content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def home(): """List devices.""" devices = Device.query.all() return render_template('devices/home.html', devices=devices)
d0f9b14cedf83fbeb35166e1ad9b2de295e2584f
3,643,100
def translate_value(document_field, form_value): """ Given a document_field and a form_value this will translate the value to the correct result for mongo to use. """ value = form_value if isinstance(document_field, ReferenceField): value = document_field.document_type.objects.get(id=form_value) if form_value else None return value
5c72764efde00fb4f5093a800706082c1171b5b6
3,643,101
def error_404(error): """Custom 404 Error Page""" return render_template("error.html", error=error), 404
1f1429b8c86ed7a486c498cae6955961f3084ef5
3,643,102
def sum_num(n1, n2): """ Get sum of two numbers :param n1: :param n2: :return: """ return(n1 + n2)
08477e596317f6b8750debd39b5cf0aa56da857c
3,643,103
def intensity_slice_volume(kernel_code, image_variables, g_variables, blockdim, bound_box, vol_dim, voxel_size, poses, out_points=False): """ Function that slices an intensity volume with fan shaped sections section defined by poses of a curvilinear array :param kernel_code: CUDA C++ kernel code to compile :param image_variables: image dimensioning variable list :param g_variables: All preallocated GPU variables as described in the preallocation function. A list with the following indexes: 0 - fan positions in 2D 1 - fan positions in 3D 2 - intensities mapped in fan positions 3 - the target intensity volume 4 - the output images in image space 5 - the 2D fan mask outline :param blockdim: block dimensions for CUDA kernels :param bound_box: bounding box of target volume :param vol_dim: 3D intensity volume dimensions :param voxel_size: voxel_size of the volume :param poses: input set of poses :param out_points: bool to get fan positions or not :return: positions in 3D, stack of resulting images """ # First, compile kernel code with SourceModule cuda_modules = SourceModule(kernel_code) # Get image variables from input fan_parameters = image_variables[0] slice_dim = image_variables[1] image_dim = image_variables[2] pixel_size = image_variables[3] # Define voxel size for intersection of intensity volume voxel_size = voxel_size.astype(np.float32) # Get size of one image, useful to get array of images im_size = image_dim[0] * image_dim[1] # Get block and grid dimensions as int blockdim_x = int(blockdim[0]) blockdim_y = int(blockdim[1]) griddim_x = int(slice_dim[0] / blockdim_x) griddim_y = int(slice_dim[1] / blockdim_y) image_num = int(slice_dim[2]) # Convert poses to 1D array to be input in a kernel pose_array = np.zeros((1, 9 * image_num)).astype(np.float32) # And an array to offset fan position per image plane offset_array = np.zeros((1, 3 * image_num)).astype(np.float32) for p_ind in range(image_num): pose = poses[:, 4 * p_ind:4 * (p_ind + 1)] # Allocate the pose pose_array[0, 9 * p_ind:9 * (p_ind + 1)] = \ np.hstack((pose[0, 0:2], pose[0, 3], pose[1, 0:2], pose[1, 3], pose[2, 0:2], pose[2, 3])) # Allocate the offset offset_array[0, 3 * p_ind:3 * (p_ind + 1)] = pose[0:3, 1] # 1-Run position computation kernel, acts on index 0 and 1 of # the gpu variables, get kernel transform_kernel = cuda_modules.get_function("transform") # Then run it transform_kernel(g_variables[1], g_variables[0], drv.In(pose_array), drv.In(offset_array), drv.In(fan_parameters), np.int32(image_num), block=(blockdim_x, blockdim_y, 3), grid=(griddim_x, griddim_y, image_num)) # Collect the output to a CPU array positions_3d = np.empty((1, np.prod(slice_dim) * 3), dtype=np.float32) # In case points are to be used or visualised (with out_points as True) if out_points is True: g_variables[1].get(positions_3d) positions_3d = positions_3d.reshape([3, np.prod(slice_dim)]).T # 2-Next step, run slicing kernel, where intensity values are # placed in the positions. Define volume dimensions intensity_volume_dims = np.hstack((bound_box[0, :], vol_dim[0], vol_dim[1], vol_dim[2])).astype(np.float32) # Call kernel from file slice_kernel = cuda_modules.get_function('weighted_slice') slice_kernel(g_variables[2], g_variables[1], g_variables[3], drv.In(intensity_volume_dims), drv.In(voxel_size), drv.In(slice_dim), block=(blockdim_x, blockdim_y, 1), grid=(griddim_x, griddim_y, image_num)) # 3-Map pixels to fan like image # Define bounds of image output in 2d coordinates as float image_bounding_box = np.array([-image_dim[0] * pixel_size[0]/2*1000, 0, image_dim[0], image_dim[1]]).astype(np.float32) # Allocate output images, the intensity image as a float, and the # fan outline as an int. These must be in CPU. intensity_images = np.empty((1, np.prod(image_dim)), dtype=np.float32) masks = np.empty((1, np.prod(image_dim)), dtype=np.int32) # Call kernel from file map_kernel = cuda_modules.get_function('intensity_map_back') # Then run it, multiplying coordinates value by a 1000, in order # to avoid sampling errors map_kernel(g_variables[4], g_variables[5], g_variables[2], g_variables[0]*1000, drv.In(slice_dim), drv.In(image_bounding_box), drv.In(pixel_size*1000), block=(blockdim_x, blockdim_y, 1), grid=(griddim_x, griddim_y, image_num)) # Create a volume with generated images intensity_image_array = np.zeros((image_dim[1], image_dim[0], image_dim[2])).astype(np.float32) # Gather the results g_variables[4].get(intensity_images) g_variables[4].fill(0) g_variables[5].get(masks) g_variables[5].fill(0) for plane in range(image_num): # Get image and reshape it current_image = intensity_images[0, im_size*plane: im_size*(plane+1)] # Get masks that weight values current_mask = masks[0, im_size*plane: im_size*(plane + 1)] # Normalise by amount of points added to image output, using the # the occurrences output by mask, ignoring divide error with np.errstate(divide='ignore'): current_image = np.divide(current_image, current_mask) current_image = current_image.reshape(image_dim[0], image_dim[1]).T # Scale intensities, by setting nan values to minimum nan_indexes = np.where(np.isnan(current_image)) current_image[nan_indexes] = np.nanmin(current_image) # Allocate to output intensity_image_array[:, :, plane] = current_image # Output a stack of images, where each z-slice has a plane, # and the corresponding 3D positions return positions_3d, intensity_image_array
c5f64f7ee5a95210a2c5598a7e31e36541fcb320
3,643,104
def mean_filter(img, kernel_size): """take mean value in the neighbourhood of center pixel. """ return cv2.blur(img, ksize=kernel_size)
58d5684e0691407f6f77d40d5717523eb617dde9
3,643,105
def main(): """Return the module instance.""" return AnsibleModule( argument_spec=dict( data=dict(default=None), path=dict(default=None, type=str), file=dict(default=None, type=str), ) )
846aa9bf9ce23ba7a05aeb91158ad04770b7721e
3,643,106
from typing import Optional from pathlib import Path def load_RegNetwork_interactions( root_dir: Optional[Path] = None, ) -> pd.DataFrame: """ Loads RegNetwork interaction datafile. Downloads the file first if not already present. """ file = _download_RegNetwork(root_dir) return pd.read_csv( file, delimiter="\t", header=None, names=["g1", "id1", "g2", "id2"] )
15571c71ac3bd386518a0f2ec4d293b20394c4b2
3,643,107
import sys import json import re import requests def hxlspec_main(args, stdin=STDIN, stdout=sys.stdout, stderr=sys.stderr): """ Run hxlspec with command-line arguments. Args: args (list): a list of command-line arguments stdin (io.IOBase): alternative standard input (mainly for testing) stdout (io.IOBase): alternative standard output (mainly for testing) stderr (io.IOBase): alternative standard error (mainly for testing) """ def get_json (url_or_filename): if not url_or_filename: return json.load(stdin) if re.match(r'^(?:https?|s?ftp)://', url_or_filename.lower()): headers = make_headers(args) response = requests.get(url_or_filename, verify=(not args.ignore_certs), headers=headers) response.raise_for_status() return response.json() else: with open(url_or_filename, "r") as input: return json.load(input) parser = make_args('Process a HXL JSON spec') args = parser.parse_args(args) do_common_args(args) spec = get_json(args.infile) source = hxl.io.from_spec(spec, allow_local_ok=True) with make_output(args, stdout) as output: hxl.io.write_hxl(output.output, source, show_tags=not args.strip_tags)
e21e8ba95d91c116dda0ad320cdc9108e6a2a360
3,643,108
import time import tqdm import sys def search_restaurant(house_list, filter_by_distance=True, search_range=3, sort=True, top_k=100, save_csv=False, offline_save=True): """Scraping restaurant information from opentable.com and calculate restaurant score for each house :param house_list: All of the house information in a list :param filter_by_distance: Whether to filter restaurants by their distance to each house :param search_range: The distance range for filtering by distance, IN MILE !! :param sort: For each restaurant dataframe, whether sort the restaurants by their scores :param top_k: For each restaurant dataframe, only return restaurants with highest k score :param save_csv: Whether save each restaurant dataframes as csv file :param offline_save: Whether save restaurant score of each house in a text file for offline mode """ # house_list is the list generated by match_house function scores = [] house_names = [] rest_dfs = [] csv_path = r"restaurant_csv" check_path(csv_path) time.sleep(0.05) house_gen = tqdm(house_list, desc="Searching for restaurants", file=sys.stdout) for house in house_gen: house_latitude, house_longitude = house[1], house[2] house_name = house[0] csv_name = "%s_restaurants.csv" % house_name save_path = csv_path + "/" + csv_name rest_score, rest_df = generate_restaurant_score(house_latitude, house_longitude, filter_by_distance, search_range, sort, top_k, save_csv, save_path) scores.append(rest_score) house_names.append(house_name) rest_dfs.append(rest_df) scores = np.array(scores) scores = normalize(scores) # The restaurant part of score for each house with house name is in `rest_scores` rest_scores = list(zip(house_names, list(scores))) offline_path = "restaurant_score_offline.txt" if offline_save: write_content = ["%s %f" % (house_name, score) for house_name, score in rest_scores] with open(offline_path, "w") as file: file.writelines(write_content) return rest_scores, rest_dfs
ba38c6b06e1213b70e96f502e81f03862975df79
3,643,109
def get_model_config(model, dataset): """Map model name to model network configuration.""" if 'cifar10' == dataset.name: return get_cifar10_model_config(model) if model == 'vgg11': mc = vgg_model.Vgg11Model() elif model == 'vgg16': mc = vgg_model.Vgg16Model() elif model == 'vgg19': mc = vgg_model.Vgg19Model() elif model == 'lenet': mc = lenet_model.Lenet5Model() elif model == 'googlenet': mc = googlenet_model.GooglenetModel() elif model == 'overfeat': mc = overfeat_model.OverfeatModel() elif model == 'alexnet': mc = alexnet_model.AlexnetModel() elif model == 'trivial': mc = trivial_model.TrivialModel() elif model == 'inception3': mc = inception_model.Inceptionv3Model() elif model == 'inception4': mc = inception_model.Inceptionv4Model() elif model == 'resnet50' or model == 'resnet50_v2': mc = resnet_model.ResnetModel(model, (3, 4, 6, 3)) elif model == 'resnet101' or model == 'resnet101_v2': mc = resnet_model.ResnetModel(model, (3, 4, 23, 3)) elif model == 'resnet152' or model == 'resnet152_v2': mc = resnet_model.ResnetModel(model, (3, 8, 36, 3)) else: raise KeyError('Invalid model name \'%s\' for dataset \'%s\'' % (model, dataset.name)) return mc
eb3da4fa2e7308fe0b7394b6c654e171abaf2363
3,643,110
from datetime import datetime def utc_now(): """Return current utc timestamp """ now = datetime.datetime.utcnow() return int(now.strftime("%s"))
35edc0e19f236263a8f2efd0fa9be81663042484
3,643,111
def rrc_filter(alpha, length, osFactor, plot=False): """ Generates the impulse response of a root raised cosine filter. Args: alpha (float): Filter roll-off factor. length (int): Number of symbols to use in the filter. osFactor (int): Oversampling factor (number of samples per symbol). plot (bool): Enable or disable plotting of filter impulse response. Returns: (NumPy array): Filter coefficients for use in np.convolve. """ if alpha < 0 or alpha > 1.0: raise error.WfmBuilderError('Invalid \'alpha\' chosen. Use something between 0.1 and 1.') filterOrder = length * osFactor # Make GOOD and sure that filterOrder is an integer value filterOrder = round(filterOrder) if filterOrder % 2: raise error.WfmBuilderError('Must use an even number of filter taps.') delay = filterOrder / 2 t = np.arange(-delay, delay) / osFactor # Calculate the impulse response without warning about the inevitable divide by zero operations # I promise we will deal with those down the road with np.errstate(divide='ignore', invalid='ignore'): h = -4 * alpha / osFactor * (np.cos((1 + alpha) * np.pi * t) + np.sin((1 - alpha) * np.pi * t) / (4 * alpha * t)) / (np.pi * ((4 * alpha * t) ** 2 - 1)) # Find middle point of filter and manually populate the value # np.where returns a list of indices where the argument condition is True in an array. Nice. idx0 = np.where(t == 0) h[idx0] = -1 / (np.pi * osFactor) * (np.pi * (alpha - 1) - 4 * alpha) # Define machine precision used to check for near-zero values for small-number arithmetic eps = np.finfo(float).eps # Find locations of divide by zero points divZero = abs(abs(4 * alpha * t) - 1) # np.where returns a list of indices where the argument condition is True. Nice. idx1 = np.where(divZero < np.sqrt(eps)) # Manually populate divide by zero points h[idx1] = 1 / (2 * np.pi * osFactor) * (np.pi * (alpha + 1) * np.sin(np.pi * (alpha + 1) / (4 * alpha)) - 4 * alpha * np.sin(np.pi * (alpha - 1) / (4 * alpha)) + np.pi * (alpha - 1) * np.cos(np.pi * (alpha - 1) / (4 * alpha))) # Normalize filter energy to 1 h = h / np.sqrt(np.sum(h ** 2)) if plot: plt.plot(t, h) plt.title('Filter Impulse Response') plt.ylabel('h(t)') plt.xlabel('t') plt.show() return h
9fc5c916e646179ac465fb2d3d897d4dadadd9de
3,643,112
def get_available_services(project_dir: str): """Get standard services bundled with stakkr.""" services_dir = file_utils.get_dir('static') + '/services/' conf_files = _get_services_from_dir(services_dir) services = dict() for conf_file in conf_files: services[conf_file[:-4]] = services_dir + conf_file services = _add_local_services(project_dir, services) return services
b361eaefd0772ca9bcc75274f19e7550b02d1484
3,643,113
def build_insert(table, to_insert): """ Build an insert request. Parameters ---------- table : str Table where query will be directed. to_insert: iterable The list of columns where the values will be inserted. Returns ------- str Built query. """ sql_q = 'INSERT INTO \"' + table + '\" (' sql_q += ', '.join('{0}'.format(w) for w in to_insert) sql_q += ') VALUES (' sql_q += ', '.join(':{0}'.format(w) for w in to_insert) sql_q += ')' return sql_q
cf2e72c57e5502660ed3dcade6885076ff8c2014
3,643,114
from pathlib import Path import json def get_reference_data(fname): """ Load JSON reference data. :param fname: Filename without extension. :type fname: str """ base_dir = Path(__file__).resolve().parent fpath = base_dir.joinpath('reference', 'data', fname + '.json') with fpath.open() as f: return json.load(f)
73880586393ce9463a356d69880f2f285058637f
3,643,115
def _is_l10n_ch_isr_issuer(account_ref, currency_code): """ Returns True if the string account_ref is a valid a valid ISR issuer An ISR issuer is postal account number that starts by 01 (CHF) or 03 (EUR), """ if (account_ref or '').startswith(ISR_SUBSCRIPTION_CODE[currency_code]): return _is_l10n_ch_postal(account_ref) return False
5709d8f67aefe9b9faac6f4541f8a050eb95c82f
3,643,116
import struct def little_endian_uint32(i): """Return the 32 bit unsigned integer little-endian representation of i""" s = struct.pack('<I', i) return struct.unpack('=I', s)[0]
07f72baaf8f7143c732fd5b9e56b0b7d02d531bd
3,643,117
def evaluate_scores(scores_ID, scores_OOD): """calculates classification performance (ROCAUC, FPR@TPR95) based on lists of scores Returns: ROCAUC, fpr95 """ labels_in = np.ones(scores_ID.shape) labels_out = np.zeros(scores_OOD.shape) y = np.concatenate([labels_in, labels_out]) score = np.concatenate([scores_ID, scores_OOD]) fpr, tpr, _ = roc_curve(y, score) roc_auc = auc(fpr, tpr) ii=np.where(tpr>0.95)[0][0] return roc_auc, fpr[ii]
f88a67f09496700ab783a3e91347b085767a2228
3,643,118
from typing import Union def check_cardinality(attribute_name: str, analysis: run_metadata_pb2.Analysis ) -> Union[None, str]: """Check whether the cardinality exceeds the predefined threshold Args: attribute_name: (string), analysis: (run_metadata_pb2.Analysis), analysis that contain the result of cardinality Returns: Union[None, string] """ metrics = analysis.smetrics cardinality = 0 for item in metrics: if item.name == run_metadata_pb2.ScalarMetric.CARDINALITY: cardinality = item.value if cardinality > CARDINALITY_THRESHOLD: return template.HIGH_CARDINALITY.format( name=attribute_name, value=cardinality ) return None
8a9b9e0c709b64273a2120100730992276b52b46
3,643,119
def create_df_from(dataset): """ Selects a method, based on the given dataset name, and creates the corresponding dataframe. When adding a new method, take care to have as index the ASN and the column names to be of the format "dataset_name_"+"column_name" (e.g., the column "X" from the dataset "setA", should be "setA_X") :param dataset: (type = string) name of the dataset to be loaded :return: A dataframe with indexes the ASNs and columns the features loaded from the given dataset """ if dataset == 'AS_rank': data = create_df_from_AS_rank() elif dataset == 'personal': data = create_df_from_personal() elif dataset == 'PeeringDB': data = create_df_from_PeeringDB() elif dataset == 'AS_hegemony': data = create_df_from_AS_hegemony() elif dataset == 'Atlas_probes': data = create_df_from_Atlas_probes() else: raise Exception('Not defined dataset') return data
3a5e6f1a9aa510ec19c6eeb1af8a89574b938ea1
3,643,120
def plasma_fractal(mapsize=256, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max()
f3b0c65f7bff6526a91c8d398a430a72cf744421
3,643,121
def reduce_puzzle(values): """Reduce a Sudoku puzzle by repeatedly applying all constraint strategies Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict or False The values dictionary after continued application of the constraint strategies no longer produces any changes, or False if the puzzle is unsolvable """ # TODO: Copy your code from the classroom and modify it to complete this function stalled = False unsolved_boxes = lambda values: len([b for b in boxes if len(values[b]) > 1]) unsolved_boxes_before = unsolved_boxes(values) while not stalled: values = eliminate(values) unsolved_boxes_after = unsolved_boxes(values) if unsolved_boxes_after == 0: stalled = True values = only_choice(values) unsolved_boxes_after = unsolved_boxes(values) if unsolved_boxes_after == 0: stalled = True values = naked_twins(values) unsolved_boxes_after = unsolved_boxes(values) if unsolved_boxes_after == 0: stalled = True # Make sure you stop when your stuck if unsolved_boxes_after == unsolved_boxes_before: stalled = True # Catch unsolvable cases if any(len(v) == 0 for v in values.values()): return False # Update number of unsolved boxes unsolved_boxes_before = unsolved_boxes_after return values
36665a4f933a77ce7d472e02fbafaf81beda6cad
3,643,122
import pickle def read_ids(): """ Reads the content from a file as a tuple and returns the tuple :return: node_id, pool_id (or False if no file) """ if not const.MEMORY_FILE.exists(): return False with open(const.MEMORY_FILE, 'rb') as f: data = pickle.load(f) assert type(data) is tuple and len(data) == 2 node_id, pool_id = data return node_id, pool_id
89606543b149cac636765a6f3e2aef34f2adc38b
3,643,123
from pymbolic.primitives import Call def _match_caller_callee_argument_dimension_(program, callee_function_name): """ Returns a copy of *program* with the instance of :class:`loopy.kernel.function_interface.CallableKernel` addressed by *callee_function_name* in the *program* aligned with the argument dimensions required by *caller_knl*. .. note:: The callee kernel addressed by *callee_function_name*, should be called at only one location throughout the program, as multiple invocations would demand complex renaming logic which is not implemented yet. """ assert isinstance(program, TranslationUnit) assert isinstance(callee_function_name, str) assert callee_function_name not in program.entrypoints assert callee_function_name in program.callables_table is_invoking_callee = _FunctionCalledChecker( callee_function_name).map_kernel caller_knl, = [in_knl_callable.subkernel for in_knl_callable in program.callables_table.values() if isinstance(in_knl_callable, CallableKernel) and is_invoking_callee(in_knl_callable.subkernel)] assert len([insn for insn in caller_knl.instructions if (isinstance(insn, CallInstruction) and isinstance(insn.expression, Call) and insn.expression.function.name == callee_function_name)]) == 1 new_callee_kernel = _match_caller_callee_argument_dimension_for_single_kernel( caller_knl, program[callee_function_name]) return program.with_kernel(new_callee_kernel)
7c37a20776e1ff551dca3f2acd1b36e47cf6b06e
3,643,124
def new_automation_jobs(issues): """ :param issues: issues object pulled from Redmine API :return: returns a new subset of issues that are Status: NEW and match a term in AUTOMATOR_KEYWORDS) """ new_jobs = {} for issue in issues: # Only new issues if issue.status.name == 'New': # Strip whitespace and make lowercase ('subject' is the job type i.e. Diversitree) subject = issue.subject.lower().replace(' ', '') # Check for presence of an automator keyword in subject line if subject == 'iridaretrieve': new_jobs[issue] = subject return new_jobs
74c9c96aeeea1d15384d617c266daa4d49f3a203
3,643,125
import os def resolve_test_data_path(test_data_file): """ helper function to ensure filepath is valid for different testing context (setuptools, directly, etc.) :param test_data_file: Relative path to an input file. :returns: Full path to the input file. """ if os.path.exists(test_data_file): return test_data_file else: path = os.path.join('woudc_data_registry', 'tests', test_data_file) if os.path.exists(path): return path
d124bcbc36b48fd6572697c9a5211f794c3dce19
3,643,126
def make_data(revs, word_idx_map, max_l=50, filter_h=3, val_test_splits=[2, 3], validation_num=500000): """ Transforms sentences into a 2-d matrix. """ version = begin_time() train, val, test = [], [], [] for rev in revs: sent = get_idx_from_sent_msg(rev["m"], word_idx_map, max_l, True) sent += get_idx_from_sent(rev["r"], word_idx_map, max_l, True) sent += get_session_mask(rev["m"]) sent.append(int(rev["y"])) if len(val) >= validation_num: train.append(sent) else: val.append(sent) train = np.array(train, dtype="int") val = np.array(val, dtype="int") test = np.array(test, dtype="int") print('trainning data', len(train), 'val data', len(val), 'spend time:', spend_time(version)) return [train, val, test]
b141297c0ef8d2eeb2c6c62e00924f5e64ffe266
3,643,127
def init(param_test): """ Initialize class: param_test """ # initialization param_test.default_args_values = {'di': 6.85, 'da': 7.65, 'db': 7.02} default_args = ['-di 6.85 -da 7.65 -db 7.02'] # default parameters param_test.default_result = 6.612133606 # assign default params if not param_test.args: param_test.args = default_args return param_test
d86cd246d4beb5aa267d222bb12f9637f001032d
3,643,128
def add_width_to_df(df): """Adds an extra column "width" to df which is the angular width of the CME in degrees. """ df = add_helcats_to_df(df, 'PA-N [deg]') df = add_helcats_to_df(df, 'PA-S [deg]') df = add_col_to_df(df, 'PA-N [deg]', 'PA-S [deg]', 'subtract', 'width', abs_col=True) return df
ea866d161ca77d9d78f04fb613aa1ed8631566b2
3,643,129
def checkSeconds(seconds, timestamp): """ Return a string depending on the value of seconds If the block is mined since one hour ago, return timestamp """ if 3600 > seconds > 60: minute = int(seconds / 60) if minute == 1: return '{} minute ago'.format(minute) return '{} minutes ago'.format(minute) else: return 'Since {} sec'.format(seconds)
2d07657a14300793a116d28e7c9495ae4a1b61ed
3,643,130
def get_netrange_end(asn_cidr): """ :param str asn_cidr: ASN CIDR :return: ipv4 address of last IP in netrange :rtype: str """ try: last_in_netrange = \ ip2long(str(ipcalc.Network(asn_cidr).host_first())) + \ ipcalc.Network(asn_cidr).size() - 2 except ValueError, error: print 'Issue calculating size of %s network' % asn_cidr raise error return socket.inet_ntoa(struct.pack('!L', last_in_netrange))
51305dc1540bbc0a361452a80d6732b1eb039fd4
3,643,131
def load_from_file(filepath, column_offset=0, prefix='', safe_urls=False, delimiter='\s+'): """ Load target entities and their labels if exist from a file. :param filepath: Path to the target entities :param column_offset: offset to the entities column (optional). :param prefix: URI prefix (Ex: https://yago-expr.org) if the data lacks one. (needed when using rdflib and/or virtouso) (optional) :param safe_urls: Encode URIs if they are not safe for rdflib, eg. contains '(' or special chars (optional) :param delimiter: splitting delimiter in the file (optional) :return: EntityLabelsInterface object to access the entities and their labels and also to use them as triples. :rtype: EntitiesLabelsFile """ return EntitiesLabelsFile(filepath, column_offset=column_offset, prefix=prefix, safe_urls=safe_urls, delimiter=delimiter)
2aa9b286e25c6e93a06afb927f7e0ad345208afb
3,643,132
def create_app(*, config_object: Config) -> connexion.App: """Create app instance.""" connexion_app = connexion.App( __name__, debug=config_object.DEBUG, specification_dir="spec/" ) flask_app = connexion_app.app flask_app.config.from_object(config_object) connexion_app.add_api("api.yaml") return connexion_app
2d5f698be823f18075bd21a8ffb92fa9b14d9a78
3,643,133
from typing import Any from typing import Union import os import zipimport import zipfile def load_plugins(descr: str, package: str, plugin_class: Any, specs: TList[TDict[str, Any]] = None) -> \ TDict[Union[str, int], Any]: """ Load and initialize plugins from the given directory :param descr: plugin description :param package: plugin package name relative to afterglow_core, e.g. "resources.data_provider_plugins" :param plugin_class: base plugin class :param specs: list of plugin specifications: [{"name": "plugin_name", "param": value, ...}, ...]; parameters are used to construct the plugin class; this can be the value of the corresponding option in app config, e.g. DATA_PROVIDERS; if omitted or None, load all available plugins without passing any parameters on initialization (suitable e.g. for the jobs) :return: dictionary containing plugin class instances indexed by their unique IDs (both as integers and strings) """ if not specs and specs is not None: # No plugins of this type are required return {} directory = os.path.normpath(os.path.join( os.path.dirname(__file__), package.replace('.', os.path.sep))) app.logger.debug('Looking for %s plugins in %s', descr, directory) # Search for modules within the specified directory # noinspection PyBroadException try: # py2exe/freeze support if not isinstance(__loader__, zipimport.zipimporter): raise Exception() archive = zipfile.ZipFile(__loader__.archive) try: dirlist = [name for name in archive.namelist() if name.startswith(directory.replace('\\', '/'))] finally: archive.close() except Exception: # Normal installation # noinspection PyBroadException try: dirlist = os.listdir(directory) except Exception: dirlist = [] dirlist = [os.path.split(name)[1] for name in dirlist] plugin_classes = {} for name in {os.path.splitext(f)[0] for f in dirlist if os.path.splitext(f)[1] in PY_SUFFIXES and os.path.splitext(f)[0] != '__init__'}: # noinspection PyBroadException try: app.logger.debug('Checking module "%s"', name) # A potential plugin module is found; load it m = __import__( 'afterglow_core.' + package + '.' + name, globals(), locals(), ['__dict__']) try: # Check only names listed in __all__ items = (m.__dict__[_name] for _name in m.__dict__['__all__']) except KeyError: # If no __all__ is present in the module, check all globals items = m.__dict__.values() # Scan all items defined in the module, looking for classes # derived from "plugin_class" for item in items: try: if issubclass(item, plugin_class) and \ item is not plugin_class and \ getattr(item, '__polymorphic_on__', None) and \ hasattr(item, item.__polymorphic_on__) and \ isinstance(getattr(item, item.__polymorphic_on__), str) and \ item.__module__ == m.__name__: plugin_classes[getattr(item, item.__polymorphic_on__)] = item app.logger.debug( 'Found %s plugin "%s"', descr, getattr(item, item.__polymorphic_on__)) except TypeError: pass except Exception: # Ignore modules that could not be imported app.logger.debug( 'Could not import module "%s"', name, exc_info=True) plugins = {} if specs is None: # Initialize all available plugins without any options for name, klass in plugin_classes.items(): # Initialize plugin instance; provide the polymorphic field equal # to plugin name to instantiate the appropriate subclass instead # of the base plugin class try: instance = klass( _set_defaults=True, **{klass.__polymorphic_on__: getattr(klass, klass.__polymorphic_on__)}) except Exception: app.logger.exception( 'Error loading %s plugin "%s"', descr, name) raise add_plugin(plugins, descr, instance) else: # Instantiate only the given plugins using the specified display names # and options for id, spec in enumerate(specs): try: name = spec.pop('name') except (TypeError, KeyError): raise RuntimeError( 'Missing name in {} plugin spec ({})'.format(descr, spec)) try: klass = plugin_classes[name] except KeyError: raise RuntimeError( 'Unknown {} plugin "{}"'.format(descr, name)) # Initialize plugin instance using the provided parameters try: instance = klass(**spec) except Exception: app.logger.exception( 'Error loading %s plugin "%s" with options %s', descr, name, spec) raise add_plugin(plugins, descr, instance, id) return plugins
62ec68740ffc30e478cb6bad2365b6ead2f2a46c
3,643,134
def _get_repos_info(db: Session, user_id: int): """Returns data for all starred repositories for a user. The return is in a good format for the frontend. Args: db (Session): sqlAlchemy connection object user_id (int): User id Returns: list[Repository(dict)]:repo_info = { "id": (int), "github_repo_id": (int), "name": (str), "description": (str), "html_url": (str), "tags": list[dict] } """ repos = _get_repos_in_db(db=db, user_id=user_id, only_starred_repos=True) list_of_repos = [] for repo in repos: repo_info = { "id": repo.id, "github_repo_id": repo.github_repo_id, "name": repo.name, "description": repo.description, "html_url": repo.html_url, "tags": _get_all_tags_in_repo(repo_id=repo.id, db=db) } list_of_repos.append(repo_info) return list_of_repos
78a126369355c1c76fc6a1b673b365e3423cd011
3,643,135
def ultimate_oscillator(close_data, low_data): """ Ultimate Oscillator. Formula: UO = 100 * ((4 * AVG7) + (2 * AVG14) + AVG28) / (4 + 2 + 1) """ a7 = 4 * average_7(close_data, low_data) a14 = 2 * average_14(close_data, low_data) a28 = average_28(close_data, low_data) uo = 100 * ((a7 + a14 + a28) / 7) return uo
9803eda656cdb9dd49621a93785b55cf5bc15e7c
3,643,136
import hashlib import os def generate_csrf(request: StarletteRequest, secret_key: str, field_name: str): """Generate a new token, store it in the session and return a time-signed token. If a token is already present in the session, it will be used to generate a new time signed token. The time-signed token is cached per request so multiple calls to this function will return the same time-signed token. Args: request (:class:`starlette.requests.Request`): The request instance. secret_key (str): The signing key. field_name (str): Where the token is stored in the session. Returns: str: The time-signed token """ if not hasattr(request.state, field_name): # handle Secret instances if isinstance(secret_key, Secret): secret_key = str(secret_key) s = URLSafeTimedSerializer(secret_key, salt='wtf-csrf-token') session = request.session # get/set token in session if field_name not in session: session[field_name] = hashlib.sha1(os.urandom(64)).hexdigest() try: token = s.dumps(session[field_name]) except TypeError: session[field_name] = hashlib.sha1(os.urandom(64)).hexdigest() token = s.dumps(session[field_name]) setattr(request.state, field_name, token) return getattr(request.state, field_name)
a79bcd6640112db3729a160689c00e6f24677398
3,643,137
def get_completions(): """ Returns the global completion list. """ return completionList
901718ea73b5328c277c357ecac859b40518890d
3,643,138
def breadth_first_search(): """ BFS Algorithm """ initial_state = State(3, 3, "left", 0, 0) if initial_state.is_goal(): return initial_state frontier = list() explored = set() frontier.append(initial_state) while frontier: state = frontier.pop(0) if state.is_goal(): return state explored.add(state) children = successors(state) for child in children: if (child not in explored) or (child not in frontier): frontier.append(child) return None
2c0dca233b2bdb4474dd17ee7386ed15f5af44c1
3,643,139
import pandas def rankSimilarity(df, top = True, rank = 3): """ Returns the most similar documents or least similar documents args: df (pandas.Dataframe): row, col = documents, value = boolean similarity top (boolean): True: most, False: least (default = True) rank (int): number of top or bottom (default = 3) returns: pandas.Dataframe: row =rank, columns = indices, names, value """ df2 = df.copy(deep = True) df_np = df2.as_matrix() if top: np.fill_diagonal(df_np, -1) results_dic = {"indices": [], "names": [], "value": [] } for n in range(rank): if top: indices = np.unravel_index(df_np.argmax(), df_np.shape) # returns indices of first max found # np.where(df_np == df_np.max()) # will return all indices of maxs else: indices = np.unravel_index(df_np.argmin(), df_np.shape) # returns indices of first min found # np.where(df_np == df_np.min()) # will return all indices of mins results_dic["indices"].append(indices) results_dic["names"].append((df.index[indices[0]], df.index[indices[1]])) results_dic["value"].append(df.iloc[indices]) if top: df_np[indices[0],indices[1]] = -1 # set to -1 to find the next max df_np[indices[1],indices[0]] = -1 # because symmetric else: df_np[indices[0],indices[1]] = 1 # set to 1 to find the next min df_np[indices[1],indices[0]] = 1 # because symmetric df_result = pandas.DataFrame(results_dic, index = range(1,rank+1)) df_result.index.name = "rank" return df_result
7ae5a90ced7dbbd79d5f296a6f31f1236384ba7a
3,643,140
def change_controller(move_group, second_try=False): """ Changes between motor controllers move_group -> Name of required move group. """ global list_controllers_service global switch_controllers_service controller_map = { 'gripper': 'cartesian_motor_controller', 'whole_arm': 'cartesian_motor_controller', 'realsense': 'cartesian_motor_controller_realsense', 'sucker': 'cartesian_motor_controller_sucker', 'wrist_only': 'cartesian_motor_controller_wrist' } rospy.loginfo('SWITCHING CONTROLLERS') if move_group not in controller_map: rospy.logerr('%s is not a valid move group for switching controllers' % move_group) return False wanted_controller = controller_map[move_group] c_list = list_controllers_service.call() running_controllers = [] for c in c_list.controller: if c.name == 'joint_state_controller': continue if c.name == wanted_controller and c.state == 'running': rospy.loginfo('Controller %s is already running' % wanted_controller) return True if c.state == 'running': running_controllers.append(c.name) controllerSwitch = cmsv.SwitchControllerRequest() controllerSwitch.strictness = 1 controllerSwitch.start_controllers = [wanted_controller] controllerSwitch.stop_controllers = running_controllers # Return True if controller was successfully switched res = switch_controllers_service(controllerSwitch).ok if res: rospy.loginfo('Successfully switched controllers for move group %s' % move_group) return res elif second_try == False: rospy.logerr('Failed to switch controllers for move group %s' % move_group) rospy.sleep(1.0) return change_controller(move_group, True) else: return False
8521e1c2967368a5c8ac956fc26d4da879919a2d
3,643,141
import base64 def base64_encode(text): """<string> -- Encode <string> with base64.""" return base64.b64encode(text.encode()).decode()
ce837abde42e9a00268e14cfbd2bd4fd3cf16208
3,643,142
def _signed_bin(n): """Transform n into an optimized signed binary representation""" r = [] while n > 1: if n & 1: cp = _gbd(n + 1) cn = _gbd(n - 1) if cp > cn: # -1 leaves more zeroes -> subtract -1 (= +1) r.append(-1) n += 1 else: # +1 leaves more zeroes -> subtract +1 (= -1) r.append(+1) n -= 1 else: r.append(0) # be glad about one more zero n >>= 1 r.append(n) return r[::-1]
5f9f57e02942264901f6523962b21d1c36accdb2
3,643,143
import os def load_tests(loader, tests, pattern): """Provide a TestSuite to the discovery process.""" test_dir = os.path.join(os.path.dirname(__file__), name) return driver.build_tests(test_dir, loader, host=data['host'], port=data['port'], prefix=data['prefix'], fixture_module=fixtures)
75d15dc8fef7f04cbcc56235d8318ad1b4a31928
3,643,144
def powderfit(powder, scans=None, peaks=None, ki=None, dmono=3.355, spacegroup=1): """Fit powder peaks of a powder sample to calibrate instrument wavelength. First argument is either a string that names a known material (currently only ``'YIG'`` is available) or a cubic lattice parameter. Then you need to give either scan numbers (*scans*) or peak positions (*peaks*) and a neutron wavevector (*ki*). Examples: >>> powderfit('YIG', scans=[1382, 1383, 1384, ...]) >>> powderfit(12.377932, peaks=[45.396, 61.344, 66.096, ...], ki=1.4) As a further argument, *dmono* is the lattice constant of the monochromator (only used to calculate monochromator 2-theta offsets), it defaults to PG (3.355 A). """ maxhkl = 10 # max H/K/L to consider when looking for d-values maxdd = 0.2 # max distance in d-value when looking for peak indices ksteps = 50 # steps with different ki dki = 0.002 # relative ki stepsize if powder == 'YIG': a = 12.377932 spacegroup = 230 session.log.info('YIG: using cubic lattice constant of %.6f A', a) session.log.info('') else: if not isinstance(powder, float): raise UsageError('first argument must be either "YIG" or a ' 'lattice constant') a = powder sg = get_spacegroup(spacegroup) # calculate (possible) d-values # loop through some hkl-sets, also consider higher harmonics... dhkls = {} for h in range(maxhkl): for k in range(maxhkl): for l in range(maxhkl): if h + k + l > 0: # assume all reflections are possible if not can_reflect(sg, h, k, l): continue G = sqrt(h*h + k*k + l*l) dhkls[a/G] = '(%d %d %d)' % (h, k, l) dhkls[a/(2*G)] = '(%d %d %d)/2' % (h, k, l) dhkls[a/(3*G)] = '(%d %d %d)/3' % (h, k, l) dhkls[a/(4*G)] = '(%d %d %d)/4' % (h, k, l) dhkls[a/(5*G)] = '(%d %d %d)/5' % (h, k, l) # generate list from dict dvals = sorted(dhkls) # fit and helper functions def dk2tt(d, k): return 2.0 * degrees(arcsin(pi/(d * k))) def model(x, k, stt0): return stt0 + dk2tt(x, k) data = {} if not peaks: if not scans: raise UsageError('please give either scans or peaks argument') for dataset in session.experiment.data.getLastScans(): num = dataset.counter if num not in scans: continue res = _extract_powder_data(num, dataset) session.log.debug('powder_data from %d: %s', num, res) if res: ki, peaks = res data.setdefault(ki, []).extend([None, p, dp, '#%d ' % num] for (p, dp) in peaks) if not data: session.log.warning('no data found, check the scan numbers!') return else: if scans: raise UsageError('please give either scans or peaks argument') if not ki: raise UsageError('please give ki argument together with peaks') data[float(ki)] = [[None, p, 0.1, ''] for p in peaks] beststt0s = [] bestmtt0s = [] bestrms = 1.0 bestlines = [] orig_data = data for j in [0] + [i * s for i in range(1, ksteps) for s in (-1, 1)]: out = [] p = out.append data = deepcopy(orig_data) # now iterate through data (for all ki and for all peaks) and try to # assign a d-value assuming the ki not to be completely off! for ki1 in sorted(data): new_ki = ki1 + j*dki*ki1 # iterate over ki specific list, start at last element for el in reversed(data[ki1]): tdval = pi/new_ki/sin(abs(radians(el[1]/2.))) # dvalue from scan distances = [(abs(d-tdval), i) for (i, d) in enumerate(dvals)] mindist = min(distances) if mindist[0] > maxdd: p('%speak at %7.3f -> no hkl found' % (el[3], el[1])) data[ki1].remove(el) else: el[0] = dvals[mindist[1]] if el[1] < 0: el[0] *= -1 p('%speak at %7.3f could be %s at d = %-7.4f' % (el[3], el[1], dhkls[abs(el[0])], el[0])) p('') restxt = [] restxt.append('___final_results___') restxt.append('ki_exp #peaks | ki_fit dki_fit mtt_0 lambda | ' 'stt_0 dstt_0 | chisqr') stt0s = [] mtt0s = [] rms = 0 for ki1 in sorted(data): new_ki = ki1 + j*dki*ki1 peaks = data[ki1] failed = True if len(peaks) > 2: fit = Fit('ki', model, ['ki', 'stt0'], [new_ki, 0]) res = fit.run([el[0] for el in peaks], [el[1] for el in peaks], [el[2] for el in peaks]) failed = res._failed if failed: restxt.append('%4.3f %-6d | No fit!' % (ki1, len(peaks))) rms += 1e6 continue mtt0 = dk2tt(dmono, res.ki) - dk2tt(dmono, ki1) restxt.append('%5.3f %-6d | %-7.4f %-7.4f %-7.4f %-7.4f | ' '%-7.4f %-7.4f | %.2f' % (ki1, len(peaks), res.ki, res.dki, mtt0, 2*pi/res.ki, res.stt0, res.dstt0, res.chi2)) stt0s.append(res.stt0) mtt0s.append(mtt0) peaks_fit = [model(el[0], res.ki, res.stt0) for el in peaks] p('___fitted_peaks_for_ki=%.3f___' % ki1) p('peak dval measured fitpos delta') for i, el in enumerate(peaks): p('%-10s %7.3f %7.3f %7.3f %7.3f%s' % ( dhkls[abs(el[0])], el[0], el[1], peaks_fit[i], peaks_fit[i] - el[1], '' if abs(peaks_fit[i] - el[1]) < 0.10 else " **")) p('') rms += sum((pobs - pfit)**2 for (pobs, pfit) in zip([el[1] for el in peaks], peaks_fit)) / len(peaks) out.extend(restxt) session.log.debug('') session.log.debug('-' * 80) session.log.debug('result from run with j=%d (RMS = %g):', j, rms) for line in out: session.log.debug(line) if rms < bestrms: beststt0s = stt0s bestmtt0s = mtt0s bestrms = rms bestlines = out session.log.debug('') session.log.debug('*** new best result: RMS = %g', rms) if not beststt0s: session.log.warning('No successful fit results!') if ki is not None: session.log.warning('Is the initial guess for ki too far off?') return for line in bestlines: session.log.info(line) meanstt0 = sum(beststt0s)/len(beststt0s) meanmtt0 = sum(bestmtt0s)/len(bestmtt0s) session.log.info('Check errors (dki, dstt0)! RMS = %.3g', bestrms) session.log.info('') session.log.info('Adjust using:') # TODO: fix suggestions using adjust() session.log.info('mtt.offset += %.4f', meanmtt0) session.log.info('mth.offset += %.4f', meanmtt0 / 2) session.log.info('stt.offset += %.4f', meanstt0) return CommandLineFitResult((meanmtt0, meanstt0))
ae2bfddd0ab95924ec3d56a1f86cc4aa9a685c9e
3,643,145
def get_neighbor_v6_by_ids(obj_ids): """Return NeighborV6 list by ids. Args: obj_ids: List of Ids of NeighborV6's. """ ids = list() for obj_id in obj_ids: try: obj = get_neighbor_v6_by_id(obj_id).id ids.append(obj) except exceptions.NeighborV6DoesNotExistException as e: raise api_rest_exceptions.ObjectDoesNotExistException(str(e)) except Exception as e: raise api_rest_exceptions.NetworkAPIException(str(e)) return NeighborV6.objects.filter(id__in=ids)
a51d618961fa3e60c0c464473838791d55ba1f6a
3,643,146
import base64 def decode_b64_to_image(b64_str: str) -> [bool, np.ndarray]: """解码base64字符串为OpenCV图像, 适用于解码三通道彩色图像编码. :param b64_str: base64字符串 :return: ok, cv2_image """ if "," in b64_str: b64_str = b64_str.partition(",")[-1] else: b64_str = b64_str try: img = base64.b64decode(b64_str) return True, cv2.imdecode(np.frombuffer(img, dtype=np.int8), 1) except cv2.error: return False, None
66f0e7bb5028ad7247ef7cb468e904c2bc7afdb7
3,643,147
def _get_index_videos(course, pagination_conf=None): """ Returns the information about each video upload required for the video list """ course_id = str(course.id) attrs = [ 'edx_video_id', 'client_video_id', 'created', 'duration', 'status', 'courses', 'transcripts', 'transcription_status', 'error_description' ] def _get_values(video): """ Get data for predefined video attributes. """ values = {} for attr in attrs: if attr == 'courses': course = [c for c in video['courses'] if course_id in c] (__, values['course_video_image_url']), = list(course[0].items()) else: values[attr] = video[attr] return values videos, pagination_context = _get_videos(course, pagination_conf) return [_get_values(video) for video in videos], pagination_context
5a3288ff8c2f371505fe2c6a3051992bfcc602eb
3,643,148
def get_user_by_api_key(api_key, active_only=False): """ Get a User object by api_key, whose attributes match those in the database. :param api_key: API key to query by :param active_only: Set this flag to True to only query for active users :return: User object for that user ID :raises UserDoesNotExistException: If no user exists with the given user_id """ if active_only: user = models.User.query.filter_by(api_key=api_key, is_active=True).first() else: user = models.User.query.filter_by(api_key=api_key).first() if not user: raise UserDoesNotExistException('No user with api_key {api_key} exists'.format(api_key=api_key)) return user
b36373dbfcda80f6aac963153a66b54bce1d828d
3,643,149
def get_pixel_values_of_line(img, x0, y0, xf, yf): """ get the value of a line of pixels. the line defined by the user using the corresponding first and last pixel indices. Parameters ---------- img : np.array. image on a 2d np.array format. x0 : int raw number of the starting pixel y0 : int column number of the starting pixel. xf : int raw number of the ending pixel. yf : int column number of the ending pixel. Returns ------- line_pixel_values : np.array 1d np.array representing the values of the chosen line of pixels. """ rr, cc = np.array(draw.line(x0, y0, xf, yf)) # line_pixel_values = [img[rr[i], cc[i]] for i in range(len(rr))] line_pixel_values = img[rr, cc] return line_pixel_values
ea78efe02130302b34ba8402f21349035b05b2e0
3,643,150
def _filter_out_variables_not_in_dataframe(X, variables): """Filter out variables that are not present in the dataframe. Function removes variables that the user defines in the argument `variables` but that are not present in the input dataframe. Useful when ussing several feature selection procedures in a row. The dataframe input to the first selection algorithm likely contains more variables than the input dataframe to subsequent selection algorithms, and it is not possible a priori, to say which variable will be dropped. Parameters ---------- X: pandas DataFrame variables: string, int or list of (strings or int). Returns ------- filtered_variables: List of variables present in `variables` and in the input dataframe. """ # When variables is not defined, keep it like this and return None. if variables is None: return None # If an integer or a string is provided, convert to a list. if not isinstance(variables, list): variables = [variables] # Filter out elements of variables that are not in the dataframe. filtered_variables = [var for var in variables if var in X.columns] # Raise an error if no column is left to work with. if len(filtered_variables) == 0: raise ValueError( "After filtering no variable remaining. At least 1 is required." ) return filtered_variables
63b4cce75741a5d246f40c5b88cfebaf818b3482
3,643,151
import gzip def file_format(input_files): """ Takes all input files and checks their first character to assess the file format. 3 lists are return 1 list containing all fasta files 1 containing all fastq files and 1 containing all invalid files """ fasta_files = [] fastq_files = [] invalid_files = [] # Open all input files and get the first character for infile in input_files: try: f = gzip.open(infile, "rb") fst_char = f.read(1) except OSError: f = open(infile, "rb") fst_char = f.read(1) f.close() #fst_char = f.readline().decode("ascii")[0] #print(fst_char) # Return file format based in first char if fst_char == b'@': fastq_files.append(infile) elif fst_char == b'>': fasta_files.append(infile) else: invalid_files.append(infile) return (fasta_files, fastq_files, invalid_files)
acd9a0f7b49884d611d0ac65b43407a323a6588b
3,643,152
def sub_vector(v1: Vector3D, v2: Vector3D) -> Vector3D: """Substract vector V1 from vector V2 and return resulting Vector. Keyword arguments: v1 -- Vector 1 v2 -- Vector 2 """ return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]]
2c9878d6775fdcee554f959e392b2c8d2bad8c8e
3,643,153
def create_validity_dict(validity_period): """Convert a validity period string into a dict for issue_certificate(). Args: validity_period (str): How long the signed certificate should be valid for Returns: dict: A dict {"Value": number, "Type": "string" } representation of the validity period """ validity_suffix = validity_period[-1:] if validity_suffix == "d": validity_unit = "DAYS" elif validity_suffix == "m": validity_unit = "MONTHS" elif validity_suffix == "y": validity_unit = "YEARS" return {"Value": int(validity_period[:-1]), "Type": validity_unit}
ba0ccdd5c009a930b4030b15fbafaa978fe753d4
3,643,154
def analyse_latency(cid): """ Parse the resolve_time and download_time info from cid_latency.txt :param cid: cid of the object :return: time to resolve the source of the content and time to download the content """ resolve_time = 0 download_time = 0 with open(f'{cid}_latency.txt', 'r') as stdin: for line in stdin.readlines(): """ The output of the ipfs get <cid> command is in the form of: Started: 02-19-2022 01:51:16 Resolve Ended: 02-19-2022 01:51:16 Resolve Duraution: 0.049049 Download Ended: 02-19-2022 01:51:16 Download Duraution: 0.006891 Total Duraution: 0.055940 """ if "Resolve Duraution:" in line: resolve_time = line.split(": ")[1] resolve_time = resolve_time.split("\n")[0] if "Download Duraution:" in line: download_time = line.split(": ")[1] download_time = download_time.split("\n")[0] return resolve_time, download_time
806a9969cc934faeea842901442ecececfdde232
3,643,155
import re def process_ref(paper_id): """Attempt to extract arxiv id from a string""" # if user entered a whole url, extract only the arxiv id part paper_id = re.sub("https?://arxiv\.org/(abs|pdf|ps)/", "", paper_id) paper_id = re.sub("\.pdf$", "", paper_id) # strip version paper_id = re.sub("v[0-9]+$", "", paper_id) # remove leading arxiv, i.e., such that paper_id=' arXiv: 2001.1234' is still valid paper_id = re.sub("^\s*arxiv[:\- ]", "", paper_id, flags=re.IGNORECASE) return paper_id
a1c817f1ae7b211973efd6c201b5c13e1a91b57b
3,643,156
import re def augment_test_func(test_func): """Augment test function to parse log files. `tools.create_tests` creates functions that run an LBANN experiment. This function creates augmented functions that parse the log files after LBANN finishes running, e.g. to check metrics or runtimes. Note: The naive approach is to define the augmented test functions in a loop. However, Python closures are late binding. In other words, the function would be overwritten every time we define it. We get around this overwriting problem by defining the augmented function in the local scope of another function. Args: test_func (function): Test function created by `tools.create_tests`. Returns: function: Test that can interact with PyTest. """ test_name = test_func.__name__ # Define test function def func(cluster, dirname): # Run LBANN experiment experiment_output = test_func(cluster, dirname) # Parse LBANN log file train_accuracy = None gpu_usage = None mini_batch_times = [] gpu_usages = [] with open(experiment_output['stdout_log_file']) as f: for line in f: match = re.search('training epoch [0-9]+ objective function : ([0-9.]+)', line) if match: train_accuracy = float(match.group(1)) match = re.search('training epoch [0-9]+ mini-batch time statistics : ([0-9.]+)s mean', line) if match: mini_batch_times.append(float(match.group(1))) match = re.search('GPU memory usage statistics : ([0-9.]+) GiB mean', line) if match: gpu_usages.append(float(match.group(1))) # Check if training accuracy is within expected range assert (expected_accuracy_range[0] < train_accuracy <expected_accuracy_range[1]), \ 'train accuracy is outside expected range' #Only tested on Ray. Skip if mini-batch test on another cluster. Change this when mini-batch values are available for other clusters # Check if mini-batch time is within expected range # Note: Skip first epoch since its runtime is usually an outlier mini_batch_times = mini_batch_times[1:] mini_batch_time = sum(mini_batch_times) / len(mini_batch_times) assert (0.75 * expected_mini_batch_times[cluster] < mini_batch_time < 1.25 * expected_mini_batch_times[cluster]), \ 'average mini-batch time is outside expected range' # Check for GPU usage and memory leaks # Note: Skip first epoch gpu_usages = gpu_usages[1:] gpu_usage = sum(gpu_usages)/len(gpu_usages) assert (0.75 * expected_gpu_usage[cluster] < gpu_usage < 1.25 * expected_gpu_usage[cluster]),\ 'average gpu usage is outside expected range' # Return test function from factory function func.__name__ = test_name return func
081593b57dfc82df328617b22cf778fceffe4beb
3,643,157
def get_cuda_arch_flags(cflags): """ For an arch, say "6.1", the added compile flag will be ``-gencode=arch=compute_61,code=sm_61``. For an added "+PTX", an additional ``-gencode=arch=compute_xx,code=compute_xx`` is added. """ # TODO(Aurelius84): return []
dfb92aa00db7f5d515b7b296824f6bdd91fa2724
3,643,158
def nstep_td(env, pi, alpha=1, gamma=1, n=1, N_episodes=1000, ep_max_length=1000): """Evaluates state-value function with n-step TD Based on Sutton/Barto, Reinforcement Learning, 2nd ed. p. 144 Args: env: Environment pi: Policy alpha: Step size gamma: Discount factor n: Number of steps N_episodes: Run this many episodes ep_max_length: Force termination of episode after this number of steps Returns: v: State-value function """ v = defaultdict(lambda: 0) for i_episode in range(N_episodes): print("\r> N-step TD: Episode {}/{}".format( i_episode+1, N_episodes), end="") state = env.reset() rewards = [0] states = [] t = 0 T = np.inf done = False while t < T and t < ep_max_length: if not done: action = select_action_policy(pi, state) state_new, reward, done, info = env.step(action) rewards.append(reward) states.append(state) state = state_new if done: T = t+n+1 if t-n >= 0: G = 0 for i in range(min(n,T-t)): G += gamma**i * rewards[t-n+1+i] if t < T-n: G += gamma**n * v[states[t]] v[states[t-n]] += alpha*(G - v[states[t-n]]) t += 1 print() return v
86d5ab58d4d185dcbf08a84bbc8eb67051d2af21
3,643,159
def open_file(path): """more robust open function""" return open(path, encoding='utf-8')
785ab196756365d1f27ce3fcd69d0ba2867887a9
3,643,160
def test_subscribe(env): """Check async. interrupt if a process terminates.""" def child(env): yield env.timeout(3) return 'ohai' def parent(env): child_proc = env.process(child(env)) subscribe_at(child_proc) try: yield env.event() except Interrupt as interrupt: assert interrupt.cause[0] is child_proc assert interrupt.cause[1] == 'ohai' assert env.now == 3 env.process(parent(env)) env.run()
fa3170cc6167e92195587f06ae65b27da48fa8ff
3,643,161
import tempfile import os import setuptools def has_flag(compiler, flagname): """Return a boolean indicating whether a flag name is supported on the specified compiler. """ fd, fname = tempfile.mkstemp('.cpp', 'main', text=True) with os.fdopen(fd, 'w') as f: f.write('int main (int argc, char **argv) { return 0; }') try: compiler.compile([fname], extra_postargs=[flagname]) except setuptools.distutils.errors.CompileError: return False return True
b407af028221187c683e2821c507c10ec218ea86
3,643,162
import gzip def _parse_data(f, dtype, shape): """Parses the data.""" dtype_big = np.dtype(dtype).newbyteorder(">") count = np.prod(np.array(shape)) # See: https://github.com/numpy/numpy/issues/13470 use_buffer = type(f) == gzip.GzipFile if use_buffer: data = np.frombuffer(f.read(), dtype_big, count) else: data = np.fromfile(f, dtype_big, count) return data.astype(dtype).reshape(shape)
42185d2425aa9aa14abc0a61a5bdabc95224d15c
3,643,163
def test_target(target # type: Any ): """ A simple decorator to declare that a case function is associated with a particular target. >>> @test_target(int) >>> def case_to_test_int(): >>> ... This is actually an alias for `@case_tags(target)`, that some users may find a bit more readable. :param target: for example a function, a class... or a string representing a function, a class... :return: """ return case_tags(target)
ebbf94941e7b11224ee4c8ee9665cea231076f5d
3,643,164
def plot_spatial(adata, color, img_key="hires", show_img=True, **kwargs): """Plot spatial abundance of cell types (regulatory programmes) with colour gradient and interpolation (from Visium anndata). This method supports only 7 cell types with these colours (in order, which can be changed using reorder_cmap). 'yellow' 'orange' 'blue' 'green' 'purple' 'grey' 'white' :param adata: adata object with spatial coordinates in adata.obsm['spatial'] :param color: list of adata.obs column names to be plotted :param kwargs: arguments to plot_spatial_general :return: matplotlib figure """ if show_img is True: kwargs["show_img"] = True kwargs["img"] = list(adata.uns["spatial"].values())[0]["images"][img_key] # location coordinates if "spatial" in adata.uns.keys(): kwargs["coords"] = ( adata.obsm["spatial"] * list(adata.uns["spatial"].values())[0]["scalefactors"][f"tissue_{img_key}_scalef"] ) else: kwargs["coords"] = adata.obsm["spatial"] fig = plot_spatial_general(value_df=adata.obs[color], **kwargs) # cell abundance values return fig
ffbf3cc0f6efdef9bf66b94bac22ef8bf8b39bab
3,643,165
def stats_by_group(df): """Calculate statistics from a groupby'ed dataframe with TPs,FPs and FNs.""" EPSILON = 1e-10 result = df[['tp', 'fp', 'fn']].sum().reset_index().assign( precision=lambda x: (x['tp'] + EPSILON) / (x['tp'] + x['fp'] + EPSILON), recall=lambda x: (x['tp'] + EPSILON) / (x['tp'] + x['fn'] + EPSILON)).assign( f1=lambda x: 2 * x['precision'] * x['recall'] / (x['precision'] + x['recall'] + EPSILON), count=lambda x: x['tp'] + x['fn']) result['proportion'] = result['count'] / np.sum(result['count']) result['proportion_text'] = (result['proportion'] * 100).round(2).astype(str) + "%" return result
c137e4076f837f51b0cab1acbe842ff827b62ee8
3,643,166
def uncolorize(text): """ Attempts to remove color and reset flags from text via regex pattern @text: #str text to uncolorize -> #str uncolorized @text .. from redis_structures.debug import uncolorize uncolorize('\x1b[0;34mHello world\x1b[1;m') # -> 'Hello world' .. """ return _find_colors.sub("", text)
2bc011d755412ac1b9ca0b7e24afc3ed14dbe7ba
3,643,167
def in_this_prow(prow): """ Returns a bool describing whether this processor inhabits `prow`. Args: prow: The prow. Returns: The bool. """ return prow == my_prow()
0f159cc9b57f407cbfefe9892689664f6d902f94
3,643,168
def _keypair_from_file(key_pair_file: str) -> Keypair: """Returns a Solana KeyPair from a file""" with open(key_pair_file) as kpf: keypair = kpf.read() keypair = keypair.replace("[", "").replace("]", "") keypair = list(keypair.split(",")) keypair = [int(i) for i in keypair] return Keypair(keypair[:32])
1fdb4d72945d89db7c8d26c96bcbbd18071258dc
3,643,169
import binascii def val_to_bitarray(val, doing): """Convert a value into a bitarray""" if val is sb.NotSpecified: val = b"" if type(val) is bitarray: return val if type(val) is str: val = binascii.unhexlify(val.encode()) if type(val) is not bytes: raise BadConversion("Couldn't get bitarray from a value", value=val, doing=doing) b = bitarray(endian="little") b.frombytes(val) return b
17081bb8b382763fa5ace4d7d2969b6eed4581ed
3,643,170
def unpack_uint64_from(buf, offset=0): """Unpack a 64-bit unsigned integer from *buf* at *offset*.""" return _uint64struct.unpack_from(buf, offset)[0]
ce01d76d18e45a42687d997459da9113d9e3e45f
3,643,171
def del_none(dictionary): """ Recursively delete from the dictionary all entries which values are None. Args: dictionary (dict): input dictionary Returns: dict: output dictionary Note: This function changes the input parameter in place. """ for key, value in list(dictionary.items()): if value is None: del dictionary[key] elif isinstance(value, dict): del_none(value) return dictionary
48b76272ed20bbee38b5293ede9f5d824950aec5
3,643,172
from sys import path import tempfile def get_model(model_dir, suffix=""): """return model file, model spec object, and list of extra data items this function will get the model file, metadata, and extra data the returned model file is always local, when using remote urls (such as v3io://, s3://, store://, ..) it will be copied locally. returned extra data dict (of key, DataItem objects) allow reading additional model files/objects e.g. use DataItem.get() or .download(target) .as_df() to read example:: model_file, model_artifact, extra_data = get_model(models_path, suffix='.pkl') model = load(open(model_file, "rb")) categories = extra_data['categories'].as_df() :param model_dir: model dir or artifact path (store://..) or DataItem :param suffix: model filename suffix (when using a dir) :returns: model filename, model artifact object, extra data dict """ model_file = "" model_spec = None extra_dataitems = {} suffix = suffix or ".pkl" if hasattr(model_dir, "artifact_url"): model_dir = model_dir.artifact_url if is_store_uri(model_dir): model_spec, target = store_manager.get_store_artifact(model_dir) if not model_spec or model_spec.kind != "model": raise ValueError(f"store artifact ({model_dir}) is not model kind") model_file = _get_file_path(target, model_spec.model_file) extra_dataitems = _get_extra(target, model_spec.extra_data) elif model_dir.lower().endswith(".yaml"): model_spec = _load_model_spec(model_dir) model_file = _get_file_path(model_dir, model_spec.model_file) extra_dataitems = _get_extra(model_dir, model_spec.extra_data) elif model_dir.endswith(suffix): model_file = model_dir else: dirobj = store_manager.object(url=model_dir) model_dir_list = dirobj.listdir() if model_spec_filename in model_dir_list: model_spec = _load_model_spec(path.join(model_dir, model_spec_filename)) model_file = _get_file_path(model_dir, model_spec.model_file, isdir=True) extra_dataitems = _get_extra(model_dir, model_spec.extra_data, is_dir=True) else: extra_dataitems = _get_extra( model_dir, {v: v for v in model_dir_list}, is_dir=True ) for file in model_dir_list: if file.endswith(suffix): model_file = path.join(model_dir, file) break if not model_file: raise ValueError(f"cant resolve model file for {model_dir} suffix{suffix}") obj = store_manager.object(url=model_file) if obj.kind == "file": return model_file, model_spec, extra_dataitems temp_path = tempfile.NamedTemporaryFile(suffix=suffix, delete=False).name obj.download(temp_path) return temp_path, model_spec, extra_dataitems
121be1b8a0100db8b41a2c4aa66f57021bf54562
3,643,173
def get_table_header(driver): """Return Table columns in list form """ header = driver.find_elements(By.TAG_NAME, value= 'th') header_list = [item.text for index, item in enumerate(header) if index < 10] return header_list
631e71e357beb37f50defe16fe894f5be3356516
3,643,174
from rx.core.operators.connectable.refcount import _ref_count from typing import Callable def ref_count() -> Callable[[ConnectableObservable], Observable]: """Returns an observable sequence that stays connected to the source as long as there is at least one subscription to the observable sequence. """ return _ref_count()
e6f8b21e582d46fab75d9013121d764072630390
3,643,175
import logging def no_dry_run(f): """A decorator which "disables" a function during a dry run. A can specify a `dry_run` option in the `devel` section of `haas.cfg`. If the option is present (regardless of its value), any function or method decorated with `no_dry_run` will be "disabled." The call will be logged (with level `logging.DEBUG`), but will not actually execute. The function will instead return 'None'. Callers of decorated functions must accept a None value gracefully. The intended use case of `no_dry_run` is to disable functions which cannot be run because, for example, the HaaS is executing on a developer's workstation, which has no configured switch, libvirt, etc. If the `dry_run` option is not specified, this decorator has no effect. """ @wraps(f) def wrapper(*args, **kwargs): if have_dry_run(): logger = logging.getLogger(__name__) logger.info('dry run, not executing: %s.%s(*%r,**%r)' % (f.__module__, f.__name__, args, kwargs)) return None else: return f(*args, **kwargs) return wrapper
ba32ce4885e9b55aa858a14e963de414ed9f170f
3,643,176
def radius_provider_modify(handle, name, **kwargs): """ modifies a radius provider Args: handle (UcsHandle) name (string): radius provider name **kwargs: key-value pair of managed object(MO) property and value, Use 'print(ucscoreutils.get_meta_info(<classid>).config_props)' to get all configurable properties of class Returns: AaaRadiusProvider: managed object Raises: UcsOperationError: if AaaRadiusProvider is not present Example: radius_provider_modify(handle, name="test_radius_prov", timeout="5") """ mo = radius_provider_get(handle, name, caller="radius_provider_modify") mo.set_prop_multiple(**kwargs) handle.set_mo(mo) handle.commit() return mo
9a5c5d62ff60a3a3a8499e4aaa944f758dc49f83
3,643,177
def _read_table(table_node): """Return a TableData object for the 'table' element.""" header = [] rows = [] for node in table_node: if node.tag == "th": if header: raise ValueError("cannot handle multiple headers") elif rows: raise ValueError("encountered header after rows") else: header = node.text.strip() elif node.tag == "tr": rows.append(node.text.strip()) return create_table(header, rows)
e6ef6e5d5ec99ea2b15ddfcae61b4dd817f8232b
3,643,178
def postorder(root: Node): """ Post-order traversal visits left subtree, right subtree, root node. >>> postorder(make_tree()) [4, 5, 2, 3, 1] """ return postorder(root.left) + postorder(root.right) + [root.data] if root else []
ddeaa6e0f2f466284d69908dfc7eb67bdc6748c8
3,643,179
def merge_triangulations(groups): """ Each entry of the groups list is a list of two (or one) triangulations. This function takes each pair of triangulations and combines them. Parameters ---------- groups : list List of pairs of triangulations Returns ------- list List of merged triangulations """ triangulations = [] for group in groups: if len(group)==2: # Find the first edges to connect the seperate triangulations ldi, rdi = lowest_common_tangent(group[0], group[1]) # Combine the two hulls into a single set of edges base, d_triang = combine_triangulations(ldi, rdi, group[0], group[1]) # Given the starting base edge, fill in the edges between the hulls d_triang = zip_hulls(base, d_triang) triangulations.append(d_triang) else: triangulations.append(group[0]) return [triangulations[i:i+2] for i in range(0, len(triangulations), 2)]
0d39006892e0b248e1f50a62c86911c830b100ce
3,643,180
from lxml import etree as et from rasterio.crs import CRS from rasterio.transform import Affine def make_vrt_list(feat_list, band=None): """ take a list of stac features and band(s) names and build gdal friendly vrt xml objects in list. band : list, str Can be a list or string of name of band(s) required. """ # imports # check if band provided, if so and is str, make list if band is None: bands = [] elif not isinstance(band, list): bands = [band] else: bands = band # check features type, length if not isinstance(feat_list, list): raise TypeError('Features must be a list of xml objects.') elif not len(feat_list) > 0: raise ValueError('No features provided.') # set list vrt of each scene vrt_list = [] # iter stac scenes, build a vrt for feat in feat_list: # get scene identity and properties f_id = feat.get('id') f_props = feat.get('properties') # get scene-level date f_dt = f_props.get('datetime') # get scene-level x, y parameters f_x_size = f_props.get('proj:shape')[1] f_y_size = f_props.get('proj:shape')[0] # get scene-level epsg src as wkt f_srs = CRS.from_epsg(f_props.get('proj:epsg')) f_srs = f_srs.wkt #from osgeo.osr import SpatialReference #osr_crs = SpatialReference() #osr_crs.ImportFromEPSG(f_props.get('proj:epsg')) #f_srs = osr_crs.ExportToWkt() # get scene-level transform #from affine import Affine aff = Affine(*f_props.get('proj:transform')[0:6]) f_transform = ', '.join(str(p) for p in Affine.to_gdal(aff)) # build a top-level vrt dataset xml object xml_ds = satfetcher.make_vrt_dataset_xml(x_size=f_x_size, y_size=f_y_size, axis_map='1,2', # hardcoded srs=f_srs, trans=f_transform) # iterate bands and build raster vrts band_idx = 1 for band in bands: if band in feat.get('assets'): # get asset asset = feat.get('assets').get(band) # set dtype to int16... todo bug in rasterio with int8? #a_dtype = 'UInt8' if band == 'oa_fmask' else 'Int16' a_dtype = 'Int16' # get asset raster x, y sizes a_x_size = asset.get('proj:shape')[1] a_y_size = asset.get('proj:shape')[0] # get raster url, replace s3 with https a_url = asset.get('href') a_url = a_url.replace('s3://dea-public-data', 'https://data.dea.ga.gov.au') # get nodata value a_nodata = 0 if band == 'oa_fmask' else -999 # build raster xml xml_rast = satfetcher.make_vrt_raster_xml(x_size=a_x_size, y_size=a_y_size, dtype=a_dtype, band_num=band_idx, nodata=a_nodata, dt=f_dt, rel_to_vrt=0, # hardcoded url=a_url, src_band=1) # hardcoded # append raster xml to vrt dataset xml xml_ds.append(xml_rast) # increase band index band_idx += 1 # decode to utf-8 string and append to vrt list xml_ds = et.tostring(xml_ds).decode('utf-8') vrt_list.append(xml_ds) return vrt_list
83b2e8143bb63e152e569ab28af896509fa18a9f
3,643,181
def compute_relative_pose(cam_pose, ref_pose): """Compute relative pose between two cameras Args: cam_pose (np.ndarray): Extrinsic matrix of camera of interest C_i (3,4). Transforms points in world frame to camera frame, i.e. x_i = C_i @ x_w (taking into account homogeneous dimensions) ref_pose (np.ndarray): Extrinsic matrix of reference camera C_r (3,4) Returns: relative_pose (np.ndarray): Relative pose of size (3,4). Should transform points in C_r to C_i, i.e. x_i = M @ x_r Prohibited functions: Do NOT use np.linalg.inv() or similar functions """ relative_pose = np.zeros((3, 4), dtype=np.float64) """ YOUR CODE STARTS HERE """ Ri, Rr = cam_pose[:, :-1], ref_pose[:, :-1] ti, tr = cam_pose[:, -1:], ref_pose[:, -1:] relative_pose[:, :-1] = Ri @ Rr.T relative_pose[:, -1:] = ti - Ri @ Rr.T @ tr """ YOUR CODE ENDS HERE """ return relative_pose
b185554b2961bd7cd70df5df714c176f2d5b6dcc
3,643,182
import sys def compat_chr(item): """ This is necessary to maintain compatibility across Python 2.7 and 3.6. In 3.6, 'chr' handles any unicode character, whereas in 2.7, `chr` only handles ASCII characters. Thankfully, the Python 2.7 method `unichr` provides the same functionality as 3.6 `chr`. :param item: a length 1 string who's `chr` method needs to be invoked :return: the unichr code point of the single character string, item """ if sys.version >= '3.0': return chr(item) else: return unichr(item)
a5d45158cf0b48fd8863ac6356632080890fceee
3,643,183
def cli_cosmosdb_cassandra_table_update(client, resource_group_name, account_name, keyspace_name, table_name, default_ttl=None, schema=None, analytical_storage_ttl=None): """Update an Azure Cosmos DB Cassandra table""" logger.debug('reading Cassandra table') cassandra_table = client.get_cassandra_table(resource_group_name, account_name, keyspace_name, table_name) cassandra_table_resource = CassandraTableResource(id=table_name) cassandra_table_resource.default_ttl = cassandra_table.resource.default_ttl cassandra_table_resource.schema = cassandra_table.resource.schema cassandra_table_resource.analytical_storage_ttl = cassandra_table.resource.analytical_storage_ttl if _populate_cassandra_table_definition(cassandra_table_resource, default_ttl, schema, analytical_storage_ttl): logger.debug('replacing Cassandra table') cassandra_table_create_update_resource = CassandraTableCreateUpdateParameters( resource=cassandra_table_resource, options={}) return client.create_update_cassandra_table(resource_group_name, account_name, keyspace_name, table_name, cassandra_table_create_update_resource)
d1629aa39d9573f0cb0e99a10fc635679c15abdc
3,643,184
def determine_clim_by_standard_deviation(color_data, n_std_dev=2.5): """Automatically determine color limits based on number of standard deviations from the mean of the color data (color_data). Useful if there are outliers in the data causing difficulties in distinguishing most of the data. Outputs vmin and vmax which can be passed to plotting routine or plt.clim(). """ color_data_mean = np.nanmean(color_data) color_data_std = np.nanstd(color_data) vmin = color_data_mean - n_std_dev * color_data_std vmax = color_data_mean + n_std_dev * color_data_std return vmin, vmax
1a8b1240c50a01f645862b7fce76bc93c62bcb26
3,643,185
def ec_double(point: ECPoint, alpha: int, p: int) -> ECPoint: """ Doubles a point on an elliptic curve with the equation y^2 = x^3 + alpha*x + beta mod p. Assumes the point is given in affine form (x, y) and has y != 0. """ assert point[1] % p != 0 m = div_mod(3 * point[0] * point[0] + alpha, 2 * point[1], p) x = (m * m - 2 * point[0]) % p y = (m * (point[0] - x) - point[1]) % p return x, y
4489ef72ceb1297983c5f4ac4132fc1e04105365
3,643,186
def scaled_dot_product_attention(q, k, v, mask): """ Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Notice that mask must have the same dimensions as q, k, v. e.g. if q, k, v are (batch_size, num_heads, seq_len, depth), then the mask should be also (batch_size, num_heads, seq_len, depth). However, if q, k, v are (batch_size, seq_len, depth), then the mask should also not contain num_heads. Returns: output (a.k.a. context vectors), scaled_attention_logits """ # (..., seq_len_q, seq_len_k) matmul_qk = tf.matmul(q, k, transpose_b=True) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor. if mask is not None: scaled_attention_logits += (mask * -1e9) # (..., seq_len_q, seq_len_k) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, depth_v) output = tf.matmul(attention_weights, v) return output, scaled_attention_logits
22110522c4f33ec30c076240ade20f5b66cb3fcd
3,643,187
import re def _parse_message(message): """Parses the message. Splits the message into separators and tags. Tags are named tuples representing the string ^^type:name:format^^ and they are separated by separators. For example, in "123^^node:Foo:${file}^^456^^node:Bar:${line}^^789", there are two tags and three separators. The separators are the numeric characters. Supported tags after node:<node_name> file: Replaced with the filename in which the node was defined. line: Replaced by the line number at which the node was defined. Args: message: String to parse Returns: (list of separator strings, list of _ParseTags). For example, if message is "123^^node:Foo:${file}^^456" then this function returns (["123", "456"], [_ParseTag("node", "Foo", "${file}")]) """ seps = [] tags = [] pos = 0 while pos < len(message): match = re.match(_INTERPOLATION_PATTERN, message[pos:]) if match: seps.append(match.group(1)) tags.append(_ParseTag(match.group(3), match.group(4), match.group(5))) pos += match.end() else: break seps.append(message[pos:]) return seps, tags
c961f2a49a21682eb247d4138646abd86135c560
3,643,188
def model_fn(features, labels, mode, params): """Model function.""" del labels, params encoder_module = hub.Module(FLAGS.retriever_module_path) block_emb = encoder_module( inputs=dict( input_ids=features["block_ids"], input_mask=features["block_mask"], segment_ids=features["block_segment_ids"]), signature="projected") predictions = dict(block_emb=block_emb) return tf.estimator.tpu.TPUEstimatorSpec(mode=mode, predictions=predictions)
ff40f74501f26e880a9cf1421a608240fd059fb8
3,643,189
def get_rotated_coords(vec, coords): """ Given the unit vector (in cartesian), 'vec', generates the rotation matrix and rotates the given 'coords' to align the z-axis along the unit vector, 'vec' Args: vec, coords - unit vector to rotate to, coordinates Returns: rot_coords: rotated coordinates """ rot = get_rotation_matrix(vec) rot_coords = (rot @ coords.T).T return rot_coords
f8504df4b7afef524e4147ce6303055a4b7a3cea
3,643,190
def merge_on_pids(all_pids, pdict, ddict): """ Helper function to merge dictionaries all_pids: list of all patient ids pdict, ddict: data dictionaries indexed by feature name 1) pdict[fname]: patient ids 2) ddict[fname]: data tensor corresponding to each patient """ set_ids = set(all_pids) for fname in pdict: set_ids = set_ids.intersection(set(pdict[fname])) list_ids = list(set_ids) list_ids.sort() print ('merge_on_pids: intersection of patient ids is',len(list_ids)) maxT = 0 for fname in ddict: maxT = np.max((maxT, ddict[fname][0].shape[1])) data = np.zeros((len(list_ids), maxT, len(pdict.keys()))) obs = np.zeros_like(data) for f_idx, fname in enumerate(pdict): pids_f, (data_f, obs_f) = pdict[fname], ddict[fname] pids_f = list(pids_f) index_map = [pids_f.index(pid) for pid in list_ids] data[:,:maxT, f_idx] = data_f[index_map, :maxT] obs[:,:maxT, f_idx] = obs_f[index_map, :maxT] print ('merge_on_pids: after merging, pat_ids, data, obs:', len(list_ids), data.shape, obs.shape) return np.array(list_ids), data, obs
d0968de287a1c62ebb7638e5f1af7bd63041665c
3,643,191
import argparse def parse_args(): """Parse command line arguments""" parser = argparse.ArgumentParser(description='Characterize the synapse pulse extender') parser.add_argument("--syn_pd", dest="syn_pd", type=int, default=SYN_PD, help="Set DAC_SYN_PD bias. Default {}".format(SYN_PD)) args = parser.parse_args() return args
bb616f6fcb2c82575777ba33797350768956834a
3,643,192
import requests import numpy def do_inference(hostport, work_dir, concurrency, num_tests): """Tests PredictionService over Tensor-Bridge. Args: hostport: Host:port address of the PredictionService. work_dir: The full path of working directory for test data set. concurrency: Maximum number of concurrent requests. num_tests: Number of test images to use. Returns: The classification error rate. Raises: IOError: An error occurred processing test data set. """ test_data_set = mnist_input_data.read_data_sets(work_dir).test error = 0 for _ in range(num_tests): request = predict_pb2.PredictRequest() request.model_spec.name = 'default' request.model_spec.signature_name = 'predict_images' image, label = test_data_set.next_batch(1) request.inputs['images'].CopyFrom( tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size])) response = requests.post(hostport + '/tensor-bridge/v1/prediction', json=MessageToDict( request, preserving_proto_field_name=True, including_default_value_fields=True)) result = ParseDict(response.json(), predict_pb2.PredictResponse(), ignore_unknown_fields=True) scores = numpy.array( result.outputs['scores'].float_val) prediction = numpy.argmax(scores) if label[0] != prediction: error += 1 return error / num_tests
ed2cc97ccaf6e3a8be2ae690b190640c67365f9d
3,643,193
def checkbox_2D(image, checkbox, debug=False): """ Find the course location of an input psf by finding the brightest checkbox. This function uses a 2 dimensional image as input, and finds the the brightest checkbox of given size in the image. Keyword arguments: image -- 2 dimensional psf image checkbox -- A sliding partial filter that equal the sum of values in an n x n region centered on the current pixel, where n is an odd integer. Output(s): checkbox_ctr -- A tuple containing the brightest checkbox location. checkbox_hfw -- A tuple containing the checkbox halfwidth. Example usage: >> cb_cen, cb_hw = checkbox_2D(psf, 5) Find the location of the brightest checkbox, given a checkbox size of 5. Returns the brightest checkbox center and halfwidths. """ # Calculate the checkbox half-width chw = (checkbox - 1) / 2 # Calculate the image size xsize, ysize = image.shape[1], image.shape[0] # Calculate the x and y widths of checkbox region xwidth, ywidth = xsize - checkbox + 1, ysize - checkbox + 1 # If the checkbox size is not equal to both the X and Y sizes, # find the pixel with the brightest checkbox if checkbox != xsize and checkbox != ysize: xpeak = 0 ypeak = 0 sumpeak = 0 for ii in xrange(xsize - checkbox): for jj in xrange(ysize - checkbox): t = np.sum(image[jj:jj+checkbox, ii:ii+checkbox]) if t > sumpeak: xpeak = ii + chw + 1 ypeak = jj + chw + 1 sumpeak = t print('(checkbox_2D): Checkbox not equal to both x/ysize.') print() # If the checkbox size is equal to both the X and Y sizes if checkbox == xsize and checkbox == ysize: xpeak = xsize / 2 ypeak = ysize / 2 sumpeak = np.sum(image, axis=None) print('(checkbox_2D): Checkbox equal to x/ysize.') print() # Print calculated checkbox center, and sum within checkbox centroid # Find the checkbox region half-width in x and y xhw = xwidth / 2 yhw = ywidth / 2 if xpeak < xhw or xpeak > xsize - xhw or ypeak < yhw or ypeak > ysize - yhw: print('(checkbox_2D): WARNING - Peak too close to edge of image.') print() # NOTE: Use this section of the input image is a subset of a larger image # Not currently needed for this analysis # # Determine the center of the brightest checkbox, in extracted # # image coordinates # xpeak = xpeak + xhw # ypeak = ypeak + yhw # Debug messages if debug: print('(checkbox_2D): chw = ', chw) print('(checkbox_2D): xsize, ysize = {}, {}'.format(xsize, ysize)) print('(checkbox_2D): xwidth, ywidth = {}, {}'.format(xwidth, ywidth)) print('(checkbox_2D): xpeak, ypeak = {}, {}'.format(xpeak, ypeak)) print('(checkbox_2D): sumpeak = ', sumpeak) print('(checkbox_2D): xhw, yhw = {}, {}'.format(xhw, yhw)) print() checkbox_ctr = np.array((xpeak, ypeak)) checkbox_hfw = np.array((xhw, yhw)) return checkbox_ctr, checkbox_hfw
e300cb3c7363686b8f07fd35d740bcbac84f0b06
3,643,194
def test_true() -> None: """This is a test that should always pass. This is just a default test to make sure tests runs. Parameters ---------- None Returns ------- None """ # Always true test. assert_message = "This test should always pass." assert True, assert_message return None
f08cb5feb4e450b10b58fe32d751bf45985df84c
3,643,195
def parseStylesheetFile(filename): """Load and parse an XSLT stylesheet""" ret = libxsltmod.xsltParseStylesheetFile(filename) if ret == None: return None return stylesheet(_obj=ret)
9e12e7ec5ace9eafe50e595d544bc09ff7ccef7d
3,643,196
import torch def tensor_to_index(tensor: torch.tensor, dim=1) -> np.ndarray: """Converts a tensor to an array of category index""" return tensor_to_longs(torch.argmax(tensor, dim=dim))
7d72b18086a46c4f1c3f8cebaee28ddac12cf31c
3,643,197
import glob import random import os import time import subprocess import json import gc def matchAPKs(sourceAPK, targetAPKs, matchingDepth=1, matchingThreshold=0.67, matchWith=10, useSimiDroid=False, fastSearch=True, matchingTimeout=500, labeling="vt1-vt1", useLookup=False): """ Compares and attempts to match two APK's and returns a similarity measure :param sourceAPK: The path to the source APK (the original app you wish to match) :type sourceAPK: str :param targetAPK: The path to the directory containing target APKs (against which you wish to match) :type targetAPK: str :param matchingDepth: The depth and rigorosity of the matching (between 1 and 4) :type matchingDepth: int :param matchingThreshold: A similarity percentage above which apps are considered similar :type matchingThreshold: float :param matchWith: The number of matchings to return (default: 1) :type matchWith: int :param useSimiDroid: Whether to use SimiDroid to perform the comparison :type useSimiDroid: boolean :param fastSearch: Whether to return matchings one maximum number of matches [matchWith] is reached :type fastSearch: boolean :param matchingTimeout: The time (in seconds) to allow the matching process to continue :type matchingTimeoue: int :param labeling: The labeling scheme adopted to label APK's as malicious and benign :type labeling: str :param useLookup: Whether to skip analyzing every app and depend on lookup structs to hasten the experiments :type useLookup: boolean :return: A list of tuples (str, (float, float) depicting the matched app, the similarity measure and the matched app's label """ try: similarity = 0.0 # Get the target apps targetApps = glob.glob("%s/*" % targetAPKs) if useSimiDroid == False else glob.glob("%s/*.apk" % targetAPKs) # Randomize? random.shuffle(targetApps) if len(targetApps) < 1: prettyPrint("Could not retrieve any APK's or directories from \"%s\"" % targetApps, "error") return [] prettyPrint("Successfully retrieved %s apps from \"%s\"" % (len(targetApps), targetAPKs)) # Retrieve information from the source APK if not useSimiDroid: sourceKey = sourceAPK[sourceAPK.rfind("/")+1:].replace(".apk", "") if useLookup: infoDir = targetApps[0][:targetApps[0].rfind("/")] if os.path.exists("%s/%s_data" % (infoDir, sourceKey)): sourceInfo = eval(open("%s/%s_data/data.txt" % (infoDir, sourceKey)).read()) else: prettyPrint("No lookup info found. Extracting app info", "warning") sourceInfo = extractAPKInfo(sourceAPK, matchingDepth)[-1] else: sourceInfo = extractAPKInfo(sourceAPK, matchingDepth)[-1] if len(sourceInfo) < 1: prettyPrint("Could not extract any info from \"%s\"" % sourceAPK, "error") return [] matchings = {} counter = 0 startTime = time.time() for targetAPK in targetApps: counter += 1 # Timeout? if counter >= matchingTimeout: prettyPrint("Matching timeout", "error") return sortDictByValue(matchings, True) prettyPrint("Matching with \"%s\", #%s out of %s" % (targetAPK, counter, matchingTimeout), "debug") if useSimiDroid == False: # Use homemade recipe to perform the comparison if not os.path.exists("%s/data.txt" % targetAPK): prettyPrint("Could not find a \"data.txt\" file for app \"%s\". Skipping" % targetAPK, "warning") continue # Load pre-extracted target app information try: targetInfo = eval(open("%s/data.txt" % targetAPK).read()) except Exception as e: prettyPrint("Could not load target info. Skipping", "warning") continue # Retrieve the APK's label according to a labeling scheme targetLabel = -1 targetKey = targetAPK[targetAPK.rfind("/")+1:].replace("_data", "") if os.path.exists("%s/%s.report" % (VT_REPORTS_DIR, targetKey)): report = eval(open("%s/%s.report" % (VT_REPORTS_DIR, targetKey)).read()) prettyPrint("VirusTotal report \"%s.report\" found" % targetKey, "debug") if "positives" in report.keys(): if labeling == "old": if "additional_info" in report.keys(): if "positives_delta" in report["additional_info"].keys(): targetLabel = 1 if report["positives"] - report["additional_info"]["positives_delta"] >= 1 else 0 else: continue if labeling == "vt1-vt1": targetLabel = 1 if report["positives"] >= 1 else 0 elif labeling == "vt50p-vt50p": targetLabel = 1 if report["positives"]/float(report["total"]) >= 0.5 else 0 elif labeling == "vt50p-vt1": if report["positives"]/float(report["total"]) >= 0.5: targetLabel = 1 elif report["positives"] == 0: targetLabel = 0 else: targetLabel = random.randint(0, 1) # Start the comparison similarities = [] if matchingDepth >= 1: if "name" in sourceInfo.keys() and "name" in targetInfo.keys(): similarities.append(stringRatio(sourceInfo["name"], targetInfo["name"])) if "package" in sourceInfo.keys() and "package" in targetInfo.keys(): similarities.append(stringRatio(sourceInfo["package"], targetInfo["package"])) if "icon" in sourceInfo.keys() and "icon" in targetInfo.keys(): if sourceInfo["icon"] != None and targetInfo["icon"] != None: sourceIcon = "%s/tmp_%s/%s" % (sourceAPK[:sourceAPK.rfind("/")], sourceInfo["package"], sourceInfo["icon"]) targetIcon = "%s/%s" % (targetAPK, targetInfo["icon"][targetInfo["icon"].rfind('/')+1:]) if os.path.exists(sourceIcon) and os.path.exists(targetIcon): similarities.append(simImages(sourceIcon, targetIcon)) if matchingDepth >= 2: if "activities" in sourceInfo.keys() and "activities" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["activities"], targetInfo["activities"])) if "permissions" in sourceInfo.keys() and "permissions" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["permissions"], targetInfo["permissions"])) if "providers" in sourceInfo.keys() and "providers" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["providers"], targetInfo["providers"])) if "receivers" in sourceInfo.keys() and "receivers" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["receivers"], targetInfo["receivers"])) if "services" in sourceInfo.keys() and "services" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["services"], targetInfo["services"])) if "files" in sourceInfo.keys() and "files" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["files"], targetInfo["files"])) if matchingDepth >= 3: if "libraries" in sourceInfo.keys() and "libraries" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["libraries"], targetInfo["libraries"])) if "classes" in sourceInfo.keys() and "classes" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["classes"], targetInfo["classes"])) if "methods" in sourceInfo.keys() and "methods" in targetInfo.keys(): similarities.append(listsRatio(sourceInfo["methods"], targetInfo["methods"])) if matchingDepth >= 4: if os.path.exists("%s/%s_data/call_graph.gpickle" % (infoDir, sourceKey)) and os.path.exists("%s/call_graph.gpickle" % targetAPK): try: prettyPrint("Loading source graph from \"%s/%s_data/call_graph.gpickle\"" % (infoDir, sourceKey), "debug") sourceGraph = nx.read_gpickle("%s/%s_data/call_graph.gpickle" % (infoDir, sourceKey)) prettyPrint("Loading target graph from \"%s/call_graph.gpickle\"" % targetAPK, "debug") targetGraph = nx.read_gpickle("%s/call_graph.gpickle" % targetAPK) except exceptions.EOFError as e: prettyPrint("Could not read call source or target graphs. Skipping", "warning") continue if fastSearch: isomorphic = nx.algorithms.could_be_isomorphic(sourceGraph, targetGraph) else: isomorphic = nx.algorithms.is_isomorphic(sourceGraph, targetGraph) if isomorphic: similarities.append(1.0) else: similarities.append(0.0) else: # Use SimiDroid to perform comparison curDir = os.path.abspath(".") os.chdir(SIMIDROID_DIR) cmd = "java -jar SimiDroid.jar %s %s" % (sourceAPK, targetAPK) outFile = "%s-%s.json" % (sourceAPK[sourceAPK.rfind('/')+1:].replace(".apk", ""), targetAPK[targetAPK.rfind("/")+1:].replace(".apk", "")) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) p.communicate() if not os.path.exists(outFile): prettyPrint("Could not find SimiDroid output file. Skipping", "warning") continue outContent = json.loads(open(outFile).read()) os.chdir(curDir) if len(similarities) >= 1: similarity = float(sum(similarities))/float(len(similarities)) if useSimiDroid == False else float(outContent["conclusion"]["simiScore"]) else: similarity = 0.0 prettyPrint("Similarity score: %s" % similarity) # Delete targetInfo to free memory? prettyPrint("Releasing object and invoking Garbage Collector", "debug") targetGraph = None gc.collect() if similarity >= matchingThreshold: prettyPrint("Got a match between source \"%s\" and app \"%s\", with score %s" % (sourceAPK[sourceAPK.rfind("/")+1:].replace(".apk", ""), targetAPK[targetAPK.rfind("/")+1:].replace(".apk", ""), similarity), "output") if useSimiDroid == False: matchings[targetInfo["package"]] = (similarity, targetLabel) else: matchings[targetAPK] = (similarity, targetLabel) currentTime = time.time() if (fastSearch and len(matchings) >= matchWith) or (currentTime - startTime >= matchingTimeout): # Return what we've got so far if len(matchings) >= matchWith: return sortDictByValue(matchings, True) except Exception as e: prettyPrintError(e) return [] return sortDictByValue(matchings, True)
a1cf2a9bde0bc0bfcda761097db4cd8f281c8d6f
3,643,198
def _le_(x: symbol, y: symbol) -> symbol: """ >>> isinstance(le_(symbol(3), symbol(2)), symbol) True >>> le_.instance(3, 2) False """ return x <= y
336b164cbc249a1a9e9a3d965950a52ac01292ab
3,643,199