content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def analyze(request):
"""
利用soar分析SQL
:param request:
:return:
"""
text = request.POST.get('text')
instance_name = request.POST.get('instance_name')
db_name = request.POST.get('db_name')
if not text:
result = {"total": 0, "rows": []}
else:
soar = Soar()
if instance_name != '' and db_name != '':
soar_test_dsn = SysConfig().get('soar_test_dsn')
# 获取实例连接信息
instance_info = Instance.objects.get(instance_name=instance_name)
online_dsn = "{user}:{pwd}@{host}:{port}/{db}".format(user=instance_info.user,
pwd=instance_info.raw_password,
host=instance_info.host,
port=instance_info.port,
db=db_name)
else:
online_dsn = ''
soar_test_dsn = ''
args = {"report-type": "markdown",
"query": '',
"online-dsn": online_dsn,
"test-dsn": soar_test_dsn,
"allow-online-as-test": "false"}
rows = generate_sql(text)
for row in rows:
args['query'] = row['sql'].replace('"', '\\"').replace('`', '').replace('\n', ' ')
cmd_args = soar.generate_args2cmd(args=args, shell=True)
stdout, stderr = soar.execute_cmd(cmd_args, shell=True).communicate()
row['report'] = stdout if stdout else stderr
result = {"total": len(rows), "rows": rows}
return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True),
content_type='application/json')
| 15,700
|
def test_1_6_4_systemd_coredump_package(host):
"""
CIS Ubuntu 20.04 v1.0.0 - Rule # 1.6.4
Tests if systemd-coredump package is installed
"""
assert host.package('systemd-coredump').is_installed
| 15,701
|
def sin(c):
"""
sin(a+x)= sin(a) cos(x) + cos(a) sin(x)
"""
if not isinstance(c,pol): return math.sin(c)
a0,p=c.separate();
lst=[math.sin(a0),math.cos(a0)]
for n in range(2,c.order+1):
lst.append( -lst[-2]/n/(n-1))
return phorner(lst,p)
| 15,702
|
def _calc_metadata() -> str:
"""
Build metadata MAY be denoted by appending a plus sign
and a series of dot separated identifiers
immediately following the patch or pre-release version.
Identifiers MUST comprise only ASCII alphanumerics and hyphen [0-9A-Za-z-].
"""
if not is_appveyor:
return "local-build"
is_pr = PR_NUM in env
assert (PR_NUM in env) == (PR_BRANCH in env)
assert VER in env
if is_pr:
return "{VER}.pr{PR_NUM}-{PR_BRANCH}".format(**env)
else:
if env[BRANCH] != "master":
# Shouldn't happen, since side branches are not built.
return "{VER}.{BRANCH}".format(**env)
else:
return "{VER}".format(**env)
| 15,703
|
def authorization_required(func):
"""Returns 401 response if user is not logged-in when requesting URL with user ndb.Key in it
or Returns 403 response if logged-in user's ndb.Key is different from ndb.Key given in requested URL.
"""
@functools.wraps(func)
def decorated_function(*pa, **ka): # pylint: disable=missing-docstring
if auth.is_authorized(ndb.Key(urlsafe=ka['key'])):
return func(*pa, **ka)
if not auth.is_logged_in():
return abort(401)
return abort(403)
return decorated_function
| 15,704
|
def pad_col(input, val=0, where='end'):
"""Addes a column of `val` at the start of end of `input`."""
if len(input.shape) != 2:
raise ValueError(f"Only works for `phi` tensor that is 2-D.")
pad = torch.zeros_like(input[:, :1])
if val != 0:
pad = pad + val
if where == 'end':
return torch.cat([input, pad], dim=1)
elif where == 'start':
return torch.cat([pad, input], dim=1)
raise ValueError(f"Need `where` to be 'start' or 'end', got {where}")
| 15,705
|
def seats_found_ignoring_floor(data: List[List[str]], row: int, col: int) -> int:
"""
Search each cardinal direction util we hit a wall or a seat.
If a seat is hit, determine if it's occupied.
"""
total_seats_occupied = 0
cardinal_direction_operations = itertools.product([-1, 0, 1], repeat=2)
for row_modifier, col_modifier in cardinal_direction_operations:
if row_modifier or col_modifier:
total_seats_occupied += next_seat_on_path_occupied(
data, row, col, row_modifier, col_modifier
)
return total_seats_occupied
| 15,706
|
def main(module, dry_run=False, *arguments):
"""Load module to run
module: module path
dry_run: only parse input arguments and print them
arguments: arguments of the imported module
"""
module = load_module(module)
| 15,707
|
def test_set_sample(fake_session):
"""Set value should find the second AllowableFieldType."""
fake_fv = fake_session.FieldValue.load(
{
"id": 200,
"child_item_id": None,
"allowable_field_type_id": None,
"allowable_field_type": None,
"parent_class": "Operation",
"role": "input",
"object_type": None,
"field_type": {
"id": 100,
"allowable_field_types": [
{"id": 1, "sample_type_id": 2},
{"id": 2, "sample_type_id": 3}, # should find this
],
},
}
)
fake_sample = fake_session.Sample.load(
{"id": 300, "sample_type_id": 3, "sample_type": {"id": 3}}
)
fake_fv.set_value(sample=fake_sample)
assert fake_fv.allowable_field_type_id == 2
assert fake_fv.allowable_field_type.id == 2
assert fake_fv.child_sample_id == fake_sample.id
assert fake_fv.sample == fake_sample
| 15,708
|
def product_design_space() -> ProductDesignSpace:
"""Build a ProductDesignSpace for testing."""
alpha = RealDescriptor('alpha', lower_bound=0, upper_bound=100, units="")
beta = RealDescriptor('beta', lower_bound=0, upper_bound=100, units="")
gamma = CategoricalDescriptor('gamma', categories=['a', 'b', 'c'])
dimensions = [
ContinuousDimension(alpha, lower_bound=0, upper_bound=10),
ContinuousDimension(beta, lower_bound=0, upper_bound=10),
EnumeratedDimension(gamma, values=['a', 'c'])
]
return ProductDesignSpace(name='my design space', description='does some things', dimensions=dimensions)
| 15,709
|
def compute_percents_of_labels(label):
"""
Compute the ratio/percentage size of the labels in an labeled image
:param label: the labeled 2D image
:type label: numpy.ndarray
:return: An array of relative size of the labels in the image. Indices of the sizes in the array \
is corresponding to the labels in the labeled image. E.g. output [0.2, 0.5, 0.3] means label 0's size \
is 0.2 of the labeled image, label 1' size is 0.5 of the labeled image, and label 2's size is 0.3 of \
the labeled image.
:rtype: numpy.ndarray
"""
# Get the bins of the histogram. Since the last bin of the histogram is [label, label+1]
# We add 1 to the number of different labels in the labeled image when generating bins
num_labels = np.arange(0, len(np.unique(label)) + 1)
# Histogramize the label image and get the frequency array percent_of_dominance
(percent_of_dominance, _) = np.histogram(label, bins=num_labels)
# Convert the dtype of frequency array to float
percent_of_dominance = percent_of_dominance.astype("float")
# Normalized by the sum of frequencies (number of pixels in the labeled image)
percent_of_dominance /= percent_of_dominance.sum()
return percent_of_dominance
| 15,710
|
def removepara(H,M,Hmin = '1/2',Hmax = 'max',output=-1,kwlc={}):
""" Retrieve lineal contribution to cycle and remove it from cycle.
**H** y **M** corresponds to entire cycle (two branches). I.e. **H**
starts and ends at the same value (or an aproximate value).
El ciclo M vs H se separa en sus dos ramas. H1,M1 y H2,M2, defined by::
H1,M1: curva con dH/dt < 0. El campo decrece con el tiempo.
H2,M2: curva con dH/dt > 0. El campo aumenta con el tiempo.
Con la variable global FIGS = True shows intermediate states of
proceso de determinarion y linear contribution removing.
Figure Shows **Hmin** and **Hmax** positions in the cycle.
output: kind of output, (0 or -1) out.params or (1) out. (v 0.210304)
Note: output is set to -1 as default to achive backward
compatibility. But it should be changed in future to 1.
kwlc = dictionary with kwargs to be passed to lienar contribution.
Returns:
if output = -1: H1,M1,H2,M2,[pendiente,salto,desp]
if output = 1:
returns plain objtect with previous attributes and others.
"""
if PRINT:
print('**********************************************************')
print('removepara ')
print('**********************************************************')
if Hmax == 'max':
Hmax = max(abs(H))
if Hmin == '1/2':
Hmin = 0.5*max(abs(H))
H1,M1,H2,M2 = splitcycle(H,M)
o1 = linealcontribution(H1,M1,[Hmax,Hmin],label='dH/dt < 0',output=output,**kwlc)
o2 = linealcontribution(H2,M2,[Hmax,Hmin],label='dH/dt > 0',output=output,**kwlc)
if output == 1:
p1 = o1.params
p2 = o2.params
elif output == -1:
p1 = o1
p2 = o2
Ms = (p1['Ms'].value + p2['Ms'].value)*0.5
if p1['Ms'].stderr == None or p2['Ms'].stderr == None:
eMs = None
else:
eMs = (p1['Ms'].stderr + p2['Ms'].stderr)*0.5
# Fin de ajustes
if PRINT:
print('slope 1:',p1['Xi'])
print('slope 2:',p2['Xi'])
print('Ms 1 :',p1['Ms'])
print('Ms 2 :',p2['Ms'])
print('Ms :%s +/- %s'%(Ms,eMs))
print('offset 1 :',p1['offset'])
print('offset 2 :',p2['offset'])
print('a 1 :',p1['a'])
print('a 2 :',p2['a'])
print('b 1 :',p1['b'])
print('b 2 :',p2['b'])
# Armamos una pendiente promedio a partir de la obtenida para cada rama.
# Corregimos ambas ramas eliminando esta pendiente.
pend =(p1['Xi']+p2['Xi'])/2.
salto=(p1['Ms']+p2['Ms'])/2.
desp =(p1['offset']+p2['offset'])/2.
M1 = (M1-H1*pend)
M2 = (M2-H2*pend)
if FIGS:
__newfig__()
pyp.plot(H1,M1,'b.-',label = 'dH/dt < 0')
pyp.plot(H2,M2,'r.-',label = 'dH/dt > 0')
pyp.axhline(salto,color = 'k', alpha =0.5)
pyp.axhline(-salto,color= 'k', alpha =0.5)
pyp.legend(loc=0)
if output == 1:
out = ReturnClass()
out.H1 = H1
out.H2 = H2
out.M1 = M1
out.M2 = M2
out.pend = pend
out.desp = desp
out.salto = salto
out.o1 = o1
out.o2 = o2
return out
else:
return H1,M1,H2,M2,[pend,salto,desp]
| 15,711
|
def flush():
"""
Remove all mine contents of minion.
:rtype: bool
:return: True on success
CLI Example:
.. code-block:: bash
salt '*' mine.flush
"""
if __opts__["file_client"] == "local":
return __salt__["data.update"]("mine_cache", {})
load = {
"cmd": "_mine_flush",
"id": __opts__["id"],
}
return _mine_send(load, __opts__)
| 15,712
|
def polygon_to_shapely_polygon_wkt_compat(polygon):
"""
Convert a Polygon to its Shapely Polygon representation but with WKT
compatible coordinates.
"""
shapely_points = []
for location in polygon.locations():
shapely_points.append(location_to_shapely_point_wkt_compat(location))
return shapely.geometry.Polygon(shapely.geometry.LineString(shapely_points))
| 15,713
|
def main():
"""
程序入口,完成初始化,定义神经网络结构,训练,打印等逻辑
Args:
Return:
"""
# 初始化,设置是否使用gpu,trainer数量
paddle.init(use_gpu=False, trainer_count=1)
# 配置网络结构和设置参数
cost, parameters, optimizer, feeding = network_config()
# 记录成本cost
costs = []
# 构造trainer,配置三个参数cost、parameters、update_equation,它们分别表示成本函数、参数和更新公式。
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
# 处理事件
def event_handler(event):
"""
事件处理器,可以根据训练过程的信息作相应操作
Args:
event: 事件对象,包含event.pass_id, event.batch_id, event.cost等信息
Return:
"""
if isinstance(event, paddle.event.EndIteration):
if event.pass_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
costs.append(event.cost)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=paddle.batch(test(), batch_size=2),
feeding=feeding)
print "Test %d, Cost %f" % (event.pass_id, result.cost)
# 模型训练
# paddle.reader.shuffle(train(), buf_size=500):
# 表示trainer从train()这个reader中读取了buf_size=500大小的数据并打乱顺序
# paddle.batch(reader(), batch_size=256):
# 表示从打乱的数据中再取出batch_size=256大小的数据进行一次迭代训练
# feeding:用到了之前定义的feeding索引,将数据层x和y输入trainer
# event_handler:事件管理机制,可以自定义event_handler,根据事件信息作相应的操作
# num_passes:定义训练的迭代次数
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(train(), buf_size=500),
batch_size=256),
feeding=feeding,
event_handler=event_handler,
num_passes=300)
# 打印参数结果
print_parameters(parameters)
# 展示学习曲线
plot_costs(costs)
| 15,714
|
def test_device_code_grant(
requests_mock,
oauth2client,
token_endpoint,
device_code,
client_id,
client_credential,
public_jwk,
client_auth_method_handler,
device_code_grant_validator,
public_app_auth_validator,
client_secret_basic_auth_validator,
client_secret_post_auth_validator,
client_secret_jwt_auth_validator,
private_key_jwt_auth_validator,
):
""".device_code() sends a requests to the Token Endpoint using the Device Code grant."""
new_access_token = secrets.token_urlsafe()
new_refresh_token = secrets.token_urlsafe()
requests_mock.post(
token_endpoint,
json={
"access_token": new_access_token,
"refresh_token": new_refresh_token,
"token_type": "Bearer",
"expires_in": 3600,
},
)
token_resp = oauth2client.device_code(device_code)
assert requests_mock.called_once
assert not token_resp.is_expired()
assert token_resp.access_token == new_access_token
assert token_resp.refresh_token == new_refresh_token
device_code_grant_validator(requests_mock.last_request, device_code=device_code)
if client_auth_method_handler == PublicApp:
public_app_auth_validator(requests_mock.last_request, client_id=client_id)
elif client_auth_method_handler == ClientSecretPost:
client_secret_post_auth_validator(
requests_mock.last_request,
client_id=client_id,
client_secret=client_credential,
)
elif client_auth_method_handler == ClientSecretBasic:
client_secret_basic_auth_validator(
requests_mock.last_request,
client_id=client_id,
client_secret=client_credential,
)
elif client_auth_method_handler == ClientSecretJWT:
client_secret_jwt_auth_validator(
requests_mock.last_request,
client_id=client_id,
client_secret=client_credential,
endpoint=token_endpoint,
)
elif client_auth_method_handler == PrivateKeyJWT:
private_key_jwt_auth_validator(
requests_mock.last_request,
client_id=client_id,
endpoint=token_endpoint,
public_jwk=public_jwk,
)
| 15,715
|
def ccd_process(ccd, oscan=None, trim=None, error=False, masterbias=None,
bad_pixel_mask=None, gain=None, rdnoise=None,
oscan_median=True, oscan_model=None):
"""Perform basic processing on ccd data.
The following steps can be included:
* overscan correction
* trimming of the image
* create edeviation frame
* gain correction
* add a mask to the data
* subtraction of master bias
The task returns a processed `ccdproc.CCDData` object.
Parameters
----------
ccd: `ccdproc.CCDData`
Frame to be reduced
oscan: None, str, or, `~ccdproc.ccddata.CCDData`
For no overscan correction, set to None. Otherwise proivde a region
of `ccd` from which the overscan is extracted, using the FITS
conventions for index order and index start, or a
slice from `ccd` that contains the overscan.
trim: None or str
For no trim correction, set to None. Otherwise proivde a region
of `ccd` from which the image should be trimmed, using the FITS
conventions for index order and index start.
error: boolean
If True, create an uncertainty array for ccd
masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`
A materbias frame to be subtracted from ccd.
bad_pixel_mask: None or `~numpy.ndarray`
A bad pixel mask for the data. The bad pixel mask should be in given
such that bad pixels havea value of 1 and good pixels a value of 0.
gain: None or `~astropy.Quantity`
Gain value to multiple the image by to convert to electrons
rdnoise: None or `~astropy.Quantity`
Read noise for the observations. The read noise should be in
`~astropy.units.electron`
oscan_median : bool, optional
If true, takes the median of each line. Otherwise, uses the mean
oscan_model : `~astropy.modeling.Model`, optional
Model to fit to the data. If None, returns the values calculated
by the median or the mean.
Returns
-------
ccd: `ccdproc.CCDData`
Reduded ccd
"""
# make a copy of the object
nccd = ccd.copy()
# apply the overscan correction
if isinstance(oscan, ccdproc.CCDData):
nccd = ccdproc.subtract_overscan(nccd, overscan=oscan,
median=oscan_median,
model=oscan_model)
elif isinstance(oscan, six.string_types):
nccd = ccdproc.subtract_overscan(nccd, fits_section=oscan,
median=oscan_median,
model=oscan_model)
elif oscan is None:
pass
else:
raise TypeError('oscan is not None, a string, or CCDData object')
# apply the trim correction
if isinstance(trim, six.string_types):
nccd = ccdproc.trim_image(nccd, fits_section=trim)
elif trim is None:
pass
else:
raise TypeError('trim is not None or a string')
# create the error frame
if error and gain is not None and rdnoise is not None:
nccd = ccdproc.create_deviation(nccd, gain=gain, rdnoise=rdnoise)
elif error and (gain is None or rdnoise is None):
raise ValueError(
'gain and rdnoise must be specified to create error frame')
# apply the bad pixel mask
if isinstance(bad_pixel_mask, np.ndarray):
nccd.mask = bad_pixel_mask
elif bad_pixel_mask is None:
pass
else:
raise TypeError('bad_pixel_mask is not None or numpy.ndarray')
# apply the gain correction
if isinstance(gain, u.quantity.Quantity):
nccd = ccdproc.gain_correct(nccd, gain)
elif gain is None:
pass
else:
raise TypeError('gain is not None or astropy.Quantity')
# test subtracting the master bias
if isinstance(masterbias, ccdproc.CCDData):
nccd = nccd.subtract(masterbias)
elif isinstance(masterbias, np.ndarray):
nccd.data = nccd.data - masterbias
elif masterbias is None:
pass
else:
raise TypeError(
'masterbias is not None, numpy.ndarray, or a CCDData object')
return nccd
| 15,716
|
def get_role_keyids(rolename):
"""
<Purpose>
Return a list of the keyids associated with 'rolename'.
Keyids are used as identifiers for keys (e.g., rsa key).
A list of keyids are associated with each rolename.
Signing a metadata file, such as 'root.json' (Root role),
involves signing or verifying the file with a list of
keys identified by keyid.
<Arguments>
rolename:
An object representing the role's name, conformant to 'ROLENAME_SCHEMA'
(e.g., 'root', 'snapshot', 'timestamp').
<Exceptions>
tuf.FormatError, if 'rolename' does not have the correct object format.
tuf.UnknownRoleError, if 'rolename' cannot be found in the role database.
tuf.InvalidNameError, if 'rolename' is incorrectly formatted.
<Side Effects>
None.
<Returns>
A list of keyids.
"""
# Raises tuf.FormatError, tuf.UnknownRoleError, or tuf.InvalidNameError.
_check_rolename(rolename)
roleinfo = _roledb_dict[rolename]
return roleinfo['keyids']
| 15,717
|
def _DX(X):
"""Computes the X finite derivarite along y and x.
Arguments
---------
X: (m, n, l) numpy array
The data to derivate.
Returns
-------
tuple
Tuple of length 2 (Dy(X), Dx(X)).
Note
----
DX[0] which is derivate along y has shape (m-1, n, l).
DX[1] which is derivate along x has shape (m, n-1, l).
"""
return (X[1:, :, :] - X[:-1, :, :], # D along y
X[:, 1:, :] - X[:, 0:-1, :]) # D along x
| 15,718
|
def load_spectra_from_dataframe(df):
"""
:param df:pandas dataframe
:return:
"""
total_flux = df.total_flux.values[0]
spectrum_file = df.spectrum_filename.values[0]
pink_stride = df.spectrum_stride.values[0]
spec = load_spectra_file(spectrum_file, total_flux=total_flux,
pinkstride=pink_stride, as_spectrum=True)
return spec
| 15,719
|
def included_element(include_predicates, exclude_predicates, element):
"""Return whether an index element should be included."""
return (not any(evaluate_predicate(element, ep)
for ep in exclude_predicates) and
(include_predicates == [] or
any(evaluate_predicate(element, ip)
for ip in include_predicates)))
| 15,720
|
def ele_clear_input(context, selector=None, param2=None):
"""
Empty the selector element param1 and enter the value param2
:param context: step context
:param selector: locator string for selector element (or None).
:param param2: string to be input
"""
g_Context.step.ele_clear_input(context, selector, param2)
| 15,721
|
def tfm_setup(self:CameraProperties, more_setup:Callable[[CameraProperties],None] = None, dtype:Union[np.int32,np.float32] = np.int32):
"""Setup for transforms"""
# for fast smile correction
self.smiled_size = (np.ptp(self.settings["row_slice"]), self.settings["resolution"][1] - np.max(self.calibration["smile_shifts"]) )
self.line_buff = CircArrayBuffer(self.smiled_size, axis=0, dtype=dtype)
# for collapsing spectral pixels into bands
self.byte_sz = dtype(0).nbytes
self.width = np.uint16(self.settings["fwhm_nm"]*self.settings["resolution"][1]/np.ptp(self.calibration["wavelengths_linear"]))
self.bin_rows = np.ptp(self.settings["row_slice"])
self.bin_cols = self.settings["resolution"][1] - np.max(self.calibration["smile_shifts"])
self.reduced_shape = (self.bin_rows,self.bin_cols//self.width,self.width)
# update the wavelengths for fast binning
self.binned_wavelengths = self.calibration["wavelengths_linear"].astype(np.float32)
self.binned_wavelengths = np.lib.stride_tricks.as_strided(self.binned_wavelengths,
strides=(self.width*4,4), # assumed np.float32
shape=(len(self.binned_wavelengths)//self.width,self.width))
self.binned_wavelengths = np.around(self.binned_wavelengths.mean(axis=1),decimals=1)
# update the wavelengths for slow binning
n_bands = int(np.ptp(self.calibration["wavelengths"])//self.settings["fwhm_nm"])
# jump by `fwhm_nm` and find closest array index, then let the wavelengths be in the middle between jumps
self.λs = np.around(np.array([np.min(self.calibration["wavelengths"]) + i*self.settings["fwhm_nm"] for i in range(n_bands+1)]),decimals=1)
self.bin_idxs = [np.argmin(np.abs(self.calibration["wavelengths"]-λ)) for λ in self.λs]
self.λs += self.settings["fwhm_nm"]//2 #
self.bin_buff = CircArrayBuffer((np.ptp(self.settings["row_slice"]),n_bands), axis=1, dtype=dtype)
# precompute some reference data for converting digital number to radiance
self.nearest_exposure = self.calibration["rad_ref"].sel(exposure=self.settings["exposure_ms"],method="nearest").exposure
#
self.dark_current = np.array( self.settings["exposure_ms"]/self.nearest_exposure * \
self.calibration["rad_ref"].sel(exposure=self.nearest_exposure,luminance=0).isel(luminance=0) )
self.ref_luminance = np.array( self.settings["exposure_ms"]/self.nearest_exposure * \
self.calibration["rad_ref"].sel(exposure=self.nearest_exposure,luminance=self.settings["luminance"]) - \
self.dark_current )
self.spec_rad_ref = np.float32(self.calibration["sfit"](self.calibration["wavelengths"]))
# prep for converting radiance to reflectance
self.rad_6SV = np.float32(self.calibration["rad_fit"](self.calibration["wavelengths"]))
if more_setup is not None:
more_setup(self)
| 15,722
|
def _insertstatushints(x):
"""Insert hint nodes where status should be calculated (first path)
This works in bottom-up way, summing up status names and inserting hint
nodes at 'and' and 'or' as needed. Thus redundant hint nodes may be left.
Returns (status-names, new-tree) at the given subtree, where status-names
is a sum of status names referenced in the given subtree.
"""
if x is None:
return (), x
op = x[0]
if op in {'string', 'symbol', 'kindpat'}:
return (), x
if op == 'not':
h, t = _insertstatushints(x[1])
return h, (op, t)
if op == 'and':
ha, ta = _insertstatushints(x[1])
hb, tb = _insertstatushints(x[2])
hr = ha + hb
if ha and hb:
return hr, ('withstatus', (op, ta, tb), ('string', ' '.join(hr)))
return hr, (op, ta, tb)
if op == 'or':
hs, ts = zip(*(_insertstatushints(y) for y in x[1:]))
hr = sum(hs, ())
if sum(bool(h) for h in hs) > 1:
return hr, ('withstatus', (op,) + ts, ('string', ' '.join(hr)))
return hr, (op,) + ts
if op == 'list':
hs, ts = zip(*(_insertstatushints(y) for y in x[1:]))
return sum(hs, ()), (op,) + ts
if op == 'func':
f = getsymbol(x[1])
# don't propagate 'ha' crossing a function boundary
ha, ta = _insertstatushints(x[2])
if getattr(symbols.get(f), '_callstatus', False):
return (f,), ('withstatus', (op, x[1], ta), ('string', f))
return (), (op, x[1], ta)
raise error.ProgrammingError('invalid operator %r' % op)
| 15,723
|
def make_sine(freq: float, duration: float, sr=SAMPLE_RATE):
"""Return sine wave based on freq in Hz and duration in seconds"""
N = int(duration * sr) # Number of samples
return np.sin(np.pi*2.*freq*np.arange(N)/sr)
| 15,724
|
def _widget_abbrev(o):
"""Make widgets from abbreviations: single values, lists or tuples."""
float_or_int = (float, int)
if isinstance(o, (list, tuple)):
if o and all(isinstance(x, string_types) for x in o):
return DropdownWidget(values=[unicode_type(k) for k in o])
elif _matches(o, (float_or_int, float_or_int)):
min, max, value = _get_min_max_value(o[0], o[1])
if all(isinstance(_, int) for _ in o):
cls = IntSliderWidget
else:
cls = FloatSliderWidget
return cls(value=value, min=min, max=max)
elif _matches(o, (float_or_int, float_or_int, float_or_int)):
step = o[2]
if step <= 0:
raise ValueError("step must be >= 0, not %r" % step)
min, max, value = _get_min_max_value(o[0], o[1], step=step)
if all(isinstance(_, int) for _ in o):
cls = IntSliderWidget
else:
cls = FloatSliderWidget
return cls(value=value, min=min, max=max, step=step)
else:
return _widget_abbrev_single_value(o)
| 15,725
|
def test_default_max_reads(device, scaling):
"""
Test read_measured_value_buffer() without passing the "max_reads"
parameter.
"""
result = device.read_measured_value_buffer(scaling)
assert type(result) is Sfc5xxxReadBufferResponse
assert result.scaling == scaling
assert result.read_count >= 1
assert result.lost_values >= 0
assert result.remaining_values >= 0
assert result.sampling_time >= 0.0
assert len(result.values) >= 0
| 15,726
|
def get_conditions():
"""
List of conditions
"""
return [
'blinded',
'charmed',
'deafened',
'fatigued',
'frightened',
'grappled',
'incapacitated',
'invisible',
'paralyzed',
'petrified',
'poisoned',
'prone',
'restrained',
'stunned',
'unconscious',
'exhaustion'
]
| 15,727
|
def negative_predictive_value(y_true: np.array, y_score: np.array) -> float:
"""
Calculate the negative predictive value (duplicted in :func:`precision_score`).
Args:
y_true (array-like): An N x 1 array of ground truth values.
y_score (array-like): An N x 1 array of predicted values.
Returns:
npv (float): The negative predictive value.
"""
tn = true_negative(y_true, y_score)
fn = false_negative(y_true, y_score)
npv = tn / (tn + fn)
return npv
| 15,728
|
def flat_list(*alist):
"""
Flat a tuple, list, single value or list of list to flat list
e.g.
>>> flat_list(1,2,3)
[1, 2, 3]
>>> flat_list(1)
[1]
>>> flat_list([1,2,3])
[1, 2, 3]
>>> flat_list([None])
[]
"""
a = []
for x in alist:
if x is None:
continue
if isinstance(x, (tuple, list)):
a.extend([i for i in x if i is not None])
else:
a.append(x)
return a
| 15,729
|
def do_regression(X_cols: List[str], y_col: str, df: pd.DataFrame, solver='liblinear', penalty='l1',
C=0.2) -> LogisticRegression:
"""
Performs regression.
:param X_cols: Independent variables.
:param y_col: Dependent variable.
:param df: Data frame.
:param solver: Solver. Default is liblinear.
:param penalty: Penalty. Default is ``l1``.
:param C: Strength of regularlization. Default is ``0.2``.
:return: Logistic regression model.
"""
X = df[X_cols]
y = df[y_col]
model = LogisticRegression(penalty=penalty, solver=solver, C=C)
model.fit(X, y)
return model
| 15,730
|
def describe_chap_credentials(TargetARN=None):
"""
Returns an array of Challenge-Handshake Authentication Protocol (CHAP) credentials information for a specified iSCSI target, one for each target-initiator pair.
See also: AWS API Documentation
Examples
Returns an array of Challenge-Handshake Authentication Protocol (CHAP) credentials information for a specified iSCSI target, one for each target-initiator pair.
Expected Output:
:example: response = client.describe_chap_credentials(
TargetARN='string'
)
:type TargetARN: string
:param TargetARN: [REQUIRED]
The Amazon Resource Name (ARN) of the iSCSI volume target. Use the DescribeStorediSCSIVolumes operation to return to retrieve the TargetARN for specified VolumeARN.
:rtype: dict
:return: {
'ChapCredentials': [
{
'TargetARN': 'string',
'SecretToAuthenticateInitiator': 'string',
'InitiatorName': 'string',
'SecretToAuthenticateTarget': 'string'
},
]
}
"""
pass
| 15,731
|
def gaussian_smooth(var, sigma):
"""Apply a filter, along the time dimension.
Applies a gaussian filter to the data along the time dimension. if the
time dimension is missing, raises an exception. The DataArray that is
returned is shortened along the time dimension by sigma, half of sigma on
each end.
The width of the window is 2xsigma + 1.
"""
if type(var) is not xr.DataArray:
raise TypeError("First argument must be an Xarray DataArray.")
if 'time' not in var.dims:
raise IndexError("Time coordinate not found.")
# The convolution window must have the same number of dimensions as the
# variable. The length of every dimension is one, except time, which is
# 2xsigma + 1.
var_dimensions = np.ones( len(var.coords), dtype=np.int )
timepos = var.dims.index('time')
var_dimensions[timepos] = 2*sigma + 1
# Use a normalized gaussian so the average of the variable does not change.
gausswin = gaussian(2*sigma + 1, sigma)
gausswin = gausswin/np.sum(gausswin)
# The window series used in the convolve operation is the gaussion for the
# time dimension and a singleton zero for the other dimensions. This way
# the multidimension covolve is:
#
# g(m,n,...) = \sum_k \sum_l ... f[k,l,...]h[k-m]\delta_l0...
#
timeslice_specification = [0 for x in range(len(var.coords))]
timeslice_specification[timepos] = slice(None)
win = np.zeros(var_dimensions)
win[timeslice_specification] = gausswin
# The third parameter 'same' specifies a return array of the same shape as
# var.
out = convolve(var, win, 'same')
outda = xr.DataArray(out,
name=var.name,
coords=var.coords,
dims=var.dims)
outda.attrs = var.attrs
# # Append "(Gaussian filtered: sigma = ###" to the end of th variable name.
# newname = "{0} (Gaussian filtered: sigma = {1})".format(var.name, sigma)
# outda.name = newname
return outda
| 15,732
|
def make_ood_dataset(ood_dataset_cls: _BaseDatasetClass) -> _BaseDatasetClass:
"""Generate a BaseDataset with in/out distribution labels."""
class _OodBaseDataset(ood_dataset_cls):
"""Combine two datasets to form one with in/out of distribution labels."""
def __init__(
self,
in_distribution_dataset: BaseDataset,
shuffle_datasets: bool = False,
**kwargs):
super().__init__(**kwargs)
# This should be the builder for whatever split will be considered
# in-distribution (usually the test split).
self._in_distribution_dataset = in_distribution_dataset
self._shuffle_datasets = shuffle_datasets
def load(self,
*,
preprocess_fn=None,
batch_size: int = -1) -> tf.data.Dataset:
# Set up the in-distribution dataset using the provided dataset builder.
if preprocess_fn:
dataset_preprocess_fn = preprocess_fn
else:
dataset_preprocess_fn = (
self._in_distribution_dataset._create_process_example_fn()) # pylint: disable=protected-access
dataset_preprocess_fn = ops.compose(
dataset_preprocess_fn,
_create_ood_label_fn(True))
dataset = self._in_distribution_dataset.load(
preprocess_fn=dataset_preprocess_fn,
batch_size=batch_size)
# Set up the OOD dataset using this class.
if preprocess_fn:
ood_dataset_preprocess_fn = preprocess_fn
else:
ood_dataset_preprocess_fn = super()._create_process_example_fn()
ood_dataset_preprocess_fn = ops.compose(
ood_dataset_preprocess_fn,
_create_ood_label_fn(False))
ood_dataset = super().load(
preprocess_fn=ood_dataset_preprocess_fn,
batch_size=batch_size)
# We keep the fingerprint id in both dataset and ood_dataset
# Combine the two datasets.
try:
combined_dataset = dataset.concatenate(ood_dataset)
except TypeError:
logging.info(
'Two datasets have different types, concat feature and label only')
def clean_keys(example):
# only keep features and labels, remove the rest
return {
'features': example['features'],
'labels': example['labels'],
'is_in_distribution': example['is_in_distribution']
}
combined_dataset = dataset.map(clean_keys).concatenate(
ood_dataset.map(clean_keys))
if self._shuffle_datasets:
combined_dataset = combined_dataset.shuffle(self._shuffle_buffer_size)
return combined_dataset
@property
def num_examples(self):
return (
self._in_distribution_dataset.num_examples +
super().num_examples)
return _OodBaseDataset
| 15,733
|
def _title_case(value):
"""
Return the title of the string but the
first letter is affected.
"""
return value[0].upper() + value[1:]
| 15,734
|
def test_vector_laplace_cart(ndim):
"""test different vector laplace operators"""
bcs = _get_random_grid_bcs(ndim, dx="uniform", periodic="random", rank=1)
print(bcs)
field = VectorField.random_uniform(bcs.grid)
res1 = field.laplace(bcs, backend="scipy").data
res2 = field.laplace(bcs, backend="numba").data
assert res1.shape == (ndim,) + bcs.grid.shape
np.testing.assert_allclose(res1, res2)
| 15,735
|
def test_json_schema(runner):
"""Tests that the json schema is in sync with this code."""
schema_dir = os.path.dirname(os.path.realpath(__file__))
fname = os.path.join(schema_dir, f'schemas/pxm-manifest-{version}.json')
with open(fname) as f:
schema = json.load(f)
result = runner.invoke(create_manifest, manifest_args)
doc = json.loads(result.output)
assert result.exit_code == 0
# if an exception is raised by validate then the test fails
validate(doc, schema, format_checker=FormatChecker())
| 15,736
|
def zoom_api_call(user, verb, url, *args, **kwargs):
"""
Perform an API call to Zoom with various checks.
If the call returns a token expired event,
refresh the token and try the call one more time.
"""
if not settings.SOCIAL_AUTH_ZOOM_OAUTH2_KEY:
raise DRFValidationError(
"Server is not configured with Zoom OAuth2 credentials."
)
if not user.is_authenticated:
raise DRFValidationError("You are not authenticated.")
social = user.social_auth.filter(provider="zoom-oauth2").first()
if social is None:
raise DRFValidationError("You have not linked your Zoom account yet.")
is_retry = "retry" in kwargs
if is_retry:
del kwargs["retry"]
out = requests.request(
verb,
url.format(uid=social.uid),
*args,
headers={"Authorization": f"Bearer {social.get_access_token(load_strategy())}"},
**kwargs,
)
if out.status_code == 204:
return out
# check for token expired event
data = out.json()
if data.get("code") == 124 and not is_retry:
social.refresh_token(load_strategy())
kwargs["retry"] = True
return zoom_api_call(user, verb, url, *args, **kwargs)
return out
| 15,737
|
def update_search_grammar(extra_consts, in_file, out_file):
"""let the user to provide constants to the synthesis target grammar."""
current_grammar = None
with open(in_file, "r") as f:
current_grammar = f.read()
if extra_consts:
consts = "enum SmallStr {{\n {0} \n}}".format(",".join(['"{}"'.format(x) for x in extra_consts]))
extra = '''
func mutateCustom: Table r -> Table a, BoolFunc b, ColInt c, SmallStr d {
row(r) == row(a);
col(r) == col(a) + 1;
}
func filter: Table r -> Table a, BoolFunc b, ColInt c, SmallStr d {
row(r) < row(a);
col(r) == col(a);
}'''
new_grammar = consts + "\n" + current_grammar + "\n" + extra
else:
new_grammar = current_grammar
with open(out_file, "w") as g:
g.write(new_grammar)
| 15,738
|
def copy_javascript(name):
"""Return the contents of javascript resource file."""
# TODO use importlib_resources to access javascript file content
folder = os.path.join(os.path.dirname(os.path.realpath(__file__)), "js")
with open(os.path.join(folder, name + ".js")) as fobj:
content = fobj.read()
return content
| 15,739
|
def addHtmlImgTagExtension(notionPyRendererCls):
"""A decorator that add the image tag extension to the argument list. The
decorator pattern allows us to chain multiple extensions. For example, we
can create a renderer with extension A, B, C by writing:
addAExtension(addBExtension(addCExtension(notionPyRendererCls)))
"""
def newNotionPyRendererCls(*extraExtensions):
new_extension = [HTMLBlock, HTMLSpan]
return notionPyRendererCls(*chain(new_extension, extraExtensions))
return newNotionPyRendererCls
| 15,740
|
def mechaber(mechaber_name):
"""Route function for visualizing and exploring Mechabrim."""
mechaber = Mechaber.query.filter_by(mechaber_name=mechaber_name).first_or_404()
# page = request.args.get("page", 1, type=int)
# mekorot = sefer.mekorot.order_by(Makor.ref).paginate(
# page, current_app.config["ELEMENTS_PER_PAGE"], False
# )
# next_url = (
# url_for("main.sefer", sefername=sefer.name(), page=mekorot.next_num)
# if mekorot.has_next
# else None
# )
# prev_url = (
# url_for("main.sefer", sefername=sefer.name(), page=mekorot.prev_num)
# if mekorot.has_prev
# else None
# )
# return render_template('elements/mechaber.html', mechaber=mechaber)
return render_template("todo.html", mechaber=mechaber)
| 15,741
|
def get_symmetry_projectors(character_table, conjugacy_classes, print_results=False):
"""
:param character_table: each row gives the characters of a different irreducible rep. Each column
corresponds to a different conjugacy classes
:param conjugacy_classes: List of lists of conjugacy class elements
:param print_results:
:return projs:
"""
if not validate_char_table(character_table, conjugacy_classes):
raise Exception("invalid character table/conjugacy class combination")
# columns (or rows, since orthogonal mat) represent basis states that can be transformed into one another by symmetries
states_related_by_symm = sum([sum([np.abs(g) for g in cc]) for cc in conjugacy_classes])
# only need sums over conjugacy classes to build projectors
class_sums = [sum(cc) for cc in conjugacy_classes]
projs = [reduce_symm_projector(
sum([np.conj(ch) * cs for ch, cs in zip(chars, class_sums)]), chars[0], states_related_by_symm, print_results=print_results)
for chars in character_table]
# test projector size
proj_to_dims = np.asarray([p.shape[0] for p in projs]).sum()
proj_from_dims = projs[0].shape[1]
if proj_to_dims != proj_from_dims:
raise Exception("total span of all projectors was %d, but expected %d." % (proj_to_dims, proj_from_dims))
return projs
| 15,742
|
def check_market_open(data, sheet, row):
"""Exits program if the date from the webpage is the same as the last entry in the spreadsheet
:param data: dict (str:str)
Contains values scraped from website with keys matching the column titles which are found in
the titles list
:param sheet: dict (str:any)
Contains the details of every cell in the spreadsheet, can call '.value' to get specific cell's contents
:param row: int
Row number of the first empty row from the top
"""
if sheet.cell(row=row - 1, column=1).value == data['date']:
print('Markets are closed today. No update.')
exit()
| 15,743
|
def is_permutation_matrix(matrix: List[List[bool]]) -> bool:
"""Returns whether the given boolean matrix is a permutation matrix."""
return (all(sum(v) == 1 for v in matrix) and
sum(any(v) for v in matrix) == len(matrix))
| 15,744
|
def DPT_Hybrid(pretrained=True, **kwargs):
""" # This docstring shows up in hub.help()
MiDaS DPT-Hybrid model for monocular depth estimation
pretrained (bool): load pretrained weights into model
"""
model = DPTDepthModel(
path=None,
backbone="vitb_rn50_384",
non_negative=True,
)
if pretrained:
checkpoint = (
"https://github.com/intel-isl/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt"
)
state_dict = torch.hub.load_state_dict_from_url(
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
)
model.load_state_dict(state_dict)
return model
| 15,745
|
def show_counts(input_dict):
"""Format dictionary count information into a string
Args:
input_dict (dictionary): input keys and their counts
Return:
string: formatted output string
"""
out_s = ''
in_dict_sorted = {k: v for k, v in sorted(input_dict.items(), key=lambda item: item[1], reverse=True)}
for idx, (k, v) in enumerate(in_dict_sorted.items()):
out_s += '\t{}:\t{} ({})\n'.format(idx, k, v)
out_s += '\n'
return out_s
| 15,746
|
def encipher_railfence(message,rails):
"""
Performs Railfence Encryption on plaintext and returns ciphertext
Examples
========
>>> from sympy.crypto.crypto import encipher_railfence
>>> message = "hello world"
>>> encipher_railfence(message,3)
'horel ollwd'
Parameters
==========
message : string, the message to encrypt.
rails : int, the number of rails.
Returns
=======
The Encrypted string message.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
"""
r = list(range(rails))
p = cycle(r + r[-2:0:-1])
return ''.join(sorted(message, key=lambda i: next(p)))
| 15,747
|
def format_signature(name: str, signature: inspect.Signature) -> str:
"""Formats a function signature as if it were source code.
Does not yet handle / and * markers.
"""
params = ', '.join(
format_parameter(arg) for arg in signature.parameters.values())
if signature.return_annotation is signature.empty:
return_annotation = ''
else:
return_annotation = ' -> ' + _annotation_name(
signature.return_annotation)
return f'{name}({params}){return_annotation}'
| 15,748
|
def extract_ratios_from_ddf(ddf):
"""The same as the df version, but works with
dask dataframes instead."""
# we basicaly abuse map_partition's ability to expand indexes for lack of a working
# groupby(level) in dask
return ddf.map_partitions(extract_ratios_from_df, meta={'path': str, 'ratio': str, 'url': str}).clear_divisions()
| 15,749
|
def check_if_prime(number):
"""checks if number is prime
Args:
number (int):
Raises:
TypeError: if number of type float
Returns:
[bool]: if number prime returns ,True else returns False
"""
if type(number) == float:
raise TypeError("TypeError: entered float type")
if number > 1 :
for i in range( 2, int(number / 2) + 1 ):
if number % i == 0:
return False
return True
else:
return False
| 15,750
|
def get_signatures() -> {}:
"""
Helper method used to identify the valid arguments that can be passed
to any of the pandas IO functions used by the program
:return: Returns a dictionary containing the available arguments for each pandas IO method
"""
# Creates an empty dictionary to collect the function names and signatures
sigreturn = {}
# Loops over the functions that are used for IO operations
for io in PANDAS_IO:
# Gets the name of the function in question
funcname = io.__name__
# Gets the list of arguments that the function can take
args = list(inspect.signature(io).parameters.keys())
# Adds the arguments to the dictionary with the function name as the key
sigreturn[funcname] = args
# Returns the dictionary object
return sigreturn
| 15,751
|
def test_neoxargs_load_arguments_6_7B_local_setup():
"""
verify 6-7B.yml can be loaded without raising validation errors
"""
run_neox_args_load_test(["6-7B.yml", "local_setup.yml"])
| 15,752
|
def _load_flags():
"""Load flag definitions.
It will first attempt to load the file at TINYFLAGS environment variable.
If that does not exist, it will then load the default flags file bundled
with this library.
:returns list: Flag definitions to use.
"""
path = os.getenv('TINYFLAGS')
if path and os.path.exists(path) and not os.path.isdir(path):
try:
with open(path, 'r') as f:
return json.load(f)
except:
pass
return []
# with open(resource_filename('tinyenv', 'config/flags.json'), 'r') as f:
# return json.load(f)
| 15,753
|
def _get_indentation_option(explicit: Optional[Union[str, int]] = None) -> Optional[str]:
"""Get the value for the ``indentation`` option.
Args:
explicit (Optional[Union[str, int]]): the value explicitly specified by user,
:data:`None` if not specified
Returns:
Optional[str]: the value for the ``indentation`` option;
:data:`None` means *auto detection* at runtime
:Environment Variables:
:envvar:`F2FORMAT_INDENTATION` -- the value in environment variable
See Also:
:data:`_default_indentation`
"""
return parse_indentation(explicit or os.getenv('F2FORMAT_INDENTATION') or _default_indentation)
| 15,754
|
def batch_answer_same_context(questions: List[str], context: str) -> List[str]:
"""Answers the questions with the given context.
:param questions: The questions to answer.
:type questions: List[str]
:param context: The context to answer the questions with.
:type context: str
:return: The answers.
:rtype: List[str]
"""
return _batch_answer_same_context[get_mode()](questions, context)
| 15,755
|
def test_container_count(dockerc):
"""Verify the test composition and container."""
# stopped parameter allows non-running containers in results
assert (
len(dockerc.containers(stopped=True)) == 1
), "Wrong number of containers were started."
| 15,756
|
def complex_multiplication(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
"""
Multiplies two complex-valued tensors. Assumes the tensor has a named dimension "complex".
Parameters
----------
x : torch.Tensor
Input data
y : torch.Tensor
Input data
Returns
-------
torch.Tensor
"""
assert_complex(x, enforce_named=True, complex_last=True)
assert_complex(y, enforce_named=True, complex_last=True)
# multiplication = torch.view_as_complex(x.rename(None)) * torch.view_as_complex(
# y.rename(None)
# )
# return torch.view_as_real(multiplication).refine_names(*x.names)
# TODO: Unsqueezing is not yet supported for named tensors, fix when it is.
complex_index = x.names.index("complex")
real_part = x.select("complex", 0) * y.select("complex", 0) - x.select("complex", 1) * y.select("complex", 1)
imaginary_part = x.select("complex", 0) * y.select("complex", 1) + x.select("complex", 1) * y.select("complex", 0)
real_part = real_part.rename(None)
imaginary_part = imaginary_part.rename(None)
multiplication = torch.cat(
[
real_part.unsqueeze(dim=complex_index),
imaginary_part.unsqueeze(dim=complex_index),
],
dim=complex_index,
)
return multiplication.refine_names(*x.names)
| 15,757
|
def dynamic_embedding_lookup(keys: tf.Tensor,
config: de_config_pb2.DynamicEmbeddingConfig,
var_name: typing.Text,
service_address: typing.Text = "",
skip_gradient_update: bool = False,
timeout_ms: int = -1) -> tf.Tensor:
"""Returns the embeddings of from given keys.
Args:
keys: A string `Tensor` of shape [batch_size] or [batch_size,
max_sequence_length] where an empty string would be mapped to an all zero
embedding.
config: A DynamicEmbeddingConfig proto that configures the embedding.
var_name: A unique name for the given embedding.
service_address: The address of a knowledge bank service. If empty, the
value passed from --kbs_address flag will be used instead.
skip_gradient_update: A boolean indicating if gradient update is needed.
timeout_ms: Timeout millseconds for the connection. If negative, never
timout.
Returns:
A `Tensor` of shape with one of below:
- [batch_size, config.embedding_dimension] if the input Tensor is 1D, or
- [batch_size, max_sequence_length, config.embedding_dimension] if the
input is 2D.
Raises:
ValueError: If name is not specified.
"""
if not var_name:
raise ValueError("Must specify a valid var_name.")
# If skip_gradient_update is true, reate a dummy variable so that the
# gradients can be passed in.
if skip_gradient_update:
grad_placeholder = tf.constant(0.0)
else:
grad_placeholder = tf.Variable(0.0)
context.add_to_collection(var_name, config)
resource = gen_carls_ops.dynamic_embedding_manager_resource(
config.SerializeToString(), var_name, service_address, timeout_ms)
return gen_carls_ops.dynamic_embedding_lookup(keys, grad_placeholder,
resource,
config.embedding_dimension)
| 15,758
|
def register_unary_op(registered_name, operation):
"""Creates a `Transform` that wraps a unary tensorflow operation.
If `registered_name` is specified, the `Transform` is registered as a member
function of `Series`.
Args:
registered_name: the name of the member function of `Series` corresponding
to the returned `Transform`.
operation: a unary TensorFlow operation.
"""
doc = DOC_FORMAT_STRING.format(operation.__name__, operation.__doc__)
@property
def name(self):
return operation.__name__
@property
def input_valency(self):
return 1
@property
def _output_names(self):
return "output"
def _apply_transform(self, input_tensors):
input_tensor = input_tensors[0]
if isinstance(input_tensor, ops.SparseTensor):
result = ops.SparseTensor(input_tensor.indices,
operation(input_tensor.values),
input_tensor.shape)
else:
result = operation(input_tensor)
# pylint: disable=not-callable
return self.return_type(result)
cls = type(operation.__name__,
(transform.Transform,),
{"name": name,
"__doc__": doc,
"input_valency": input_valency,
"_output_names": _output_names,
"_apply_transform": _apply_transform})
series.Series.register_unary_op(registered_name)(cls)
| 15,759
|
def add_climatology(data, clim):
"""Add 12-month climatology to a data array with more times.
Suppose you have anomalies data and you want to add back its
climatology to it. In this sense, this function does the opposite
of `get_anomalies`. Though in this case there is no way to obtain
the climatology so it has to be provided.
Parameters
----------
data: xarray.DataArray
Input must have a named `time` coordinate.
clim: xarray.DataArray
The climatology must have the same spatial dimensions as
`data`. Naturally, the time dimension can differ. The values
of this array will be replicated as many times as `data` has.
Returns
-------
xarray.DataArray with both fields added.
""" # noqa
# make sure shapes are correct
ddims = len(data.dims)
cdims = len(clim.dims)
if ddims != cdims:
msg = 'both data arrays must have same dimensions'
raise ValueError(msg)
# get number of years in dataarray
years = np.unique(data.time.dt.year)
nyear = years.size
# get tiled shape
tshape = np.ones(ddims, dtype=int)
tshape[0] = nyear
# create tiled climatology
tclim = np.tile(clim.values, tshape)
# add climatology to data array
new = data.copy()
new.values = np.array(data.values) + tclim
return new
| 15,760
|
def broadcast(name, message):
"""
Send a message to all users from the given name.
"""
print message
for to_name, conn in users.items():
if to_name != name:
try:
conn.send(message + "\n")
except socket.error:
pass
| 15,761
|
def test(session):
"""Run tests."""
tests = session.posargs or [TESTS_DIR]
session.install("-v", ".[tests]", silent=True)
session.run("python", "-m", "coverage", "erase")
session.run(
"python",
"-m",
"pytest",
"--numprocesses=auto",
"--cov",
PACKAGE_DIR,
"--cov-append",
"--cov-report=",
*tests,
)
| 15,762
|
def already_exists(statement: str, lines: List[str]) -> bool:
"""
Check if statement is in lines
"""
return any(statement in line.strip() for line in lines)
| 15,763
|
def uniform(lower_list, upper_list, dimensions):
"""Fill array """
if hasattr(lower_list, '__iter__'):
return [random.uniform(lower, upper)
for lower, upper in zip(lower_list, upper_list)]
else:
return [random.uniform(lower_list, upper_list)
for _ in range(dimensions)]
| 15,764
|
def prepare_data(files, voxel_size, device='cuda'):
"""
Loads the data and prepares the input for the pairwise registration demo.
Args:
files (list): paths to the point cloud files
"""
feats = []
xyz = []
coords = []
n_pts = []
for pc_file in files:
pcd0 = o3d.io.read_point_cloud(pc_file)
xyz0 = np.array(pcd0.points)
# Voxelization
sel0 = ME.utils.sparse_quantize(xyz0 / voxel_size, return_index=True)
# Make point clouds using voxelized points
xyz0 = xyz0[sel0[1],:]
# Get features
npts0 = xyz0.shape[0]
xyz.append(to_tensor(xyz0))
n_pts.append(npts0)
feats.append(np.ones((npts0, 1)))
coords.append(np.floor(xyz0 / voxel_size))
coords_batch0, feats_batch0 = ME.utils.sparse_collate(coords, feats)
data = {'pcd0': torch.cat(xyz, 0).float(), 'sinput0_C': coords_batch0,
'sinput0_F': feats_batch0.float(), 'pts_list': torch.tensor(n_pts)}
return data
| 15,765
|
def test_select_via_env_var_implicit(env_var, tmpdir):
"""Config file selection can leverage default environmanent variables."""
conf_file = tmpdir.join("test-refgenconf-conf.yaml").strpath
assert not os.path.exists(conf_file)
with open(conf_file, "w"):
pass
assert os.path.isfile(conf_file)
with TmpEnv(overwrite=True, **{env_var: conf_file}):
assert conf_file == select_genome_config(None)
| 15,766
|
def save_model(model, model_filepath):
"""
Function: Save a pickle file of the model
Input:
model: the classification model
model_filepath (str): the path of pickle file
"""
with open(model_filepath, 'wb') as f:
pickle.dump(model, f)
| 15,767
|
def reshape(box, new_size):
"""
box: (N, 4) in y1x1y2x2 format
new_size: (N, 2) stack of (h, w)
"""
box[:, :2] = new_size * box[:, :2]
box[:, 2:] = new_size * box[:, 2:]
return box
| 15,768
|
def print_voxels_size(path: Path):
"""
Prints size of voxels in millimeters
:param path: path to folder containing masks
:return:
"""
for scan_path in path.iterdir():
if scan_path.name.endswith('mask.nii.gz'):
print(nib.load(str(scan_path)).header.get_zooms())
| 15,769
|
def sort_actions(request):
"""Sorts actions after drag 'n drop.
"""
action_list = request.POST.get("objs", "").split('&')
if len(action_list) > 0:
pos = 10
for action_str in action_list:
action_id = action_str.split('=')[1]
action_obj = Action.objects.get(pk=action_id)
action_obj.position = pos
action_obj.save()
pos = pos + 10
result = json.dumps({
"message": _(u"The actions have been sorted."),
}, cls=LazyEncoder)
return HttpResponse(result, content_type='application/json')
| 15,770
|
def fetch_file(parsed_url, config):
"""
Fetch a file from Github.
"""
if parsed_url.scheme != 'github':
raise ValueError(f'URL scheme must be "github" but is "{parsed_url.github}"')
ghcfg = config.get('github')
if not ghcfg:
raise BuildRunnerConfigurationError('Missing configuration for github in buildrunner.yaml')
nlcfg = ghcfg.get(parsed_url.netloc)
if not nlcfg:
gh_cfgs = ', '.join(ghcfg.keys())
raise BuildRunnerConfigurationError(
f'Missing github configuration for {parsed_url.netloc} in buildrunner.yaml'
f' - known github configurations: {gh_cfgs}'
)
ver = nlcfg.get('version')
# NOTE: potentially the v3_fetch_file() works for other github API versions.
if ver == 'v3':
contents = v3_fetch_file(parsed_url, nlcfg)
else:
raise NotImplementedError(f'No version support for github API version {ver}')
return contents
| 15,771
|
def _build_and_test_cobalt_locally(git_revision):
""" Assumes that the current working directory is a Cobalt repo.
Checks out Cobalt at the given |git_revision| and then builds and tests
Cobalt. Throws an exception if any step fails.
"""
subprocess.check_call(['git', 'checkout', git_revision])
_cobaltb('setup')
_cobaltb('clean', '--full')
_cobaltb('build')
_cobaltb('test')
| 15,772
|
def number_of_days(year: int, month: int) -> int:
"""
Gets the number of days in a given year and month
:param year:
:type year:
:param month:
:type month:
:return:
:rtype:
"""
assert isinstance(year, int) and 0 <= year
assert isinstance(month, int) and 0 < month <= 12
c = calendar.Calendar()
days = c.itermonthdays(year, month)
days = set(days)
days.remove(0)
return len(days)
| 15,773
|
def safe_decode(text, incoming=None, errors='strict'):
"""Decodes incoming str using `incoming` if they're not already unicode.
:param incoming: Text's current encoding
:param errors: Errors handling policy. See here for valid
values http://docs.python.org/2/library/codecs.html
:returns: text or a unicode `incoming` encoded
representation of it.
:raises TypeError: If text is not an isntance of str
"""
if not isinstance(text, six.string_types):
raise TypeError("%s can't be decoded" % type(text))
if isinstance(text, six.text_type):
return text
if not incoming:
incoming = (sys.stdin.encoding or
sys.getdefaultencoding())
try:
return text.decode(incoming, errors)
except UnicodeDecodeError:
# Note(flaper87) If we get here, it means that
# sys.stdin.encoding / sys.getdefaultencoding
# didn't return a suitable encoding to decode
# text. This happens mostly when global LANG
# var is not set correctly and there's no
# default encoding. In this case, most likely
# python will use ASCII or ANSI encoders as
# default encodings but they won't be capable
# of decoding non-ASCII characters.
#
# Also, UTF-8 is being used since it's an ASCII
# extension.
return text.decode('utf-8', errors)
| 15,774
|
def medstddev(data, mask=None, medi=False, axis=0):
"""
This function computes the stddev of an n-dimensional ndarray with
respect to the median along a given axis.
Parameters:
-----------
data: ndarray
A n dimensional array frmo wich caculate the median standar
deviation.
mask: ndarray
Mask indicating the good and bad values of data.
medi: boolean
If True return a tuple with (stddev, median) of data.
axis: int
The axis along wich the median std deviation is calculated.
Examples:
--------
>>> import medstddev as m
>>> b = np.array([[1, 3, 4, 5, 6, 7, 7],
[4, 3, 4, 15, 6, 17, 7],
[9, 8, 7, 6, 5, 4, 3]])
>>> c = np.array([b, 1-b, 2+b])
>>> std, med = m.medstddev(c, medi=True, axis=2)
>>> print(median(c, axis=2))
[[ 5. 6. 6.]
[-4. -5. -5.]
[ 7. 8. 8.]]
>>> print(med)
[[ 5. 6. 6.]
[-4. -5. -5.]
[ 7. 8. 8.]]
>>> print(std)
[[ 2.23606798 6.05530071 2.1602469 ]
[ 2.23606798 6.05530071 2.1602469 ]
[ 2.23606798 6.05530071 2.1602469 ]]
>>> # take a look at the first element of std
>>> d = c[0,0,:]
>>> print(d)
[1, 3, 4, 5, 6, 7, 7]
>>> print(m.medstddev1d(d))
2.2360679775
>>> # See medstddev1d for masked examples
Modification history:
---------------------
2010-11-05 patricio Written by Patricio Cubillos
pcubillos@fulbrightmail.org
"""
# flag to return median value
retmed = medi
# get shape
shape = np.shape(data)
# default mask, all good.
if mask is None:
mask = np.ones(shape)
# base case: 1D
if len(shape) == 1:
return medstddev1d(data, mask, retmed)
newshape = np.delete(shape, axis)
# results
std = np.zeros(newshape)
medi = np.zeros(newshape)
# reduce dimensions until 1D case
reduce(medstddev1d, data, mask, std, medi, axis)
# return statement:
if retmed:
return (std, medi)
return std
| 15,775
|
def load_npz(filename: FileLike) -> JaggedArray:
""" Load a jagged array in numpy's `npz` format from disk.
Args:
filename: The file to read.
See Also:
save_npz
"""
with np.load(filename) as f:
try:
data = f["data"]
shape = f["shape"]
return JaggedArray(data, shape)
except KeyError:
msg = "The file {!r} does not contain a valid jagged array".format(filename)
raise RuntimeError(msg)
| 15,776
|
def _egg_link_name(raw_name: str) -> str:
"""
Convert a Name metadata value to a .egg-link name, by applying
the same substitution as pkg_resources's safe_name function.
Note: we cannot use canonicalize_name because it has a different logic.
"""
return re.sub("[^A-Za-z0-9.]+", "-", raw_name) + ".egg-link"
| 15,777
|
def my_view(request):
"""Displays info details from nabuco user"""
owner, c = User.objects.get_or_create(username='nabuco')
# Owner of the object has full permissions, otherwise check RBAC
if request.user != owner:
# Get roles
roles = get_user_roles(request.user, owner)
# Get operation
op, c = RBACOperation.objects.get_or_create(name='display')
# Per-model permission:
# Has user permission to display groups that nabuco belongs to?
if not RBACGenericPermission.objects.get_permission(owner, Group, op, roles):
return HttpResponseForbidden("Sorry, you are not allowed to see nabuco groups")
# Per-object permission:
# Has user permission to see this group which nabuco belong to?
group_inst = get_object_or_404(Group, name='punks')
if not RBACPermission.objects.get_permission(owner, owner, op, roles):
return HttpResponseForbidden("Sorry, you are not allowed to see this group details")
return render_to_response("base.html",
{'owner': owner,
'model': Group,
'model_inst': owner,
'operation': op,
'roles': roles},
context_instance=RequestContext(request))
| 15,778
|
def handler500(request):
"""
Custom 500 view
:param request:
:return:
"""
return server_error(request, template_name='base/500.html')
| 15,779
|
def get_badpixel_mask(shape, bins):
"""Get the mask of bad pixels and columns.
Args:
shape (tuple): Shape of image.
bins (tuple): CCD bins.
Returns:
:class:`numpy.ndarray`: 2D binary mask, where bad pixels are marked with
*True*, others *False*.
The bad pixels are found *empirically*.
"""
mask = np.zeros(shape, dtype=np.bool)
if bins == (1, 1) and shape == (4136, 4096):
ny, nx = shape
mask[349:352, 627:630] = True
mask[349:ny//2, 628] = True
mask[1604:ny//2, 2452] = True
mask[280:284,3701] = True
mask[274:ny//2, 3702] = True
mask[272:ny//2, 3703] = True
mask[274:282, 3704] = True
mask[1720:1722, 3532:3535] = True
mask[1720, 3535] = True
mask[1722, 3532] = True
mask[1720:ny//2,3533] = True
mask[347:349, 4082:4084] = True
mask[347:ny//2,4083] = True
mask[ny//2:2631, 1909] = True
else:
print('No bad pixel information for this CCD size.')
raise ValueError
return mask
| 15,780
|
def maTotalObjectMemory():
"""__NATIVE__
/* Wrapper generated for: */
/* int maTotalObjectMemory(void); */
PmReturn_t retval = PM_RET_OK;
int func_retval;
pPmObj_t p_func_retval = C_NULL;
/* If wrong number of args, raise TypeError */
if (NATIVE_GET_NUM_ARGS() != 0)
{
PM_RAISE(retval, PM_RET_EX_TYPE);
return retval;
}
func_retval = maTotalObjectMemory();
retval = int_new(func_retval, &p_func_retval);
NATIVE_SET_TOS(p_func_retval);
return retval;
"""
pass
| 15,781
|
def main(argv=None):
"""Entry point for the CLI interface
"""
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--fullness", nargs='?', const="", type=str,
help="path to lfs_df text file; summarize fullness of OSTs ")
group.add_argument("--failure", nargs='?', const="", type=str,
help="path to ost_map text file; summarize failure state of OSSes and OSTs")
parser.add_argument("-o", "--output", type=str, default=None, help="output file")
parser.add_argument("filesystem", help="logical file system name (e.g., cscratch)")
parser.add_argument("datetime", help="date and time of interest in YYYY-MM-DDTHH:MM:SS format")
args = parser.parse_args(argv)
target_datetime = datetime.datetime.strptime(args.datetime, "%Y-%m-%dT%H:%M:%S")
if args.failure is not None:
results = lfsstatus.get_failures(
args.filesystem,
target_datetime,
cache_file=args.failure if args.failure != "" else None)
elif args.fullness is not None:
results = lfsstatus.get_fullness(
args.filesystem,
target_datetime,
cache_file=args.fullness if args.fullness != "" else None)
else:
raise Exception('Neither --fullness nor --failure were specified')
# Serialize the object
cache_file = args.output
if cache_file is None:
print(json.dumps(results, indent=4, sort_keys=True))
else:
print("Caching to %s" % cache_file)
json.dump(results, open(cache_file, 'w'))
| 15,782
|
def model_fn(nn_last_layer, correct_label, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss)
"""
# TODO: Implement function
# create logits
logits = tf.reshape(nn_last_layer, (-1, num_classes))
correct_label = tf.reshape(correct_label, (-1, num_classes))
# create loss function.
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=correct_label))
# Define optimizer. Adam in this case to have variable learning rate.
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
# Apply optimizer to the loss function.
train_op = optimizer.minimize(cross_entropy_loss)
return logits, train_op, cross_entropy_loss
| 15,783
|
def maybe_load_yaml(item):
"""Parses `item` only if it is a string. If `item` is a dictionary
it is returned as-is.
Args:
item:
Returns: A dictionary.
Raises:
ValueError: if unknown type of `item`.
"""
if isinstance(item, six.string_types):
return yaml.load(item)
elif isinstance(item, dict):
return item
else:
raise ValueError("Got {}, expected string or dict", type(item))
| 15,784
|
def histeq(im,nbr_bins=256):
"""histogram equalize an image"""
#get image histogram
im = np.abs(im)
imhist,bins = np.histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #cumulative distribution function
cdf = 255 * cdf / cdf[-1] #normalize
#use linear interpolation of cdf to find new pixel values
im2 = np.interp(im.flatten(),bins[:-1],cdf)
return im2.reshape(im.shape)
| 15,785
|
def txgamma(v, t, gamma, H0):
"""
Takes in:
v = values at z=0;
t = list of redshifts to integrate over;
gamma = interaction term.
Returns a function f = [dt/dz, d(a)/dz,
d(e'_m)/dz, d(e'_de)/dz,
d(z)/dz,
d(dl)/dz]
"""
(t, a, ombar_m, ombar_de, z, dl) = v #omegam, omegade, z, dl) = v
Hz = H0 * (ombar_m + ombar_de)**(1/2)
if np.isnan(Hz):
print('txgamma')
print('z = %s, Hz = %s, gamma = %s, ombar_m = %s, ombar_de = %s'
%(z, Hz, gamma, ombar_m, ombar_de))
irate = (gamma/(-t+0.0001))*(1-ombar_de/(ombar_de+ombar_m)) /(1+z)/Hz
# first derivatives of functions I want to find:
f = [# dt/dz (= f.d wrt z of time)
-1/((1+z) * Hz),
# d(a)/dz (= f.d wrt z of scale factor)
-(1+z)**(-2),
# d(ombar_m)/dz (= f.d wrt z of density_m(t) / crit density(t0))
3*ombar_m /(1+z) - irate,
# d(ombar_de)/dz (= f.d wrt z of density_de(t) / crit desnity(t0))
irate,
# d(z)/dz (= f.d wrt z of redshift)
1,
# d(dl)/dz (= f.d wrt z of luminosty distance)
1/Hz] # H + Hdz*(1+z)
return f
| 15,786
|
def save_file(data, path, verbose=False):
"""Creates intermediate directories if they don't exist."""
dir = os.path.dirname(path)
if not os.path.isdir(dir):
os.makedirs(dir)
if verbose:
print(f"Saving: {path}")
_, ext = os.path.splitext(path)
if ext == ".pkl":
with open(path, "wb") as f:
pickle.dump(data, f, protocol=2)
elif ext == ".json":
with open(path, "w") as f:
json.dump(data, f, indent=4, separators=(",", ": "), sort_keys=True)
f.write("\n")
| 15,787
|
def process_song_file(cur, filepath):
"""
Function Purpose: Open and process data from song data file to insert into {songs, artists} table
Inputs:
- filepath: the filepath where the JSON song data file is stored
- cur: cursor
Outputs:
- 'song_data': Insert [song_id, title, artist_id, year, duration]
==> into songs table
- 'artist_data': Insert [artist_id, name, location, latitude, longitude]
==> into artists table
"""
# open song file
df = pd.read_json(filepath, lines=True)
# ********1- Insert Into song_table********
# insert song record
song_data = df.values[0][[7, 8, 0, 9, 5]].tolist()
cur.execute(song_table_insert, song_data)
# ********2- Insert Into artist_table********
# insert artist record
artist_data = df.values[0][[0, 4, 2, 1, 3]].tolist()
cur.execute(artist_table_insert, artist_data)
| 15,788
|
def text_pb(tag, data, description=None):
"""Create a text tf.Summary protobuf.
Arguments:
tag: String tag for the summary.
data: A Python bytestring (of type bytes), a Unicode string, or a numpy data
array of those types.
description: Optional long-form description for this summary, as a `str`.
Markdown is supported. Defaults to empty.
Raises:
TypeError: If the type of the data is unsupported.
Returns:
A `tf.Summary` protobuf object.
"""
try:
tensor = tensor_util.make_tensor_proto(data, dtype=np.object)
except TypeError as e:
raise TypeError("tensor must be of type string", e)
summary_metadata = metadata.create_summary_metadata(
display_name=None, description=description
)
summary = summary_pb2.Summary()
summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor)
return summary
| 15,789
|
def sanitize_input(args: dict) -> dict:
"""
Gets a dictionary for url params and makes sure it doesn't contain any illegal keywords.
:param args:
:return:
"""
if "mode" in args:
del args["mode"] # the mode should always be detailed
trans = str.maketrans(ILLEGAL_CHARS, ' ' * len(ILLEGAL_CHARS))
for k, v in args.copy().items():
if isinstance(v, str): # we only need to verify v because k will never be entered by a user
args[k] = v.translate(trans)
return args
| 15,790
|
def test_prep_file(text, expected):
"""
Writes text to file, then processes the file (which writes to an output file),
loads the output file and compares to the expected result
:param text:
:param expected:
:return:
"""
infile, infile_filename = tempfile.mkstemp()
outfile, outfile_filename = tempfile.mkstemp()
with open(infile_filename, 'w', encoding='ascii') as f:
f.write(text)
prep_file(infile_filename, outfile_filename)
with open(outfile_filename, 'r') as f:
line = f.readline().strip()
assert line == expected
# cleanup
os.close(infile)
os.close(outfile)
| 15,791
|
def add_notebook(args, library_db):
"""add a notebook to sqlite database"""
import os
from src.praxxis.library import sync_library
root = (os.path.sep).join(os.path.abspath(args.path).split(os.path.sep)[:-1])
notebook_name = args.path.split(os.path.sep)[-1]
print(root)
relative_path = ""
sync_library.load_notebook(notebook_name, root, library_db, "none", relative_path)
| 15,792
|
def sum_to(containers, goal, values_in_goal=0):
"""
Find all sets of containers which sum to goal, store the number of
containers used to reach the goal in the sizes variable.
"""
if len(containers) == 0:
return 0
first = containers[0]
remain = containers[1:]
if first > goal:
with_first = 0
elif first == goal:
sizes.append(values_in_goal + 1)
with_first = 1
else:
with_first = sum_to(remain, goal-first, values_in_goal + 1)
return with_first + sum_to(remain, goal, values_in_goal)
| 15,793
|
def Daq_DeleteProbe(label: str) -> None:
"""Removes probe compensation information from database
Parameters
----------
label : str
Compensation identifier
"""
CTS3Exception._check_error(_MPuLib.Daq_DeleteProbe(
label.encode('ascii')))
| 15,794
|
def rt2add_enc_v1(rt, grid):
"""
:param rt: n, k, 2 | log[d, tau] for each ped (n,) to each vic (k,)
modifies rt during clipping to grid
:param grid: (lx, ly, dx, dy, nx, ny)
lx, ly | lower bounds for x and y coordinates of the n*k (2,) in rt
dx, dy | step sizes of the regular grid
nx, ny | number of grid points in each coordinate (so nx*ny total)
:return: n, m | m = nx*ny, encoding for each ped
uses row-major indexing for the flattened (2d) indices
for nx 'rows' and ny 'columns'
"""
n, k = rt.shape[:2]
nx, ny = np.array(grid[-2:]).astype(np.int32)
m = nx * ny
Z = np.zeros((n, m), dtype=np.float32)
clip2grid(rt, grid)
# n, k
a_x = np.empty((n, k), dtype=np.int32)
r_x = np.empty((n, k), dtype=np.float32)
np.divmod(rt[..., 0] - grid[0], grid[2], a_x, r_x, casting='unsafe')
th_x = 1 - r_x / grid[2]
a_y = np.empty((n, k), dtype=np.int32)
r_y = np.empty((n, k), dtype=np.float32)
np.divmod(rt[..., 1] - grid[1], grid[3], a_y, r_y, casting='unsafe')
th_y = 1 - r_y / grid[3]
# 1d inds for m, | n, k
c_x = ny * a_x + a_y
offsets = np.array([0, ny, 1, ny+1], dtype=np.int32)
# n, k, 4
inds = c_x[..., np.newaxis] + offsets[np.newaxis, :]
vals = np.dstack((th_x*th_y, (1-th_x)*th_y, th_x*(1-th_y), (1-th_x)*(1-th_y)))
row_inds = np.repeat(np.arange(n, dtype=np.int32), 4*k)
np.add.at(Z, (row_inds, inds.ravel()), vals.ravel())
return Z
| 15,795
|
def warning(*tokens: Token, **kwargs: Any) -> None:
"""Print a warning message"""
tokens = [brown, "Warning:"] + list(tokens) # type: ignore
kwargs["fileobj"] = sys.stderr
message(*tokens, **kwargs)
| 15,796
|
def i_print_g(text=""):
"""
prints indented green text on terminal
:param text:
:return:
"""
print(Fore.GREEN + Style.BRIGHT + indent(text, prefix=" "))
| 15,797
|
def run_standard_p4_command(command, args):
"""Runs a standard p4 command. Uses exec, so this will be the
last function you ever call. Used to transfer control to stock p4
for non-custom commands.
"""
if command:
args = [command] + args
os.execvp('p4', ['p4'] + args)
| 15,798
|
def draw_with_replacement(heap):
"""Return ticket drawn with replacement from given heap of tickets.
Args:
heap (list): an array of Tickets, arranged into a heap using heapq.
Such a heap is also known as a 'priority queue'.
Returns:
the Ticket with the least ticket number in the heap.
Side-effects:
the heap maintains its size, as the drawn ticket is replaced
by the next ticket for that id.
Example:
>>> x = Ticket('0.234', 'x', 2)
>>> y = Ticket('0.354', 'y', 1)
>>> z = Ticket('0.666', 'z', 2)
>>> heap = []
>>> heapq.heappush(heap, x)
>>> heapq.heappush(heap, y)
>>> heapq.heappush(heap, z)
>>> heap
[Ticket(ticket_number='0.234', id='x', generation=2),
Ticket(ticket_number='0.354', id='y', generation=1),
Ticket(ticket_number='0.666', id='z', generation=2)]
>>> draw_with_replacement(heap)
Ticket(ticket_number='0.234', id='x', generation=2)
>>> heap
[Ticket(ticket_number='0.354', id='y', generation=1),
Ticket(ticket_number='0.666', id='z', generation=2),
Ticket(ticket_number='0.54783080274940261636464668679572\
2512609112766306951592422621788875312684400211',
id='x', generation=3)]
"""
ticket = heapq.heappop(heap)
heapq.heappush(heap, next_ticket(ticket))
return ticket
| 15,799
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.