content
stringlengths
22
815k
id
int64
0
4.91M
def Ignore(el, scopes, sc): """Literal RegExpLiteral Directive EmptyStatement DebuggerStatement ThrowStatement UpdateExpression ImportExpression TemplateLiteral ContinueStatement BreakStatement ThisExpression ObjectPattern ArrayPattern""" # I assume that template strings will be used only for strings, not for DOM elements.
16,700
def history_save_to_txt(path, data): """ Cette fonction permet de sauvegarder l'historique dans un fichier txt. Args: path (str): Fichiers TXT correspondants data (dict): Donnees à déposer dans le fichier """ count_round = len(data["history"]) success = False out = False give_up = False draw = False history = "" difficulty = str(data["difficulty"]) croupier_premier_round = str(data["croupier_premier_round"]) croupier_value_final = str(data["croupier_value_final"]) if count_round >= 1: for items in data: if data["success"]: success = True if data["out"]: out = True if data["give_up"]: give_up = True if data["draw"]: draw = True for key, items in data["history"].items(): history = history + str(key) + ":" + str(items) + "," string = str( count_round ) + "," + difficulty + "," + croupier_premier_round + "," + croupier_value_final + "," + history + str( success) + "," + str(out) + "," + str(give_up) + "," + str( draw) + "\n" with open(path, 'a+') as f: f.write(string) f.close()
16,701
def prod(a, axis=None, dtype=None, out=None): """ Product of array elements over a given axis. Parameters ---------- a : array_like Elements to multiply. axis : None or int or tuple of ints, optional Axis or axes along which a multiply is performed. The default (`axis` = `None`) is perform a multiply over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.7.0 If this is a tuple of ints, a multiply is performed on multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array and of the accumulator in which the elements are summed. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. out : ndarray, optional Array into which the output is placed. By default, a new array is created. If `out` is given, it must be of the appropriate shape (the shape of `a` with `axis` removed, i.e., ``numpy.delete(a.shape, axis)``). Its type is preserved. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- protuct_along_axis : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar is returned. If an output array is specified, a reference to `out` is returned. Examples -------- >>> np.prod([0.5, 1.5]) 2.0 >>> np.prod([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 1 >>> np.prod([[0, 1], [0, 5]]) 6 >>> np.prod([[0, 1], [0, 5]], axis=0) array([0, 6]) >>> np.prod([[0, 1], [0, 5]], axis=1) array([1, 5]) If the accumulator is too small, overflow occurs: >>> np.ones(128, dtype=np.int8).prod(dtype=np.int8) -128 """ if not bhary.check(a) and not bhary.check(out): return numpy.prod(a, axis=axis, dtype=dtype, out=out) else: if dtype is not None: a = array_create.array(a, dtype=dtype) return ufuncs.multiply.reduce(a, axis=axis, out=out)
16,702
def demo(printer, **kwargs): """ Prints demos. Called when CLI is passed `demo`. This function uses the DEMO_FUNCTIONS dictionary. :param printer: A printer from escpos.printer :param kwargs: A dict with a key for each function you want to test. It's in this format since it usually comes from argparse. """ for demo_choice in kwargs.keys(): command = getattr( printer, demo_choice.replace("barcodes_a", "barcode").replace( "barcodes_b", "barcode" ), ) for params in DEMO_FUNCTIONS[demo_choice]: command(**params) printer.cut()
16,703
def sample_pagerank(corpus, damping_factor, n): """ Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ # Initialize dict with all pages with count 0 pr_sample = dict([(page, 0) for page in corpus]) sample_page = None # Iterate over n samples and increment page each time it is selected for i in range(n): if sample_page: transition_dist = transition_model(corpus, sample_page, damping_factor) sample_page = random.choices(list(transition_dist.keys()), weights=list(transition_dist.values()), k=1)[0] else: sample_page = random.choice(list(pr_sample.keys())) # Record sample selection for each time it is chosen pr_sample[sample_page] += 1 # Apply overall percentage by dividing each page count by n for page in pr_sample: pr_sample[page] /= n return pr_sample
16,704
def guess_layout_cols_lr(mr, buf, alg_prefix, layout_alg_force=None, verbose=False): """ Assume bits are contiguous in columns wrapping around at the next line Least significant bit at left Can either start in very upper left of bit colum and go right Or can start in upper right of bit colum and go left Related permutations are handled by flipx, rotate, etc """ # Must be able to divide input txtw, _txth = mr.txtwh() if txtw % mr.word_bits() != 0: verbose and "guess_layout_cols_lr: bad width" return bit_cols = txtw // mr.word_bits() # upper left start moving right def ul_oi2cr(offset, maski): bitcol = offset % bit_cols col = maski * bit_cols + bitcol row = offset // bit_cols return (col, row) name = "cols-right" if layout_alg_force is None or layout_alg_force == name: yield try_oi2cr(mr, ul_oi2cr, buf), alg_prefix + name # upper right start moving left def ur_oi2cr(offset, maski): bitcol = bit_cols - 1 - offset % bit_cols col = maski * bit_cols + bitcol row = offset // bit_cols return (col, row) name = "cols-left" if layout_alg_force is None or layout_alg_force == name: yield try_oi2cr(mr, ur_oi2cr, buf), alg_prefix + name # Used in TMS320C15 # even bits start from left side, odd bits from right # Basically alternating cols-right and cols-left # they move towards each other and then start again on the next line if mr.word_bits() % 2 == 0: def squeeze_lr_oi2cr(offset, maski): left_bit = maski & 0xFFFE if maski % 2 == 0: # cols-right bitcol = offset % bit_cols else: # cols-left (offset by left_bit) bitcol = 2 * bit_cols - 1 - offset % bit_cols col = left_bit * bit_cols + bitcol row = offset // bit_cols return (col, row) name = "squeeze-lr" if layout_alg_force is None or layout_alg_force == name: yield try_oi2cr(mr, squeeze_lr_oi2cr, buf), alg_prefix + name
16,705
def decrease(rse_id, account, files, bytes, session=None): """ Decreases the specified counter by the specified amount. :param rse_id: The id of the RSE. :param account: The account name. :param files: The amount of files. :param bytes: The amount of bytes. :param session: The database session in use. """ return increase(rse_id=rse_id, account=account, files=-files, bytes=-bytes, session=session)
16,706
def write_vec_flt(file_or_fd, v, key=''): """ write_vec_flt(f, v, key='') Write a binary kaldi vector to filename or stream. Supports 32bit and 64bit floats. Arguments: file_or_fd : filename or opened file descriptor for writing, v : the vector to be stored, key (optional) : used for writing ark-file, the utterance-id gets written before the vector. Example of writing single vector: kaldi_io.write_vec_flt(filename, vec) Example of writing arkfile: with open(ark_file,'w') as f: for key,vec in dict.iteritems(): kaldi_io.write_vec_flt(f, vec, key=key) """ fd = open_or_fd(file_or_fd, mode='wb') if sys.version_info[0] == 3: assert(fd.mode == 'wb') try: if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id), fd.write('\0B'.encode()) # we write binary! # Data-type, if v.dtype == 'float32': fd.write('FV '.encode()) elif v.dtype == 'float64': fd.write('DV '.encode()) else: raise UnsupportedDataType("'%s', please use 'float32' or 'float64'" % v.dtype) # Dim, fd.write('\04'.encode()) fd.write(struct.pack(np.dtype('uint32').char, v.shape[0])) # dim # Data, fd.write(v.tobytes()) finally: if fd is not file_or_fd : fd.close()
16,707
def get_import_error(import_error_id, session): """ Get an import error """ error = session.query(ImportError).filter(ImportError.id == import_error_id).one_or_none() if error is None: raise NotFound("Import error not found") return import_error_schema.dump(error)
16,708
def payment_reversal(**kw): """ 冲正交易 """ req_packet = py8583.Iso8583(IsoSpec=py8583spec.IsoSpec1987BCD()) req_packet.MTI('0400') req_packet.TPDU('6005810000') req_packet.HEADER('603100000000') req_packet.FieldData(3, '190000') # 交易处理码 req_packet.FieldData(4, kw.get('amount', '1').rjust(12, '0')) # 交易金额 req_packet.FieldData(11, kw.get('TraceNo', None)) # 原交易流水 req_packet.FieldData(14, '2912') # 卡有效期 req_packet.FieldData(22, '051') # 服务点输入方式 req_packet.FieldData(23, kw.get('CardOrder', '000')) # 卡序列号 req_packet.FieldData(25, '81') # 服务点条件码 req_packet.FieldData(35, kw.get('Track2', '6212142000000000012=29122206899031006')) # 二磁道数据 req_packet.FieldData(36, kw.get('Track3', None)) # 三磁道数据 req_packet.FieldData(38, kw.get('AuthNo', None)) # 原交易授权码 req_packet.FieldData(39, '96') # 冲正原因 req_packet.FieldData(41, kw.get('TerminalNo', '52010009')) # 终端代码 req_packet.FieldData(42, kw.get('MerchantNo', '898520154110004')) # 商户代码 req_packet.FieldData(48, 'KP77SG0C26323520140909356184 70000000201809#') #行业特定信息 req_packet.FieldData(49, '156') # 交易货币代码 req_packet.FieldData(55, kw.get('ICData', None)) # IC卡数据域 req_packet.FieldData(60, kw.get('Field60', None)) req_packet.FieldData(61, kw.get('Field61', None)) # 原始交易信息 req_packet.FieldData(64, '0000000000000000') req_packet.FieldData(64, calc_mac_cbc(MAB=req_packet.BuildIso()[11:-8])) # 报文鉴别码 print("冲正交易: ") req_packet.PrintMessage() data = req_packet.BuildIso() data = struct.pack('!H', len(data)) + data sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((HOST, PORT)) py8583.MemDump("Sending: ", data) sock.send(data) data = sock.recv(4096) py8583.MemDump('Received: ', data) sock.close() parse_package(data)
16,709
def get_violations(nsi_uuid=None): """Returns info on all SLA violations. :param nsi_uuid: (Default value = None) uuid of a service instance. :returns: A list. [0] is a bool with the result. [1] is a list of SLA violations associated to a service instance. """ url = env.sl_violations_api if nsi_uuid: url = env.sl_violations_api + '/service/' + nsi_uuid # get current list of violations resp = requests.get(url, timeout=env.timeout) if resp.status_code != 200: LOG.debug("Request returned with " + (str(resp.status_code))) error = resp.text return False, error violations = json.loads(resp.text) return True, violations
16,710
def roll_dice(): """ simulate roll dice """ results = [] for num in range(times): result = randint(1, sides) results.append(result) return results
16,711
def _read_calib_SemKITTI(calib_path): """ :param calib_path: Path to a calibration text file. :return: dict with calibration matrices. """ calib_all = {} with open(calib_path, 'r') as f: for line in f.readlines(): if line == '\n': break key, value = line.split(':', 1) calib_all[key] = np.array([float(x) for x in value.split()]) # reshape matrices calib_out = {} calib_out['P2'] = calib_all['P2'].reshape(3, 4) # 3x4 projection matrix for left camera calib_out['Tr'] = np.identity(4) # 4x4 matrix calib_out['Tr'][:3, :4] = calib_all['Tr'].reshape(3, 4) return calib_out
16,712
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None): """Fast CUDA implementation of `bias_act()` using custom ops. """ # Parse arguments. assert clamp is None or clamp >= 0 spec = activation_funcs[act] alpha = float(alpha if alpha is not None else spec.def_alpha) gain = float(gain if gain is not None else spec.def_gain) clamp = float(clamp if clamp is not None else -1) # Lookup from cache. key = (dim, act, alpha, gain, clamp) if key in _bias_act_cuda_cache: return _bias_act_cuda_cache[key] # Forward op. class BiasActCuda(torch.autograd.Function): @staticmethod def forward(ctx, x, b): # pylint: disable=arguments-differ ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride()[1] == 1 else torch.contiguous_format x = x.contiguous(memory_format=ctx.memory_format) b = b.contiguous() if b is not None else _null_tensor y = x if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor: y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp) ctx.save_for_backward( x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor, y if 'y' in spec.ref else _null_tensor) return y @staticmethod def backward(ctx, dy): # pylint: disable=arguments-differ dy = dy.contiguous(memory_format=ctx.memory_format) x, b, y = ctx.saved_tensors dx = None db = None if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: dx = dy if act != 'linear' or gain != 1 or clamp >= 0: dx = BiasActCudaGrad.apply(dy, x, b, y) if ctx.needs_input_grad[1]: db = dx.sum([i for i in range(dx.ndim) if i != dim]) return dx, db # Backward op. class BiasActCudaGrad(torch.autograd.Function): @staticmethod def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride()[1] == 1 else torch.contiguous_format dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp) ctx.save_for_backward( dy if spec.has_2nd_grad else _null_tensor, x, b, y) return dx @staticmethod def backward(ctx, d_dx): # pylint: disable=arguments-differ d_dx = d_dx.contiguous(memory_format=ctx.memory_format) dy, x, b, y = ctx.saved_tensors d_dy = None d_x = None d_b = None d_y = None if ctx.needs_input_grad[0]: d_dy = BiasActCudaGrad.apply(d_dx, x, b, y) if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]): d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp) if spec.has_2nd_grad and ctx.needs_input_grad[2]: d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim]) return d_dy, d_x, d_b, d_y # Add to cache. _bias_act_cuda_cache[key] = BiasActCuda return BiasActCuda
16,713
def root_nodes(g: Mapping): """ >>> g = dict(a='c', b='ce', c='abde', d='c', e=['c', 'z'], f={}) >>> sorted(root_nodes(g)) ['f'] Note that `f` is present: Isolated nodes are considered both as root and leaf nodes both. """ nodes_having_parents = set(chain.from_iterable(g.values())) return set(g) - set(nodes_having_parents)
16,714
def _GetRemoteFileID(local_file_path): """Returns the checked-in hash which identifies the name of file in GCS.""" hash_path = local_file_path + '.sha1' with open(hash_path, 'rb') as f: return f.read(1024).rstrip()
16,715
def stress_stress( bond_array_1, c1, etypes1, bond_array_2, c2, etypes2, sig, ls, r_cut, cutoff_func ): """2-body multi-element kernel between two partial stress components accelerated with Numba. Args: bond_array_1 (np.ndarray): 2-body bond array of the first local environment. c1 (int): Species of the central atom of the first local environment. etypes1 (np.ndarray): Species of atoms in the first local environment. bond_array_2 (np.ndarray): 2-body bond array of the second local environment. c2 (int): Species of the central atom of the second local environment. etypes2 (np.ndarray): Species of atoms in the second local environment. sig (float): 2-body signal variance hyperparameter. ls (float): 2-body length scale hyperparameter. r_cut (float): 2-body cutoff radius. cutoff_func (Callable): Cutoff function. Return: float: Value of the 2-body kernel. """ kernel_matrix = np.zeros((6, 6)) ls1 = 1 / (2 * ls * ls) ls2 = 1 / (ls * ls) ls3 = ls2 * ls2 sig2 = sig * sig for m in range(bond_array_1.shape[0]): ri = bond_array_1[m, 0] e1 = etypes1[m] for n in range(bond_array_2.shape[0]): e2 = etypes2[n] # check if bonds agree if (c1 == c2 and e1 == e2) or (c1 == e2 and c2 == e1): rj = bond_array_2[n, 0] r11 = ri - rj D = r11 * r11 s1 = 0 for d1 in range(3): ci = bond_array_1[m, d1 + 1] B = r11 * ci fi, fdi = cutoff_func(r_cut, ri, ci) for d2 in range(d1, 3): coordinate_1 = bond_array_1[m, d2 + 1] * ri s2 = 0 for d3 in range(3): cj = bond_array_2[n, d3 + 1] A = ci * cj C = r11 * cj fj, fdj = cutoff_func(r_cut, rj, cj) for d4 in range(d3, 3): coordinate_2 = bond_array_2[n, d4 + 1] * rj force_kern = force_helper( A, B, C, D, fi, fj, fdi, fdj, ls1, ls2, ls3, sig2 ) kernel_matrix[s1, s2] += ( force_kern * coordinate_1 * coordinate_2 ) s2 += 1 s1 += 1 return kernel_matrix / 4
16,716
def update_plugins_secondary_variables_on_tracer_solver(ctx: "void*") -> "int": """ **c++ signature** : ``HOOK_UPDATE_PLUGINS_SECONDARY_VARIABLES_ON_TRACER_SOLVER(void* ctx)`` Internal simulator hook to update plugin's secondary variables in the Tracer Solver scope. Tracer Solver is used to solve the tracer transport equation. This is called as the last step on ALFAsim's Tracer Solver update variables workflow. :param ctx: ALFAsim's plugins context :returns: Return OK if successful or anything different if failed Example of usage: .. code-block:: c++ :linenos: :emphasize-lines: 1 HOOK_UPDATE_PLUGINS_SECONDARY_VARIABLES_ON_TRACER_SOLVER(ctx) { const char* plugin_id = get_plugin_id() int errcode = -1; int size_t = -1; int size_p_var = -1; int liq_id = -1; errcode = alfasim_sdk_api.get_field_id( ctx, &oil_id, "oil"); double* tracer_mass_fraction; VariableScope global_OnCenters = { GridScope::FACE, MultiFieldDescriptionScope::FIELD, TimestepScope::CURRENT } // Tracer information void* tracer_ref; errcode = alfasim_sdk_api.get_tracer_ref_by_name( ctx, &tracer_ref, "my_tracer", // Added by User interface plugin_id); int tracer_id = -1; errcode = alfasim_sdk_api.get_tracer_id( ctx, &tracer_id, tracer_ref); double *tracer_mass_fraction errcode = alfasim_sdk_api.get_simulation_tracer_array( ctx, &tracer_mass_fraction, (char*) "phi", global_OnCenters, tracer_id, 0, // GLOBAL &size_t); // Plugin secondary variable array double* plugin_var; errcode = alfasim_sdk_api.get_plugin_variable( ctx, (void**) (&plugin_var), name, 0, // GLOBAL TimestepScope::CURRENT, &size_p_var); if (size_t != size_p_var){ return OUT_OF_BOUNDS; } for (int i =0; i < size_t; ++i){ // Do some calculations with plugin_var // using tracer_mass_fraction values } return OK; } Note that functions like :cpp:func:`get_tracer_ref_by_name`, :cpp:func:`get_tracer_id` and :cpp:func:`get_simulation_tracer_array` were used to obtain information related to tracers. """
16,717
def is_color_rgb(color): """Is a color in a valid RGB format. Parameters ---------- color : obj The color object. Returns ------- bool True, if the color object is in RGB format. False, otherwise. Examples -------- >>> color = (255, 0, 0) >>> is_color_rgb(color) True >>> color = (1.0, 0.0, 0.0) >>> is_color_rgb(color) True >>> color = (1.0, 0, 0) >>> is_color_rgb(color) False >>> color = (255, 0.0, 0.0) >>> is_color_rgb(color) False >>> color = (256, 0, 0) >>> is_color_rgb(color) False """ if isinstance(color, (tuple, list)): if len(color) == 3: if all(isinstance(c, float) for c in color): if all(c >= 0.0 and c <= 1.0 for c in color): return True elif all(isinstance(c, int) for c in color): if all(c >= 0 and c <= 255 for c in color): return True return False
16,718
def get_databases( catalog_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None ) -> Iterator[Dict[str, Any]]: """Get an iterator of databases. Parameters ---------- catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- Iterator[Dict[str, Any]] Iterator of Databases. Examples -------- >>> import awswrangler as wr >>> dbs = wr.catalog.get_databases() """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) paginator = client_glue.get_paginator("get_databases") response_iterator = paginator.paginate(**_catalog_id(catalog_id=catalog_id)) for page in response_iterator: for db in page["DatabaseList"]: yield db
16,719
def generate_html(collections): """This function is used to generate the HTML file to browse the photo gallary. """ print('generating HTML:') collection_info = list() # Sorting collections for sorted display collections.sort() for collection in collections: in_path = os.path.join(GALLERY_PATH, collection) suffixes = ('/*.jpg', '*.jpeg') photos_origin = list() for suffix in suffixes: path = glob.glob(in_path + '/' + suffix) photos_origin.extend(path) photos_origin.sort() photos_info = list() for photo in photos_origin: path, file = os.path.split(photo) # TODO: Use a more elegant way to get exif informations exif_info = Image.open(photo)._getexif() exif_description = DEFAULT_IMG_DESC if exif_info is None: print('Image ' + file + ' has no Exif information') else: # Exif: user comment if 37510 in exif_info.keys(): # removing leading \x00's where ever this come from exif_decoded = exif_info[37510].decode('utf-8').lstrip('\x00') if exif_decoded: exif_description = exif_decoded else: print('Image ' + file + ' has no description, using default') # Exif: image description elif 270 in exif_info.keys(): # removing leading \x00's where ever this come from exif_decoded = exif_info[270].decode('utf-8').lstrip('\x00') if exif_decoded: exif_description = exif_decoded else: print('Image ' + file + ' has no description, using default') else: print('Image ' + file + ' has no description, using default') info = {'origin': photo, 'thumbnail': os.path.join(path, 'thumbnails', file), 'description': exif_description } photos_info.append(info) collection_info.append({'name': collection, 'photos': photos_info}) template_base = os.path.join('themes', THEME) loader = jinja2.FileSystemLoader(template_base) env = jinja2.Environment(loader=loader) template = env.get_template('index.html') render = template.render(version=VERSION, sitename=SITENAME, thumbnail_size=SIZE, collections=collection_info) with open(os.path.join(OUTPUT_PATH, 'index.html'), 'w') as file_writer: file_writer.write(render) print(' {:>80}'.format('[Done]'))
16,720
def edit_post_svc(current_user, id, content): """ Updates post content. :param current_user: :param id: :param content: :return: """ post = single_post_svc(id) if post is None or post.user_id != current_user: return None post.content = content db.session.commit() return True
16,721
def free_free_absorp_coefPQ(n_e,n_i,T,f): """Returns a physical quantity for the free-free absorption coefficient given the electron density, ion density, kinetic temperature and frequency as physical quantities. From Shklovsky (1960) as quoted by Kraus (1966).""" value = 9.8e-13 * n_e.inBaseUnits().value * n_i.inBaseUnits().value \ * M.pow(T.inBaseUnits().value,-1.5) * M.pow(f.inBaseUnits().value,-2) \ * (19.8 + M.log(M.pow(T.inBaseUnits().value,1.5)/f.inBaseUnits().value)) return P.pq(value,'1/m')
16,722
def module_version(module_lint_object, module): """ Verifies that the module has a version specified in the ``modules.json`` file It checks whether the module has an entry in the ``modules.json`` file containing a commit SHA. If that is true, it verifies that there are no newer version of the module available. """ modules_json_path = os.path.join(module_lint_object.dir, "modules.json") # Verify that a git_sha exists in the `modules.json` file for this module try: module_entry = module_lint_object.modules_json["repos"][module_lint_object.modules_repo.name][ module.module_name ] git_sha = module_entry["git_sha"] module.git_sha = git_sha module.passed.append(("git_sha", "Found git_sha entry in `modules.json`", modules_json_path)) # Check whether a new version is available try: module_git_log = nf_core.modules.module_utils.get_module_git_log(module.module_name) if git_sha == module_git_log[0]["git_sha"]: module.passed.append(("module_version", "Module is the latest version", module.module_dir)) else: module.warned.append(("module_version", "New version available", module.module_dir)) except UserWarning: module.warned.append(("module_version", "Failed to fetch git log", module.module_dir)) except KeyError: module.failed.append(("git_sha", "No git_sha entry in `modules.json`", modules_json_path))
16,723
def test_profile_init(): """ Test that the Profile module initializes correctly. Expected result: profile is initialized """ profile = Profile(os.path.join(os.path.dirname(__file__), "profile.yaml")) assert profile.profile
16,724
def plot_intensities(spikes, lambda0, W, theta, path): """Plot the intensity given event data and fitted parameters.""" seconds = pd.date_range(start='01-02-2013 10:30:00', end='01-02-2013 14:59:59', freq='S') hours = pd.date_range(start='01-02-2013 10:30:00', end='01-02-2013 14:59:59', freq='H') def plot_intensity_pair(Y, pair, label): i, j = pair plt.fill_between(seconds, y1=0, y2=Y[:, i], alpha=0.5, color='C0') plt.fill_between(seconds, y1=0, y2=-Y[:, j], alpha=0.5, color='C3') plt.ylabel(label, fontsize=8) plt.yticks(fontsize=8) plt.xticks(hours, [h.strftime('%H:%M:%S') for h in hours], fontsize=8) plt.xlim([seconds[0], seconds[-1]]) # plt.legend(['Bids', 'Asks'], fontsize=8) # Make a model N, = lambda0.shape params = {'bias': lambda0, 'weights': W, 'impulse': theta} model = DiscreteNetworkPoisson(N=N, L=L, B=B, dt=dt, params=params) # Compute intensity T, _ = spikes.shape convolved = model.convolve(spikes) Lambda = model.calculate_intensity(spikes, convolved) # Plot plt.subplot(3, 2, 1) plot_intensity_pair(Lambda, (0, 3), label='ADDS, Level 0') plt.subplot(3, 2, 3) plot_intensity_pair(Lambda, (1, 4), label='ADDS, Level 1') plt.subplot(3, 2, 5) plot_intensity_pair(Lambda, (2, 5), label='ADDS, Level 2') plt.subplot(3, 2, 2) plot_intensity_pair(Lambda, (6, 7), label='CANCELS, Level 1') plt.subplot(3, 2, 4) plot_intensity_pair(Lambda, (8, 9), label='CANCELS, Level 2') plt.subplot(3, 2, 6) plot_intensity_pair(Lambda, (10, 11), label='EXECUTES') # Save figures plt.tight_layout() # plt.savefig(path + 'intensity_{}.eps'.format(date)) # plt.savefig(path + 'intensity_{}.pdf'.format(date)) plt.show() plt.clf()
16,725
def train_net_alter(network, imdb_train_s, roidb_train_s, imdb_train_ws, roidb_train_ws, imdb_test, roidb_test, \ output_dir, pretrained_model=None, \ max_iters=80000, s_start_iter=0, s_end_iter=80000, ws_start_iter=0, ws_end_iter=80000, \ opt='adam', lr=5e-04, lr_scheduling='const', vis=False): """Train a Faster R-CNN using alternating mini-batches each from supervised and weakly supervised sets""" #with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sw = SolverWrapper(sess, network, imdb_train_s, roidb_train_s, imdb_train_ws, roidb_train_ws, \ imdb_test, roidb_test, output_dir, pretrained_model=pretrained_model, \ opt=opt, lr=lr, lr_scheduling=lr_scheduling, vis=vis) print 'Solving...' sw.train_model_alter(sess, max_iters, s_start_iter, s_end_iter, ws_start_iter, ws_end_iter) print 'done solving'
16,726
def setupBinaries(options): """Ensure that Cactus's C/C++ components are ready to run, and set up the environment.""" if options.latest: os.environ["CACTUS_USE_LATEST"] = "1" if options.binariesMode is not None: # Mode is specified on command line mode = options.binariesMode else: # Might be specified through the environment, or not, in which # case the default is to use Docker. mode = os.environ.get("CACTUS_BINARIES_MODE", "docker") os.environ["CACTUS_BINARIES_MODE"] = mode if mode == "docker": # Verify Docker exists on the target system from distutils.spawn import find_executable if find_executable('docker') is None: raise RuntimeError("The `docker` executable wasn't found on the " "system. Please install Docker if possible, or " "use --binariesMode local and add cactus's bin " "directory to your PATH.") # If running without Docker, verify that we can find the Cactus executables elif mode == "local": from distutils.spawn import find_executable if find_executable('cactus_caf') is None: raise RuntimeError("Cactus isn't using Docker, but it can't find " "the Cactus binaries. Please add Cactus's bin " "directory to your PATH (and run `make` in the " "Cactus directory if you haven't already).") if find_executable('ktserver') is None: raise RuntimeError("Cactus isn't using Docker, but it can't find " "`ktserver`, the KyotoTycoon database server. " "Please install KyotoTycoon " "(https://github.com/alticelabs/kyoto) " "and add the binary to your PATH, or use the " "Docker mode.") else: assert mode == "singularity" jobStoreType, locator = Toil.parseLocator(options.jobStore) if jobStoreType == "file": # if not using a local jobStore, then don't set the `SINGULARITY_CACHEDIR` # in this case, the image will be downloaded on each call if options.containerImage: imgPath = os.path.abspath(options.containerImage) os.environ["CACTUS_USE_LOCAL_SINGULARITY_IMG"] = "1" else: # When SINGULARITY_CACHEDIR is set, singularity will refuse to store images in the current directory if 'SINGULARITY_CACHEDIR' in os.environ: imgPath = os.path.join(os.environ['SINGULARITY_CACHEDIR'], "cactus.img") else: imgPath = os.path.join(os.path.abspath(locator), "cactus.img") os.environ["CACTUS_SINGULARITY_IMG"] = imgPath
16,727
def pixel_gain_mode_statistics(gmaps): """returns statistics of pixels in defferent gain modes in gain maps gr0, gr1, gr2, gr3, gr4, gr5, gr6 = gmaps """ arr1 = np.ones_like(gmaps[0], dtype=np.int32) return [np.sum(np.select((gr,), (arr1,), default=0)) for gr in gmaps]
16,728
def run_parallel(ds1, ds2): """ Run the calculation using multiprocessing. :param ds1: list with points :param ds2: list with points :return: list of distances """ pool = mp.Pool(processes=mp.cpu_count()) result = pool.starmap(euclidian_distance, [(p1, p2) for p1 in ds1 for p2 in ds2]) pool.close() return result
16,729
def to_latin(name): """Convert all symbols to latin""" symbols = (u"іїєабвгдеёжзийклмнопрстуфхцчшщъыьэюяІЇЄАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ", u"iieabvgdeejzijklmnoprstufhzcss_y_euaIIEABVGDEEJZIJKLMNOPRSTUFHZCSS_Y_EUA") tr = {ord(a): ord(b) for a, b in zip(*symbols)} translated_name = name.translate(tr) translated_name = re.sub("[^A-Za-z0-9]", "_", translated_name) return translated_name
16,730
def network_instance_create(network, host, attrs=None): """ Creates a network_instance of given kind and host, configuring it with the given attributes. Parameter *kind*: The parameter *kind* must be a string identifying one of the supported network_instance kinds. Parameter *host*: The parameter *host* must be a string giving a host for the network_instance. Parameter *attrs*: The attributes of the network_instance can be given as the parameter *attrs*. This parameter must be a dict of attributes if given. Attributes can later be changed using :py:func:`network_instance_modify`. Return value: The return value of this method is the info dict of the new network_instance as returned by :py:func:`resource_info`. """ if not attrs: attrs = {} attrs = dict(attrs) attrs.update(host=host, network=network) res = NetworkInstance.create(attrs) return res.info()
16,731
def update_get(): """Fetches the state of the latest update job. Returns: On success, a JSON data structure with the following properties: status: str describing the status of the job. Can be one of ["NOT_RUNNING", "DONE", "IN_PROGRESS"]. Example: { "status": "NOT_RUNNING" } Returns error object on failure. """ status, error = update.status.get() if error: return json_response.error(error), 500 return json_response.success({'status': str(status)})
16,732
def create_github_url(metadata, is_file=False): """Constrói a URL da API Constrói a URL base da API do github a partir dos dados presentes no metadata. Args: metadata: JSON com informações acerca do dataset. is_file: FLAG usada pra sinalizar se o dataset é apenas um elemento. """ url_params = metadata['url'].split('/') server_idx = url_params.index('github.com') username = url_params[server_idx + 1] repo = url_params[server_idx + 2] data_path = metadata['path'] return ("https://raw.githubusercontent.com/{}/{}/master{}" if is_file else "https://api.github.com/repos/{}/{}/contents{}").format(username, repo, data_path)
16,733
def kge_2012(obs, sim, missing="drop", weighted=False, max_gap=30): """Compute the (weighted) Kling-Gupta Efficiency (KGE). Parameters ---------- sim: pandas.Series Series with the simulated values. obs: pandas.Series Series with the observed values. missing: str, optional string with the rule to deal with missing values. Only "drop" is supported now. weighted: bool, optional Weight the values by the normalized time step to account for irregular time series. Default is False. max_gap: int, optional maximum allowed gap period in days to use for the computation of the weights. All time steps larger than max_gap are replace with the max_gap value. Default value is 30 days. Notes ----- The (weighted) Kling-Gupta Efficiency [kling_2012]_ is computed as follows: .. math:: \\text{KGE} = 1 - \\sqrt{(r-1)^2 + (\\beta-1)^2 - (\\gamma-1)^2} where :math:`\\beta = \\bar{x} / \\bar{y}` and :math:`\\gamma = \\frac{\\bar{\\sigma}_x / \\bar{x}}{\\bar{\\sigma}_y / \\bar{y}}`. If weighted equals True, the weighted mean, variance and pearson correlation are used. References ---------- .. [kling_2012] Kling, H., Fuchs, M., and Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425:264 - 277. """ if missing == "drop": obs = obs.dropna() sim = sim.reindex(obs.index).dropna() # Return nan if the time indices of the sim and obs don't match if sim.index.size == 0: logger.warning("Time indices of the sim and obs don't match.") return nan r = pearsonr(obs=obs, sim=sim, weighted=weighted, max_gap=max_gap) mu_sim = mean(sim, weighted=weighted, max_gap=max_gap) mu_obs = mean(obs, weighted=weighted, max_gap=max_gap) beta = mu_sim / mu_obs gamma = (std(sim, weighted=weighted, max_gap=max_gap) / mu_sim) / \ (std(obs, weighted=weighted, max_gap=max_gap) / mu_obs) kge = 1 - sqrt((r - 1) ** 2 + (beta - 1) ** 2 + (gamma - 1) ** 2) return kge
16,734
async def test_entity_device_info_update(opp, mqtt_mock): """Test device registry update.""" await help_test_entity_device_info_update( opp, mqtt_mock, binary_sensor.DOMAIN, DEFAULT_CONFIG )
16,735
def flatten(items): """Yield items from any nested iterable; see REF.""" for x in items: if isinstance(x, Iterable) and not isinstance(x, (str, bytes)): yield from flatten(x) else: yield x
16,736
def hms_to_dms(h, m, s): """ Convert degrees, arcminutes, arcseconds to an ``(hour, minute, second)`` tuple. """ return degrees_to_dms(hms_to_degrees(h, m, s))
16,737
def main( date: datetime = YESTERDAY, telescope: str = "LST1", config: Path = DEFAULT_CFG, simulate: bool = False, ): """Plot theta2 histograms for each source from a given date.""" log.setLevel(logging.INFO) log.debug(f"Config: {config.resolve()}") # Initial setup of global parameters options.date = date flat_date = date_to_dir(date) options.tel_id = telescope options.prod_id = get_prod_id() options.dl2_prod_id = get_dl2_prod_id() options.directory = analysis_path(options.tel_id) dl2_directory = Path(cfg.get('LST1', 'DL2_DIR')) highlevel_directory = destination_dir("HIGH_LEVEL", create_dir=True) host = cfg.get('WEBSERVER', 'HOST') cuts = toml.load(SELECTION_CUTS_FILE) sources = get_source_list(date) log.info(f"Sources: {sources}") for source in sources: df = pd.DataFrame() runs = sources[source] log.info(f"Source: {source}, runs: {runs}") if simulate: continue for run in runs: input_file = ( dl2_directory / flat_date / options.prod_id / options.dl2_prod_id / f"dl2_LST-1.Run{run:05d}.h5" ) df = pd.concat( [df, pd.read_hdf(input_file, key=dl2_params_lstcam_key)] ) selected_events = event_selection(data=df, cuts=cuts) try: true_source_position = extract_source_position( data=selected_events, observed_source_name=source ) off_source_position = [element * -1 for element in true_source_position] theta2_on = np.array( compute_theta2(selected_events, true_source_position) ) theta2_off = np.array( compute_theta2(selected_events, off_source_position) ) hist_on, hist_off, bin_edges_on, bin_edges_off, bin_center = create_hist( theta2_on, theta2_off, cuts ) text, box_color = lima_significance( hist_on=hist_on, hist_off=hist_off, bin_edges_on=bin_edges_on, bin_edges_off=bin_edges_off, eff_time=get_effective_time(df)[0], cuts=cuts ) pdf_file = plot_theta2( bin_center=bin_center, hist_on=hist_on, hist_off=hist_off, legend_text=text, box_color=box_color, source_name=source, date_obs=date, runs=runs, highlevel_dir=highlevel_directory, cuts=cuts ) if not simulate: dest_directory = directory_in_webserver( host=host, datacheck_type="HIGH_LEVEL", date=flat_date, prod_id=options.prod_id ) cmd = ["scp", pdf_file, f"{host}:{dest_directory}/."] subprocess.run(cmd, capture_output=True, check=True) except astropy.coordinates.name_resolve.NameResolveError: log.warning(f"Source {source} not found in the catalog. Skipping.") # TODO: get ra/dec from the TCU database instead
16,738
def color_calibration( src_imgs, src_color_space, src_is_linear, ref_imgs, ref_color_space, ref_is_linear, verbose=False, distance="de00", ): """Function that does color calibration for a given target image according to a given reference image STEP1: load the colorcheckers from the src and ref images STEP2: TODO: linearize the src and ref color checkers if necessary STEP3: TODO: convert the src and ref color checkers into the same color space (usually the color space of the ref image) STEP4: optimize the CCM to minimize the CIE2000 distance between the ref and calibrated target color checkers STEP5: compute the calibrated image with the optimzed CCM Args: src (String): path of target image file src_color_space (enum color_space): color space of target image src_is_linear (bool): indicates whether the target image is linearized (sRGB or RGB) ref (String): path of reference image file ref_color_space (enum color_space): color space of reference image ref_is_linear (bool): indicates whether the reference iamge is linearized (sRGB or RGB) """ # Paramters of the standard color checker with aruco tags col_n = 6 row_n = 4 aruco_type = "DICT_5X5_50" # load the colorcheckers from the src and ref images src_colorchecker = None ref_colorchecker = None for img in src_imgs: try: color_checker = detect_colorchecker(img, row_n, col_n, aruco_type, verbose=verbose) except SystemExit: continue if src_colorchecker is None: src_colorchecker = color_checker src_colorchecker = (src_colorchecker + color_checker) / 2 for img in ref_imgs: try: color_checker = detect_colorchecker(img, row_n, col_n, aruco_type, verbose=verbose) except SystemExit: continue if ref_colorchecker is None: ref_colorchecker = color_checker ref_colorchecker = (ref_colorchecker + color_checker) / 2 # TODO: if the src has a different color space than the ref image, unify their color spaces # use CCM_3x3 to find the optimized CCM, which brings src closer to ref ccm = CCM_3x3(src_colorchecker, ref_colorchecker, distance=distance) ccm_3x3, error = ccm.value() calibrated_images = [] for img in src_imgs: img = ccm.infer_image(img) calibrated_images.append(img) if verbose: cv2.imshow("image after calibration", img) cv2.imwrite("imgs/output_infered.png", img) if verbose: cv2.waitKey(0) cv2.destroyAllWindows() return ccm_3x3, error, calibrated_images
16,739
def getChiv6ch(mol): """ Chiv6h related to ring 6 """ return getChivnch(mol, 6)
16,740
def test_trend_prec(tmpdir): """A Test Function the plot of the precipitation trend Author: Raphael Tasch """ df_cities = pd.read_csv(cfg.world_cities) dfi = df_cities.loc[df_cities.Name.str.contains('innsbruck', case=False, na=False)].iloc[0] df = core.get_cru_timeseries(dfi.Lon, dfi.Lat) fig = graphics.plot_trend_prec(df) # Check that the text is found in figure ref = 'Precipitation trend at location (11.25°, 47.25°)' test = [ref in t.get_text() for t in fig.findobj(mpl.text.Text)] assert np.any(test) # Check that figure is created fpath = str(tmpdir.join('prec_trend.png')) graphics.plot_trend_prec(df, filepath=fpath) assert os.path.exists(fpath) plt.close()
16,741
def is_outside_of_range(type_key: CLTypeKey, value: int) -> bool: """Returns flag indicating whether a value is outside of numeric range associated with the CL type. """ constraints = NUMERIC_CONSTRAINTS[type_key] return value < constraints.MIN or value > constraints.MAX
16,742
def test_generate_circuit_raises(): """Test raising errors in circuit generator.""" with pytest.raises(TypeError): cirq.Circuit(generate_circuit_from_pauli_string(0, 'theta_0')) with pytest.raises(TypeError): cirq.Circuit(generate_circuit_from_pauli_string( openfermion.FermionOperator('4^ 0 3^ 1', 1.0), 10))
16,743
def read_skel(dset, path): """ :param dset: name of dataset, either 'ntu-rgbd' or 'pku-mmd' :param path: path to the skeleton file :return: """ if dset == 'ntu-rgbd': file = open(path, 'r') lines = file.readlines() num_lines = len(lines) num_frames = int(lines[0]) # print(num_lines, num_frames) line_id = 1 data = [] for i in range(num_frames): num_skels = int(lines[line_id]) # print(num_skels) joints = [] for _ in range(num_skels): num_joints = int(lines[line_id+2]) # print(num_joints) joint = [] for k in range(num_joints): tmp = lines[line_id+3+k].rstrip().split(' ') x_3d, y_3d, z_3d, x_depth, y_depth, x_rgb, y_rgb, orientation_w,\ orientation_x, orientation_y, orientation_z = list( map(float, tmp[:-1])) joint.append([x_3d, y_3d, z_3d]) joints.append(joint) line_id += 2+num_joints joints = np.array(joints) data.append(joints) line_id += 1 assert line_id == num_lines elif dset == 'pku-mmd': file = open(path, 'r') lines = file.readlines() # num_lines = len(lines) data = [] for line in lines: joints = list(map(float, line.rstrip().split(' '))) joints = np.array(joints).reshape(2, -1, 3) if not np.any(joints[1]): joints = joints[0][np.newaxis, :, :] data.append(joints) elif dset == 'cad-60': f = open(path, 'r') lines = f.readlines() data = [] # Last line is "END" for line in lines[:-1]: # fist item is frame number, last item is empty row = line.split(',')[1:-1] row = list(map(float, row)) joints = [] for i in range(15): if i < 11: # First 11 joints index = 14 * i + 10 else: # Joint 12 ~ 15 index = 11 * 14 + (i - 11) * 4 joint = row[index: index+3] joints.append(joint) joints = np.array(joints) / 1000.0 # millimeter to meter joints = joints[np.newaxis, :, :] # To match ntu-rgb format data.append(joints) else: raise NotImplementedError return data
16,744
def cmd_start(message): """Старт диалога с ботом""" mainmenu(message)
16,745
def test_safe_failure(): """Ensures that safe decorator works correctly for Failure case.""" failed = _function(0) assert isinstance(failed.failure(), ZeroDivisionError)
16,746
def test_rambo(sqrts=7e3, max_n=8): """Check that rambo produces the right type of phase space""" for n in range(2, max_n): auto_test_rambo_massless(n, sqrts) # Check that it also accepts a variable input energy events = 13 variable_sqrts = tf.random.uniform((13,), dtype=DTYPE) * sqrts auto_test_rambo_massless(n, variable_sqrts, n_events=events)
16,747
def humanize_date(date_string): """ returns dates as in this form: 'August 24 2019' """ return convert_date(date_string).strftime("%B %d %Y")
16,748
def delete_quota(module, blade): """Delete Filesystem User Quota""" changed = True if not module.check_mode: try: if module.params["uid"]: blade.quotas_users.delete_user_quotas( file_system_names=[module.params["name"]], uids=[module.params["uid"]], ) else: blade.quotas_users.delete_user_quotas( file_system_names=[module.params["name"]], user_names=[module.params["uname"]], ) except Exception: if module.params["uid"]: module.fail_json( msg="Failed to delete quota for UID {0} on filesystem {1}.".format( module.params["uid"], module.params["name"] ) ) else: module.fail_json( msg="Failed to delete quota for username {0} on filesystem {1}.".format( module.params["uname"], module.params["name"] ) ) module.exit_json(changed=changed)
16,749
def get_checkpoint(checkpoint_path, requested_step=None, basename='checkpoint'): """ 根据checkpoint重载模型 """ if requested_step is not None: model_checkpoint_path = '%s/%s-%s' % (checkpoint_path, basename, requested_step) if os.path.exists(model_checkpoint_path) is None: print('No checkpoint file found at [%s]' % checkpoint_path) exit(-1) print(model_checkpoint_path) print(model_checkpoint_path) return model_checkpoint_path, requested_step ckpt = tf.train.get_checkpoint_state(checkpoint_path) if ckpt and ckpt.model_checkpoint_path: # Restore checkpoint as described in top of this program print(ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] return ckpt.model_checkpoint_path, global_step else: print('No checkpoint file found at [%s]' % checkpoint_path) exit(-1)
16,750
def handle_error(exception: Exception, request: Request=None): """ If an exception is thrown, deal with it and present an error page. """ if request is None: request = {'_environ': {'PATH_INFO': ''}} if not getattr(exception, 'hide_traceback', False): (e_type, e_value, e_tb) = sys.exc_info() message = f"{exception.__class__} occurred on {request._environ['PATH_INFO']!r}: {exception}" \ f"\n{''.join(traceback.format_exception(e_type, e_value, e_tb))}" request._environ['wsgi.errors'].write(message) if isinstance(exception, RequestError): status = getattr(exception, 'status', 404) else: status = 500 if status in ERROR_HANDLERS: return ERROR_HANDLERS[status](request, exception) return not_found(request, exception)
16,751
def train_argument_from_bp(params, extractor): """ :type params: dict :type extractor: nlplingo.nn.extractor.Extractor """ print('################ train_argument_from_bp ###############') bp_filepath = params['bp_file'] labels = create_sequence_labels(extractor.domain.event_roles.keys()) train_docs = prepare_docs(params['data']['train']['filelist'], dict(), params) """:type: list[nlplingo.text.text_theory.Document]""" annotations = get_frame_annotations_from_bp(bp_filepath) """:type: dict[str, list[list[nlplingo.text.text_span.LabeledTextFrame]]]""" model = SequenceModel(params, extractor.extractor_params, extractor.domain, dict(), None, labels) example_generator = SequenceExampleGenerator(extractor.domain, params, extractor.extractor_params, None) feature_generator = SequenceFeatureGenerator(extractor.extractor_params, labels, model.tokenizer) examples = example_generator.generate_frames_for_training(train_docs, annotations) """:type: list[nlplingo.tasks.sequence.example.SequenceExample]""" for example in examples: # populate each example with features feature_generator.generate_example(example, model.event_domain.sequence_types, model.tokenizer) global_step, tr_loss = model.train(examples) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) model.save_model()
16,752
def tree_sanity_check(tree: Node) -> bool: """ Sanity check for syntax trees: One and the same node must never appear twice in the syntax tree. Frozen Nodes (EMTPY_NODE, PLACEHOLDER) should only exist temporarily and must have been dropped or eliminated before any kind of tree generation (i.e. parsing) or transformation is finished. :param tree: the root of the tree to be checked :returns: `True`, if the tree is "sane", `False` otherwise. """ node_set = set() # type: Set[Node] for node in tree.select_if(lambda nd: True, include_root=True): if not isinstance(node, Node) or node in node_set or isinstance(node, FrozenNode): return False node_set.add(node) return True
16,753
def update_database(path=None, encoding="cp1252", **kwargs): """ Update the reference composition database. Notes ------ This will take all csv files from the geochem/refcomp pyrolite data folder and construct a document-based JSON database. """ if path is None: path = __dbfile__ with TinyDB(str(path)) as db: db.truncate() for f in get_reference_files(): C = Composition(f, encoding=encoding, **kwargs) db.insert( {"name": C.name, "composition": C._df.T.to_json(force_ascii=False)} ) db.close()
16,754
def fileCompare( filename1, filename2, folder1=None, folder2=None, printFlag=True, exitCount:int=10 ): """ Compare the two utf-8 files. """ filepath1 = Path( folder1, filename1 ) if folder1 else filename1 filepath2 = Path( folder2, filename2 ) if folder2 else filename2 if verbosityLevel > 1: if filename1==filename2: vPrint( 'Quiet', debuggingThisModule, "Comparing {!r} files in folders {!r} and {!r}…".format( filename1, folder1, folder2 ) ) else: vPrint( 'Quiet', debuggingThisModule, "Comparing files {!r} and {!r}…".format( filename1, filename2 ) ) # Do a preliminary check on the readability of our files if not os.access( filepath1, os.R_OK ): logging.error( f"fileCompare: File1 {filepath1!r} is unreadable" ) return None if not os.access( filepath2, os.R_OK ): logging.error( f"fileCompare: File2 {filepath2!r} is unreadable" ) return None # Read the files into lists lineCount, lines1 = 0, [] with open( filepath1, 'rt', encoding='utf-8' ) as file1: for line in file1: lineCount += 1 if lineCount==1 and line[0]==chr(65279): #U+FEFF if printFlag and verbosityLevel > 2: vPrint( 'Quiet', debuggingThisModule, " fileCompare: Detected Unicode Byte Order Marker (BOM) in file1" ) line = line[1:] # Remove the Unicode Byte Order Marker (BOM) if line and line[-1]=='\n': line=line[:-1] # Removing trailing newline character if not line: continue # Just discard blank lines lines1.append( line ) lineCount, lines2 = 0, [] with open( filepath2, 'rt', encoding='utf-8' ) as file2: for line in file2: lineCount += 1 if lineCount==1 and line[0]==chr(65279): #U+FEFF if printFlag and verbosityLevel > 2: vPrint( 'Quiet', debuggingThisModule, " fileCompare: Detected Unicode Byte Order Marker (BOM) in file2" ) line = line[1:] # Remove the Unicode Byte Order Marker (BOM) if line and line[-1]=='\n': line=line[:-1] # Removing trailing newline character if not line: continue # Just discard blank lines lines2.append( line ) # Compare the length of the lists/files len1, len2 = len(lines1), len(lines2 ) equalFlag = True if len1 != len2: if printFlag: vPrint( 'Quiet', debuggingThisModule, "Count of lines differ: file1={}, file2={}".format( len1, len2 ) ) equalFlag = False # Now compare the actual lines diffCount = 0 for k in range( min( len1, len2 ) ): if lines1[k] != lines2[k]: if printFlag: vPrint( 'Quiet', debuggingThisModule, " {}a:{!r} ({} chars)\n {}b:{!r} ({} chars)" \ .format( k+1, lines1[k], len(lines1[k]), k+1, lines2[k], len(lines2[k]) ) ) equalFlag = False diffCount += 1 if diffCount > exitCount: if printFlag and verbosityLevel > 1: vPrint( 'Quiet', debuggingThisModule, "fileCompare: stopped comparing after {} mismatches".format( exitCount ) ) break return equalFlag
16,755
def compute_std_error(g,theta,W,Omega,Nobs,Nsim=1.0e+10,step=1.0e-5,args=()): """ calculate standard errors from minimum-distance type estimation g should return a vector with: data moments - simulated moments as a function of theta Args: g (callable): moment function (return vector of length J) theta (np.ndarray): parameter vector (length K) W (np.ndarray): weigting matrix (dim J-by-J) Omega (np.ndarray): covaraince matrix of empirical moments (dim J-by-J) Nobs (scalar): number of observations Nsim (scalar,optional): number of simulations step (scalar,optional): finite step in numerical gradients args (tupple,optinal): additional arguments passed to g """ # a. dimensions K = len(theta) J = len(W[0]) # b. numerical gradient. grad = np.empty((J,K)) for p in range(K): theta_now = theta.copy() step_now = np.zeros(K) step_now[p] = np.fmax(step,step*np.abs(theta_now[p])) g_forward = g(theta_now + step_now,*args) g_backward = g(theta_now - step_now,*args) grad[:,p] = (g_forward - g_backward)/(2.0*step_now[p]) # c. asymptotic variance GW = grad.T @ W GWG = GW @ grad Avar = np.linalg.inv(GWG) @ ( GW @ Omega @ GW.T ) @ np.linalg.inv(GWG) # d. return asymptotic standard errors fac = (1.0 + 1.0/Nsim)/Nobs std_error = np.sqrt(fac*np.diag(Avar)) return std_error
16,756
def p_error(parse): """ Error rule for Syntax Errors handling and reporting. """ if parse is None: print("Error! Unexpected end of input!") else: print("Syntax error! Line: {}, position: {}, character: {}, " "type: {}".format(parse.lineno, parse.lexpos, parse.value, parse.type)) parser.errok()
16,757
def target_thread(sess): """a thread for target nets in DQN""" global obstacles while True: ## get current state for camera_sensor, lane_invasion, obj_collision in zip(cameras, lane_invasions, obj_collisions): img = camera_sensor.get() img = img[int(FLAGS.img_height*2.3//5):, :, :] ## corp the ROI img = cv2.resize(img, dsize=(FLAGS.net_img_height, FLAGS.net_img_width)) # # cv2.imshow('test', img) # imgs.append(img) img_1 = cv2.resize(img, dsize=(FLAGS.net_img_height, FLAGS.net_img_width)) s_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='safe', consider_range=15) a_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='attentive', consider_range=15) d_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='danger', consider_range=15) img_2 = np.uint8(np.minimum(np.stack([a_hm, s_hm, d_hm], axis=-1) * 255, 255)) img = np.concatenate([img_1, img_2], axis=-1) lane_invasion.clear() obj_collision.clear() # s_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='safe') # a_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='attentive') # d_hm = produce_heat_map(egopilots[0], obstacles, hm_size=(FLAGS.net_img_height, FLAGS.net_img_width), h_type='danger') # img = np.uint8(np.minimum(np.stack([a_hm, s_hm, d_hm], axis=-1)*255, 255)) # cv2.imshow('test', img) current_img_state = np.array([img]) current_img_state = current_img_state*2./255. - 1. ## get current action and control the egopilots current_action, current_step = sess.run([max_action_index_online, global_step], feed_dict={online_img_state: current_img_state}) ## control the egopilots ## i = 0 for egopilot, c_a in zip(egopilots, current_action): ## e-greedy current_action[i] = c_a steer = action_index_2_steer(c_a) throttle = 0.5 brake = 0. ego_v = egopilot.get_velocity() ego_v = math.sqrt(ego_v.x ** 2 + ego_v.y ** 2 + ego_v.z ** 2) if ego_v > 8. and throttle > 0.5: throttle = 0.5 ## avoid velocity too big ## apply control egopilot.apply_control(carla.VehicleControl(throttle=throttle, steer=steer, brake=brake)) i += 1 # cv2.waitKey(30) time.sleep(0.5) ## sleep for a while, let the action control the egopilots to next state ## check whether end. for egopilot, lane_invasion, obj_collision in zip(egopilots, lane_invasions, obj_collisions): on_collision = obj_collision.get() on_invasion = lane_invasion.get() if on_invasion or on_collision: destroy(obstacles) respawn_actor_at(world, egopilot, transform=init_point) obstacles = random_spawn_obstacles_in_specific_area(world)
16,758
def lhs(paramList, trials, corrMat=None, columns=None, skip=None): """ Produce an ndarray or DataFrame of 'trials' rows of values for the given parameter list, respecting the correlation matrix 'corrMat' if one is specified, using Latin Hypercube (stratified) sampling. The values in the i'th column are drawn from the ppf function of the i'th parameter from paramList, and each columns i and j are rank correlated according to corrMat[i,j]. :param paramList: (list of rv-like objects representing parameters) Only requirement on parameter objects is that they must implement the ppf function. :param trials: (int) number of trials to generate for each parameter. :param corrMat: a numpy matrix representing the correlation between the parameters. corrMat[i,j] should give the correlation between the i'th and j'th entries of paramlist. :param columns: (None or list(str)) Column names to use to return a DataFrame. :param skip: (list of params)) Parameters to process later because they are dependent on other parameter values (e.g., they're "linked"). These cannot be correlated. :return: ndarray or DataFrame with `trials` rows of values for the `paramList`. """ ranks = genRankValues(len(paramList), trials, corrMat) if corrMat is not None else None samples = np.zeros((trials, len(paramList))) # @UndefinedVariable skip = skip or [] for i, param in enumerate(paramList): if param in skip: continue # process later values = param.ppf(getPercentiles(trials)) # extract values from the RV for these percentiles if corrMat is None: # Sequence is a special case for which we don't shuffle (and we ignore stratified sampling) if param.param.dataSrc.distroName != 'sequence': np.random.shuffle(values) # randomize the stratified samples else: indices = ranks[:, i] - 1 # make them 0-relative values = values[indices] # reorder to respect correlations samples[:, i] = values return DataFrame(samples, columns=columns) if columns else samples
16,759
def add_account(account): """ add account for LDAP entry """ type = 'USER' try: client.get_account(account) print 'Account \'' + account + '\' is already registered as Rucio account' except exception.AccountNotFound: client.add_account(account, type, None) pass except exception.InvalidObject as e: print e[0][0] pass
16,760
def percentError(mean, sd, y_output, logits): """ Calculates the percent error between the prediction and real value. The percent error is calculated with the formula: 100*(|real - predicted|)/(real) The real and predicted values are un normalized to see how accurate the true predictions are. This metric is created in the name scope "percentError". Input: * mean: The mean of the original output distribution * sd: The standard deviation of the original output distribution * y_output: The y_output symbolic output from the iterator * logits: The symbolic prediction output from the nerual network Returns: * percentErr: An operation which calculates the percent error when * used in a training or validation run of the network """ with tf.name_scope("percentError", values=[y_output, logits]): predictions= tf.exp(tf.reduce_sum(logits, axis=-1)*sd + mean) actualValue = tf.exp(y_output*sd + mean) percentErr = tf.reduce_mean(abs((actualValue-predictions)*100/(actualValue))) tf.summary.scalar('Percent_Error', percentErr) return(percentErr)
16,761
def get_file_names(directory, prefix='', suffix='', nesting=True): """ Returns list of all files in directory Args: directory (str): the directory of interest prefix (str): if provided, files returned must start with this suffix (str): if provided, files returned must end with this nesting (bool): if True, looks in all subdirectories of dir. If false, only looks at top-level. """ l = [] for path, subdirs, files in os.walk(directory): for name in files: if name.startswith(prefix) and name.endswith(suffix) and (nesting or (path == directory)): l.append(os.path.join(path, name)) return l
16,762
def parse_multiple_files(*actions_files): """Parses multiple files. Broadly speaking, it parses sequentially all files, and concatenates all answers. """ return parsing_utils.parse_multiple_files(parse_actions, *actions_files)
16,763
def frequent_combinations(spark_df: DataFrame, n=10, export=True): """ takes a dataframe containing visitor logs and computes n most frequent visitor-visite pairs :param spark_df: Spark Dataframe :param n: number of top visitors :return: pandas dataframe with visitor-visite pairs """ # compute aggregate and convert to pandas for visualization freq_pairs = spark_df.groupBy(['VISITOR_NAME', 'VISITEE_NAME']).agg( \ count('APPT_START_DATE').alias('Visits') ). \ orderBy('Visits', ascending=False). \ limit(n). \ toPandas() print(freq_pairs) # persist if export: freq_pairs.to_csv(catalog['business/frequent_pairs'], index=False) return freq_pairs
16,764
def main(blogname, timesleep=0): """ 多线程处理下载图片部分""" url_sub = find_latest_page(blogname) image = ImagesDownloader() text = TextWriter(blogname) with futures.ThreadPoolExecutor(max_workers=PROCESSES*2) as ex: while url_sub: # 如需设置proxies, 在下行代码设置设置 item, url_sub = page_download_n_parse(url_sub, proxies=None, timeout=TIMEOUT) image_urls = item.get('image_urls') if image_urls: print('尝试下载图片 %s' % image_urls) filename = item.get('text') if filename: filename = filename if len(filename) < 10 else filename[:10] text.process_item(item) ex.submit(image.image_download, image_urls, filename, blogname, proxies=item['proxies'], timeout=TIMEOUT) time.sleep(timesleep) text.close()
16,765
def reservoir_sampling(items, k): """ Reservoir sampling algorithm for large sample space or unknow end list See <http://en.wikipedia.org/wiki/Reservoir_sampling> for detail> Type: ([a] * Int) -> [a] Prev constrain: k is positive and items at least of k items Post constrain: the length of return array is k """ sample = items[0:k] for i in range(k, len(items)): j = random.randrange(1, i + 1) if j <= k: sample[j] = items[i] return sample
16,766
def create_db_engine(app: Flask) -> Engine: """Create and return an engine instance based on the app's database configuration.""" url = URL( drivername=app.config['DATABASE_DRIVER'], username=app.config['DATABASE_USER'], password=app.config['DATABASE_PASSWORD'], host=app.config['DATABASE_HOST'], port=app.config['DATABASE_PORT'], database=app.config['DATABASE_DB'] ) return create_engine( url, json_serializer=lambda obj: json.dumps(obj, default=json_serialize_default) )
16,767
def wgs84_to_gcj02(lat, lng): """ WGS84转GCJ02(火星坐标系) :param lng:WGS84坐标系的经度 :param lat:WGS84坐标系的纬度 :return: """ dlat = _transformlat(lng - 105.0, lat - 35.0) dlng = _transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * pi magic = math.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi) dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi) mglat = lat + dlat mglng = lng + dlng return [mglat, mglng]
16,768
def check_dict(data: dict, dict_name: str, check_str_values=True): """ Check that a given top-level element in 'data' dict is a simple str-to-str dict. """ assert dict_name in data, \ f"Top-level dict must contain key '{dict_name}'." d = data[dict_name] assert isinstance(d, dict), \ f"Top-level sub-element '{dict_name}' must be a dict." assert all(isinstance(key, str) for key in d), \ f"Keys of top-level dict '{dict_name}' must be strings." assert all(key != "" for key in d), \ f"Keys of top-level dict '{dict_name}' must not be empty strings." if check_str_values: assert all(isinstance(value, str) for value in d.values()), \ f"All values of top-level dict '{dict_name}' must be strings."
16,769
def save_raw_csv(raw_frames: Iterable[Frame], target_path: str) -> None: """ Saves raw_frames as a csv file. """ fields = Frame.get_fields() with open(target_path, "w") as file: wr = csv.writer(file, quoting=csv.QUOTE_NONE) wr.writerow(fields) for frame in raw_frames: wr.writerow(getattr(frame, field) for field in fields)
16,770
async def test_reload(hass): """Verify we can reload.""" respx.get("http://localhost") % 200 assert await async_setup_component( hass, DOMAIN, { DOMAIN: [ { "resource": "http://localhost", "method": "GET", "verify_ssl": "false", "timeout": 30, "sensor": [ { "name": "mockrest", }, ], } ] }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() assert len(hass.states.async_all()) == 1 assert hass.states.get("sensor.mockrest") yaml_path = path.join( _get_fixtures_base_path(), "fixtures", "rest/configuration_top_level.yaml", ) with patch.object(hass_config, "YAML_CONFIG_FILE", yaml_path): await hass.services.async_call( "rest", SERVICE_RELOAD, {}, blocking=True, ) await hass.async_block_till_done() assert hass.states.get("sensor.mockreset") is None assert hass.states.get("sensor.rollout") assert hass.states.get("sensor.fallover")
16,771
def test_unsigned_byte_enumeration002_1804_unsigned_byte_enumeration002_1804_v(mode, save_output, output_format): """ TEST :Facet Schemas for string : facet=enumeration and value=0 and document value=0 """ assert_bindings( schema="msData/datatypes/Facets/unsignedByte/unsignedByte_enumeration002.xsd", instance="msData/datatypes/Facets/unsignedByte/unsignedByte_enumeration002.xml", class_name="Test", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
16,772
def _normalize_kwargs(kwargs, kind='patch'): """Convert matplotlib keywords from short to long form.""" # Source: # github.com/tritemio/FRETBursts/blob/fit_experim/fretbursts/burst_plot.py if kind == 'line2d': long_names = dict(c='color', ls='linestyle', lw='linewidth', mec='markeredgecolor', mew='markeredgewidth', mfc='markerfacecolor', ms='markersize',) elif kind == 'patch': long_names = dict(c='color', ls='linestyle', lw='linewidth', ec='edgecolor', fc='facecolor',) for short_name in long_names: if short_name in kwargs: kwargs[long_names[short_name]] = kwargs.pop(short_name) return kwargs
16,773
def fprime_to_jsonable(obj): """ Takes an F prime object and converts it to a jsonable type. :param obj: object to convert :return: object in jsonable format (can call json.dump(obj)) """ # Otherwise try and scrape all "get_" getters in a smart way anonymous = {} getters = [attr for attr in dir(obj) if attr.startswith("get_")] for getter in getters: # Call the get_ functions, and call all non-static methods try: func = getattr(obj, getter) item = func() # If there is a property named "args" it needs to be handled specifically unless an incoming command if ( getter == "get_args" and not "fprime_gds.common.data_types.cmd_data.CmdData" in str(type(obj)) ): args = [] for arg_spec in item: arg_dict = { "name": arg_spec[0], "description": arg_spec[1], "value": arg_spec[2].val, "type": str(arg_spec[2]), } if arg_dict["type"] == "Enum": arg_dict["possible"] = arg_spec[2].keys() args.append(arg_dict) # Fill in our special handling item = args anonymous[getter.replace("get_", "")] = item except TypeError: continue return anonymous
16,774
def subsequent_mask(size: int) -> Tensor: """ Mask out subsequent positions (to prevent attending to future positions) Transformer helper function. :param size: size of mask (2nd and 3rd dim) :return: Tensor with 0s and 1s of shape (1, size, size) """ mask = np.triu(np.ones((1, size, size)), k=1).astype("uint8") return torch.from_numpy(mask) == 0
16,775
def replace(tree: bpy.types.NodeTree, node: 'ArmLogicTreeNode'): """Replaces the given node with its replacement.""" # the node can either return a NodeReplacement object (for simple replacements) # or a brand new node, for more complex stuff. response = node.get_replacement_node(tree) if isinstance(response, arm_nodes.ArmLogicTreeNode): newnode = response # some misc. properties copy_basic_node_props(from_node=node, to_node=newnode) elif isinstance(response, list): # a list of nodes: for newnode in response: copy_basic_node_props(from_node=node, to_node=newnode) elif isinstance(response, NodeReplacement): replacement = response # if the returned object is a NodeReplacement, check that it corresponds to the node (also, create the new node) if node.bl_idname != replacement.from_node or node.arm_version != replacement.from_node_version: raise LookupError("The provided NodeReplacement doesn't seem to correspond to the node needing replacement") # Create the replacement node newnode = tree.nodes.new(response.to_node) if newnode.arm_version != replacement.to_node_version: tree.nodes.remove(newnode) raise LookupError("The provided NodeReplacement doesn't seem to correspond to the node needing replacement") # some misc. properties copy_basic_node_props(from_node=node, to_node=newnode) # now, use the `replacement` to hook up the new node correctly # start by applying defaults for prop_name, prop_value in replacement.property_defaults.items(): setattr(newnode, prop_name, prop_value) for input_id, input_value in replacement.input_defaults.items(): input_socket = newnode.inputs[input_id] if isinstance(input_socket, arm.logicnode.arm_sockets.ArmCustomSocket): if input_socket.arm_socket_type != 'NONE': input_socket.default_value_raw = input_value elif input_socket.type != 'SHADER': # note: shader-type sockets don't have a default value... input_socket.default_value = input_value # map properties for src_prop_name, dest_prop_name in replacement.property_mapping.items(): setattr(newnode, dest_prop_name, getattr(node, src_prop_name)) # map inputs for src_socket_id, dest_socket_id in replacement.in_socket_mapping.items(): src_socket = node.inputs[src_socket_id] dest_socket = newnode.inputs[dest_socket_id] if src_socket.is_linked: # an input socket only has one link datasource_socket = src_socket.links[0].from_socket tree.links.new(datasource_socket, dest_socket) else: if isinstance(dest_socket, arm.logicnode.arm_sockets.ArmCustomSocket): if dest_socket.arm_socket_type != 'NONE': dest_socket.default_value_raw = src_socket.default_value_raw elif dest_socket.type != 'SHADER': # note: shader-type sockets don't have a default value... dest_socket.default_value = src_socket.default_value # map outputs for src_socket_id, dest_socket_id in replacement.out_socket_mapping.items(): dest_socket = newnode.outputs[dest_socket_id] for link in node.outputs[src_socket_id].links: tree.links.new(dest_socket, link.to_socket) else: print(response) tree.nodes.remove(node)
16,776
def process_entries(components): """Process top-level entries.""" data = {} for index, value in enumerate(STRUCTURE): label = value[0] mandatory = value[1] # Raise error if mandatory elements are missing if index >= len(components): if mandatory is True: raise ValueError('UNH header is missing mandatory entry for {label}'.format(label=label)) else: break # Process if len(value) == LENGTH_OF_A_SIMPLE_ENTRY: data[label] = components[index] elif len(value) == LENGTH_OF_A_NESTED_ENTRY: data[label] = process_subentries(components, index) else: raise ValueError('unexpected structure') return data
16,777
def test_render_changelog_unsupported_type(config): """Test that unsupported types are excluded from the changelog content.""" cz = discover_this(config) parser = cz.commit_parser changelog_pattern = cz.bump_pattern gitcommits = [ git.GitCommit(rev='003', title='feat: started commitizen', body=''), git.GitCommit(rev='002', title='Chg: some legacy commit with changes', body=''), git.GitCommit(rev='001', title='NotLegacy: unsupported change type', body=''), ] tree = changelog.generate_tree_from_commits( commits=gitcommits, tags=[], commit_parser=parser, changelog_pattern=changelog_pattern, change_type_map=cz.change_type_map, ) expected = '\n'.join([ '\n## Unreleased', '\n### Feat', '\n- started commitizen', '\n### Change (Old)', '\n- some legacy commit with changes', '', ]) result = changelog.render_changelog(tree) assert result == expected
16,778
def normalize_input_vector(trainX: np.ndarray, testX: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Normalize the input vector Args: trainX (np.ndarray): train embedding array. testX (np.ndarray): test embedding array. Returns: np.ndarray, np.ndarray: normalized train and test arrays. """ in_encoder = Normalizer(norm='l2') trainX = in_encoder.transform(trainX) testX = in_encoder.transform(testX) return trainX, testX
16,779
def update_cache(cache_data, new_data, key): """ Add newly collected data to the pre-existing cache data Args: cache_data (dict): Pre-existing chip data new_data (dict): Newly acquired chip data key (str): The chip UL coordinates Returns: """ if key in cache_data.keys(): cache_data[key].update(new_data[key]) else: cache_data[key] = new_data[key] return cache_data
16,780
def test_empty_data(empty_data): """Test that we gracefully get an empty list of data if we feed an empty string to the function """ yaml_parser.read_yaml(empty_data)
16,781
def status(command, **keys): """Run a subprogram capturing it's output and return the exit status.""" return _captured_output(command, **keys).status
16,782
def normalize(flow: Tensor) -> Tensor: """Re-scales the optical flow vectors such that they correspond to motion on the normalized pixel coordinates in the range [-1, 1] x [-1, 1]. Args: flow: the optical flow tensor of shape (B, 2, H, W) Returns: The optical flow tensor with flow vectors rescaled to the normalized pixel coordinate system. """ # flow: (B, 2, H, W) assert flow.size(1) == 2 h, w = flow.shape[-2:] return scale(flow, (2.0 / max(w - 1, 1), 2.0 / max(h - 1, 1)))
16,783
def to_graph6_bytes(G, nodes=None, header=True): """Convert a simple undirected graph to bytes in graph6 format. Parameters ---------- G : Graph (undirected) nodes: list or iterable Nodes are labeled 0...n-1 in the order provided. If None the ordering given by ``G.nodes()`` is used. header: bool If True add '>>graph6<<' bytes to head of data. Raises ------ NetworkXNotImplemented If the graph is directed or is a multigraph. ValueError If the graph has at least ``2 ** 36`` nodes; the graph6 format is only defined for graphs of order less than ``2 ** 36``. Examples -------- >>> nx.to_graph6_bytes(nx.path_graph(2)) b'>>graph6<<A_\\n' See Also -------- from_graph6_bytes, read_graph6, write_graph6_bytes Notes ----- The returned bytes end with a newline character. The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. References ---------- .. [1] Graph6 specification <http://users.cecs.anu.edu.au/~bdm/data/formats.html> """ if nodes is not None: G = G.subgraph(nodes) H = nx.convert_node_labels_to_integers(G) nodes = sorted(H.nodes()) return b"".join(_generate_graph6_bytes(H, nodes, header))
16,784
def test_inbound_bad_provider(): """Test the inbound user filter with bad provider throws error""" with pytest.raises(TypeError): inbound_user_filter({"id": "123-456-abs3"}, "potato")
16,785
def get_arrays_from_img_label(img, label, img_mode=None): """Transform a SimpleITK image and label map into numpy arrays, and optionally select a channel. Parameters: img (SimpleITK.SimpleITK.Image): image label (SimpleITK.SimpleITK.Image): label map img_mode (int or None): optional mode channel, so output is 3D Returns: (numpy.ndarray, numpy.ndarray): image and label in numpy format """ img_np = sitk.GetArrayFromImage(img) if img_mode is not None: img_np = img_np[img_mode] label_np = sitk.GetArrayFromImage(label) return img_np, label_np.astype(int)
16,786
def _get_error_code(exception): """Get the most specific error code for the exception via superclass""" for exception in exception.mro(): try: return error_codes[exception] except KeyError: continue
16,787
def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered
16,788
def read_json_file(file_name: str, encoding: str = "utf-8") -> dict: """Reads a json file :param file_name: path :param encoding: encoding to use :return: dict content """ with open(file_name, "r", encoding=encoding) as json_file: return json.load(json_file)
16,789
def pretty_print_row(col_full_widths, row, max_field_size): """ pretty print a row such that each column is padded to have the widths in the col_full_widths vector """ start = "| " if len(row) == len(col_full_widths): end = " |" else: end = "|" return start + "|".join(pretty_print_field(full_width, field, max_field_size) for full_width, field in zip(col_full_widths, row)) + end
16,790
def check_embedding(X, Y, score=0.76): """Compares TSNE embedding trustworthiness, NAN and verbosity""" nans = np.sum(np.isnan(Y)) trust = trustworthiness(X, Y) print("Trust = ", trust) assert trust > score assert nans == 0
16,791
def register(username, password, email): """Register a new user""" auth.register(username, email, password)
16,792
def _get_data_for_agg(new_svarcube, new_tacube): """Reshape data for use in iris aggregator based on two cubes.""" dims_to_collapse = set() dims_to_collapse.update(new_svarcube.coord_dims('air_pressure')) untouched_dims = set(range(new_svarcube.ndim)) -\ set(dims_to_collapse) dims = list(untouched_dims) + list(dims_to_collapse) unrolled_data = np.moveaxis(new_tacube.data, dims, range(new_svarcube.ndim)) return unrolled_data
16,793
def refs_changed_by_other_cc(current_user): """ Return dictionary with id of reference and log object changed by other cooperative centers """ current_user_cc = current_user.profile.get_attribute('cc') result_list = defaultdict(list) # get last references of current user cooperative center refs_from_cc = Reference.objects.filter(cooperative_center_code=current_user_cc).order_by('-id')[:100] for reference in refs_from_cc: # get correct class (source our analytic) c_type = reference.get_content_type_id # filter by logs of current reference, change type and made by other users log_list = LogEntry.objects.filter(object_id=reference.id, content_type=c_type, action_flag=2) \ .exclude(user=current_user).order_by('-id') if log_list: # exclude from list all changes that was already reviewed (logreview is created) log_list = log_list.exclude(logreview__isnull=False) # create list of log users of same cc exclude_user_list = [] for log in log_list: log_user_cc = log.user.profile.get_attribute('cc') if log_user_cc == current_user_cc: exclude_user_list.append(log.user) # exclude from log list users from same cc as current user if exclude_user_list: log_list = log_list.exclude(user__in=exclude_user_list) if log_list: # group result by id (one line for each reference) for log in log_list: result_list[log.object_id] = log return result_list
16,794
def chain_head(head: int, child: int, heads: Dict[int, int]): """ >>> chain_head(0, 2, {1: 2, 2: 3, 3: 0}) True >>> chain_head(2, 0, {1: 2, 2: 3, 3: 0}) False """ curr_child = child while curr_child != -1: if curr_child == head: return True curr_child = heads.get(curr_child, -1) return False
16,795
def read_conll(fp): """ Generator that returns a list of Row tuples for each document :param fp: handle to CoNLL tsv file with columns: token tag token doc_id start stop sentence :return: list of Row tuples """ reader = csv.reader(fp, delimiter='\t', quoting=csv.QUOTE_NONE) first_row = next(reader) if not first_row: raise CoNLLReaderException("csv reader cannot read first line of {}".format(fp.name)) if first_row[0].lower() in ['token', 'tok']: raise CoNLLReaderException("Reader does not handle file with header: {}".format(fp.name)) fp.seek(0) # take token from conll-full file token_index = 2 tag_index = 1 doc_id_index = 3 offsets_indexes = (4, 5) sent_id_index = 6 rows = [] current_doc_id = None for row in reader: if len(row) < 6: # sentence breaks are ignored continue if not row[tag_index]: raise RuntimeError("Bad conll format data: {}".format(row)) if current_doc_id is None: current_doc_id = row[doc_id_index] if row[doc_id_index] != current_doc_id: yield rows rows = [] current_doc_id = row[doc_id_index] start = int(row[offsets_indexes[0]]) stop = int(row[offsets_indexes[1]]) sent_id = int(row[sent_id_index].split('-')[1]) rows.append(Row(row[token_index], row[tag_index], row[doc_id_index], (start, stop), sent_id)) yield rows
16,796
def UpgradeFile(file_proto): """In-place upgrade a FileDescriptorProto from v2[alpha\d] to v3alpha. Args: file_proto: v2[alpha\d] FileDescriptorProto message. """ # Upgrade package. file_proto.package = UpgradedType(file_proto.package) # Upgrade imports. for n, d in enumerate(file_proto.dependency): file_proto.dependency[n] = UpgradedPath(d) # Upgrade comments. for location in file_proto.source_code_info.location: location.leading_comments = UpgradedComment(location.leading_comments) location.trailing_comments = UpgradedComment(location.trailing_comments) for n, c in enumerate(location.leading_detached_comments): location.leading_detached_comments[n] = UpgradedComment(c) # Upgrade services. for s in file_proto.service: UpgradeService(s) # Upgrade messages. for m in file_proto.message_type: UpgradeMessage(m) for e in file_proto.enum_type: UpgradeEnum(e) return file_proto
16,797
def _get_ip_block(ip_block_str): """ Convert string into ipaddress.ip_network. Support both IPv4 or IPv6 addresses. Args: ip_block_str(string): network address, e.g. "192.168.0.0/24". Returns: ip_block(ipaddress.ip_network) """ try: ip_block = ipaddress.ip_network(ip_block_str) except ValueError: logging.error("Invalid IP block format: %s", ip_block_str) return None return ip_block
16,798
def mul_ntt(f_ntt, g_ntt, q): """Multiplication of two polynomials (coefficient representation).""" assert len(f_ntt) == len(g_ntt) deg = len(f_ntt) return [(f_ntt[i] * g_ntt[i]) % q for i in range(deg)]
16,799