content
stringlengths
22
815k
id
int64
0
4.91M
def entry_point(): """dbf_light command line utilities."""
16,200
def apply_flags_all_variables(station, all_variables, flag_col, logfile, test_name, plots = False, diagnostics = False): """ Apply these flags to all variables :param object station: the station object to be processed :param list all_variables: the variables where the flags are to be applied :param list flag_col: which column in the qc_flags array to work on :param file logfile: logfile to store outputs :param str test_name: test name for printing/loggin :param bool plots: to do any plots :param bool diagnostics: do any extra diagnostic output :returns: """ flag_locs, = np.where(station.qc_flags[:, flag_col] != 0) for var in all_variables: st_var = getattr(station, var) # copy flags into attribute st_var.flags[flag_locs] = 1 if plots or diagnostics: print "Applying {} flags to {}".format(test_name, var) else: logfile.write("Applying {} flags to {}\n".format(test_name, var)) return
16,201
def exportSDFVisual(visualobj, linkobj, visualdata, indentation, modelname): """Simple wrapper for visual data of links. The visual object is required to determine the position (pose) of the object. If relative poses are used the data found in visualdata (key pose) is used. Otherwise the pose of the visual object will be combined with all collected links up to the rootobject (see phobos.utils.editing.getCombinedTransform). Args: visualobj: object to be used for pose visualdata: data as provided by dictionary (should contain name, geometry) indentation: indentation at current level relative: True for usage of sdf relative pathing modelname: the name of the model (required for geometry) linkobj: Returns: : str -- writable xml line """ tagger = xmlTagger(initial=indentation) tagger.descend('visual', attribs={'name': visualdata['name']}) # OPT: tagger.attrib('cast_shadows', ...) # OPT: tagger.attrib('laser_retro', ...) # OPT: tagger.attrib('transparency', ...) # OPT: tagger.descend('meta') # OPT: tagger.attrib('layer', ...) # tagger.ascend() # OPT: tagger.write(exportSDFFrame(..., tagger.get_indent())) # Pose data of the visual is transformed by link --> use local matrix matrix = visualobj.matrix_local posedata = { 'rawmatrix': matrix, 'matrix': [list(vector) for vector in list(matrix)], 'translation': list(matrix.to_translation()), 'rotation_euler': list(matrix.to_euler()), 'rotation_quaternion': list(matrix.to_quaternion()), } # overwrite absolute position of the visual object tagger.write(exportSDFPose(posedata, tagger.get_indent())) # write material data if available if 'material' in visualdata: tagger.write(exportSDFMaterial(visualdata['material'], tagger.get_indent())) tagger.write(exportSDFGeometry(visualdata['geometry'], tagger.get_indent(), modelname)) tagger.ascend() return "".join(tagger.get_output())
16,202
def register_module(): """Callback for module registration. Sets up URL routes.""" global custom_module # pylint: disable=global-statement permissions = [ roles.Permission(EDIT_STUDENT_GROUPS_PERMISSION, messages.EDIT_STUDENT_GROUPS_PERMISSION_DESCRIPTION), ] def permissions_callback(unused_application_context): return permissions def notify_module_enabled(): """Callback at module-enable time, just after module registration. Responsible for registering module's callbacks and other items with core and other modules. """ model_caching.CacheFactory.build( MODULE_NAME_AS_IDENTIFIER, MODULE_NAME + " Caching", messages.ENABLE_GROUP_CACHING, max_size_bytes=( StudentGroupAvailabilityRestHandler.MAX_NUM_MEMBERS * 1024 * 4), ttl_sec=60 * 60, dao_class=StudentGroupDAO) # Tell permissioning system about permission for this module. roles.Roles.register_permissions(custom_module, permissions_callback) # Navigation sub-tab for showing list of student groups, and # associated role-level permission. dashboard.DashboardHandler.add_sub_nav_mapping( 'settings', MODULE_NAME_AS_IDENTIFIER, 'Student Groups', action=StudentGroupListHandler.ACTION, contents=StudentGroupListHandler.render_groups_view) dashboard.DashboardHandler.map_get_action_to_permission( StudentGroupListHandler.ACTION, custom_module, EDIT_STUDENT_GROUPS_PERMISSION) # Register action for add/edit/delete of student group. dashboard.DashboardHandler.add_custom_get_action( StudentGroupRestHandler.ACTION, handler=StudentGroupRestHandler.edit_student_group, in_action=StudentGroupListHandler.ACTION) dashboard.DashboardHandler.map_get_action_to_permission( StudentGroupRestHandler.ACTION, custom_module, EDIT_STUDENT_GROUPS_PERMISSION) # Override existing action for availability. For UX convenience, # we want to have the same page modify overall course availability # as well as per-group availability. dashboard.DashboardHandler.add_custom_get_action( availability.AvailabilityRESTHandler.ACTION, StudentGroupAvailabilityRestHandler.get_form, overwrite=True) # Register a callback to add the user's student group ID (if any) to # recorded events. models.EventEntity.EVENT_LISTENERS.append( _add_student_group_to_event) # Register a component with the student-aggregator data pump source # so that student-aggregate records get marked with the group ID # for that student. student_aggregate.StudentAggregateComponentRegistry.register_component( AddToStudentAggregate) # Register a callback with models.models.StudentProfileDAO to let us # know when a student registers. This allows us to move the # Definitive Truth about group membership to the Student record. models.StudentProfileDAO.STUDENT_CREATION_HOOKS.append( StudentGroupMembership.user_added_callback) # Register a callback with Course so that when anyone asks for the # student-facing list of units and lessons we can modify them as # appropriate. courses.Course.COURSE_ELEMENT_STUDENT_VIEW_HOOKS.append( modify_unit_and_lesson_attributes) # Register a callback with Course so that when the environment is # fetched, we can submit overwrite items. courses.Course.COURSE_ENV_POST_COPY_HOOKS.append( modify_course_environment) # Register student group as a generically handle-able translatable # resource. resource.Registry.register(ResourceHandlerStudentGroup) # Register student group as a translatable item; the title and # description can appear on student profile pages. i18n_dashboard.TranslatableResourceRegistry.register( TranslatableResourceStudentGroups) # Register a section on the student profile to add the current # student's group - if any. utils.StudentProfileHandler.EXTRA_PROFILE_SECTION_PROVIDERS.append( _add_student_group_to_profile) # Register with gradebook to add student group as a filterable # item. gradebook.RawAnswersDataSource.FILTERS.append(StudentGroupFilter) # Register with generator feeding gradebook to add some handling to # the map and reduce steps so we can generate our filter-able data # column in the generator's output. gradebook.RawAnswersGenerator.register_hook( MODULE_NAME, _add_student_group_to_map_result, _add_student_group_to_kwargs) # Add our types to the set of DB tables for download/upload of course. courses.ADDITIONAL_ENTITIES_FOR_COURSE_IMPORT.add(StudentGroupEntity) courses.ADDITIONAL_ENTITIES_FOR_COURSE_IMPORT.add( StudentGroupMembership) custom_module = custom_modules.Module( MODULE_NAME, 'Define and manage groups of students.', global_routes=[ (EmailToObfuscatedUserIdCleanup.URL, EmailToObfuscatedUserIdCleanup), ], namespaced_routes=[ (StudentGroupRestHandler.URL, StudentGroupRestHandler), (StudentGroupAvailabilityRestHandler.URL, StudentGroupAvailabilityRestHandler) ], notify_module_enabled=notify_module_enabled) return custom_module
16,203
def build_texttable(events): """ value['date'], value["target"], value['module_name'], value['scan_unique_id'], value['options'], value['event'] build a text table with generated event related to the scan :param events: all events :return: array [text table, event_number] """ _table = texttable.Texttable() table_headers = [ 'target', 'module_name', 'scan_unique_id', 'options', 'event', 'date' ] _table.add_rows( [ table_headers ] ) for event in events: _table.add_rows( [ table_headers, [ event['target'], event['module_name'], event['scan_unique_id'], event['options'], event['event'], event['date'] ] ] ) return _table.draw().encode('utf8') + b'\n\n' + messages("nettacker_version_details").format( version_info()[0], version_info()[1], now() ).encode('utf8') + b"\n"
16,204
def for_all_regions(get_client_func, catalog_entry, action_func, parsed_args): """ Run the provided function on all the available regions. Available regions are determined based on the user service catalog entries. """ result = [] cache_key = 'todo' cache_item = CACHE.get(cache_key, None) if cache_item is None: client = get_client_func(parsed_args) CACHE[cache_key] = client else: client = cache_item catalog = client.connection.get_service_catalog() urls = catalog.get_public_urls(service_type=catalog_entry, name=catalog_entry) auth_connection = client.connection.get_auth_connection_instance() driver_kwargs = {'ex_auth_connection': auth_connection} def run_in_pool(client): item = action_func(client) result.extend(item) for api_url in urls: parsed_args.api_url = api_url client = get_client_func(parsed_args, driver_kwargs=driver_kwargs) run_function(pool, run_in_pool, client) join_pool(pool) return result
16,205
def copy_file_from_worker(request, context): """Copy file from worker to host.""" path = request.path if not os.path.isfile(path): context.set_trailing_metadata([('result', 'invalid-path')]) return with open(path) as f: for chunk in file_utils.file_chunk_generator(f): yield chunk context.set_trailing_metadata([('result', 'ok')])
16,206
def migrate(source_config,target_config,migration_config): """ Migrate data from the source database to the target database. The target database and schema must already exist. Args: source_config (dict): Settings for source database. target_config (dict): Settings for target database. migration_config (dict): Settings for the migration. """ msg = 'Migrating data to target database...\n' print(msg) # set up multiprocessing if migration_config['multiprocess']: # set number of processes if migration_config['processes']: pool = multiprocessing.Pool(int(migration_config['processes'])) else: pool = multiprocessing.Pool() # starmap takes an iterable list arg_iterable = [[schema,source_config,target_config,migration_config] for schema in source_config['schema_list']] pool.starmap(_migrate_data,arg_iterable) else: for schema in source_config['schema_list']: _migrate_data(schema,source_config,target_config,migration_config) msg = 'Migration complete!\n' logging.info(msg) print(msg)
16,207
def KL_distance(image1, image2): """ Given two images, calculate the KL divergence between the two 2d array is not supported, so we have to flatten the array and compare each pixel in the image1 to the corresponding pixel in the image2. """ return scipy.stats.entropy(image1.ravel(), image2.ravel())
16,208
def stop_all_bots(): """ This function address RestAPI call to stop polling for all bots which have ever started polling. :return: """ bots_stopped = procedures.stop_all() # Stop all bots. botapi_logger.info('Successfully stopped {count} bots for polling in ' 'start_all api call.'.format(count=len(bots_stopped))) if bots_stopped > 0: return jsonify({ "result": "success", "message": "Successfully stopped {count} previously running " "bots.".format(count=len(bots_stopped)), "ids": [bot_id for bot_id in bots_stopped] }), 200 else: return internal_server_error( message="No to stop previously running bots.")
16,209
def load_word_embedding_dict(embedding, embedding_path, normalize_digits=True): """ load word embeddings from file :param embedding: :param embedding_path: :return: embedding dict, embedding dimention, caseless """ print "loading embedding: %s from %s" % (embedding, embedding_path) if embedding == 'word2vec': # loading word2vec word2vec = Word2Vec.load_word2vec_format(embedding_path, binary=True) embedd_dim = word2vec.vector_size return word2vec, embedd_dim, False elif embedding == 'glove': # loading GloVe embedd_dim = -1 embedd_dict = dict() with gzip.open(embedding_path, 'r') as file: for line in file: line = line.strip() line = line.decode('utf-8') if len(line) == 0: continue tokens = line.split() if len(tokens) <101: continue if embedd_dim < 0: embedd_dim = len(tokens) - 1 else: assert (embedd_dim + 1 == len(tokens)) embedd = np.empty([1, embedd_dim], dtype=theano.config.floatX) embedd[:] = tokens[1:] word = data_utils.DIGIT_RE.sub(b"0", tokens[0]) if normalize_digits else tokens[0] embedd_dict[word] = embedd return embedd_dict, embedd_dim, True elif embedding == 'senna': # loading Senna embedd_dim = -1 embedd_dict = dict() with gzip.open(embedding_path, 'r') as file: for line in file: line = line.strip() line = line.decode('utf-8') if len(line) == 0: continue tokens = line.split() if embedd_dim < 0: embedd_dim = len(tokens) - 1 else: assert (embedd_dim + 1 == len(tokens)) embedd = np.empty([1, embedd_dim], dtype=theano.config.floatX) embedd[:] = tokens[1:] word = data_utils.DIGIT_RE.sub(b"0", tokens[0]) if normalize_digits else tokens[0] embedd_dict[word] = embedd return embedd_dict, embedd_dim, True elif embedding == 'sskip': embedd_dim = -1 embedd_dict = dict() with gzip.open(embedding_path, 'r') as file: # skip the first line file.readline() for line in file: line = line.strip() line = line.decode('utf-8') if len(line) == 0: continue tokens = line.split() if embedd_dim < 0: embedd_dim = len(tokens) - 1 embedd = np.empty([1, embedd_dim], dtype=theano.config.floatX) start = len(tokens) - embedd_dim word = ' '.join(tokens[0:start]) embedd[:] = tokens[start:] word = data_utils.DIGIT_RE.sub(b"0", word) if normalize_digits else word embedd_dict[word] = embedd return embedd_dict, embedd_dim, True elif embedding == 'polyglot': words, embeddings = pickle.load(open(embedding_path, 'rb')) _, embedd_dim = embeddings.shape embedd_dict = dict() for i, word in enumerate(words): embedd = np.empty([1, embedd_dim], dtype=theano.config.floatX) embedd[:] = embeddings[i, :] word = data_utils.DIGIT_RE.sub(b"0", word) if normalize_digits else word embedd_dict[word] = embedd return embedd_dict, embedd_dim, False else: raise ValueError("embedding should choose from [word2vec, senna]")
16,210
def fibonacci(n: int) -> int: """Returns nth fib number, fib_0 = 0, fib_1 = 1, ...""" print(sys.platform) return nfibonacci(n + 1)[-1]
16,211
def random_exponential(shape=(40,60), a0=100, dtype=float) : """Returns numpy array of requested shape and type filled with exponential distribution for width a0. """ a = a0*np.random.standard_exponential(size=shape) return a.astype(dtype)
16,212
def get_mpi_components_from_files(fileList, threads=False): """ Given a list of files to read input data from, gets a percentage of time spent in MPI, and a breakdown of that time in MPI """ percentDict = dict() timeDict = dict() for filename in fileList: filename = filename.strip() try: # Open the file for reading with open(filename, "r") as infile: # Read the json jsonDict = json.load(infile) runtime = get_runtime(jsonDict) numprocs = get_num_threads(jsonDict) if threads else get_num_processes(jsonDict) # Read the overview data and get the percentage of overall time spent in mpi subDict = get_overview_data(jsonDict) mpiPercent = get_dict_field_val(subDict, ["mpi", "percent"]) #mpiTime = (percent / 100.) * runtime # Now get the sub-percentage of the mpi time mpiEntry = get_dict_field_val(jsonDict, ["data", "mpi"]) # Get all of the percentages (as a percentage of total time) mpiSubPercent = [float(get_dict_field_val(mpiEntry, [field])) * mpiPercent / 100. for field in mpiSubPercentages] mpiSubTime = [runtime * subpercent / 100. for subpercent in mpiSubPercent] percentDict[numprocs] = mpiSubPercent timeDict[numprocs] = mpiSubTime except IOError: print("File " + filename + " does not exist. Skipping.") pass return percentDict, timeDict
16,213
def get_character_url(name): """Gets a character's tibia.com URL""" return url_character + urllib.parse.quote(name.encode('iso-8859-1'))
16,214
def setup_temp_data(): """ resource for memory mapped files :return: """ temp_folder = os.getcwd()+'/temp' if not os.path.isdir(temp_folder): os.mkdir(temp_folder) print("\nsetting up temp folder") # setup files, provide memmap type img = np.random.random((2048, 2048)) np.save(temp_folder+'/img.npy', img) print("setting up temp file") yield np.memmap(temp_folder+'/img.npy', shape=(2048, 2048), dtype=np.uint8) # breakdown files if os.path.isfile(temp_folder+'/img.npy'): os.remove(temp_folder+'/img.npy') print("\nbreaking down temp file") if os.path.isdir(temp_folder): os.rmdir(temp_folder) print("breaking down temp folder")
16,215
def parse_input(lines): """Parse the input document, which contains validity rules for the various ticket fields, a representation of my ticket, and representations of a number of other observed tickets. Return a tuple of (rules, ticket, nearby_tickets) """ section = parse_sections(lines) rules = parse_rules(section[0]) my_ticket = parse_ticket(section[1][1]) tickets = [parse_ticket(line) for line in section[2][1:]] return (rules, my_ticket, tickets)
16,216
def _call(retaddr=None): """Push a new stack frame with retaddr in cell 0 of it""" ##debug("call, will return to addr:%s" % str(retaddr)) stack.append([retaddr])
16,217
def main(): """Main function""" y = [1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0] pred = [1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1] print_confusion_matrix(y, pred) mx_ = get_confusion_matrix(y, pred) print("\n") print("Mcc: ", get_MCC(mx_)) print("Acc.: ", get_accuracy(mx_)) print("F1 score: ", get_f1score(mx_)) print("Precision: ", get_precision(mx_)) print("Recall: ", get_recall(mx_)) print("Sen.: ", get_sensitivity(mx_)) print("Spec.:", get_specificity(mx_)) print("\n") [tp, fp], [fn, tn] = mx_ ( sensitivity_point_estimate, specificity_point_estimate, sensitivity_confidence_interval, specificity_confidence_interval, ) = sensitivity_and_specificity_with_confidence_intervals( tp, fp, fn, tn, alpha=0.05 ) print( "Sensitivity: %f, Specificity: %f" % (sensitivity_point_estimate, specificity_point_estimate) ) print("alpha = %f CI for sensitivity:" % 0.05, sensitivity_confidence_interval) print("alpha = %f CI for specificity:" % 0.05, specificity_confidence_interval) print("\n") # DeLong confidence interval auc, auc_cov, ci = get_delong_ci(y, pred) for a in [0.0, 0.5, 0.9, 0.95, 0.99, 0.999999]: ( sensitivity_point_estimate, specificity_point_estimate, sensitivity_confidence_interval, specificity_confidence_interval, ) = sensitivity_and_specificity_with_confidence_intervals( tp, fp, fn, tn, alpha=a ) print( "Sensitivity: %f, Specificity: %f" % (sensitivity_point_estimate, specificity_point_estimate) ) print("alpha = %f CI for sensitivity:" % a, sensitivity_confidence_interval) print("alpha = %f CI for specificity:" % a, specificity_confidence_interval) print("") manual_feature_names = ( "(prot9 - exp(prot10))**3", "(-prot10**3 + Abs(prot4))**2", "(-prot10 + Abs(prot3))**3", "(prot1 + Edad_scaled**3)**3", "(prot9 + Abs(prot6))**3", "prot9*exp(-prot6)", "(prot9 + Abs(prot3))**2", "(-prot2**3 + prot10**2)**3", ) print("Number of proteins in the feature vector: ") print(get_number_of_proteins(manual_feature_names)) ## Get of Maximal Information Coefficient (MIC), Pearson, Spearman # and Cosine similarity # generate random numbers between 0-1 *10 x = list((rand(10) * 10)) y = [2.0 + 0.7 * num**2 + 0.5 * num for num in x] print("---------------------------") out = get_correlation_metrics(x, y) print(out)
16,218
def _cnv_prioritize(data): """Perform confidence interval based prioritization for CNVs. """ supported = {"cnvkit": {"inputs": ["call_file", "segmetrics"], "fn": _cnvkit_prioritize}} pcall = None priority_files = None for call in data.get("sv", []): if call["variantcaller"] in supported: priority_files = [call.get(x) for x in supported[call["variantcaller"]]["inputs"]] priority_files = [x for x in priority_files if x is not None and utils.file_exists(x)] if len(priority_files) == len(supported[call["variantcaller"]]["inputs"]): pcall = call break prioritize_by = tz.get_in(["config", "algorithm", "svprioritize"], data) if pcall and prioritize_by: out_file = "%s-prioritize.tsv" % utils.splitext_plus(priority_files[0])[0] gene_list = _find_gene_list_from_bed(prioritize_by, out_file, data) if gene_list: with open(gene_list) as in_handle: genes = [x.strip() for x in in_handle] args = [dd.get_sample_name(data), genes] + priority_files df = supported[pcall["variantcaller"]]["fn"](*args) with file_transaction(data, out_file) as tx_out_file: df.to_csv(tx_out_file, sep="\t", index=False) pcall["priority"] = out_file return data
16,219
def add_meta_files(tarfile, meta_files_dir): """Adds the meta files to the specified tarfile. Args: tarfile: The tarfile object where the files needs to be added. meta_files_dir: The directory containing the meta files. """ tarfile.add(os.path.join(meta_files_dir, 'TIMESTAMP'), arcname='TIMESTAMP') tarfile.add(os.path.join(meta_files_dir, 'SCHEMA_SEQUENCE'), arcname='SCHEMA_SEQUENCE')
16,220
def maximum( left_node: NodeInput, right_node: NodeInput, auto_broadcast: str = "NUMPY", name: Optional[str] = None, ) -> Node: """Return node which applies the maximum operation to input nodes elementwise.""" return _get_node_factory_opset1().create( "Maximum", [left_node, right_node], {"auto_broadcast": auto_broadcast.upper()} )
16,221
def write_csv(file_name, upload_name, is_local, header, body): """ Write a CSV to the relevant location. Args: file_name: pathless file name upload_name: file name to be used as S3 key is_local: True if in local development, False otherwise header: value to write as the first line of the file body: Iterable to write as the body of the file """ local_filename = CONFIG_BROKER['broker_files'] + file_name if is_local: logger.debug({ 'message': "Writing file locally...", 'message_type': 'ValidatorDebug', 'file_name': local_filename }) with open(local_filename, 'w', newline='') as csv_file: # create local file and write headers out_csv = csv.writer(csv_file, delimiter=',', quoting=csv.QUOTE_MINIMAL, lineterminator='\n') if header: out_csv.writerow(header) for line in body: out_csv.writerow(line) csv_file.close() if not is_local: upload_file_to_s3(upload_name, local_filename) os.remove(local_filename)
16,222
def create_template_error(): """ Создает заготовку для генерации ошибок """ return {'response': False}
16,223
def set_ball(x_dir=(random.randrange(0,2) == 0)): """ Resets ball to centre of screen """ global ball_vel, ball_pos ball_vel = [random.randrange(2,4), random.randrange(1,3)] if random.randrange(0,2) == 0: ball_vel[y] *= -1 if x_dir: ball_vel[x] *= -1 ball_pos = [win_width//2, win_height//2]
16,224
def download_and_extract_index(storage_bucket: Any, extract_destination_path: str) -> Tuple[str, Any, int]: """Downloads and extracts index zip from cloud storage. Args: storage_bucket (google.cloud.storage.bucket.Bucket): google storage bucket where index.zip is stored. extract_destination_path (str): the full path of extract folder. Returns: str: extracted index folder full path. Blob: google cloud storage object that represents index.zip blob. str: downloaded index generation. """ if storage_bucket.name == GCPConfig.PRODUCTION_PRIVATE_BUCKET: index_storage_path = os.path.join(GCPConfig.PRIVATE_BASE_PATH, f"{GCPConfig.INDEX_NAME}.zip") else: index_storage_path = os.path.join(GCPConfig.STORAGE_BASE_PATH, f"{GCPConfig.INDEX_NAME}.zip") download_index_path = os.path.join(extract_destination_path, f"{GCPConfig.INDEX_NAME}.zip") index_blob = storage_bucket.blob(index_storage_path) index_folder_path = os.path.join(extract_destination_path, GCPConfig.INDEX_NAME) index_generation = 0 # Setting to 0 makes the operation succeed only if there are no live versions of the blob if not os.path.exists(extract_destination_path): os.mkdir(extract_destination_path) if not index_blob.exists(): os.mkdir(index_folder_path) logging.error(f"{storage_bucket.name} index blob does not exists") return index_folder_path, index_blob, index_generation index_blob.reload() index_generation = index_blob.generation index_blob.download_to_filename(download_index_path, if_generation_match=index_generation) if os.path.exists(download_index_path): with ZipFile(download_index_path, 'r') as index_zip: index_zip.extractall(extract_destination_path) if not os.path.exists(index_folder_path): logging.critical(f"Failed creating {GCPConfig.INDEX_NAME} folder with extracted data.") sys.exit(1) os.remove(download_index_path) logging.success(f"Finished downloading and extracting {GCPConfig.INDEX_NAME} file to " f"{extract_destination_path}") return index_folder_path, index_blob, index_generation else: logging.critical(f"Failed to download {GCPConfig.INDEX_NAME}.zip file from cloud storage.") sys.exit(1)
16,225
def MenuPersonnalise(contenu): #py:MakeCustomMenu """ À l'intention des éducateurs. Permet de créer des menus de monde personalisés. Voir la documentation pour plus de détails.""" RUR._MakeCustomMenu_(contenu)
16,226
def e_qest(model, m): """ Calculation of photocounting statistics estimation from photon-number statistics estimation Parameters ---------- model : InvPBaseModel m : int Photocount number. """ return quicksum(model.T[m, n] * model.PEST[n] for n in model.PSET)
16,227
def load_input(fname): """Read in the data, return as a list.""" data = [""] with open(fname, "r") as f: for line in f.readlines(): if line.strip("\n"): data[-1] += line.strip("\n") + " " else: data[-1] = data[-1].strip(" ") data.append("") data [-1] = data[-1].strip(" ") return data
16,228
def parse_repo_layout_from_json(file_): """Parse the repo layout from a JSON file. Args: file_ (File): The source file. Returns: RepoLayout Raises: InvalidConfigFileError: The configuration file is invalid. """ def encode_dict(data): new_data = {} for key, value in data.items(): # Waf Node API requires String objects if not isinstance(key, str): new_data[key.encode('utf-8')] = [i.encode('utf-8') for i in value] else: new_data[key] = value return new_data try: loaded_dict = json.load(file_, object_hook=encode_dict) except ValueError as e: raise blderror.InvalidConfigFileError('Invalid .bdelayoutconfig: %s' % e.message) repo_layout = repolayout.RepoLayout() for key in loaded_dict: if key in repo_layout.__dict__: setattr(repo_layout, key, loaded_dict[key]) else: logutil.warn('Invalid field in .bdelayoutconfig: %s.' % key) return repo_layout
16,229
def SizeArray(input_matrix): """ Return the size of an array """ nrows=input_matrix.shape[0] ncolumns=input_matrix.shape[1] return nrows,ncolumns
16,230
def show_fun_elem_state_machine(fun_elem_str, xml_state_list, xml_transition_list, xml_fun_elem_list): """Creates lists with desired objects for <functional_element> state, send them to plantuml_adapter.py then returns url_diagram""" new_fun_elem_list = set() main_fun_elem = check_get_object(fun_elem_str, **{'xml_fun_elem_list': xml_fun_elem_list}) if not main_fun_elem: return None if not main_fun_elem.allocated_state_list: print(f"No state allocated to {main_fun_elem.name} (no display)") return None new_fun_elem_list.add(main_fun_elem) new_state_list = {s for s in xml_state_list if s.id in main_fun_elem.allocated_state_list} new_transition_list = get_transitions(new_state_list, xml_transition_list) _, url_diagram = plantuml_adapter.get_state_machine_diagram(new_state_list, new_transition_list, xml_fun_elem_list) print("State Machine Diagram for " + fun_elem_str + " generated") return url_diagram
16,231
def get_bank_account_rows(*args, **kwargs): """ 获取列表 :param args: :param kwargs: :return: """ return db_instance.get_rows(BankAccount, *args, **kwargs)
16,232
def load_class(class_name, module_name): """Dynamically load a class from strings or raise a helpful error.""" # TODO remove this nasty python 2 hack try: ModuleNotFoundError except NameError: ModuleNotFoundError = ImportError try: loaded_module = importlib.import_module(module_name) class_ = getattr(loaded_module, class_name) except ModuleNotFoundError as e: raise PluginModuleNotFoundError(module_name=module_name) except AttributeError as e: raise PluginClassNotFoundError( module_name=module_name, class_name=class_name ) return class_
16,233
def pybo_mod(tokens, tag_codes=[]): """extract text/pos tuples from Token objects""" txt_tags = [] for token in tokens: tags = [] tags.append(token.text) # Select and order the tags for tag_code in tag_codes: tags.append(get_tag(token, tag_code)) txt_tags.append(tags) return txt_tags
16,234
def test_string_value(): """ Test string values. """ lib.backup_and_restore( lambda context: put_values(lib.SET, "key", STRING_VALUES), None, lambda context: check_values(lib.SET, "key", STRING_VALUES) )
16,235
def acf( da: xr.DataArray, *, lag: int = 1, group: str | Grouper = "time.season" ) -> xr.DataArray: """Autocorrelation function. Autocorrelation with a lag over a time resolution and averaged over all years. Parameters ---------- da : xr.DataArray Variable on which to calculate the diagnostic. lag: int Lag. group : {'time.season', 'time.month'} Grouping of the output. E.g. If 'time.month', the autocorrelation is calculated over each month separately for all years. Then, the autocorrelation for all Jan/Feb/... is averaged over all years, giving 12 outputs for each grid point. Returns ------- xr.DataArray lag-{lag} autocorrelation of the variable over a {group.prop} and averaged over all years. See Also -------- statsmodels.tsa.stattools.acf References ---------- Alavoine M., and Grenier P. (under review) The distinct problems of physical inconsistency and of multivariate bias potentially involved in the statistical adjustment of climate simulations. International Journal of Climatology, submitted on September 19th 2021. (Preprint: https://doi.org/10.31223/X5C34C) Examples -------- >>> from xclim.testing import open_dataset >>> pr = open_dataset(path_to_pr_file).pr >>> acf(da=pr, lag=3, group="time.season") """ attrs = da.attrs def acf_last(x, nlags): # noqa: D403 """statsmodels acf calculates acf for lag 0 to nlags, this return only the last one.""" # As we resample + group, timeseries are quite short and fft=False seems more performant out_last = stattools.acf(x, nlags=nlags, fft=False) return out_last[-1] @map_groups(out=[Grouper.PROP], main_only=True) def _acf(ds, *, dim, lag, freq): out = xr.apply_ufunc( acf_last, ds.dat.resample({dim: freq}), input_core_dims=[[dim]], vectorize=True, kwargs={"nlags": lag}, ) out = out.mean("__resample_dim__") return out.rename("out").to_dataset() out = _acf(da.rename("dat").to_dataset(), group=group, lag=lag, freq=group.freq).out out.attrs.update(attrs) out.attrs["long_name"] = f"lag-{lag} autocorrelation" out.attrs["units"] = "" out.name = "acf" return out
16,236
def username(UID: str) -> str: """ Get a users username from their user ID. >>> username("zx7gd1yx") '1' >>> username("7j477kvj") 'AnInternetTroll' >>> username("Sesame Street") Traceback (most recent call last): ... utils.UserError: User with uid 'Sesame Street' not found. """ R: dict = requests.get(f"{API}/users/{UID}").json() try: return R["data"]["names"]["international"] except KeyError: raise UserError(f"User with uid '{UID}' not found.")
16,237
def handle_exceptions(func): """Exception handler helper function.""" import logging logging.basicConfig(level = logging.INFO) def wrapper_func(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: logging.error(f'{func.__name__} raised an error: {e}')#, exc_info = True) return None return wrapper_func
16,238
def wflow_eqv(eqv_folder="eqv", jobname="NbTiVZr", latname="bcc", queue_type="pbs", emtopath="./", sws0=3.0, sws_percent=10.0, sws_step=11, concs=[[0.25, 0.25, 0.25, 0.25]], species=[['Nb','Ti','V','Zr']]): """ Workflow for equialium volume Parameter eqv_folder: str The folder name for the input and result, "eqv" jobname: str The jobname, "NbTiVZr" latname: str The lattice name, "bcc" queue_type = "pbs" emtopath = "./" sws0 = 3.0 sws_percent = 10.0 sws_step = 11 concs = [[0.25, 0.25, 0.25, 0.25]] species = [['Nb','Ti','V','Zr']] Return None """ creat_folders(eqv_folder) os.chdir(eqv_folder) input_gen_eqv(jobname=jobname, emtopath=emtopath, latname=latname, sws0=sws0, sws_percent=sws_percent, sws_step=sws_step, concs=concs, species = species) write_eqv_post(jobname=jobname, folder=emtopath, lat=latname, concs=concs, species=species, DLM=False) pbs_scripts = find_pbs_script(folder=emtopath, jobname=jobname, latname=latname, ext=queue_type) cmd_lines, head_lines = merge_batchfile(pbs_scripts, latpath=emtopath, jobname=jobname, queue_type=queue_type) script_lines = head_lines script_lines += "\n#Change to " + eqv_folder + " folder.\n" script_lines += "cd " + eqv_folder + "\n" script_lines += cmd_lines script_lines += "\npython " + jobname + "_eqv_post.py\n" script_lines += "cd .." os.chdir("..") with open(jobname + "_" + eqv_folder + "." + queue_type, "w+") as fid: fid.write(script_lines)
16,239
def apply_hamming_window(image): """Cross correlate after applying hamming window to compensate side effects""" window_h = np.hamming(image.shape[0]) window_v = np.hamming(image.shape[1]) image = np.multiply(image.T, window_h).T return np.multiply(image, window_v)
16,240
def calc_ewald_sum(dielectric_tensor: np.ndarray, real_lattice_set: np.ndarray, reciprocal_lattice_set: np.ndarray, mod_ewald_param: float, root_det_epsilon: float, volume: float, ) -> Tuple[float, float]: """Return real and reciprocal Ewald summations at given parameters""" epsilon_inv = np.linalg.inv(dielectric_tensor) real_sum = 0 # Skip the potential caused by the defect itself for v in real_lattice_set: root_r_inv_epsilon_r = np.sqrt(reduce(dot, [v.T, epsilon_inv, v])) real_sum += \ erfc(mod_ewald_param * root_r_inv_epsilon_r) / root_r_inv_epsilon_r real_part = real_sum / (4 * pi * root_det_epsilon) # Ewald reciprocal part # sum exp(-g * epsilon * g / (4 * ewald ** 2)) / g * epsilon * g [1/A] reciprocal_sum = 0 for g in reciprocal_lattice_set: g_epsilon_g = reduce(dot, [g.T, dielectric_tensor, g]) reciprocal_sum += \ (exp(- g_epsilon_g / 4.0 / mod_ewald_param ** 2) / g_epsilon_g * cos(dot(g, np.zeros(3)))) # [A^2] reciprocal_part = reciprocal_sum / volume return real_part, reciprocal_part
16,241
def proximal_descent( x0, grad, prox, step_size, momentum='fista', restarting=None, max_iter=100, early_stopping=True, eps=np.finfo(np.float64).eps, obj=None, benchmark=False): """ Proximal descent algorithm. Parameters ---------- x0 : array, shape (n_length, ), initial variables grad : func, gradient function prox : func, proximal operator function step_size : float, step-size for the gradient descent momentum : str or None, (default='fista'), momentum to choose, possible choice are ('fista', 'greedy', None) restarting : str or None, (default=None), restarting to chosse, possible choice are ('obj', 'descent', None), if restarting == 'obj', obj function should be given max_iter : int, (default=100), maximum number of iterations to perform the analysis early_stopping : bool, (default=True), whether to early stop the analysis eps : float, (default=np.finfo(np.float64).eps), stoppping parameter w.r.t evolution of the cost-function obj : func, (default=None), cost-function function benchmark : bool, (default=False), whether or not to save the cost-function and the duration of computatio nof each iteration Return ------ x : array, shape (n_atoms, n_voxels), the estimated variable pobj : array or None, shape (n_iter,) or (3 * n_iter,), the saved cost-function times : array or None, shape (n_iter,) or(3 * n_iter,), the saved duration per steps """ if benchmark and obj is None: raise ValueError("If 'benchmark' is set True 'obj' should be given.") if restarting == 'obj' and obj is None: raise ValueError("If 'restarting' is set 'obj' 'obj' should be given.") x_old, x, y, y_old = np.copy(x0), np.copy(x0), np.copy(x0), np.copy(x0) t = t_old = 1 if benchmark: pobj, times = [obj(y)], [0.0] for ii in range(max_iter): if benchmark: t0 = time.process_time() y -= step_size * grad(y) x = prox(y, step_size) if momentum == 'fista': t = 0.5 * (1.0 + np.sqrt(1.0 + 4.0 * t_old**2)) y = x + (t_old - 1.0) / t * (x - x_old) elif momentum == 'greedy': y = x + (x - x_old) elif momentum is None: y = x restarted = False if restarting == 'obj' and (ii > 0) and (pobj[-1] > pobj[-2]): if momentum == 'fista': x = x_old t = 1.0 elif momentum == 'greedy': y = x restarted = True if restarting == 'descent': angle = (y_old - x).ravel().dot((x - x_old).ravel()) if angle >= 0.0: if momentum == 'fista': x = x_old t = 1.0 elif momentum == 'greedy': y = x restarted = True if benchmark: t1 = time.process_time() pobj.append(obj(y)) converged = np.linalg.norm(x - x_old) < eps * np.linalg.norm(x_old) if early_stopping and converged and not restarted: break t_old = t x_old = x y_old = y if benchmark: times.append(t1 - t0) if benchmark: return x, np.array(pobj), np.array(times) else: return x
16,242
def reducer(): """ Pairs reducer function Reads pairs of words separated by a space and a count and calculates P """ # Empty dict for our output n = dict() sigma_n = dict() # Precompiled regex to match our input parse = re.compile('(\w+)\s+(\w+):\s+(\d+)') # Read STDIN and get counts line = stdin.readline() while line: # Try and match our line (skip if failed) m = parse.match(line) if m: word_1 = m.group(1) word_2 = m.group(2) count = int(m.group(3)) # Add our count to d if word_1 not in n.keys(): n[word_1] = dict() sigma_n[word_1] = 0 if word_2 not in n[word_1].keys(): n[word_1][word_2] = count else: n[word_1][word_2] += count sigma_n[word_1] += count line = stdin.readline() # Calculate P for word_1 in sorted(n.keys()): for word_2, n_word in sorted(n[word_1].items(), key=lambda x: (x[1], x[0]), reverse=True): p = n[word_1][word_2] / float(sigma_n[word_1]) stdout.write("%s %s: %f\n" % (word_1, word_2, p))
16,243
def sign_tx(path, multisig_address, redeemscript, utxo_file, output_file, testnet=False): """ Sign a spend of a bitcoin 2-of-3 P2SH-multisig address using a Trezor One Hardware Wallet Args: path: BIP32 path of key with which to sign multisig_address: Address that is being spent redeemscript: redeem script corresponding to multisig_address utxo_file: JSON file of UTXOs for multisig_address (see get_utxo_set.py) output_file: JSON file of destination addresses and amounts (see generate_outputs.py) testnet: Is this a testnet or mainnet address? Returns: Dictionary with two keys: pubkey: public key corresponding to the private key used for signing signatures: a list of signatures, one per utxo Raises: ValueError: If multisig_address is not correct for the given redeemscript Example: TODO """ with open(utxo_file, 'r') as f: utxos = json.load(f) with open(output_file, 'r') as f: outputs = json.load(f) # Verify that Pubkeys and Address match check_address = generate_multisig_address(redeemscript, testnet) parsed_redeem_script = btc_utils.parse_redeem_script(redeemscript) if multisig_address != check_address: raise ValueError("Incorrect Redeem Script") if testnet: coin = 'Testnet' else: coin = 'Bitcoin' input_script_type = proto.InputScriptType.SPENDMULTISIG output_script_type = proto.OutputScriptType.PAYTOADDRESS tx_api = trezorlib.coins.tx_api[coin] client = trezor_utils.get_trezor_client() #client.set_tx_api(tx_api) # Get signing node: expanded_path = trezorlib.tools.parse_path(path) signer = trezorbtc.get_public_node(client, expanded_path, show_display=True).node # blank HDNodes with public_keys nodes = [proto.HDNodePathType(node=proto.HDNodeType(public_key=bytes.fromhex(h), depth=0, fingerprint=0, child_num=0, chain_code=b'0'*32), address_n=[] ) for h in parsed_redeem_script['pubkeys']] trezor_inputs = [] for utxo in utxos: multisig = proto.MultisigRedeemScriptType( pubkeys=nodes, m=parsed_redeem_script['m'] ) _input = proto.TxInputType( prev_hash=bytes.fromhex(utxo['txid']), prev_index=utxo['n'], amount=utxo['amount'], address_n=trezorlib.tools.parse_path(path), script_type=input_script_type, multisig=multisig ) trezor_inputs.append(_input) txes = {} for tx in trezor_inputs: tmptx = tx_api[tx.prev_hash] txes[tx.prev_hash] = tmptx # make this multi-output, probably from file trezor_outputs = [] for output in outputs: trezor_outputs.append( proto.TxOutputType( address=output['address'], amount=output['amount'], script_type=output_script_type, ) ) output_signatures, serialized_tx = trezorbtc.sign_tx(client, coin, trezor_inputs, trezor_outputs, prev_txes=txes) signature_blob = {"pubkey": signer.public_key.hex(), "signatures": [s.hex() for s in output_signatures] } client.close() return signature_blob
16,244
def wrap_atari_dqn(env): """ wrap the environment in atari wrappers for DQN :param env: (Gym Environment) the environment :return: (Gym Environment) the wrapped environment """ from stable_baselines_custom.common.atari_wrappers import wrap_deepmind return wrap_deepmind(env, frame_stack=True, scale=False)
16,245
def get_Theta_CR_i_d_t(pv_setup, Theta_A_d_t, I_s_i_d_t): """加重平均太陽電池モジュール温度 (6) Args: pv_setup(str): 太陽電池アレイ設置方式 Theta_A_d_t(ndarray): 日付dの時刻tにおける外気温度(℃) I_s_i_d_t(ndarray): 日付dの時刻tにおける太陽電池アレイiの設置面の単位面積当たりの日射量(W/m2) Returns: ndarray: 日付dの時刻tにおける太陽電池アレイiの加重平均太陽電池モジュール温度 """ # 係数 f_A, f_B if pv_setup == '架台設置型': f_A_i = get_table_6()[0][0] f_B_i = get_table_6()[0][1] elif pv_setup == '屋根置き型': f_A_i = get_table_6()[1][0] f_B_i = get_table_6()[1][1] elif pv_setup == 'その他': f_A_i = get_table_6()[2][0] f_B_i = get_table_6()[2][1] else: raise NotImplementedError() # 太陽電池アレイの接地面における風速 V_i_d_t = get_V_i_d_t() return Theta_A_d_t + (f_A_i/(f_B_i * V_i_d_t**0.8 + 1)+2) * I_s_i_d_t * 10**(-3) - 2
16,246
def or_equality(input_1: Variable, input_2: Variable, output: Variable) -> Set[Clause]: """ Encode an OR-Gate into a CNF. :param input_1: variable representing the first input of the OR-Gate :param input_2: variable representing the second input of the OR-Gate :param output: variable representing the output of the OR-Gate :return: A set of clauses encoding the OR-Gate """ return { frozenset([-input_1, output]), frozenset([-input_2, output]), frozenset([input_1, input_2, -output]) }
16,247
def keyPosition_to_keyIndex(key_position: int, key: int) -> int: """ キーポジションからどのキーのノーツなのかを変換します 引数 ---- key_position : int -> キーポジション key : int -> 全体のキー数、4Kなら4と入力 戻り値 ------ int -> キーインデックス、指定したキーの0~キー-1の間の数 """ return math.floor(key_position * key / 512)
16,248
def main(args): """ Convert a TSV file with the following columns: * icd11 - the URI of the ICD 11 resource * icdrubric - the name associated with the rubric * expression - a compositional grammar expression that fully or partially defines the ICD 11 resource * maptype - "A" means the definition belongs to WHO, "E" means it belongs to IHTSDO (and should be added to SNOMED CT) """ optparser = argparse.ArgumentParser(description="Convert cardio raw expressions into OWL") optparser.add_argument('infile', help="Input tab separated value file file") optparser.add_argument('-f', '--outputformat', help="File format", default="n3") optparser.add_argument('-p', '--port', help="SCT Converter gateway port", type=int) optparser.add_argument('-o', '--outfile', help="Output file name", required=True) optparser.add_argument('-m', '--mapfile', help="Map file name") opts = optparser.parse_args(args) gw = SCTConverterGateway(opts.port) if opts.port else SCTConverterGateway() cg_graph = init_graph() map_graph = Graph().parse(opts.mapfile, format='n3') if opts.mapfile else None with open(opts.infile) as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t') for row in reader: who_entity = row['icd11'].split(str(WHO))[1] subj = URIRef(str(ICDCG if row['maptype'] == post_coordinated else SCTCG) + who_entity) primitive = bool(single_concept_re.match(row['expression'])) ttlresult = gw.parse(subj, primitive, row['expression']) if ttlresult: cg_graph.parse(StringIO(owlbasere.sub(r'\1>', ttlresult)), format='n3') cg_graph.add( (subj, RDFS.label, Literal('ICDCG ' + row['icdrubric']))) if map_graph: owlc = URIRef(str(WHO) + who_entity) map_graph.add( (owlc, OWL.equivalentClass, subj)) else: print("Conversion failure: " + str(row)) rem_sct_labels(cg_graph) cg_graph.serialize(opts.outfile, format="n3") print("OWL saved to %s" % opts.outfile) if map_graph: map_graph.serialize(opts.mapfile + 'upd.ttl', format="n3") print("Map saved to %s" % opts.mapfile + 'upd.ttl')
16,249
def rebuild_index(): """ Rebuild the K-nearest neighbors index based on 50000 of the most active users (ignoring the top 500 most active). """ pipe = get_pipeline() usernames = pipe.zrevrange(format_key("user"), 500, 50500).execute()[0] for user in usernames: get_vector(user, pipe=pipe) results = pipe.execute() points = np.zeros([len(usernames), nvector]) for i in range(len(usernames)): points[i, :] = parse_vector(results[8 * i:8 * (i + 1)]) flann = pyflann.FLANN() flann.build_index(points) # Save the index. fn1 = _h5_filename(index_filename) tmp1 = fn1 + ".tmp" flann.save_index(tmp1) # Save the index coordinates. fn2 = _h5_filename(points_filename) tmp2 = fn2 + ".tmp" with h5py.File(tmp2, "w") as f: f["points"] = points f["names"] = usernames # Atomically move the index files into place. shutil.move(tmp1, fn1) shutil.move(tmp2, fn2)
16,250
def load_file_recipes(fh, enabled_only=False, expensive=False, logger=logger): """ Load all the recipes from a given file handle. :param enabled_only: Set True to limit to only enabled recipes. :param expensive: Set True to use 'expensive' configurations. :return: dict(name -> {recipe}) """ logger.info("Loading recipes from %s", fh.name) lua_text = fh.read().strip() logger.debug("Loaded %d bytes", len(lua_text)) # Strip the non-table wrapper. if not lua_text.startswith(RECIPE_PREFIX) or not lua_text.endswith(RECIPE_SUFFIX): logger.warning("%s does not appear to be a recipe definition file.", fh.name) return {} lua_table = lua_text[len(RECIPE_PREFIX):-len(RECIPE_SUFFIX)].strip() definitions = {} for table in slpp.decode(lua_table): own_version = {} # Only handle 'recipe's. if table.get('type') != "recipe": logger.debug("Ignoring: %s", table) continue name = table.get('name').lower() if not name: logger.warning("Malformed entry: %s", table) continue own_version['name'] = name # Check if we're skipping disabled recipes. if enabled_only: if table.get('enabled', True) is False: logger.debug("Skipping %s: disabled" % name) continue own_version['enabled'] = table['enabled'] # Make sure it has a unique name. if name in definitions: raise ParseError("%s: Duplicated recipe: %s" % (fh.name, name)) inset = table.get('normal') if expensive: inset = table.get('expensive', inset) if inset: if enabled_only and inset.get('enabled', True) is False: logger.debug("Skipping %s: inset dsabled" % name) continue if 'ingredients' in inset: table = inset ingredients = table.get('ingredients') if not ingredients: logger.warning("Entry with no ingredients: %s", table) continue own_version['ingredients'] = {} for entry in ingredients: if isinstance(entry, (tuple, list)): assert len(entry) == 2 assert isinstance(entry[1], int) own_version['ingredients'][entry[0]] = entry[1] else: assert isinstance(entry, dict) assert len(entry) == 3 own_version['ingredients'][entry['name']] = int(entry['amount']) if 'energy_required' in table: own_version['energy_required'] = table['energy_required'] logger.debug("\"%s\": %s", name, json.dumps(own_version, sort_keys=True)) definitions[name] = own_version return definitions
16,251
def assert_euler_xyz_equal(e_xyz1, e_xyz2, *args, **kwargs): """Raise an assertion if two xyz Euler angles are not approximately equal. Note that Euler angles are only unique if we limit them to the intervals [-pi, pi], [-pi/2, pi/2], and [-pi, pi] respectively. See numpy.testing.assert_array_almost_equal for a more detailed documentation of the other parameters. """ R1 = matrix_from_euler_xyz(e_xyz1) R2 = matrix_from_euler_xyz(e_xyz2) assert_array_almost_equal(R1, R2, *args, **kwargs)
16,252
def load_model_data(m, d, data_portal, scenario_directory, subproblem, stage): """ :param m: :param data_portal: :param scenario_directory: :param subproblem: :param stage: :return: """ # TODO: once we align param names and column names, we will have conflict # because binary storage and generator use same build size param name # in the columns. data_portal.load( filename=os.path.join( scenario_directory, str(subproblem), str(stage), "inputs", "new_binary_build_storage_vintage_costs.tab", ), index=m.STOR_NEW_BIN_VNTS, select=( "project", "vintage", "lifetime_yrs", "annualized_real_cost_per_mw_yr", "annualized_real_cost_per_mwh_yr", ), param=( m.stor_new_bin_lifetime_yrs, m.stor_new_bin_annualized_real_cost_per_mw_yr, m.stor_new_bin_annualized_real_cost_per_mwh_yr, ), ) data_portal.load( filename=os.path.join( scenario_directory, str(subproblem), str(stage), "inputs", "new_binary_build_storage_size.tab", ), index=m.STOR_NEW_BIN, select=("project", "binary_build_size_mw", "binary_build_size_mwh"), param=(m.stor_new_bin_build_size_mw, m.stor_new_bin_build_size_mwh), )
16,253
def send_record(agg_record): """Send the input aggregated record to Kinesis via the PutRecord API. Args: agg_record - The aggregated record to send to Kinesis. (AggRecord)""" global kinesis_client, stream_name if agg_record is None: return partition_key, explicit_hash_key, raw_data = agg_record.get_contents() six.print_('Submitting record with EHK=%s NumRecords=%d NumBytes=%d' % (explicit_hash_key, agg_record.get_num_user_records(), agg_record.get_size_bytes())) try: kinesis_client.put_record(StreamName=stream_name, Data=raw_data, PartitionKey=partition_key, ExplicitHashKey=explicit_hash_key) except Exception as e: six.print_('Transmission Failed: %s' % e, file=sys.stderr) else: six.print_('Completed record with EHK=%s' % ehk)
16,254
def patch(url, controller): """Shortcut for Patch HTTP class. Arguments: url {string} -- The url you want to use for the route controller {string|object} -- This can be a string controller or a normal object controller Returns: masonite.routes.Patch -- The Masonite Patch class. """ from masonite.routes import Patch return Patch().route(url, controller)
16,255
def get_user(message: discord.Message, username: str): """ Get member by discord username or osu username. """ member = utils.find_member(guild=message.guild, name=username) if not member: for key, value in osu_tracking.items(): if value["new"]["username"].lower() == username.lower(): member = discord.utils.get(message.guild.members, id=int(key)) return member
16,256
def ensure_dirs(filename): """Make sure the directories exist for `filename`.""" dirname = os.path.dirname(filename) if dirname and not os.path.exists(dirname): os.makedirs(dirname)
16,257
def resaturate_color(color, amount=0.5): """ Saturates the given color by setting saturation to the given amount. Input can be matplotlib color string, hex string, or RGB tuple. """ if not isinstance(color, np.ndarray) and color in matplotlib.colors.cnames: color = matplotlib.colors.cnames[color] hls = colorsys.rgb_to_hls(*matplotlib.colors.to_rgb(color)) new_hls = hls[0], hls[1], amount new_color = colorsys.hls_to_rgb(*new_hls) return tuple(np.minimum(np.maximum(0, new_color), 1))
16,258
def create_reach_segment(upstream_point, downstream_point, polyline, identifier="HA", junctionID=0, isEnd=False): """Returns a polyline based on two bounding vertices found on the line. """ part = polyline.getPart (0) total_length = polyline.length lineArray = arcpy.Array () #Identifies bounding vertices and associated distance along the line. if isEnd: last_point= polyline.lastPoint upstream_point_dist = round (total_length - polyline.measureOnLine (downstream_point , False) , 2) downstream_point_dist = round(total_length - polyline.measureOnLine (last_point , False), 2) else: upstream_point_dist = round (total_length - polyline.measureOnLine (upstream_point , False) , 2) downstream_point_dist = round(total_length - polyline.measureOnLine (downstream_point , False), 2) #Retrieves all vertices between bounding vertices of a polyline. for pnt in part: pnt_dist = round(total_length - polyline.measureOnLine (pnt , False), 2) if pnt_dist <= upstream_point_dist and pnt_dist>=downstream_point_dist: if lineArray.count == 0: lineArray.add(upstream_point) lineArray.add (pnt) else: lineArray.add (pnt) #Makes ending downstream point is added to array if lineArray[lineArray.count -1].X != downstream_point.X and lineArray[lineArray.count -1].Y != downstream_point.Y: lineArray.add(downstream_point) #Creates a new polyline from point array new_polyline = arcpy.Polyline(lineArray) identifier = str(identifier) junc = identifier if identifier.upper().find('J') == len(identifier)-1: identifier =identifier.upper()[0:len(identifier)-1] + 'R' else: identifier = identifier.upper() + 'R' return {'name':identifier,'polyline':new_polyline, 'DJunc':junc, 'JuncID':junctionID}
16,259
def sample_recipe(user, **params): """ Helper function for creating recipes """ """ for not writing every single time this fields """ defaults = { 'title': 'Sample recipe', 'time_minutes': 10, 'price': 5.00 } """ Override any field of the defaults dictionary. Updating the keys:field from params to defaults if params has any similar key. If params has a new key, then it appends to defaults. """ defaults.update(params) return Recipe.objects.create(user=user, **defaults)
16,260
def _unary_geo(op, left, *args, **kwargs): # type: (str, np.array[geoms]) -> np.array[geoms] """Unary operation that returns new geometries""" # ensure 1D output, see note above data = np.empty(len(left), dtype=object) data[:] = [getattr(geom, op, None) for geom in left] return data
16,261
def map_func(h, configs, args): """Polygons command line in parallel. """ if args.verbose: cmd = "python {} -i {}/threshold{}.tif -o {}/threshold{}.shp -v".format( configs["path"]["polygons"], configs["path"]["output"], h, configs["path"]["output"], h ) print cmd else: cmd = "python {} -i {}/threshold{}.tif -o {}/threshold{}.shp".format( configs["path"]["polygons"], configs["path"]["output"], h, configs["path"]["output"], h ) cmd_args = shlex.split(cmd) stdout,stderr = sp.Popen( cmd_args, stdin = sp.PIPE, stdout = sp.PIPE, stderr = sp.PIPE ).communicate() if args.verbose: print stdout, stderr return True
16,262
def _runopenssl(pem, *args): """ Run the command line openssl tool with the given arguments and write the given PEM to its stdin. Not safe for quotes. """ if os.name == 'posix': command = "openssl " + " ".join(["'%s'" % (arg.replace("'", "'\\''"),) for arg in args]) else: command = "openssl " + quoteArguments(args) write, read = popen2(command, "b") write.write(pem) write.close() return read.read()
16,263
def check_health(request: HttpRequest) -> bool: """Check app health.""" return True
16,264
def test_timeout_not_set_in_config(): """ Creating a CkanAuthTktCookiePlugin instance without setting timeout in config sets correct values in CkanAuthTktCookiePlugin instance. """ plugin = make_plugin(secret="sosecret") assert plugin.timeout is None assert plugin.reissue_time is None
16,265
def return_galo_tarsilo(message): """Middle function for returning "gaucho" vídeo. Parameters ---------- message : telebot.types.Message The message object. Returns ------- msg : str User/Chat alert list addition/removal. """ return 'https://www.youtube.com/watch?v=MVYEwZFixJ8'
16,266
def test_exception(client, recorder): """ Test handling an exception :param test_client: AioHttp test client fixture :param loop: Eventloop fixture :param recorder: X-Ray recorder fixture """ exc = None try: client.get("/exception") except Exception as e: exc = e assert exc is not None segment = recorder.emitter.pop() assert not segment.in_progress assert segment.fault request = segment.http["request"] response = segment.http["response"] exception = segment.cause["exceptions"][0] assert request["method"] == "GET" assert request["url"] == "http://testserver/exception" assert request["client_ip"] == "testclient:50000" assert response["status"] == 500 assert exception.type == "KeyError"
16,267
def register_scheduler(name, scheduler): """ Registers a new scheduler. Attempting to register a scheduler with a name that is already taken will raise a ``SystemSetupError``. :param name: The name under which to register the scheduler. :param scheduler: Either a unary function ``float`` -> ``float`` or a class with the same interface as ``Scheduler``. """ logger = logging.getLogger(__name__) if name in __SCHEDULERS: raise exceptions.SystemSetupError("A scheduler with the name [%s] is already registered." % name) # we'd rather use callable() but this will erroneously also classify a class as callable... if isinstance(scheduler, types.FunctionType): logger.debug("Registering function [%s] for [%s].", str(scheduler), str(name)) # lazy initialize a delegating scheduler __SCHEDULERS[name] = lambda params: DelegatingScheduler(params, scheduler) else: logger.debug("Registering object [%s] for [%s].", str(scheduler), str(name)) __SCHEDULERS[name] = scheduler
16,268
def preimage_func(f, x): """Pre-image a funcation at a set of input points. Parameters ---------- f : typing.Callable The function we would like to pre-image. The output type must be hashable. x : typing.Iterable Input points we would like to evaluate `f`. `x` must be of a type acceptable by `f`. Returns ------- D : dict(object, list(object)) This dictionary maps the output of `f` to the list of `x` values that produce it. """ D = {} for xx in x: D.setdefault(f(xx), []).append(xx) return D
16,269
def get_spec_id(mat_quality, mat_faction=None): """ Get the material_spec id corresponding to the material quality and faction. Args: mat_quality (str): A material quality like Basic, Fine, Choice etc... mat_faction (str): A material faction like Matis, Zoraï etc... Returns: int - The id of the corresponding material_spec. Example: >>> get_spec_id('Basic', 'Generic') 1 """ if mat_faction: dbm.query( "SELECT id FROM material_spec WHERE quality = ? AND faction = ?", (mat_quality, mat_faction) ) else: dbm.query( "SELECT id FROM material_spec WHERE quality = ?", (mat_quality,) ) try: return dbm.cur.fetchone()[0] except TypeError: print( "Wrong quality: {} or faction: {}".format( mat_quality, mat_faction), file=sys.stderr ) sys.exit()
16,270
def pytest_configure(config): """Add pytest new configurations.""" config.addinivalue_line('markers', 'web: validate web link') config.addinivalue_line('markers', 'rapidtest: rapid test')
16,271
def print_raw_data(raw_data, start_index=0, limit=200, flavor='fei4b', index_offset=0, select=None, tdc_trig_dist=False, trigger_data_mode=0): """Printing FEI4 raw data array for debugging. """ if not select: select = ['DH', 'TW', "AR", "VR", "SR", "DR", 'TDC', 'UNKNOWN FE WORD', 'UNKNOWN WORD'] total_words = 0 for index in range(start_index, raw_data.shape[0]): dw = FEI4Record(raw_data[index], chip_flavor=flavor, tdc_trig_dist=tdc_trig_dist, trigger_data_mode=trigger_data_mode) if dw in select: print index + index_offset, '{0:12d} {1:08b} {2:08b} {3:08b} {4:08b}'.format(raw_data[index], (raw_data[index] & 0xFF000000) >> 24, (raw_data[index] & 0x00FF0000) >> 16, (raw_data[index] & 0x0000FF00) >> 8, (raw_data[index] & 0x000000FF) >> 0), dw total_words += 1 if limit and total_words >= limit: break return total_words
16,272
def test_fit_raise_error(classifier): """Test raising an error on the wrong classifier type.""" with pytest.raises( TypeError, match='`ClassifierBettor` requires a classifier. ' f'Instead {type(classifier)} is given.', ): ClassifierBettor(classifier).fit(X, Y)
16,273
def test_md034_good_with_leading_character(): """ Test to make sure this rule does not trigger with a document that contains http urls with non-whitespace directly before it. """ # Arrange scanner = MarkdownScanner() supplied_arguments = [ "scan", "test/resources/rules/md034/good_with_leading_character.md", ] expected_return_code = 0 expected_output = "" expected_error = "" # Act execute_results = scanner.invoke_main(arguments=supplied_arguments) # Assert execute_results.assert_results( expected_output, expected_error, expected_return_code )
16,274
def load_tree(tree,fmt=None): """ Load a tree into an ete3 tree data structure. tree: some sort of tree. can be an ete3.Tree (returns self), a dendropy Tree (converts to newick and drops root), a newick file or a newick string. fmt: format for reading tree from newick. 0-9 or 100. See ete3 documentation for how these are read (http://etetoolkit.org/docs/latest/tutorial/tutorial_trees.html#reading-and-writing-newick-trees). As of ETE3.1.1, these numbers mean: | ====== ============================================== | FORMAT DESCRIPTION | ====== ============================================== | 0 flexible with support values | 1 flexible with internal node names | 2 all branches + leaf names + internal supports | 3 all branches + all names | 4 leaf branches + leaf names | 5 internal and leaf branches + leaf names | 6 internal branches + leaf names | 7 leaf branches + all names | 8 all names | 9 leaf names | 100 topology only | ====== ============================================== if fmt is None, try to parse without a format descriptor, then these formats in numerical order. Returns an ete3 tree object. """ # Already an ete3 tree. if type(tree) is ete3.TreeNode: return tree # Convert dendropy tree into newick (drop root) if type(tree) is dp.Tree: tree = tree.as_string(schema="newick",suppress_rooting=True) # If we get here, we need to convert. If fmt is not specified, try to parse # without a format string. if fmt is None: try: t = Tree(tree) except ete3.parser.newick.NewickError: # Try all possible formats now, in succession w = "\n\nCould not parse tree without format string. Going to try different\n" w += "formats. Please check output carefully.\n\n" warnings.warn(w) formats = list(range(10)) formats.append(100) t = None for f in formats: try: t = Tree(tree,format=f) w = f"\n\nSuccessfully parsed tree with format style {f}.\n" w += "Please see ete3 documentation for details:\n\n" w += "http://etetoolkit.org/docs/latest/tutorial/tutorial_trees.html#reading-and-writing-newick-trees\n\n" warnings.warn(w) break except ete3.parser.newick.NewickError: continue if t is None: err = "\n\nCould not parse tree!\n\n" raise ValueError(err) else: # Try a conversion with the specified format t = Tree(tree,format=fmt) return t
16,275
def load_extract(context, extract: Dict) -> str: """ Upload extract to Google Cloud Storage. Return GCS file path of uploaded file. """ return context.resources.data_lake.upload_df( folder_name="nwea_map", file_name=extract["filename"], df=extract["value"] )
16,276
def _make_default_colormap(): """Return the default colormap, with custom first colors.""" colormap = np.array(cc.glasbey_bw_minc_20_minl_30) # Reorder first colors. colormap[[0, 1, 2, 3, 4, 5]] = colormap[[3, 0, 4, 5, 2, 1]] # Replace first two colors. colormap[0] = [0.03137, 0.5725, 0.9882] colormap[1] = [1.0000, 0.0078, 0.0078] return colormap
16,277
def poly_to_box(poly): """Convert a polygon into an array of tight bounding box.""" box = np.zeros(4, dtype=np.float32) box[0] = min(poly[:, 0]) box[2] = max(poly[:, 0]) box[1] = min(poly[:, 1]) box[3] = max(poly[:, 1]) return box
16,278
def default_collate(batch): """Puts each data field into a tensor with outer dimension batch size""" error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" elem_type = type(batch[0]) if isinstance(batch[0], torch.Tensor): return torch.stack(batch, 0) elif ( elem_type.__module__ == "numpy" and elem_type.__name__ != "str_" and elem_type.__name__ != "string_" ): # pragma: no cover elem = batch[0] if elem_type.__name__ == "ndarray": return torch.stack([torch.from_numpy(b) for b in batch], 0) if elem.shape == (): # scalars py_type = float if elem.dtype.name.startswith("float") else int return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) elif isinstance(batch[0], int_classes): # pragma: no cover return torch.LongTensor(batch) elif isinstance(batch[0], float): # pragma: no cover return torch.DoubleTensor(batch) elif isinstance(batch[0], string_classes): # pragma: no cover return batch elif isinstance(batch[0], container_abcs.Mapping): # pragma: no cover return {key: default_collate([d[key] for d in batch]) for key in batch[0]} elif isinstance(batch[0], container_abcs.Sequence): # pragma: no cover transposed = zip(*batch) return [default_collate(samples) for samples in transposed] raise TypeError((error_msg.format(type(batch[0]))))
16,279
def updatestatus(requestdata, authinfo, acldata, supportchan, session): """Update the /Status page of a user.""" if requestdata[2] in acldata['wikis']: wikiurl = str('https://' + acldata['wikis'][requestdata[2]]['url'] + '/w/api.php') sulgroup = acldata['wikis'][requestdata[2]]['sulgroup'] else: return 'Wiki could not be found' if requestdata[0] in acldata['users']: if sulgroup in acldata['users'][requestdata[0]]['groups']: request = [acldata['users'][requestdata[0]]['groups'][sulgroup], requestdata[3]] else: return f"Data not found for {sulgroup} in {requestdata[0]}, Keys were: {acldata['users'][requestdata[0]].keys()}" elif requestdata[1][0] in acldata['sulgroups'][sulgroup]['cloaks']: request = [requestdata[1][1], requestdata[3]] else: ERRNOAUTH = "You don't seem to be authorised to use this plugin. Check you are signed into NickServ and try again." if supportchan is None: return ERRNOAUTH return f'{ERRNOAUTH} If this persists, ask for help in {supportchan}.' return mwapi.main( performer=request[0], target=str('User:' + (str(request[0]) + '/Status')), action='create', reason=str('Updating status to ' + str(request[1]) + ' per ' + str(request[0])), url=wikiurl, authinfo=[authinfo[0], authinfo[1]], content=str(request[1]), session=session, )
16,280
def sortByTimeStamps(paths): """Sorts the given list of file paths by their time-stamp :paths: The file paths to sort by time-stamp :returns: A sorted list of file paths """ sortedPaths = [] timeStamps = [] # Extract the YYYYMMDD & HHMMSS timestamps from the file paths for p in paths: timeStamp = getTimeStamps(p) timeStamps.append((int(timeStamp[0]), int(timeStamp[1]))) # Sort the timestamps in ascending order FIX FOR TUPLE timeStamps = sorted(timeStamps, key = lambda x: (int(x[0]), int(x[1]))) # Sort the paths by comparing to the sorted timestamps for t in timeStamps: for p in paths: timeStamp = getTimeStamps(p) if (int(timeStamp[0]), int(timeStamp[1])) == t: sortedPaths.append(p) return sortedPaths
16,281
def get_xml_nk_bands(xml_tree): """ Function to specifically get kpoint (cartesian) coordinates and corresponding eigenvalues (in Hartree) """ k_points_car = [] k_eigenvalues = [] k_occupations = [] for ks_energies in xml_tree.iter(tag='ks_energies'): k_points_car.append( get_xml_data(ks_energies,'k_point',as_type=float) ) k_eigenvalues.append( get_xml_data(ks_energies,'eigenvalues',as_type=float) ) k_occupations.append( get_xml_data(ks_energies,'occupations',as_type=float) ) k_points_car = np.array(k_points_car) k_eigenvalues = np.array(k_eigenvalues) k_occupations = np.array(k_occupations) return k_points_car, k_eigenvalues, k_occupations
16,282
def enumerate(server, directory_list, filenames): """ Enumerate directories and files on the web server. """ print('\n[*] Enumerating resources.') to_search = [server] directories = [] resources = [] print('[*] Recursively searching for directories.') while len(to_search) != 0: base_url = to_search.pop(0) print('[*] Searching for directories in {0}'.format(base_url)) to_search.extend(check(base_url, directory_list)) directories.append(base_url) resources.append(base_url) if len(filenames) > 0: print('\n[*] Searching for files.') for url in directories: resources.extend(check(url, filenames, False)) return resources
16,283
def deep_equals(x, y): """Test two objects for equality in value. Correct if x/y are one of the following valid types: types compatible with != comparison pd.Series, pd.DataFrame, np.ndarray lists, tuples, or dicts of a valid type (recursive) Important note: this function will return "not equal" if types of x,y are different for instant, bool and numpy.bool are *not* considered equal Parameters ---------- x: object y: object Returns ------- bool - True if x and y are equal in value x and y do not need to be equal in reference """ if type(x) != type(y): return False # we now know all types are the same # so now we compare values if isinstance(x, pd.Series): if x.dtype != y.dtype: return False # if columns are object, recurse over entries and index if x.dtype == "object": index_equal = x.index.equals(y.index) return index_equal and deep_equals(list(x.values), list(y.values)) else: return x.equals(y) elif isinstance(x, pd.DataFrame): if not x.columns.equals(y.columns): return False # if columns are equal and at least one is object, recurse over Series if sum(x.dtypes == "object") > 0: return np.all([deep_equals(x[c], y[c]) for c in x.columns]) else: return x.equals(y) elif isinstance(x, np.ndarray): if x.dtype != y.dtype: return False return np.array_equal(x, y, equal_nan=True) # recursion through lists, tuples and dicts elif isinstance(x, (list, tuple)): return _tuple_equals(x, y) elif isinstance(x, dict): return _dict_equals(x, y) elif x != y: return False return True
16,284
def get_local_log(date, which="completed", safeout=False): """ """ filein = get_log_filepath(date, which=which) if not os.path.isfile(filein): if safeout: return None raise IOError(f"No {which}_log locally stored for {date}. see download_log()") return pandas.read_csv(filein)
16,285
def get_asan_options(redzone_size, malloc_context_size, quarantine_size_mb, bot_platform, leaks): """Generates default ASAN options.""" asan_options = {} # Default options needed for all cases. asan_options['alloc_dealloc_mismatch'] = 0 asan_options['print_scariness'] = 1 asan_options['strict_memcmp'] = 0 # Set provided redzone size. if redzone_size: asan_options['redzone'] = redzone_size # This value is used in determining whether to report OOM crashes or not. set_value('REDZONE', redzone_size) # Set maximum number of stack frames to report. if malloc_context_size: asan_options['malloc_context_size'] = malloc_context_size # Set quarantine size. if quarantine_size_mb: asan_options['quarantine_size_mb'] = quarantine_size_mb # Test for leaks if this is an LSan-enabled job type. if get_value('LSAN') and leaks: lsan_options = join_memory_tool_options(get_lsan_options()) set_value('LSAN_OPTIONS', lsan_options) asan_options['detect_leaks'] = 1 else: remove_key('LSAN_OPTIONS') asan_options['detect_leaks'] = 0 # FIXME: Support container overflow on Android. if bot_platform == 'ANDROID': asan_options['detect_container_overflow'] = 0 # Enable stack use-after-return. asan_options['detect_stack_use_after_return'] = 1 asan_options['max_uar_stack_size_log'] = 16 # Other less important default options for all cases. asan_options.update({ 'allocator_may_return_null': 1, 'allow_user_segv_handler': 0, 'check_malloc_usable_size': 0, 'detect_odr_violation': 0, 'fast_unwind_on_fatal': 1, 'print_suppressions': 0, }) # Add common sanitizer options. asan_options.update(COMMON_SANITIZER_OPTIONS) # FIXME: For Windows, rely on online symbolization since llvm-symbolizer.exe # in build archive does not work. asan_options['symbolize'] = int(bot_platform == 'WINDOWS') # For Android, allow user defined segv handler to work. if bot_platform == 'ANDROID': asan_options['allow_user_segv_handler'] = 1 # Check if UBSAN is enabled as well for this ASAN build. # If yes, set UBSAN_OPTIONS and enable suppressions. if get_value('UBSAN'): ubsan_options = get_ubsan_options() # Remove |symbolize| explicitly to avoid overridding ASan defaults. ubsan_options.pop('symbolize', None) set_value('UBSAN_OPTIONS', join_memory_tool_options(ubsan_options)) return asan_options
16,286
def get_onelinepred_results(pred_file, thred=0.1): """"from pred_file parse pred_results Args: # TODO save format of pred_file still unknown pred_file (str): pred_file path thred: pred_box's score less than it could be ignored Return: pred_dict (dict(list)) : output predict result. The outer dict means different images , inner list contains xywh class_id(1) score """ if pred_file is None: return None pred_dict = {} lines = open(pred_file, 'r').readlines() for line in lines: split_item = line.strip().split() if len(split_item) < 5: continue image_path = split_item[0] #image key first occur if not image_path in pred_dict.keys(): pred_dict[image_path] = list() pred_box = np.array(split_item[1:]).reshape((-1, 9)).astype(np.float) #if int(pred_cls) < 2: pred_cls = '0' for box in pred_box: cls_id = 1 #int(box[0]) - 1 #skip background score = box[0] # if not (abs(box[8]) < 35 and abs(box[7]) < 35 and abs(box[6]) < 35): continue # if score < thred or box[5] < 0.5: continue pred_dict[image_path].append(box[1:5].tolist()+[cls_id, score]) #box+cls return pred_dict
16,287
def permutations(**kwargs): """Generate a CSV with each permutation of columns and possible values. The probabilities are not considered. """ cols_template, gen_rows = handle_common_cmdline(kwargs) col_opts = prepare_col_opts(cols_template) rows = [] gen_permutations(col_opts, cols=list(col_opts.keys()), rows=rows, row={}) write_output(kwargs, col_opts, rows)
16,288
def validate_parent_instance(parent: Optional[Any]) -> None: """ Validate specified parent is `ChildInterface` instance. Parameters ---------- parent : * Any parent instance or None. Raises ------ ValueError If specified parent is not None and not `ChildInterface` instance. """ if parent is None: return from apysc._display.child_interface import ChildInterface if isinstance(parent, ChildInterface): return raise ValueError( 'Specified parent is not None and not `ChildInterface` instance,' f' like a Sprite: {type(parent)}')
16,289
def _is_valid_img_uri(uri: str) -> bool: """ Returns true if a string is a valid uri that can be saved in the database. """ regex = "data:image/jpeg;base64*." return not uri or re.match(regex, uri)
16,290
def insert_global_vars(config): """ replace global variable placeholders with respective values """ for key, value in config.items(): if type(value) != dict and value in vars(globals): config[key] = getattr(globals, value)
16,291
def update_config(a, b, mode="default"): """Update the configuration a with b.""" if not b: return a from_version = get_config_version(a) to_version = get_config_version(b) if from_version == 1 and to_version == 2: # When updating the configuration to a newer version, we clear all user fields. a = {k: v for k, v in a.items() if k in _non_user_fields} return replace_config(a, b) if mode == "default" or mode == "merge": return merge_config(a, b) if mode == "replace": return replace_config(a, b) raise ValueError("Invalid configuration update mode: %s" % mode)
16,292
def disk_partitions(disk_ntuple, all=False): """Return all mountd partitions as a named tuple. If all == False return physical partitions only. """ phydevs = [] if os.path.exists('/proc/filesystems'): my_file = open('/proc/filesystems', 'r') for line in my_file: if not line.startswith('nodev'): phydevs.append(line.strip()) else: print ('path does not exist: /proc/filesystems') retlist = [] if os.path.exists('/etc/mtab'): my_file = open('/etc/mtab', 'r') for line in my_file: if not all and line.startswith('none'): continue fields = line.split() device = fields[0] mountpoint = fields[1] fstype = fields[2] if not all and fstype not in phydevs: continue if device == 'none': device = '' ntuple = disk_ntuple(device, mountpoint, fstype) retlist.append(ntuple) else: print ('path does not exist: /etc/mtab') return retlist
16,293
def create_app(config_name='DevelopmentConfig'): """Create the Flask application from a given config object type. Args: config_name (string): Config instance name. Returns: Flask Application with config instance scope. """ app = Flask(__name__) {{cookiecutter.package_name | upper}}(app, config_name=config_name) return app
16,294
def label_accuracy_score(hist): """Returns accuracy score evaluation result. - overall accuracy - mean accuracy - mean IU - fwavacc """ with np.errstate(divide='ignore', invalid='ignore'): iu = np.diag(hist) / ( hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist) ) mean_iu = np.nanmean(iu) return mean_iu
16,295
def get_page_title(title: str): """ Возвращает заголовок, отображаемый на вкладках """ return f'{title} | NeuraHS'
16,296
def scan_build(registry, xml_parent, data): """yaml: scan-build This plugin allows you configure a build step that will execute the Clang scan-build static analysis tool against an XCode project. The scan-build report has to be generated in the directory ``${WORKSPACE}/clangScanBuildReports`` for the publisher to find it. Requires the Jenkins :jenkins-wiki:`Clang Scan-Build Plugin <Clang+Scan-Build+Plugin>`. :arg str target: Provide the exact name of the XCode target you wish to have compiled and analyzed (required) :arg str target-sdk: Set the simulator version of a currently installed SDK (default iphonesimulator) :arg str config: Provide the XCode config you wish to execute scan-build against (default Debug) :arg str clang-install-name: Name of clang static analyzer to use (default '') :arg str xcode-sub-path: Path of XCode project relative to the workspace (default '') :arg str workspace: Name of workspace (default '') :arg str scheme: Name of scheme (default '') :arg str scan-build-args: Additional arguments to clang scan-build (default --use-analyzer Xcode) :arg str xcode-build-args: Additional arguments to XCode (default -derivedDataPath $WORKSPACE/build) :arg str report-folder: Folder where generated reports are located (>=1.7) (default clangScanBuildReports) Full Example: .. literalinclude:: /../../tests/builders/fixtures/scan-build-full.yaml :language: yaml Minimal Example: .. literalinclude:: /../../tests/builders/fixtures/scan-build-minimal.yaml :language: yaml """ p = XML.SubElement( xml_parent, 'jenkins.plugins.clangscanbuild.ClangScanBuildBuilder') p.set('plugin', 'clang-scanbuild') mappings = [ ('target', 'target', None), ('target-sdk', 'targetSdk', 'iphonesimulator'), ('config', 'config', 'Debug'), ('clang-install-name', 'clangInstallationName', ''), ('xcode-sub-path', 'xcodeProjectSubPath', 'myProj/subfolder'), ('workspace', 'workspace', ''), ('scheme', 'scheme', ''), ('scan-build-args', 'scanbuildargs', '--use-analyzer Xcode'), ('xcode-build-args', 'xcodebuildargs', '-derivedDataPath $WORKSPACE/build'), ('report-folder', 'outputFolderName', 'clangScanBuildReports'), ] convert_mapping_to_xml(p, data, mappings, fail_required=True)
16,297
def make_pointer_union_printer(val): """Factory for an llvm::PointerUnion printer.""" pointer, value = get_pointer_int_pair(val['Val']) if not pointer or not value: return None pointer_type = val.type.template_argument(int(value)) string = 'llvm::PointerUnion containing %s' % pointer_type return make_printer(string, [('pointer', pointer.cast(pointer_type))])
16,298
def test_default_quality_2_down(): """ Test that quality goes down by 2 when sell_in date has gotten to 0 GIVEN: GildedRose with one Item of type default WHEN: call update_quality method THEN: quality should be two less """ quality = 10 sell_in = 0 name = 'default' items = [Item(name, sell_in, quality)] gilded_rose = GildedRose(items) gilded_rose.update_quality() assert items[0].quality == quality - 2
16,299