content
stringlengths
22
815k
id
int64
0
4.91M
def get_input(label, default=None): """Prompt the user for input. :param label: The label of the prompt. :param label: str :param default: The default value. :rtype: str | None """ if default: _label = "%s [%s]: " % (label, default) else: _label = "%s: " % label print("") value = input(_label) if not value: return default return value
16,000
def get_pretrain_data_text(data, batch_size, num_ctxes, shuffle, num_buckets, vocab, tokenizer, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, whole_word_mask, num_parts=1, part_idx=0, num_workers=1): """Get a data iterator from raw text documents. Parameters ---------- batch_size : int The batch size per GPU. num_ctxes : int The number of GPUs. shuffle : bool Whether to shuffle the data. num_buckets : int The number of buckets for the FixedBucketSampler for training. vocab : BERTVocab The vocabulary. tokenizer : BERTTokenizer or BERTSPTokenizer The tokenizer. max_seq_length : int The hard limit of maximum sequence length of sentence pairs. short_seq_prob : float The probability of sampling sequences shorter than the max_seq_length. masked_lm_prob : float The probability of replacing texts with masks/random words/original words. max_predictions_per_seq : int The hard limit of the number of predictions for masked words whole_word_mask : bool Whether to use whole word masking. num_parts : int The number of partitions for the dataset. part_idx : int The index of the partition to read. num_workers : int The number of worker processes for dataset contruction. """ num_files = len(nlp.utils.glob(data)) logging.info('%d files are found.', num_files) assert num_files >= num_parts, \ 'The number of training text files must be no less than the number of ' \ 'workers/partitions (%d). Only %d files at %s are found.'%(num_parts, num_files, data) dataset_params = {'tokenizer': tokenizer, 'max_seq_length': max_seq_length, 'short_seq_prob': short_seq_prob, 'masked_lm_prob': masked_lm_prob, 'max_predictions_per_seq': max_predictions_per_seq, 'vocab':vocab, 'whole_word_mask': whole_word_mask} dataset_fn = SimpleDatasetFn(BERTPretrainDataset, dataset_params) sampler_fn = BERTSamplerFn(batch_size, shuffle, num_ctxes, num_buckets) dataloader_fn = BERTDataLoaderFn(num_ctxes, vocab) split_sampler = nlp.data.SplitSampler(num_files, num_parts=num_parts, part_index=part_idx) dataloader = DatasetLoader(data, split_sampler, dataset_fn, sampler_fn, dataloader_fn, num_dataset_workers=num_workers) return dataloader
16,001
def define_app_flags(scenario_num): """ Define the TensorFlow application-wide flags Returns: FLAGS: TensorFlow flags """ FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_boolean('save_model', False, 'save model to disk') tf.app.flags.DEFINE_string('summaries_dir', './logs', 'tensorboard summaries') tf.app.flags.DEFINE_string('ckpt_dir', './saved_models/', 'check point dir') tf.app.flags.DEFINE_string('scenario_num', scenario_num, 'Scenario number') tf.app.flags.DEFINE_string('errors_dir', './errors/', 'Errors dir') return FLAGS
16,002
def longitude_validator(value): """Perform longitude validation. """ valid = -180 < value < 180 if not valid: raise ValidationError(_('longitude not in range of -90 < value < 90')) return value
16,003
def getVariables(): """ Retrieves the variables.json file. """ if os.path.exists('variables.json'): with open('variables.json') as jsonFile: variables = json.loads(jsonFile.read()) return variables else: variables = {} variables['path'] = '' return variables
16,004
def stop_random_tasks( cluster: str, task_count: int = None, task_percent: int = None, service: str = None, reason: str = "Chaos Testing", configuration: Configuration = None, secrets: Secrets = None, ) -> List[AWSResponse]: """ Stop a random number of tasks based on given task_count or task_percent You can specify a cluster by its ARN identifier or, if not provided, the default cluster will be picked up. :param cluster: The ECS cluster Name :param task_count: The number of tasks to stop :param task_percent: The percentage of total tasks to stop :param service: The ECS service name :param reason: An explanation of why the service was stopped :param configuration: access values used by actions/probes :param secrets: values that need to be passed on to actions/probes :return: List[Dict[str, Any]] """ if not any([task_count, task_percent]) or all([task_count, task_percent]): raise FailedActivity('Must specify one of "task_count", "task_percent"') client = aws_client("ecs", configuration, secrets) validate(client, cluster, service) tasks = list_running_tasks_in_cluster( cluster=cluster, client=client, service=service ) if task_percent: task_count = int(float(len(tasks) * float(task_percent)) / 100) if len(tasks) < task_count: raise FailedActivity( "Not enough running tasks in {} to satisfy " "stop count {} ({})".format(cluster, task_count, len(tasks)) ) tasks = random.sample(tasks, task_count) results = [] for task in tasks: logger.debug(f"Stopping ECS task: {task}") response = client.stop_task(cluster=cluster, task=task, reason=reason) results.append( { "Task_Id": response["task"]["taskArn"], "Desired_Status": response["task"]["desiredStatus"], } ) return results
16,005
def test_create_batch_multi_record_update_fails(shared_zone_test_context): """ Test recordsets with multiple records cannot be edited in batch (relies on config, skip-prod) """ client = shared_zone_test_context.ok_vinyldns_client ok_zone = shared_zone_test_context.ok_zone # record sets to setup a_update_name = generate_record_name() a_update_fqdn = a_update_name + ".ok." a_update = get_recordset_json(ok_zone, a_update_name, "A", [{"address": "1.1.1.1"}, {"address": "1.1.1.2"}], 200) txt_update_name = generate_record_name() txt_update_fqdn = txt_update_name + ".ok." txt_update = get_recordset_json(ok_zone, txt_update_name, "TXT", [{"text": "hello"}, {"text": "again"}], 200) a_delete_name = generate_record_name() a_delete_fqdn = a_delete_name + ".ok." a_delete = get_recordset_json(ok_zone, a_delete_name, "A", [{"address": "1.1.1.1"}, {"address": "1.1.1.2"}], 200) txt_delete_name = generate_record_name() txt_delete_fqdn = txt_delete_name + ".ok." txt_delete = get_recordset_json(ok_zone, txt_delete_name, "TXT", [{"text": "hello"}, {"text": "again"}], 200) batch_change_input = { "comments": "this is optional", "changes": [ get_change_A_AAAA_json(a_update_fqdn, change_type="DeleteRecordSet"), get_change_A_AAAA_json(a_update_fqdn, address="1.2.3.4"), get_change_A_AAAA_json(a_update_fqdn, address="4.5.6.7"), get_change_TXT_json(txt_update_fqdn, change_type="DeleteRecordSet"), get_change_TXT_json(txt_update_fqdn, text="some-multi-text"), get_change_TXT_json(txt_update_fqdn, text="more-multi-text"), get_change_A_AAAA_json(a_delete_fqdn, change_type="DeleteRecordSet"), get_change_TXT_json(txt_delete_fqdn, change_type="DeleteRecordSet"), # adding an HVD so this will fail if accidentally run against wrong config get_change_A_AAAA_json("high-value-domain") ] } to_delete = [] try: for rs in [a_update, txt_update, a_delete, txt_delete]: create_rs = client.create_recordset(rs, status=202) to_delete.append(client.wait_until_recordset_change_status(create_rs, 'Complete')) response = client.create_batch_change(batch_change_input, status=400) def existing_err(name, type): return 'RecordSet with name {} and type {} cannot be updated in a single '.format(name, type) + \ 'Batch Change because it contains multiple DNS records (2).' def new_err(name, type): return 'Multi-record recordsets are not enabled for this instance of VinylDNS. ' \ 'Cannot create a new record set with multiple records for inputName {} and type {}.'.format(name, type) assert_error(response[0], error_messages=[existing_err(a_update_fqdn, "A")]) assert_error(response[1], error_messages=[existing_err(a_update_fqdn, "A"), new_err(a_update_fqdn, "A")]) assert_error(response[2], error_messages=[existing_err(a_update_fqdn, "A"), new_err(a_update_fqdn, "A")]) assert_error(response[3], error_messages=[existing_err(txt_update_fqdn, "TXT")]) assert_error(response[4], error_messages=[existing_err(txt_update_fqdn, "TXT"), new_err(txt_update_fqdn, "TXT")]) assert_error(response[5], error_messages=[existing_err(txt_update_fqdn, "TXT"), new_err(txt_update_fqdn, "TXT")]) assert_error(response[6], error_messages=[existing_err(a_delete_fqdn, "A")]) assert_error(response[7], error_messages=[existing_err(txt_delete_fqdn, "TXT")]) finally: clear_recordset_list(to_delete, client)
16,006
def usage(): """ Print short help meesage. """ print('Usage:') print(' ' + sys.argv[0] + ' --help') print(' ' + sys.argv[0] + ' [options] /src/dir/path /dst/dir/path') print('Options:') print(' --move move files (will remove source files);') print(' --quiet be quiet;') print(' --dry-run do nothing, only report files and dirs processing;') print(' --dnrcd do not remove cleared directories;') print(' --chmod=Octal permissions for new files. Default is 0644.') print('Time shifting options:') print(' --year-shift=Integer') print(' --month-shift=Integer') print(' --day-shift=Integer') print(' --hour-shift=Integer') print(' --minute-shift=Integer') print(' --second-shift=Integer') sys.exit(1)
16,007
def plot_confusion_matrix(conf_matrix: np.ndarray, cmap: str = 'bwr', ax=None, show: bool = False, title: str = 'Confusion matrix') -> None: """Plots a confusion matrix. Args: conf_matrix (np.ndarray): confusion matrix. cmap (str, optional): colormap recognized by matplotlib. Defaults to 'bwr'. ax (optional): matplotlib ax. Defaults to None. show (bool, optional): True to call plt.show. Defaults to True. title (bool, optional): title of the confusion matrix. Defaults to 'Confusion Matrix'. """ if ax is None: _, ax = plt.subplots(figsize=(5, 5)) # Plot matrix ax.matshow(conf_matrix, cmap=cmap, alpha=0.3) # Add values as text for i in range(conf_matrix.shape[0]): for j in range(conf_matrix.shape[1]): ax.text(x=j, y=i, s=conf_matrix[i, j], va='center', ha='center', size='x-large') # Set labels ax.set_xlabel('Predicted labels') ax.set_ylabel('True labels') ax.set_title(title) # Show plot if show: plt.show()
16,008
def _build_colormap(data, hue, palette, order): """Builds a colormap.""" if hue is None: color_map = {} else: if palette is None: palette = sns.color_palette() if order is None: order = data[hue].unique() color_map = OrderedDict(zip(order, palette)) return color_map
16,009
def f_is_oword(*args): """ f_is_oword(F, arg2) -> bool See 'is_oword()' @param F (C++: flags_t) """ return _ida_bytes.f_is_oword(*args)
16,010
def aggregate_CSV_files(data_path): """ Aggregate the data in CSV files, specified in the config file, into a single pandas DataFrame object. """ merge_queue = [] for path in data_path: data_df = pd.read_csv(path, na_values = ['.']); data_df.index = pd.to_datetime(data_df['DATE'], format='%Y-%m-%d') data_df = data_df[data_df.index > c.START_DATE] del data_df['DATE'] merge_queue.append(data_df) aggregate_df = pd.concat(merge_queue, sort = True, axis = 1) aggregate_df.sort_index(inplace = True) return aggregate_df
16,011
def test_replace_in_list_single(): """Test the function with a list of strings""" x = ['aa', 'bb', 'cc'] replace_in_list(x, ['aa', 'bb'], ['dd', 'ee']) assert x == ['dd', 'ee', 'cc']
16,012
def dR2(angle: np_float) -> np.ndarray: """Derivative of a rotation matrix around the second axis with respect to the rotation angle Args: angle: Scalar, list or numpy array of angles in radians. Returns: Numpy array: Rotation matrix or array of rotation matrices. """ zero = _zero(angle) cosA, sinA = np.cos(angle), np.sin(angle) return _roll_axes(np.array([[-sinA, zero, -cosA], [zero, zero, zero], [cosA, zero, -sinA]]))
16,013
def build_symm_filter_commands(chainfiles, chromref, outpath, cmd, jobcall): """ :return: """ chromfiles = collect_full_paths(chromref, '*.tsv') assert chromfiles, 'No chromosome files found at location: {}'.format(chromref) assm_chrom = dict() for chrf in chromfiles: assm = os.path.basename(chrf).split('_')[0] sizes = read_chromsizes(chrf) assm_chrom[assm] = list(sizes.keys()) params = [] for chf in chainfiles: fn = os.path.basename(chf) target, query = fn.split('.', 1)[0].split('_to_') chroms = assm_chrom[query] for c in chroms: outname = '{}_to_{}.{}.symmap.tsv.gz'.format(target, query, c) outfull = os.path.join(outpath, outname) tmp = cmd.format(**{'chrom': c}) params.append([chf, outfull, tmp, jobcall]) if len(chainfiles) > 0: assert params, 'No parameters created for chain symmetry filtering' return params
16,014
def clear_predecessor(n): """ Sets n's predecessor to None :param n: node on which to call clear_predecessor :return: string of response """ def clear(node): node.predecessor = None n.event_queue.put(clear) resp_header = {"status": STATUS_OK} return utils.create_request(resp_header, {})
16,015
def resource_file(): """ Create an empty resource file :return: """ def _resource_file(dirname, filename): filepath = os.path.join(dirname, filename) open(filepath, 'a').close() return filepath return _resource_file
16,016
def batch_generator(X, y, batch_size, samples_per_epoch): """Generate mini-batches.""" number_of_batches = int(samples_per_epoch / batch_size) shuffle_index = np.arange(np.shape(y)[0]) np.random.shuffle(shuffle_index) X = X[shuffle_index, :] y = y[shuffle_index] for i in range(number_of_batches): index_batch = shuffle_index[batch_size * i:batch_size * (i + 1)] X_batch = X[index_batch, :] if isinstance(X_batch, csr_matrix): X_batch = X_batch.todense() y_batch = y[index_batch] yield np.array(X_batch), y_batch
16,017
def get_local_variable_influence(model, form_data): """ """ row = format_data_to_row(form_data) model_obj = read_model(model.path, model.file_type) df = load_dataset_sample(model.dataset, nrows=50) df = df[model.dataset.model_columns] explainer = load_model_explainer_from_obj(model_obj, df) prediction = list() prediction.append(model_obj.predict(row)[0]) if hasattr(model_obj, 'predict_proba'): prediction.append(model_obj.predict_proba(row)[0]) base_value = explainer.explainer.expected_value variable_influence = compute_local_influence(explainer, row) return variable_influence, prediction, base_value
16,018
def Print(text='', newline=True, colour=None): """Handle a line of output to the terminal. In test mode this is recorded in a list. Otherwise it is output to the terminal. Args: text: Text to print newline: True to add a new line at the end of the text colour: Colour to use for the text """ if print_test_mode: print_test_list.append(PrintLine(text, newline, colour)) else: if colour: col = Color() text = col.Color(colour, text) print(text, end='') if newline: print() else: sys.stdout.flush()
16,019
def submit_experiment(body, **kwargs): """Submit an experiment :param body: experiment payload :type body: dict | bytes :rtype: StatusSerializer """ serializer = ExperimentSerializer.from_dict(body) check_experiment_permission(serializer, kwargs["token_info"]) stub = get_experiments_services_stub() response = stub.Submit(job_pb2.Experiment(**body)) if response.status != 200: return ErrorSerializer(status=response.status, title="Api Error", detail=response.message), response.status return StatusSerializer.from_dict(util.deserialize_protobuf(response))
16,020
def obj_assert_check(cls): """ The body of the assert check for an accessor We allow all versions of add/delete/modify to use the same accessors """ if cls in ["of_flow_modify", "of_flow_modify_strict", "of_flow_delete", "of_flow_delete_strict", "of_flow_add"]: return "IS_FLOW_MOD_SUBTYPE(obj->object_id)" else: return "obj->object_id == %s" % cls.upper()
16,021
def ripemd160(data: List[int]) -> List[int]: """ :param data: :return: """ try: bytes_data = bytes(data) except TypeError: raise NativeContractException digest = hashlib.new("ripemd160", bytes_data).digest() padded = 12 * [0] + list(digest) return list(bytearray(bytes(padded)))
16,022
def has_duplicates(s:list) -> dict: """Returns True if any element appears more than once in a sequence.""" d = dict() for char in s: if char in d: return True d[char] = 1 return False
16,023
def test_slicing_on_instances_3(): """ Like `test_slicing_on_instances_2` but uses a compound model that does not have any invalid slices due to the resulting model being invalid (originally test_slicing_on_instances_2 passed without any ModelDefinitionErrors being raised, but that was before we prevented invalid models from being created). """ model_a = Shift(1, name='a') model_b = Shift(2, name='b') model_c = Gaussian1D(3, 0, 0.1, name='c') model_d = Scale(2, name='d') model_e = Scale(3, name='e') m = (model_a + model_b) | model_c | (model_d + model_e) assert m[1:].submodel_names == ('b', 'c', 'd', 'e') assert m[:].submodel_names == ('a', 'b', 'c', 'd', 'e') assert m['a':].submodel_names == ('a', 'b', 'c', 'd', 'e') assert m['c':'d'].submodel_names == ('c', 'd') assert m[1:2].name == 'b' assert m[2:7].submodel_names == ('c', 'd', 'e') with pytest.raises(IndexError): m['x'] with pytest.raises(IndexError): m['a': 'r'] assert m[-4:4].submodel_names == ('b', 'c', 'd') assert m[-4:-2].submodel_names == ('b', 'c')
16,024
def get_from_chain(J, domain, nof_coefficients, ncap=10000, disc_type='sp_quad', interval_type='lin', mapping_type='lan_bath', permute=None, residual=True, low_memory=True, stable=False, get_trafo=False, force_sp=False, mp_dps=30, sort_by=None, **kwargs): """ Returns star coefficients, constructed from chain coefficients via diagonalization see chain.get and convert_chain_to_star for an explanation of the arguments. Sort_by sorts the couplings and energies (if passed and not None), see utils.sorting.sort_star_coefficients for details on the parameters. :returns: gamma (couplings), xi (energies), info dict from both the conversion and the chain mapping if get_trafo is set True, the dict only contains the latest transformation (from chain to star here) """ c0, omega, t, info = get_chain(J, domain, nof_coefficients, ncap=ncap, disc_type=disc_type, interval_type=interval_type, mapping_type=mapping_type, permute=permute, residual=residual, low_memory=low_memory, stable=stable, get_trafo=False, **kwargs) gamma, xi, trafo_info = convert_chain_to_star(c0, omega, t, force_sp=force_sp, mp_dps=mp_dps, get_trafo=get_trafo) gamma, xi = sort_star_coefficients(gamma, xi, sort_by) return gamma, xi, info.update(trafo_info)
16,025
def factory(kernel_type, cuda_type=None, gpu_mode=None, *args, **kwargs): """Return an instance of a kernel corresponding to the requested kernel_type""" if cuda_type is None: cuda_type = default.dtype if gpu_mode is None: gpu_mode = default.gpu_mode # turn enum string to enum object if isinstance(kernel_type, str): try: for c in [' ', '-']: # chars to be replaced for normalization kernel_type = kernel_type.replace(c, '_') kernel_type = Type[kernel_type.upper()] except: raise TypeError('kernel_type ' + kernel_type + ' could not be found') if not isinstance(kernel_type, Type): raise TypeError('kernel_type must be an instance of KernelType Enum') if kernel_type in [Type.UNDEFINED, Type.NO_KERNEL]: return None res = None hash = AbstractKernel.hash(kernel_type, cuda_type, gpu_mode, *args, **kwargs) if hash not in instance_map: res = kernel_type.value(gpu_mode=gpu_mode, cuda_type=cuda_type, *args, **kwargs) # instantiate instance_map[hash] = res else: res = instance_map[hash] assert res is not None return res
16,026
def init_scaler( scaler_parameters: Dict, fit_data: np.ndarray, ) -> Union[MinMaxScaler, StandardScaler, RobustScaler]: """Initialize and return scaler. Args: scaler_parameters: Parameters of scaler. fit_data: Data to be fit. Returns: Selected scaler. """ scaler_type = scaler_parameters["scaler_type"] if scaler_type == "RobustScaler": scaler = RobustScaler() elif scaler_type == "StandardScaler": scaler = StandardScaler() else: scaler = MinMaxScaler() scaler.fit(fit_data) return scaler
16,027
def get_dynamic_resource(previous_length: str): """Get the job with job_name. Returns: None. """ name_to_node_usage = redis_controller.get_resource_usage( previous_length=int(previous_length) ) return name_to_node_usage
16,028
def MoveAndMerge(src_dir, dst_dir): """Moves data files from src_dir and merges with data files on dst_dir""" file_utils.TryMakeDirs(os.path.join(dst_dir, ATT_DIR_NAME)) for att_name in os.listdir(os.path.join(src_dir, ATT_DIR_NAME)): att_src_path = os.path.join(src_dir, ATT_DIR_NAME, att_name) att_dst_path = os.path.join(dst_dir, ATT_DIR_NAME, att_name) if not os.path.isfile(att_dst_path): shutil.move(att_src_path, att_dst_path) file_utils.SyncDirectory(os.path.join(dst_dir, ATT_DIR_NAME)) with open(os.path.join(dst_dir, EVENT_FILE_NAME), 'a') as dst_f: with open(os.path.join(src_dir, EVENT_FILE_NAME), 'r') as src_f: shutil.copyfileobj(src_f, dst_f) dst_f.flush() os.fdatasync(dst_f.fileno()) file_utils.SyncDirectory(dst_dir)
16,029
def _margo_bin(exe=""): """Returns the path of the margo executable. """ return gs.home_path("bin", exe or INSTALL_EXE)
16,030
def csl_density(basis, mini_cell, plane): """ returns the CSL density of a given plane and its d_spacing. """ plane = np.array(plane) c = csl_vec(basis, mini_cell) h = np.dot(c.T, plane) h = smallest_integer(h)[0] h = common_divisor(h)[0] g = np.linalg.inv(np.dot(c.T, c)) h_norm = np.sqrt(np.dot(h.T, np.dot(g, h))) density = 1/(h_norm * np.linalg.det(c)) return abs(density), 1 / h_norm
16,031
def _concatenate_multiple_freq(at_cache, multi_rt_array, multi_time_array, inplace=False, tick_time_field='tradeTime'): """ Concatenate multiple frequency data. Args: at_cache(dict): current at multiple cache data multi_rt_array(matrix): multiple real-time data array multi_time_array(matrix): multiple real-time time array inplace(Boolean): whether to replace the latest bar tick_time_field(string): tick time field name """ column_size = at_cache[tick_time_field].size total_column_size = column_size + len(multi_time_array) if inplace: total_column_size -= 1 increment_column_size = max(total_column_size - column_size, 1) matrix = np.zeros((len(EQUITY_RT_VALUE_FIELDS), total_column_size)) for _, field in enumerate(EQUITY_RT_VALUE_FIELDS): if inplace: matrix[_, :(column_size - 1)] = at_cache[field][:-1] else: matrix[_, :column_size] = at_cache[field] matrix[:, -increment_column_size:] = multi_rt_array.T for i, _ in enumerate(matrix): at_cache[EQUITY_RT_VALUE_FIELDS[i]] = _ matrix_time = np.empty((len(EQUITY_RT_TIME_FIELDS), total_column_size), dtype='|S16') for _, field in enumerate(EQUITY_RT_TIME_FIELDS): if inplace: matrix_time[_, :(column_size - 1)] = at_cache[field][:-1] else: matrix_time[_, :column_size] = at_cache[field] matrix_time[:, -increment_column_size:] = multi_time_array.T for i, _ in enumerate(matrix_time): at_cache[EQUITY_RT_TIME_FIELDS[i]] = _
16,032
def mw_Av(): """Build the A_V attenuation by the MW towards M31.""" curve = SF11ExtinctionCurve() ratio = curve['Landolt V'] # A_V / E(B-V) from T6 of SF2011 return ratio * 0.07
16,033
def load_model(model_uri): """ Load an H2O model from a local file (if ``run_id`` is ``None``) or a run. This function expects there is an H2O instance initialised with ``h2o.init``. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :return: An `H2OEstimator model object <http://docs.h2o.ai/h2o/latest-stable/h2o-py/docs/intro.html#models>`_. """ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) # Flavor configurations for models saved in MLflow version <= 0.8.0 may not contain a # `data` key; in this case, we assume the model artifact path to be `model.h2o` h2o_model_file_path = os.path.join(local_model_path, flavor_conf.get("data", "model.h2o")) return _load_model(path=h2o_model_file_path)
16,034
def load_data(filenames): """Load a single file or sequence of files using skimage.io""" filenames = [filenames, ] if isinstance(filenames, str) else filenames loadfunc = tifffile.imread if all(f.lower().endswith("tif") for f in filenames) else skio.imread if len(filenames) > 1: return np.array([loadfunc(f) for f in filenames], dtype=float) elif len(filenames) == 1: return loadfunc(filenames[0]).astype(float) else: raise Exception("load_data received an empty list")
16,035
def GetInverseMatrix(matrix): """ :param matrix: the matrix which will get its inverse matrix :return: the inverse matrix(two dimensions only) """ matrix[0, 0], matrix[1, 1] = -matrix[1, 1], -matrix[0, 0] matrix = matrix / -(matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0]) return matrix
16,036
def petsc_memory_stats(log): """Return the memory stats section of PETSc's -log_view output as a dictionary.""" # first search for the 'Memory usage' header, then match anything that follows # after the first line starting with --- up until the first line starting with ===== # re.DOTALL makes . match newlines as well try: memory_profile = re.finditer('Memory usage is given in bytes:.*?\n---[^\n].*?\n(.*?)\n===========', log, re.DOTALL).next().group(1) except StopIteration: # no memory stats section found (did you run with -log_view ?) return None stats = {} for line in memory_profile.split('\n'): try: (object, profile) = re.finditer('(\s.*?)([0-9]+.*)', line).next().groups() except StopIteration: continue profile = profile.split() stats[object.strip()] = [int(x) for x in profile[0:3]] + [float(profile[3]),] return stats
16,037
def test_tile_valid_default(): """Should return a 3 bands array and a full valid mask.""" with COGReader(COG_NODATA) as cog: # Full tile data, mask = cog.tile(43, 24, 7) assert data.shape == (1, 256, 256) assert mask.all() tile_bounds = WEB_MERCATOR_TMS.xy_bounds(43, 24, 7) data_part, _ = cog.part( tile_bounds, bounds_crs=WEB_MERCATOR_TMS.crs, width=256, height=256, max_size=None, ) assert numpy.array_equal(data, data_part) # Partial tile data, mask = cog.tile(42, 24, 7) assert data.shape == (1, 256, 256) assert not mask.all() # Expression data, mask = cog.tile(43, 24, 7, expression="b1*2,b1-100") assert data.shape == (2, 256, 256) with pytest.warns(ExpressionMixingWarning): data, _ = cog.tile(43, 24, 7, indexes=(1, 2, 3), expression="b1*2") assert data.shape == (1, 256, 256) data, mask = cog.tile(43, 24, 7, indexes=1) assert data.shape == (1, 256, 256) data, mask = cog.tile(43, 24, 7, indexes=(1, 1,)) assert data.shape == (2, 256, 256) # We are using a file that is aligned with the grid so no resampling should be involved with COGReader(COG_WEB) as cog: img = cog.tile(147, 182, 9) img_buffer = cog.tile(147, 182, 9, tile_buffer=10) assert img_buffer.width == 276 assert img_buffer.height == 276 assert not img.bounds == img_buffer.bounds assert numpy.array_equal(img.data, img_buffer.data[:, 10:266, 10:266])
16,038
def track2result(bboxes, labels, ids, num_classes): """Convert tracking results to a list of numpy arrays. Args: bboxes (torch.Tensor | np.ndarray): shape (n, 5) labels (torch.Tensor | np.ndarray): shape (n, ) ids (torch.Tensor | np.ndarray): shape (n, ) num_classes (int): class number, including background class Returns: list(ndarray): tracking results of each class. """ valid_inds = ids > -1 bboxes = bboxes[valid_inds] labels = labels[valid_inds] ids = ids[valid_inds] if bboxes.shape[0] == 0: return [np.zeros((0, 6), dtype=np.float32) for i in range(num_classes)] else: if isinstance(bboxes, torch.Tensor): bboxes = bboxes.cpu().numpy() labels = labels.cpu().numpy() ids = ids.cpu().numpy() return [ np.concatenate((ids[labels == i, None], bboxes[labels == i, :]), axis=1) for i in range(num_classes) ]
16,039
def build_result_dataframe(gh, pred, df): """ Construct a datarame that contain the prediction. :param gh: the geohas6 code of the prediction :param pred: numpy array of prediction :param df: the dataframe used for prediction :returns: prediction dataframe :rtype: pandas.core.frame.DataFrame """ # generate a sequence of timestamp start_time = df.timestamp.values.max() + np.timedelta64(15, 'm') timestamps = pd.date_range(start_time, periods=len(pred), freq='15T') # calulate 'day' colum of the dataframe dtdelta = (timestamps.date - df.timestamp.max().date()) dtdelta = list(map(lambda x: x.days, dtdelta)) days = dtdelta + df.day.max() # calulate time of day tod = list(map(lambda x: x.strftime('%H:%M'), timestamps.time)) # construct the result dictionary res = {'geohash6': [gh] * len(pred), 'day': days, 'timestamp': tod, 'demand': pred } return pd.DataFrame(res)
16,040
def find_module(module_name: str, search_paths: Sequence[str | Path] | None = None) -> Path: # noqa: WPS231 """Find a module in a given list of paths or in `sys.path`. Parameters: module_name: The module name. search_paths: The paths to search into. Raises: ModuleNotFoundError: When the module cannot be found. Returns: The module file path. """ # optimization: pre-compute Paths to relieve CPU when joining paths search = [path if isinstance(path, Path) else Path(path) for path in search_paths or sys.path] parts = module_name.split(".") # always search a .pth file first using the first part for path in search: top_pth = Path(f"{parts[0]}.pth") abs_top_pth = path / top_pth if abs_top_pth.exists(): with suppress(UnhandledPthFileError): location = _handle_pth_file(abs_top_pth) if location.suffix: location = location.parent search = [location.parent] # TODO: possible optimization # always break if exists? break # resume regular search filepaths = [ # TODO: handle .py[cod] and .so files? Path(*parts, "__init__.py"), Path(*parts[:-1], f"{parts[-1]}.py"), Path(*parts[:-1], f"{parts[-1]}.pth"), Path(*parts), # namespace packages, try last ] for path in search: # noqa: WPS440 for choice in filepaths: abs_path = path / choice # optimization: just check if the file exists, # not if it's an actual file if abs_path.exists(): if abs_path.name.endswith(".pth"): try: return _handle_pth_file(abs_path) except UnhandledPthFileError as error: raise ModuleNotFoundError(module_name) from error return abs_path raise ModuleNotFoundError(module_name)
16,041
def bandwidth_limited_write(in_file, out_file, kbits_per_sec_str, post_delay_compression): """Bandwidth limited writing. Args: in_file: file, the file to read the data from. out_file: file, the file to write the data to. kbits_per_sec_str: string, the bandwidth speed. post_delay_compression: bool, a hack to compensate for compressed data vs uncompressed data. """ try: kbits_per_sec = float(kbits_per_sec_str) except ValueError: kbits_per_sec = 0 if not kbits_per_sec: while True: data = in_file.read() if not data: return out_file.write(data) kbytes_per_sec = kbits_per_sec / 8 ms_per_k = 1000 / kbytes_per_sec if post_delay_compression: ms_per_k /= 2 chunk_size = 512 t0 = time() chunks_sent = 0 delay_per_chunk = (ms_per_k / 1024.0) / 1024 * chunk_size while True: chunk = in_file.read(chunk_size) if not chunk: break chunks_sent += 1 needed_sleep_time = chunks_sent * delay_per_chunk - (time() - t0) if needed_sleep_time > 0: sleep(needed_sleep_time) out_file.write(chunk)
16,042
def test_logsources_type(self): """ Comprobacion de que el tipo de la fuente de seguridad coincide con su asociado Returns: """ log_source = LogSources.objects.get(Type="Iptables") self.assertEqual(log_source.get_type(), "Iptables")
16,043
def day_1_puzzle_1_solution() -> int: """Use this function to return the total fuel requirements for all of the modules. This function is used for reading the text file of puzzle data and returning the total amount of fuel that is required for the modules. :return: the total fuel requirement. """ return sum([calculate_fuel(int(mass)) for mass in get_puzzle_input()])
16,044
def printc(*args, **kwargs): """ Analog to the print() function, but accepts Color objects to change colors Any Color objects will cause the output color to change for subsequent text. Other objects will be printed as usual. end is always printed without color, this avoids common problems if the trailing return is printed with color attributes. If color is off, the call is equivalent to print(*[s for s in args if type(s) is not Color], **kwargs) """ file = kwargs.get('file', _sys.stdout) use = willPrintColor(file) if not use: # strip all color objects and print ss = [s for s in args if type(s) is not Color] print(*ss, **kwargs) return sep0 = str(kwargs.get('sep', ' ')) end = str(kwargs.get('end', '\n')) try: if _need_flush: file.flush() sep = None for s in args: if type(s) is Color: _set_color(s, file) else: # handle separators. Colors do not trigger # separators if sep is not None: _print_el(file, sep) sep = None _print_el(file, str(s)) sep = sep0 finally: _set_color(C_RESET, file) _print_el(file, end)
16,045
def is_description_style(style): """ True if this is a style used for Relationships paragraph text """ return is_style(style, 'Normal') or is_style(style, 'Note')
16,046
def inject_content_head_last(html, content): """ 将文本内容插入到head的尾部 :type html: str :type content: str :rtype: str """ head_end_pos = html.find("</head") # 找到 </head> 标签结束的位置 if head_end_pos == -1: # 如果没有 </head> 就不进行插入 return html return html[:head_end_pos] + content + html[head_end_pos:]
16,047
def download(ticker: str, start: Union[pd.Timestamp, str] = None, end: Union[pd.Timestamp, str] = None, frequency: str = "day") -> pd.DataFrame: """ Download market data from yahoo finance using the yfinance library from ticker `ticker` from `start` to `end` at a specific frequency (day, hour or minute). :param str ticker: Ticker, e.g. "AAPL" or "GOOG". :param pd.Timestamp,str start: Starting date for fetching the data as a pd.Timestamp or a "YYYY-MM-DD HH:MM:SS" str. If None, the oldest possible date is used by yfinance. `start` is **always** truncated to max 730 days from today for `frequency="1h"`and to max 30 days for `frequency="1m"`. Default is None. :param pd.Timestamp,str end: End date for fetching the data as a pd.Timestamp or a "YYYY-MM-DD HH:MM:SS" str. If None, today is used ( `pd.Timestamp.today().floor("D")` ). Default is None. :param str frequency: Frequency at which the data is sampled, can be daily ("day", "daily", "d", "1d"), hourly ("hour", "hourly", "h", "1h") or every minute ("minute", "m", "1m"). Default is "day". :return: market data as a pd.DataFrame with columns "Open", "High", "Low", "Close", "Adj Close", "Volume". """ today = pd.Timestamp.today().floor('D') if end is None: end = today elif isinstance(end, str): end = pd.Timestamp(end) day_set = {"day", "daily", "d", "1d"} hour_set = {"hour", "hourly", "h", "1h"} minute_set = {"minute", "m", "1m"} if frequency.lower() in day_set: df = yf.download(ticker, start=start, end=end, interval="1d") elif frequency.lower() in hour_set.union(minute_set): if frequency.lower in hour_set: frequency = "1h" # Range is limited to 730 days max (including today so 729) limit = pd.Timedelta(days=729) # Dummy limit for the download batchlimit = pd.Timedelta(days=1000) else: frequency = "1m" # Range is limited to 30 days max (including today) limit = pd.Timedelta(days=29) # Limit of 7 days for the download of minute data batchlimit = pd.Timedelta(days=7) # Check the start point if start is None: start = today - limit start = max(end - limit, today - limit) # Download by batches (effective only for minute data) local_start = start local_end = min(local_start + batchlimit, end) df = yf.download(ticker, start=local_start, end=local_end, interval=frequency) while local_end < end: local_start = local_end local_end = min(local_start + batchlimit, end) df = pd.concat((df, yf.download(ticker, start=local_start, end=local_end, interval=frequency))) else: raise ValueError(f"Wrong `frequency` argument ({frequency}). " f"Should be in {day_set}, {hour_set} or {minute_set}.") if df is None: raise EmptyDataError elif not isinstance(df, pd.DataFrame): raise EmptyDataError else: if len(df) == 0: raise EmptyDataError if df.columns.nlevels == 2: df = df.swaplevel(axis=1) df.sort_index(axis=1, inplace=True) return df
16,048
def sortUrlList(urlList): """Return ordered url list (localFile, DAP, HTTP, FTP).""" #localList = [url for url in urlList if os.path.exists(url)] #dodsList = [url for url in urlList if sciflo.utils.isDODS(url)] #httpList = [url for url in urlList if not sciflo.utils.isDODS(url) and url.startswith('http')] #ftpList = [url for url in urlList if url.startswith('ftp')] #localList.extend(dodsList); localList.extend(httpList); localList.extend(ftpList) fileUrlList = [] localList = [] dodsList = [] httpList = [] ftpList = [] allList = [] for url in urlList: if isinstance(url, types.StringTypes) and '.xfr' in url: continue if os.path.exists(url): localList.insert(0,url) elif url.startswith('file://'): fileUrlList.insert(0, url) elif url.startswith('http') and re.search(r'(dods|opendap)',url,re.IGNORECASE): dodsList.insert(0,url) elif url.startswith('http'): if '.ecs.nasa.gov' in url: httpList.insert(0,url) else: httpList.append(url) else: ftpList.append(url) localList.sort(); localList.reverse() #allList.extend(dodsList); allList.extend(ftpList); allList.extend(httpList) #allList.extend(localList); allList.extend(fileUrlList) allList.extend(ftpList); allList.extend(httpList); allList.extend(dodsList) allList.extend(localList); allList.extend(fileUrlList) return allList
16,049
def main(args): """ Main method """ # await/async requires python >= 3.5 if sys.version_info.major < 3 and sys.version_info.minor < 5: print("Error, language features require the latest python version.") print("Please install python 3.8 or greater") return 1 # Force tieried compilation off. It will effect both collection and replay os.environ["COMPlus_TieredCompilation"] = "0" coreclr_args = setup_args(args) success = True if coreclr_args.mode == "collect": # Start a new SuperPMI Collection. begin_time = datetime.datetime.now() print("SuperPMI Collect") print("------------------------------------------------------------") print("Start time: {}".format(begin_time.strftime("%H:%M:%S"))) collection = SuperPMICollect(coreclr_args) success = collection.collect() print("Finished SuperPMI collect") if coreclr_args.output_mch_path != None: print("mch path: {}".format(coreclr_args.output_mch_path)) end_time = datetime.datetime.now() print("Finish time: {}".format(end_time.strftime("%H:%M:%S"))) elif coreclr_args.mode == "replay": # Start a new SuperPMI Replay begin_time = datetime.datetime.now() print("SuperPMI Replay") print("------------------------------------------------------------") print("Start time: {}".format(begin_time.strftime("%H:%M:%S"))) mch_file = coreclr_args.mch_file jit_path = coreclr_args.jit_path print("") print("MCH Path: {}".format(mch_file)) print("JIT Path: {}".format(jit_path)) replay = SuperPMIReplay(coreclr_args, mch_file, jit_path) success = replay.replay() print("Finished SuperPMI replay") end_time = datetime.datetime.now() print("Finish time: {}".format(end_time.strftime("%H:%M:%S"))) elif coreclr_args.mode == "asmdiffs": # Start a new SuperPMI Replay with AsmDiffs begin_time = datetime.datetime.now() print("SuperPMI ASM diffs") print("------------------------------------------------------------") print("Start time: {}".format(begin_time.strftime("%H:%M:%S"))) mch_file = coreclr_args.mch_file base_jit_path = coreclr_args.base_jit_path diff_jit_path = coreclr_args.diff_jit_path print("") print("MCH Path: {}".format(mch_file)) print("Base JIT Path: {}".format(base_jit_path)) print("Diff JIT Path: {}".format(diff_jit_path)) asm_diffs = SuperPMIReplayAsmDiffs(coreclr_args, mch_file, base_jit_path, diff_jit_path) success = asm_diffs.replay_with_asm_diffs(coreclr_args.previous_temp_location) print("Finished SuperPMI replay") end_time = datetime.datetime.now() print("Finish time: {}".format(end_time.strftime("%H:%M:%S"))) elif coreclr_args.mode == "upload": begin_time = datetime.datetime.now() print("SuperPMI upload") print("------------------------------------------------------------") print("Start time: {}".format(begin_time.strftime("%H:%M:%S"))) upload_mch(coreclr_args) print("Finished SuperPMI upload") end_time = datetime.datetime.now() print("Finish time: {}".format(end_time.strftime("%H:%M:%S"))) elif coreclr_args.mode == "list-collections": index = download_index(coreclr_args) index_count = len(index) print("SuperPMI list-collections") print("") print("{} different collections".format(index_count)) print("") for item in index: print(item) print("") else: raise NotImplementedError(coreclr_args.mode) return 0 if success else 1
16,050
def _ps_run_one_reset_kwargs(G, reset_kwargs: tuple, eval: bool): """ Sample one rollout with given init state and domain parameters, passed as a tuple for simplicity at the other end. This function is used when a minimum number of rollouts was given. """ if len(reset_kwargs) != 2: raise pyrado.ShapeErr(given=reset_kwargs, expected_match=(2,)) if not isinstance(reset_kwargs[0], np.ndarray): raise pyrado.TypeErr(given=reset_kwargs[0], expected_type=np.ndarray) if not isinstance(reset_kwargs[1], dict): raise pyrado.TypeErr(given=reset_kwargs[1], expected_type=dict) return rollout( G.env, G.agent, eval=eval, reset_kwargs=dict(init_state=reset_kwargs[0], domain_param=reset_kwargs[1]) )
16,051
def k8s_config(monkeypatch): """Configure k8s for test-runs""" monkeypatch.setattr(config, "api_server", "http://localhost:8080") monkeypatch.setattr(config, "verify_ssl", False)
16,052
def test_compiling_a_sequence_not_compiling2(workspace, root, monkeypatch, exopy_qtbot, dialog_sleep): """Test compiling a sequence that can be evaluated but not compiled. """ def __raise(*args, **kwargs): return False, {}, {'test': False} from exopy_pulses.testing.context import TestContext monkeypatch.setattr(TestContext, 'compile_and_transfer_sequence', __raise) workbench = workspace.workbench ui = workbench.get_plugin('enaml.workbench.ui') ui.show_window() exopy_qtbot.wait(10 + dialog_sleep) root.external_vars = OrderedDict({'a': 1.5}) pulse1 = Pulse(def_1='1.0', def_2='{a}') pulse2 = Pulse(def_1='{a} + 1.0', def_2='3.0') pulse3 = Pulse(def_1='{4_start} + 0.5', def_2='{4_start}+{4_duration}-0.5') pulse4 = Pulse(def_1='2.0', def_2='0.5', def_mode='Start/Duration') pulse5 = Pulse(def_1='3.0', def_2='0.5', def_mode='Start/Duration') sequence2 = BaseSequence(time_constrained=True, def_1='{3_stop} + 0.5', def_2='6') sequence2.add_child_item(0, pulse3) sequence1 = BaseSequence() add_children(sequence1, (pulse2, sequence2, pulse4)) add_children(root, (pulse1, sequence1, pulse5)) workspace.state.sequence = root dial = CompileDialog(workspace=workspace) dial.show() wait_for_window_displayed(exopy_qtbot, dial) comp_widget = dial.central_widget().widgets()[0] comp_widget.widgets()[-1].clicked = True def assert_exec(): assert comp_widget.elapsed_time assert comp_widget.errors assert comp_widget.widgets()[-2].background == parse_color('red') exopy_qtbot.wait_until(assert_exec)
16,053
def deprecated(message, exception=PendingDeprecationWarning): """Throw a warning when a function/method will be soon deprecated Supports passing a ``message`` and an ``exception`` class (uses ``PendingDeprecationWarning`` by default). This is useful if you want to alternatively pass a ``DeprecationWarning`` exception for already deprecated functions/methods. Example:: >>> import warnings >>> from functools import wraps >>> message = "this function will be deprecated in the near future" >>> @deprecated(message) ... def foo(n): ... return n+n >>> with warnings.catch_warnings(record=True) as w: ... warnings.simplefilter("always") ... foo(4) ... assert len(w) == 1 ... assert issubclass(w[-1].category, PendingDeprecationWarning) ... assert message == str(w[-1].message) ... assert foo.__name__ == 'foo' 8 """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): warnings.warn(message, exception, stacklevel=2) return func(*args, **kwargs) return wrapper return decorator
16,054
def check(config, content, filename): """ Run flake8 with the given ``config`` against the passed file. Returns a ``list`` of :py:class:`flake.Violation`. """ with environment(config, content, filename) as env: out = subprocess.check_output(['flake8', '--exit-zero', '--config', env.config_filename, '--format', FLAKE8_REPORT_FORMAT, env.filename], universal_newlines=True) return parse(out)
16,055
def x_dot(y): """x_dot(y) Describes the differential equation for position as given in CW 12. """ return y
16,056
def get_comp_depends(comp_info, comps): """ Get comp depends from comp index """ depends = [] for comp in comps: if comp in comp_info: depends += comp_info[comp]["dependencies"] if depends: depends += get_comp_depends(comp_info, depends) return list(set(depends))
16,057
def get_naiveb_model(x_train: pd.DataFrame, y_train: pd.Series) -> GaussianNB: """ Trains and returns a naive Bayes model Data must all be on the same scale in order to use naive Bayes """ gnb = GaussianNB(priors=None) gnb.fit(x_train, y_train) return gnb
16,058
def bakeClip(blend: Tuple[int, int] = tuple(1, 1),clipIndex: int = 1,keepOriginals: bool = False,name: str = "") -> None: """ クリップをベイク処理し、単一のクリップにブレンドするのに使用します。 ----------------------------------------- Flags: ----------------------------------------- blend ([uint, uint]): ブレンドされるクリップのインデックスを指定します。 ----------------------------------------- clipIndex (uint): ベイク処理するクリップのインデックスを指定します。 ----------------------------------------- keepOriginals (boolean): Traxエディタ(TraxEditor)でオリジナルのクリップを維持し、バイザー(Visor)にマージされたクリップを配置します。既定ではマージされたクリップをスケジューリングし、バイザーでオリジナルのクリップを維持します。 ----------------------------------------- name (string): 作成する新しいクリップの名前を指定します。 ----------------------------------------- Return Value: None: stringクリップ名 """ pass
16,059
def updateDF(df, fields, id_patient): """ fields is a dictionary of column names and values. The function updates the row of id_patient with the values in fields. """ for key in fields: df.loc[df["id_patient"] == id_patient, key] = fields[key][0] return df
16,060
def gcd(num1: int, num2: int) -> int: """Computes the greatest common divisor of integers a and b using Euclid's Algorithm. """ while num2 != 0: num1, num2 = num2, num1 % num2 return num1
16,061
def application(request): """ To use this application, the user must send a POST request with base64 or form encoded encoded HTML content and the wkhtmltopdf Options in request data, with keys 'base64_html' and 'options'. The application will return a response with the PDF file. """ if request.method != 'POST': return hasHeader = False hasFooter = False images = [] request_is_json = request.content_type.endswith('json') with tempfile.NamedTemporaryFile(suffix='.html') as footer_file: with tempfile.NamedTemporaryFile(suffix='.html') as header_file: with tempfile.NamedTemporaryFile(suffix='.html') as source_file: if request_is_json: # If a JSON payload is there, all data is in the payload payload = json.loads(request.data) source_file.write(payload['contents'].decode('base64')) if payload.has_key('header'): header_file.write(payload['header'].decode('base64')) hasHeader = True if payload.has_key('footer'): footer_file.write(payload['footer'].decode('base64')) hasFooter = True if payload.has_key('images'): for image in payload['images']: if image.has_key('path') and image.has_key('contents'): path = "/tmp/" +image['path'] if os.path.isdir(os.path.dirname(path))==False: os.makedirs(os.path.dirname(path)) f = open(path, "w") f.write(image['contents'].decode('base64')) f.close() images.append(path) options = payload.get('options', {}) elif request.files: # First check if any files were uploaded source_file.write(request.files['file'].read()) # Load any options that may have been provided in options options = json.loads(request.form.get('options', '{}')) source_file.flush() header_file.flush() footer_file.flush() # Evaluate argument to run with subprocess args = ['wkhtmltopdf'] if hasHeader: args.append('--header-html "file://%s"' % header_file.name) if hasFooter: args.append('--footer-html "file://%s"' % footer_file.name) # Add Global Options if options: for option, value in options.items(): args.append('--%s' % option) if value: args.append('"%s"' % value) # Add source file name and output file name file_name = source_file.name args += [file_name, file_name + ".pdf"] # Execute the command using executor execute(' '.join(args)) for image in images: os.remove(image) return Response( wrap_file(request.environ, open(file_name + '.pdf')), mimetype='application/pdf', )
16,062
async def check_user_name(request): """Check if a user exists with provided username.""" log_request(request) conn = await create_connection() response = await users_query.users_search_duplicate( conn, request.args.get("username") ) conn.close() return json({"exists": bool(response)})
16,063
def azip_longest(*aiterables, fillvalue=None): """async version of izip_longest with parallel iteration""" return _azip(*aiterables, fillvalue=fillvalue, stop_any=False)
16,064
def stop_instance(args): """ Stops a running instance, shutting it down cleanly, and allows you to restart the instance at a later time parameter: (string) zone Name of the zone for request. parameter: (string) instance Name of the instance scoping this request. """ project = SERVICE_ACT_PROJECT_ID instance = args.get('instance') zone = args.get('zone') request = compute.instances().stop(project=project, zone=zone, instance=instance) response = request.execute() data_res = { 'status': response.get('status'), 'kind': response.get('kind'), 'name': response.get('name'), 'id': response.get('id'), 'progress': response.get('progress'), 'operationType': response.get('operationType'), } ec = {'GoogleCloudCompute.Operations(val.id === obj.id)': response} return_outputs( tableToMarkdown('Google Cloud Compute Operations', data_res, removeNull=True), ec, response, )
16,065
def drop_table(name, con): """ drop table from database Parameters ---------- name : string, name of SQL table con : sqlalchemy.engine.Engine or sqlite3.Connection Returns ------- True Examples -------- >>> import pandas as pd >>> from sqlalchemy import create_engine >>> from tidyframe import drop_table >>> >>> engine = create_engine("sqlite:///raw_table.db") >>> df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) >>> df.to_sql("raw_table", engine) >>> drop_table("raw_table", engine) True """ table = load_table_schema(name, con) table.drop() return True
16,066
def class_info_interface(**class_name): """ Set Class_Name, Class_Index, and DNN Model \nclass_name (kwargs) : Input Class Name with list type, if want to set class number, add tuple parameters like 'class_info_interface(class_name = [list], class_number = [list])' \nclass_number : Default the number of class_name """ global window window = Tk() window.title("Auto Labeling Input Class Name") global entry_num global entry_name global entry_model # 1. DNN Model Interface ttk.Label(window, text = "DNN Model : ").grid(row = 0, column = 0, padx = 10, pady = 10) entry_model = ttk.Entry(window) entry_model.grid(row = 0, column = 1, padx = 10, pady = 10) # 2. Class name Interface ttk.Label(window, text = "Class name : ").grid(row = 1, column = 0, padx = 10, pady = 10) entry_name = ttk.Entry(window) entry_name.grid(row = 1, column = 1, padx = 10, pady = 10) # 3. Class number Interface ttk.Label(window, text = "Class number : ").grid(row = 2, column = 0, padx = 10, pady = 10) entry_num = ttk.Entry(window) entry_num.grid(row = 2, column = 1, padx = 10, pady = 10) ttk.Button(window, text="OK", command=get_class_info).grid(row = 2, column = 2, padx = 10, pady = 10) # 4. User Name Guide Interface if not class_name or class_name.__len__() is 0: # isEmpty == True ttk.Label(window, text = "Username \n\n" + "professor_seo \n" + "jaeseok \n" + "hun \n").grid(row = 3, column = 1, padx = 10, pady = 10) ttk.Label(window, text = "| Class Name\n\n" + "| 0\n| 1\n| 2\n").grid(row = 3, column = 2, padx = 10, pady = 10) elif len(class_name) is not 0: # tuple variable class_name_list = list() for key, value in class_name.items(): print(key, value) class_name_list.append(value) # Class Name [0] name_value = str() index_value = str() for i, name in enumerate(class_name_list[0]): name_value = name_value + name + ' \n' index_value = index_value + '| ' + str(i) + ' \n' ttk.Label(window, text = "Username \n\n" + name_value).grid(row = 3, column = 1, padx = 10, pady = 10) # Class Index [1] if len(class_name) == 2: index_value = str() for index in class_name_list[1]: index_value = index_value + '|' + \ str(index) + ' \n' ttk.Label(window, text = "| Class Name\n\n" + index_value).grid(row = 3, column = 2, padx = 10, pady = 10) print("list") else: raise ValueError("Not Supported value. See function docstring") window.mainloop() return user_name, user_num, dnn_model
16,067
def uint8(value): """ Create an SPL ``uint8`` value. Returns: Expression: Expression representing the value. """ return streamsx.spl.op.Expression('UINT8', int(value))
16,068
def normalize_data(x_train, x_test, x_val=None): """normalize input to zero mean one std assuming x_train, x_test are torch Tensors""" m = x_train.mean(0) s = x_train.std(0) x_train -= m x_test -= m if x_val: x_val -= m cols = [] cols0 = [] for i in range(s.size(0)): if s[i] > 1e-9: cols.append(i) else: cols0.append(i) if not cols0: # no column has near zero std x_train /= s x_test /= s if x_val: x_val /= s elif cols: # some columns have near zero std x_train[:, cols] /= s[cols] x_test[:, cols] /= s[cols] if x_val: x_val[:, cols] /= s[cols] if cols0: # for columns with std ~ zero we just squash them if x_val: squash_data(x_train[:, cols0], x_test[:, cols0], x_val[:, cols0]) else: squash_data(x_train[:, cols0], x_test[:, cols0])
16,069
def print_table(log_results, platform_width = 0, build_failures_width = 0, test_failures_width = 0, successful_width = 0, space_char = " ", list_separator = DEFAULT_LIST_SEPARATOR): """Print out a table in the requested format (text or markdown).""" # Print table header output_lines = list() headers = [ re.sub(r'\b \b', space_char, PLATFORM_HEADER.ljust(platform_width)), re.sub(r'\b \b', space_char,BUILD_FAILURES_HEADER.ljust(build_failures_width)), re.sub(r'\b \b', space_char,TEST_FAILURES_HEADER.ljust(test_failures_width)) ] + ( [re.sub(r'\b \b', space_char,SUCCESSFUL_TESTS_HEADER.ljust(successful_width))] if FLAGS.include_successful else [] ) # Print header line. output_lines.append(("|" + " %s |" * len(headers)) % tuple(headers)) # Print a |-------|-------|---------| line. output_lines.append(("|" + "-%s-|" * len(headers)) % tuple([ re.sub("[^|]","-", header) for header in headers ])) # Iterate through platforms and print out table lines. for platform in sorted(log_results.keys()): if log_results[platform]["build_failures"] or log_results[platform]["test_failures"] or FLAGS.include_successful: columns = [ re.sub(r'\b \b', space_char, platform.ljust(platform_width)), format_result(log_results[platform]["build_failures"], justify=build_failures_width, list_separator=list_separator), format_result(log_results[platform]["test_failures"], justify=test_failures_width, list_separator=list_separator), ] + ( [format_result(log_results[platform]["successful"], justify=successful_width, list_separator=list_separator)] if FLAGS.include_successful else [] ) output_lines.append(("|" + " %s |" * len(headers)) % tuple(columns)) return output_lines
16,070
def test_two_tags_unshared_images(default_tag_policy, initialized_db): """ Repository has two tags with no shared images between them. """ with assert_gc_integrity(): repository = create_repository(latest=["i1", "i2", "i3"], other=["f1", "f2"]) delete_tag(repository, "latest") assert_deleted(repository, "i1", "i2", "i3") assert_not_deleted(repository, "f1", "f2")
16,071
def is_valid(filepath, digest, hashAlgo='md5'): """Verify the integrity of a file against a hash value.""" assert(isinstance(digest, str)) res = calculate(filepath, hashAlgo) LOG.debug('Calculated digest: '+res) LOG.debug(' Original digest: '+digest) return res is not None and res == digest
16,072
def align_reconstruction_to_pdr(reconstruction, data): """ leveling and scaling the reconstructions to pdr """ if reconstruction.alignment.aligned: return reconstruction if not data.pdr_shots_exist(): return reconstruction pdr_shots_dict = data.load_pdr_shots() X, Xp = [], [] onplane, verticals = [], [] for shot_id in reconstruction.shots.keys(): X.append(reconstruction.shots[shot_id].pose.get_origin()) Xp.append(pdr_shots_dict[shot_id][0:3]) R = reconstruction.shots[shot_id].pose.get_rotation_matrix() onplane.append(R[0,:]) onplane.append(R[2,:]) verticals.append(R[1,:]) X = np.array(X) Xp = np.array(Xp) # Estimate ground plane. p = multiview.fit_plane(X - X.mean(axis=0), onplane, verticals) Rplane = multiview.plane_horizontalling_rotation(p) X = Rplane.dot(X.T).T # Estimate 2d similarity to align to pdr predictions T = tf.affine_matrix_from_points(X.T[:2], Xp.T[:2], shear=False) s = np.linalg.det(T[:2, :2]) ** 0.5 A = np.eye(3) A[:2, :2] = T[:2, :2] / s A = A.dot(Rplane) b = np.array([ T[0, 2], T[1, 2], Xp[:, 2].mean() - s * X[:, 2].mean() # vertical alignment ]) # Align points. for point in reconstruction.points.values(): p = s * A.dot(point.coordinates) + b point.coordinates = p.tolist() # Align cameras. for shot in reconstruction.shots.values(): R = shot.pose.get_rotation_matrix() t = np.array(shot.pose.translation) Rp = R.dot(A.T) tp = -Rp.dot(b) + s * t try: shot.pose.set_rotation_matrix(Rp) shot.pose.translation = list(tp) except: logger.debug("unable to transform reconstruction!") return reconstruction
16,073
def test_validation_check_service_account_removed( invalid_service_account_not_exist, valid_google_project_patcher, db_session, cloud_manager, ): """ Test that an invalid service account whose policy does not exist is removed from the database """ ( fence.scripting.google_monitor._get_user_email_list_from_google_project_with_owner_role ) = MagicMock() ( fence.scripting.google_monitor._send_emails_informing_service_account_removal ) = MagicMock() (fence.scripting.google_monitor._get_service_account_removal_reasons) = MagicMock() validation_check(db=None) assert ( fence.scripting.google_monitor._send_emails_informing_service_account_removal.call_count == 1 ) assert ( db_session.query(UserServiceAccount) .filter_by(email=invalid_service_account_not_exist["service_account"].email) .count() ) == 0
16,074
def checkLengthSmaller(op, graph, frm, to): """ Confirm resulting video has less frames that source. :param op: :param graph: :param frm: :param to: :return: @type op: Operation @type graph: ImageGraph @type frm: str @type to: str """ edge = graph.get_edge(frm, to) durationChangeTuple = getValue(edge, 'metadatadiff.video.nb_frames') if durationChangeTuple is None or \ (durationChangeTuple[0] == 'change' and int(durationChangeTuple[1]) < int(durationChangeTuple[2])): return (Severity.ERROR,"Length of video is not shorter")
16,075
def enable_log(fmt='[%(asctime)s] [%(process)5s] %(levelname)s %(module)s %(name)s %(message)s', enable_color=True, filename=None): """ Clears all log handlers, and adds color handler and/or file handlers :param fmt: logging format string :param enable_color: True to enable :param filename: log file location :return: Logger object """ lgr = logging.getLogger() lgr.handlers.clear() # if there's no special requirements for logging # we still want the formatting. if not enable_color and \ filename is None and \ filename != '': loghandler = logging.StreamHandler() logfmt = logging.Formatter(fmt) loghandler.setFormatter(logfmt) lgr.addHandler(loghandler) return True if enable_color: loghandler = logging.StreamHandler() logfmt = ColorLogFormatter(fmt) loghandler.setFormatter(logfmt) lgr.addHandler(loghandler) if filename is not None and filename != '': logfilename = abspath(filename) fhandler = logging.FileHandler(logfilename) logfmt = logging.Formatter(fmt) fhandler.setFormatter(logfmt) lgr.addHandler(fhandler) return True
16,076
def build_con_and_ds(dataset: str): """ Builds test connector and test datasource for testing with API key Leave this function in if ever want to run tests without skipping due to there being no Bearer tokens How to use: Replace build_ds function with this one in test_aircall file Be sure to also replace the endpoints inside the aircall connector file """ con = AircallConnector(name='mah_test', bearer_auth_id='abc123efg') ds = AircallDataSource(name='mah_ds', domain='test_domain', dataset=dataset, limit=1,) return con, ds
16,077
def _get_search_str_regex_main_body(join_with, last_date): """Returns something like: (t1[0-5]\d\d\d\d|t160[0-2]\d\d|t16030\d|t16031[0-3])""" todo_date = _get_todo_date(last_date + timedelta(1)) # yrs = _make_last_digit_all_values_less_last_digit(todo_date[:3]) # search_substrs = [yrs[-1]] #Only go back to the previous year search_substrs = [] for i in range(2, 7): regexed_date_i = _make_given_digit_all_values_less_than_current_val_regex(todo_date, i) if regexed_date_i is not None: search_substrs.append(regexed_date_i) # search_substrs.append(todo_date) search_str = join_with.join(search_substrs) search_str = "(%s)" % search_str return search_str
16,078
def _remove_existing_tmp_file(tmp_file): """Make sure the temporary file is removed.""" if os.path.isfile(tmp_file): os.remove(tmp_file)
16,079
def test_misc(): """Generic tests for exceptional cases that the parser needs to take into consideration. """ # The atomic number is given in the NAT convention filepath = "tests/data/misc/nat/HfS2_PBE0D3_ZD_fc3_supercell-00497.o" archive = parse(filepath) asserts_basic(archive) asserts_basic_code_specific(archive) system = archive.section_run[0].section_system[0] assert set(system.atom_species) == set((16, 72)) # Tests that ghost atoms are ignored in the system. Maybe they need their # own metainfo? filepath = "tests/data/misc/ghosts/fevo46_sngt_ti_zero.cryst.out" archive = parse(filepath) asserts_basic(archive) asserts_basic_code_specific(archive) system = archive.section_run[0].section_system[0] assert set(system.atom_species) == set((8, 26, 22, 38)) # Tests that substitutions are handled correctly filepath = "tests/data/misc/substitution/neutral.cryst.out" archive = parse(filepath) asserts_basic(archive) asserts_basic_code_specific(archive) system = archive.section_run[0].section_system[0] assert set(system.atom_species) == set((8, 26, 22, 38)) # Geometry optimization with constraints filepath = "tests/data/misc/constraints/ionic1_fullspin_spinfx_2.cryst.out" archive = parse(filepath) asserts_basic(archive) asserts_basic_code_specific(archive) # Displacement of atoms filepath = "tests/data/misc/displacement/fe50_x8_l0_re.cryst.out" archive = parse(filepath) asserts_basic(archive) asserts_basic_code_specific(archive)
16,080
def is_palindrome_recursive(text, left=None, right=None): """time complexity: O(1) because you are checking which conditional will run, which does not involve any loops text = str left = int right = int""" if len(text) == 0: return True given = get_letters(text) if left is None and right is None: left = 0 right = len(str) - 1 if given[left] != given[right]: return False elif left >= right: return True else: return is_palindrome_recursive(given, left+1, right-1)
16,081
def bcSet1(): """ set boundary condition """
16,082
def folder_command(args): """ Edit the folder structure of the todo list. usage: todone folder <command> <folder(s)> Valid commands are: new create a new folder with the given name rename rename an existing folder delete remove a folder list list all folders """ parsed_args = parse_args(args) command = parsed_args['command'] folders = parsed_args['folders'] if len(folders) < MIN_FOLDERS[command]: raise pe.ArgumentError( 'Not enough folders provided (expected {})'.format( MIN_FOLDERS[command] ) ) elif len(folders) > MAX_FOLDERS[command]: raise pe.ArgumentError( 'Too many folders provided' ) FOLDER_DISPATCH[command](*folders) print(COMMAND_MESSAGE[command].format(*folders))
16,083
def flip(m, axis=None): """Reverses the order of elements in an array along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : array_like Input array. axis : None or int or tuple of ints, optional Axis or axes along which to flip over. The default, axis=None, will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple. Returns ------- out : ndarray A view of m with the entries of axis reversed. Since a view is returned, this operation is done in constant time. Note ---- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. flip(m) corresponds to ``m[::-1,::-1,...,::-1]`` with ``::-1`` at all positions. flip(m, (0, 1)) corresponds to ``m[::-1,::-1,...]`` with ``::-1`` at position 0 and position 1. See Also -------- flipud : Flips array in the up/down direction. fliplr : Flips array in the left/right direction. Examples -------- >>> import nlcpy as vp >>> A = vp.arange(8).reshape((2,2,2)) >>> A array([[[0, 1], [2, 3]], <BLANKLINE> [[4, 5], [6, 7]]]) >>> vp.flip(A, 0) array([[[4, 5], [6, 7]], <BLANKLINE> [[0, 1], [2, 3]]]) >>> vp.flip(A, 1) array([[[2, 3], [0, 1]], <BLANKLINE> [[6, 7], [4, 5]]]) >>> vp.flip(A) array([[[7, 6], [5, 4]], <BLANKLINE> [[3, 2], [1, 0]]]) >>> vp.flip(A, (0, 2)) array([[[5, 4], [7, 6]], <BLANKLINE> [[1, 0], [3, 2]]]) >>> A = vp.random.randn(3, 4, 5) >>> vp.all(vp.flip(A, 2) == A[:, :, ::-1, ...]) array(True) """ m = nlcpy.asanyarray(m) if axis is None: indexer = (slice(None, None, -1),) * m.ndim else: if type(axis) is nlcpy.ndarray: axis = axis.get() if type(axis) not in (tuple, list): try: axis = [operator.index(axis)] except TypeError: pass _axis = [] for ax in axis: if type(ax) is nlcpy.ndarray: ax = ax.get() if type(ax) is numpy.ndarray: if ax.size > 1: raise TypeError( 'only size-1 arrays can be converted to Python scalars') else: ax = ax.item() _axis.append(ax + m.ndim if ax < 0 else ax) axis = _axis if len(axis) != len(set(axis)): raise ValueError('repeated axis') indexer = [slice(None) for i in range(m.ndim)] for ax in axis: if ax >= m.ndim or ax < 0: raise AxisError( 'axis {0} is out of bounds for array of dimension {1}' .format(ax, m.ndim)) indexer[ax] = slice(None, None, -1) indexer = tuple(indexer) return m[indexer]
16,084
def radius_of_gyration(pos): """ Radius of gyration of a group of positions. Does not account for periodic boundaries. """ com = np.mean(pos, axis = 0) delta = pos - com rgv = np.sqrt(np.sum(delta**2, axis = 0) / len(pos)) return np.linalg.norm(rgv)
16,085
def get_metadata_for_list(commit_range, git_dir=None, count=None, series=None, allow_overwrite=False): """Reads out patch series metadata from the commits This does a 'git log' on the relevant commits and pulls out the tags we are interested in. Args: commit_range (str): Range of commits to count (e.g. 'HEAD..base') git_dir (str): Path to git repositiory (None to use default) count (int): Number of commits to list, or None for no limit series (Series): Object to add information into. By default a new series is started. allow_overwrite (bool): Allow tags to overwrite an existing tag Returns: Series: Object containing information about the commits. """ if not series: series = Series() series.allow_overwrite = allow_overwrite stdout = get_list(commit_range, git_dir, count) pst = PatchStream(series, is_log=True) for line in stdout.splitlines(): pst.process_line(line) pst.finalise() return series
16,086
def side_seperator(lsep,rsep): """ To have a custom side lined formatter. A side-lined formatter is: `[DATE] SEP "L_SEP" EVENT "R_SEP" LOG` `loggy.side_seperator(lsep="||",rsep="||") # Default vals` """ fmt['ls']=lsep fmt['rs']=rsep return fmt
16,087
def clear(): """Clear the terminal.""" os.system("cls" if os.name == "nt" else "clear")
16,088
def _semi_implicit_euler(ode_fun, jac_fun, y_olds, t_old, f_old,dt, args, solver_parameters, J00, I): """ Calculate solution at t_old+dt using the semi-implicit Euler method. Based on Section IV.9.25 of Ref II. """ y_older, y_old = y_olds je_tot = 0 if(f_old is None): f_yj = ode_fun(*(y_old, t_old)+args) fe_tot = 1 else: f_yj = f_old fe_tot = 0 b = dt*f_yj A = I-dt*J00 if(solver_parameters['initialGuess']): # TODO: Using explicit Euler as a predictor doesn't seem to be # effective (maybe because with extrapolation we are taking too big # steps for the predictor be close to the solution). # x0, f_yj, fe_tot_,je_tot=_explicit_euler(ode_fun, jac_fun, # y_olds, t_old, f_yj, dt, args, solver_parameters) # fe_tot += fe_tot_ x0 = y_old else: x0 = None dy = linear_solve(A, b, iterative=solver_parameters['iterative'], tol=solver_parameters['min_tol'], x0=x0) y_new = y_old + dy return (y_new, f_yj, fe_tot, je_tot)
16,089
def make_sequential(layer_configs, input): """Makes sequential layers automatically. Arguments: layer_configs: An OrderedDict that contains the configurations of a sequence of layers. The key is the layer_name while the value is a dict contains hyper-parameters needed to instantiate the corresponding layer. The key of the inner dict is the name of the hyper-parameter and the value is the value of the corresponding hyper-parameter. Note that the key "layer_type" indicates the type of the layer. input: A tensor that mimics the batch input of the model. The first dim is the batch size. All other dims should be exactly the same as the real input shape in the later training. Returns: A sequence of layers organized by nn.Sequential. """ layers = OrderedDict() for layer_name in layer_configs: arguments = deepcopy(layer_configs[layer_name]) layer_type = arguments.pop("layer_type") input_shape = [int(j) for j in input.data.size()] arguments["input_shape"] = input_shape layers.update({layer_name: make_layer(layer_type, **arguments)}) input = layers[layer_name](input) return nn.Sequential(layers)
16,090
def Pol_Dyn_ExploreWithNUTS(resultsList,totalSimDays=1000,numDaysRemain=1000,\ totalBudget=1000,numBudgetRemain=1000,policyParamList=[0],startDay=0): """ Grab intermediate and end node distribtuions via NUTS. Identify intermediate node sample variances. Pick an intermediate node, weighed towards picking those with higher sample variances. Pick an outlet from this intermediate node's column in the transition matrix A, again by a weighting (where 0% nodes have a non-zero probability of being selected). [log((p/1-p) + eps)?] policyParamList = [number days to plan for, sensitivity, specificity, M, Madapt, delta] (Only enter the number of days to plan for in the main simulation code, as the other parameters will be pulled from the respective input areas) """ #Initialize our output, a list with the above mentioned outputs sampleSchedule = [] # How many days to plan for? numDaysToSched = min(policyParamList[0],numDaysRemain) usedBudgetSoFar = 0 firstTestDay = totalSimDays - numDaysRemain if numDaysRemain == totalSimDays: # Our initial schedule should just be a distrubed exploration currNode = resultsList[0][0] for currDay in range(numDaysToSched): numToTest = int(np.floor((numBudgetRemain-usedBudgetSoFar) / (numDaysRemain-currDay))) +\ min((numBudgetRemain-usedBudgetSoFar) % (numDaysRemain-currDay),1) # How many samples to conduct in the next day for testInd in range(numToTest): # Iterate through our end nodes if currNode > resultsList[len(resultsList)-1][0]: currNode = resultsList[0][0] sampleSchedule.append([firstTestDay+currDay,currNode]) currNode += 1 else: sampleSchedule.append([firstTestDay+currDay,currNode]) currNode += 1 usedBudgetSoFar += 1 else: # Generate NUTS sample using current results and use it to generate a new schedule ydata = [] nSamp = [] for rw in resultsList: ydata.append(rw[2]) nSamp.append(rw[1]) A = simHelpers.GenerateTransitionMatrix(resultsList) sens, spec, M, Madapt, delta = policyParamList[1:] NUTSsamples = simEst.GenerateNUTSsamples(ydata,nSamp,A,sens,spec,M,Madapt,delta) # Store sample variances for intermediate nodes NUTSintVars = [] for intNode in range(A.shape[1]): currVar = np.var(sps.expit(NUTSsamples[:,intNode])) NUTSintVars.append(currVar) # Normalize sum of all variances to 1 NUTSintVars = NUTSintVars/np.sum(NUTSintVars) # Now pick from these samples to generate projections for currDay in range(numDaysToSched): numToTest = int(np.floor((numBudgetRemain-usedBudgetSoFar) / (numDaysRemain-currDay))) +\ min((numBudgetRemain-usedBudgetSoFar) % (numDaysRemain-currDay),1) # How many samples to conduct in the next day for testInd in range(numToTest): # Pick an intermediate node to "target", with more emphasis on higher sample variances rUnif = random.uniform(0,1) for intInd in range(A.shape[1]): if rUnif < np.sum(NUTSintVars[0:(intInd+1)]): targIntInd = intInd break # Go through the same process with the column of A # pertaining to this target intermediate node AtargCol = [row[targIntInd] for row in A] # Add a small epsilon, for 0 values, and normalize AtargCol = np.add(AtargCol,1e-3) AtargCol = AtargCol/np.sum(AtargCol) rUnif = random.uniform(0,1) for intEnd in range(A.shape[0]): if rUnif < np.sum(AtargCol[0:(intEnd+1)]): currInd = intEnd break currNode = resultsList[currInd][0] sampleSchedule.append([firstTestDay+currDay,currNode]) usedBudgetSoFar += 1 # Need to sort this list before passing it through sampleSchedule.sort(key=lambda x: x[0]) return sampleSchedule
16,091
def calc_cos_t(hb_ratio, d, theta_s_i, theta_v_i, relative_azimuth): """Calculate t cossine. Args: hb_ratio (int): h/b. d (numpy array): d. theta_s_i (numpy array): theta_s_i. theta_v_i (numpy array): theta_v_i. relative_azimuth (numpy array): relative_azimuth. Returns: cos_t : numpy.array. """ return hb_ratio * numpy.sqrt(d*d + numpy.power(numpy.tan(theta_s_i)*numpy.tan(theta_v_i)*numpy.sin(relative_azimuth), 2)) / (sec(theta_s_i) + sec(theta_v_i))
16,092
def step_impl(context): """Go through responses and store any with HTTP protocol errors (as caught by Requests) into the database """ new_findings = 0 for response in context.responses: if response.get('server_protocol_error') is not None: if fuzzdb.known_false_positive(context, response) is False: fuzzdb.add_false_positive(context, response) new_findings += 1 if new_findings > 0: context.new_findings += new_findings assert True
16,093
def guild_only() -> Callable: """A decorator that limits the usage of a slash command to guild contexts. The command won't be able to be used in private message channels. Example --------- .. code-block:: python3 from discord import guild_only @bot.slash_command() @guild_only() async def test(ctx): await ctx.respond('You\'re in a guild.') """ def inner(command: Callable): if isinstance(command, ApplicationCommand): command.guild_only = True else: command.__guild_only__ = True return command return inner
16,094
def truncate(text, words=25): """Remove tags and truncate text to the specified number of words.""" return " ".join(re.sub("(?s)<.*?>", " ", text).split()[:words])
16,095
def _run_query_create_log(query, client, destination_table=None): """ Runs BigQuery queryjob :param query: Query to run as a string :param client: BigQuery client object :return: QueryJob object """ # Job config job_config = bigquery.QueryJobConfig() if destination_table is not None: job_config.destination = destination_table else: timestamp_name = datetime.now().strftime("query_%Y%m%d%H%M%S") project = "cmap-big-table" dataset = "cmap_query" dest_tbl = ".".join([project, dataset, timestamp_name]) job_config.destination = dest_tbl job_config.create_disposition = "CREATE_IF_NEEDED" return client.query(query, job_config=job_config)
16,096
def sys_update_char( asciiCode: int, fontx: int, fonty: int, img: tcod.image.Image, x: int, y: int, ) -> None: """Dynamically update the current font with img. All cells using this asciiCode will be updated at the next call to :any:`tcod.console_flush`. Args: asciiCode (int): Ascii code corresponding to the character to update. fontx (int): Left coordinate of the character in the bitmap font (in tiles) fonty (int): Top coordinate of the character in the bitmap font (in tiles) img (Image): An image containing the new character bitmap. x (int): Left pixel of the character in the image. y (int): Top pixel of the character in the image. """ lib.TCOD_sys_update_char(_int(asciiCode), fontx, fonty, img, x, y)
16,097
def read_disparity_gt(filename: str) -> np.ndarray: """ reads the disparity files used for training/testing. :param filename: name of the file. :return: data points. """ points = [] with open(filename, 'r') as file: for line in file: line = line.split(' ') frame = int(line[0]) x_rgb = int(line[1]) y = int(line[2]) x_ir = int(line[3]) points.append([frame, x_rgb, y, x_ir]) return np.array(points, dtype=np.int32)
16,098
def test_q_as_field(): """ Test that passing in water discharge as a grid field results in self.q holding correct values """ #set up a 5x5 grid with one open outlet node and low initial elevations. nr = 5 nc = 5 mg = RasterModelGrid((nr, nc), 10.0) mg.add_zeros('node', 'topographic__elevation') q = mg.add_zeros('node', 'user_imposed_discharge') q[:] += 1.0 #add 1.0 m3/yr of water mg['node']['topographic__elevation'] += mg.node_y / 100000 \ + mg.node_x / 100000 \ + np.random.rand(len(mg.node_y)) / 10000 mg.set_closed_boundaries_at_grid_edges(bottom_is_closed=True, left_is_closed=True, right_is_closed=True, top_is_closed=True) mg.set_watershed_boundary_condition_outlet_id(0, mg['node']['topographic__elevation'], -9999.) # Create a D8 flow handler fa = FlowAccumulator(mg, flow_director='D8', depression_finder='DepressionFinderAndRouter') # Instantiate the ErosionDeposition component... ed = ErosionDeposition(mg, K=0.01, F_f=0.0, phi=0.0, v_s=0.001, m_sp=0.5, n_sp=1.0, sp_crit=0.0, discharge_field='user_imposed_discharge', solver='basic') #ensure that ed.q is everywhere equal to 1.0 m3/yr. testing.assert_array_equal(np.ones(mg.number_of_nodes), ed.q, err_msg='E/D discharge field test failed', verbose=True)
16,099