content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import argparse def setup_args(): """Setup and return the command line argument parser""" parser = argparse.ArgumentParser(description='') # parser.add_argument('csv', type=str, help='CSV file to load') parser.add_argument( '-clang-tidy-binary', help='Path to the clang-tidy executable.', metavar='PATH', required=True) parser.add_argument('-clang-apply-replacements-binary', help='Path to the clang-apply-replacements binary. Required when using -fix and -runner-py' + ' arguments.') parser.add_argument( '-runner-py', help='Python script wrapping clang-tidy with support for multiple jobs. run-clang-tidy.py ships' + ' with clang-tidy. Without this clang-tidy is run directly.', metavar='PATH') parser.add_argument('-fix', action='store_true', help='Apply automatic fixes. Passes -fix to clang-tidy. When using -runner-py' + ' (run-clang-tidy.py), the argument -clang-apply-replacements-binary must also be set to the' + ' clang-apply-fixes binary.') parser.add_argument( '-config-file', help='clang-tidy configuration file. Extracted and passed as the -config argument to' + ' clang-tidy.') parser.add_argument( '-p', help='clang-tidy build path (path to compile_commands.json). Extracted and passed as the -p argument to' + ' clang-tidy.', required=False) parser.add_argument( '-j', help='Number of parallel jobs to run. Only supported when using the -runner-py script. Ignored ' + 'otherwise.', required=False) parser.add_argument( '-relative-to', help='Modify clang-tidy message paths to be relative to this directory. Intended for CI' + ' builds to report portable paths.', required=False) return parser
477da4faf063a461a77791f372f50e0e105b8ac7
3,642,900
def create_event(type_, source): """Create Event""" cls = _events.get(type_, UnknownEvent) try: return cls(type=type_, **source) except TypeError as e: raise TypeError(f'Error at creating {cls.__name__}: {e}')
263fc768d94db5ae9cb0acb8565c01337ffb56c6
3,642,901
import tempfile import os import stat import subprocess def _execute(script, prefix=None, path=None): """ Execute a shell script. Setting prefix will add the environment variable COLCON_BUNDLE_INSTALL_PFREFIX equal to the passed in value :param str script: script to execute :param str prefix: the installation prefix :param str path: (optional) path to temp directory, or ``None`` to use default temp directory, ``str`` """ path = tempfile.gettempdir() if path is None else path result = 1 try: fh = tempfile.NamedTemporaryFile('w', delete=False) fh.write(script) fh.close() print('Executing script below with cwd=%s\n{{{\n%s\n}}}\n' % (path, script)) try: os.chmod(fh.name, stat.S_IRWXU) env = os.environ.copy() if prefix is not None: env['COLCON_BUNDLE_INSTALL_PREFIX'] = prefix result = subprocess.run( fh.name, cwd=path, env=env, stdout=PIPE, stderr=PIPE, universal_newlines=True) if result.stdout is not None: logger.debug('stdout output: \n' + result.stdout) if result.stderr is not None: logger.warn('stderr output: \n' + result.stderr) except OSError as ex: print('Execution failed with OSError: %s' % ex) finally: if os.path.exists(fh.name): os.remove(fh.name) logger.info('Return code was: %s' % result) return result.returncode == 0
e7e34a0da2acee1193f4511688aea43685b359e8
3,642,902
import os def main(event, context): """ Gets layer arns for each region and publish to S3 """ dynamodb = boto3.resource("dynamodb") table = dynamodb.Table(os.environ["DB_NAME"]) region = event.get("pathParameters").get("region") python_version = event.get("pathParameters").get("python_version", "p3.8") format = event.get("pathParameters").get("format", "json") api_response = query_table( table=table, region=region, python_version=python_version ) body, headers = return_format( data=api_response, format=format, region=region, python_version=python_version ) return { "statusCode": 200, "headers": headers, "body": body, }
392b8a7cc5c13efc489ce1c331d4e457e9da994b
3,642,903
import os import pickle def rescore_and_rerank_by_num_inliers(test_image_id, train_ids_labels_and_scores): """Returns rescored and sorted training images by local feature extraction.""" test_image_path = get_image_path(test_image_id) try: name = os.path.basename(test_image_path).split('.')[0] with open(f'{TEST_LF}/{name}.pkl', 'rb') as fp: test_keypoints, test_descriptors = pickle.load(fp) except FileNotFoundError: test_keypoints, test_descriptors = extract_local_features(test_image_path) for i in range(len(train_ids_labels_and_scores)): train_image_id, label, global_score = train_ids_labels_and_scores[i] train_image_path = get_image_path(train_image_id) name = os.path.basename(train_image_path).split('.')[0] with open(os.path.join(TRAIN_LF, f"{name}.pkl"), 'rb') as fp: train_keypoints, train_descriptors = pickle.load(fp) num_inliers = get_num_inliers(test_keypoints, test_descriptors, train_keypoints, train_descriptors) total_score = get_total_score(num_inliers, global_score) train_ids_labels_and_scores[i] = (train_image_id, label, total_score) train_ids_labels_and_scores.sort(key=lambda x: x[2], reverse=True) return train_ids_labels_and_scores
837718c2d3d206485651a2dc4ee16682747a0889
3,642,904
from typing import Iterable from typing import Callable from typing import List from typing import Awaitable import asyncio def aggregate_policy( policies: Iterable[PermissionPolicy_T], aggregator: Callable[[Iterable[object]], bool] = all ) -> PermissionPolicy_T: """ 在默认参数下,将多个权限检查策略函数使用 AND 操作符连接并返回单个权限检查策略。在实现中对这几个策略使用内置 `all` 函数,会优先执行同步函数而且尽可能在同步模式的情况下短路。 在新的策略下,只有事件满足了 `policies` 中所有的原策略,才会返回 `True`。 `aggregator` 参数也可以设置为其他函数,例如 `any`: 在此情况下会使用 `OR` 操作符连接。 如果参数中所有的策略都是同步的,则返回值是同步的,否则返回值是异步函数。 版本: 1.9.0+ 参数: policies: 要合并的权限检查策略 aggregator: 用于合并策略的函数 返回: PermissionPolicy_T: 新的权限检查策略 用法: ```python # 以下两种方式在效果上等同 policy1 = lambda sender: sender.is_groupchat and sender.from_group(123456789) policy2 = aggregate_policy(lambda sender: sender.is_groupchat, lambda sender: sender.from_group(123456789)) ``` """ syncs: List[Callable[[SenderRoles], bool]] asyncs: List[Callable[[SenderRoles], Awaitable[bool]]] syncs, asyncs = separate_async_funcs(policies) def checker_sync(sender: SenderRoles) -> bool: return aggregator(f(sender) for f in syncs) if len(asyncs) == 0: return checker_sync async def checker_async(sender: SenderRoles) -> bool: if not checker_sync(sender): return False # no short circuiting currently :-( coros = [f(sender) for f in asyncs] return aggregator(await asyncio.gather(*coros)) return checker_async
c0fa2ef66ba71deba88ca4e9debbb521ba49fe82
3,642,905
def optionally_load_system_paasta_config( path: str = PATH_TO_SYSTEM_PAASTA_CONFIG_DIR, ) -> "SystemPaastaConfig": """ Tries to load the system paasta config, but will return an empty configuration if not available, without raising. """ try: return load_system_paasta_config(path=path) except PaastaNotConfiguredError: return SystemPaastaConfig({}, "")
7309d28ab156572d1b3cdbf347d4979f3ee607d8
3,642,906
def get_sage_bank_accounts(company_id: int) -> list: """ Retrieves the bank accounts for a company in Sage One **company_id** The Company ID """ config = get_config() # Get the config sage_client = SageOneAPIClient(config.get("sageone", "url"), config.get("sageone", "api_key"), config.get("sageone", "username"), config.get("sageone", "password")) return sage_client.get_company_bank_accounts(company_id)
a3684d5a3b06944ba297f95b5498d61f7281c40c
3,642,907
def compute_fstar(tarr, mstar, index_select, index_high, fstar_tdelay): """Time averaged SFH that has ocurred over some previous time period fstar = (mstar(t) - mstar(t-fstar_tdelay)) / fstar_tdelay Parameters ---------- tarr : ndarray of shape (n_times, ) Cosmic time of each simulated snapshot in Gyr mstar : ndarray of shape (n_times, ) Stellar mass history in Msun units. index_select: ndarray of shape (n_times_fstar, ) Snapshot indices used in fstar computation. index_high: ndarray of shape (n_times_fstar, ) Indices of np.searchsorted(t, t - fstar_tdelay)[index_select] fstar_tdelay: float Time interval in Gyr units for fstar definition. fstar = (mstar(t) - mstar(t-fstar_tdelay)) / fstar_tdelay Returns ------- fstar : ndarray of shape (n_times) SFH averaged over timescale fstar_tdelay in units of Msun/yr assuming h=1. """ mstar_high = mstar[index_select] mstar_low = jax_np_interp( tarr[index_select] - fstar_tdelay, tarr, mstar, index_high ) fstar = (mstar_high - mstar_low) / fstar_tdelay / 1e9 return fstar
89ef08ee08f41fa6b7931ebdbbb3611bda6346ae
3,642,908
def notification_error(code: str, search_id: str, status_code, message: str = None): """Return to the event listener a notification error response based on the status code.""" error = CALLBACK_MESSAGES[code].format(search_id=search_id) if message: error += ' ' + message current_app.logger.error(error) # Track event here. EventTracking.create(search_id, EventTracking.EventTrackingTypes.API_NOTIFICATION, status_code, message) if status_code != HTTPStatus.BAD_REQUEST and code not in (resource_utils.CallbackExceptionCodes.MAX_RETRIES, resource_utils.CallbackExceptionCodes.UNKNOWN_ID): # set up retry enqueue_notification(search_id) return resource_utils.error_response(status_code, error)
6522023ad36f7164a2c721493d38d3cc0b5d4690
3,642,909
import os def get_avg(feature_name, default_value): """Get the average of numeric feature from the environment. Return the default value if there is no the statistics in the environment. Args: feature_name: String, feature name or column name in a table default_value: Float. Return: Float """ env_name = AnalysisEnvTemplate.AVG_ENV.format(feature_name) mean = os.getenv(env_name, None) if mean is None: return default_value else: return float(mean)
5d1b7270dc0021f5b4a28ad3203a65860b6a05b5
3,642,910
def arccos(x: REAL) -> float: """Arc cosine.""" return pi/2 - arcsin(x)
1829e6d777c32172afee7e8608d5d1034458660f
3,642,911
import requests def isLinkValid(test_video_link): """def isLinkValid(test_video_link): -> test_video_link check if youtube video link is valid.""" try: data = requests.get("https://www.youtube.com/oembed?format=json&url=" + test_video_link).json() if data == "Not Found": return False else: return True except: return False
0af4f8c1d05f2b98d046d63d5eaf39f679a37818
3,642,912
import time import calendar def _strptime(data_string, format='%a %b %d %H:%M:%S %Y'): """Return a 2-tuple consisting of a time struct and an int containing the number of microseconds based on the input string and the format string.""" for index, arg in enumerate([data_string, format]): if not isinstance(arg, str): msg = 'strptime() argument {} must be str, not {}' raise TypeError(msg.format(index, type(arg))) global _TimeRE_cache, _regex_cache with _cache_lock: locale_time = _TimeRE_cache.locale_time if (_getlang() != locale_time.lang or time.tzname != locale_time. tzname or time.daylight != locale_time.daylight): _TimeRE_cache = TimeRE() _regex_cache.clear() locale_time = _TimeRE_cache.locale_time if len(_regex_cache) > _CACHE_MAX_SIZE: _regex_cache.clear() format_regex = _regex_cache.get(format) if not format_regex: try: format_regex = _TimeRE_cache.compile(format) except KeyError as err: bad_directive = err.args[0] if bad_directive == '\\': bad_directive = '%' del err raise ValueError("'%s' is a bad directive in format '%s'" % (bad_directive, format)) from None except IndexError: raise ValueError("stray %% in format '%s'" % format) from None _regex_cache[format] = format_regex found = format_regex.match(data_string) if not found: raise ValueError('time data %r does not match format %r' % ( data_string, format)) if len(data_string) != found.end(): raise ValueError('unconverted data remains: %s' % data_string[found .end():]) iso_year = year = None month = day = 1 hour = minute = second = fraction = 0 tz = -1 tzoffset = None iso_week = week_of_year = None week_of_year_start = None weekday = julian = None found_dict = found.groupdict() for group_key in found_dict.keys(): if group_key == 'y': year = int(found_dict['y']) if year <= 68: year += 2000 else: year += 1900 elif group_key == 'Y': year = int(found_dict['Y']) elif group_key == 'G': iso_year = int(found_dict['G']) elif group_key == 'm': month = int(found_dict['m']) elif group_key == 'B': month = locale_time.f_month.index(found_dict['B'].lower()) elif group_key == 'b': month = locale_time.a_month.index(found_dict['b'].lower()) elif group_key == 'd': day = int(found_dict['d']) elif group_key == 'H': hour = int(found_dict['H']) elif group_key == 'I': hour = int(found_dict['I']) ampm = found_dict.get('p', '').lower() if ampm in ('', locale_time.am_pm[0]): if hour == 12: hour = 0 elif ampm == locale_time.am_pm[1]: if hour != 12: hour += 12 elif group_key == 'M': minute = int(found_dict['M']) elif group_key == 'S': second = int(found_dict['S']) elif group_key == 'f': s = found_dict['f'] s += '0' * (6 - len(s)) fraction = int(s) elif group_key == 'A': weekday = locale_time.f_weekday.index(found_dict['A'].lower()) elif group_key == 'a': weekday = locale_time.a_weekday.index(found_dict['a'].lower()) elif group_key == 'w': weekday = int(found_dict['w']) if weekday == 0: weekday = 6 else: weekday -= 1 elif group_key == 'u': weekday = int(found_dict['u']) weekday -= 1 elif group_key == 'j': julian = int(found_dict['j']) elif group_key in ('U', 'W'): week_of_year = int(found_dict[group_key]) if group_key == 'U': week_of_year_start = 6 else: week_of_year_start = 0 elif group_key == 'V': iso_week = int(found_dict['V']) elif group_key == 'z': z = found_dict['z'] tzoffset = int(z[1:3]) * 60 + int(z[3:5]) if z.startswith('-'): tzoffset = -tzoffset elif group_key == 'Z': found_zone = found_dict['Z'].lower() for value, tz_values in enumerate(locale_time.timezone): if found_zone in tz_values: if time.tzname[0] == time.tzname[1 ] and time.daylight and found_zone not in ('utc', 'gmt' ): break else: tz = value break if year is None and iso_year is not None: if iso_week is None or weekday is None: raise ValueError( "ISO year directive '%G' must be used with the ISO week directive '%V' and a weekday directive ('%A', '%a', '%w', or '%u')." ) if julian is not None: raise ValueError( "Day of the year directive '%j' is not compatible with ISO year directive '%G'. Use '%Y' instead." ) elif week_of_year is None and iso_week is not None: if weekday is None: raise ValueError( "ISO week directive '%V' must be used with the ISO year directive '%G' and a weekday directive ('%A', '%a', '%w', or '%u')." ) else: raise ValueError( "ISO week directive '%V' is incompatible with the year directive '%Y'. Use the ISO year '%G' instead." ) leap_year_fix = False if year is None and month == 2 and day == 29: year = 1904 leap_year_fix = True elif year is None: year = 1900 if julian is None and weekday is not None: if week_of_year is not None: week_starts_Mon = True if week_of_year_start == 0 else False julian = _calc_julian_from_U_or_W(year, week_of_year, weekday, week_starts_Mon) elif iso_year is not None and iso_week is not None: year, julian = _calc_julian_from_V(iso_year, iso_week, weekday + 1) if julian is not None and julian <= 0: year -= 1 yday = 366 if calendar.isleap(year) else 365 julian += yday if julian is None: julian = datetime_date(year, month, day).toordinal() - datetime_date( year, 1, 1).toordinal() + 1 else: datetime_result = datetime_date.fromordinal(julian - 1 + datetime_date(year, 1, 1).toordinal()) year = datetime_result.year month = datetime_result.month day = datetime_result.day if weekday is None: weekday = datetime_date(year, month, day).weekday() tzname = found_dict.get('Z') if tzoffset is not None: gmtoff = tzoffset * 60 else: gmtoff = None if leap_year_fix: year = 1900 return (year, month, day, hour, minute, second, weekday, julian, tz, tzname, gmtoff), fraction
bd222fde85a3db2bdad28394f001ed74b1d68622
3,642,913
def to_simple_rdd(sc, features, labels): """Convert numpy arrays of features and labels into an RDD of pairs. :param sc: Spark context :param features: numpy array with features :param labels: numpy array with labels :return: Spark RDD with feature-label pairs """ pairs = [(x, y) for x, y in zip(features, labels)] if custom_hash == True: rdd = sc.parallelize(pairs).map(lambda pair: (data_partitioner(pair[1]), pair)).partitionBy(NUM_PARTITION, label_hash) rdd = rdd.map(lambda composite_pair: composite_pair[1]).cache() else: rdd = sc.parallelize(pairs, NUM_PARTITION).cache() return rdd
87afaae6214bedbde60d46e21d8ea82d644a0ca1
3,642,914
def add_decimal(op1: Decimal, op2: Decimal)-> Decimal: """ add :param op1: :param op2: :return: """ result = op1 + op2 if result > 999: return float(result) return result
d05501daf67845eb339c7103fad02c7d0e2f8dc9
3,642,915
import os def get_data_file_path(project, filename): """ Gets the path of data files we've stored for each project :param project: :return: """ return os.path.join(BASE_DIR, "waterspout_api", "data", project, filename)
cd64f6c96671e4ea9e28dd906d551a5edf35ca41
3,642,916
def freenas_spec(**kwargs): """FreeNAS specs.""" # Setup vars from kwargs builder_spec = kwargs['data']['builder_spec'] bootstrap_cfg = None builder_spec.update( { 'boot_command': [ '<enter>', '<wait30>1<enter>', 'y', '<wait5><spacebar>o<enter>', '<enter>', '{{ user `password` }}<tab>{{ user `password` }}<tab><enter>', '<enter>', '<wait60><wait60><wait60>', '<enter>', '3<enter>', '<wait60><wait60><wait60><wait60><wait60>', '9<enter>', 'curl -X PUT -u {{ user `username` }}:{{ user `password` }} -H \'Content-Type: application/json\' -d \'{\"ssh_rootlogin\": true}\' http://localhost/api/v1.0/services/ssh/<enter>', # noqa: E501 'curl -X PUT -u {{ user `username` }}:{{ user `password` }} -H \'Content-Type: application/json\' -d \'{\"srv_enable\": true}\' http://localhost/api/v1.0/services/services/ssh/<enter>' # noqa: E501 ], 'boot_wait': '30s', 'shutdown_command': 'shutdown -p now', } ) return bootstrap_cfg, builder_spec
ffe666fd48b6d545e44389ae0413bc1f0c29c44e
3,642,917
def checksum(routine): """ Compute the M routine checksum used by ``CHECK1^XTSUMBLD``, implemented in ``^%ZOSF("RSUM1")`` and ``SUMB^XPDRSUM``. """ checksum = 0 lineNumber = 0 with open(routine, 'r') as f: for line in f: line = line.rstrip('\r\n') lineNumber += 1 # ignore the second line if lineNumber == 2: continue checksum += routineLineCheckSum(line, lineNumber) return checksum
ca93bbf29967a90b22de007f84ba5ec3898a4f1a
3,642,918
def nusdas_parameter_change(param, value): """ def nusdas_parameter_change() """ # Set argtypes and restype nusdas_parameter_change_ct = libnus.NuSDaS_parameter_change nusdas_parameter_change_ct.restype = c_int32 nusdas_parameter_change_ct.argtypes = (c_int32,POINTER(c_int32)) icond = nusdas_parameter_change_ct(c_int32(param), byref(c_int32(value))) if (icond !=0): raise Exception("nusdas_parameter_change Error: Unsupported parameter" + str(icond)) return icond
cea9011eb807c6281c9e3d07b640860ee085d1ad
3,642,919
def validate_retention_time(retention_time): # type: (str) -> str """Validate retention_time. If -1, return string, else convert to ms. Keyword arguments: retention_time -- user configured retention-ms, pattern: %d%h%m%s%ms Return: retention_time -- If set to "-1", return it """ if retention_time == "-1": # sets retention-time to unlimited return retention_time return convert_time_ms(retention_time, "retention_time")
8f7c701f7e2f2e8e5fa708fef80f04804964928c
3,642,920
import re def is_sale(this_line): """Determine whether a given line describes a sale of cattle.""" is_not_succinct = len(this_line.split()) > 3 has_price = re.search(r'[0-9]+\.[0-9]{2}', this_line) return bool(has_price and is_not_succinct)
382da3d9a1690950e64a29c6f2fcd54e062eb600
3,642,921
def extract_policy(env, v, gamma = 1.0): """ Extract the policy given a value-function """ policy = np.zeros(env.env.nS) for s in range(env.env.nS): q_sa = np.zeros(env.env.nA) for a in range(env.env.nA): q_sa[a] = sum([p * (r + gamma * v[s_]) for p, s_, r, _ in env.env.P[s][a]]) policy[s] = np.argmax(q_sa) return policy
2342a531e0fa29e4b7bb1946aa30cbe8b739b688
3,642,922
def generate_parameters(var): """ Defines a distribution of parameters Returns a settings dictionary var is an iterable of variables in the range [0,1) which we can make use of. """ var = iter(var) model={} training={} settings = {'model':model, 'training':training} # max_radius is exponential from 3 to 8 model['max_radius'] = 1.5 * 2 ** (1 + 1.4 * next(var)) # number of radial basis funcs is exponential from 8 to 31 model['number_of_basis'] = int( 2 ** (3 + 2 * next(var)) ) # radial_layers is from 1 to 15 model['radial_layers'] = int(2 ** (4 * next(var)) ) # radial_h from 10 to 79 model['radial_h'] = int( 5 * 2 ** (1 + 3 * next(var)) ) # numlayers from exp from 2 to 12 numlayers = int( 2 ** (1 + 2.584963 * next(var))) # lmax is a polynomial on [0,1), of x = layer/numlayers # lmax = l0 + l1 x + l2 x^2 # where l0 is whatever gives this min of lmin on [0,1) l2 = 6 * next(var) - 3 # l2 in [-3, 3] l1 = 6 * next(var) - 3 # l1 in [-3, 3] lmin = int(6 * (next(var) ** 2)) # lmin integer in [0,5] inclusive ns = [l / numlayers for l in range(numlayers)] lmaxes = [min(lmax_max, int(round(l1 * n + l2 * n**2))) for n in ns] bump = -min(lmaxes) lmaxes = [l + bump + lmin for l in lmaxes] model['lmaxes'] = lmaxes global mul_coeff print(f"Using mul_coeff = {mul_coeff}.") # multiplicities are a fn of both n = layer/numlayers and x = 10/(2l+1) # m = m0 + m01 x + m10 n + m11 xn # where m0 is whatever gives this min of mmin m01 = mul_coeff * (40 * next(var) - 10) # m01 in [-10, 30] m11 = mul_coeff * (40 * next(var) - 10) # m11 in [-10, 30] m10 = mul_coeff * (80 * next(var) - 40) # m10 in [-40, 40] #mmin = int(16 * (next(var) ** 2)) # mmin integer in [1,16] incl. mmin = int(mul_coeff * 2 ** (next(var) * 6)) + 1 # mmin integer in [2,64] incl. xs = [[10 / (2*l + 1) for l in range(lmaxes[n]+1)] for n in range(numlayers)] muls = [[int(m01 * x + m10 * n + m11 * x * n) for x in xl] for n,xl in zip(ns,xs)] bump = -min([min(lmul) for lmul in muls]) muls = [[m + bump + mmin for m in lmul] for lmul in muls] model['muls'] = muls return settings
8336a7cb19db62fa95b3b0d131f2ca6f0e919e39
3,642,923
def sourceExtractImage(data, bkgArr=None, sortType='centre', verbose=False, **kwargs): """Extract sources from data array and return enumerated objects sorted smallest to largest, and the segmentation map provided by source extractor """ data = np.array(data).byteswap().newbyteorder() if bkgArr is None: bkgArr = np.zeros(data.shape) o = sep.extract(data, kwargs.pop('threshold', 0.05), segmentation_map=True, **kwargs) if sortType == 'size': if verbose: print('Sorting extracted objects by radius from size') sizeSortedObjects = sorted( enumerate(o[0]), key=lambda src: src[1]['npix'] ) return sizeSortedObjects, o[1] elif sortType == 'centre': if verbose: print('Sorting extracted objects by radius from centre') centreSortedObjects = sorted( enumerate(o[0]), key=lambda src: ( (src[1]['x'] - data.shape[0] / 2)**2 + (src[1]['y'] - data.shape[1] / 2)**2 ) )[::-1] return centreSortedObjects, o[1]
6fec63cc6e154f874ae3a46a373fb2d7ceff2423
3,642,924
import os def _check_resource(resource_path: str) -> bool: """ Checks if the resource is file and accessible, or checks that all resources in directory are files and accessible :param resource_path: A path to the resource :return: True if resource is OK to upload, False otherwise """ if os.path.isfile(resource_path): try: open(resource_path, 'rb') return True except PermissionError or FileNotFoundError: return False return True
39f8109054367fe2c7f3f5dc61b24564f81160d7
3,642,925
from typing import Optional def convert_one_fmt_off_pair(node: Node) -> bool: """Convert content of a single `# fmt: off`/`# fmt: on` into a standalone comment. Returns True if a pair was converted. """ for leaf in node.leaves(): previous_consumed = 0 for comment in list_comments(leaf.prefix, is_endmarker=False): if comment.value not in FMT_PASS: previous_consumed = comment.consumed continue # We only want standalone comments. If there's no previous leaf or # the previous leaf is indentation, it's a standalone comment in # disguise. if comment.value in FMT_PASS and comment.type != STANDALONE_COMMENT: prev = preceding_leaf(leaf) if prev: if comment.value in FMT_OFF and prev.type not in WHITESPACE: continue if comment.value in FMT_SKIP and prev.type in WHITESPACE: continue ignored_nodes = list(generate_ignored_nodes(leaf, comment)) if not ignored_nodes: continue first = ignored_nodes[0] # Can be a container node with the `leaf`. parent = first.parent prefix = first.prefix if comment.value in FMT_OFF: first.prefix = prefix[comment.consumed :] if comment.value in FMT_SKIP: first.prefix = "" hidden_value = "".join(str(n) for n in ignored_nodes) if comment.value in FMT_OFF: hidden_value = comment.value + "\n" + hidden_value if comment.value in FMT_SKIP: hidden_value += " " + comment.value if hidden_value.endswith("\n"): # That happens when one of the `ignored_nodes` ended with a NEWLINE # leaf (possibly followed by a DEDENT). hidden_value = hidden_value[:-1] first_idx: Optional[int] = None for ignored in ignored_nodes: index = ignored.remove() if first_idx is None: first_idx = index assert parent is not None, "INTERNAL ERROR: fmt: on/off handling (1)" assert first_idx is not None, "INTERNAL ERROR: fmt: on/off handling (2)" parent.insert_child( first_idx, Leaf( STANDALONE_COMMENT, hidden_value, prefix=prefix[:previous_consumed] + "\n" * comment.newlines, ), ) return True return False
1ebbb67406a5d1de4e51c5a516b15750b0205567
3,642,926
def validate_uuid4(uuid_string): """ Source: https://gist.github.com/ShawnMilo/7777304 Validate that a UUID string is infact a valid uuid4. Luckily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-characterhex string is considered valid. """ try: val = UUID(uuid_string, version=4) except ValueError: # If ValueError, then the string is not a valid hex code for a UUID. return False # If the uuid_string is a valid hex code, but an invalid uuid4, # the UUID.__init__ will convert it to a valid uuid4. # This is bad for validation purposes. return val.hex == uuid_string.replace('-','')
56bf751cddd412ddc234f371a17019ee9192aefe
3,642,927
def check_sp(sp): """Validate seasonal periodicity. Parameters ---------- sp : int Seasonal periodicity Returns ------- sp : int Validated seasonal periodicity """ if sp is not None: if not is_int(sp) or sp < 1: raise ValueError("`sp` must be a positive integer >= 1 or None") return sp
475a56584915bc4b67663b3460959ca5e807ae06
3,642,928
def api_error_handler(func): """ Handy decorator that catches any exception from the Media Cloud API and sends it back to the browser as a nicely formatted JSON error. The idea is that the client code can catch these at a low level and display error messages. """ @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except MCException as e: logger.exception(e) return json_error_response(e.message, e.status_code) return wrapper
6e03a5dc081a5aed7436a948194965d1e61504d4
3,642,929
def gen_data(data_format, dtype, shape): """Generate data for testing the op""" input = random_gaussian(shape, miu=1, sigma=0.1).astype(dtype) head_np = input if data_format == "NC1HWC0": channel_dims = [1, 4] elif data_format == DEFAULT: channel_dims = [1] else: channel_dims = [len(shape) - 1] reduce_axis = [i for i in range(len(shape)) if i not in channel_dims] if dtype == "float16": expect = np_bisect_sum(input, axis=tuple(reduce_axis), keepdims=True) else: expect = np.sum(input, axis=tuple(reduce_axis), keepdims=True) output = np.full(expect.shape, np.nan, dtype) return expect, head_np, input, output
6fbc40b4879abec7a2f30c7f763102f51215e079
3,642,930
from typing import Any import pydantic import functools import inspect import pathlib import copy def clean_value_name(value: Any) -> str: """Returns a string representation of an object.""" if isinstance(value, pydantic.BaseModel): value = str(value) elif isinstance(value, float) and int(value) == value: value = int(value) value = str(value) elif isinstance(value, (np.int64, np.int32)): value = int(value) value = str(value) elif isinstance(value, np.ndarray): value = np.round(value, 3) value = get_string(value) elif callable(value) and isinstance(value, functools.partial): sig = inspect.signature(value.func) args_as_kwargs = dict(zip(sig.parameters.keys(), value.args)) args_as_kwargs.update(**value.keywords) clean_dict(args_as_kwargs) args_as_kwargs.pop("function", None) func = value.func while hasattr(func, "func"): func = func.func value = dict(function=func.__name__, **args_as_kwargs) value = get_string(value) elif hasattr(value, "to_dict"): value = value.to_dict() value = get_string(value) elif isinstance(value, np.float64): value = float(value) value = str(value) elif type(value) in [int, float, str, bool]: pass elif callable(value) and isinstance(value, toolz.functoolz.Compose): value = [clean_value_name(value.first)] + [ clean_value_name(func) for func in value.funcs ] value = get_string(value) elif callable(value) and hasattr(value, "__name__"): value = value.__name__ elif isinstance(value, PathPhidl): value = value.hash_geometry() elif isinstance(value, pathlib.Path): value = value.stem elif isinstance(value, dict): d = copy.deepcopy(value) for k, v in d.items(): if isinstance(v, dict): d[k] = clean_dict(v) else: d[k] = clean_value_name(v) value = get_string(value) else: value = get_string(value) return value
24635521ee8bd94324c0b29384ba0f0b39060244
3,642,931
def add_line_analyzer(func): """A simple decorator that adds a function to the list of all functions that analyze a single line of code.""" LINE_ANALYZERS.append(func) def wrapper(tokens): return func(tokens) return wrapper
538b6495be88d47b49efcd3ac28bd0b291810587
3,642,932
import hashlib def decode_account(source_a): """ Take a string of the form "xrb_..." of length 64 and return the associated public key (as a bytes object) """ assert len(source_a) == 64 assert source_a.startswith('xrb_') or source_a.startswith('xrb-') number_l = 0 for character in source_a[4:]: if ord(character) < 0x30 or ord(character) >= 0x80: raise ValueError('Character out of range') byte = account_decode(character) if byte == '~': raise ValueError('Invalid character') number_l <<= 5 number_l += ord(byte) account = (number_l >> 40).to_bytes(length=32, byteorder='big') # The digest to check is in the lowest 40 bits of the address check = number_l & 0xffffffffff hash = hashlib.blake2b(digest_size=5) hash.update(account) validation = hash.digest() assert check.to_bytes(length=5, byteorder='little') == validation """ if (!result) { *this = (number_l >> 40).convert_to <rai::uint256_t> (); uint64_t check (number_l.convert_to <uint64_t> ()); check &= 0xffffffffff; uint64_t validation (0); blake2b_state hash; blake2b_init (&hash, 5); blake2b_update (&hash, bytes.data (), bytes.size ()); blake2b_final (&hash, reinterpret_cast <uint8_t *> (&validation), 5); result = check != validation; } """ return account
5d083adcdd2f64c03c6a2e454b74b4d911381132
3,642,933
def update_epics_order_in_bulk(bulk_data: list, field: str, project: object): """ Update the order of some epics. `bulk_data` should be a list of tuples with the following format: [{'epic_id': <value>, 'order': <value>}, ...] """ epics = project.epics.all() epic_orders = {e.id: getattr(e, field) for e in epics} new_epic_orders = {d["epic_id"]: d["order"] for d in bulk_data} apply_order_updates(epic_orders, new_epic_orders) epic_ids = epic_orders.keys() events.emit_event_for_ids(ids=epic_ids, content_type="epics.epic", projectid=project.pk) db.update_attr_in_bulk_for_ids(epic_orders, field, models.Epic) return epic_orders
948bfaa6e165ac401cfa0244ee6c1b0bcd813493
3,642,934
def calc_precision(output, target): """calculate precision from tensor(b,c,x,y) for every category c""" precs = [] for c in range(target.size(1)): true_positives = ((output[:, c] - (output[:, c] != 1).int()) == target[:, c]).int().sum().item() # print(true_positives) false_positives = ((output[:, c] - (output[:, c] != 1).int()) == (target[:, c] != 1).int()).int().sum().item() # print(false_positives) if (true_positives == 0): precs.append(1.0) else: precs.append(true_positives / (true_positives + false_positives)) return precs
c35c500c786539578c46a8e8c4f6517bf30b4525
3,642,935
def upper_credible_choice(self): """pick the bandit with the best LOWER BOUND. See chapter 5""" def lb(a,b): return a/(a+b) + 1.65*np.sqrt((a*b)/((a+b)**2*(a+b+1))) a = self.wins + 1 b = self.trials - self.wins + 1 return np.argmax(lb(a,b))
20cefd0796f52a78d03b2d38cb74c532a07ec20c
3,642,936
import os def download(bell, evnt): """ Download the current event from the given doorbell. If the video is already in the download history or successfully downloaded then return True otherwise False. """ event_id = evnt.get("id") event_time = evnt.get("created_at") filename = "".join( ( f"{DOWNLOADFOLDER}/", f"{bell.name}-", f'{event_time.strftime("%Y%m%d_%H%M%S")}-', f"{event_id}.mp4", ) ) filename = filename.replace(" ", "_") print(filename) status = evnt.get("recording", {}).get("status") if status == "ready": try: bell.recording_download(event_id, filename=filename) os.utime( filename, (event_time.timestamp(), event_time.timestamp()) ) return True except Exception as ex: # pylint: disable=broad-except print(ex) return False else: print(f"Event: {event_id} is {status}") return False
437ba7167af2e5540fae317fbaab376f36723a80
3,642,937
import uuid def get_unique_id(): """ for unique random docname :return: length 32 string """ _id = str(uuid.uuid4()).replace("-", "") return _id
4cf99a919bd0e9672f0b186626df0532cacebaf4
3,642,938
def callback(): """ Step 3: Retrieving an access token. The user has been redirected back from the provider to your registered callback URL. With this redirection comes an authorization code included in the redirect URL. We will use that to obtain an access token. """ # Grab the Refresh and Access Token. token_dict = app.config['auth_client'].grab_access_token_and_refresh_token(url=request.url) # Store it in the Session. session['oauth_token'] = token_dict if app.config['call_close']: return redirect(url_for('shutdown')) return jsonify(token_dict)
76c4bec2c7c2a3433d4ab7665fca9d6829083626
3,642,939
def load_azure_auth() -> AzureSSOClientConfig: """ Load config for Azure Auth """ return AzureSSOClientConfig( clientSecret=conf.get(LINEAGE, "client_secret"), authority=conf.get(LINEAGE, "authority"), clientId=conf.get(LINEAGE, "client_id"), scopes=conf.getjson(LINEAGE, "scopes", fallback=[]), )
4e7eb1886da496c465db95aa2cee2aec4a107d78
3,642,940
def get_map_zones(map_id): """Get map zones. .. :quickref: Zones; Get map zones. **Example request**: .. sourcecode:: http GET /zones/map/1 HTTP/1.1 **Example response**: .. sourcecode:: json [ { "id": 1, "p1": [0, 0, 0], "p2": [256, 256, 256], "zone_type": "start" }, { "id": 2, "p1": [1000, 1000, 1000], "p2": [1256, 1256, 1256], "zone_type": "end" }, { "id": 1, "zone_type": "cp", "map_id": 1, "cp_index": 1, "zone": { "id": 3, "p1": [500, 500, 500], "p2": [756, 756, 756] } } ] :query map_id: map id. :status 200: Success. :status 404: Map not found. :returns: List of zones """ map_ = Map.query.filter_by(id_=map_id).first() if map_ is None: error = {"message": "Map not found."} return make_response(jsonify(error), 404) zones = [] if map_.start_zone is not None: zone = Zone.query.filter_by(id_=map_.start_zone).first() if zone: zone_dict = zone.json zone_dict["zone_type"] = "start" zones.append(zone_dict) if map_.end_zone is not None: zone = Zone.query.filter_by(id_=map_.end_zone).first() if zone: zone_dict = zone.json zone_dict["zone_type"] = "end" zones.append(zone_dict) checkpoints = MapCheckpoint.query.filter_by(map_id=map_id).all() if checkpoints: for checkpoint in checkpoints: zones.append(checkpoint.json) return make_response(jsonify(zones), 200)
89e60a0fd2e0e2b743aa54cf1debe67e5f860a13
3,642,941
def rgb2he_macenko(img, D=None, alpha=1.0, beta=0.15, white=255.0, return_deconvolution_matrix=False): """ Performs stain separation from RGB images using the method in M Macenko, et al. "A method for normalizing histology slides for quantitative analysis", IEEE ISBI, 2009. dx.doi.org/10.1109/ISBI.2009.5193250 Args: img (numpy.ndarray): RGB input image D (numpy.ndarray): a deconvolution matrix. If None, one will be computed from the image alpha (float): tolerance for pseudo-min/-max beta (float): OD threshold for transparent pixels white (float): white level (in each channel) return_deconvolution_matrix (bool): if True, the deconvolution matrix is also returned Returns: three 2d arrays for H-, E- and remainder channels, respectively. If return_deconvolution_matrix is True, the deconvolution matrix is also returned. """ assert (img.ndim == 3) assert (img.shape[2] == 3) I = img.reshape((img.shape[0] * img.shape[1], 3)) OD = -np.log((I + 1.0) / white) # optical density if D is None: # the deconvolution matrix is not provided so one has to be estimated from the # image rows = (OD >= beta).all(axis=1) if not any(rows): # no rows with all pixels above the threshold raise RuntimeError('optical density below threshold') ODhat = OD[rows, :] # discard transparent pixels u, V, _ = eig(np.cov(ODhat.T)) idx = np.argsort(u) # get a permutation to sort eigenvalues increasingly V = V[:, idx] # sort eigenvectors theta = np.dot(ODhat, V[:, 1:3]) # project optical density onto the eigenvectors # corresponding to the largest eigenvalues phi = np.arctan2(theta[:,1], theta[:,0]) min_phi, max_phi = np.percentile(phi, [alpha, 100.0-alpha], axis=None) u1 = np.dot(V[:,1:3], np.array([[np.cos(min_phi)],[np.sin(min_phi)]])) u2 = np.dot(V[:,1:3], np.array([[np.cos(max_phi)],[np.sin(max_phi)]])) if u1[0] > u2[0]: D = np.hstack((u1, u2)).T else: D = np.hstack((u2, u1)).T D = np.vstack((D, np.cross(D[0,],D[1,]))) D = D / np.reshape(np.repeat(np.linalg.norm(D, axis=1), 3), (3,3), order=str('C')) img_res = np.linalg.solve(D.T, OD.T).T img_res = np.reshape(img_res, img.shape, order=str('C')) if not return_deconvolution_matrix: D = None return rescale_intensity(img_res[:,:,0], out_range=(0,1)), \ rescale_intensity(img_res[:,:,1], out_range=(0,1)), \ rescale_intensity(img_res[:,:,2], out_range=(0,1)), \ D
bfe19ef7882ac713534d28c0d636bda086cf95c6
3,642,942
import inspect from typing import Any import functools from typing import OrderedDict import torch def validated(base_model=None): """ Decorates an ``__init__`` method with typed parameters with validation and auto-conversion logic. >>> class ComplexNumber: ... @validated() ... def __init__(self, x: float = 0.0, y: float = 0.0) -> None: ... self.x = x ... self.y = y Classes with decorated initializers can be instantiated using arguments of another type (e.g. an ``y`` argument of type ``str`` ). The decorator handles the type conversion logic. >>> c = ComplexNumber(y='42') >>> (c.x, c.y) (0.0, 42.0) If the bound argument cannot be converted, the decorator throws an error. >>> c = ComplexNumber(y=None) Traceback (most recent call last): ... pydantic.error_wrappers.ValidationError: 1 validation error for ComplexNumberModel y none is not an allowed value (type=type_error.none.not_allowed) Internally, the decorator delegates all validation and conversion logic to `a Pydantic model <https://pydantic-docs.helpmanual.io/>`_, which can be accessed through the ``Model`` attribute of the decorated initiazlier. >>> ComplexNumber.__init__.Model <class 'ComplexNumberModel'> The Pydantic model is synthesized automatically from on the parameter names and types of the decorated initializer. In the ``ComplexNumber`` example, the synthesized Pydantic model corresponds to the following definition. >>> class ComplexNumberModel(BaseValidatedInitializerModel): ... x: float = 0.0 ... y: float = 0.0 Clients can optionally customize the base class of the synthesized Pydantic model using the ``base_model`` decorator parameter. The default behavior uses :class:`BaseValidatedInitializerModel` and its `model config <https://pydantic-docs.helpmanual.io/#config>`_. See Also -------- BaseValidatedInitializerModel Default base class for all synthesized Pydantic models. """ def validator(init): init_qualname = dict(inspect.getmembers(init))["__qualname__"] init_clsnme = init_qualname.split(".")[0] init_params = inspect.signature(init).parameters init_fields = { param.name: ( param.annotation if param.annotation != inspect.Parameter.empty else Any, param.default if param.default != inspect.Parameter.empty else ..., ) for param in init_params.values() if param.name != "self" and param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD } if base_model is None: PydanticModel = create_model( model_name=f"{init_clsnme}Model", __config__=BaseValidatedInitializerModel.Config, **init_fields, ) else: PydanticModel = create_model( model_name=f"{init_clsnme}Model", __base__=base_model, **init_fields, ) def validated_repr(self) -> str: return dump_code(self) def validated_getnewargs_ex(self): return (), self.__init_args__ @functools.wraps(init) def init_wrapper(*args, **kwargs): self, *args = args nmargs = { name: arg for (name, param), arg in zip( list(init_params.items()), [self] + args ) if name != "self" } model = PydanticModel(**{**nmargs, **kwargs}) # merge nmargs, kwargs, and the model fields into a single dict all_args = {**nmargs, **kwargs, **model.__dict__} # save the merged dictionary for Representable use, but only of the # __init_args__ is not already set in order to avoid overriding a # value set by a subclass initializer in super().__init__ calls if not getattr(self, "__init_args__", {}): self.__init_args__ = OrderedDict( { name: arg for name, arg in sorted(all_args.items()) if type(arg) != torch.nn.ParameterDict } ) self.__class__.__getnewargs_ex__ = validated_getnewargs_ex self.__class__.__repr__ = validated_repr return init(self, **all_args) # attach the Pydantic model as the attribute of the initializer wrapper setattr(init_wrapper, "Model", PydanticModel) return init_wrapper return validator
af599bff5aa5d1efeb44297c117685609842a212
3,642,943
from pathlib import Path def make_header_table(fitsdir, search_string='*fl?.fits'): """Construct a table of key-value pairs from FITS headers of images used in dolphot run. Columns are the set of all keywords that appear in any header, and rows are per image. Inputs ------ fitsdir : string or Path directory of FITS files search_string : string or regex pattern, optional string to search for FITS images with. Default is '*fl?.chip?.fits' Returns ------- df : DataFrame A table of header key-value pairs indexed by image name. """ keys = [] headers = {} # force fitsdir to Path if type(fitsdir) == str: fitsdir = Path(fitsdir) fitslist = list(fitsdir.glob(search_string)) if len(fitslist) == 0: # this shouldn't happen print('No fits files found in {}!'.format(fitsdir)) return pd.DataFrame() # get headers from each image with Pool(cpu_count()-1) as p: all_headers = p.map(combine_headers, fitslist) for name, head in all_headers: headers.update({name:head}) keys += [k for k in head] unique_keys = np.unique(keys).tolist() remove_keys = ['COMMENT', 'HISTORY', ''] [unique_keys.remove(key) for key in remove_keys if key in unique_keys] # construct dataframe df = pd.DataFrame(columns=unique_keys) for fitsname, head in headers.items(): row = pd.Series(dict(head.items())) df.loc[fitsname.split('.fits')[0]] = row.T # I do not know why dask is so bad at mixed types # but here is my hacky solution try: df = df.infer_objects() except Exception: print("Could not infer objects") df_obj = df.select_dtypes(['object']) # iterate over columns and force types for c in df_obj: dtype = pd.api.types.infer_dtype(df[c], skipna=True) if dtype == 'string': df.loc[:,c] = df.loc[:,c].astype(str) elif dtype in ['float', 'mixed-integer-float']: df.loc[:,c] = df.loc[:,c].astype(float) elif dtype == 'integer': df.loc[:,c] = df.loc[:,c].astype(int) elif dtype == 'boolean': df.loc[:,c] = df.loc[:,c].astype(bool) else: print('Unrecognized datatype "{}" for column {}; coercing to string'.format(dtype, c)) df.loc[:,c] = df.loc[:,c].astype(str) # lambda function to construct detector-filter pairs lamfunc = lambda x: '-'.join(x[~(x.str.startswith('CLEAR') | x.str.startswith('nan'))]) df['FILT_DET'] = df.filter(regex='(DETECTOR)|(FILTER)').astype(str).apply(lamfunc, axis=1) return df
3d5d10b73a8e76abedcf85ef97a9854920996a0a
3,642,944
import re def parse_head_final_tags(ctx, lang, form): """Parses tags that are allowed at the end of a form head from the end of the form. This can also be used for parsing the final gender etc tags from translations and linkages.""" assert isinstance(ctx, Wtp) assert isinstance(lang, str) # Should be language that "form" is for assert isinstance(form, str) # print("parse_head_final_tags: lang={} form={!r}".format(lang, form)) # Make sure there are no double spaces in the form as this code does not # handle them otherwise. form = re.sub(r"\s+", " ", form.strip()) if not form: return form, [] origform = form tags = [] # If parsing for certain Bantu languages (e.g., Swahili), handle # some extra head-final tags first if lang in head_final_bantu_langs: m = re.search(head_final_bantu_re, form) if m is not None: tagkeys = m.group(1) if not ctx.title.endswith(tagkeys): form = form[:m.start()] v = head_final_bantu_map[tagkeys] if v.startswith("?"): v = v[1:] ctx.debug("suspicious suffix {!r} in language {}: {}" .format(tagkeys, lang, origform)) tags.extend(v.split()) # If parsing for certain Semitic languages (e.g., Arabic), handle # some extra head-final tags first if lang in head_final_semitic_langs: m = re.search(head_final_semitic_re, form) if m is not None: tagkeys = m.group(1) if not ctx.title.endswith(tagkeys): form = form[:m.start()] v = head_final_semitic_map[tagkeys] if v.startswith("?"): v = v[1:] ctx.debug("suspicious suffix {!r} in language {}: {}" .format(tagkeys, lang, origform)) tags.extend(v.split()) # If parsing for certain other languages (e.g., Lithuanian, # French, Finnish), handle some extra head-final tags first if lang in head_final_other_langs: m = re.search(head_final_other_re, form) if m is not None: tagkeys = m.group(1) if not ctx.title.endswith(tagkeys): form = form[:m.start()] tags.extend(head_final_other_map[tagkeys].split(" ")) # Handle normal head-final tags m = re.search(head_final_re, form) if m is not None: tagkeys = m.group(3) # Only replace tags ending with numbers in languages that have # head-final numeric tags (e.g., Bantu classes); also, don't replace # tags if the main title ends with them (then presume they are part # of the word) # print("head_final_tags form={!r} tagkeys={!r} lang={}" # .format(form, tagkeys, lang)) tagkeys_contains_digit = re.search(r"\d", tagkeys) if ((not tagkeys_contains_digit or lang in head_final_numeric_langs) and not ctx.title.endswith(" " + tagkeys)): if not tagkeys_contains_digit or lang in head_final_numeric_langs: form = form[:m.start()] v = xlat_head_map[tagkeys] if v.startswith("?"): v = v[1:] ctx.debug("suspicious suffix {!r} in language {}: {}" .format(tagkeys, lang, origform)) tags.extend(v.split()) # Generate warnings about words ending in " or" after processing if ((form.endswith(" or") and not origform.endswith(" or")) or re.search(r" (1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|" r"1a|2a|9a|10a|m1|f1|f2|m2|f3|m3|f4|m4|f5|m5|or|\?)" r"($|/| (f|m|sg|pl|anim|inan))", form) or form.endswith(" du")): if form not in ok_suspicious_forms: ctx.debug("suspicious unhandled suffix in {}: {!r}, originally {!r}" .format(lang, form, origform)) # print("parse_head_final_tags: form={!r} tags={}".format(form, tags)) return form, tags
38891b08fa2223e90f73c732ff497606ab1c729b
3,642,945
def cars_to_people(df,peoplePerCar=1.7,percentOfTransit=.005): """ args: demand dataframe, people/car float, % of transit floats returns: people demand dataframe by terminal and arrival/departure """ columns = ['Arrive_A','Arrive_B','Arrive_C','Arrive_D','Arrive_E', 'Depart_A','Depart_B','Depart_C','Depart_D','Depart_E'] tmp_df = pd.DataFrame() for col in columns: tmp_people = [] for row in df[col]: tmp_people.append((row * peoplePerCar/(1-percentOfTransit))) tmp_df[col + "_people"] = tmp_people depart_columns = [] arrive_columns = [] for col in tmp_df.columns: if col.startswith('Depart'): depart_columns.append(col) elif col.startswith('Arrive'): arrive_columns.append(col) tmp_df['Depart_total'] = tmp_df[depart_columns].sum(axis=1) tmp_df['Arrival_total'] = tmp_df[arrive_columns].sum(axis=1) tmp_df['pass_thru'] = df['pass_thru'] tmp_df['Total'] = tmp_df[['Depart_total','Arrival_total']].sum(axis=1) return tmp_df
54672baacf10683a3d7224ee8672e08ee1574b30
3,642,946
import re def get_dup_key_val(errmsg): """Return the duplicate key referenced in an error message. Parameters ---------- errmsg : |str| A pymongo `DuplicateKeyError` message. Returns ------- |dict| The key(s) and value(s) of the duplicate key. Example ------- >>> errmsg = ('insertDocument :: caused by :: 11000 E11000 duplicate ' >>> 'key error collection: cyphon.posts index: ' >>> '_platform_1_doc_id_1 dup key: { : twitter", : ' >>> '"ObjectId(\'5543769ef861c942838c7ee9\') }') >>> get_dup_key_val(errmsg) {'_platform': 'twitter', '_doc_id': ObjectId('5543769ef861c942838c7ee9')} """ msg = errmsg.split(' dup key: { ') key = extract_substring(msg[0], 'index: ', '_', 'right').strip() val = extract_substring(msg[1], ':', '}').strip() # parse compound indexes keys = re.split(r'_[0-9]+_', key) values = val.split(', : ') if len(keys) != len(values): # pragma: no cover raise ValueError('cannot match index keys with values') key_val = {} for index, value in enumerate(values): key_val[keys[index]] = restore_type_from_str(values[index]) return key_val
14cbf0f51a89c4b76c5a1d363e2ef1dfe994ede6
3,642,947
def worker(vac_flag,cache_dict,mylock): # Used in multiprocess_traditional_evaluate() #20220204 """thread worker function""" this_key = tuple(vac_flag.squeeze().cpu().numpy()) if(this_key in cache_dict): print('Found in cache_dict') [total_cases, case_rate_std] = cache_dict[this_key] elif(this_key in combined_dict): print('Found in combined_dict') [total_cases, case_rate_std] = combined_dict[this_key] else: print('Not found in cache') total_cases, case_rate_std = traditional_evaluate(vac_flag) cache_dict[this_key] = [total_cases, case_rate_std] print(len(list(cache_dict.keys()))) return total_cases
d88e92c7cd3c5bf85389e83440dc7752719d66c0
3,642,948
from kubernetes import client as k8s_client from typing import Optional from typing import Dict def use_k8s_secret( secret_name: str = 'k8s-secret', k8s_secret_key_to_env: Optional[Dict] = None, ): """An operator that configures the container to use k8s credentials. k8s_secret_key_to_env specifies a mapping from the name of the keys in the k8s secret to the name of the environment variables where the values will be added. The secret needs to be deployed manually a priori. Example: :: train = train_op(...) train.apply(use_k8s_secret(secret_name='s3-secret', k8s_secret_key_to_env={'secret_key': 'AWS_SECRET_ACCESS_KEY'})) This will load the value in secret 's3-secret' at key 'secret_key' and source it as the environment variable 'AWS_SECRET_ACCESS_KEY'. I.e. it will produce the following section on the pod: env: - name: AWS_SECRET_ACCESS_KEY valueFrom: secretKeyRef: name: s3-secret key: secret_key """ k8s_secret_key_to_env = k8s_secret_key_to_env or {} def _use_k8s_secret(task): for secret_key, env_var in k8s_secret_key_to_env.items(): task.container \ .add_env_variable( k8s_client.V1EnvVar( name=env_var, value_from=k8s_client.V1EnvVarSource( secret_key_ref=k8s_client.V1SecretKeySelector( name=secret_name, key=secret_key ) ) ) ) return task return _use_k8s_secret
2e88ad765322752ba7417d865f0ea60879c4bafe
3,642,949
def get_recommendations(artists = tuple(), genres = tuple(), limit = 20, features = True, client = None): """Return DataFrame of recommended tracks. Arguments: artists: an optional sequence of artists to seed recommendation genres: an optional sequence of genres to seed recommendation limit: number of tracks to return features: whether to include track features in output """ recs = client.recommendations(seed_artists = artists, seed_genres = genres, limit = limit) tracks = recs['tracks'] # TODO: need a compose function... to_keep = ( 'album_name', 'artist_name', 'name', 'popularity', 'duration_ms', 'explicit', 'id' ) rows = list(map(row_filter(to_keep, False), map(_hoist_track_info, tracks))) out = pd.DataFrame(rows) track_ids = [row['id'] for row in rows] if features: extra_cols = ['uri', 'type', 'duration_ms', 'analysis_url', 'track_href'] return out.merge( get_track_features(track_ids).drop(columns = extra_cols), on = "id" ) return out
6c9c4c44b7c5269fbb9718b22dba74632e80b092
3,642,950
def reorder_point(max_units_sold_daily, avg_units_sold_daily, max_lead_time, avg_lead_time, lead_time): """Returns the reorder point for a given product based on sales and lead time. The reorder point is the stock level at which a new order should be placed in order to avoid stock outs. Args: max_units_sold_daily (int): Maximum number of units sold daily in previous period. avg_units_sold_daily (float): Average number of units sold daily in previous period. max_lead_time (int): Maximum number of days required to obtain stock. avg_lead_time (int): Average number of days required to obtain stock. lead_time (int): Number of days required to obtain stock. Returns: Safety stock level for the product based on sales and lead time. """ safety = safety_stock(max_units_sold_daily, avg_units_sold_daily, max_lead_time, avg_lead_time) return (lead_time * avg_units_sold_daily) + safety
876544b5bce39342fb753f6a1bf33913fae6e33d
3,642,951
def get_total_value_report(total_value): """"TBD""" # Total value report currency = CURRENCY slack_str = "*" + "Total value report" + "*\n>>>\n" slack_str = slack_str + make_slack_etf_chain_total(total_value, currency) """ sendSlackNotification('etf', slack_str, "ETF Notification", ':chart_with_upwards_trend:') """ return total_value
be1a9ff18c2faf37ae7b58be34f15eb454c72d62
3,642,952
def verify_count_responses(responses): """ Verifies that the responses given are well formed. Parameters ---------- responses : int OR list-like If an int, the exact number of responses targeted. If list-like, the first two elements are the minimum and maximum (inclusive) range of responses targeted. If a third item is in the list it must be a list of values from which the range of target responses is being restricted. Returns ------- None """ if isinstance(responses, int): responses = [responses] elif isinstance(responses, (list, tuple)): if not len(responses) in [2, 3]: raise IndexError ( "The responses list given to has_count() is must have " "either 2 or 3 items in the form: " "[min, max, [values subset]]. Found %s." % (responses) ) valid_types = [int, int, (list, tuple)] for r, response in enumerate(responses): if not isinstance(response, valid_types[r]): raise TypeError ( "The responses list given to has_count() has " "incorrectly typed items. It must be either 2 or 3 " "items in the form: [int, int, list/tuple]. " "Found %s." % (responses) ) if r==3: for value in response: if not isinstance(value, int): raise TypeError ( "The values subset given as the third item " "in has_count(responses) is not correctly " "typed. Each value must be int. " "Found %s." % (response) ) return responses
63fbd00bc26fee8eb960f389d5d56178e90ff7ae
3,642,953
def _subtract(supernet, subnets, subnet_idx, ranges): """Calculate IPSet([supernet]) - IPSet(subnets). Assumptions: subnets is sorted, subnet_idx points to the first element in subnets that is a subnet of supernet. Results are appended to the ranges parameter as tuples of in format (version, first, last). Return value is the first subnet_idx that does not point to a subnet of supernet (or len(subnets) if all subsequents items are a subnet of supernet). """ version = supernet._module.version subnet = subnets[subnet_idx] if subnet.first > supernet.first: ranges.append((version, supernet.first, subnet.first - 1)) subnet_idx += 1 prev_subnet = subnet while subnet_idx < len(subnets): cur_subnet = subnets[subnet_idx] if cur_subnet not in supernet: break if prev_subnet.last + 1 == cur_subnet.first: # two adjacent, non-mergable IPNetworks pass else: ranges.append((version, prev_subnet.last + 1, cur_subnet.first - 1)) subnet_idx += 1 prev_subnet = cur_subnet first = prev_subnet.last + 1 last = supernet.last if first <= last: ranges.append((version, first, last)) return subnet_idx
a7c738b5ddab1ed896677a011029a00af5779bcd
3,642,954
def commiter_factory(config: dict) -> BaseCommitizen: """Return the correct commitizen existing in the registry.""" name: str = config["name"] try: _cz = registry[name](config) except KeyError: msg_error = ( "The commiter has not been found in the system.\n\n" f"Try running 'pip install {name}'\n" ) out.error(msg_error) raise SystemExit(NO_COMMITIZEN_FOUND) else: return _cz
0e001652e0698efe981bf7dfe0cc69ce337e6f97
3,642,955
from pathlib import Path import os def faceshq(output_folder): """faceshq. src yaml: 'https://app.koofr.net/links/a04deec9-0c59-4673-8b37-3d696fe63a5d?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fconfigs%2F2020-11-13T21-41-45-project.yaml' src ckpt: 'https://app.koofr.net/content/links/a04deec9-0c59-4673-8b37-3d696fe63a5d/files/get/last.ckpt?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fcheckpoints%2Flast.ckpt' """ filename = "faceshq" yaml_file = 'https://app.koofr.net/links/a04deec9-0c59-4673-8b37-3d696fe63a5d?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fconfigs%2F2020-11-13T21-41-45-project.yaml' ckpt_file = 'https://app.koofr.net/content/links/a04deec9-0c59-4673-8b37-3d696fe63a5d/files/get/last.ckpt?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fcheckpoints%2Flast.ckpt' output_yaml_file = Path(output_folder)/ f"{filename}.yaml" output_ckpt_file = Path(output_folder)/ f"{filename}.ckpt" os.makedirs(Path(output_folder), exist_ok=True) return (__download(yaml_file, output_yaml_file), __download(ckpt_file, output_ckpt_file))
15e17e7217bd7a03e56b508633249c24197caf7f
3,642,956
import re from datetime import datetime import json async def apiAccountEditPhaaze(cls:"WebIndex", WebRequest:Request) -> Response: """ Default url: /api/account/phaaze/edit """ WebUser:WebUserInfo = await cls.getWebUserInfo(WebRequest) if not WebUser.found: return await apiMissingAuthorisation(cls, WebRequest) Data:WebRequestContent = WebRequestContent(WebRequest) await Data.load() # get required stuff current_password:str = Data.getStr("password", "") new_username:str = Data.getStr("username", "") new_email:str = Data.getStr("email", "") new_password:str = Data.getStr("newpassword", "") new_password2:str = Data.getStr("newpassword2", "") # checks if not current_password or WebUser.password != password_function(current_password): return await apiAccountPasswordsDontMatch(cls, WebRequest, msg="Current password is not correct") changed_email:bool = False # if yes, reset valiated and send mail update:dict = dict() # if new_password is set, check all and set to update if new_password: if new_password != new_password2: return await apiAccountPasswordsDontMatch(cls, WebRequest) if len(new_password) < 8: return await apiAccountPasswordToShort(cls, WebRequest, min_length=8) update["password"] = password_function(new_password) if new_username: # want a new username if new_username.lower() != WebUser.username.lower(): is_occupied:list = await getWebUsers(cls, "LOWER(`user`.`username`) = LOWER(%s)", (new_username,)) if is_occupied: # already taken return await apiAccountTaken(cls, WebRequest) else: # username is free, add to update and add one to username_changed, # maybe i do something later with it update["username_changed"] = WebUser.username_changed + 1 update["username"] = new_username # else, it's a diffrent captation or so elif new_username != WebUser.username: update["username"] = new_username if new_email and new_email.lower() != WebUser.email: if re.match(IsEmail, new_email) == None: # does not look like a email return await apiAccountEmailWrong(cls, WebRequest, email=new_email) is_occupied:list = await getWebUsers(cls, "user.email LIKE %s", (new_email,)) if is_occupied: # already taken return await apiAccountTaken(cls, WebRequest) else: changed_email = True update["email"] = new_email if not update: return await apiWrongData(cls, WebRequest, msg=f"No changes, please add at least one") # verification mail if changed_email: cls.Web.BASE.Logger.warning(f"(API) New Email, send new verification mail: {new_email}", require="api:account") # TODO: SEND MAIL update["edited_at"] = str(datetime.datetime.now()) cls.Web.BASE.PhaazeDB.updateQuery( table = "user", content = update, where = "`user`.`id` = %s", where_values = (WebUser.user_id,) ) cls.Web.BASE.Logger.debug(f"(API) Account edit ({WebUser.user_id}) : {str(update)}", require="api:account") return cls.response( status=200, text=json.dumps( dict(error="successfull_edited", msg="Your account has been successfull edited", update=update, status=200) ), content_type="application/json" )
5ac51d1c70031858294283c1f000af80e8838c99
3,642,957
def get_s3_items_by_type_from_queue(volume_folder): """ Load redis queue named "volume:<volume_folder>", and return dict of keys and md5s sorted by file type. Queue will contain items consisting of newline and tab-delimited lists of files. Returned value: {'alto': [[s3_key, md5], [s3_key, md5]], 'jp2': ..., 'tiff': ..., 'casemets': ..., 'volmets': ..., 'md5': ...} """ # Get all entries from volume:<volume_folder> queue, splitting tab-delimited strings back into tuples: s3_items = [line.split("\t") for files_str in spop_all('volume:' + volume_folder) for line in force_str(files_str).split("\n")] return sort_s3_items_by_type(s3_items, volume_folder)
7afece0e2f1f8d0863873f1ef987790c2eb1dad3
3,642,958
def strip_spectral_type(series, return_mask=False): """ Strip spectral type from series of string Args: series (pd.Series): series of object names (strings) return_mask (bool): returns boolean mask True where there is a type Returns: no_type (pd.Series): series without spectral types type_mask (pd.Series): boolean mask where type is given """ type_mask = series.str.match('\\([OBAFGKM]\\)') no_type = series.copy() no_type[type_mask] = series[type_mask].str.slice(start=4) return (no_type, type_mask) if return_mask else no_type
65b91749742b229637819582b1158554b1a457ea
3,642,959
def already_in_bioconda(recipe, meta, df): """ Does the package exist in bioconda? """ results = _subset_df(recipe, meta, df) build_number = int(meta.get_value('build/number', 0)) build_results = results[results.build_number == build_number] channels = set(build_results.channel) if 'bioconda' in channels: return { 'already_in_bioconda': True, 'fix': 'bump version or build number' }
0a7402e85a36f2f97a36a91bc379077f01ab22f5
3,642,960
def expand_groups(node_id, groups): """ node_id: a node ID that may be a group groups: store group IDs and list of sub-ids return value: a list that contains all group IDs deconvoluted """ node_list = [] if node_id in groups.keys(): for component_id in groups[node_id]: node_list.extend(expand_groups(component_id, groups)) else: node_list.extend([node_id]) return node_list
4c4b9c569a85396f201c589635b6ecea3807ddc2
3,642,961
def _preservation_derivatives_query(storage_service_id, storage_location_id, aip_uuid): """Fetch information on preservation derivatives from db. :param storage_service_id: Storage Service ID (int) :param storage_location_id: Storage Location ID (int) :param aip_uuid: AIP UUID (str) :returns: SQLAlchemy query results """ files = ( File.query.join(AIP) .join(StorageLocation) .join(StorageService) .filter(StorageService.id == storage_service_id) .filter(File.file_type == FileType.preservation) .order_by(AIP.uuid, File.file_format) ) if storage_location_id: files = files.filter(StorageLocation.id == storage_location_id) if aip_uuid: files = files.filter(AIP.uuid == aip_uuid) return files
a4ab7d6fc011c3ffc3678388b221514f38ecb5db
3,642,962
def euler2rot_symbolic(angle1='ϕ', angle2='θ', angle3='ψ', order='X-Y-Z', ertype='extrinsic'): """returns symbolic expression for the composition of elementary rotation matrices Parameters ---------- angle1 : string or sympy.Symbol angle representing first rotation angle2 : string or sympy.Symbol angle representing second rotation angle3 : string or sympy.Symbol angle representing third rotation order : string valid string sequence that specifies the order of rotation. See `euler2rot()` for details ertype : string ('extrinsic' or 'intrinsic') See `euler2rot()` for details the type of elemental rotations. deg : bool `True` = degree (default), `False` = radians Example ------- >>> R = euler2rot_symbolic('1', '2', '3', 'X-Y-Z' , 'intrinsic') >>> c, s = sy.symbols('c, s', cls=sy.Function) >>> R.subs({sy.cos:c, sy.sin:s}) Matrix([ [ c(2)*c(3), -c(2)*s(3), s(2)], [ c(1)*s(3) + c(3)*s(1)*s(2), c(1)*c(3) - s(1)*s(2)*s(3), -c(2)*s(1)], [-c(1)*c(3)*s(2) + s(1)*s(3), c(1)*s(2)*s(3) + c(3)*s(1), c(1)*c(2)]]) Note ---- The order of the input angles are specified in the order of rotations (corresponding to the `order`). They are not specified with respect to any particular axis. """ X = rotX_symbolic Y = rotY_symbolic Z = rotZ_symbolic order = order.split('-') if ertype == 'extrinsic': order.reverse() composition = '{}(angle3)*{}(angle2)*{}(angle1)'.format(*order) elif ertype == 'intrinsic': composition = '{}(angle1)*{}(angle2)*{}(angle3)'.format(*order) else: raise ValueError('Incorrect elemental rotation parameter.') #print(composition) return eval(composition)
07069fc6c543acb9960f8203130cabcd04a762f4
3,642,963
import ctypes def k4a_playback_get_next_imu_sample(playback_handle, imu_sample): """ K4ARECORD_EXPORT k4a_stream_result_t k4a_playback_get_next_imu_sample(k4a_playback_t playback_handle, k4a_imu_sample_t *imu_sample); """ _k4a_playback_get_next_imu_sample = record_dll.k4a_playback_get_next_imu_sample _k4a_playback_get_next_imu_sample.restype = k4a_stream_result_t _k4a_playback_get_next_imu_sample.argtypes = (k4a_playback_t, \ ctypes.POINTER(k4a_imu_sample_t),) return _k4a_playback_get_next_imu_sample(playback_handle, imu_sample)
faa127b8788163de209863adee1419c349852827
3,642,964
def knapsack_iterative_numpy(items, maxweight): """ Iterative knapsack method maximize \sum_{i \in T} v_i subject to \sum_{i \in T} w_i \leq W Notes: dpmat is the dynamic programming memoization matrix. dpmat[i, w] is the total value of the items with weight at most W T is the set of indicies in the optimal solution """ #import numpy as np items = np.array(items) weights = items.T[1] # Find maximum decimal place (this problem is in NP) max_exp = max([number_of_decimals(w_) for w_ in weights]) coeff = 10 ** max_exp # Adjust weights to be integral weights = (weights * coeff).astype(np.int) values = items.T[0] MAXWEIGHT = int(maxweight * coeff) W_SIZE = MAXWEIGHT + 1 dpmat = np.full((len(items), W_SIZE), np.inf) kmat = np.full((len(items), W_SIZE), 0, dtype=np.bool) idx_subset = [] for w in range(W_SIZE): dpmat[0][w] = 0 for idx in range(1, len(items)): item_val = values[idx] item_weight = weights[idx] for w in range(W_SIZE): valid_item = item_weight <= w prev_val = dpmat[idx - 1][w] if valid_item: prev_noitem_val = dpmat[idx - 1][w - item_weight] withitem_val = item_val + prev_noitem_val more_valuable = withitem_val > prev_val else: more_valuable = False dpmat[idx][w] = withitem_val if more_valuable else prev_val kmat[idx][w] = more_valuable K = MAXWEIGHT for idx in reversed(range(1, len(items))): if kmat[idx, K]: idx_subset.append(idx) K = K - weights[idx] idx_subset = sorted(idx_subset) items_subset = [items[i] for i in idx_subset] total_value = dpmat[len(items) - 1][MAXWEIGHT] return total_value, items_subset
7ef8ab10b91e72b7625fdfc9445501c4ae8e5554
3,642,965
import torch def gram_matrix(image: torch.Tensor): """https://pytorch.org/tutorials/ advanced/neural_style_tutorial.html#style-loss""" n, c, h, w = image.shape x = image.view(n * c, w * h) gram_m = torch.mm(x, x.t()).div(n * c * w * h) return gram_m
5912cfec026cba26a77131c3b52a8e751c0f575e
3,642,966
def photos_of_user(request, user_id): """Displaying user's photo gallery and adding new photos to user's gellery view. """ template = 'accounts/profile/photos_gallery.html' user_acc = get_object_or_404(TLAccount, id=user_id) photos = user_acc.photos_of_user.all() # Custom related name context = { 'photos': photos, 'user_acc': user_acc } if request.method == 'POST': if request.user.email != user_acc.email: return HttpResponseBadRequest() initial = { 'photo': request.FILES['user_gallery_photo'] } form = AddPhotoToUserGalleryForm(request.POST, initial) if form.is_valid(): final_form = form.save(commit=False) # final_form.place = place final_form.author = user_acc final_form.save() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) else: return render(request, template, context) # If HTTP method is GET... else: return render(request, template, context)
3fd3cdfac7f1af4de13c464a3fe2bea26f72e6c2
3,642,967
def sw_update_opts_w_name_db_model_to_dict(sw_update_opts, subcloud_name): """Convert sw update options db model plus subcloud name to dictionary.""" result = {"id": sw_update_opts.id, "name": subcloud_name, "subcloud-id": sw_update_opts.subcloud_id, "storage-apply-type": sw_update_opts.storage_apply_type, "compute-apply-type": sw_update_opts.compute_apply_type, "max-parallel-computes": sw_update_opts.max_parallel_computes, "alarm-restriction-type": sw_update_opts.alarm_restriction_type, "default-instance-action": sw_update_opts.default_instance_action, "created-at": sw_update_opts.created_at, "updated-at": sw_update_opts.updated_at} return result
c9c1703d9e4d0b69920d3ab06e5bf19fbb622103
3,642,968
def imf_binary_primary(m, imf, binary_fraction=constants.BIN_FRACTION): """ Initial mass function for primary stars of binary systems Integrated between m' and m'' using Newton-Cotes Returns 0 unless m is in (1.5, 16) """ m_inf = max(constants.B_MIN, m) m_sup = min(constants.B_MAX, 2 * m) if m <= 0 or m_sup <= m_inf: return 0.0 return binary_fraction * newton_cotes(m_inf, m_sup, phi_primary(m, imf))
ae49a298d66a7ee844b252b5e736ea1c1846c31b
3,642,969
import torch def compute_scene_graph_similarity(ade20k_split, threshold=None, recall_funct=compute_recall_johnson_feiefei): """ :param ade20k_split: :param threshold: :param recall_funct: :return: """ model = get_scene_graph_encoder() model.eval() test_results = [] with torch.no_grad(): for k, graph_dict in ade20k_split.items(): res = model(graph_dict) test_results.append(res) stacked_vectors = torch.stack(test_results) category = get_categories(ade20k_split) num_captions = stacked_vectors.shape[1] index_inferred_caption = num_captions - 1 index_range_human_captions = index_inferred_caption caption_dim = 1 recall_list = [] mean_rank_list = [] similarity_list = [] for index_caption in range(index_range_human_captions): comparison = torch.cat((stacked_vectors[:, index_caption, :].unsqueeze(caption_dim), stacked_vectors[:, index_inferred_caption, :].unsqueeze(caption_dim)), dim=caption_dim) similarity_caption = calculate_normalized_cosine_similarity_on_tensor(comparison) recall_val, mean_rank = recall_funct(similarity_caption, threshold, category) similarity_list.append(similarity_caption.diag().mean().to("cpu").numpy()) recall_list.append(recall_val) mean_rank_list.append(mean_rank) print(f"Threshold for retrieval: {threshold}") recall_mean = pd.DataFrame(recall_list).mean().to_dict() average_mean_rank = pd.DataFrame(mean_rank_list).mean()[0] average_similarity = pd.DataFrame(similarity_list).mean()[0] for k in recall_mean.keys(): print(f"Average {k}: {recall_mean[k]}") recall_mean["mean_rank"] = average_mean_rank print(f"Average Mean Rank: {average_mean_rank}") print(f"Average Similarity{average_similarity}") recall_mean["average_similarity"] = average_similarity recall_mean["threshold"] = threshold return recall_mean
061435209baa2c8d03af93ce09d00fcaf02adf8a
3,642,970
import importlib_resources def load_cmudict(): """Loads the CMU Pronouncing Dictionary""" dict_ref = importlib_resources.files("tacotron").joinpath("cmudict-0.7b.txt") with open(dict_ref, encoding="ISO-8859-1") as file: cmudict = (line.strip().split(" ") for line in islice(file, 126, 133905)) cmudict = { format_alt_entry(word): pronunciation for word, pronunciation in cmudict } return cmudict
76f3ed592cb3709d4f073c42ee7229ac0142b77a
3,642,971
def evalasm(d, text, r0 = 0, defines = defines, address = pad, thumb = False): """Compile and remotely execute an assembly snippet. 32-bit ARM instruction set by default. Saves and restores r2-r12 and lr. Returns (r0, r1). """ if thumb: # In Thumb mode, we still use ARM code to save/restore registers. assemble(d, address, '''\ push { r2-r12, lr } adr lr, link adr r8, text+1 bx r8 link: pop { r2-r12, pc } .pool .thumb .align 5 text: %(text)s bx lr ''' % locals(), defines=defines, thumb=False) return d.blx(address, r0) else: # ARM mode (default) assemble(d, address, '''\ push { r2-r12, lr } %(text)s pop { r2-r12, pc } ''' % locals(), defines=defines, thumb=False) return d.blx(address, r0)
c5bf3f5728fc9e85dbfd2540083ae7b2b87cd452
3,642,972
import multiprocessing def _get_thread_count(): """Gets a thread_count based on the multiprocessing.cpu_count().""" try: thread_count = multiprocessing.cpu_count() # cpu_count only gets the physical core count. There doesn't appear to be a # simple way of determining whether a CPU supports simultaneous # multithreading in Python, so assume that anything with 6 or more cores # supports it. if thread_count >= 6: thread_count *= 2 except NotImplementedError: # Assume a quad core if we can't get the actual core count. thread_count = 4 return thread_count
f7c4959734e49a70412d87ebc1f03b811b600600
3,642,973
import os import argparse def is_dir(dir_name): """Checks if a path is an actual directory""" if not os.path.isdir(dir_name): msg = "{0} does not exist".format(dir_name) raise argparse.ArgumentTypeError(msg) else: return dir_name
fc24ce57394cd0d854a2d5f054faaea65339ae80
3,642,974
def weighted_avg(x, weights): # used in lego_reader.py """ x = batch * len * d weights = batch * len """ return weights.unsqueeze(1).bmm(x).squeeze(1)
efa08d9719ccbcc727cb7349888f0a26140521e9
3,642,975
def CYR(df, N=5, M=5): """ 市场强弱 :param df: :param M: :return: """ VOL = df['volume'] AMOUNT = df['amount'] DIVE = 0.01 * EMA(AMOUNT, N) / EMA(VOL, N) CRY = (DIVE / REF(DIVE, 1) - 1) * 100 MACYR = MA(CRY, M) return pd.DataFrame({ 'CRY': CRY, 'MACYR': MACYR })
7d5f31064d8eb3e4aaed8f6694226760a656f4d7
3,642,976
def packCode(code): """Packs the given code by passing it to the compression engine""" if code in packCache: return packCache[code] packed = compressor.compress(parse(code)) packCache[code] = packed return packed
b20714a022e73cbec38819d515c1cb89b8157d8c
3,642,977
def cus_excepthook(logger): """ Custom excepthook function to log exception information. logger will log exception information automatically. This doesn't work in ipython(including jupyter). Use `get_ipython().set_custom_execs((Exception,), your_exception_function)` instead in ipython environment. Parameters ---------- logger: a logger object. Examples -------- import sys sys.excepthook = cus_excepthook(logger) """ def _excepthook(etype, value, tb): sys_excepthook(etype, value, tb) logger.debug("Got exception.\n", exc_info = (etype, value, tb)) return _excepthook
15e13567af3584a970cc78549c222b9d1ef921d9
3,642,978
def langpack_submission_allowed(user, parsed_addon_data): """Language packs can only be submitted by people with the right permission. See https://github.com/mozilla/addons-server/issues/11788 and https://github.com/mozilla/addons-server/issues/11793 """ return ( not parsed_addon_data.get('type') == amo.ADDON_LPAPP or action_allowed_user(user, amo.permissions.LANGPACK_SUBMIT))
5d26aaff3089a4e4ba6b2325f25d7ad5d759bcd9
3,642,979
def ht_edge_probabilities(p): """ Given the probability of sampling an edge, returns the probabilities of sampling two-stars and triangles Parameters --------------------- p: float """ pi_twostars = 0 pi_triangles = 0 ###TIP: #TODO write the probabilites of sampling twostars and triangles under edge sampling # YOUR CODE HERE return pi_twostars, pi_triangles
47711a464e07583736348c7245caafbfd9f89abc
3,642,980
def get_tag_color_name(colorid): """ Return name of the Finder color based on ID """ # TODO: need to figure out how to do this in locale/language name try: colorname = _COLORIDS[colorid] except: raise ValueError(f"Invalid colorid: {colorid}") return colorname
baa8519d1d3379a45ee79469f060fc9913e3a73c
3,642,981
import re def process_derived_core_properties(derived_core_properties): """Parse DerivedCoreProperties.txt and returns its version, and set of characters with ID_Start and ID_Continue. """ id_start = set() id_continue = set() m = re.match('# DerivedCoreProperties-([0-9\.]+).txt', derived_core_properties) assert m version = m.group(1) for (char, prop) in read_derived_core_properties(derived_core_properties): if prop == 'ID_Start': id_start.add(char) if prop == 'ID_Continue': id_continue.add(char) return (version, id_start, id_continue)
cb15993eb84e3d1e7a1f65528f2f677e1e596668
3,642,982
def error_500(error): """Route function for handling 500 error pages """ return flask.templating.render_template("errors/500.html.j2"), 500
8d93367e21e855c672de50901de9793a326867e6
3,642,983
def poormax(X : np.ndarray, feature_axis = 1) -> np.ndarray: """ 对数据进行极差化 \n :param feature_axis: 各特征所在的维度 \n feature_axis = 1 表示每列是不同的特征 \n """ if not feature_axis: X = X.T _min = np.min(X, axis = 0) _max = np.max(X, axis = 0) across = _max - _min X = (X - _min) / across if not feature_axis: X = X.T return X
8d2c45b225d05f36951eb6fac2fc19214b6e3f31
3,642,984
def login_form(request): """ The request must be get """ menu = MenuService.visitor_menu() requestContext = RequestContext(request, {'menu':menu, 'page_title': 'Login'} ) return render_to_response('login.html', requestContext)
596273f8925a4d6aa39584f94262fc0f1d53657d
3,642,985
def tz_from_dd(points): """Get the timezone for a coordinate pair Args: points: (lat, lon) | [(lat, lon),] | pd.DataFrame w/lat and lon as columns Returns: np.array """ if isinstance(points, pd.DataFrame): points = points.values.tolist() if not isinstance(points, list): points = [points] x = ztree.query(points) x = zips.iloc[x[1]].timezone.values return x
5a6b05f1bf88c3a016cc5beae024a99873715904
3,642,986
def create_volume(devstack_node, ceph_node, vol_name, size): """ :param size: The size of the volume, in GB """ size = str(size) log.info("Creating a {size}GB volume named {name}...".format( name=vol_name, size=size)) args = ['source', 'devstack/openrc', run.Raw('&&'), 'cinder', 'create', '--display-name', vol_name, size] cinder_create = devstack_node.sh(args, wait=True) vol_info = parse_os_table(cinder_create) log.debug("Volume info: %s", str(vol_info)) try: rbd_output = ceph_node.sh("rbd --id cinder ls -l volumes", wait=True) except run.CommandFailedError: log.debug("Original rbd call failed; retrying without '--id cinder'") rbd_output = ceph_node.sh("rbd ls -l volumes", wait=True) assert vol_info['id'] in rbd_output, \ "Volume not found on Ceph cluster" assert vol_info['size'] == size, \ "Volume size on Ceph cluster is different than specified" return vol_info['id']
0cc8949bb18bcd5f71c50ea44b439d5ce63ef6f4
3,642,987
def find_touching_pixels(label_img, distance=1, selem=None): """ Returns a mask indicating touching regions. Either provide a diameter for a disk shape distance or a selem mask. :param label_img: a label image with integer labels :param distance: =1: touching pixels, >1 pixels labels distance appart :param selem: optional, a selection mask, e.g. skimage.morphology.disk(1) (if this is bigger than 1 the 'distance' is not true. :return: a mask of the regions touching or are close up to a certain diameter """ if selem is None: selem = morphology.disk(1) touch_mask = np.zeros(label_img.shape) not_bg = label_img > 0 for i in np.unique(label_img): if i != 0: cur_lab = (label_img == i) # touch_mask[ndi.filters.maximum_filter(cur_lab, footprint=selem) & # not_bg & (cur_lab == False)] = 1 touch_mask[ndi.binary_dilation(cur_lab, structure=selem, iterations=distance, mask=not_bg) & (cur_lab == False)] = 1 return touch_mask
a69b2b89be2df9660f1016c008c266de7932bb90
3,642,988
def draw_boxes_on_image(img, boxes, labels_index, labelmap_dict, **kwargs): """Short summary. Parameters ---------- img : ndarray Input image. boxes : ndarray-like It must has shape (n ,4) where n is the number of bounding boxes. labels_index : ndarray-like An array containing index of labels of bounding boxes. If None, only bounding boxes will be drawn. labelmap_dict : dict A dictionary mapping labels with its index. Returns ------- img Return annotated image. """ # When no box is detected if boxes is None: return img try: boxes = convert(boxes, lambda x: np.asarray(x, dtype=np.int32), np.ndarray) except TypeError: raise_type_error(type(boxes), [np.ndarray]) # When no box is detected if boxes.shape[0] == 0: return img if boxes.shape[1] != 4 or boxes.ndim != 2: raise ValueError("Input bounding box must be of shape (n, 4), " "got shape {} instead".format(boxes.shape)) else: return _draw_boxes_on_image(img, boxes, labels_index, labelmap_dict, **kwargs)
1ee1d7b4e04e8646dd4e986e1a7e72d42d3f9685
3,642,989
def guess_locations(location): """Convenience function to guess where other Strongholds are located.""" location = Point(*location) return (location, rotate(location, CLOCKWISE), rotate(location, COUNTERCLOCKWISE))
34c6824d63dbd99e4b09c6bb588298add404d87a
3,642,990
def get_centroid(mol, conformer=-1): """ Returns the centroid of the molecule. Parameters --------- conformer : :class:`int`, optional The id of the conformer to use. Returns ------- :class:`numpy.array` A numpy array holding the position of the centroid. """ centroid = sum(x for _, x in all_atom_coords(mol, conformer)) return np.divide(centroid, mol.GetNumAtoms())
393b5e27a5fa1779f98c2455c88d36027036e5f2
3,642,991
import torch def idct(X, norm=None): """ The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III Our definition of idct is that idct(dct(x)) == x For the meaning of the parameter `norm`, see: https://docs.scipy.org/doc/ scipy.fftpack.dct.html :param X: the input signal :param norm: the normalization, None or 'ortho' :return: the inverse DCT-II of the signal over the last dimension """ x_shape = X.shape N = x_shape[-1] X_v = X.contiguous().view(-1, x_shape[-1]) / 2 if norm == 'ortho': X_v[:, 0] *= np.sqrt(N) * 2 X_v[:, 1:] *= np.sqrt(N / 2) * 2 k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V_t_r = X_v V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1) V_r = V_t_r * W_r - V_t_i * W_i V_i = V_t_r * W_i + V_t_i * W_r V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2) v = torch.irfft(V, 1, onesided=False) x = v.new_zeros(v.shape) x[:, ::2] += v[:, :N - (N // 2)] x[:, 1::2] += v.flip([1])[:, :N // 2] return x.view(*x_shape)
f0b86dbbe80fe9b2e4b442f55ea67b82f7eaa019
3,642,992
def div25(): """ Returns the divider 44444444444444444444444 :return: divider25 """ return divider25
6bb38e50a6cd7fe80c9aef5dbb2d829c0c5a6fb5
3,642,993
def comp_periodicity(self, wind_mat=None): """Computes the winding matrix (anti-)periodicity Parameters ---------- self : Winding A Winding object wind_mat : ndarray Winding connection matrix Returns ------- per_a: int Number of spatial periods of the winding is_aper_a: bool True if the winding is anti-periodic over space """ if wind_mat is None: wind_mat = self.get_connection_mat() assert len(wind_mat.shape) == 4, "dim 4 expected for wind_mat" # Summing on all the layers (Nlay_r and Nlay_theta) wind_mat2 = squeeze(np_sum(np_sum(wind_mat, axis=1), axis=0)) qs = wind_mat.shape[3] # Number of phase Zs = wind_mat.shape[2] # Number of Slot Nperw = 1 # Number of electrical period of the winding Nperslot = 1 # Periodicity of the winding in number of slots # Looking for the periodicity of each phase for q in range(0, qs): k = 1 is_per = False while k <= Zs and not is_per: # We shift the array arround the slot and check if it's the same if array_equal(wind_mat2[:, q], roll(wind_mat2[:, q], shift=k)): is_per = True else: k += 1 # least common multiple to find common periodicity between different phase Nperslot = lcm(Nperslot, k) # If Nperslot > Zs no symmetry if Nperslot > 0 and Nperslot < Zs: # nb of periods of the winding (2 means 180°) Nperw = Zs / float(Nperslot) # if Zs cannot be divided by Nperslot (non integer) if Nperw % 1 != 0: Nperw = 1 # Check for anti symmetries in the elementary winding pattern if ( Nperslot % 2 == 0 and norm( wind_mat2[0 : Nperslot // 2, :] + wind_mat2[Nperslot // 2 : Nperslot, :] ) == 0 ): is_aper_a = True Nperw = Nperw * 2 else: is_aper_a = False return int(Nperw), is_aper_a
f1c7074cdc55be6af3c5511a071a1df0835e666e
3,642,994
def _is_valid_target(target, target_name, target_ports, is_pair): """Return True if the specified target is valid, False otherwise.""" if is_pair: return (target[:utils.PORT_ID_LENGTH] in target_ports and target_name == _PAIR_TARGET_NAME) if (target[:utils.PORT_ID_LENGTH] not in target_ports or not target_name.startswith(utils.TARGET_PREFIX) or target_name == _PAIR_TARGET_NAME): return False return True
58a7c2ceb7b3206777c01122b0c3ef01a5887b65
3,642,995
def _get_span_name(servicer_context): """Generates a span name based off of the gRPC server rpc_request_info""" method_name = servicer_context._rpc_event.call_details.method[1:] if isinstance(method_name, bytes): method_name = method_name.decode('utf-8') method_name = method_name.replace('/', '.') return '{}.{}'.format(RECV_PREFIX, method_name)
5527820fa766fe29009e6fe060e76c01a75e3c37
3,642,996
def calculateNDFairnessPara(_ranking, _protected_group, _cut_point, _gf_measure, _normalizer, items_n, proItems_n ): """ Calculate group fairness value of the whole ranking. Calls function 'calculateFairness' in the calculation. :param _ranking: A permutation of N numbers (0..N-1) that represents a ranking of N individuals, e.g., [0, 3, 5, 2, 1, 4]. Each number is an identifier of an individual. Stored as a python array. :param _protected_group: A set of identifiers from _ranking that represent members of the protected group e.g., [0, 2, 3]. Stored as a python array for convenience, order does not matter. :param _cut_point: Cut range for the calculation of group fairness, e.g., 10, 20, 30,... :param _gf_measure: Group fairness measure to be used in the calculation, one of 'rKL', 'rND', 'rRD'. :param _normalizer: The normalizer of the input _gf_measure that is computed externally for efficiency. :param :param :return: returns fairness value of _ranking, a float, normalized to [0, 1] """ #print("calculateNDFairnessPara") #user_N=len(_ranking) #pro_N=len(_protected_group) if _normalizer==0: raise ValueError("Normalizer equals to zero") # error handling for input type if not isinstance(_ranking, (list, tuple, np.ndarray)) and not isinstance( _ranking, str ): raise TypeError("Input ranking must be a list-wise structure defined by '[]' symbol") if not isinstance(_protected_group, (list, tuple, np.ndarray)) and not isinstance( _protected_group, str ): raise TypeError("Input protected group must be a list-wise structure defined by '[]' symbol") if not isinstance( _cut_point, ( int ) ): raise TypeError("Input batch size must be an integer larger than 0") if not isinstance( _normalizer, (int, float, complex) ): raise TypeError("Input normalizer must be a number larger than 0") if not isinstance( _gf_measure, str ): raise TypeError("Input group fairness measure must be a string that choose from ['rKL', 'rND', 'rRD']") discounted_gf=0 #initialize the returned gf value for countni in range(len(_ranking)): countni=countni+1 if(countni%_cut_point ==0): ranking_cutpoint=_ranking[0:countni] pro_cutpoint=set(ranking_cutpoint).intersection(_protected_group) gf=calculateFairness(ranking_cutpoint,pro_cutpoint,items_n, proItems_n,_gf_measure) #discounted_gf+=gf/math.log(countni+1,LOG_BASE) # log base -> global variable #print("counttni : ", countni) discounted_gf+=gf/(1.1**(countni-10/1000)) # log base -> global variable # make a call to compute, or look up, the normalizer; make sure to check that it's not 0! # generally, think about error handling return discounted_gf/_normalizer
b1c0dfa53d1842f8d93a6ed6d2ae2ddd9ebafd7b
3,642,997
import os def getCategories(blog_id, username, password): """ Parameters int blog_id string username string password Return Values array struct int categoryId int parentId string description string categoryName string htmlUrl string rssUrl example from wordpress.com [{'categoryDescription': '', 'categoryId': 1356, 'categoryName': 'Blogroll', 'description': 'Blogroll', 'htmlUrl': 'https://rubelongfellow.wordpress.com/category/blogroll/', 'parentId': 0, 'rssUrl': 'https://rubelongfellow.wordpress.com/category/blogroll/feed/'}, {'categoryDescription': '', 'categoryId': 42431, 'categoryName': 'Gearhead', 'description': 'Gearhead', 'htmlUrl': 'https://rubelongfellow.wordpress.com/category/gearhead/', 'parentId': 0, 'rssUrl': 'https://rubelongfellow.wordpress.com/category/gearhead/feed/'}, {'categoryDescription': '', 'categoryId': 1, 'categoryName': 'Uncategorized', 'description': 'Uncategorized', 'htmlUrl': 'https://rubelongfellow.wordpress.com/category/uncategorized/', 'parentId': 0, 'rssUrl': 'https://rubelongfellow.wordpress.com/category/uncategorized/feed/'}] """ logger.debug("%s.getCategories entered" % __name__) res = [] user = get_user(username, password) blog = Blog.objects.get(pk=blog_id) check_perms(user, blog) logger.debug("getting categories for %s" % blog) for cat in Category.objects.filter(blog=blog): res.append({ 'categoryDescription': cat.description, 'categoryId': cat.id, 'categoryName': cat.title, 'description': cat.description, 'htmlUrl': cat.blog.get_absolute_url(), 'parentId': 0, 'rssUrl': os.path.join(cat.blog.get_absolute_url(), "feed"), }) return res
f299cccbcc35b43029fd60c5dc459deed0a60906
3,642,998
import json import requests def change_server(name: str = None, description: str = None, repo_url: str = None, main_status: int = None, components: dict = None, password: str = None): """Change server according to arguments (using package config). This will automatically change the config so it has the right credentials.""" check_config() global server_name global server_password payload = {"name": server_name, "password": server_password} if name != None: if type(name) != str: raise TypeError("name expected to be of type str.") payload["newName"] = name if description != None: if type(description) != str: raise TypeError("description expected to be of type str.") payload["description"] = description if repo_url != None: if type(repo_url) != str: raise TypeError("repo_url expected to be of type str.") payload["repoURL"] = repo_url if main_status != None: if type(main_status) != int: raise TypeError("main_status expected to be of type int.") payload["mainStatus"] = main_status if components != None: if type(components) != dict: raise TypeError("components expected to be of type dict.") payload["components"] = json.dumps(components) if password != None: if type(password) != str: raise TypeError("password expected to be of type str.") payload["newPassword"] = password try: r = requests.post(_url + "api/changeserver", json.dumps(payload), timeout=3.05) if r.status_code == 200: if name != None: server_name = name if password != None: server_password = password return True else: return (False, r.status_code, r.text) except requests.exceptions.ConnectTimeout: raise ConnectionTimeout
f7a5334da8ef011969c8ffb5c31c1b4f477ed2a5
3,642,999