content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import pathlib from datetime import datetime import traceback def parse_amwg_obs(file): """Atmospheric observational data stored in""" file = pathlib.Path(file) info = {} try: stem = file.stem split = stem.split('_') source = split[0] temporal = split[-2] if len(temporal) == 2: month_number = int(temporal) time_period = 'monthly' temporal = datetime(2020, month_number, 1).strftime('%b').upper() elif temporal == 'ANN': time_period = 'annual' else: time_period = 'seasonal' with xr.open_dataset(file, chunks={}, decode_times=False) as ds: variable_list = [var for var in ds if 'long_name' in ds[var].attrs] info = { 'source': source, 'temporal': temporal, 'time_period': time_period, 'variable': variable_list, 'path': str(file), } return info except Exception: return {INVALID_ASSET: file, TRACEBACK: traceback.format_exc()}
60e00a6d2c9ac426d20e1d02f6baab05e0619988
3,642,700
def taylor(x,f,i,n): """taylor(x,f,i,n): This function approximates the function f over the domain x, using a taylor expansion centered at x[i] with n+1 terms (starts counting from 0). Args: x: The domain of the function f: The function that will be expanded/approximated i: The ith term in the domain x that the expansion is centered around n: The number of terms in the expansion (n+1 terms) Returns: (x,fapprox): A pair of numpy arrays where x is the original domain array and f approx is the approximation of f over all of the domain points x using the taylor expansion. """ a = x[i] N = np.size(x) fa = f[i]*np.ones_like(x) D = ac.derivative(x[0],x[N-1],N) fact = 1 fapprox = fa Dk = np.eye(N) for k in range(1,n+1): fact = fact*k Dk = np.matmul(Dk,D) #fapprox += (np.matmul(np.matmul(Dk,fa),((x-a)**k)))/fact fapprox = np.add(fapprox, (np.matmul(np.matmul(Dk,fa),((x-a)**k)))/fact, out=fapprox, casting="unsafe") return (x,fapprox)
c6d5ed8b583dba8959554bb761e7a961c84624e8
3,642,701
def precision_and_recall_at_k(ground_truth, prediction, k=-1): """ :param ground_truth: :param prediction: :param k: how far down the ranked list we look, set to -1 (default) for all of the predictions :return: """ if k == -1: k = len(prediction) prediction = prediction[0:k] numer = len(set(ground_truth).intersection(set(prediction))) prec = numer / k recall = numer / len(ground_truth) return prec, recall
cf8543279c6d7874f99c5badeb3064b621fa36a4
3,642,702
def bubble_sort(array: list, key_func=lambda x: x) -> list: """ best:O(N) avg:O(N^2) worst:O(N^2) """ if key_func is not None: assert isfunction(key_func) for pos in range(0, len(array)): for idx in range(0, len(array) - pos - 1): if key_func(array[idx]) > key_func(array[idx + 1]): array[idx], array[idx + 1] = array[idx + 1], array[idx] return array
40e0baa0f9a36e73b2020db8c07c332dc973b919
3,642,703
from qiskit.aqua.operators import MatrixOperator from qiskit.aqua.operators.legacy.op_converter import to_weighted_pauli_operator import scipy def limit_paulis(mat, n=5, sparsity=None): """ Limits the number of Pauli basis matrices of a hermitian matrix to the n highest magnitude ones. Args: mat (np.ndarray): Input matrix n (int): number of surviving Pauli matrices (default=5) sparsity (float): sparsity of matrix < 1 Returns: scipy.sparse.csr_matrix: matrix """ # pylint: disable=import-outside-toplevel # Bringing matrix into form 2**Nx2**N __l = mat.shape[0] if np.log2(__l) % 1 != 0: k = int(2 ** np.ceil(np.log2(__l))) m = np.zeros([k, k], dtype=np.complex128) m[:__l, :__l] = mat m[__l:, __l:] = np.identity(k - __l) mat = m # Getting Pauli matrices # pylint: disable=invalid-name op = MatrixOperator(matrix=mat) op = to_weighted_pauli_operator(op) paulis = sorted(op.paulis, key=lambda x: abs(x[0]), reverse=True) g = 2**op.num_qubits mat = scipy.sparse.csr_matrix(([], ([], [])), shape=(g, g), dtype=np.complex128) # Truncation if sparsity is None: for pa in paulis[:n]: mat += pa[0] * pa[1].to_spmatrix() else: idx = 0 while mat[:__l, :__l].nnz / __l ** 2 < sparsity: mat += paulis[idx][0] * paulis[idx][1].to_spmatrix() idx += 1 n = idx mat = mat.toarray() return mat[:__l, :__l]
cd0b88316eb9cebda2a58ce30384f22fed17cb54
3,642,704
def list_clusters(configuration: Configuration = None, secrets: Secrets = None) -> AWSResponse: """ List EKS clusters available to the authenticated account. """ client = aws_client("eks", configuration, secrets) logger.debug("Listing EKS clusters") return client.list_clusters()
289ef257e65cc68400a0562d647d4b694b4ec3bf
3,642,705
def tar_cat(tar, path): """ Reads file and returns content as bytes """ mem = tar.getmember(path) with tar.extractfile(mem) as f: return f.read()
f07f00156c34bd60eea7fcae5d923ea9f1650f6f
3,642,706
def __get_base_name(input_path): """ /foo/bar/test/folder/image_label.ext --> test/folder/image_label.ext """ return '/'.join(input_path.split('/')[-3:])
5df2ef909f4b570cf6b6224031ad705d16ffff42
3,642,707
def or_ipf28(xpath): """change xpath to match ipf <2.8 or >2.9 (for noise range)""" xpath28 = xpath.replace('noiseRange', 'noise').replace('noiseAzimuth', 'noise') if xpath28 != xpath: xpath += " | %s" % xpath28 return xpath
7bf508c48d5a6fc09edba340e2bfc9ec13513fc8
3,642,708
def make_form(x, current_dict, publication_dict): """Create or update a Taxon of rank Form. Some forms have no known names between species and form. These keep the form name in the ``infra_name`` field. e.g. Caulerpa brachypus forma parvifolia Others have a known subspecies/variety/subvariety name in the ``infra_name`` field, and keep the form name in ``infra_name2``: e.g. Caulerpa cupressoides var. lycopodium forma elegans Arguments x An instance of HbvSpecies, rank_name "Variety" current_dict A lookup dict for is_current publication_dict A lookup dict for publication_status taxon_dict A lookup dict for parent species name to Taxon instance Return The created or updated instance of Taxon. """ if not tax_models.HbvParent.objects.filter(name_id=x.name_id).exists(): logger.warn("[make_species] missing HbvParent with name_id {0}".format(x.name_id)) return None parent_nid = tax_models.HbvParent.objects.get(name_id=x.name_id).parent_nid dd = dict( name=force_text(x.infra_name) if force_text( x.infra_rank) == 'forma' else force_text(x.infra_name2), rank=tax_models.Taxon.RANK_FORMA, current=current_dict[x.is_current], parent=tax_models.Taxon.objects.get(name_id=parent_nid), author=x.author.replace("(", "").replace(")", "").strip() if x.author else "", field_code=x.species_code ) if x.informal is not None: dd['publication_status'] = publication_dict[x.informal] obj, created = tax_models.Taxon.objects.update_or_create(name_id=x.name_id, defaults=dd) action = "Created" if created else "Updated" logger.info("[make_form] {0} {1}.".format(action, obj)) return obj
43ce623d67db4142f804b0c01f8e6690831387cd
3,642,709
def render_view(func): """ Render this view endpoint's specified template with the provided context, with additional context parameters as specified by context_config(). @app.route('/', methods=['GET']) @render_view def view_function(): return 'template_name.html', {'context': 'details'} """ @wraps(func) def decorated_view(*args, **kwargs): template, context = func(*args, **kwargs) if 'config' in context: context['config'].update(context_config()) else: context['config'] = context_config() return render_template(template, **context) return decorated_view
07e2f4394af5c774d3aad421cacd8f89448525b6
3,642,710
def extract_and_resize_frames(path, resize_to=None): """ Iterate the GIF, extracting each frame and resizing them Returns: An array of all frames """ mode = analyseImage(path)["mode"] im = PImage.open(path) if not resize_to: resize_to = (im.size[0] // 2, im.size[1] // 2) i = 0 p = im.getpalette() last_frame = im.convert("RGBA") all_frames = [] try: while True: # print("saving %s (%s) frame %d, %s %s" % (path, mode, i, im.size, im.tile)) """ If the GIF uses local colour tables, each frame will have its own palette. If not, we need to apply the global palette to the new frame. """ if not im.getpalette(): im.putpalette(p) new_frame = PImage.new("RGBA", im.size) """ Is this file a "partial"-mode GIF where frames update a region of a different size to the entire image? If so, we need to construct the new frame by pasting it on top of the preceding frames. """ if mode == "partial": new_frame.paste(last_frame) new_frame.paste(im, (0, 0), im.convert("RGBA")) new_frame.thumbnail(resize_to, PImage.ANTIALIAS) all_frames.append(new_frame) i += 1 last_frame = new_frame im.seek(im.tell() + 1) except EOFError: pass return all_frames
27632e7485f98697b4bfe1fbb6aeaee18a29b5db
3,642,711
def voter_star_off_save_doc_view(request): """ Show documentation about voterStarOffSave """ url_root = WE_VOTE_SERVER_ROOT_URL template_values = voter_star_off_save_doc.voter_star_off_save_doc_template_values(url_root) template_values['voter_api_device_id'] = get_voter_api_device_id(request) return render(request, 'apis_v1/api_doc_page.html', template_values)
2f00fc92c43e7ebb6541f0e9e5bd773d3e3168a2
3,642,712
import torch def generate_offsets(size_map, flow_map=None, kernel_shape=(3, 3, 3), dilation=(1, 1, 1)): """ Generates offsets for deformable convolutions from scalar maps. Maps should be of shape NxCxDxHxW, i.e. one set of parameters for every pixel. ``size_map`` and ``orientation_map`` expect a single channel, and flow_map should have 2 """ kernel_shape = _triple(kernel_shape) dilation = _triple(dilation) zeros = torch.zeros_like(size_map) if flow_map is None: flow_map = torch.cat([zeros, zeros], dim=1) """ at each pixel, size_map predicts the size of the object at that pixel 0. Inverse optical flow if not given 1. Sample sizes from previous/next frame according to optical flow 2. scale, and shift kernel shape a. Multiply with sizes b. Add optical flow shift """ if flow_map.shape[1] == 2: flow_prev = flow_map # TODO: properly inverse optical flow flow_next = -flow_map else: flow_prev, flow_next = torch.split(flow_map, [2, 2], dim=1) kz, ky, kx = kernel_shape assert kz == ky == kx == 3, "not implemented for kernel shapes != 3x3x3" N, _, D, H, W = size_map.shape grid = grid_like(size_map) grid_prev = einops.rearrange(grid + flow_prev, "n zyx d h w -> n d h w zyx") grid_next = einops.rearrange(grid + flow_next, "n zyx d h w -> n d h w zyx") size_prev = F.grid_sample(size_map, grid_prev, align_corners=False) size_next = F.grid_sample(size_map, grid_next, align_corners=False) base_offset = get_kernel_grid(kernel_shape, dilation, size_map.device) base_offset = einops.rearrange(base_offset, "zyx kz ky kx -> kz ky kx zyx 1 1 1", zyx=3) def _inflate(m): return torch.cat([zeros, m, m], dim=1) offsets = torch.cat([ base_offset[i] * _inflate(size)[:, None, None, None, ...] for i, size in enumerate((size_prev, size_map, size_next)) ], dim=1) offsets = offsets + flow_map return offsets - base_offset
f86bd6a87b887900820eb28e1a1e9f0c796e6195
3,642,713
import colorsys def lighten_color(color, amount=0.5): """ Lightens the given color by multiplying (1-luminosity) by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Examples: >> lighten_color("g", 0.3) >> lighten_color("#F034A3", 0.6) >> lighten_color((.3,.55,.1), 0.5) """ try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) c = colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2]) return mc.to_hex(c)
4ef801fff6cb145a687a62dd18725258f1534abd
3,642,714
def unf_gas_density_kgm3(t_K, p_MPaa, gamma_gas, z): """ Equation for gas density :param t_K: temperature :param p_MPaa: pressure :param gamma_gas: specific gas density by air :param z: z-factor :return: gas density """ m = gamma_gas * 0.029 p_Pa = 10 ** 6 * p_MPaa rho_gas = p_Pa * m / (z * 8.31 * t_K) return rho_gas
6e41802367bbe70ab505ae5db89ee3e9a32e7d7c
3,642,715
def poll(): """Get Modbus agent data. Performance data from Modbus enabled targets. Args: None Returns: agentdata: AgentPolledData object for all data gathered by the agent """ # Initialize key variables. config = Config() _pi = config.polling_interval() # Initialize AgentPolledData agent_program = PATTOO_AGENT_OPCUAD agentdata = AgentPolledData(agent_program, _pi) # Get registers to be polled tpp_list = config.target_polling_points() arguments = [(tpp,) for tpp in tpp_list] # Poll registers for all targets and update the TargetDataPoints target_datapoints_list = _parallel_poller(arguments) agentdata.add(target_datapoints_list) # Return data return agentdata
b922b59c659e40ddc2b341a4605465d53e8cdaa8
3,642,716
import time def dot_product_timer(x_shape=(5000, 5000), y_shape=(5000, 5000), mean=0, std=10, seed=8053): """ A timer for the formula array1.dot(array2). Inputs: x_shape: Tuple of 2 Int Shape of array1; y_shape: Tuple of 2 Int Shape of array2; mean: Float Mean of the normal distribution used for random selection of elements of array1 and array2; std: Float Standard deviation of the normal distribution used for random selection of elements of array1 and array2; seed: Int Seed used in np.random.seed Outputs: delta_t: Float Number of seconds for completing array1.dot(array2); """ np.random.seed(seed) array1 = np.random.normal(mean, std, x_shape) array2 = np.random.normal(mean, std, y_shape) start = time.time() array1.dot(array2) delta_t = time.time() - start return delta_t
91d03070ea6efbe8d29e7bb5323aad0f20cead90
3,642,717
import os def availible_files(path:str, contains:str='') -> list: """Returns the availible files in directory Args: path(str): Path to directory contains(str, optional): (Default value = '') Returns: Raises: """ return [f for f in os.listdir(path) if contains in f]
c43db03d06d849c017382daee9715c8dde91b61d
3,642,718
import os def init_pretraining_params(exe, pretraining_params_path, main_program): """init pretraining params""" assert os.path.exists(pretraining_params_path ), "[%s] cann't be found." % pretraining_params_path def existed_params(var): if not isinstance(var, fluid.framework.Parameter): return False return os.path.exists(os.path.join(pretraining_params_path, var.name)) fluid.io.load_vars( exe, pretraining_params_path, main_program=main_program, predicate=existed_params) print("Load pretraining parameters from {}.".format( pretraining_params_path))
d15b3fbf2933e5f286d785c6debe309b0e1fa6c2
3,642,719
def npareatotal(values, areaclass): """ numpy area total procedure :param values: :param areaclass: :return: """ return np.take(np.bincount(areaclass,weights=values),areaclass)
b5e79c7648569b84a9fad77dd9ee555392a676ab
3,642,720
from AeroelasticSE.FusedFAST import openFAST def create_aerocode_wrapper(aerocode_params, output_params, options): """ create wind code wrapper""" solver = 'FAST' # solver = 'HAWC2' if solver=='FAST': ## TODO, changed when we have a real turbine # aero code stuff: for constructors w = openFAST(output_params) ## need better name than output_params # w = openFAST(None, atm, output_params) ## need better name than output_params w.setOutput(output_params) elif solver == 'HAWC2': w = openHAWC2(None) raise NotImplementedError, "HAWC2 aeroecode wrapper not implemented in runBatch.py yet" else: raise ValueError, "unknown aerocode: %s" % solver return w
1a530607555ce2714348184806405e68185f4012
3,642,721
import scipy def lqr_ofb_cost(K, R, Q, X, ss_o): # type: (np.array, np.array, np.array, np.array, control.ss) -> np.array """ Cost for LQR output feedback optimization. @K gain matrix @Q process noise covariance matrix @X initial state covariance matrix @ss_o open loop state space system @return cost """ K = np.matrix(K).T A = np.matrix(ss_o.A) B = np.matrix(ss_o.B) C = np.matrix(ss_o.C) A_c = A - B * K * C Q_c = C.T * K.T * R * K * C + Q P = scipy.linalg.solve_lyapunov(A_c.T, -Q_c) J = np.trace(P * X) return J
b0a22685c640c2970dad63628d1c87aac73b241a
3,642,722
def steadystate_floquet(H_0, c_ops, Op_t, w_d=1.0, n_it=3, sparse=False): """ Calculates the effective steady state for a driven system with a time-dependent cosinusoidal term: .. math:: \\mathcal{\\hat{H}}(t) = \\hat{H}_0 + \\mathcal{\\hat{O}} \\cos(\\omega_d t) Parameters ---------- H_0 : :obj:`~Qobj` A Hamiltonian or Liouvillian operator. c_ops : list A list of collapse operators. Op_t : :obj:`~Qobj` The the interaction operator which is multiplied by the cosine w_d : float, default 1.0 The frequency of the drive n_it : int, default 3 The number of iterations for the solver sparse : bool, default False Solve for the steady state using sparse algorithms. Actually, dense seems to be faster. Returns ------- dm : qobj Steady state density matrix. .. note:: See: Sze Meng Tan, https://copilot.caltech.edu/documents/16743/qousersguide.pdf, Section (10.16) """ if sparse: N = H_0.shape[0] L_0 = liouvillian(H_0, c_ops).data.tocsc() L_t = liouvillian(Op_t) L_p = (0.5 * L_t).data.tocsc() # L_p and L_m correspond to the positive and negative # frequency terms respectively. # They are independent in the model, so we keep both names. L_m = L_p L_p_array = L_p.todense() L_m_array = L_p_array Id = sp.eye(N ** 2, format="csc", dtype=np.complex128) S = T = sp.csc_matrix((N ** 2, N ** 2), dtype=np.complex128) for n_i in np.arange(n_it, 0, -1): L = sp.csc_matrix(L_0 - 1j * n_i * w_d * Id + L_m.dot(S)) L.sort_indices() LU = splu(L) S = - LU.solve(L_p_array) L = sp.csc_matrix(L_0 + 1j * n_i * w_d * Id + L_p.dot(T)) L.sort_indices() LU = splu(L) T = - LU.solve(L_m_array) M_subs = L_0 + L_m.dot(S) + L_p.dot(T) else: N = H_0.shape[0] L_0 = liouvillian(H_0, c_ops).full() L_t = liouvillian(Op_t) L_p = (0.5 * L_t).full() L_m = L_p Id = np.eye(N ** 2) S, T = np.zeros((N ** 2, N ** 2)), np.zeros((N ** 2, N ** 2)) for n_i in np.arange(n_it, 0, -1): L = L_0 - 1j * n_i * w_d * Id + np.matmul(L_m, S) lu, piv = la.lu_factor(L) S = - la.lu_solve((lu, piv), L_p) L = L_0 + 1j * n_i * w_d * Id + np.matmul(L_p, T) lu, piv = la.lu_factor(L) T = - la.lu_solve((lu, piv), L_m) M_subs = L_0 + np.matmul(L_m, S) + np.matmul(L_p, T) return steadystate(Qobj(M_subs, type="super", dims=L_t.dims))
8e59e8f138116877678d7d203d4767c6fc6bd1fa
3,642,723
def gsl_blas_dtrmm(*args, **kwargs): """ gsl_blas_dtrmm(CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, gsl_matrix A, gsl_matrix B) -> int """ return _gslwrap.gsl_blas_dtrmm(*args, **kwargs)
5efee7571f49afc20c3f33d010caccb199613315
3,642,724
def scale(value, upper, lower, min_, max_): """Scales value between upper and lower values, depending on the given minimun and maximum value. """ numerator = ((lower - upper) * float((value - min_))) denominator = float((max_ - min_)) return numerator / denominator + upper
3e13c80b765cffb1e75a6856d343bd9a88c353e9
3,642,725
def conditional_response(view, video=None, **kwargs): """ Redirect to login page if user is anonymous and video is private. Raise a permission denied error if user is logged in but doesn't have permission. Otherwise, return standard template response. Args: view(TemplateView): a video-specific View object (ViewDetail, ViewEmbed, etc). video(ui.models.Video): a video to display with the view Returns: TemplateResponse: the template response to render """ if not ui_permissions.has_video_view_permission(video, view.request): if view.request.user.is_authenticated: raise PermissionDenied else: return redirect_to_login(view.request.get_full_path()) context = view.get_context_data(video, **kwargs) return view.render_to_response(context)
ea8e8176a979fcd46c0c72d5201c6f85c7b4ed48
3,642,726
def Flatten(nmap_list): """Flattens every `.NestedMap` in nmap_list and concatenate them.""" ret = [] for x in nmap_list: ret += x.Flatten() return ret
c630869b725d69338830e1a14ef920d6d1e87ade
3,642,727
from re import T def get_data_schema() -> T.StructType: """ Return the kafka data schema """ return T.StructType( [T.StructField('key', T.StringType()), T.StructField('message', T.StringType())] )
0cbc2fc6e7015c458e70b8d0ec6efb5fbc0d84f5
3,642,728
from typing import List import random def build_graph(num: int = 0) -> (int, List[int]): """Build a graph of num nodes.""" if num < 3: raise app.UsageError('Must request graph of at least 3 nodes.') weight = 5.0 nodes = [(0, 1, 1.0), (1, 2, 2.0), (0, 2, 3.0)] for i in range(num-3): l = random.sample(range(0, 3 + i - 1), 2) nodes.append((3 + i, l[0], weight*np.random.random())) nodes.append((3 + i, l[1], weight*np.random.random())) return num, nodes
05efb60ae5cdcc561c93cf2faba172ca5a3ff0d7
3,642,729
from typing import List from typing import Collection def concatenate(boxes_list:List[Boxes], fields:Collection[str]=None) -> Boxes: """Merge multiple boxes to a single instance B = A[:10] C = A[10:] D = concatenate([A, B]) D should be equal to A """ if not boxes_list: if fields is None: fields = [] return empty(*fields) if fields is None: # Get fields common to all sub-boxes common_fields = set.intersection( *[set(x.get_fields()) for x in boxes_list] ) else: common_fields = fields coords = np.concatenate([x.get() for x in boxes_list], axis=0) new_fields = dict() for f in common_fields: new_fields[f] = np.concatenate([x.get_field(f) for x in boxes_list], axis=0) return Boxes(coords, **new_fields)
096067aea3d01e984befd2cadfce5a86c33580e9
3,642,730
def detect_peaks(array, freq=0, cthr=0.2, unprocessed_array=False, fs=44100): """ Function detects the peaks in array, based from the mirpeaks algorithm. :param array: Array in which to detect peaks :param freq: Scale representing the x axis (sample length as array) :param cthr: Threshold for checking adjacent peaks :param unprocessed_array: Array that in unprocessed (normalised), if False will default to the same as array. :param fs: Sampe rate of the array :return: index of peaks, values of peaks, peak value on freq. """ # flatten the array for correct processing array = array.flatten() if np.isscalar(freq): # calculate the frerquency scale - assuming a samplerate if none provided freq = np.linspace(0, fs / 2.0, len(array)) if np.isscalar(unprocessed_array): unprocessed_array = array # add values to allow peaks at the first and last values # to allow peaks at start and end (default of mir) array_appended = np.insert(array, [0, len(array)], -2.0) # unprocessed array to get peak values array_unprocess_appended = np.insert( unprocessed_array, [0, len(unprocessed_array)], -2.0 ) # append the frequency scale for precise freq calculation freq_appended = np.insert(freq, [0, len(freq)], -1.0) # get the difference values diff_array = np.diff(array_appended) # find local maxima mx = ( np.array( np.where((array >= cthr) & ( diff_array[0:-1] > 0) & (diff_array[1:] <= 0)) ) + 1 ) # initialise arrays for output finalmx = [] peak_value = [] peak_x = [] peak_idx = [] if np.size(mx) > 0: # unpack the array if peaks found mx = mx[0] j = 0 # scans the peaks from beginning to end mxj = mx[j] # the current peak under evaluation jj = j + 1 bufmin = 2.0 bufmax = array_appended[mxj] if mxj > 1: oldbufmin = min(array_appended[: mxj - 1]) else: oldbufmin = array_appended[0] while jj < len(mx): # if adjacent mx values are too close, returns no array if mx[jj - 1] + 1 == mx[jj] - 1: bufmin = min([bufmin, array_appended[mx[jj - 1]]]) else: bufmin = min( [bufmin, min(array_appended[mx[jj - 1]: mx[jj] - 1])]) if bufmax - bufmin < cthr: # There is no contrastive notch if array_appended[mx[jj]] > bufmax: # new peak is significant;y higher than the old peak, # the peak is transfered to the new position j = jj mxj = mx[j] # the current peak bufmax = array_appended[mxj] oldbufmin = min([oldbufmin, bufmin]) bufmin = 2.0 elif array_appended[mx[jj]] - bufmax <= 0: bufmax = max([bufmax, array_appended[mx[jj]]]) oldbufmin = min([oldbufmin, bufmin]) else: # There is a contrastive notch if bufmax - oldbufmin < cthr: # But the previous peak candidate is too weak and therefore discarded oldbufmin = min([oldbufmin, bufmin]) else: # The previous peak candidate is OK and therefore stored finalmx.append(mxj) oldbufmin = bufmin bufmax = array_appended[mx[jj]] j = jj mxj = mx[j] # The current peak bufmin = 2.0 jj += 1 if bufmax - oldbufmin >= cthr and ( bufmax - min(array_appended[mx[j] + 1:]) >= cthr ): # The last peak candidate is OK and stored finalmx.append(mx[j]) """ Sort the values according to their level """ finalmx = np.array(finalmx, dtype=np.int64) sort_idx = np.argsort(array_appended[finalmx])[::-1] # descending sort finalmx = finalmx[sort_idx] # indexes were for the appended array, -1 to return to original array index peak_idx = finalmx - 1 peak_value = array_unprocess_appended[finalmx] peak_x = freq_appended[finalmx] """ Interpolation for more precise peak location """ corrected_value = [] corrected_position = [] for current_peak_idx in finalmx: # if there enough space to do the fitting if 1 < current_peak_idx < (len(array_unprocess_appended) - 2): y0 = array_unprocess_appended[current_peak_idx] ym = array_unprocess_appended[current_peak_idx - 1] yp = array_unprocess_appended[current_peak_idx + 1] p = (yp - ym) / (2 * (2 * y0 - yp - ym)) corrected_value.append(y0 - (0.25 * (ym - yp) * p)) if p >= 0: correct_pos = ((1 - p) * freq_appended[current_peak_idx]) + ( p * freq_appended[current_peak_idx + 1] ) corrected_position.append(correct_pos) elif p < 0: correct_pos = ((1 + p) * freq_appended[current_peak_idx]) - ( p * freq_appended[current_peak_idx - 1] ) corrected_position.append(correct_pos) else: corrected_value.append( array_unprocess_appended[current_peak_idx]) corrected_position.append(freq_appended[current_peak_idx]) if corrected_position: peak_x = corrected_position peak_value = corrected_value peak_idx = peak_idx.astype(np.int64) return peak_idx, np.array(peak_value, dtype=np.float64), np.array(peak_x, np.float64) else: return np.array([0], dtype=np.int64), np.array( [0], dtype=np.float64), np.array([0], np.float64)
c11a09624085d505d36a9e374954dd6ba5c1e05a
3,642,731
def left_index_iter(shape): """Iterator for the left boundary indices of a structured grid.""" return range(0, shape[0] * shape[1], shape[1])
c7da6f5de48d0446cb0729593d3dc0eb95f5ab9a
3,642,732
import logging def calculate_precision_recall(df_merged): """Calculates precision and recall arrays going through df_merged row-wise.""" all_positives = get_all_positives(df_merged) # Populates each row with 1 if this row is a true positive # (at its score level). df_merged["is_tp"] = np.where( (df_merged["label_groundtruth"] == "SPEAKING_AUDIBLE") & (df_merged["label_prediction"] == "SPEAKING_AUDIBLE"), 1, 0) # Counts true positives up to and including that row. df_merged["tp"] = df_merged["is_tp"].cumsum() # Calculates precision for every row counting true positives up to # and including that row over the index (1-based) of that row. df_merged["precision"] = df_merged["tp"] / (df_merged.index + 1) # Calculates recall for every row counting true positives up to # and including that row over all positives in the groundtruth dataset. df_merged["recall"] = df_merged["tp"] / all_positives logging.info( "\n%s\n", df_merged.head(10)[[ "uid", "score", "label_groundtruth", "is_tp", "tp", "precision", "recall" ]]) return np.array(df_merged["precision"]), np.array(df_merged["recall"])
80d2c82c99e0bbbab8460ff997fc1358f758f2f6
3,642,733
def combine(shards, judo_file): """combine this class is passed the """ # Recombine the shards to create the kek combined_shares = Shamir.combine(shards) combined_shares_string = "{}".format(combined_shares) # decrypt the dek uysing the recombined kek decrypted_dek = decrypt( judo_file['wrappedKey'], unhexlify(combined_shares_string) ) # decrypt the data using the dek decrypted_data = decrypt( judo_file['data'], unhexlify(decrypted_dek) ) decrypted_text = unhexlify(decrypted_data) return(decrypted_data, decrypted_text)
3ba88307c3d0cb0a43473e89b731c61e9bbfe83d
3,642,734
def shiftRightUnsigned(e, numBits): """ :rtype: Column >>> from pysparkling import Context >>> from pysparkling.sql.session import SparkSession >>> from pysparkling.sql.functions import shiftLeft, shiftRight, shiftRightUnsigned >>> spark = SparkSession(Context()) >>> df = spark.range(-5, 4) >>> df.select("id", shiftRight("id", 1), shiftRightUnsigned("id", 1)).show() +---+-----------------+-------------------------+ | id|shiftright(id, 1)|shiftrightunsigned(id, 1)| +---+-----------------+-------------------------+ | -5| -3| 9223372036854775805| | -4| -2| 9223372036854775806| | -3| -2| 9223372036854775806| | -2| -1| 9223372036854775807| | -1| -1| 9223372036854775807| | 0| 0| 0| | 1| 0| 0| | 2| 1| 1| | 3| 1| 1| +---+-----------------+-------------------------+ """ return col(ShiftRightUnsigned(parse(e), lit(numBits)))
4f528609bb72a44a99581bca997fbde2f19af861
3,642,735
def change_wallpaper_job(profile, force=False): """Centralized wallpaper method that calls setter algorithm based on input prof settings. When force, skip the profile name check """ with G_WALLPAPER_CHANGE_LOCK: if profile.spanmode.startswith("single") and profile.ppimode is False: thrd = Thread(target=span_single_image_simple, args=(profile, force), daemon=True) thrd.start() elif ((profile.spanmode.startswith("single") and profile.ppimode is True) or profile.spanmode.startswith("advanced")): thrd = Thread(target=span_single_image_advanced, args=(profile, force), daemon=True) thrd.start() elif profile.spanmode.startswith("multi"): thrd = Thread(target=set_multi_image_wallpaper, args=(profile, force), daemon=True) thrd.start() else: sp_logging.G_LOGGER.info("Unkown profile spanmode: %s", profile.spanmode) return None return thrd
b4013e847cae337f83af5f3282d5551a52b4a7b3
3,642,736
import sys from typing import ForwardRef from typing import _eval_type from typing import _strip_annotations import types from typing import _get_defaults from typing import Optional def get_type_hints(obj, globalns=None, localns=None, include_extras=False): """Return type hints for an object. This is often the same as obj.__annotations__, but it handles forward references encoded as string literals, adds Optional[t] if a default value equal to None is set and recursively replaces all 'Annotated[T, ...]' with 'T' (unless 'include_extras=True'). The argument may be a module, class, method, or function. The annotations are returned as a dictionary. For classes, annotations include also inherited members. TypeError is raised if the argument is not of a type that can contain annotations, and an empty dictionary is returned if no annotations are present. BEWARE -- the behavior of globalns and localns is counterintuitive (unless you are familiar with how eval() and exec() work). The search order is locals first, then globals. - If no dict arguments are passed, an attempt is made to use the globals from obj (or the respective module's globals for classes), and these are also used as the locals. If the object does not appear to have globals, an empty dictionary is used. - If one dict argument is passed, it is used for both globals and locals. - If two dict arguments are passed, they specify globals and locals, respectively. """ if getattr(obj, '__no_type_check__', None): return {} # Classes require a special treatment. if isinstance(obj, type): hints = {} for base in reversed(obj.__mro__): if globalns is None: base_globals = sys.modules[base.__module__].__dict__ else: base_globals = globalns ann = base.__dict__.get('__annotations__', {}) for name, value in ann.items(): if value is None: value = type(None) if isinstance(value, str): value = ForwardRef(value, is_argument=False) value = _eval_type(value, base_globals, localns) hints[name] = value return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()} if globalns is None: if isinstance(obj, types.ModuleType): globalns = obj.__dict__ else: nsobj = obj # Find globalns for the unwrapped object. while hasattr(nsobj, '__wrapped__'): nsobj = nsobj.__wrapped__ globalns = getattr(nsobj, '__globals__', {}) if localns is None: localns = globalns elif localns is None: localns = globalns hints = getattr(obj, '__annotations__', None) if hints is None: # Return empty annotations for something that _could_ have them. if isinstance(obj, _allowed_types): return {} else: raise TypeError('{!r} is not a module, class, method, ' 'or function.'.format(obj)) defaults = _get_defaults(obj) hints = dict(hints) for name, value in hints.items(): if value is None: value = type(None) if isinstance(value, str): value = ForwardRef(value) value = _eval_type(value, globalns, localns) if name in defaults and defaults[name] is None: value = Optional[value] hints[name] = value return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
a847d42f25355c3109f650206c1673674f1201b5
3,642,737
def sheets_from_excel(xlspath): """ Reads in an xls(x) file, returns an array of arrays, like: Xijk, i = sheet, j = row, k = column (but it's not a np ndarray, just nested arrays) """ wb = xlrd.open_workbook(xlspath) n_sheets = wb.nsheets sheet_data = [] for sn in xrange(n_sheets): sheet = wb.sheet_by_index(sn) rows = [sheet.row_values(i) for i in xrange(sheet.nrows)] if len(rows) > 0: sheet_data.append(rows) return sheet_data
11099d2929ef0078ae0e5b07a700bdb2021eaa56
3,642,738
import numpy import logging def fitStatmechPseudoRotors(Tlist, Cvlist, Nvib, Nrot, molecule=None): """ Fit `Nvib` harmonic oscillator and `Nrot` hindered internal rotor modes to the provided dimensionless heat capacities `Cvlist` at temperatures `Tlist` in K. This method assumes that there are enough heat capacity points provided that the vibrational frequencies can be fit directly, but the hindered rotors must be combined into a single "pseudo-rotor". """ # Construct the lower and upper bounds for each variable bounds = [] # Bounds for harmonic oscillator frequencies for i in range(Nvib): bounds.append((hoFreqLowerBound, hoFreqUpperBound)) # Bounds for pseudo-hindered rotor frequency and barrier height bounds.append((hrFreqLowerBound, hrFreqUpperBound)) bounds.append((hrBarrLowerBound, hrBarrUpperBound)) # Construct the initial guess # Initial guesses within each mode type must be distinct or else the # optimization will fail x0 = numpy.zeros(Nvib + 2, numpy.float64) # Initial guess for harmonic oscillator frequencies if Nvib > 0: x0[0] = 200.0 x0[1:Nvib] = numpy.linspace(800.0, 1600.0, Nvib-1) # Initial guess for hindered rotor frequencies and barrier heights x0[Nvib] = 100.0 x0[Nvib+1] = 300.0 # Execute the optimization fit = PseudoRotorFit(Tlist, Cvlist, Nvib, Nrot) fit.initialize(Neq=len(Tlist), Nvars=len(x0), Ncons=0, bounds=bounds, maxIter=maxIter) x, igo = fit.solve(x0) # Check that the results of the optimization are valid if not numpy.isfinite(x).all(): raise StatmechFitError('Returned solution vector is nonsensical: x = {0}.'.format(x)) if igo == 8: logging.warning('Maximum number of iterations reached when fitting spectral data for {0}.'.format(molecule.toSMILES())) # Postprocess optimization results vib = list(x[0:Nvib]) hind = [] for i in range(Nrot): hind.append((x[Nvib], x[Nvib+1])) return vib, hind
eb110aab6a5ed35bd2ec1bdb2ca262524fe44dcf
3,642,739
def add_numbers(a, b): """Sums the given numbers. :param int a: The first number. :param int b: The second number. :return: The sum of the given numbers. >>> add_numbers(1, 2) 3 >>> add_numbers(50, -8) 42 """ return a + b
7d9a0c26618a2aee5a8bbff6a65e315c33594fde
3,642,740
def get_version(table_name): """Get the most recent version number held in a given table.""" db = get_db() cur = db.cursor() cur.execute("select * from {} order by entered_on desc".format(table_name)) return cur.fetchone()["version"]
7bc55bacf7aa84ccc9ba6f6bb51bbc51c1556395
3,642,741
def area(a, indices=(0, 1, 2, 3)): """ :param a: :param indices: :return: """ x0, y0, x1, y1 = indices return (a[..., x1] - a[..., x0]) * (a[..., y1] - a[..., y0])
17df4d4f4ad818be0b2ed7a1fe65aaeccbe63638
3,642,742
from xbbg.io import logs def latest_file(path_name, keyword='', ext='', **kwargs) -> str: """ Latest modified file in folder Args: path_name: full path name keyword: keyword to search ext: file extension Returns: str: latest file name """ files = sort_by_modified( all_files(path_name=path_name, keyword=keyword, ext=ext, full_path=True) ) if not files: logger = logs.get_logger(latest_file, level=kwargs.pop('log', 'warning')) logger.debug(f'no file in folder: {path_name}') return '' return str(files[0]).replace('\\', '/')
7d6db9994525a5fc4f109c52bede04f2c568c906
3,642,743
def infer_tf_dtypes(image_array): """ Choosing a suitable tf dtype based on the dtype of input numpy array. """ return dtype_casting( image_array.dtype[0], image_array.interp_order[0], as_tf=True)
fd8fc353fd6a76a1dae2a693a9121415393b8d50
3,642,744
def get_cifar10_datasets(n_devices, batch_size=256, normalize=False): """Get CIFAR-10 dataset splits.""" if batch_size % n_devices: raise ValueError("Batch size %d isn't divided evenly by n_devices %d" % (batch_size, n_devices)) train_dataset = tfds.load('cifar10', split='train[:90%]') val_dataset = tfds.load('cifar10', split='train[90%:]') test_dataset = tfds.load('cifar10', split='test') def decode(x): decoded = { 'inputs': tf.cast(tf.image.rgb_to_grayscale(x['image']), dtype=tf.int32), 'targets': x['label'] } if normalize: decoded['inputs'] = decoded['inputs'] / 255 return decoded train_dataset = train_dataset.map(decode, num_parallel_calls=AUTOTUNE) val_dataset = val_dataset.map(decode, num_parallel_calls=AUTOTUNE) test_dataset = test_dataset.map(decode, num_parallel_calls=AUTOTUNE) train_dataset = train_dataset.repeat() train_dataset = train_dataset.batch(batch_size, drop_remainder=True) val_dataset = val_dataset.batch(batch_size, drop_remainder=True) test_dataset = test_dataset.batch(batch_size, drop_remainder=True) train_dataset = train_dataset.shuffle( buffer_size=256, reshuffle_each_iteration=True) return train_dataset, val_dataset, test_dataset, 10, 256, (batch_size, 32, 32, 1)
50dd1b02792ab13f4b6d42d52e6467503f319bb2
3,642,745
from disco.worker.pipeline.worker import Worker, Stage from disco.core import Job, result_iterator def predict(dataset, fitmodel_url, save_results=True, show=False): """ Function starts a job that makes predictions to input data with a given model Parameters ---------- input - dataset object with input urls and other parameters fitmodel_url - model created in fit phase save_results - save results to ddfs show - show info about job execution Returns ------- Urls with predictions on ddfs """ if dataset.params["y_map"] == []: raise Exception("Logistic regression requires a target label mapping parameter.") if "logreg_fitmodel" not in fitmodel_url: raise Exception("Incorrect fit model.") job = Job(worker=Worker(save_results=save_results)) # job parallelizes execution of mappers job.pipeline = [ ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))] job.params = dataset.params # job parameters (dataset object) job.params["thetas"] = [v for k, v in result_iterator(fitmodel_url["logreg_fitmodel"]) if k == "thetas"][ 0] # thetas are loaded from ddfs job.run(name="logreg_predict", input=dataset.params["data_tag"]) results = job.wait(show=show) return results
dbf56e82a3ff81a899cf2c33fa83f8c0f1b73947
3,642,746
def format_string_to_json(balance_info): """ Format string to json. e.g: '''Working Account|KES|481000.00|481000.00|0.00|0.00''' => {'Working Account': {'current_balance': '481000.00', 'available_balance': '481000.00', 'reserved_balance': '0.00', 'uncleared_balance': '0.00'}} """ balance_dict = frappe._dict() for account_info in balance_info.split("&"): account_info = account_info.split('|') balance_dict[account_info[0]] = dict( current_balance=fmt_money(account_info[2], currency="KES"), available_balance=fmt_money(account_info[3], currency="KES"), reserved_balance=fmt_money(account_info[4], currency="KES"), uncleared_balance=fmt_money(account_info[5], currency="KES") ) return dumps(balance_dict)
1be0d4d8ad3c5373e18e6f78957e18d8f0c0c846
3,642,747
from typing import Tuple from typing import List def get_relevant_texts(subject: Synset, doc_threshold: float) -> Tuple[List[str], List[int], int, int]: """Get all lines from all relevant articles. Also return the number of retrieved documents and retained ones.""" article_dir = get_article_dir(subject) rel_path = get_relevant_scores_path(subject) subject_name = get_concept_name(subject) with rel_path.open() as f: # read file to get the ids of relevant articles scores = [float(line) for line in f if line.strip()] num_doc_retrieved = len(scores) line_list = [] doc_id_list = [] num_doc_retained = 0 for doc_id, score in enumerate(scores): path = article_dir / "{}.txt".format(doc_id) try: with path.open() as f: lines = [line.strip() for line in f if line.strip()] if len(lines) > 500: # ignore huge files continue text = "\n".join(lines) if score >= doc_threshold or (len(text.split()) <= 200 and subject_name in text.lower()): line_list.extend(lines) doc_id_list.extend([doc_id] * len(lines)) num_doc_retained += 1 except FileNotFoundError: logger.warning(f"Subject {subject.name()} - {path} does not exist!") continue return line_list, doc_id_list, num_doc_retrieved, num_doc_retained
150dca990fe67ed3fb5381e6d4a6bce8656f2619
3,642,748
def plot_mae(X, y, model): """ Il est aussi pertinent de logger les graphiques sous forme d'artifacts. """ fig = plt.figure() plt.scatter(y, model.predict(X)) plt.xlabel("Durée réelle du trajet") plt.ylabel("Durée estimée du trajet") image = fig fig.savefig("MAE.png") plt.close(fig) return image
3bc4225f530f7f80ea903d55963cb0a33fe1cb45
3,642,749
from typing import Optional from typing import List import re def compile_options( rst_roles: Optional[List[str]], rst_directives: Optional[List[str]], *, allow_autodoc: bool = False, allow_toolbox: bool = False, ): """ Compile the list of allowed roles and directives. :param rst_roles: :param rst_directives: :param allow_autodoc: :param allow_toolbox: """ default_allowed_rst_directives = [] default_allowed_rst_roles = [] config = ConfigParser() config.read("tox.ini", encoding="UTF-8") if "flake8" in config: if "rst-directives" in config["flake8"]: default_allowed_rst_directives.extend(re.split(r"[\n,]", config["flake8"]["rst-directives"])) if "rst-roles" in config["flake8"]: default_allowed_rst_roles.extend(re.split(r"[\n,]", config["flake8"]["rst-roles"])) domain: Domain if allow_toolbox: domain = Toolbox() elif allow_autodoc: domain = Autodoc() else: domain = Builtin() if rst_roles is None: rst_roles = sorted({*default_allowed_rst_roles, *domain.roles}) if rst_directives is None: rst_directives = sorted({*default_allowed_rst_directives, *domain.directives}) return rst_roles, rst_directives
2c5ff56797ce8eb37dfd193fd0522c057e265da5
3,642,750
import types def get_pure_function(method): """ Retreive pure function, for a method. Depends on features specific to CPython """ assert(isinstance(method, types.MethodType)) assert(hasattr(method, 'im_func')) return method.im_func
f0a7f25a38fd9da061f281f5c55453f8e7ae37d0
3,642,751
def _agg_samples_2d(sample_df: pd.DataFrame) -> pd.DataFrame: """Aggregate ENN samples for plotting.""" def pct_95(x): return np.percentile(x, 95) def pct_5(x): return np.percentile(x, 5) enn_df = (sample_df.groupby(['x0', 'x1'])['y'] .agg([np.mean, np.std, pct_5, pct_95]).reset_index()) enn_df = enn_df.rename({'mean': 'y'}, axis=1) enn_df['method'] = 'enn' return enn_df
d2decff9ae5224ad77ce6f133ac0cf0099dda89f
3,642,752
def get_np_num_array_str(data_frame_rows): """ Get a complete code str that creates a np array with random values """ test_code = cleandoc(""" from sklearn.preprocessing import StandardScaler import pandas as pd from numpy.random import randint series = randint(0,100,size=({})) df = pd.DataFrame(series, columns=["num"]) """.format(data_frame_rows)) return test_code
66a81bba8666a02770f1de233e458a5067e08f62
3,642,753
from typing import Any def get_config(name: str = None, default: Any = _MISSING) -> Any: """Gets the global configuration. Parameters ---------- name : str, optional The name of the setting to get the value for. If no name is given then the whole :obj:`Configuration` object is returned. default : optional The default value to return if `name` is provided but the setting doesn't exist in the global configuration. Returns ------- :obj:`Configuration` or :obj:`object` The global configuration object or the configuration setting requested. """ global _GLOBAL_CONFIG if not name: return _GLOBAL_CONFIG.copy() if default == _MISSING: return _GLOBAL_CONFIG[name] return _GLOBAL_CONFIG.get(name, default)
da43dd18c3841489cf6c909acb12a95b34179135
3,642,754
def domain_domain_distance(ptg1, ptg2, pdb_struct, domain_distance_dict): """ Return the distance between two domains, which will be defined as the distance between their two closest SSEs (using SSE distnace defined in ptdistmatrix.py) Parameters: ptg1 - PTGraph2 object for one domain ptg2 - PTGraph2 object for the other domain pdb_struct - parsed PDB structure from Bio.PDB domain_distance_dict (In/Out) - dict { (dom1, dom2) : ret_tuple } for memoizing domiain-domain distances. (dom1,dom2) is tuple of two PTGraph2 objects, note both (dom1,dom2) and (dom2,dom1) are always added and ret_tuple is the return value tuple as defined below. Return value: tuple (dist, closest_sse1, closest_sse2, closest_res1, closest_res2) distance in Angstroms between the two domains, as defined above and closest_sse1, closest_sse2 are PTNode objects for the closest SSEs in ptg1 and ptg2 domains respectively and closest_res1 and closest_res2 are the closest residues in closest_sse1 and closest_sse2 respectively. """ # This function is memoized by the domain_distance_dict parmeter, # to save recomputations of distances that are previously computed. if domain_distance_dict.has_key((ptg1, ptg2)): return domain_distance_dict[(ptg1, ptg2)] min_dist = float("inf") closest_sse1 = closest_sse2 = None closest_res1 = closest_res2 = None # exclude the terminus nodes ptg1_sses = [ node for node in ptg1.iter_nodes() if not isinstance(node, PTNodeTerminus) ] ptg2_sses = [ node for node in ptg2.iter_nodes() if not isinstance(node, PTNodeTerminus) ] for sse1 in ptg1_sses: for sse2 in ptg2_sses: (dist, res1, res2) = calc_sse_sse_dist(sse1, sse2, pdb_struct) if dist < min_dist: min_dist = dist closest_sse1 = sse1 closest_sse2 = sse2 closest_res1 = res1 closest_res2 = res2 ret_tuple12 = (min_dist,closest_sse1,closest_sse2,closest_res1,closest_res2) ret_tuple21 = (min_dist,closest_sse2,closest_sse1,closest_res2,closest_res1) domain_distance_dict[(ptg1, ptg2)] = ret_tuple12 domain_distance_dict[(ptg2, ptg1)] = ret_tuple21 # if verbose: # sys.stderr.write('dist between domain ' + ptg1.domainid + ' and ' + # ptg2.domainid + ' is ' + str(min_dist) + '\n') return ret_tuple12
6f2f68714717a32da0182db814629ac0e55b59e8
3,642,755
def pred_error(f_pred, prepare_data, data, iterator, max_len, n_words, filter_h): """ compute the prediction error. """ valid_err = 0 for _, valid_index in iterator: x = [data[0][t] for t in valid_index] x = prepare_data(x,max_len,n_words,filter_h) preds = f_pred(x) targets = np.array([data[1][t] for t in valid_index],dtype='int32') valid_err += (preds == targets).sum() valid_err = 1. - numpy_floatX(valid_err) / len(data[0]) return valid_err
c8f667a2eb6b9cc67d96ea0b6848f27cd337a2f9
3,642,756
def standardize_10msample(frac: float=0.01): """Runs each data processing function in series to save a new .csv data file. Intended for Pandas DataFrame. For Dask DataFrames, use standardize_10msample_dask Args: frac (float, optional): Fraction of data file rows to sample. Defaults to 0.01. Returns: df_10msample(pd.core.Frame.DataFrame): Finished DataFrame\ ,that should match the same when using .read_csv() method """ sample_10m = '../data/10m_sample_common_passwords/10-million-combos.txt' df_10msample = pd.read_csv(sample_10m, header=None, delimiter='\t').astype(str).sample(frac=frac) df_10msample.columns = ['username', 'password'] df_10msample.drop('username', axis=1, inplace=True) df_10msample['length'] = df_10msample['password'].apply(len) strength_features(df_10msample) df_10msample['class'] = df_10msample['password'].apply(withPassClass) pass_class_expand(df_10msample) to_csv(df_10msample, filename='../data/10m_sample_common_passwords/10m_standardized.csv') return df_10msample
d834cc31220a34204966160bb72399a53b99ff5b
3,642,757
def is_ansible_managed(file_path): """ Gets whether the fail2ban configuration file at the given path is managed by Ansible. :param file_path: the file to check if managed by Ansible :return: whether the file is managed by Ansible """ with open(file_path, "r") as file: return file.readline().strip() == ANSIBLE_MANAGED_LINE
a8e70d242f598ad26a00cf0b3ccc1a1494475ba8
3,642,758
import ctypes def sumai(array): """ Return the sum of the elements of an integer array. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/sumai_c.html :param array: Input Array. :type array: Array of ints :return: The sum of the array. :rtype: int """ n = ctypes.c_int(len(array)) array = stypes.toIntVector(array) return libspice.sumai_c(array, n)
ece9b6a171dff66d4f66c7ce711b6a7a7b4c59a2
3,642,759
import os import re def _get_connection_dir(app): """Gets the connection dir to use for the IPKernelApp""" connection_dir = None # Check the pyxll config first cfg = get_config() if cfg.has_option("JUPYTER", "runtime_dir"): connection_dir = cfg.get("JUPYTER", "runtime_dir") if not os.path.abspath(connection_dir): connection_dir = os.path.join(os.path.dirname(pyxll.__file__), connection_dir) # If not set in the pyxll config use the default from the kernel if not connection_dir: connection_dir = app.connection_dir # If Excel is installed as a UWP then AppData will appear as a different folder when the # child Python process is run so use a different path. excel_path = _get_excel_path() if "WindowsApps" in re.split(r"[/\\]+", excel_path): _log.debug("Excel looks like a UWP app.") if "AppData" in re.split(r"[/\\]+", connection_dir): connection_dir = os.path.join(os.path.dirname(pyxll.__file__), ".jupyter", "runtime") _log.warning("Jupyter's runtime directory is in AppData but Excel is installed as a UWP. ") _log.warning(f"{connection_dir} will be used instead.") _log.warning("Set 'runtime_dir' in the '[JUPYTER]' section of your pyxll.cfg to change this directory.") return connection_dir
246094655a185fc1a2029ec0d5a899a641c62a13
3,642,760
import os import zlib def download(accession): """Downloads GEO file based on accession number. Returns a SOFTFile or ANNOTFile instance. For reading and unzipping binary chunks, see: http://stackoverflow.com/a/27053335/1830334 http://stackoverflow.com/a/2424549/1830334 """ if 'GPL' not in accession: # soft file geo_file = SOFTFile(accession) if 'GDS' in accession: url = _construct_GDS_url(accession) else: url = _construct_GSE_url(accession) else: geo_file = ANNOTFile(accession) url = _construct_GPL_url(accession) if os.path.isfile(geo_file.path()): # avoid downloading the same file again if exists return geo_file CHUNK_SIZE = 1024 decompressor = zlib.decompressobj(16+zlib.MAX_WBITS) response = _get_file_by_url(url) with open(geo_file.path(), 'w+') as f: while True: bin_chunk = response.read(CHUNK_SIZE) if not bin_chunk: break string = decompressor.decompress(bin_chunk) f.write(string) return geo_file
4f207d7dbe2fdc99142690565c3266d7341af548
3,642,761
from typing import Union from typing import Optional from typing import Mapping from typing import Any def invoke( node: Union[DAG, Task], params: Optional[Mapping[str, Any]] = None, ) -> Mapping[str, NodeOutput]: """ Invoke a node with a series of parameters. Parameters ---------- node Node to execute params Inputs to the task, indexed by input/parameter name. Returns ------- Serialized outputs of the task, indexed by output name. Raises ------ ValueError When any required parameters are missing TypeError When any of the outputs cannot be obtained from the return value of the task's function SerializationError When some of the outputs cannot be serialized with the specified Serializer """ if isinstance(node, DAG): return _invoke_dag(node, params=params) else: return _invoke_task(node, params=params)
f05a49996912a52db37a809d078faaa208942e7f
3,642,762
def convert_acl_to_iam_policy(acl): """Converts the legacy ACL format to an IAM Policy proto.""" owners = acl.get('owners', []) readers = acl.get('readers', []) if acl.get('all_users_can_read', False): readers.append('allUsers') writers = acl.get('writers', []) bindings = [] if owners: bindings.append({'role': 'roles/owner', 'members': owners}) if readers: bindings.append({'role': 'roles/viewer', 'members': readers}) if writers: bindings.append({'role': 'roles/editor', 'members': writers}) return {'bindings': bindings}
990cdb6a51a696cf2b7825af94cf4265b2229be9
3,642,763
def get_valid_start_end(mask): """ Args: mask (ndarray of bool): invalid mask Returns: """ ns = mask.shape[0] nt = mask.shape[1] start_idx = np.full(ns, -1, dtype=np.int32) end_idx = np.full(ns, -1, dtype=np.int32) for s in range(ns): # scan from start to the end for t in range(nt): if not mask[s][t]: start_idx[s] = t break # reverse scan, from end to start for t in range(nt - 1, -1, -1): if not mask[s][t]: end_idx[s] = t + 1 break return start_idx, end_idx
41520c051d25aed203e5db9f64497f75eaab4f6c
3,642,764
def pahrametahrize(*args, **kwargs) -> t.Callable: """Pass arguments straight through to `pytest.mark.parametrize`.""" return pytest.mark.parametrize(*args, **kwargs)
43bbc1e8323956f1ed2e1da60abf23e5b35130ba
3,642,765
from datetime import datetime def utcnow(): """Return the current time in UTC with a UTC timezone set.""" return datetime.utcnow().replace(microsecond=0, tzinfo=UTC)
496c80cfa4a2b00b514346705fc0709739e2d3c0
3,642,766
def default_to(default, value): """ Ramda implementation of default_to :param default: :param value: :return: """ return value or default
58338f67332a0ff116cd2ff46d65ee92bf59c360
3,642,767
def insertGraph(): """ Create a new graph """ root = Xref.getroot().elem ref = getNewRef() elem = etree.Element(etree.QName(root, sgraph), reference=ref) name = makeNewName(sgraph, elem) root.append(elem) Xref.setDirty() return name, (elem, newDotGraph(name, ref, elem))
2a60fac192d6d3448c3e48637585af2d54bdf87f
3,642,768
from datetime import datetime def get_line_notif(line_data: str): """ Извлечь запись из таблицы. :param line_data: запрашиваемая строка """ try: connection = psycopg2.connect( user=USER, password=PASSWORD, host="127.0.0.1", port="5432", database=DATABASE) cursor = connection.cursor(cursor_factory=extras.DictCursor) date_time = datetime.datetime.now() hour = '0' + str(date_time.hour) if date_time.hour < 10 else date_time.hour minute = '0' + str(date_time.minute) if date_time.minute < 10 else date_time.minute day = '0' + str(date_time.day) if date_time.day < 10 else date_time.day month = '0' + str(date_time.month) if date_time.month < 10 else date_time.month if line_data in ("Мобильная Связь", "Подписки", "ЖКХ"): cursor.execute(f'SELECT * from reminders WHERE date = \'{day}\' and ' + f'time = \'{hour}:{minute}\' and type=\'{line_data}\';') elif line_data == "Планер": cursor.execute(f'SELECT * from reminders WHERE date = \'{date_time.date}\' ' + f'and time = \'{hour}:{minute}\' and type=\'{line_data}\';') elif line_data == "День Рождения": cursor.execute(f'SELECT * from reminders WHERE date = \'{day}.{month}\' ' + f'and time = \'{hour}:{minute}\' and type=\'{line_data}\';') elif line_data == "Приём Лекарств": cursor.execute('SELECT * from reminders WHERE ' + f'time = \'{hour}:{minute}\' and type=\'{line_data}\';') connection.commit() except (Exception, Error) as error: print(ERROR_MESSAGE, error) finally: res = cursor.fetchall() if connection: cursor.close() connection.close() return res
8fbeb195faaa1f49928e3d0e49310cc3d4bcb37f
3,642,769
import os def load_alloc_model(matfilepath, prefix): """ Load allocmodel stored to disk in bnpy .mat format. Parameters ------ matfilepath : str String file system path to folder where .mat files are stored. Usually this path is a "taskoutpath" like where bnpy.run saves its output. prefix : str Indicates which stored checkpoint to use. Can look like 'Lap0005.000'. Returns ------ allocModel : bnpy.allocmodel object This object has valid set of global parameters and valid hyperparameters that define its prior. """ apriorpath = os.path.join(matfilepath, 'AllocPrior.mat') amodelpath = os.path.join(matfilepath, prefix + 'AllocModel.mat') APDict = loadDictFromMatfile(apriorpath) ADict = loadDictFromMatfile(amodelpath) AllocConstr = AllocModelConstructorsByName[ADict['name']] amodel = AllocConstr(ADict['inferType'], APDict) amodel.from_dict(ADict) return amodel
459426256a4eee25133b7baa8fca7811432b6238
3,642,770
def bouts_per_minute(boutlist): """Takes list of times of bouts in seconds, returns bpm = total_bouts / total_time.""" bpm = (total_bouts(boutlist) / total_time(boutlist)) * 60 return bpm
949f0d8758d7fcc8a1e19d4772788504b5ba10a5
3,642,771
import re def convert_to_snake_case(string: str) -> str: """Helper function to convert column names into snake case. Takes a string of any sort and makes conversions to snake case, replacing double- underscores with single underscores.""" s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', string) draft = re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() return draft.replace('__', '_')
2a8de69a6915e87e46582a1af7a7897ff6fd97ce
3,642,772
def list_keys(client, keys): """ :param client: string :param keys: list of candidate keys :return: True if all keys exist, None otherwise """ objects = client.get_multi(keys) if bool(objects): return objects else: return None
4370053b76ea526e1f43309112f85f968ce76b6b
3,642,773
import os import pickle def load_config(config_name): """ Load a configuration object from a file and return the object. The given configuration name must be a valid saved configuration. :param config_name: The name of the configuration file to load from. :return: The configuration object saved in that file. """ if config_name is None: return None file_name = config_name + ".dat" file_path = os.path.join(util.working_directory(), CONFIG_DIRECTORY, file_name) config_file = open(file_path, "rb") config = pickle.load(config_file) config_file.close() return config
dfa99668bf3f1eae39f1678cbd0eda4e3fe151aa
3,642,774
def estimate_variance(ip_image: np.ndarray, x: int, y: int, nbr_size: int) -> float: """Estimates local variances as described in pg. 6, eqn. 20""" nbrs = get_neighborhood(x, y, nbr_size, ip_image.shape[0], ip_image.shape[1]) vars = list() for channel in range(3): pixel_avg = 0 for i, j in nbrs: pixel_avg += ip_image[i, j, channel] pixel_avg /= len(nbrs) pixel_var = 0 for i, j in nbrs: pixel_var += (ip_image[i, j, channel] - pixel_avg) * (ip_image[i, j, channel] - pixel_avg) pixel_var /= len(nbrs) vars.append(pixel_var) return np.average(vars)
26932d333a50526f5f3bc4b10e5dd2b0bd15e871
3,642,775
def api_key_regenerate(): """ Generate a new API key for the currently logged-in user. """ try: return flask.jsonify({ constants.api.RESULT: constants.api.RESULT_SUCCESS, constants.api.MESSAGE: None, 'api_key': database.user.generate_new_api_key(current_user.user_id).api_key, }), constants.api.SUCCESS_CODE except: return flask.jsonify(constants.api.UNDEFINED_FAILURE), constants.api.UNDEFINED_FAILURE_CODE
59ccc904dc80386910370dae0752c4810107224c
3,642,776
def almost_equal_ignore_nan(a, b, rtol=None, atol=None): """Test that two NumPy arrays are almost equal (ignoring NaN in either array). Combines a relative and absolute measure of approximate eqality. If either the relative or absolute check passes, the arrays are considered equal. Including an absolute check resolves issues with the relative check where all array values are close to zero. Parameters ---------- a : np.ndarray b : np.ndarray rtol : None or float The relative threshold. Default threshold will be used if set to ``None``. atol : None or float The absolute threshold. Default threshold will be used if set to ``None``. """ a = np.copy(a) b = np.copy(b) nan_mask = np.logical_or(np.isnan(a), np.isnan(b)) a[nan_mask] = 0 b[nan_mask] = 0 return almost_equal(a, b, rtol, atol)
ca364b23e5a6106a98ba52629ccb152dc0d95214
3,642,777
def make_commands(manager): """Prototype""" # pylint: disable=no-member return (cmd_t(manager) for cmd_t in AbstractTwitterFollowersCommand.__subclasses__())
54443970dc69b06c530b746cb42b418bc5a7ee42
3,642,778
import logging def copy_rds_snapshot( target_snapshot_identifier: str, source_snapshot_identifier: str, target_kms: str, wait: bool, rds, ): """Copy snapshot from source_snapshot_identifier to target_snapshot_identifier and encrypt using target_kms""" logger = logging.getLogger("copy_rds_snapshot") xs = rds.copy_db_cluster_snapshot( SourceDBClusterSnapshotIdentifier=source_snapshot_identifier, TargetDBClusterSnapshotIdentifier=target_snapshot_identifier, KmsKeyId=target_kms, )["DBClusterSnapshot"] if not wait: return xs else: sleep(5) waiter = rds.get_waiter("db_cluster_snapshot_available") logger.warning( "Waiting for snapshot {} to be created...".format( xs["DBClusterSnapshotIdentifier"] ) ) try: waiter.wait( DBClusterSnapshotIdentifier=xs["DBClusterSnapshotIdentifier"], SnapshotType="manual", Filters=[ { "Name": "db-cluster-id", "Values": [ xs["DBClusterIdentifier"], ], }, ], WaiterConfig={"Delay": 10, "MaxAttempts": 100}, ) except: logger.exception( "Unable to wait for snapshot {} to be created for cluster {}".format( xs["DBClusterSnapshotIdentifier"], xs["DBClusterIdentifier"] ) ) else: return xs
f7d3c3b9b5588afb9dd1b6e65fc3a51f6411e997
3,642,779
def get_other_menuitems(): """ returns other menu items each menu pk will be dict key {0: QuerySet, 1: QuerySet, ..} """ menuitems = {} all_objects = Menu.objects.all() for obj in all_objects: menuitems[obj.pk] = obj.menuitem_set.all() return menuitems
7e868e3d434dd168dfe6d9938093044e97e2bc5c
3,642,780
from typing import Union from typing import List import os import warnings def gather_simulation_file_paths(in_folder: str, filePrefix: str = "", fileSuffixes: Union[str, List[str]] = [".tre", ".tre.tar.gz"], files_per_folder: int = 1, verbose: bool = False) -> List[str]: """gather_simulation_file_paths find energy trajectory files in a folder Parameters ---------- in_folder : str directory where the files should be searched filePrefix : str, optional prefix of the file name pattern (default "") fileSuffixes : Union[str, List[str]] suffixes of the file name pattern (default [".tre", ".tre.tar.gz"]) files_per_folder : int, optional number of files per folder (default 1) verbose : bool, optional verbose output (default False) Returns ------- List[str] list of sorted files """ files = [] if (isinstance(fileSuffixes, str)): fileSuffixes = [fileSuffixes] if (verbose): print("SEARCH PATTERN: " + filePrefix + " + * +" + str(fileSuffixes)) for dirname, dirnames, filenames in os.walk(in_folder): if (str(dirname[-1]).isdigit() and os.path.basename(dirname).startswith("eq")): continue # check actual in_dir for fle pattern tmp_files = [file for file in filenames if (filePrefix in file and any([suffix in file for suffix in fileSuffixes]))] if (len(tmp_files) == files_per_folder): files.extend(list(map(lambda x: dirname + "/" + x, tmp_files))) if verbose: print("walking to in_dir: ", os.path.basename(dirname), "found: ", len(tmp_files)) try: keys = [[int(y) for y in x.split("_") if (y.isdecimal())][-1] for x in files] sorted_files = list(map(lambda y: y[1], sorted(zip(keys, files), key=lambda x: x[0]))) except: warnings.warn("Files are not all enumerated! no file sorting.") sorted_files = files if (verbose): print("\nfoundFiles:\n") print("\t" + "\n\t".join(sorted_files)) if (len(sorted_files) == 0): raise ValueError("could not find any file with the prefix: " + filePrefix + " in folder : \n" + in_folder) return sorted_files
1f5473b147a16dfc6cb2f5101d264f45161c8e6b
3,642,781
import random def create_deck(shuffle=False): """Create a new deck of 52 cards""" deck = [(s, r) for r in RANKS for s in SUITS] if shuffle: random.shuffle(deck) return deck
92b828ce373c48a0a403c519a2e25b0cb1ab7409
3,642,782
def mock_gate_util_provider_oldest_namespace_feed_sync( monkeypatch, mock_distromapping_query ): """ Mocks for anchore_engine.services.policy_engine.engine.policy.gate_util_provider.GateUtilProvider.oldest_namespace_feed_sync """ # required for FeedOutOfDateTrigger.evaluate # setup for anchore_engine.services.policy_engine.engine.feeds.feeds.FeedRegistry.registered_vulnerability_feed_names init_feed_registry() @contextmanager def mock_session_scope(): """ Mock context manager for anchore_engine.db.session_scope. """ yield None def raise_no_active_grypedb(session): raise NoActiveGrypeDB def _setup_mocks(feed_group_metadata=None, grype_db_feed_metadata=None): # required for FeedOutOfDateTrigger.evaluate # mocks anchore_engine.services.policy_engine.engine.feeds.db.get_feed_group_detached monkeypatch.setattr( "anchore_engine.services.policy_engine.engine.policy.gate_util_provider.session_scope", mock_session_scope, ) if grype_db_feed_metadata: monkeypatch.setattr( "anchore_engine.services.policy_engine.engine.policy.gate_util_provider.get_most_recent_active_grypedb", lambda x: grype_db_feed_metadata, ) else: monkeypatch.setattr( "anchore_engine.services.policy_engine.engine.policy.gate_util_provider.get_most_recent_active_grypedb", raise_no_active_grypedb, ) # mocks anchore_engine.db.db_grype_db_feed_metadata.get_most_recent_active_grypedb # if feed_group_metadata: monkeypatch.setattr( "anchore_engine.services.policy_engine.engine.policy.gate_util_provider.get_feed_group_detached", lambda x, y: feed_group_metadata, ) return _setup_mocks
c6cf043b49574be44114110f5c1092d06fe531a0
3,642,783
def ESMP_LocStreamGetBounds(locstream, localDe=0): """ Preconditions: An ESMP_LocStream has been created.\n Postconditions: .\n Arguments:\n :RETURN: Numpy.array :: \n :RETURN: Numpy.array :: \n ESMP_LocStream :: locstream\n """ llde = ct.c_int(localDe) # locstream rank is always one locstreamrank = 1 exLB = np.zeros(locstreamrank, dtype=np.int32) exUB = np.zeros(locstreamrank, dtype=np.int32) rc = _ESMF.ESMC_LocStreamGetBounds(locstream.ptr, llde, exLB, exUB) # adjust bounds to be 0 based exLB = exLB - 1 if rc != constants._ESMP_SUCCESS: raise ValueError('ESMC_LocStreamGetBounds() failed with rc = '+str(rc)+'. '+ constants._errmsg) return exLB, exUB
179b24463cd8dd5f70ad63530a50b6fe4dd4dfb8
3,642,784
def reverse(collection): """ Reverses a collection. Args: collection: `dict|list|depset` - The collection to reverse Returns: `dict|list|depset` - A new collection of the same type, with items in the reverse order of the input collection. """ forward_list = None collection_type = type(collection) if collection_type == "dict": forward_list = collection.items() elif collection_type == "list": forward_list = collection elif collection_type == "depset": forward_list = collection.to_list() else: fail("Unsupported collection type: " + collection_type) reverse_list = [] for value in forward_list: reverse_list.insert(0, value) ret = None if collection_type == "dict": ret = dict(reverse_list) elif collection_type == "list": ret = reverse_list elif collection_type == "depset": ret = depset(reverse_list) else: fail("Unsupported collection type: " + collection_type) return ret
587bf847028f485783e74633b1aa2ed0ef003daa
3,642,785
def A_fast_full5(S, phase_factors, r, r_min, MY, MX): """ Fastest version, takes precomputed phase factors, assumes S-matrix with beam tilt included :param S: B x NY x NX :param phase_factors: K x B :param r: K x 2 :param out: K x MY x MX :return: exit waves in out """ B = S.shape[0] K, _ = r.shape out = th.zeros((K, B, MY, MX), dtype=th.complex64, device=S.device) K, B, MY, MX = out.shape gpu = cuda.get_current_device() stream = th.cuda.current_stream().cuda_stream threadsperblock = gpu.MAX_THREADS_PER_BLOCK // 2 blockspergrid = m.ceil(np.prod(np.array((K, B, MY, MX))) / threadsperblock) # 1 - get crops from S-matrix split_kernel4[blockspergrid, threadsperblock, stream](th.view_as_real(S), r, th.view_as_real(out)) # threadsperblock = 128 # gpu.MAX_THREADS_PER_BLOCK # blockspergrid = m.ceil(np.prod(np.array((K, B))) / threadsperblock) # # 1 - get crops from S-matrix # split_kernel2[blockspergrid, threadsperblock, stream](th.view_as_real(S), r, out) out = out.view((K, B, MY * MX)) # 1.5 - convert to cupy # 2 - complex batched matmul: K x 1 x B @ K x B x MY*MX --> K x 1 x MY * MX # print(out.shape) # print(phase_factors2.shape) # print(out.dtype) # print(phase_factors2.dtype) phase_factors2 = phase_factors.unsqueeze(1) exitwaves = phase_factors2 @ out # 3 - reshape exitwaves = exitwaves.view((K, MY, MX)) #4 convert to pytorch return exitwaves
3bffd01037f317c88328a751958aca67bc90b2dd
3,642,786
from pathlib import Path import requests import logging def get_metadata_for_druid(druid, redownload_mods): """Obtains a .mods metadata file for the roll specified by DRUID either from the local mods/ folder or the Stanford Digital Repository, then parses the XML to build the metadata dictionary for the roll. """ def get_value_by_xpath(xpath): try: return xml_tree.xpath( xpath, namespaces=NS, )[0] except IndexError: return None # Takes an array of potential xpaths, returns the first one that matches, # or None def get_value_by_xpaths(xpaths): for xpath in xpaths: value = get_value_by_xpath(xpath) if value is not None: return value return value mods_filepath = Path(f"input/mods/{druid}.mods") if not mods_filepath.exists() or redownload_mods: response = requests.get(f"{PURL_BASE}{druid}.mods") try: xml_tree = etree.fromstring(response.content) except etree.XMLSyntaxError: logging.error( f"Unable to parse MODS metadata for {druid} - record is likely missing." ) return None with mods_filepath.open("w") as _fh: _fh.write(etree.tostring(xml_tree, encoding="unicode", pretty_print=True)) else: xml_tree = etree.parse(mods_filepath.open()) # The representation of the roll type in the MODS metadata continues to # evolve. Hopefully this logic covers all cases. roll_type = "NA" type_note = get_value_by_xpath( "x:physicalDescription/x:note[@displayLabel='Roll type']/text()" ) scale_note = get_value_by_xpath( "x:physicalDescription/x:note[@displayLabel='Scale']/text()" ) if type_note is not None and type_note in ROLL_TYPES: roll_type = ROLL_TYPES[type_note] if ( scale_note is not None and scale_note in ROLL_TYPES and (roll_type == "NA" or type_note == "standard") ): roll_type = ROLL_TYPES[scale_note] if roll_type == "NA" or type_note == "standard": for note in xml_tree.xpath("(x:note)", namespaces=NS): if note is not None and note.text in ROLL_TYPES: roll_type = ROLL_TYPES[note.text] metadata = { "title_prefix": get_value_by_xpath( "(x:titleInfo[@usage='primary']/x:nonSort)[1]/text()" ), "title": get_value_by_xpath( "(x:titleInfo[@usage='primary']/x:title)[1]/text()" ), "title_part_number": get_value_by_xpath( "(x:titleInfo[@usage='primary']/x:partNumber)[1]/text()" ), "title_part_name": get_value_by_xpath( "(x:titleInfo[@usage='primary']/x:partName)[1]/text()" ), "subtitle": get_value_by_xpath("(x:titleInfo/x:subTitle)[1]/text()"), "composer": get_value_by_xpaths( [ "x:name[descendant::x:roleTerm[text()='composer']]/x:namePart[not(@type='date')]/text()", "x:name[descendant::x:roleTerm[text()='Composer']]/x:namePart[not(@type='date')]/text()", "x:name[descendant::x:roleTerm[text()='composer.']]/x:namePart[not(@type='date')]/text()", "x:name[descendant::x:roleTerm[text()='cmp']]/x:namePart[not(@type='date')]/text()", ] ), "performer": get_value_by_xpaths( [ "x:name[descendant::x:roleTerm[text()='instrumentalist']]/x:namePart[not(@type='date')]/text()", "x:name[descendant::x:roleTerm[text()='instrumentalist.']]/x:namePart[not(@type='date')]/text()", ] ), "arranger": get_value_by_xpaths( [ "x:name[descendant::x:roleTerm[text()='arranger of music']]/x:namePart[not(@type='date')]/text()", "x:name[descendant::x:roleTerm[text()='arranger']]/x:namePart[not(@type='date')]/text()", ] ), "original_composer": get_value_by_xpaths( [ "x:relatedItem[@displayLabel='Based on (work) :']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", "x:relatedItem[@displayLabel='Based on']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", "x:relatedItem[@displayLabele='Adaptation of (work) :']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", "x:relatedItem[@displayLabel='Adaptation of']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", "x:relatedItem[@displayLabel='Arrangement of :']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", "x:relatedItem[@displayLabel='Arrangement of']/x:name[@type='personal']/x:namePart[not(@type='date')]/text()", ] ), "label": get_value_by_xpaths( [ "x:identifier[@type='issue number' and @displayLabel='Roll number']/text()", "x:identifier[@type='issue number']/text()", ] ), "publisher": get_value_by_xpaths( [ "x:identifier[@type='publisher']/text()", "x:originInfo[@eventType='publication']/x:publisher/text()", "x:name[@type='corporate']/x:nameType/text()", "x:name[descendant::x:roleTerm[text()='publisher.']]/x:namePart/text()", ] ), "number": get_value_by_xpath("x:identifier[@type='publisher number']/text()"), "publish_date": get_value_by_xpaths( [ "x:originInfo[@eventType='publication']/x:dateIssued[@keyDate='yes']/text()", "x:originInfo[@eventType='publication']/x:dateIssued/text()", "x:originInfo/x:dateIssued[@point='start']/text()", "x:originInfo[@displayLabel='publisher']/x:dateIssued/text()", ] ), "publish_place": get_value_by_xpaths( [ "x:originInfo[@eventType='publication']/x:place/x:placeTerm[@type='text']/text()", "x:originInfo[@displayLabel='publisher']/x:place/x:placeTerm/text()", ] ), "recording_date": get_value_by_xpaths( [ "x:note[@type='venue']/text()", "x:originInfo[@eventType='publication']/x:dateCaptured/text()", ] ), # The call number is not consistently available in all MODS variants # "call_number": get_value_by_xpath("x:location/x:shelfLocator/text()"), "type": roll_type, "PURL": PURL_BASE + druid, } return metadata
982c2a89e85b07692901f1452a62c144ab1181b7
3,642,787
def logistic_dataset_gen_data(num, w, dim, temp, rng_key): """Samples data from a standard Gaussian with binary noisy labels. Args: num: An integer denoting the number of data points. w: An array of size dim x odim, the weight vector used to generate labels. dim: An integer denoting the number of input dimensions. temp: A float denoting the temperature parameter controlling label noise. rng_key: JAX random number generator key. Returns: x: An array of size dim x num denoting data points. y_pm: An array of size num x odim denoting +/-1 labels. """ rng_subkey = jax.random.split(rng_key, 3) x = jax.random.normal(rng_subkey[0], (dim, num)) prob = jax.nn.sigmoid(-(1 / temp) * w.T.dot(x)) y = jax.random.bernoulli(rng_subkey[1], (prob)) y_pm = 2. * y - 1 return x, y_pm
99fed2fd2cdb1250a444a986dd182ab846477890
3,642,788
def sech(x): """Computes the hyperbolic secant of the input""" return 1 / cosh(x)
1cded1fbf37070dbecba0f8518990c3eef8e6406
3,642,789
import torch def _map_triples_elements_to_ids( triples: LabeledTriples, entity_to_id: EntityMapping, relation_to_id: RelationMapping, ) -> MappedTriples: """Map entities and relations to pre-defined ids.""" if triples.size == 0: logger.warning('Provided empty triples to map.') return torch.empty(0, 3, dtype=torch.long) heads, relations, tails = slice_triples(triples) # When triples that don't exist are trying to be mapped, they get the id "-1" entity_getter = np.vectorize(entity_to_id.get) head_column = entity_getter(heads, [-1]) tail_column = entity_getter(tails, [-1]) relation_getter = np.vectorize(relation_to_id.get) relation_column = relation_getter(relations, [-1]) # Filter all non-existent triples head_filter = head_column < 0 relation_filter = relation_column < 0 tail_filter = tail_column < 0 num_no_head = head_filter.sum() num_no_relation = relation_filter.sum() num_no_tail = tail_filter.sum() if (num_no_head > 0) or (num_no_relation > 0) or (num_no_tail > 0): logger.warning( f"You're trying to map triples with {num_no_head + num_no_tail} entities and {num_no_relation} relations" f" that are not in the training set. These triples will be excluded from the mapping.", ) non_mappable_triples = (head_filter | relation_filter | tail_filter) head_column = head_column[~non_mappable_triples, None] relation_column = relation_column[~non_mappable_triples, None] tail_column = tail_column[~non_mappable_triples, None] logger.warning( f"In total {non_mappable_triples.sum():.0f} from {triples.shape[0]:.0f} triples were filtered out", ) triples_of_ids = np.concatenate([head_column, relation_column, tail_column], axis=1) triples_of_ids = np.array(triples_of_ids, dtype=np.long) # Note: Unique changes the order of the triples # Note: Using unique means implicit balancing of training samples unique_mapped_triples = np.unique(ar=triples_of_ids, axis=0) return torch.tensor(unique_mapped_triples, dtype=torch.long)
5d4db571e9b9d37329df7689b7e7629559580522
3,642,790
from typing import Tuple def pinf_two_networks(grgd: Tuple[float, float], k: Tuple[float, float] = (3, 3), alpha_i: Tuple[float, float] = (1, 1), solpoints: int = 10, eps: float = 1e-5, method: str = "hybr"): """Find the fixed points for two recovery coupled ER networks (not-symmetric) Args: grgd (Tuple[float, float]): gamma_r / gamma_d ratio in each network k (Tuple[float, float], optional): avg degree in each network. Defaults to (3, 3). alpha_i (Tuple[float, float], optional): coupling strength in each network. Defaults to (1, 1). solpoints (int, optional): number of guesses to feed solver. Defaults to 10. eps (float, optional): precision of solution. Defaults to 1e-5. method (str, optional): method to pass to `root`. Defaults to "hybr". Returns: List[np.ndarray]: a list of all solutions found """ g = list(map(u_factory, k)) mu = lambda p: (1 - alpha_i[0] * g[0] (1 - p)), lambda p: (1 - alpha_i[1] * g[1](1 - p)) def two_networks_self_consistent(f1f2): cond1 = 1 / (1 + (grgd[0] * mu[1](f1f2[1]))) - f1f2[0] cond2 = 1 / (1 + (grgd[1] * mu[0](f1f2[0]))) - f1f2[1] return np.array([cond1, cond2], dtype=float).squeeze() return get_all_sols_two_networks( two_networks_self_consistent, eps=eps, method=method, solpoints=solpoints, )
c90db1bb6d9d314086887e4f5b98f422731b3853
3,642,791
def uncapped_flatprice_goal_reached(chain, uncapped_flatprice, uncapped_flatprice_finalizer, preico_funding_goal, preico_starts_at, customer) -> Contract: """A ICO contract where the minimum funding goal has been reached.""" time_travel(chain, preico_starts_at + 1) wei_value = preico_funding_goal uncapped_flatprice.functions.buy().transact({"from": customer, "value": wei_value}) return uncapped_flatprice
20a6a10b4cb1318e2be7fd1995d025b582ee4768
3,642,792
def depfile_name(request, tmp_path_factory): """A fixture for a temporary doit database file(s) that will be removed after running""" depfile_name = str(tmp_path_factory.mktemp('x', True) / 'testdb') def remove_depfile(): remove_db(depfile_name) request.addfinalizer(remove_depfile) return depfile_name
cbe99e664abeea52a038898f3e76547795bca30a
3,642,793
from typing import OrderedDict def _convert_v3_response_to_v2(pbx_name, termtype, command, v3_response): """ Convert the v3 response to the legacy v2 xml format. """ logger.debug(v3_response) obj = { 'command': {'@cmd': command, '@cmdType': termtype, '@pbxName': pbx_name} } if v3_response.get('error') is not None: obj['command']['error'] = 'ERROR: {}'.format(v3_response['error']) elif v3_response.get('screens') is not None: screens = [] for i, screen in enumerate(v3_response['screens']): screens.append(OrderedDict([('@page', i + 1), ('#text', screen)])) obj['command']['screen'] = screens elif v3_response.get('ossi_objects') is not None: ossi_objects = [] for i, o in enumerate(v3_response['ossi_objects']): fields = [] for field in o: fields.append(OrderedDict([('@fid', field), ('#text', o[field])])) od = OrderedDict([('@i', i + 1), ('field', fields)]) ossi_objects.append(od) if len(ossi_objects) == 0: ossi_objects = {} obj['command']['ossi_object'] = ossi_objects logger.debug(obj) xml = xmltodict.unparse(obj, pretty=True, indent=' ') return xml
c4883706e4bbbf3297781e4bd91360c68c3ea786
3,642,794
from typing import OrderedDict import collections import warnings def calculate(dbf, comps, phases, mode=None, output='GM', fake_points=False, broadcast=True, parameters=None, **kwargs): """ Sample the property surface of 'output' containing the specified components and phases. Model parameters are taken from 'dbf' and any state variables (T, P, etc.) can be specified as keyword arguments. Parameters ---------- dbf : Database Thermodynamic database containing the relevant parameters. comps : str or sequence Names of components to consider in the calculation. phases : str or sequence Names of phases to consider in the calculation. mode : string, optional See 'make_callable' docstring for details. output : string, optional Model attribute to sample. fake_points : bool, optional (Default: False) If True, the first few points of the output surface will be fictitious points used to define an equilibrium hyperplane guaranteed to be above all the other points. This is used for convex hull computations. broadcast : bool, optional If True, broadcast given state variable lists against each other to create a grid. If False, assume state variables are given as equal-length lists. points : ndarray or a dict of phase names to ndarray, optional Columns of ndarrays must be internal degrees of freedom (site fractions), sorted. If this is not specified, points will be generated automatically. pdens : int, a dict of phase names to int, or a seq of both, optional Number of points to sample per degree of freedom. Default: 2000; Default when called from equilibrium(): 500 model : Model, a dict of phase names to Model, or a seq of both, optional Model class to use for each phase. sampler : callable, a dict of phase names to callable, or a seq of both, optional Function to sample phase constitution space. Must have same signature as 'pycalphad.core.utils.point_sample' grid_points : bool, a dict of phase names to bool, or a seq of both, optional (Default: True) Whether to add evenly spaced points between end-members. The density of points is determined by 'pdens' parameters : dict, optional Maps SymPy Symbol to numbers, for overriding the values of parameters in the Database. Returns ------- Dataset of the sampled attribute as a function of state variables Examples -------- None yet. """ # Here we check for any keyword arguments that are special, i.e., # there may be keyword arguments that aren't state variables pdens_dict = unpack_kwarg(kwargs.pop('pdens', 2000), default_arg=2000) points_dict = unpack_kwarg(kwargs.pop('points', None), default_arg=None) model_dict = unpack_kwarg(kwargs.pop('model', FallbackModel), default_arg=FallbackModel) callable_dict = unpack_kwarg(kwargs.pop('callables', None), default_arg=None) sampler_dict = unpack_kwarg(kwargs.pop('sampler', None), default_arg=None) fixedgrid_dict = unpack_kwarg(kwargs.pop('grid_points', True), default_arg=True) parameters = parameters or dict() if isinstance(parameters, dict): parameters = OrderedDict(sorted(parameters.items(), key=str)) param_symbols = tuple(parameters.keys()) param_values = np.atleast_1d(np.array(list(parameters.values()), dtype=np.float)) if isinstance(phases, str): phases = [phases] if isinstance(comps, str): comps = [comps] if points_dict is None and broadcast is False: raise ValueError('The \'points\' keyword argument must be specified if broadcast=False is also given.') components = [x for x in sorted(comps) if not x.startswith('VA')] # Convert keyword strings to proper state variable objects # If we don't do this, sympy will get confused during substitution statevar_dict = collections.OrderedDict((v.StateVariable(key), unpack_condition(value)) \ for (key, value) in sorted(kwargs.items())) # XXX: CompiledModel assumes P, T are the only state variables if statevar_dict.get(v.P, None) is None: statevar_dict[v.P] = 101325 if statevar_dict.get(v.T, None) is None: statevar_dict[v.T] = 300 str_statevar_dict = collections.OrderedDict((str(key), unpack_condition(value)) \ for (key, value) in statevar_dict.items()) all_phase_data = [] comp_sets = {} largest_energy = 1e30 maximum_internal_dof = 0 # Consider only the active phases active_phases = dict((name.upper(), dbf.phases[name.upper()]) \ for name in unpack_phases(phases)) for phase_name, phase_obj in sorted(active_phases.items()): # Build the symbolic representation of the energy mod = model_dict[phase_name] # if this is an object type, we need to construct it if isinstance(mod, type): try: model_dict[phase_name] = mod = mod(dbf, comps, phase_name, parameters=parameters) except DofError: # we can't build the specified phase because the # specified components aren't found in every sublattice # we'll just skip it warnings.warn("""Suspending specified phase {} due to some sublattices containing only unspecified components""".format(phase_name)) continue if points_dict[phase_name] is None: maximum_internal_dof = max(maximum_internal_dof, sum(len(x) for x in mod.constituents)) else: maximum_internal_dof = max(maximum_internal_dof, np.asarray(points_dict[phase_name]).shape[-1]) for phase_name, phase_obj in sorted(active_phases.items()): try: mod = model_dict[phase_name] except KeyError: continue # this is a phase model we couldn't construct for whatever reason; skip it if isinstance(mod, type): continue if (not isinstance(mod, CompiledModel)) or (output != 'GM'): if isinstance(mod, CompiledModel): mod = Model(dbf, comps, phase_name, parameters=parameters) # Construct an ordered list of the variables variables, sublattice_dof = generate_dof(phase_obj, mod.components) # Build the "fast" representation of that model if callable_dict[phase_name] is None: try: out = getattr(mod, output) except AttributeError: raise AttributeError('Missing Model attribute {0} specified for {1}' .format(output, mod.__class__)) # As a last resort, treat undefined symbols as zero # But warn the user when we do this # This is consistent with TC's behavior undefs = list(out.atoms(Symbol) - out.atoms(v.StateVariable)) for undef in undefs: out = out.xreplace({undef: float(0)}) warnings.warn('Setting undefined symbol {0} for phase {1} to zero'.format(undef, phase_name)) comp_sets[phase_name] = build_functions(out, list(statevar_dict.keys()) + variables, include_obj=True, include_grad=False, include_hess=False, parameters=param_symbols) else: comp_sets[phase_name] = callable_dict[phase_name] phase_record = PhaseRecord_from_cython(comps, list(statevar_dict.keys()) + variables, np.array(dbf.phases[phase_name].sublattices, dtype=np.float), param_values, comp_sets[phase_name], None, None) else: variables = sorted(set(mod.variables) - {v.T, v.P}, key=str) sublattice_dof = mod.sublattice_dof phase_record = PhaseRecord_from_compiledmodel(mod, param_values) points = points_dict[phase_name] if points is None: points = _sample_phase_constitution(phase_name, phase_obj.constituents, sublattice_dof, comps, tuple(variables), sampler_dict[phase_name] or point_sample, fixedgrid_dict[phase_name], pdens_dict[phase_name]) points = np.atleast_2d(points) fp = fake_points and (phase_name == sorted(active_phases.keys())[0]) phase_ds = _compute_phase_values(phase_obj, components, variables, str_statevar_dict, points, phase_record, output, maximum_internal_dof, broadcast=broadcast, largest_energy=float(largest_energy), fake_points=fp) all_phase_data.append(phase_ds) # speedup for single-phase case (found by profiling) if len(all_phase_data) > 1: final_ds = _fast_concat(all_phase_data, dim='points') final_ds['points'].values = np.arange(len(final_ds['points'])) final_ds.coords['points'].values = np.arange(len(final_ds['points'])) else: final_ds = all_phase_data[0] return final_ds
c69769fa322831cc021db497a329de816541a20a
3,642,795
def is_negative(value): """Checks if `value` is negative. Args: value (mixed): Value to check. Returns: bool: Whether `value` is negative. Example: >>> is_negative(-1) True >>> is_negative(0) False >>> is_negative(1) False .. versionadded:: 2.0.0 """ return is_number(value) and value < 0
ce0183d95a2394db18904f0ca7f1225e43cf671d
3,642,796
import torch def get_optimizer_noun(lr, decay, mode, cnn_features, role_features): """ To get the optimizer mode 0: training from scratch mode 1: cnn fix, verb fix, role training mode 2: cnn fix, verb fine tune, role training mode 3: cnn finetune, verb finetune, role training""" if mode == 0: set_trainable_param(cnn_features, True) set_trainable_param(role_features, True) optimizer = torch.optim.Adam([ {'params': cnn_features}, {'params': role_features} ], lr=lr, weight_decay=decay) elif mode == 1: set_trainable_param(role_features, True) optimizer = torch.optim.Adam([ {'params': role_features} ], lr=lr, weight_decay=decay) elif mode == 2: set_trainable_param(role_features, True) optimizer = torch.optim.Adam([ {'params': role_features}], lr=1e-3) elif mode == 3: set_trainable_param(cnn_features, True) set_trainable_param(role_features, True) optimizer = torch.optim.Adam([ {'params': cnn_features}, {'params': role_features} ], lr=lr, weight_decay=decay) return optimizer
6ac2df23f6a50d3488302cfe2da6189a995c0d85
3,642,797
import os def lan_manifold( parameter_df=None, vary_dict={"v": [-1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0]}, model="ddm", n_rt_steps=200, max_rt=5, fig_scale=1.0, save=False, show=True, ): """Plots lan likelihoods in a 3d-plot. :Arguments: parameter_df: pandas.core.frame.DataFrame <default=None> DataFrame that holds a parameter vector and has parameter names as keys. vary_dict: dict <default={'v': [-1.0, -0.75, -.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0]}> Dictionary where key is a valid parameter name, and value is either a list of numpy.ndarray() of values of the respective parameter that you want to plot. model: str <default='ddm'> String that specifies the model to be used to plotting. (The plot loads the corresponding LAN) n_rt_steps: int <default=200> Numer of rt steps to include (x-axis) max_rt: numeric <default=5.0> The n_rt_steps argument splits the reaction time axis in to n_rt_step from 0 to max_rt. fig_scale: numeric <default=1.0> Basic handle to scale the figure. save: bool <default=False> Whether to save the plot. show: bool <default=True> Whether to show the plot. :Returns: empty """ # mpl.rcParams.update(mpl.rcParamsDefault) # mpl.rcParams['text.usetex'] = True # #matplotlib.rcParams['pdf.fonttype'] = 42 # mpl.rcParams['svg.fonttype'] = 'none' assert ( model_config[model]["n_choices"] == 2 ), "This plot works only for 2-choice models at the moment. Improvements coming!" if parameter_df.shape[0] > 0: parameters = parameter_df.iloc[0, :] print("Using only the first row of the supplied parameter array !") if type(parameter_df) == pd.core.frame.DataFrame: parameters = np.squeeze( parameters[model_config[model]["params"]].values.astype(np.float32) ) else: parameters = parameter_df # Load Keras model and initialize batch container torch_model = get_torch_mlp(model=model) # Prepare data structures # Data template plot_data = np.zeros((n_rt_steps * 2, 2)) plot_data[:, 0] = np.concatenate( ( [(i * (max_rt / n_rt_steps)) for i in range(n_rt_steps, 0, -1)], [(i * (max_rt / n_rt_steps)) for i in range(1, n_rt_steps + 1, 1)], ) ) plot_data[:, 1] = np.concatenate( (np.repeat(-1, n_rt_steps), np.repeat(1, n_rt_steps)) ) n_params = model_config[model]["n_params"] n_levels = vary_dict[list(vary_dict.keys())[0]].shape[0] data_var = np.zeros(((n_rt_steps * 2) * n_levels, n_params + 3)) cnt = 0 vary_param_name = list(vary_dict.keys())[0] for par_tmp in vary_dict[vary_param_name]: tmp_begin = (n_rt_steps * 2) * cnt tmp_end = (n_rt_steps * 2) * (cnt + 1) parameters[model_config[model]["params"].index(vary_param_name)] = par_tmp data_var[tmp_begin:tmp_end, :n_params] = parameters data_var[tmp_begin:tmp_end, n_params : (n_params + 2)] = plot_data data_var[tmp_begin:tmp_end, (n_params + 2)] = np.squeeze( np.exp(torch_model(data_var[tmp_begin:tmp_end, :-1].astype(np.float32))) ) cnt += 1 fig = plt.figure(figsize=(8 * fig_scale, 5.5 * fig_scale)) ax = fig.add_subplot(111, projection="3d") ax.plot_trisurf( data_var[:, -2] * data_var[:, -3], data_var[:, model_config[model]["params"].index(vary_param_name)], data_var[:, -1], linewidth=0.5, alpha=1.0, cmap=cm.coolwarm, ) ax.set_ylabel(vary_param_name.upper().replace("_", "-"), fontsize=16, labelpad=20) ax.set_xlabel("RT", fontsize=16, labelpad=20) ax.set_zlabel("Likelihood", fontsize=16, labelpad=20) ax.set_zticks( np.round(np.linspace(min(data_var[:, -1]), max(data_var[:, -1]), 5), 1) ) ax.set_yticks( np.round( np.linspace( min(data_var[:, model_config[model]["params"].index(vary_param_name)]), max(data_var[:, model_config[model]["params"].index(vary_param_name)]), 5, ), 1, ) ) ax.set_xticks( np.round( np.linspace( min(data_var[:, -2] * data_var[:, -3]), max(data_var[:, -2] * data_var[:, -3]), 5, ), 1, ) ) ax.tick_params(labelsize=16) ax.set_title( model.upper().replace("_", "-") + " - MLP: Manifold", fontsize=20, pad=20 ) ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) # Save plot if save: if os.path.isdir("figures/"): pass else: os.mkdir("figures/") plt.savefig("figures/mlp_manifold_" + model + ".png", format="png") if show: return plt.show() plt.close() return
2faddac2b992b022ce27eb0c66a12968ff6d2da7
3,642,798
def _loc_str_to_pars(loc, x=None, y=None, halign=None, valign=None, pad=_PAD): """Convert from a string location specification to the specifying parameters. If any of the specifying parameters: {x, y, halign, valign}, are 'None', they are set to default values. Returns ------- x : float y : float halign : str valign : str """ _valid_loc = [['t', 'u', 'b', 'l', 'c'], ['l', 'r', 'c']] for ii, (ll, vv) in enumerate(zip(loc, _valid_loc)): if ll not in vv: err = "Unrecognized `loc`[{}] = '{}' (`loc` = '{}').".format(ii, ll, loc) err += "\n\t`loc`[{}] must be one of '{}'".format(ii, vv) raise ValueError(err) pad = np.atleast_1d(pad) if pad.size == 1: pad = np.concatenate([pad, pad]) if loc[0] == 't' or loc[0] == 'u': if valign is None: valign = 'top' if y is None: y = 1 - pad[1] elif loc[0] == 'b' or loc[0] == 'l': if valign is None: valign = 'bottom' if y is None: y = pad[1] elif loc[0] == 'c': if valign is None: valign = 'center' if y is None: y = 0.5 if loc[1] == 'l': if halign is None: halign = 'left' if x is None: x = pad[0] elif loc[1] == 'r': if halign is None: halign = 'right' if x is None: x = 1 - pad[0] elif loc[1] == 'c': if halign is None: halign = 'center' if x is None: x = 0.5 return x, y, halign, valign
84094b2eaf39390a1d30fd26d8ae36ecd32a7665
3,642,799