content
stringlengths
22
815k
id
int64
0
4.91M
def categorical_onehot_binarizer(feature, feature_scale=None, prefix='columns', dtype='int8'): """Transform between iterable of iterables and a multilabel format, sample is simple categories. Args: feature: pd.Series, sample feature. feature_scale: list, feature categories list. prefix: String to append DataFrame column names. dtype: default np.uint8. Data type for new columns. Only a single dtype is allowed. Returns: Dataframe for onehot binarizer. """ assert not any(feature.isnull()), "`feature' should be not contains NaN" scale = feature.drop_duplicates().tolist() if feature_scale is not None: t = pd.get_dummies(feature.replace({i:'temp_str' for i in set.difference(set(scale), set(feature_scale))}), prefix=prefix, dtype=dtype) if prefix+'_temp_str' in t.columns: t = t.drop([prefix+'_temp_str'], axis=1) for i in set.difference(set(feature_scale), set(scale)): if prefix+'_'+str(i) not in t.columns: t[prefix+'_'+str(i)] = 0 scale = feature_scale t = t[[prefix+'_'+str(i) for i in feature_scale]] else: t = pd.get_dummies(feature, prefix=prefix, dtype=dtype) t = t[[prefix+'_'+str(i) for i in scale]] return t, scale
17,000
def mtp_file_list2(): """ Returns the output of 'mtp-files' as a Python list. Uses subprocess. """ cmd_str = "sudo mtp-files" try: result = subprocess.check_output(shlex.split(cmd_str)) except subprocess.CalledProcessError as e: log.error("Could not execute: %s" % str(e)) return False, None the_files = parse_files(result) return True, the_files
17,001
def test_get_unexisting_hotel_01(): """ Test getting an unexisting hotel. """ last_hotel = client.get("/hotels/last/").json() hotel_id = last_hotel["hotel"]["id"] + 1 expect = { 'detail': "Hotel not found", } response = client.get(f"/hotels/{hotel_id}") assert response.status_code == 404 assert response.json() == expect assert response.json() is not None
17,002
def test_harman_political(): """Test module harman_political.py by downloading harman_political.csv and testing shape of extracted data has 8 rows and 8 columns """ test_path = tempfile.mkdtemp() x_train, metadata = harman_political(test_path) try: assert x_train.shape == (8, 8) except: shutil.rmtree(test_path) raise()
17,003
def add_selfloops(adj_matrix: sp.csr_matrix, fill_weight=1.0): """add selfloops for adjacency matrix. >>>add_selfloops(adj, fill_weight=1.0) # return an adjacency matrix with selfloops # return a list of adjacency matrices with selfloops >>>add_selfloops(adj, adj, fill_weight=[1.0, 2.0]) Parameters ---------- adj_matrix: Scipy matrix or Numpy array or a list of them Single or a list of Scipy sparse matrices or Numpy arrays. fill_weight: float scalar, optional. weight of self loops for the adjacency matrix. Returns ------- Single or a list of Scipy sparse matrix or Numpy matrices. See also ---------- graphgallery.functional.AddSelfloops """ def _add_selfloops(adj, w): adj = eliminate_selfloops(adj) if w: return adj + w * sp.eye(adj.shape[0], dtype=adj.dtype, format='csr') else: return adj if gg.is_listlike(fill_weight): return tuple(_add_selfloops(adj_matrix, w) for w in fill_weight) else: return _add_selfloops(adj_matrix, fill_weight)
17,004
def create_new_profile(ctx): """Create a configuration profile""" create_profile(ctx.obj.config_dir) config_files = load_config_profiles(ctx.obj.config_dir) config = choose_profile(config_files) es_client = setup_elasticsearch_client(config["okta_url"]) # Update the Dorothy class object with the values from the chosen configuration profile ctx.obj.base_url = config["okta_url"] ctx.obj.api_token = config["api_token"] ctx.obj.profile_id = config["id"] ctx.obj.es_client = es_client pass
17,005
def handle(event, _ctxt): """ Handle the Lambda Invocation """ response = { 'message': '', 'event': event } ssm = boto3.client('ssm') vpc_ids = ssm.get_parameter(Name=f'{PARAM_BASE}/vpc_ids')['Parameter']['Value'] vpc_ids = vpc_ids.split(',') args = { 'vpc_ids': vpc_ids } try: sg_name = ssm.get_parameter(Name=f'{PARAM_BASE}/secgrp_name')['Parameter']['Value'] args['managed_sg_name'] = sg_name except botocore.exceptions.ClientError as ex: if ex.response['Error']['Code'] == 'ParameterNotFound': pass else: print(ex) return response run(**args) return response
17,006
def _get_indice_map(chisqr_set): """Find element with lowest chisqr at each voxel """ #make chisqr array of dims [x,y,z,0,rcvr,chisqr] chisqr_arr = np.stack(chisqr_set,axis=5) indice_arr = np.argmin(chisqr_arr,axis=5) return indice_arr
17,007
def _train(params, fpath, hyperopt=False): """ :param params: hyperparameters. Its structure is consistent with how search space is defined. See below. :param fpath: Path or URL for the training data used with the model. :param hyperopt: Use hyperopt for hyperparameter search during training. :return: dict with fields 'loss' (scalar loss) and 'status' (success/failure status of run) """ max_depth, max_features, n_estimators = params max_depth, max_features, n_estimators = (int(max_depth), float(max_features), int(n_estimators)) # Log all of our training parameters for this run. pyver = sys.version_info mlparams = { 'cudf_version': str(cudf.__version__), 'cuml_version': str(cuml.__version__), 'max_depth': str(max_depth), 'max_features': str(max_features), 'n_estimators': str(n_estimators), 'python_version': f"{pyver[0]}.{pyver[1]}.{pyver[2]}.{pyver[3]}", } mlflow.log_params(mlparams) X_train, X_test, y_train, y_test = load_data(fpath) mod = RandomForestClassifier( max_depth=max_depth, max_features=max_features, n_estimators=n_estimators ) mod.fit(X_train, y_train) preds = mod.predict(X_test) acc = accuracy_score(y_test, preds) mlflow.log_metric("accuracy", acc) mlflow.sklearn.log_model(mod, "saved_models") if not hyperopt: return mod return {"loss": acc, "status": STATUS_OK}
17,008
def noct_synthesis(spectrum, freqs, fmin, fmax, n=3, G=10, fr=1000): """Adapt input spectrum to nth-octave band spectrum Convert the input spectrum to third-octave band spectrum between "fc_min" and "fc_max". Parameters ---------- spectrum : numpy.ndarray amplitude rms of the one-sided spectrum of the signal, size (nperseg, nseg). freqs : list List of input frequency , size (nperseg) or (nperseg, nseg). fmin : float Min frequency band [Hz]. fmax : float Max frequency band [Hz]. n : int Number of bands pr octave. G : int System for specifying the exact geometric mean frequencies. Can be base 2 or base 10. fr : int Reference frequency. Shall be set to 1 kHz for audible frequency range, to 1 Hz for infrasonic range (f < 20 Hz) and to 1 MHz for ultrasonic range (f > 31.5 kHz). Outputs ------- spec : numpy.ndarray Third octave band spectrum of signal sig [dB re.2e-5 Pa], size (nbands, nseg). fpref : numpy.ndarray Corresponding preferred third octave band center frequencies, size (nbands). """ # Get filters center frequencies fc_vec, fpref = _center_freq(fmin=fmin, fmax=fmax, n=n, G=G, fr=fr) nband = len(fpref) if len(spectrum.shape) > 1: nseg = spectrum.shape[1] spec = np.zeros((nband, nseg)) if len(freqs.shape) == 1: freqs = np.tile(freqs, (nseg, 1)).T else: nseg = 1 spec = np.zeros((nband)) # Frequency resolution # df = freqs[1:] - freqs[:-1] # df = np.concatenate((df, [df[-1]])) # Get upper and lower frequencies fu = fc_vec * 2**(1/(2*n)) fl = fc_vec / 2**(1/(2*n)) for s in range(nseg): for i in range(nband): if len(spectrum.shape) > 1: # index of the frequencies within the band idx = np.where((freqs[:, s] >= fl[i]) & (freqs[:, s] < fu[i])) spec[i, s] = np.sqrt( np.sum(np.power(np.abs(spectrum[idx,s]), 2))) else: # index of the frequencies within the band idx = np.where((freqs >= fl[i]) & (freqs < fu[i])) spec[i] = np.sqrt(np.sum(np.abs(spectrum[idx])**2)) return spec, fpref
17,009
def get_model_prediction(model_input, stub, model_name='amazon_review', signature_name='serving_default'): """ no error handling at all, just poc""" request = predict_pb2.PredictRequest() request.model_spec.name = model_name request.model_spec.signature_name = signature_name request.inputs['input_input'].CopyFrom(tf.make_tensor_proto(model_input)) response = stub.Predict.future(request, 5.0) # 5 seconds return response.result().outputs["output"].float_val
17,010
def test_organization_4(base_settings): """No. 4 tests collection for Organization. Test File: organization-example-mihealth.json """ filename = base_settings["unittest_data_dir"] / "organization-example-mihealth.json" inst = organization.Organization.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Organization" == inst.resource_type impl_organization_4(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Organization" == data["resourceType"] inst2 = organization.Organization(**data) impl_organization_4(inst2)
17,011
def edit_image_data(item): """Edit image item data to file""" try: # Spyder 2 from spyderlib.widgets.objecteditor import oedit except ImportError: # Spyder 3 from spyder.widgets.variableexplorer.objecteditor import oedit oedit(item.data)
17,012
def _make_feature_stats_proto( common_stats, feature_name, q_combiner, num_values_histogram_buckets, is_categorical, has_weights ): """Convert the partial common stats into a FeatureNameStatistics proto. Args: common_stats: The partial common stats associated with a feature. feature_name: The name of the feature. q_combiner: The quantiles combiner used to construct the quantiles histogram for the number of values in the feature. num_values_histogram_buckets: Number of buckets in the quantiles histogram for the number of values per feature. is_categorical: A boolean indicating whether the feature is categorical. has_weights: A boolean indicating whether a weight feature is specified. Returns: A statistics_pb2.FeatureNameStatistics proto. """ common_stats_proto = statistics_pb2.CommonStatistics() common_stats_proto.num_non_missing = common_stats.num_non_missing common_stats_proto.num_missing = common_stats.num_missing common_stats_proto.tot_num_values = common_stats.total_num_values if common_stats.num_non_missing > 0: common_stats_proto.min_num_values = common_stats.min_num_values common_stats_proto.max_num_values = common_stats.max_num_values common_stats_proto.avg_num_values = ( common_stats.total_num_values / common_stats.num_non_missing) # Add num_values_histogram to the common stats proto. num_values_quantiles = q_combiner.extract_output( common_stats.num_values_summary) histogram = quantiles_util.generate_quantiles_histogram( num_values_quantiles, common_stats.min_num_values, common_stats.max_num_values, common_stats.num_non_missing, num_values_histogram_buckets) common_stats_proto.num_values_histogram.CopyFrom(histogram) # Add weighted common stats to the proto. if has_weights: weighted_common_stats_proto = statistics_pb2.WeightedCommonStatistics( num_non_missing=common_stats.weighted_num_non_missing, num_missing=common_stats.weighted_num_missing, tot_num_values=common_stats.weighted_total_num_values) if common_stats.weighted_num_non_missing > 0: weighted_common_stats_proto.avg_num_values = ( common_stats.weighted_total_num_values / common_stats.weighted_num_non_missing) common_stats_proto.weighted_common_stats.CopyFrom( weighted_common_stats_proto) # Create a new FeatureNameStatistics proto. result = statistics_pb2.FeatureNameStatistics() result.name = feature_name # Set the feature type. # If we have a categorical feature, we preserve the type to be the original # INT type. Currently we don't set the type if we cannot infer it, which # happens when all the values are missing. We need to add an UNKNOWN type # to the stats proto to handle this case. if is_categorical: result.type = statistics_pb2.FeatureNameStatistics.INT elif common_stats.type is None: # If a feature is completely missing, we assume the type to be STRING. result.type = statistics_pb2.FeatureNameStatistics.STRING else: result.type = common_stats.type # Copy the common stats into appropriate numeric/string stats. # If the type is not set, we currently wrap the common stats # within numeric stats. if (result.type == statistics_pb2.FeatureNameStatistics.STRING or is_categorical): # Add the common stats into string stats. string_stats_proto = statistics_pb2.StringStatistics() string_stats_proto.common_stats.CopyFrom(common_stats_proto) result.string_stats.CopyFrom(string_stats_proto) else: # Add the common stats into numeric stats. numeric_stats_proto = statistics_pb2.NumericStatistics() numeric_stats_proto.common_stats.CopyFrom(common_stats_proto) result.num_stats.CopyFrom(numeric_stats_proto) return result
17,013
def serial_chunked_download( d_obj: Download, end_action: Optional[Action] = None, session: Optional[requests.Session] = None, *, progress_data: Optional[DownloadProgressSave] = None, start: int = 0, end: int = 0, chunk_id: Optional[int] = 0, ) -> bool: """Downloads a file using a single connection getting a chunk at a time """ splits = None if start == 0 and end == 0: if progress_data is None: # new download d_obj.init_size() d_obj.init_file([Chunk(0, d_obj.size - 1, -1)]) nb_split: int = 0 # TODO: ugly here if d_obj.split_size != -1: nb_split = int(d_obj.size / d_obj.split_size) + 1 else: nb_split = d_obj.nb_split splits = utils.split(d_obj.size - 1, nb_split) else: d_obj.init_file() # TODO: ugly here if d_obj.split_size != -1: nb_split = int(d_obj.size / d_obj.split_size) + 1 else: nb_split = d_obj.nb_split splits = utils.split(d_obj.size - 1, nb_split, progress_data.chunks[0].last) else: # coming from serial_parralel_chunked if d_obj.split_size != -1: nb_split = int(d_obj.size / d_obj.split_size) + 1 else: nb_split = d_obj.nb_split splits = utils.split(end, nb_split, start) for split in splits: get_chunk(d_obj.url, split, d_obj, chunk_id, session) if d_obj.has_error or d_obj.is_stopped(): return False if not d_obj.is_paused(): if end_action is not None: end_action() if end == 0 and start == 0: d_obj.finish() return True
17,014
def get_device(): """ Returns the id of the current device. """ c_dev = c_int_t(0) safe_call(backend.get().af_get_device(c_pointer(c_dev))) return c_dev.value
17,015
def plotLatentsSweep(yhat,nmodels=1): """plotLatentsSweep(yhat): plots model latents and a subset of the corresponding stimuli, generated from sweepCircleLatents() ---e.g.,--- yhat, x = sweepCircleLatents(vae) plotCircleSweep(yhat,x) alternatively, plotLatentsSweep(sweepCircleLatents(vae)) """ # Initialization if type(yhat) is tuple: yhat = yhat[0] # Start a-plottin' fig, ax = plt.subplots(nmodels,4,figsize=(9, 15), dpi= 80, facecolor='w', edgecolor='k', sharey='row',sharex='col') for latentdim in range(4): if nmodels > 1: for imodel in range(nmodels): plt.sca(ax[imodel,latentdim]) plt.plot(yhat[imodel][latentdim*16+np.arange(0,16),:].detach().numpy()) # ax[imodel,latentdim].set_aspect(1./ax[imodel,latentdim].get_data_ratio()) ax[imodel,latentdim].spines['top'].set_visible(False) ax[imodel,latentdim].spines['right'].set_visible(False) if latentdim>0: ax[imodel,latentdim].spines['left'].set_visible(False) # ax[imodel,latentdim].set_yticklabels([]) ax[imodel,latentdim].tick_params(axis='y', length=0) # if imodel<nmodels-1 or latentdim>0: ax[imodel,latentdim].spines['bottom'].set_visible(False) ax[imodel,latentdim].set_xticklabels([]) ax[imodel,latentdim].tick_params(axis='x', length=0) else: imodel=0 plt.sca(ax[latentdim]) plt.plot(yhat[latentdim*16+np.arange(0,16),:].detach().numpy()) ax[latentdim].set_aspect(1./ax[latentdim].get_data_ratio()) ax[latentdim].spines['top'].set_visible(False) ax[latentdim].spines['right'].set_visible(False) if latentdim>0: ax[latentdim].spines['left'].set_visible(False) ax[latentdim].tick_params(axis='y', length=0) # if imodel<nmodels-1 or latentdim>0: ax[latentdim].spines['bottom'].set_visible(False) ax[latentdim].set_xticklabels([]) ax[latentdim].tick_params(axis='x', length=0) return fig, ax
17,016
def calc_lipophilicity(seq, method="mean"): """ Calculates the average hydrophobicity of a sequence according to the Hessa biological scale. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G. Nature. 2005 Jan 27;433(7024):377-81 The Hessa scale has been calculated empirically, using the glycosylation assay of TMD insertion. Negative values indicate hydrophobic amino acids with favourable membrane insertion. Other hydrophobicity scales are in the settings folder. They can be generated as follows. hydrophob_scale_path = r"D:\korbinian\korbinian\settings\hydrophobicity_scales.xlsx" df_hs = pd.read_excel(hydrophob_scale_path, skiprows=2) df_hs.set_index("1aa", inplace=True) dict_hs = df_hs.Hessa.to_dict() hessa_scale = np.array([value for (key, value) in sorted(dict_hs.items())]) ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'] Parameters: ----------- seq : string Sequence to be analysed. Gaps (-) and unknown amino acids (x) should be ignored. method : string Method to be used to average the hydrophobicity values over the whole sequence. The hydrophobicity score is positive for polar/charged aa, negative for hydrophobic aa. "sum" will return the sum of the hydrophobicity scores over the sequence "mean" will return the mean of the hydrophobicity scores over the sequence Returns: -------- mean hydrophobicity value for the sequence entered Usage: ------ from korbinian.utils import calc_lipophilicity # for a single sequence s = "SAESVGEVYIKSTETGQYLAG" calc_lipophilicity(s) # for a series of sequences TMD_ser = df2.TM01_SW_match_seq.dropna() hydro = TMD_ser.apply(lambda x : calc_lipophilicity(x)) Notes: ------ %timeit results: for a 20aa seq: 136 µs per loop for a pandas series with 852 tmds: 118 ms per loop """ # hydrophobicity scale hessa_scale = np.array([0.11, -0.13, 3.49, 2.68, -0.32, 0.74, 2.06, -0.6, 2.71, -0.55, -0.1, 2.05, 2.23, 2.36, 2.58, 0.84, 0.52, -0.31, 0.3, 0.68]) # convert to biopython analysis object analysed_seq = ProteinAnalysis(seq) # biopython count_amino_acids returns a dictionary. aa_counts_dict = analysed_seq.count_amino_acids() # get the number of AA residues used to calculated the hydrophobicity # this is not simply the sequence length, as the sequence could include gaps or non-natural AA aa_counts_excluding_gaps = np.array(list(aa_counts_dict.values())) number_of_residues = aa_counts_excluding_gaps.sum() # if there are no residues, don't attempt to calculate a mean. Return np.nan. if number_of_residues == 0: return np.nan # convert dictionary to array, sorted by aa aa_counts_arr = np.array([value for (key, value) in sorted(aa_counts_dict.items())]) multiplied = aa_counts_arr * hessa_scale sum_of_multiplied = multiplied.sum() if method == "mean": return sum_of_multiplied / number_of_residues if method == "sum": return sum_of_multiplied
17,017
def get_enrollments(username, include_inactive=False): """Retrieves all the courses a user is enrolled in. Takes a user and retrieves all relative enrollments. Includes information regarding how the user is enrolled in the the course. Args: username: The username of the user we want to retrieve course enrollment information for. include_inactive (bool): Determines whether inactive enrollments will be included Returns: A list of enrollment information for the given user. Examples: >>> get_enrollments("Bob") [ { "created": "2014-10-20T20:18:00Z", "mode": "honor", "is_active": True, "user": "Bob", "course_details": { "course_id": "edX/DemoX/2014T2", "course_name": "edX Demonstration Course", "enrollment_end": "2014-12-20T20:18:00Z", "enrollment_start": "2014-10-15T20:18:00Z", "course_start": "2015-02-03T00:00:00Z", "course_end": "2015-05-06T00:00:00Z", "course_modes": [ { "slug": "honor", "name": "Honor Code Certificate", "min_price": 0, "suggested_prices": "", "currency": "usd", "expiration_datetime": null, "description": null, "sku": null, "bulk_sku": null } ], "invite_only": False } }, { "created": "2014-10-25T20:18:00Z", "mode": "verified", "is_active": True, "user": "Bob", "course_details": { "course_id": "edX/edX-Insider/2014T2", "course_name": "edX Insider Course", "enrollment_end": "2014-12-20T20:18:00Z", "enrollment_start": "2014-10-15T20:18:00Z", "course_start": "2015-02-03T00:00:00Z", "course_end": "2015-05-06T00:00:00Z", "course_modes": [ { "slug": "honor", "name": "Honor Code Certificate", "min_price": 0, "suggested_prices": "", "currency": "usd", "expiration_datetime": null, "description": null, "sku": null, "bulk_sku": null } ], "invite_only": True } } ] """ return _data_api().get_course_enrollments(username, include_inactive)
17,018
async def connections_accept_request(request: web.BaseRequest): """ Request handler for accepting a stored connection request. Args: request: aiohttp request object Returns: The resulting connection record details """ context = request.app["request_context"] outbound_handler = request.app["outbound_message_router"] connection_id = request.match_info["id"] try: connection = await ConnectionRecord.retrieve_by_id(context, connection_id) except StorageNotFoundError: raise web.HTTPNotFound() connection_mgr = ConnectionManager(context) my_endpoint = request.query.get("my_endpoint") or None request = await connection_mgr.create_response(connection, my_endpoint) await outbound_handler(request, connection_id=connection.connection_id) return web.json_response(connection.serialize())
17,019
def test_list_of_tasks(): """ Test that a list of tasks can be set as a switch condition """ with Flow(name="test") as flow: condition = Condition() true_branch = [SuccessTask(), SuccessTask()] false_branch = SuccessTask() ifelse(condition, true_branch, false_branch) with prefect.context(CONDITION=True): state = flow.run() for t in true_branch: assert isinstance(state.result[t], Success) assert isinstance(state.result[false_branch], Skipped) with prefect.context(CONDITION=False): state = flow.run() for t in true_branch: # the tasks in the list ran becuase they have no upstream dependencies. assert isinstance(state.result[t], Success) list_task = next( t for t in flow.tasks if isinstance(t, prefect.tasks.core.collections.List) ) # but the list itself skipped assert isinstance(state.result[list_task], Skipped) assert isinstance(state.result[false_branch], Success)
17,020
def nearest(x, base=1.): """ Round the inputs to the nearest base. Beware, due to the nature of floating point arithmetic, this maybe not work as you expect. INPUTS x : input value of array OPTIONS base : number to which x should be rounded """ return np.round(x/base)*base
17,021
def sort_nesting(list1, list2): """Takes a list of start points and end points and sorts the second list according to nesting""" temp_list = [] while list2 != temp_list: temp_list = list2[:] # Make a copy of list2 instead of reference for i in range(1, len(list1)): if list2[i] > list2[i-1] and list1[i] < list2[i-1]: list2[i-1], list2[i] = list2[i], list2[i-1] return list2
17,022
def confusion_matrix(Y_hat, Y, norm=None): """ Calculate confusion matrix. Parameters ---------- Y_hat : array-like List of data labels. Y : array-like List of target truth labels. norm : {'label', 'target', 'all', None}, default=None Normalization on resulting matrix. Must be one of: - 'label' : normalize on labels (columns). - 'target' : normalize on targets (rows). - 'all' : normalize on the entire matrix. - None : No normalization. Returns ------- matrix : ndarray, shape=(target_classes, label_classes) Confusion matrix with target classes as rows and label classes as columns. Classes are in sorted order. """ target_classes = sorted(set(Y)) label_classes = sorted(set(Y_hat)) target_dict = {target_classes[k]: k for k in range(len(target_classes))} label_dict = {label_classes[k]: k for k in range(len(label_classes))} matrix = np.zeros((len(target_classes), len(label_classes))) for label, target in zip(Y_hat, Y): matrix[target_dict[target],label_dict[label]] += 1 if norm == 'label': matrix /= np.max(matrix, axis=0).reshape((1,matrix.shape[1])) elif norm == 'target': matrix /= np.max(matrix, axis=1).reshape((matrix.shape[0],1)) elif norm == 'all': matrix /= np.max(matrix) elif norm is not None: raise ValueError("Norm must be one of {'label', 'target', 'all', None}") return matrix.astype(int)
17,023
def reroot(original_node: Tree, new_node: Tree): """ :param original_node: the node in the original tree :param new_node: the new node to give children new_node should have as chldren, the relations of original_node except for new_node's parent """ new_node.children = [ Tree(relation.label) for relation in original_node.relations if relation.label != new_node.parent_label ] for relation in new_node.children: reroot( original_node.find(relation.label), relation, ) return new_node
17,024
def test_precursormz_match_tolerance2_array(): """Test with array and tolerance=2.""" spectrum_1 = Spectrum(mz=numpy.array([], dtype="float"), intensities=numpy.array([], dtype="float"), metadata={"precursor_mz": 100.0}) spectrum_2 = Spectrum(mz=numpy.array([], dtype="float"), intensities=numpy.array([], dtype="float"), metadata={"precursor_mz": 101.0}) spectrum_a = Spectrum(mz=numpy.array([], dtype="float"), intensities=numpy.array([], dtype="float"), metadata={"precursor_mz": 99.0}) spectrum_b = Spectrum(mz=numpy.array([], dtype="float"), intensities=numpy.array([], dtype="float"), metadata={"precursor_mz": 98.0}) similarity_score = PrecursorMzMatch(tolerance=2.0) scores = similarity_score.matrix([spectrum_1, spectrum_2], [spectrum_a, spectrum_b]) assert numpy.all(scores == numpy.array([[True, True], [True, False]])), "Expected different scores."
17,025
def thue_morse_sub(n): """ generate Thue-Morse sequence using substitution system: 0 -> 01 1 -> 10 See http://mathworld.wolfram.com/Thue-MorseSequence.html""" pass
17,026
def test_calculate_results(scoring, expected_results_columns): """Test the calculation of the experiment's results.""" MSCV.set_params(scoring=scoring) scoring_cols = _define_binary_experiment_parameters(MSCV)[1] results = _calculate_results(MSCV, DATASETS, scoring_cols) assert len(results) == len(ParameterGrid(MSCV.param_grids)) * len(DATASETS) assert expected_results_columns == results.columns.get_level_values(0).tolist()
17,027
def update_users(): """Sync LDAP users with local users in the DB.""" log_uuid = str(uuid.uuid4()) start_time = time.time() patron_cls = current_app_ils.patron_cls patron_indexer = PatronBaseIndexer() invenio_users_updated_count = 0 invenio_users_added_count = 0 # get all CERN users from LDAP ldap_client = LdapClient() ldap_users = ldap_client.get_primary_accounts() _log_info( log_uuid, "users_fetched_from_ldap", dict(users_fetched=len(ldap_users)), ) if not ldap_users: return 0, 0, 0 # create a map by employeeID for fast lookup ldap_users_emails = set() ldap_users_map = {} for ldap_user in ldap_users: if "mail" not in ldap_user: _log_info( log_uuid, "missing_email", dict(employee_id=ldap_user_get(ldap_user, "employeeID")), is_error=True, ) continue email = ldap_user_get_email(ldap_user) if email not in ldap_users_emails: ldap_person_id = ldap_user_get(ldap_user, "employeeID") ldap_users_map[ldap_person_id] = ldap_user ldap_users_emails.add(email) _log_info( log_uuid, "users_cached", ) remote_accounts = RemoteAccount.query.all() _log_info( log_uuid, "users_fetched_from_invenio", dict(users_fetched=len(remote_accounts)), ) # get all Invenio remote accounts and prepare a list with needed info invenio_users = [] for remote_account in remote_accounts: invenio_users.append( dict( remote_account_id=remote_account.id, remote_account_person_id=remote_account.extra_data[ "person_id" ], remote_account_department=remote_account.extra_data.get( "department" ), user_id=remote_account.user_id, ) ) _log_info( log_uuid, "invenio_users_prepared", ) # STEP 1 # iterate on all Invenio users first, to update outdated info from LDAP # or delete users if not found in LDAP. # # Note: cannot iterate on the db query here, because when a user is # deleted, db session will expire, causing a DetachedInstanceError when # fetching the user on the next iteration for invenio_user in invenio_users: # use `dict.pop` to remove from `ldap_users_map` the users found # in Invenio, so the remaining will be the ones to be added later on ldap_user = ldap_users_map.pop( invenio_user["remote_account_person_id"], None ) if ldap_user: # the imported LDAP user is already in the Invenio db ldap_user_display_name = ldap_user_get(ldap_user, "displayName") user_id = invenio_user["user_id"] user_profile = UserProfile.query.filter_by( user_id=user_id ).one() invenio_full_name = user_profile.full_name ldap_user_department = ldap_user_get(ldap_user, "department") invenio_user_department = invenio_user["remote_account_department"] user = User.query.filter_by(id=user_id).one() ldap_user_email = ldap_user_get_email(ldap_user) invenio_user_email = user.email has_changed = ( ldap_user_display_name != invenio_full_name or ldap_user_department != invenio_user_department or ldap_user_email != invenio_user_email ) if has_changed: _update_invenio_user( invenio_remote_account_id=invenio_user[ "remote_account_id" ], invenio_user_profile=user_profile, invenio_user=user, ldap_user=ldap_user, ) _log_info( log_uuid, "department_updated", dict( user_id=invenio_user["user_id"], previous_department=invenio_user_department, new_department=ldap_user_department, ), ) # re-index modified patron patron_indexer.index(patron_cls(invenio_user["user_id"])) invenio_users_updated_count += 1 db.session.commit() _log_info( log_uuid, "invenio_users_updated_and_deleted", ) # STEP 2 # Import any new LDAP user not in Invenio yet, the remaining new_ldap_users = ldap_users_map.values() if new_ldap_users: importer = LdapUserImporter() for ldap_user in new_ldap_users: user_id = importer.import_user(ldap_user) email = ldap_user_get_email(ldap_user) employee_id = ldap_user_get(ldap_user, "employeeID") _log_info( log_uuid, "user_added", dict(email=email, employee_id=employee_id), ) # index newly added patron patron_indexer.index(patron_cls(user_id)) invenio_users_added_count += 1 db.session.commit() _log_info( log_uuid, "invenio_users_created", ) total_time = time.time() - start_time _log_info(log_uuid, "task_completed", dict(time=total_time)) return ( len(ldap_users), invenio_users_updated_count, invenio_users_added_count, )
17,028
def GenerateDictionary(input_file, ngraph_size): """Generates the G2P (G2NG) dictionary.""" words = set() with io.open(input_file, mode='rt', encoding='utf-8') as text: for line in text: for word in line.split(): words.add(word) words = list(words) words.sort() if 'SENTNCE-END' in words: words.remove('SENTENCE-END') for word in words: word.replace('_', '') phoneme = SimpleG2P('_%s_' % word, ngraph_size) stdout.write('%s\t%s\n' % (word.lower(), phoneme.lower()))
17,029
def gen_maven_artifact( name, artifact_name, artifact_id, artifact_target, javadoc_srcs, packaging = "jar", artifact_target_libs = [], is_extension = False): """Generates files required for a maven artifact. Args: name: The name associated with various output artifact_name: The name of the generated artifcat in maven, e.g. "Google Guice Core Library". artifact_id: The id of the generated artifact in maven, e.g. "guice". artifact_target: The target containing the actual maven target. artifact_target_libs: The list of dependencies that should be packaged together with artifact_target, corresponding to the list of targets exported by artifact_target. javadoc_srcs: Source files used to generate the Javadoc maven artifact. packaging: The packaging used for the artifact, default is "jar". is_extension: Whether the maven artifact is a Guice extension or not. """ _validate_target_libs_rule( name = name + "_validate_target_libs", target = artifact_target, actual_target_libs = artifact_target_libs, ) group_id = "com.google.inject" if is_extension: group_id = "com.google.inject.extensions" # TODO: get artifact_target_libs from bazel and remove the need to pass this in explictly. artifact_targets = [artifact_target] + artifact_target_libs pom_file( name = "pom", targets = artifact_targets, preferred_group_ids = [ "com.google.inject", "com.google", ], template_file = "//:pom-template.xml", substitutions = { "{artifact_name}": artifact_name, "{artifact_id}": artifact_id, "{artifact_group_id}": group_id, "{packaging}": packaging, }, ) if packaging == "jar": jarjar_library( name = artifact_id, jars = artifact_targets, ) jarjar_library( name = artifact_id + "-src", jars = [_src_jar(dep) for dep in artifact_targets], ) if javadoc_srcs: javadoc_library( name = artifact_id + "-javadoc", srcs = javadoc_srcs, testonly = 1, deps = artifact_targets, )
17,030
def main(): """ Main - entry point for service node """ log.info("Service node initializing") app = create_app() # run app using either socket or tcp sn_socket = config.getCmdLineArg("sn_socket") if sn_socket: # use a unix domain socket path # first, make sure the socket does not already exist log.info(f"Using socket {sn_socket}") try: os.unlink(sn_socket) except OSError: if os.path.exists(sn_socket): raise s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.bind(sn_socket) try: run_app(app, sock=s, handle_signals=True) except KeyboardInterrupt: print("got keyboard interrupt") except SystemExit: print("got system exit") except Exception as e: print(f"got exception: {e}s") # loop = asyncio.get_event_loop() # loop.run_until_complete(release_http_client(app)) log.info("run_app done") # close socket? else: # Use TCP connection port = int(config.get("sn_port")) log.info(f"run_app on port: {port}") run_app(app, port=port) log.info("Service node exiting")
17,031
def test_help(tool_cls): """ Check that all command line tools have a --help option that explains the usage. As per argparse default, this help text always starts with `usage:`. """ tool = tool_cls() try: tool.run("--help") except SystemExit as e: pass if not hasattr(sys.stdout, "getvalue"): raise Exception('stdout not captured in test.') output = sys.stdout.getvalue().strip() assert output.startswith('usage:')
17,032
def opt(dfs, col='new', a=1, b=3, rlprior=None, clprior=None): """Returns maximum likelihood estimates of the model parameters `r` and `c`. The optimised parameters `r` and `c` refer to the failure count of the model's negative binomial likelihood function and the variance factor introduced by each predictive prior, respectively. Args: dfs: a data frame or list/tuple of data frames containing counts. col: the column containing daily new infection counts. a, b: parameters of the initial predictive beta prime prior. rlprior, clprior: log density functions to be used as priors on `r` and `c` (uniform by default). """ def f(r): return _optc(dfs, r, col, a, b, rlprior, clprior, copy=False)[1] if not isinstance(dfs, list) and not isinstance(dfs, tuple): dfs = [dfs] dfs = [df.copy() for df in dfs] # create copies once, before optimising. # We double r until we pass a local minimum, and then optimize the two # regions that might contain that minimum separately. p, r = 1, 2 while f(p) > f(r): p, r = r, 2*r r1, l1 = _cvxsearch(f, p//2, p) r2, l2 = _cvxsearch(f, p, r) if l1 <= l2: return r1, _optc(dfs, r1, col, a, b, rlprior, clprior, copy=False)[0] else: return r2, _optc(dfs, r2, col, a, b, rlprior, clprior, copy=False)[0]
17,033
def unpackage_datasets(dirname, dataobject_format=False): """ This function unpackages all sub packages, (i.e. train, valid, test) You should use this function if you want everything args: dirname: directory path that has the train, valid, test folders in it dataobject_format: used for dataobject format """ with open(join(dirname, 'room-data.json')) as f: lm = json.load(f)['Landmarks'] res = {s: unpackage_dataset(join(dirname, s), dataobject_format) for s in ['train', 'valid', 'test']} res['landmarks'] = lm return res
17,034
def test_parse_entry_brackets1() -> None: """ """ entry = "{house,building, skyscraper, booth, hovel, tower, grandstand}" classes = parse_entry(entry) gt_classes = [ "house", "building", "skyscraper", "booth", "hovel", "tower", "grandstand", ] assert classes == gt_classes
17,035
def get_command_view( is_running: bool = False, stop_requested: bool = False, commands_by_id: Sequence[Tuple[str, cmd.Command]] = (), ) -> CommandView: """Get a command view test subject.""" state = CommandState( is_running=is_running, stop_requested=stop_requested, commands_by_id=OrderedDict(commands_by_id), ) return CommandView(state=state)
17,036
def test_read_python_code(mock_bytes_to_intel_hex, mock_read_flash): """.""" python_code_hex = "\n".join( [ ":020000040003F7", ":10E000004D509600232041646420796F7572205032", ":10E010007974686F6E20636F646520686572652E21", ":10E0200020452E672E0A66726F6D206D6963726FD0", ":10E0300062697420696D706F7274202A0A7768694A", ":10E040006C6520547275653A0A202020206469733B", ":10E05000706C61792E7363726F6C6C282748656CE5", ":10E060006C6F2C20576F726C642127290A202020A6", ":10E0700020646973706C61792E73686F7728496DBD", ":10E080006167652E4845415254290A20202020739B", ":10E090006C656570283230303029000000000000C7", ":10E0A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF80", ] ) python_code = "\n".join( [ "# Add your Python code here. E.g.", "from microbit import *", "while True:", " display.scroll('Hello, World!')", " display.show(Image.HEART)", " sleep(2000)", ] ) mock_bytes_to_intel_hex.return_value = python_code_hex result = cmds.read_python_code() assert result == python_code
17,037
def _split_by_size(in_fastq, split_size, out_dir): """Split FASTQ files by a specified number of records. """ existing = _find_current_split(in_fastq, out_dir) if len(existing) > 0: return existing def new_handle(num): base, ext = os.path.splitext(os.path.basename(in_fastq)) fname = os.path.join(out_dir, "{base}_{num}{ext}".format( base=base, num=num, ext=ext)) return fname, open(fname, "w") cur_index = 0 cur_count = 0 out_fname, out_handle = new_handle(cur_index) out_files = [out_fname] with open(in_fastq) as in_handle: for name, seq, qual in FastqGeneralIterator(in_handle): if cur_count < split_size: cur_count += 1 else: cur_count = 0 cur_index += 1 out_handle.close() out_fname, out_handle = new_handle(cur_index) out_files.append(out_fname) out_handle.write("@%s\n%s\n+\n%s\n" % (name, seq, qual)) out_handle.close() return out_files
17,038
def get_node_ip_addresses(ipkind): """ Gets a dictionary of required IP addresses for all nodes Args: ipkind: ExternalIP or InternalIP or Hostname Returns: dict: Internal or Exteranl IP addresses keyed off of node name """ ocp = OCP(kind=constants.NODE) masternodes = ocp.get(selector=constants.MASTER_LABEL).get("items") workernodes = ocp.get(selector=constants.WORKER_LABEL).get("items") nodes = masternodes + workernodes return { node["metadata"]["name"]: each["address"] for node in nodes for each in node["status"]["addresses"] if each["type"] == ipkind }
17,039
def code_block( code: str = None, path: str = None, language_id: str = None, title: str = None, caption: str = None ): """ Adds a block of syntax highlighted code to the display from either the supplied code argument, or from the code file specified by the path argument. :param code: A string containing the code to be added to the display :param path: A path to a file containing code to be added to the display :param language_id: The language identifier that indicates what language should be used by the syntax highlighter. Valid values are any of the languages supported by the Pygments highlighter. :param title: If specified, the code block will include a title bar with the value of this argument :param caption: If specified, the code block will include a caption box below the code that contains the value of this argument """ environ.abort_thread() r = _get_report() r.append_body(render.code_block( block=code, path=path, language=language_id, title=title, caption=caption )) r.stdout_interceptor.write_source('{}\n'.format(code))
17,040
def fill_cache(msg="Fetching cache"): """Fill the cache with the packages.""" import os # pylint: disable=import-outside-toplevel import requests # pylint: disable=import-outside-toplevel from rich.progress import Progress # pylint: disable=import-outside-toplevel all_packages_url = f"{base_url}/simple/" cache_path = os.path.join(os.path.dirname(__file__), "cache") if not os.path.exists(cache_path): os.makedirs(cache_path) cache_file = os.path.join(os.path.dirname(__file__), "cache", "packages.txt") with Progress(transient=True) as progress: response = requests.get(all_packages_url, stream=True) response_data = "" content_length = response.headers.get("content-length") if content_length is not None: total_length = int(content_length) task = progress.add_task(msg, total=total_length) downloaded = 0 for data in response.iter_content(chunk_size=32768): downloaded += len(data) response_data += data.decode("utf-8") progress.advance(task, 32768) else: response_data = response.content.decode("utf-8") import re # pylint: disable=import-outside-toplevel packages = re.findall(r"<a[^>]*>([^<]+)<\/a>", response_data) with open(cache_file, "w", encoding="utf-8") as cache_file: cache_file.write("\n".join(packages)) return packages
17,041
def house_filter(size, low, high): """ Function that returns the "gold standard" filter. This window is designed to produce low sidelobes for Fourier filters. In essence it resembles a sigmoid function that smoothly goes between zero and one, from short to long time. """ filt = np.zeros(size) def eval_filter(rf, c1, c2, c3, c4): r1 = 1. - rf**2. r2 = r1**2. r3 = r2 * r1 filt = c1 + c2*r1 + c3*r2 + c4*r3 return filt coefficients = { "c1": 0.074, "c2": 0.302, "c3": 0.233, "c4": 0.390 } denom = (high - low + 1.0) / 2. if denom < 0.: raise ZeroDivisionError for i in range(int(low), int(high)): rf = (i + 1) / denom if rf > 1.5: filt[i] = 1. else: temp = eval_filter(rf, **coefficients) if temp < 0.: filt[i] = 1. else: filt[i] = 1. - temp filt[int(high):] = 1. return filt
17,042
def PToData(inGFA, data, err): """ Copy host array to data Copys data from GPUFArray locked host array to data * inFA = input Python GPUFArray * data = FArray containing data array * err = Obit error/message stack """ ################################################################ return Obit.GPUFArrayToData (inFA.me, data.me, err.me)
17,043
def download_vendor_image(image): """ Downloads specified vendor binary image Args: image (str): Path of image filename to begin downloading Returns: """ # TODO Prevent sending hidden files return send_from_directory(os.path.join(_AEON_TOPDIR, 'vendor_images'), image)
17,044
def test_atomic_string_length_4_nistxml_sv_iv_atomic_string_length_5_1(mode, save_output, output_format): """ Type atomic/string is restricted by facet length with value 1000. """ assert_bindings( schema="nistData/atomic/string/Schema+Instance/NISTSchema-SV-IV-atomic-string-length-5.xsd", instance="nistData/atomic/string/Schema+Instance/NISTXML-SV-IV-atomic-string-length-5-1.xml", class_name="NistschemaSvIvAtomicStringLength5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
17,045
def maker(sql_connection, echo=False): """ Get an sessionmaker object from a sql_connection. """ engine = get_engine(sql_connection, echo=echo) m = orm.sessionmaker(bind=engine, autocommit=True, expire_on_commit=False) return m
17,046
def ntohs(*args,**kw): """ntohs(integer) -> integer Convert a 16-bit integer from network to host byte order.""" pass
17,047
def test_auth(request): """Tests authentication worked successfuly.""" return Response({"message": "You successfuly authenticated!"})
17,048
def streak_condition_block() -> Block: """ Create block with 'streak' condition, when rotation probability is low and target orientation repeats continuously in 1-8 trials. :return: 'Streak' condition block. """ return Block(configuration.STREAK_CONDITION_NAME, streak_rotations_generator)
17,049
def resolve_appinstance(request, appinstanceid, permission='base.change_resourcebase', msg=_PERMISSION_MSG_GENERIC, **kwargs): """ Resolve the document by the provided primary key and check the optional permission. """ return resolve_object( request, AppInstance, {'pk': appinstanceid}, permission=permission, permission_msg=msg, **kwargs)
17,050
def test_star(genome, force): """Create star index.""" assert os.path.exists(genome.filename) force = True if force == "overwrite" else False if cmd_ok("STAR"): p = StarPlugin() p.after_genome_download(genome) dirname = os.path.dirname(genome.filename) index_dir = os.path.join(dirname, "index", "star") fname = os.path.join(index_dir, "SA") assert os.path.exists(index_dir) assert os.path.exists(fname) force_test(p, fname, genome, force)
17,051
def statementTVM(pReact): """Use this funciton to produce the TVM statemet""" T,V,mass = pReact.T,pReact.volume,pReact.mass statement="\n{}: T: {:0.2f} K, V: {:0.2f} m^3, mass: {:0.2f} kg".format(pReact.name,T,V,mass) return statement
17,052
def fill_NaNs_with_nearest_neighbour(data, lons, lats): """At each depth level and time, fill in NaN values with nearest lateral neighbour. If the entire depth level is NaN, fill with values from level above. The last two dimensions of data are the lateral dimensions. lons.shape and lats.shape = (data.shape[-2], data.shape[-1]) :arg data: the data to be filled :type data: 4D numpy array :arg lons: longitude points :type lons: 2D numpy array :arg lats: latitude points :type lats: 2D numpy array :returns: a 4D numpy array """ filled = data.copy() for t in range(data.shape[0]): for k in range(data.shape[1]): subdata = data[t, k, :, :] mask = np.isnan(subdata) points = np.array([lons[~mask], lats[~mask]]).T valid_data = subdata[~mask] try: filled[t, k, mask] = interpolate.griddata( points, valid_data, (lons[mask], lats[mask]), method='nearest' ) except ValueError: # if the whole depth level is NaN, # set it equal to the level above filled[t, k, :, :] = filled[t, k - 1, :, :] return filled
17,053
def transform_type_postorder(type_signature, transform_fn): """Walks type tree of `type_signature` postorder, calling `transform_fn`. Args: type_signature: Instance of `computation_types.Type` to transform recursively. transform_fn: Transformation function to apply to each node in the type tree of `type_signature`. Must be instance of Python function type. Returns: A possibly transformed version of `type_signature`, with each node in its tree the result of applying `transform_fn` to the corresponding node in `type_signature`. Raises: TypeError: If the types don't match the specification above. """ # TODO(b/134525440): Investigate unifying the recursive methods in type_utils, # rather than proliferating them. # TODO(b/134595038): Revisit the change here to add a mutated flag. py_typecheck.check_type(type_signature, computation_types.Type) py_typecheck.check_callable(transform_fn) if isinstance(type_signature, computation_types.FederatedType): transformed_member, member_mutated = transform_type_postorder( type_signature.member, transform_fn) if member_mutated: type_signature = computation_types.FederatedType(transformed_member, type_signature.placement, type_signature.all_equal) fed_type_signature, type_signature_mutated = transform_fn(type_signature) return fed_type_signature, type_signature_mutated or member_mutated elif isinstance(type_signature, computation_types.SequenceType): transformed_element, element_mutated = transform_type_postorder( type_signature.element, transform_fn) if element_mutated: type_signature = computation_types.SequenceType(transformed_element) seq_type_signature, type_signature_mutated = transform_fn(type_signature) return seq_type_signature, type_signature_mutated or element_mutated elif isinstance(type_signature, computation_types.FunctionType): transformed_param, param_mutated = transform_type_postorder( type_signature.parameter, transform_fn) transformed_result, result_mutated = transform_type_postorder( type_signature.result, transform_fn) if param_mutated or result_mutated: type_signature = computation_types.FunctionType(transformed_param, transformed_result) fn_type_signature, fn_mutated = transform_fn(type_signature) return fn_type_signature, fn_mutated or param_mutated or result_mutated elif isinstance(type_signature, computation_types.NamedTupleType): elems = [] elems_mutated = False for element in anonymous_tuple.iter_elements(type_signature): transformed_element, element_mutated = transform_type_postorder( element[1], transform_fn) elems_mutated = elems_mutated or element_mutated elems.append((element[0], transformed_element)) if elems_mutated: if isinstance(type_signature, computation_types.NamedTupleTypeWithPyContainerType): type_signature = computation_types.NamedTupleTypeWithPyContainerType( elems, computation_types.NamedTupleTypeWithPyContainerType .get_container_type(type_signature)) else: type_signature = computation_types.NamedTupleType(elems) tuple_type_signature, tuple_mutated = transform_fn(type_signature) return tuple_type_signature, elems_mutated or tuple_mutated elif isinstance(type_signature, (computation_types.AbstractType, computation_types.TensorType, computation_types.PlacementType)): return transform_fn(type_signature)
17,054
def get_job_output(job_id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[Optional[str]]] = None, view: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetJobResult]: """ Gets the state of the specified Cloud Dataflow job. To get the state of a job, we recommend using `projects.locations.jobs.get` with a [regional endpoint] (https://cloud.google.com/dataflow/docs/concepts/regional-endpoints). Using `projects.jobs.get` is not recommended, as you can only get the state of jobs that are running in `us-central1`. """ ...
17,055
def check_stack_feature(stack_feature, stack_version): """ Given a stack_feature and a specific stack_version, it validates that the feature is supported by the stack_version. :param stack_feature: Feature name to check if it is supported by the stack. For example: "rolling_upgrade" :param stack_version: Version of the stack :return: Will return True if successful, otherwise, False. """ from resource_management.libraries.functions.default import default from resource_management.libraries.functions.version import compare_versions stack_features_config = default("/configurations/cluster-env/stack_features", None) data = _DEFAULT_STACK_FEATURES if not stack_version: return False if stack_features_config: data = json.loads(stack_features_config) for feature in data["stack_features"]: if feature["name"] == stack_feature: if "min_version" in feature: min_version = feature["min_version"] if compare_versions(stack_version, min_version, format = True) < 0: return False if "max_version" in feature: max_version = feature["max_version"] if compare_versions(stack_version, max_version, format = True) >= 0: return False return True return False
17,056
def test_publish_does_not_exist(client, mocked_apis): """ Test behavior if a release is published and one of the summary rows do not exist """ db = boto3.resource('dynamodb') release_table = db.Table('release-summary') study_table = db.Table('study-summary') with patch('requests.get') as mock_request: mock_request.side_effect = partial(mocked_apis, version='0.0.3') r = release_summary.run('TA_00000000', 'RE_00000000') assert release_table.item_count == 1 assert study_table.item_count == 1 # Now delete the summaries, as if it never existed release_table.delete_item(Key={ 'release_id': 'RE_00000000' }) study_table.delete_item(Key={ 'release_id': 'RE_00000000', 'study_id': 'SD_00000000' }) assert release_table.item_count == 0 assert study_table.item_count == 0 # Publish the release mock_request.side_effect = partial(mocked_apis, version='0.1.0') r = release_summary.publish('RE_00000000') # There should still be no summary rows assert release_table.item_count == 0 assert study_table.item_count == 0
17,057
def get_random_action_weights(): """Get random weights for each action. e.g. [0.23, 0.57, 0.19, 0.92]""" return np.random.random((1, NUM_ACTIONS))
17,058
def rpg_radar2nc(data, path, larda_git_path, **kwargs): """ This routine generates a daily NetCDF4 file for the RPG 94 GHz FMCW radar 'LIMRAD94'. Args: data (dict): dictionary of larda containers path (string): path where the NetCDF file is stored """ dt_start = h.ts_to_dt(data['Ze']['ts'][0]) h.make_dir(path) site_name = kwargs['site'] if 'site' in kwargs else 'no-site' cn_version = kwargs['version'] if 'version' in kwargs else 'pyhon' ds_name = f'{path}/{h.ts_to_dt(data["Ze"]["ts"][0]):%Y%m%d}-{site_name}-limrad94.nc' ncvers = '4' repo = git.Repo(larda_git_path) sha = repo.head.object.hexsha with netCDF4.Dataset(ds_name, 'w', format=f'NETCDF{ncvers}') as ds: ds.Convention = 'CF-1.0' ds.location = data['Ze']['paraminfo']['location'] ds.system = data['Ze']['paraminfo']['system'] ds.version = f'Variable names and dimensions prepared for Cloudnet {kwargs["version"]} version' ds.title = 'LIMRAD94 (SLDR) Doppler Cloud Radar, calibrated Input for Cloudnet' ds.institution = 'Leipzig Institute for Meteorology (LIM), Leipzig, Germany' ds.source = '94 GHz Cloud Radar LIMRAD94\nRadar type: Frequency Modulated Continuous Wave,\nTransmitter power 1.5 W typical (solid state ' \ 'amplifier)\nAntenna Type: Bi-static Cassegrain with 500 mm aperture\nBeam width: 0.48deg FWHM' ds.reference = 'W Band Cloud Radar LIMRAD94\nDocumentation and User Manual provided by manufacturer RPG Radiometer Physics GmbH\n' \ 'Information about system also available at https://www.radiometer-physics.de/' ds.calibrations = f'remove Precip. ghost: {kwargs["ghost_echo_1"]}\n, remove curtain ghost: {kwargs["ghost_echo_2"]}\n' \ f'despeckle: {kwargs["despeckle"]}\n, number of standard deviations above noise: {kwargs["NF"]}\n' ds.git_description = f'pyLARDA commit ID {sha}' ds.description = 'Concatenated data files of LIMRAD 94GHz - FMCW Radar, used as input for Cloudnet processing, ' \ 'filters applied: ghost-echo, despeckle, use only main peak' ds.history = 'Created ' + time.ctime(time.time()) ds._FillValue = data['Ze']['paraminfo']['fill_value'] ds.day = dt_start.day ds.month = dt_start.month ds.year = dt_start.year # ds.commit_id = subprocess.check_output(["git", "describe", "--always"]) .rstrip() ds.history = 'Created ' + time.ctime(time.time()) + '\nfilters applied: ghost-echo, despeckle, main peak only' Ze_str = 'Zh' if cn_version == 'python' else 'Ze' vel_str = 'v' if cn_version == 'python' else 'vm' width_str = 'width' if cn_version == 'python' else 'sigma' dim_tupel = ('time', 'range') if cn_version == 'python' else ('range', 'time') n_chirps = len(data['no_av']) ds.createDimension('chirp', n_chirps) ds.createDimension('time', data['Ze']['ts'].size) ds.createDimension('range', data['Ze']['rg'].size) if cn_version == 'matlab': for ivar in ['Ze', 'VEL', 'sw', 'ldr', 'kurt', 'skew']: data[ivar]['var'] = data[ivar]['var'].T # coordinates nc_add_variable( ds, val=94.0, dimension=(), var_name='frequency', type=np.float32, long_name='Radar frequency', units='GHz' ) nc_add_variable( ds, val=256, dimension=(), var_name='Numfft', type=np.float32, long_name='Number of points in FFT', units='' ) nc_add_variable( ds, val=np.mean(data['MaxVel']['var']), dimension=(), var_name='NyquistVelocity', type=np.float32, long_name='Mean (over all chirps) Unambiguous Doppler velocity (+/-)', units='m s-1' ) nc_add_variable( ds, val=data['Ze']['paraminfo']['altitude'], dimension=(), var_name='altitude', type=np.float32, long_name='Height of instrument above mean sea level', units='m' ) nc_add_variable( ds, val=data['Ze']['paraminfo']['coordinates'][0], dimension=(), var_name='latitude', type=np.float32, long_name='latitude', units='degrees_north' ) nc_add_variable( ds, val=data['Ze']['paraminfo']['coordinates'][1], dimension=(), var_name='longitude', type=np.float32, long_name='longitude', units='degrees_east' ) if 'version' in kwargs and cn_version == 'python': nc_add_variable( ds, val=data['no_av'], dimension=('chirp',), var_name='NumSpectraAveraged', type=np.float32, long_name='Number of spectral averages', units='' ) # time and range variable # convert to time since midnight if cn_version == 'python': ts = np.subtract(data['Ze']['ts'], datetime.datetime(dt_start.year, dt_start.month, dt_start.day, 0, 0, 0, tzinfo=timezone.utc).timestamp()) / 3600 ts_str = 'Decimal hours from midnight UTC to the middle of each day' ts_unit = f'hours since {dt_start:%Y-%m-%d} 00:00:00 +00:00 (UTC)' rg = data['Ze']['rg'] / 1000.0 elif cn_version == 'matlab': ts = np.subtract(data['Ze']['ts'], datetime.datetime(2001, 1, 1, 0, 0, 0, tzinfo=timezone.utc).timestamp()) ts_str = 'Seconds since 1st January 2001 00:00 UTC' ts_unit = 'sec' rg = data['Ze']['rg'] else: raise ValueError('Wrong version selected! version to "matlab" or "python"!') nc_add_variable(ds, val=ts, dimension=('time',), var_name='time', type=np.float64, long_name=ts_str, units=ts_unit) nc_add_variable(ds, val=rg, dimension=('range',), var_name='range', type=np.float32, long_name='Range from antenna to the centre of each range gate', units='km') nc_add_variable(ds, val=data['Azm']['var'], dimension=('time',), var_name='azimuth', type=np.float32, long_name='Azimuth angle from north', units='degree') nc_add_variable(ds, val=data['Elv']['var'], dimension=('time',), var_name='elevation', type=np.float32, long_name='elevation angle. 90 degree is vertical direction.', units='degree') # chirp dependent variables nc_add_variable(ds, val=data['MaxVel']['var'][0], dimension=('chirp',), var_name='DoppMax', type=np.float32, long_name='Unambiguous Doppler velocity (+/-)', units='m s-1') # index plus (1 to n) for Matlab indexing nc_add_variable(ds, val=data['rg_offsets'], dimension=('chirp',), var_name='range_offsets', type=np.int32, long_name='chirp sequences start index array in altitude layer array', units='-') # 1D variables nc_add_variable(ds, val=data['bt']['var'], dimension=('time',), var_name='bt', type=np.float32, long_name='Direct detection brightness temperature', units='K') nc_add_variable(ds, val=data['LWP']['var'], dimension=('time',), var_name='lwp', type=np.float32, long_name='Liquid water path', units='g m-2') nc_add_variable(ds, val=data['rr']['var'], dimension=('time',), var_name='rain', type=np.float32, long_name='Rain rate from weather station', units='mm h-1') nc_add_variable(ds, val=data['SurfRelHum']['var'], dimension=('time',), var_name='SurfRelHum', type=np.float32, long_name='Relative humidity from weather station', units='%') # 2D variables nc_add_variable(ds, val=data['Ze']['var'], dimension=dim_tupel, var_name=Ze_str, type=np.float32, long_name='Radar reflectivity factor', units='mm6 m-3', plot_range=data['Ze']['var_lims'], plot_scale='linear', comment='Calibrated reflectivity. Calibration convention: in the absence of attenuation, ' 'a cloud at 273 K containing one million 100-micron droplets per cubic metre will ' 'have a reflectivity of 0 dBZ at all frequencies.') nc_add_variable(ds, val=data['VEL']['var'], dimension=dim_tupel, plot_range=data['VEL']['var_lims'], plot_scale='linear', var_name=vel_str, type=np.float32, long_name='Doppler velocity', units='m s-1', unit_html='m s<sup>-1</sup>', comment='This parameter is the radial component of the velocity, with positive velocities are away from the radar.', folding_velocity=data['MaxVel']['var'].max()) nc_add_variable(ds, val=data['sw']['var'], dimension=dim_tupel, plot_range=data['sw']['var_lims'], lot_scale='logarithmic', var_name=width_str, type=np.float32, long_name='Spectral width', units='m s-1', unit_html='m s<sup>-1</sup>', comment='This parameter is the standard deviation of the reflectivity-weighted velocities in the radar pulse volume.') nc_add_variable(ds, val=data['ldr']['var'], dimension=dim_tupel, plot_range=[-30.0, 0.0], var_name='ldr', type=np.float32, long_name='Linear depolarisation ratio', units='dB', comment='This parameter is the ratio of cross-polar to co-polar reflectivity.') nc_add_variable(ds, val=data['kurt']['var'], dimension=dim_tupel, plot_range=data['kurt']['var_lims'], var_name='kurt', type=np.float32, long_name='Kurtosis', units='linear') nc_add_variable(ds, val=data['skew']['var'], dimension=dim_tupel, plot_range=data['skew']['var_lims'], var_name='Skew', type=np.float32, long_name='Skewness', units='linear') print('save calibrated to :: ', ds_name) return 0
17,059
def load_ssl_user_from_request(request): """ Loads SSL user from current request. SSL_CLIENT_VERIFY and SSL_CLIENT_S_DN needs to be set in request.environ. This is set by frontend httpd mod_ssl module. """ ssl_client_verify = request.environ.get('SSL_CLIENT_VERIFY') if ssl_client_verify != 'SUCCESS': raise Unauthorized('Cannot verify client: %s' % ssl_client_verify) username = request.environ.get('SSL_CLIENT_S_DN') if not username: raise Unauthorized('Unable to get user information (DN) from client certificate') user = User.find_user_by_name(username) if not user: user = User.create_user(username=username) g.groups = [] g.user = user return user
17,060
def redirect_stream_via_fd(stream, to=os.devnull): """ Redirects given stream to another at file descriptor level. """ assert stream is not None stream_fd = _fileno(stream) # copy stream_fd before it is overwritten # NOTE: `copied` is inheritable on Windows when duplicating a standard stream with os.fdopen(os.dup(stream_fd), 'wb') as copied: stream.flush() # flush library buffers that dup2 knows nothing about try: os.dup2(_fileno(to), stream_fd) # $ exec >&to except ValueError: # filename with open(to, 'wb') as to_file: os.dup2(to_file.fileno(), stream_fd) # $ exec > to try: yield stream # allow code to be run with the redirected stdout finally: # restore stdout to its previous value # NOTE: dup2 makes stdout_fd inheritable unconditionally stream.flush() os.dup2(copied.fileno(), stream_fd)
17,061
def test_to_wkt(): """ Tilsvarende test_from_wkt() """ with pytest.raises(Exception): geometry.to_wkt({"coordinates": [10.2, 56.1], "type": "Punkt"})
17,062
def get_all_users(): """Gets all users""" response = user_info.get_all_users() return jsonify({'Users' : response}), 200
17,063
def open_mailbox_maildir(directory, create=False): """ There is a mailbox here. """ return lazyMaildir(directory, create=create)
17,064
def TANH(*args) -> Function: """ Returns the hyperbolic tangent of any real number. Learn more: https//support.google.com/docs/answer/3093755 """ return Function("TANH", args)
17,065
def update_item_orders(begin_order, t_task, projects, api, cmd_count): """Update tasks' order that are greater than `begin_order`.""" for task in t_tasks.values(): if is_in_the_same_proj(task, projects) and task['item_order'] >= begin_order: api.items.get_by_id(task['id']).update(item_order=task['item_order']+1) update_cmd_count(api)
17,066
def value_frequencies_chart_from_blocking_rules( blocking_rules: list, df: DataFrame, spark: SparkSession, top_n=20, bottom_n=10 ): """Produce value frequency charts for the provided blocking rules Args: blocking_rules (list): A list of blocking rules as specified in a Splink settings dictionary df (DataFrame): Dataframe to profile spark (SparkSession): SparkSession object top_n (int, optional): Number of values with the highest frequencies to display. Defaults to 20. bottom_n (int, optional): Number of values with the lowest frequencies to display. Defaults to 10. Returns: Chart: If Altair is installed, return a chart. If not, then it returns the vega lite chart spec as a dictionary """ col_combinations = blocking_rules_to_column_combinations(blocking_rules) return column_combination_value_frequencies_chart( col_combinations, df, spark, top_n, bottom_n )
17,067
def getOfflineStockDataManifest(): """Returns manifest for the available offline data. If manifest is not found, creates an empty one. Returns: A dict with the manifest. For example: {'STOCK_1': {'first_available_date': datetime(2016, 1, 1), 'last_available_date': datetime(2017, 2, 28)}, 'STOCK_2': {'first_available_date': datetime(2014, 2, 4), 'last_available_date': datetime(2016, 6, 15)}} """ if exists(offlineStockDataManifestPath): with open(offlineStockDataManifestPath) as manifest_file: return JSON.openJson(manifest_file) else: manifest = {} updateOfflineStockDataManifest(manifest) return manifest
17,068
def count_tags(request, t, t_old, tag_dict): """ при сохранении документа пересчитать кол-во тегов в облаке t-скорее всего тег вызывается в save_tags 1) получает документ где хранится облако тегов 2) идем по тегам и если есть """ tags = request.db.conf.find_one({"_id":'tags_'+tag_dict[4:]}) # получает документ где хранится облако тегов tags = tags['tags'][cur_lang(request)] if tags and 'tags' in tags and cur_lang(request) in tags['tags'] else [] tags_d = dict(tags) for res in t: if not res in tags_d: tags_d[res] = 1 #если нету полученого в тегах документа то прописуем там else: tags_d[res] += 1 for res in t_old: if res in tags_d: tags_d[res] -= 1 if tags_d[res] == 0: del tags_d[res] tags = [ (res, tags_d[res]) for res in tags_d] request.db.conf.save( {"_id":'tags_'+tag_dict[4:],"tags":{cur_lang(request):tags}} )
17,069
def test_dbt_build_select(profiles_file, dbt_project_file, model_files): """Test execution of DbtBuildOperator selecting all models.""" op = DbtBuildOperator( task_id="dbt_task", project_dir=dbt_project_file.parent, profiles_dir=profiles_file.parent, select=[str(m.stem) for m in model_files], do_xcom_push=True, ) execution_results = op.execute({}) build_result = execution_results["results"][0] assert build_result["status"] == RunStatus.Success
17,070
def align_buf(buf: bytes, sample_width: bytes): """In case of buffer size not aligned to sample_width pad it with 0s""" remainder = len(buf) % sample_width if remainder != 0: buf += b'\0' * (sample_width - remainder) return buf
17,071
def update_alert(): """ Make Rest API call to security graph to update an alert """ if flask.request.method == 'POST': flask.session.pop('UpdateAlertData', None) result = flask.request.form flask.session['VIEW_DATA'].clear() alert_data = {_: result[_] for _ in result} # Iterate over html form POST from Graph.html if alert_data.get('AlertId'): # Id form was not empty alert_data['AlertId'] = alert_data.get('AlertId').strip(' ') else: flask.session['VIEW_DATA']['UpdateAlertError'] = "Please enter valid alert Id" return flask.redirect(flask.url_for('homepage')) alert_id = alert_data['AlertId'] old_alert = get_alert_by_id(alert_id) # store old alert before updating it if not old_alert: # alert not found flask.session['VIEW_DATA']['UpdateAlertError'] = "No alert matching this ID " + alert_id + " was found" return flask.redirect(flask.url_for('homepage')) else: flask.session['VIEW_DATA']['OldAlert'] = old_alert properties_to_update = {} properties_to_update["assignedTo"] = flask.session['email'] if alert_data.get("SelectStatusToUpdate") != "Unknown": properties_to_update["status"] = alert_data.get("SelectStatusToUpdate") if alert_data.get("SelectFeedbackToUpdate") != "Unknown": properties_to_update["feedback"] = alert_data.get("SelectFeedbackToUpdate") if alert_data.get("Comments") != "": comments = old_alert.get("comments") new_comment = alert_data.get("Comments") comments.append(new_comment) properties_to_update["comments"] = comments # include the required vendor information in the body of the PATCH properties_to_update["vendorInformation"] = old_alert.get("vendorInformation") # update the alert update_security_alert(alert_id, properties_to_update) # make another call to graph to get the updated alert updated_alert = get_alert_by_id(alert_id) # store the alert to be rendered in the table in Graph.html flask.session['VIEW_DATA']['UpdateAlertResults'] = updated_alert flask.session['VIEW_DATA']['UpdateQueryDetails'] = "REST query PATCH: '" \ + config.SECURITYAPI_URL \ + "alerts/" \ + alert_id \ + "'" flask.session['VIEW_DATA']['UpdateQueryBody'] = "Request Body: " \ + json.dumps(properties_to_update, sort_keys=True, indent=4, separators=(',', ': ')) flask.session['UpdateAlertData'] = alert_data return flask.redirect(flask.url_for('homepage'))
17,072
def simulate_bet(odds, stake): """ Simulate the bet taking place assuming the odds accurately represent the probability of the event :param odds: numeric: the odds given for the event :param stake: numeric: the amount of money being staked :return: decimal: the returns from the bet """ probability = odds_to_prob(odds) if np.random.rand() <= probability: return stake * (1 + odds) else: return 0
17,073
def lrcn(num_classes, lrcn_time_steps, lstm_hidden_size=200, lstm_num_layers=2): """ Args: num_classes (int): Returns: torch.nn.modules.module.Module """ class TimeDistributed(nn.Module): def __init__(self, layer, time_steps): super(TimeDistributed, self).__init__() # self.layers = nn.ModuleList([layer for _ in range(time_steps)]) self.layers = nn.ModuleList([nn.Linear(10, 10) for _ in range(time_steps)]) def forward(self, x): batch_size, time_steps, *_ = x.size() # outputs = list() for i, layer in enumerate(self.layers): x = layer(x) # output_t = layer(x[:, i]) # if i == 0: # output = output_t.unsqueeze(1) # else: # output = torch.cat((output, output_t.unsqueeze(1)), 1) # outputs.append(output_t) # output = torch.stack(outputs, dim=1) # return output return x class BiLSTMHidden2Dense(nn.Module): def __init__(self): super(BiLSTMHidden2Dense, self).__init__() def forward(self, x): lstm_output, (hn, cn) = x lstm_last_hidden_state = hn[-2:].transpose(0, 1).contiguous().view(hn.size(1), -1) return lstm_last_hidden_state cnn_model = squeezenet1_1(pretrained=False, progress=True) model = nn.Sequential(OrderedDict([ ('timedistributed_cnn', TimeDistributed(nn.Conv2d(3, 60, (1, 1)), time_steps=lrcn_time_steps)), # ('timedistributed_cnn', TimeDistributed(cnn_model, time_steps=lrcn_time_steps)), # ('bidirectional_stacked_lstm', nn.LSTM(input_size=1000, hidden_size=lstm_hidden_size, num_layers=lstm_num_layers, # batch_first=True, dropout=0.2, bidirectional=True)), # ('hidden2dense', BiLSTMHidden2Dense()), # ('dense', nn.Linear(in_features=2*lstm_hidden_size, out_features=lstm_hidden_size)), # ('norm', nn.BatchNorm1d(num_features=lstm_hidden_size)), # ('relu', nn.ReLU()), # ('dropout', nn.Dropout(p=0.25)), # ('last', nn.Linear(in_features=lstm_hidden_size, out_features=num_classes)) ])) return model
17,074
def index_document(connection, doc_id, content): """对document建立反向索引""" words = tokenize(content) pipe = connection.pipeline(True) for word in words: pipe.sadd('idx:' + word, doc_id) return len(pipe.execute())
17,075
def get_incar_magmoms(incarpath,poscarpath): """ Read in the magnetic moments in the INCAR Args: incarpath (string): path to INCAR poscarpath (string): path to POSCAR Returns: mof_mag_list (list of floats): magnetic moments """ mof_mag_list = [] init_mof = read(poscarpath) with open(incarpath,'r') as incarfile: for line in incarfile: line = line.strip() if 'MAGMOM' in line: mag_line = line.split('= ')[1:][0].split(' ') for val in mag_line: mag = float(val.split('*')[1]) num = int(val.split('*')[0]) mof_mag_list.extend([mag]*num) if not bool(mof_mag_list): mof_mag_list = np.zeros(len(init_mof)) if len(mof_mag_list) != len(mof_mag_list): raise ValueError('Error reading INCAR magnetic moments') return mof_mag_list
17,076
def add_security_groups(t): """Given a template will add database and web server security groups. These security groups will be able accessibly externally and from private subnets.""" t.add_resource( SecurityGroup( 'LinuxServer', GroupDescription='Enable SSH access via port 22', SecurityGroupIngress=[ SecurityGroupRule( IpProtocol='tcp', FromPort='22', ToPort='22', CidrIp=IP_HOME_LOCATION), SecurityGroupRule( IpProtocol='tcp', FromPort='22', ToPort='22', CidrIp="10.100.0.0/16"), SecurityGroupRule( IpProtocol='udp', FromPort='123', ToPort='123', CidrIp=IP_HOME_LOCATION)], VpcId=Ref('VPC'), )) t.add_resource( SecurityGroup( 'WebServer', GroupDescription='Enable web SSH and ping', SecurityGroupIngress=[ SecurityGroupRule( IpProtocol='tcp', FromPort='80', ToPort='80', CidrIp='0.0.0.0/0'), SecurityGroupRule( IpProtocol='tcp', FromPort='443', ToPort='443', CidrIp='0.0.0.0/0'), SecurityGroupRule( IpProtocol='icmp', FromPort='-1', ToPort='-1', CidrIp='0.0.0.0/0')], VpcId=Ref('VPC'), )) # Create a list of all the Private subnet zones that need Web access to the NAT private_zone_rules = [] for port in ('80', '443'): private_zone_rules.append(SecurityGroupRule( IpProtocol='tcp', FromPort=port, ToPort=port, CidrIp=f"10.100.0.0/16"), ) t.add_resource( SecurityGroup( 'NATSG', GroupDescription='For NAT instances', SecurityGroupIngress=[ SecurityGroupRule( IpProtocol='tcp', FromPort='80', ToPort='80', CidrIp='0.0.0.0/0'), SecurityGroupRule( IpProtocol='tcp', FromPort='443', ToPort='443', CidrIp='0.0.0.0/0'), SecurityGroupRule( IpProtocol='tcp', FromPort='22', ToPort='22', CidrIp=IP_HOME_LOCATION), ] + private_zone_rules, # Port 80 rules for private subnets VpcId=Ref('VPC'), )) t.add_resource( SecurityGroup( 'BastionSG', GroupDescription='For Bastion instances only accessible from home location', SecurityGroupIngress=[ SecurityGroupRule( IpProtocol='tcp', FromPort='80', ToPort='80', CidrIp=IP_HOME_LOCATION), SecurityGroupRule( IpProtocol='tcp', FromPort='80', ToPort='80', CidrIp='10.100.0.0/16'), SecurityGroupRule( IpProtocol='tcp', FromPort='443', ToPort='443', CidrIp=IP_HOME_LOCATION), SecurityGroupRule( IpProtocol='tcp', FromPort='443', ToPort='443', CidrIp='10.100.0.0/16'), SecurityGroupRule( IpProtocol='icmp', FromPort='-1', ToPort='-1', CidrIp=IP_HOME_LOCATION), SecurityGroupRule( IpProtocol='icmp', FromPort='-1', ToPort='-1', CidrIp='10.100.0.0/16'), SecurityGroupRule( IpProtocol='tcp', FromPort='22', ToPort='22', CidrIp='10.100.0.0/16'), SecurityGroupRule( IpProtocol='tcp', FromPort='22', ToPort='22', CidrIp=IP_HOME_LOCATION), ] + private_zone_rules, # Port 80 rules for private subnets VpcId=Ref('VPC'), )) t.add_resource( SecurityGroup( 'RDSPostgres', GroupDescription='Enable postgres access', SecurityGroupIngress=[ SecurityGroupRule( IpProtocol='tcp', FromPort='5432', ToPort='5432', CidrIp='0.0.0.0/0'), ], VpcId=Ref('VPC'), ))
17,077
def main(config_path=None): """ The main entry point for the unix version of dogstatsd. """ # Deprecation notice from utils.deprecations import deprecate_old_command_line_tools deprecate_old_command_line_tools() COMMANDS_START_DOGSTATSD = [ 'start', 'stop', 'restart', 'status' ] parser = optparse.OptionParser("%prog [start|stop|restart|status]") parser.add_option('-u', '--use-local-forwarder', action='store_true', dest="use_forwarder", default=False) opts, args = parser.parse_args() if not args or args[0] in COMMANDS_START_DOGSTATSD: reporter, server, cnf = init(config_path, use_watchdog=True, use_forwarder=opts.use_forwarder, args=args) daemon = Dogstatsd(PidFile(PID_NAME, PID_DIR).get_path(), server, reporter, cnf.get('autorestart', False)) # If no args were passed in, run the server in the foreground. if not args: daemon.start(foreground=True) return 0 # Otherwise, we're process the deamon command. else: command = args[0] if command == 'start': daemon.start() elif command == 'stop': daemon.stop() elif command == 'restart': daemon.restart() elif command == 'status': daemon.status() elif command == 'info': return Dogstatsd.info() else: sys.stderr.write("Unknown command: %s\n\n" % command) parser.print_help() return 1 return 0
17,078
def test_get_file_succeeds_with_valid_resource_path(client, request_headers): """ Tests that response is okay when valid resource path is requested. Args: client (FlaskClient): a test client created by a fixture. request_headers (dict): a header created by a fixture. """ res = client.get( f'{base_url}/dist/bundle.min.js', headers=request_headers, follow_redirects=True ) assert res.status_code == 200 assert b'function' in res.data
17,079
def remove_report_from_plist(plist_file_obj, skip_handler): """ Parse the original plist content provided by the analyzer and return a new plist content where reports were removed if they should be skipped. If the remove failed for some reason None will be returned. WARN !!!! If the 'files' array in the plist is modified all of the diagnostic section (control, event ...) nodes should be re indexed to use the proper file array indexes!!! """ report_data = None try: report_data = parse_plist(plist_file_obj) if not report_data: return except Exception as ex: LOG.error("Plist parsing error") LOG.error(ex) return file_ids_to_remove = [] try: for i, f in enumerate(report_data['files']): if skip_handler.should_skip(f): file_ids_to_remove.append(i) kept_diagnostics, kept_files = get_kept_report_data(report_data, file_ids_to_remove) report_data['diagnostics'] = kept_diagnostics report_data['files'] = kept_files if kept_diagnostics else [] return plistlib.dumps(report_data) except KeyError: LOG.error("Failed to modify plist content, " "keeping the original version") return
17,080
def writeAllSynchronous( tagPaths, # type: List[String] values, # type: List[Any] timeout=45000, # type: Optional[int] ): # type: (...) -> None """Performs a synchronous write to multiple tags. Synchronous means that execution will not continue until this function has completed, so you will know that a write has been attempted on the provided tags. The first write to fail or time out will throw an exception, but any subsequent tags in the provided list will still be attempted. This function cannot be called from the event dispatch thread, meaning it cannot be called directly from a GUI event like a button press without creating a new thread with a call to system.util.invokeAsynchronous. You can call this from project event scripts like timer scripts. Note that the order of the tags listed in the tagPaths parameter determines the order that the writes will occur. Args: tagPaths: The paths of the tags to write to. values: The values to write. timeout: How long to wait in milliseconds before timing out pending writes. The default is 45000 milliseconds. Optional. """ print(tagPaths, values, timeout)
17,081
def assert_allclose( actual: Tuple[float, numpy.float64], desired: Tuple[float, numpy.float64] ): """ usage.statsmodels: 2 """ ...
17,082
def _resize_event(event, params): """Handle resize event.""" size = ','.join([str(s) for s in params['fig'].get_size_inches()]) set_config('MNE_BROWSE_RAW_SIZE', size, set_env=False) _layout_figure(params)
17,083
def propagate_memlets_sdfg(sdfg): """ Propagates memlets throughout an entire given SDFG. :note: This is an in-place operation on the SDFG. """ # Reset previous annotations first reset_state_annotations(sdfg) for state in sdfg.nodes(): propagate_memlets_state(sdfg, state) propagate_states(sdfg)
17,084
def doctest_profile(): """Test for profile. >>> @profilehooks.profile ... def sample_fn(x, y, z): ... print("%s %s %s" % (x, y, z)) ... return x + y * z You can call that function normally >>> r = sample_fn(1, 2, z=3) 1 2 3 >>> r 7 and do that more than once >>> sample_fn(3, 2, 1) 3 2 1 5 When you exit, the profile is printed to stdout >>> run_exitfuncs() <BLANKLINE> *** PROFILER RESULTS *** sample_fn (<doctest test_profilehooks.doctest_profile[0]>:1) function called 2 times ... """
17,085
def print_arguments(args): """none""" print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------')
17,086
def isTask(item): # pragma: no cover """Is the given item an OmniFocus task?""" return item.isKindOfClass_(taskClass)
17,087
def add2grouppvalue_real1(): """ add2grouppvalue_real1 description: Uses the raw data from real_data_1.csv to compute p-values for 2 group comparisons on a bunch of pairs of groups and using all 3 stats tests Test fails if there are any errors or if the shape of any of the following stats entries are incorrect: dset.stats['{stats_test}_..._raw'].shape = (773,) returns: (bool) -- test pass (True) or fail (False) """ dset = Dataset(os.path.join(os.path.dirname(__file__), 'real_data_1.csv')) dset.assign_groups({ 'Par': [0, 1, 2, 3], 'Dap2': [4, 5, 6, 7], 'Dal2': [8, 9, 10, 11], 'Van4': [12, 13, 14, 15], 'Van8': [16, 17, 18, 19] }) # pairs of groups to compute log2fc on pairs = [ ['Par', 'Dap2'], ['Par', 'Dal2'], ['Par', 'Van4'], ['Par', 'Van8'] ] for pair in pairs: for stats_test in ['students', 'welchs', 'mann-whitney']: #print('testing {} with {}'.format(pair, stats_test)) add_2group_pvalue(dset, pair, stats_test) stest_abbrev = {'students': 'studentsP', 'welchs': 'welchsP', 'mann-whitney': 'mannwhitP'}[stats_test] if dset.stats['{}_{}_raw'.format(stest_abbrev, '-'.join(pair))].shape != (773,): m = 'add2grouppvalue_real1: "{}_..._raw" should have shape (773,), has shape: {}' raise RuntimeError(m.format(dset.stats['LOG2FC_{}_raw'.format(stest_abbrev, '-'.join(pair))].shape)) # diagnostic printing stuff """ print(dset) for s, w, m in zip(dset.stats["studentsP_Par-Dap2_raw"] <= 0.05, dset.stats["welchsP_Par-Dap2_raw"] <= 0.05, dset.stats["mannwhitP_Par-Dap2_raw"] <= 0.05): if s and w and m: print(True) elif not s and not w and not m: print(False) else: print(s, w, m) """ return True
17,088
def cox_cc_loss(g_case: Tensor, g_control: Tensor, shrink : float = 0., clamp: Tuple[float, float] = (-3e+38, 80.)) -> Tensor: """Torch loss function for the Cox case-control models. For only one control, see `cox_cc_loss_single_ctrl` instead. Arguments: g_case {torch.Tensor} -- Result of net(input_case) g_control {torch.Tensor} -- Results of [net(input_ctrl1), net(input_ctrl2), ...] Keyword Arguments: shrink {float} -- Shrinkage that encourage the net got give g_case and g_control closer to zero (a regularizer in a sense). (default: {0.}) clamp {tuple} -- See code (default: {(-3e+38, 80.)}) Returns: [type] -- [description] """ control_sum = 0. shrink_control = 0. if g_case.shape != g_control[0].shape: raise ValueError(f"Need `g_case` and `g_control[0]` to have same shape. Got {g_case.shape}"+ f" and {g_control[0].shape}") for ctr in g_control: shrink_control += ctr.abs().mean() ctr = ctr - g_case ctr = torch.clamp(ctr, *clamp) # Kills grads for very bad cases (should instead cap grads!!!). control_sum += torch.exp(ctr) loss = torch.log(1. + control_sum) shrink_zero = shrink * (g_case.abs().mean() + shrink_control) / len(g_control) return torch.mean(loss) + shrink_zero.abs()
17,089
def vector_field(mesh, v): """ Returns a np.array with values specified by `v`, where `v` should be a iterable of length 3, or a function that returns an iterable of length 3 when getting the coordinates of a cell of `mesh`. """ return field(mesh, v, dim=3)
17,090
def is_fav_recipe(request): """ Handles the requests from /ajax/is_fav_recipe/ Checks if a :model:`matega.recipe` is a saved recipe for a :model:'matega.user' **Data** Boolean if :model:`matega.recipe` is a saved recipe for :model:'matega.user' """ user_id = int(request.GET.get('user_id', None)) recipe_id = int(request.GET.get('recipe_id', None)) is_fav = False user = User.objects.get(pk=user_id) for rec in user.saved_recipes.values_list(): if rec[0] == recipe_id: is_fav = True data = { 'is_fav': is_fav } return JsonResponse(data)
17,091
def people_interp(): """ <enumeratedValueSet variable="People"> <value value="500"/> </enumeratedValueSet> Integer between 1 and 500 """ return f'<enumeratedValueSet variable="People"> <value value="%s"/> </enumeratedValueSet>'
17,092
def check_lint(path, lint_name="md"): """lint命令及检测信息提取,同时删除中间文档xxx_lint.md或者xxx_lint.py""" error_infos = [] lint_ext = "_lint.md" if lint_name == "md" else "_lint.py" check_command = "mdl -s mdrules.rb" if lint_name == "md" else "pylint -j 4" if lint_name == "md": convert_to_markdown(path) if lint_name == "py": convert_to_py(path) check_path = path.replace(".ipynb", lint_ext) if lint_ext == "_lint.md": math_f_info = check_mathematical_formula(check_path) error_infos.extend(math_f_info) cmd = "{} {}".format(check_command, check_path) res = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8",) info = res.stdout.read() if info is not None: info_list = info.split("\n")[:-1] for i in info_list: try: location_, error_info = re.findall(":([0-9]+):(.*)", i)[0] file_name = check_path.replace(lint_ext, ".ipynb") error_infos.append((file_name, location_, error_info.strip())) except IndexError: pass finally: pass os.remove(check_path) return error_infos
17,093
def through_omas_s3(ods, method=['function', 'class_method'][1]): """ Test save and load S3 :param ods: ods :return: ods """ filename = 'test.pkl' if method == 'function': save_omas_s3(ods, filename, user='omas_test') ods1 = load_omas_s3(filename, user='omas_test') else: ods.save('s3', filename=filename, user='omas_test') ods1 = ODS().load('s3', filename=filename, user='omas_test') return ods1
17,094
def read_packages(filename): """Return a python list of tuples (repository, branch), given a file containing one package (and branch) per line. Comments are excluded """ lines = load_order_file(filename) packages = [] for line in lines: if "," in line: # user specified a branch path, branch = [k.strip() for k in line.split(",", 1)] packages.append((path, branch)) else: packages.append((line, "master")) return packages
17,095
def find_min(x0, capacities): """ (int list, int list) --> (int list, int) Find the schedule that minimizes the passenger wait time with the given capacity distribution Uses a mixture of Local beam search and Genetic Algorithm Returns the min result """ scores_and_schedules = [] # Generate 199 neighbouring schedules using the input schedule x0 init_neighbours = find_neighbours(199, 10, x0) min_score = all_trains(x0, capacities, passengers) min_sched = x0 heapq.heappush(scores_and_schedules,(min_score, x0)) # Add them all to the list, as well as the input schedule for i in init_neighbours: score = all_trains(i, capacities, passengers) heapq.heappush(scores_and_schedules,(score, i)) if score < min_score: min_score, min_sched = score, i local_min_counter = 0 # Perform the genetic algorithm for optimization while local_min_counter < 500: scores_and_schedules = best_n(scores_and_schedules, capacities, 5) if scores_and_schedules[0][0] < min_score: min_score, min_sched = scores_and_schedules[0] local_min_counter = 0 else: local_min_counter += 1 return min_sched, min_score
17,096
def test_spectrum_getters_return_copies(): """Test if getters return (deep)copies so that edits won't change the original entries.""" spectrum = Spectrum(mz=numpy.array([100.0, 101.0], dtype="float"), intensities=numpy.array([0.4, 0.5], dtype="float"), metadata={"testdata": 1}) # Get entries and modify testdata = spectrum.get("testdata") testdata += 1 assert spectrum.get("testdata") == 1, "Expected different entry" peaks_mz = spectrum.peaks.mz peaks_mz += 100.0 assert numpy.all(spectrum.peaks.mz == numpy.array([100.0, 101.0])), "Expected different peaks.mz" metadata = spectrum.metadata metadata["added_info"] = "this" assert spectrum.metadata == {'testdata': 1}, "Expected metadata to remain unchanged"
17,097
def delta_eta_with_gaussian(analysis: "correlations.Correlations") -> None: """ Plot the subtracted delta eta near-side. """ # Setup fig, ax = plt.subplots(figsize = (8, 6)) for (attribute_name, width_obj), (correlation_attribute_name, correlation) in \ zip(analysis.widths_delta_eta, analysis.correlation_hists_delta_eta_subtracted): # Setup # Sanity check if attribute_name != correlation_attribute_name: raise ValueError( "Issue extracting width and hist together." f"Width obj name: {attribute_name}, hist obj name: {correlation_attribute_name}" ) # Plot only the near side for now because the away-side doesn't have a gaussian shape if attribute_name == "away_side": continue # Plot the data. h = correlation.hist ax.errorbar( h.x, h.y, yerr = h.errors, marker = "o", linestyle = "", label = f"{correlation.type.display_str()}", ) # Plot the fit gauss = width_obj.fit_object(h.x, **width_obj.fit_result.values_at_minimum) fit_plot = ax.plot( h.x, gauss, label = fr"Gaussian fit: $\mu = $ {width_obj.mean:.2f}, $\sigma = $ {width_obj.width:.2f}", ) # Fill in the error band. error = width_obj.fit_object.calculate_errors(x = h.x) ax.fill_between( h.x, gauss - error, gauss + error, facecolor = fit_plot[0].get_color(), alpha = 0.5, ) # Labels. ax.set_xlabel(labels.make_valid_latex_string(correlation.axis.display_str())) ax.set_ylabel(labels.make_valid_latex_string(labels.delta_eta_axis_label())) jet_pt_label = labels.jet_pt_range_string(analysis.jet_pt) track_pt_label = labels.track_pt_range_string(analysis.track_pt) ax.set_title(fr"Subtracted 1D ${correlation.axis.display_str()}$," f" {analysis.reaction_plane_orientation.display_str()} event plane orient.," f" {jet_pt_label}, {track_pt_label}") ax.legend(loc = "upper right") # Final adjustments fig.tight_layout() # Save plot and cleanup plot_base.save_plot(analysis.output_info, fig, f"jetH_delta_eta_{analysis.identifier}_width_{attribute_name}_fit") # Reset for the next iteration of the loop ax.clear() # Final cleanup. plt.close(fig)
17,098
def mult_by_scalar_func( raster_path, scalar, target_nodata, target_path): """Multiply raster by scalar.""" nodata = pygeoprocessing.get_raster_info(raster_path)['nodata'][0] pygeoprocessing.raster_calculator( [(raster_path, 1), (scalar, 'raw'), (nodata, 'raw'), (target_nodata, 'raw')], _mult_by_scalar_op, target_path, gdal.GDT_Float32, target_nodata)
17,099