) / np.pi valid_mask = np.ones(previous_obs.shape[0]) valid_mask[np.where(previous_obs[:, 4] < 0)] = 0 valid_mask = np.repeat(valid_mask[:, np.newaxis], X.shape[1], axis=1) scores = np.repeat(detections[:, -1][:, np.newaxis], trackers.shape[0], axis=1) angle_diff_cost = (valid_mask * diff_angle) * vdc_weight angle_diff_cost = angle_diff_cost.T angle_diff_cost = angle_diff_cost * scores """ Cost from IoU """ iou_matrix = iou_batch(detections, trackers) """ With multiple categories, generate the cost for catgory mismatch """ num_dets = detections.shape[0] num_trk = trackers.shape[0] cate_matrix = np.zeros((num_dets, num_trk)) for i in range(num_dets): for j in range(num_trk): if det_cates[i] != trackers[j, 4]: cate_matrix[i][j] = -1e6 cost_matrix = - iou_matrix - angle_diff_cost - cate_matrix if min(iou_matrix.shape) > 0: a = (iou_matrix > iou_threshold).astype(np.int32) if a.sum(1).max() == 1 and a.sum(0).max() == 1: matched_indices = np.stack(np.where(a), axis=1) else: matched_indices = linear_assignment(cost_matrix) else: matched_indices = np.empty(shape=(0, 2)) unmatched_detections = [] for d, det in enumerate(detections): if (d not in matched_indices[:, 0]): unmatched_detections.append(d) unmatched_trackers = [] for t, trk in enumerate(trackers): if (t not in matched_indices[:, 1]): unmatched_trackers.append(t) # filter out matched with low IOU matches = [] for m in matched_indices: if (iou_matrix[m[0], m[1]] < iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1, 2)) if (len(matches) == 0): matches = np.empty((0, 2), dtype=int) else: matches = np.concatenate(matches, axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
16,929
def read_app12(imagefile, seg_offset, meta_dict): """Read metadata from an APP12 segment and store in dictionary. 1st parameter = file handle for jpeg file, opened as 'rb' read binary 2nd parameter = the offset of the APP12 segment to be processed 3rd parameter = dictionary being created by readmeta(); found Exif metadata will be added to this dictionary """ imagefile.seek(seg_offset, 0) # go to this APP12 segment verify_marker(imagefile, 'APP12') meta_dict['APP12|///ToDo'] = \ ('offset = {0}'.format(seg_offset), '', '', 1)
16,930
def seat_guest(self, speech, guest, timeout): """ Start the view 'seatGuest' :param speech: the text that will be use by the Local Manager for tablet and vocal :type speech: dict :param guest: name of the guest to seat :type guest: string :param timeout: maximum time to wait for a reaction from the local manager :type timeout: float """ goal = RequestToLocalManagerGoal(action="seatGuest", payload=json.dumps({ 'id': str(uuid.uuid4()), 'timestamp': time.time(), 'args': { 'speech': speech, 'guest': guest } })) return self._send_goal_and_wait(goal, timeout)
16,931
def retreive_retries_and_sqs_handler(task_id): """This function retrieve the number of retries and the SQS handler associated to an expired task Args: task_id(str): the id of the expired task Returns: rtype: dict Raises: ClientError: if DynamoDB query failed """ try: response = table.query( KeyConditionExpression=Key('task_id').eq(task_id) ) # CHeck if 1 and only 1 return response.get('Items')[0].get('retries'), response.get('Items')[0].get('sqs_handler_id') except ClientError as e: errlog.log("Cannot retreive retries and handler for task {} : {}".format(task_id, e)) raise e
16,932
def configure_base_bos(assembly): """ Base configure method for a balance of station cost assembly for coupling models to get a full wind plant balance of station cost estimate. It adds a default balance of station cost aggregator component. """ assembly.add('bos', BaseBOSCostAggregator()) assembly.driver.workflow.add('bos') assembly.connect('bos.bos_costs','bos_costs')
16,933
def test_authorized_rpc_call2(volttron_instance_encrypt): """Tests an agent with two capability calling a method that requires those same two capabilites """ agent1, agent2 = build_two_test_agents(volttron_instance_encrypt) # Add another required capability agent1.vip.rpc.allow(agent1.foo, 'can_call_foo2') volttron_instance_encrypt.add_capabilities(agent2.publickey, ['can_call_foo', 'can_call_foo2']) gevent.sleep(.1) result = agent2.vip.rpc.call(agent1.core.identity, 'foo', 42).get(timeout=2) assert result == 42
16,934
def raise_error(config,msg,parser=None): """Raise error with specified message, either as parser error (when option passed in via command line), or ValueError (when option passed in via config file). Arguments: ---------- config : str Path to config file. msg : str Error message to display. parser : class ``argparse.ArgumentParser``, optional If this is input, parser error will be raised.""" if parser is None: raise ValueError("Bad input found in '{0}' -- {1}".format(config,msg)) else: parser.error(msg)
16,935
def update_app_installs(): """ Update app install counts for all published apps. We break these into chunks so we can bulk index them. Each chunk will process the apps in it and reindex them in bulk. After all the chunks are processed we find records that haven't been updated and purge/reindex those so we nullify their values. """ chunk_size = 100 ids = list(Webapp.objects.filter(status=mkt.STATUS_PUBLIC, disabled_by_user=False) .values_list('id', flat=True)) for chunk in chunked(ids, chunk_size): count = 0 times = [] reindex_ids = [] for app in Webapp.objects.filter(id__in=chunk).no_transforms(): reindex = False count += 1 now = datetime.now() t_start = time.time() scores = _get_installs(app.id) # Update global installs, then per-region installs below. value = scores.get('all') if value > 0: reindex = True installs, created = app.installs.get_or_create( region=0, defaults={'value': value}) if not created: installs.update(value=value, modified=now) else: # The value is <= 0 so we can just ignore it. app.installs.filter(region=0).delete() for region in mkt.regions.REGIONS_DICT.values(): value = scores.get(region.slug) if value > 0: reindex = True installs, created = app.installs.get_or_create( region=region.id, defaults={'value': value}) if not created: installs.update(value=value, modified=now) else: # The value is <= 0 so we can just ignore it. app.installs.filter(region=region.id).delete() if reindex: reindex_ids.append(app.id) times.append(time.time() - t_start) # Now reindex the apps that actually have a popularity value. if reindex_ids: WebappIndexer.run_indexing(reindex_ids) log.info('Installs calculated for %s apps. Avg time overall: ' '%0.2fs' % (count, sum(times) / count)) # Purge any records that were not updated. # # Note: We force update `modified` even if no data changes so any records # with older modified times can be purged. now = datetime.now() midnight = datetime(year=now.year, month=now.month, day=now.day) qs = Installs.objects.filter(modified__lte=midnight) # First get the IDs so we know what to reindex. purged_ids = qs.values_list('addon', flat=True).distinct() # Then delete them. qs.delete() for ids in chunked(purged_ids, chunk_size): WebappIndexer.run_indexing(ids)
16,936
def decompose(original_weights: torch.Tensor, mask, threshould: float) -> torch.Tensor: """ Calculate the scaling matrix. Use before pruning the current layer. [Inputs] original_weights: (N[i], N[i+1]) important_weights: (N[i], P[i+1]) [Outputs] scaling_matrix: (P[i+1], N[i+1]) """ important_weights = convert_to_important_weights(original_weights, mask) msglogger.info("important_weights", important_weights.size()) scaling_matrix = torch.zeros(important_weights.size()[-1], original_weights.size()[-1]) msglogger.info("scaling_matrix", scaling_matrix.size()) msglogger.info("original_weights", original_weights.size()) for i, weight in enumerate(original_weights.transpose(0, -1)): if weight in important_weights.transpose(0, -1): scaling_matrix[important_weights.transpose(0, -1) == weight][i] = 1 else: most_similar_neuron, similarity, scale = most_similar(weight, important_weights) most_similar_neuron_index_in_important_weights = important_weights == most_similar_neuron if similarity >= threshould: scaling_matrix[most_similar_neuron_index_in_important_weights][i] = scale return scaling_matrix
16,937
def calc_Kullback_Leibler_distance(dfi, dfj): """ Calculates the Kullback-Leibler distance of the two matrices. As defined in Aerts et al. (2003). Also called Mutual Information. Sort will be ascending. Epsilon is used here to avoid conditional code for checking that neither P nor Q is equal to 0. """ epsilon = 0.00001 P = dfi + epsilon Q = dfj + epsilon divergence = np.sum(P * np.log2(P / Q)) return divergence
16,938
def test_python_java_classes(): """ Run Python tests against JPY test classes """ sub_env = {'PYTHONPATH': _build_dir()} log.info('Executing Python unit tests (against JPY test classes)...') return jpyutil._execute_python_scripts(python_java_jpy_tests, env=sub_env)
16,939
def trim_datasets_using_par(data, par_indexes): """ Removes all the data points needing more fitting parameters than available. """ parameters_to_fit = set(par_indexes.keys()) trimmed_data = list() for data_point in data: if data_point.get_fitting_parameter_names() <= parameters_to_fit: trimmed_data.append(data_point) return trimmed_data
16,940
def menu_heading(username, submenu=None): """Heading for all menus :param username: a string containing the username of the authenticated user :param submenu: a string with the name of submenu """ click.clear() click.secho("===== MAL CLI Application =====", fg="white", bg="blue") click.echo("Logged in as: " + click.style("{}\n".format(username), fg="white", bg="cyan")) if submenu is not None: click.echo("--- Update your {} list ---".format(submenu))
16,941
def _parse_field(field: str) -> Field: """ Parse the given string representation of a CSV import field. :param field: string or string-like field input :return: a new Field """ name, _type = str(field).split(':') if '(' in _type and _type.endswith(')'): _type, id_space = _type.split('(')[0:-1] return Field(name or _type, FieldType.from_str(_type), id_space) return Field(name or _type, FieldType.from_str(_type))
16,942
def removeNoise( audio_clip, noise_thresh, mean_freq_noise, std_freq_noise, noise_stft_db, n_grad_freq=2, n_grad_time=4, n_fft=2048, win_length=2048, hop_length=512, n_std_thresh=1.5, prop_decrease=1.0, verbose=False, visual=False, ): """Remove noise from audio based upon a clip containing only noise Args: audio_clip (array): The first parameter. noise_clip (array): The second parameter. n_grad_freq (int): how many frequency channels to smooth over with the mask. n_grad_time (int): how many time channels to smooth over with the mask. n_fft (int): number audio of frames between STFT columns. win_length (int): Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`.. hop_length (int):number audio of frames between STFT columns. n_std_thresh (int): how many standard deviations louder than the mean dB of the noise (at each frequency level) to be considered signal prop_decrease (float): To what extent should you decrease noise (1 = all, 0 = none) visual (bool): Whether to plot the steps of the algorithm Returns: array: The recovered signal with noise subtracted """ if verbose: start = time.time() # STFT over noise if verbose: print("STFT on noise:", td(seconds=time.time() - start)) start = time.time() # STFT over signal if verbose: start = time.time() sig_stft = _stft(audio_clip, n_fft, hop_length, win_length) sig_stft_db = _amp_to_db(np.abs(sig_stft)) if verbose: print("STFT on signal:", td(seconds=time.time() - start)) start = time.time() # Calculate value to mask dB to mask_gain_dB = np.min(_amp_to_db(np.abs(sig_stft))) print(noise_thresh, mask_gain_dB) # Create a smoothing filter for the mask in time and frequency smoothing_filter = np.outer( np.concatenate( [ np.linspace(0, 1, n_grad_freq + 1, endpoint=False), np.linspace(1, 0, n_grad_freq + 2), ] )[1:-1], np.concatenate( [ np.linspace(0, 1, n_grad_time + 1, endpoint=False), np.linspace(1, 0, n_grad_time + 2), ] )[1:-1], ) smoothing_filter = smoothing_filter / np.sum(smoothing_filter) # calculate the threshold for each frequency/time bin db_thresh = np.repeat( np.reshape(noise_thresh, [1, len(mean_freq_noise)]), np.shape(sig_stft_db)[1], axis=0, ).T # mask if the signal is above the threshold sig_mask = sig_stft_db < db_thresh if verbose: print("Masking:", td(seconds=time.time() - start)) start = time.time() # convolve the mask with a smoothing filter sig_mask = scipy.signal.fftconvolve(sig_mask, smoothing_filter, mode="same") sig_mask = sig_mask * prop_decrease if verbose: print("Mask convolution:", td(seconds=time.time() - start)) start = time.time() # mask the signal sig_stft_db_masked = ( sig_stft_db * (1 - sig_mask) + np.ones(np.shape(mask_gain_dB)) * mask_gain_dB * sig_mask ) # mask real sig_imag_masked = np.imag(sig_stft) * (1 - sig_mask) sig_stft_amp = (_db_to_amp(sig_stft_db_masked) * np.sign(sig_stft)) + ( 1j * sig_imag_masked ) if verbose: print("Mask application:", td(seconds=time.time() - start)) start = time.time() # recover the signal recovered_signal = _istft(sig_stft_amp, hop_length, win_length) recovered_spec = _amp_to_db( np.abs(_stft(recovered_signal, n_fft, hop_length, win_length)) ) if verbose: print("Signal recovery:", td(seconds=time.time() - start)) if visual: plot_spectrogram(noise_stft_db, title="Noise") if visual: plot_statistics_and_filter( mean_freq_noise, std_freq_noise, noise_thresh, smoothing_filter ) if visual: plot_spectrogram(sig_stft_db, title="Signal") if visual: plot_spectrogram(sig_mask, title="Mask applied") if visual: plot_spectrogram(sig_stft_db_masked, title="Masked signal") if visual: plot_spectrogram(recovered_spec, title="Recovered spectrogram") return recovered_signal
16,943
def validate_wra_params(func): """Water Risk atlas parameters validation""" @wraps(func) def wrapper(*args, **kwargs): validation_schema = { 'wscheme': { 'required': True }, 'geostore': { 'type': 'string', 'required': True }, 'analysis_type': { 'type': 'string', 'required': True, 'default': None }, 'month': { 'required': False, 'default': None, 'nullable': True }, 'year': { 'type': 'string', 'required': False, 'default': None, 'nullable': True }, 'change_type': { 'type': 'string', 'required': False, 'default': None, 'nullable': True }, 'indicator': { 'type': 'string', 'required': True, 'default': None, 'nullable': True }, 'scenario': { 'type': 'string', 'required': False, 'default': None, 'nullable': True }, 'locations': { 'type': 'string', 'required': True, 'required': False, 'default': None, 'nullable': True }, 'input_address': { 'type': 'string', 'required': False, 'default': None, 'nullable': True }, 'match_address': { 'type': 'string', 'required': False, 'default': None, 'nullable': True }, 'ids': { 'type': 'string', 'required': False, 'nullable': True, 'default': None } } jsonRequestContent = request.json or {} rArgs = {**request.args, **jsonRequestContent} kwargs.update(rArgs) logging.debug(f'[MIDDLEWARE - ws scheme]: {kwargs}') logging.debug(f"[VALIDATOR - wra_weights]: {kwargs}") validator = Validator(validation_schema, allow_unknown=True) if not validator.validate(kwargs): return error(status=400, detail=validator.errors) kwargs['sanitized_params'] = validator.normalized(kwargs) return func(*args, **kwargs) return wrapper
16,944
def handle_request(r): """Handle the Simulator request given by the r dictionary """ print ("handle_request executed .. ") print (r) # Parse request .. config = SimArgs() config.machine = r[u'machine'] config.overlay = [r[u'topology']] # List of topologies - just one config.group = r[u'cores'] overlay = r[u'topology'].split('-') overlay_name = overlay[0] overlay_args = overlay[1:] if overlay_name == 'hybrid': overlay_name = 'cluster' config.hybrid = True; config.hybrid_cluster = overlay_args[0]; config.overlay = [u'cluster'] if overlay_args == 'mm' : config.multimessage = True elif overlay_args == 'rev' : config.reverserecv = True c = config from simulator import simulate (last_nodes, leaf_nodes, root) = simulate(config) # Generate response to be sent back to client import config assert len(config.models)==1 # Exactly one model has been generated res = {} res['root'] = root res['model'] = config.models[0] res['last_node'] = last_nodes[0] res['leaf_nodes'] = leaf_nodes[0] res['git-version'] = helpers.git_version().decode('ascii') print(res) logging.info(('Responding with >>>')) logging.info((json.dumps(res))) logging.info(('<<<')) write_statistics(c.machine) return json.dumps(res)
16,945
def number_empty_block(n): """Number of empty block""" L = L4 if n == 4 else L8 i = 0 for x in range(n): for y in range(n): if L[x][y] == 0: i = i + 1 return i
16,946
def test(seconds): """ demo :param seconds: :return: """ time.sleep(seconds)
16,947
def compute_referendum_result_by_regions(referendum_and_areas): """Return a table with the absolute count for each region. The return DataFrame should be indexed by `code_reg` and have columns: ['name_reg', 'Registered', 'Abstentions', 'Null', 'Choice A', 'Choice B'] """ ans = referendum_and_areas.groupby( ['code_reg', 'name_reg']).sum().reset_index().set_index('code_reg') ans = ans.drop(columns="Town code") return ans
16,948
def fixed_rho_total_legacy(data, rho_p, rho_s, beads_2_M): """ *LEGACY*: only returns polycation/cation concentrations. Use updated version (`fixed_rho_total()`), which returns a dictionary of all concentrations. Computes the polycation concentration in the supernatant (I) and coacervate (II) phases for different Bjerrum lengths. Parameters ---------- data : dictionary of Pandas dataframes Contains dataframes of data from liquid state theory calculations indexed by Bjerrum length. Dataframes have densities in beads/sigma^3. rho_p : float Average density of polymer (cation + anion) in both phases [mol/L] rho_s : float Average density of salt (just cation since 1 cation and 1 anion come from one KBr molecule) in both phases [mol/L] beads_2_M : float Multiplicative conversion to get from beads/sigma^3 to moles of monomer/L. Returns ------- lB_arr : (Nx1) numpy array Array of Bjerrum non-dimensionalized by sigma (defined in definition of "data" dictionary). rho_PCI_list : N-element list List of densities of polycation in phase I (supernatant) [mol/L] rho_PCII_list : N-element list List of densities of polycation in phase II (coacervate) [mol/L] alpha_list : N-element list (only returned if ret_alpha==True) List of volume fractions of phase I [nondim]. """ # initializes outputs lB_valid_list = [] rho_PCI_list = [] rho_PCII_list = [] rho_CI_list = [] rho_CII_list = [] alpha_list = [] # computes coexistence at each Bjerrum length and stores results if physical for lB in data.keys(): df = data[lB] df_s = compute_rho_s(df, rho_p, beads_2_M) # ensures that the total salt concentration is within the possible two-phase range if rho_s <= np.max(df_s['rhoS'])*beads_2_M and \ rho_s >= np.min(df_s['rhoS'])*beads_2_M: # finds the index of the dataframe that has the closest salt concentration to the given value diff_rho_s = np.abs(df_s['rhoS']*beads_2_M - rho_s) i_same_salt = np.argmin(diff_rho_s) alpha = df_s['alpha'].iloc[i_same_salt] # recomputes the volume fraction of supernatant more precisely using # interpolation alpha = np.interp(rho_s, df_s['rhoS']*beads_2_M, df_s['alpha'].to_numpy(dtype='float64')) if alpha == 1: print('rho_s = {0:.64f}'.format(rho_s/beads_2_M)) print('rho_p = {0:.64f}'.format(rho_p/beads_2_M)) print('rhoPCI = {0:.64f}'.format(df['rhoPCI'].loc[i_same_salt])) print('rhoPCII = {0:.64f}'.format(df['rhoPCII'].loc[i_same_salt])) print('rhoCI = {0:.64f}'.format(df['rhoCI'].loc[i_same_salt])) print('rhoCII = {0:.64f}'.format(df['rhoCII'].loc[i_same_salt])) print(df.loc[i_same_salt]) # ensures that the ratio of volume I to total volume is physical # (i.e., in the range [0,1]) if alpha > 1 or alpha < 0: continue lB_valid_list += [lB] rho_PCI_list += [df_s['rhoPCI'].iloc[i_same_salt]*beads_2_M] rho_PCII_list += [df_s['rhoPCII'].iloc[i_same_salt]*beads_2_M] rho_CI_list += [df_s['rhoCI'].iloc[i_same_salt]*beads_2_M] rho_CII_list += [df_s['rhoCII'].iloc[i_same_salt]*beads_2_M] alpha_list += [alpha] lB_arr = np.array(lB_valid_list) return rho_PCI_list, rho_PCII_list, rho_CI_list, rho_CII_list, lB_arr, alpha_list
16,949
def is_valid_file(parser, filename): """Check if file exists, and return the filename""" if not os.path.exists(filename): parser.error("The file %s does not exist!" % filename) else: return filename
16,950
def _check_modality(study: xml.etree.ElementTree.Element, expected_modality: str): """Check that the modality of the given study is the expected one.""" series = _parse_series(study) modality = _check_xml_and_get_text(series[1], "modality") if modality != expected_modality: raise ValueError( f"Unexpected modality {modality}, expected {expected_modality}." )
16,951
def portfolio(): """Function to render the portfolio page.""" form = PortfolioCreateForm() if form.validate_on_submit(): try: portfolio = Portfolio(name=form.data['name'], user_id=session['user_id']) db.session.add(portfolio) db.session.commit() except (DBAPIError, IntegrityError): flash('Something went terribly wrong.') return render_template('stocks/stocks.html', form=form) return redirect(url_for('.search_form')) companies = Company.query.filter_by(user_id=session['user_id']).all() return render_template('./stocks/stocks.html', companies=companies, form=form), 200
16,952
def svn_client_get_simple_provider(*args): """svn_client_get_simple_provider(svn_auth_provider_object_t provider, apr_pool_t pool)""" return apply(_client.svn_client_get_simple_provider, args)
16,953
def svn_client_invoke_get_commit_log(*args): """ svn_client_invoke_get_commit_log(svn_client_get_commit_log_t _obj, char log_msg, char tmp_file, apr_array_header_t commit_items, void baton, apr_pool_t pool) -> svn_error_t """ return apply(_client.svn_client_invoke_get_commit_log, args)
16,954
def enable_ph(module, blade): """Enable Phone Hone""" changed = True if not module.check_mode: ph_settings = Support(phonehome_enabled=True) try: blade.support.update_support(support=ph_settings) except Exception: module.fail_json(msg='Enabling Phone Home failed') module.exit_json(changed=changed)
16,955
def find_valid_nodes(node_ids, tree_1, tree_2): """ Recursive function for finding a subtree in the second tree with the same output type of a random subtree in the first tree Args: node_ids: List of node ids to search tree_1: Node containing full tree tree_2: Node containing full tree Returns: Random subtree of the first tree AND a valid node id of the second tree The output_type of the subtree will match the output_type of the valid node of the second tree """ # Randomly choose a node in the first tree node_id = random.choice(node_ids) # Get output_type of the random node in first tree output_type = tree_1.get_id_outputs()[node_id] # Find nodes with the same output_type in the second tree valid_node_ids = [] for n in tree_2.get_id_outputs(): if tree_2.get_id_outputs()[n] == output_type: valid_node_ids.append(n) if len(valid_node_ids) == 0: # Rerun function without invalid output_type return find_valid_nodes([i for i in node_ids if tree_1.get_id_outputs()[i] != output_type], tree_1, tree_2) # Take off root id node_id = node_id[1:] # Get subtree object from tree_1 subtree_1 = find_subtree(tree_1, node_id) # Randomly choose a node in the second valid_node_id = random.choice(valid_node_ids) # Take off root id valid_node_id = valid_node_id[1:] # Get subtree object from tree_2 subtree_2 = find_subtree(tree_2, valid_node_id) return subtree_1, valid_node_id, subtree_2, node_id
16,956
def pytorch_local_average(n, local_lookup, local_tensors): """Average the neighborhood tensors. Parameters ---------- n : {int} Size of tensor local_lookup : {dict: int->float} A dictionary from rank of neighborhood to the weight between two processes local_tensors : {dict: int->tensor} A dictionary from rank to tensors to be aggregated. Returns ------- tensor An averaged tensor """ averaged = torch.DoubleTensor(np.zeros(n)) for node_id, node_weight in local_lookup.items(): averaged += node_weight * local_tensors[node_id] return averaged
16,957
def get_rr_Ux(N, Fmat, psd, x): """ Given a rank-reduced decomposition of the Cholesky factor L, calculate L^{T}x where x is some vector. This way, we don't have to built L, which saves memory and computational time. @param N: Vector with the elements of the diagonal matrix N @param Fmat: (n x m) matrix consisting of the reduced rank basis @param psd: PSD of the rank-reduced approximation @param x: Vector we want to process as Lx @return Ux """ n = N.shape[0] m = Fmat.shape[1] r = np.zeros(n) t = np.zeros(m) Z, B, D = get_rr_cholesky_rep(N, Fmat, psd) BD = (B.T * np.sqrt(D)).T for ii in range(n-1, -1, -1): r[ii] = x[ii]*np.sqrt(D[ii]) + np.dot(BD[ii,:].T, t) t += x[ii] * Z[ii,:] return r
16,958
def get_poll_options(message: str) -> list: """ Turns string into a list of poll options :param message: :return: """ parts = message.split(CREATE_POLL_EVENT_PATTERN) if len(parts) > 1: votes = parts[-1].split(",") if len(votes) == 1 and votes[0] == ' ': return [] else: return votes return []
16,959
def test_cli_run_basic_ae(cli_args): """Test running CLI for an example with default params.""" from pl_bolts.models.autoencoders.basic_ae.basic_ae_module import cli_main cli_args = cli_args.split(' ') if cli_args else [] with mock.patch("argparse._sys.argv", ["any.py"] + cli_args): cli_main()
16,960
def get_avg_percent_bonds(bond_list, num_opts, adj_lists, num_trials, break_co_bonds=False): """ Given adj_list for a set of options, with repeats for each option, find the avg and std dev of percent of each bond type :param bond_list: list of strings representing each bond type :param num_opts: number of options specified (should be length of adj_lists) :param adj_lists: list of lists of adjs: outer is for each option, inner is for each repeat :param num_trials: number of repeats (should be length of inner adj_lists list) :param break_co_bonds: Boolean, to determine whether determine oligomers and remaining bonds after removing C-O bonds to simulate RCF :return: avg_bonds, std_bonds: list of floats, list of floats: for each option tested, the average and std dev of bond distributions (percentages) """ analysis = [] for i in range(num_opts): cur_adjs = adj_lists[i] analysis.append([analyze_adj_matrix(cur_adjs[j], break_co_bonds=break_co_bonds) for j in range(num_trials)]) bond_percents = {} avg_bonds = {} std_bonds = {} for bond_type in bond_list: bond_percents[bond_type] = [[analysis[j][i][BONDS][bond_type]/sum(analysis[j][i][BONDS].values()) for i in range(num_trials)] for j in range(num_opts)] avg_bonds[bond_type] = [np.mean(bond_pcts) for bond_pcts in bond_percents[bond_type]] std_bonds[bond_type] = [np.sqrt(np.var(bond_pcts)) for bond_pcts in bond_percents[bond_type]] return avg_bonds, std_bonds
16,961
def current_fig_image(): """Takes current figure of matplotlib and returns it as a PIL image. Also clears the current plot""" plt.axis('off') fig = plt.gcf() buff = StringIO.StringIO() fig.savefig(buff) buff.seek(0) img = Image.open(buff).convert('RGB') plt.clf() return img
16,962
def test_oneof_nested_oneof_messages_are_serialized_with_defaults(): """ Nested messages with oneofs should also be handled """ message = Test( wrapped_nested_message_value=NestedMessage( id=0, wrapped_message_value=Message(value=0) ) ) assert ( betterproto.which_one_of(message, "value_type") == betterproto.which_one_of(Test().from_json(message.to_json()), "value_type") == ( "wrapped_nested_message_value", NestedMessage(id=0, wrapped_message_value=Message(value=0)), ) )
16,963
def get_bgp_peer( api_client, endpoint_id, bgp_peer_id, verbose=False, **kwargs ): # noqa: E501 """Get eBGP peer # noqa: E501 Get eBGP peer details # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> response = api.get_bgp_peer(client, endpoint_id, bgp_peer_id, async_req=True) :param int endpoint_id: ID for IPsec endpoint (required) :param int bgp_peer_id: ID for BGP peer (required) :param async_req bool: execute request asynchronously :param bool verbose: True for verbose output :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: APIResponse or awaitable if async """ local_var_params = locals() request_params = ["verbose"] # noqa: E501 collection_formats = {} query_params = [] for param in [p for p in request_params if local_var_params.get(p) is not None]: query_params.append((param, local_var_params[param])) # noqa: E501 path_params = {"endpoint_id": endpoint_id, "bgp_peer_id": bgp_peer_id} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = api_client.select_header_accept( ["application/json"] ) # noqa: E501 # Authentication setting auth_settings = ["ApiTokenAuth", "basicAuth"] # noqa: E501 return api_client.call_api( "/ipsec/endpoints/{endpoint_id}/ebgp_peers/{bgp_peer_id}", "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="object", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get( "_return_http_data_only" ), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
16,964
def rewrite_elife_funding_awards(json_content, doi): """ rewrite elife funding awards """ # remove a funding award if doi == "10.7554/eLife.00801": for i, award in enumerate(json_content): if "id" in award and award["id"] == "par-2": del json_content[i] # add funding award recipient if doi == "10.7554/eLife.04250": recipients_for_04250 = [ { "type": "person", "name": {"preferred": "Eric Jonas", "index": "Jonas, Eric"}, } ] for i, award in enumerate(json_content): if "id" in award and award["id"] in ["par-2", "par-3", "par-4"]: if "recipients" not in award: json_content[i]["recipients"] = recipients_for_04250 # add funding award recipient if doi == "10.7554/eLife.06412": recipients_for_06412 = [ { "type": "person", "name": {"preferred": "Adam J Granger", "index": "Granger, Adam J"}, } ] for i, award in enumerate(json_content): if "id" in award and award["id"] == "par-1": if "recipients" not in award: json_content[i]["recipients"] = recipients_for_06412 return json_content
16,965
def remove_subnet_from_router(router_id, subnet_id): """Remove a subnet from the router. Args: router_id (str): The router ID. subnet_id (str): The subnet ID. """ return neutron().remove_interface_router(router_id, { 'subnet_id': subnet_id })
16,966
def direct_to_template(request, template): """Generic template direction view.""" return render_to_response(template, {}, request)
16,967
def validate_metadata(template, size): """Validates metadata. Catch any errors or invalid input that would cause a template with incorrect information being created and propagated down to instances. Args: template: Creation parameters. size: Size parameters to use. Returns: Nothing. The function returns normally if everything is correct. Raises an exception otherwise. Raises: OrchestrateTemplateCreationError: If any of the metadata is invalid. """ print('Validating metadata for template {name} size {size_name}'.format( name=template.name, size_name=size.name)) # (b/148229648) Does gpu_type exist? if size.gpu_type: response = compute.acceleratorTypes().list( project=template.project, zone=template.zone, ).execute() gpu_types = [gpu['name'] for gpu in response['items']] if size.gpu_type not in gpu_types: message = ( '{gpu_type} is not a valid GPU type or is not available in project' ' {project} zone {zone}. Available options are: {gpu_types}' ).format( project=template.image_project, zone=template.zone, gpu_type=size.gpu_type, gpu_types=', '.join(gpu_types), ) raise OrchestrateTemplateCreationError(message)
16,968
def now(): """Return the current time as date object.""" return datetime.now()
16,969
def is_valid_node_name(name): """ Determine if a name is valid for a node. A node name: - Cannot be empty - Cannot start with a number - Cannot match any blacklisted pattern :param str name: The name to check. :return: True if the name is valid. False otherwise. :rtype: bool """ return name and name not in BLACKLISTED_NODE_NAMES
16,970
def trajCalc(setup): """ Creates trajectory between point A and the ground (B) based off of the initial position and the angle of travel Arguments: setup: [Object] ini file parameters Returns: A [list] lat/lon/elev of the tail of the trajectory B [list] lat/lon/elev of the head of the trajectory """ B = np.array([0, 0, 0]) # convert angles to radians ze = np.radians(setup.zangle) az = np.radians(setup.azim) # Create trajectory vector traj = np.array([np.sin(az)*np.sin(ze), np.cos(az)*np.sin(ze), -np.cos(ze)]) # backwards propegate the trajectory until it reaches 100000 m up n = 85920/traj[2] # B is the intersection between the trajectory vector and the ground A = n*traj # Convert back to geo coordinates B = np.array(loc2Geo(setup.lat_centre, setup.lon_centre, 0, B)) A = np.array(loc2Geo(setup.lat_centre, setup.lon_centre, 0, A)) # print("Created Trajectory between A and B:") # print(" A = {:10.4f}N {:10.4f}E {:10.2f}m".format(A[0], A[1], A[2])) # print(" B = {:10.4f}N {:10.4f}E {:10.2f}m".format(B[0], B[1], B[2])) A[2] /= 1000 B[2] /= 1000 setup.lat_i = A[0] setup.lon_i = A[1] setup.elev_i = A[2] return A, B
16,971
async def health() -> Dict[str, str]: """Health check function :return: Health check dict :rtype: Dict[str: str] """ health_response = schemas.Health(name=settings.PROJECT_NAME, api_version=__version__) return health_response.dict()
16,972
def projection_v3(v, w): """Return the signed length of the projection of vector v on vector w. For the full vector result, use projection_as_vec_v3(). Since the resulting vector is along the 1st vector, you can get the full vector result by scaling the 1st vector to the length of the result of this function. """ return dot_v3(v, w) / w.length()
16,973
def custom_djsettings(settings): """Custom django settings to avoid warnings in stdout""" settings.TEMPLATE_DEBUG = False settings.DEBUG = False return settings
16,974
def test_create_pull_requests_no_labels(mock_inquirer_prompt: MockerFixture) -> None: """It returns pull request.""" mock_inquirer_prompt.return_value = { "title": "my title", "body": "my body", "labels": "", "confirmation": True, "issues_title_query": "issue title", "inherit_labels": True, "head": "main", "base": "branch", "draft": False, "correct": True, } result = p.InquirerPrompter.create_pull_requests([REPO]) expected_pr = pr.PullRequest( "my title", "my body", set(), True, "issue title", True, "main", "branch", False, ) assert result == expected_pr
16,975
def bleu(pred_seq, label_seq, k): """计算BLEU""" pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ') len_pred, len_label = len(pred_tokens), len(label_tokens) score = math.exp(min(0, 1 - len_label / len_pred)) for n in range(1, k + 1): num_matches, label_subs = 0, collections.defaultdict(int) for i in range(len_label - n + 1): label_subs[''.join(label_tokens[i: i + n])] += 1 for i in range(len_pred - n + 1): if label_subs[''.join(pred_tokens[i: i + n])] > 0: num_matches += 1 label_subs[''.join(pred_tokens[i: i + n])] -= 1 score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n)) return score
16,976
def generate_wetbulb_temps(year, directory): """Generate puma level hourly time series of wetbulb temperatures for all pumas within a state :param int year: year of desired dark fractions :param str directory: path to local root directory for weather data :export: (*csv*) -- statewide hourly wetbulb temperatures for every puma """ # Create folder to store dark_frac output if it doesn"t yet exist os.makedirs(os.path.join(directory, "pumas", "temps_wetbulb"), exist_ok=True) for state in const.state_list: temps = pd.read_csv( f"https://besciences.blob.core.windows.net/datasets/bldg_el/pumas/temps/temps_pumas_{state}_{year}.csv" ) dwpts = pd.read_csv( f"https://besciences.blob.core.windows.net/datasets/bldg_el/pumas/dewpoints/dewpts_pumas_{state}_{year}.csv" ) press = pd.read_csv( f"https://besciences.blob.core.windows.net/datasets/bldg_el/pumas/press/press_pumas_{state}_{year}.csv" ) temps_wetbulb = temps.apply(lambda x: t_to_twb(x, dwpts[x.name], press[x.name])) temps_wetbulb.to_csv( os.path.join( directory, "pumas", "temps_wetbulb", f"temps_wetbulb_pumas_{state}_{year}.csv", ), index=False, )
16,977
def report_by_name(http_request, agent_name): """ A version of report that can look up an agent by its name. This will generally be slower but it also doesn't expose how the data is stored and might be easier in some cases. """ agent = get_list_or_404(Agent, name=agent_name)[0] return report(http_request, agent.id)
16,978
def create_application(global_config=None, **local_conf): """ Create a configured instance of the WSGI application. """ sites, types = load_config(local_conf.get("config")) return ImageProxy(sites, types)
16,979
def dimensionState(moons,dimension): """returns the state for the given dimension""" result = list() for moon in moons: result.append((moon.position[dimension],moon.velocity[dimension])) return result
16,980
def test_get_local_coordinate_system_no_time_dep( system_name, reference_name, exp_orientation, exp_coordinates ): """Test the ``get_cs`` function without time dependencies. Have a look into the tests setup section to see which coordinate systems are defined in the CSM. Parameters ---------- system_name : str Name of the system that should be returned reference_name : str Name of the reference system exp_orientation : List or numpy.ndarray The expected orientation of the returned system exp_coordinates The expected coordinates of the returned system """ # setup csm = tf.CoordinateSystemManager(root_coordinate_system_name="root") csm.create_cs("lcs_1", "root", r_mat_z(0.5), [1, 2, 3]) csm.create_cs("lcs_2", "root", r_mat_y(0.5), [3, -3, 1]) csm.create_cs("lcs_3", "lcs_2", r_mat_x(0.5), [1, -1, 3]) check_coordinate_system( csm.get_cs(system_name, reference_name), exp_orientation, exp_coordinates, True, )
16,981
def login(): """Log in current user.""" user = get_user() if user.system_wide_role != 'No Access': flask_login.login_user(user) return flask.redirect(common.get_next_url( flask.request, default_url=flask.url_for('dashboard'))) flask.flash(u'You do not have access. Please contact your administrator.', 'alert alert-info') return flask.redirect('/')
16,982
def test_load_module_recursive_v2_module_depends_on_v1( local_module_package_index: str, snippetcompiler, preload_v1_module: bool ) -> None: """ A V2 module cannot depend on a V1 module. This test case ensure that the load_module_recursive() method raises an error when a dependency of a V2 module is only available as a V1 module. Dependency graph: v2_depends_on_v1 (V2) ---> mod1 (V1) """ project = snippetcompiler.setup_for_snippet( snippet="import v2_depends_on_v1", python_package_sources=[local_module_package_index], python_requires=[Requirement.parse("inmanta-module-v2-depends-on-v1")], install_project=False, ) if preload_v1_module: project.get_module("mod1", allow_v1=True) assert ("mod1" in project.modules) == preload_v1_module with pytest.raises(ModuleLoadingException, match="Failed to load module mod1"): project.load_module_recursive(install=True)
16,983
def init_module(): """ Initialize user's module handler. :return: wrapper handler. """ original_module, module_path, handler_name = import_original_module() try: handler = original_module for name in module_path.split('.')[1:] + [handler_name]: handler = getattr(handler, name) return handler except AttributeError: raise AttributeError( 'No handler {} in module {}'.format(handler_name, module_path) )
16,984
def daterange(start_date = None, end_date = None): """ Loops over date range """ if not start_date: start_date = datetime.datetime(day=1, month=1,year=1950) if not end_date: end_date = datetime.datetime.now() cursor_date = start_date while cursor_date < end_date: yield cursor_date cursor_date += datetime.timedelta(days=1)
16,985
def process(lines: List[str]) -> str: """ Preprocess a Fortran source file. Args: inputLines The input Fortran file. Returns: Preprocessed lines of Fortran. """ # remove lines that are entirely comments and partial-line comments lines = [ rm_trailing_comment(line) for line in lines if not line_is_comment(line) ] # merge continuation lines chg = True while chg: chg = False i = 0 while i < len(lines): line = lines[i] llstr = line.lstrip() if len(llstr) > 0 and llstr[0] == "&": # continuation character prevline = lines[i - 1] line = llstr[1:].lstrip() prevline = prevline.rstrip() + line lines[i - 1] = prevline lines.pop(i) chg = True i += 1 return "".join(lines)
16,986
def range_atk_params(): """Range calculations with attack parameters.""" dsc = DamageStatCalc() attacker = POKEMON_DATA["spinda"] defender = POKEMON_DATA["spinda"] move = generate_move(MOVE_DATA["tackle"]) params = {} params["atk"] = {} params["atk"]["max_evs"] = True params["atk"]["positive_nature"] = True params["def"] = {} params["hp"] = {} dmg_range = dsc.calculate_range(move, attacker, defender, params) assert dmg_range[0] == 25 assert dmg_range[1] == 30 attacker = POKEMON_DATA["exploud"] dmg_range = dsc.calculate_range(move, attacker, defender, params) assert dmg_range[0] == 32 assert dmg_range[1] == 39 params["atk"]["positive_nature"] = False defender = POKEMON_DATA["floatzel"] dmg_range = dsc.calculate_range(move, attacker, defender, params) assert dmg_range[0] == 26 assert dmg_range[1] == 32
16,987
def _summary(function): """ Derive summary information from a function's docstring or name. The summary is the first sentence of the docstring, ending in a period, or if no dostring is present, the function's name capitalized. """ if not function.__doc__: return f"{function.__name__.capitalize()}." result = [] for word in function.__doc__.split(): result.append(word) if word.endswith("."): break return " ".join(result)
16,988
def findrun(base,dim,boxsize): """ find all files associated with run given base directory and the resolution size and box length """ if not os.path.isdir(base): print base, 'is not a valid directory' sys.exit(1) #retreive all files that match tag and box size #note this will include the initialisation boxes, which #are independent of redshift searchstr='_'+str(dim)+'_'+str(boxsize)+'Mpc' filenames=os.listdir(base) box_files=[] for filename in filenames: if filename.find(searchstr)>=0: box_files.append(os.path.join(base,filename)) return box_files
16,989
def sf_rhino_inputs(hull_lis, ten_lines_dic): """ create hull_dic to save as rhino input hull_dic = {hull_ind = [seg1[[pt1][pt2]], seg2[[][]], ...], ...} saves lines_dic """ hull_dic={ind: [] for ind in range(len(hull_lis))} for ind, hull in enumerate(hull_lis): for simplex in hull.simplices: hull_dic[ind].append(hull.points[simplex].tolist()) with open(os.path.join(BASEDIR, 'hull_dic.p'), 'wb') as fp: pickle.dump(hull_dic, fp, protocol=2) with open(os.path.join(BASEDIR, 'ten_lines_dic.p'), 'wb') as fp: pickle.dump(ten_lines_dic, fp, protocol=2)
16,990
def demand_mass_balance_c(host_odemand, class_odemand, avail, host_recapture): """Solve Demand Mass Balance equation for class-level Parameters ---------- host_odemand: int Observerd host demand class_odemand: int Observed class demand avail: dict Availability of demand open during period considered host_recapture: float Estimated host level recapture Returns ------- tuple Estimated demand, spill and recapture """ # if observed demand of a class is 0 demand mass balance can't # estimate demand and spill alone without additioanl information demand = spill = recapture = 0 if class_odemand: recapture = host_recapture * class_odemand / host_odemand # availability of demand closed during period considered k = 1 - avail A = np.array([[1, -1], [-k, 1]]) B = np.array([class_odemand - recapture, 0]) demand, spill = solve(A, B) return demand, spill, recapture
16,991
def test_fetch_methods(mocker: MockerFixture) -> None: """ Test ``fetchone``, ``fetchmany``, ``fetchall``. """ requests = mocker.patch("datajunction.sql.dbapi.cursor.requests") requests.post().headers.get.return_value = "application/json" requests.post().json.return_value = { "database_id": 1, "catalog": None, "schema_": None, "id": "3d33ceae-3484-45b6-807f-7c7cea3f6577", "submitted_query": "SELECT 1", "executed_query": "SELECT 1", "scheduled": "2022-04-08T18:24:06.395989", "started": "2022-04-08T18:24:06.396026", "finished": "2022-04-08T18:24:06.396882", "state": "FINISHED", "progress": 1.0, "results": [ { "sql": "SELECT COUNT(*) AS A FROM B GROUP BY B.group", "columns": [{"name": "A", "type": "INT"}], "rows": [[1], [2], [3]], "row_count": 3, }, ], "next": None, "previous": None, "errors": [], } url = URL("http://localhost:8000/") cursor = Cursor(url) cursor.execute("SELECT A FROM metrics GROUP BY B.group") assert cursor.fetchone() == (1,) assert cursor.fetchone() == (2,) assert cursor.fetchone() == (3,) assert cursor.fetchone() is None cursor.execute("SELECT A FROM metrics GROUP BY B.group") assert cursor.fetchmany(2) == [(1,), (2,)] assert cursor.fetchmany(2) == [(3,)] cursor.execute("SELECT A FROM metrics GROUP BY B.group") assert cursor.fetchall() == [(1,), (2,), (3,)]
16,992
def test_isConnected(web3): """ Web3.isConnected() returns True when connected to a node. """ assert web3.isConnected() is True
16,993
def record_reaction(reaction): """ reaction is -1 for cold , 0 for ok, 1 for hot """ ts = datetime.now().isoformat() th = temphumids.get_current_temphumid() ot = outside_weather.get_recent_temp() with open(out_file, 'a') as f: w = csv.writer(f) w.writerow([ts, th['temperature'], th['humidity'], ot, reaction])
16,994
def __iadd__(*args, **kwargs): # real signature unknown """ a = iadd(a, b) -- Same as a += b. """ pass
16,995
def serve_buffer( data: bytes, offered_filename: str = None, content_type: str = None, as_attachment: bool = True, as_inline: bool = False, default_content_type: Optional[str] = MimeType.FORCE_DOWNLOAD) \ -> HttpResponse: """ Serve up binary data from a buffer. Options as for :func:`serve_file`. """ response = HttpResponse(data) add_http_headers_for_attachment( response, offered_filename=offered_filename, content_type=content_type, as_attachment=as_attachment, as_inline=as_inline, content_length=len(data), default_content_type=default_content_type) return response
16,996
def get_single_image_results(gt_boxes, pred_boxes, iou_thr): """Calculates number of true_pos, false_pos, false_neg from single batch of boxes. Args: gt_boxes (list of list of floats): list of locations of ground truth objects as [xmin, ymin, xmax, ymax] pred_boxes (dict): dict of dicts of 'boxes' (formatted like `gt_boxes`) and 'scores' iou_thr (float): value of IoU to consider as threshold for a true prediction. Returns: dict: true positives (int), false positives (int), false negatives (int) """ all_pred_indices = range(len(pred_boxes)) all_gt_indices = range(len(gt_boxes)) if len(all_pred_indices) == 0: tp = 0 fp = 0 fn = len(gt_boxes) return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn} if len(all_gt_indices) == 0: tp = 0 fp = len(pred_boxes) fn = 0 return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn} gt_idx_thr = [] pred_idx_thr = [] ious = [] for ipb, pred_box in enumerate(pred_boxes): for igb, gt_box in enumerate(gt_boxes): iou = calc_iou_individual(pred_box, gt_box) if iou > iou_thr: gt_idx_thr.append(igb) pred_idx_thr.append(ipb) ious.append(iou) args_desc = np.argsort(ious)[::-1] if len(args_desc) == 0: # No matches tp = 0 fp = len(pred_boxes) fn = len(gt_boxes) else: gt_match_idx = [] pred_match_idx = [] for idx in args_desc: gt_idx = gt_idx_thr[idx] pr_idx = pred_idx_thr[idx] # If the boxes are unmatched, add them to matches if (gt_idx not in gt_match_idx) and (pr_idx not in pred_match_idx): gt_match_idx.append(gt_idx) pred_match_idx.append(pr_idx) tp = len(gt_match_idx) fp = len(pred_boxes) - len(pred_match_idx) fn = len(gt_boxes) - len(gt_match_idx) return {'true_pos': tp, 'false_pos': fp, 'false_neg': fn}
16,997
def partition(arr, left, right): """[summary] The point of a pivot value is to select a value, find out where it belongs in the array while moving everything lower than that value to the left, and everything higher to the right. Args: arr ([array]): [Unorderd array] left ([int]): [Left index of the array] right ([int]): [Right index of the array] Returns: [int]: [the value of the lowest element] """ pivot = arr[right] low = left - 1 for current in range(left, right): if arr[current] <= pivot: low += 1 swap(arr, current, low) swap(arr, right, low + 1) return low + 1
16,998
def graphatbottleneck(g,m,shallfp=True): """handles the bottleneck transformations for a pure graph ae, return g, compressed, new input, shallfp=True=>convert vector in matrix (with gfromparam), can use redense to add a couple dense layers around the bottleneck (defined by m.redense*)""" comp=ggoparam(gs=g.s.gs,param=g.s.param)([g.X]) if m.shallredense: for e in m.redenseladder: comp=Dense(e,activation=m.redenseactivation,kernel_initializer=m.redenseinit)(comp) inn2=Input(m.redenseladder[-1]) use=inn2 for i in range(len(m.redenseladder)-1,-1,-1): use=Dense(m.redenseladder[i],activation=m.redenseactivation,kernel_initializer=m.redenseinit)(use) use=Dense(g.s.gs*g.s.param,activation=m.redenseactivation,kernel_initializer=m.redenseinit)(use) else: inn2=Input(g.s.gs*g.s.param) use=inn2 if shallfp: taef1=gfromparam(gs=g.s.gs,param=g.s.param)([use]) else: taef1=inn2 g.X=taef1 g.A=None return g,comp,inn2
16,999