content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import subprocess def supported_camera_list(): """ Grabs the list of gphoto2 cameras and parses into a list """ check_gphoto2() # No reason to keep going if GPhoto2 isn't installed # TODO: Error checking/Handling # Capture and cleanup camera list output cameras = subprocess.run("gphoto2 --list-cameras", shell=True, capture_output=True) cameras = cameras.stdout.decode("utf-8").split("\n\t") return [v.strip("\n").strip('"') for v in cameras][1:]
bcb9c69a56d8bcc9e613db818b8e38ca5f9e5ac8
3,642,400
from typing import Iterable from typing import Callable def get_features_and_labels(instances: Iterable[NewsHeadlineInstance], feature_generator: Callable[[NewsHeadlineInstance], dict[str]]) -> tuple[list[dict[str]], list[int]]: """ Return a tuple of the features and labels for each instance within the dataset. """ features = [] labels = [] for instance in instances: features.append(feature_generator(instance)) labels.append(instance.label) return features, labels
56d2f1a0a18eb1d1f8ecf9547184ae873d0b60e3
3,642,401
def countBarcodeStats(bcseqs,chopseqs='none',bcs = ["0","1"],use_specific_beginner=None): """this function uses edlib to count the number of matches to given bcseqs. chopseqs can be left, right, both, or none. This tells the program to chop off one barcode from either the left, right, both, or none of the ends.""" x=[] o1list = [] o2list = [] pcount = [] jcount = [] pjcount = [] jpcount = [] all_lists = {} switch_lists = {} run_lists = {} first_last = {} for bc in bcseqs: if(bc=="conditions"): continue seqs = [] for seq in bcseqs[bc]: #for every sequence we want to eliminate where it turns to -1 curseq = "" if(len(seq)==0): continue elif((use_specific_beginner is not None) and (use_specific_beginner not in seq)): continue elif("B" in str(seq[0]) or "E" in str(seq[-1])): #this sequence is already forwards for element in seq: if("B" in str(element)): continue elif(element == -1): continue elif('E' in str(element)): break else: curseq+=str(element) seqs += [curseq] elif("E" in str(seq[0]) or "B" in str(seq[-1])): #turn the seq forwards for element in seq[::-1]: if("B" in str(element)): continue elif(element == -1): continue elif('E' in str(element)): break else: curseq+=str(element) seqs += [curseq] seqschop = [] curpcount = 0 curjcount = 0 curjpcount = 0 curpjcount = 0 curbclist = [] curswlist = [] currunslist = [] curfirstlast = [0,0,0] for a in seqs: anew = a if(chopseqs=='right'): anew = a[:-1] elif(chopseqs == 'left'): anew = a[1:] elif(chopseqs == 'both'): anew = a[1:-1] #if(len(anew)>0): seqschop+=[anew] pct = anew.count(bcs[0]) jct = anew.count(bcs[1]) curbclist+=[[pct,jct]] curpcount+=pct curjcount+=jct pjct = anew.count("".join(bcs)) jpct = anew.count("".join(bcs[::-1])) curswlist += [[pjct,jpct]] curpjcount+=pjct curjpcount+=jpct currunslist += [longestRun(a,"".join(bcs))] if(len(anew)>1): if(anew[0]==bcs[1]): curfirstlast[0]+=1 #J in the first position if(anew[-1]==bcs[1]): curfirstlast[1]+=1 #J in the last position curfirstlast[2]+=1 #this one counts all seqs first_last.update({bc:tuple(curfirstlast)}) run_lists.update({bc:currunslist}) all_lists.update({bc:curbclist}) switch_lists.update({bc:curswlist}) pcount+=[curpcount] jcount+=[curjcount] jpcount +=[curjpcount] pjcount +=[curpjcount] return all_lists,run_lists,switch_lists,first_last
af19f5a77f241362d50245885ab15dabd5197dcd
3,642,402
def is_underflow(bin_nd, hist): """Retuns whether global bin number bin_nd is an underflow bin. Works for any number of dimensions """ flat1d_bin = get_flat1d_bin(bin_nd, hist, False) return flat1d_bin == 0
377c5a339f404ef4e55832f163952575f7b8d6a4
3,642,403
def deprecated_func_docstring(foo=None): """DEPRECATED. Deprecated function.""" return foo
f9c996c4f3735ed2767f0bbb139b1494e2a0fa39
3,642,404
def get_all_nodes(starting_node : 'NodeDHT') -> 'list[NodeDHT]': """Return all nodes in the DHT""" nodes = [starting_node] node = starting_node while node != starting_node: node = node.succ nodes.append(node) return nodes
91b2968b000abac3d6f9f51bad5889ccf0fe8388
3,642,405
import sys def get_uvj(field, v4id): """Get the U-V and V-J for a given galaxy Parameters: field (str): field of the galaxy v4id (int): v4id from 3DHST Returns: uvj_tuple (tuple): tuple of the form (U-V, V-J) for the input object from mosdef """ # Read the file uvj_df = ascii.read(imd.loc_uvj).to_pandas() # Get the object from mosdef_df, since we need id and not v4id mosdef_obj = get_mosdef_obj(field, v4id) # Get the input object obj = uvj_df[np.logical_and( uvj_df['field'] == field, uvj_df['id'] == mosdef_obj['ID'])] # Get the U-V and V-J for that object try: u_v = obj['u_v'].iloc[0] v_j = obj['v_j'].iloc[0] uvj_tuple = (u_v, v_j) except IndexError: sys.exit(f'Could not find object ({field}, {v4id}) in uvj_df') return uvj_tuple
39e1f6fd87ee4c7fc0f29fcfd18b7d780de4d532
3,642,406
import re def by_regex(regex_tuples, default=True): """Only call function if regex_tuples is a list of (regex, filter?) where if the regex matches the requested URI, then the flow is applied or not based on if filter? is True or False. For example: from aspen.flows.filter import by_regex @by_regex( ( ("/secret/agenda", True), ( "/secret.*", False ) ) ) def use_public_formatting(request): ... would call the 'use_public_formatting' flow step only on /secret/agenda and any other URLs not starting with /secret. """ regex_res = [ (re.compile(regex), disposition) \ for regex, disposition in regex_tuples.iteritems() ] def filter_function(function): def function_filter(request, *args): for regex, disposition in regex_res: if regex.matches(request.line.uri): if disposition: return function(*args) if default: return function(*args) algorithm._transfer_func_name(function_filter, function) return function_filter return filter_function
a3d47690120a8091596047d73792b0d1f637132b
3,642,407
def deserialize(name): """Get the activation from name. :param name: name of the method. among the implemented Keras activation function. :return: """ name = name.lower() if name == SOFTMAX: return backward_softmax if name == ELU: return backward_elu if name == SELU: return backward_selu if name == SOFTPLUS: return backward_softplus if name == SOFTSIGN: return backward_softsign if name == SIGMOID: return backward_sigmoid if name == TANH: return backward_tanh if name in [RELU, RELU_]: return backward_relu if name == EXPONENTIAL: return backward_exponential if name == LINEAR: return backward_linear raise ValueError("Could not interpret " "activation function identifier:", name)
133f01edaa678d60f85bf720590c0df3d1c552f3
3,642,408
def delete_item_image(itemid, imageid): """ Delete an image from item. Args: itemid (int) - item's id imageid (int) - image's id Status Codes: 204 No Content – when image deleted successfully """ path = '/items/{}/images/{}'.format(itemid, imageid) return delete(path, auth=True, accepted_status_codes=[204])
28d3c7bea85cd7132de6010def1c2ec41a9cfc82
3,642,409
def bytes_(s, encoding='utf-8', errors='strict'): # pragma: no cover """Utility to ensure binary-like usability. If ``s`` is an instance of ``text_type``, return ``s.encode(encoding, errors)``, otherwise return ``s``""" if isinstance(s, text_type): return s.encode(encoding, errors) return s
269d315c1204be941766558fc3cbbc07c8e63657
3,642,410
import os import uuid def create_job_id(success_file_path): """Create job id prefix with a consistent naming convention based on the success file path to give context of what caused this job to be submitted. the rules for success file name -> job id are: 1. slashes to dashes 2. all non-alphanumeric dash or underscore will be replaced with underscore Note, gcf-ingest- can be overridden with environment variable JOB_PREFIX 3. uuid for uniqueness """ clean_job_id = os.getenv('JOB_PREFIX', constants.DEFAULT_JOB_PREFIX) clean_job_id += constants.NON_BQ_JOB_ID_REGEX.sub( '_', success_file_path.replace('/', '-')) # add uniqueness in case we have to "re-process" a success file that is # republished (e.g. to fix a bad batch of data) or handle multiple load jobs # for a single success file. clean_job_id += str(uuid.uuid4()) return clean_job_id[:1024]
36417832ef7a7745af46798dbc0b83dcce5ba5f1
3,642,411
from operator import inv import numpy def normal_transform(matrix): """Compute the 3x3 matrix which transforms normals given an affine vector transform.""" return inv(numpy.transpose(matrix[:3,:3]))
b7f7256b9057b9a77b074080e698ff859ccbefb2
3,642,412
async def async_unload_entry(hass, config_entry): """Unload OMV config entry.""" unload_ok = await hass.config_entries.async_unload_platforms( config_entry, PLATFORMS ) if unload_ok: controller = hass.data[DOMAIN][config_entry.entry_id] await controller.async_reset() hass.data[DOMAIN].pop(config_entry.entry_id) return True
60955e2aac51d211a296de0736f784c2332f855b
3,642,413
import typing import csv def create_prediction_data(validation_file: typing.IO) -> dict: """Create a dictionary object suitable for prediction.""" validation_data = csv.DictReader(validation_file) races = {} # Read each horse from each race for row in validation_data: race_id = row["EntryID"] finish_pos = float(row["Placement"]) if race_id not in races: races[race_id] = [] # Skip horses that didn't run if finish_pos < 1: continue # Create validation array data = np.array( [ float(feat if len(str(feat)) > 0 else 0) for feat in list(row.values())[4:] ] ) data = data.reshape(1, -1) races[race_id].append( {"data": data, "prediction": None, "finish_pos": finish_pos} ) return races
6ec67b277460feb5d80bf7a35e7bc40f3014e6ce
3,642,414
def username(request): """ Returns ESA FTP username """ return request.config.getoption("--username")
2393884c2c9f65055cd7a14c1b732fccf70a6e28
3,642,415
def complete_data(df): """Add some temporal columns to the dataset - day of the week - hour of the day - minute Parameters ---------- df : pandas.DataFrame Input data ; must contain a `ts` column Returns ------- pandas.DataFrame Data with additional columns `day`, `hour` and `minute` """ logger.info("Complete some data") df = df.copy() df['day'] = df['ts'].apply(lambda x: x.weekday()) df['hour'] = df['ts'].apply(lambda x: x.hour) df['minute'] = df['ts'].apply(lambda x: x.minute) return df
be342df461c04fc4b7f5b757f8287973c8826bd8
3,642,416
import re def is_valid_mac_address_normalized(mac): """Validates that the given MAC address has what we call a normalized format. We've accepted the HEX only format (lowercase, no separators) to be generic. """ return re.compile('^([a-f0-9]){12}$').match(mac) is not None
7c4ea0a3353a3753907de21bbf114b2a228bb3c0
3,642,417
def get_Y(data): """ Function: convert pandas data table to sklearn Y variable Arguments --------- data: panadas data table Result ------ Y[:,:]: float sklearn Y variable """ return np.array((data["H"],data["sigma"])).T
d5e9d5b116fe8e82165d019c23394b6f1dfc4d9c
3,642,418
def get_bbox(mask, show=False): """ Get the bbox for a binary mask Args: mask: a binary mask Returns: bbox: (col_min, col_max, row_min, row_max) """ area_obj = np.where(mask != 0) bbox = np.min(area_obj[0]), np.max(area_obj[0]), np.min(area_obj[1]), np.max(area_obj[1]) if show: cv2.rectangle(mask, (bbox[2], bbox[0]), (bbox[3], bbox[1]), (255, 255, 255), 1) mmcv.imshow(mask, "test", 10) exit() return bbox
2e074d305d50334809eb0fe3e15def6fd4d21644
3,642,419
from pineboolib.core import settings def check_mobile_mode() -> bool: """ Return if you are working in mobile mode, searching local settings or check QtCore.QSysInfo().productType(). @return True or False. """ return ( True if QtCore.QSysInfo().productType() in ("android", "ios") else settings.CONFIG.value(u"ebcomportamiento/mobileMode", False) )
99327efbc3d329218d027e4451aae1979a9ebccc
3,642,420
def check_for_overflow_candidate(node): """ Checks if the node contains an expression which can potentially produce an overflow meaning an expression which is not wrapped by any cast, which involves the operator +, ++, *, **. Note, the expression can have several sub-expression. It is the case of the expression (a + 3 > 0 && a * 3 > 5). In this case, the control is not just done for the first expression (which is the &&), but should be applied recursively to all the subexpression, until it founds the expression with one of the whitelisted operator. :param node: Node could be an Expression or AstNode (Tuple or Literal) in both cases, they have a dictionary called 'dic'. :return: List of tuples [(AstNode, {exp_id: expression}], where the AstNode is a node which of type Identifier and it is refereeing to a newly created variable called exp_id. The seconds object of the tuple is the map between the name of the variable added and its expression. """ # Check if in all the expression (also in depth) there is some operations expression_candidates = [] whitelist_operators = ['+', '++', '*', '**', '-', '--'] logic_operators = ['||', '&&', '>', '>=', '<', '<=', '==', '!='] # to let find_parent works if not node: return None if node.parent: node.parent = None first_expression = asthelper.find_node(node.dic, {'nodeType': r'.*Operation'}) if not first_expression: # no expression it is or an identifier or a literal return None if asthelper.find_parent(first_expression, {'kind': 'typeConversion'}) is not None: # The expression is wrapped by a cast, if wrapped, can't be a candidate return None if first_expression['operator'] in whitelist_operators: exp_map = {} if 'name' not in first_expression.dic: # if not name, it is not a variable declaration # so expression is identifier exp_name = 'exp_{}'.format(first_expression.dic['id']) exp_map[exp_name] = expressionhelper.Expression(first_expression.dic) # override first_expression.dic['name'] = exp_name first_expression.dic['nodeType'] = 'Identifier' return [(first_expression, exp_map)] # recursive case if first_expression['operator'] in logic_operators: left_candidates = check_for_overflow_candidate(expressionhelper.Expression(first_expression['leftExpression'])) right_candidates = check_for_overflow_candidate(expressionhelper.Expression(first_expression['rightExpression'])) if left_candidates is not None: expression_candidates += left_candidates if right_candidates is not None: expression_candidates += right_candidates return expression_candidates return None
77232f5d94a6cba6fef79bd51886145e2dfec4bf
3,642,421
import struct def parse_monitor_message(msg): """decode zmq_monitor event messages. Parameters ---------- msg : list(bytes) zmq multipart message that has arrived on a monitor PAIR socket. First frame is:: 16 bit event id 32 bit event value no padding Second frame is the endpoint as a bytestring Returns ------- event : dict event description as dict with the keys `event`, `value`, and `endpoint`. """ if len(msg) != 2 or len(msg[0]) != 6: raise RuntimeError("Invalid event message format: %s" % msg) event = { 'event': struct.unpack("=hi", msg[0])[0], 'value': struct.unpack("=hi", msg[0])[1], 'endpoint': msg[1], } return event
df71541d34bc04b1ac25c6435b1b298394e27362
3,642,422
import toml import json def load_config(fpath): """ Load configuration from fpath and return as AttrDict. :param fpath: configuration file path, either TOML or JSON file :return: configuration object """ if fpath.endswith(".toml"): data = toml.load(fpath) elif fpath.endswith(".json"): with open(fpath, "rt", encoding="utf-8") as infp: data = json.load(infp) else: raise Exception(f"Cannot load config file {fpath}, must be .toml or json file") return AttrDict(data)
27c68c944a431b4d8b12c6b64609f33043363b03
3,642,423
def softmax_layer(inputs, n_hidden, random_base, drop_rate, l2_reg, n_class, scope_name='1'): """ Method adapted from Trusca et al. (2020). Encodes the sentence representation into a three dimensional vector (sentiment classification) using a softmax function. :param inputs: :param n_hidden: :param random_base: :param drop_rate: :param l2_reg: :param n_class: :param scope_name: :return: """ w = tf.get_variable( name='softmax_w' + scope_name, shape=[n_hidden, n_class], # initializer=tf.random_normal_initializer(mean=0., stddev=np.sqrt(2. / (n_hidden + n_class))), initializer=tf.random_uniform_initializer(-random_base, random_base), regularizer=tf.keras.regularizers.L2(l2_reg) ) b = tf.get_variable( name='softmax_b' + scope_name, shape=[n_class], # initializer=tf.random_normal_initializer(mean=0., stddev=np.sqrt(2. / (n_class))), initializer=tf.random_uniform_initializer(-random_base, random_base), regularizer=tf.keras.regularizers.L2(l2_reg) ) with tf.name_scope('softmax'): outputs = tf.nn.dropout(inputs, rate=drop_rate) predict = tf.matmul(outputs, w) + b predict = tf.nn.softmax(predict) return predict, w
1f77d99d12c927c0d77e136098fe8f9c2bc458b8
3,642,424
def node2freqt(docgraph, node_id, child_str='', include_pos=False, escape_func=FREQT_ESCAPE_FUNC): """convert a docgraph node into a FREQT string.""" node_attrs = docgraph.node[node_id] if istoken(docgraph, node_id): token_str = escape_func(node_attrs[docgraph.ns+':token']) if include_pos: pos_str = escape_func(node_attrs.get(docgraph.ns+':pos', '')) return u"({pos}({token}){child})".format( pos=pos_str, token=token_str, child=child_str) else: return u"({token}{child})".format(token=token_str, child=child_str) else: # node is not a token label_str=escape_func(node_attrs.get('label', node_id)) return u"({label}{child})".format(label=label_str, child=child_str)
8c6690e5fec41f98501060f5bf24ed823a2c31b6
3,642,425
import argparse def build_arg_parser(): """Build the ArgumentParser.""" parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-f", "--fritzbox", default="fritz.box") parser.add_argument("-u", "--username", default="dslf-config") parser.add_argument("-p", "--password", required=True) return parser
acf1baafdedfa8db7328e095eac5324f4ddae1ee
3,642,426
import os def get_marathon_url(): """Get Marathon URL from the environment. This is optional, default: http://leader.mesos:8080. """ marathon_url = os.environ.get("MARATHON_URL", None) if marathon_url is None: logger.warning("Unable to parse MARATHON_URL environment variable, using default: http://leader.mesos:8080") marathon_url = "http://leader.mesos:8080" return marathon_url
69ff96ad112897067a7301053031a78c30112d4a
3,642,427
import os import zipfile def _load_dataset(name, split, return_X_y, extract_path=None): """Load time series classification datasets (helper function).""" # Allow user to have non standard extract path if extract_path is not None: local_module = os.path.dirname(extract_path) local_dirname = extract_path else: local_module = MODULE local_dirname = DIRNAME if not os.path.exists(os.path.join(local_module, local_dirname)): os.makedirs(os.path.join(local_module, local_dirname)) if name not in _list_downloaded_datasets(extract_path): url = "http://timeseriesclassification.com/Downloads/%s.zip" % name # This also tests the validitiy of the URL, can't rely on the html # status code as it always returns 200 try: _download_and_extract( url, extract_path=extract_path, ) except zipfile.BadZipFile as e: raise ValueError( "Invalid dataset name. ", extract_path, "Please make sure the dataset " + "is available on http://timeseriesclassification.com/.", ) from e if isinstance(split, str): split = split.upper() if split in ("TRAIN", "TEST"): fname = name + "_" + split + ".ts" abspath = os.path.join(local_module, local_dirname, name, fname) X, y = load_from_tsfile_to_dataframe(abspath) # if split is None, load both train and test set elif split is None: X = pd.DataFrame(dtype="object") y = pd.Series(dtype="object") for split in ("TRAIN", "TEST"): fname = name + "_" + split + ".ts" abspath = os.path.join(local_module, local_dirname, name, fname) result = load_from_tsfile_to_dataframe(abspath) X = pd.concat([X, pd.DataFrame(result[0])]) y = pd.concat([y, pd.Series(result[1])]) y = pd.Series.to_numpy(y, dtype=np.str) else: raise ValueError("Invalid `split` value =", split) # Return appropriately if return_X_y: return X, y else: X["class_val"] = pd.Series(y) return X
32d5b83951b81d35f4bb26056521e2a2ff076144
3,642,428
def search(news_name): """method to fetch search results""" news_name_list = news_name.split(" ") search_name_format = "+".join(news_name_list) searched_results = search_news(search_name_format) sourcess=get_source_news() title = f'search results for {news_name}' return render_template('search.html', results=searched_results,my_sources=sourcess)
7521221b66a872b00310693a3ccc6c81013098a2
3,642,429
def encrypt_document(document): """ Useful method to encrypt a document using a random cipher """ cipher = generate_random_cipher() return decrypt_document(document, cipher)
9a7e4bd79a83df261c4f946f62ff9bf40bfbf068
3,642,430
def bootstrap_alert(visitor, items): """ Format: [[alert(class=error)]]: message """ txt = [] for x in items: cls = x['kwargs'].get('class', '') if cls: cls = 'alert-%s' % cls txt.append('<div class="alert %s">' % cls) if 'close' in x['kwargs']: txt.append('<button class="close" data-dismiss="alert">&times;</button>') text = visitor.parse_text(x['body'], 'article') txt.append(text) txt.append('</div>') return '\n'.join(txt)
c2803176b2e1ed9b3d4aecd622eedcac673d4c42
3,642,431
def masked_mean(x, *, mask, axis, paxis_name, keepdims): """Calculates the mean of a tensor, excluding masked-out entries. Args: x: Tensor to take the mean of. mask: Boolean array of same shape as 'x'. True elements are included in the mean, false elements are excluded. axis: Axis of 'x' to compute the mean over. paxis_name: Optional. If not None, will take a distributed mean of 'x' across devices using the specified parallel axis. keepdims: Same meaning as the corresponding parameter in `numpy.mean`. Whether to keep the reduction axes or squeeze them out. Returns: Tensor resulting from reducing 'x' over axes in 'axis'. """ assert x.shape == mask.shape x_masked_sum = masked_sum( x, mask=mask, axis=axis, paxis_name=paxis_name, keepdims=keepdims) mask_count = masked_sum( x=mask, mask=None, axis=axis, paxis_name=paxis_name, keepdims=keepdims) x_masked_mean = x_masked_sum / mask_count return x_masked_mean
3242e86f571af61909efa63bd60158aa0f8eba88
3,642,432
def aspectRatioFix(preserve,anchor,x,y,width,height,imWidth,imHeight): """This function helps position an image within a box. It first normalizes for two cases: - if the width is None, it assumes imWidth - ditto for height - if width or height is negative, it adjusts x or y and makes them positive Given (a) the enclosing box (defined by x,y,width,height where x,y is the \ lower left corner) which you wish to position the image in, and (b) the image size (imWidth, imHeight), and (c) the 'anchor point' as a point of the compass - n,s,e,w,ne,se etc \ and c for centre, this should return the position at which the image should be drawn, as well as a scale factor indicating what scaling has happened. It returns the parameters which would be used to draw the image without any adjustments: x,y, width, height, scale used in canvas.drawImage and drawInlineImage """ scale = 1.0 if width is None: width = imWidth if height is None: height = imHeight if width<0: width = -width x -= width if height<0: height = -height y -= height if preserve: imWidth = abs(imWidth) imHeight = abs(imHeight) scale = min(width/float(imWidth),height/float(imHeight)) owidth = width oheight = height width = scale*imWidth-1e-8 height = scale*imHeight-1e-8 if anchor not in ('nw','w','sw'): dx = owidth-width if anchor in ('n','c','s'): x += dx/2. else: x += dx if anchor not in ('sw','s','se'): dy = oheight-height if anchor in ('w','c','e'): y += dy/2. else: y += dy return x,y, width, height, scale
73a686f122ad31ee6693641e1ef386f13b67b4d8
3,642,433
def __do_core(SM, ToDB): """RETURNS: Acceptance trace database: map: state_index --> MergedTraces ___________________________________________________________________________ This function walks down almost each possible path trough a given state machine. During the process of walking down the paths it develops for each state its list of _Trace objects. ___________________________________________________________________________ IMPORTANT: There is NO GUARANTEE that the paths from acceptance to 'state_index' or the paths from input position storage to 'state_index' are complete! The calling algorithm must walk these paths on its own. This is due to a danger of exponential complexity with certain setups. Any path analysis is dropped as soon as a state is reached with an equivalent history. ___________________________________________________________________________ """ def print_path(x): print(x.state_index, " ", end=' ') if x.parent is not None: print_path(x.parent) else: print() class TraceFinder(TreeWalker): """Determines _Trace objects for each state. The heart of this function is the call to '_Trace.next_step()' which incrementally develops the acceptance and position storage history of a path. Recursion Terminal: When state has no target state that has not yet been handled in the 'path' in the same manner. That means, that if a state appears again in the path, its trace must be different or the recursion terminates. """ def __init__(self, state_machine, ToDB): self.sm = state_machine self.to_db = ToDB self.result = dict((i, []) for i in self.sm.states.keys()) self.path = [] # Under some circumstances, the init state may accept! # (E.g. the appendix state machines of the 'loopers') TreeWalker.__init__(self) def on_enter(self, Args): PreviousTrace = Args[0] StateIndex = Args[1] # (*) Update the information about the 'trace of acceptances' dfa_state = self.sm.states[StateIndex] if not self.path: trace = _Trace(self.sm.init_state_index, dfa_state) else: trace = PreviousTrace.next_step(StateIndex, dfa_state) target_index_list = self.to_db[StateIndex] # (*) Recursion Termination: # # If a state has been analyzed before with the same trace as result, # then it is not necessary dive into deeper investigations again. All # of its successor paths have been walked along before. This catches # two scenarios: # # (1) Loops: A state is reached through a loop and nothing # changed during the walk through the loop since # the last passing. # # There may be connected loops, so it is not sufficient # to detect a loop and stop. # # (2) Knots: A state is be reached through different branches. # However, the traces through those branches are # indifferent in their positioning and accepting # behavior. Only one branch needs to consider the # subsequent states. # # (There were cases where this blew the computation time # see bug-2257908.sh in $QUEX_PATH/TEST). # existing_trace_list = self.result.get(StateIndex) if existing_trace_list: end_of_road_f = (len(target_index_list) == 0) for pioneer in existing_trace_list: if not trace.is_equivalent(pioneer, end_of_road_f): continue elif trace.has_parent(pioneer): # Loop detected -- Continuation unnecessary. # Nothing new happened since last passage. # If trace was not equivalent, the loop would have to be stepped through again. return None else: # Knot detected -- Continuation abbreviated. # A state is reached twice via two separate paths with # the same positioning_states and acceptance states. The # analysis of subsequent states on the path is therefore # complete. Almost: There is no alternative paths from # store to restore that must added later on. return None # (*) Mark the current state with its acceptance trace self.result[StateIndex].append(trace) # (*) Add current state to path self.path.append(StateIndex) # (*) Recurse to all (undone) target states. return [(trace, target_i) for target_i in target_index_list ] def on_finished(self, Args): # self.done_set.add(StateIndex) self.path.pop() trace_finder = TraceFinder(SM, ToDB) trace_finder.do((None, SM.init_state_index)) return trace_finder.result
621c9c26f9a7054b2e1ef20984105b05738878e9
3,642,434
import random def circle_area(radius: int) -> float: """ estimate the area of a circle using the monte carlo method. Note that the decimal precision is log(n). So if you want a precision of three decimal points, n should be $$ 10 ^ 3 $$. :param r (int): the radius of the circle :return (int): the estimated area of the circle to three decimal places """ hits = 0 n = 1000 left_bottom = -1 * radius right_top = radius for _ in range(n): # get random coordinates x = left_bottom + (random() * right_top) y = left_bottom + (random() * right_top) # check if points fall within the bounds of the circle (geometrically) if sqrt((x ** 2) + (y ** 2)) < radius: hits += 1 return (hits / n) * ((2 * radius) ** 2)
2c85759ffbf798749263fca368cdfd159d67028b
3,642,435
def Quantized_MLP(pre_model, args): """ quantize the MLP model :param pre_model: :param args: :return: """ #full-precision first and last layer weights = [p for n, p in pre_model.named_parameters() if 'fp_layer' in n and 'weight' in n] biases = [pre_model.fp_layer2.bias] #layers that need to be quantized ternary_weights = [p for n, p in pre_model.named_parameters() if 'ternary' in n] params = [ {'params': weights}, {'params': ternary_weights}, {'params': biases} ] optimizer = optim.SGD(params, lr=args.lr) loss_fun = nn.CrossEntropyLoss() return pre_model, loss_fun, optimizer
cd5b36c1b10567fee5a8b1f10679e6868f42f98f
3,642,436
def _super_tofrom_choi(q_oper): """ We exploit that the basis transformation between Choi and supermatrix representations squares to the identity, so that if we munge Qobj.type, we can use the same function. Since this function doesn't respect :attr:`Qobj.type`, we mark it as private; only those functions which wrap this in a way so as to preserve type should be called externally. """ data = q_oper.data.toarray() dims = q_oper.dims new_dims = [[dims[1][1], dims[0][1]], [dims[1][0], dims[0][0]]] d0 = np.prod(np.ravel(new_dims[0])) d1 = np.prod(np.ravel(new_dims[1])) s0 = np.prod(dims[0][0]) s1 = np.prod(dims[1][1]) return Qobj(dims=new_dims, inpt=data.reshape([s0, s1, s0, s1]). transpose(3, 1, 2, 0).reshape((d0, d1)))
da91aff35d891000773100b998b80dc5d998414f
3,642,437
def get_attention_weights(data): """Get the attention weights of the given function.""" # USE INTERACTIONS token_interaction = data['tokeninteraction'] df_token_interaction = pd.DataFrame(token_interaction) # check clicked tokens to draw squares around them clicked_tokens = np.array(data['finalclickedtokens']) clicked_tokens_indices = np.where(clicked_tokens == 1)[0].tolist() # COMPUTE ATTENTION attentions = [] for i, t in enumerate(data['tokens']): new_attention = \ get_attention(index_token=t['id'], df_interaction=df_token_interaction) attentions.append(new_attention) return attentions
e3189bd67f3da6ee8c1173348eec249d9c8cfa9a
3,642,438
def save_ecg_example(gen_data: np.array, image_name, image_title='12-lead ECG'): """ Save 12-lead ecg signal in fancy .png :param gen_data: :param image_name: :param image_title: :return: """ fig = plt.figure(figsize=(12, 14)) for _lead_n in range(gen_data.shape[1]): curr_lead_data = gen_data[:, _lead_n] plt.subplot(4, 3, _lead_n + 1) plt.plot(curr_lead_data, label=f'lead_{_lead_n + 1}') plt.title(f'lead_{_lead_n + 1}') fig.suptitle(image_title) plt.savefig(f'out/{image_name}.png', bbox_inches='tight') plt.close(fig) return fig
456fa204b20eee53645a900614877a6fb6a53e9c
3,642,439
async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload an entry.""" component: EntityComponent = hass.data[DOMAIN] return await component.async_unload_entry(entry)
b4ae648493b63a27f5127139876cf0bca2a2dcbb
3,642,440
import os import time import tqdm def get_all_score_dicts(ref_punc_folder_name, res_punc_folder_name): """ Return a list of score dictionaries for a set of two folders. This function assumes the naming of the files in the folders are correct according to the diagram and hence if sorted match files. Both folders should be in the directory this script is also in. :param ref_punc_folder_name: Filename of the reference punctuation folder :param res_punc_folder_name: Filename of the restored punctuation folder :return: A list of score dictionaries """ filenames_ref_punc = os.listdir(ref_punc_folder_name) filenames_res_punc = os.listdir(res_punc_folder_name) # print(f"Filenames Reference Punc: {filenames_ref_punc}") # print(f"Filenames Restored Punc: {filenames_res_punc}") # print(filenames_ref_punc) print(f"Number of reference punctuation files: {len(filenames_ref_punc)}") print(f"Number of restored punctuation files: {len(filenames_res_punc)}") counter = 0 score_dicts_list = [] start_timer = time.time() for i in tqdm(range(0, 461)): # 301, 461 # print(i) fileName = str(i) ref_punc_filename = ref_punc_folder_name + "\\" + fileName + "_reference_punc.txt" res_punc_filename = res_punc_folder_name + "\\" + "pr_" + fileName + "_asr_output.txt" if os.path.isfile(ref_punc_filename) == os.path.isfile(res_punc_filename) and os.path.isfile( ref_punc_filename): counter += 1 score_dicts_list.append(ref_and_res_to_scores(refPuncFileName=ref_punc_filename, resPuncFileName=res_punc_filename)) # print("--- %s seconds ---" % (time.time() - start_time)) print(f"--- Processed {counter} files in {time.time() - start_timer} seconds ---") # score_dicts_list = [] # assert len(filenames_ref_punc) == len(filenames_res_punc), "Amount of restored punctuation and reference punctuation files should be equal to calculate scores!" # for i in range(len(filenames_ref_punc)): # # print(f"ref file 0:3 {filenames_ref_punc[i][0:3]}") # # print(f"res file 0:3 {filenames_res_punc[i][0:3]}") # ref_path = ref_punc_folder_name + "\\" + filenames_ref_punc[i] # res_path = res_punc_folder_name + "\\" + filenames_res_punc[i] # score_dicts_list.append(ref_and_res_to_scores(refPuncFileName=ref_path, # resPuncFileName=res_path)) return score_dicts_list
27943b7694f420123dcd8bfebb79b99fc5dab617
3,642,441
def run_random_climate(gdir, nyears=1000, y0=None, halfsize=15, bias=None, seed=None, temperature_bias=None, climate_filename='climate_monthly', climate_input_filesuffix='', output_filesuffix='', init_area_m2=None, unique_samples=False): """Runs the random mass balance model for a given number of years. This initializes a :py:class:`oggm.core.vascaling.RandomVASMassBalance`, and runs and stores a :py:class:`oggm.core.vascaling.VAScalingModel` with the given mass balance model. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process nyears : int, optional length of the simulation, default = 1000 y0 : int, optional central year of the random climate period. The default is to be centred on t*. Default = None halfsize : int, optional the half-size of the time window (window size = 2 * halfsize + 1), default = 15 bias : float, optional bias of the mb model. Default is to use the calibrated one, which is often a better idea. For t* experiments it can be useful to set it to zero. Default = None seed : int seed for the random generator. If you ignore this, the runs will be different each time. Setting it to a fixed seed accross glaciers can be usefull if you want to have the same climate years for all of them temperature_bias : float, optional add a bias to the temperature timeseries, default = None climate_filename : str, optional name of the climate file, e.g. 'climate_monthly' (default) or 'gcm_data' climate_input_filesuffix: str, optional filesuffix for the input climate file output_filesuffix : str, optional this add a suffix to the output file (useful to avoid overwriting previous experiments) init_area_m2: float, optional glacier area with which the model is initialized, default is RGI value unique_samples: bool, optional if true, chosen random mass-balance years will only be available once per random climate period-length if false, every model year will be chosen from the random climate period with the same probability (default) Returns ------- :py:class:`oggm.core.vascaling.VAScalingModel` """ # instance mass balance model mb_mod = RandomVASMassBalance(gdir, y0=y0, halfsize=halfsize, bias=bias, seed=seed, filename=climate_filename, input_filesuffix=climate_input_filesuffix, unique_samples=unique_samples) if temperature_bias is not None: # add given temperature bias to mass balance model mb_mod.temp_bias = temperature_bias # where to store the model output diag_path = gdir.get_filepath('model_diagnostics', filesuffix='vas', delete=True) # instance the model min_hgt, max_hgt = get_min_max_elevation(gdir) if init_area_m2 is None: init_area_m2 = gdir.rgi_area_m2 model = VAScalingModel(year_0=0, area_m2_0=init_area_m2, min_hgt=min_hgt, max_hgt=max_hgt, mb_model=mb_mod) # specify path where to store model diagnostics diag_path = gdir.get_filepath('model_diagnostics', filesuffix=output_filesuffix, delete=True) # run model model.run_until_and_store(year_end=nyears, diag_path=diag_path) return model
2887c1e62d3357e028c7be0539225bfb879323d9
3,642,442
from typing import Optional def sync_get_ami_arch_from_instance_type(instance_type: str, region_name: Optional[str]=None) -> str: """For a given EC2 instance type, returns the AMI architecture associated with the instance type Args: instance_type (str): An EC2 instance type; e.g., "t2.micro" region_name (Optional[str], optional): AWS region to use for query, or None to use the default region. Defaults to None. Returns: str: The AMI architecture associated with instance_type """ processor_arches = sync_get_processor_arches_from_instance_type(instance_type, region_name=region_name) result = sync_get_ami_arch_from_processor_arches(processor_arches) return result
2289deea91c9a9dafa0492fac9230292b546e9b7
3,642,443
import math def atan2(y, x): """Returns angle of a 2D coordinate in the XY plane""" return math.atan2(y, x)
ede5a647c175bebf2800c22d92e396deff6077e2
3,642,444
def index_objects( *, ids, indexer_class, index=None, transforms=None, manager_name=None ): """ Index specified `ids` in ES using `indexer_class`. This is done in a single bulk action. Pass `index` to index on the specific index instead of the default index alias from the `indexed_class`. Pass `transforms` or `manager_name` to change the queryset used to fetch the objects to index. Unless an `index` is specified, if a reindexing is taking place for the default index then this function will index on both the old and new indices to allow indexing to still work while reindexing isn't complete yet. """ if index is None: index = indexer_class.get_index_alias() # If we didn't have an index passed as argument, then we should index # on both old and new indexes during a reindex. indices = Reindexing.objects.get_indices(index) else: # If we did have an index passed then the caller wanted us to only # consider the index they specified, so we only consider that one. indices = [index] if manager_name is None: manager_name = 'objects' manager = getattr(indexer_class.get_model(), manager_name) if transforms is None: transforms = [] qs = manager.filter(id__in=ids) for transform in transforms: qs = qs.transform(transform) bulk = [] es = amo_search.get_es() major_version = get_major_version(es) for obj in qs.order_by('pk'): data = indexer_class.extract_document(obj) for index in indices: item = { '_source': data, '_id': obj.id, '_index': index, } if major_version < 7: # While on 6.x, we use the `addons` type when creating indices # and when bulk-indexing. We completely ignore it on searches. # When on 7.x, we don't pass type at all at creation or # indexing, and continue to ignore it on searches. # That should ensure we're compatible with both transparently. item['_type'] = 'addons' bulk.append(item) return helpers.bulk(es, bulk)
c93ea99946bb1516a58bb39aa5d43b1644f4f4da
3,642,445
def get_attrs_titles_with_transl() -> dict: """Returns attribut titles and translation""" attr_titles = [] attrs = Attribute.objects.filter(show_in_list=True).order_by('weight') for attr in attrs: attr_titles.append(attr.name) result = {} for title in attr_titles: result[title] = _(title) return result
167955e669ddb3f6d5bbbd48cc01d26155a9e4ba
3,642,446
def kde_KL_divergence_2d(x, y, h_x, h_y, nb_bins=100, fft=True): """Uses Kernel Density Estimator with Gaussian kernel on two dimensional samples x and y and returns estimated Kullback- Leibler divergence. @param x, y: samples, given as a (n, 2) shaped numpy array, @param h: width of the Gaussian kernel, @param nb_bins: number of grid points to use, @param fft: whether to use FFT to compute convolution. """ min_ = np.min(np.vstack([np.min(x, axis=0), np.min(y, axis=0)]), axis=0) max_ = np.max(np.vstack([np.max(x, axis=0), np.max(y, axis=0)]), axis=0) bounds_ = np.vstack((min_, max_)) (x_grid, y_grid, kde_x) = gaussian_kde_2d(x, h_x, h_y, nb_bins=nb_bins, fft=fft, bounds=bounds_ ) (x_grid2, y_grid2, kde_y) = gaussian_kde_2d(y, h_x, h_y, nb_bins=nb_bins, fft=fft, bounds=bounds_ ) delta_x = x_grid[1] - x_grid[0] delta_y = y_grid[1] - y_grid[0] plogp = - kde_x * np.log((kde_x + EPSILON) / (kde_y + EPSILON)) # Integrate div = trapz(trapz(plogp, dx=delta_x, axis=1), dx=delta_y, axis=0) return div
ce7ef19846dfd729fe5703aceaec69392f455ca6
3,642,447
def gml_init(code): """ Initializes a Group Membership List (GML) for schemes of the given type. Parameters: code: The code of the scheme. Returns: A native object representing the GML. Throws an Exception on error. """ gml = lib.gml_init(code) if gml == ffi.NULL: raise Exception('Error initializing GML.') return gml
5558f2db6a1c2269796cd52f675d5579ce357949
3,642,448
def before_run(func, force=False): """ Adds a function *func* to the list of callbacks that are invoked right before luigi starts running scheduled tasks. Unless *force* is *True*, a function that is already registered is not added again and *False* is returned. Otherwise, *True* is returned. """ if func not in _before_run_funcs or force: _before_run_funcs.append(func) return True else: return False
378604f6c574345682d8bd3d155ef8e4344aac27
3,642,449
def calc_z_scores(baseline, seizure): """ This function is meant to generate the figures shown in the Brainstorm demo used to select the 120-200 Hz frequency band. It should also be similar to panel 2 in figure 1 in David et al 2011. This function will compute a z-score for each value of the seizure power spectrum using the mean and sd of the control power spectrum at each frequency. In the demo, the power spectrum is calculated for the 1st 10 seconds of all three seizures and then averaged. Controls are similarly averaged Parameters ---------- baseline : ndarray power spectrum of baseline EEG seizure : ndarray power spectrum of seizure EEG Returns ------- ndarray seizure power spectrum scaled to a z-score by baseline power spectrum mean and SD """ mean = np.mean(baseline, 1) sd = np.std(baseline, 1) z_scores = (seizure - mean)/sd return z_scores
db3f6fbc42450658700ca2d120bf6faa31fccdfd
3,642,450
def get_column(data, column_index): """ Gets a column of data from the given data. :param data: The data from the CSV file. :param column_index: The column to copy. :return: The column of data (as a list). """ return [row[column_index] for row in data]
3fd5c8c76ccfed145aba0e685aa57ad01b3695a5
3,642,451
def analytic_solution(num_dims, t_val, x_val=None, domain_bounds=(0.0, 1.0), x_0=(0.5, 0.5), d=1.0, k_decay=0.0, k_influx=0.0, trunc_order=100, num_points=None): """This function returns the analytic solution to the heat equation with decay i.e. du/dt = nabla^2 u + k_1 - k_2 u k_1 is the production rate, k_2 is the decay rate Returns x-axis values, followed by an array of the solutions at different time points""" if isinstance(t_val, (int, float)): t_val = np.array([t_val]) if isinstance(num_points, (int, float)): num_points = [num_points, num_points] if isinstance(x_0, (int, float)): x_0 = np.array([x_0, x_0]) if len(domain_bounds) < 4: domain_bounds = (domain_bounds[0], domain_bounds[1], domain_bounds[0], domain_bounds[1]) assert isinstance(t_val, (list, tuple, np.ndarray)) assert isinstance(x_val, (tuple, list, np.ndarray)) or x_val is None assert isinstance(domain_bounds, (list, tuple, np.ndarray)) assert isinstance(x_0, (tuple, list, np.ndarray)) assert isinstance(d, (int, float)) assert isinstance(k_decay, (int, float)) assert isinstance(k_influx, (int, float)) assert isinstance(trunc_order, int) length = float(domain_bounds[1] - domain_bounds[0]) t = np.array(t_val) if x_val is None: assert num_points is not None x_val = [np.linspace(domain_bounds[0], domain_bounds[1], num_points[0]), np.linspace(domain_bounds[0], domain_bounds[1], num_points[1])] if num_dims == 1: if isinstance(x_val[0], (tuple, list, np.ndarray)): x = np.array(x_val[0]) y = np.array(x_val[0]) else: x = np.array(x_val) y = np.array(x_val) assert t.ndim == 1 t = t.reshape([t.shape[0], 1]) u = 1.0 / length for n in range(1, trunc_order): u += (2/length)*np.cos((n*np.pi/length)*x_0[0])*np.cos((n*np.pi/length)*x)*np.exp(-d*(n*np.pi/length)**2*t) else: assert isinstance(x_val[0], (tuple, list, np.ndarray)) assert isinstance(x_val[1], (tuple, list, np.ndarray)) x = np.array(x_val[0]) y = np.array(x_val[1]) xx, yy = np.meshgrid(x, y) assert t.ndim == 1 t = t.reshape([t.shape[0], 1, 1]) u = 1.0 / length ** 2 for k in range(1, trunc_order): u += (2.0 / length ** 2) * np.cos(k * np.pi * x_0[1] / length) * np.cos(k * np.pi * yy / length) * np.exp( -d * t * (k * np.pi / length) ** 2) for j in range(1, trunc_order): u += (2.0 / length ** 2) * np.cos(j * np.pi * x_0[0] / length) * np.cos(j * np.pi * xx / length) * np.exp( -d * t * (j * np.pi / length) ** 2) for j in range(1, trunc_order): for k in range(1, trunc_order): u += (4.0 / length ** 2) * np.cos(j * np.pi * x_0[0] / length) * np.cos(k * np.pi * x_0[1] / length) * \ np.cos(j * np.pi * xx / length) * np.cos(k * np.pi * yy / length) * \ np.exp(-d * t * ((j * np.pi / length) ** 2 + (k * np.pi / length) ** 2)) if k_decay > 0.0 and k_influx == 0.0: u *= np.exp(- k_decay * t) elif k_decay == 0.0 and k_influx > 0.0: u += k_influx * t elif k_decay > 0.0 and k_influx > 0.0: u += k_influx * (1.0 - np.exp(-k_decay * t)) / k_decay if num_dims == 1: return u, x else: return u, x, y
0a920ec22fbe1ae3ff510ddd4389c1cf4ae0912d
3,642,452
def safe_gas_limit(*estimates: int) -> int: """Calculates a safe gas limit for a number of gas estimates including a security margin """ assert None not in estimates, "if estimateGas returned None it should not reach here" calculated_limit = max(estimates) return int(calculated_limit * constants.GAS_FACTOR)
439eca363dc1fe1f53972c69191513913feef39b
3,642,453
import typing def integer_years(dates: typing.Any) -> typing.List[int]: """Maps a list of 'normalized_date' strings to a sorted list of integer years. Args: dates: A list of strings containing dates in the 'normalized_date' format. Returns: A list of years extracted from "dates". """ if not isinstance(dates, typing.Iterable): return [] years: typing.Set[int] = set() for date in dates: if not isinstance(date, str): continue match = RANGE.search(date) if match: start_str, end_str = match.groups() start = get_year(start_str) end = get_year(end_str) if start and end: years.update(range(start, end + 1)) else: year = get_year(date) if year: years.add(year) return sorted(years)
cdf14f0a2fee197177f12ead43346dfd4eabb5ef
3,642,454
def add_wmts_gibs_basemap(ax, date='2016-02-05'): """http://gibs.earthdata.nasa.gov/""" URL = 'http://gibs.earthdata.nasa.gov/wmts/epsg4326/best/wmts.cgi' wmts = WebMapTileService(URL) # Layers for MODIS true color and snow RGB # NOTE: what other tiles available?: TONS! #https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-ReferenceLayers9Layers #layer = 'MODIS_Terra_SurfaceReflectance_Bands143' #layer = 'MODIS_Terra_CorrectedReflectance_Bands367' #layer = 'ASTER_GDEM_Greyscale_Shaded_Relief' #better zoomed in layer = 'SRTM_Color_Index' #layer = 'BlueMarble_ShadedRelief' #static #layer = 'BlueMarble_NextGeneration' #layer = 'BlueMarble_ShadedRelief_Bathymetry' #layer = 'Reference_Labels' #layer = 'Reference_Features' ax.add_wmts(wmts, layer, wmts_kwargs={'time': date}) # alpha=0.5 #NOTE: can access attributes: #wmts[layer].title return wmts
434ff85e1a721937ba83d0438bb7384d1a1f0600
3,642,455
import torch def encode_position( batch_size: int, axis: list, max_frequency: float, num_frequency_bands: int, sine_only: bool = False, ) -> torch.Tensor: """ Encode the Fourier Features and return them Args: batch_size: Batch size axis: List containing the size of each axis max_frequency: Max frequency num_frequency_bands: Number of frequency bands to use sine_only: (bool) Whether to only use Sine features or both Sine and Cosine, defaults to both Returns: Torch tensor containing the Fourier Features of shape [Batch, *axis] """ axis_pos = list( map( lambda size: torch.linspace(-1.0, 1.0, steps=size), axis, ) ) pos = torch.stack(torch.meshgrid(*axis_pos), dim=-1) enc_pos = fourier_encode( pos, max_frequency, num_frequency_bands, sine_only=sine_only, ) enc_pos = einops.rearrange(enc_pos, "... n d -> ... (n d)") enc_pos = einops.repeat(enc_pos, "... -> b ...", b=batch_size) return enc_pos
06a81219b85006226069b288cce8602fc62e7119
3,642,456
def expr_erode(src, size = 5): """ Same result as core.morpho.Erode(), faster and workable in 32 bit. """ expr = _morpho_matrix(size, mm = 'min') return core.akarin.Expr(src, expr)
06f76f889cadcec538639ca1a920168c6a9ec467
3,642,457
def response_modification(response): """ Modify API response format. """ if ( status.is_client_error(response.status_code) or status.is_server_error(response.status_code) ) and (status.HTTP_400_BAD_REQUEST != response.status_code): return response # Modify the response data modified_data = {} modified_data["code"] = response.status_code modified_data["status"] = get_status(response.status_code) modified_data["data"] = response.data response.data = modified_data return response
f8a3120f3a1671d71f32158b742212b896074bdc
3,642,458
import logging import six import base64 import urllib def http_request( url, json_string, username = None, password = None, timeout = None, additional_headers = None, content_type = None, cookies = None, gzipped = None, ssl_context = None, debug = None ): """ Fetch data from webserver (POST request) :param json_string: JSON-String :param username: If *username* is given, BASE authentication will be used. :param timeout: Specifies a timeout in seconds for blocking operations like the connection attempt (if not specified, the global default timeout setting will be used). See: https://github.com/gerold-penz/python-jsonrpc/pull/6 :param additional_headers: Dictionary with additional headers See: https://github.com/gerold-penz/python-jsonrpc/issues/5 :param content_type: Possibility to change the content-type header. :param cookies: Possibility to add simple cookie-items as key-value pairs. The key and the value of each cookie-item must be a bytestring. Unicode is not allowed here. :param gzipped: If `True`, the JSON-String will be gzip-compressed. :param ssl_context: Specifies custom TLS/SSL settings for connection. Python > 2.7.9 See: https://docs.python.org/2/library/ssl.html#client-side-operation :param debug: If `True` --> *logging.debug* """ # Debug if debug: logging.debug("Client-->Server: {json_string}".format(json_string=repr(json_string))) # Create request and add data request = urllib2.Request(url) if gzipped: # Compress content (SpooledTemporaryFile to reduce memory usage) spooled_file = tools.SpooledFile() tools.gzip_str_to_file(json_string, spooled_file) del json_string request.add_header("Content-Encoding", "gzip") request.add_header("Accept-Encoding", "gzip") spooled_file.seek(0) if six.PY2: request.add_data(spooled_file) else: request.data = spooled_file else: if six.PY2: request.add_data(json_string) else: request.data = json_string # Content Type request.add_header("Content-Type", content_type or "application/json") # Authorization if username: base64string = base64.b64encode("%s:%s" % (username, password)).strip() request.add_unredirected_header("Authorization", "Basic %s" % base64string) # Cookies if cookies: cookie = Cookie.SimpleCookie(cookies) request.add_header("Cookie", cookie.output(header = "", sep = ";")) # Additional headers (overrides other headers) if additional_headers: for key, val in six.iteritems(additional_headers): request.add_header(key, val) # Send request to server http_error_exception = urllib2.HTTPError if six.PY2 else urllib.error.HTTPError try: if ssl_context: try: response = urllib2.urlopen( request, timeout=timeout, context=ssl_context ) except TypeError as err: if "context" in unicode(err): raise NotImplementedError("SSL-Context needs Python >= 2.7.9") else: raise else: response = urllib2.urlopen(request, timeout=timeout) except http_error_exception as err: if debug: retval = err.read() logging.debug("Client<--Server: {retval}".format(retval=repr(retval))) raise # Analyze response and return result try: if "gzip" in response.headers.get("Content-Encoding", ""): response_file = tools.SpooledFile(source_file = response) if debug: retval = tools.gunzip_file(response_file) logging.debug("Client<--Server: {retval}".format(retval = repr(retval))) return retval return tools.gunzip_file(response_file) else: if debug: retval = response.read() logging.debug("Client<--Server: {retval}".format(retval=repr(retval))) return retval return response.read() finally: response.close()
76e41483157fb01541aae5a29a12526f69a89326
3,642,459
import trace def process_source_lineage(grid_sdf, data_sdf, value_field=None): """ performs the operation to generate the """ try: subtypes = arcpy.da.ListSubtypes(data_sdf) st_dict = {} for stcode, stdict in list(subtypes.items()): st_dict[stcode] = subtypes[stcode]['Name'] fields = arcpy.ListFields(data_sdf) use_subtypes = False for field in fields: if field.name == value_field and field.type == 'Integer': arcpy.AddMessage("Field has subtypes") use_subtypes = True poly_desc = arcpy.Describe(grid_sdf) fc_desc = arcpy.Describe(data_sdf) if poly_desc.extent.within(fc_desc.extent): temp_fc = 'in_memory/clip' arcpy.AddMessage('Clipping features to polygon') arcpy.Clip_analysis(data_sdf, grid_sdf, temp_fc) arcpy.AddMessage('Created in_memory fc') data_sdf = geomotion.SpatialDataFrame.from_featureclass(temp_fc, fields=[value_field]) arcpy.AddMessage('features read into spatial dataframe after clipping') else: data_sdf = geomotion.SpatialDataFrame.from_featureclass(data_sdf, fields=[value_field]) arcpy.AddMessage('features read into spatial dataframe without clipping') grid_sdf = geomotion.SpatialDataFrame.from_featureclass(grid_sdf) #data_sdf = geomotion.SpatialDataFrame.from_featureclass(data_sdf, fields=[value_field]) index = data_sdf.sindex results = [] for idx, row in enumerate(grid_sdf.iterrows()): geom = row[1].SHAPE ext = [geom.extent.lowerLeft.X, geom.extent.lowerLeft.Y, geom.extent.upperRight.X, geom.extent.upperRight.Y] row_oids = list(index.intersect(ext)) df_current = data_sdf.loc[data_sdf.index.isin(row_oids)] # disjoint == False means intersection with Grid polygon df_sub = df_current.loc[df_current.disjoint(geom) == False].copy() df_sub = df_sub.replace({np.nan: "NULL"}) grp = df_sub.groupby(by=value_field).size() # Get the counts. # sort the values to get the biggest on the top grp.sort_values(axis=0, ascending=False, inplace=True, kind='quicksort', na_position='last') if use_subtypes: if len(grp) > 1: grp = grp.head(2) results.append( ( int(row[1].OBJECTID), ",".join([st_dict[i] for i in df_sub[value_field].unique().tolist()]), st_dict[grp.index[0]], int(grp[grp.index[0]]), round(float(grp[grp.index[0]]) * 100.0 / float(len(df_sub)),1), st_dict[grp.index[1]], int(grp[grp.index[1]]), round(float(grp[grp.index[1]]) * 100.0 / float(len(df_sub)),1), ) ) elif len(grp) == 0: results.append( (int(row[1].OBJECTID), 'None', 'None', 0, float(0), 'None', 0, float(0)) ) elif len(grp) == 1: results.append( ( int(row[1].OBJECTID), ",".join([st_dict[i] for i in df_sub[value_field].unique().tolist()]), st_dict[grp.index[0]], int(grp[grp.index[0]]), round(float(grp[grp.index[0]]) * 100.0 / float(len(df_sub)),1), 'None', 0, float(0) ) ) else: if len(grp) > 1: grp = grp.head(2) results.append( ( int(row[1].OBJECTID), ",".join(df_sub[value_field].unique().tolist()), grp.index[0], int(grp[0]), round(float(grp[0]) * 100.0 / float(len(df_sub)),1), grp.index[1], int(grp[1]), round(float(grp[1]) * 100.0 / float(len(df_sub)),1), ) ) elif len(grp) == 0: results.append( (int(row[1].OBJECTID), 'None', 'None', 0, float(0), 'None', 0, float(0)) ) elif len(grp) == 1: results.append( ( int(row[1].OBJECTID), ",".join(df_sub[value_field].unique().tolist()), grp.index[0], int(grp[0]), round(float(grp[0]) * 100.0 / float(len(df_sub)),1), 'None', 0, float(0) ) ) del grp del df_sub del row_oids del df_current del grid_sdf del data_sdf dtypes = np.dtype( [ ('_ID', np.int), ('THEME_LIST', '|S1024'), ('PRI_THEME', '|S256'), ('PRI_THEME_CNT', np.int32), ('PRI_THEME_PER', np.float64), ('SEC_THEME', '|S256'), ('SEC_THEME_CNT', np.int32), ('SEC_THEME_PER', np.float64) ] ) array = np.array(results, dtypes) del results return array except: line, filename, synerror = trace() raise FunctionError( { "function": "process_source_lineage", "line": line, "filename": filename, "synerror": synerror, "arc" : str(arcpy.GetMessages(2)) } )
298e615474debbb01addc583ae19fc1c5191084b
3,642,460
def class_to_mask(classes: np.ndarray, class_colors: np.ndarray) -> np.ndarray: """クラスIDの配列をRGBのマスク画像に変換する。 Args: classes: クラスIDの配列。 shape=(H, W) class_colors: 色の配列。shape=(num_classes, 3) Returns: ndarray shape=(H, W, 3) """ return np.asarray(class_colors)[classes]
c574594b18d312e9ce432b68c8c2ff4d73771e6f
3,642,461
from typing import List import logging def get_vocab(iob2_files:List[str]) -> List[str]: """Retrieve the vocabulary of the iob2 annotated files Arguments: iob2_files {List[str]} -- List of paths to the iob2 annotated files Returns: List[str] -- Returns the unique list of vocabulary found in the files """ vocab = set() for iob2_file in iob2_files: logging.info("Loading file %s for creating corpus embeddings", iob2_file) for line in open(iob2_file): token = line.split("\t")[0] vocab.add(token) return list(vocab)
0dc2a1f969ed6f92b36b1b31875c855d5efda2d9
3,642,462
import numpy def taylor_green_vortex(x, y, t, nu): """Return the solution of the Taylor-Green vortex at given time. Parameters ---------- x : numpy.ndarray Gridline locations in the x direction as a 1D array of floats. y : numpy.ndarray Gridline locations in the y direction as a 1D array of floats. t : float Time value. nu : float Coefficient of viscosity. Returns ------- numpy.ndarray x-component of the velocity field as a 2D array of floats. numpy.ndarray y-component of the velocity field as a 2D array of floats. numpy.ndarray pressure field as a 2D array of floats. """ X, Y = numpy.meshgrid(x, y) a = 2 * numpy.pi u = -numpy.cos(a * X) * numpy.sin(a * Y) * numpy.exp(-2 * a**2 * nu * t) v = +numpy.sin(a * X) * numpy.cos(a * Y) * numpy.exp(-2 * a**2 * nu * t) p = (-0.25 * (numpy.cos(2 * a * X) + numpy.cos(2 * a * Y)) * numpy.exp(-4 * a**2 * nu * t)) return u, v, p
f47f4cdf11b81fe8b8c38ae50d708ec4361f7098
3,642,463
def static_initial_state(batch_size, h_size): """ Function to make an initial state for a single GRU. """ state = jnp.zeros([h_size], dtype=jnp.complex64) if batch_size is not None: state = add_batch(state, batch_size) return state
a803da5b0af0ce17fc7d1f303f6141416da6d120
3,642,464
def get_desklamp(request, index): """ A pytest fixture to initialize and return the DeskLamp object with the given index. """ desklamp = DeskLamp(index) try: desklamp.open() except RuntimeError: pytest.skip("Could not open desklamp connection") def fin(): desklamp.unsubscribe() desklamp.off() desklamp.close() request.addfinalizer(fin) return desklamp
8f00296f5625c8a80bb094d1e470936a0733b83e
3,642,465
import torch def conj(x): """ Calculate the complex conjugate of x x is two-channels complex torch tensor """ assert x.shape[-1] == 2 return torch.stack((x[..., 0], -x[..., 1]), dim=-1)
b22cfd3f12759f9b237099ca0527f0cbe9b99348
3,642,466
def label_clusters(img, min_cluster_size=50, min_thresh=1e-6, max_thresh=1, fully_connected=False): """ Label Clusters """ dim = img.dimension clust = threshold_image(img, min_thresh, max_thresh) temp = int(fully_connected) args = [dim, clust, clust, min_cluster_size, temp] processed_args = _int_antsProcessArguments(args) lib.LabelClustersUniquely(processed_args) return clust
efe63ea0e71d3a5bf3b2f0a03f3c0f1c295c063b
3,642,467
def update_schema(schema_old, schema_new): """ Given an old BigQuery schema, update it with a new one. Where a field name is the same, the new will replace the old. Any new fields not present in the old schema will be added. Arguments: schema_old: the old schema to update schema_new: the new schema which will overwrite/extend the old """ old_fields = schema_old["fields"] new_fields = schema_new["fields"] output_fields = list(old_fields) field_indices = {field["name"]: i for i, field in enumerate(output_fields)} for field in new_fields: name = field["name"] if name in field_indices: # replace old field with new field of same name output_fields[field_indices[name]] = field else: # add new field output_fields.append(field) return {"fields": output_fields}
e97827ac0d8ee943b88fc54506af3f6fc8285d71
3,642,468
def get_estimators(positions_all, positions_relevant): """ Extracts density estimators from a judged sample of paragraph positions. Parameters ---------- positions_all : dict of (Path, float) A sample of paragraph positions from various datasets in the NTCIR-11 Math-2, and NTCIR-12 MathIR format. positions_relevant : dict of (Path, float) A sample of relevant paragraph positions from various datasets in the NTCIR-11 A subsample of relevant paragraph positions. Returns ------- (float, KernelDensity, KernelDensity) An estimate of P(relevant), and estimators of p(position), and p(position | relevant). """ samples_all = [ (position,) for _, positions in positions_all.items() for position in positions] samples_relevant = [ (position,) for _, positions in positions_relevant.items() for position in positions] estimators = dict() estimators["P(relevant)"] = len(samples_relevant) / len(samples_all) LOGGER.info("Fitting prior p(position) density estimator") estimators["p(position)"] = KernelDensity(**KERNEL).fit(samples_all) LOGGER.info("Fitting conditional p(position | relevant) density estimator") estimators["p(position|relevant)"] = KernelDensity(**KERNEL).fit(samples_relevant) return ( estimators["P(relevant)"], estimators["p(position)"], estimators["p(position|relevant)"])
b5f95247ff683e6e7e86d425ec64c988daacab60
3,642,469
def openbabel_force_field(label, mol, num_confs=None, xyz=None, force_field='GAFF', return_xyz_strings=True, method='diverse'): """ Optimize conformers using a force field (GAFF, MMFF94s, MMFF94, UFF, Ghemical) Args: label (str): The species' label. mol (Molecule, optional): The RMG molecule object with connectivity and bond order information. num_confs (int, optional): The number of random 3D conformations to generate. xyz (list, optional): The 3D coordinates in an array format. force_field (str, optional): The type of force field to use. return_xyz_strings (bool, optional): Whether to return xyz in string or array format. True for string. method (str, optional): The conformer searching method to use in open babel. For method description, see http://openbabel.org/dev-api/group__conformer.shtml Returns: list: Entries are optimized xyz's in a list format. Returns: list: Entries are float numbers representing the energies in kJ/mol. """ xyzs, energies = list(), list() ff = ob.OBForceField.FindForceField(force_field) if xyz is not None: if isinstance(xyz, (str, unicode)): xyz = converter.get_xyz_matrix(xyz)[0] # generate an open babel molecule obmol = ob.OBMol() atoms = mol.vertices ob_atom_ids = dict() # dictionary of OB atom IDs for i, atom in enumerate(atoms): a = obmol.NewAtom() a.SetAtomicNum(atom.number) a.SetVector(xyz[i][0], xyz[i][1], xyz[i][2]) # assume xyz is ordered like mol; line not in in toOBMol if atom.element.isotope != -1: a.SetIsotope(atom.element.isotope) a.SetFormalCharge(atom.charge) ob_atom_ids[atom] = a.GetId() orders = {1: 1, 2: 2, 3: 3, 4: 4, 1.5: 5} for atom1 in mol.vertices: for atom2, bond in atom1.edges.items(): if bond.isHydrogenBond(): continue index1 = atoms.index(atom1) index2 = atoms.index(atom2) if index1 < index2: obmol.AddBond(index1 + 1, index2 + 1, orders[bond.order]) # optimize ff.Setup(obmol) ff.SetLogLevel(0) ff.SetVDWCutOff(6.0) # The VDW cut-off distance (default=6.0) ff.SetElectrostaticCutOff(10.0) # The Electrostatic cut-off distance (default=10.0) ff.SetUpdateFrequency(10) # The frequency to update the non-bonded pairs (default=10) ff.EnableCutOff(False) # Use cut-off (default=don't use cut-off) # ff.SetLineSearchType('Newton2Num') ff.SteepestDescentInitialize() # ConjugateGradientsInitialize v = 1 while v: v = ff.SteepestDescentTakeNSteps(1) # ConjugateGradientsTakeNSteps if ff.DetectExplosion(): raise ConformerError('Force field {0} exploded with method {1} for {2}'.format( force_field, 'SteepestDescent', label)) ff.GetCoordinates(obmol) elif num_confs is not None: obmol, ob_atom_ids = toOBMol(mol, returnMapping=True) pybmol = pyb.Molecule(obmol) pybmol.make3D() ff.Setup(obmol) if method.lower() == 'weighted': ff.WeightedRotorSearch(num_confs, 2000) elif method.lower() == 'random': ff.RandomRotorSearch(num_confs, 2000) elif method.lower() == 'diverse': rmsd_cutoff = 0.5 energy_cutoff = 50. confab_verbose = False ff.DiverseConfGen(rmsd_cutoff, num_confs, energy_cutoff, confab_verbose) elif method.lower() == 'systematic': ff.SystematicRotorSearch(num_confs) else: raise ConformerError('Could not identify method {0} for {1}'.format(method, label)) else: raise ConformerError('Either num_confs or xyz should be given for {0}'.format(label)) ff.GetConformers(obmol) obconversion = ob.OBConversion() obconversion.SetOutFormat('xyz') for i in range(obmol.NumConformers()): obmol.SetConformer(i) ff.Setup(obmol) xyz = '\n'.join(obconversion.WriteString(obmol).splitlines()[2:]) if not return_xyz_strings: xyz = converter.get_xyz_matrix(xyz)[0] xyz = [xyz[ob_atom_ids[mol.atoms[j]]] for j, _ in enumerate(xyz)] # reorder xyzs.append(xyz) energies.append(ff.Energy()) return xyzs, energies
9964d94d2601e5cd7871886e396778457bb6e2cd
3,642,470
def parse_flarelabels(label_file): """ Parses a flare-label file and generates a dictionary mapping residue identifiers (e.g. A:ARG:123) to a user-specified label, trees that can be parsed by flareplots, and a color indicator for vertices. Parameters ---------- label_file : file A flare-label file where each line contains 2-3 columns formatted as - CHAIN:RESN:RESI (e.g. A:ARG:123) - [[TOPLEVEL.]MIDLEVEL.]LABEL (e.g. Receptor.Helix2.2x44) - COLOR (e.g. #FF0000 or white) Returns ------- dict of str : (dict of str : str) Keys are all residue identifiers and values are dicts that hold both the LABEL by itself (key "label", the full tree-path (key "treepath") and a CSS-compatible color string (key "color"). Raises ------ AssertionError if a residue identifier (CHAIN:RESN:RESI) is specified twice in the file, or if a LABEL appears twice. """ if label_file is None: return None ret = {} flarelabels = set() # Only used to check for duplicates for line in label_file: line = line.strip() if not line: continue # Ignore empty lines columns = line.split("\t") residentifier = columns[0] flaretreepath = columns[1] if len(columns) > 1 else columns[0] flarelabel = flaretreepath.split(".")[-1] flarecolor = columns[2] if len(columns) > 2 else "white" if residentifier in ret: raise AssertionError("Residue identifier '"+residentifier+"' appears twice in "+label_file.name) if flarelabel in flarelabels: raise AssertionError("Flare label '"+flarelabel+"' used twice in "+label_file.name) ret[residentifier] = {"label": flarelabel, "treepath": flaretreepath, "color": flarecolor} flarelabels.add(flarelabel) return ret
23df49af14af720311b320f65894e995983365bf
3,642,471
def remove_background(data, dim="t2", deg=0, regions=None): """Remove polynomial background from data Args: data (DNPData): Data object dim (str): Dimension to perform background fit deg (int): Polynomial degree regions (None, list): Background regions, by default entire region is background corrected. Regions can be specified as a list of tuples [(min, max), ...] Returns: DNPData: Background corrected data """ proc_parameters = { "dim": dim, "deg": deg, "regions": regions, } fit = background(data, dim=dim, deg=deg, regions=regions) data = data - fit proc_attr_name = "remove_backround" data.add_proc_attrs(proc_attr_name, proc_parameters) return data
54141b6f28b7a21ebdf1b0b920af3bfea4303b07
3,642,472
def get_hmm_datatype(query_file): """Takes an HMM file (HMMer3 software package) and determines what data type it has (i.e., generated from an amino acid or nucleic acid alignment). Returns either "prot" or "nucl". """ datatype = None with open(query_file) as infh: for i in infh: if i.startswith('ALPH'): dname = i.strip().split(' ')[1] if dname == 'amino': datatype = 'prot' elif dname == 'DNA': datatype = 'nucl' break # Check that it worked. assert datatype is not None, """Error: Data type could not be determined for input file: %s""" % query_file # Return the data type. return datatype
27653784b8a9fbae92226f8ea7d7b6e2b647765e
3,642,473
def detect_min_threshold_outliers(series, threshold): """Detects the values that are lower than the threshold passed series : series, mandatory The series where to detect the outliers threshold : integer, float, mandatory The threshold of the minimum value that will be considered outliers. """ bool_outliers = series < threshold return bool_outliers
6032693341073d101c0aad598a105f6cbc0ec578
3,642,474
from datetime import datetime def new_datetime(d): """ Generate a safe datetime from a datetime.date or datetime.datetime object. """ kw = [d.year, d.month, d.day] if isinstance(d, real_datetime): kw.extend([d.hour, d.minute, d.second, d.microsecond, d.tzinfo]) return datetime(*kw)
58479d70918dd287bfd29b1a15b6cd4dc1bfd695
3,642,475
def _to_str(x): """Converts a bool tensor to a string with True/False values.""" x = tf.convert_to_tensor(x) if x.dtype == tf.bool: return tf.where(x, 'True', 'False') return x
7919139e0f2cb19cd0856110e962acb616193ada
3,642,476
def inpaintn(x,m=100, x0=None, alpha=2): """ This function interpolates the input (2-dimensional) image 'x' with missing values (can be NaN of Inf). It is based on a recursive process where at each step the discrete cosine transform (dct) is performed of the residue, multiplied by some weights, and then the inverse dct is taken. The initial guess 'x0' for the interpolation can be provided by the user, otherwise it starts with a nearest neighbor filling. Args INPUTS: x (numpy array) - is the image with missing elements (eiher np.nan or np.inf) from which you want to perform interpolation m (int) - is the number of iteration; default=100 x0 (numpy array) - can be your initial guess; defaut=None alpha (float) - some input number used as a power scaling; default=2 OUT: y (numpy array) - is the interpolated image wrt proposed method """ sh = x.shape ids0 = np.isfinite(x) if ids0.all(): #Nothing to interpolate... return x # Smoothness paramaters: s0 = 3 s1 = -6 s = np.logspace(s0,s1,num=m) # Relaxation factor: rf = 2 # Weight matrix, here we add some basis vectors to Lambda depending on original size of 'x': Lambda = np.zeros(sh, float) u0 = np.cos(np.pi*np.arange(0,sh[0]).reshape((sh[0],1))/sh[0]) u1 = np.cos(np.pi*np.arange(0,sh[1]).reshape((1,sh[1]))/sh[1]) Lambda = np.add(np.add(Lambda,u0),u1) Lambda = 2*(2-Lambda) Lambda = Lambda**alpha # Starting interpolation: if x0 is None: y = initial_nn(x) else: y = np.copy(x0) for mu in range(m): Gamma = 1/(1+s[mu]*Lambda) a = np.copy(y) a[ids0] = (x-y)[ids0]+y[ids0] y = rf*idct(Gamma*dct(a, norm='ortho'), norm='ortho')+(1-rf)*y y[ids0] = x[ids0] return y
2fddabc6e512f9fc1ae7e8298f8d44582eaf7c46
3,642,477
def obtain_bboxs(path) -> list: """ obatin bbox annotations from the file """ file = open(path, "r") lines = file.read().split("\n") lines = [x for x in lines if x and not x.startswith("%")] lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces bboxs = [] for line in lines: items = line.split(" ") bboxs.append([items[0], float(items[1]), float(items[2]), float(items[3]), float(items[4])]) return bboxs
75ceaac4bd8500320007d2ffb4cf4c490bd29473
3,642,478
def Timeline_Integral_with_cross_before(Tm,): """ 计算时域金叉/死叉信号的累积卷积和(死叉(1-->0)不清零,金叉(0-->1)清零) 这个我一直不会写成 lambda 或者 apply 的形式,只能用 for循环,谁有兴趣可以指导一下 """ T = [Tm[0]] for i in range(1,len(Tm)): T.append(T[i - 1] + 1) if (Tm[i] != 1) else T.append(0) return np.array(T)
fdbd68e84e2a79a96c2078f92a7b69ab0138874e
3,642,479
from typing import Generator def list_image_paths() -> Generator[str, None, None]: """List each image path in the input directory.""" return list_input_directory(INPUT_DIRECTORIES["image_dir"])
bce70f2af3c42905a27a30bf97de0a993161130f
3,642,480
def a_star(graph: Graph, start: Node, goal: Node, heuristic): """ Standard A* search algorithm. :param graph: Graph A graph with all nodes and connections :param start: Node Start node, where the search starts :param goal: Node End node, the goal for the search :return: shortest_path: list|False Either a list of node ids or false """ # Indexed priority queue queue = pqdict() # All visited connections visited_stack = {} # Add start node visited_stack[start] = True # The costs from start to a node cost_to_node = {} # Full costs from a node to goal full_costs = {} # All paths that have been taken shortest_path = [] # Create a dummy for the start node dummy_connection = Connection(start, start) # Assign it to the queue so we can start queue[dummy_connection] = 0 while queue: # Get next connection from top queue # and remove it (its a get + pop) connection = queue.pop() # Add the node to the shortest path # cause otherwise we would not be here shortest_path.append(connection) cost_to_node[connection.to_node] = connection.cost # We have found the target if connection.to_node.id == goal.id: # Remove all unneded paths and return # a sorted list return clean_route_list(shortest_path, goal.id) # Get all connected nodes next_connections = graph.get_connections(connection.to_node) # Iterate through all connected nodes # and calculate the costs and stuff for c in next_connections: # Calculate total costs from start to the goal node to_goal_cost = heuristic(goal.position, c.to_node.position) # Calculate costs from start to this node current_cost = cost_to_node[connection.to_node] + c.cost # Update lists and costs queue[c] = current_cost cost_to_node[c.to_node] = current_cost full_costs[c.to_node] = current_cost + to_goal_cost visited_stack[c.to_node] = True # Never found the target, so sad ... return False
ca25a15733d041cfca2560164ea8b047e55991b8
3,642,481
def buildAndTrainModel(model, learningRate, batchSize, epochs, trainingData, validationData, testingData, trainingLabels, validationLabels, testingLabels, MODEL_NAME, isPrintModel=True): """Take the model and model parameters, build and train the model""" # Build and compile model # To use other optimizers, refer to: https://keras.io/optimizers/ # Please do not change the loss function optimizer = tf.keras.optimizers.Adam(lr=learningRate) model.compile(optimizer=optimizer, loss=tf.keras.losses.MeanSquaredError()) if isPrintModel: print(model.summary()) for epoch in range(0, epochs): model.fit(trainingData, trainingLabels, epochs=1, verbose=0, batch_size=batchSize, shuffle=False) # Evaluate model valLoss = model.evaluate(validationData, validationLabels, verbose=False) ## get metrics predictions = model.predict(testingData) MSE, MAE, MAPE, RMSE, PR = getMetrics(testingLabels,predictions) MeanSquaredError.append(MSE) RootMeanSquaredError.append(RMSE) MeanAbsoluteError.append(MAE) MeanAbsolutePercentageError.append(MAPE) PearsonR.append(PR) ValMSE.append(valLoss) Epoch.append(epoch) if valLoss <= min(ValMSE): max_predictions = predictions return MeanSquaredError, RootMeanSquaredError, MeanAbsoluteError, MeanAbsolutePercentageError, ValMSE, PearsonR, Epoch, max_predictions
af00f383311588525e66cff317908a99fa39859f
3,642,482
def gaussian_temporal_filter(tsincr: np.ndarray, cutoff: float, span: np.ndarray, thr: int) -> np.ndarray: """ Function to apply a Gaussian temporal low-pass filter to a 1D time-series vector for one pixel with irregular temporal sampling. :param tsincr: 1D time-series vector to be filtered. :param cutoff: filter cutoff in years. :param span: 1D vector of cumulative time spans, in years. :param thr: threshold for non-NaN values in tsincr. :return: ts_lp: Low-pass filtered time series vector. """ nanmat = ~isnan(tsincr) sel = np.nonzero(nanmat)[0] # don't select if nan ts_lp = np.empty(tsincr.shape, dtype=np.float32) * np.nan m = len(sel) if m >= thr: for k in range(m): yr = span[sel] - span[sel[k]] # apply Gaussian smoothing kernel wgt = _kernel(yr, cutoff) wgt /= np.sum(wgt) ts_lp[sel[k]] = np.sum(tsincr[sel] * wgt) return ts_lp
54060dbfc84ce1738698fda893afb556b48396e4
3,642,483
import requests import json def get_mactable(auth): """ Function to get list of mac-addresses from Aruba OS switch :param auth: AOSSAuth class object returned by pyarubaoss.auth :return list of mac-addresses :rtype list """ url_mactable = "http://" + auth.ipaddr + "/rest/" + auth.version + "/mac-table" try: r = requests.get(url_mactable, headers=auth.cookie) mactable = json.loads(r.text)['mac_table_entry_element'] return mactable except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_mactable: An Error has occurred"
8f81a03640d7a4ed0d6d70bcaf268b647dee987e
3,642,484
def presentations(): """Shows a list of selected presentations""" return render_template( 'table.html', title='Presentations', data=PRESENTATIONS, target='_blank', )
643c1b7a6595f4c8c84abc47019a0346b414df56
3,642,485
def get_consensus_mask(patient, region, aft, ref=HIVreference(subtype="any")): """ Returns a 1D vector of size aft.shape[-1] where True are the position that correspond to consensus sequences. Position that are not mapped to reference or seen too often gapped are always False. """ ref_filter = trajectory.get_reference_filter(patient, region, aft, ref) consensus_mask = trajectory.get_reversion_map(patient, region, aft, ref) initial_idx = patient.get_initial_indices(region) # gives reversion mask at initial majority nucleotide consensus_mask = consensus_mask[initial_idx, np.arange(aft.shape[-1])] return np.logical_and(ref_filter, consensus_mask)
da7699350609ffc29d20b9922fa03c0d1944b57d
3,642,486
import argparse def parse_arguments(): """ Parse arguments """ parser = argparse.ArgumentParser() parser.add_argument( "-i", type=str, dest="input_pics", help="A file consists of pics path with each pic on a single line.", ) parser.add_argument("-o", type=str, dest="output_gif", help="Output gif path.") parser.add_argument("-fps", type=float, dest="fps", help="FPS.") parser.add_argument( "-duration", type=float, dest="duration", help="Duration of each frame." ) return parser.parse_args()
8956c690bfffbe2e93c40c98db0eb785ff440530
3,642,487
def return_next_entry_list_uri(links): """続くブログ記事一覧のエンドポイントを返す""" for link in links: if link.attrib["rel"] == "next": return link.attrib["href"]
0c4c4139270ef8dedbb106f2db852097f4cd3028
3,642,488
def none(**_): """ Input: anything Return: 0.0 (float) Descr.: Dummy method to handle no temperature correction""" return 0.0
e06b22f91d5a73450ddb4ca53fbb2569d567dcf1
3,642,489
def paths_and_labels_to_rgb_dataset(image_paths, labels, num_classes, label_mode): """Constructs a dataset of images and labels.""" path_ds = dataset_ops.Dataset.from_tensor_slices(image_paths) img_ds = path_ds.map(lambda path: load_rgb_img_from_path(path)) label_ds = dataset_utils.labels_to_dataset(labels, label_mode, num_classes) img_ds = dataset_ops.Dataset.zip((img_ds, label_ds)) return img_ds
7c72b3d628937fe999d89f5524d4d079ef20d9da
3,642,490
def get_custom_headers(manifest_resource): """Generates the X-TAXII-Date-Added headers based on a manifest resource""" headers = {} times = sorted(map(lambda x: x["date_added"], manifest_resource.get("objects", []))) if len(times) > 0: headers["X-TAXII-Date-Added-First"] = times[0] headers["X-TAXII-Date-Added-Last"] = times[-1] return headers
6c3acf2ea330b347387bfec574b4f8edfffa69ab
3,642,491
def checkCulling( errs, cullStrings ) : """ Removes all messages containing sub-strings listed in cullStrings. cullStrings can be either a string or a list of strings. If as list of strings, each string must be a sub-string in a message for the message to be culled. """ def checkCullingMatch( message, cullStrings ) : found = True for cullString in cullStrings : found = found and ( cullString in message ) return( found ) def checkCulling2( message, cullStrings, level = 0 ) : if( isinstance( message, list ) ) : messages = [] for msg in message : msg1 = checkCulling2( msg, cullStrings, level + 1 ) if( msg1 is not None ) : messages.append( msg1 ) if( len( messages ) < 2 ) : messages = None return( messages ) else : if( checkCullingMatch( message, cullStrings ) ) : return( None ) return( message ) if( isinstance( cullStrings, str ) ) : cullStrings = [ cullStrings ] errs2 = [] for err in errs : messages = [] if( isinstance( err.message, str ) ) : if( not( checkCullingMatch( err.message, cullStrings ) ) ) : errs2.append( err ) else : for message in err.message : message = checkCulling2( message, cullStrings ) if( message is not None ) : messages.append( message ) if( len( messages ) > 0 ) : err.message = messages errs2.append( err ) return( errs2 )
5414e52df999a8aef7ed34328a689efa1582aabb
3,642,492
def gram_matrix(x, ba, hi, wi, ch): """gram for input""" if ba is None: ba = -1 feature = K.reshape(x, [ba, int(hi * wi), ch]) gram = K.batch_dot(feature, feature, axes=1) return gram / (hi * wi * ch)
6e6145d9941c2e63120c7d030ac5b6b1ccd5d97e
3,642,493
import csv def read_pinout_csv(csv_file, keyname="number"): """ read a csv file and return a dict with the given keyname as the keys """ reader = csv.DictReader(open(csv_file)) lst = [] for row in reader: lst.append(row) d = {} for item in lst: d[item[keyname]] = item return d
07a30b1191d311fee315c87773e3b3c1111d7624
3,642,494
async def start(hub, ctx, name, resource_group, **kwargs): """ .. versionadded:: 1.0.0 Power on (start) a virtual machine. :param name: The name of the virtual machine to start. :param resource_group: The resource group name assigned to the virtual machine. CLI Example: .. code-block:: bash azurerm.compute.virtual_machine.start testvm testgroup """ compconn = await hub.exec.azurerm.utils.get_client(ctx, "compute", **kwargs) try: # pylint: disable=invalid-name vm = compconn.virtual_machines.start( resource_group_name=resource_group, vm_name=name ) vm.wait() vm_result = vm.result() result = vm_result.as_dict() except CloudError as exc: await hub.exec.azurerm.utils.log_cloud_error("compute", str(exc), **kwargs) result = {"error": str(exc)} return result
74a09ef57ea735ea6a5af2ee5d10d3407e770980
3,642,495
def Render(request, template_file, params): """Render network test pages.""" return util.Render(request, template_file, params)
a30e34297de9ec44982dc8bc19231c471cc080c4
3,642,496
import logging from pathlib import Path def setup_global_logger(log_filepath=None): """Setup logger for logging Args: log_filepath: log file path. If not specified, only log to console Returns: logger that can log message at different level """ logger = logging.getLogger(__name__) try: if not logger.handlers: logger.propagate = False logger.setLevel(logging.INFO) formatter = logging.Formatter("%(levelname)s:[%(asctime)s] - %(message)s") logging.getLogger("tornado").propagate = False logging.getLogger("livereload").propagate = False # Add sysout handler ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) # Add DB handler logger.addHandler(LogDBHandler()) if log_filepath: formatter = logging.Formatter( "%(levelname)s:[%(asctime)s] - " + "[%(filename)s, line-%(lineno)d] - %(message)s" ) # Add file handler Path("logs").mkdir(parents=True, exist_ok=True) fh = logging.handlers.TimedRotatingFileHandler( Path("logs") / log_filepath, when="midnight", interval=1 ) fh.suffix = "%Y%m%d" fh.setFormatter(formatter) logger.addHandler(fh) except Exception as ex: logger.error(ex) return logger
74a8911243947387352b5c20e81ef0a304b48aa5
3,642,497
def calculate_class_recall(conf_mat: np.array) -> np.array: """ Calculates the recall for each class from a confusion matrix. """ return np.diagonal(conf_mat) / np.sum(conf_mat, axis=1)
715f20b3e957dee25630bb413aff48140cf6aad3
3,642,498
def findall(element, path): """ A helper function around a :attr:`lxml.etree._Element.findall` that passes the element's namespace mapping. """ return element.findall(path, namespaces=element.nsmap)
20da8cb66ac591751501e5c944f6f95235582e80
3,642,499