content
stringlengths
22
815k
id
int64
0
4.91M
def show_set(data_set): """ 显示集合数据 :param data_set: 数据集 :return: None """ data_list = list(data_set) show_string(data_list)
15,900
def get_high_accuracy_voronoi_nodes(structure, rad_dict, probe_rad=0.1): """ Analyze the void space in the input structure using high accuracy voronoi decomposition. Calls Zeo++ for Voronoi decomposition. Args: structure: pymatgen.core.structure.Structure rad_dict (optional): Dictionary of radii of elements in structure. If not given, Zeo++ default values are used. Note: Zeo++ uses atomic radii of elements. For ionic structures, pass rad_dict with ionic radii probe_rad (optional): Sampling probe radius in Angstroms. Default is 0.1 A Returns: voronoi nodes as pymatgen.core.structure.Strucutre within the unit cell defined by the lattice of input structure voronoi face centers as pymatgen.core.structure.Strucutre within the unit cell defined by the lattice of input structure """ with ScratchDir('.'): name = "temp_zeo1" zeo_inp_filename = name + ".cssr" ZeoCssr(structure).write_file(zeo_inp_filename) rad_flag = True rad_file = name + ".rad" with open(rad_file, 'w+') as fp: for el in rad_dict.keys(): print("{} {}".format(el, rad_dict[el].real), file=fp) atmnet = AtomNetwork.read_from_CSSR( zeo_inp_filename, rad_flag=rad_flag, rad_file=rad_file) # vornet, vor_edge_centers, vor_face_centers = \ # atmnet.perform_voronoi_decomposition() red_ha_vornet = \ prune_voronoi_network_close_node(atmnet) # generate_simplified_highaccuracy_voronoi_network(atmnet) # get_nearest_largest_diameter_highaccuracy_vornode(atmnet) red_ha_vornet.analyze_writeto_XYZ(name, probe_rad, atmnet) voro_out_filename = name + '_voro.xyz' voro_node_mol = ZeoVoronoiXYZ.from_file(voro_out_filename).molecule species = ["X"] * len(voro_node_mol.sites) coords = [] prop = [] for site in voro_node_mol.sites: coords.append(list(site.coords)) prop.append(site.properties['voronoi_radius']) lattice = Lattice.from_parameters(structure.lattice.parameters) vor_node_struct = Structure( lattice, species, coords, coords_are_cartesian=True, to_unit_cell=True, site_properties={"voronoi_radius": prop}) return vor_node_struct
15,901
def setUpBlobDetector(): """ Configure parameters for a cv2 blob detector, and returns the detector. """ params = cv2.SimpleBlobDetector_Params() params.minThreshold = 0 params.maxThreshold = 255 params.filterByArea = True params.minArea = 1500 params.maxArea = 25000 params.filterByCircularity = False params.filterByColor = False params.filterByConvexity = False params.filterByInertia = False detector = cv2.SimpleBlobDetector_create(params) return detector
15,902
def upload_image(picBase64, album, name, title, description, access_token): """ POST. Needs auth token. Basic Response. Uploads all images in given directory to specific album ID """ url = 'https://api.imgur.com/3/image' request = urllib2.Request(url, headers={'Authorization' : 'Bearer {}'.format(access_token)}) values = { 'image' : picBase64, 'album' : album.encode('utf-8'), 'type' : 'base64', 'name' : name.encode('utf-8'), 'title' : title.encode('utf-8'), 'description' : description } data = urllib.urlencode(values) content = urllib2.urlopen(request, data) content_json = content.read() content_json = json.loads(content_json)
15,903
def raise_keymap(): """ ! @ # $ % || ^ & * ( ) DEL ESC || PGDN PGUP PSCR CAPS volup ENT reset || UP voldn super shift space bspc|| alt ent LEFT DOWN RGHT """ left = [ [KC.N1, KC.N2, KC.N3, KC.N4, KC.N5], [KC.F1, KC.F2, KC.F3, KC.F4, KC.F5], [KC.F11, KC.F12, KC.LPRN, KC.RPRN, KC.AMPR], [KC.NO, KC.INS, KC.LGUI, KC.LSFT, KC.SPC, KC.BSPC], ] right = [ [ KC.N6, KC.N7, KC.N8, KC.N9, KC.N0], [ KC.F6, KC.F7, KC.F8, KC.F9, KC.F10], [ KC.GRV, KC.LBRC, KC.RBRC, KC.PSLS, KC.BSLS], [KC.LALT, KC.ENT, KC.TRNS, KC.DOT, KC.PMNS, KC.EQL], ] return [left, right]
15,904
def runetl(config, log): """ run etl """ log.info('run ETL') genres = import_otrgenres(config, log) """ loop back for 10 days and import""" iterdate = datetime.now().date() - timedelta(days=10) startdate = datetime.now().date() - timedelta(days=8) enddate = datetime.now().date() while (iterdate <= enddate): if (iterdate < startdate): """ housekeeping(iterdate) """ housekeeping(iterdate, config, log) else: import_otrepg(iterdate, genres, config, log) iterdate = iterdate + timedelta(days=1) update_toprecordings(config, log) update_torrents(startdate, config, log) log.info('successfully run ETL and Houskeeping!') pass
15,905
def sample_cmd() -> Command: """Useful for testing constraints against a variety of parameter kinds. Parameters have names that should make easy to remember their "kind" without the need for looking up this code.""" @cloup.command() # Optional arguments @click.argument('arg1', required=False) @click.argument('arg2', required=False) # Plain options without default @cloup.option('--str-opt') @cloup.option('--int-opt', type=int) @cloup.option('--bool-opt', type=bool) # Flags @cloup.option('--flag / --no-flag') @cloup.option('--flag2', is_flag=True) # Options with default @cloup.option('--def1', default=1) @cloup.option('--def2', default=2) # Options that take a tuple @cloup.option('--tuple', nargs=2, type=int) # Options that can be specified multiple times @cloup.option('--mul1', type=int, multiple=True) @cloup.option('--mul2', type=int, multiple=True) def f(**kwargs): print('It works') return cast(Command, f)
15,906
def get_linenos(obj): """Get an object’s line numbers in its source code file""" try: lines, start = inspect.getsourcelines(obj) except TypeError: # obj is an attribute or None return None, None except OSError: # obj listing cannot be found # This happens for methods that are not explicitly defined # such as the __init__ method for a dataclass return None, None else: return start, start + len(lines) - 1
15,907
def enter_user_trigger_critical_section(user_id): """Set semaphore noting users trigger state is actively being processed A number of asynchronous tasks are involved in processing a users results and determining their trigger state. This endpoint is used to set the semaphore used by other parts of the system to determine if results are available or still pending. :raises AsyncLockUnavailable: if lock for user is already present :raises TransitionNotAllowed: if user's current trigger state won't allow a transition to the ``inprocess`` state. """ ts = users_trigger_state(user_id) sm = EMPRO_state(ts) sm.begin_process() # Record the historical transformation via insert. current_app.logger.debug( "record state change to 'inprocess' from " f"enter_user_trigger_critical_section({user_id})") ts.insert(from_copy=True) # Now 'inprocess', obtain the lock to be freed at the conclusion # of `evaluate_triggers()` critical_section = TimeoutLock(key=EMPRO_LOCK_KEY.format(user_id=user_id)) critical_section.__enter__()
15,908
def create_solution_board(width=6, height=6): """Randomly generates a new board with width by height size """ if type(width) != int or type(height) != int: raise TypeError('Arguments must be int type') boxes = width * height if boxes % 2 != 0: raise ValueError('Number of boxes is not multiple of two') numbers = list(range(1, boxes // 2 + 1)) numbers = numbers + numbers random.shuffle(numbers) board = [] for index in range(height): board.append([]) for _ in range(width): random_number = numbers.pop() board[index].append(random_number) board[index] = board[index] return board
15,909
def _getE(s,R,W,V = None): """The sum of the energies for the states present in the solution. Args: s (list of int): The number of samples points along each basis vector. R (numpy.ndarray): The basis vectors for the unit cell. W (numpy.ndarray): A matrix containing the expansion coefficients for the wavefunctions Returns: E (numpy.ndarray): A vector of the energies at the sample points. """ from pydft.poisson import _O_operator, _L_operator, _B_operator if V == None: #pragma: no cover V = _sho_V O_t = _O_operator(s,R,W) U = np.dot(np.conj(W.T),_O_operator(s,R,W)) Vt = np.transpose(np.conj(_Vdual(s,R, V = V))) IW = _B_operator(s,R,W) Uinv = np.linalg.inv(U) IWU = _B_operator(s,R,np.dot(W,Uinv)) n = _diagouter(IW,IWU) Ew = np.trace(np.dot(np.conj(np.transpose(W)),_L_operator(s,R,np.dot(W,Uinv)))) E = (-1.)*Ew/2. + np.dot(Vt,n) return E
15,910
def get_gt_list(request): """ This view returns the list of groundtruths associated to a user and a specific configuration of institute, usecase and language. .js files: InfoAboutConfiguration.js DownloadGT.js""" groundTruths = 0 json_resp = {} ins = request.GET.get('inst',None) lang = request.GET.get('lang',None) use = request.GET.get('use',None) action = request.GET.get('action',None) token = request.GET.get('token',None) reptype = request.GET.get('reptype',None) annotation_mode = request.GET.get('annotation_mode','Human') if ins == '': ins = None if use == '': use = None if lang == '': lang = None if token == 'all': ns_robot = NameSpace.objects.get(ns_id='Robot') ns_human = NameSpace.objects.get(ns_id='Human') # rob_user = User.objects.get(username='Robot_user',ns_id=ns_robot) list_gt = GroundTruthLogFile.objects.filter(ns_id=ns_human).count() groundTruths = list_gt # gt_rob = GroundTruthLogFile.objects.filter(ns_id=ns_robot,username = rob_user) i = 0 # print(groundTruths) # for el in gt_rob: # gts = GroundTruthLogFile.objects.filter(ns_id=ns_robot,gt_type = el.gt_type,id_report = el.id_report_id,language = el.language).exclude(insertion_time = el.insertion_time) # gts_count = gts.count() # # print('count: '+str(i)+' '+str(gts.count())) # i = i+1 # groundTruths = groundTruths + gts_count else: with connection.cursor() as cursor: if reptype == 'reports': if annotation_mode == 'Human': cursor.execute( "SELECT COUNT(*) FROM report AS r INNER JOIN ground_truth_log_file AS g ON g.id_report = r.id_report AND g.language = r.language INNER JOIN topic_has_document as t on t.id_report = r.id_report and r.language = t.language WHERE r.institute = COALESCE(%s,r.institute) AND t.name = %s AND r.language = COALESCE(%s,r.language) AND g.gt_type = %s AND g.ns_id = %s and r.institute != %s", [ins, use, lang, action, 'Human','PUBMED']) groundTruths = cursor.fetchone()[0] else: if annotation_mode == 'Human': cursor.execute( "SELECT COUNT(*) FROM report AS r INNER JOIN ground_truth_log_file AS g ON g.id_report = r.id_report AND g.language = r.language INNER JOIN topic_has_document as t on t.id_report = r.id_report and r.language = t.language WHERE t.name = %s AND r.language = %s AND g.gt_type = %s AND g.ns_id = %s and r.institute = %s", [use, 'english', action, 'Human','PUBMED']) groundTruths = cursor.fetchone()[0] json_resp['ground_truths'] = groundTruths # print(json_resp) return JsonResponse(json_resp)
15,911
def to_dict(item: Any) -> MutableMapping[Hashable, Any]: """Converts 'item' to a MutableMapping. Args: item (Any): item to convert to a MutableMapping. Raises: TypeError: if 'item' is a type that is not registered. Returns: MutableMapping: derived from 'item'. """ if isinstance(item, MutableMapping): return item else: raise TypeError( f'item cannot be converted because it is an unsupported type: ' f'{type(item).__name__}')
15,912
def node(*args, **kwargs): """ args[0] -- a XML tag args[1:] -- an array of children to append to the newly created node or if a unicode arg is supplied it will be used to make a text node kwargs -- attributes returns a xml.dom.minidom.Element """ blocked_attributes = ['tag'] tag = args[0] if len(args) > 0 else kwargs['tag'] args = args[1:] result = DetachableElement(tag) unicode_args = [u for u in args if type(u) == unicode] assert len(unicode_args) <= 1 parsed_string = False # kwargs is an xml attribute dictionary, # here we convert it to a xml.dom.minidom.Element for k, v in iter(kwargs.items()): if k in blocked_attributes: continue if k == 'toParseString': if v is True and len(unicode_args) == 1: parsed_string = True # Add this header string so parseString can be used? s = u'<?xml version="1.0" ?><'+tag+'>' + unicode_args[0]\ + u'</'+tag+'>' parsed_node = parseString(s.encode("utf-8")).documentElement # Move node's children to the result Element # discarding node's root for child in parsed_node.childNodes: result.appendChild(copy.deepcopy(child)) else: result.setAttribute(k, v) if len(unicode_args) == 1 and not parsed_string: text_node = PatchedText() text_node.data = unicode_args[0] result.appendChild(text_node) for n in args: if type(n) == int or type(n) == float or type(n) == bytes: text_node = PatchedText() text_node.data = unicode(n) result.appendChild(text_node) elif type(n) is not unicode: try: result.appendChild(n) except: raise Exception(type(n), n) return result
15,913
def get_volume_uuid(path: str) -> str: """Returns the volume UUID for the given path or None if not found""" try: output = subprocess.check_output(["diskutil", "info", "-plist", path]) plist = plistlib.loads(output) return plist.get("VolumeUUID", None) except subprocess.CalledProcessError as e: return None
15,914
def prob_calibration_1d(Y_obs, Y_sample, title="", save_addr="", fontsize=12): """Plots the reliability diagram (i.e. CDF for F^{-1}(y) ) for 1D prediction. Args: Y_obs: (np.ndarray of float32) N observations of dim (N, 1) Y_sample: (np.ndarray of float32) Samples of size M corresponding to the N observations. dim (N, M) title: (str) Title of the image. save_addr: (str) Address to save image to. fontsize: (int) font size for title and axis labels """ if save_addr: pathlib.Path(save_addr).parent.mkdir(parents=True, exist_ok=True) plt.ioff() ecdf_sample = metric_util.ecdf_eval(Y_obs, Y_sample) ecdf_func = metric_util.make_empirical_cdf_1d(ecdf_sample) ecdf_eval = np.linspace(0, 1, 1000) ecdf_valu = ecdf_func(ecdf_eval) fig, ax = plt.subplots() ax.plot(ecdf_eval, ecdf_eval, c="black") ax.plot(ecdf_eval, ecdf_valu) total_variation = np.mean(np.abs(ecdf_eval - ecdf_valu)) plt.title("Reliability Index, {}, Score: {:.3f}".format( title, total_variation), fontsize=fontsize) plt.xlabel(r"Empirical CDF for $\hat{F}(Y_i|X_i)$", fontsize=fontsize) plt.ylabel("Expected CDF $Uniform(0, 1)$", fontsize=fontsize) if save_addr: plt.savefig(save_addr) plt.close() plt.ion()
15,915
def test_reveal_extra_to_args(): """ Test `reveal_extra_to_args()` function. """ text_config = """ reveal_extra: key0: value0 key1: value1 """ config = yaml.safe_load(text_config) args = reveal_extra_to_args(config) assert len(args) == 4 assert args[::2] == ['-V', '-V'] assert 'key0=value0' in args assert 'key1=value1' in args
15,916
def smart_open(filename=None, fmode=None): """Context manager to handle both stdout & files in the same manner. :param filename: Filename to open. :type filename: ``str`` or ``None`` :param fmode: Mode in which to open a given file. :type fmode: ``str`` or ``None`` """ if filename and filename != "-": fh = open(filename, fmode) else: fh = sys.stdout try: yield fh finally: if fh is not sys.stdout: fh.close()
15,917
def test_omit_default_roundtrip(cl_and_vals): """ Omit default on the converter works. """ converter = Converter(omit_if_default=True) cl, vals = cl_and_vals @attr.s class C(object): a: int = attr.ib(default=1) b: cl = attr.ib(factory=lambda: cl(*vals)) inst = C() unstructured = converter.unstructure(inst) assert unstructured == {} assert inst == converter.structure(unstructured, C) inst = C(0) unstructured = converter.unstructure(inst) assert unstructured == {"a": 0} assert inst == converter.structure(unstructured, C)
15,918
def test_all(): """ 测试测试模块下所有的测试脚本 :return: """ suite = unittest.TestSuite() all_cases = unittest.defaultTestLoader.discover('.', 'test_*.py') for case in all_cases: suite.addTests(case) runner = xmlrunner.XMLTestRunner(output='report') runner.run(suite)
15,919
def mylog10(x): """Return the base-10 logarithm of x.""" return math.log10(x)
15,920
def get_RGB_to_RGB_matrix(in_colorspace, out_colorspace, primaries_only=False): """Return RGB to RGB conversion matrix. Args: in_colorspace (str): input colorspace. out_colorspace (str): output colorspace. Kwargs: primaries_only (bool): primaries matrix only, doesn't include white point. Returns: .numpy.matrix (3x3) """ # Get colorspace in to XYZ matrix in_matrix = get_colorspace_matrix(in_colorspace, primaries_only) # Get XYZ to colorspace out matrix out_matrix = get_colorspace_matrix(out_colorspace, primaries_only, inv=True) # Return scalar product of the 2 matrices return numpy.dot(out_matrix, in_matrix)
15,921
def one_hot_arbitrary_bins(value_to_bin=104): """Creates OHE numpy array using an arbitrary array of binning thresholds. Args: value_to_bin (int, optional): Number to convert to OHE array. Defaults to 104. """ bins = np.array([-10000., -5000., -1000., -500., -250., -150., -100., -50., 0., 50., 100., 150., 250., 500., 1000., 5000., 10000.]) placed_bins = np.digitize(value_to_bin, bins=bins) ohe_bins = np.eye(len(bins)+1)[placed_bins] print(ohe_bins)
15,922
def test_get_sections(test_dict: FullTestDict): """ - GIVEN an html section - WHEN the subsections are extracted - THEN check the array of subsections is correct """ htmls = test_dict['ojad']['htmls'] parsed_htmls = [Soup(html, "html.parser") for html in htmls] expected_sections = test_dict['ojad']['expected_sections'] assert ojad.get_sections(parsed_htmls) == [ (section['writing_section'], section['reading_sections']) for section in expected_sections ]
15,923
def normalize_string(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
15,924
def sub_band_as_numpy(band, y_limits, data_type=None): """Read subsets of the dataset so that we don't hold the whole thing in memory. It seems wasteful to reread parts, but GDAL keeps its own cache. """ data_type = data_type if data_type else INT32 y_size = y_limits[1] - y_limits[0] LOGGER.debug(f"sub_band y_size={y_size} y_limits {y_limits[0]}") scanline_buffer = band.ReadRaster( xoff=0, yoff=y_limits[0], xsize=band.XSize, ysize=y_size, buf_xsize=band.XSize, buf_ysize=y_size, buf_type=data_type.gdal, ) scanline = np.frombuffer(scanline_buffer, dtype=data_type.numpy) return np.reshape(scanline, (band.XSize, y_size))
15,925
def full_reverse(viewname, urlconf=None, args=None, kwargs=None, current_app=None, scheme=None, domain=None, subdomain=None): """ First, obtains the absolute path of the URL matching given ``viewname`` with its parameters. Then, prepends the path with the scheme name and the authority part (domain and subdomain) and returns it. Args:: viewname (str): Name of the URL pattern. urlconf (str): Path of the module containing URLconfs. args (list): Positional arguments of the URL pattern. kwargs (dict): Keyword arguments of the URL pattern. current_app (str): App identifier. scheme (str): Scheme name (commonly called protocol). domain (str): Domain name. subdomain (str): Subdomain name. Returns:: The full URL matching given view with its parameters. Examples:: >>> full_reverse('client-detail-view', args=[client.id]) 'http://example.com/clients/client/123/' >>> full_reverse('client-list-view', scheme='https', subdomain='admin') 'https://admin.example.com/clients/' Raises:: NoReverseMatch: If no URL pattern matches the given ``viewname``. ValueError: If both ``args`` and ``kwargs`` are given. """ location = reverse(viewname, urlconf, args, kwargs, current_app) return build_full_url(location, scheme, domain, subdomain)
15,926
def draw_lrtb_rectangle_filled(left: float, right: float, top: float, bottom: float, color: Color): """ Draw a rectangle by specifying left, right, top, and bottom edges. Args: :left: The x coordinate of the left edge of the rectangle. :right: The x coordinate of the right edge of the rectangle. :top: The y coordinate of the top of the rectangle. :bottom: The y coordinate of the rectangle bottom. :color: The color of the rectangle. :border_width: The width of the border in pixels. Defaults to one. Returns: None Raises: :AttributeErrror: Raised if left > right or top < bottom. """ if left > right: raise AttributeError("Left coordinate {} must be less than or equal " "to the right coordinate {}".format(left, right)) if bottom > top: raise AttributeError("Bottom coordinate {} must be less than or equal " "to the top coordinate {}".format(bottom, top)) center_x = (left + right) / 2 center_y = (top + bottom) / 2 width = right - left height = top - bottom draw_rectangle_filled(center_x, center_y, width, height, color)
15,927
def test_regexp_on_index_out_of_range(): """Test regexp when group indeces are out of range.""" regexp = apply_regexp( 'Hard work', {'search': 'r', 'group': [1, 2, 3]}, ) assert isinstance(regexp.failure(), IndexError) is True assert regexp.failure().args == ('list index out of range',)
15,928
def get_object_or_none(model_class, **kwargs): """Identical to get_object_or_404, except instead of returning Http404, this returns None. """ try: return model_class.objects.get(**kwargs) except model_class.DoesNotExist: return None
15,929
def GenerateTests(): """Generate all tests.""" filelist = [] for ii in range(len(_GROUPS)): filename = GenerateFilename(_GROUPS[ii]) filelist.append(filename) WriteTest(filename, ii, ii + 1) return filelist
15,930
def shift_df_generator(empty_df, day_lower_hr_lim, day_upper_hr_lim): """Generate day and night dataframe. Parameters ---------- empty_df : DataFrame A DataFrame with timestamp and 'Temperature (Celsius)' with all zeros. day_lower_hr_lim : int The lower hour limit that constitutes the start of the day shift. day_upper_hr_lim : int The upper hour limit that constitutes the end of the day shift. Returns ------- day_df : DataFrame A DataFrame containing only dayshift values. night_df : DataFrame A DataFrame containing only nightshift values. """ # Create 2 temporary dataframes (1 for dayshift, 1 for nightshift) day_df = empty_df.loc[(empty_df['Timestamp'].dt.hour >= day_lower_hr_lim) & (empty_df['Timestamp'].dt.hour < day_upper_hr_lim)] # Night dataframe will consist of rows with indices not taken by day_df night_df = empty_df[~empty_df.index.isin(day_df.index)] return day_df, night_df
15,931
def json_loads(data, handle=False): """ 封装的json load :param data: :param handle: 补丁, False: 默认不特殊处理: True: 不走正则 :return: """ if handle: return json.loads(data.strip()) return json.loads(regex.sub(r"\\\\", data.strip()))
15,932
def elina_linexpr0_size(linexpr): """ Return the size of an ElinaLinexpr0. Parameters ---------- linexpr : ElinaLinexpr0Ptr Pointer to the ElinaLinexpr0 that needs to be checked for its size. Returns ------- size_linexpr = c_size_t Size of the ElinaLinexpr0. """ size_linexpr = None try: elina_linexpr0_size_c = elina_auxiliary_api.elina_linexpr0_size elina_linexpr0_size_c.restype = c_size_t elina_linexpr0_size_c.argtypes = [ElinaLinexpr0Ptr] size_linexpr = elina_linexpr0_size_c(linexpr) except: print('Problem with loading/calling "elina_linexpr0_size" from "libelinaux.so"') print('Make sure you are passing ElinaLinexpr0Ptr to the function') return size_linexpr
15,933
def app(): """ Setup our flask test app, this only gets executed once. :return: Flask app """ # params = {"DEBUG": False, "TESTING": True, "WTF_CSRF_ENABLED": False} _app = create_app("config.settings_test") # Establish an application context before running the tests. ctx = _app.app_context() ctx.push() yield _app ctx.pop()
15,934
def _make_index(df, cols=META_IDX, unique=True): """Create an index from the columns/index of a dataframe or series""" def _get_col(c): try: return df.index.get_level_values(c) except KeyError: return df[c] index = list(zip(*[_get_col(col) for col in cols])) if unique: index = pd.unique(index) return pd.MultiIndex.from_tuples(index, names=tuple(cols))
15,935
def handler(event, context): """ Lambda Handler. Returns Hello World and the event and context objects """ print(event) print(context) return { "body": json.dumps('Hello World!') }
15,936
def latex_table(arrays, here=False): """Prints the code for a latex table with empty headings, inserting the data provided into rows. Args: arrays: The list of arrays for the table. here: True if here tag is to be included. """ # Define a 4-space tab (latex uses 4 space tabs). TAB = " " cols = len(arrays[0]) + 1 table_string = ( "\\begin{table}" + int(here)*"[h]" + "\n" + TAB + "\centering\n" + TAB + "\\begin{tabular}{" + cols*'c' + "}\n" + 2*TAB + "\hline\n" + 2*TAB + "" + (cols - 1)*" &" + " \\\\\n" + 2*TAB + "\hline\n" ) # Generate each row and add to string. for array in arrays: new_row = 2*TAB for element in array: new_row += " & " + str(element) new_row += " \\\\\n" table_string += new_row table_string += ( 2*TAB + "\hline\n" + TAB + "\end{tabular}\n" + TAB + "\caption{}\n" + TAB + "\label{tab:}\n" + "\end{table}" ) print(table_string)
15,937
def flatten_concat(tensors: List[tf.Tensor], batch_dims: int = 1) -> tf.Tensor: """Flatten given inputs and concatenate them.""" # tensors [(B, ...), (B, ...)] flattened: List[tf.Tensor] = list() # [(B, X), (B, Y) ...] for tensor in tensors: final_dim = -1 if all(i is not None for i in tensor.shape[batch_dims:]): # We know all the dimensions final_dim = tf.reduce_prod(tensor.shape[batch_dims:]) flat_tensor = tf.reshape( tensor, tf.concat([tf.shape(tensor)[:batch_dims], [final_dim]], 0) ) flattened.append(flat_tensor) return tf.concat(flattened, -1)
15,938
def test_pos_tag(parser, text, method_name, ptb_pos_tags): """Tests that produced POS tags are valid PTB POS tags. Args: parser (SpacyBistParser) text (str): Input test case. method_name (str): Parse method to test. ptb_pos_tags (set of str): Valid PTB POS tags. """ parse_method = getattr(parser, method_name) parsed_doc = parse_method(doc_text=text) assert all([token['pos'] in ptb_pos_tags for sent in parsed_doc for token in sent])
15,939
async def test_discovered_by_dhcp_or_homekit(hass, source, data): """Test we can setup when discovered from dhcp or homekit.""" mocked_bulb = _mocked_bulb() with _patch_discovery(), _patch_discovery_interval(), patch( f"{MODULE_CONFIG_FLOW}.AsyncBulb", return_value=mocked_bulb ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=data ) await hass.async_block_till_done() assert result["type"] == RESULT_TYPE_FORM assert result["errors"] is None with _patch_discovery(), _patch_discovery_interval(), patch( f"{MODULE}.async_setup", return_value=True ) as mock_async_setup, patch( f"{MODULE}.async_setup_entry", return_value=True ) as mock_async_setup_entry: result2 = await hass.config_entries.flow.async_configure(result["flow_id"], {}) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["data"] == { CONF_HOST: IP_ADDRESS, CONF_ID: "0x000000000015243f", CONF_MODEL: MODEL, } assert mock_async_setup.called assert mock_async_setup_entry.called with _patch_discovery( no_device=True ), _patch_discovery_timeout(), _patch_discovery_interval(), patch( f"{MODULE_CONFIG_FLOW}.AsyncBulb", side_effect=CannotConnect ): result3 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=data ) await hass.async_block_till_done() assert result3["type"] == RESULT_TYPE_ABORT assert result3["reason"] == "already_configured"
15,940
def analyze_friends (names,phones,all_areacodes,all_places): """ names: tuple of names phones: tuple of phone numbers (cleaned) all_areacodes: tuple of area codes (3char ints) all_places: tuple of places Goal: Print out how many friends you have and every unique state """ # For TESTING MAKE THE PHONE NUMBER FIRST 3 DIGITS THE SAME AS THE AREA CODE # def get_unique_area_codes(): # """ # Returns a tuple of all unique area codes # """ # area_codes = () # for ph in phones: # if ph[0:3] not in area_codes: # area_codes += (ph[0:3],) # return area_codes def get_States(some_areacodes): """ some_areacodes: tuple of area codes Return a tuple of states ASSOCIATED with area codes """ states = () for ac in some_areacodes: if ac not in all_areacodes: states += ("BAD AREA CODE",) else: index = all_areacodes.index(ac) states += (all_places[index],) return states num_friends = len(names) # Gets number of friends # unique_areacodes = get_unique_area_codes() unique_states = get_States(all_areacodes) print("You have", num_friends, "friends!") print("They live in", unique_states) # Function ends with the print, no returns
15,941
def fast_autoregressive_predict_fn(context, seq_len): """Given a context, autoregressively generate the rest of a sine wave.""" core = hk.LSTM(32) dense = hk.Linear(1) state = core.initial_state(context.shape[0]) # Unroll over the context using `hk.dynamic_unroll`. # As before, we `hk.BatchApply` the Linear for efficiency. context_outs, state = hk.dynamic_unroll( core, context, state, time_major=False, ) context_outs = hk.BatchApply(dense)(context_outs) # Now, unroll one step at a time using the running recurrent state. ar_outs = [] x = context_outs[:, -1, :] times = range(seq_len - context.shape[1]) for _ in times: x, state = core(x, state) x = dense(x) ar_outs.append(x) ar_outs = jnp.stack(ar_outs) ar_outs = ar_outs.transpose(1, 0, 2) return jnp.concatenate([context_outs, ar_outs], axis=1)
15,942
def get_entities(corpus_name): """ Load the dataset from the filesystem corresponding to corpus_name (to see the list of allowed names, use utils.list_corpora() ), and extract all annotated entities. Returns a dict, in which each key is an entity type, which contains a list of entity mentions in the corpus. """ r = read_conll(corpus_name); data = list(r) data2 = [ [(w,iob) for ((w,p),iob) in d] for d in data] data3 = [i for u in data2 for i in u] tags = sentence_utils.get_tagset(data, with_prefix=True) taglist = set([t[2:] for t in list(tags) if t !='O']) entities = {} for key in taglist: entities[key] = [] data3.append((u'O',u'O')) ent = [] entitytype = 'None' for i,item in enumerate(data3[0:-1]): if item[1] != 'O': if item[1][0] == 'B': ent = [] ent.append(item[0]) else: # == I if item[1][0] != 'I': raise ValueError("Should be I") ent.append(item[0]) if data3[i+1][1][2:] != item[1][2:] or data3[i+1][1][0] == 'B': #print i, item entitytype = item[1][2:] entities[entitytype].append(' '.join(ent)) return entities
15,943
def _reporthook(t): """``reporthook`` to use with ``urllib.request`` that prints the process of the download. Uses ``tqdm`` for progress bar. **Reference:** https://github.com/tqdm/tqdm """ last_b = [0] def inner(b: int = 1, bsize: int = 1, tsize: int = None): """ :param b: Number of blocks just transferred [default: 1]. :param bsize: Size of each block (in tqdm units) [default: 1]. :param tsize: Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: t.total = tsize t.update((b - last_b[0]) * bsize) last_b[0] = b return inner
15,944
def serial_rx(sysclk, reset_n, n_stop_bits_i, half_baud_rate_tick_i, baud_rate_tick_i, recieve_i, data_o, ready_o): """ Serial This module implements a reciever serial interface Ports: ----- sysclk: sysclk input reset_n: reset input half_baud_rate_tick_i: half baud rate tick baud_rate_tick_i: the baud rate n_stop_bits_i: number of stop bits recieve_i: rx data_o: the data output in 1 byte ready_o: indicates data_o is valid ----- """ END_OF_BYTE = 7 state_reg = Signal(t_State.ST_WAIT_START_BIT) state = Signal(t_State.ST_WAIT_START_BIT) data_reg = Signal(intbv(0, min = 0, max = 256)) data = Signal(intbv(0, min = 0, max = 256)) ready_reg = Signal(bool(0)) ready = Signal(bool(0)) count_8_bits_reg = Signal(intbv(0, min = 0, max = 8)) count_8_bits = Signal(intbv(0, min = 0, max = 8)) count_stop_bits_reg = Signal(intbv(0, min = 0, max = 8)) count_stop_bits = Signal(intbv(0, min = 0, max = 8)) @always_comb def outputs(): data_o.next = data_reg ready_o.next = ready_reg @always_seq(sysclk.posedge, reset = reset_n) def sequential_process(): state_reg.next = state data_reg.next = data ready_reg.next = ready count_8_bits_reg.next = count_8_bits count_stop_bits_reg.next = count_stop_bits @always_comb def combinational_process(): state.next = state_reg data.next = data_reg ready.next = ready_reg count_8_bits.next = count_8_bits_reg count_stop_bits.next = count_stop_bits_reg if state_reg == t_State.ST_WAIT_START_BIT: ready.next = False if baud_rate_tick_i == True: if recieve_i == False: state.next = t_State.ST_GET_DATA_BITS elif state_reg == t_State.ST_GET_DATA_BITS: if baud_rate_tick_i == True: data.next[count_8_bits_reg] = recieve_i if count_8_bits_reg == END_OF_BYTE: count_8_bits.next = 0 state.next = t_State.ST_GET_STOP_BITS else: count_8_bits.next = count_8_bits_reg + 1 state.next = t_State.ST_GET_DATA_BITS elif state_reg == t_State.ST_GET_STOP_BITS: if baud_rate_tick_i == True: if count_stop_bits_reg == (n_stop_bits_i - 1): count_stop_bits.next = 0 ready.next = True state.next = t_State.ST_WAIT_START_BIT else: count_stop_bits.next = count_stop_bits_reg + 1 else: raise ValueError("Undefined State") return outputs, sequential_process, combinational_process
15,945
def zpad(x, l): """ Left zero pad value `x` at least to length `l`. >>> zpad('', 1) '\x00' >>> zpad('\xca\xfe', 4) '\x00\x00\xca\xfe' >>> zpad('\xff', 1) '\xff' >>> zpad('\xca\xfe', 2) '\xca\xfe' """ return b'\x00' * max(0, l - len(x)) + x
15,946
def websocket_node_status(hass, connection, msg): """Get the status for a Z-Wave node.""" manager = hass.data[DOMAIN][MANAGER] node = manager.get_instance(msg[OZW_INSTANCE]).get_node(msg[NODE_ID]) if not node: connection.send_message( websocket_api.error_message( msg[ID], websocket_api.const.ERR_NOT_FOUND, "OZW Node not found" ) ) return connection.send_result( msg[ID], { ATTR_NODE_QUERY_STAGE: node.node_query_stage, NODE_ID: node.node_id, ATTR_IS_ZWAVE_PLUS: node.is_zwave_plus, ATTR_IS_AWAKE: node.is_awake, ATTR_IS_FAILED: node.is_failed, ATTR_NODE_BAUD_RATE: node.node_baud_rate, ATTR_IS_BEAMING: node.is_beaming, ATTR_IS_FLIRS: node.is_flirs, ATTR_IS_ROUTING: node.is_routing, ATTR_IS_SECURITYV1: node.is_securityv1, ATTR_NODE_BASIC_STRING: node.node_basic_string, ATTR_NODE_GENERIC_STRING: node.node_generic_string, ATTR_NODE_SPECIFIC_STRING: node.node_specific_string, ATTR_NODE_MANUFACTURER_NAME: node.node_manufacturer_name, ATTR_NODE_PRODUCT_NAME: node.node_product_name, ATTR_NEIGHBORS: node.neighbors, OZW_INSTANCE: msg[OZW_INSTANCE], }, )
15,947
def clf2D_slope_intercept(coef=None, intercept=None, clf=None): """ Gets the slop an intercept for the separating hyperplane of a linear classifier fit on a two dimensional dataset. Parameters ---------- coef: The classification normal vector. intercept: The classifier intercept. clf: subclass of sklearn.linear_model.base.LinearClassifierMixin A sklearn classifier with attributes coef_ and intercept_ Output ------ slope, intercept """ if clf is not None: coef = clf.coef_.reshape(-1) intercept = float(clf.intercept_) else: assert coef is not None and intercept is not None slope = - coef[0] / coef[1] intercept = - intercept / coef[1] return slope, intercept
15,948
def _get_imgpaths(datasets: list, verbose=True): """ get image paths Args: datasets (list): dataset names verbose (bool, optional): . Defaults to True. """ img_paths = [] for dname in datasets: img_dir = Path(dname.format(DATASETS_DIR=DATASETS_DIR)) assert img_dir.is_dir(), ANSI.errorstr(f'Cannot find {img_dir}!') img_names = os.listdir(img_dir) for imname in img_names: impath = str(img_dir / imname) img_paths.append(impath) if verbose: msg = f'Loaded {dname} from {ANSI.udlstr(img_dir)}: {len(img_names)} images.' print(msg) assert len(img_paths) > 0, 'No image path loaded' return img_paths
15,949
def build_driver_for_task(task): """Builds a composable driver for a given task. Starts with a `BareDriver` object, and attaches implementations of the various driver interfaces to it. They come from separate driver factories and are configurable via the database. :param task: The task containing the node to build a driver for. :returns: A driver object for the task. :raises: DriverNotFound if node.driver could not be found in the "ironic.hardware.types" namespaces. :raises: InterfaceNotFoundInEntrypoint if some node interfaces are set to invalid or unsupported values. :raises: IncompatibleInterface the requested implementation is not compatible with it with the hardware type. """ node = task.node hw_type = get_hardware_type(node.driver) check_and_update_node_interfaces(node, hw_type=hw_type) bare_driver = driver_base.BareDriver() _attach_interfaces_to_driver(bare_driver, node, hw_type) return bare_driver
15,950
def evaluate(eval_model, criterion, ntokens, data_source, cnf): """ Evaluates the training loss of the given model """ eval_model.eval() # Turn on the evaluation mode total_loss = 0.0 src_mask = generate_square_subsequent_mask(cnf.input_length).to(cnf.device) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, cnf.input_length): data, targets = get_batch(data_source, i, cnf) if data.size(0) != cnf.input_length: src_mask = generate_square_subsequent_mask(data.size(0)).to(cnf.device) output = eval_model(data, src_mask) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1)
15,951
def km_to_meters(kilometers): """ (int or float) -> float Takes a distance in kilometers and returns the distance in meters. """ return kilometers * 1000.0
15,952
def build(plan: List[Step], instances_stock: Optional[Dict[Callable, Any]] = None): """ Build instances dictionary from a plan """ instances_stock = instances_stock or {} instances = {} for cls, kwargs_spec in plan: if cls in instances_stock: instances[cls] = instances_stock[cls] else: instances[cls] = cls(**kwargs_spec.kwargs(instances)) return instances
15,953
def make_module_spec(options, weight_file): """Makes a module spec. Args: options: LM hyperparameters. weight_file: location of the hdf5 file with LM weights. Returns: A module spec object used for constructing a TF-Hub module. """ def module_fn(): """Spec function for a token embedding module.""" # init _bos_id = 256 _eos_id = 257 _bow_id = 258 _eow_id = 259 _pad_id = 260 _max_word_length = 50 _parallel_iterations = 10 _max_batch_size = 1024 id_dtype = tf.int32 id_nptype = np.int32 max_word_length = tf.constant(_max_word_length, dtype=id_dtype, name='max_word_length') version = tf.constant('from_dp_1', dtype=tf.string, name='version') # the charcter representation of the begin/end of sentence characters def _make_bos_eos(c): r = np.zeros([_max_word_length], dtype=id_nptype) r[:] = _pad_id r[0] = _bow_id r[1] = c r[2] = _eow_id return tf.constant(r, dtype=id_dtype) bos_ids = _make_bos_eos(_bos_id) eos_ids = _make_bos_eos(_eos_id) def token2ids(token): with tf.name_scope("token2ids_preprocessor"): char_ids = tf.decode_raw(token, tf.uint8, name='decode_raw2get_char_ids') char_ids = tf.cast(char_ids, tf.int32, name='cast2int_token') char_ids = tf.strided_slice(char_ids, [0], [max_word_length - 2], [1], name='slice2resized_token') ids_num = tf.shape(char_ids)[0] fill_ids_num = (_max_word_length - 2) - ids_num pads = tf.fill([fill_ids_num], _pad_id) bow_token_eow_pads = tf.concat([[_bow_id], char_ids, [_eow_id], pads], 0, name='concat2bow_token_eow_pads') return bow_token_eow_pads def sentence_tagging_and_padding(sen_dim): with tf.name_scope("sentence_tagging_and_padding_preprocessor"): sen = sen_dim[0] dim = sen_dim[1] extra_dim = tf.shape(sen)[0] - dim sen = tf.slice(sen, [0, 0], [dim, max_word_length], name='slice2sen') bos_sen_eos = tf.concat([[bos_ids], sen, [eos_ids]], 0, name='concat2bos_sen_eos') bos_sen_eos_plus_one = bos_sen_eos + 1 bos_sen_eos_pads = tf.pad(bos_sen_eos_plus_one, [[0, extra_dim], [0, 0]], "CONSTANT", name='pad2bos_sen_eos_pads') return bos_sen_eos_pads # Input placeholders to the biLM. tokens = tf.placeholder(shape=(None, None), dtype=tf.string, name='ph2tokens') sequence_len = tf.placeholder(shape=(None, ), dtype=tf.int32, name='ph2sequence_len') tok_shape = tf.shape(tokens) line_tokens = tf.reshape(tokens, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): tok_ids = tf.map_fn( token2ids, line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') tok_ids = tf.reshape(tok_ids, [tok_shape[0], tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): sen_ids = tf.map_fn( sentence_tagging_and_padding, (tok_ids, sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Build the biLM graph. bilm = BidirectionalLanguageModel(options, str(weight_file), max_batch_size=_max_batch_size) embeddings_op = bilm(sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) elmo_output = weight_layers('elmo_output', embeddings_op, l2_coef=0.0) weighted_op = elmo_output['weighted_op'] mean_op = elmo_output['mean_op'] word_emb = elmo_output['word_emb'] lstm_outputs1 = elmo_output['lstm_outputs1'] lstm_outputs2 = elmo_output['lstm_outputs2'] hub.add_signature("tokens", {"tokens": tokens, "sequence_len": sequence_len}, {"elmo": weighted_op, "default": mean_op, "word_emb": word_emb, "lstm_outputs1": lstm_outputs1, "lstm_outputs2": lstm_outputs2, "version": version}) # #########################Next signature############################# # # Input placeholders to the biLM. def_strings = tf.placeholder(shape=(None), dtype=tf.string) def_tokens_sparse = tf.string_split(def_strings) def_tokens_dense = tf.sparse_to_dense(sparse_indices=def_tokens_sparse.indices, output_shape=def_tokens_sparse.dense_shape, sparse_values=def_tokens_sparse.values, default_value='' ) def_mask = tf.not_equal(def_tokens_dense, '') def_int_mask = tf.cast(def_mask, dtype=tf.int32) def_sequence_len = tf.reduce_sum(def_int_mask, axis=-1) def_tok_shape = tf.shape(def_tokens_dense) def_line_tokens = tf.reshape(def_tokens_dense, shape=[-1], name='reshape2line_tokens') with tf.device('/cpu:0'): def_tok_ids = tf.map_fn( token2ids, def_line_tokens, dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_tok_ids') def_tok_ids = tf.reshape(def_tok_ids, [def_tok_shape[0], def_tok_shape[1], -1], name='reshape2tok_ids') with tf.device('/cpu:0'): def_sen_ids = tf.map_fn( sentence_tagging_and_padding, (def_tok_ids, def_sequence_len), dtype=tf.int32, back_prop=False, parallel_iterations=_parallel_iterations, name='map_fn2get_sen_ids') # Get ops to compute the LM embeddings. def_embeddings_op = bilm(def_sen_ids) # Get an op to compute ELMo (weighted average of the internal biLM layers) def_elmo_output = weight_layers('elmo_output', def_embeddings_op, l2_coef=0.0, reuse=True) def_weighted_op = def_elmo_output['weighted_op'] def_mean_op = def_elmo_output['mean_op'] def_word_emb = def_elmo_output['word_emb'] def_lstm_outputs1 = def_elmo_output['lstm_outputs1'] def_lstm_outputs2 = def_elmo_output['lstm_outputs2'] hub.add_signature("default", {"strings": def_strings}, {"elmo": def_weighted_op, "default": def_mean_op, "word_emb": def_word_emb, "lstm_outputs1": def_lstm_outputs1, "lstm_outputs2": def_lstm_outputs2, "version": version}) return hub.create_module_spec(module_fn)
15,954
def get_initial_scoreboard(): """ Retrieve the initial scoreboard (first pages of global and student views). If a user is logged in, the initial pages will instead be those on which that user appears, and their group scoreboards will also be returned. Returns: dict of scoreboard information """ def get_user_pos(scoreboard, tid): for pos, team in enumerate(scoreboard): if team["tid"] == tid: return pos return 1 user = None if api.user.is_logged_in(): user = api.user.get_user() result = {'tid': 0, 'groups': []} global_board = api.stats.get_all_team_scores(include_ineligible=True) result['global'] = { 'name': 'global', 'pages': math.ceil(len(global_board) / scoreboard_page_len), 'start_page': 1 } if user is None: result['global']['scoreboard'] = global_board[:scoreboard_page_len] else: result['tid'] = user['tid'] global_pos = get_user_pos(global_board, user["tid"]) start_slice = math.floor(global_pos / 50) * 50 result['global']['scoreboard'] = global_board[start_slice: start_slice + 50] result['global']['start_page'] = math.ceil((global_pos + 1) / 50) result['country'] = user["country"] student_board = api.stats.get_all_team_scores() student_pos = get_user_pos(student_board, user["tid"]) start_slice = math.floor(student_pos / 50) * 50 result['student'] = { 'name': 'student', 'pages': math.ceil(len(student_board) / scoreboard_page_len), 'scoreboard': student_board[start_slice:start_slice + 50], 'start_page': math.ceil((student_pos + 1) / 50), } for group in api.team.get_groups(user['tid']): # this is called on every scoreboard pageload and should be # cached to support large groups group_board = api.stats.get_group_scores(gid=group['gid']) group_pos = get_user_pos(group_board, user["tid"]) start_slice = math.floor(group_pos / 50) * 50 result['groups'].append({ 'gid': group['gid'], 'name': group['name'], 'scoreboard': group_board[start_slice:start_slice + 50], 'pages': math.ceil(len(group_board) / scoreboard_page_len), 'start_page': math.ceil((group_pos + 1) / 50), }) return result
15,955
async def resolve(qname, rdtype=dns.rdatatype.A, rdclass=dns.rdataclass.IN, tcp=False, source=None, raise_on_no_answer=True, source_port=0, lifetime=None, search=None, backend=None): """Query nameservers asynchronously to find the answer to the question. This is a convenience function that uses the default resolver object to make the query. See ``dns.asyncresolver.Resolver.resolve`` for more information on the parameters. """ return await get_default_resolver().resolve(qname, rdtype, rdclass, tcp, source, raise_on_no_answer, source_port, lifetime, search, backend)
15,956
def compare_xml(want, got): """Tries to do a 'xml-comparison' of want and got. Plain string comparison doesn't always work because, for example, attribute ordering should not be important. Comment nodes are not considered in the comparison. Based on http://codespeak.net/svn/lxml/trunk/src/lxml/doctestcompare.py """ _norm_whitespace_re = re.compile(r'[ \t\n][ \t\n]+') def norm_whitespace(v): return _norm_whitespace_re.sub(' ', v) def child_text(element): return ''.join([c.data for c in element.childNodes if c.nodeType == Node.TEXT_NODE]) def children(element): return [c for c in element.childNodes if c.nodeType == Node.ELEMENT_NODE] def norm_child_text(element): return norm_whitespace(child_text(element)) def attrs_dict(element): return dict(element.attributes.items()) def check_element(want_element, got_element): if want_element.tagName != got_element.tagName: return False if norm_child_text(want_element) != norm_child_text(got_element): return False if attrs_dict(want_element) != attrs_dict(got_element): return False want_children = children(want_element) got_children = children(got_element) if len(want_children) != len(got_children): return False for want, got in zip(want_children, got_children): if not check_element(want, got): return False return True def first_node(document): for node in document.childNodes: if node.nodeType != Node.COMMENT_NODE: return node want, got = strip_quotes(want, got) want = want.replace('\\n', '\n') got = got.replace('\\n', '\n') # If the string is not a complete xml document, we may need to add a # root element. This allow us to compare fragments, like "<foo/><bar/>" if not want.startswith('<?xml'): wrapper = '<root>%s</root>' want = wrapper % want got = wrapper % got # Parse the want and got strings, and compare the parsings. want_root = first_node(parseString(want)) got_root = first_node(parseString(got)) return check_element(want_root, got_root)
15,957
def _tf_equal(a, b): """Overload of "equal" for Tensors.""" return gen_math_ops.equal(a, b)
15,958
def faq(): """FAQ page for SciNet""" return render_template("faq.html")
15,959
def test_produces_fst_analysis_string(na_layout: ParadigmLayout): """ It should produce a valid FST analysis string. """ lemma = "minôs" expected_lines = { # Basic f"{lemma}+N+A+Sg", f"{lemma}+N+A+Pl", f"{lemma}+N+A+Obv", f"{lemma}+N+A+Loc", f"{lemma}+N+A+Distr", # Diminutive f"{lemma}+N+A+Der/Dim+N+A+Sg", # Possession f"{lemma}+N+A+Px1Sg+Sg", f"{lemma}+N+A+Px1Sg+Pl", f"{lemma}+N+A+Px1Sg+Obv", f"{lemma}+N+A+Px2Sg+Sg", f"{lemma}+N+A+Px2Sg+Pl", f"{lemma}+N+A+Px2Sg+Obv", f"{lemma}+N+A+Px3Sg+Obv", f"{lemma}+N+A+Px1Pl+Sg", f"{lemma}+N+A+Px1Pl+Pl", f"{lemma}+N+A+Px1Pl+Obv", f"{lemma}+N+A+Px12Pl+Sg", f"{lemma}+N+A+Px12Pl+Pl", f"{lemma}+N+A+Px12Pl+Obv", f"{lemma}+N+A+Px2Pl+Sg", f"{lemma}+N+A+Px2Pl+Pl", f"{lemma}+N+A+Px2Pl+Obv", f"{lemma}+N+A+Px3Pl+Obv", f"{lemma}+N+A+Px4Sg/Pl+Obv", } template2analysis = na_layout.generate_fst_analyses(lemma) assert len(expected_lines) == len(template2analysis) assert expected_lines == set(template2analysis.values())
15,960
def test_config_ca_cert_as_file(mock_va, mock_connections, mock_isfile): """ Tests that the instantiation of a config.VaultConfig object results in the correct configuration. """ sample_config = { "elastic": { "user": "elastic_user", "pwd": "elastic_password", "index": "elastic_index", "ca_certs": "fake_cert_ca_file", } } local_sample_config = deepcopy(sample_config) mock_va.return_value.auto_auth = Mock(return_value=True) mock_va.return_value.loads = Mock(return_value=local_sample_config) mock_isfile.side_effect = [False, True] config = VaultConfig( "test_not_a_conf_file.blargh", "test_not_a_vault_conf_file.blargh", "test_not_a_vault_creds_file.blargh" ) # Validate calls to VaultAnyConfig instance mock_va.assert_called_once_with("test_not_a_vault_conf_file.blargh", ac_parser=None) mock_va.return_value.auto_auth.assert_called_once_with("test_not_a_vault_creds_file.blargh", ac_parser=None) mock_va.return_value.loads.assert_called_once_with( "test_not_a_conf_file.blargh", ac_parser=None, process_secret_files=False ) # Validate elastic configuration elastic_config = deepcopy(sample_config["elastic"]) auth_string = quote_plus(elastic_config["user"]) + ":" + quote_plus(elastic_config["pwd"]) elastic_config.update({"http_auth": auth_string}) del elastic_config["user"] del elastic_config["pwd"] assert config.ES_INDEX == elastic_config["index"]
15,961
def requirements(filename, pip_cmd='pip', python_cmd='python', **kwargs): """ Require Python packages from a pip `requirements file`_. .. _requirements file: http://www.pip-installer.org/en/latest/requirements.html """ pip(MIN_PIP_VERSION, python_cmd=python_cmd) install_requirements(filename, pip_cmd=pip_cmd, **kwargs)
15,962
def render_table(sheet, header, width, data, header_style, data_style, tt_id_style): """Рендерим страницу""" # Render table header for i in range(len(header)): sheet.write(0, i, header[i], header_style) sheet.col(i).width = width[i] sheet.row(1).height = 2500 # Render table data i = 1 for d in data: sheet.row(i + 1).height = 2500 cols = [i, 'name', 'location', 'link', 'theme'] for col in range(len(cols)): if col == 0: sheet.write(i, col, i, tt_id_style) elif col == 1: sheet.write(i, col, d[cols[col]], tt_id_style) else: try: if col == 9: sheet.write(i, col, (round((d[cols[col]] / 30), 2)), data_style) else: sheet.write(i, col, d[cols[col]], data_style) except KeyError: sheet.write(i, col, 0, data_style) i = i + 1 return sheet
15,963
def texsafe(value): """ Returns a string with LaTeX special characters stripped/escaped out """ special = [ [ "\\xc5", 'A'], #'\\AA' [ "\\xf6", 'o'], [ "&", 'and'], #'\\"{o}' ] for char in ['\\', '^', '~', '%', "'", '"']: # these mess up things value = value.replace(char, '') for char in ['#','$','_', '{', '}', '<', '>']: # these can be escaped properly value = value.replace(char, '\\' + char) for char, new_char in special: value = eval(repr(value).replace(char, new_char)) return value
15,964
def match_against_host_software_profile(db_session, hostname, software_packages): """ Given a software package list, return an array of dictionaries indicating if the software package matches any software package defined in the host software profile package list. """ results = [] system_option = SystemOption.get(db_session) if system_option.check_host_software_profile: host = get_host(db_session, hostname) if host is not None and len(software_packages) > 0: software_profile = get_software_profile_by_id(db_session, host.software_profile_id) if software_profile is not None: software_profile_package_dict = get_matchable_package_dict(software_profile.packages.split(',')) software_package_dict = get_matchable_package_dict(software_packages) for software_package, pattern in software_package_dict.items(): matched = True if pattern in software_profile_package_dict.values() else False results.append({'software_package': software_package, 'matched': matched}) return results
15,965
def get_inputs_by_op(op: Op, store: Mapping[str, Any], copy_on_write: bool = False) -> Any: """Retrieve the necessary input data from the data dictionary in order to run an `op`. Args: op: The op to run. store: The system's data dictionary to draw inputs out of. copy_on_write: Whether to copy read-only data to make it writeable before returning it. Returns: Input data to be fed to the `op` forward function. """ if op.in_list: data = [] else: data = None if op.inputs: data = [] for key in op.inputs: elem = store[key] if copy_on_write and isinstance(elem, np.ndarray) and not elem.flags.writeable: elem = deepcopy(elem) store[key] = elem data.append(elem) if not op.in_list: data = data[0] return data
15,966
def test_warn_bad_formatting(eo_validator: ValidateRunner, example_metadata: Dict): """A warning if fields aren't formatted in standard manner.""" example_metadata["properties"]["eo:platform"] = example_metadata["properties"][ "eo:platform" ].upper() eo_validator.warnings_are_errors = True eo_validator.assert_invalid(example_metadata, codes=["property_formatting"])
15,967
def cleanup_gcp_instances(neo4j_session, common_job_parameters): """ Delete out-of-date GCP instance nodes and relationships :param neo4j_session: The Neo4j session :param common_job_parameters: dict of other job parameters to pass to Neo4j :return: Nothing """ run_cleanup_job('gcp_compute_instance_cleanup.json', neo4j_session, common_job_parameters)
15,968
def finalize_post(func, store: Type['ParameterStore']): """Finalizes the store prior to executing the function Parameters ---------- func : callable The function to wrap. store : ParameterStore The parameter store to finalize. Returns ------- callable The wrapped function. Raises ------ MissingParameterException If there's a parameter missing from the required parameters in the given `store`. """ @wraps(func) def wrapper(*args, **kwargs): ret = func(*args, **kwargs) if not store.final: store.finalize() return ret return wrapper
15,969
def searchaftertext(filename, startterm, searchterm): """Start search after a certain text in a file""" #print startterm #print searchterm startline = findLastString (filename, startterm) searchtermfound = findLastString (filename, searchterm) if searchtermfound > startline: return True return False
15,970
def ilcd_flow_generator(archive=ELCD, **kwargs): """ This generates flows from the current reference ELCD archive. :param archive: :param kwargs: :return: """ i = IlcdLcia(archive, **kwargs) count = 0 for f in i.list_objects('Flow'): o = i.objectify(f, dtype='Flow') if o is not None: yield o count += 1 if count % 1000 == 0: print('%d data sets completed' % count)
15,971
def export_mobilenetv2(): """ export_mobilenetv2 """ print('\nconfig: \n', config) if not config.device_id: config.device_id = get_device_id() context_device_init(config) _, _, net = define_net(config, config.is_training) load_ckpt(net, config.ckpt_file) input_shp = [config.batch_size, 3, config.image_height, config.image_width] input_array = ms.Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) ms.export(net, input_array, file_name=config.file_name, file_format=config.file_format)
15,972
def process_new_table(args, syn): """ Function: process_new_table Purpose: Create an annotations table with the specified name under the specified Synapse parent ID using the specified JSON schema. This function is called when the "new_table" option is specified when the program is called. Arguments: JSON schema file reference Synapse parent ID Synapse table name A Synapse client object """ # Define column names for the synapse table. dcc_column_names = [ Column(name="key", columnType="STRING", maximumSize=100), Column(name="description", columnType="STRING", maximumSize=250), Column(name="columnType", columnType="STRING", maximumSize=50), Column(name="maximumSize", columnType="DOUBLE"), Column(name="value", columnType="STRING", maximumSize=250), Column(name="valueDescription", columnType="LARGETEXT"), Column(name="source", columnType="STRING", maximumSize=250), Column(name="module", columnType="STRING", maximumSize=100)] syn_table_df = process_schema(args.json_schema_file) # Build and populate the Synapse table. table_schema = Schema(name=args.synapse_table_name, columns=dcc_column_names, parent=args.parent_synapse_id) dcc_table = syn.store(Table(table_schema, syn_table_df))
15,973
def vec_list_to_tensor(vec_list): """Convert list to vector tensor.""" return jnp.stack(vec_list, axis=-1)
15,974
def to_ecma_datetime_string(dt, default_timezone=local): """ Convert a python datetime into the string format defined by ECMA-262. See ECMA international standard: ECMA-262 section 15.9.1.15 ``assume_local_time`` if true will assume the date time is in local time if the object is a naive date time object; else assumes the time value is utc. """ assert isinstance(dt, datetime.datetime) dt = get_tz_aware_dt(dt, default_timezone).astimezone(utc) return "%4i-%02i-%02iT%02i:%02i:%02i.%03iZ" % ( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond / 1000)
15,975
def WmiAddClassQualifiers(grph, conn_wmi, wmi_class_node, class_name, with_props): """This adds information to a WMI class.""" try: # No need to print this, at the moment. if False: klass_descr = str(dir(getattr(conn_wmi, class_name))) grph.add((wmi_class_node, lib_common.MakeProp("dir"), lib_util.NodeLiteral(klass_descr))) klass_descr = str(getattr(conn_wmi, class_name)._properties) grph.add((wmi_class_node, lib_common.MakeProp("_properties"), lib_util.NodeLiteral(klass_descr))) klass_descr = str(getattr(conn_wmi, class_name).properties["Description"]) grph.add((wmi_class_node, lib_common.MakeProp("properties.Description"), lib_util.NodeLiteral(klass_descr))) klass_descr = str(getattr(conn_wmi, class_name).property_map) # Otherwise it crashes. klass_descr_dlean = klass_descr.replace("{"," ").replace("}"," ") grph.add((wmi_class_node, lib_common.MakeProp("property_map"), lib_util.NodeLiteral(klass_descr_dlean))) the_cls = _get_wmi_class_flag_use_amended_qualifiers(conn_wmi, class_name) if the_cls: # https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/wmi-class-qualifiers # Specifies a description of the block for the locale specified by the Locale qualifier. # If defined, WMI clients can display the description string to users. klass_descr = the_cls.Qualifiers_("Description") # Beware, klass_descr is of type "instance". str_klass_descr = six.text_type(klass_descr) # This might be a value with broken HTML tags such as: # "CIM_DataFile is a type ... <B>The behavior ... e returned.<B>" str_klass_descr = str_klass_descr.replace("<B>", "") grph.add((wmi_class_node, pc.property_information, lib_util.NodeLiteral(str_klass_descr))) if with_props: for prop_obj in the_cls.Properties_: prop_dsc = six.text_type(prop_obj.Qualifiers_("Description")) # Properties of different origins should not be mixed. # Prefixes the property with a dot, so sorting displays it at the end. # Surprisingly, the dot becomes invisible. grph.add((wmi_class_node, lib_common.MakeProp("." + prop_obj.Name), lib_util.NodeLiteral(prop_dsc))) else: grph.add( (wmi_class_node, pc.property_information, lib_util.NodeLiteral("No description for %s" % class_name))) klass_quals = getattr(conn_wmi, class_name).qualifiers for kla_qual_key in klass_quals: kla_qual_val = klass_quals[kla_qual_key] if isinstance(kla_qual_val, tuple): kla_qual_val = "{ " + ",".join(kla_qual_val) + " }" # Some specific properties match an entity class, so we can create a node. # IT WORKS BUT IT IS NOT NICE AS IT IS A SEPARATE NODE. # We would like to have a clickable URL displayed in a table TD. if kla_qual_key == "UUID": nodeUUID = lib_uris.gUriGen.ComTypeLibUri(kla_qual_val) grph.add((wmi_class_node, lib_common.MakeProp(kla_qual_key), nodeUUID)) continue grph.add((wmi_class_node, lib_common.MakeProp(kla_qual_key), lib_util.NodeLiteral(kla_qual_val))) except Exception as exc: try: # Dumped in json so that lists can be appropriately deserialized then displayed. err_str = json.dumps(list(exc)) except: # Might have caught: 'com_error' object is not iterable err_str = json.dumps("Non-iterable COM Error:" + str(exc)) grph.add((wmi_class_node, lib_common.MakeProp("WMI Error"), lib_util.NodeLiteral(err_str)))
15,976
def _logfile_readme() -> str: """Returns a string containing a 'how to read this logfile' message. Returns ------- str Returns a formatted paragraph-long message with tips on reading log file output. """ line1 = "Messages are displayed below in the format" line2 = " <DATE> <TIME> <LOGGER NAME> @ <FILE>:<LINE> - <LEVEL> - <FUNCTION>:<MESSAGE>" line3 = "where <DATE> is the date in 'YYYY-MM-DD' format, <TIME> is the time in 'HH:MM:SS,milliseconds' format, <LOGGER NAME> is the name of the logger that generated the message (which should be the __name__ of the file where the logger was initialized), <FILE> and <LINE> is the file name and line number where the message was generated, <LEVEL> is the priority level that the message was generated at, <FUNCTION> is the name of the function that the message was generated inside, and <MESSAGE> is the actual message that was generated. " message = f"{line1}\n\n{line2}\n\n{line3}\n\n" return message
15,977
def taxon_lookup(es, body, index, taxonomy_index_template, opts, return_type): """Query elasticsearch for a taxon.""" taxa = [] with tolog.DisableLogger(): res = es.search_template(body=body, index=index, rest_total_hits_as_int=True) if "hits" in res and res["hits"]["total"] > 0: if return_type == "taxon_id": taxa = [hit["_source"]["taxon_id"] for hit in res["hits"]["hits"]] else: taxa = [hit for hit in res["hits"]["hits"]] else: template = taxonomy_index_template(opts["taxonomy-source"].lower(), opts) index = template["index_name"] with tolog.DisableLogger(): res = es.search_template( body=body, index=index, rest_total_hits_as_int=True ) if "hits" in res and res["hits"]["total"] > 0: if return_type == "taxon_id": taxa = [hit["_source"]["taxon_id"] for hit in res["hits"]["hits"]] else: taxa = [hit for hit in res["hits"]["hits"]] return taxa
15,978
async def get_south_services(request): """ Args: request: Returns: list of all south services with tracked assets and readings count :Example: curl -X GET http://localhost:8081/fledge/south """ if 'cached' in request.query and request.query['cached'].lower() == 'false': _get_installed_plugins.cache_clear() storage_client = connect.get_storage_async() cf_mgr = ConfigurationManager(storage_client) try: south_cat = await cf_mgr.get_category_child("South") south_categories = [nc["key"] for nc in south_cat] except: return web.json_response({'services': []}) response = await _services_with_assets(storage_client, cf_mgr, south_categories) return web.json_response({'services': response})
15,979
def polySpinEdge(*args, **kwargs): """ Flags: - caching : cch (bool) [] - constructionHistory : ch (bool) [] - frozen : fzn (bool) [] - name : n (unicode) [] - nodeState : nds (int) [] - offset : off (int) [] - reverse : rev (bool) [] Derived from mel command `maya.cmds.polySpinEdge` """ pass
15,980
def filter_bam_file(bamfile, chromosome, outfile): """ filter_bam_file uses samtools to read a <bamfile> and read only the reads that are mapped to <chromosome>. It saves the filtered reads into <outfile>. """ inputs = [bamfile] outputs = [outfile] options = { 'cores': 1, 'memory': '4g', 'account': 'NChain', 'walltime': '01:00:00' } directory = "/".join(outfile.split("/")[:-1]) spec = ''' source /com/extra/samtools/1.6.0/load.sh mkdir -p {dirc} samtools view -b {infile} {chrom} > {out} '''.format(infile=bamfile, chrom=chromosome, out=outfile, dirc=directory) return inputs, outputs, options, spec
15,981
def import_teachers(): """ Import the teachers from Moodle. :return: Amount of imported users. :rtype: int """ course_list = dict(Course.objects.values_list("courseId", "pk")) teachers_list = parse_get_teachers(get_teachers(list(course_list.keys()))) teacher_group = create_auth_group() users = create_teachers(teachers_list) add_courses_and_group_to_users(course_list, teacher_group, teachers_list, users) return users.count()
15,982
def baryvel(dje, deq): """ Calculate helio- and barycentric velocity. .. note:: The "JPL" option present in IDL is not provided here. Parameters ---------- dje : float Julian ephemeris date deq : float Epoch of mean equinox of helio- and barycentric velocity output. If `deq` is zero, `deq` is assumed to be equal to `dje`. Returns ------- dvelh : array Heliocentric velocity vector [km/s]. dvelb : array Barycentric velocity vector [km/s]. Notes ----- .. note:: This function was ported from the IDL Astronomy User's Library. :IDL - Documentation: pro baryvel, dje, deq, dvelh, dvelb, JPL = JPL NAME: BARYVEL PURPOSE: Calculates heliocentric and barycentric velocity components of Earth. EXPLANATION: BARYVEL takes into account the Earth-Moon motion, and is useful for radial velocity work to an accuracy of ~1 m/s. CALLING SEQUENCE: BARYVEL, dje, deq, dvelh, dvelb, [ JPL = ] INPUTS: DJE - (scalar) Julian ephemeris date. DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0 then deq is assumed to be equal to dje. OUTPUTS: DVELH: (vector(3)) heliocentric velocity component. in km/s DVELB: (vector(3)) barycentric velocity component. in km/s The 3-vectors DVELH and DVELB are given in a right-handed coordinate system with the +X axis toward the Vernal Equinox, and +Z axis toward the celestial pole. OPTIONAL KEYWORD SET: JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP to compute the Earth velocity using the full JPL ephemeris. The JPL ephemeris FITS file JPLEPH.405 must exist in either the current directory, or in the directory specified by the environment variable ASTRO_DATA. Alternatively, the JPL keyword can be set to the full path and name of the ephemeris file. A copy of the JPL ephemeris FITS file is available in http://idlastro.gsfc.nasa.gov/ftp/data/ PROCEDURES CALLED: Function PREMAT() -- computes precession matrix JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set NOTES: Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1) Stumpf claimed an accuracy of 42 cm/s for the velocity. A comparison with the JPL FORTRAN planetary ephemeris program PLEPH found agreement to within about 65 cm/s between 1986 and 1994 If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are given in the ICRS system; otherwise in the FK4 system. EXAMPLE: Compute the radial velocity of the Earth toward Altair on 15-Feb-1994 using both the original Stumpf algorithm and the JPL ephemeris IDL> jdcnv, 1994, 2, 15, 0, jd ;==> JD = 2449398.5 IDL> baryvel, jd, 2000, vh, vb ;Original algorithm ==> vh = [-17.07243, -22.81121, -9.889315] ;Heliocentric km/s ==> vb = [-17.08083, -22.80471, -9.886582] ;Barycentric km/s IDL> baryvel, jd, 2000, vh, vb, /jpl ;JPL ephemeris ==> vh = [-17.07236, -22.81126, -9.889419] ;Heliocentric km/s ==> vb = [-17.08083, -22.80484, -9.886409] ;Barycentric km/s IDL> ra = ten(19,50,46.77)*15/!RADEG ;RA in radians IDL> dec = ten(08,52,3.5)/!RADEG ;Dec in radians IDL> v = vb[0]*cos(dec)*cos(ra) + $ ;Project velocity toward star vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec) REVISION HISTORY: Jeff Valenti, U.C. Berkeley Translated BARVEL.FOR to IDL. W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994 Converted to IDL V5.0 W. Landsman September 1997 Added /JPL keyword W. Landsman July 2001 Documentation update W. Landsman Dec 2005 """ # Define constants dc2pi = 2 * np.pi cc2pi = 2 * np.pi dc1 = 1.0 dcto = 2415020.0 dcjul = 36525.0 # days in Julian year dcbes = 0.313 dctrop = 365.24219572 # days in tropical year (...572 insig) dc1900 = 1900.0 AU = 1.4959787e8 # Constants dcfel(i,k) of fast changing elements. dcfel = [1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00, 6.2830194572674e02, -2.6180e-6, 4.7199666e00, 8.3997091449254e03, -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00, 5.2993466764997e01, 5.8845e-6, 4.6524223e00, 2.1354275911213e01, 5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6, 1.4740694e00, 3.8377331909193e00, 5.6093e-6] dcfel = np.resize(dcfel, (8, 3)) # constants dceps and ccsel(i,k) of slowly changing elements. dceps = [4.093198e-1, -2.271110e-4, -2.860401e-8] ccsel = [1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2, 1.852532e-5, 1.589963e00, 3.418075e-2, 1.430200e-5, 2.994089e00, 2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6, 1.735614e00, 1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2, -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5, 2.280820e00, 1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7, 5.589232e-2, -3.455092e-4, -7.388560e-7, 4.634443e-2, -2.658234e-5, 7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2, -9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7, 1.348204e-2, 1.091504e-5, 6.903760e-7, 3.106570e-2, -1.665665e-4, -1.590188e-7] ccsel = np.resize(ccsel, (17, 3)) # Constants of the arguments of the short-period perturbations. dcargs = [5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2, 1.6338070e0, -1.1506769618935e3, 2.5487111e0, -3.9302097727326e2, 4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2, 1.6072053e0, -5.2237501616674e2, 1.3629480e0, - 1.1790629318198e3, 5.5657014e0, -1.0977134971135e3, 5.0708205e0, -1.5774000881978e2, 3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1, 1.3097446e0, 7.7540959633708e1, 3.5147141e0, 7.9618578146517e1, 3.5413158e0, -5.4868336758022e2] dcargs = np.resize(dcargs, (15, 2)) # Amplitudes ccamps(n,k) of the short-period perturbations. ccamps = \ [-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7, -3.494537e-5, 2.860401e-7, 1.289448e-7, 1.627237e-5, -1.823138e-7, 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7, 1.140767e-5, -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7, 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6, -1.864821e-7, 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7, -2.603449e-6, 7.359472e-6, 3.168357e-6, 1.119056e-6, -1.655307e-7, -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7, 3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7, 8.702406e-6, -8.421214e-6, -1.372341e-6, -1.455234e-6, -4.998479e-8, -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0, -8.043059e-6, -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0, 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0, 2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7, 0.e0] ccamps = np.resize(ccamps, (15, 5)) # Constants csec3 and ccsec(n,k) of the secular perturbations in longitude. ccsec3 = -7.757020e-8 ccsec = [1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00, 3.525565e-1, 9.124190e-6, 9.990265e-1, 2.622706e00, 9.793240e-7, 5.508259e00, 1.559103e01] ccsec = np.resize(ccsec, (4, 3)) # Sidereal rates. dcsld = 1.990987e-7 # sidereal rate in longitude ccsgd = 1.990969e-7 # sidereal rate in mean anomaly # Constants used in the calculation of the lunar contribution. cckm = 3.122140e-5 ccmld = 2.661699e-6 ccfdi = 2.399485e-7 # Constants dcargm(i,k) of the arguments of the perturbations of the motion # of the moon. dcargm = [5.1679830e0, 8.3286911095275e3, 5.4913150e0, - 7.2140632838100e3, 5.9598530e0, 1.5542754389685e4] dcargm = np.resize(dcargm, (3, 2)) # Amplitudes ccampm(n,k) of the perturbations of the moon. ccampm = [1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8, 1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8] ccampm = np.resize(ccampm, (3, 4)) # ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon) ccpamv = [8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12] dc1mme = 0.99999696e0 # Time arguments. dt = (dje - dcto) / dcjul tvec = np.array([1e0, dt, dt * dt]) # Values of all elements for the instant(aneous?) dje. temp = idlMod(np.dot(dcfel, tvec), dc2pi) dml = temp[0] forbel = temp[1:8] g = forbel[0] # old fortran equivalence deps = idlMod(np.sum(tvec * dceps), dc2pi) sorbel = idlMod(np.dot(ccsel, tvec), dc2pi) e = sorbel[0] # old fortran equivalence # Secular perturbations in longitude. dummy = np.cos(2.0) sn = np.sin(idlMod(np.dot(ccsec[::, 1:3], tvec[0:2]), cc2pi)) # Periodic perturbations of the emb (earth-moon barycenter). pertl = np.sum(ccsec[::, 0] * sn) + (dt * ccsec3 * sn[2]) pertld = 0.0 pertr = 0.0 pertrd = 0.0 for k in smo.range(15): a = idlMod((dcargs[k, 0] + dt * dcargs[k, 1]), dc2pi) cosa = np.cos(a) sina = np.sin(a) pertl = pertl + ccamps[k, 0] * cosa + ccamps[k, 1] * sina pertr = pertr + ccamps[k, 2] * cosa + ccamps[k, 3] * sina if k < 11: pertld = pertld + (ccamps[k, 1] * cosa - ccamps[k, 0] * sina) * ccamps[k, 4] pertrd = pertrd + (ccamps[k, 3] * cosa - ccamps[k, 2] * sina) * ccamps[k, 4] # Elliptic part of the motion of the emb. phi = (e * e / 4e0) * (((8e0 / e) - e) * np.sin(g) + 5 * np.sin(2 * g) + (13 / 3e0) * e * np.sin(3 * g)) f = g + phi sinf = np.sin(f) cosf = np.cos(f) dpsi = (dc1 - e * e) / (dc1 + e * cosf) phid = 2 * e * ccsgd * ((1 + 1.5 * e * e) * cosf + e * (1.25 - 0.5 * sinf * sinf)) psid = ccsgd * e * sinf / np.sqrt(dc1 - e * e) # Perturbed heliocentric motion of the emb. d1pdro = dc1 + pertr drd = d1pdro * (psid + dpsi * pertrd) drld = d1pdro * dpsi * (dcsld + phid + pertld) dtl = idlMod((dml + phi + pertl), dc2pi) dsinls = np.sin(dtl) dcosls = np.cos(dtl) dxhd = drd * dcosls - drld * dsinls dyhd = drd * dsinls + drld * dcosls # Influence of eccentricity, evection and variation on the geocentric # motion of the moon. pertl = 0.0 pertld = 0.0 pertp = 0.0 pertpd = 0.0 for k in smo.range(3): a = idlMod((dcargm[k, 0] + dt * dcargm[k, 1]), dc2pi) sina = np.sin(a) cosa = np.cos(a) pertl = pertl + ccampm[k, 0] * sina pertld = pertld + ccampm[k, 1] * cosa pertp = pertp + ccampm[k, 2] * cosa pertpd = pertpd - ccampm[k, 3] * sina # Heliocentric motion of the earth. tl = forbel[1] + pertl sinlm = np.sin(tl) coslm = np.cos(tl) sigma = cckm / (1.0 + pertp) a = sigma * (ccmld + pertld) b = sigma * pertpd dxhd = dxhd + a * sinlm + b * coslm dyhd = dyhd - a * coslm + b * sinlm dzhd = -sigma * ccfdi * np.cos(forbel[2]) # Barycentric motion of the earth. dxbd = dxhd * dc1mme dybd = dyhd * dc1mme dzbd = dzhd * dc1mme for k in smo.range(4): plon = forbel[k + 3] pomg = sorbel[k + 1] pecc = sorbel[k + 9] tl = idlMod((plon + 2.0 * pecc * np.sin(plon - pomg)), cc2pi) dxbd = dxbd + ccpamv[k] * (np.sin(tl) + pecc * np.sin(pomg)) dybd = dybd - ccpamv[k] * (np.cos(tl) + pecc * np.cos(pomg)) dzbd = dzbd - ccpamv[k] * sorbel[k + 13] * np.cos(plon - sorbel[k + 5]) # Transition to mean equator of date. dcosep = np.cos(deps) dsinep = np.sin(deps) dyahd = dcosep * dyhd - dsinep * dzhd dzahd = dsinep * dyhd + dcosep * dzhd dyabd = dcosep * dybd - dsinep * dzbd dzabd = dsinep * dybd + dcosep * dzbd # Epoch of mean equinox (deq) of zero implies that we should use # Julian ephemeris date (dje) as epoch of mean equinox. if deq == 0: dvelh = AU * np.array([dxhd, dyahd, dzahd]) dvelb = AU * np.array([dxbd, dyabd, dzabd]) return dvelh, dvelb # General precession from epoch dje to deq. deqdat = (dje - dcto - dcbes) / dctrop + dc1900 prema = np.transpose(premat(deqdat, deq, FK4=True)) dvelh = AU * np.dot([dxhd, dyahd, dzahd], prema) dvelb = AU * np.dot([dxbd, dyabd, dzabd], prema) return dvelh, dvelb
15,983
def uniform(low=0.0, high=1.0, size=None): """This function has the same `nlcpy.random.RandomState.uniform` See Also -------- nlcpy.random.RandomState.uniform : Draws samples from a uniform distribution. """ rs = generator._get_rand() return rs.uniform(low, high, size=size)
15,984
def test_post_model_predict_bool_param_missing_status_code_equals_400(): """Verify that calling /api/model/predict with no bool_param fails with 400 and flags missing properties as required.""" response = _post_request_good_json_with_overrides("bool_param", None) assert response.status_code == HTTPStatus.BAD_REQUEST assert "'bool_param' is a required property" in response.text
15,985
def parse_time_interval(interval_str): """Convert a human-readable time interval to a tuple of start and end value. Args: interval_str: (`str`) A human-readable str representing an interval (e.g., "[10us, 20us]", "<100s", ">100ms"). Supported time suffixes are us, ms, s. Returns: `Interval` object where start and end are in microseconds. Raises: ValueError: if the input is not valid. """ str_interval = _parse_interval(interval_str) interval_start = 0 interval_end = float("inf") if str_interval.start: interval_start = parse_readable_time_str(str_interval.start) if str_interval.end: interval_end = parse_readable_time_str(str_interval.end) if interval_start > interval_end: raise ValueError( "Invalid interval %s. Start must be before end of interval." % interval_str) return Interval(interval_start, str_interval.start_included, interval_end, str_interval.end_included)
15,986
def submatrix(M, x): """If x is an array of integer row/col numbers and M a matrix, extract the submatrix which is the all x'th rows and cols. i.e. A = submatrix(M,x) => A_ij = M_{x_i}{x_j} """ return M[np.ix_(x,x)]
15,987
def inventory_report(products: list) -> str: """Gives a detailed report on created products""" unique_names, average_price, average_weight, average_flam = _build_report_metrics(products) report = f'''ACME CORPORATION OFFICIAL INVENTORY REPORT Unique product names: {unique_names} Average price: {average_price} Average weight: {average_weight} Average flammability: {average_flam}''' return print(report)
15,988
def iou(a, b): """ Calculates intersection over union (IOU) over two tuples """ (a_x1, a_y1), (a_x2, a_y2) = a (b_x1, b_y1), (b_x2, b_y2) = b a_area = (a_x2 - a_x1) * (a_y2 - a_y1) b_area = (b_x2 - b_x1) * (b_y2 - b_y1) dx = min(a_x2, b_x2) - max(a_x1, b_x1) dy = min(a_y2, b_y2) - max(a_y1, b_y1) if (dx>=0) and (dy>=0): overlap = dx * dy iou = overlap / (a_area + b_area - overlap) return iou return 0
15,989
def svn_path_is_empty(*args): """svn_path_is_empty(char path) -> int""" return _core.svn_path_is_empty(*args)
15,990
def main(args=None): """ CphdConsistency CLI tool. Prints results to stdout. Parameters ---------- args: None|List[str] List of CLI argument strings. If None use sys.argv """ parser = argparse.ArgumentParser(description="Analyze a CPHD and display inconsistencies") parser.add_argument('cphd_or_xml') parser.add_argument('-v', '--verbose', default=0, action='count', help="Increase verbosity (can be specified more than once >4 doesn't help)") parser.add_argument('--schema', help="Use a supplied schema file", default=DEFAULT_SCHEMA) parser.add_argument('--noschema', action='store_const', const=None, dest='schema', help="Disable schema checks") parser.add_argument('--signal-data', action='store_true', help="Check the signal data for NaN and +/- Inf") config = parser.parse_args(args) # Some questionable abuse of the pytest internals import ast import _pytest.assertion.rewrite base, ext = os.path.splitext(__file__) # python2 can return the '*.pyc' file with open(base + '.py', 'r') as fd: source = fd.read() tree = ast.parse(source) try: _pytest.assertion.rewrite.rewrite_asserts(tree) except TypeError as e: _pytest.assertion.rewrite.rewrite_asserts(tree, source) co = compile(tree, __file__, 'exec', dont_inherit=True) ns = {} exec(co, ns) cphd_con = ns['CphdConsistency'].from_file(config.cphd_or_xml, config.schema, config.signal_data) cphd_con.check() failures = cphd_con.failures() cphd_con.print_result(fail_detail=config.verbose >= 1, include_passed_asserts=config.verbose >= 2, include_passed_checks=config.verbose >= 3, skip_detail=config.verbose >= 4) return bool(failures)
15,991
def compute_lorentz(Phi, omega, sigma): """In a time-harmonic discretization with quantities .. math:: \\begin{align} A &= \\Re(a \\exp(\\text{i} \\omega t)),\\\\ B &= \\Re(b \\exp(\\text{i} \\omega t)), \\end{align} the time-average of :math:`A\\times B` over one period is .. math:: \\overline{A\\times B} = \\frac{1}{2} \\Re(a \\times b^*), see http://www.ece.rutgers.edu/~orfanidi/ewa/ch01.pdf. Since the Lorentz force generated by the current :math:`J` in the magnetic field :math:`B` is .. math:: F_L = J \\times B, its time average is .. math:: \\overline{F_L} = \\frac{1}{2} \\Re(j \\times b^*). With .. math:: J &= \\Re(\\exp(\\text{i} \\omega t) j e_{\\theta}),\\\\ B &= \\Re\\left( \\exp(i \\omega t) \\left( -\\frac{\\text{d}\\phi}{\\text{d}z} e_r + \\frac{1}{r} \\frac{\\text{d}(r\\phi)}{\\text{d}r} e_z \\right) \\right), we have .. math:: \\overline{F_L} &= \\frac{1}{2} \\Re\\left(j \\frac{d\\phi^*}{dz} e_z + \\frac{j}{r} \\frac{d(r\\phi^*)}{dr} e_r\\right)\\\\ &= \\frac{1}{2} \\Re\\left(\\frac{j}{r} \\nabla(r\\phi^*)\\right)\\\\ In the workpiece, we can assume .. math:: j = -\\text{i} \\sigma \\omega \\phi which gives .. math:: \\begin{align*} \\overline{F_L} &= \\frac{\\sigma\\omega}{2r} \\Im\\left( \\phi \\nabla(r \\phi^*) \\right)\\\\ &= \\frac{\\sigma\\omega}{2r} \\left( \\Im(\\phi) \\nabla(r \\Re(\\phi)) -\\Re(\\phi) \\nabla(r \\Im(\\phi)) \\right) \\end{align*} """ mesh = Phi[0].function_space().mesh() r = SpatialCoordinate(mesh)[0] return ( 0.5 * sigma * omega / r * (+Phi[1] * grad(r * Phi[0]) - Phi[0] * grad(r * Phi[1])) )
15,992
def test_model_finder_regression_residual_error(model_finder_regression): """Testing if prediction_errors raises an error when there are no search results available (regression).""" with pytest.raises(ModelsNotSearchedError) as excinfo: _ = model_finder_regression.residuals(1) assert "Search Results is not available. " in str(excinfo.value)
15,993
def play_db(cursor, query_string, lookup_term): """ Given a query string and a term, retrieve the list of plays associated with that term """ play_list = [] try: cursor.execute(query_string, [lookup_term]) play_res = cursor.fetchall() except DatabaseError as err: LOG.error( "Error retrieving plays for %s: %s", lookup_term, err ) return play_list for row in play_res: play_list.append(row) if not play_list: LOG.info("No plays for %s", lookup_term) return play_list
15,994
def list_banks(bot, update): """Show user names of banks that are supported""" chat_id = update.message.chat_id parser_classes = utils.get_parser_classes() bank_names = "\n".join( parser_cls.name + "\t:\t" + parser_cls.short_name for parser_cls in parser_classes ) msg = _("Supported banks: \n{}").format(bank_names) bot.sendMessage(chat_id=chat_id, text=msg) return
15,995
def find_nocc(two_arr, n): """ Given two sorted arrays of the SAME lengths and a number, find the nth smallest number a_n and use two indices to indicate the numbers that are no larger than a_n. n can be real. Take the floor. """ l = len(two_arr[0]) if n >= 2 * l: return l, l if n == 0: return 0, 0 res, n = n % 1, int(n) lo, hi = max(0, n - l - 1), min(l - 1, n - 1) while lo <= hi: mid = int((lo + hi) / 2) # image mid is the right answer if mid + 1 < l and n - mid - 2 >= 0: if two_arr[0][mid + 1] < two_arr[1][n - mid - 2]: lo = mid + 1 continue if n - mid - 1 < l: if two_arr[1][n - mid - 1] < two_arr[0][mid]: hi = mid continue break if n - mid - 1 >= l or mid + 1 < l and two_arr[0][mid + 1] < two_arr[1][n - mid - 1]: return mid + res + 1, n - mid - 1 else: return mid + 1, n - mid - 1 + res
15,996
def get_dict(str_of_dict: str, order_key='', sort_dict=False) -> list: """Function returns the list of dicts: :param str_of_dict: string got form DB (e.g. {"genre_id": 10, "genre_name": "name1"}, {"genre_id": 11, "genre_name": "name12"},...), :param order_key: the key by which dictionaries will be sorted (required if flag 'sort_dict=True'), :param sort_dict: flag for sorting the dictionary (boolean). :return: list of dicts (e.g. [{"genre_id": 10, "genre_name": "name1"}, {"genre_id": 11, "genre_name": "name12"},...])""" result_dict = list() if str_of_dict: result_dict = json.loads('[' + str_of_dict + ']') if sort_dict and order_key: try: result_dict = sorted(result_dict, key=lambda i: i[order_key]) return result_dict except KeyError: return result_dict return result_dict else: return result_dict
15,997
def pyz_repositories(): """Rules to be invoked from WORKSPACE to load remote dependencies.""" excludes = native.existing_rules() WHEEL_BUILD_CONTENT = wheel_build_content() if 'pypi_atomicwrites' not in excludes: http_archive( name = 'pypi_atomicwrites', url = 'https://files.pythonhosted.org/packages/3a/9a/9d878f8d885706e2530402de6417141129a943802c084238914fa6798d97/atomicwrites-1.2.1-py2.py3-none-any.whl', sha256 = '0312ad34fcad8fac3704d441f7b317e50af620823353ec657a53e981f92920c0', build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_attrs' not in excludes: http_archive( name = 'pypi_attrs', url = 'https://files.pythonhosted.org/packages/3a/e1/5f9023cc983f1a628a8c2fd051ad19e76ff7b142a0faf329336f9a62a514/attrs-18.2.0-py2.py3-none-any.whl', sha256 = 'ca4be454458f9dec299268d472aaa5a11f67a4ff70093396e1ceae9c76cf4bbb', build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_funcsigs' not in excludes: http_archive( name = 'pypi_funcsigs', url = 'https://pypi.python.org/packages/69/cb/f5be453359271714c01b9bd06126eaf2e368f1fddfff30818754b5ac2328/funcsigs-1.0.2-py2.py3-none-any.whl', sha256 = '330cc27ccbf7f1e992e69fef78261dc7c6569012cf397db8d3de0234e6c937ca', build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_more_itertools' not in excludes: http_archive( name="pypi_more_itertools", url="https://files.pythonhosted.org/packages/fb/d3/77f337876600747ae307ea775ff264c5304a691941cd347382c7932c60ad/more_itertools-4.3.0-py2-none-any.whl", sha256="fcbfeaea0be121980e15bc97b3817b5202ca73d0eae185b4550cbfce2a3ebb3d", build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_pluggy' not in excludes: http_archive( name = 'pypi_pluggy', url = 'https://files.pythonhosted.org/packages/f5/f1/5a93c118663896d83f7bcbfb7f657ce1d0c0d617e6b4a443a53abcc658ca/pluggy-0.7.1-py2.py3-none-any.whl', sha256 = '6e3836e39f4d36ae72840833db137f7b7d35105079aee6ec4a62d9f80d594dd1', build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_py' not in excludes: http_archive( name="pypi_py", url="https://files.pythonhosted.org/packages/c8/47/d179b80ab1dc1bfd46a0c87e391be47e6c7ef5831a9c138c5c49d1756288/py-1.6.0-py2.py3-none-any.whl", sha256="50402e9d1c9005d759426988a492e0edaadb7f4e68bcddfea586bc7432d009c6", build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_pytest' not in excludes: http_archive( name="pypi_pytest", # pytest 3.7.0 depends on pathlib2 which depends on scandir which is native code # it does not ship manylinux wheels, so we can't easily depend on it: use pytest 3.6 url="https://files.pythonhosted.org/packages/d8/e9/73246a565c34c5f203dd78bc2382e0e93aa7a249cdaeba709099eb1bc701/pytest-3.6.4-py2.py3-none-any.whl", sha256="952c0389db115437f966c4c2079ae9d54714b9455190e56acebe14e8c38a7efa", build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_six' not in excludes: http_archive( name = 'pypi_six', url = 'https://pypi.python.org/packages/67/4b/141a581104b1f6397bfa78ac9d43d8ad29a7ca43ea90a2d863fe3056e86a/six-1.11.0-py2.py3-none-any.whl', sha256 = '832dc0e10feb1aa2c68dcc57dbb658f1c7e65b9b61af69048abc87a2db00a0eb', build_file_content=WHEEL_BUILD_CONTENT, type="zip", ) if 'pypi_setuptools' not in excludes: http_archive( name = 'pypi_setuptools', url = 'https://files.pythonhosted.org/packages/81/17/a6301c14aa0c0dd02938198ce911eba84602c7e927a985bf9015103655d1/setuptools-40.4.1-py2.py3-none-any.whl', sha256 = '822054653e22ef38eef400895b8ada55657c8db7ad88f7ec954bccff2b3b9b52', build_file_content=WHEEL_BUILD_CONTENT, type="zip", )
15,998
def get_richpe_hash(pe): """Computes the RichPE hash given a file path or data. If the RichPE hash is unable to be computed, returns None. Otherwise, returns the computed RichPE hash. If both file_path and data are provided, file_path is used by default. Source : https://github.com/RichHeaderResearch/RichPE """ if pe.RICH_HEADER is None: return None # Get list of @Comp.IDs and counts from Rich header # Elements in rich_fields at even indices are @Comp.IDs # Elements in rich_fields at odd indices are counts rich_fields = pe.RICH_HEADER.values if len(rich_fields) % 2 != 0: return None # The RichPE hash of a file is computed by computing the md5 of specific # metadata within the Rich header and the PE header md5 = hashlib.md5() # Update hash using @Comp.IDs and masked counts from Rich header while len(rich_fields): compid = rich_fields.pop(0) count = rich_fields.pop(0) mask = 2 ** (count.bit_length() // 2 + 1) - 1 count |= mask md5.update(struct.pack("<L", compid)) md5.update(struct.pack("<L", count)) # Update hash using metadata from the PE header md5.update(struct.pack("<L", pe.FILE_HEADER.Machine)) md5.update(struct.pack("<L", pe.FILE_HEADER.Characteristics)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.Subsystem)) md5.update(struct.pack("<B", pe.OPTIONAL_HEADER.MajorLinkerVersion)) md5.update(struct.pack("<B", pe.OPTIONAL_HEADER.MinorLinkerVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MajorOperatingSystemVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MinorOperatingSystemVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MajorImageVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MinorImageVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MajorSubsystemVersion)) md5.update(struct.pack("<L", pe.OPTIONAL_HEADER.MinorSubsystemVersion)) return md5.hexdigest()
15,999