content
stringlengths
22
815k
id
int64
0
4.91M
def parse_tracks(filename="tracks.csv"): """ Builds the tracks matrix #tracks x #attributes (20635 x 4) where attributes are track_id,album_id,artist_id,duration_sec """ with open(os.path.join(data_path, filename), "r") as f: # Discard first line lines = f.readlines()[1:] num_lines = len(lines) # Sanity check assert num_lines == NUM_TRACKS # Build matrices album_set = sp.dok_matrix((NUM_ALBUMS, NUM_TRACKS), dtype=np.uint8) artist_set = sp.dok_matrix((NUM_ARTISTS, NUM_TRACKS), dtype=np.uint8) for i, line in enumerate(lines): # Parse album and artist track, album, artist, _ = [np.int32(i) for i in line.split(",")] album_set[album, track] = 1 artist_set[artist, track] = 1 print("\rParsing tracks: {:.4}%".format((i / num_lines) * 100), end="") print("\n") return album_set, artist_set
15,600
def match_seq_len(*arrays: np.ndarray): """ Args: *arrays: Returns: """ max_len = np.stack([x.shape[-1] for x in arrays]).max() return [np.pad(x, pad_width=((0, 0), (0, 0), (max_len - x.shape[-1], 0)), mode='constant', constant_values=0) for x in arrays]
15,601
def get_cmws_5_loss( generative_model, guide, memory, obs, obs_id, num_particles, num_proposals, insomnia=1.0 ): """Normalize over particles-and-memory for generative model gradient Args: generative_model guide memory obs: tensor of shape [batch_size, *obs_dims] obs_id: long tensor of shape [batch_size] num_particles (int): number of particles used to marginalize continuous latents num_proposals (int): number of proposed elements to be considered as new memory Returns: [batch_size] """ # Extract batch_size = obs.shape[0] # SAMPLE d'_{1:R} ~ q(d | x) # [num_proposals, batch_size, ...] proposed_discrete_latent = guide.sample_discrete(obs, (num_proposals,)) # ASSIGN d_{1:(R + M)} = CONCAT(d'_{1:R}, d_{1:M}) # [memory_size + num_proposals, batch_size, ...] discrete_latent_concat = cmws.memory.concat(memory.select(obs_id), proposed_discrete_latent) # COMPUTE SCORES s_i = log p(d_i, x) for i {1, ..., (R + M)} # -- c ~ q(c | d, x) # [num_particles, memory_size + num_proposals, batch_size, ...] _continuous_latent = guide.sample_continuous(obs, discrete_latent_concat, [num_particles]) # -- log q(c | d) # [num_particles, memory_size + num_proposals, batch_size] _log_q_continuous = guide.log_prob_continuous(obs, discrete_latent_concat, _continuous_latent) # -- log p(d, c, x) # [num_particles, memory_size + num_proposals, batch_size] _log_p = generative_model.log_prob_discrete_continuous( discrete_latent_concat, _continuous_latent, obs ) # [memory_size + num_proposals, batch_size] log_marginal_joint = torch.logsumexp(_log_p - _log_q_continuous, dim=0) - math.log( num_particles ) # ASSIGN d_{1:M} = TOP_K_UNIQUE(d_{1:(R + M)}, s_{1:(R + M)}) # [memory_size, batch_size, ...], [memory_size, batch_size] discrete_latent_selected, _, indices = cmws.memory.get_unique_and_top_k( discrete_latent_concat, log_marginal_joint, memory.size, return_indices=True ) # SELECT log q(c | d, x) and log p(d, c, x) # [num_particles, memory_size, batch_size] _log_q_continuous = torch.gather( _log_q_continuous, 1, indices[None].expand(num_particles, memory.size, batch_size) ) # [num_particles, memory_size, batch_size] _log_p = torch.gather(_log_p, 1, indices[None].expand(num_particles, memory.size, batch_size)) # COMPUTE WEIGHT # [num_particles, memory_size, batch_size] _log_weight = _log_p - _log_q_continuous # COMPUTE log q(d_i | x) for i in {1, ..., M} # [memory_size, batch_size] _log_q_discrete = guide.log_prob_discrete(obs, discrete_latent_selected,) # UPDATE MEMORY with d_{1:M} memory.update(obs_id, discrete_latent_selected) # CHECK UNIQUE # if not memory.is_unique(obs_id).all(): # raise RuntimeError("memory not unique") # COMPUTE losses # --Compute generative model loss # [num_particles, memory_size, batch_size] _log_weight_v = torch.softmax(_log_weight.view(-1, batch_size), dim=0).view( num_particles, memory.size, batch_size ) # [batch_size] generative_model_loss = -(_log_weight_v.detach() * _log_p).sum(dim=[0, 1]) # --Compute guide loss # ----Compute guide wake loss batch_size = obs.shape[0] if insomnia < 1.0: # [batch_size] guide_loss_sleep = ( get_sleep_loss(generative_model, guide, num_particles * batch_size) .view(batch_size, num_particles) .mean(-1) ) # ----Compute guide CMWS loss if insomnia > 0.0: # [memory_size, batch_size] _log_weight_omega = torch.logsumexp(_log_weight_v, dim=0) # [batch_size] discrete_guide_loss_cmws = -(_log_weight_omega.detach() * _log_q_discrete).sum(dim=0) # [batch_size] continuous_guide_loss_cmws = -( (torch.softmax(_log_weight, dim=0).detach() * _log_q_continuous).sum(dim=0).mean(dim=0) ) # [batch_size] guide_loss_cmws = discrete_guide_loss_cmws + continuous_guide_loss_cmws # ----Combine guide sleep and CMWS losses if insomnia == 0.0: guide_loss = guide_loss_sleep elif insomnia == 1.0: guide_loss = guide_loss_cmws else: guide_loss = insomnia * guide_loss_cmws + (1 - insomnia) * guide_loss_sleep return generative_model_loss + guide_loss
15,602
def getTerm(Y): """Prints index and basis function based on Y index""" for y in Y: print(y) d, t, c, m = coeffs[y - 1] print("Delta^%f Tau^%f np.exp(-Delta^%f) np.exp(-Tau^%f)" % (d, t, c, m))
15,603
def chemin_absolu(relative_path): """ Donne le chemin absolu d'un fichier. PRE : - POST : Retourne ''C:\\Users\\sacre\\PycharmProjects\\ProjetProgra\\' + 'relative_path'. """ base_path = getattr(sys, '_MEIPASS', os.path.dirname(os.path.abspath(__file__))) correct = base_path.index("ProjetProgra") return os.path.join(base_path[:correct + 13], relative_path)
15,604
def check_entity_value(step,entity_property,value): """ Function checks to see if entity_property is of the expected value :param entity_property: Entity property being tested :param value: Entity property value being tested """ assert entity_property == world.redis_property_key assert world.value == value
15,605
def to_float_tensor(np_array): """ convert to long torch tensor :param np_array: :return: """ return torch.from_numpy(np_array).type(torch.float)
15,606
def display_heatmap(salience_scores, salience_scores_2=None, title=None, title_2=None, cell_labels=None, cell_labels_2=None, normalized=True, ui=False): """ A utility function that displays a Seaborn heatmap. Input: - ('salience scores') A list of floats . If task is something like NLI, then these are the salience scores for the premise, or first sequence. - ('salience_scores_2') A list of floats . Optional. Only necessary when task is a relation labeling task between 2 sequences like NLI. Then these are the salience scores for the hypothesis, or second sequence. - ('title') Any object (string, integer, float, etc.) that can be printed. Optional. Usually is descriptive blurb for the heatmap for ('salience_scores') - ('title_2') Any object (string, integer, float, etc.) that can be printed. Optional. Usually is descriptive blurb for the heatmap for ('salience scores_2') - ('cell_labels') Optional. list of the same size as ('salience_scores') that is printed on the corresponding cell. Usually something like salience score values. - ('cell_labels_2') Optional. list of the same size as ('salience_scores_2') that is printed on the corresponding cell. Usually something like salience score values. - ('normalized') A boolean denoting whether the data is normalized or not. If normalized, the range is from -1 to 1. - ('ui') A boolean for option of saving the plot instead to a file and returning the filename Output: - Return the matplotlib object """ if cell_labels is not None: assert len(cell_labels) == len(salience_scores) if cell_labels_2 is not None: assert len(cell_labels_2) == len(salience_scores_2) cmap = sns.diverging_palette(10, 240, as_cmap=True) if salience_scores_2 is not None: fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12)) ax1.set_title(title if title is not None else "") ax2.set_title(title_2 if title_2 is not None else "") sns.heatmap([salience_scores], ax=ax1, annot=[cell_labels] if cell_labels is not None else False, fmt='', cmap=cmap, linewidths=0.5, square=True, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) sns.heatmap([salience_scores_2], ax=ax2, annot=[cell_labels_2] if cell_labels_2 is not None else False, fmt='', cmap=cmap, linewidths=0.5, square=True, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) else: m = sns.heatmap([salience_scores], annot=[cell_labels] if cell_labels is not None else False, fmt='', linewidths=0.5, square=True, cmap=cmap, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) plt.title(title if title is not None else "") #plt.show() return plt
15,607
def _cleanse_line(line, main_character): """ Cleanse the extracted lines to remove formatting. """ # Strip the line, just in case. line = line.strip() # Clean up formatting characters. line = line.replace('\\' , '') # Remove escape characters. line = line.replace('[mc]', main_character) # Standardize MC name. line = re.sub(r'{/?i}' , '*', line) # Convert italics to Markdown. line = re.sub(r'{cps=\d+}', '' , line) # Remove scroll speed formatting. return line
15,608
def require_pandapower(f): """ Decorator for functions that require pandapower. """ @wraps(f) def wrapper(*args, **kwds): try: getattr(pp, '__version__') except AttributeError: raise ModuleNotFoundError("pandapower needs to be manually installed.") return f(*args, **kwds) return wrapper
15,609
def optimal_path_fixture(): """An optimal path, and associated distance, along the nodes of the pyramid""" return [0, 1, 2, 3], 10 + 2 + 5
15,610
def evaluate_DynamicHashtablePlusRemove(output=True): """ Compare performance using ability in open addressing to mark deleted values. Nifty trick to produce just the squares as keys in the hashtable. """ # If you want to compare, then add following to end of executable statements: # print([e[0] for e in ht]) tbl = DataTable([8,20,20], ['M', 'Separate Chaining', 'Open Addressing w/ Remove'], output=output) for size in [512, 1024, 2048]: linked_list = min(timeit.repeat(stmt=''' ht = Hashtable({0}) N = {0} // 4 for i in range(1, N, 1): flip_every_k(ht, i, N)'''.format(size), setup=''' from ch03.hashtable_linked import Hashtable from ch03.challenge import flip_every_k''', repeat=7, number=5))/5 hashtable_plus = min(timeit.repeat(stmt=''' ht = DynamicHashtablePlusRemove({0}) N = {0} // 4 for i in range(1, N, 1): flip_every_k(ht, i, N)'''.format(size), setup=''' from ch03.hashtable_open import DynamicHashtablePlusRemove from ch03.challenge import flip_every_k''', repeat=7, number=5))/5 tbl.row([size, linked_list, hashtable_plus]) return tbl
15,611
def closest(lat1, lon1): """Return distance (km) and city closest to given coords.""" lat1, lon1 = float(lat1), float(lon1) min_dist, min_city = None, None for city, lat2, lon2 in CITIES: dist = _dist(lat1, lon1, lat2, lon2) if min_dist is None or dist < min_dist: min_dist, min_city = dist, city return min_dist, min_city
15,612
def get_previous_term(): """ Returns a uw_sws.models.Term object, for the previous term. """ url = "{}/previous.json".format(term_res_url_prefix) return Term(data=get_resource(url))
15,613
def used(obj: T) -> T: """Decorator indicating that an object is being used. This stops the UnusedObjectFinder from marking it as unused. """ _used_objects.add(obj) return obj
15,614
def fit_double_gaussian(x_data, y_data, maxiter=None, maxfun=5000, verbose=1, initial_params=None): """ Fitting of double gaussian Fitting the Gaussians and finding the split between the up and the down state, separation between the max of the two gaussians measured in the sum of the std. Args: x_data (array): x values of the data y_data (array): y values of the data maxiter (int): maximum number of iterations to perform maxfun (int): maximum number of function evaluations to make verbose (int): set to >0 to print convergence messages initial_params (None or array): optional, initial guess for the fit parameters: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] Returns: par_fit (array): fit parameters of the double gaussian: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] initial_params (array): initial guess for the fit parameters, either the ones give to the function, or generated by the function: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] separation (float): separation between the max of the two gaussians measured in the sum of the std split (float): value that seperates the up and the down level """ def func(params): return _cost_double_gaussian(x_data, y_data, params) maxsignal = np.percentile(x_data, 98) minsignal = np.percentile(x_data, 2) if initial_params is None: A_dn = np.max(y_data[:int((len(y_data) / 2))]) A_up = np.max(y_data[int((len(y_data) / 2)):]) sigma_dn = (maxsignal - minsignal) * 1 / 20 sigma_up = (maxsignal - minsignal) * 1 / 20 mean_dn = minsignal + 1 / 4 * (maxsignal - minsignal) mean_up = minsignal + 3 / 4 * (maxsignal - minsignal) initial_params = np.array([A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up]) par_fit = scipy.optimize.fmin(func, initial_params, maxiter=maxiter, maxfun=maxfun, disp=verbose >= 2) # separation is the difference between the max of the gaussians devided by the sum of the std of both gaussians separation = (par_fit[5] - par_fit[4]) / (abs(par_fit[2]) + abs(par_fit[3])) # split equal distant to both peaks measured in std from the peak split = par_fit[4] + separation * abs(par_fit[2]) result_dict = {'parameters initial guess': initial_params, 'separation': separation, 'split': split} return par_fit, result_dict
15,615
def test_bascis(): """ Test mean/sd/var/mode/entropy functionality of Cauchy. """ net = CauchyBasics() ans = net() assert isinstance(ans, Tensor) with pytest.raises(ValueError): net = CauchyMean() ans = net() with pytest.raises(ValueError): net = CauchyVar() ans = net() with pytest.raises(ValueError): net = CauchySd() ans = net()
15,616
def test_logging_warning(capsys): """ Should output the debug logs """ logger = setup_logging(module_name, 'WARNING') logger.debug('DEBUG') logger.info('INFO') logger.warning('WARN') captured = capsys.readouterr() assert "WARN" in captured.err assert "INFO" not in captured.err assert "DEBUG" not in captured.err
15,617
def _set_advanced_network_attributes_of_profile(config, profile): """ Modify advanced network attributes of profile. @param config: current configparser configuration. @param profile: the profile to set the attribute in. @return: configparser configuration. """ config = _set_attribute_of_profile( config, profile, 'vpc_offering_id', 'VPC offering id', '' ) return config
15,618
def Environ(envstring): """Return the String associated with an operating system environment variable envstring Optional. String expression containing the name of an environment variable. number Optional. Numeric expression corresponding to the numeric order of the environment string in the environment-string table. The number argument can be any numeric expression, but is rounded to a whole number before it is evaluated. Remarks If envstring can't be found in the environment-string table, a zero-length string ("") is returned. Otherwise, Environ returns the text assigned to the specified envstring; that is, the text following the equal sign (=) in the environment-string table for that environment variable. """ try: envint = int(envstring) except ValueError: return os.environ.get(envstring, "") # Is an integer - need to get the envint'th value try: return "%s=%s" % (list(os.environ.keys())[envint], list(os.environ.values())[envint]) except IndexError: return ""
15,619
def ring_bond_equal(b1, b2, reverse=False): """Check if two bonds are equal. Two bonds are equal if the their beginning and end atoms have the same symbol and formal charge. Bond type not considered because all aromatic (so SINGLE matches DOUBLE). Parameters ---------- b1 : rdkit.Chem.rdchem.Bond An RDKit bond object. b2 : rdkit.Chem.rdchem.Bond An RDKit bond object. reverse : bool Whether to interchange the role of beginning and end atoms of the second bond in comparison. Returns ------- bool Whether the two bonds are equal. """ b1 = (b1.GetBeginAtom(), b1.GetEndAtom()) if reverse: b2 = (b2.GetEndAtom(), b2.GetBeginAtom()) else: b2 = (b2.GetBeginAtom(), b2.GetEndAtom()) return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1])
15,620
def test_tensor_symmetrize(): """ test advanced tensor calculations """ grid = CartesianGrid([[0.1, 0.3], [-2, 3]], [2, 2]) t1 = Tensor2Field(grid) t1.data[0, 0, :] = 1 t1.data[0, 1, :] = 2 t1.data[1, 0, :] = 3 t1.data[1, 1, :] = 4 # traceless = False t2 = t1.copy() t1.symmetrize(make_traceless=False, inplace=True) tr = t1.trace() assert np.all(tr.data == 5) t1_trans = np.swapaxes(t1.data, 0, 1) np.testing.assert_allclose(t1.data, t1_trans.data) ts = t1.copy() ts.symmetrize(make_traceless=False, inplace=True) np.testing.assert_allclose(t1.data, ts.data) # traceless = True t2.symmetrize(make_traceless=True, inplace=True) tr = t2.trace() assert np.all(tr.data == 0) t2_trans = np.swapaxes(t2.data, 0, 1) np.testing.assert_allclose(t2.data, t2_trans.data) ts = t2.copy() ts.symmetrize(make_traceless=True, inplace=True) np.testing.assert_allclose(t2.data, ts.data)
15,621
def survey_aligned_velocities(od): """ Compute horizontal velocities orthogonal and tangential to a survey. .. math:: (v_{tan}, v_{ort}) = (u\\cos{\\phi} + v\\sin{\\phi}, v\\cos{\\phi} - u\\sin{\\phi}) Parameters ---------- od: OceanDataset oceandataset used to compute Returns ------- ds: xarray.Dataset | rot_ang_Vel: Angle to rotate geographical to survey aligned velocities | tan_Vel: Velocity component tangential to survey | ort_Vel: Velocity component orthogonal to survey See Also -------- subsample.survey_stations """ # Check parameters _check_instance({'od': od}, 'oceanspy.OceanDataset') if 'station' not in od._ds.dims: raise ValueError('oceandatasets must be subsampled using' ' `subsample.survey_stations`') # Get zonal and meridional velocities var_list = ['lat', 'lon'] try: # Add missing variables varList = ['U_zonal', 'V_merid'] + var_list od = _add_missing_variables(od, varList) # Extract variables U = od._ds['U_zonal'] V = od._ds['V_merid'] except Exception as e: # Assume U=U_zonal and V=V_zonal _warnings.warn(("\n{}" "\nAssuming U=U_zonal and V=V_merid." "\nIf you are using curvilinear coordinates," " run `compute.geographical_aligned_velocities`" " before `subsample.survey_stations`").format(e), stacklevel=2) # Add missing variables varList = ['U', 'V'] + var_list od = _add_missing_variables(od, varList) # Extract variables U = od._ds['U'] V = od._ds['V'] # Extract varibles lat = _np.deg2rad(od._ds['lat']) lon = _np.deg2rad(od._ds['lon']) # Extract grid grid = od._grid # Message print('Computing survey aligned velocities.') # Compute azimuth # Translated from matlab: # https://www.mathworks.com/help/map/ref/azimuth.html az = _np.arctan2(_np.cos(lat[1:]).values * _np.sin(grid.diff(lon, 'station')), _np.cos(lat[:-1]).values * _np.sin(lat[1:]).values - _np.sin(lat[:-1]).values * _np.cos(lat[1:]).values * _np.cos(grid.diff(lon, 'station'))) az = grid.interp(az, 'station', boundary='extend') az = _xr.where(_np.rad2deg(az) < 0, _np.pi*2 + az, az) # Compute rotation angle rot_ang_rad = _np.pi/2 - az rot_ang_rad = _xr.where(rot_ang_rad < 0, _np.pi*2 + rot_ang_rad, rot_ang_rad) rot_ang_deg = _np.rad2deg(rot_ang_rad) rot_ang_Vel = rot_ang_deg long_name = 'Angle to rotate geographical to survey aligned velocities' rot_ang_Vel.attrs['long_name'] = long_name rot_ang_Vel.attrs['units'] = 'deg (+: counterclockwise)' # Rotate velocities tan_Vel = U*_np.cos(rot_ang_rad) + V*_np.sin(rot_ang_rad) tan_Vel.attrs['long_name'] = 'Velocity component tangential to survey' if 'units' in U.attrs: units = U.attrs['units'] else: units = ' ' tan_Vel.attrs['units'] = ('{} ' '(+: flow towards station indexed' ' with higher number)' ''.format(units)) ort_Vel = V*_np.cos(rot_ang_rad) - U*_np.sin(rot_ang_rad) ort_Vel.attrs['long_name'] = 'Velocity component orthogonal to survey' if 'units' in V.attrs: units = V.attrs['units'] else: units = ' ' ort_Vel.attrs['units'] = ('{} ' '(+: flow keeps station indexed' ' with higher number to the right)' ''.format(units)) # Create ds ds = _xr.Dataset({'rot_ang_Vel': rot_ang_Vel, 'ort_Vel': ort_Vel, 'tan_Vel': tan_Vel}, attrs=od.dataset.attrs) return _ospy.OceanDataset(ds).dataset
15,622
def insertion_sort(numbers): """ At worst this is an O(n2) algorithm At best this is an O(n) algorithm """ for index in xrange(1, len(numbers)): current_num = numbers[index] current_pos = index while current_pos > 0 and numbers[current_pos - 1] > current_num: numbers[current_pos] = numbers[current_pos - 1] current_pos = current_pos - 1 numbers[current_pos] = current_num return numbers
15,623
def p_ppjoin_block_2(p): """ pjoin_block : empty """ p[0] = []
15,624
def applyEffectiveDelayedNeutronFractionToCore(core, cs): """Process the settings for the delayed neutron fraction and precursor decay constants.""" # Verify and set the core beta parameters based on the user-supplied settings beta = cs["beta"] decayConstants = cs["decayConstants"] # If beta is interpreted as a float, then assign it to # the total delayed neutron fraction parameter. Otherwise, setup the # group-wise delayed neutron fractions and precursor decay constants. reportTableData = [] if isinstance(beta, float): core.p.beta = beta reportTableData.append(("Total Delayed Neutron Fraction", core.p.beta)) elif isinstance(beta, list) and isinstance(decayConstants, list): if len(beta) != len(decayConstants): raise ValueError( f"The values for `beta` ({beta}) and `decayConstants` " f"({decayConstants}) are not consistent lengths." ) core.p.beta = sum(beta) core.p.betaComponents = numpy.array(beta) core.p.betaDecayConstants = numpy.array(decayConstants) reportTableData.append(("Total Delayed Neutron Fraction", core.p.beta)) reportTableData.append( ("Group-wise Delayed Neutron Fractions", core.p.betaComponents) ) reportTableData.append( ("Group-wise Precursor Decay Constants", core.p.betaDecayConstants) ) # Report to the user the values were not applied. if not reportTableData and (beta is not None or decayConstants is not None): runLog.warning( f"Delayed neutron fraction(s) - {beta} and decay constants" " - {decayConstants} have not been applied." ) else: runLog.extra( tabulate.tabulate( tabular_data=reportTableData, headers=["Component", "Value"], tablefmt="armi", ) )
15,625
def ratio_shimenreservoir_to_houchiweir(): """ Real Name: Ratio ShiMenReservoir To HouChiWeir Original Eqn: Sum Allocation ShiMenReservoir To HouChiWeir/Sum Allcation From ShiMenReservoir Units: m3/m3 Limits: (None, None) Type: component """ return sum_allocation_shimenreservoir_to_houchiweir() / sum_allcation_from_shimenreservoir()
15,626
def torch_profiler_full(func): """ A decorator which will run the torch profiler for the decorated function, printing the results in full. Note: Enforces a gpu sync point which could slow down pipelines. """ @wraps(func) def wrapper(*args, **kwargs): with torch.autograd.profiler.profile(use_cuda=True) as prof: result = func(*args, **kwargs) print(prof, flush=True) return result return wrapper
15,627
def bias_add(x, bias, data_format=None): """Adds a bias vector to a tensor. # Arguments x: Tensor or variable. bias: Bias tensor to add. data_format: string, `"channels_last"` or `"channels_first"`. # Returns Output tensor. # Raises ValueError: In one of the two cases below: 1. invalid `data_format` argument. 2. invalid bias shape. the bias should be either a vector or a tensor with ndim(x) - 1 dimension """ data_format = normalize_data_format(data_format) bias_shape = int_shape(bias) if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1: raise ValueError('Unexpected bias dimensions %d, ' 'expect to be 1 or %d dimensions' % (len(bias_shape), ndim(x))) if ndim(x) == 5: if len(bias_shape) == 1: new_shape = (1, 1, 1, 1, bias_shape[0]) else: new_shape = (1,) + bias_shape new_shape = transpose_shape(new_shape, data_format, spatial_axes=(1, 2, 3)) x += reshape(bias, new_shape) elif ndim(x) == 4: if data_format == 'channels_first': if len(bias_shape) == 1: if _has_nchw_support(): x = tf.nn.bias_add(x, bias, data_format='NCHW') else: x += reshape(bias, (1, bias_shape[0], 1, 1)) else: x += reshape(bias, (1, bias_shape[2]) + bias_shape[:2]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = tf.nn.bias_add(x, bias, data_format='NHWC') else: x += reshape(bias, (1,) + bias_shape) elif ndim(x) == 3: if len(bias_shape) == 1: new_shape = (1, 1, bias_shape[0]) else: new_shape = (1,) + bias_shape new_shape = transpose_shape(new_shape, data_format, spatial_axes=(1,)) x += reshape(bias, new_shape) else: x = tf.nn.bias_add(x, bias) return x
15,628
def get_news_with_follow(request, user_id): """ 获取用户关注类型的前30条,未登录300未登录 :param request: 请求对象 :return: Json数据 """ data = {} try: user = User.objects.get(pk=user_id) follow_set = user.follow_type.value_list('id').all() follow_list = [x[0] for x in follow_set] news_set = NewsArticle.objects.filter(type_id__in=follow_list).order_by('-publish_time')[:30] except db.Error: data['code'] = 400 data['msg'] = '服务器忙,请稍后再试' return JsonResponse(data) except ObjectDoesNotExist: data['code'] = 505 data['msg'] = '用户不存在' return JsonResponse(data) news_list = [] for news in news_set: item = { 'id': news.id, 'title': news.title, 'type': news.type.name, 'publish_time': news.publish_time } news_list.append(item) data['code'] = 200 data['msg'] = '请求成功' data['news_list'] = news_list return JsonResponse(data)
15,629
def get_ngd_dir(config, absolute = False): """Returns the ngd output directory location Args: config (dictionary): configuration dictionary absolute (boolean): False (default): Relative to project base True: Absolute Returns: (string): string representation of the path to the output Raises: Nothing """ build_dir = utils.get_build_directory(config, absolute) ngd_dir = os.path.join(build_dir, NGD_DIR) return ngd_dir
15,630
def __setup_row_data_validation( sheet, status_data_validation, priority_data_validation ): """ Apply proper style and url for 'Reference' column Parameters ---------- sheet: Sheet sheet to setup data validation for status_data_validation: DataValidation data validation model for `Status` column priority_data_validation: DataValidation data validation model for `Priority` column """ status_data_validation.add(sheet[f'{ascii_uppercase[1]}{__CURRENT_ROW}']) priority_data_validation.add(sheet[f'{ascii_uppercase[7]}{__CURRENT_ROW}'])
15,631
def trigger(): """Trigger salt-api call.""" data = {'foo': 'bar'} return request('/hook/trigger', data=data)
15,632
def fitness_function(cams: List[Coord], pop: List[Coord]) -> int: """ Function to calculate number of surveilled citizens. Check if all the cameras can see them, if any can score increases """ score = [] for cit in pop: test = False for cam in cams: if ( math.sqrt(((cam[0] - cit[0]) ** 2) + ((cam[1] - cit[1]) ** 2)) <= view_radius ): test = True score.append(test) return score.count(True)
15,633
def main(): """Get Message and Process.""" # Get the queue try: queue = sqs.get_queue_by_name(QueueName=os.environ["SQS_NAME"]) except ClientError: print("SQS Queue {SQS_NAME} not found".format(SQS_NAME=os.environ["SQS_NAME"])) sys.exit(1) while True: message = False for message in queue.receive_messages(): m = _parse_message(json.loads(message.body)) print(json.dumps(m)) process(m) # Let the queue know that the message is processed message.delete() if not message: time.sleep(30) # if no message, let's wait 30secs time.sleep(1)
15,634
def set_cross_correction_positive_length(element: int, value: float) -> None: """set cross correction positive length Args: element (int): element ID value (float): a value """
15,635
def scrape_opening_hours(): """"scrape opening hours from https://www.designmuseumgent.be/bezoek""" r = requests.get("https://www.designmuseumgent.be/bezoek") data = r.text return data
15,636
def _demo_mm_inputs(input_shape=(1, 3, 256, 256)): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions """ (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) target = np.zeros([N, 17, H // 32, W // 32], dtype=np.float32) mask = np.ones([N, H // 32, W // 32], dtype=np.float32) joints = np.zeros([N, 30, 17, 2], dtype=np.float32) img_metas = [{ 'image_file': 'test.jpg', 'aug_data': [torch.zeros(1, 3, 256, 256)], 'test_scale_factor': [1], 'base_size': (256, 256), 'center': np.array([128, 128]), 'scale': np.array([1.28, 1.28]), 'flip_index': [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] } for _ in range(N)] mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'target': [torch.FloatTensor(target)], 'mask': [torch.FloatTensor(mask)], 'joints': [torch.FloatTensor(joints)], 'img_metas': img_metas } return mm_inputs
15,637
def compute_one_epoch_baseline(): """ Function to compute the performance of a simple one epoch baseline. :return: a line to display (string reporting the experiment results) """ best_val_obj_list = [] total_time_list = [] for nb201_random_seed in nb201_random_seeds: for random_seed in random_seeds: # randomly sample 256 configurations for the given dataset and NASBench201 seed # use the same seeds as for our other experiments random.seed(random_seed) cfg_list = random.sample( range(len(df_dict[nb201_random_seed][dataset_name])), 256 ) selected_subset = df_dict[nb201_random_seed][dataset_name].iloc[cfg_list] # find configuration with the best performance after doing one epoch max_idx = selected_subset["val_acc_epoch_0"].argmax() best_configuration = selected_subset.iloc[max_idx] # find the best validation accuracy of the selected configuration # as that is the metric that we compare best_val_obj = best_configuration[epoch_names].max() # we also need to calculate the time it took for this # taking into account the number of workers total_time = selected_subset["eval_time_epoch"].sum() / n_workers best_val_obj_list.append(best_val_obj) total_time_list.append(total_time) line = " & {:.2f} $\pm$ {:.2f}".format( np.mean(best_val_obj_list), np.std(best_val_obj_list) ) line += " & {:.1f}h $\pm$ {:.1f}h".format( np.mean(total_time_list) / 3600, np.std(total_time_list) / 3600 ) line += " & {:.1f}x".format(reference_time / np.mean(total_time_list)) line += " & 1.0 $\pm$ 0.0" return line
15,638
def generate_random_string( length ): """Generate a random string of a given length containing uppercase and lowercase letters, digits and ASCII punctuation.""" source = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation return ''.join( random.choice( source ) for i in range( length ) )
15,639
def create(params): """Handles the 'change' operation for modifying a dataset. Expected flags in 'params' are translated to Json Field names for creation content """ expectedArgs = {'--name': 'name'} kwargs = translate_flags(expectedArgs, params) rsp = server.datasets.create(**kwargs) if rsp is None: reportApiError(server, "Failure while creating a dataset") else: try: dsid = server.json()["dataset_id"] except: dsid = "???" reportSuccess(server, f"Successfully created dataset with id {dsid}")
15,640
def start_session(Target=None, DocumentName=None, Parameters=None): """ Initiates a connection to a target (for example, an instance) for a Session Manager session. Returns a URL and token that can be used to open a WebSocket connection for sending input and receiving outputs. See also: AWS API Documentation Exceptions :example: response = client.start_session( Target='string', DocumentName='string', Parameters={ 'string': [ 'string', ] } ) :type Target: string :param Target: [REQUIRED]\nThe instance to connect to for the session.\n :type DocumentName: string :param DocumentName: The name of the SSM document to define the parameters and plugin settings for the session. For example, SSM-SessionManagerRunShell . If no document name is provided, a shell to the instance is launched by default. :type Parameters: dict :param Parameters: Reserved for future use.\n\n(string) --\n(list) --\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'SessionId': 'string', 'TokenValue': 'string', 'StreamUrl': 'string' } Response Structure (dict) -- SessionId (string) -- The ID of the session. TokenValue (string) -- An encrypted token value containing session and caller information. Used to authenticate the connection to the instance. StreamUrl (string) -- A URL back to SSM Agent on the instance that the Session Manager client uses to send commands and receive output from the instance. Format: wss://ssmmessages.**region** .amazonaws.com/v1/data-channel/**session-id** ?stream=(input|output) region represents the Region identifier for an AWS Region supported by AWS Systems Manager, such as us-east-2 for the US East (Ohio) Region. For a list of supported region values, see the Region column in Systems Manager service endpoints in the AWS General Reference . session-id represents the ID of a Session Manager session, such as 1a2b3c4dEXAMPLE . Exceptions SSM.Client.exceptions.InvalidDocument SSM.Client.exceptions.TargetNotConnected SSM.Client.exceptions.InternalServerError :return: { 'SessionId': 'string', 'TokenValue': 'string', 'StreamUrl': 'string' } :returns: SSM.Client.exceptions.InvalidDocument SSM.Client.exceptions.TargetNotConnected SSM.Client.exceptions.InternalServerError """ pass
15,641
def start_cmd(cmd, use_file=False): """Start command and returns proc instance from Popen.""" orig_cmd = "" # Multi-commands need to be written to a temporary file to execute on Windows. # This is due to complications with invoking Bash in Windows. if use_file: orig_cmd = cmd temp_file = create_temp_executable_file(cmd) # The temporary file name will have '\' on Windows and needs to be converted to '/'. cmd = "bash -c {}".format(temp_file.replace("\\", "/")) # If 'cmd' is specified as a string, convert it to a list of strings. if isinstance(cmd, str): cmd = shlex.split(cmd) if use_file: LOGGER.debug("Executing '%s', tempfile contains: %s", cmd, orig_cmd) else: LOGGER.debug("Executing '%s'", cmd) # We use psutil.Popen() rather than subprocess.Popen() in order to cache the creation time of # the process. This enables us to reliably detect pid reuse in kill_process(). proc = psutil.Popen(cmd, close_fds=True) LOGGER.debug("Spawned process %s pid %d", proc.name(), proc.pid) return proc
15,642
def pretty_table(rows, header=None): """ Returns a string with a simple pretty table representing the given rows. Rows can be: - Sequences such as lists or tuples - Mappings such as dicts - Any object with a __dict__ attribute (most plain python objects) which is equivalent to passing the __dict__ directly. If no header is given then either all or none of the rows must be sequences to ensure the correct order. If there are no sequences then the header will be derived from the keys of the mappings. >>> print(pretty_table([['a', 'hello', 'c', 1], ['world', 'b', 'd', 2]])) a | hello | c | 1 world | b | d | 2 >>> print(pretty_table([['a', 'hello', 'c', 1], ['world', 'b', 'd', 2]], header='col1 col2 col3 col4')) col1 | col2 | col3 | col4 --------------------------- a | hello | c | 1 world | b | d | 2 >>> print(pretty_table([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}])) a | b ----- 1 | 2 3 | 4 >>> class C(object): ... def __init__(self, a, b): ... self.a = a ... self.b = b ... >>> print(pretty_table([{'a': 1, 'b': 2}, C(3, 4), [5, 6]], header=['b', 'a'])) b | a ----- 2 | 1 4 | 3 5 | 6 >>> print(pretty_table([{'a': 1, 'b': 2}, C(3, 4), [5, 6]])) Traceback (most recent call last): ... ValueError: Cannot mix sequences and other types of rows without specifying a header >>> print(pretty_table([[1, 2], [3, 4, 5]])) Traceback (most recent call last): ... ValueError: Mismatched lengths. First row (len = 2): [1, 2] Current row (len = 3): [3, 4, 5] >>> print(pretty_table([{'a': 1, 'b': 2}], header='c d')) Traceback (most recent call last): .... KeyError: "Tried to access 'c', only keys are: ['a', 'b']" """ rows2 = [] if header: header = ensure_list_if_string(header) rows2.insert(0, header) row_type = ['any'] else: header = [] row_type = [None] def require_type(t): if row_type[0] not in (None, t, 'any'): raise ValueError('Cannot mix sequences and other types of rows without specifying a header') if row_type[0] is None: row_type[0] = t def handle_dict(d): require_type('mapping') if not header: header[:] = sorted(d.keys()) rows2.insert(0, header) return [helpful_error_dict_get(d, key) for key in header] for row in rows: if isinstance(row, Mapping): row = handle_dict(row) elif isinstance(row, Sequence): require_type('sequence') if rows2 and len(row) != len(rows2[0]): raise ValueError('Mismatched lengths.\n' 'First row (len = %s):\n%s\n' 'Current row (len = %s):\n%s' % (len(rows2[0]), rows2[0], len(row), row)) else: row = handle_dict(row.__dict__) rows2.append(row) rows = [[str(cell) for cell in row] for row in rows2] widths = [max(len(row[i]) for row in rows) for i in range(len(rows[0]))] lines = [' | '.join(cell.ljust(width) for cell, width in zip(row, widths)).strip() for row in rows] if header: lines.insert(1, '-' * len(lines[0])) return '\n'.join(lines)
15,643
def initGlobals(): """ function: init global variables input: NA output: NA """ global g_oldVersionModules global g_clusterInfo global g_oldClusterInfo global g_logger global g_dbNode # make sure which env file we use g_opts.userProfile = g_opts.mpprcFile # init g_logger g_logger = GaussLog(g_opts.logFile, g_opts.action) if g_opts.action in [const.ACTION_RESTORE_CONFIG, const.ACTION_SWITCH_BIN, const.ACTION_CLEAN_INSTALL_PATH]: g_logger.debug( "No need to init cluster information under action %s." % g_opts.action) return # init g_clusterInfo # not all action need init g_clusterInfo try: g_clusterInfo = dbClusterInfo() if g_opts.xmlFile == "" or not os.path.exists(g_opts.xmlFile): g_clusterInfo.initFromStaticConfig(g_opts.user) else: g_clusterInfo.initFromXml(g_opts.xmlFile) except Exception as e: g_logger.debug(traceback.format_exc()) g_logger.error(str(e)) # init cluster info from install path failed # try to do it from backup path again g_opts.bakPath = DefaultValue.getTmpDirFromEnv() + "/" staticConfigFile = "%s/cluster_static_config" % g_opts.bakPath if os.path.isfile(staticConfigFile): try: # import old module g_oldVersionModules = OldVersionModules() sys.path.append(os.path.dirname(g_opts.bakPath)) g_oldVersionModules.oldDbClusterInfoModule = __import__( 'OldDbClusterInfo') # init old cluster config g_clusterInfo = \ g_oldVersionModules.oldDbClusterInfoModule.dbClusterInfo() g_clusterInfo.initFromStaticConfig(g_opts.user, staticConfigFile) except Exception as e: g_logger.error(str(e)) # maybe the old cluster is V1R5C00 TR5 version, # not support specify static config file # path for initFromStaticConfig function, # so use new cluster format try again try: g_clusterInfo = dbClusterInfo() g_clusterInfo.initFromStaticConfig(g_opts.user, staticConfigFile) except Exception as e: g_logger.error(str(e)) try: # import old module importOldVersionModules() # init old cluster config g_clusterInfo = \ g_oldVersionModules \ .oldDbClusterInfoModule.dbClusterInfo() g_clusterInfo.initFromStaticConfig(g_opts.user) except Exception as e: raise Exception(str(e)) elif g_opts.xmlFile and os.path.exists(g_opts.xmlFile): try: sys.path.append(sys.path[0] + "/../../gspylib/common") curDbClusterInfoModule = __import__('DbClusterInfo') g_clusterInfo = curDbClusterInfoModule.dbClusterInfo() g_clusterInfo.initFromXml(g_opts.xmlFile) except Exception as e: raise Exception(str(e)) else: try: # import old module importOldVersionModules() # init old cluster config g_clusterInfo = \ g_oldVersionModules.oldDbClusterInfoModule.dbClusterInfo() g_clusterInfo.initFromStaticConfig(g_opts.user) except Exception as e: raise Exception(str(e)) # init g_dbNode localHost = DefaultValue.GetHostIpOrName() g_dbNode = g_clusterInfo.getDbNodeByName(localHost) if g_dbNode is None: raise Exception( ErrorCode.GAUSS_512["GAUSS_51209"] % ("NODE", localHost))
15,644
def interpolate_trajectory(world_map, waypoints_trajectory, hop_resolution=1.0): """ Given some raw keypoints interpolate a full dense trajectory to be used by the user. Args: world: an reference to the CARLA world so we can use the planner waypoints_trajectory: the current coarse trajectory hop_resolution: is the resolution, how dense is the provided trajectory going to be made Return: route: full interpolated route both in GPS coordinates and also in its original form. """ dao = GlobalRoutePlannerDAO(world_map, hop_resolution) grp = GlobalRoutePlanner(dao) grp.setup() # Obtain route plan route = [] for i in range(len(waypoints_trajectory) - 1): # Goes until the one before the last. waypoint = waypoints_trajectory[i] waypoint_next = waypoints_trajectory[i + 1] interpolated_trace = grp.trace_route(waypoint, waypoint_next) for wp_tuple in interpolated_trace: route.append((wp_tuple[0].transform, wp_tuple[1])) return route
15,645
def import_data(filepath="/home/vagrant/countries/NO.txt", mongodb_url="mongodb://localhost:27017"): """ Import the adress data into mongodb CLI Example: salt '*' mongo.import_data /usr/data/EN.txt """ client = MongoClient(mongodb_url) db = client.demo address_col = db.address #Delete collection if present print("Dropping collection of addresses") address_col.delete_many({}) #Create compound indices for full text search address_col.create_index([ ("country_code", TEXT), ("postal_code", TEXT), ("place_name", TEXT), ("admin_name1", TEXT), ("admin_name2", TEXT), ("admin_name3", TEXT), ]) # Split line on the tab character since this is the delimiter. for line in _read_file(filepath): parts = line.split("\t") if parts and len(parts) >= 12: address = { "country_code": parts[0], "postal_code": parts[1], "place_name": parts[2], "admin_name1": parts[3], "admin_code1": parts[4], "admin_name2": parts[5], "admin_code2": parts[6], "admin_name3": parts[7], "admin_code3": parts[8], "latitude": parts[9], "longitude": parts[10], "accuracy": parts[11].strip() } address_col.insert(address) else: log.error("Element has to few parts to parse") return "Done importing all data"
15,646
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Enphase Envoy sensor.""" ip_address = config[CONF_IP_ADDRESS] monitored_conditions = config[CONF_MONITORED_CONDITIONS] name = config[CONF_NAME] username = config[CONF_USERNAME] password = config[CONF_PASSWORD] _LOGGER.info("Envoy async_setup_platform called") f = EnvoyReaderFactory(host=ip_address, username=username, password=password) # The factory will return a reader based on the SW/FW version found in info.xml envoy_reader = await f.get_reader() entities = [] async def async_update_data(): try: async with async_timeout.timeout(10): return await envoy_reader.get_data() except requests.exceptions.HTTPError as err: raise UpdateFailed(f"Error communicating with API: {err}") coordinator = DataUpdateCoordinator( hass, _LOGGER, name="EnphaseEnvoy", update_method=async_update_data, update_interval= timedelta(seconds=30), ) # Do an initial data collection so the list with inverters is filled await coordinator.async_refresh() # Iterate through the list of sensors configured for condition in monitored_conditions: if condition == "inverters": # The initial data collection made sure we know all inverters that are available at this point for inverter in coordinator.data['inverters']: entities.append( EnvoyInverter( coordinator, inverter['serial_number'], envoy_reader, condition, f"{name}{SENSORS[condition][0]} {inverter['serial_number']}", SENSORS[condition][1], SENSORS[condition][2], SENSORS[condition][3] ) ) else: entities.append( Envoy( coordinator, coordinator.data['serial_number'], envoy_reader, condition, f"{name}{SENSORS[condition][0]}", SENSORS[condition][1], SENSORS[condition][2], SENSORS[condition][3] ) ) async_add_entities(entities)
15,647
def _get_piping_verb_node(calling_node: ast.Call) -> ast.Call: """Get the ast node that is ensured the piping verb call Args: calling_node: Current Call node Returns: The verb call node if found, otherwise None """ from .register import PIPING_SIGNS from .verb import Verb # check if we have the piping node (i.e. >>) child = calling_node parent = getattr(child, "parent", None) token = PIPING_SIGNS[Verb.CURRENT_SIGN].token while parent: if ( # data >> verb(...) (isinstance(parent, ast.BinOp) and parent.right is child) or # data >>= verb(...) (isinstance(parent, ast.AugAssign) and parent.value is child) ) and isinstance(parent.op, token): return child child = parent parent = getattr(parent, "parent", None) return None
15,648
def files_to_yaml(*files: str): """ Reads sample manifests from files.""" for name in files: with open(name, 'r') as stream: manifest = yaml.load(stream) yield (name, manifest)
15,649
def slot(**kwargs): """Creates a SlotConfig instance based on the arguments. Args: **kwargs: Expects the following keyed arguments. in_dist: Distribution for inbound in msec. Optional in_max_bytes: Optional. Ignored when in_dist is missing. in_max_pkts: Optional. Ignored when in_dist is missing. out_dist: Distribution for outbound in msec. Optional At least one of in_dist and out_dist must be available. out_max_bytes: Optional. Ignored when out_dist is missing. out_max_pkts: Optional. Ignored when out_dist is missing. Returns: The SlotConfig instance. Raises: ValueError: When both in_dist and out_dist are missing. When an unexpected key is passed. """ expected_keys = {'in_dist', 'in_max_bytes', 'in_max_pkts', 'out_dist', 'out_max_bytes', 'out_max_pkts'} if any(set(kwargs) - expected_keys): raise ValueError('unexpected args: %s' % ','.join(set(kwargs) - expected_keys)) in_slot = None out_slot = None if 'in_dist' in kwargs: in_slot = Slot( kwargs['in_dist'], kwargs['in_max_bytes'] if 'in_max_bytes' in kwargs else 0, kwargs['in_max_pkts'] if 'in_max_pkts' in kwargs else 0) if 'out_dist' in kwargs: out_slot = Slot( kwargs['out_dist'], kwargs['out_max_bytes'] if 'out_max_bytes' in kwargs else 0, kwargs['out_max_pkts'] if 'out_max_pkts' in kwargs else 0) if not bool(in_slot or out_slot): raise ValueError('in_dist or out_dist must be defined') return SlotConfig(in_slot, out_slot)
15,650
def get_agent_type(player): """ Prompts user for info as to the type of agent to be created """ print('There are two kinds of Agents you can initialise.') print(' 1 - <Human> - This would be a totally manually operated agent.') print(' You are playing the game yourself.') print(' 2 - <Random> - This is an agent who simply makes totally random moves.') print(' They select from the set of all legal moves.') # print(' 3 - <Engine> - This is an agent which selects moves on the basis of some') # print(' pre-programmed algorithm.') print(f'\nWhich type of agent should {player} be?') while True: result = input(' : ') if result.isalpha(): # check response is all letters result = result.lower() # make them all lowercase if result.lower() == 'human': agent_type = result.capitalize() break elif result.lower() == 'random': agent_type = result.capitalize() break # elif result.lower() == 'engine': # not_implemented('Engine') # continue elif result.lower() in ('close', 'quit', 'exit', 'no'): exit_program() elif result.isnumeric(): if result == '1': agent_type = 'Human' break elif result == '2': agent_type = 'Random' break # elif result == '3': # not_implemented('Engine') # continue agent_name = player print(f'And their name? Typing nothing will use the default name: {player}') while True: result = input(' : ') if result == '': break elif result.isalnum(): if result.lower() in ('close', 'quit', 'exit', 'no'): exit_program() agent_name = result break else: print('\n Can only include letters or numbers.\n') return agent_type, agent_name
15,651
def xml_generation(): """generate all xml needed for the sizes mode """ for max_size in sizes: byte_file = open(xml_filepath, "rb") filename = working_dir + "ssxtd_test_" + str(max_size) +".xml" with open(filename, 'wb') as new_file: #new_file.write(b"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") new_file.write(start_tag.encode()) max_size_reached = False while max_size_reached ==False: byte_file.seek(0) for _, elem in ET.iterparse(byte_file, events=('end', )): if elem.tag == tag: new_file.write(ET.tostring(elem)) #size = os.path.getsize(new_file) size = new_file.tell() mb_size = size/(1024.0*1024.0) if mb_size > max_size: new_file.write(end_tag.encode()) max_size_reached = True break print("finished writing "+ str(max_size) + "MB test file")
15,652
def _try_match_and_transform_pattern_1(reduce_op, block) -> bool: """ Identify the pattern: y = gamma * (x - mean) / sqrt(variance + epsilon) + beta y = x * [gamma * rsqrt(variance + eps)] + (beta - mean * [gamma * rsqrt(variance + eps)]) x --> reduce_mean --> sub --> square --> reduce_mean --> add(epsilon) --> rsqrt | | ^ | | | | V |----------------------- mul (gamma) | | | | | --------|--------- | | | | | | | V | |----------------------------------------------------------------> mul | | | | V | |--------------------------------------------------------------> mul | | V | sub (beta) --> add --> [...] | ^ |------------------------------- This pattern corresponds to either layer_norm or instance_norm. It is instance_norm if all of the following are true: - input is rank 4 - axes of reduce_mean is [-2, -1] or [-3, -2] (when [-3, -2], a channel first to channel last transpose would be inserted) - gamma and beta are rank 1, after squeeze It is layer_norm if all of the following are true: - axes is either [-1] or [-1, -2] or [-1, -2, -3] and so on - rank of gamma and beta is equal to the length of the axes """ ops_to_remove = [] root_var = reduce_op.x if root_var.shape is None: return False # check that root_var feeds into exactly 3 ops if len(list(root_var.child_ops)) != 3: return False if root_var.op is not None and not _check_child_op_types( root_var.op, child_op_types=["reduce_mean", "sub", "mul"] ): return False # check 1st reduce_mean op if not _check_reduce_op(reduce_op): return False ops_to_remove.append(reduce_op) # check 1st sub op if not _check_child_op_types(reduce_op, ["sub", "mul"], check_order=False): return False child_ops_reduce_mean = list(reduce_op.outputs[0].child_ops) op_a = child_ops_reduce_mean[0] op_b = child_ops_reduce_mean[1] sub_op1 = op_a if op_a.op_type == "sub" else op_b if not (sub_op1.x == root_var and sub_op1.y == reduce_op.outputs[0]): return False ops_to_remove.append(sub_op1) # check square op square_op = _try_get_child_op_type(sub_op1, "square") if square_op is None: return False ops_to_remove.append(square_op) # check second reduce mean reduce_op2 = _try_get_child_op_type(square_op, "reduce_mean") if not _check_reduce_op(reduce_op2): return False ops_to_remove.append(reduce_op2) # check add op (with epsilon) add_op1 = _try_get_child_op_type(reduce_op2, "add") if add_op1 is None: return False epsilon_var = add_op1.y if add_op1.x == reduce_op2.outputs[0] else add_op1.x if epsilon_var.val is None or len(epsilon_var.val.shape) != 0: return False # must be scalar ops_to_remove.append(add_op1) # check rsqrt rsqrt_op = _try_get_child_op_type(add_op1, "rsqrt") if rsqrt_op is None: return False ops_to_remove.append(rsqrt_op) # check mul (gamma) mul_op1 = _try_get_child_op_type(rsqrt_op, "mul") if mul_op1 is None: return False gamma_var = mul_op1.y if mul_op1.x == rsqrt_op.outputs[0] else mul_op1.x if gamma_var.val is None: return False ops_to_remove.append(mul_op1) # check 2 muls after the gamma mul if not _check_child_op_types(mul_op1, ["mul", "mul"]): return False child_ops = list(mul_op1.outputs[0].child_ops) mul_op2 = child_ops[0] mul_op3 = child_ops[1] mul_op2_other_var = mul_op2.x if mul_op2.y == mul_op1.outputs[0] else mul_op2.y mul_op3_other_var = mul_op3.x if mul_op3.y == mul_op1.outputs[0] else mul_op3.y if not ( (mul_op2_other_var == root_var and mul_op3_other_var == reduce_op.outputs[0]) or (mul_op2_other_var == reduce_op.outputs[0] and mul_op3_other_var == root_var) ): return False if mul_op2_other_var == root_var: mul_root_op = mul_op2 mul_mean_op = mul_op3 else: mul_root_op = mul_op3 mul_mean_op = mul_op2 ops_to_remove.append(mul_mean_op) ops_to_remove.append(mul_root_op) # check sub with beta sub_op2 = _try_get_child_op_type(mul_mean_op, "sub") if sub_op2 is None: return False if sub_op2.y != mul_mean_op.outputs[0]: return False beta_var = sub_op2.x if beta_var.val is None: return False ops_to_remove.append(sub_op2) # check last add op add_op2 = _try_get_child_op_type(sub_op2, "add") if add_op2 is None: return False if not (add_op2.x == mul_root_op.outputs[0] or add_op2.y == mul_root_op.outputs[0]): return False ops_to_remove.append(add_op2) return _try_apply_transform( reduce_op, block, gamma_var, beta_var, epsilon_var, add_op2, ops_to_remove )
15,653
def cli_resize(maxsize): """Resize images to a maximum side length preserving aspect ratio.""" click.echo("Initializing resize with parameters {}".format(locals())) def _resize(images): for info, image in images: yield info, resize(image, maxsize) return _resize
15,654
def _fetch_object_array(cursor): """ _fetch_object_array() fetches arrays with a basetype that is not considered scalar. """ arrayShape = cursor_get_array_dim(cursor) # handle a rank-0 array by converting it to # a 1-dimensional array of size 1. if len(arrayShape) == 0: arrayShape.append(1) # now create the (empty) array of the correct type and shape array = numpy.empty(dtype=object,shape=arrayShape) # goto the first element cursor_goto_first_array_element(cursor) # loop over all elements excluding the last one arraySizeMinOne = array.size - 1 for i in range(arraySizeMinOne): array.flat[i] = _fetch_subtree(cursor) cursor_goto_next_array_element(cursor) # final element then back tp parent scope array.flat[arraySizeMinOne] = _fetch_subtree(cursor) cursor_goto_parent(cursor) return array
15,655
def sldParse(sld_str): """ Builds a dictionary from an SldStyle string. """ sld_str = sld_str.replace("'", '"').replace('\"', '"') keys = ['color', 'label', 'quantity', 'opacity'] items = [el.strip() for el in sld_str.split('ColorMapEntry') if '<RasterSymbolizer>' not in el] sld_items = [] for i in items: tmp = {} for k in keys: v = find_between(i, f'{k}="', '"') if v: tmp[k] = v sld_items.append(tmp) return { 'type': find_between(sld_str, 'type="', '"'), 'extended': find_between(sld_str, 'extended="', '"'), 'items': sld_items }
15,656
def x_ideal(omega, phase): """ Generates a complex-exponential signal with given frequency and phase. Does not contain noise """ x = np.empty(cfg.N, dtype=np.complex_) for n in range(cfg.N): z = 1j*(omega * (cfg.n0+n) * cfg.Ts + phase) x[n] = cfg.A * np.exp(z) return x
15,657
def _wrap_stdout(outfp): """ Wrap a filehandle into a C function to be used as `stdout` or `stderr` callback for ``set_stdio``. The filehandle has to support the write() and flush() methods. """ def _wrap(instance, str, count): outfp.write(str[:count]) outfp.flush() return count return c_stdstream_call_t(_wrap)
15,658
def svn_fs_apply_textdelta(*args): """ svn_fs_apply_textdelta(svn_fs_root_t root, char path, char base_checksum, char result_checksum, apr_pool_t pool) -> svn_error_t """ return _fs.svn_fs_apply_textdelta(*args)
15,659
def find(x): """ Find the representative of a node """ if x.instance is None: return x else: # collapse the path and return the root x.instance = find(x.instance) return x.instance
15,660
def convert_shape(node, **kwargs): """Map MXNet's shape_array operator attributes to onnx's Shape operator and return the created node. """ return create_basic_op_node('Shape', node, kwargs)
15,661
def _UploadScreenShotToCloudStorage(fh): """ Upload the given screenshot image to cloud storage and return the cloud storage url if successful. """ try: return cloud_storage.Insert(cloud_storage.TELEMETRY_OUTPUT, _GenerateRemotePath(fh), fh.GetAbsPath()) except cloud_storage.CloudStorageError as err: logging.error('Cloud storage error while trying to upload screenshot: %s', repr(err)) return '<Missing link>' finally: # Must clean up screenshot file if exists. os.remove(fh.GetAbsPath())
15,662
def get_timestamp(prev_ts=None): """Internal helper to return a unique TimeStamp instance. If the optional argument is not None, it must be a TimeStamp; the return value is then guaranteed to be at least 1 microsecond later the argument. """ t = time.time() t = TimeStamp(*time.gmtime(t)[:5] + (t % 60,)) if prev_ts is not None: t = t.laterThan(prev_ts) return t
15,663
def mintos(input_file, input_directory, calculation): """Calculates income and tax from Mintos transaction log, using D-1 NBP PLN exchange rate.""" account = MintosAccount() if input_file: account.load_transaction_log(input_file) else: account.load_transaction_logs(input_directory) account.init_cash_flow() table = None for c in calculation: ls(f"{c}") if c == "INCOME": table = account.get_foreign() elif c == "INCOME_PLN": table = account.get_pln() """ Kwotę należnego podatku wpisuje do pola o enigmatycznej nazwie „Zryczałtowany podatek obliczony od przychodów (dochodów), o których mowa w art. 30a ust. 1 pkt 1–5 ustawy, uzyskanych poza granicami Rzeczypospolitej Polskiej”. Kwotę podatku pobranego za granicą wpisujemy do pola „Podatek zapłacony za granicą, o którym mowa w art. 30a ust. 9 ustawy”. 2019 W PIT-36 – pola 355, 356, 357 i 358 w sekcji N. W PIT-36L – pola 115 i 116 w sekcji K. W PIT-38 – pola 45 i 46 w sekcji G. """ if table: print(tabulate(table, headers="firstrow", floatfmt=".2f", tablefmt="presto"))
15,664
def get_element_as_string(element): """ turn xml element from etree to string :param element: :return: """ return lxml.etree.tostring(element, pretty_print=True).decode()
15,665
def get(dirPath): """指定したパスのファイル一覧を取得する""" if sys.version_info.major != 3: print("Error!!\nPython 3.x is required.") exit() if sys.version_info.minor >= 5: # python 3.5以降 fileList = [] fileList = glob.glob(dirPath, recursive=True) return fileList else: # python3.4以前 fileList = [] for root, dirs, files in os.walk(dirPath): for filename in files: fileList.append(os.path.join(root, filename)) # ファイルのみ再帰でいい場合はここまででOK for dirname in dirs: fileList.append(os.path.join(root, dirname)) # サブディレクトリまでリストに含めたい場合はこれも書く print(fileList) return fileList
15,666
def _select_ports(count, lower_port, upper_port): """Select and return n random ports that are available and adhere to the given port range, if applicable.""" ports = [] sockets = [] for i in range(count): sock = _select_socket(lower_port, upper_port) ports.append(sock.getsockname()[1]) sockets.append(sock) for sock in sockets: sock.close() return ports
15,667
def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0
15,668
def is_callable(x): """Tests if something is callable""" return callable(x)
15,669
def validate_version_argument(version, hint=4): """ validate the version argument against the supported MDF versions. The default version used depends on the hint MDF major revision Parameters ---------- version : str requested MDF version hint : int MDF revision hint Returns ------- valid_version : str valid version """ if version not in SUPPORTED_VERSIONS: if hint == 2: valid_version = "2.14" elif hint == 3: valid_version = "3.30" else: valid_version = "4.10" message = ( 'Unknown mdf version "{}".' " The available versions are {};" ' automatically using version "{}"' ) message = message.format(version, SUPPORTED_VERSIONS, valid_version) logger.warning(message) else: valid_version = version return valid_version
15,670
def test_default_logger(): """Create a logger with default options. Only stdout logger must be used.""" capture = CaptureStdOut() with capture: test_logger = pyansys_logging.Logger() test_logger.info("Test stdout") assert "INFO - - test_pyansys_logging - test_default_logger - Test stdout" in capture.content # File handlers are not activated. assert os.path.exists(os.path.exists(os.path.join(os.getcwd(), "PyProject.log")))
15,671
def test_created_nostartup(mock_clean_state, mock_vm_one): """ Test with one image and startup_import_event unset/false """ # NOTE: this should yield 0 created event _ one state event with patch.dict(vmadm.VMADM_STATE, mock_clean_state), patch.dict( vmadm.__salt__, {"vmadm.list": MagicMock(return_value=mock_vm_one)} ): config = [] ret = vmadm.validate(config) assert ret == (True, "Valid beacon configuration") ret = vmadm.beacon(config) res = [ { "alias": "vm1", "tag": "running/00000000-0000-0000-0000-000000000001", "hostname": "vm1", "dns_domain": "example.org", } ] assert ret == res
15,672
def roc_auc(probs, labels): """ Computes the area under the receiving operator characteristic between output probs and labels for k classes. Source: https://github.com/HazyResearch/metal/blob/master/metal/utils.py args: probs (tensor) (size, k) labels (tensor) (size, 1) """ probs = torch.nn.functional.softmax(probs, dim=1) probs = probs.numpy() # Convert labels to one-hot indicator format, using the k inferred from probs labels = hard_to_soft(labels, k=probs.shape[1]).numpy() return skl.roc_auc_score(labels, probs)
15,673
def test_FUNC_default_WITH_map_attribute_EXPECT_successful_serialization() -> None: """ Checks whether serialization works. :return: No return. """ d = MapAttribute(attributes={ 'key': Decimal(1), 'key2': {1, 2, 3, 3, 3, 3} }) try: json.dumps(d) except TypeError: pass else: raise AssertionError('Expected to fail.') json.dumps(d, cls=PynamoDBEncoder)
15,674
def show_collection(request, collection_id): """Shows a collection""" collection = get_object_or_404(Collection, pk=collection_id) # New attribute to store the list of problems and include the number of submission in each problem collection.problem_list = collection.problems() for problem in collection.problem_list: problem.num_submissions = problem.num_submissions_by_user(request.user) problem.solved = problem.solved_by_user(request.user) return render(request, 'collection.html', {'collection': collection})
15,675
def alpha( data: np.ndarray, delta: Union[Callable[[int, int], float], List[List[float]], str] = "nominal", ): """Calculates Krippendorff's alpha coefficient [1, sec. 11.3] for inter-rater agreement. [1] K. Krippendorff, Content analysis: An introduction to its methodology. Sage publications, 2004. Args: ----- data: numpy.ndarray The data matrix, shape (n_raters, n_units). Each cell (i, j) represents the value assigned to unit j by rater i, or 0 representing no response. delta: callable, 2-D array-like or str The delta metric. Default is the nominal metric, which takes the value 1 in case c != k and 0 otherwise. """ # The following implementation was based off the Wikipedia article: # https://en.wikipedia.org/wiki/Krippendorff%27s_alpha # Response categories go from 1 to R, 0 represents no response R = np.max(data) counts = np.apply_along_axis(lambda x: np.bincount(x, minlength=R + 1), 0, data).T count_sum = np.sum(counts, 0) assert len(count_sum) == R + 1 def ordinal(c: int, k: int): if k < c: c, k = k, c s = ( sum(count_sum[g] for g in range(c, k + 1)) - (count_sum[c] + count_sum[k]) / 2 ) return s ** 2 if isinstance(delta, str): delta = { "nominal": Deltas.nominal, "ordinal": ordinal, "interval": Deltas.interval, }[delta] if not callable(delta): try: delta[0][0] except IndexError: raise TypeError("delta must be either str, callable or 2D array.") def _delta(c, k): new_delta = delta return new_delta[c][k] delta = _delta m_u = np.sum(counts[:, 1:], 1) valid = m_u >= 2 counts = counts[valid] m_u = m_u[valid] data = data[:, valid] n = np.sum(m_u) n_cku = np.matmul(counts[:, :, None], counts[:, None, :]) for i in range(R + 1): n_cku[:, i, i] = counts[:, i] * (counts[:, i] - 1) D_o = 0 for c in range(1, R + 1): for k in range(1, R + 1): D_o += delta(c, k) * n_cku[:, c, k] D_o = np.sum(D_o / (n * (m_u - 1))) D_e = 0 P_ck = np.bincount(data.flat) for c in range(1, R + 1): for k in range(1, R + 1): D_e += delta(c, k) * P_ck[c] * P_ck[k] D_e /= n * (n - 1) return 1 - D_o / D_e
15,676
def enforce(action, target, creds, do_raise=True): """Verifies that the action is valid on the target in this context. :param creds: user credentials :param action: string representing the action to be checked, which should be colon separated for clarity. Or it can be a Check instance. :param target: dictionary representing the object of the action for object creation this should be a dictionary representing the location of the object e.g. {'project_id': object.project_id} :param rule_dict: instance of oslo_policy.policy.Rules, it's actually a dict, with keys are the actions to be protected and values are parsed Check trees. :raises: `exception.Forbidden` if verification fails. Actions should be colon separated for clarity. For example: * identity:list_users """ init() # Add the exception arguments if asked to do a raise extra = {} if do_raise: extra.update(exc=exception.ForbiddenAction, service=action[0], permission=action[1], do_raise=do_raise) return _ENFORCER.enforce(action, target, creds, **extra)
15,677
def query_data(session, agency_code, period, year): """ Request A file data Args: session: DB session agency_code: FREC or CGAC code for generation period: The period for which to get GTAS data year: The year for which to get GTAS data Returns: The rows using the provided dates for the given agency. """ # set a boolean to determine if the original agency code is frec or cgac frec_provided = len(agency_code) == 4 tas_gtas = tas_gtas_combo(session, period, year) # Make a list of FRECs to compare to for 011 AID entries frec_list = [] if not frec_provided: frec_list = session.query(FREC.frec_code).select_from(outerjoin(CGAC, FREC, CGAC.cgac_id == FREC.cgac_id)).\ filter(CGAC.cgac_code == agency_code).all() # Group agencies together that need to be grouped agency_array = [] if agency_code == '097': agency_array = ['017', '021', '057', '097'] elif agency_code == '1601': agency_array = ['1601', '016'] elif agency_code == '1125': agency_array = ['1125', '011'] # Save the ATA filter agency_filters = [] if not agency_array: agency_filters.append(tas_gtas.c.allocation_transfer_agency == agency_code) else: agency_filters.append(tas_gtas.c.allocation_transfer_agency.in_(agency_array)) # Save the AID filter if agency_code == '097' and not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier.in_(agency_array))) elif not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == agency_code)) else: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.fr_entity_type == agency_code)) # If we're checking a CGAC, we want to filter on all of the related FRECs for AID 011, otherwise just filter on # that FREC if frec_list: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == '011', tas_gtas.c.fr_entity_type.in_(frec_list))) elif not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == '011', tas_gtas.c.fr_entity_type == agency_code)) rows = initial_query(session, tas_gtas.c).\ filter(func.coalesce(tas_gtas.c.financial_indicator2, '') != 'F').\ filter(or_(*agency_filters)).\ group_by(tas_gtas.c.allocation_transfer_agency, tas_gtas.c.agency_identifier, tas_gtas.c.beginning_period_of_availa, tas_gtas.c.ending_period_of_availabil, tas_gtas.c.availability_type_code, tas_gtas.c.main_account_code, tas_gtas.c.sub_account_code) return rows
15,678
def vocublary(vec_docs): """ vocabulary(vec_docs) -> tuple: (int avg_doc_len, updated vec_docs, corpus Vocabulary dictionary {"word": num_docs_have__this_term, ...}) vec_docs = list of documents as dictionaries [{ID:"word_i word_i+1 ..."} , {ID:"word_i word_i+1"}, ...}] """ vocabulary = {} count_vec = [] #used for aggregating doc lengths in a list to determining avg_doc_len #Extract len of docs anonymously, convert vec_docs values to c(w,d), Create corups Vocabulary as c(d,w) for key,value in vec_docs.items(): #recall: {key = "doc_ID": value = [list, of, words, in, each, document]} doc_words = {} count_vec.append(len(value)) for word in value: #convert doc word list into dict storing c(w,d) ∈ D if word in doc_words: doc_words[word] = doc_words[word] + 1 else: doc_words[word] = 1 #Next, create vocubulary c(d,w) ∈ Corpus for word,count in doc_words.items(): if word in vocabulary: vocabulary[word] = vocabulary[word] + 1 else: vocabulary[word] = 1 #last convert {ID:[list,of,words]} -> {ID: {dict:1,of:1,word:1,counts:2} } vec_docs[key] = doc_words avg_dl = sum(count_vec) / len(count_vec) return (avg_dl,vocabulary)
15,679
def plot_bursts(odf, bdf, lowest_level=0, title=True, daterange=None, xrangeoffsets=3, s=None, gamma=None): """Plots burst and offset data. odf = an offsets dataframe bdf = an edgeburst dataframe lowest_level = subset the burst dataframe with bursts greater than or equal to the specified level daterange = a tuple with two elements: a start date and end date as *strings*. format is 'year-month-day' xrangeoffsets = the number of days to add before and after the min and max x dates """ svo_title = str(set(bdf['svo']).pop()) fig, (axa, axb) = plt.subplots(2, sharey=False, sharex=True) fig.set_figwidth(10) fig.set_figheight(6) formatter = mdates.DateFormatter("%b %d\n%Y") axb.xaxis.set_major_formatter(formatter) # offsets plot day_freq = odf.resample('D').size() axa.plot(day_freq, color='#32363A') axa.xaxis.set_major_formatter(formatter) axa.xaxis_date() axa.tick_params(axis='both', which='both', length=0) axa.set_ylabel('Daily offsets') if daterange: axa.set_xlim(pd.Timestamp(daterange[0]), pd.Timestamp(daterange[1])) # bursts plot days = [day_freq.index[0]] levels = [0] for i in range(1, len(day_freq.index)): period_start = odf.resample('D').size().index[i - 1] period_end = odf.resample('D').size().index[i] max_burst = set() days.append(period_end) for j in range(len(bdf)): burst_start = bdf['start'][j] burst_end = bdf['end'][j] level = bdf['level'][j] if burst_end < period_start or period_end < burst_start : pass else: max_burst.add(level) levels.append(max(max_burst)) finaldf = pd.DataFrame({"start": days, "level": levels}) if lowest_level > 0: bdf = bdf[bdf['level'] >= lowest_level] xmin = min(bdf['start']) xmax = max(bdf['start']) if xmin == xmax: raise Exception("There must be at least two bursts at or above the specified level. Try reducing the `lowest_level` parameter.") daterange = ((xmin + pd.DateOffset(days=2)).date(), (xmax + pd.DateOffset(days=2)).date()) # bursts plot axb.bar(finaldf['start'], finaldf['level'], color='#32363A', width=1) if s != None and gamma != None: axb.set_ylabel(r'Burst levels (s = {}, $\gamma$ = {})'.format(s, gamma)) else: axb.set_ylabel('Burst level') axb.tick_params(axis='both', which='both', length=0) if daterange: axb.set_xlim(pd.Timestamp(daterange[0]), pd.Timestamp(daterange[1])) fig.tight_layout(rect=[0, 0.03, 1, 0.95]) if title is True: fig.suptitle(f'{svo_title}', fontsize=12, ha='center')
15,680
def main(unused_argv): """Main entry. Args: * unused_argv: unused arguments (after FLAGS is parsed) """ try: # setup the TF logging routine tf.logging.set_verbosity(tf.logging.INFO) # set the learning phase to 'inference'; data format may be changed if needed set_learning_phase() # inspect the model meta_path = os.path.join(FLAGS.model_dir_dst, 'model.ckpt.meta') inspect_model(meta_path) # exit normally return 0 except ValueError: traceback.print_exc() return 1 # exit with errors
15,681
def load_staging_tables(cur, conn, schema): """ The Function load data from S3 to staging tables which user made. Args: cur: Database cursor. conn: Connection for database schema: Schema for selected talbe Returns: None """ for query in copy_table_queries: cur.execute(query.format(schema)) conn.commit()
15,682
def _build_type(type_, value, property_path=None): """ Builds the schema definition based on the given type for the given value. :param type_: The type of the value :param value: The value to build the schema definition for :param List[str] property_path: The property path of the current type, defaults to None, optional :return: The built schema definition :rtype: Dict[str, Any] """ if not property_path: property_path = [] for (type_check, builder) in ( (is_enum_type, _build_enum_type), (is_null_type, _build_null_type), (is_bool_type, _build_bool_type), (is_string_type, _build_string_type), (is_integer_type, _build_integer_type), (is_number_type, _build_number_type), (is_array_type, _build_array_type), (is_object_type, _build_object_type), ): if type_check(type_): return builder(value, property_path=property_path) # NOTE: warning ignores type None (as that is the config var default) if type_: warnings.warn(f"unhandled translation for type {type_!r} with value {value!r}") return {}
15,683
def lidar_2darray_to_rgb(array: np.ndarray) -> np.ndarray: """Returns a `NumPy` array (image) from a 4 channel LIDAR point cloud. Args: array: The original LIDAR point cloud array. Returns: The `PyGame`-friendly image to be visualized. """ # Get array shapes. W, H, C = array.shape assert C == 2 # Select channel. img = np.c_[array, np.zeros(shape=(W, H, 1))] # Convert to 8-bit image. img = 255 * (img / img.max()) return img
15,684
def changed_files(include_added_files=True): """ Return a generator of filenames changed in this commit. Excludes files that were just deleted. """ diff_filter = "CMRTUXB" if include_added_files: diff_filter += "A" git_diff_command = "git diff-index --cached --name-only --diff-filter=%s HEAD" % diff_filter git_out, git_err, git_rc = run_command(git_diff_command) if git_err or git_rc: print "# Internal hook error:\n%s\n%s\n" % (git_out, git_err) sys.exit(1) cleaned_filenames = [filename.strip() for filename in git_out.splitlines()] for filename in cleaned_filenames: if len(filename) > 0: yield filename
15,685
def args(): """ --all (some subset that is useful for someone) --packages (maybe positional?) """ parser = argparse.ArgumentParser("serviced-tests") parser.add_argument("-v", "--verbose", action="store_true", help="verbose logging") types = parser.add_argument_group("Test Type") types.add_argument("--unit", action="store_true", help="pass the 'unit' build tag") types.add_argument("--integration", action="store_true", help="pass the 'integration' build tag") options = parser.add_argument_group("Test Options") options.add_argument("--quick", action="store_true", help="don't run tests with the '!quick' build constraint") options.add_argument("--root", action="store_true", help="run the tests as the root user") options.add_argument("--race", action="store_true", help="run tests with race detection") options.add_argument("--cover", action="store_true", help="run tests with coverage") options.add_argument("--tag", action="append", help="optional extra build tag (may be specified multiple times)") options.add_argument("--include_vendor", action="store_true", dest="include_vendor", help="run tests against the vendor directory") coverage = parser.add_argument_group("Coverage Options") coverage.add_argument("--cover-html", required=False, help="output file for HTML coverage report") coverage.add_argument("--cover-xml", required=False, help="output file for Cobertura coverage report") fixtures = parser.add_argument_group("Fixture Options") fixtures.add_argument("--elastic", action="store_true", help="start an elastic server before the test run") fixtures.add_argument("--elastic-port", type=int, help="elastic server port", default=9202) parser.add_argument("--packages", nargs="*", help="serviced packages to test, relative to the serviced root (defaults to ./...)") parser.add_argument("arguments", nargs=argparse.REMAINDER, help="optional arguments to be passed through to the test runner") return parser.parse_args()
15,686
def rollout(dataset: RPDataset, env: RPEnv, policy: Policy, batch_size: int, num_workers: int = 4, disable_progress_bar: bool = False, **kwargs) -> Tuple[Tensor, Union[List, Dict]]: """Policy evaluation rollout Args: dataset: dataset to evaluate on env: the routing simulation environment policy: policy model batch_size: size of mini-batches num_workers: num cores to distribute data loading disable_progress_bar: flag to disable tqdm progress bar Returns: tensor of final costs per instance """ costs, infos = [], [] for batch in tqdm( DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False # do not random shuffle data in rollout! ), disable=disable_progress_bar, ): with torch.no_grad(): cost, info = eval_episode(batch, env, policy, **kwargs) costs.append(cost.cpu()) infos.append(info) env.clear_cache() return torch.cat(costs, dim=0), infos
15,687
def test_coinco_bert(bert_subst_generator, coinco_dataset_reader): """ Reproduction command: python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/bert.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_bert' --force --experiment-name='lexsub-all-models' --run-name='coinco_bert' """ scores = LexSubEvaluation( substitute_generator=bert_subst_generator, dataset_reader=coinco_dataset_reader, ).evaluate()["mean_metrics"] assert scores["gap_normalized"] == pytest.approx(50.5, 0.02), str(scores) assert scores["prec@1"] == pytest.approx(42.56), str(scores) assert scores["prec@3"] == pytest.approx(32.64), str(scores) assert scores["rec@10"] == pytest.approx(28.73), str(scores)
15,688
def merge(fname1, fname2, how="inner", on=None): """ Merging two csv files. Usage: ph merge a.csv b.csv --on=ijk """ hows = ("left", "right", "outer", "inner") if how not in hows: sys.exit("Unknown merge --how={}, must be one of {}".format(how, hows)) df1 = pd.read_csv(fname1) df2 = pd.read_csv(fname2) if on is None: pipeout(pd.merge(df1, df2, how=how)) else: pipeout(pd.merge(df1, df2, how=how, on=on))
15,689
def regex_ignore_case(term_values): """ turn items in list "term_values" to regexes with ignore case """ output=[] for item in term_values: output.append(r'(?i)'+item) return output
15,690
def check_aws_installed(): """Checks that AWS CLI is installed.""" if which('aws') is None: raise ValueError('AWS CLI is not installed.')
15,691
def importance_sampling_integrator(function: Callable[..., np.ndarray], pdf: Callable[..., np.ndarray], sampler: Callable[..., int], n: int = 10000, seed: int = 1 ) -> np.array: """ Parameters ---------- function : TYPE DESCRIPTION. pdf : TYPE DESCRIPTION. sampler : TYPE DESCRIPTION. n : TYPE, optional DESCRIPTION. The default is 10000. seed : TYPE, optional DESCRIPTION. The default is 1. Returns ------- TYPE DESCRIPTION. """ # Set a random seed. np.random.seed(seed) # Generate n samples from the probability distribution. samples = sampler(n) #ipdb.set_trace() # Evaluate the function at the samples and divide by the probability # density of the distribution at those samples. sampled_values = function(samples) / pdf(samples) # Add the estimate of the integral to the estimates list. estimates = np.mean(sampled_values, axis=1) # Altered this for the batching. # Return the mean of the estimates as the estimate of the integral. return np.array(estimates)
15,692
def r1_gradient_penalty_loss(discriminator, real_data, mask=None, norm_mode='pixel', loss_scaler=None, use_apex_amp=False): """Calculate R1 gradient penalty for WGAN-GP. R1 regularizer comes from: "Which Training Methods for GANs do actually Converge?" ICML'2018 Diffrent from original gradient penalty, this regularizer only penalized gradient w.r.t. real data. Args: discriminator (nn.Module): Network for the discriminator. real_data (Tensor): Real input data. mask (Tensor): Masks for inpainting. Default: None. norm_mode (str): This argument decides along which dimension the norm of the gradients will be calculated. Currently, we support ["pixel" , "HWC"]. Defaults to "pixel". Returns: Tensor: A tensor for gradient penalty. """ batch_size = real_data.shape[0] real_data = real_data.clone().requires_grad_() disc_pred = discriminator(real_data) if loss_scaler: disc_pred = loss_scaler.scale(disc_pred) elif use_apex_amp: from apex.amp._amp_state import _amp_state _loss_scaler = _amp_state.loss_scalers[0] disc_pred = _loss_scaler.loss_scale() * disc_pred.float() gradients = autograd.grad( outputs=disc_pred, inputs=real_data, grad_outputs=torch.ones_like(disc_pred), create_graph=True, retain_graph=True, only_inputs=True)[0] if loss_scaler: # unscale the gradient inv_scale = 1. / loss_scaler.get_scale() gradients = gradients * inv_scale elif use_apex_amp: inv_scale = 1. / _loss_scaler.loss_scale() gradients = gradients * inv_scale if mask is not None: gradients = gradients * mask if norm_mode == 'pixel': gradients_penalty = ((gradients.norm(2, dim=1))**2).mean() elif norm_mode == 'HWC': gradients_penalty = gradients.pow(2).reshape(batch_size, -1).sum(1).mean() else: raise NotImplementedError( 'Currently, we only support ["pixel", "HWC"] ' f'norm mode but got {norm_mode}.') if mask is not None: gradients_penalty /= torch.mean(mask) return gradients_penalty
15,693
def stop_all(): """stop all running animations. see pygame_animation.Animation.stop for more information.""" while _running: _running[0].stop(noerror=True)
15,694
def assert_synced_channel_state( token_network_identifier: TokenNetworkID, app0: App, balance0: Balance, pending_locks0: List[HashTimeLockState], app1: App, balance1: Balance, pending_locks1: List[HashTimeLockState], ) -> None: """ Assert the values of two synced channels. Note: This assert does not work for an intermediate state, where one message hasn't been delivered yet or has been completely lost.""" # pylint: disable=too-many-arguments channel0 = get_channelstate(app0, app1, token_network_identifier) channel1 = get_channelstate(app1, app0, token_network_identifier) assert channel0.our_state.contract_balance == channel1.partner_state.contract_balance assert channel0.partner_state.contract_balance == channel1.our_state.contract_balance total_token = channel0.our_state.contract_balance + channel1.our_state.contract_balance our_balance0 = channel.get_balance(channel0.our_state, channel0.partner_state) partner_balance0 = channel.get_balance(channel0.partner_state, channel0.our_state) assert our_balance0 + partner_balance0 == total_token our_balance1 = channel.get_balance(channel1.our_state, channel1.partner_state) partner_balance1 = channel.get_balance(channel1.partner_state, channel1.our_state) assert our_balance1 + partner_balance1 == total_token locked_amount0 = sum(lock.amount for lock in pending_locks0) locked_amount1 = sum(lock.amount for lock in pending_locks1) assert_balance(channel0, balance0, locked_amount0) assert_balance(channel1, balance1, locked_amount1) # a participant's outstanding is the other's pending locks. assert_locked(channel0, pending_locks0) assert_locked(channel1, pending_locks1) assert_mirror(channel0, channel1) assert_mirror(channel1, channel0)
15,695
def visualize(args): """Return the visualized output""" ret = "" cmd_list = json.load(args.results)['cmd_list'] cmd_list = util.filter_cmd_list(cmd_list, args.labels_to_include, args.labels_to_exclude) (cmd_list, label_map) = util.translate_dict(cmd_list, args.label_map) for cmd in cmd_list: values = [] if 'jobs' in cmd: for job in cmd['jobs']: if 'results' in job: for res in job['results']: match_list = re.findall(args.parse_regex, res['stdout']) if res['success'] and len(match_list) > 0: for match in match_list: values.append(args.py_type(match)) else: values.append("N/A") succeed_values = util.extract_succeed_results(cmd, args.parse_regex, args.py_type) mean = util.mean(succeed_values) std = util.standard_deviation(succeed_values) if args.csv: sep = args.csv_separator ret += "%s%s %.4f%s %.4f" % (label_map[cmd['label']], sep, mean, sep, std) else: ret += "%s: %s" % (label_map[cmd['label']], values) if len(succeed_values) > 0: ret += " %.4f" % mean ret += " (%.4f)" % std ret += "\n" return ret
15,696
def send_request(apikey, key_root, data, endpoint): """Send a request to the akismet server and return the response.""" url = 'http://%s%s/%s/%s' % ( key_root and apikey + '.' or '', AKISMET_URL_BASE, AKISMET_VERSION, endpoint ) try: response = open_url(url, data=url_encode(data)) except: return try: return response.data.strip() finally: response.close()
15,697
def request_set_bblk_trace_options(*args): """ request_set_bblk_trace_options(options) Post a 'set_bblk_trace_options()' request. @param options (C++: int) """ return _ida_dbg.request_set_bblk_trace_options(*args)
15,698
def range_str(values: iter) -> str: """ Given a list of integers, returns a terse string expressing the unique values. Example: indices = [0, 1, 2, 3, 4, 7, 8, 11, 15, 20] range_str(indices) >> '0-4, 7-8, 11, 15 & 20' :param values: An iterable of ints :return: A string of unique value ranges """ trial_str = '' values = list(set(values)) for i in range(len(values)): if i == 0: trial_str += str(values[i]) elif values[i] - (values[i - 1]) == 1: if i == len(values) - 1 or values[i + 1] - values[i] > 1: trial_str += f'-{values[i]}' else: trial_str += f', {values[i]}' # Replace final comma with an ampersand k = trial_str.rfind(',') if k > -1: trial_str = f'{trial_str[:k]} &{trial_str[k + 1:]}' return trial_str
15,699