content
stringlengths
22
815k
id
int64
0
4.91M
async def test_age_gate_error(): """ Should show the error message on incorrect input """ u = User(addr="27820001001", state=StateData(name="state_age_gate"), session_id=1) app = Application(u) msg = Message( content="invalid", to_addr="27820001002", from_addr="27820001001", transport_name="whatsapp", transport_type=Message.TRANSPORT_TYPE.HTTP_API, ) [reply] = await app.process_message(msg) assert len(reply.content) < 140 assert u.state.name == "state_age_gate"
16,800
def load_config(filepath: str) -> DictStrAny: """Read config file. The config file can be in yaml, json or toml. toml is recommended for readability. """ ext = os.path.splitext(filepath)[1] if ext == ".yaml": with open_read_text(filepath) as fp: config_dict = yaml.load(fp.read(), Loader=yaml.Loader) elif ext == ".toml": config_dict = toml.load(filepath) elif ext == ".json": with open_read_text(filepath) as fp: config_dict = json.load(fp) else: raise NotImplementedError(f"Config extention {ext} not supported") assert isinstance(config_dict, dict) return config_dict
16,801
def _expected_datatypes(product_type): """ Aux function. Contains the most current lists of keys we expect there to be in the different forms of metadata. """ if product_type == "SLC": # Only the datetimes need to be parsed. expected_dtypes = { "acquisition_start_utc": "parse_datetime_single", "acquisition_end_utc": "parse_datetime_single", "dc_estimate_time_utc": "parse_datetime_single", "first_pixel_time_utc": "parse_datetime_single", "state_vector_time_utc": "parse_datetime_vect", "zerodoppler_start_utc": "parse_datetime_single", "zerodoppler_end_utc": "parse_datetime_single", } elif product_type == "GRD": # All the fields need to be parsed, so all the datatypes are input. expected_dtypes = { "acquisition_end_utc": "parse_datetime_single", # single datetime "acquisition_mode": str, "acquisition_prf": float, "acquisition_start_utc": str, "ant_elev_corr_flag": bool, "area_or_point": str, "avg_scene_height": float, "azimuth_spacing": float, "azimuth_look_bandwidth": float, "azimuth_look_overlap": float, "azimuth_looks": int, "azimuth_time_interval": float, "calibration_factor": float, "carrier_frequency": float, "chirp_bandwidth": float, "chirp_duration": float, "coord_center": "parse_float_vect", # 1d vect of floats, needs to be parsed "coord_first_far": "parse_float_vect", "coord_first_near": "parse_float_vect", "coord_last_far": "parse_float_vect", "coord_last_near": "parse_float_vect", "dc_estimate_coeffs": "parse_float_vect", "dc_estimate_poly_order": int, "dc_estimate_time_utc": "parse_datetime_vect", # datetime vector "dc_reference_pixel_time": float, "doppler_rate_coeffs": "parse_float_vect", "doppler_rate_poly_order": int, "doppler_rate_reference_pixel_time": float, "gcp_terrain_model": str, "geo_ref_system": str, "grsr_coefficients": "parse_float_vect", "grsr_ground_range_origin": float, "grsr_poly_order": int, "grsr_zero_doppler_time": "parse_datetime_single", # single datetime "heading": float, "incidence_angle_coefficients": "parse_float_vect", "incidence_angle_ground_range_origin": float, "incidence_angle_poly_order": int, "incidence_angle_zero_doppler_time": "parse_datetime_single", # single datetime "incidence_center": float, "incidence_far": float, "incidence_near": float, "look_side": str, "mean_earth_radius": float, "mean_orbit_altitude": float, "number_of_azimuth_samples": int, "number_of_dc_estimations": int, "number_of_range_samples": int, "number_of_state_vectors": int, "orbit_absolute_number": int, "orbit_direction": str, "orbit_processing_level": str, "orbit_relative_number": int, "orbit_repeat_cycle": int, "polarization": str, "posX": "parse_float_vect", "posY": "parse_float_vect", "posZ": "parse_float_vect", "processing_prf": float, "processing_time": "parse_datetime_single", # single datetime "processor_version": str, "product_file": str, "product_level": str, "product_name": str, "product_type": str, "range_looks": int, "range_sampling_rate": float, "range_spacing": float, "range_spread_comp_flag": bool, "sample_precision": str, "satellite_look_angle": str, "satellite_name": str, "slant_range_to_first_pixel": float, "state_vector_time_utc": "parse_datetime_vect", # 1d vect of datetimes, need to be parsed. "total_processed_bandwidth_azimuth": float, "velX": "parse_float_vect", "velY": "parse_float_vect", "velZ": "parse_float_vect", "window_function_azimuth": str, "window_function_range": str, "zerodoppler_end_utc": "parse_datetime_single", # single datetime "zerodoppler_start_utc": "parse_datetime_single", # single datetime } elif product_type == "xml": raise NotImplementedError elif not isinstance(product_type, str): raise TypeError( 'Did not understand input "product_type", a str was expected but a %s datatype variable was input.' % type(product_type) ) else: raise ValueError( 'Did not understand input "product_type", either "SLC", "GRD" or "xml" was expected but %s was input.' % product_type ) return expected_dtypes
16,802
def browser(): """The browser driver We launch the SHEBANQ site in preparation of doing many tests. We do not only deliver a driver, but also a wait object. """ with Safari() as driver: yield driver print("Closing test browser")
16,803
def convert_vecs_to_var( c_sys: CompositeSystem, vecs: List[np.ndarray], on_para_eq_constraint: bool = True ) -> np.ndarray: """converts hs of povm to vec of variables. Parameters ---------- c_sys : CompositeSystem CompositeSystem of this state. vecs : List[np.ndarray] list of vec of povm elements. on_para_eq_constraint : bool, optional uses equal constraints, by default True. Returns ------- np.ndarray list of vec of variables. """ var = copy.copy(vecs) if on_para_eq_constraint: del var[-1] var = np.hstack(var) return var
16,804
def run_tests(): """ This methods dinamically create tests based on the contents of the 'qgis' subfolder. The structure of files in the subfolder must be as follows: - For each dataset that you want to use, create a subfolder under 'qgis' - Add the layer file in that subfolder. It must be named 'testlayer.gpkg' or 'testlayer.tiff' depending of whether it is a vector or a raster layer - In the same subfolder, along with the layer file, you can add as many qml files as you want to test. The names of these files will be used to set the name of the corresponding test - For each qml file, a .geostyler file with the same name must exist in the subfolder. It must contain the expected geostyler representation of the style in the qml file. - The test will load the testlayer file, assign the qml to it, generate a geostyler representation from it, and then compare to the expected geostyler result. """ suite = unittest.TestSuite() main_folder = os.path.join(os.path.dirname(__file__), "data", "qgis") for subfolder in os.listdir(main_folder): datafile = os.path.join(main_folder, subfolder, "testlayer.gpkg") if not os.path.exists(datafile): datafile = os.path.join(main_folder, subfolder, "testlayer.tiff") subfolder_path = os.path.join(main_folder, subfolder) for style in os.listdir(subfolder_path): if style.lower().endswith("qml"): stylefile = os.path.join(subfolder_path, style) name = os.path.splitext(stylefile)[0] expectedfile = name + ".geostyler" with open(expectedfile) as f: expected = json.load(f) setattr( QgisToStylerTest, "test_" + name, test_function(datafile, stylefile, expected), ) suite = unittest.defaultTestLoader.loadTestsFromTestCase(QgisToStylerTest) unittest.TextTestRunner().run(suite)
16,805
def test_validate_without_code(superuser, collection): """Attempt editing entry without a code.""" form = EditForm(superuser, collection.code, friendly_name='The old books', category='library') assert form.validate() is False assert _('This field is required.') in form.code.errors
16,806
def convert_CSV_into_df(file_loc): """ Generate Panda dataframe from CSV data (rotation and position). """ df = pd.DataFrame() for directory in glob.glob(file_loc): # Selecting all the folders in dataset directory. d = [] # Empty list. f = directory.split(os.sep) for file in glob.glob(directory+"*.csv"): # Reading all the CSV files in dataset directory one by one. d.append(file) d = sorted(d) # Ensures rotation and position are together while len(d)!=0: rot = d.pop(0) # Rmove the header row from rotation and postion CSV. pos = d.pop(0) df1 = pd.read_csv(rot, nrows=200) # Read the first 200 rows from rotation and position CSV. value can be 200 or 150. df2 = pd.read_csv(pos, nrows=200) df_merge = merge_rot_pos(df1,df2,f[1]) # Call the mearge function to mearge fetch data of rotation and position CSV with class lable. df = df.append(df_merge,ignore_index=True) # Append the merge data to panda dataframe one by one. return df
16,807
def ziw2md(md_file, export_md_path, tmp_path, abs_img_path=False): """将.md.ziw文件转为标准md文件,导出图片和附件文件到本地目录""" ziw_zip = zipfile.ZipFile(md_file) ziw_zip.extractall(tmp_path) ziw_zip.close() print(f"正在转换《{md_file.stem}》……") export_md_file = export_md_path.joinpath(md_file.parent.stem, md_file.stem.replace('.md', '')+'.md') export_attachment_path = export_md_file.parent / export_md_file.stem # 图片、附件保存目录 with open(tmp_path / 'index.html', encoding='utf-16') as f1: content = f1.read() content = content.replace('</div>', '\n') content = content.replace('<br>', '\n') content = content.replace('<br/>', '\n') ''' pattern1 = re.compile(r'<!doctype.*?</head>', re.DOTALL | re.IGNORECASE | re.MULTILINE) content = pattern1.sub('', content) pattern2 = re.compile(r'.*WizHtmlContentBegin-->', re.DOTALL | re.IGNORECASE | re.MULTILINE) content = pattern2.sub('', content) content = re.sub(r'<body.*?>', '', content) content = content.replace('&lt;', '<') content = content.replace('&gt;', '>') content = content.replace('&nbsp;', ' ') content = content.replace('<div>', '') content = content.replace('</div>', '\n') content = content.replace('<br/>', '\n') content = content.replace('<br>', '\n') content = content.replace('</body></html>', '') # content = html2text.html2text(content) content = content.replace(r'\---', '---').strip() content = re.sub(r'<ed_tag name="markdownimage" .*?</ed_tag>', '', content).strip() # 替换包含图片链接文件的文末内容 ''' tree = etree.HTML(content) content = tree.xpath('//body')[0].xpath('string(.)') # 将图片文件链接改为相应目录 if abs_img_path: content = content.replace('index_files', export_attachment_path) else: content = content.replace('index_files', export_attachment_path.stem) # 分目录输出markdown文件 if not (export_md_path / md_file.parent.stem).exists(): (export_md_path / md_file.parent.stem).mkdir() with open(export_md_file, 'w', encoding='utf-8') as f2: f2.write(content) print(f'已导出:{export_md_file}。') # 将index_files目录下图片文件复制到以markdown文件标题命名的目录 if (tmp_path / 'index_files').exists(): # shutil.copytree((tmp_path / 'index_files'), export_attachment_path, dirs_exist_ok=True) (tmp_path / 'index_files').rename(export_attachment_path) # 将附件目录下文件复制到以markdown文件标题命名的目录 attachment_path = md_file.parent.joinpath(md_file.stem, '.md_Attachments') if attachment_path.exists(): if not export_attachment_path.exists(): export_attachment_path.mkdir() for attachment in attachment_path.glob('*.*'): shutil.copy2(attachment, export_attachment_path) # shutil.rmtree(tmp_path)
16,808
def timetable_to_subrip(aligned_timetable): """ Converts the aligned timetable into the SubRip format. Args: aligned_timetable (list[dict]): An aligned timetable that is output by the `Aligner` class. Returns: str: Text representing a SubRip file. """ # Define a variable to contain the file's contents file_contents = "" # Process each block for i, block in enumerate(aligned_timetable): # Define a temporary variable to store this caption block block_text = f"{i + 1}\n" # Every SubRip caption block starts with a number # Get the start and end time of the block start_time = timedelta_to_subrip_time(timedelta(seconds=block["start_time"])) end_time = timedelta_to_subrip_time(timedelta(seconds=block["end_time"])) # Add the timing line to the block of text block_text += f"{start_time} --> {end_time}\n" # Add the line of text from the `block` to the block of text block_text += block["text"] + "\n\n" # Add the `block_text` to the `file_contents` file_contents += block_text # Return the final file's contents return file_contents
16,809
def add(a: T.Tensor, b: T.Tensor) -> T.Tensor: """ Add tensor a to tensor b using broadcasting. Args: a: A tensor b: A tensor Returns: tensor: a + b """ return a + b
16,810
def integrate(que): """ check if block nears another block and integrate them @param que: init blocks @type que: deque @return: integrated block @rtype: list """ blocks = [] t1, y, x = que.popleft() blocks.append([y, x]) if t1 == 2: blocks.append([y, x + 1]) elif t1 == 3: blocks.append([y + 1, x]) return blocks
16,811
def handler(sig, frame) -> None: """Handles Ctrl+c by letting the Collector() know to shut down""" current_pid = os.getpid() if current_pid == parent_pid: reason = f"Received shutdown signal {sig}" log.debug(f"Parent caught signal {sig} - dispatching shutdown event") # Dispatch shutdown event in parent process which also causes SIGTERM to be sent # to the process group and in turn causes the shutdown event in all child # processes. dispatch_event( Event(EventType.SHUTDOWN, {"reason": reason, "emergency": False}) ) else: reason = f"Received shutdown signal {sig} from parent process" log.debug( f"Child with PID {current_pid} shutting down" " - you might see exceptions from interrupted worker threads" ) # Child's threads have 3s to shut down before the following thread will # shut them down hard. kt = threading.Thread(target=delayed_exit, name="shutdown") kt.start() # Dispatch shutdown event in child process dispatch_event( Event(EventType.SHUTDOWN, {"reason": reason, "emergency": False}), blocking=False, ) sys.exit(0)
16,812
def test_check_size_human_correct(docker_client, image_name): """Checks size with human readable limit.""" overflow = check_image_size(docker_client, image_name, '10 GiB') assert overflow < 0
16,813
def test_binary_query(cbcsdk_mock): """Testing Binary Querying""" called = False def post_validate(url, body, **kwargs): nonlocal called if not called: called = True assert body['expiration_seconds'] == 3600 else: assert body['expiration_seconds'] == 10 return BINARY_GET_FILE_RESP sha256 = "00a16c806ff694b64e566886bba5122655eff89b45226cddc8651df7860e4524" cbcsdk_mock.mock_request("GET", f"/ubs/v1/orgs/test/sha256/{sha256}", BINARY_GET_METADATA_RESP) api = cbcsdk_mock.api binary = api.select(Binary, sha256) assert isinstance(binary, Binary) cbcsdk_mock.mock_request("GET", f"/ubs/v1/orgs/test/sha256/{sha256}/summary/device", BINARY_GET_DEVICE_SUMMARY_RESP) summary = binary.summary cbcsdk_mock.mock_request("POST", "/ubs/v1/orgs/test/file/_download", post_validate) url = binary.download_url() assert summary is not None assert url is not None url = binary.download_url(expiration_seconds=10) assert url is not None
16,814
def parse_struct_encoding(struct_encoding: bytes) -> typing.Tuple[typing.Optional[bytes], typing.Sequence[bytes]]: """Parse an array type encoding into its name and field type encodings.""" if not struct_encoding.startswith(b"{"): raise ValueError(f"Missing opening brace in struct type encoding: {struct_encoding!r}") if not struct_encoding.endswith(b"}"): raise ValueError(f"Missing closing brace in struct type encoding: {struct_encoding!r}") try: # Stop searching for the equals if an opening brace # (i. e. the start of another structure type encoding) # is reached. # This is necessary to correctly handle struct types with no name that contain a struct type with a name, # such as b"{{foo=ii}}" (an unnamed struct containing a struct named "foo" containing two integers). try: end = struct_encoding.index(b"{", 1) except ValueError: end = -1 equals_pos = struct_encoding.index(b"=", 1, end) except ValueError: name = None field_type_encoding_string = struct_encoding[1:-1] else: name = struct_encoding[1:equals_pos] field_type_encoding_string = struct_encoding[equals_pos+1:-1] field_type_encodings = list(split_encodings(field_type_encoding_string)) return name, field_type_encodings
16,815
def split_train_crops(project_name, center, crops_dir='crops', subset=0.15, by_fraction=True, train_name='train', seed=1000): """ :param project_name: string Name of dataset. for example, set this to 'dsb-2018', or 'bbbc010-2012' :param center: string Set this to 'medoid' or 'centroid' :param crops_dir: string Name of the crops directory. Default value = 'crops' :param subset: int/float if by_fraction is True, then subset should be set equal to the percentage of image crops reserved for validation. if by_fraction is False, then subset should be set equal to the number of image crops reserved for validation. :param by_fraction: boolean if True, then reserve a fraction <1 of image crops for validation :param train_name: string name of directory containing train image and instance crops :param seed: int :return: """ image_dir = os.path.join(crops_dir, project_name, train_name, 'images') instance_dir = os.path.join(crops_dir, project_name, train_name, 'masks') center_dir = os.path.join(crops_dir, project_name, train_name, 'center-' + center) image_names = sorted(glob(os.path.join(image_dir, '*.tif'))) instance_names = sorted(glob(os.path.join(instance_dir, '*.tif'))) center_names = sorted(glob(os.path.join(center_dir, '*.tif'))) indices = np.arange(len(image_names)) np.random.seed(seed) np.random.shuffle(indices) if (by_fraction): subsetLen = int(subset * len(image_names)) else: subsetLen = int(subset) valIndices = indices[:subsetLen] image_path_val = os.path.join(crops_dir, project_name, 'val', 'images/') instance_path_val = os.path.join(crops_dir, project_name, 'val', 'masks/') center_path_val = os.path.join(crops_dir, project_name, 'val', 'center-' + center + '/') val_images_exist = False val_masks_exist = False val_center_images_exist = False if not os.path.exists(image_path_val): os.makedirs(os.path.dirname(image_path_val)) print("Created new directory : {}".format(image_path_val)) else: val_images_exist = True if not os.path.exists(instance_path_val): os.makedirs(os.path.dirname(instance_path_val)) print("Created new directory : {}".format(instance_path_val)) else: val_masks_exist = True if not os.path.exists(center_path_val): os.makedirs(os.path.dirname(center_path_val)) print("Created new directory : {}".format(center_path_val)) else: val_center_images_exist = True if not val_images_exist and not val_masks_exist and not val_center_images_exist: for val_index in valIndices: shutil.move(image_names[val_index], os.path.join(crops_dir, project_name, 'val', 'images')) shutil.move(instance_names[val_index], os.path.join(crops_dir, project_name, 'val', 'masks')) shutil.move(center_names[val_index], os.path.join(crops_dir, project_name, 'val', 'center-' + center)) print("Val Images/Masks/Center-{}-image crops saved at {}".format(center, os.path.join(crops_dir, project_name, 'val'))) else: print("Val Images/Masks/Center-{}-image crops already available at {}".format(center, os.path.join(crops_dir, project_name, 'val')))
16,816
def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : Slot19 A Slot19 object Returns ------- point_list: list A list of Points """ Rbo = self.get_Rbo() # alpha is the angle to rotate Z0 so ||Z1,Z8|| = W0 alpha0 = self.comp_angle_opening() / 2 alpha1 = self.comp_angle_bottom() / 2 # comp point coordinate (in complex) Z_ = Rbo * exp(1j * 0) Z0 = Z_ * exp(1j * alpha0) if self.is_outwards(): Z1 = (Rbo + self.H0) * exp(1j * alpha1) else: # inward slot Z1 = (Rbo - self.H0) * exp(1j * alpha1) # symetry Z2 = Z1.conjugate() Z3 = Z0.conjugate() return [Z3, Z2, Z1, Z0]
16,817
def getargspec(func): """Like inspect.getargspec but supports functools.partial as well.""" if inspect.ismethod(func): func = func.__func__ if type(func) is partial: orig_func = func.func argspec = getargspec(orig_func) args = list(argspec[0]) defaults = list(argspec[3] or ()) kwoargs = list(argspec[4]) kwodefs = dict(argspec[5] or {}) if func.args: args = args[len(func.args):] for arg in func.keywords or (): try: i = args.index(arg) - len(args) del args[i] try: del defaults[i] except IndexError: pass except ValueError: # must be a kwonly arg i = kwoargs.index(arg) del kwoargs[i] del kwodefs[arg] return inspect.FullArgSpec(args, argspec[1], argspec[2], tuple(defaults), kwoargs, kwodefs, argspec[6]) while hasattr(func, '__wrapped__'): func = func.__wrapped__ if not inspect.isfunction(func): raise TypeError('%r is not a Python function' % func) return inspect.getfullargspec(func)
16,818
def empirical_kernel_fn(f: ApplyFn, trace_axes: Axes = (-1,), diagonal_axes: Axes = () ) -> EmpiricalKernelFn: """Returns a function that computes single draws from NNGP and NT kernels. Args: f: the function whose NTK we are computing. `f` should have the signature `f(params, inputs[, rng])` and should return an `np.ndarray` outputs. trace_axes: output axes to trace the output kernel over, i.e. compute only the trace of the covariance along the respective pair of axes (one pair for each axis in `trace_axes`). This allows to save space and compute if you are only interested in the respective trace, but also improve approximation accuracy if you know that covariance along these pairs of axes converges to a `constant * identity matrix` in the limit of interest (e.g. infinite width or infinite `n_samples`). A common use case is the channel / feature / logit axis, since activation slices along such axis are i.i.d. and the respective covariance along the respective pair of axes indeed converges to a constant-diagonal matrix in the infinite width or infinite `n_samples` limit. Also related to "contracting dimensions" in XLA terms. (https://www.tensorflow.org/xla/operation_semantics#dotgeneral) diagonal_axes: output axes to diagonalize the output kernel over, i.e. compute only the diagonal of the covariance along the respective pair of axes (one pair for each axis in `diagonal_axes`). This allows to save space and compute, if off-diagonal values along these axes are not needed, but also improve approximation accuracy if their limiting value is known theoretically, e.g. if they vanish in the limit of interest (e.g. infinite width or infinite `n_samples`). If you further know that on-diagonal values converge to the same constant in your limit of interest, you should specify these axes in `trace_axes` instead, to save even more compute and gain even more accuracy. A common use case is computing the variance (instead of covariance) along certain axes. Also related to "batch dimensions" in XLA terms. (https://www.tensorflow.org/xla/operation_semantics#dotgeneral) Returns: A function to draw a single sample the NNGP and NTK empirical kernels of a given network `f`. """ kernel_fns = { 'nngp': empirical_nngp_fn(f, trace_axes, diagonal_axes), 'ntk': empirical_ntk_fn(f, trace_axes, diagonal_axes) } @utils.get_namedtuple('EmpiricalKernel') def kernel_fn(x1: np.ndarray, x2: Optional[np.ndarray], get: Union[None, str, Tuple[str, ...]], params: PyTree, **apply_fn_kwargs) -> Dict[str, np.ndarray]: """Computes a single sample of the empirical kernel of type `get`. Args: x1: first batch of inputs. x2: second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`. get: type of the empirical kernel. `get=None` means `get=("nngp", "ntk")`. Can be a string (`"nngp"`) or a tuple of strings (`("ntk", "nngp")`). params: A `PyTree` of parameters about which we would like to compute the neural tangent kernel. **apply_fn_kwargs: keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `_split_kwargs` function which will be passed to `apply_fn`. In particular, the rng key in `apply_fn_kwargs`, will be split into two different (if `x1!=x2`) or same (if `x1==x2`) rng keys. See the `_read_key` function for more details. Returns: A single sample of the empirical kernel. The shape is "almost" `zip(f(x1).shape, f(x2).shape)` except for: 1) `trace_axes` are absent as they are contracted over. 2) `diagonal_axes` are present only once. All other axes are present twice. If `get` is a string, returns the requested `np.ndarray`. If `get` is a tuple, returns an `EmpiricalKernel` namedtuple containing the requested information. """ if get is None: get = ('nngp', 'ntk') return {g: kernel_fns[g](x1, x2, params, **apply_fn_kwargs) for g in get} # pytype: disable=wrong-arg-count return kernel_fn
16,819
def read_image_batch(image_paths, image_size=None, as_list=False): """ Reads image array of np.uint8 and shape (num_images, *image_shape) * image_paths: list of image paths * image_size: if not None, image is resized * as_list: if True, return list of images, else return np.ndarray (default) :return: np.ndarray or list """ images = None for i, image_path in enumerate(image_paths): im = load_img(image_path) if image_size is not None: im = im.resize(image_size, Image.LANCZOS) x = img_to_array(im).astype(np.uint8) if images is None: if not as_list: images = np.zeros((len(image_paths),) + x.shape, dtype=np.uint8) else: images = [] if not as_list: images[i, ...] = x else: images.append(x) return images
16,820
def dc_vm_backup(request, dc, hostname): """ Switch current datacenter and redirect to VM backup page. """ dc_switch(request, dc) return redirect('vm_backup', hostname=hostname)
16,821
def compute_total_distance(path): """compute total sum of distance travelled from path list""" path_array = np.diff(np.array(path), axis=0) segment_distance = np.sqrt((path_array ** 2).sum(axis=1)) return np.sum(segment_distance)
16,822
def get_relative_positions_matrix(length_x, length_y, max_relative_position): """Generates matrix of relative positions between inputs.""" range_vec_x = tf.range(length_x) range_vec_y = tf.range(length_y) # shape: [length_x, length_y] distance_mat = tf.expand_dims(range_vec_x, -1) - tf.expand_dims(range_vec_y, 0) distance_mat_clipped = tf.clip_by_value(distance_mat, -max_relative_position, max_relative_position) # Shift values to be >= 0. Each integer still uniquely identifies a relative # position difference. final_mat = distance_mat_clipped + max_relative_position return final_mat
16,823
def func_split_item(k): """ Computes the expected value and variance of the splitting item random variable S. Computes the expression (26b) and (26c) in Theorem 8. Remember that r.v. S is the value of index s such that $\sum_{i=1}^{s-1} w(i) \leq k$ and $\sum_{i=1}^s w(i) > k$. Args: k: Int. The capacity of the Knapsack Problem instance. Returns: s: float. The expected value of the splitting item random variable. var_split: float. The variance of the splitting item random variable. """ b = 1 + 1 / k # Defining a cumbersome base s = (1 + 1 / k) ** k # Computing the split item var_split = (3 + 1 / k) * b ** (k - 1) - b ** (2 * k) # Computing the variance of the split item return s, var_split
16,824
def watch_less(): """watch less""" local('watchmedo shell-command --patterns="*.less" ' + "--recursive --command='lessc %s/web/static/style.less "%CURRENT_PATH + "> %s/web/static/style.css'"%CURRENT_PATH )
16,825
def eq(equation: str) -> int: """Evaluate the equation.""" code = compile(equation, "<string>", "eval") return eval(code)
16,826
def is_client_in_data(hass: HomeAssistant, unique_id: str) -> bool: """Check if ZoneMinder client is in the Home Assistant data.""" prime_config_data(hass, unique_id) return const.API_CLIENT in hass.data[const.DOMAIN][const.CONFIG_DATA][unique_id]
16,827
def parse_date(datestr): """ Given a date in xport format, return Python date. """ return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
16,828
def unconfigure_l2vpn_evpn(device): """ unconfig l2vpn evpn Args: device (`obj`): Device object Returns: None Raises: SubCommandFailure """ log.info( "Unconfiguring 'l2vpn evpn' globally" ) configs = [] configs.append("no l2vpn evpn") try: device.configure(configs) except SubCommandFailure as e: raise SubCommandFailure( "Failed to unconfigure 'l2vpn evpn' globally" 'Error:{e}'.format(e=e) )
16,829
def generate_database(m, n, uni_range_low=None, uni_range_high=None, exact_number=False): """ - Generate Universe by picking n random integers from low (inclusive) to high (exclusive). If exact_number, then Universe.size == n - Generate a Database of m records, over the Universe """ # generate Universe if exact_number: objects = range(n) else: objects = list(np.random.randint(uni_range_low, uni_range_high, size=n)) uni = Universe(objects) # generate Database db = uni.random_db(m) return db
16,830
def interface_style(): """Return current platform interface style (light or dark).""" try: # currently only works on macOS from Foundation import NSUserDefaults as NSUD except ImportError: return None style = NSUD.standardUserDefaults().stringForKey_("AppleInterfaceStyle") if style == "Dark": return "dark" else: return "light"
16,831
def get_num_forces(cgmodel): """ Given a CGModel() class object, this function determines how many forces we are including when evaluating the energy. :param cgmodel: CGModel() class object :type cgmodel: class :returns: - total_forces (int) - Number of forces in the coarse grained model :Example: >>> from foldamers.cg_model.cgmodel import CGModel >>> cgmodel = CGModel() >>> total_number_forces = get_num_forces(cgmodel) """ total_forces = 0 if cgmodel.include_bond_forces: total_forces = total_forces + 1 if cgmodel.include_nonbonded_forces: total_forces = total_forces + 1 if cgmodel.include_bond_angle_forces: total_forces = total_forces + 1 if cgmodel.include_torsion_forces: total_forces = total_forces + 1 return total_forces
16,832
def cybrowser_dialog(id=None, text=None, title=None, url=None, base_url=DEFAULT_BASE_URL): """Launch Cytoscape's internal web browser in a separate window Provide an id for the window if you want subsequent control of the window e.g., via cybrowser hide. Args: id (str): The identifier for the new browser window text (str): HTML text to initially load into the browser title (str): Text to be shown in the title bar of the browser window url (str): The URL the browser should load base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: {'id': id} where ``id`` is the one provided as a parameter to this function Raises: requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> cybrowser_dialog(id='Test Window', title='Hello Africa', text='<HTML><HEAD><TITLE>Hello</TITLE></HEAD><BODY>Hello, world!</BODY></HTML>') {'id': 'Test Window'} >>> cybrowser_dialog(id='CytoWindow', title='Cytoscape Home Page', url='http://www.cytoscape.org') {'id': 'CytoWindow'} See Also: :meth:`cybrowser_show`, :meth:`cybrowser_hide` """ id_str = f' id="{id}"' if id else '' text_str = f' text="{text}"' if text else '' title_str = f' title="{title}"' if title else '' url_str = f' url="{url}"' if url else '' res = commands.commands_post(f'cybrowser dialog{id_str}{text_str}{title_str}{url_str}', base_url=base_url) return res
16,833
def main(): """ Main function where you can test how VideoCameraServer works """ # Placing imports here so it will be imported only if user want to test algorithm, not when importing # Class DepthCameraServer import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sensors_classes as sensors from images_processing_class import ImagesProcessing import struct import time # Starting Thread which receives data from VideoCamera, port od thread's socket must be the same as the port at # which data from VideoCamera is redirected, to be sure check where VideoCamera data stream is send in script env.py depth_camera_server = DepthCameraServer('localhost', 60012) depth_camera_server.run() pose_server = sensors.Pose_server('localhost', 60007) pose_server.run() # Waiting 1 sec to be sure than depth_camera_server has received minimum 1 image, because program will crash if # depth_camera_server doesn't have time to receive an image time.sleep(1) points = depth_camera_server.get_points() lista_punktow = [] x = [] y = [] z = [] data_pose_dict = pose_server.get_all() pose_x = data_pose_dict['x'] pose_y = data_pose_dict['y'] pose_z = data_pose_dict['z'] yawp = data_pose_dict['yaw'] pitchp = data_pose_dict['pitch'] rollp = data_pose_dict['roll'] # Each 3D point is a set of float(x,y,z). Each point has a size of 12 bytes because # 3*sizeof(float) = 12 bytes, that's why we are dividing data into parts with size of 12 and then # converting this data to tuple with 3 float (xyz). # # Processing cloud of points to seperate x, y and z was copied from dcam_old.py # for i in range(0, len(points) - 12, 12): xyz = struct.unpack('fff', points[i:i + 12]) # rotation is included x1p, y1p, z1p = rotation(xyz[2], xyz[0], xyz[1], yawp, pitchp, rollp) # data from pose is included xp = round(x1p + pose_x, 1) yp = round(y1p + pose_y, 1) zp = round(z1p + pose_z, 1) temp = [xp, yp, zp] lista_punktow.append(temp) # Choosing only these points which have minimum 0.45 meters at z-axis, but why??? for i in lista_punktow: x.append(i[0]) y.append(i[1]) z.append(i[2]) fig = plt.figure() ax = Axes3D(fig) ax.scatter(x, y, z, cmap='viridis', linewidth=0.5) ax.scatter(x[0], y[0], z[0], c='red') ax.scatter(x[1], y[1], z[1], c='yellow') ax.scatter(x[2], y[2], z[2], c='black') ax.scatter(pose_x, pose_y, pose_z, c='green') plt.show()
16,834
def initialize_stat_dict(): """Initializes a dictionary which will hold statistics about compositions. Returns: A dictionary containing the appropriate fields initialized to 0 or an empty list. """ stat_dict = dict() for lag in [1, 2, 3]: stat_dict['autocorrelation' + str(lag)] = [] stat_dict['notes_not_in_key'] = 0 stat_dict['notes_in_motif'] = 0 stat_dict['notes_in_repeated_motif'] = 0 stat_dict['num_starting_tonic'] = 0 stat_dict['num_repeated_notes'] = 0 stat_dict['num_octave_jumps'] = 0 stat_dict['num_fifths'] = 0 stat_dict['num_thirds'] = 0 stat_dict['num_sixths'] = 0 stat_dict['num_seconds'] = 0 stat_dict['num_fourths'] = 0 stat_dict['num_sevenths'] = 0 stat_dict['num_rest_intervals'] = 0 stat_dict['num_special_rest_intervals'] = 0 stat_dict['num_in_key_preferred_intervals'] = 0 stat_dict['num_resolved_leaps'] = 0 stat_dict['num_leap_twice'] = 0 stat_dict['num_high_unique'] = 0 stat_dict['num_low_unique'] = 0 return stat_dict
16,835
def nrrd_to_nii(file): """ A function that converts the .nrrd atlas to .nii file format Parameters ---------- file: tuples Tuple of coronal, sagittal, and horizontal slices you want to view Returns ------- F_im_nii: nibabel.nifti2.Nifti2Image A nifti file format that is used by various medical imaging techniques. Notes ------- From: #from: https://nipy.org/nibabel/coordinate_systems.html """ _nrrd = nrrd.read(file) data = _nrrd[0] header = _nrrd[1] # noqa: F841 F_im_nii = nib.Nifti2Image(data, np.eye(4)) return F_im_nii
16,836
def reqeustVerifyAuthhandler(request): """ 본인인증 전자서명을 요청합니다. - 본인인증 서비스에서 이용기관이 생성하는 Token은 사용자가 전자서명할 원문이 됩니다. 이는 보안을 위해 1회용으로 생성해야 합니다. - 사용자는 이용기관이 생성한 1회용 토큰을 서명하고, 이용기관은 그 서명값을 검증함으로써 사용자에 대한 인증의 역할을 수행하게 됩니다. """ try: # Kakaocert 이용기관코드, Kakaocert 파트너 사이트에서 확인 clientCode = '020040000001' # 본인인증 요청정보 객체 requestObj = RequestVerifyAuth( # 고객센터 전화번호, 카카오톡 인증메시지 중 "고객센터" 항목에 표시 CallCenterNum = '1600-8536', # 인증요청 만료시간(초), 최대값 1000, 인증요청 만료시간(초) 내에 미인증시 만료 상태로 처리됨 Expires_in = 60, # 수신자 생년월일, 형식 : YYYYMMDD ReceiverBirthDay = '19900108', # 수신자 휴대폰번호 ReceiverHP = '01043245117', # 수신자 성명 ReceiverName = '정요한', # 별칭코드, 이용기관이 생성한 별칭코드 (파트너 사이트에서 확인가능) # 카카오톡 인증메시지 중 "요청기관" 항목에 표시 # 별칭코드 미 기재시 이용기관의 이용기관명이 "요청기관" 항목에 표시 SubClientID = '', # 인증요청 메시지 부가내용, 카카오톡 인증메시지 중 상단에 표시 TMSMessage = 'TMSMessage0423', # 인증요청 메시지 제목, 카카오톡 인증메시지 중 "요청구분" 항목에 표시 TMSTitle = 'TMSTitle 0423', # 은행계좌 실명확인 생략여부 # true : 은행계좌 실명확인 절차를 생략 # false : 은행계좌 실명확인 절차를 진행 # 카카오톡 인증메시지를 수신한 사용자가 카카오인증 비회원일 경우, 카카오인증 회원등록 절차를 거쳐 은행계좌 실명확인 절차를 밟은 다음 전자서명 가능 isAllowSimpleRegistYN = False, # 수신자 실명확인 여부 # true : 카카오페이가 본인인증을 통해 확보한 사용자 실명과 ReceiverName 값을 비교 # false : 카카오페이가 본인인증을 통해 확보한 사용자 실명과 RecevierName 값을 비교하지 않음. isVerifyNameYN = True, # 전자서명할 토큰 원문 Token = 'Token Value 2345', # PayLoad, 이용기관이 생성한 payload(메모) 값 PayLoad = 'Payload123', ) result = kakaocertService.requestVerifyAuth(clientCode, requestObj) return render(request, 'response.html', {'receiptId': result.receiptId}) except KakaocertException as KE: return render(request, 'exception.html', {'code': KE.code, 'message': KE.message})
16,837
def _file_name_to_valid_time(bulletin_file_name): """Parses valid time from file name. :param bulletin_file_name: Path to input file (text file in WPC format). :return: valid_time_unix_sec: Valid time. """ _, pathless_file_name = os.path.split(bulletin_file_name) valid_time_string = pathless_file_name.replace( PATHLESS_FILE_NAME_PREFIX + '_', '') return time_conversion.string_to_unix_sec( valid_time_string, TIME_FORMAT_IN_FILE_NAME)
16,838
def cidr_validator(value, return_ip_interface=False): """Validate IPv4 + optional subnet in CIDR notation""" try: if '/' in value: ipaddr, netmask = value.split('/') netmask = int(netmask) else: ipaddr, netmask = value, 32 if not validators.ipv4_re.match(ipaddr) or not 1 <= netmask <= 32: raise ValueError ipi = ipaddress.ip_interface(six.text_type(value)) if ipi.is_reserved: raise ValueError except ValueError: raise ValidationError(_('Enter a valid IPv4 address or IPv4 network.')) if return_ip_interface: return ipi
16,839
def rh2a(rh, T, e_sat_func=e_sat_gg_water): """ Calculate the absolute humidity from relative humidity, air temperature, and pressure. Parameters ---------- rh: Relative humidity in Pa / Pa T: Temperature in K e_sat_func: func, optional Function to estimate the saturation pressure. E.g. e_sat_gg_water for water and e_sat_gg_ice for ice. Returns ------- float : absolute humidity [kg / kg] """ with np.errstate(divide='ignore', invalid='ignore'): if np.any(rh > 5): raise TypeError("rh must not be in %") e = rh*e_sat_func(T) a = e / (meteo_si.constants.Rvapor*T) return a
16,840
def container(): """ Container management, type maple container --help for more info """ pass
16,841
def encoder_decoder_generator(start_img): """ """ layer1 = Conv2D(64, kernel_size=4, strides=2, activation='elu', padding='same')(start_img) layer2 = Conv2D(64, kernel_size=4, strides=2, activation='elu', padding='same')(layer1) layer3 = Conv2D(64, kernel_size=4, strides=1, activation='elu', padding='same')(layer2) layer4 = Conv2DTranspose(64, kernel_size=4, strides=2, activation='elu', padding="same")(layer3) layer5 = Conv2DTranspose(64, kernel_size=4, strides=2, activation='elu', padding="same")(layer4) layer6 = Conv2D(64, kernel_size=2, strides=1, activation='elu', padding='same')(layer5) # Make sure that generator output is in the same range as `inputs` # ie [-1, 1]. net = Conv2D(3, kernel_size=1, activation = 'tanh', padding='same')(layer6) return net
16,842
def off(): """ Turns the buzzer off (sets frequency to zero Hz) Returns: None """ return _rc.writeAttribute(OPTYPE.BUZZER_FREQ, [0])
16,843
def contentBrowser(*args, **kwargs): """ This command is used to edit and query a Content Browser. Returns: `string` The name of the panel """ pass
16,844
def data_preprocess(dataset, data_dir, dest_base_dir, predictor_path): """ Parameters ---------- dataset: str KDEF or Rafd, dataset names data_dir: str path to data directory to fetch images dest_base_dir: directory to store all outputs predictor_path: predictor for computing dlib landmarks Download from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 Returns ------- Saves all dlib landmarks, aligned images/landmarks in dedicated folders on dest_base_dir """ print('COMPUTING LANDMARKS') # create file list, compute landmarks and return with list for alignment lnd_dir = os.path.join(dest_base_dir, dataset + '_LANDMARKS') paths_txt = os.path.join(dest_base_dir, dataset + '_frontal_list.txt') if not os.path.exists(lnd_dir): os.makedirs(lnd_dir) img_list = list_and_landmarks(dataset, data_dir, lnd_dir, paths_txt, predictor_path) print('PERFORMING ALIGNMENT') # init aligner fa = FaceAligner(desiredFaceWidth=128) # destination directory structure dest_parent_folder_path = os.path.join(dest_base_dir, dataset + '_Aligned') dest_sub_folder_datapath = os.path.join(dest_parent_folder_path, dataset) dest_sub_folder_lndpath = os.path.join(dest_parent_folder_path, dataset + '_LANDMARKS') if not os.path.exists(dest_parent_folder_path): os.makedirs(dest_sub_folder_datapath) os.makedirs(dest_sub_folder_lndpath) for index, row in enumerate(img_list): # read each image and landmarks # ----file paths im_path = row file_name = row.split('/')[-1].split('.')[0] lnd_file_path = os.path.join(lnd_dir, file_name + '.txt') # ----read_image image = cv2.imread(im_path) # get landmarks points = np.loadtxt(lnd_file_path).reshape(68, 2) # compute alignment image_aligned, points_aligned = fa.align(image, points) # store back in a folder structure similar to Rafd row_impath = os.path.join(dest_sub_folder_datapath, file_name + '.JPG') row_lndpath = os.path.join(dest_sub_folder_lndpath, file_name + '.txt') cv2.imwrite(row_impath, image_aligned) with open(row_lndpath, 'w') as file: for idx_l in range(68): file.write("{} {}\n".format(points_aligned[idx_l, 0], points_aligned[idx_l, 1]))
16,845
def generateLicence(expires, file=licenceFile, key=settings.SECRET_KEY, client=client, provider=provider, created=datetime.datetime.now()): """ Creates a licence file. Parameters: - expires (datetime): the licence expiration date. - file (string): the path to the licence file. - key (string): the cryptographic signing key (the same key is used for signing and unsigning). - client (string): the licence client. - provider (string): the licence provider. - created (datetime): the licence creation date. Returns: - None """ licence = { "CLIENT": str(client), "PROVIDER": str(provider), "CREATED": str(created)[:-7], "EXPIRES": str(expires)[:-7], } with open(file, "w") as f: f.write(Signer().sign(json.dumps(licence, indent=3) + "\n"))
16,846
def ircelsos_data_dir(): """Get the data directory Adapted from jupyter_core """ home = os.path.expanduser('~') if sys.platform == 'darwin': return os.path.join(home, 'Library', 'ircelsos') elif os.name == 'nt': appdata = os.environ.get('APPDATA', os.path.join(home, '.local', 'share')) return os.path.join(appdata, 'ircelsos') else: # Linux, non-OS X Unix, AIX, etc. xdg = os.environ.get("XDG_DATA_HOME", os.path.join(home, '.local', 'share')) return os.path.join(xdg, 'ircelsos')
16,847
def get_shodan_dicts(): """Build Shodan dictionaries that hold definitions and naming conventions.""" risky_ports = [ "ftp", "telnet", "http", "smtp", "pop3", "imap", "netbios", "snmp", "ldap", "smb", "sip", "rdp", "vnc", "kerberos", ] name_dict = { "ftp": "File Transfer Protocol", "telnet": "Telnet", "http": "Hypertext Transfer Protocol", "smtp": "Simple Mail Transfer Protocol", "pop3": "Post Office Protocol 3", "imap": "Internet Message Access Protocol", "netbios": "Network Basic Input/Output System", "snmp": "Simple Network Management Protocol", "ldap": "Lightweight Directory Access Protocol", "smb": "Server Message Block", "sip": "Session Initiation Protocol", "rdp": "Remote Desktop Protocol", "kerberos": "Kerberos", } risk_dict = { "ftp": "FTP", "telnet": "Telnet", "http": "HTTP", "smtp": "SMTP", "pop3": "POP3", "imap": "IMAP", "netbios": "NetBIOS", "snmp": "SNMP", "ldap": "LDAP", "smb": "SMB", "sip": "SIP", "rdp": "RDP", "vnc": "VNC", "kerberos": "Kerberos", } # Create dictionaries for CVSSv2 vector definitions using https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator av_dict = { "NETWORK": "A vulnerability exploitable with network access means the vulnerable software is bound to the network stack and the attacker does not require local network access or local access. Such a vulnerability is often termed “remotely exploitable”. An example of a network attack is an RPC buffer overflow.", "ADJACENT_NETWORK": "A vulnerability exploitable with adjacent network access requires the attacker to have access to either the broadcast or collision domain of the vulnerable software. Examples of local networks include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet segment.", "LOCAL": "A vulnerability exploitable with only local access requires the attacker to have either physical access to the vulnerable system or a local (shell) account. Examples of locally exploitable vulnerabilities are peripheral attacks such as Firewire/USB DMA attacks, and local privilege escalations (e.g., sudo).", } ac_dict = { "LOW": "Specialized access conditions or extenuating circumstances do not exist. The following are examples: The affected product typically requires access to a wide range of systems and users, possibly anonymous and untrusted (e.g., Internet-facing web or mail server). The affected configuration is default or ubiquitous. The attack can be performed manually and requires little skill or additional information gathering. The 'race condition' is a lazy one (i.e., it is technically a race but easily winnable).", "MEDIUM": "The access conditions are somewhat specialized; the following are examples: The attacking party is limited to a group of systems or users at some level of authorization, possibly untrusted. Some information must be gathered before a successful attack can be launched. The affected configuration is non-default, and is not commonly configured (e.g., a vulnerability present when a server performs user account authentication via a specific scheme, but not present for another authentication scheme). The attack requires a small amount of social engineering that might occasionally fool cautious users (e.g., phishing attacks that modify a web browser’s status bar to show a false link, having to be on someone’s “buddy” list before sending an IM exploit).", "HIGH": "Specialized access conditions exist. For example, in most configurations, the attacking party must already have elevated privileges or spoof additional systems in addition to the attacking system (e.g., DNS hijacking). The attack depends on social engineering methods that would be easily detected by knowledgeable people. For example, the victim must perform several suspicious or atypical actions. The vulnerable configuration is seen very rarely in practice. If a race condition exists, the window is very narrow.", } ci_dict = { "NONE": "There is no impact to the confidentiality of the system", "PARTIAL": "There is considerable informational disclosure. Access to some system files is possible, but the attacker does not have control over what is obtained, or the scope of the loss is constrained. An example is a vulnerability that divulges only certain tables in a database.", "COMPLETE": "There is total information disclosure, resulting in all system files being revealed. The attacker is able to read all of the system's data (memory, files, etc.).", } return risky_ports, name_dict, risk_dict, av_dict, ac_dict, ci_dict
16,848
def safe_download(f): """ Makes a download safe, by trapping any app errors and redirecting to a default landing page. Assumes that the first 2 arguments to the function after request are domain and app_id, or there are keyword arguments with those names """ @wraps(f) def _safe_download(request, *args, **kwargs): domain = args[0] if len(args) > 0 else kwargs["domain"] app_id = args[1] if len(args) > 1 else kwargs["app_id"] latest = True if request.GET.get('latest') == 'true' else False target = request.GET.get('target') or None try: request.app = get_app(domain, app_id, latest=latest, target=target) return f(request, *args, **kwargs) except (AppEditingError, CaseError), e: logging.exception(e) messages.error(request, "Problem downloading file: %s" % e) return HttpResponseRedirect(reverse("corehq.apps.app_manager.views.view_app", args=[domain,app_id])) return _safe_download
16,849
def Moebius(quaternion_or_infinity, a,b=None,c=None,d=None): """ The Moebius transformation of a quaternion (z) with parameters a,b,c and d >>> import qmath >>> a = qmath.quaternion([1,1,1,0]) >>> b = qmath.quaternion([-2,1,0,1]) >>> c = qmath.quaternion([1,0,0,0]) >>> d = qmath.quaternion([0,-1,-3,-4]) >>> z = qmath.quaternion([1,1,3,4]) >>> qmath.Moebius(z,a,b,c,d) (-5.0+7.0i+7.0k) >>> d = - z >>> z = qmath.Moebius(z,a,b,c,d) >>> z 'Infinity' >>> qmath.Moebius(z,a,b,c,d) (1.0+1.0i+1.0j) """ if type(a) == tuple: return Moebius(quaternion_or_infinity,a[0],a[1],a[2],a[3]) else: A = quaternion(a) B = quaternion(b) C = quaternion(c) D = quaternion(d) if A * D - B * C == 0: raise RuntimeError(' this is not a Moebius transformation') elif quaternion_or_infinity == 'Infinity': return A / C else: Z = quaternion(quaternion_or_infinity) try: return (A * Z + B) * quaternion.inverse(C * Z + D) except: return 'Infinity'
16,850
def init_full_x(setup_pickleddb_database, monkeypatch): """Init original experiment""" monkeypatch.chdir(os.path.dirname(os.path.abspath(__file__))) name = "full_x" orion.core.cli.main( ( "hunt --init-only -n {name} --config orion_config.yaml ./black_box.py " "-x~uniform(-10,10)" ) .format(name=name) .split(" ") ) orion.core.cli.main("insert -n {name} script -x=0".format(name=name).split(" "))
16,851
def _passthrough_zotero_data(zotero_data): """ Address known issues with Zotero metadata. Assumes zotero data should contain a single bibliographic record. """ if not isinstance(zotero_data, list): raise ValueError('_passthrough_zotero_data: zotero_data should be a list') if len(zotero_data) > 1: # Sometimes translation-server creates multiple data items for a single record. # If so, keep only the parent item, and remove child items (such as notes). # https://github.com/zotero/translation-server/issues/67 zotero_data = zotero_data[:1] return zotero_data
16,852
def telebot(): """endpoint responsible to parse and respond bot webhook""" payload = json.loads(request.data) message = payload.get('message', payload.get('edited_message','')) msg_from = message.get('from') user_id = msg_from.get('id') user_first_name = msg_from.get('first_name','') user_last_name = msg_from.get('last_name','') user_is_bot = msg_from.get('is_bot') chat = message.get('chat') chat_id = chat.get('id') command = message.get('text') if user_is_bot or message == '': return jsonify({'method': 'sendMessage','chat_id' : chat_id,'text': 'Sorry I can\'t answer you!'}) bot_response = { 'method': 'sendMessage', 'chat_id' : chat_id, 'text': f'[{user_first_name} {user_last_name}](tg://user?id={user_id}) {command}', 'parse_mode':'Markdown', } return jsonify(bot_response)
16,853
def pkg_config(cfg): """Returns PkgConfig pkg config object.""" pkg_config_py = os.path.join(get_vta_hw_path(), "config/pkg_config.py") libpkg = {"__file__": pkg_config_py} exec(compile(open(pkg_config_py, "rb").read(), pkg_config_py, "exec"), libpkg, libpkg) PkgConfig = libpkg["PkgConfig"] return PkgConfig(cfg)
16,854
def run(*options, cfg=None, debug=False): """Run training and validation of model Notes: Options can be passed in via the options argument and loaded from the cfg file Options from default.py will be overridden by options loaded from cfg file Options from default.py will be overridden by options loaded from cfg file Options passed in via options argument will override option loaded from cfg file Args: *options (str,int ,optional): Options used to overide what is loaded from the config. To see what options are available consult default.py cfg (str, optional): Location of config file to load. Defaults to None. debug (bool): Places scripts in debug/test mode and only executes a few iterations """ # Configuration: update_config(config, options=options, config_file=cfg) # The model will be saved under: outputs/<config_file_name>/<model_dir> config_file_name = "default_config" if not cfg else cfg.split("/")[-1].split(".")[0] try: output_dir = generate_path( config.OUTPUT_DIR, git_branch(), git_hash(), config_file_name, config.TRAIN.MODEL_DIR, current_datetime(), ) except TypeError: output_dir = generate_path(config.OUTPUT_DIR, config_file_name, config.TRAIN.MODEL_DIR, current_datetime(),) # Logging: load_log_configuration(config.LOG_CONFIG) logger = logging.getLogger(__name__) logger.debug(config.WORKERS) # Set CUDNN benchmark mode: torch.backends.cudnn.benchmark = config.CUDNN.BENCHMARK # we will write the model under outputs / config_file_name / model_dir config_file_name = "default_config" if not cfg else cfg.split("/")[-1].split(".")[0] # Fix random seeds: torch.manual_seed(config.SEED) if torch.cuda.is_available(): torch.cuda.manual_seed_all(config.SEED) np.random.seed(seed=config.SEED) # Augmentation: basic_aug = Compose( [ Normalize(mean=(config.TRAIN.MEAN,), std=(config.TRAIN.STD,), max_pixel_value=1), PadIfNeeded( min_height=config.TRAIN.PATCH_SIZE, min_width=config.TRAIN.PATCH_SIZE, border_mode=config.OPENCV_BORDER_CONSTANT, always_apply=True, mask_value=255, value=0, ), Resize( config.TRAIN.AUGMENTATIONS.RESIZE.HEIGHT, config.TRAIN.AUGMENTATIONS.RESIZE.WIDTH, always_apply=True, ), PadIfNeeded( min_height=config.TRAIN.AUGMENTATIONS.PAD.HEIGHT, min_width=config.TRAIN.AUGMENTATIONS.PAD.WIDTH, border_mode=config.OPENCV_BORDER_CONSTANT, always_apply=True, mask_value=255, ), ] ) if config.TRAIN.AUGMENTATION: train_aug = Compose([basic_aug, HorizontalFlip(p=0.5)]) val_aug = basic_aug else: train_aug = val_aug = basic_aug # Training and Validation Loaders: TrainPatchLoader = get_patch_loader(config) logging.info(f"Using {TrainPatchLoader}") train_set = TrainPatchLoader( config.DATASET.ROOT, config.DATASET.NUM_CLASSES, split="train", is_transform=True, stride=config.TRAIN.STRIDE, patch_size=config.TRAIN.PATCH_SIZE, augmentations=train_aug, #augmentations=Resize(config.TRAIN.AUGMENTATIONS.RESIZE.HEIGHT, config.TRAIN.AUGMENTATIONS.RESIZE.WIDTH, always_apply=True), debug=True ) logger.info(train_set) n_classes = train_set.n_classes val_set = TrainPatchLoader( config.DATASET.ROOT, config.DATASET.NUM_CLASSES, split="val", is_transform=True, stride=config.TRAIN.STRIDE, patch_size=config.TRAIN.PATCH_SIZE, augmentations=val_aug, #augmentations=Resize(config.TRAIN.AUGMENTATIONS.RESIZE.HEIGHT, config.TRAIN.AUGMENTATIONS.RESIZE.WIDTH, always_apply=True), debug=True ) logger.info(val_set) if debug: logger.info("Running in debug mode..") train_set = data.Subset(train_set, range(config.TRAIN.BATCH_SIZE_PER_GPU*config.NUM_DEBUG_BATCHES)) val_set = data.Subset(val_set, range(config.VALIDATION.BATCH_SIZE_PER_GPU)) train_loader = data.DataLoader( train_set, batch_size=config.TRAIN.BATCH_SIZE_PER_GPU, num_workers=config.WORKERS, shuffle=True ) val_loader = data.DataLoader( val_set, batch_size=config.VALIDATION.BATCH_SIZE_PER_GPU, num_workers=1 ) # config.WORKERS) # Model: model = getattr(models, config.MODEL.NAME).get_seg_model(config) device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) # Optimizer and LR Scheduler: optimizer = torch.optim.SGD( model.parameters(), lr=config.TRAIN.MAX_LR, momentum=config.TRAIN.MOMENTUM, weight_decay=config.TRAIN.WEIGHT_DECAY, ) epochs_per_cycle = config.TRAIN.END_EPOCH // config.TRAIN.SNAPSHOTS snapshot_duration = epochs_per_cycle * len(train_loader) if not debug else 2 * len(train_loader) scheduler = CosineAnnealingScheduler( optimizer, "lr", config.TRAIN.MAX_LR, config.TRAIN.MIN_LR, cycle_size=snapshot_duration ) # Tensorboard writer: summary_writer = create_summary_writer(log_dir=path.join(output_dir, "logs")) # class weights are inversely proportional to the frequency of the classes in the training set class_weights = torch.tensor(config.DATASET.CLASS_WEIGHTS, device=device, requires_grad=False) # Loss: criterion = torch.nn.CrossEntropyLoss(weight=class_weights, ignore_index=255, reduction="mean") # Ignite trainer and evaluator: trainer = create_supervised_trainer(model, optimizer, criterion, prepare_batch, device=device) transform_fn = lambda output_dict: (output_dict["y_pred"].squeeze(), output_dict["mask"].squeeze()) evaluator = create_supervised_evaluator( model, prepare_batch, metrics={ "nll": Loss(criterion, output_transform=transform_fn), "pixacc": pixelwise_accuracy(n_classes, output_transform=transform_fn, device=device), "cacc": class_accuracy(n_classes, output_transform=transform_fn), "mca": mean_class_accuracy(n_classes, output_transform=transform_fn), "ciou": class_iou(n_classes, output_transform=transform_fn), "mIoU": mean_iou(n_classes, output_transform=transform_fn), }, device=device, ) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) # Logging: trainer.add_event_handler( Events.ITERATION_COMPLETED, logging_handlers.log_training_output(log_interval=config.PRINT_FREQ), ) trainer.add_event_handler(Events.EPOCH_COMPLETED, logging_handlers.log_lr(optimizer)) # Tensorboard and Logging: trainer.add_event_handler(Events.ITERATION_COMPLETED, tensorboard_handlers.log_training_output(summary_writer)) trainer.add_event_handler(Events.ITERATION_COMPLETED, tensorboard_handlers.log_validation_output(summary_writer)) # add specific logger which also triggers printed metrics on training set @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): evaluator.run(train_loader) tensorboard_handlers.log_results(engine, evaluator, summary_writer, n_classes, stage="Training") logging_handlers.log_metrics(engine, evaluator, stage="Training") # add specific logger which also triggers printed metrics on validation set @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(val_loader) tensorboard_handlers.log_results(engine, evaluator, summary_writer, n_classes, stage="Validation") logging_handlers.log_metrics(engine, evaluator, stage="Validation") # dump validation set metrics at the very end for debugging purposes if engine.state.epoch == config.TRAIN.END_EPOCH and debug: fname = f"metrics_{config_file_name}_{config.TRAIN.MODEL_DIR}.json" metrics = evaluator.state.metrics out_dict = {x: metrics[x] for x in ["nll", "pixacc", "mca", "mIoU"]} with open(fname, "w") as fid: json.dump(out_dict, fid) log_msg = " ".join(f"{k}: {out_dict[k]}" for k in out_dict.keys()) logging.info(log_msg) # Checkpointing: snapshotting trained models to disk checkpoint_handler = SnapshotHandler( output_dir, config.MODEL.NAME, extract_metric_from("mIoU"), lambda: (trainer.state.iteration % snapshot_duration) == 0, ) evaluator.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {"model": model}) logger.info("Starting training") trainer.run(train_loader, max_epochs=config.TRAIN.END_EPOCH, epoch_length=len(train_loader), seed=config.SEED) summary_writer.close()
16,855
def main_xss(start_url, proxy=None, agent=None, **kwargs): """ main attack method to be called """ tamper = kwargs.get("tamper", None) verbose = kwargs.get("verbose", False) batch = kwargs.get("batch", False) force = kwargs.get("force_ssl", False) question_msg = ( "it appears that heuristic tests have shown this URL may not be a good " "candidate to perform XSS tests on, would you like to continue anyways" ) if not batch: question = lib.core.common.prompt( question_msg, opts="yN" ) if not lib.core.settings.URL_QUERY_REGEX.match(start_url) else "y" else: question = lib.core.common.prompt( question_msg, opts="yN", default="y" ) if not question.lower().startswith("y"): return try: if tamper: lib.core.settings.logger.info(lib.core.settings.set_color( "tampering payloads with '{}'".format(tamper) )) find_xss_script(start_url) lib.core.settings.logger.info(lib.core.settings.set_color( "loading payloads" )) payloads = __load_payloads() if verbose: lib.core.settings.logger.debug(lib.core.settings.set_color( "a total of {} payloads loaded".format(len(payloads)), level=10 )) lib.core.settings.logger.info(lib.core.settings.set_color( "payloads will be written to a temporary file and read from there" )) filename = create_urls(start_url, payloads, tamper=tamper, verbose=verbose, force=force) lib.core.settings.logger.info(lib.core.settings.set_color( "loaded URL's have been saved to '{}'".format(filename), level=25 )) lib.core.settings.logger.info(lib.core.settings.set_color( "testing for XSS vulnerabilities on host '{}'".format(start_url) )) if proxy is not None: lib.core.settings.logger.info(lib.core.settings.set_color( "using proxy '{}'".format(proxy) )) success = set() with open(filename) as urls: for i, url in enumerate(urls.readlines(), start=1): url = url.strip() payload = find_xss_script(url) try: result = scan_xss(url, proxy=proxy, agent=agent) if verbose: lib.core.settings.logger.info(lib.core.settings.set_color( "trying payload '{}'".format(payload) )) if result[0] != "sqli" and result[0] is True: success.add(url) if verbose: lib.core.settings.logger.debug(lib.core.settings.set_color( "payload '{}' appears to be usable".format(payload), level=15 )) elif result[0] is "sqli": if i <= 1: lib.core.settings.logger.error(lib.core.settings.set_color( "loaded URL '{}' threw a DBMS error and appears to be injectable, test for " "SQL injection, backend DBMS appears to be '{}'".format( url, result[1] ), level=40 )) else: if verbose: lib.core.settings.logger.error(lib.core.settings.set_color( "SQL error discovered", level=40 )) else: if verbose: lib.core.settings.logger.debug(lib.core.settings.set_color( "host '{}' does not appear to be vulnerable to XSS attacks with payload '{}'".format( start_url, payload ), level=10 )) except ( requests.exceptions.ConnectionError, requests.exceptions.TooManyRedirects, requests.exceptions.ReadTimeout, requests.exceptions.InvalidURL ): if not payload == "": lib.core.settings.logger.error(lib.core.settings.set_color( "payload '{}' caused a connection error, assuming no good and continuing".format(payload), level=40 )) if len(success) != 0: lib.core.settings.logger.info(lib.core.settings.set_color( "possible XSS scripts to be used:", level=25 )) lib.core.settings.create_tree(start_url, list(success)) else: lib.core.settings.logger.error(lib.core.settings.set_color( "host '{}' does not appear to be vulnerable to XSS attacks".format(start_url), level=40 )) question_msg = "would you like to keep the created URLs saved for further testing" if not batch: save = lib.core.common.prompt( question_msg, opts="yN" ) else: save = lib.core.common.prompt( question_msg, opts="yN", default="n" ) if save.lower().startswith("n"): os.remove(filename) else: os.remove(filename) except KeyboardInterrupt: if not lib.core.common.pause(): lib.core.common.shutdown()
16,856
def _np_copy(a, out=None): """ Return an array copy of the given object. Parameters ---------- a : ndarray Input data. out : ndarray or None, optional Alternative output array in which to place the result. It must have the same shape and dtype as the expected output. Returns ------- arr : ndarray Array interpretation of `a`. Notes ------- This function differs from the original `numpy.copy <https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - Does not support "order" parameter. Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when ``x`` is modified, ``y`` is also modified, but not ``z``: >>> x[0] = 10 >>> x[0] == y[0] array([1.]) >>> x[0] == z[0] array([0.]) """ pass
16,857
def root(tmpdir): """Return a pytest temporary directory""" return tmpdir
16,858
def _check_storage(log_fn: tp.Callable) -> bool: """See if the storage system is alive.""" from app.crud.core import ready try: log_fn('Attempting to contact storage system', depth=1) result = ready() return result except Exception as ex: log_fn(ex, level=logging.WARN, depth=1) return False
16,859
def ignore_ip_addresses_rule_generator(ignore_ip_addresses): """ generate tshark rule to ignore ip addresses Args: ignore_ip_addresses: list of ip addresses Returns: rule string """ rules = [] for ip_address in ignore_ip_addresses: rules.append("-Y ip.dst != {0}".format(ip_address)) return rules
16,860
def readmission(aFileName): """ Load a mission from a file into a list. The mission definition is in the Waypoint file format (http://qgroundcontrol.org/mavlink/waypoint_protocol#waypoint_file_format). This function is used by upload_mission(). """ print "\nReading mission from file: %s" % aFileName cmds = vehicle.commands missionlist=[] with open(aFileName) as f: for i, line in enumerate(f): if i==0: if not line.startswith('QGC WPL 110'): raise Exception('File is not supported WP version') else: linearray=line.split('\t') ln_index=int(linearray[0]) ln_currentwp=int(linearray[1]) ln_frame=int(linearray[2]) ln_command=int(linearray[3]) ln_param1=float(linearray[4]) ln_param2=float(linearray[5]) ln_param3=float(linearray[6]) ln_param4=float(linearray[7]) ln_param5=float(linearray[8]) ln_param6=float(linearray[9]) ln_param7=float(linearray[10]) ln_autocontinue=int(linearray[11].strip()) cmd = Command( 0, 0, 0, ln_frame, ln_command, ln_currentwp, ln_autocontinue, ln_param1, ln_param2, ln_param3, ln_param4, ln_param5, ln_param6, ln_param7) missionlist.append(cmd) return missionlist
16,861
def remove_stop_words(words): """Remove all stop words. Args: words (list): The list of words Returns: list: An updated word list with stopwords removed. """ # http://stackoverflow.com/questions/5486337/ # how-to-remove-stop-words-using-nltk-or-python return [w for w in words if w.lower() not in stopwords.words('english')]
16,862
def plotSpikes(spkt,spkid=0,newFigure=False,color='b'): """Plot spikes instants.""" start_plot = time.time() doPlot = False #if len(spkt[:,:]) > 0: print "\n Plotting Raster..." if newFigure: plt.figure() if len(spkt.shape)==2 and spkid==0: try: for i in range(len(spkt[:,0])): plt.plot(spkt[i,:], np.ones(len(spkt[i,:]))*i, color+'|', markeredgewidth=1.5) except IndexError: print("\n*****\n\nWarning: 'spkt' has no length, aparently no spikes were fired.\n\n*****\n") else: doPlot = True elif len(spkt.shape)==1 and spkid is not 0: try: plt.plot(spkt,spkid, color+'|', markeredgewidth=1.5) except IndexError: print("\n*****\n\nWarning: 'spkt' has no length, aparently no spikes were fired.\n\n*****\n") else: doPlot = True else: print("\n*****\n\nWarning: check 'spkt'.\n\n*****\n") if doPlot: plt.title("Spike Trains") plt.xlabel("Time [ms]") plt.ylabel("# Motor neuron") plt.show() elapsed_time = time.time() - start_plot print(" Done; plotRaster time: %.2f s" %elapsed_time) else: elapsed_time = time.time() - start_plot print(" Done with warnings; plotRaster time: %.2f s" %elapsed_time)
16,863
def table_triples(tables, include_type=True): """Make triples based on table predictions""" for table in tables: table["triples"] = list(triples.yield_triples(table, include_type=True)) yield table
16,864
def task_gather_quiver(self): """We wrote the "gathered" files during task construction. """ job_done_fn = fn(self.job_done) touch(job_done_fn)
16,865
def synthetic_costs_1(): """ Uncertainty in 5 points at [0,0] on X1 can cause it to flip to [1,0] if needed to misclassify Uncertainty in 1 point at [1,1] on X2 can cause it to flip to [1,0] if needed to misclassify All other points certain """ costs = np.array([[1,4],[1,4],[1,4],[1,4],[1,4],[4,4],[4,4], [4,4],[4,4],[4,4], [4,1], [4,4],[4,4]]) return costs
16,866
def task(ctx, config): """ Run all cram tests from the specified paths on the specified clients. Each client runs tests in parallel. Limitations: Tests must have a .t suffix. Tests with duplicate names will overwrite each other, so only the last one will run. For example:: tasks: - ceph: - cram: clients: client.0: - qa/test.t - qa/test2.t] client.1: [qa/test.t] branch: foo You can also run a list of cram tests on all clients:: tasks: - ceph: - cram: clients: all: [qa/test.t] :param ctx: Context :param config: Configuration """ assert isinstance(config, dict) assert 'clients' in config and isinstance(config['clients'], dict), \ 'configuration must contain a dictionary of clients' clients = teuthology.replace_all_with_clients(ctx.cluster, config['clients']) testdir = teuthology.get_testdir(ctx) overrides = ctx.config.get('overrides', {}) refspec = get_refspec_after_overrides(config, overrides) git_url = teuth_config.get_ceph_qa_suite_git_url() log.info('Pulling tests from %s ref %s', git_url, refspec) try: for client, tests in clients.items(): (remote,) = ctx.cluster.only(client).remotes.keys() client_dir = '{tdir}/archive/cram.{role}'.format(tdir=testdir, role=client) remote.run( args=[ 'mkdir', '--', client_dir, run.Raw('&&'), 'virtualenv', '{tdir}/virtualenv'.format(tdir=testdir), run.Raw('&&'), '{tdir}/virtualenv/bin/pip'.format(tdir=testdir), 'install', 'cram==0.6', ], ) clone_dir = '{tdir}/clone.{role}'.format(tdir=testdir, role=client) remote.run(args=refspec.clone(git_url, clone_dir)) for test in tests: assert test.endswith('.t'), 'tests must end in .t' remote.run( args=[ 'cp', '--', os.path.join(clone_dir, test), client_dir, ], ) with parallel() as p: for role in clients.keys(): p.spawn(_run_tests, ctx, role) finally: for client, tests in clients.items(): (remote,) = ctx.cluster.only(client).remotes.keys() client_dir = '{tdir}/archive/cram.{role}'.format(tdir=testdir, role=client) test_files = set([test.rsplit('/', 1)[1] for test in tests]) # remove test files unless they failed for test_file in test_files: abs_file = os.path.join(client_dir, test_file) remote.run( args=[ 'test', '-f', abs_file + '.err', run.Raw('||'), 'rm', '-f', '--', abs_file, ], ) # ignore failure since more than one client may # be run on a host, and the client dir should be # non-empty if the test failed remote.run( args=[ 'rm', '-rf', '--', '{tdir}/virtualenv'.format(tdir=testdir), clone_dir, run.Raw(';'), 'rmdir', '--ignore-fail-on-non-empty', client_dir, ], )
16,867
def example_one(request, context=None): """ Return web page for example one. """ if context is None: context = {} session = request.session.get("ApiSession", None) if session is None: return no_session_set(request) session = Session.deserialize(session) origin_codes = get_codes_with_filter(session, REPORTING_AIRPORT_CODE, 0) context.update( { "title": "Example 1", "active": "example_one", "origin_codes": origin_codes, "dest_codes": EXAMPLE_ONE_DESTS, } ) return render(request, "example_one.html", context)
16,868
def decode(cls: Any, value: bytes) -> Any: """Decode value in katcp message to a type. If a union type is provided, the value must decode successfully (i.e., without raising :exc:`ValueError`) for exactly one of the types in the union, otherwise a :exc:`ValueError` is raised. Parameters ---------- cls The target type, or a :class:`typing.Union` of types. value Raw (but unescaped) value in katcp message Raises ------ ValueError if `value` does not have a valid value for `cls` TypeError if `cls` is not a registered type or union of registered types. See also -------- :func:`register_type` """ union_args = _union_args(cls) if union_args is not None: values = [] # type: List[Any] for type_ in union_args: try: values.append(decode(type_, value)) except ValueError: pass if len(values) == 1: return values[0] elif not values: raise ValueError('None of the types in {} could decode {!r}'.format( cls, value)) else: raise ValueError('{!r} is ambiguous for {}'.format(value, cls)) else: return get_type(cls).decode(cls, value)
16,869
def ensure_parent(path): """Ensure that the parent directory of the given path exists. """ parent = os.path.dirname(path) if parent and not os.path.exists(parent): os.makedirs(parent)
16,870
def test_HarSanitizer_load_wordlist(): """Test successful HarSantizer.load_wordlist()""" hs = HarSanitizer() word_list = hs.load_wordlist(wordlist=['word1', u'word2', 'word3']) assert isinstance(word_list, list) assert word_list[2] == "word3"
16,871
def load_f0(fhandle: TextIO) -> annotations.F0Data: """Load an ikala f0 annotation Args: fhandle (str or file-like): File-like object or path to f0 annotation file Raises: IOError: If f0_path does not exist Returns: F0Data: the f0 annotation data """ lines = fhandle.readlines() f0_midi = np.array([float(line) for line in lines]) f0_hz = librosa.midi_to_hz(f0_midi) * (f0_midi > 0) confidence = (f0_hz > 0).astype(float) times = (np.arange(len(f0_midi)) * TIME_STEP) + (TIME_STEP / 2.0) f0_data = annotations.F0Data(times, f0_hz, confidence) return f0_data
16,872
def excepthook(exc_type, exc_value, exc_traceback): """Handle unhandled exceptions, default exception hook.""" if isinstance(exc_value, OSError): # Handle OSError differently by giving more details. message = ( f'Error inesperado del sistema operativo.\n' '[' f'{exc_type.__name__}' f'{f"/{errno.errorcode[exc_value.errno]}" if exc_value.errno is not None else ""}' f'{f"/Win{exc_value.winerror}" if exc_value.winerror is not None else ""}' ']\n' f'{exc_value.strerror}.\n' f'{f"«{exc_value.filename}»" if exc_value.filename is not None else ""}' f'{f" -> «{exc_value.filename2}»" if exc_value.filename2 is not None else ""}' ) else: message = f'Excepción {exc_type.__name__} sin gestionar.\n{exc_value}' message += '\n' message += '\n'.join([f'Línea {frame.lineno}: {frame.line}' for frame in tb.extract_tb(exc_traceback)]).rstrip() error(message)
16,873
def media_to_csv(media: Union[List[Media], Movie, LimitedSeries, Podcast, TVShow]): """Exports the specified media into a CSV file :param media: The Media object to convert into CSV """ __media_to(media, as_csv=True)
16,874
def remove_fallen(lst): """removes fallen orcs from a list""" return [x for x in lst if x.standing]
16,875
def register(linter): """required method to auto register this checker""" linter.register_checker(ExceptionsChecker(linter))
16,876
def gc_resnet152(num_classes): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(GCBottleneck, [3, 8, 36, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
16,877
def consume_entropy(generated_password: str, quotient: int, max_length: int) -> str: """ Takes the entropy (quotient) and the length of password (max_length) required and uses the remainder of their division as the index to pick a character from the characters list. This process occurs recursively until the password is of the required length. """ if len(generated_password) >= max_length: return generated_password quotient, remainder = divmod(quotient, len(characters)) generated_password += characters[remainder] return consume_entropy(generated_password, quotient, max_length)
16,878
def randomNormal(n, height, baseshape=[]): """ Generate random positions, normally distributed along z. Base shape can be: [] (1D sim) [Ly] (2D sim) [Lx, Ly] (3D sim) Where Lx, Ly are lengths along x, y. """ nDim = len(baseshape) + 1 pos = np.zeros([n, nDim]) z = np.random.randn(n) z *= height pos[:,-1] = z for i in range(nDim - 1): pos[:, i] = np.random.rand(n) * baseshape[i] return pos
16,879
def index(model_name=None): """ Index page. """ registered_models = mdb.registered_models if model_name: model = next((m for m in registered_models if m.__name__.lower() == model_name.lower()), None) elif registered_models: model = registered_models[0] if not model: abort(404) model_name = model.__name__.lower() # 获取指定model的索引 index_dict = OrderedDict({'_id': ObjectId}) for i in model.indexes: value = i['fields'] if isinstance(value, str): index_dict[value] = model._valid_paths[value] elif isinstance(value, list): for val in value: if isinstance(val, tuple): field, direction = val index_dict[field] = model._valid_paths[field] else: index_dict[val] = model._valid_paths[val] # 查询条件 ''' 20161123/Samuel/暂时不使用populate_model来生成查询条件 # 调用populate_model将查询条件转化为数据对象, 会自动转换查询条件的数据类型 search_record = populate_model(request.args, model, False) # 将数据对象中非空的值提取出来, 构造成一个mongoDB查询的条件 condition = {f: v for f, v in search_record.iteritems() if v} ''' condition = {} for k, t in index_dict.items(): v = request.args.get(k, None) if v: cv = convert_from_string(v, t) condition[k.replace('.$', '')] = cv # 翻页支持 page = int(request.args.get('_p', 1)) count = model.count(condition) start = (page - 1) * PAGE_COUNT # 返回结果只显示索引中的字段 projection = {k.replace('.$', ''): True for k in index_dict} current_app.logger.debug( 'There are %s %ss for condition %s, with projection %s' % (count, model_name, condition, projection)) # TODO: 排序 records = model.find(condition, projection, start, PAGE_COUNT) pagination = Pagination(page, PAGE_COUNT, count) # current_app.logger.debug('Indexed fields for %s are %s' % (model_name, index_dict)) return render_template('/crud/index.html', models=registered_models, model=model, index_dict=index_dict, records=records, pagination=pagination)
16,880
def download(names, tempdir=None, extra_args=None): """Gather pip packages in `tempdir` Arguments: names (list): Names of packages to install, in pip-format, e.g. ["six==1"] tempdir (str, optional): Absolute path to where pip packages go until they've been installed as Rez packages, defaults to the cwd extra_args (list, optional): Additional arguments, typically only relevant to pip rather than pipz Returns: distributions (list): Downloaded distlib.database.InstalledDistribution Raises: OSError: On anything gone wrong with subprocess and pip """ extra_args = extra_args or [] assert isinstance(names, (list, tuple)), ( "%s was not a tuple or list" % names ) assert all(isinstance(name, _basestring) for name in names), ( "%s contained non-string" % names ) tempdir = tempdir or os.getcwd() # Build pip commandline cmd = [ "python", "-m", "pip", "install", "--target", tempdir, # Only ever consider wheels, anything else is ancient "--use-pep517", # Handle case where the Python distribution used alongside # pip already has a package installed in its `site-packages/` dir. "--ignore-installed", # rez pip users don't have to see this "--disable-pip-version-check", ] for extra_arg in extra_args: if extra_arg in cmd: print_warning("'%s' argument ignored, used internally" % extra_arg) continue cmd += [extra_arg] cmd += names call(cmd) return sorted( find_distributions(tempdir), # Upper-case characters typically come first key=lambda d: d.key )
16,881
def _parseCellContentsSection(fileAsList, lineIdx): """ returns fractCoords from Cell Contents section of castep Args: fileAsList(str list): Each entry is 1 line of the castep input file lineIdx(int): The index containing the line "cell contents" Returns fractCoords: nx4 iter with each containing [x,y,z,symbol]. Used to init UnitCell objects """ finished = False while not finished: currLine = fileAsList[lineIdx].strip() if "Fractional coord" in fileAsList[lineIdx]: lineIdx = lineIdx + 3 fractCoords = list() while "xx" not in currLine: currLine = fileAsList[lineIdx].strip() splitLine = currLine.split() if len(splitLine) == 1: break currCoords = [float(x) for x in splitLine[3:6]] + [splitLine[1]] fractCoords.append(currCoords) lineIdx = lineIdx + 1 break else: lineIdx = lineIdx+1 return fractCoords, lineIdx
16,882
def dev_update(obj, directory): """Update plugin parts which have changed since previous update. Optionally pass in the DIRECTORY of the plugin (defaults to cwd). """ directory = Path(directory) plugin_toml_path = directory / "plugin.toml" if not plugin_toml_path.exists(): lib.log_error("Not in a plugin directory.") sys.exit(1) with get_modified_plugin_directories( directory, reset=obj["force"] ) as modified_plugin_directories: if modified_plugin_directories: with lib.temp_directory() as temp_directory: shutil.copy(plugin_toml_path, temp_directory) for modified_directory in modified_plugin_directories: lib.log(f"Including: {modified_directory}") shutil.copytree( directory / modified_directory, temp_directory / modified_directory, ) api = lib.get_api(**obj) lib.run_plugins_task( api, "dev_update_plugin", dict(), "Uploading to server", data=lib.create_targz_as_bytes(temp_directory), ) else: lib.log("Nothing to do.")
16,883
def write_tester(format, layer, out_file): """Write plate with these keys to this file.""" plato = FORMAT_CLASSES[format]( out_file, width_in_units=15, height_in_units=2, unit_mm=19, case_thickness=3.5, padding=1, corner_radius=2, kerf=0.18) plato.draw_outside() for i in range(15): k = (i - 4) * 0.05 # Range from -0.20 to +0.50 key = Key(str(k), (i, 0), (1, 2)) if layer in ['plate', 'combined']: plato.draw_cherry_mx_switches([key], kerf=k) if layer in ['under', 'combined']: plato.draw_cherry_mx_under_switches([key], kerf=k) if layer in ['clips']: plato.draw_cherry_mx_switch_clips([key]) if layer in ['caps', 'combined']: plato.draw_key_caps([key]) if layer in ['caps', 'combined', 'clips']: plato.draw_screw_heads(8, indent=2) plato.draw_screws(8, indent=2) plato.save()
16,884
def get_avg_no_of_feat_values(contents): """ Helper to calculate numbers of different values of categorical features, averaged for all features """ total = 0 for i in range(0, len(contents[0])): total += len(set([x[i] for x in contents])) return float(total) / float(len(contents[0]))
16,885
def plot_trend_line(axes_, xd, yd, c='r', alpha=1, cus_loc = None, text_color='black', return_params=False, extra_text='', t_line_1_1=True, fit_function=None, fontsize_=12, add_text=True): """Make a line of best fit""" #create clean series x_, y_ = coincidence(xd,yd) if fit_function is not None: params = curve_fit(fit_function, x_, y_) print('fitted parameters') print(params[0]) fit_line_x = np.arange(int(np.nanmin(x_)),int(np.nanmax(x_))+1,.1) plotting_par_list = [fit_line_x] for fit_par in params[0]: plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) axes_.plot(fit_line_x, fit_line_y, c, alpha=alpha) # calculate R2 plotting_par_list = [x_] params_str_ = '' for i_, fit_par in enumerate(params[0]): if extra_text == '': params_str_ = params_str_ + 'fit parameters ' + str(i_+1) + ': ' + '$%0.2f$' % (fit_par) + '\n' else: params_str_ = params_str_ + extra_text + '$%0.2f$' % (fit_par) + '\n' plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) residuals = y_ - fit_line_y ss_res = np.sum(residuals**2) ss_tot = np.sum((y_ - np.mean(y_))**2) Rsqr = float(1 - (ss_res / ss_tot)) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) error_text = '$R^2 = %0.2f$' % Rsqr if cus_loc is None: axes_.text(x_1, y_2 , params_str_ + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color, bbox={'facecolor': 'white', 'edgecolor': 'none'}) else: axes_.text(cus_loc[0], cus_loc[1] , params_str_ + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color, bbox={'facecolor': 'white', 'edgecolor': 'none'}) else: # Calculate trend line params = np.polyfit(x_, y_, 1) intercept = params[-1] slope = params[-2] minxd = np.nanmin(x_) maxxd = np.nanmax(x_) xl = np.array([minxd, maxxd]) yl = slope * xl + intercept print('fitted parameters') print(slope, intercept) # Plot trend line axes_.plot(xl, yl, c, alpha=alpha) # Calculate R Squared poly_1d = np.poly1d(params) ybar = np.sum(y_) / len(y_) ssreg = np.sum((poly_1d(x_) - ybar) ** 2) sstot = np.sum((y_ - ybar) ** 2) Rsqr = float(ssreg / sstot) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) if intercept >= 0: if extra_text=='': equat_text = '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: if extra_text=='': equat_text = '$Y = %0.2f*x %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x %0.2f$' % (slope,intercept) error_text = '$R^2 = %0.2f$' % Rsqr if add_text: if cus_loc is None: axes_.text(x_1, y_2 , equat_text + '\n' + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color) else: axes_.text(cus_loc[0], cus_loc[1] , equat_text + '\n' + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color) # plot 1:1 line if true if t_line_1_1: xy_min = np.min([np.nanmin(x_),np.nanmin(y_)]) xy_max = np.max([np.nanmax(x_),np.nanmax(y_)]) axes_.plot([xy_min, xy_max], [xy_min, xy_max], 'k--') if return_params: return Rsqr, params else: return Rsqr
16,886
def get_oil_type_atb( oil_attrs, origin, destination, transport_data_dir, random_generator ): """Randomly choose type of cargo oil spilled from an ATB (articulated tug and barge) based on AIS track origin & destination, and oil cargo attribution analysis. Unlike traditional tank barges, the vessels with 'atb' designation are known oil-cargo vessels. We used three different data sources to verify: AIS, Dept of Ecology's fuel transfer records and Charlie Costanzo's ATB list. Details of traffic can be seen in this google spreadsheet: https://docs.google.com/spreadsheets/d/1dlT0JydkFG43LorqgtHle5IN6caRYjf_3qLrUYqANDY/edit Because of this pre-identification and selection method, we can assume that all ATBs are oil-cargo atbs and that the absence of origin-destination information is due to issues in linking ship tracks and not ambiguity about whether traffic is oil-cargo traffic. :param dict oil_attrs: Oil attribution information from the output of make_oil_attrs.py. :param str or None origin: Origin of AIS track from which spill occurs. :param str or None destination: Destination of AIS track from which spill occurs. :param transport_data_dir: Directory path to marine_transport_data files repository cloned from https://github.com/MIDOSS/marine_transport_data. :type transport_data_dir: :py:class:`pathlib.Path` :param random_generator: PCG-64 random number generator :type random_generator: :py:class:`numpy.random.Generator` :return: Type of oil spilled. :rtype: str """ vessel_type = "atb" # Assign US and CAD origin/destinations from oil_attrs file CAD_origin_destination = oil_attrs["categories"]["CAD_origin_destination"] US_origin_destination = oil_attrs["categories"]["US_origin_destination"] # Get cargo oil type attribution information from oil-type yaml files yaml_file = transport_data_dir / Path(oil_attrs["files"]["CAD_origin"]).name with yaml_file.open("rt") as f: CAD_yaml = yaml.safe_load(f) yaml_file = transport_data_dir / Path(oil_attrs["files"]["WA_destination"]).name with yaml_file.open("rt") as f: WA_in_yaml = yaml.safe_load(f) WA_in_noinfo = _calc_no_info_facilities(WA_in_yaml) yaml_file = transport_data_dir / Path(oil_attrs["files"]["WA_origin"]).name with yaml_file.open("rt") as f: WA_out_yaml = yaml.safe_load(f) WA_out_noinfo = _calc_no_info_facilities(WA_out_yaml) # US_origin is for US as origin yaml_file = transport_data_dir / Path(oil_attrs["files"]["US_origin"]).name with yaml_file.open("rt") as f: US_yaml = yaml.safe_load(f) # US_combined represents the combined import and export of oil yaml_file = transport_data_dir / Path(oil_attrs["files"]["US_combined"]).name with yaml_file.open("rt") as f: USall_yaml = yaml.safe_load(f) yaml_file = transport_data_dir / Path(oil_attrs["files"]["Pacific_origin"]).name with yaml_file.open("rt") as f: Pacific_yaml = yaml.safe_load(f) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # NOTE: these pairs need to be used together for "get_oil_type_cargo" # (but don't yet have error-checks in place): # - "WA_in_yaml" and "destination" # - "WA_out_yaml" and "origin" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if origin in CAD_origin_destination: if origin == "Westridge Marine Terminal": if destination == "U.S. Oil & Refining": oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif destination in US_origin_destination: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif destination in CAD_origin_destination: # assume export within CAD is from Jet fuel storage tanks # as there is a pipeline to Parkland for crude oil oil_type = "jet" else: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) else: if destination in US_origin_destination: # we have better information on WA fuel transfers, # so I prioritize this information source oil_type = get_oil_type_cargo( WA_in_yaml, destination, vessel_type, random_generator ) elif destination == "ESSO Nanaimo Departure Bay": oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) elif destination == "Suncor Nanaimo": oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) else: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif origin in US_origin_destination and origin not in WA_out_noinfo[vessel_type]: if destination == "Westridge Marine Terminal": # Westridge stores jet fuel from US for re-distribution oil_type = "jet" else: oil_type = get_oil_type_cargo( WA_out_yaml, origin, vessel_type, random_generator ) elif ( destination in US_origin_destination and destination not in WA_in_noinfo[vessel_type] ): oil_type = get_oil_type_cargo( WA_in_yaml, destination, vessel_type, random_generator ) elif destination in CAD_origin_destination: if destination == "Westridge Marine Terminal": # Westridge doesn't receive crude for storage oil_type = "jet" else: oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) elif origin == "Pacific": oil_type = get_oil_type_cargo( Pacific_yaml, origin, vessel_type, random_generator ) elif origin == "US": oil_type = get_oil_type_cargo(US_yaml, origin, vessel_type, random_generator) else: # For all other traffic, use a generic fuel attribution from the combined # US import and export oil_type = get_oil_type_cargo(USall_yaml, None, vessel_type, random_generator) return oil_type
16,887
def get_jwt(): """ Get Authorization token and validate its signature against the application's secret key, . """ expected_errors = { KeyError: WRONG_PAYLOAD_STRUCTURE, AssertionError: JWK_HOST_MISSING, InvalidSignatureError: WRONG_KEY, DecodeError: WRONG_JWT_STRUCTURE, InvalidAudienceError: WRONG_AUDIENCE, TypeError: KID_NOT_FOUND } token = get_auth_token() try: jwks_payload = jwt.decode(token, options={'verify_signature': False}) assert 'jwks_host' in jwks_payload jwks_host = jwks_payload.get('jwks_host') key = get_public_key(jwks_host, token) aud = request.url_root payload = jwt.decode( token, key=key, algorithms=['RS256'], audience=[aud.rstrip('/')] ) set_ctr_entities_limit(payload) return payload except tuple(expected_errors) as error: message = expected_errors[error.__class__] raise AuthorizationError(message)
16,888
def start_volume(name, force=False): """ Start a gluster volume name Volume name force Force the volume start even if the volume is started .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' glusterfs.start mycluster """ cmd = "volume start {0}".format(name) if force: cmd = "{0} force".format(cmd) volinfo = info(name) if name not in volinfo: log.error("Cannot start non-existing volume %s", name) return False if not force and volinfo[name]["status"] == "1": log.info("Volume %s already started", name) return True return _gluster(cmd)
16,889
def hist_equal(img, z_max=255): """ 直方图均衡化,将暗的地方变量,亮的地方变暗 :param img: :param z_max: 原图像最亮的地方减去最暗的地方的值 :return: """ if len(img.shape) == 2: height, width = img.shape n_chan = 1 elif len(img.shape) == 3: height, width, n_chan = img.shape print(img[:, :, 0].shape) # H, W = img.shape # S is the total of pixels n_pixle = height * width out = img.copy() sum_h = 0. if n_chan == 1: for i in range(1, 255): ind = np.where(img == i) sum_h += len(img[ind]) z_prime = z_max / n_pixle * sum_h out[ind] = z_prime else: for c in range(n_chan): tmp_img = img[:, :, c] tmp_out = tmp_img.copy() for i in range(1, 255): ind = np.where(tmp_img == i) sum_h += len(tmp_img[ind]) z_prime = z_max / n_pixle * sum_h tmp_out[ind] = z_prime out[:, :, c] = tmp_out out = out.astype(np.uint8) return out
16,890
def combine(*indices_lists): """ Return all the combinations from lists of indices :param indices_lists: each argument is a list of indices (it must be a list) :return: The combined list of indices """ if len([*indices_lists]) > 1: return [i for i in product(*indices_lists)] else: return set(*indices_lists)
16,891
def get_endpoint(query): """ Regex to parse domain and API endpoint from a SoQL query via FROM statement :param query: str, SoQL-formatted query :return url, endpoint, query: str objects, domain, endpoint, and original query sans FROM statement """ url = re.search(r'\w+\.\w+\.(\w{2,3})', query, flags=re.I) endpoint = re.search(r'(\w{4}-\w{4})\.json', query, flags=re.I) query = re.sub(r'from( +|\t+|\n+).+', '', query, flags=re.I) return url.group(), endpoint.group(1), query
16,892
def load_data(filename: str) ->pd.DataFrame: """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename) df.fillna(0, inplace=True) df[["id", "price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "floors", "waterfront", "view", "condition", "grade", "sqft_above", "sqft_basement", "yr_built", "yr_renovated", "zipcode", "lat", "long", "sqft_living15", "sqft_lot15"]] = df[ ["id", "price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "floors", "waterfront", "view", "condition", "grade", "sqft_above", "sqft_basement", "yr_built", "yr_renovated", "zipcode", "lat", "long", "sqft_living15", "sqft_lot15"]].apply(pd.to_numeric) df['date'] = df['date'].astype("str").apply(lambda s: s[:8]) df['date'] = df['date'].astype('float64') df = df[ (df["id"] >= 1) & (df["date"] >= 20000000) & (df["date"] <= 20220000) & (df["price"] >= 50000) & (df["price"] <= 10000000) & (df["bedrooms"] >= 0) & (df["bedrooms"] <= 15) & (df["bathrooms"] >= 0) & (df["bathrooms"] <= 12) & (df["sqft_living"] >= 200) & (df["sqft_living"] <= 100000) & (df["sqft_lot"] >= 450) & (df["sqft_lot"] <= 1800000) & (df["floors"] >= 1) & (df["floors"] <= 4) & (df["waterfront"] == 0) | (df["waterfront"] == 1) & (df["view"] >= 0) & (df["view"] <= 4) & (df["condition"] >= 1) & (df["condition"] <= 5) & (df["grade"] >= 1) & (df["grade"] <= 13) & (df["sqft_above"] >= 250) & (df["sqft_above"] <= 10000) & (df["sqft_basement"] >= 0) & (df["sqft_basement"] <= 5000) & (df["yr_built"] >= 1800) & (df["yr_built"] <= 2022) & (df["yr_renovated"] >= 0) & (df["yr_renovated"] <= 2022) & (df["zipcode"] >= 98000) & (df["zipcode"] <= 99000) & (df["lat"] >= 47) & (df["lat"] <= 48) & (df["long"] >= -123) & (df["long"] <= -121) & (df["sqft_living15"] >= 300) & (df["sqft_living15"] <= 10000) & (df["sqft_lot15"] >= 300) & (df["sqft_lot15"] <= 1000000) ] # inserting the "yr_renovated" col the last year in which the building had had any renovation. df["yr_renovated"] = df[["yr_built", "yr_renovated"]].max(axis=1) prices_by_zipcode = pd.DataFrame({'zipcode': df['zipcode'], 'price': df['price']}) prices_by_zipcode = prices_by_zipcode.groupby('zipcode').mean() prices_by_zipcode.rename(columns={'price': 'mean_price'}, inplace=True) df = pd.merge(df, prices_by_zipcode, on='zipcode') df = df.drop(['id', 'zipcode', 'lat', 'long'], 1) return df
16,893
def expect_returns( signature: Signature, *types: Optional[Type], allow_unannotated: bool = True, ): """ Check if the function signature returns one of the given types """ if signature.return_annotation == Signature.empty: if not allow_unannotated: raise InvalidReturnType(f"return type must be annotated") elif signature.return_annotation not in types: formatted = ["None" if t is None else t.__name__ for t in types] raise InvalidArgument( f"expected return type to be one of {formatted}, got {signature.return_annotation.__name__!r}" )
16,894
def version_match(required, candidate): """Test that an available version is a suitable match for a required version. To be suitable a version must be of the same major version as required and be at least a match in minor/patch level. eg. 3.3 is a match for a required 3.1 but 4.1 is not. :param tuple required: the version that must be met. :param tuple candidate: the version to test against required. :returns: True if candidate is suitable False otherwise. :rtype: bool """ return _discover.version_match(required, candidate)
16,895
def get_last_upgraded_at(module: base.Module) -> Optional[datetime.datetime]: """ Get the timestamp of the last time this module was upgraded. """ return settings.get_last_upgraded_at(module.name)
16,896
def parse_header_file(header_file): """Parse a single header file to get all defined constants out of it.""" resolved_values = collections.OrderedDict() raw_matches = {} with open(header_file, "r") as fd: all_file_lines = collections.OrderedDict( [ (lineno, line.strip()) for lineno, line in enumerate(fd, start=1) if not line.isspace() ] ) line_iterator = iter(all_file_lines.items()) for lineno, line in line_iterator: line, _comment = clean_line(line) # First check to see if this is a #define statement match = re.match(r"^#define\s+UC_(?P<id>\w+)\s+(?P<value>.*)$", line) if match: name = "UC_" + match.group("id") raw_value = match.group("value") try: resolved_values[name] = ast.literal_eval(raw_value) except (NameError, SyntaxError, ValueError): raw_matches[name] = raw_value continue # Not a #define; see if it's an enum. if "enum uc_" not in line.lower(): continue # This is the beginning of an enum. Subsequent lines until the closing `}` are # part of it. We need to keep track because enums without an explicitly defined # value are incremented by one from the previous enum value. next_enum_value = 0 enum_start_line = lineno while True: lineno, line = next(line_iterator, (None, None)) if line is None: # Hit EOF before we hit the end of the enum. That's odd. logging.warning( "Hit EOF before end of enum beginning on line %d.", enum_start_line ) break elif "}" in line: # Hit the end of the enum. break line, _comment = clean_line(line) # Sometimes we have multiple enum definitions on one line. We need to handle # these one at a time. Splitting the line by commas should be enough to # separate out multiple expressions. for expression in line.strip(",").split(","): expression = expression.strip() if not expression: continue # See if this enum value is being assigned rather than implicit. match = re.match(r"^UC_(?P<id>\w+)\s*=\s*(?P<expr>.+)$", expression) if match: # Enum value is assigned. Whatever's on the right-hand side, any # names it references must already be defined. name = "UC_" + match.group("id") raw_value = match.group("expr") try: processed_value = eval(raw_value, resolved_values) except NameError as nerr: logging.error( "Failed to resolve %r on line %d: %s", name, lineno, nerr ) continue resolved_values[name] = processed_value next_enum_value = processed_value + 1 else: # Not an explicit assignment. Expect this expression to be just a # single identifier. match = re.match(r"^UC_(\w+)$", expression) if match: name = match.group(1) resolved_values["UC_" + name] = next_enum_value next_enum_value += 1 else: raise SyntaxError( "Couldn't match any expression type to: %r" % expression ) for name, raw_value in raw_matches.items(): # Convert any remaining values that are still unresolved. This usually only # applies to #define macros that reference other constants. if name not in resolved_values: resolved_values[name] = eval(raw_value, resolved_values) return resolved_values
16,897
def get_linux_distribution(get_full_name, supported_dists): """Abstract platform.linux_distribution() call which is deprecated as of Python 3.5 and removed in Python 3.7""" try: supported = platform._supported_dists + (supported_dists,) osinfo = list( platform.linux_distribution( full_distribution_name=get_full_name, supported_dists=supported ) ) if not osinfo or osinfo == ['', '', '']: return get_linux_distribution_from_distro(get_full_name) full_name = platform.linux_distribution()[0].strip() osinfo.append(full_name) except AttributeError: return get_linux_distribution_from_distro(get_full_name) return osinfo
16,898
def update( name: str, git: bool = False, local: bool = False, url: str = "", head: str = "", tag: str = "", commit_hash: str = "", location: str = "", ): """Update a package """ target_location = ".refl" p = Project.load("project.refl") dependencies = [x for x in p.project.dependencies if x.name == name] dependency: Optional[Package] = None if len(dependencies) > 0: dependency = dependencies[0] if dependency is None: log.error("Could not find the dependency, maybe try with --soft") return if not git and not local: git = Origin.parse(dependency.origin) is Origin.GIT local = Origin.parse(dependency.origin) is Origin.LOCAL if git: url = dependency.options["git_url"] if url is None else url name = git_parse(url).repo if name is None else name origin = Origin.GIT options = GitOptions(git_url=url, head=head, commit_hash=commit_hash, tag=tag) elif local: location = dependency.options["location"] if location is None else location assert name is not None, "Please pass the name of the package: --name <name>" origin = Origin.LOCAL options = LocalOptions(local_url=location) i = InstallPackage(name=name, origin=origin, options=options) i(target_location) # Uninstall the current package u = UninstallPackage(name=name) removed = u(target_location, non_exact=False) p.remove_dependency(name=name) p.add_dependency( name=name, git=git, local=local, url=url, head=head, tag=tag, commit_hash=commit_hash, location=location, )
16,899