content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from datetime import datetime import calendar def create_calendar(year=None, month=None): """ Create an inline keyboard with the provided year and month """ now = datetime.datetime.now() if year is None: year = now.year if month is None: month = now.month data_ignore = create_calendar_callback_data("IGNORE", year, month, 0) keyboard = [] # First row - Month and Year row = [ InlineKeyboardButton( calendar.month_name[month] + " " + str(year), callback_data=data_ignore ) ] keyboard.append(row) # Second row - Week Days row = [] for day in ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"]: row.append(InlineKeyboardButton(day, callback_data=data_ignore)) keyboard.append(row) my_calendar = calendar.monthcalendar(year, month) for week in my_calendar: row = [] for day in week: if day == 0: row.append(InlineKeyboardButton(" ", callback_data=data_ignore)) else: row.append( InlineKeyboardButton( str(day), callback_data=create_calendar_callback_data( "DAY", year, month, day ), ) ) keyboard.append(row) # Last row - Buttons row = [ InlineKeyboardButton( "<", callback_data=create_calendar_callback_data("PREV-MONTH", year, month, day), ), InlineKeyboardButton(" ", callback_data=data_ignore), InlineKeyboardButton( ">", callback_data=create_calendar_callback_data("NEXT-MONTH", year, month, day), ), ] keyboard.append(row) return InlineKeyboardMarkup(keyboard)
edd7dd0245bbcb4269eaa4767cf16eb382db29e8
3,642,600
def read_image(link, size): """ Read image on link and convert it to given size Usage: image = readImage(link, size) Input variables: link: path to image size: output size of image Output variables: image: read and resized image """ image = imageio.imread(link) image = trf.resize(image, size) return image
8465fc3ef8f6d8829da251cc924b442a4b7f3d07
3,642,601
def make_send_data(application_preset): """Generate the data to send to the protocol.""" if application_preset == 'none': # data = bytes([i for i in range(32)]) # data = bytes([i for i in range(54)]) # for teensy 4.0 data = bytes([i for i in range(54)]) # for teensy lc & micro data_kwargs = {} else: if application_preset == 'pubsub': # (data, schema) = (tuple(i for i in range(185 - 18)), 0x60) # for due and teensy 4.0 (data, schema) = (tuple(i for i in range(50 - 24)), 0x60) # for teensy lc & micro # (data, schema) = (tuple(i for i in range(50 - 18)), 0x60) # for uno data = (b'echo', data) # data = (b'copy', data) # data = (b'reply', data) # data = (b'ping', data) # (data, schema) = ((b'blink', True), 0x02) # (data, schema) = ((b'blink', False), 0x02) # (data, schema) = ((b'prefix', ('world!', 'Hello, ')), 0x00) elif application_preset == 'minimal': # (data, schema) = (tuple(i for i in range(185 - 18)), 0x60) # for due and teensy 4.0 (data, schema) = (tuple(i for i in range(50 - 24)), 0x60) # for teensy lc & micro # (data, schema) = (tuple(i for i in range(50 - 18)), 0x60) # for uno (data, schema) = (('hello', True, None, 0.125, b'\x00\x01\x02\x03\x04') + data, 0x00) # (data, schema) = (('hello', 123, 456, 789), 0x00) else: raise NotImplementedError('Unsupported protocol configuration!') data_kwargs = { 'schema': schema, 'format': SERIALIZATION_FORMATS[('binary', 'dynamic', 'msgpack')], 'type': DATA_TYPES[('presentation', 'document')] } return (data, data_kwargs)
2b04a0bf977e44c3bd2a2aa6df0834ad458364bc
3,642,602
def dp4a(x_scope="local", y_scope="local", z_scope="local", dtypes=("int8", "int8")): """ Int8 dot product reduced by every 4 elements using __dp4a Parameters ---------- x_scope : str, optional The storage scope of buffer for lhs y_scope : str, optional The storage scope of buffer for rhs z_scope : str, optional The storage scope of buffer for result dtypes: tuple of strs, optional The dtype of x and y Returns ------- intrin : TensorIntrin The dp4a TensorIntrin that can be used in tensorizing schedule. """ n = 4 # dp4a requires operands packed by 4 result_dtype = "int32" if dtypes[1] == "int8" else "uint32" x = te.placeholder((n,), name="x", dtype=dtypes[0]) y = te.placeholder((n,), name="y", dtype=dtypes[1]) k = te.reduce_axis((0, n), name="rc") z = te.compute( (1,), lambda i: te.sum(x[k].astype(result_dtype) * y[k].astype(result_dtype), axis=[k]) ) def _intrin_func(ins, outs): def _instr(index): xx, yy = ins zz = outs[0] zz_dtype = zz.dtype if index == 1: return zz.vstore(0, tvm.tir.const(0, zz_dtype)) ib = tvm.tir.ir_builder.create() vec_x_dtype = "int8x4" if xx.dtype == "int8" else "uint8x4" vec_y_dtype = "int8x4" if yy.dtype == "int8" else "uint8x4" vec_x = xx.vload(0, dtype=vec_x_dtype) vec_y = yy.vload(0, dtype=vec_y_dtype) prev_z = 0 if index == 0 else zz.vload(0) if is_target("rocm"): # TODO(masahi): Here we are assuming that we are compiling for gfx10 or later # We can refine the specification for dot product on rocm if needed later. # We can just use "llvm.amdgcn.udot4" for u8u8u32, but it is not tested. assert ( dtypes[0] == "int8" and dtypes[0] == "int8" ), "u8u8u32 dot product for rocm not supported yet" new_z = tvm.tir.call_llvm_pure_intrin( zz_dtype, "llvm.amdgcn.sdot4", tvm.tir.const(4, "uint32"), tvm.tir.call_intrin("int32", "tir.reinterpret", vec_x), tvm.tir.call_intrin("int32", "tir.reinterpret", vec_y), prev_z, True, ) else: new_z = tvm.tir.call_pure_extern(zz_dtype, "__dp4a", vec_x, vec_y, prev_z) ib.emit(zz.vstore(0, new_z)) return ib.get() return _instr(0), _instr(1), _instr(2) # body, reset, update default_buffer_params = {"data_alignment": 4, "offset_factor": 1} scopes = {x: x_scope, y: y_scope, z: z_scope} binds = { t: tvm.tir.decl_buffer( t.shape, t.dtype, t.op.name, scope=scopes[t], **default_buffer_params ) for t in [x, y, z] } return te.decl_tensor_intrin( z.op, _intrin_func, binds=binds, default_buffer_params=default_buffer_params )
7d384867b9854c880288dd6ad2be6400d861282a
3,642,603
def fileexists(filename): """Replacement method for os.stat.""" try: f = open( filename, 'r' ) f.close() return True except: pass return False
126460a04e7a8faf7517cb46c480670f5a067b1a
3,642,604
def test_knowledge_graph_init(graph_mutation_client, graph_mutation_responses): """Test knowldge graph client initialization.""" return graph_mutation_client.named_types
932a425e4bbdc301ef223e0f91936ecacf3bd5aa
3,642,605
def read_camera_matrix(filename): """ Read camera matrix from text file exported by PhotoScan """ with open(filename, 'r') as f: s = f.read() s = s.split(',') s = [x.strip('\Matrix([[') for x in s] s = [x.strip(']])') for x in s] s = [x.strip('[') for x in s] s = [x.strip(']') for x in s] s = [x.strip('\n [') for x in s] M = np.array([float(x) for x in s]) return M.reshape((4,4))
be01c60d3c8940250c578a67de2c06110fb403e4
3,642,606
def find_child_joints(model, joint_name): """ Find all the joints parented to the given joint. """ joint_id = joint_name_to_index(model) link_id = link_name_to_index(model) # FIXME : Add exception to catch invalid joint names joint = model.joints[joint_id[joint_name]] clink = joint.child return [ j.name for j in model.joints if j.parent == clink ]
35deab9fca062e90547cf6a550f9e14d654f0462
3,642,607
import pathlib def stem(path: str) -> str: """returns the stem of a path (path without parent directory and without extension) e.g j.sals.fs.stem("/tmp/tmp-5383p1GOmMOOwvfi.tpl") -> 'tmp-5383p1GOmMOOwvfi' Args: path (str): path we want to get its stem Returns: str: path without parent directory and without extension """ return pathlib.Path(path).stem
ec7507becb31bda7662122668b490148ca15d347
3,642,608
import json import re def fluent_text(field, schema): """ Accept multilingual text input in the following forms and convert to a json string for storage: 1. a multilingual dict, eg. {"en": "Text", "fr": "texte"} 2. a JSON encoded version of a multilingual dict, for compatibility with old ways of loading data, eg. '{"en": "Text", "fr": "texte"}' 3. separate fields per language (for form submissions): fieldname-en = "Text" fieldname-fr = "texte" When using this validator in a ckanext-scheming schema setting "required" to true will make all form languages required to pass validation. """ # combining scheming required checks and fluent field processing # into a single validator makes this validator more complicated, # but should be easier for fluent users and eliminates quite a # bit of duplication in handling the different types of input required_langs = [] alternate_langs = {} if field and field.get('required'): required_langs = fluent_form_languages(field, schema=schema) alternate_langs = fluent_alternate_languages(field, schema=schema) def validator(key, data, errors, context): # just in case there was an error before our validator, # bail out here because our errors won't be useful if errors[key]: return value = data[key] # 1 or 2. dict or JSON encoded string if value is not missing: if isinstance(value, basestring): try: value = json.loads(value) except ValueError: errors[key].append(_('Failed to decode JSON string')) return except UnicodeDecodeError: errors[key].append(_('Invalid encoding for JSON string')) return if not isinstance(value, dict): errors[key].append(_('expecting JSON object')) return for lang, text in value.iteritems(): try: m = re.match(BCP_47_LANGUAGE, lang) except TypeError: errors[key].append(_('invalid type for language code: %r') % lang) continue if not m: errors[key].append(_('invalid language code: "%s"') % lang) continue if not isinstance(text, basestring): errors[key].append(_('invalid type for "%s" value') % lang) continue if isinstance(text, str): try: value[lang] = text.decode('utf-8') except UnicodeDecodeError: errors[key]. append(_('invalid encoding for "%s" value') % lang) for lang in required_langs: if value.get(lang) or any( value.get(l) for l in alternate_langs.get(lang, [])): continue errors[key].append(_('Required language "%s" missing') % lang) if not errors[key]: data[key] = json.dumps(value) return # 3. separate fields output = {} prefix = key[-1] + '-' extras = data.get(key[:-1] + ('__extras',), {}) for name, text in extras.iteritems(): if not name.startswith(prefix): continue lang = name.split('-', 1)[1] m = re.match(BCP_47_LANGUAGE, lang) if not m: errors[name] = [_('invalid language code: "%s"') % lang] output = None continue if output is not None: output[lang] = text for lang in required_langs: if extras.get(prefix + lang) or any( extras.get(prefix + l) for l in alternate_langs.get(lang, [])): continue errors[key[:-1] + (key[-1] + '-' + lang,)] = [_('Missing value')] output = None if output is None: return for lang in output: del extras[prefix + lang] data[key] = json.dumps(output) return validator
e07b8f7d83500bd79662f36df5ff2a4cf42af092
3,642,609
def palette_color_brewer_q_Set3(reverse=False): """Generate set3 Brewer palette of a given size ... interpolate as needed ... best for discrete mapping Args: reverse: order the colors backward as compared to standard Brewer palette Returns: lambda: generates a list of colors See Also: :meth:`gen_node_color_map`, :meth:`gen_edge_color_map` """ return lambda value_count: _palette_color_brewer(value_count, colorbrewer.Set3, reverse)
38355f8b9f7a69ad7c7f4951d324e9b8bbd233bb
3,642,610
from magmap.io import export_rois from magmap.io import export_rois import os def process_file(path, proc_mode, series=None, subimg_offset=None, subimg_size=None, roi_offset=None, roi_size=None): """Processes a single image file non-interactively. Assumes that the image has already been set up. Args: path (str): Path to image from which MagellanMapper-style paths will be generated. proc_mode (str): Processing mode, which should be a key in :class:`config.ProcessTypes`, case-insensitive. series (int): Image series number; defaults to None. subimg_offset (List[int]): Sub-image offset as (z,y,x) to load; defaults to None. subimg_size (List[int]): Sub-image size as (z,y,x) to load; defaults to None. roi_offset (List[int]): Region of interest offset as (x, y, z) to process; defaults to None. roi_size (List[int]): Region of interest size of region to process, given as (x, y, z); defaults to None. Returns: Tuple of stats from processing, or None if no stats, and text feedback from the processing, or None if no feedback. """ # PROCESS BY TYPE stats = None fdbk = None filename_base = importer.filename_to_base(path, series) proc_type = libmag.get_enum(proc_mode, config.ProcessTypes) print("{}\n".format("-" * 80)) if proc_type is config.ProcessTypes.LOAD: # loading completed return None, None elif proc_type is config.ProcessTypes.LOAD: # already imported so does nothing print("imported {}, will exit".format(path)) elif proc_type is config.ProcessTypes.EXPORT_ROIS: # export ROIs; assumes that info_proc was already loaded to # give smaller region from which smaller ROIs from the truth DB # will be extracted db = config.db if config.truth_db is None else config.truth_db export_rois.export_rois( db, config.image5d, config.channel, filename_base, config.plot_labels[config.PlotLabels.PADDING], config.unit_factor, config.truth_db_mode, os.path.basename(config.filename)) elif proc_type is config.ProcessTypes.TRANSFORM: # transpose, rescale, and/or resize whole large image transformer.transpose_img( path, series, plane=config.plane, rescale=config.transform[config.Transforms.RESCALE], target_size=config.roi_size) elif proc_type in ( config.ProcessTypes.EXTRACT, config.ProcessTypes.ANIMATED): # generate animated GIF or extract single plane export_stack.stack_to_img( config.filenames, roi_offset, roi_size, series, subimg_offset, subimg_size, proc_type is config.ProcessTypes.ANIMATED, config.suffix) elif proc_type is config.ProcessTypes.EXPORT_BLOBS: # export blobs to CSV file export_rois.blobs_to_csv(config.blobs.blobs, filename_base) elif proc_type in ( config.ProcessTypes.DETECT, config.ProcessTypes.DETECT_COLOC): # detect blobs in the full image, +/- co-localization coloc = proc_type is config.ProcessTypes.DETECT_COLOC stats, fdbk, _ = stack_detect.detect_blobs_stack( filename_base, subimg_offset, subimg_size, coloc) elif proc_type is config.ProcessTypes.COLOC_MATCH: if config.blobs is not None and config.blobs.blobs is not None: # colocalize blobs in separate channels by matching blobs shape = (config.image5d.shape[1:] if subimg_size is None else subimg_size) matches = colocalizer.StackColocalizer.colocalize_stack( shape, config.blobs.blobs) # insert matches into database colocalizer.insert_matches(config.db, matches) else: print("No blobs loaded to colocalize, skipping") elif proc_type in (config.ProcessTypes.EXPORT_PLANES, config.ProcessTypes.EXPORT_PLANES_CHANNELS): # export each plane as a separate image file export_stack.export_planes( config.image5d, config.savefig, config.channel, proc_type is config.ProcessTypes.EXPORT_PLANES_CHANNELS) elif proc_type is config.ProcessTypes.EXPORT_RAW: # export the main image as a raw data file out_path = libmag.combine_paths(config.filename, ".raw", sep="") libmag.backup_file(out_path) np_io.write_raw_file(config.image5d, out_path) elif proc_type is config.ProcessTypes.PREPROCESS: # pre-process a whole image and save to file # TODO: consider chunking option for larger images profile = config.get_roi_profile(0) out_path = config.prefix if not out_path: out_path = libmag.insert_before_ext(config.filename, "_preproc") transformer.preprocess_img( config.image5d, profile["preprocess"], config.channel, out_path) return stats, fdbk
980c30c822119a788e9a0da142b68c0a67506be1
3,642,611
def get_loss_function(identifier): """ Gets the loss function from `identifier`. :param identifier: the identifier :type identifier: str or dict[str, str or dict] :raise ValueError: if the function is not found :return: the function :rtype: function """ return _get(identifier, loss_functions, tensorflow.keras.losses.get, name_only=True)
060a14f21332ad47273febeb7d4a8347a2fd3957
3,642,612
def find_defender(ships, side): """Crude method to find something approximating the best target when attacking""" enemies = [x for x in ships if x['side'] != side and x['hp'] > 0] if not enemies: return None # shoot already wounded enemies first wounded = [x for x in enemies if x['hp'] < x['size']] if wounded: found = ships.index(wounded[0]) return found # shoot boarders in priority (?) boarding = [x for x in enemies if 'Boarding' in x['name']] if boarding: found = ships.index(boarding[0]) return found # shoot 1 hp ships hp_1 = [x for x in enemies if x['size'] == 1] if hp_1: found = ships.index(hp_1[0]) return found # shoot 2 hp ships hp_2 = [x for x in enemies if x['size'] == 2] if hp_2: found = ships.index(hp_2[0]) return found # otherwise just shoot the first one (??!) found = ships.index(enemies[0]) return found
4c58ec01abae1f59ced47e61e257abe7f8923aea
3,642,613
import os def get_parameters(image_path): """ Parses the image path to dictionary :param str image_path: image path :rtype dict """ image_path = image_path image_directory = os.path.dirname(image_path) image_filename = os.path.basename(image_path) image_name = image_filename.split('.')[0] image_extension = image_filename.split('.')[-1] return { 'directory': image_directory, 'extension': image_extension, 'name': image_name, 'filename': image_filename, 'path': image_path }
cffef64001c81fd3459d49239b1ce863c546b6ca
3,642,614
import csv def Create_clump_summaries(feature_file,simplify_threshold): """ Employs Panda Shapely library to simplify polygons by eliminating almost colinear vertices. Generates two data structures: First - sort_clump_df: Panda Dataframe containing the longest line in the simplified and unsimplified polygon, polygon area, polygon number by order listed in feature_file. The Dataframe is sorted by length of longest edge of simplified polygon. Second - polygon_dict which is a dictionary with numpy arrays representing normalized polygons """ i= 0 clump_dict = {'clump':[],'area':[], 'max_line':[], 'max_line_simplify':[]} polygon_dict ={} with open(feature_file) as input_file2: reader = csv.DictReader(input_file2) for row1 in reader: row1_polygon = row1['Polygon'] row1_polygon = row1_polygon[1:len(row1_polygon)-1] row1_polygon_list = row1_polygon.split(':') row1_polygon_list = [float(x) for x in row1_polygon_list] even_pts = row1_polygon_list[0:len(row1_polygon_list)-1:2] odd_pts = row1_polygon_list[1:len(row1_polygon_list):2] row1_tuples = list(zip(even_pts,odd_pts)) # clump represents the polygon representing each clump clump = Polygon(row1_tuples) # Invoke Shapely to generate simplified polygon clump2 = clump.simplify(simplify_threshold) # Obtain points defining polygon, compute length of edges npclump = np.array(clump.exterior) npclump_shift = np.roll(npclump,1,axis=0) diff_clump = npclump_shift - npclump l2_clump = np.sqrt(((diff_clump**2).sum(axis=1))) max_l2_clump = l2_clump.max() npclump2 = np.array(clump2.exterior) npclump2_shift = np.roll(npclump2,1,axis=0) diff_clump2 = npclump2_shift - npclump2 l2_clump2 = np.sqrt(((diff_clump2**2).sum(axis=1))) max_l2_clump2 = l2_clump2.max() clump_dict['clump'].append(i) clump_dict['max_line'].append(max_l2_clump) clump_dict['area'].append(clump.area) clump_dict['max_line_simplify'].append(max_l2_clump2) # shift x and y polygon axis polygon_dict[i] = npclump2 - npclump2.min(axis=0) print('\n number', i, '\n area',clump.area, 'clump max line',max_l2_clump, 'simplified clump max line', max_l2_clump2) i +=1 num_clumps = i-1 clump_df = pd.DataFrame(clump_dict) sort_clump_df = clump_df.sort_values(by='max_line_simplify',ascending = False) sort_clump_df.reset_index(inplace=True) return sort_clump_df,polygon_dict, num_clumps
3b846760d78ad44630de0005e70e26f00b44b7d4
3,642,615
from re import S def norm(point): """Returns the Euclidean norm of a point from origin. Parameters ========== point: This denotes a point in the dimensional space. Examples ======== >>> from sympy.integrals.intpoly import norm >>> from sympy.geometry.point import Point >>> norm(Point(2, 7)) sqrt(53) """ half = S(1)/2 if isinstance(point, tuple): return (point[0] ** 2 + point[1] ** 2) ** half elif isinstance(point, Point): return (point.x ** 2 + point.y ** 2) ** half elif isinstance(point, dict): return sum(i**2 for i in point.values()) ** half
8e341bb7e623d2ef7a998b91a15e8a6735403860
3,642,616
def read_reducing(): """Return gas resistance for reducing gases. Eg hydrogen, carbon monoxide """ setup() return read_all().reducing
3e0d78fc999909d29c469f3399e845df542e1e68
3,642,617
def access_rights_to_metax(data): """ Cherry pick access right data from the frontend form data and make it comply with Metax schema. Arguments: data {object} -- The whole object sent from the frontend. Returns: object -- Object containing access right object that comply to Metax schema. """ access_rights = {} if "license" in data: access_rights["license"] = [] if "identifier" in data["license"] and data["license"]["identifier"] != 'other': license_object = {} license_object["identifier"] = data["license"]["identifier"] access_rights["license"].append(license_object) elif "otherLicenseUrl" in data: license_object = {} license_object["license"] = data["otherLicenseUrl"] access_rights["license"].append(license_object) if "accessType" in data: access_rights["access_type"] = {} access_rights["access_type"]["identifier"] = data["accessType"]["url"] if data["accessType"]["url"] != access_type["OPEN"]: access_rights["restriction_grounds"] = [] access_rights["restriction_grounds"].append({"identifier": data["restrictionGrounds"]}) if data["accessType"]["url"] == access_type["EMBARGO"] and "embargoDate" in data: access_rights["available"] = data["embargoDate"] return access_rights
f66167028d86b5af4f15149bd21ab52fab9c3ba4
3,642,618
def read_toml_file(input_file, config_name = None, confpaths = [".", TCFHOME + "/" + "config"]): """ Function to read toml file and returns the toml content as a list Parameters: - input_file is any toml file which need to be read - config_name is particular configuration to pull - data_dir is the directory structure in which the toml file exists """ conffiles = [input_file] config = pconfig.parse_configuration_files(conffiles, confpaths) if config_name is None: return config else : result = config.get(config_name) if result is None: logger.error("%s is missing in toml file %s", config_name, input_file ) return None else : return result
9f0e05dfd556f06ed0323e6484e804f7813c626c
3,642,619
def and_sum (phrase): """Returns TRUE iff every element in <phrase> is TRUE""" for x in phrase: if not x: return False return True
d65953c5811aedef0a7c76cd3191aba8236f02fa
3,642,620
def load_data(filename: str): """ Load house prices dataset and preprocess data.g Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ house_data = pd.read_csv(filename) # drop corrupted data house_data.dropna(inplace=True) house_data.drop_duplicates(inplace=True) # remove the location and id columns house_data.drop(columns=['lat', 'long', 'id'], inplace=True) # remove negative and illegal values for column in ['price', 'sqft_lot', 'sqft_lot15', 'floors', 'yr_built']: house_data = house_data[house_data[column] > 0] for column in [('waterfront', range(2)), ('view', range(5)), ('condition', range(1, 6)), ('grade', range(1, 14))]: house_data = house_data[house_data[column[0]].isin(column[1])] # categorize the columns 'zipcode', 'date', 'yr_built', 'yr_renovated' house_data['zipcode'] = house_data['zipcode'].astype(str).str[:3] house_data = pd.get_dummies(house_data, columns=['zipcode'], prefix='zipcode_area') house_data['date'] = house_data['date'].str[:4] house_data = pd.get_dummies(house_data, columns=['date']) house_data['yr_built'] = house_data['yr_built'].astype(str).str[:2] house_data = pd.get_dummies(house_data, columns=['yr_built']) house_data['yr_renovated'] = house_data['yr_renovated'].astype(str).str[:2] house_data = pd.get_dummies(house_data, columns=['yr_renovated']) # is_basement flag house_data['is_basement'] = (house_data['sqft_basement'] >= 1).astype(int) return house_data['price'], house_data.drop(columns=['price'])
a01179d470262bdc77e9d5417c1bd00415e4ccbd
3,642,621
def eccanom(M, e): """Finds eccentric anomaly from mean anomaly and eccentricity This method uses algorithm 2 from Vallado to find the eccentric anomaly from mean anomaly and eccentricity. Args: M (float or ndarray): mean anomaly e (float or ndarray): eccentricity (eccentricity may be a scalar if M is given as an array, but otherwise must match the size of M. Returns: E (float or ndarray): eccentric anomaly """ # make sure M and e are of the correct format. # if 1 value provided for e, array must match size of M M = np.array(M).astype(float) if not M.shape: M = np.array([M]) e = np.array(e).astype(float) if not e.shape: e = np.array([e] * len(M)) assert e.shape == M.shape, "Incompatible inputs." assert np.all((e >= 0) & (e < 1)), "e defined outside [0,1)" # initial values for E E = M / (1 - e) mask = e * E ** 2 > 6 * (1 - e) E[mask] = (6 * M[mask] / e[mask]) ** (1. / 3) # Newton-Raphson setup tolerance = np.finfo(float).eps * 4.01 numIter = 0 maxIter = 200 err = 1. while err > tolerance and numIter < maxIter: E = E - (M - E + e * np.sin(E)) / (e * np.cos(E) - 1) err = np.max(abs(M - (E - e * np.sin(E)))) numIter += 1 if numIter == maxIter: raise Exception("eccanom failed to converge. Final error of %e" % err) return E
433ee8d5f6c247626316d953ecf35a9805b70390
3,642,622
def transform_frame(frame: np.array, transform: AffineTransformation, rotate: bool = False, center_crop: bool = False) -> np.array: """ Perform affine transformation of a single image-frame. Parameters ---------- frame : array Image frame. transform : AffineTransformation Delta-x, -y, -angle to use for transformation. rotate : bool If True, rotation will be used otherwise only translation. center_crop : bool If True, the center of the image will be cropped out by a fixed margin to remove border artifacts. Returns ------- array """ dx, dy, da = transform height, width = frame.shape[:2] # Reconstruct transformation matrix accordingly to new values transformation_matrix = np.zeros((2, 3), np.float32) if rotate: transformation_matrix[0, 0] = np.cos(da) transformation_matrix[0, 1] = -np.sin(da) transformation_matrix[1, 0] = np.sin(da) transformation_matrix[1, 1] = np.cos(da) else: transformation_matrix[0, 0] = 1 transformation_matrix[0, 1] = 0 transformation_matrix[1, 0] = 0 transformation_matrix[1, 1] = 1 transformation_matrix[0, 2] = dx transformation_matrix[1, 2] = dy # Apply affine wrapping to the given frame stabilized_frame = cv2.warpAffine(frame, transformation_matrix, (width, height), flags=cv2.INTER_NEAREST) if center_crop: stabilized_frame = _scale_around_center(stabilized_frame) return stabilized_frame
7e29b2a0abf62e1388c6715cfb30958046f1ff18
3,642,623
def TEMA(equity, start=None, end=None, timeperiod=30): """Triple Exponential Moving Average :param timeperiod: :return: """ close = np.array(equity.hp.loc[start:end, 'close'], dtype='f8') real = talib.TEMA(close, timeperiod=timeperiod) return real
0494e2cd6fedfc6b8ea8880808090f481c1128bc
3,642,624
def get_miner_pool_by_owner_id(): """ 存储提供者详情 :return: """ owner_id = request.form.get("owner_id") data = MinerService.get_miner_pool_by_no(owner_id) return response_json(data)
aa9fb36843d8999ac428d492463432de096628fe
3,642,625
def notFound(e): """View for 404 page.""" return render_template('content/notfound.jinja.html'), 404
d1bb53d22351ecbceda60ea28bdf8e7b688ad77d
3,642,626
from datetime import datetime def get_stay(admission_date, exit_date): """Method to get exit date.""" try: if not exit_date: exit_date = datetime.now().date() no_days = exit_date - admission_date # Get More years = ((no_days.total_seconds()) / (365.242 * 24 * 3600)) years_int = int(years) months = (years - years_int) * 12 months_int = int(months) days = (months - months_int) * (365.242 / 12) days_int = int(days) years_val = '' if years_int == 0 else '%s years ' % (years_int) mon_check = years_int > 0 and months_int > 0 months_val = '%s months ' % (months_int) if mon_check else '' pds = '%s%s%s days' % (years_val, months_val, days_int) except Exception as e: print('Error calculating exit - %s' % str(e)) return None else: return pds
bba3aa63884608500793c9f97c0c6e0e5d9e69ef
3,642,627
def compress(X, halve, g = 0, indices = None): """Returns Compress coreset of size 2^g sqrt(n) or, if indices is not None, of size 2^g sqrt(len(indices)) as row indices into X Args: X: Input sequence of sample points with shape (n, d) halve: Algorithm that takes an input a set of points and returns indices a set of indices to a subset of points with cardinality half of the input set g: Oversampling parameter, a nonnegative integer indices: If None, compresses X and returns coreset of size 2^g sqrt(n); otherwise, compresses X[indices] and returns coreset of size 2^g sqrt(len(indices)) """ # Check if indices is None in which case it sets it to range(size(X)) if indices is None: indices = np.arange(X.shape[0], dtype=int) # If the number of input points matches the target coreset size, we're done if len(indices) == 4**g: return indices else: # Partition the set input indices into four disjoint sets partition_set = np.array_split(indices,4) # Initialize an array to hold outputs of recursive calls compress_outputs = [] for x in partition_set: # Recursively call compress on the four subsets and # add its output to the list compress_output = compress(X, halve, g, indices = x) compress_outputs.append(compress_output) # Merge outputs of the recursive calls to compress combined_compress_output = np.concatenate(compress_outputs) # Run halving on the combined output indices_into_combined = halve(X[combined_compress_output]) # Return indices into the original input set X return combined_compress_output[indices_into_combined]
34503bf6602ef4577811c6fe449ae6109fa25007
3,642,628
def filter_objects(objs, labels, none_val=0): """Keep objects specified by label list""" out = objs.copy() all_labels = set(nonzero_unique(out)) labels = set(labels) remove_labels = all_labels - labels for l in remove_labels: remove_object(out, l) return out
8fccf936a5e74e274a2df5c182764e346e39dafb
3,642,629
def get_index_freq(freqs, fmin, fmax): """Get the indices of the freq between fmin and fmax in freqs """ f_index_min, f_index_max = -1, 0 for freq in freqs: if freq <= fmin: f_index_min += 1 if freq <= fmax: f_index_max += 1 # Just check if f_index_max is not out of bound f_index_max = min(len(freqs) - 1, f_index_max) f_index_min = max(0, f_index_min) return f_index_min, f_index_max
f3e014626d763f18ce6b661cabeb244bfabe9782
3,642,630
def get_gene_mod(gene_id, marker_id): """Retrieves a GeneMod model if the gene / marker pair already exists, or creates a new one """ if gene_id in ("None", None): gene_id = 0 if marker_id in ("None", None): marker_id = 0 gene_mod = GeneMod.query.filter_by(gene_id=gene_id, marker_id=marker_id).first() if gene_mod: log.info("Found gene_mod for gene %s and marker %s", gene_id, marker_id) return gene_mod gene = Gene.get_by_id(gene_id) marker = Marker.get_by_id(marker_id) if not (gene or marker): return None gene_label = gene.label if gene else "" gene_id = gene.bioportal_id if gene else "" marker_label = marker.label if marker else "" marker_id = marker.bioportal_id if marker else "" user_id = gene.user_id if gene else marker.user_id group_id = gene.group_id if gene else marker.group_id label = f"{gene_label}-{marker_label}" bioportal_id = f"{gene_id}-{marker_id}" gene_mod = GeneMod( label=label, bioportal_id=bioportal_id, user_id=user_id, group_id=group_id, ) if gene: gene_mod.update(gene=gene, gene_id=gene_id, commit=False) if marker: gene_mod.update(marker=marker, marker_id=marker_id, commit=False) gene_mod.save() return gene_mod
26f29cbaa33c6fb7d40626152977c583fa5bcf57
3,642,631
def random_matrix(shape, tt_rank=2, mean=0., stddev=1., dtype=tf.float32, name='t3f_random_matrix'): """Generate a random TT-matrix of the given shape with given mean and stddev. Entries of the generated matrix (in the full format) will be iid and satisfy E[x_{i1i2..id}] = mean, Var[x_{i1i2..id}] = stddev^2, but the distribution is in fact not Gaussian. In the current implementation only mean 0 is supported. To get a random_matrix with specified mean but tt_rank greater by 1 you can call x = t3f.random_matrix(shape, tt_rank, stddev=stddev) x = mean * t3f.ones_like(x) + x Args: shape: 2d array, shape[0] is the shape of the matrix row-index, shape[1] is the shape of the column index. shape[0] and shape[1] should have the same number of elements (d) Also supports omitting one of the dimensions for vectors, e.g. random_matrix([[2, 2, 2], None]) and random_matrix([None, [2, 2, 2]]) will create an 8-element column and row vectors correspondingly. tt_rank: a number or a (d+1)-element array with ranks. mean: a number, the desired mean for the distribution of entries. stddev: a number, the desired standard deviation for the distribution of entries. dtype: [tf.float32] dtype of the resulting matrix. name: string, name of the Op. Returns: TensorTrain containing a TT-matrix of size np.prod(shape[0]) x np.prod(shape[1]) """ # TODO: good distribution to init training. # In case the shape is immutable. shape = list(shape) # In case shape represents a vector, e.g. [None, [2, 2, 2]] if shape[0] is None: shape[0] = np.ones(len(shape[1]), dtype=int) # In case shape represents a vector, e.g. [[2, 2, 2], None] if shape[1] is None: shape[1] = np.ones(len(shape[0]), dtype=int) shape = np.array(shape) tt_rank = np.array(tt_rank) _validate_input_parameters(is_tensor=False, shape=shape, tt_rank=tt_rank) num_dims = shape[0].size if tt_rank.size == 1: tt_rank = tt_rank * np.ones(num_dims - 1) tt_rank = np.concatenate([[1], tt_rank, [1]]) tt_rank = tt_rank.astype(int) var = np.prod(tt_rank) # Empirically entries of a TT tensor with cores initialized from N(0, 1) # will have variances np.prod(tt_rank) and mean 0. # We scale each TT-core to obtain the desired stddev cr_exponent = -1.0 / (2 * num_dims) var = np.prod(tt_rank ** cr_exponent) core_stddev = stddev ** (1.0 / num_dims) * var with tf.name_scope(name): tt = matrix_with_random_cores(shape, tt_rank=tt_rank, stddev=core_stddev, dtype=dtype) if np.abs(mean) < 1e-8: return tt else: raise NotImplementedError('non-zero mean is not supported yet')
01f81199a71966ce379d2acc01d237ec47d346ec
3,642,632
def triangulate_polylines(polylines, holePts, lowQuality = False, maxArea = 0.01): """ Convenience function for triangulating a polygonal region using the `triangle` library. Parameters ---------- polylines List of point lists, each defining a closed polygon (with coinciding first and last points) to triangulate. holePts A single point within each polygonal region that should be interpreted as a hole. These regions will be omitted from the output triangulation. lowQuality Prohibit the insertion of any Steiner points, creating a low-quality triangulation that be used for traversal/topological queries. maxArea Area threshold for refining triangles; ignored if lowQuality is True. Returns ------- V, F Indexed face set representation of the output triangle mesh. """ lV, lE = mesh_operations.mergedMesh([mesh_operations.polylineToLineMesh(p) for p in polylines]) omitQualityFlag, flags = False, "" if lowQuality: omitQualityFlag, flags = True, "YYS0" V, F, markers = triangulation.triangulate(lV, lE, holePts=holePts, triArea=maxArea, omitQualityFlag=omitQualityFlag, flags=flags) return V, F
e2ae0eb5339d51d02eb1d26302fc18229ff85f83
3,642,633
def inclination(x, y, z, u, v, w): """Compute value of inclination, I. Args: x (float): x-component of position y (float): y-component of position z (float): z-component of position u (float): x-component of velocity v (float): y-component of velocity w (float): z-component of velocity Returns: float: inclination, I """ my_hz = x*v-y*u my_h = np.sqrt( (y*w-z*v)**2 + (z*u-x*w)**2 + (x*v-y*u)**2 ) return np.arccos(my_hz/my_h)
bf85358fc6f002cdb4e0d47e6af0a93b8f9e4024
3,642,634
def OctahedralGraph(): """ Return an Octahedral graph (with 6 nodes). The regular octahedron is an 8-sided polyhedron with triangular faces. The octahedral graph corresponds to the connectivity of the vertices of the octahedron. It is the line graph of the tetrahedral graph. The octahedral is symmetric, so the spring-layout algorithm will be very effective for display. PLOTTING: The Octahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout. EXAMPLES: Construct and show an Octahedral graph:: sage: g = graphs.OctahedralGraph() sage: g.show() # long time Create several octahedral graphs in a Sage graphics array They will be drawn differently due to the use of the spring-layout algorithm:: sage: g = [] sage: j = [] sage: for i in range(9): ....: k = graphs.OctahedralGraph() ....: g.append(k) sage: for i in range(3): ....: n = [] ....: for m in range(3): ....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ....: j.append(n) sage: G = graphics_array(j) sage: G.show() # long time """ adj = {0: [1, 2, 3, 4], 1: [2, 3, 5], 2: [4, 5], 3: [4, 5], 4: [5]} G = Graph(adj, format='dict_of_lists', name="Octahedron") G._circle_embedding([0, 1, 2], radius=5, angle=pi/2) G._circle_embedding([4, 3, 5], radius=1, angle=pi/6) return G
d2abce73e747890f992301bb4814cfa52e55bce4
3,642,635
def peak_detect(y, delta, x=None): """ Find local maxima in y. Args: y (array): intensity data in which to look for peaks delta (float): a point is considered a maximum peak if it has the maximal value, and was preceded (to the left) by a value lower by DELTA. x (array, optional): correspond x-axis Returns: tuple containing: - *array*: indices of peaks / the x-values of peaks if x arg was passed - *array* : y values of peaks References: Converted from MATLAB script at http://billauer.co.il/peakdet.html. """ maxtab = [] mintab = [] if x is None: x = np.arange(len(y)) y = np.asarray(y) mn, mx = np.Inf, -np.Inf mnpos, mxpos = np.NaN, np.NaN lookformax = True for i in np.arange(len(y)): this = y[i] if this > mx: mx = this mxpos = x[i] if this < mn: mn = this mnpos = x[i] if lookformax: if this < mx - delta: maxtab.append((mxpos, mx)) mn = this mnpos = x[i] lookformax = False else: if this > mn + delta: mintab.append((mnpos, mn)) mx = this mxpos = x[i] lookformax = True return np.array(maxtab)
def69cfcea7ccaed931fd764eab88de9fbb8773a
3,642,636
def quadruplet_fixated_egomotion( filename ): """ Given a filename that contains 4 different point-view combos, parse the filename and return the pair-wise camera pose. Parameters: ----------- filename: a filename in the specific format. Returns: ----------- egomotion: a numpy array of length 36 (6x6). (a concatanation of 6 6-DOF relative camera pose vector) """ if isinstance(filename, list): raise ValueError("Having more than two inputs to a fixated camera pose problem") full_paths = parse_fixated_filename(filename) if len(full_paths) != 4 : raise ValueError("quadruplet first view prediction with list shorter than 4") # perm = random.shuffle(range(4)) # full_paths = [full_paths[i] for i in perm] poses = [] for i in range(3): for j in range(i+1, 4): pose = calculate_relative_camera_pose(full_paths[i], full_paths[j]) poses.append(pose) poses = np.hstack(poses) return poses
5b40e8cfac7362c361ebe9119e5e4753c8e03978
3,642,637
def moshinsky(state1,state2,stater,statec,state,type): """ calculates the moshinsky coefficients used to transform between the two-particle and relative-center of mass frames. w1 x w2->w wr x wc->w type can be either "SU3" or "SO3" if type=="SU3": state1,state2,stater,statec,state are simply SU3State class if type=="SO3" then state1 etc are (n1,L1) where N1=2*n1+L1 and w1=SU3State(N1,0) state=L """ mosh=0 if type=="SU3": #check SU3 coupling if u3.mult(state1,state2,state)*u3.mult(stater,statec,state)!=0: mosh=mosh_SU3(state1,state2,stater,statec,state) if type=="SO3": #check that angular momentum coupling is allowed and that N1+N2=Nr+Nc (n1,L1)=state1 (n2,L2)=state2 (nr,Lr)=stater (nc,Lc)=statec L=state if (so3.mult(L1,L2,L)!=0) and (so3.mult(Lc,Lr,L)!=0) and ((2*n1+L1+2*n2+L2)==(2*nr+Lr+2*nc+Lc)): mosh=mosh_SO3((n1,L1),(n2,L2),(nr,Lr),(nc,Lc),L) return mosh
ee53cc25f2723b95179e1e190d94536de18f6321
3,642,638
def test_lie_algebra_nqubits_check(): """Test that we warn if the system is too big.""" @qml.qnode(qml.device("default.qubit", wires=5)) def circuit(): qml.RY(0.5, wires=0) return qml.expval(qml.Hamiltonian(coeffs=[-1.0], observables=[qml.PauliX(0)])) with pytest.warns(UserWarning, match="The exact Riemannian gradient is exponentially"): LieAlgebraOptimizer(circuit=circuit, stepsize=0.001)
b4e296eabab9dc1fd250d391e8c12d2b2f12c59c
3,642,639
def get_elastic_apartments_not_for_sale(): """ Get apartments not for sale but with published flags """ s_obj = ( ApartmentDocument.search() .filter("term", publish_on_oikotie=True) .filter("term", publish_on_etuovi=True) .filter("term", apartment_state_of_sale__keyword=ApartmentStateOfSale.RESERVED) ) s_obj.execute() scan = s_obj.scan() uuids = [] for hit in scan: uuids.append(hit.uuid) return uuids
080afdfa61f40f966ad498b3e292224bbfac262d
3,642,640
def promptYesNoCancel(prompt, prefix=''): """Simple Yes/No/Cancel prompt :param prompt: string, message to the user for selecting a menu entry :param prefix: string, text to print before the menu entry to format the display :returns: string, menu entry text """ menu = [ {'index': 1, 'text': 'Yes', 'type': 'YES'}, {'index': 2, 'text': 'No', 'type': 'NO'}, {'index': 3, 'text': 'Cancel', 'type': 'EXIT'} ] return promptSimple(menu, prompt, prefix)
bf71ac635ef83ce370350bd352a7e0d619a956c7
3,642,641
def gradcheck_naive(f, x): """ Implements a manual gradient check: this functions is used as a helper function in many places - f should be a function that takes a single argument and outputs the cost and its gradients - x is the point (numpy array) to check the gradient at """ rndstate = random.getstate() random.setstate(rndstate) fx, grad = f(x) # Evaluate function value at original point h = 1e-4 # Iterate over all indexes in x it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index # modifying x[ix] with h defined above to compute numerical gradients # make sure you call random.setstate(rndstate) before calling f(x) each time, this will make it # possible to test cost functions with built in randomness later oldvalue = x[ix] x[ix] = oldvalue + h random.setstate(rndstate) fxh, _ = f(x) x[ix] = oldvalue - h random.setstate(rndstate) fxnh, _ = f(x) numgrad = ((fxh - fxnh) / 2.0) / h x[ix] = oldvalue # Compare gradients reldiff = abs(numgrad - grad[ix]) / max(1, abs(numgrad), abs(grad[ix])) if reldiff > 1e-5: print "Gradient check failed." print "First gradient error found at index %s" % str(ix) print "Your gradient: %f \t Numerical gradient: %f" % (grad[ix], numgrad) return False it.iternext() # Step to next dimension print "Gradient check passed!" return True
c99f687ae8fad8ea890119e014294879f97fce33
3,642,642
def cal_mae_loss(logits, gts, reduction): """ :param preds: (N,C,H,W) logits predicted by the model. :param gts: (N,1,H,W) ground truths. :param reduction: specifies how all element-level loss is handled. :return: mae loss """ probs = logits.sigmoid() loss = (probs - gts).abs() return reduce_loss(loss, reduction)
6cc813552c46c4c6ea92fb1295478e8770cb255c
3,642,643
def divideByFirstColumn(matrix): """This function devide a matrix by its first column to resolve wrong intemsity problems""" result = (matrix.T / matrix.sum(axis=1)).T return result
348bbaa1a3c16a42be90978a0fcc65b1a7daf557
3,642,644
def loglikehood_coefficient(n_items, X, Y): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. Parameters ---------- n_items: int Number of items in the model. X: array of shape (n_samples_1, n_features) Y: array of shape (n_samples_2, n_features) Returns ------- distances: array of shape (n_samples_1, n_samples_2) Examples -------- >>> from scikits.crab.metrics.pairwise import loglikehood_coefficient >>> X = [['a', 'b', 'c', 'd'], ['e', 'f','g', 'h']] >>> # distance between rows of X >>> n_items = 7 >>> loglikehood_coefficient(n_items,X, X) array([[ 1., 0.], [ 0., 1.]]) >>> n_items = 8 >>> loglikehood_coefficient(n_items, X, [['a', 'b', 'c', 'k']]) array([[ 0.67668852], [ 0. ]]) References ---------- See http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.5962 and http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. def safeLog(d): if d <= 0.0: return 0.0 else: return np.log(d) def logL(p, k, n): return k * safeLog(p) + (n - k) * safeLog(1.0 - p) def twoLogLambda(k1, k2, n1, n2): p = (k1 + k2) / (n1 + n2) return 2.0 * (logL(k1 / n1, k1, n1) + logL(k2 / n2, k2, n2) - logL(p, k1, n1) - logL(p, k2, n2)) if X is Y: X = Y = np.asanyarray(X) else: X = np.asanyarray(X) Y = np.asanyarray(Y) result = [] # TODO: Check if it is possible to optimize this function i = 0 for arrayX in X: result.append([]) for arrayY in Y: XY = np.intersect1d(arrayX, arrayY) if XY.size == 0: result[i].append(0.0) else: nX = arrayX.size nY = arrayY.size if (nX - XY.size == 0) or (n_items - nY) == 0: result[i].append(1.0) else: logLikelihood = twoLogLambda(float(XY.size), float(nX - XY.size), float(nY), float(n_items - nY)) result[i].append(1.0 - 1.0 / (1.0 + float(logLikelihood))) result[i] = np.asanyarray(result[i]) i += 1 return np.asanyarray(result)
220090c944c9e9c6b97fb8a576aa416ec0493c26
3,642,645
def get_archive_by_path(db, vault_name, path, retrieve_subpath_archs=False): """ Will attempt to find the most recent version of an archive representing a given path. If retrieve_subpath_archs is True, then will also retrieve latest versions of archives representing subdirs of the path. :param path: The path whose contents we want to retrieve, relative to the top_dir that was backed up. :param retrieve_subpath_archs: If True, will return a list of all of the archives of subdirectories below the `path` in the directory tree :return: archive, list """ if not retrieve_subpath_archs: get_most_recent_version_of_archive(db, vault_name, path) else: # When trying to find subdirectories, the daft assumption that we make is that the 'path' of the archive will # start with `path` and be longer than `path`. It'll work for now, but seems inelegant... path_list = get_list_of_paths_in_vault(db, vault_name) subdir_list = [] while len(path_list): cur_path = path_list.pop() if cur_path.startswith(path) and len(cur_path) >= len(path): subdir_list.append(cur_path) arch_list = [] for subdir in subdir_list: arch = get_most_recent_version_of_archive(db, vault_name, subdir) if arch: arch_list.append(arch) return arch_list
af30d33e90ef1b509a75f1c96a85b0457d454b71
3,642,646
import random def superpixel_colors( num_pix:int = 1536, schema:str = 'rgb', interleave:int = 1, stroke:str = '', ) -> list: """ Generate color (attribute) list for superpixel SVG paths Parameters ---------- num_pix : int Number of super pixels to account for (default = 1536) schema : str Either of 'rgb' or 'random' interleave : int RGB interleave value (default = 1) stroke : str String that is inserted into ever attribute at the end, e.g. to account for a stroke, such as 'stroke="#808080"'. Please note that the entire tag=value (pairs) must be given! Returns ------- colors : list List of attributes suitable for superpixel_outlines (SVG) """ colors = [''] * num_pix if not schema in ['random', 'rgb']: raise ValueError('invalid schema requested.') if schema == 'rgb': if stroke: for idx in range(num_pix): val = interleave * idx colors[idx] = 'fill="#{0:02x}{1:02x}{2:02x}" {3:s}'.format( val % 256, (val // 256) % 256, (val // 65536) % 256, stroke) else: for idx in range(num_pix): val = interleave * idx colors[idx] = 'fill="#{0:02x}{1:02x}{2:02x}"'.format( val % 256, (val // 256) % 256, (val // 65536) % 256) else: # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT if stroke: for idx in range(num_pix): colors[idx] = 'fill="#{0:06x} {1:s}"'.format( random.randrange(16777216), stroke) else: for idx in range(num_pix): colors[idx] = 'fill="#{0:06x}"'.format( random.randrange(16777216)) return colors
7a574b48dff30126052c2acd5d06e01a9f4a9af0
3,642,647
from typing import List def build_module_op_list(m: tq.QuantumModule, x=None) -> List: """ serialize all operations in the module and generate a list with [{'name': RX, 'has_params': True, 'trainable': True, 'wires': [0], n_wires: 1, 'params': [array([[0.01]])]}] so that an identity module can be reconstructed The module needs to have static support """ m.static_off() m.static_on(wires_per_block=None) m.is_graph_top = False # forward to register all modules and parameters if x is None: m.forward(q_device=None) else: m.forward(q_device=None, x=x) m.is_graph_top = True m.graph.build_flat_module_list() module_list = m.graph.flat_module_list m.static_off() op_list = [] for module in module_list: if module.params is not None: if module.params.shape[0] > 1: # more than one param, so it is from classical input with # batch mode assert not module.has_params params = None else: # has quantum params, batch has to be 1 params = module.params[0].data.cpu().numpy() else: params = None op_list.append({ 'name': module.name.lower(), 'has_params': module.has_params, 'trainable': module.trainable, 'wires': module.wires, 'n_wires': module.n_wires, 'params': params }) return op_list
e14bbfe8122e05d0b65e93246494fa1414bcdf1b
3,642,648
import argparse def _get_args(): """ Parses the command line arguments and returns them. """ parser = argparse.ArgumentParser(description=__doc__) # Argument for the mode of execution (human or random): parser.add_argument( "--mode", "-m", type=str, default="human", choices=["human", 'random'], help="The execution mode for the game.", ) return parser.parse_args()
fdccca9d6ba518d7b3c1732070667b0b82018fc5
3,642,649
import json def file_to_dict(filename, data): """Converts JSON file to dict :param filename: filename :param data: string :return: dict object """ try: try: json_data = to_json(data) return json.loads(json_data) except Exception as _: return json.loads(data) except Exception as error: logger.error("Failed to parse s3 file {}, error: {}".format(filename, str(error))) raise ValueError("Unable to load JSON file {} error: {}".format(filename, str(error)))
3d6ff02246081dce83097545b5290dbbeedddab7
3,642,650
def reorganizeArray(id_A, id_B, gids_tuple, unordered_coordinates ): """ From a tuple of genome ID's representing a coordinate array's structure (gidI, gidJ). and the corresponding coordinate np-array (n x 4) of design [[locI1, locJ1, fidI1, fidJ2, Kn, Ks], ... [locIn, locJn, fidIn, fidJn, Kn, Ks]] * Both of these are returned by getPointCoords - as "ids" and "coords", respectively. Restructures to represent an (A, B) order (swaps columns 0,1 and 2,3 if A=J and B=I, else unchanged) :param id_A: GID of genome to appear first :param id_B: GID of genome to appear second :param gids_tuple: Ordered tuple of GIDs in original coordinate array (returned by getPointCoords) :param unordered_coordinates: coordinate (ordered or unordered) to map order to (returned by getPointCoords) :return: coordinate object with [A_loc, B_loc, A_fid, B_fid] order enforced. """ reorg_start = datetime.now() if id_A == gids_tuple[0] and id_B == gids_tuple[1]: ordered_coordinates = unordered_coordinates elif id_A == gids_tuple[1] and id_B == gids_tuple[0]: ordered_coordinates = unordered_coordinates[:,[1,0,3,2,4,5]] else: ordered_coordinates = None print "ERROR: reorganizeArray (%s, %s)" % (str(id_A), str(id_B)) exit() reorg_end = datetime.now() print("Coordinates Reorganization Complete (%s)" % str(reorg_end-reorg_start)) print("--> (%s,%s) to (%s,%s)" % (gids_tuple[0], gids_tuple[1], id_A, id_B)) return ordered_coordinates
c4ac1add615f21e4238ad3cd65e1fb9797c02b27
3,642,651
def compile_model_output(i,j,files,model): """ compiles the model variables over severl files into a single array at a j,i grid point. Model can be "Operational", "Operational_old", "GEM". returns wind speed, wind direction, time,pressure, temperature, solar radiation, thermal radiation and humidity. """ wind=[]; direc=[]; t=[]; pr=[]; sol=[]; the=[]; pre=[]; tem=[]; qr=[]; for f in files: G = nc.Dataset(f) u = G.variables['u_wind'][:,j,i]; v=G.variables['v_wind'][:,j,i]; pr.append(G.variables['atmpres'][:,j,i]); sol.append(G.variables['solar'][:,j,i]); qr.append(G.variables['qair'][:,j,i]); the.append(G.variables['therm_rad'][:,j,i]); pre.append(G.variables['precip'][:,j,i]); tem.append(G.variables['tair'][:,j,i]) speed = np.sqrt(u**2 + v**2) wind.append(speed) d = np.arctan2(v, u) d = np.rad2deg(d + (d<0)*2*np.pi); direc.append(d) ts=G.variables['time_counter'] if model =='GEM': torig = nc_tools.time_origin(G) elif model =='Operational' or model=='Operational_old': torig = datetime.datetime(1970,1,1) #there is no time_origin attriubte in OP files, so I hard coded this for ind in np.arange(ts.shape[0]): t.append((torig + datetime.timedelta(seconds=ts[ind])).datetime) wind = np.array(wind).reshape(len(filesGEM)*24,) direc = np.array(direc,'double').reshape(len(filesGEM)*24,) t = np.array(t).reshape(len(filesGEM)*24,) pr = np.array(pr).reshape(len(filesGEM)*24,) tem = np.array(tem).reshape(len(filesGEM)*24,) sol = np.array(sol).reshape(len(filesGEM)*24,) the = np.array(the).reshape(len(filesGEM)*24,) qr = np.array(qr).reshape(len(filesGEM)*24,) pre = np.array(pre).reshape(len(filesGEM)*24,) return wind, direc, t, pr, tem, sol, the, qr, pre
d42b3b8b4222b1ac15d1f8d7643c994efec0bb5e
3,642,652
def read_audio(path, Fs=None, mono=False): """Read an audio file into a np.ndarray. Args: path (str): Path to audio file Fs (scalar): Resample audio to given sampling rate. Use native sampling rate if None. (Default value = None) mono (bool): Convert multi-channel file to mono. (Default value = False) Returns: x (np.ndarray): Waveform signal Fs (scalar): Sampling rate """ return librosa.load(path, sr=Fs, mono=mono)
6b3f88ae00b1d9dab8016b33cc5a2d7c58d5b87e
3,642,653
import os import re import sys def energies_from_mbe_log(filename): """Monomer dimer energies from log file.""" monomers, dimers, trimers, tetramers = {}, {}, {}, {} hf, os_, ss_ = True, False, False mons, dims, tris, tets = True, False, False, False energies = False def storeEnergy(dict_, key, energy): """Store energy in given dict depending on whether HF, OS or SS.""" energy = float(energy) if hf: dict_[key] = {'hf': energy, 'os': np.nan, 'ss': np.nan} elif os_: dict_[key]['os'] = energy elif ss_: dict_[key]['ss'] = energy return dict_ dir, File = os.path.split(filename) dir = dir or "." lines = eof(dir+'/', File, 0.15) for line in lines: if not line.strip(): continue elif '-----ENERGIES OF MONOMERS------' in line: energies = True tets = False tris = False dims = False mons = True elif not energies: continue elif 'Final E(HF) =' in line: break elif 'DIMER ENERGY CORRECTION' in line: dims = True mons = False elif 'TRIMER ENERGY CORRECTION' in line: dims = False tris = True elif 'TETRAMER ENERGY CORRECTION' in line: tris = False tets = True elif 'RI-MP2 OS energies***' in line: ss_ = False os_ = True hf = False elif 'RI-MP2 SS energies***' in line: ss_ = True os_ = False hf = False elif 'ID' in line: if 'RIJ' in line: rij = True else: rij = False # ENERGIES else: # IF ENERGIES IN LINE if re.search('^[0-9]', line) or line.startswith('('): if mons: if rij: spl_line = line.split() if len(spl_line) == 3: id, e, rij = spl_line elif len(spl_line) == 2: id, hold = spl_line e = hold[:-1] rij = hold[-1] else: sys.exit("Unexpected number of items in split line") else: id, e = line.split() monomers = storeEnergy(monomers, id, e) elif dims: if rij: spl_line = line.split() if len(spl_line) == 4: id1, id2, e, rij = spl_line elif len(spl_line) == 3: id1, id2, hold = spl_line e = hold[:-1] rij = hold[-1] else: sys.exit("Unexpected number of items in split line") else: id1, id2, e = line.split() key = keyName(id1, id2) dimers = storeEnergy(dimers, key, e) elif tris: if rij: spl_line = line.split() if len(spl_line) == 5: id1, id2, id3, e, rij = spl_line elif len(spl_line) == 4: id1, id2, id3, hold = spl_line e = hold[:-1] rij = hold[-1] else: id1, id2, id3, e = line.split() key = keyName(id1, id2, id3) trimers = storeEnergy(trimers, key, e) elif tets: if rij: if len(spl_line) == 5: id1, id2, id3, id4, e, rij = spl_line elif len(spl_line) == 4: id1, id2, id3, id4, hold = spl_line e = hold[:-1] rij = hold[-1] else: id1, id2, id3, id4, e = line.split() key = keyName(id1, id2, id3, id4) tetramers = storeEnergy(tetramers, key, e) return monomers, dimers, trimers, tetramers
ef7fdae5580a490423b42714d6f1b5c3a8485b09
3,642,654
from numpy import array def build_varied_y_node_mesh(osi, xs, ys, zs=None, active=None): """ Creates an array of nodes that in vertical lines, but vary in height The mesh has len(xs)=ln(ys) nodes in the x-direction and len(ys[0]) in the y-direction. If zs is not None then has len(zs) in the z-direction. Parameters ---------- osi xs ys zs active Returns ------- np.array axis-0 = x-direction axis-1 = y-direction axis-2 = z # not included if len(zs)=1 or zs=None """ # axis-0 = x # unless x or y are singular # axis-1 = y # axis-2 = z # not included if len(zs)=1 or if not hasattr(zs, '__len__'): zs = [zs] sn = [] for xx in range(len(xs)): sn.append([]) for yy in range(len(ys[xx])): if len(zs) == 1: if active is None or active[xx][yy]: if osi.ndm == 2: pms = [osi, xs[xx], ys[xx][yy]] else: pms = [osi, xs[xx], ys[xx][yy], zs[0]] sn[xx].append(Node(*pms)) else: sn[xx].append(None) else: sn[xx].append([]) for zz in range(len(zs)): # Establish left and right nodes if active is None or active[xx][yy][zz]: sn[xx][yy].append(Node(osi, xs[xx], ys[xx][yy], zs[zz])) else: sn[xx][yy].append(None) # if len(zs) == 1: # return sn[0] return array(sn)
878386f1b815840d198de106f57e11883aec3d1c
3,642,655
def self_quarantine_end_10(): """ Real Name: b'self quarantine end 10' Original Eqn: b'50' Units: b'Day' Limits: (None, None) Type: constant b'' """ return 50
bb5fa131866d337460a37237b711d8c21588250d
3,642,656
import analysis as an import phasecurves as pc from astropy.io import fits as pyfits import pyfits def spexsxd_scatter_model(dat, halfwid=48, xlims=[470, 1024], ylims=[800, 1024], full_output=False, itime=None): """Model the scattered light seen in SpeX/SXD K-band frames. :INPUTS: dat : str or numpy array filename of raw SXD frame to be corrected, or a Numpy array containing its data. :OPTIONS: halfwid : int half-width of the spectral orders. Experience shows this is approximately 48 pixels. This value is not fit! xlims : list of length 2 minimum and maximum x-pixel values to use in the fitting ylims : list of length 2 minimum and maximum y-pixel values to use in the fitting full_output : bool whether to output only model, or the tuple (model, fits, chisq, nbad) itime : float integration time, in seconds, with which to scale the initial guesses :OUTPUT: scatter_model : numpy array Model of the scattered light component, for subtraction or saving. OR: scatter_model, fits, chis, nbad :REQUIREMENTS: :doc:`pyfits`, :doc:`numpy`, :doc:`fit_atmo`, :doc:`analysis`, :doc:`phasecurves` :TO_DO_LIST: I could stand to be more clever in modeling the scattered light components -- perhaps fitting for the width, or at least allowing the width to be non-integer. """ # 2011-11-10 11:10 IJMC: Created try: except: ############################################################ # Define some helper functions: ############################################################ def tophat(param, x): """Grey-pixel tophat function with set width param: [cen_pix, amplitude, background] x : must be array of ints, arange(0, size-1) returns the model.""" # 2011-11-09 21:37 IJMC: Created intpix, fracpix = int(param[0]), param[0] % 1 th = param[1] * ((-halfwid <= (x - intpix)) * ((x - intpix) < halfwid)) # th = * th.astype(float) if (intpix >= halfwid) and ((intpix - halfwid) < x.size): th[intpix - halfwid] = param[1]*(1. - fracpix) if (intpix < (x.size - halfwid)) and ((intpix + halfwid) >= 0): th[intpix + halfwid] = param[1]*fracpix return th + param[2] def tophat2g(param, x, p0prior=None): """Grey-pixel double-tophat plus gaussian param: [cen_pix1, amplitude1, cen_pix2, amplitude2, g_area, g_sigma, g_center, background] x : must be ints, arange(0, size-1) returns the model.""" # 2011-11-09 21:37 IJMC: Created #th12 = #th2 = #gauss = # if p0prior is not None: # penalty = return tophat([param[0], param[1], 0], x) + \ tophat([param[2], param[3], 0], x) + \ gaussian(param[4:7], x) + param[7] ############################################################ # Parse inputs ############################################################ halfwid = int(halfwid) if isinstance(dat, np.ndarray): if itime is None: itime = 1. else: if itime is None: try: itime = pyfits.getval(dat, 'ITIME') except: itime = 1. dat = pyfits.getdata(dat) nx, ny = dat.shape scatter_model = np.zeros((nx, ny), dtype=float) chis, fits, nbad = [], [], [] iivals = np.arange(xlims[1]-1, xlims[0], -1, dtype=int) position_offset = 850 - ylims[0] est_coefs = np.array([ -5.02509772e-05, 2.97212397e-01, -7.65702234e+01]) estimated_position = np.polyval(est_coefs, iivals) + position_offset estimated_error = 0.5 # to hold scattered light position fixed, rather than fitting for # that position, uncomment the following line: #holdfixed = [0] holdfixed = None ############################################################ # Start fitting ############################################################ for jj, ii in enumerate(iivals): col = dat[ylims[0]:ylims[1], ii] ecol = np.ones(col.size, dtype=float) x = np.arange(col.size, dtype=float) if len(fits)==0: all_guess = [175 + position_offset, 7*itime, \ 70 + position_offset, 7*itime, \ 250*itime, 5, 89 + position_offset, 50] else: all_guess = fits[-1] all_guess[0] = estimated_position[jj] model_all = tophat2g(all_guess, x) res = (model_all - col) badpix = np.abs(res) > (4*an.stdr(res, nsigma=4)) ecol[badpix] += 1e9 fit = an.fmin(pc.errfunc, all_guess, args=(tophat2g, x, col, 1./ecol**2), full_output=True, maxiter=1e4, maxfun=1e4, disp=False, kw=dict(testfinite=False), holdfixed=holdfixed) best_params = fit[0].copy() res = tophat2g(best_params, x) - col badpix = np.abs(res) > (4*an.stdr(res, nsigma=4)) badpix[((np.abs(np.abs(x - best_params[0]) - 48.)) < 2) + \ ((np.abs(np.abs(x - best_params[2]) - 48.)) < 2)] = False badpix += (np.abs(res) > (20*an.stdr(res, nsigma=4))) ecol = np.ones(col.size, dtype=float) ecol[badpix] += 1e9 best_chisq = pc.errfunc(best_params, tophat2g, x, col, 1./ecol**2) # Make sure you didn't converge on the wrong model: for this_offset in ([-2, 0, 2]): this_guess = fit[0].copy() this_guess[2] += this_offset this_guess[0] = estimated_position[jj] #pc.errfunc(this_guess, tophat2g, x, col, 1./ecol**2) this_fit = an.fmin(pc.errfunc, this_guess, args=(tophat2g, x, col, 1./ecol**2), full_output=True, maxiter=1e4, maxfun=1e4, disp=False, kw=dict(testfinite=False), holdfixed=holdfixed) #print this_offset1, this_offset2, this_fit[1] if this_fit[1] < best_chisq: best_chisq = this_fit[1] best_params = this_fit[0].copy() fits.append(best_params) chis.append(best_chisq) nbad.append(badpix.sum()) mod2 = tophat2g(best_params, x) scatter_model[ylims[0]:ylims[1], ii] = tophat(list(best_params[0:2])+[0], x) if full_output: return scatter_model, fits, chis, nbad else: return scatter_model
e4653a62f7d98a253034fd2908d4231ca23cff8b
3,642,657
def newff(minmax, size, transf=None): """ Create multilayer perceptron :Parameters: minmax: list of list, the outer list is the number of input neurons, inner lists must contain 2 elements: min and max Range of input value size: the length of list equal to the number of layers except input layer, the element of the list is the neuron number for corresponding layer Contains the number of neurons for each layer transf: list (default TanSig) List of activation function for each layer :Returns: net: Net :Example: >>> # create neural net with 2 inputs >>> # input range for each input is [-0.5, 0.5] >>> # 3 neurons for hidden layer, 1 neuron for output >>> # 2 layers including hidden layer and output layer >>> net = newff([[-0.5, 0.5], [-0.5, 0.5]], [3, 1]) >>> net.ci 2 >>> net.co 1 >>> len(net.layers) 2 """ net_ci = len(minmax) net_co = size[-1] if transf is None: transf = [trans.TanSig()] * len(size) assert len(transf) == len(size) layers = [] for i, nn in enumerate(size): layer_ci = size[i - 1] if i > 0 else net_ci l = layer.Perceptron(layer_ci, nn, transf[i]) l.initf = init.initnw layers.append(l) connect = [[i - 1] for i in range(len(layers) + 1)] net = Net(minmax, net_co, layers, connect, train.train_bfgs, error.SSE()) return net
b488298fea98877cd7097374576722ea4b24e9c3
3,642,658
import importlib def write(*args, package="gw", file_format="dat", **kwargs): """Read in a results file. Parameters ---------- args: tuple all args are passed to write function package: str the package you wish to use file_format: str the file format you wish to use. Default None. If None, the read function loops through all possible options kwargs: dict all kwargs passed to write function """ def _import(package, file_format): """Import format module with importlib """ return importlib.import_module( "pesummary.{}.file.formats.{}".format(package, file_format) ) def _write(module, file_format, args, kwargs): """Execute the write method """ return getattr(module, "write_{}".format(file_format))(*args, **kwargs) if file_format == "h5": file_format = "hdf5" try: module = _import(package, file_format) return _write(module, file_format, args, kwargs) except (ImportError, AttributeError, ModuleNotFoundError): module = _import("core", file_format) return _write(module, file_format, args, kwargs)
b7246e035f13b60fc8047abd768fae4bb1937600
3,642,659
def photo(el, dict_class, img_with_alt, base_url=''): """Find an implied photo property Args: el (bs4.element.Tag): a DOM element dict_class: a python class used as a dictionary (set by the Parser object) img_with_alt: a flag to enable experimental parsing of alt attribute with img (set by the Parser object) base_url (string): the base URL to use, to reconcile relative URLs Returns: string or dictionary: the implied photo value or implied photo as a dictionary with alt value """ def get_photo_child(children): "take a list of children and finds a valid child for photo property" # if element has one image child use source if exists and img is # not root class poss_imgs = [c for c in children if c.name == 'img'] if len(poss_imgs) == 1: poss_img = poss_imgs[0] if not mf2_classes.root(poss_img.get('class', [])): return poss_img # if element has one object child use data if exists and object is # not root class poss_objs = [c for c in children if c.name == 'object'] if len(poss_objs) == 1: poss_obj = poss_objs[0] if not mf2_classes.root(poss_obj.get('class', [])): return poss_obj # if element is an img use source if exists prop_value = get_img_src_alt(el, dict_class, img_with_alt, base_url) if prop_value is not None: return prop_value # if element is an object use data if exists prop_value = get_attr(el, "data", check_name="object") if prop_value is not None: return text_type(prop_value) # find candidate child or grandchild poss_child = None children = list(get_children(el)) poss_child = get_photo_child(children) # if no possible child found then look for grandchild if only one child which is not not mf2 root if poss_child is None and len(children) == 1 and not mf2_classes.root(children[0].get('class', [])): grandchildren = list(get_children(children[0])) poss_child = get_photo_child(grandchildren) # if a possible child was found parse if poss_child is not None: # img get src prop_value = get_img_src_alt(poss_child, dict_class, img_with_alt, base_url) if prop_value is not None: return prop_value # object get data prop_value = get_attr(poss_child, "data", check_name="object") if prop_value is not None: return text_type(prop_value)
304fea5700a8fcc2b95636265dbbc9c5c6dd1635
3,642,660
def calc_TOF(t_pulse, t_signal): """Calculate TOF from pulse and signal time arrays.""" tof = [] idxs = [-1] dbls = [] for t in t_signal: idx = bisect_left(t_pulse, t) if idx == len(t_pulse): t_0 = t_pulse[-1] else: t_0 = t_pulse[idx - 1] if idx == idxs[-1]: dbls[-1] = 1 dbls.append(1) else: dbls.append(0) idxs.append(idx) tof.append((t - t_0) / 1e6) # convert to ps to us return dbls, idxs, tof
b58b14396c85f297e6454195fba597635b5fb54d
3,642,661
def get_nodes_ips(node_subnets): """Get the IPs of the trunk ports associated to the deployment.""" trunk_ips = [] os_net = clients.get_network_client() tags = CONF.neutron_defaults.resource_tags if tags: ports = os_net.ports(status='ACTIVE', tags=tags) else: # NOTE(ltomasbo: if tags are not used, assume all the trunk ports are # part of the kuryr deployment ports = os_net.ports(status='ACTIVE') for port in ports: if (port.trunk_details and port.fixed_ips and port.fixed_ips[0]['subnet_id'] in node_subnets): trunk_ips.append(port.fixed_ips[0]['ip_address']) return trunk_ips
5472d184a4483355c81679ec6df41bc16ca7b32e
3,642,662
def get_visualizations_info(exp_id, state_name, interaction_id): """Returns a list of visualization info. Each item in the list is a dict with keys 'data' and 'options'. Args: exp_id: str. The ID of the exploration. state_name: str. Name of the state. interaction_id: str. The interaction type. Returns: list(dict). Each item in the list is a dict with keys representing - 'id': str. The visualization ID. - 'data': list(dict). A list of answer/frequency dicts. - 'options': dict. The visualization options. An example of the returned value may be: [{'options': {'y_axis_label': 'Count', 'x_axis_label': 'Answer'}, 'id': 'BarChart', 'data': [{u'frequency': 1, u'answer': 0}]}] """ if interaction_id is None: return [] visualizations = interaction_registry.Registry.get_interaction_by_id( interaction_id).answer_visualizations calculation_ids = set([ visualization.calculation_id for visualization in visualizations]) calculation_ids_to_outputs = {} for calculation_id in calculation_ids: # Don't show top unresolved answers calculation ouutput in stats of # exploration. if calculation_id == 'TopNUnresolvedAnswersByFrequency': continue # This is None if the calculation job has not yet been run for this # state. calc_output_domain_object = _get_calc_output( exp_id, state_name, calculation_id) # If the calculation job has not yet been run for this state, we simply # exclude the corresponding visualization results. if calc_output_domain_object is None: continue # If the output was associated with a different interaction ID, skip the # results. This filtering step is needed since the same calculation_id # can be shared across multiple interaction types. if calc_output_domain_object.interaction_id != interaction_id: continue calculation_ids_to_outputs[calculation_id] = ( calc_output_domain_object.calculation_output.to_raw_type()) return [{ 'id': visualization.id, 'data': calculation_ids_to_outputs[visualization.calculation_id], 'options': visualization.options, 'addressed_info_is_supported': ( visualization.addressed_info_is_supported), } for visualization in visualizations if visualization.calculation_id in calculation_ids_to_outputs]
6ce3875be2244bcb3564d1ca006db62f56883a7f
3,642,663
def push(array, *items): """Push items onto the end of `array` and return modified `array`. Args: array (list): List to push to. items (mixed): Items to append. Returns: list: Modified `array`. Warning: `array` is modified in place. Example: >>> array = [1, 2, 3] >>> push(array, 4, 5, [6]) [1, 2, 3, 4, 5, [6]] See Also: - :func:`push` (main definition) - :func:`append` (alias) .. versionadded:: 2.2.0 """ pyd.each(items, array.append) return array
2c43c6b4c5691d7f40601cdb7747ecf6e063f778
3,642,664
import csv def compute_list(commandline_argument): """ Returns a list of booking or revenue data opening booking data file with first parameter """ # utf-8_sig # Open booking CSV and read everything into memory with open(commandline_argument, "r", encoding="shift_jis") as database: data = csv.reader(database) next(data) list_data = list(data) return list_data
115725f5ab35c04412a2fe4f982a72c6b2e4c297
3,642,665
import re def calculate_saving(deal, item_prices): """ Parse the deal string and calculate how much money is saved when this deal gets applied. Also returns deal requirement. Args: deal (str): deal information item_prices (dict): {item: price} Returns: requirements (collections.Counter): items and quantity required to complete deal eg. {'F': 3} saving (int): total saving this deal gives cost (int): cost of deal """ free_re = re.search(r'(\w+) get one ([^\n]+) free', deal) if free_re: # saving is value of free item saving = item_prices[free_re.group(2)] requirements = aggregate_requirements(free_re.groups()) quantity, item = parse_deal_code(free_re.group(1)) cost = get_cost(item_prices, item, quantity) else: # assuming for now that all other deals are just x-for # saving is difference between deal price and quantity * base price [(deal_code_quantity, deal_price)] = re.findall(r'(\w+) for (\w+)', deal) deal_quantity, deal_item = parse_deal_code(deal_code_quantity) saving = (deal_quantity * item_prices[deal_item]) - int(deal_price) requirements = aggregate_requirements([deal_code_quantity]) cost = int(deal_price) return requirements, saving, cost
b67e5c53551866a8b390eb49fa4bc29ff9d3261a
3,642,666
def fetchone_from_table(database, table, values_dict, returning): """ Constructs a generic fetchone database command from a generic table with provided table_column:value_dictionary mapping. Mostly used for other helper functions. :param database: Current active database connection. :param table: Table to insert mapping into. :param values_dict: A dictionary of table_column:value to ingest into the database. :param returning: A single column, or list of columns, you want returned. :return: The row in the database filtered on the column(s) defined. """ columns = list(values_dict.keys()) if type(returning) is not list and type(returning) is not tuple: returning = [returning] db = database.select(*returning).FROM(table).WHERE(Eq(columns[0], values_dict[columns[0]])) for column in columns[1:]: if values_dict[column] is not None: db = db.AND(Eq(column, values_dict[column])) else: db = db.AND(IsNull(column)) return db.fetchone()
8b757bb5e9e7ba50a335a4917630543ef6989714
3,642,667
import os def recover_buildpack(app_folder): """ Given the path to an app folder where an app was just built, return a BuildPack object pointing to the dir for the buildpack used during the build. Relies on the builder.sh script storing the buildpack location in /.buildpack inside the container. """ filepath = os.path.join(app_folder, '.buildpack') with open(filepath) as f: buildpack_picked = f.read() buildpack_picked = buildpack_picked.lstrip('/') buildpack_picked = buildpack_picked.rstrip('\n') buildpack_picked = os.path.join(os.getcwd(), buildpack_picked) return BuildPack(buildpack_picked)
e82f70b06caee2d275820136e58c2b5b5860f5d5
3,642,668
def ParseMultiCpuMask(cpu_mask): """Parse a multiple CPU mask definition and return the list of CPU IDs. CPU mask format: colon-separated list of comma-separated list of CPU IDs or dash-separated ID ranges, with optional "all" as CPU value Example: "0-2,5:all:1,5,6:2" -> [ [ 0,1,2,5 ], [ -1 ], [ 1, 5, 6 ], [ 2 ] ] @type cpu_mask: str @param cpu_mask: multiple CPU mask definition @rtype: list of lists of int @return: list of lists of CPU IDs """ if not cpu_mask: return [] cpu_list = [] for range_def in cpu_mask.split(constants.CPU_PINNING_SEP): if range_def == constants.CPU_PINNING_ALL: cpu_list.append([constants.CPU_PINNING_ALL_VAL, ]) else: # Uniquify and sort the list before adding cpu_list.append(sorted(set(ParseCpuMask(range_def)))) return cpu_list
c114d931567ba3fdfc50b3eb7cd6cc7764bdd1d6
3,642,669
def _call(arg): """Shortcut for comparing call objects """ return _Call(((arg, ), ))
d7ec1e0c29b52f7d77daec3d2fa7c5f8ba6ea1f8
3,642,670
from typing import List def gather_directives( type_object: GraphQLNamedType, ) -> List[DirectiveNode]: """Get all directive attached to a type.""" directives: List[DirectiveNode] = [] if hasattr(type_object, "extension_ast_nodes"): if type_object.extension_ast_nodes: for ast_node in type_object.extension_ast_nodes: if ast_node.directives: directives.extend(ast_node.directives) if hasattr(type_object, "ast_node"): if type_object.ast_node and type_object.ast_node.directives: directives.extend(type_object.ast_node.directives) return directives
211108bd35940e412e68e0b092ada050ce745c8e
3,642,671
def get_request(language=None): """ Returns a Request instance populated with cms specific attributes. """ request_factory = RequestFactory() request = request_factory.get("/") request.session = {} request.LANGUAGE_CODE = language or settings.LANGUAGE_CODE request.current_page = None request.user = AnonymousUser() return request
1ef86666693118ccd36f8d9818e70566e895cb13
3,642,672
from typing import cast def validate_hash(value: str) -> bool: """ Validates a hash value. """ return cast(bool, HASH_RE.match(value))
c273e5287e2e0448c2e58173813d725f61f3210a
3,642,673
def string_to_digit(string, output): """Convert string to float/int if possible (designed to extract number from a price sting, e.g. 250 EUR -> 250) :argument string: string to convert :type string: str :argument output: output type :type output: type :returns float/int or None """ string = strip_space(string) if not string[0].isdigit() and not string[1].isdigit(): return None string_items = [] for index, item in enumerate(string): if item.isdigit(): string_items.append(item) else: if item == ',': string_items.append('.') elif item == ' ' and string[index + 1].isdigit(): pass elif not item.isdigit() and not string[index + 1].isdigit(): break if '.' in string_items and output == int: return int(float(''.join(string_items))) return output(''.join(string_items))
dc83485e7ffa4548aee019b67f23ba6db385421d
3,642,674
def calc_B_phasors(current, xp, yp, cable_array): """It calculates the phasors of the x and y components of the magnetic induction field B in a given point for a given cable. Given the input, the function rectifies the current phase extracting respectively the real and imaginary part of it. Then, both real and imaginary part of x and y components are multiplied by a transfer function (dependent on the spatial disposition of the cable in respect to the point of interest) resulting in the magnetic inductin B phasor components of a single cable. Parameters ------------------- current : int Current (A) circulating inside the considered power line (composed of a triad of cables) xp, yp : float Abscissa (m) and ordinate (m) of the point of interest where the magnetic induction field B will be calculated at last cable_array : numpy.ndarray First column - Current phase belonging to the n-th cable under consideration Second and third columns - Abscissa and ordinate of the n-th cable under consideration Returns ------------------- B_phasors_n : numpy.ndarray Respectively the real and imaginary part (columns) of the x and y components (rows) of the magnetic induction field B produced by a single cable in a given point Notes ------------------- The current function implements the calculations present both in [1]_"Norma Italiana CEI 106-11" formulas (5) and [2]_"Norma Italiana CEI 211-4" formulas (16). References ------------------- ..[1] Norma Italiana CEI 106-11, "Guide for the determination of the respect widths for power lines and substations according to DPCM 8 July 2003 (Clause 6) - Part 1: Overhead lines and cables", first edition, 2006-02. ..[2] Norma Italiana CEI 211-4, "Guide to calculation methods of electric and magnetic fields generated by power-lines and electrical substations", second edition, 2008-09. """ ph_n_rad = radians(cable_array[0]) I_complex = rect(current, ph_n_rad) I_components = np.array([I_complex.real, I_complex.imag]) coef = (MU_ZERO / (2*PI)) / ((xp - cable_array[1])**2 + (yp - cable_array[2])**2) transfer_fn_n = np.array([(cable_array[2] - yp) * coef, (xp - cable_array[1]) * coef]).reshape(2, 1) B_phasors_n = I_components * transfer_fn_n return B_phasors_n
66f696121f3a26a99e4d662b3680d21199bedcc1
3,642,675
def get_shortest_text_value(entry): """Given a JSON-LD entry, returns the text attribute that has the shortest length. Parameters ---------- entry: dict A JSON-LD entry parsed into a nested python directionary via the json module Returns ------- short_text: str Of the text values, the shortest one """ text_attr = 'http://www.ontologyrepository.com/CommonCoreOntologies/has_text_value' if text_attr in entry: text_values = entry[text_attr] text_values = [i['@value'] for i in text_values] return get_shortest_string(text_values) else: return None
c63511a830f56c610230e0c7e208a926b0304b3c
3,642,676
from datetime import datetime def generate_token(user_id, expires_in=3600): """Generate a JWT token. :param user_id the user that will own the token :param expires_on expiration time in seconds """ secret_key = current_app.config['JWT_SECRET_KEY'] return jwt.encode( {'user_id': user_id, 'exp': datetime.utcnow() + timedelta(seconds=expires_in)}, secret_key, algorithm='HS256').decode('utf-8')
62a92d7903e941446dbef3097b12ba2adf9a1fd5
3,642,677
import codecs def debom(s): """ 此函数是去除字符串中bom字符, 由于此字符出现再文件的头位置 所以对csv 的header造成的影响, 甚至乱码 通过此函数可以避免这种情况 """ boms = [ k for k in dir(codecs) if k.startswith('BOM') ] for bom in boms: s = s.replace(getattr(codecs, bom), '') return s
4ac056a8ba93f00a0a31e3a447e62810c5b68687
3,642,678
def rolling_window(array, window): """ apply a rolling window to a np.ndarray :param array: (np.ndarray) the input Array :param window: (int) length of the rolling window :return: (np.ndarray) rolling window on the input array """ shape = array.shape[:-1] + (array.shape[-1] - window + 1, window) strides = array.strides + (array.strides[-1],) return np.lib.stride_tricks.as_strided(array, shape=shape, strides=strides)
cde677c20c6a4d5f096d2f36bae2fc1087b73ccf
3,642,679
def calculate_timezone_distance_matrix(df): """ Calculate timezone distance matrix from a given dataframe """ n_users = len(df) timezone_df = df[['idx', 'timezone', 'second_timezone']] timezone_df.loc[:, 'timezone'] = timezone_df.timezone.map( lambda t: remove_text_parentheses(t).split(' ')[-1] ) timezone_df.loc[:, 'second_timezone'] = timezone_df.second_timezone.map( lambda t: remove_text_parentheses(t).split(' ')[-1].replace('me', ' ') ) timezone_list = timezone_df.to_dict(orient='records') D_tz = np.zeros((n_users, n_users)) for d1, d2 in product(timezone_list, timezone_list): idx1, idx2, tz_dist = compute_tz_distance_dict(d1, d2) D_tz[idx1, idx2] = tz_dist return D_tz
d788ab8758d0300516ecde2749cd438597775440
3,642,680
import platform def pyxstyle_path(x, venv_dir="venv"): """Calculate the path to py{x}style in the venv directory relative to project root.""" extension = ".exe" if platform.system() == "Windows" else "" bin_dir = "Scripts" if platform.system() == "Windows" else "bin" return [str(path_here / f"{venv_dir}/{bin_dir}/py{x}style{extension}")]
2eaf3686f20db6ca26b55dc5cf065e926d6fd5ef
3,642,681
def update_tc_junit_resultfile(tc_junit_obj, kw_junit_list, tc_timestamp): """loop through kw_junit object and attach keyword result to testcase Arguments: 1. tc_junit_obj = target testcase 2. kw_junit_list = list of keyword junit objects 3. tc_timestamp = target testcase timestamp """ for master_tc in tc_junit_obj.root.iter('testcase'): # make sure we are modifying the correct testcase if master_tc.get('timestamp') == tc_timestamp: for kw_junit_obj in kw_junit_list: for tc_part in kw_junit_obj.root.iter('testcase'): # make sure we are obtaining only the wanted keywords if tc_part.get('timestamp') == tc_timestamp: # add keyword element to testcase, add property result # to properties, update count for result in tc_part.find('properties').iter('property'): if result.get('type') == "keyword": master_tc.find('properties').append(result) master_tc.attrib = update_attribute(master_tc.attrib, tc_part.attrib) return tc_junit_obj
97c85b6b197a5e325c51bcb70d0f7e173f1feb1d
3,642,682
from OpenGL.error import GLError def checkFramebufferStatus(): """Utility method to check status and raise errors""" status = glCheckFramebufferStatus( GL_FRAMEBUFFER ) if status == GL_FRAMEBUFFER_COMPLETE: return True description = None for error_constant in [ GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT, GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT, GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS, GL_FRAMEBUFFER_INCOMPLETE_FORMATS, GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER, GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER, GL_FRAMEBUFFER_UNSUPPORTED, ]: if status == error_constant: status = error_constant description = str(status) raise GLError( err=status, result=status, baseOperation=glCheckFramebufferStatus, description=description, )
9a603cde0b4f9cda340f969eb8b8137cbf34fede
3,642,683
def load_sentences(filename): """give us a list of sentences where each sentence is a list of tokens. Assumes the input file is one sentence per line, pre-tokenized.""" out = [] with open(filename) as infile: for line in infile: line = line.strip() tokens = line.split() out.append(tokens) return out
6a4c458f9a0d9b17eaa38c38570dacc4c40e86c0
3,642,684
def imageSequenceRepr(files, strFormat='{pre}[{firstNum}:{lastNum}]{post}', forceRepr=False): """ Takes a list of files and creates a string that represents the sequence. Args: files (list): A list of files in the image sequence. format (str): Used to format the output. Uses str.format() command and requires the keys [pre, firstNum, lastNum, post]. Defaults to '{pre}[{firstNum}:{lastNum}]{post}' forceRepr (bool): If False and a single frame is provided, it will return just that frame. If True and a single frame is provided, it will return a repr with that frame as the firstNum and lastNum value. False by default. Returns: str: A string representation of the Image Sequence. """ if len(files) > 1 or (forceRepr and files): match = imageSequenceInfo(files[0]) if match: info = {} for f in files: frame = imageSequenceInfo(f) if frame and frame.group('frame'): frame = frame.group('frame') info.update({int(frame):frame}) if info: keys = sorted(info.keys()) low = info[keys[0]] high = info[keys[-1]] if forceRepr or low != high: return strFormat.format(pre=match.group('pre'), firstNum=low, lastNum=high, post=match.group('post')) if files: return files[0] return ''
9f8b63594eb86f54bf8d264b12bd006c2c50da20
3,642,685
def farthest_point_sampling(D, k, random_init=True): """ Samples points using farthest point sampling Parameters ------------------------- D : (n,n) distance matrix between points k : int - number of points to sample random_init : Whether to sample the first point randomly or to take the furthest away from all the other ones Output -------------------------- fps : (k,) array of indices of sampled points """ if random_init: inds = [np.random.randint(D.shape[0])] else: inds = [np.argmax(D.sum(1))] dists = D[inds] for _ in range(k-1): newid = np.argmax(dists) inds.append(newid) dists = np.minimum(dists,D[newid]) return np.asarray(inds)
d5ab5c3f30048cd16bf38bc73bf48f58f88ef383
3,642,686
def part2(lines): """ >>> part2(load_example(__file__, '9')) 982 """ return run(lines, max)
c243792fc4b3e32a5bc41f5185cbbe1ef2d6b840
3,642,687
import os import subprocess import shlex import pandas def load_description(): """ Reads pandas dataframe with name(description) and category for FG phenos """ description = "./description.txt" if not os.path.isfile(description): cmd = f"gsutil cp {pheno_description} {description}" subprocess.call(shlex.split(cmd)) d = pandas.read_csv(description,delimiter='\t',encoding= 'unicode_escape',index_col = "phenocode").T return d
91d2cb5bf2a4224ae912db59c417d2ca293edd35
3,642,688
def get_utility_function(args): """ Select the utility function. :param args: the arguments for the program. :return: the utility function (handler). """ if args.mode == 'entropy': utility_function = compute_utility_scores_entropy elif args.mode == 'entropyrev': # Reverse entropy method utility_function = compute_utility_scores_entropyrev elif args.mode == 'maxprivacy': # maximize privacy cost utility_function = compute_utility_scores_privacy2 elif args.mode == 'gap': utility_function = compute_utility_scores_gap elif args.mode == 'greedy': utility_function = compute_utility_scores_greedy elif args.mode == 'deepfool': utility_function = compute_utility_scores_deepfool elif args.mode == 'random': utility_function = compute_utility_scores_random elif args.mode == "knockoff": # Knockoff Nets with Random querying utility_function = compute_utility_scores_random elif args.mode == "copycat": # CopyCat CNN utility_function = compute_utility_scores_random elif args.mode == 'jacobian' or args.mode == 'jacobiantr': # JBDA, JBDA-TR utility_function = compute_utility_scores_random elif args.mode == "inoutdist": # Potential attack (combine ID and OOD Data) utility_function = compute_utility_scores_random elif args.mode == "worstcase": # Attacker knows exact value of the privacy cost utility_function = compute_utility_scores_privacy elif args.mode == "worstcasepate": # Attacker knows exact value of the pate cost utility_function = compute_utility_scores_pate else: raise Exception(f"Unknown query selection mode: {args.mode}.") return utility_function
fc49a9f3456a187b6015c9fbbdaa4faba0dfc778
3,642,689
def convertRequestToStringWhichMayBeEmpty(paramName, source): """ Handle strings which may be empty or contain "None". Empty strings should be treated as "None". The "None" strings are from the timeSlicesValues div on the runPage. Args: paramName (str): Name of the parameter in which we are interested in. source (dict): Source of the information. Usually request.args or request.form. This function is fairly similar to `convertRequestToPythonBool`. """ paramValue = source.get(paramName, None, type=str) #logger.info("{0}: {1}".format(paramName, paramValue)) #if paramValue == "" or paramValue == "None" or paramValue == None: # If we see "None", then we want to be certain that it is None! # Otherwise, we will interpret an empty string as a None value! if paramValue == "" or paramValue == "None": paramValue = None # To get an empty string, we need to explicitly select one with this contrived value. # We need to do this because it is possible for the group selection pattern to be an empty string, # but that is not equal to no hist being selected in a request. if paramValue == "nonSubsystemEmptyString": paramValue = "" logger.info("{0}: {1}".format(paramName, paramValue)) return paramValue
d620197e60e15d48d450a9406cbe3f4ea61a64d8
3,642,690
import re def find_am(list_tokens:list): """[summary] Parameters ---------- list_tokens : list list of tokens Returns ------- tuple(list,list) matches tokens, token indexes """ string = "START"+" ".join(list_tokens).lower() match = re.findall(am_pattern, string) if match: matched_tokens = match[0].split() indexes = list(range(len(matched_tokens))) return matched_tokens, indexes else: return [], [] return match
91663e71882764045d679b24c5cb793f1c192410
3,642,691
import os def fetch_seq_assembly(mygroup, assembly_final_df, keyargs): """ Function that will fetch the genome from the taxid in group and concat the assembly that is created by ngs """ keyargs['taxids'] = [str(taxid) for taxid in mygroup.TaxId.tolist()] #ngd.download(**keyargs) get_cmdline_ndg(**keyargs) # Test if we download genomes else return assembly_final_df if os.path.isfile(snakemake.output.assembly_output): # Read the information about the assembly and concatenate with previous one tmp_assembly = pd.read_table(snakemake.output.assembly_output) # Remove the file os.remove(snakemake.output.assembly_output) return pd.concat([assembly_final_df, tmp_assembly]) else : return assembly_final_df
8e289038d17b9e75ef0d608b63828c82048080cc
3,642,692
def calculate_min_cost_path(source_node: int, target_node: int, graph: nx.Graph) -> (list, int): """ Calculates the minimal cost path with respect to node-weights from terminal1 to terminal2 on the given graph by converting the graph into a line graph (converting nodes to edges) and solving the respective shortest path problem on the edges. :param source_node: the source node from the given graph from which to calculate the min cost path to the target :param target_node: the target node from the given graph :param graph: the graph on which we want to find the min cost path from source to target with respect to the node weights that are labelled with 'cost' :return: the min cost path from source to target, and the cost of the path, with respect to the node costs """ line_graph = nx.line_graph(graph) line_graph, source, target = adjust_line_graph(source_node, target_node, line_graph, graph) path = nx.shortest_path(line_graph, source, target, weight="cost") cost = calculate_path_cost_on_line_graph(path, line_graph) path = convert_line_graph_path(path) return path, cost
ad48d0930f010ffa04f142710bd7f3aafd932e76
3,642,693
def promote(name): """ Promotes a clone file system to no longer be dependent on its "origin" snapshot. .. note:: This makes it possible to destroy the file system that the clone was created from. The clone parent-child dependency relationship is reversed, so that the origin file system becomes a clone of the specified file system. The snapshot that was cloned, and any snapshots previous to this snapshot, are now owned by the promoted clone. The space they use moves from the origin file system to the promoted clone, so enough space must be available to accommodate these snapshots. No new space is consumed by this operation, but the space accounting is adjusted. The promoted clone must not have any conflicting snapshot names of its own. The rename subcommand can be used to rename any conflicting snapshots. name : string name of clone-filesystem .. versionadded:: 2016.3.0 CLI Example: .. code-block:: bash salt '*' zfs.promote myzpool/myclone """ ## Promote clone res = __salt__["cmd.run_all"]( __utils__["zfs.zfs_command"]( command="promote", target=name, ), python_shell=False, ) return __utils__["zfs.parse_command_result"](res, "promoted")
7d6ddd76525096c13f7ff4b1a07121d52e688b24
3,642,694
def otp_verification(request): """Api view for verifying OTPs """ if request.method == 'POST': serializer = OTPVerifySerializer(data = request.data) if serializer.is_valid(): data = serializer.verify_otp(request) return Response(data, status=status.HTTP_200_OK) else: return Response(serializer.errors, status = status.HTTP_400_BAD_REQUEST)
513dff831deca69a8087fe99d27f1f54108d4ae2
3,642,695
import os def parse_tag_file(doc: ET.ElementTree) -> dict: """ Takes in an XML tree from a Doxygen tag file and returns a dictionary that looks something like: .. code-block:: python {'PolyVox': Entry(...), 'PolyVox::Array': Entry(...), 'PolyVox::Array1DDouble': Entry(...), 'PolyVox::Array1DFloat': Entry(...), 'PolyVox::Array1DInt16': Entry(...), 'QScriptContext::throwError': FunctionList(...), 'QScriptContext::toString': FunctionList(...) } Note the different form for functions. This is required to allow for 'overloading by argument type'. :Parameters: doc : xml.etree.ElementTree The XML DOM object :return: a dictionary mapping fully qualified symbols to files """ mapping = {} # type: MutableMapping[str, Union[Entry, FunctionList]] function_list = [] # This is a list of function to be parsed and inserted into mapping at the end of the function. for compound in doc.findall('./compound'): compound_kind = compound.get('kind') if compound_kind not in {'namespace', 'class', 'struct', 'file', 'define', 'group', 'page'}: continue compound_name = compound.findtext('name') compound_filename = compound.findtext('filename') # TODO The following is a hack bug fix I think # Doxygen doesn't seem to include the file extension to <compound kind="file"><filename> entries # If it's a 'file' type, check if it _does_ have an extension, if not append '.html' if compound_kind in ('file', 'page') and not os.path.splitext(compound_filename)[1]: compound_filename = compound_filename + '.html' # If it's a compound we can simply add it mapping[compound_name] = Entry(kind=compound_kind, file=compound_filename) for member in compound.findall('member'): # If the member doesn't have an <anchorfile> element, use the parent compounds <filename> instead # This is the way it is in the qt.tag and is perhaps an artefact of old Doxygen anchorfile = member.findtext('anchorfile') or compound_filename member_symbol = compound_name + '::' + member.findtext('name') member_kind = member.get('kind') arglist_text = member.findtext('./arglist') # If it has an <arglist> then we assume it's a function. Empty <arglist> returns '', not None. Things like typedefs and enums can have empty arglists if arglist_text and member_kind not in {'variable', 'typedef', 'enumeration'}: function_list.append((member_symbol, arglist_text, member_kind, join(anchorfile, '#', member.findtext('anchor')))) else: mapping[member_symbol] = Entry(kind=member.get('kind'), file=join(anchorfile, '#', member.findtext('anchor'))) for member_symbol, arglist, kind, anchor_link in function_list: try: normalised_arglist = normalise(member_symbol + arglist)[1] except ParseException as e: print('Skipping %s %s%s. Error reported from parser was: %s' % (kind, member_symbol, arglist, e)) else: if mapping.get(member_symbol) and isinstance(mapping[member_symbol], FunctionList): mapping[member_symbol].add_overload(normalised_arglist, anchor_link) else: mapping[member_symbol] = FunctionList() mapping[member_symbol].add_overload(normalised_arglist, anchor_link) return mapping
9b35f07a63df87a3aa4f95d5ce87a813d2d73ea3
3,642,696
def hpd_grid(sample, alpha=0.05, roundto=2): """Calculate highest posterior density (HPD) of array for given alpha. The HPD is the minimum width Bayesian credible interval (BCI). The function works for multimodal distributions, returning more than one mode Parameters ---------- sample : Numpy array or python list An array containing MCMC samples alpha : float Desired probability of type I error (defaults to 0.05) roundto: integer Number of digits after the decimal point for the results Returns ---------- hpd: array with the lower """ sample = np.asarray(sample) sample = sample[~np.isnan(sample)] # get upper and lower bounds l = np.min(sample) u = np.max(sample) density = kde.gaussian_kde(sample) x = np.linspace(l, u, 2000) y = density.evaluate(x) #y = density.evaluate(x, l, u) waitting for PR to be accepted xy_zipped = zip(x, y/np.sum(y)) xy = sorted(xy_zipped, key=lambda x: x[1], reverse=True) xy_cum_sum = 0 hdv = [] for val in xy: xy_cum_sum += val[1] hdv.append(val[0]) if xy_cum_sum >= (1-alpha): break hdv.sort() diff = (u-l)/20 # differences of 5% hpd = [] hpd.append(round(min(hdv), roundto)) for i in range(1, len(hdv)): if hdv[i]-hdv[i-1] >= diff: hpd.append(round(hdv[i-1], roundto)) hpd.append(round(hdv[i], roundto)) hpd.append(round(max(hdv), roundto)) ite = iter(hpd) hpd = list(zip(ite, ite)) modes = [] for value in hpd: x_hpd = x[(x > value[0]) & (x < value[1])] y_hpd = y[(x > value[0]) & (x < value[1])] modes.append(round(x_hpd[np.argmax(y_hpd)], roundto)) return hpd, x, y, modes
ee3a24f056a038b5e9ec08875d37f39e0a8180f1
3,642,697
import sys def get_internal_modules(key='exa'): """ Get a list of modules belonging to the given package. Args: key (str): Package or library name (e.g. "exa") """ key += '.' return [v for k, v in sys.modules.items() if k.startswith(key)]
d97618ba37ad403a74fc13a7587c6369fab540fb
3,642,698
import re def emph_rule(phrase: str) -> Rule: """ Check if the phrase only ever appears with or without a surrounding \\emph{...}. For example, "et al." can be spelled like "\\emph{et al.}" or "et al.", but it should be consistent. """ regex = r"(?:\\emph\{)?" regex += r"(?:" + re.escape(phrase) + r")" regex += r"(?:\})?" return Rule(name=phrase, regex=re.compile(regex))
a6eb0eb716a265876efd857dd51dc6106a24f35b
3,642,699