content
stringlengths
22
815k
id
int64
0
4.91M
def render_template(template, defaults): """Render script template to string""" if not isinstance(template, Template): filename = template.format(**defaults) template = Template(filename=filename) return template.format(**defaults)
15,500
def get_hash(string): """ FNV1a hash algo. Generates a (signed) 64-bit FNV1a hash. See http://www.isthe.com/chongo/tech/comp/fnv/index.html for math-y details. """ encoded_trimmed_string = string.strip().encode('utf8') assert isinstance(encoded_trimmed_string, bytes) i64 = FNV1_64A_INIT for byte in encoded_trimmed_string: i64 = i64 ^ byte i64 = (i64 * FNV_64_PRIME) % (2 ** 64) # wrap the result into the full signed BIGINT range of the underlying RDBMS if i64 > BIGGEST_64_INT: i64 = SMALLEST_64_INT + (i64 - BIGGEST_64_INT - 1) # optimized CPU ops return i64
15,501
def load_seq_sizes(def_vars): """Load sequence sizes.""" seq1_sizes, seq2_sizes = {}, {} if def_vars.get("SEQ1_LEN"): seq1_sizes = read_chrom_sizes(def_vars.get("SEQ1_LEN")) elif def_vars.get("SEQ1_CTGLEN"): seq1_sizes = read_chrom_sizes(def_vars.get("SEQ1_CTGLEN")) else: clean_die("", "Cannot find SEQ1_LEN|SEQ1_CTGLEN in the DEF file") if def_vars.get("SEQ2_LEN"): seq2_sizes = read_chrom_sizes(def_vars.get("SEQ2_LEN")) elif def_vars.get("SEQ1_CTGLEN"): seq2_sizes = read_chrom_sizes(def_vars.get("SEQ2_CTGLEN")) else: clean_die("", "Cannot find SEQ2_LEN|SEQ2_CTGLEN in the DEF file") return seq1_sizes, seq2_sizes
15,502
def extract_source(source_path: Path) -> (Path, Optional[str]): """Extract the source archive, return the extracted path and optionally the commit hash stored inside.""" extracted_path = source_path.with_name(source_path.stem) commit_hash = None # Determine the source archive type before extracting it # Inspired by: https://stackoverflow.com/a/13044946/7597273 magic_dict = { b'\x1f\x8b\x08': 'gz', b'\x42\x5a\x68': 'bz2', b'\x50\x4b\x03\x04': 'zip', } max_len = max(len(x) for x in magic_dict) with source_path.open('rb') as f: file_start: bytes = f.read(max_len) for magic, archive_type in magic_dict.items(): if file_start.startswith(magic): break else: raise TypeError(f'Unknown source archive type: `{source_path.name}`') if archive_type in ('gz', 'bz2'): with TarFile.open(str(source_path), 'r:' + archive_type) as tar: # Commit hash (if downloaded from GitHub) commit_hash = tar.pax_headers.get('comment') # Update extracted path because: # `<commit-hash>[.tar.gz]` extracts a folder named `repo-name-<commit-hash>` # `<branch-name>[.tar.gz]` extracts a folder named `repo-name-<branch-name>` root_files = [name for name in tar.getnames() if '/' not in name] if len(root_files) == 1: extracted_path = source_path.with_name(root_files[0]) tar.extractall(str(extracted_path.parent)) elif archive_type == 'zip': with ZipFile(str(source_path), 'r') as zipf: # Commit hash (if downloaded from GitHub) if zipf.comment: commit_hash = zipf.comment.decode('utf-8') # Update extracted path because: # `<commit-hash>[.zip]` extracts a folder named `repo-name-<commit-hash>` # `<branch-name>[.zip]` extracts a folder named `repo-name-<branch-name>` root_folders = [] root_files = [] for name in zipf.namelist(): if name.count('/') == 1 and name.endswith('/'): root_folders.append(name.rstrip('/')) if name.count('/') == 0: root_files.append(name) # If only one root folder if len(root_folders) == 1 and len(root_files) == 0: extracted_path = source_path.with_name(root_folders[0]) zipf.extractall(str(extracted_path.parent)) return extracted_path, commit_hash
15,503
def correct_distribution (lines): """ Balance the distribution of angles Define an ideal value of samples per bin. If the count per bin is greated than the the average, then randomly remove the items only for that bin """ angles = np.float32(np.array(lines)[:, 3]) num_bins = 21 hist, bins = plot_histogram( num_bins, angles, 'Histogram - before distribution correction') #correct the distribution ideal_samples = len(angles)/num_bins * 1.5 keep_prob = [1 if hist[i] < ideal_samples else ideal_samples/hist[i] for i in range(num_bins) ] remove_list = [] for x, y in ((i,j) for i in range(len(angles)) for j in range(num_bins)): if angles[x] > bins[y] and angles[x] <= bins[y+1]: if np.random.rand() > keep_prob[y]: remove_list.append(x) lines = np.delete(lines, remove_list, axis=0) # check if distribution is ok angles = np.float32(np.array(lines)[:, 3]) hist = plot_histogram(num_bins , angles, 'Histogram - after distribution correction') return lines
15,504
def numDockedWindows(): """ Determine the amount of docked windows (i.e. visible on all desktops). return - Number of windows. """ stdout = runCommand(COMMAND_LIST_WINDOWS) result = -2 # first two windows are actually not windows and don't count for i in iter(stdout.splitlines()): if i[POS_COMMAND_LIST_WINDOWS_DOCKED] == CHAR_COMMAND_LIST_WINDOWS_DOCKED: result += 1 return result
15,505
def get_logger(name, level='DEBUG', ext_logger=None): """ retrieves a logger with colored logs installed Args: name: string used to describe logger names level: log level to use ext_logger: External logger object, if not create a new one. Returns: log: instance of a logger with coloredlogs installed """ fmt = fmt = '%(name)s %(levelname)s %(message)s' if ext_logger is None: log = logging.getLogger(name) else: log = ext_logger coloredlogs.install(fmt=fmt, level=level, logger=log) return log
15,506
def train(): """ Configuring, training, evaluating and making predictions on gathered data within our model rules. """ # retrieving processed data, ready to pipe into Tensorflow Estimators genomes, groups = _preprocess_data(db.all()) # first 1000 genomes/groups for training train_x = {'genome': genomes[:1000]} train_y = groups[:1000] # second 1000 genomes/groups for evaluating test_x = {'genome': genomes[1000:2000]} test_y = groups[1000:2000] # the last 100 genomes/groups for prediction pred_x = {'genome': genomes[2000:2100]} pred_y = groups[2000:2100] """Basic feature_column, operating on each of genomes arrays""" feature_column =\ tf.feature_column.categorical_column_with_identity('genome', num_buckets=len(groups_dictionary)) """Embedding feature_column, optimizing and allowing for gathering more meaningful information""" embedding_column = tf.feature_column.embedding_column( feature_column, dimension=250 # picked arbitrarily, best setup may differ ) print('[CLASSIFIER SETUP]') # Deep Neural Network classifier classifier = tf.estimator.DNNClassifier( hidden_units=[100], # picked arbitrarily, best setup may differ feature_columns=[embedding_column], n_classes=len(groups_dictionary) # number of options for classifying ) print('[TRAINING]') classifier.train( input_fn=lambda: _train_input_fn(train_x, train_y), steps=len(genomes) # picked arbitrarily, best setup may differ ) print('[EVALUATING]') classifier.evaluate( input_fn=lambda: _eval_input_fn(test_x, test_y) ) print('[PREDICTION]') predictions = classifier.predict( input_fn=lambda: _predict_input_fn(pred_x) ) correct = 0 for prediction, expect in zip(predictions, pred_y): class_id = prediction['class_ids'][0] probability = prediction['probabilities'][class_id] if class_id == expect: correct += 1 print(class_id, '{:.1f}'.format(100 * probability), expect, str(class_id == expect)) print('Correct:', correct)
15,507
def get_value(hive, key_name, value_name): """ >>> get_value( ... HKEY_LOCAL_MACHINE, ... "SOFTWARE/Microsoft/Windows/CurrentVersion/Explorer/StartMenu", ... "Type") [1, 'group'] >>> get_value( ... HKEY_CURRENT_USER, ... "Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\CLSID\\{645FF040-5081-101B-9F08-00AA002F954E}\\DefaultIcon", ... "Full") [2, '%SystemRoot%\\\\System32\\\\shell32.dll,32', 'C:\\\\WINDOWS\\\\System32\\\\shell32.dll,32'] """ assert hive in (HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER, HKEY_USERS, HKEY_CLASSES_ROOT) result = None key_name = key_name.replace("/", "\\") with reg_connect_registry(None, hive) as reghandle: with reg_open_key(reghandle, key_name) as keyhandle: try: rval, rtype = win32api.RegQueryValueEx(keyhandle, value_name) result = [rtype, rval] if rtype == win32con.REG_EXPAND_SZ: result.append(_expand_path_variables(rval)) except Exception, e: print e return None return result
15,508
def addScore(appId: str, scoreName: str, value: int, userId: str, checksum: str=Header(None), db=Depends(Database)): """ Add user score to leaderboard """ validateParameters(appId=appId, scoreName=scoreName, value=value, userId=userId, checksum=checksum) with db.transaction() as store: leaderboard = Leaderboards(appId=appId, userId=userId, scoreName=scoreName, value=value) store.merge(leaderboard) store.commit() userRankChecksum = computeChecksum(appId=appId, userId=userId, scoreName=scoreName) return getUserRank(appId, scoreName, userId, userRankChecksum, db)
15,509
def has_affect(builtin: str) -> bool: """Return `True` if the given builtin can affect accessed attributes.""" if builtin not in PYTHON_BUILTINS: raise ValueError(f"'{builtin}' is not a Python builtin") return builtin in PYTHON_ATTR_BUILTINS
15,510
def get_plot_for_different_k_values(similarity, model_name): """ This function plots points after applying a cluster method for k=3,4,5,6. Furthermore prints silhouette score for each k :param similarity: Contains our dataset (The similarity of RIPE monitors) :return: A list containing silhouette score """ silhouette_scores = [] f = plt.figure() f.add_subplot(2, 2, 1) for i in range(3, 7): if model_name == 'Spectral': sc = SpectralClustering(n_clusters=i, affinity='precomputed').fit(similarity) else: sc = KMeans(n_clusters=i, init='random', n_init=10, max_iter=300, tol=1e-04, random_state=0).fit(similarity) silhouette_scores.append(silhouette_score(similarity, sc.labels_)) f.add_subplot(2, 2, i - 2) plt.scatter(similarity[:, 0], similarity[:, 1], s=5, c=sc.labels_, label="n_cluster-" + str(i)) plt.legend() plt.show() return silhouette_scores
15,511
def main(): """Profiles various versions of LCA.""" nshort = 6 tshort = 2 nmed = 3 tmed = 6 nlong = 1 # Setup variables for inference numDict = int(2048) numBatch = int(128) dataSize = int(256) dictsIn = np.random.randn(numDict,dataSize) # LCA requires that dictionary be unit norm dictsIn = skp.normalize(dictsIn, axis=1) stimuli = np.random.randn(numBatch,dataSize) batchCoeffs = np.random.randn(numBatch,numDict) coeffs = np.zeros((numBatch, numDict)) eta = .01 lamb = .05 nIter = 300 adapt = .99 softThresh = 0 thresh = np.random.randn(numBatch) #LCA params = """Parameters: numDict: """+str(numDict)+""" numBatch: """+str(numBatch)+""" dataSize: """+str(dataSize)+""" nIter: """+str(nIter)+"""\n""" print params start = timer() lcan.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcan.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = dt+timer()-start dt = dt/(n_times) print '---------------Numpy based LCA----------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt dictsIn = np.array(dictsIn,order='F') stimuli = np.array(stimuli,order='F') coeffs = np.array(coeffs,order='F') batchCoeffs = np.array(batchCoeffs,order='F') thresh = np.array(thresh,order='F') start = timer() lcaf.lca(dictsIn,stimuli,eta,lamb,nIter,softThresh,adapt,coeffs,batchCoeffs,thresh,numDict,numBatch,dataSize) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcaf.lca(dictsIn,stimuli,eta,lamb,nIter,softThresh,adapt,coeffs,batchCoeffs,thresh,numDict,numBatch,dataSize) dt = dt+timer()-start dt = dt/(n_times) print '---------------Fortran based LCA--------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt dictsIn = np.array(dictsIn,dtype=np.float32,order='F') stimuli = np.array(stimuli,dtype=np.float32,order='F') start = timer() lcag.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcag.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = dt+timer()-start dt = dt/(n_times) print '----------------GPU based LCA-----------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt
15,512
def RandomBrightness(image, delta, seed=None): """Adjust the brightness of RGB or Grayscale images. Tips: delta extreme value in the interval [-1, 1], >1 to white, <-1 to black. a suitable interval is [-0.5, 0.5]. 0 means pixel value no change. Args: image: Tensor or array. An image. delta: if int, float, Amount to add to the pixel values. if list, tuple, randomly picked in the interval `[delta[0], delta[1])` to add to the pixel values. seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. Returns: A brightness-adjusted tensor of the same shape and type as `image`. Raises: ValueError: if `delta` type is error. """ if isinstance(delta, (int, float)): assert -1<=delta<=1, 'delta should be in the interval [-1, 1].' image = tf.image.adjust_brightness(image, delta) elif isinstance(delta, (list, tuple)): assert -1<=delta[0]<delta[1]<=1, 'delta should be 1 >= delta[1] > delta[0] >= -1.' random_delta = tf.random.uniform([], delta[0], delta[1], seed=seed) image = tf.image.adjust_brightness(image, random_delta) else: raise ValueError('delta should be one of int, float, list, tuple.') return image
15,513
async def volume(ctx, volume: float): """Sets the volume of the bot, (0-2).""" server = ctx.message.server.id players[server].volume = volume
15,514
def fetch_rfc(number): """ RFC fetcher >>> fetch_rfc("1234") (u'https://tools.ietf.org/html/rfc1234', 'Tunneling IPX traffic through IP networks') """ url = "https://tools.ietf.org/html/rfc%s" % (number, ) xml, dummy_response = fetch_and_parse_xml(url) title = xml.xpath('string(//meta[@name="DC.Title"]/@content)') return url, (title or None)
15,515
def samefile(path1, path2, user=None): """ Return :obj:`True` if both path arguments refer to the same path. """ def tr(p): return abspath(normpath(realpath(p)), user=user) return tr(path1) == tr(path2)
15,516
def get_list_coord(G, o, d): """Get the list of intermediate coordinates between nodes o and d (inclusive). Arguments: G {networkx} -- Graph o {int} -- origin id d {int} -- destination id Returns: list -- E.g.: [(x1, y1), (x2, y2)] """ edge_data = G.get_edge_data(o, d)[0] try: return ox.LineString(edge_data['geometry']).coords except: return [(G.node[o]['x'], G.node[o]['y']), (G.node[d]['x'], G.node[d]['y'])]
15,517
def todays_date(): """ Returns today's date in YYYYMMDD format. """ now = datetime.datetime.now() date_str = "{0}{1}{2}".format(now.year, now.strftime('%m').zfill(2), now.strftime('%d').zfill(2)) return date_str
15,518
def kl_divergence(p_probs, q_probs): """"KL (p || q)""" kl_div = p_probs * np.log(p_probs / q_probs) return np.sum(kl_div[np.isfinite(kl_div)])
15,519
def _dbize(ec, org, rxn, cof, all_smiles): """Place data into MongoDB.""" #Connect to mongodb. client = MongoClient() db = client.BrendaDB ec_collection = db.ec_pages rxn_collection = db.rxn_pages cpd_collection = db.cpd_pages #Build dictionary of reactions and organisms r_o_dict = {} for k, v in rxn.iteritems(): p_ = [] r_ = [] #The substrates/products are in name format from the dump, so adding smiles data here. if len(v[1]) > 0 and len(v[2]) > 0: for comp in v[1]: if comp in all_smiles: smiles = all_smiles[str(comp)] id = hashlib.sha1(smiles).hexdigest() inchi = pybel.readstring('smi', smiles).write('inchi').strip('\t\n') inchikey = rdki.InchiToInchiKey(inchi) r_.append(id) cpd_collection.update({"_id": id}, {"$set": {"smiles": smiles, "inchi": inchi, "inchikey": inchikey, "name": comp}}, upsert=True) else: r_.append('') for comp in v[2]: if comp in all_smiles: smiles = all_smiles[str(comp)] id = hashlib.sha1(smiles).hexdigest() inchi = pybel.readstring('smi', smiles).write('inchi').strip('\t\n') inchikey = rdki.InchiToInchiKey(inchi) p_.append(id) cpd_collection.update({"_id": id}, {"$set": {"smiles": smiles, "inchi": inchi, "inchikey": inchikey, "name": comp}}, upsert=True) else: p_.append('') #A reaction doc is generated containing the names/smiles of both products and reactants as well as a #stoichiometry vector. The id field is a hash of the final dictionary, and gets added into the rxn/org dict #for inclusion in the ec pages. Upsert option adds to anything that matches the query and creates a new #entry if there is no match. r_entry = {"r_name": v[1], "p_name": v[2], "r_smiles": r_, "p_smiles": p_, "s": v[3]} rxn_collection.update({"_id": hashlib.sha1(str(r_entry)).hexdigest()}, {"$set": {"rxn": r_entry}}, upsert=True) r_o_dict[k] = (v[0], hashlib.sha1(str(r_entry)).hexdigest()) else: continue #Iterate through a dictionary of organisms to create the ec pages. Each doc is for a particular organism and lists #all of the ecs present in it, followed by a list of reactions in each ec listing, with cofactors. for k, v in org.iteritems(): rxns_in = [x[1] for x in r_o_dict.values() if k in x[0]] cofs_in = [{"name": x[1], "link": ''} for x in cof if k in x[0]] for d in cofs_in: if d["name"] in all_smiles: d["link"] = hashlib.sha1(all_smiles[str(d["name"])]).hexdigest() else: d["link"] = '' ec_collection.update({"org": v}, {"$set": {"ec." + ec.replace('.', '_'): {"rxns": rxns_in, "cofactors": cofs_in}}}, upsert=True)
15,520
def colors_to_main(colors, main_colors): """ Mapping image colors to main colors and count pixels :param: colors: all colors in image :param: main_colors: input main colors (blue, green, yellow, purple, pink, red, orange, brown, silver, white, gray, black) :return: colors """ colors.sort(reverse=True) main_color_init(main_colors) for c1 in colors: color_flag = lab_to_color(c1.lab) smallest_diff = 1000 smallest_index = None for n, c2 in enumerate(main_colors): if color_flag is not None: if c2.name == color_flag: smallest_index = n break else: if c2.name in ['white', 'silver', 'gray', 'black']: continue color_diff = diff_cie76(c1.lab, c2.lab) if color_diff < smallest_diff: smallest_diff = color_diff smallest_index = n main_colors[smallest_index].count += c1.count colors = [color for color in main_colors] colors.sort(reverse=True) return colors
15,521
def await_lock(lock): """ Wait for a lock without blocking the main (Qt) thread. See await_future() for more details. """ elapsed = 0 # total time elapsed waiting for the lock interval = 0.02 # the interval (in seconds) between acquire attempts timeout = 60.0 # the total time allotted to acquiring the lock end_time = time.time() + timeout # wait until the lock is available while time.time() < end_time: # # attempt to acquire the given lock without blocking (via 'False'). # if we successfully acquire the lock, then we can return (success) # if lock.acquire(False): logger.debug("Acquired lock!") return # # the lock is not available yet. we need to sleep so we don't choke # the cpu, and try to acquire the lock again next time through... # logger.debug("Awaiting lock...") time.sleep(interval) # # if we are executing (well, blocking) as the main thread, we need # to flush the event loop so IDA does not hang # if QT_AVAILABLE and is_mainthread(): flush_qt_events() # # we spent 60 seconds trying to acquire the lock, but never got it... # to avoid hanging IDA indefinitely (or worse), we abort via signal # raise RuntimeError("Failed to acquire lock after %f seconds!" % timeout)
15,522
def get_arg_value_wrapper( decorator_func: t.Callable[[ArgValGetter], Decorator], name_or_pos: Argument, func: t.Callable[[t.Any], t.Any] = None, ) -> Decorator: """ Call `decorator_func` with the value of the arg at the given name/position. `decorator_func` must accept a callable as a parameter to which it will pass a mapping of parameter names to argument values of the function it's decorating. `func` is an optional callable which will return a new value given the argument's value. Return the decorator returned by `decorator_func`. """ def wrapper(args: BoundArgs) -> t.Any: value = get_arg_value(name_or_pos, args) if func: value = func(value) return value return decorator_func(wrapper)
15,523
def delete_index(c, core, server=DEFAULT_SOLR_URL): """ Delete index data. """ client = SolrClient(core=core, base_url=server) client.delete_all_index()
15,524
def yaml_request(request: quart.local.LocalProxy) -> bool: """Given a request, return True if it contains a YAML request body""" return request.content_type in ( "text/vnd.yaml", "text/yaml", "text/x-yaml", "application/vnd.yaml", "application/x-yaml", "application/yaml", )
15,525
def validatePath(path): """ Returns the validated path. :param path: string or unicode - Path to format .. note:: Only useful if you are coding for both Linux and Windows for fixing slash problems. e.g. Corrects 'Z://something' -> 'Z:' Example:: fpath = xbmc.validatePath(somepath) """ return unicode()
15,526
def fancy_scatter(x, y, values=None, bins=60, names=['x', 'y'], marg=False, marg_perc=15, nbins=[3, 3]): """ Scatter plot of paramters with number desnity contours overlaid. Marginalized 1D distributions also plotted. Make sure that the data is appropriately cleaned before using this routine """ # Simple cuts to remove bad-points from scipy.stats import binned_statistic_2d as bs2d ixs = np.isfinite(x) & np.isfinite(y) range1 = np.percentile(x[ixs], [5, 95]) range2 = np.percentile(y[ixs], [5, 95]) # Use interquartile ranges to suitably set the ranges for the bins width1, width2 = np.diff(range1), np.diff(range2) if values is None: res = bs2d(x[ixs], y[ixs], None, 'count', bins, range=[[range1[0] - width1, range1[1] + width1], [range2[0] - width2, range2[1] + width2]]) else: res = bs2d(x[ixs], y[ixs], values[ixs], 'mean', bins, range=[[range1[0] - width1, range1[1] + width1], [range2[0] - width2, range2[1] + width2]]) if not marg: fig, ax2d = plt.subplots(1, figsize=(6, 5)) else: fig = plt.figure(figsize=(6, 6)) ax2d = fig.add_subplot(223) ax1 = fig.add_subplot(221, sharex=ax2d) ax3 = fig.add_subplot(224, sharey=ax2d) if values is None: # plot the 2d histogram ax2d.imshow(np.log10(res.statistic.T), origin='lower', extent=[res.x_edge[0], res.x_edge[-1], res.y_edge[0], res.y_edge[-1]], aspect='auto', cmap=plt.cm.binary, interpolation='nearest') # overlay contours levels = np.linspace(0, np.log(res.statistic.max()), 10)[2:] ax2d.contour(np.log(res.statistic.T), levels, colors='k', extent=[res.x_edge[0], res.x_edge[-1], res.y_edge[0], res.y_edge[-1]]) else: # plot the binned statistic image cmap_multicolor = plt.cm.jet cmap_multicolor.set_bad('w', 1.) cs = ax2d.imshow(res.statistic.T, origin='lower', extent=[res.x_edge[0], res.x_edge[-1], res.y_edge[0], res.y_edge[-1]], aspect='auto', cmap=cmap_multicolor, interpolation='nearest') cb = plt.colorbar(cs) cb.set_clim(np.nanpercentile(res.statistic, 50), np.nanpercentile(res.statistic, 60)) ax2d.set_xlabel(r'${}$'.format(names[0])) ax2d.set_ylabel(r'${}$'.format(names[1])) if marg: ax1.hist(x, bins=res.x_edge, histtype='step', range=range1, color='k') ax3.hist(y, bins=res.y_edge, histtype='step', range=range2, color='k', orientation='horizontal') ax1.xaxis.set_visible(False) ax3.yaxis.set_visible(False) ax1.set_ylabel(r'$\mathrm{N}$', fontsize=16) ax3.set_xlabel(r'$\mathrm{N}$', fontsize=16) # Put percentile cuts on the marginalized plots p1_cuts = np.percentile(x[ixs], [marg_perc, 100 - marg_perc]) p2_cuts = np.percentile(y[ixs], [marg_perc, 100 - marg_perc]) for ele in np.linspace(*p1_cuts, nbins[0]+1): ax2d.axvline(ele, color='r', linewidth=0.6) for ele in np.linspace(*p2_cuts, nbins[1]+1): ax2d.axhline(ele, color='r', linewidth=0.6) # print the bins along each dimension along with the count in each bin print(names[0], np.linspace(*p1_cuts, nbins[0]+1)) print(names[1], np.linspace(*p2_cuts, nbins[1]+1)) bin_counts = bs2d(x[ixs], y[ixs], None, 'count', bins=[np.linspace(*p1_cuts, nbins[0]+1), np.linspace(*p2_cuts, nbins[1]+1)]).statistic # To be consistent with the way it is plotted print(np.flipud(bin_counts.T)) plt.tight_layout() plt.show()
15,527
def add_dingbot(dingbot_id=None, *args, **kwargs): """Add a dingbot config with interactive input""" home = os.path.expanduser('~') configfp = os.path.join(home, '.easydingbot') if os.path.exists(configfp): with open(configfp) as f: config_dict = json.load(f) if 'default' in config_dict: if not dingbot_id: dingbot_id = input('Please input the dingbot id ("default" if empty, "q" to quit) > ') if dingbot_id.lower() == 'q': exit() if not dingbot_id: dingbot_id = 'default' else: print('It\'s first time to set dingbot, We will use "default" as the first dingbot id.') dingbot_id = 'default' else: dingbot_id = 'default' config_dict = {} webhook_pattern = r'^https://oapi.dingtalk.com/robot/send\?access_token=.*' while True: webhook = input('Please input the webhook string ("q" to quit) > ') if webhook.lower() == 'q': exit() elif re.search(webhook_pattern, webhook): break else: print('Invalid input, the format should be like "https://oapi.dingtalk.com/robot/send?access_token=XXX", please check and retry.') secret = input('Please input the secret string ("q" to quit) > ') if secret.lower() == 'q': exit() config_dict[dingbot_id] = { 'webhook': webhook, 'secret': secret } with open(configfp, 'w') as f: json.dump(config_dict, f)
15,528
def get_raster_availability(layer, bbox=None): """retrieve metadata for raster tiles that cover the given bounding box for the specified data layer. Parameters ---------- layer : str dataset layer name. (see get_available_layers for list) bbox : (sequence of float|str) bounding box of in geographic coordinates of area to download tiles in the format (min longitude, min latitude, max longitude, max latitude) Returns ------- metadata : geojson FeatureCollection returns metadata including download urls as a FeatureCollection """ base_url = 'https://www.sciencebase.gov/catalog/items' params = [ ('parentId', layer_dict[layer]), ('filter', 'tags=IMG'), ('max', 1000), ('fields', 'webLinks,spatial,title'), ('format', 'json'), ] if bbox: xmin, ymin, xmax, ymax = [float(n) for n in bbox] polygon = 'POLYGON (({}))'.format(','.join([(repr(x) + ' ' + repr(y)) for x,y in [ (xmin, ymax), (xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax)]])) params.append(('filter', 'spatialQuery={{wkt:"{}",relation:"{}"}}'.format(polygon, 'intersects'))) features = [] url = base_url while url: r = requests.get(url, params) print('retrieving raster availability from %s' % r.url) params = [] # not needed after first request content = r.json() for item in content['items']: feature = Feature(geometry=Polygon(_bbox2poly(item['spatial']['boundingBox'])), id=item['id'], properties={ 'name': item['title'], 'layer': layer, 'format': '.img', 'download url': [x for x in item['webLinks'] if x['type']=='download'][0]['uri']} ) features.append(feature) if content.get('nextlink'): url = content['nextlink']['url'] else: break return FeatureCollection(features)
15,529
def absolute_error(observed, modeled): """Calculate the absolute error between two arrays. :param observed: Array of observed data :type observed: numpy.ndarray :param modeled: Array of modeled data :type modeled: numpy.ndarray :rtype: numpy.ndarray """ error = observed - modeled return error
15,530
def prepare_tempdir(suffix: Optional[str] = None) -> str: """Preapres a temprary directory, and returns the path to it. f"_{version}" will be used as the suffix of this directory, if provided. """ suffix = "_" + suffix if suffix else None dir_str = mkdtemp(suffix, "warsawgtfs_") return dir_str
15,531
def parse_number(string): """ Retrieve a number from the string. Parameters ---------- string : str the string to parse Returns ------- number : float the number contained in the string """ num_str = string.split(None, 1)[0] number = float(num_str) return number
15,532
def catch_exception(func): """ Decorator that catches exception and exits the code if needed """ def exit_if_failed(*args, **kwargs): try: result = func(*args, **kwargs) except (NonZeroExitCodeException, GitLogParsingException) as exception: Logger.error(exception.message) quit() else: return result return exit_if_failed
15,533
def _coord_byval(coord): """ Turns a COORD object into a c_long. This will cause it to be passed by value instead of by reference. (That is what I think at least.) When runing ``ptipython`` is run (only with IPython), we often got the following error:: Error in 'SetConsoleCursorPosition'. ArgumentError("argument 2: <class 'TypeError'>: wrong type",) argument 2: <class 'TypeError'>: wrong type It was solved by turning ``COORD`` parameters into a ``c_long`` like this. More info: http://msdn.microsoft.com/en-us/library/windows/desktop/ms686025(v=vs.85).aspx """ return c_long(coord.Y * 0x10000 | coord.X & 0xFFFF)
15,534
def create_tables(cur, conn): """ Creates all tables in Redshift. cur and conn and the curson and connection from the psycopg2 API to the redshift DB. """ for q in sql_q.create_table_queries: print('executing query: {}'.format(q)) cur.execute(q) conn.commit()
15,535
def _list_flows(output_format='dict', **kwargs) -> Union[Dict, pd.DataFrame]: """ Perform the api call that return a list of all flows. Parameters ---------- output_format: str, optional (default='dict') The parameter decides the format of the output. - If 'dict' the output is a dict of dict - If 'dataframe' the output is a pandas DataFrame kwargs: dict, optional Legal filter operators: uploader, tag, limit, offset. Returns ------- flows : dict, or dataframe """ api_call = "flow/list" if kwargs is not None: for operator, value in kwargs.items(): api_call += "/%s/%s" % (operator, value) return __list_flows(api_call=api_call, output_format=output_format)
15,536
def main(argv): """Entry point.""" try: argv = FLAGS(argv) except gflags.FlagsError, e: print '{}\nUsage: {} ARGS\n{}'.format(e, sys.argv[0], FLAGS) sys.exit(1) with open(FLAGS.definition_file, 'r') as def_file: if FLAGS.struct_file: def_file.seek(0) output = StructBasedOutput(FLAGS.struct_file, FLAGS.define_file) ParseRegisterDefinitions(def_file, output) if FLAGS.define_file: def_file.seek(0) ParseRegisterDefinitions(def_file, DefineBasedOutput(FLAGS.define_file))
15,537
def _take_many_sparse_from_tensors_map(sparse_map_op, sparse_handles, rank=None, name=None): """Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. The input `sparse_handles` must be a string matrix of shape `[N, 1]` where `N` is the minibatch size and the rows correspond to packed outputs of `add_sparse_to_tensors_map`. The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension). The output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size. The input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run `sparse.reorder` to restore index ordering. For example, if the serialized input is a `[2, 3]` matrix representing two original `SparseTensor` objects: index = [ 0] [10] [20] values = [1, 2, 3] shape = [50] and index = [ 2] [10] values = [4, 5] shape = [30] then the final deserialized `SparseTensor` will be: index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50] Args: sparse_map_op: The `Operation` that created the original handles. Usually this is, e.g., `add_sparse_to_tensors_map(...).op`. sparse_handles: 2-D `Tensor` of type `string` of shape `[N, 1]`. The serialized and packed `SparseTensor` objects. rank: (optional) Python int, the rank of the `SparseTensor` objects. name: A name prefix for the returned tensors (optional) Returns: A `SparseTensor` representing the deserialized `SparseTensor`s, concatenated along the `SparseTensor`s' first dimension. All of the serialized `SparseTensor`s must have had the same rank and type. """ if not isinstance(sparse_map_op, ops.Operation): raise TypeError("sparse_map_op be an Operation") if sparse_map_op.type not in ("AddSparseToTensorsMap", "AddManySparseToTensorsMap"): raise TypeError( "sparse_map_op must be one of AddSparseToTensorsMap or " "AddSparseToTensorsMap. Instead, found `%s`." % sparse_map_op.type) with ops.colocate_with(sparse_map_op): shared_name = sparse_map_op.get_attr("shared_name") or sparse_map_op.name output_indices, output_values, output_shape = ( gen_sparse_ops.take_many_sparse_from_tensors_map( sparse_handles, dtype=sparse_map_op.get_attr("T"), container=sparse_map_op.get_attr("container"), shared_name=shared_name, name=name)) # Feed rank data back in, if available output_indices.set_shape([None, rank]) output_shape.set_shape([rank]) return sparse_tensor.SparseTensor(output_indices, output_values, output_shape)
15,538
def rts_smooth(kalman_filter, state_count=None): """ Compute the Rauch-Tung-Striebel smoothed state estimates and estimate covariances for a Kalman filter. Args: kalman_filter (KalmanFilter): Filter whose smoothed states should be returned state_count (int or None): Number of smoothed states to return. If None, use ``kalman_filter.state_count``. Returns: (list of MultivariateNormal): List of multivariate normal distributions. The mean of the distribution is the estimated state and the covariance is the covariance of the estimate. """ if state_count is None: state_count = kalman_filter.state_count state_count = int(state_count) if state_count < 0 or state_count > kalman_filter.state_count: raise ValueError("Invalid state count: {}".format(state_count)) # No states to return? if state_count == 0: return [] # Initialise with final posterior estimate states = [None] * state_count states[-1] = kalman_filter.posterior_state_estimates[-1] priors = kalman_filter.prior_state_estimates posteriors = kalman_filter.posterior_state_estimates # Work backwards from final state for k in range(state_count-2, -1, -1): process_mat = kalman_filter.process_matrices[k+1] cmat = posteriors[k].cov.dot(process_mat.T).dot( np.linalg.inv(priors[k+1].cov)) # Calculate smoothed state and covariance states[k] = MultivariateNormal( mean=posteriors[k].mean + cmat.dot(states[k+1].mean - priors[k+1].mean), cov=posteriors[k].cov + cmat.dot(states[k+1].cov - priors[k+1].cov).dot(cmat.T) ) return states
15,539
def play_episode(args, sess, env, qnet, e): """ Actually plays a single game and performs updates once we have enough experiences. :param args: parser.parse_args :param sess: tf.Session() :param env: gym.make() :param qnet: class which holds the NN to play and update. :param e: chance of a random action selection. :return: reward earned in the game, update value of e, transitions updated against. """ done = False _ = env.reset() reward = 0 # total reward for this episode turn = 0 transitions = 0 # updates * batch_size terminal = True # Anytime we lose a life, and beginning of episode. while not done: if terminal: terminal = False # To make sure that the agent doesn't just learn to set up well for # the way the game starts, begin the game by not doing anything and # letting the ball move. for _ in range(np.random.randint(1, args.random_starts)): # Perform random actions at the beginning so the network doesn't # just learn a sequence of steps to always take. img, _, done, info = env.step(env.action_space.sample()) img = preprocess_img(img) state = np.stack((img, img, img, img), axis=2) lives = info['ale.lives'] if done: # If lost our last life during random_start, nothing left to play break # Perform an action action = qnet.predict(sess, np.array([state]))[0] if np.random.rand(1) < e: action = qnet.rand_action() img, r, done, info = env.step(action) # Store as an experience img = np.reshape(preprocess_img(img), (85, 80, 1)) next_state = np.concatenate((state[:, :, 1:], img), axis=2) if info['ale.lives'] < lives: terminal = True qnet.add_experience(state, action, r, next_state, terminal) # Updates if qnet.exp_buf_size() > args.begin_updates and\ turn % (qnet.batch_size // 8) == 0: # Once we have enough experiences in the buffer we can # start learning. We want to use each experience on average 8 times # so that's why for a batch size of 8 we would update every turn. qnet.update(sess) transitions += qnet.batch_size if e > args.e_f: # Reduce once for every update on 8 states. This makes e # not dependent on the batch_size. e -= (qnet.batch_size*(args.e_i - args.e_f)) / args.e_anneal # Prep for the next turn state = next_state reward += r turn += 1 return reward, e, transitions
15,540
def to_categorical(y, num_columns): """Returns one-hot encoded Variable""" y_cat = np.zeros((y.shape[0], num_columns)) y_cat[range(y.shape[0]), y.astype(int)] = 1.0 return Variable(FloatTensor(y_cat))
15,541
def suppress_vtk_warnings(): """A context manager to suppress VTK warnings. This is handy when trying to find something dynamically with VTK. **Example** with supress_vtk_warnings(): x = tvtk.VolumeRayCastMapper() """ try: obj = vtk.vtkObject() obj.GlobalWarningDisplayOff() yield finally: obj.GlobalWarningDisplayOn()
15,542
def npi_provider_extension(source): """ Add non empty fields in NPI Record to NPI Extension in Practitioner Profile :param source: :return: profile['extension'] {} """ extn = {} for key, value in source.items(): if isinstance(value, str): if value == "": pass else: extn[key] = value if isinstance(value, int): if value: extn[key] = value else: pass if isinstance(value, list): if len(value) > 0: extn[key] = value else: pass if isinstance(value, dict): if len(value) > 0: extn[key] = value else: pass extn_dict = {'url' : settings.FHIR_SERVER + "/StructureDefinition/NPI_Provider_Record", 'NPI_Provider_Record' : extn } if settings.DEBUG: print("extension:", extn_dict) print("=====================") return extn_dict
15,543
def extract_light_positions_for_rays(ray_batch, scene_info, light_pos): """Extract light positions for a batch of rays. Args: ray_batch: [R, M] tf.float32. scene_info: Dict. light_pos: Light position. Returns: light_positions: [R, 3] tf.float32. """ ray_sids = extract_slice_from_ray_batch( # [R,] ray_batch=ray_batch, key='metadata') light_positions = scene_utils.extract_light_positions_for_sids( sids=ray_sids, # [R, 3] scene_info=scene_info, light_pos=light_pos) return light_positions
15,544
def user_choice(): """ takes input from the user and performs the tasks accordingly """ userchoice = """ Enter 1 for solving available problems. Enter 2 for giving your own sudoku problem. Enter any key to go back to main menue. """ print(userchoice) i_p = input(colored("\nEnter ur choice 1 or 2: ", 'yellow', attrs=['bold'])) if i_p == '1': tasks() elif i_p == '2': user_input_board() else: return #End of Funtion
15,545
def cdf(x, c, loc=0, scale=1): """Return the cdf :param x: :type x: :param c: :type c: :param loc: :type loc: :param scale: :type scale: :return: :rtype: """ x = (x - loc) / scale try: c = round(c, 15) x = np.log(1 - c * x) / c return 1.0 / (1 + np.exp(x)) except ZeroDivisionError: return 1.0 / (1 + np.exp(-x))
15,546
def solve_eq(preswet, func): """Solve the peicewise-linear stability of a parcel INPUTS: variables from the most ascent of a parcel preswet: pressure func : piecewise linear function to solve (tw-te) OUTPUTS: solutions: zeros of the function (tw-te) stability: indication of the stability of this solution. NOTE ABOUT STABILITY Stability is the sign of (d(func)/dP). So if you have used tw-te like you were supposed to, d(tw-te)/dP>0 means this is a stbale equilibrium level (flip the sign to envision d(tw-te)/dz). """ from numpy import sign, diff # Sorry to be annoying but I'm going to force you to use # a monotonically increasing variable assert (sign(diff(preswet)) == 1).all(), \ "Use a monotonically increasing abscissa" # Identify changes in sign of function dsign = sign(func) isdiff = zeros(dsign.shape, dtype=bool) isdiff[1:] = abs(diff(dsign)).astype(bool) # shift to get the value on the other side # of the x-axis shift = zeros(dsign.shape, dtype=bool) shift[:-1] = isdiff[1:] shift[-1] = isdiff[0] # solve by linear interpolation between # values points sols = zeros((isdiff.sum())) stab = zeros((isdiff.sum())) for ii in range(isdiff.sum()): f0 = func[isdiff][ii] f1 = func[shift][ii] p0 = preswet[isdiff][ii] p1 = preswet[shift][ii] slope = (f1-f0) / (p1-p0) sols[ii] = p0-f0 / slope stab[ii] = sign(slope) # Debug with plots ### # fig=figure() # ax=fig.add_subplot(111) # ax.plot(preswet,func) # ax.plot(sols,zeros(sols.shape),ls='',marker='o') # ax.plot(preswet[isdiff],func[isdiff],ls='',marker='+',mew=2) # ax.plot(preswet[shift],func[shift],ls='',marker='x',mew=2) # ax.grid(True) # show() return sols, stab
15,547
def load_dict(file_name): """ Reads JSON or YAML file into a dictionary """ if file_name.lower().endswith(".json"): with open(file_name) as _f: return json.load(_f) with open(file_name) as _f: return yaml.full_load(_f)
15,548
def test_two(caplog, no_job_dirs): """Test with two artifacts in one job. :param caplog: pytest extension fixture. :param str no_job_dirs: Test with --no-job-dirs. """ jobs_artifacts = [('spfxkimxcj6faq57', 'artifacts.py', 12479), ('spfxkimxcj6faq57', 'README.rst', 1270)] config = dict(always_job_dirs=False, no_job_dirs=no_job_dirs, dir=None) actual = artifacts_urls(config, jobs_artifacts) expected = dict([ (py.path.local('artifacts.py'), (API_PREFIX + '/buildjobs/spfxkimxcj6faq57/artifacts/artifacts.py', 12479)), (py.path.local('README.rst'), (API_PREFIX + '/buildjobs/spfxkimxcj6faq57/artifacts/README.rst', 1270)), ]) assert actual == expected messages = [r.message for r in caplog.records] if no_job_dirs: assert 'Only one job ID, automatically setting job_dirs = False.' not in messages else: assert 'Only one job ID, automatically setting job_dirs = False.' in messages
15,549
def get_next_number(num, proxies='', auth=''): """ Returns the next number in the chain """ url = 'http://www.pythonchallenge.com/pc/def/linkedlist.php' res = requests.get('{0}?nothing={1}'.format(url, num), proxies=proxies, auth=auth) dat = res.content pattern = re.compile(r'next nothing is (\d+)') match = pattern.findall(dat) if match: get_next_number(match[0], proxies=proxies, auth=auth) else: if "Divide" in dat: get_next_number(int(num)/2, proxies=proxies, auth=auth) else: return dat
15,550
def gzip_str(g_str): """ Transform string to GZIP coding Args: g_str (str): string of data Returns: GZIP bytes data """ compressed_str = io.BytesIO() with gzip.GzipFile(fileobj=compressed_str, mode="w") as file_out: file_out.write((json.dumps(g_str).encode())) bytes_obj = compressed_str.getvalue() return bytes_obj
15,551
def test_cli_argparser_raises_no_exceptions(): """An invalid keyword to ArgumentParser was causing an exception in Python 3.""" with pytest.raises(SystemExit): parse_args(None)
15,552
def get_summoner_spells(): """ https://developer.riotgames.com/api/methods#!/968/3327 Returns: SummonerSpellList: all the summoner spells """ request = "{version}/summoner-spells".format(version=cassiopeia.dto.requests.api_versions["staticdata"]) params = {"tags": "all"} if _locale: params["locale"] = _locale return cassiopeia.type.dto.staticdata.SummonerSpellList(cassiopeia.dto.requests.get(request, params, True))
15,553
def run_expr(expr, vranges): """ Evaluate expr for every value of free variables given by vranges and return the tensor of results. TODO(yzhliu): move to utils """ def _compute_body(*us): vmap = {v: u + r.min for (v, r), u in zip(vranges.items(), us)} return tir.stmt_functor.substitute(expr, vmap) A = te.compute([r.extent.value for v, r in vranges.items()], _compute_body) args = [tvm.nd.empty(A.shape, A.dtype)] sch = te.create_schedule(A.op) mod = tvm.build(sch, [A]) mod(*args) return args[0].asnumpy()
15,554
def test_update_quotas_1st_time_using_name(host): """Configurate tenant quotas and verify it works properly at the first time""" update_quotas(host, name=tenant, instances=12, cores=10, ram=128) verify_updated_quotas(host, name=tenant, instances=12, cores=10, ram=128)
15,555
def cache_cleanup(dry_run: bool = False) -> list: """Perform cleanup in the scraper cache directory. Returns list of deleted directories. :param dry_run: in case of value True - DRY RUN MODE is on and no cleanup will be done. :return: list of deleted directories """ log.debug("cache_cleanup(): cleaning up scraper cache (delete dry runs results).") deleted_dirs = [] # list of deleted directories for filename in os.listdir(const.SCRAPER_CACHE_PATH): file_path = os.path.join(const.SCRAPER_CACHE_PATH, filename) try: if os.path.isdir(file_path) and file_path.endswith(const.SCRAPER_CACHE_DRY_RUN_DIR_SUFFIX): log.info(f"Found DRY RUN directory: {file_path} - to be deleted!") if dry_run: log.warning("DRY RUN mode is active! No cleanup will be performed!") else: shutil.rmtree(file_path) deleted_dirs.append(file_path) elif os.path.isfile(file_path) or os.path.islink(file_path): log.debug(f"Found file/symlink: {file_path}. Skipped.") except Exception as e: # exception with cleanup (deletion of the dir/file/link) log.error(f"Failed to delete {file_path}. Reason: {e}") return deleted_dirs
15,556
def solve_covariance(u) -> np.ndarray: """Solve covariance matrix from moments Parameters ---------- u : List[np.ndarray] List of moments as defined by the ``get_moments()`` method call of a BayesPy node object. """ cov = u[1] - np.outer(u[0], u[0]) return cov if cov.shape != (1, 1) else np.array(cov.sum())
15,557
def graph_multiple(input_list): """visualize measured height""" fig_stem = "__".join([pathlib.Path(i).stem.strip("_height")[:10] for i in input_list]) fig_name = pathlib.Path(pathlib.Path.cwd() / "cv2" / "{0}.png".format(fig_stem)) pyplot.rcParams["xtick.direction"] = "in" pyplot.rcParams["ytick.direction"] = "in" pyplot.figure(figsize=(4.5, 3), dpi=300) for input in input_list: with open(input) as f: reader = csv.reader(f) time_list = [] height_list = [] for idx, data in enumerate(reader): if idx == 0: continue time_list.append(float(data[0])) height_list.append(float(data[1])) if not time_list: print("no data exists in {0}!".format(input)) return label_name = pathlib.Path(input).stem.strip("_height") pyplot.plot(time_list, height_list, label=label_name) pyplot.xlabel("time $\it{s}$") pyplot.ylabel("climbing height $\it{mm}$") pyplot.xlim(xmin=0) # pyplot.xticks([0, 100, 200, 300], [0, 100, 200, 300], rotation=0) pyplot.ylim(ymin=0) # pyplot.yticks([0,250,500,750,1000], [0,250,500,750,1000], rotation=0) pyplot.grid(which="minor") pyplot.legend(bbox_to_anchor=(1, 1.01), loc="lower right", borderaxespad=0) pyplot.savefig(fig_name, bbox_inches="tight") # pyplot.show() pyplot.close() generate_script_multiple_data(input_list)
15,558
def interact_ids(*columns: Array) -> Array: """Create interactions of ID columns.""" interacted = columns[0].flatten().astype(np.object) if len(columns) > 1: interacted[:] = list(zip(*columns)) return interacted
15,559
def _get_depthwise(): """ We ask the user to input a value for depthwise. Depthwise is an integer hyperparameter that is used in the mobilenet-like model. Please refer to famous_cnn submodule or to mobilenets paper # Default: 1 """ depth = '' while depth not in ['avg', 'max']: demand = "Please choose a value for pooling argument that is `avg`\ or `max`\n" pooling = str(get_input(demand)) return pooling
15,560
def LoadPartitionConfig(filename): """Loads a partition tables configuration file into a Python object. Args: filename: Filename to load into object Returns: Object containing disk layout configuration """ valid_keys = set(('_comment', 'metadata', 'layouts', 'parent')) valid_layout_keys = set(( '_comment', 'num', 'blocks', 'block_size', 'fs_blocks', 'fs_block_size', 'uuid', 'label', 'format', 'fs_format', 'type', 'features', 'size', 'fs_size', 'fs_options', 'erase_block_size', 'hybrid_mbr', 'reserved_erase_blocks', 'max_bad_erase_blocks', 'external_gpt', 'page_size', 'size_min', 'fs_size_min')) valid_features = set(('expand',)) config = _LoadStackedPartitionConfig(filename) try: metadata = config['metadata'] for key in ('block_size', 'fs_block_size'): metadata[key] = ParseHumanNumber(metadata[key]) unknown_keys = set(config.keys()) - valid_keys if unknown_keys: raise InvalidLayout('Unknown items: %r' % unknown_keys) if len(config['layouts']) <= 0: raise InvalidLayout('Missing "layouts" entries') if not BASE_LAYOUT in config['layouts'].keys(): raise InvalidLayout('Missing "base" config in "layouts"') for layout_name, layout in config['layouts'].iteritems(): if layout_name == '_comment': continue for part in layout: unknown_keys = set(part.keys()) - valid_layout_keys if unknown_keys: raise InvalidLayout('Unknown items in layout %s: %r' % (layout_name, unknown_keys)) if part.get('num') == 'metadata' and 'type' not in part: part['type'] = 'blank' if part['type'] != 'blank': for s in ('num', 'label'): if not s in part: raise InvalidLayout('Layout "%s" missing "%s"' % (layout_name, s)) if 'size' in part: if 'blocks' in part: raise ConflictingOptions( '%s: Conflicting settings are used. ' 'Found section sets both \'blocks\' and \'size\'.' % part['label']) part['bytes'] = ParseHumanNumber(part['size']) if 'size_min' in part: size_min = ParseHumanNumber(part['size_min']) if part['bytes'] < size_min: part['bytes'] = size_min part['blocks'] = part['bytes'] / metadata['block_size'] if part['bytes'] % metadata['block_size'] != 0: raise InvalidSize( 'Size: "%s" (%s bytes) is not an even number of block_size: %s' % (part['size'], part['bytes'], metadata['block_size'])) if 'fs_size' in part: part['fs_bytes'] = ParseHumanNumber(part['fs_size']) if 'fs_size_min' in part: fs_size_min = ParseHumanNumber(part['fs_size_min']) if part['fs_bytes'] < fs_size_min: part['fs_bytes'] = fs_size_min if part['fs_bytes'] <= 0: raise InvalidSize( 'File system size "%s" must be positive' % part['fs_size']) if part['fs_bytes'] > part['bytes']: raise InvalidSize( 'Filesystem may not be larger than partition: %s %s: %d > %d' % (layout_name, part['label'], part['fs_bytes'], part['bytes'])) if part['fs_bytes'] % metadata['fs_block_size'] != 0: raise InvalidSize( 'File system size: "%s" (%s bytes) is not an even number of ' 'fs blocks: %s' % (part['fs_size'], part['fs_bytes'], metadata['fs_block_size'])) if part.get('format') == 'ubi': part_meta = GetMetadataPartition(layout) page_size = ParseHumanNumber(part_meta['page_size']) eb_size = ParseHumanNumber(part_meta['erase_block_size']) ubi_eb_size = eb_size - 2 * page_size if (part['fs_bytes'] % ubi_eb_size) != 0: # Trim fs_bytes to multiple of UBI eraseblock size. fs_bytes = part['fs_bytes'] - (part['fs_bytes'] % ubi_eb_size) raise InvalidSize( 'File system size: "%s" (%d bytes) is not a multiple of UBI ' 'erase block size (%d). Please set "fs_size" to "%s" in the ' '"common" layout instead.' % (part['fs_size'], part['fs_bytes'], ubi_eb_size, ProduceHumanNumber(fs_bytes))) if 'blocks' in part: part['blocks'] = ParseHumanNumber(part['blocks']) part['bytes'] = part['blocks'] * metadata['block_size'] if 'fs_blocks' in part: max_fs_blocks = part['bytes'] / metadata['fs_block_size'] part['fs_blocks'] = ParseRelativeNumber(max_fs_blocks, part['fs_blocks']) part['fs_bytes'] = part['fs_blocks'] * metadata['fs_block_size'] if part['fs_bytes'] > part['bytes']: raise InvalidLayout( 'Filesystem may not be larger than partition: %s %s: %d > %d' % (layout_name, part['label'], part['fs_bytes'], part['bytes'])) if 'erase_block_size' in part: part['erase_block_size'] = ParseHumanNumber(part['erase_block_size']) if 'page_size' in part: part['page_size'] = ParseHumanNumber(part['page_size']) part.setdefault('features', []) unknown_features = set(part['features']) - valid_features if unknown_features: raise InvalidLayout('%s: Unknown features: %s' % (part['label'], unknown_features)) except KeyError as e: raise InvalidLayout('Layout is missing required entries: %s' % e) return config
15,561
def get_own(): """Returns the instance on which the caller is running. Returns a boto.ec2.instance.Instance object augmented by tag attributes. IMPORTANT: This method will raise an exception if the network fails. Don't forget to catch it early because we must recover from this, fast. Also, it will throw an exception if you are not running under EC2, so it is preferable to use is_running_on_ec2 before calling this method. """ try: instance_id = _query("instance-id") if not instance_id: raise NoEc2Instance( "Can't find own instance id. Are you running under EC2?") return filter(lambda i: i.id == instance_id, all())[0] except EC2ResponseError: raise NoEc2Instance("Cannot find instance %r" % instance_id)
15,562
def create_report( name: str, description: str, published: datetime, author: Identity, object_refs: List[_DomainObject], external_references: List[ExternalReference], object_marking_refs: List[MarkingDefinition], report_status: int, report_type: str, confidence_level: int, labels: List[str], files: List[Mapping[str, str]], ) -> STIXReport: """Create a report.""" return STIXReport( created_by_ref=author, name=name, description=description, published=published, object_refs=object_refs, labels=labels, external_references=external_references, object_marking_refs=object_marking_refs, confidence=confidence_level, report_types=[report_type], custom_properties={ "x_opencti_report_status": report_status, "x_opencti_files": files, }, )
15,563
def get_curve_points( road: Road, center: np.ndarray, road_end: np.ndarray, placement_offset: float, is_end: bool, ) -> list[np.ndarray]: """ :param road: road segment :param center: road intersection point :param road_end: end point of the road segment :param placement_offset: offset based on placement tag value :param is_end: whether the point represents road end """ width: float = road.width / 2.0 * road.scale direction: np.ndarray = (center - road_end) / np.linalg.norm( center - road_end ) if is_end: direction = -direction left: np.ndarray = turn_by_angle(direction, np.pi / 2.0) * ( width + placement_offset ) right: np.ndarray = turn_by_angle(direction, -np.pi / 2.0) * ( width - placement_offset ) return [road_end + left, center + left, center + right, road_end + right]
15,564
def default_inputs_folder_at_judge(receiver): """ When a receiver is added to a task and `receiver.send_to_judge` is checked, this function will be used to automatically set the name of the folder with inputs at judge server. When this function is called SubmitReceiver object is created but is not saved in database yet. """ return '{}-{}'.format(submit_settings.JUDGE_INTERFACE_IDENTITY, receiver.id)
15,565
def remove_extension(string): """ Removes the extention from a string, as well as the directories. This function may fail if more than one . is in the file, such as ".tar.gz" Args: string: (string): either a path or a filename that for a specific file, with extension. (e.g. /usr/dir/sample.mitograph or sample.mitograph) Returns: filename_without_extension (str): just the filename without the extension (e.g. "sample") """ # Remove all enclosing directories, only get the name of file. cur_filename_with_extension = remove_enclosing_dirs(string) # Remove the extension by splitting the string at each "." and only taking first part. filename_without_extension = cur_filename_with_extension.split(".")[0] return filename_without_extension
15,566
def _theme_static(path): """ Serve arbitrary files. """ return static_app.static(path, 'theme')
15,567
def create_link(link: schemas.Link, db: Session = Depends(get_db)): """Create link """ # Check if the target already exists db_link = crud.get_link_by_target(db=db, target=link.target) if db_link: raise HTTPException(status_code=400, detail="link already registered") response = crud.create_link(db=db, link=link) payload = {'link': response.link} return JSONResponse(content=payload)
15,568
def encode_rsa_public_key(key): """ Encode an RSA public key into PKCS#1 DER-encoded format. :param PublicKey key: RSA public key :rtype: bytes """ return RSAPublicKey({ 'modulus': int.from_bytes(key[Attribute.MODULUS], byteorder='big'), 'public_exponent': int.from_bytes(key[Attribute.PUBLIC_EXPONENT], byteorder='big'), }).dump()
15,569
def is_block_valid(new_block, old_block): """ simple verify if the block is valid. """ if old_block["Index"] + 1 != new_block["Index"]: return False if old_block["Hash"] != new_block["PrevHash"]: return False if caculate_hash(new_block) != new_block["Hash"]: return False return True
15,570
def add_get_parameter(url, key, value): """ Utility method to add an HTTP request parameter to a GET request """ if '?' in url: return url + "&%s" % urllib.urlencode([(key, value)]) else: return url + "?%s" % urllib.urlencode([(key, value)])
15,571
def get_simple_match(text): """Returns a word instance in the dictionary, selected by a simplified String match""" # Try to find a matching word try: result = word.get(word.normalized_text == text) return result except peewee.DoesNotExist: return None
15,572
def validate_value_is_unique(attribute: models.Attribute, value: models.AttributeValue): """Check if the attribute value is unique within the attribute it belongs to.""" duplicated_values = attribute.values.exclude(pk=value.pk).filter(slug=value.slug) if duplicated_values.exists(): raise ValidationError( { "name": ValidationError( f"Value with slug {value.slug} already exists.", code=AttributeErrorCode.ALREADY_EXISTS.value, ) } )
15,573
async def test_in_zone_works_for_passive_zones(hass): """Test working in passive zones.""" latitude = 32.880600 longitude = -117.237561 assert await setup.async_setup_component( hass, zone.DOMAIN, { "zone": [ { "name": "Passive Zone", "latitude": latitude, "longitude": longitude, "radius": 250, "passive": True, } ] }, ) assert zone.in_zone(hass.states.get("zone.passive_zone"), latitude, longitude)
15,574
def ipv_plot_df(points_df, sample_frac=1, marker='circle_2d', size=0.2, **kwargs): """Plot vertices in a dataframe using ipyvolume.""" if sample_frac < 1: xyz = random_sample(points_df, len(points_df), sample_frac) else: xyz = dict(x=points_df['x'].values, y=points_df['y'].values, z=points_df['z'].values) fig = ipv.scatter(**xyz, marker=marker, size=size, **kwargs) return fig
15,575
def exec_command_stdout(*command_args, **kwargs): """ Capture and return the standard output of the command specified by the passed positional arguments, optionally configured by the passed keyword arguments. Unlike the legacy `exec_command()` and `exec_command_all()` functions, this modern function is explicitly designed for cross-platform portability. The return value may be safely used for any purpose, including string manipulation and parsing. .. NOTE:: If this command's standard output contains _only_ pathnames, this function does _not_ return the correct filesystem-encoded string expected by PyInstaller. If this is the case, consider calling the filesystem-specific `exec_command()` function instead. Parameters ---------- cmdargs : list Variadic list whose: 1. Mandatory first element is the absolute path, relative path, or basename in the current `${PATH}` of the command to run. 1. Optional remaining elements are arguments to pass to this command. encoding : str, optional Optional name of the encoding with which to decode this command's standard output (e.g., `utf8`), passed as a keyword argument. If unpassed , this output will be decoded in a portable manner specific to to the current platform, shell environment, and system settings with Python's built-in `universal_newlines` functionality. All remaining keyword arguments are passed as is to the `subprocess.check_output()` function. Returns ---------- unicode or str Unicode string of this command's standard output decoded according to the "encoding" keyword argument. This string's type depends on the current Python version as follows: * Under Python 2.7, this is a decoded `unicode` string. * Under Python 3.x, this is a decoded `str` string. """ # Value of the passed "encoding" parameter, defaulting to None. encoding = kwargs.pop('encoding', None) # If no encoding was specified, the current locale is defaulted to. Else, an # encoding was specified. To ensure this encoding is respected, the # "universal_newlines" option is disabled if also passed. Nice, eh? kwargs['universal_newlines'] = encoding is None # Standard output captured from this command as a decoded Unicode string if # "universal_newlines" is enabled or an encoded byte array otherwise. stdout = subprocess.check_output(command_args, **kwargs) # Return a Unicode string, decoded from this encoded byte array if needed. return stdout if encoding is None else stdout.decode(encoding)
15,576
def admin_login(): """ This function is used to show the admin login page :return: admin_login.html """ return render_template("admin_login.html")
15,577
def input_file_location(message): """ This function performs basic quality control of user input. It calls for a filepath with a pre-specified message. The function then checks if the given filepath leads to an actual existing file. If no file exists at the given location, the function will throw an error message and ask for a new file location. :param message: String. Contains the message asking for a filepath :return filepath: String. Contains a filepath leading to the file. """ filepath = input(message) flag = path.isfile(filepath) while not flag: filepath = input("Error: file not found! \n" "Please specify full relative filepath leading to the required file") flag = path.isfile(filepath) print("%s succesfully located"%(filepath)) return filepath
15,578
def delete_tag( access_key: str, url: str, owner: str, dataset: str, *, tag: str, ) -> None: """Execute the OpenAPI `DELETE /v2/datasets/{owner}/{dataset}/tags/{tag}`. Arguments: access_key: User's access key. url: The URL of the graviti website. owner: The owner of the dataset. dataset: Name of the dataset, unique for a user. tag: The name of the tag to be deleted. Examples: >>> delete_tag( ... "ACCESSKEY-********", ... "https://api.graviti.com", ... "graviti-example", ... "MNIST", ... tag="tag-2" ... ) """ url = f"{url}/v2/datasets/{owner}/{dataset}/tags/{tag}" open_api_do("DELETE", access_key, url)
15,579
def test_copy_globals(): """ Checks that a restored function does not refer to the same globals dictionary, but a copy of it. Therefore it cannot reassign global values. """ global_var_writer(10) assert global_var_reader() == 10 assert global_var == 10 reader = Function.from_object(global_var_reader).eval() writer = Function.from_object(global_var_writer).eval() writer(20) assert reader() == 10 assert global_var == 10
15,580
def check_dfs(): """ This function checks if the dfs is running """ process = subprocess.Popen("jps", shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = process.communicate() results = str(stdout) flag = 0 if results.find("NameNode") > -1: flag += 1 if results.find("SecondaryNameNode") > -1: flag += 1 if results.find("DataNode") > -1: flag += 1 if flag == 3: print("INFO: dfs is up and running!") else: print("WARN: dfs is not running correctly or not running at all. Run <jps> for more information")
15,581
def create_contact(): """ Get a contact form submission """ data = request.get_json(force=True) contact = ContactDAO.create(**data) return jsonify(contact.to_dict())
15,582
def smartSum(x, key, value): """ create a new page in x if key is not a page of x otherwise add value to x[key] """ if key not in list(x.keys()): x[key] = value else: x[key] += value
15,583
def make_my_tuple_video(LOGGER, image, width, height, frames, codec, metric, target, subsampling, param, uuid=None): """ make unique tuple for unique directory, primary key in DB, etc. """ (filepath, tempfilename) = os.path.split(image) filename, extension = os.path.splitext(tempfilename) my_tuple = '{filename}_{extension}_{width}x{height}x{frames}_{codec}_{metric}_{target}_{subsampling}_{param}_' \ .format(filename=filename, extension=extension[1:], image=ntpath.basename(image), width=width, height=height, frames=frames, codec=codec, metric=metric, target=target, subsampling=subsampling, param=param) if uuid is not None: my_tuple = my_tuple + uuid if len(my_tuple) > 255: # limits due to max dir name or file name length on UNIX LOGGER.error("ERROR : Tuple too long : " + my_tuple) assert len(my_tuple) < 256 return my_tuple
15,584
def separate_sets( hand: DefaultDict[int, int], huro_count: int, koutsu_first: bool = True ) -> Tuple[List[Tile], List[List[Tile]], Tile]: """Helper function for seperating player's remaining hands into sets. It should either be 14, 11, 8, 5, or 2 tiles. The arg koutsu_first would change the priority for koutsu and shuntsu, for example in the usecase for checking 全帯么九, shuntsu should have priority over koutsu. """ def check_koutsu(sets_to_find): if remain_tiles[tile_index] >= 3: # check for Koutsu remain_tiles[tile_index] -= 3 sets_to_find -= 1 koutsu.append(Tile.from_index(tile_index)) return sets_to_find def check_shuntsu(sets_to_find): if remain_tiles[tile_index + 2] > 0: # check for Shuntsu chii_n = min( remain_tiles[tile_index], remain_tiles[tile_index + 1], remain_tiles[tile_index + 2] ) if chii_n > 0: remain_tiles[tile_index] -= chii_n remain_tiles[tile_index + 1] -= chii_n remain_tiles[tile_index + 2] -= chii_n sets_to_find -= chii_n for _ in range(chii_n): shuntsu.append([ Tile.from_index(tile_index), Tile.from_index(tile_index + 1), Tile.from_index(tile_index + 2) ]) return sets_to_find for possible_jantou in hand.keys(): if hand[possible_jantou] >= 2: # try using it as jantou remain_tiles = copy.deepcopy(hand) remain_tiles[possible_jantou] -= 2 koutsu = [] shuntsu = [] sets_to_find = 4 - huro_count for tile_index in sorted(remain_tiles.keys()): if tile_index < Tile(Suit.MANZU.value, 1).index: if remain_tiles[tile_index] == 3: sets_to_find -= 1 koutsu.append(Tile.from_index(tile_index)) else: # numbered tiles if koutsu_first: sets_to_find = check_koutsu(sets_to_find) sets_to_find = check_shuntsu(sets_to_find) else: sets_to_find = check_shuntsu(sets_to_find) sets_to_find = check_koutsu(sets_to_find) if sets_to_find == 0: return koutsu, shuntsu, Tile.from_index(possible_jantou) return [], [], None
15,585
def units(legal_codes): """ Return sorted list of the unique units for the given dictionaries representing legal_codes """ return sorted(set(lc["unit"] for lc in legal_codes))
15,586
def resize_terms(terms1, terms2, patterns_to_pgS, use_inv): """ Resize the terms to ensure that the probabilities are the same on both sides. This is necessary to maintain the null hypothesis that D = 0 under no introgression. Inputs: terms1 --- a set of patterns to count and add to each other to determine introgression terms2 --- a set of other patterns to count and add to each other to determine introgression use_inv --- boolean for determining if inverse site patterns will be used patterns_to_pgS --- a mapping of site patterns to their p(gt|st) values Outputs: terms1 --- a set of patterns to count and add to each other to determine introgression terms2 --- a set of other patterns to count and add to each other to determine introgression """ terms1 = list(terms1) terms2 = list(terms2) # Create a mapping of pgtst to trees for each term pgtst_to_trees1 = defaultdict(set) pgtst_to_trees2 = defaultdict(set) for tree in terms1: # Round the probability to the 15th digit to prevent the randomness issues with small values prob = float(format(patterns_to_pgS[tree], '.15f')) pgtst_to_trees1[prob].add(tree) for tree in terms2: # Round the probability to the 15th digit to prevent the randomness issues with small values prob = float(format(patterns_to_pgS[tree], '.15f')) pgtst_to_trees2[prob].add(tree) # Balance terms terms1_prob_counts = defaultdict(int) terms2_prob_counts = defaultdict(int) # Round each probability and count the number of times it occurs for tree in terms1: prob = float(format(patterns_to_pgS[tree], '.15f')) terms1_prob_counts[prob] += 1 for tree in terms2: prob = float(format(patterns_to_pgS[tree], '.15f')) terms2_prob_counts[prob] += 1 # Iterate over each probability for prob in terms1_prob_counts: # Get the number of times each probability occurs count1, count2 = terms1_prob_counts[prob], terms2_prob_counts[prob] removed = set([]) # The number of site patterns to remove is the difference in counts num_remove = abs(count2 - count1) if use_inv: # If not using inverses remove the inverse along with the normal pattern num_remove = num_remove / 2 # If probabilities do not occur an equal number of times remove site patterns until they do if count1 > count2: for i in range(num_remove): # Get a pattern to remove and remove it from the possible removals r = sorted(list(pgtst_to_trees1[prob])).pop(0) pgtst_to_trees1[prob].remove(r) removed.add(r) terms1_remove = True if count1 < count2: for i in range(num_remove): # Get a pattern to remove and remove it from the possible removals r = sorted(list(pgtst_to_trees2[prob])).pop(0) pgtst_to_trees2[prob].remove(r) removed.add(r) terms1_remove = False if use_inv: # Remove site patterns and their inverses rm = set([]) inv_rm = pattern_inverter(removed) for pattern in inv_rm: rm.add(''.join(pattern)) removed = removed.union(rm) # Iterate over each pattern to be removed and remove it for pattern in removed: if terms1_remove: terms1.remove(pattern) else: terms2.remove(pattern) terms1, terms2 = tuple(terms1), tuple(terms2) return terms1, terms2
15,587
def get_network_list(): """Get a list of networks. --- tags: - network """ return jsonify([ network.to_json(include_id=True) for network in manager.cu_list_networks() ])
15,588
def bfixpix(data, badmask, n=4, retdat=False): """Replace pixels flagged as nonzero in a bad-pixel mask with the average of their nearest four good neighboring pixels. :INPUTS: data : numpy array (two-dimensional) badmask : numpy array (same shape as data) :OPTIONAL_INPUTS: n : int number of nearby, good pixels to average over retdat : bool If True, return an array instead of replacing-in-place and do _not_ modify input array `data`. This is always True if a 1D array is input! :RETURNS: another numpy array (if retdat is True) :TO_DO: Implement new approach of Popowicz+2013 (http://arxiv.org/abs/1309.4224) """ # 2010-09-02 11:40 IJC: Created #2012-04-05 14:12 IJMC: Added retdat option # 2012-04-06 18:51 IJMC: Added a kludgey way to work for 1D inputs # 2012-08-09 11:39 IJMC: Now the 'n' option actually works. if data.ndim==1: data = np.tile(data, (3,1)) badmask = np.tile(badmask, (3,1)) ret = bfixpix(data, badmask, n=2, retdat=True) return ret[1] nx, ny = data.shape badx, bady = np.nonzero(badmask) nbad = len(badx) if retdat: data = np.array(data, copy=True) for ii in range(nbad): thisloc = badx[ii], bady[ii] rad = 0 numNearbyGoodPixels = 0 while numNearbyGoodPixels<n: rad += 1 xmin = max(0, badx[ii]-rad) xmax = min(nx, badx[ii]+rad) ymin = max(0, bady[ii]-rad) ymax = min(ny, bady[ii]+rad) x = np.arange(nx)[xmin:xmax+1] y = np.arange(ny)[ymin:ymax+1] yy,xx = np.meshgrid(y,x) #print ii, rad, xmin, xmax, ymin, ymax, badmask.shape rr = abs(xx + 1j*yy) * (1. - badmask[xmin:xmax+1,ymin:ymax+1]) numNearbyGoodPixels = (rr>0).sum() closestDistances = np.unique(np.sort(rr[rr>0])[0:n]) numDistances = len(closestDistances) localSum = 0. localDenominator = 0. for jj in range(numDistances): localSum += data[xmin:xmax+1,ymin:ymax+1][rr==closestDistances[jj]].sum() localDenominator += (rr==closestDistances[jj]).sum() #print badx[ii], bady[ii], 1.0 * localSum / localDenominator, data[xmin:xmax+1,ymin:ymax+1] data[badx[ii], bady[ii]] = 1.0 * localSum / localDenominator if retdat: ret = data else: ret = None return ret
15,589
def handle_create_cfn_stack(stack_name: str, url: str, s3_bucket: str, cfn_client, runner_role: str = ''): """ Creates a cfn stack for use in testing. Will wait until stack is finished being created to exit. :param stack_name: Name of the stack :param url: CFN Template URL :param s3_bucket: cfn param used to store ip addresses for load balancer -> Neptune connection :param runner_role: The iam role for cfn to use for resource creation (OPTIONAL) """ logging.info(f'''creating cfn stack with params: name={stack_name} url={url} s3_bucket={s3_bucket} runner_role={runner_role}''') create_cfn_stack(stack_name, url, s3_bucket, runner_role, cfn_client) stack = loop_until_stack_is_complete(stack_name, cfn_client) logging.info(f'stack creation finished. Name={stack_name}, stack={stack}')
15,590
def less(): """ Render LESS files to CSS. """ for path in glob('%s/less/*.less' % env.static_path): filename = os.path.split(path)[-1] name = os.path.splitext(filename)[0] out_path = '%s/www/css/%s.less.css' % (env.static_path, name) try: local('node_modules/less/bin/lessc %s %s' % (path, out_path)) except: print 'It looks like "lessc" isn\'t installed. Try running: "npm install"' raise
15,591
def parse_discount(element): """Given an HTML element, parse and return the discount.""" try: # Remove any non integer characters from the HTML element discount = re.sub("\D", "", element) except AttributeError: discount = "0" return discount
15,592
def read_files(allVCFs): """ Load all vcfs and count their number of entries """ # call exists in which files call_lookup = defaultdict(list) # total number of calls in a file file_abscnt = defaultdict(float) for vcfn in allVCFs: v = parse_vcf(vcfn) # disallow intra vcf duplicates seen = {} for entry in v: key = entry_key(entry) if key in seen: continue seen[key] = True bisect.insort(call_lookup[key], vcfn) file_abscnt[vcfn] += 1 return call_lookup, file_abscnt
15,593
def parse_dat_file(dat_file): """ Parse a complete dat file. dat files are transposed wrt the rest of the data formats here. In addition, they only contain integer fields, so we can use np.loadtxt. First 6 columns are ignored. Note: must have a bims and info file to process completely. Parameters ---------- dat_file: str Path for dat file to process. Returns ------- data: array-like """ data = np.loadtxt(dat_file) data = data[:, 6:].T return data
15,594
def test_env(monkeypatch, tmp_path): """Test that the environment variable is respected""" data_dir = tmp_path / "envpath" data_dir.mkdir() monkeypatch.setenv("PPX_DATA_DIR", str(data_dir)) ppx.set_data_dir() proj = ppx.MassiveProject(MSVID) out_path = Path(data_dir, MSVID) assert proj.local == out_path
15,595
def parse_cmd_arguments(mode='split_audioset', default=False, argv=None): """Parse command-line arguments. Args: mode (str): The mode of the experiment. default (optional): If True, command-line arguments will be ignored and only the default values will be parsed. argv (optional): If provided, it will be treated as a list of command- line argument that is passed to the parser in place of sys.argv. Returns: The Namespace object containing argument names and values. """ description = 'Continual learning on Audioset task.' parser = argparse.ArgumentParser(description=description) dnum_tasks = 1 dnum_classes_per_task = 10 if mode == 'split_audioset': dnum_tasks = 10 dnum_classes_per_task = 10 dval_set_size=500 if mode == 'audioset': dnum_tasks = 1 dnum_classes_per_task = 100 dval_set_size=5000 cli.cl_args(parser, show_beta=True, dbeta=0.005, show_from_scratch=True, show_multi_head=True, show_split_head_cl3=False, show_cl_scenario=False, show_num_tasks=True, dnum_tasks=dnum_tasks, show_num_classes_per_task=True, dnum_classes_per_task=dnum_classes_per_task) cli.train_args(parser, show_lr=True, show_epochs=False, dbatch_size=64, dn_iter=5000, dlr=1e-3, show_clip_grad_value=False, show_clip_grad_norm=True, show_momentum=False, show_adam_beta1=True) seq.rnn_args(parser, drnn_arch='32', dnet_act='tanh') cli.hypernet_args(parser, dhyper_chunks=-1, dhnet_arch='50,50', dtemb_size=32, demb_size=32, dhnet_act='relu') # Args of new hnets. nhnet_args = cli.hnet_args(parser, allowed_nets=['hmlp', 'chunked_hmlp', 'structured_hmlp', 'hdeconv', 'chunked_hdeconv'], dhmlp_arch='50,50', show_cond_emb_size=True, dcond_emb_size=32, dchmlp_chunk_size=1000, dchunk_emb_size=32, show_use_cond_chunk_embs=True, dhdeconv_shape='512,512,3', prefix='nh_', pf_name='new edition of a hyper-', show_net_act=True, dnet_act='relu', show_no_bias=True, show_dropout_rate=True, ddropout_rate=-1, show_specnorm=True, show_batchnorm=False, show_no_batchnorm=False) seq.new_hnet_args(nhnet_args) cli.init_args(parser, custom_option=False, show_normal_init=False, show_hyper_fan_init=True) cli.eval_args(parser, dval_iter=250, show_val_set_size=True, dval_set_size=dval_set_size) magroup = cli.miscellaneous_args(parser, big_data=False, synthetic_data=True, show_plots=True, no_cuda=True, show_publication_style=False) seq.ewc_args(parser, dewc_lambda=5000., dn_fisher=-1, dtbptt_fisher=-1, dts_weighting_fisher='last') seq.si_args(parser, dsi_lambda=1.) seq.context_mod_args(parser, dsparsification_reg_type='l1', dsparsification_reg_strength=1., dcontext_mod_init='constant') seq.miscellaneous_args(magroup, dmask_fraction=0.8, dclassification=True, dts_weighting='last', show_use_ce_loss=False) # Replay arguments. rep_args = seq.replay_args(parser) cli.generator_args(rep_args, dlatent_dim=100) cli.main_net_args(parser, allowed_nets=['simple_rnn'], dsrnn_rec_layers='32', dsrnn_pre_fc_layers='', dsrnn_post_fc_layers='', show_net_act=True, dnet_act='tanh', show_no_bias=True, show_dropout_rate=False, show_specnorm=False, show_batchnorm=False, prefix='dec_', pf_name='replay decoder') args = None if argv is not None: if default: warnings.warn('Provided "argv" will be ignored since "default" ' + 'option was turned on.') args = argv if default: args = [] config = parser.parse_args(args=args) config.mode = mode ### Check argument values! cli.check_invalid_argument_usage(config) seq.check_invalid_args_sequential(config) if config.train_from_scratch: # FIXME We could get rid of this warning by properly checkpointing and # loading all networks. warnings.warn('When training from scratch, only during accuracies ' + 'make sense. All other outputs should be ignored!') return config
15,596
def get_number_packets_start_end(trace, features): """ Gets the number of incoming & outcoming packets in the first and last 30 packets """ first = trace[:30] last = trace[-30:] packets_in, packets_out = counts_in_out_packets(first) features.append(packets_in) features.append(packets_out) packets_in, packets_out = counts_in_out_packets(last) features.append(packets_in) features.append(packets_out)
15,597
def emails(): """A strategy for generating email addresses as unicode strings. The address format is specific in :rfc:`5322#section-3.4.1`. Values shrink towards shorter local-parts and host domains. This strategy is useful for generating "user data" for tests, as mishandling of email addresses is a common source of bugs. Future updates will generate more complicated addresses allowed by the RFC. """ from hypothesis.provisional import domains local_chars = string.ascii_letters + string.digits + "!#$%&'*+-/=^_`{|}~" local_part = text(local_chars, min_size=1, max_size=64) # TODO: include dot-atoms, quoted strings, escaped chars, etc in local part return builds(u'{}@{}'.format, local_part, domains()).filter( lambda addr: len(addr) <= 255)
15,598
def next_whole_token( wordpiece_subtokens, initial_tokenizer, subword_tokenizer): """Greedily reconstitutes a whole token from a WordPiece list. This function assumes that the wordpiece subtokens were constructed correctly from a correctly subtokenized CuBERT tokenizer, but the sequence may be truncated and thus incomplete. The implementation is done in two stages: recognizing the first whole token and then finding the correspondence of that first whole token to a prefix of the subtoken sequence. The implementation assumes that untokenization can do the best job on the full context. So, it first untokenizes the whole sequence, and chooses the first whole token. To figure out the subtoken prefix that corresponds to that whole token, the implementation greedily untokenizes longer and longer subtoken prefixes, until the whole token is recognized in the output. The reason for this somewhat expensive implementation is that the logic for merging subtokens (for WordPiece and then for CuBERT) is intricate, and does not export how many initial subtokens were consumed for each output token of the next higher abstraction. What's more, a subtoken may align itself with the previous or the next whole token, when the subtoken sequence is incomplete. Args: wordpiece_subtokens: The subtokens to scan through. initial_tokenizer: A CuBERT tokenizer. subword_tokenizer: A SubwordTextEncoder. Returns: The first whole token matched, and the end index of the first subtoken index after the first whole token. wordpiece_subtokens[0:end_index] should be the subtokens corresponding to the whole token returned. Raises: ValueError if no whole token can be parsed. """ wordpiece_ids = wordpiece_ids_from_wordpiece_tokens(wordpiece_subtokens, subword_tokenizer) full_cubert_subtokens: List[str] = ( subword_tokenizer._subtoken_ids_to_tokens( # pylint: disable=protected-access wordpiece_ids)) full_cubert_subtokens.append( unified_tokenizer.quote_special(unified_tokenizer.TokenKind.EOS.name)) full_whole_tokens = initial_tokenizer.untokenize_agnostic( full_cubert_subtokens) if len(full_whole_tokens) < 2: # It all came out a jumble. Reject it. raise ValueError(f'Whole tokens {full_whole_tokens} ended up ' f'undifferentiable in {wordpiece_subtokens}.') whole_token = full_whole_tokens[0] for end_index in range(1, len(wordpiece_ids) + 1): prefix_list = wordpiece_ids[:end_index] partial_cubert_subtokens: List[str] = ( subword_tokenizer._subtoken_ids_to_tokens( # pylint: disable=protected-access prefix_list)) # We strip EOS in `code_to_cubert_sentences`, so we have to add it back # here. partial_cubert_subtokens.append( unified_tokenizer.quote_special(unified_tokenizer.TokenKind.EOS.name)) partial_whole_tokens = initial_tokenizer.untokenize_agnostic( partial_cubert_subtokens) if len(partial_whole_tokens) > 1: if partial_whole_tokens[0] == whole_token: return whole_token, end_index # We got here because we couldn't match the whole token we found from the # full sequence raise ValueError('Could not find a whole token in %r' % (wordpiece_subtokens,))
15,599