content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List def convert_country_codes(source_codes: List[str], source_format: str, target_format: str, throw_error: bool = False) -> List[str]: """ Convert country codes, e.g., from ISO_2 to full name. Parameters ---------- source_codes: List[str] List of codes to convert. source_format: str Format of the source codes (alpha_2, alpha_3, name, ...) target_format: str Format to which code must be converted (alpha_2, alpha_3, name, ...) throw_error: bool (default: False) Whether to throw an error if an attribute does not exist. Returns ------- target_codes: List[str] List of converted codes. """ target_codes = [] for code in source_codes: try: country_codes = pyc.countries.get(**{source_format: code}) if country_codes is None: raise KeyError(f"Data is not available for code {code} of type {source_format}.") target_code = getattr(country_codes, target_format) except (KeyError, AttributeError) as e: if throw_error: raise e target_code = np.nan target_codes += [target_code] return target_codes
7589dec9ccec5edc7bf5ea356b40fac3898c7c77
3,643,200
def get_simple_lca_length(std_tree, test_gold_dict, node1, node2): """ get the corresponding node of node1 and node2 on std tree. calculate the lca distance between them Exception: Exception("[Error: ] std has not been lca initialized yet") std tree need to be initialized before running this function example: std_tree.get_lca_preprocess() """ if std_tree.depth_array is None: raise Exception("[Error: ] std has not been lca initialized yet") std_id_node_dict = std_tree.get_id_node_dict() tmp_node1 = node1 tmp_node2 = test_gold_dict[node2] if tmp_node2 is None: raise Exception("[Error: ]Can not find the corresponding node in std tree. ") lca_id = std_tree.get_lca(tmp_node1.get_id(), tmp_node2.get_id()) if lca_id == -1: return config_utils.DINF lca_node = std_id_node_dict[lca_id] return tmp_node1.root_length + tmp_node2.root_length - 2 * lca_node.root_length
8433259814fe656bdbdd6997ca613b30c458f8b8
3,643,201
def edit_catagory(catagory_id): """edit catagory""" name = request.form.get('name') guest_id = session['guest_id'] exists = db.session.query(Catalogs).filter_by(name=name, guest_id=guest_id).scalar() if exists: return abort(404) if name == '': return redirect(url_for('home.home')) catagory = db.session.query(Catalogs).filter_by(id=catagory_id).one() oldname = catagory.name catagory.name = name db.session.add(catagory) db.session.commit() flash(f"Catagory {oldname} has been updated to {catagory.name}") return redirect(url_for('home.home'))
a0d342490881968f39cf4636fb424176c6608e4a
3,643,202
def match_patterns(name, name_w_pattern, patterns): """March patterns to filename. Given a SPICE kernel name, a SPICE Kernel name with patterns, and the possible patterns, provide a dictionary with the patterns as keys and the patterns values as value after matching it between the SPICE Kernel name with patterns and without patterns. For example, given the following arguments: * name: ``insight_v01.tm`` * name_w_pattern: ``insight_v$VERSION.tm`` The function will return: ``{VERSION: '01'}`` :param name: Name of the SPICE Kernel :type name: str :param name_w_pattern: Name of the SPICE Kernel with patterns :type name_w_pattern: str :param patterns: List of the possible patterns present in the SPICE Kernel name with patterns :type patterns: list :return: Dictionary providing the patterns and their value as defined by the SPICE kernel :rtype: dict """ # # This list will help us determine the order of the patterns in the file # name because later on the patterns need to be correlated with the # pattern values. # pattern_name_order = {} name_check = name_w_pattern for pattern in patterns: pattern_name_order[pattern["#text"]] = name_w_pattern.find(pattern["#text"]) name_check = name_check.replace( "$" + pattern["#text"], "$" * int(pattern["@length"]) ) # # Convert the pattern_name_order_dictionary into an ordered lis # pattern_name_order = list( { k: v for k, v in sorted(pattern_name_order.items(), key=lambda item: item[1]) }.keys() ) # # Generate a list of values extracted from the comparison of the # original file and the file with patterns. # values_list = [] value = "" value_bool = False for i in range(len(name_check)): if (name_check[i] == name[i]) and (not value_bool): continue if (name_check[i] == name[i]) and value_bool: value_bool = False values_list.append(value) value = "" elif (name_check[i] == "$") and (not value_bool): value_bool = True value += name[i] elif (name_check[i] == "$") and value_bool: value += name[i] else: raise # # Correlate the values with their position in the file name with # patterns. # values = {} for i in range(len(values_list)): values[pattern_name_order[i]] = values_list[i] return values
a54b7f1fcda67b5649f92a21f4711874dd226ee9
3,643,203
def _generate_good_delivery_token_email(request, good_delivery, msg=''): """ Send an email to user with good_delivery activation URL and return the token :type request: HttpRequest :type good_delivery: GoodDelivery :type msg: String :param structure_slug: current HttpRequest :param structure_slug: good delivery to confirm :param structure: message to send :return: generated token """ if good_delivery.delivered_to.email: # build good_delivery jwt token = good_delivery.build_jwt() # build absolute URI, attach token and send email uri = request.build_absolute_uri(reverse('good_delivery:user_use_token')) mail_params = {'hostname': settings.HOSTNAME, 'user': good_delivery.delivered_to, 'url': '{}?token={}'.format(uri, token), 'added_text': msg } m_subject = _('{} - {}').format(settings.HOSTNAME, good_delivery) send_custom_mail(subject=m_subject, recipients=[good_delivery.delivered_to], body=settings.NEW_DELIVERY_WITH_TOKEN_CREATED, params=mail_params) return token
4567c3d0ad3f2d65c850ed5291e602cb552b11cb
3,643,204
def get_flavor(disk=None, min_disk=None, min_ram=None, name=None, ram=None, region=None, rx_tx_factor=None, swap=None, vcpus=None): """ Use this data source to get the ID of an available OpenStack flavor. """ __args__ = dict() __args__['disk'] = disk __args__['minDisk'] = min_disk __args__['minRam'] = min_ram __args__['name'] = name __args__['ram'] = ram __args__['region'] = region __args__['rxTxFactor'] = rx_tx_factor __args__['swap'] = swap __args__['vcpus'] = vcpus __ret__ = pulumi.runtime.invoke('openstack:compute/getFlavor:getFlavor', __args__) return GetFlavorResult( is_public=__ret__.get('isPublic'), region=__ret__.get('region'), id=__ret__.get('id'))
f6689712d4bde04ae43bb4c999b04df34b1db089
3,643,205
from typing import Tuple def deal_hands(deck: Deck) -> Tuple[Deck, Deck, Deck, Deck]: """Deal the cards in the deck into four hands""" return (deck[0::4], deck[1::4], deck[2::4], deck[3::4])
151def07061a23df6c80f2be6d9015e3efbd515e
3,643,206
import select def add_new_publication_group(project): """ Create a new publication_group POST data MUST be in JSON format POST data SHOULD contain the following: name: name for the group published: publication status for the group, 0 meaning unpublished """ request_data = request.get_json() if not request_data: return jsonify({"msg": "No data provided."}), 400 groups = get_table("publication_group") connection = db_engine.connect() insert = groups.insert() new_group = { "name": request_data.get("name", None), "published": request_data.get("published", 0) } try: result = connection.execute(insert, **new_group) new_row = select([groups]).where(groups.c.id == result.inserted_primary_key[0]) new_row = dict(connection.execute(new_row).fetchone()) result = { "msg": "Created new group with ID {}".format(result.inserted_primary_key[0]), "row": new_row } return jsonify(result), 201 except Exception as e: result = { "msg": "Failed to create new group", "reason": str(e) } return jsonify(result), 500 finally: connection.close()
0890b71f972149bd860768dfeb5a377bd4fd28b0
3,643,207
def test_gmres_against_graph_scipy(n, tensor_type, dtype, error, preconditioner, solve_method): """ Feature: ALL TO ALL Description: test cases for [N x N] X [N X 1] Expectation: the result match scipy in graph """ if not _is_valid_platform(tensor_type): return # Input CSRTensor of gmres in mindspore graph mode is not supported, just ignored it. if tensor_type == "CSRTensor": return class TestNet(nn.Cell): def __init__(self, solve_method): super(TestNet, self).__init__() self.solve_method = solve_method def construct(self, a, b, x0, tol, restart, maxiter, m, atol): return msp.sparse.linalg.gmres(a, b, x0, tol=tol, restart=restart, maxiter=maxiter, M=m, atol=atol, solve_method=self.solve_method) onp.random.seed(0) a = create_full_rank_matrix((n, n), dtype) b = onp.random.rand(n).astype(dtype) x0 = onp.zeros_like(b).astype(dtype) m = _fetch_preconditioner(preconditioner, a) tol = float(onp.finfo(dtype=dtype).eps) atol = tol restart = n maxiter = None scipy_output, _ = osp.sparse.linalg.gmres(a, b, x0, tol=tol, restart=restart, maxiter=maxiter, M=m, atol=atol) # Graph Mode context.set_context(mode=context.GRAPH_MODE) a = to_tensor((a, tensor_type)) b = Tensor(b) x0 = Tensor(x0) m = to_tensor((m, tensor_type)) if m is not None else m # Not in graph's construct ms_output, _ = msp.sparse.linalg.gmres(a, b, x0, tol=tol, restart=restart, maxiter=maxiter, M=m, atol=atol) assert onp.allclose(scipy_output, ms_output.asnumpy(), rtol=error, atol=error) # With in graph's construct ms_net_output, _ = TestNet(solve_method)(a, b, x0, tol, restart, maxiter, m, atol) assert onp.allclose(scipy_output, ms_net_output.asnumpy(), rtol=error, atol=error)
47fde403d403138dd1746cab532f7c7cf9b2f5a3
3,643,208
def wtime() -> float: """ :return: the current time as a floating point number. """ return MPI.Wtime()
862b18fc688fd5e34ccfc7a2f986bdb2ceb98ed4
3,643,209
def survival_df(data, t_col="t", e_col="e", label_col="Y", exclude_col=[]): """ Transform original DataFrame to survival dataframe that would be used in model training or predicting. Parameters ---------- data: DataFrame Survival data to be transformed. t_col: str Column name of data indicating time. e_col: str Column name of data indicating events or status. label_col: str Name of new label in transformed survival data. exclude_col: list Columns to be excluded. Returns ------- DataFrame: Transformed survival data. Negtive values in label are taken as right censored. """ x_cols = [c for c in data.columns if c not in [t_col, e_col] + exclude_col] # Negtive values are taken as right censored data.loc[:, label_col] = data.loc[:, t_col] data.loc[data[e_col] == 0, label_col] = - data.loc[data[e_col] == 0, label_col] return data[x_cols + [label_col]]
8d35c27a75340d5c6535727e0e419fc0548d6094
3,643,210
from datetime import datetime def get_date_today(): """Get date today in str format such as 20201119. """ return datetime.today().strftime('%Y%m%d')
d5e69607dbf4b8c829cfe30ea0335f46c7d2512a
3,643,211
def check_model_in_dict(name, model_dict): """ Check whether the new model, name, exists in all previously considered models, held in model_lists. [previously in construct_models] If name has not been previously considered, False is returned. """ # Return true indicates it has not been considered and so can be added al_name = alph(name) n_qub = get_num_qubits(name) if al_name in model_dict[n_qub]: return True # todo -- make clear if in legacy or running db else: return False
9c3cf9be0c973872ab63e8de57f6b5a26ea53838
3,643,212
import json def generate_api_key(request): """Handles AJAX requests for a new API key.""" new_key = ApiUser.objects.get_unique_key() return HttpResponse(json.dumps({'token' : new_key}), content_type="application/javascript")
9e29a82c3a967d7a98537ec680a0a2bfe068a88c
3,643,213
def input_output_details(interpreter): """ input_output_details: Used to get the details from the interperter """ input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() return input_details, output_details
3024f2a6c91a533c3aff858ee3a1db11d360bb25
3,643,214
def charge_drone_battery(drone): """Handle the drone battery charging operation.""" battery_level = drone["State"]["Battery"] if float(battery_level) < 95: # Increase battery level drone["State"]["Battery"] = float(battery_level) + 5 else: # If battery >= 95 set battery level to 100% drone["State"]["Battery"] = 100 dronelog = gen_DroneLog("Drone %s" % ( str(drone["DroneID"])), "charging complete, returning to Active state") send_dronelog(dronelog) drone["State"]["Status"] = "Active" http_api_log = gen_HttpApiLog("Drone %s" % ( str(drone["DroneID"])), "PUT DroneLog", "Controller") send_http_api_log(http_api_log) return drone
2f7d955a44310215883ac5bed57fb27463a66315
3,643,215
def expirations(self, symbol, useDatetime=True, block: bool = True): """Gets list of available expiration dates for a symbol. Calls the 'market/options/expirations.json' endpoint to get list of all exp_dates available for some given equity. Args: symbol: Specify the stock symbol against which to query useDatetime: Specify whether to return datetime objects, or strings block: Specify whether to block thread if request exceeds rate limit Returns: List of dates (datetime obj, or string) Raises: RateLimitException: If block=False, rate limit problems will be raised Example: .. code-block:: python a.expirations('spy') # [ datetime.datetime(2022, 3, 18, 0, 0), ... ] a.expirations('spy', useDatetime = False) # [ '2022-03-18', ... ] """ # Create request req = Expirations( auth=self.auth, account_nbr=self.account_nbr, block=block, symbol=symbol ) # Add in the extra information req.useDatetime = useDatetime # result result = req.request() return result
24a33bdac8da42be9433400b32c16fa4fb860766
3,643,216
from re import T def track(name, x, direction=None): """ An identity function that registers hooks to track the value and gradient of the specified tensor. Here is an example of how to track an intermediate output :: input = ... conv1 = nnt.track('op', nnt.Conv2d(shape, 4, 3), 'all') conv2 = nnt.Conv2d(conv1.output_shape, 5, 3) intermediate = conv1(input) output = nnt.track('conv2_output', conv2(intermediate), 'all') loss = T.sum(output ** 2) loss.backward(retain_graph=True) d_inter = T.autograd.grad(loss, intermediate, retain_graph=True) d_out = T.autograd.grad(loss, output) tracked = nnt.eval_tracked_variables() testing.assert_allclose(tracked['conv2_output'], nnt.utils.to_numpy(output)) testing.assert_allclose(np.stack(tracked['grad_conv2_output']), nnt.utils.to_numpy(d_out[0])) testing.assert_allclose(tracked['op'], nnt.utils.to_numpy(intermediate)) for d_inter_, tracked_d_inter_ in zip(d_inter, tracked['grad_op_output']): testing.assert_allclose(tracked_d_inter_, nnt.utils.to_numpy(d_inter_)) :param name: name of the tracked tensor. :param x: tensor or module to be tracked. If module, the output of the module will be tracked. :param direction: there are 4 options ``None``: tracks only value. ``'forward'``: tracks only value. ``'backward'``: tracks only gradient. ``'all'``: tracks both value and gradient. Default: ``None``. :return: `x`. """ assert isinstance(name, str), 'name must be a string, got %s' % type(name) assert isinstance(x, (T.nn.Module, T.Tensor)), 'x must be a Torch Module or Tensor, got %s' % type(x) assert direction in ( 'forward', 'backward', 'all', None), 'direction must be None, \'forward\', \'backward\', or \'all\'' if isinstance(x, T.nn.Module): if direction in ('forward', 'all', None): def _forward_hook(module, input, output): _TRACKS[name] = output.detach() hooks[name] = x.register_forward_hook(_forward_hook) if direction in ('backward', 'all'): def _backward_hook(module, grad_input, grad_output): _TRACKS['grad_' + name + '_output'] = tuple([grad_out.detach() for grad_out in grad_output]) hooks['grad_' + name + '_output'] = x.register_backward_hook(_backward_hook) else: if direction in ('forward', 'all', None): _TRACKS[name] = x.detach() if direction in ('backward', 'all'): def _hook(grad): _TRACKS['grad_' + name] = tuple([grad_.detach() for grad_ in grad]) hooks['grad_' + name] = x.register_hook(_hook) return x
81ae80bc8b77c16d493befdb209fe648e9a07c96
3,643,217
from pathlib import Path from typing import Callable from datetime import datetime def expected_l1_ls8_folder( l1_ls8_folder: Path, offset: Callable[[Path, str], str] = relative_offset, organisation="usgs.gov", collection="1", l1_collection="1", lineage=None, ): """ :param collection: The collection of the current scene :param l1_collection: The collection of the original landsat l1 scene :return: """ org_code = organisation.split(".")[0] product_name = f"{org_code}_ls8c_level1_{collection}" if collection == "2": processing_datetime = datetime(2020, 9, 7, 19, 30, 5) cloud_cover = 93.28 points_model = 125 points_version = 5 rmse_model_x = 4.525 rmse_model_y = 5.917 software_version = "LPGS_15.3.1c" uuid = "d9221c40-24c3-5356-ab22-4dcac2bf2d70" quality_tag = "QA_PIXEL" else: processing_datetime = datetime(2017, 4, 5, 11, 17, 36) cloud_cover = 93.22 points_model = 66 points_version = 4 rmse_model_x = 4.593 rmse_model_y = 5.817 software_version = "LPGS_2.7.0" uuid = "a780754e-a884-58a7-9ac0-df518a67f59d" quality_tag = "BQA" processing_date = processing_datetime.strftime("%Y%m%d") return { "$schema": "https://schemas.opendatacube.org/dataset", "id": uuid, "label": f"{product_name}-0-{processing_date}_090084_2016-01-21", "product": { "name": product_name, "href": f"https://collections.dea.ga.gov.au/product/{product_name}", }, "properties": { "datetime": datetime(2016, 1, 21, 23, 50, 23, 54435), # The minor version comes from the processing date (as used in filenames to distinguish reprocesses). "odc:dataset_version": f"{collection}.0.{processing_date}", "odc:file_format": "GeoTIFF", "odc:processing_datetime": processing_datetime, "odc:producer": organisation, "odc:product_family": "level1", "odc:region_code": "090084", "eo:cloud_cover": cloud_cover, "eo:gsd": 15.0, "eo:instrument": "OLI_TIRS", "eo:platform": "landsat-8", "eo:sun_azimuth": 74.007_443_8, "eo:sun_elevation": 55.486_483, "landsat:collection_category": "T1", "landsat:collection_number": int(l1_collection), "landsat:data_type": "L1TP", "landsat:geometric_rmse_model_x": rmse_model_x, "landsat:geometric_rmse_model_y": rmse_model_y, "landsat:ground_control_points_model": points_model, "landsat:ground_control_points_version": points_version, "landsat:landsat_product_id": f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1", "landsat:landsat_scene_id": "LC80900842016021LGN02", "landsat:processing_software_version": software_version, "landsat:station_id": "LGN", "landsat:wrs_path": 90, "landsat:wrs_row": 84, }, "crs": "epsg:32655", "geometry": { "coordinates": [ [ [879307.5, -3776885.4340469087], [879307.5, -3778240.713151076], [839623.3108524992, -3938223.736900397], [832105.7835592609, -3953107.5], [831455.8296215904, -3953107.5], [831453.7930575205, -3953115.0], [819969.5411349908, -3953115.0], [641985.0, -3906446.160824098], [641985.0, -3889797.3351159613], [685647.6920251067, -3717468.346156044], [688909.3673333039, -3714585.0], [708011.4230769231, -3714585.0], [879315.0, -3761214.3020833335], [879315.0, -3776857.8139976147], [879307.5, -3776885.4340469087], ] ], "type": "Polygon", }, "grids": { "default": { "shape": (60, 60), "transform": ( 3955.5, 0.0, 641_985.0, 0.0, -3975.500_000_000_000_5, -3_714_585.0, 0.0, 0.0, 1.0, ), }, "panchromatic": { "shape": (60, 60), "transform": ( 3955.25, 0.0, 641_992.5, 0.0, -3975.25, -3_714_592.5, 0.0, 0.0, 1.0, ), }, }, "measurements": { "coastal_aerosol": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B1.TIF", ) }, "blue": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B2.TIF", ) }, "green": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B3.TIF", ) }, "red": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B4.TIF", ) }, "nir": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B5.TIF", ) }, "swir_1": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B6.TIF", ) }, "swir_2": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B7.TIF", ) }, "panchromatic": { "grid": "panchromatic", "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B8.TIF", ), }, "cirrus": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B9.TIF", ) }, "lwir_1": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B10.TIF", ) }, "lwir_2": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_B11.TIF", ) }, "quality": { "path": offset( l1_ls8_folder, f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_{quality_tag}.TIF", ) }, }, "accessories": { "metadata:landsat_mtl": { "path": f"LC08_L1TP_090084_20160121_{processing_date}_0{l1_collection}_T1_MTL.txt" } }, "lineage": lineage or {}, }
16b934d3ea6c4a3daee3bde2a37bd5a7a48856b9
3,643,218
def fetchPackageNames(graphJson): """Parses serialized graph and returns all package names it uses :param graphJson: Serialized graph :type graphJson: dict :rtyoe: list(str) """ packages = set() def worker(graphData): for node in graphData["nodes"]: packages.add(node["package"]) for inpJson in node["inputs"]: packages.add(inpJson['package']) for outJson in node["inputs"]: packages.add(outJson['package']) if "graphData" in node: worker(node["graphData"]) worker(graphJson) return packages
ccac1cfa1305d5d318cf3e2e3ed85d00fff7e56b
3,643,219
def get_nc_BGrid_POP(grdfile, name='POP_NEP', \ xrange=(170,270), yrange=(240, 350)): """ grd = get_nc_BGrid_POP(grdfile) Load Bgrid object for POP from netCDF file """ nc = pycnal.io.Dataset(grdfile) lon_t = nc.variables['TLONG'][:] lat_t = nc.variables['TLAT'][:] lon_u = nc.variables['ULONG'][:] lat_u = nc.variables['ULAT'][:] angle = nc.variables['ANGLET'][:] h_t = nc.variables['HT'][:] h_u = nc.variables['HU'][:] z_t = nc.variables['z_t'][:] z_w_top = nc.variables['z_w_top'][:] z_w_bot = nc.variables['z_w_bot'][:] z_w = np.zeros(z_t.size + 1) z_w[:-1] = z_w_top z_w[-1] = z_w_bot[-1] return BGrid_POP(lon_t, lat_t, lon_u, lat_u, angle, h_t, h_u, z_t, z_w, \ name, xrange, yrange)
3ce9eec34f3332d21fce1ceaca2862faa69443d1
3,643,220
def types_and_shorthands(): """a mapping from type names in the json doc to their one letter short hands in the output of 'attr' """ return { 'int': 'i', 'uint': 'u', 'bool': 'b', 'decimal': 'd', 'color': 'c', 'string': 's', 'regex': 'r', 'SplitAlign': 'n', 'LayoutAlgorithm': 'n', 'font': 'f', 'Rectangle': 'R', 'WindowID': 'w', }
39f364677a8e2ee1d459599ba2574a8a4f4cd49e
3,643,221
def _make_event_from_message(message): """Turn a raw message from the wire into an event.Event object """ if 'oslo.message' in message: # Unpack the RPC call body and discard the envelope message = rpc_common.deserialize_msg(message) tenant_id = _get_tenant_id_for_message(message) crud = event.UPDATE router_id = None if message.get('method') == 'router_deleted': crud = event.DELETE router_id = message.get('args', {}).get('router_id') else: event_type = message.get('event_type', '') # Router id is not always present, but look for it as though # it is to avoid duplicating this line a few times. router_id = message.get('payload', {}).get('router', {}).get('id') if event_type.startswith('routerstatus.update'): # We generate these events ourself, so ignore them. return None if event_type == 'router.create.end': crud = event.CREATE elif event_type == 'router.delete.end': crud = event.DELETE router_id = message.get('payload', {}).get('router_id') elif event_type in _INTERFACE_NOTIFICATIONS: crud = event.UPDATE router_id = message.get( 'payload', {} ).get('router.interface', {}).get('id') elif event_type in _INTERESTING_NOTIFICATIONS: crud = event.UPDATE elif event_type.endswith('.end'): crud = event.UPDATE elif event_type.startswith('akanda.rug.command'): LOG.debug('received a command: %r', message.get('payload')) # If the message does not specify a tenant, send it to everyone pl = message.get('payload', {}) tenant_id = pl.get('tenant_id', '*') router_id = pl.get('router_id') crud = event.COMMAND if pl.get('command') == commands.POLL: return event.Event( tenant_id='*', router_id='*', crud=event.POLL, body={}, ) else: # LOG.debug('ignoring message %r', message) return None return event.Event(tenant_id, router_id, crud, message)
daaba3567fbb4e95d311a12f58852bb0b81c6f05
3,643,222
def to_region(obj): """Convert `obj` to instance of Region.""" if obj is not None and not isinstance(obj, Region): return Region(*obj) else: return obj
da5412adcc182c97950465e3c4e3248be00f242b
3,643,223
import PIL def create_textures(): """ Create a list of images for sprites based on the global colors. !!! SHOULD be able to add custom images in here instead of the general colors.""" texture_list = [] for color in colors: image = PIL.Image.new('RGB', (WIDTH, HEIGHT), color) texture_list.append(arcade.Texture(str(color), image=image)) return texture_list
2652812d96157fc6f7d502e6ca39f4c4eee32dea
3,643,224
import psutil def check_if_process_is_running(process_name): """" Check if there is any running process that contains the given name process_name. """ # Iterate over the all the running process for process in psutil.process_iter(): try: # Check if process name contains the given name string. if process_name.lower() in process.name().lower(): return True except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass return False
372cd2183b7250ce738157c986adb9a3abfdca84
3,643,225
import cProfile import pstats import io from pstats import SortKey # type: ignore import optparse def exec_main_with_profiler(options: "optparse.Values") -> int: """Enable profiler.""" profile = cProfile.Profile() profile.enable() ret = exec_main(options) profile.disable() string_io = io.StringIO() sortby = SortKey.TIME print_stats = pstats.Stats(profile, stream=string_io).sort_stats(sortby) print_stats.print_stats(40) print(string_io.getvalue()) return ret
8eefc801319d94081364218fc80500b710610f31
3,643,226
def put_text(image, text, point, scale, color, thickness): """Draws text in image. # Arguments image: Numpy array. text: String. Text to be drawn. point: Tuple of coordinates indicating the top corner of the text. scale: Float. Scale of text. color: Tuple of integers. RGB color coordinates. thickness: Integer. Thickness of the lines used for drawing text. # Returns Numpy array with shape ``[H, W, 3]``. Image with text. """ # cv2.putText returns an image in contrast to other drawing cv2 functions. return cv2.putText(image, text, point, FONT, scale, color, thickness, LINE)
aeab690da16577e7eff27b515cf9b682110716e9
3,643,227
from typing import List from pathlib import Path def squash_dimensions( dimensions: List[Dimension], check_path_changes=True ) -> Dimension: """Squash a list of nested Dimensions into a single one. Args: dimensions: The Dimensions to squash, from slowest to fastest moving check_path_changes: If True then check that nesting the output Dimension within other Dimensions will provide the same path as nesting the input Dimension within other Dimensions See Also: `why-squash-can-change-path` >>> dimx = Dimension({"x": np.array([1, 2])}, snake=True) >>> dimy = Dimension({"y": np.array([3, 4])}) >>> squash_dimensions([dimy, dimx]).midpoints {'y': array([3, 3, 4, 4]), 'x': array([1, 2, 2, 1])} """ path = Path(dimensions) # Comsuming a Path of these dimensions performs the squash # TODO: dim.tile might give better performance but is much longer squashed = path.consume() # Check that the squash is the same as the original if dimensions and dimensions[0].snake: squashed.snake = True # The top level is snaking, so this dimension will run backwards # This means any non-snaking axes will run backwards, which is # surprising, so don't allow it if check_path_changes: non_snaking = [k for d in dimensions for k in d.axes() if not d.snake] if non_snaking: raise ValueError( f"Cannot squash non-snaking Specs in a snaking Dimension " f"otherwise {non_snaking} would run backwards" ) elif check_path_changes: # The top level is not snaking, so make sure there is an even # number of iterations of any snaking axis within it so it # doesn't jump when this dimension is iterated a second time for i, dim in enumerate(dimensions): # A snaking dimension within a non-snaking top level must repeat # an even number of times if dim.snake and np.product(path._lengths[:i]) % 2: raise ValueError( f"Cannot squash snaking Specs in a non-snaking Dimension " f"when they do not repeat an even number of times " f"otherwise {dim.axes()} would jump in position" ) return squashed
301304cf32115d103bb53a209df85880f27fcf53
3,643,228
def CreateRootRelativePath(self, path): """ Generate a path relative from the root """ result_path = self.engine_node.make_node(path) return result_path.abspath()
79053bb1bcb724e8ddf9bfc4b5b13b67be9227f0
3,643,229
import os def resolve_font(name): """Sloppy way to turn font names into absolute filenames This isn't intended to be a proper font lookup tool but rather a dirty tool to not have to specify the absolute filename every time. For example:: >>> path = resolve_font('IndUni-H-Bold') >>> fontdir = os.path.join(os.path.dirname(__file__), 'fonts') >>> indunih_path = os.path.join(fontdir, 'IndUni-H-Bold.ttf') >>> assert path == indunih_path This isn't case-sensitive:: >>> assert resolve_font('induni-h') == indunih_path Raises :exc:`FontNotFound` on failure:: >>> resolve_font('blahahaha') Traceback (most recent call last): ... FontNotFound: Can't find 'blahahaha' :'( Try adding it to ~/.fonts """ for fontdir, fontfiles in get_font_files(): for fontfile in fontfiles: if name.lower() in fontfile.lower(): return os.path.join(fontdir, fontfile) raise FontNotFound("Can't find %r :'( Try adding it to ~/.fonts")
b5716cb4390ebdf3ce8103efb33cd6b197e171a3
3,643,230
import json from typing import Mapping def to_shape(shape_ser): """ Deserializes a shape into a Shapely object - can handle WKT, GeoJSON, Python dictionaries and Shapely types. """ if isinstance(shape_ser, str): try: # Redirecting stdout because there's a low level exception that # prints. with redirect_stderr("/dev/null"): shape_obj = wkt_loads(shape_ser) except WKTReadingError: try: shape_obj = shape(json.loads(shape_ser)) except Exception: raise TypeError( "{} is not serializable to a shape.".format(str(shape_ser)) ) elif isinstance(shape_ser, Mapping): shape_obj = shape(shape_ser) elif isinstance( shape_ser, ( Point, MultiPoint, LineString, MultiLineString, Polygon, MultiPolygon, ), ): shape_obj = shape_ser else: raise TypeError( "{} is not serializable to a shape.".format(str(shape_ser)) ) return shape_obj
d9a0975696ee48d816d5b61e7cc57c0547ff5033
3,643,231
import inspect def _from_module(module, object): """ Return true if the given object is defined in the given module. """ if module is None: return True elif inspect.getmodule(object) is not None: return module is inspect.getmodule(object) elif inspect.isfunction(object): return module.__dict__ is object.func_globals elif inspect.isclass(object): return module.__name__ == object.__module__ elif hasattr(object, '__module__'): return module.__name__ == object.__module__ elif isinstance(object, property): return True # [XX] no way not be sure. else: raise ValueError("object must be a class or function")
564157a4eb10b887b6b56c82d17d74557c233104
3,643,232
def _escape_pgpass(txt): """ Escape a fragment of a PostgreSQL .pgpass file. """ return txt.replace('\\', '\\\\').replace(':', '\\:')
3926f683a2715ff1d41d8433b525793e8214f7a9
3,643,233
import re import os def harvest_dirs(path): """Return a list of versioned directories under working copy directory PATH, inclusive.""" # 'svn status' output line matcher, taken from the Subversion test suite rm = re.compile('^([!MACDRUG_ ][MACDRUG_ ])([L ])([+ ])([S ])([KOBT ]) ' \ '([* ]) [^0-9-]*(\d+|-|\?) +(\d|-|\?)+ +(\S+) +(.+)') dirs = [] fp = os.popen('%s status --verbose %s' % (SVN_BINARY, path)) while 1: line = fp.readline() if not line: break line = line.rstrip() if line.startswith('Performing'): break match = rm.search(line) if match: stpath = match.group(10) try: if os.path.isdir(stpath): dirs.append(stpath) except: pass return dirs
8c48558e29952513b521685bee013679a52902ce
3,643,234
from typing import Dict from typing import Set from typing import List import math def gen_index(doc_term_map: Dict[PT.Word, Set[PT.IndexNum]], dependency_map: Dict[PT.IndexNum, Count], i: PT.IndexNum, words: List[PT.Word] ) -> PT.PkgIndex: """Generate package index by scoring each word / term.""" word_freq: Dict[PT.Word, Count] = utils.count_freq(words) total_docs = len(doc_term_map) pkg_index: PT.PkgIndex = dict() for word in word_freq: doc_inverse_freq = get_doc_inverse_freq(total_docs, len(doc_term_map[word])) dependency_freq = get_dependency_freq(i, dependency_map) pkg_index[word] = math.log(word_freq[word] * doc_inverse_freq * dependency_freq) return pkg_index
4d82498309019f9bdc55fec8b6917576b2b0ff22
3,643,235
from typing import OrderedDict def arr_to_dict(arr, ref_dict): """ Transform an array of data into a dictionary keyed by the same keys in ref_dict, with data divided into chunks of the same length as in ref_dict. Requires that the length of the array is the sum of the lengths of the arrays in each entry of ref_dict. The other dimensions of the input array and reference dict can differ. Arguments --------- arr : array Input array to be transformed into dictionary. ref_dict : dict Reference dictionary containing the keys used to construct the output dictionary. Returns ------- out : dict Dictionary of values from arr keyed with keys from ref_dict. """ out = OrderedDict() idx = 0 assert len(arr) == sum([len(v) for v in ref_dict.values()]) for k, bd in ref_dict.items(): out[k] = arr[idx : idx + len(bd)] idx += len(bd) return out
55339447226cdd2adafe714fa12e144c6b38faa2
3,643,236
def test_makecpt_truncated_zlow_zhigh(position): """ Use static color palette table that is truncated to z-low and z-high. """ fig = Figure() makecpt(cmap="rainbow", truncate=[0.15, 0.85], series=[0, 1000]) fig.colorbar(cmap=True, frame=True, position=position) return fig
f615d425d6433a6e4bc6dc0d8d5e18f2a0aa60c7
3,643,237
import os def extract_boar_teloFISH_as_list(path): """ FUNCTION FOR PULLING KELLY'S TELOFISH DATA FOR 40 BOARS into a LIST.. TO BE MADE INTO A DATAFRAME & JOINED W/ MAIN DATAFRAME if possible These excel files take forever to load.. the objective here is to synthesize all the excel files for telomere FISH data into one dataframe, then save that dataframe to csv file to be retrieved later loading one whole csv file containing all the data will be much, much faster than loading the parts of the whole Along the way, we'll normalize the teloFISH data using controls internal to each excel file """ boar_teloFISH_list = [] for file in os.scandir(path): if 'Hyb' in file.name: print(f'Handling {file.name}...') full_name = path + file.name # making a dict of excel sheets, where KEY:VALUE pairs are SAMPLE ID:TELO DATA telo_excel_dict = pd.read_excel(full_name, sheet_name=None, skiprows=4, usecols=[3], nrows=5000) if 'Telomere Template' in telo_excel_dict.keys(): del telo_excel_dict['Telomere Template'] excel_file_list = [] for sample_id, telos in telo_excel_dict.items(): telos_cleaned = clean_individ_telos(telos) if sample_id != 'Control': excel_file_list.append([sample_id, telos_cleaned.values, np.mean(telos_cleaned)]) elif sample_id == 'Control': control_value = np.mean(telos_cleaned) #normalize teloFISH values by control value for sample in excel_file_list: sample_data = sample #normalize individual telos sample_data[1] = np.divide(sample_data[1], control_value) #normalize telo means sample_data[2] = np.divide(sample_data[2], control_value) boar_teloFISH_list.append(sample_data) print('Finished collecting boar teloFISH data') return boar_teloFISH_list
a431282679f916a71cab7cc002dce26a39de147e
3,643,238
def captured_stdout(): """Capture the output of sys.stdout: with captured_stdout() as stdout: print("hello") self.assertEqual(stdout.getvalue(), "hello\n") """ return captured_output("stdout")
9226c23c13ad86cc09f2c08ce1ffb44f324a1044
3,643,239
def login(): """ Handles user authentication. The hash of the password the user entered is compared to the hash in the database. Also saves the user_id in the user's session. """ form = SignInForm() banned = None reason = None if form.validate_on_submit(): user_id = form.user_id.data password = form.password.data db = get_db() user = db.execute("""SELECT * FROM users where user_id = ?;""", (user_id,)).fetchone() if user is None: form.user_id.errors.append("Unkown user id") elif not check_password_hash(user["password"], password): form.password.errors.append("Incorrect password!") elif user["isBanned"] == 1: banned = "You have been banned" reason = user["bannedReason"] else: session.clear() session["user_id"] = user_id next_page = request.args.get("next") if not next_page: next_page = url_for("chat") return redirect(next_page) return render_template("login.html", form=form, maincolor=g.maincolor, secondcolor=g.secondcolor, textcolor=g.textcolor, banned=banned, reason=reason)
d2cea08572c7b1461cda490f063009bc139c7c3a
3,643,240
def create_ipu_strategy(num_ipus, fp_exceptions=False, enable_recomputation=True, min_remote_tensor_size=50000, max_cross_replica_sum_buffer_size=10*1024*1024): """ Creates an IPU config and returns an IPU strategy ready to run something on IPUs :param num_ipus: Int representing the number of IPUs required. :param fp_exceptions: Bool, if True floating point exceptions will be raised. :param enable_recomputation: Bool, if True recomputation will be enabled. :param min_remote_tensor_size: The minimum size (in bytes) a tensor must be in order to be considered for being stored in remote memory. :param max_cross_replica_sum_buffer_size: The maximum number of bytes that can be waiting before a cross replica sum op is scheduled. Represents an always-live vs not-always-live trade off. The default used here is effective for BERT. :return: An IPU strategy """ ipu_config = ipu.config.IPUConfig() ipu_config.auto_select_ipus = num_ipus ipu_config.allow_recompute = enable_recomputation ipu_config.floating_point_behaviour.inv = fp_exceptions ipu_config.floating_point_behaviour.div0 = fp_exceptions ipu_config.floating_point_behaviour.oflo = fp_exceptions ipu_config.floating_point_behaviour.nanoo = fp_exceptions ipu_config.optimizations.minimum_remote_tensor_size = min_remote_tensor_size ipu_config.optimizations.merge_infeed_io_copies = True ipu_config.optimizations.maximum_cross_replica_sum_buffer_size = max_cross_replica_sum_buffer_size ipu_config.device_connection.type = ipu.config.DeviceConnectionType.ON_DEMAND ipu_config.device_connection.enable_remote_buffers = True ipu_config.configure_ipu_system() strategy = ipu.ipu_strategy.IPUStrategy() return strategy
2aaa76de946e43305cdb7e50b673e39a08e19a50
3,643,241
def run_pipeline(context, func, ast, func_signature, pipeline=None, **kwargs): """ Run a bunch of AST transformers and visitors on the AST. """ # print __import__('ast').dump(ast) pipeline = pipeline or context.numba_pipeline(context, func, ast, func_signature, **kwargs) return pipeline, pipeline.run_pipeline()
559d9c44ae143e49ff505fd76df0393bae56f012
3,643,242
from typing import Union from typing import Optional def convert_acc_data_to_g( data: Union[AccDataFrame, ImuDataFrame], inplace: Optional[bool] = False ) -> Optional[Union[AccDataFrame, ImuDataFrame]]: """Convert acceleration data from :math:`m/s^2` to g. Parameters ---------- data : :class:`~biopsykit.utils.datatype_helper.AccDataFrame` or \ :class:`~biopsykit.utils.datatype_helper.ImuDataFrame` dataframe containing acceleration data. inplace : bool, optional whether to perform the operation inplace or not. Default: ``False`` Returns ------- :class:`~biopsykit.utils.datatype_helper.AccDataFrame` or :class:`~biopsykit.utils.datatype_helper.ImuDataFrame` acceleration data converted to g """ if not inplace: data = data.copy() acc_cols = data.filter(like="acc").columns data.loc[:, acc_cols] = data.loc[:, acc_cols] / 9.81 if inplace: return None return data
e9c60ebdc143cd8243fa7ec7ebde27f0ad5beceb
3,643,243
def replace_by_one_rule(specific_rule: dict, sentence: str): """ This function replace a sentence with the given specific replacement dict. :param specific_rule: A dict containing the replacement rule, where the keys are the words to use, the values will be replaced by the keys. :param sentence: A string to be replaced by the dict and given rule. :return: The string after replaced by the rules. """ original = sentence.lower() for key in specific_rule.keys(): for word in specific_rule[key]: original = original.replace(word, key) original = " ".join([i if i != 'be' else 'is' for i in original.split(' ')]) return original.replace('(s)', '').replace('is at there', 'been there').replace('(es)', ''). \ replace('is in there', 'been there').replace('is there', 'been there').replace('possess', 'have')
31a5bd58ef77d76c968c353dd493ba3357d5b506
3,643,244
def get_os(platform): """ Return the icon-name of the OS. @type platform: C{string} @param platform: A string that represents the platform of the relay. @rtype: C{string} @return: The icon-name version of the OS of the relay. """ if platform: for os in __OS_LIST: if os in platform: if os == 'Windows' and 'Server' in platform: return 'WindowsServer' else: return os return 'NotAvailable'
1610c373076a8fd9b647dad22c5ff39732d14fa7
3,643,245
def get_loglikelihood_fn(dd_s, f_l=f_l, f_h=f_h, n_f=n_f): """ x: parameter point dd_s: signal system """ fs = jnp.linspace(f_l, f_h, n_f) pad_low, pad_high = get_match_pads(fs) def _ll(x): # Unpack parameters into dark dress ones gamma_s, rho_6T, M_chirp_MSUN, log10_q = x M_chirp = M_chirp_MSUN * MSUN q = 10 ** log10_q rho_6 = rho_6T_to_rho6(rho_6T) f_c = get_f_isco(get_m_1(M_chirp, q)) dd_h = DynamicDress( gamma_s, rho_6, M_chirp, q, dd_s.Phi_c, dd_s.tT_c, dd_s.dL, f_c ) return loglikelihood_fft(dd_h, dd_s, fs, pad_low, pad_high) return _ll
da3843fd069a9c3a4646aa282c854bbd5557d74b
3,643,246
def to_module_name(field): """_to_module_name(self, field: str) -> str Convert module name to match syntax used in https://github.com/brendangregg/FlameGraph Examples: [unknown] -> [unknown]' /usr/bin/firefox -> [firefox] """ if field != '[unknown]': field = '[{}]'.format(field.split('/')[-1]) return field
75e3fbb9a45710ea6dacecf5ecc34a5b9409606a
3,643,247
def ApplyMomentum(variable, accumulation, learning_rate, gradient, momentum, use_nesterov=False, gradient_scale=1.0): """apply momentum""" return apply_momentum.apply_momentum(variable, gradient, accumulation, learning_rate, momentum, use_nesterov=use_nesterov, grad_scale=gradient_scale)
f86b923e707c7f98d55cbf23a7ac17040bf2929c
3,643,248
def init(): """Return True if the plugin has loaded successfully.""" ok = True if ok: #g.registerHandler('start2',onStart2) g.plugin_signon(__name__) #serve_thread() #g.app.remoteserver = ss = LeoSocketServer() return ok
74cc6395310d648b809b6df965700ca708581b5e
3,643,249
def _fftconvolve_14(in1, in2, int2_fft, mode="same"): """ scipy routine scipy.signal.fftconvolve with kernel already fourier transformed """ in1 = signaltools.asarray(in1) in2 = signaltools.asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return signaltools.array([]) s1 = signaltools.array(in1.shape) s2 = signaltools.array(in2.shape) shape = s1 + s2 - 1 # Speed up FFT by padding to optimal size for FFTPACK fshape = [signaltools._next_regular(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. ret = signaltools.irfftn(signaltools.rfftn(in1, fshape) * int2_fft, fshape)[fslice].copy() #np.fft.rfftn(in2, fshape) if mode == "full": return ret elif mode == "same": return signaltools._centered(ret, s1) elif mode == "valid": return signaltools._centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.")
a32d85bb24fe0d1e64b12cdae14391c0c8e9e111
3,643,250
def solve_step(previous_solution_space, phase_space_position, step_num): """ Solves the differential equation across the full spectrum of trajectory angles and neutrino energies :param previous_solution_space: solution to previous step of the differential equation across all angles and energies, includes phase space values in first 2 columns (ndarray) :param phase_space_position: which cosine / neutrino energy slice for which to compute the solution (int, row index of previous solution) :param step_num: step number in discretized radial distance away from the initial core (int) :return: solution (ndarray) """ euler_solution = solve_fixed_energy_angle( previous_solution_space=previous_solution_space, phase_space_position=phase_space_position, step_num=step_num ) return previous_solution_space[phase_space_position][0], previous_solution_space[phase_space_position][1], euler_solution
6678a9482453f2a43942f04085c892e8484e75cc
3,643,251
def gradientDescentMulti(X, y, theta, alpha, num_iters): """ Performs gradient descent to learn theta theta = gradientDescent(x, y, theta, alpha, num_iters) updates theta by taking num_iters gradient steps with learning rate alpha """ # Initialize some useful values J_history = [] m = y.size # number of training examples for i in range(num_iters): # ====================== YOUR CODE HERE ====================== # Instructions: Perform a single gradient step on the parameter vector # theta. # # Hint: While debugging, it can be useful to print out the values # of the cost function (computeCost) and gradient here. # theta -= alpha * (X.T.dot(X.dot(theta) - y)) / float(m) # ============================================================ # Save the cost J in every iteration J_history.append(computeCostMulti(X, y, theta)) return theta, J_history
72b5512e115c405216fe262724b85a02df984c6d
3,643,252
def execute(*args, **kw): """Wrapper for ``Cursor#execute()``.""" return _m.connection["default"].cursor().execute(*args, **kw)
8bb11436046e479c580c48eb42d4cb2b37372945
3,643,253
def get_login_client(): """ Returns a LinodeLoginClient configured as per the config module in this example project. """ return LinodeLoginClient(config.client_id, config.client_secret)
786d3d6981f81afa95ed7de62544896982b17c58
3,643,254
import re def detect_ascii_slice(lines): # type: (List[str]) -> slice """ Given a list of strings, this will return the most likely positions of byte positions. They are returned slice which should be able to extract the columns from each line. """ for line in lines: # if the content contains a ":" character, it contains the byte offset # in the beginning. This is the case for libsnmp command output using # the "-d" switch. We need to remove the offset match = re.match(r"^\d{4}:", line) if ":" in line: return slice(6, 56) else: return slice(0, 50) return slice(0, -1)
06cf3b9faa24f46aef37ae94495cbe129851bd7c
3,643,255
import torch def inception_model_pytorch(): """The InceptionBlocks model the WebGME folks provided as a test case for deepforge.""" class InceptionBlocks(nn.Module): def __init__(self): super().__init__() self.asymmetric_pad = nn.ZeroPad2d((0, 1, 0, 1)) self.conv2d = nn.Conv2d( in_channels=5, out_channels=64, kernel_size=(5, 5), padding=2, bias=True ) self.prelu = nn.PReLU(init=0.0) self.averagepooling2d = nn.AvgPool2d((2, 2), stride=2, padding=0) self.conv2d2 = nn.Conv2d( in_channels=64, out_channels=48, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu2 = nn.PReLU(init=0.0) self.conv2d3 = nn.Conv2d( in_channels=48, out_channels=64, kernel_size=(3, 3), padding=1, bias=True, ) self.prelu3 = nn.PReLU(init=0.0) self.conv2d4 = nn.Conv2d( in_channels=64, out_channels=48, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu4 = nn.PReLU(init=0.0) self.averagepooling2d2 = nn.AvgPool2d((2, 2), stride=1) self.conv2d5 = nn.Conv2d( in_channels=64, out_channels=64, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu5 = nn.PReLU(init=0.0) self.conv2d6 = nn.Conv2d( in_channels=64, out_channels=48, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu6 = nn.PReLU(init=0.0) self.conv2d7 = nn.Conv2d( in_channels=48, out_channels=64, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu7 = nn.PReLU(init=0.0) self.conv2d8 = nn.Conv2d( in_channels=240, out_channels=64, kernel_size=(1, 1), padding=0, bias=True, ) self.conv2d9 = nn.Conv2d( in_channels=240, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.conv2d10 = nn.Conv2d( in_channels=240, out_channels=64, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu8 = nn.PReLU(init=0.0) self.conv2d11 = nn.Conv2d( in_channels=64, out_channels=92, kernel_size=(5, 5), padding=2, bias=True, ) self.prelu9 = nn.PReLU(init=0.0) self.prelu10 = nn.PReLU(init=0.0) self.averagepooling2d3 = nn.AvgPool2d((2, 2), stride=1, padding=0) self.conv2d12 = nn.Conv2d( in_channels=240, out_channels=64, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu11 = nn.PReLU(init=0.0) self.conv2d13 = nn.Conv2d( in_channels=64, out_channels=92, kernel_size=(3, 3), padding=1, bias=True, ) self.prelu12 = nn.PReLU(init=0.0) self.prelu13 = nn.PReLU(init=0.0) self.averagepooling2d4 = nn.AvgPool2d((2, 2), stride=2, padding=0) self.conv2d14 = nn.Conv2d( in_channels=340, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu14 = nn.PReLU(init=0.0) self.conv2d15 = nn.Conv2d( in_channels=92, out_channels=128, kernel_size=(5, 5), padding=2, bias=True, ) self.prelu15 = nn.PReLU(init=0.0) self.conv2d16 = nn.Conv2d( in_channels=340, out_channels=128, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu16 = nn.PReLU(init=0.0) self.conv2d17 = nn.Conv2d( in_channels=340, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu17 = nn.PReLU(init=0.0) self.averagepooling2d5 = nn.AvgPool2d((2, 2), stride=1, padding=0) self.conv2d18 = nn.Conv2d( in_channels=340, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu18 = nn.PReLU(init=0.0) self.conv2d19 = nn.Conv2d( in_channels=92, out_channels=128, kernel_size=(3, 3), padding=1, bias=True, ) self.prelu19 = nn.PReLU(init=0.0) self.conv2d20 = nn.Conv2d( in_channels=476, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu20 = nn.PReLU(init=0.0) self.conv2d21 = nn.Conv2d( in_channels=92, out_channels=128, kernel_size=(3, 3), padding=1, bias=True, ) self.prelu21 = nn.PReLU(init=0.0) self.conv2d22 = nn.Conv2d( in_channels=476, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu22 = nn.PReLU(init=0.0) self.averagepooling2d6 = nn.AvgPool2d((2, 2), stride=1, padding=0) self.conv2d23 = nn.Conv2d( in_channels=476, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu23 = nn.PReLU(init=0.0) self.conv2d24 = nn.Conv2d( in_channels=92, out_channels=128, kernel_size=(5, 5), padding=2, bias=True, ) self.prelu24 = nn.PReLU(init=0.0) self.conv2d25 = nn.Conv2d( in_channels=476, out_channels=128, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu25 = nn.PReLU(init=0.0) self.averagepooling2d7 = nn.AvgPool2d((2, 2), stride=2, padding=0) self.conv2d26 = nn.Conv2d( in_channels=476, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu26 = nn.PReLU(init=0.0) self.averagepooling2d8 = nn.AvgPool2d((2, 2), stride=1, padding=0) self.conv2d27 = nn.Conv2d( in_channels=476, out_channels=92, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu27 = nn.PReLU(init=0.0) self.conv2d28 = nn.Conv2d( in_channels=92, out_channels=128, kernel_size=(3, 3), padding=1, bias=True, ) self.prelu28 = nn.PReLU(init=0.0) self.conv2d29 = nn.Conv2d( in_channels=476, out_channels=128, kernel_size=(1, 1), padding=0, bias=True, ) self.prelu29 = nn.PReLU(init=0.0) self.dense = nn.Linear(22273, 1096, bias=True) self.prelu30 = nn.PReLU(init=0.0) self.dense2 = nn.Linear(1096, 1096, bias=True) self.prelu31 = nn.PReLU(init=0.0) self.dense3 = nn.Linear(1096, 180, bias=True) def forward(self, galaxy_images_output, ebv_output): conv2d_output = self.conv2d(galaxy_images_output) prelu_output = self.prelu(conv2d_output) averagepooling2d_output = self.averagepooling2d(prelu_output) conv2d_output2 = self.conv2d2(averagepooling2d_output) prelu_output2 = self.prelu2(conv2d_output2) conv2d_output3 = self.conv2d3(prelu_output2) prelu_output3 = self.prelu3(conv2d_output3) conv2d_output4 = self.conv2d4(averagepooling2d_output) prelu_output4 = self.prelu4(conv2d_output4) prelu_output4 = self.asymmetric_pad(prelu_output4) averagepooling2d_output2 = self.averagepooling2d2(prelu_output4) conv2d_output5 = self.conv2d5(averagepooling2d_output) prelu_output5 = self.prelu5(conv2d_output5) conv2d_output6 = self.conv2d6(averagepooling2d_output) prelu_output6 = self.prelu6(conv2d_output6) conv2d_output7 = self.conv2d7(prelu_output6) prelu_output7 = self.prelu7(conv2d_output7) concatenate_output = torch.cat( (prelu_output5, prelu_output3, prelu_output7, averagepooling2d_output2), dim=1, ) conv2d_output8 = self.conv2d8(concatenate_output) conv2d_output9 = self.conv2d9(concatenate_output) conv2d_output10 = self.conv2d10(concatenate_output) prelu_output8 = self.prelu8(conv2d_output10) conv2d_output11 = self.conv2d11(prelu_output8) prelu_output9 = self.prelu9(conv2d_output11) prelu_output10 = self.prelu10(conv2d_output8) prelu_output10 = self.asymmetric_pad(prelu_output10) averagepooling2d_output3 = self.averagepooling2d3(prelu_output10) conv2d_output12 = self.conv2d12(concatenate_output) prelu_output11 = self.prelu11(conv2d_output12) conv2d_output13 = self.conv2d13(prelu_output11) prelu_output12 = self.prelu12(conv2d_output13) prelu_output13 = self.prelu13(conv2d_output9) concatenate_output2 = torch.cat( ( prelu_output13, prelu_output12, prelu_output9, averagepooling2d_output3, ), dim=1, ) averagepooling2d_output4 = self.averagepooling2d4(concatenate_output2) conv2d_output14 = self.conv2d14(averagepooling2d_output4) prelu_output14 = self.prelu14(conv2d_output14) conv2d_output15 = self.conv2d15(prelu_output14) prelu_output15 = self.prelu15(conv2d_output15) conv2d_output16 = self.conv2d16(averagepooling2d_output4) prelu_output16 = self.prelu16(conv2d_output16) conv2d_output17 = self.conv2d17(averagepooling2d_output4) prelu_output17 = self.prelu17(conv2d_output17) prelu_output17 = self.asymmetric_pad(prelu_output17) averagepooling2d_output5 = self.averagepooling2d5(prelu_output17) conv2d_output18 = self.conv2d18(averagepooling2d_output4) prelu_output18 = self.prelu18(conv2d_output18) conv2d_output19 = self.conv2d19(prelu_output18) prelu_output19 = self.prelu19(conv2d_output19) concatenate_output3 = torch.cat( ( prelu_output16, prelu_output19, prelu_output15, averagepooling2d_output5, ), dim=1, ) conv2d_output20 = self.conv2d20(concatenate_output3) prelu_output20 = self.prelu20(conv2d_output20) conv2d_output21 = self.conv2d21(prelu_output20) prelu_output21 = self.prelu21(conv2d_output21) conv2d_output22 = self.conv2d22(concatenate_output3) prelu_output22 = self.prelu22(conv2d_output22) prelu_output22 = self.asymmetric_pad(prelu_output22) averagepooling2d_output6 = self.averagepooling2d6(prelu_output22) conv2d_output23 = self.conv2d23(concatenate_output3) prelu_output23 = self.prelu23(conv2d_output23) conv2d_output24 = self.conv2d24(prelu_output23) prelu_output24 = self.prelu24(conv2d_output24) conv2d_output25 = self.conv2d25(concatenate_output3) prelu_output25 = self.prelu25(conv2d_output25) concatenate_output4 = torch.cat( ( prelu_output25, prelu_output21, prelu_output24, averagepooling2d_output6, ), dim=1, ) averagepooling2d_output7 = self.averagepooling2d7(concatenate_output4) conv2d_output26 = self.conv2d26(averagepooling2d_output7) prelu_output26 = self.prelu26(conv2d_output26) prelu_output26 = self.asymmetric_pad(prelu_output26) averagepooling2d_output8 = self.averagepooling2d8(prelu_output26) conv2d_output27 = self.conv2d27(averagepooling2d_output7) prelu_output27 = self.prelu27(conv2d_output27) conv2d_output28 = self.conv2d28(prelu_output27) prelu_output28 = self.prelu28(conv2d_output28) conv2d_output29 = self.conv2d29(averagepooling2d_output7) prelu_output29 = self.prelu29(conv2d_output29) concatenate_output5 = torch.cat( (prelu_output29, prelu_output28, averagepooling2d_output8), dim=1 ) flatten_output = torch.flatten(concatenate_output5) concatenate_output6 = torch.cat((flatten_output, ebv_output), dim=0) dense_output = self.dense(concatenate_output6) prelu_output30 = self.prelu30(dense_output) dense_output2 = self.dense2(prelu_output30) prelu_output31 = self.prelu31(dense_output2) dense_output3 = self.dense3(prelu_output31) return dense_output3 torch.manual_seed(0) model = InceptionBlocks() model.eval() return model
c70e4ea71eb38ae0d81b6985076a0c1588758df2
3,643,256
def get_trained_coefficients(X_train, y_train): """ Create and train a model based on the training_data_file data. Return the model, and the list of coefficients for the 'X_columns' variables in the regression. """ # TODO: create regression model and train. # The following codes are adapted from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html . model = LinearRegression(fit_intercept = False, normalize = False, copy_X = True, n_jobs = None, positive = False) model = model.fit(X_train, y_train, sample_weight = None) coefficients = model.coef_ return model, coefficients
bfafbd3370bc48fa64144842fa2400bbe629cf3e
3,643,257
def register(): """Handles the creation of a new user""" form = dds_web.forms.RegistrationForm() # Validate form - validators defined in form class if form.validate_on_submit(): # Create new user row by loading form data into schema try: new_user = user_schemas.NewUserSchema().load(form.data) except marshmallow.ValidationError as valerr: flask.current_app.logger.warning(valerr) raise except (sqlalchemy.exc.SQLAlchemyError, sqlalchemy.exc.IntegrityError) as sqlerr: raise ddserr.DatabaseError from sqlerr # Go to two factor authentication setup # TODO: Change this after email is introduced flask_login.login_user(new_user) return flask.redirect(flask.url_for("auth_blueprint.two_factor_setup")) # Go to registration form return flask.render_template("user/register.html", form=form)
ed0c65daf3dfaa7fce315eb510c59c171d9f16d0
3,643,258
def project_in_2D(K, camera_pose, mesh, resolution_px): """ Project all 3D triangle vertices in the mesh into the 2D image of given resolution Parameters ---------- K: ndarray Camera intrinsics matrix, 3x3 camera_pose: ndarray Camera pose (inverse of extrinsics), 4x4 mesh: ndarray Triangles to be projected in 2d, (Nx3x3) resolution_px: tuple Resolution of image in pixel Returns ------- coords_projected_2D: ndarray Triangle vertices projected in 2D and clipped to image resolution """ resolution_x_px, resolution_y_px = resolution_px # image resolution in pixels # Decompose camera pose into rotation and translation RT = camera_pose[:-1, :] # remove homogeneous row R = RT[:, :-1] # rotation matrix 3x3 T = RT[:, -1:] # translation vector 3x1 # Invert the camera pose matrix to get the camera extrinsics # Due to the particular matrix geometry we can avoid raw inversion Rc = tf.matrix_transpose(R) Tc = tf.matmul(-Rc, T) RT = tf.concat([Rc, Tc], axis=-1) # camera extrinsics # Correct reference system of extrinsics matrix # y is down: (to align to the actual pixel coordinates used in digital images) # right-handed: positive z look-at direction correction_factor = tf.constant(value=np.array([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]]), dtype=tf.float32) RT = tf.matmul(correction_factor, RT) # Compose whole camera projection matrix (3x4) P = tf.matmul(K, RT) mesh_flat = tf.reshape(mesh, shape=(-1, 3)) len_mesh_flat = tf.shape(mesh_flat)[0] # Create constant tensor to store 3D model coordinates coords_3d_h = tf.concat([mesh_flat, tf.ones(shape=(len_mesh_flat, 1), dtype=tf.float32)], axis=-1) # n_triangles, 4 coords_3d_h = tf.transpose(coords_3d_h, perm=[1, 0]) # 4, n_triangles # Project 3D vertices into 2D coords_projected_2D_h = tf.transpose(tf.matmul(P, coords_3d_h), perm=[1, 0]) # n_triangles, 3 coords_projected_2D = coords_projected_2D_h[:, :2] / (coords_projected_2D_h[:, 2:3] + 1e-8) # Clip indexes in image range coords_projected_2D_x_clip = tf.clip_by_value(coords_projected_2D[:, 0:0 + 1], clip_value_min=-1, clip_value_max=resolution_x_px) coords_projected_2D_y_clip = tf.clip_by_value(coords_projected_2D[:, 1:1 + 1], clip_value_min=-1, clip_value_max=resolution_y_px) return tf.concat([coords_projected_2D_x_clip, coords_projected_2D_y_clip], axis=-1)
9615d940fe083853e0bc179b79e1a19b7f9304bf
3,643,259
from typing import Any def forbidden(description: Any) -> APIGatewayProxyResult: """Return a response with FORBIDDEN status code.""" error = ForbiddenError(description) return _build_response(error, HTTPStatus.FORBIDDEN)
7b87e41081f1f7fa8f1e140a2c4d5ee597222193
3,643,260
from datetime import datetime def str_2_datetime(p_str, fmt="%Y-%m-%d %H:%M:%S"): """ 将字符串转换成日期 :param p_str: 原始时间字符串 :param fmt: 时间格式 :rtype: datetime.datetime """ # don't need to transform if isinstance(p_str, datetime.datetime): return p_str if not isinstance(p_str, str): raise TypeError("params `p_str` must be type of str") return datetime.datetime.strptime(p_str, fmt)
0fa86e0aebcf2c2ff53ceb26ae93ed762175ef03
3,643,261
def traitement(l): """Permet de retirer les cartes blanches inutiles""" while l[-1][1] == 'nan': del l[-1] return l
d21a7d493a35fc53195315da9b824b0ca3c8ba25
3,643,262
import os def save_audio(text: str, filename: str, dir: str): """ Converts text to audio and saves Notes ----- If the .mp3 file extension is missing in the filename, it will be added If a file with the same name exists, it will not save, only notify the user Returns _______ Path : str """ # Make the path to the folder path = '{0}/{1}'.format(dir, filename) if not filename.endswith('.mp3'): path += '.mp3' # Generates and saves audio file tts = gTTS(text=text, lang='en') # Only saves when file does not exist if os.path.isfile(path): print("File named {0} already exist, will not safe".format(path)) else: tts.save(path) return path
a8306dfb56cbb00f99ca3dc658991ba7e42fa021
3,643,263
import os import logging def build_report(test_controller): """Report on the test results.""" options = test_controller.options citest_log_dir = os.path.join(options.log_dir, 'citest_logs') if not os.path.exists(citest_log_dir): logging.warning('%s does not exist -- no citest logs.', citest_log_dir) return response = run_quick( 'cd {log_dir}' '; python -m citest.reporting.generate_html_report --index *.journal' .format(log_dir=citest_log_dir)) if response.returncode != 0: logging.error('Error building report: %s', response.stdout) logging.info('Logging information is in %s', options.log_dir) return test_controller.build_summary()
4cfe128cae57575c35983aad26cd0bf846617c3a
3,643,264
from datetime import datetime import bisect def group_frames_by_track_date(frames): """Classify frames by track and date.""" hits = {} grouped = {} dates = {} footprints = {} metadata = {} for h in frames: if h['_id'] in hits: continue fields = h['fields']['partial'][0] #print("h['_id'] : %s" %h['_id']) # get product url; prefer S3 prod_url = fields['urls'][0] if len(fields['urls']) > 1: for u in fields['urls']: if u.startswith('s3://'): prod_url = u break #print("prod_url : %s" %prod_url) hits[h['_id']] = "%s/%s" % (prod_url, fields['metadata']['archive_filename']) match = SLC_RE.search(h['_id']) #print("match : %s" %match) if not match: raise RuntimeError("Failed to recognize SLC ID %s." % h['_id']) day_dt = datetime(int(match.group('start_year')), int(match.group('start_month')), int(match.group('start_day')), 0, 0, 0) #print("day_dt : %s " %day_dt) bisect.insort(grouped.setdefault(fields['metadata']['trackNumber'], {}) \ .setdefault(day_dt, []), h['_id']) slc_start_dt = datetime(int(match.group('start_year')), int(match.group('start_month')), int(match.group('start_day')), int(match.group('start_hour')), int(match.group('start_min')), int(match.group('start_sec'))) #print("slc_start_dt : %s" %slc_start_dt) slc_end_dt = datetime(int(match.group('end_year')), int(match.group('end_month')), int(match.group('end_day')), int(match.group('end_hour')), int(match.group('end_min')), int(match.group('end_sec'))) #print("slc_end_dt : %s" %slc_end_dt) dates[h['_id']] = [ slc_start_dt, slc_end_dt ] footprints[h['_id']] = fields['location'] metadata[h['_id']] = fields['metadata'] #break #print("grouped : %s" %grouped) logger.info("grouped keys : %s" %grouped.keys()) return { "hits": hits, "grouped": grouped, "dates": dates, "footprints": footprints, "metadata": metadata, }
327a6357c5ce8fc9a54d27107e2cb43424dd7630
3,643,265
def generate_violin_figure(dataframe, columns, ytitle, legend_title=None): """ Plot 2 columns of data as violin plot, grouped by block. :param dataframe: Variance of projections. :type dataframe: pandas.DataFrame :param columns: 2 columns for the negative and the positive side of the violins. :type columns: list :param ytitle: Title of Y-axis. What is being plotted? What are the units of the data? :type ytitle: str :param legend_title: What's the common denominator of the columns? :type legend_title: str :return: Figure object of graph. :rtype: plotly.graph_objs.Figure """ legend = go.layout.Legend( xanchor='right', yanchor='top', orientation='v', title=legend_title, ) fig = go.Figure() fig.layout.update(xaxis_title='Task', yaxis_title=ytitle, legend=legend, margin=theme['graph_margins']) if dataframe.empty: return fig # Make sure we plot only 2 columns, left and right. columns = columns[:2] sides = ('negative', 'positive') grouped = dataframe.groupby('task') for name, group_df in grouped: for i, col in enumerate(columns): fig.add_trace(go.Violin(x=group_df['task'].map(task_order), y=group_df[col], legendgroup=col, scalegroup=col, name=col, side=sides[i], pointpos=i - 0.5, line_color=theme[col], text=[f"{col}<br />participant: {j['user']}<br />" f"block: {j['block']}<br />condition: {j['condition']}" for _, j in group_df.iterrows()], hoverinfo='y+text', spanmode='hard', showlegend=bool(name == dataframe['task'].unique()[0]), # Only 1 legend. ) ) # update characteristics shared by all traces fig.update_traces(meanline={'visible': True, 'color': 'dimgray'}, box={'visible': True, 'width': 0.5, 'line_color': 'dimgray'}, points='all', # Show all points. jitter=0.1, # Add some jitter on points for better visibility. scalemode='count') # Scale violin plot area with total count. fig.update_layout(violingap=0, violingroupgap=0, violinmode='overlay', hovermode='closest') fig.update_xaxes(tickvals=task_order[dataframe['task'].unique()], ticktext=task_order[dataframe['task'].unique()].index) fig.update_yaxes(zeroline=True, zerolinewidth=2, zerolinecolor='LightPink') return fig
23baa052cf835ba55a43ffa496d606cccadb0c5b
3,643,266
def measure_single(state, bit): """ Method one qubit one time :param state: :param bit: :return: """ n = len(state.shape) axis = list(range(n)) axis.remove(n - 1 - bit) probs = np.sum(np.abs(state) ** 2, axis=tuple(axis)) rnd = np.random.rand() # measure single bit if rnd < probs[0]: out = 0 prob = probs[0] else: out = 1 prob = probs[1] # collapse single bit if out == 0: matrix = np.array([[1.0 / np.sqrt(prob), 0.0], [0.0, 0.0]], complex) else: matrix = np.array([[0.0, 0.0], [0.0, 1.0 / np.sqrt(prob)]], complex) state = transfer_state(state, matrix, [bit]) return out, state
ff2c18039e6900febaa731f9a3db9f16b797e18b
3,643,267
def anchor_to_offset(anchors, ground_truth): """Encodes the anchor regression predictions with the ground truth. Args: anchors: A numpy array of shape (N, 6) representing the generated anchors. ground_truth: A numpy array of shape (6,) containing the label boxes in the anchor format. Returns: anchor_offsets: A numpy array of shape (N, 6) encoded/normalized with the ground-truth, representing the offsets. """ fc.check_anchor_format(anchors) anchors = np.asarray(anchors).reshape(-1, 6) ground_truth = np.reshape(ground_truth, (6,)) # t_x_gt = (x_gt - x_anch)/dim_x_anch t_x_gt = (ground_truth[0] - anchors[:, 0]) / anchors[:, 3] # t_y_gt = (y_gt - y_anch)/dim_y_anch t_y_gt = (ground_truth[1] - anchors[:, 1]) / anchors[:, 4] # t_z_gt = (z_gt - z_anch)/dim_z_anch t_z_gt = (ground_truth[2] - anchors[:, 2]) / anchors[:, 5] # t_dx_gt = log(dim_x_gt/dim_x_anch) t_dx_gt = np.log(ground_truth[3] / anchors[:, 3]) # t_dy_gt = log(dim_y_gt/dim_y_anch) t_dy_gt = np.log(ground_truth[4] / anchors[:, 4]) # t_dz_gt = log(dim_z_gt/dim_z_anch) t_dz_gt = np.log(ground_truth[5] / anchors[:, 5]) anchor_offsets = np.stack((t_x_gt, t_y_gt, t_z_gt, t_dx_gt, t_dy_gt, t_dz_gt), axis=1) return anchor_offsets
3aced37f0838d2ab4f90ce0e212747111fc87876
3,643,268
def horizontal_flip(img_array): """Flip image horizontally.""" img_array = cv2.flip(img_array, 1) return img_array
7f53442b072127e5c02253aefabcc8e7bd422504
3,643,269
def chunker(file_path): """ Read a block of lines from a file :param file_path: :return: """ words = [] with open(file_path, 'r') as file_object: for word in file_object: word = word.strip() if word: words.append(word) return words
a60b6f3cc7003955ae6acd8ac5e74574cdbd5976
3,643,270
import subprocess def c2c_dist(commande,octree_lvl=0): """ Commande CC cloud2cloud distance """ if octree_lvl==0: commande+=" -C2C_DIST -split_xyz -save_clouds" else: commande+=" -C2C_DIST -split_xyz -octree_level "+str(octree_lvl)+" -save_clouds" subprocess.call(commande) return True
723082644cb6d8b24cc27b634a3bca2b8caabe4a
3,643,271
def legalize_names(varnames): """returns a dictionary for conversion of variable names to legal parameter names. """ var_map = {} for var in varnames: new_name = var.replace("_", "__").replace("$", "_").replace(".", "_") assert new_name not in var_map var_map[var] = new_name return var_map
ad8e9ef3394d4ac3cfa80198f488c1834bd227fc
3,643,272
def _IsUidUsed(uid): """Check if there is any process in the system running with the given user-id @type uid: integer @param uid: the user-id to be checked. """ pgrep_command = [constants.PGREP, "-u", uid] result = utils.RunCmd(pgrep_command) if result.exit_code == 0: return True elif result.exit_code == 1: return False else: raise errors.CommandError("Running pgrep failed. exit code: %s" % result.exit_code)
8a4e529a98298ec4c2d9df30c6fc28a91c124edd
3,643,273
def mobilenetv3_large(data_channel): """ Constructs a MobileNetV3-Large model """ cfgs = [ # k, t, c, SE, NL, s [3, 16, 16, 0, 0, 1], [3, 64, 24, 0, 0, 2], [3, 72, 24, 0, 0, 1], [5, 72, 40, 1, 0, 2], [5, 120, 40, 1, 0, 1], [5, 120, 40, 1, 0, 1], [3, 240, 80, 0, 1, 2], [3, 200, 80, 0, 1, 1], [3, 184, 80, 0, 1, 1], [3, 184, 80, 0, 1, 1], [3, 480, 112, 1, 1, 1], [3, 672, 112, 1, 1, 1], [5, 672, 160, 1, 1, 1], [5, 672, 160, 1, 1, 2], [5, 960, 160, 1, 1, 1] ] model = MobileNetV3(cfgs, mode='large', data_channel=data_channel) model.set_name(BackboneName.MobileNetv3_large) return model
ec14d6628bf9e69f05a79f4207a32e00fbae1b8b
3,643,274
def ravel_lom_dims(tensor, name='ravel_lom_dims'): """Assumes LOM is in the last 3 dims.""" return tf.reshape(tensor, tensor.shape_as_list()[:-3] + [-1], name=name)
f0f56c4f747b4a40e63bddbb7d6dd3452044151f
3,643,275
def run_cv(cfg, df, horiz, freq, cv_start, cv_stride=1, dc_dict=None, metric="smape"): """Run a sliding-window temporal cross-validation (aka backtest) using a given forecasting function (`func`). """ y = df["demand"].values # allow only 1D time-series arrays assert(y.ndim == 1) params, func = cfg if len(y) == 1: y = np.pad(y, [1, 0], constant_values=1) # the cross-val horizon length may shrink depending on the length of # historical data; shrink the horizon if it is >= the timeseries if horiz >= len(y): cv_horiz = len(y) - 1 else: cv_horiz = horiz if len(df) == len(y): ts = df.index else: assert len(y) > len(df) diff = len(y) - len(df) ts = np.append( pd.date_range(end=df.index[0], freq=freq, periods=diff+1), df.index) # sliding window horizon actuals Y = sliding_window_view(y[cv_start:], cv_horiz)[::cv_stride,:] Ycv = [] # | y | horiz |..............| # | y | horiz |.............| # | y | horiz |............| # :: # :: # | y | horiz | for i in range(cv_start, len(y)-cv_horiz+1, cv_stride): yp = func(y[:i], cv_horiz, freq, dc=dc_dict[i]) Ycv.append(yp) # keep the backtest forecasts at each cv_stride Ycv = np.vstack(Ycv) # keep the backtest forecast time indices Yts = sliding_window_view(ts[cv_start:], cv_horiz)[::cv_stride,:] assert Yts.shape == Y.shape assert Yts.shape == Ycv.shape assert not np.any(np.isnan(Ycv)) assert Ycv.shape == Y.shape # calc. error metrics df_results = calc_metrics(Y, Ycv, metric) df_results.insert(0, "model_type", params.split("|")[0]) df_results.insert(1, "params", params) # store the final backtest window actuals and predictions df_results["y_cv"] = [Y] df_results["yp_cv"] = [Ycv] df_results["ts_cv"] = [Yts] # generate the final forecast (1-dim) df_results["yhat"] = [func(y, horiz, freq, dc=dc_dict[len(y)-1])] return df_results
cb95657aeaa4cb74c6252d46029db88c6be18ddb
3,643,276
import pyarrow as pa def ST_Area(geos): """ Calculate the 2D Cartesian (planar) area of geometry. :type geos: Series(dtype: object) :param geos: Geometries in WKB form. :rtype: Series(dtype: float64) :return: The value that represents the area of geometry. :example: >>> import pandas >>> import arctern >>> data = ["POLYGON((0 0,1 0,1 1,0 1,0 0))", "POLYGON((0 0,0 8,8 8,8 0,0 0))"] >>> data = pandas.Series(data) >>> rst = arctern.ST_Area(arctern.ST_GeomFromText(data1)) >>> print(rst) 0 1.0 1 64.0 dtype: float64 """ arr_geos = pa.array(geos, type='binary') return arctern_caller(arctern_core_.ST_Area, arr_geos)
ae69ec90c9e5c54c5f6afa468d6cb1212e64eaf4
3,643,277
import subprocess def check_conda_packages(edit_mode=False, packages=None): """Check conda inslalled packages information filtering for packages. It is Python/Conda environment dependent. Returns: dict(str): Dictionary filled with respective information. """ info = {'CONDA PACKAGES': {}} all_packages = '' try: if not edit_mode: all_packages = _run_subprocess_split(['conda', 'list', '--no-pip', '--export']) else: all_packages = _run_subprocess_split(['conda', 'list', '--no-pip', '--export', '--develop']) except (subprocess.CalledProcessError, FileNotFoundError2and3): info['CONDA PACKAGES']['Status'] = 'Conda not available!' else: # split lines and remove head line_packages = all_packages.split("\n")[3:] # clean spaces, create a list and insert in the dictionary for line in line_packages: splitted = line.split('=') cleaned = ' '.join(splitted).split() info['CONDA PACKAGES'][cleaned[0]] = cleaned[1] if packages: info['CONDA PACKAGES'] = _filter(info['CONDA PACKAGES'], packages) return info
0a55356b71e692068e85b05902a1f9c2d495fa3f
3,643,278
from operator import matmul def P_from_K_R_t(K, R, t): """Returns the 3x4 projection matrix P = K [R | t].""" K = K.astype(np.float64) R = R.astype(np.float64) t = t.astype(np.float64) return matmul(K, np.column_stack((R, t)))
0304ea513df81a67e653ba1e3516c39ec38f94ad
3,643,279
from typing import List from typing import Union from typing import Callable from typing import Type from typing import OrderedDict from typing import Any def multi_value_precondition(parameter_selector: List[Union[int, str]], predicate: Callable[..., bool], exception_factory: Union[Type[BaseException], Callable[[OrderedDict], BaseException]] =PreconditionViolatedError) -> Any: """ This is a factory that will create a decorator for a method based on a parameter selector and a predicate. The decorator will cause the method to raise an Exception (PreConditionViolatedError) if the selected parameters do not satisfy the predicate. :param parameter_selector: a selector that indicates which parameters of the method should be checked. This may be ints for positional parameters or strings for keyword parameters. The parameter_selector will indicate some parameters, these will be passed (positionally in the listed order) to the predicate. :param predicate: a predicate that evaluates parameters (function that returns True or False) :param exception_factory: Either an Exception class or a Callable that can create the desired Exception (defaults to PreconditionViolatedError) :return: a decorator based on the passed parameter selector and predicate """ def decorator(decorated_function): """ This decorator adds a check to this function that one of its parameters matches a predicate :param decorated_function: The function to be decorated :return: The decorated function """ _signature = signature(decorated_function) _verify_decorator_correctness(_signature, parameter_selector, exception_factory) @wraps(decorated_function) def function_with_condition(*args, **kwargs): """ a decorated function that checks parameter values of the original match a given predicate. If the parameters do not match, the original function is never called. :param args: The positional arguments for the original function :param kwargs: The keyword arguments for the original function :return: The result of the function if the parameters matched the predicate :raises: PreConditionViolatedError if the parameters of the function do not match the predicate """ arguments = _get_bound_arguments(_signature, *args, **kwargs) selected_parameters = _get_key_value_pairs(arguments, parameter_selector) if not predicate(*selected_parameters.values()): if isinstance(exception_factory, type) and issubclass(exception_factory, BaseException): parameter_descriptions = map(lambda key_value: _parameter_description(*key_value), selected_parameters.items()) descriptions = ', '.join(parameter_descriptions).capitalize() message = f"{descriptions} failed to pass precondition {predicate.__name__}" raise exception_factory(message) elif isinstance(exception_factory, FunctionType): raise exception_factory(selected_parameters) else: raise MalformedDecoratorError(f'Incorrect type for exception_factory: {type(exception_factory)}') return decorated_function(*args, **kwargs) return function_with_condition return decorator
97632d8e77858e3d854a8f610fae772a8a6c3c5b
3,643,280
from operator import itemgetter import json def activity_list_retrieve_view(request): # activityListRetrieve """ Retrieve activity so we can populate the news page :param request: :return: """ status = '' activity_list = [] activity_manager = ActivityManager() activity_notice_seed_list = [] activity_post_list = [] voter_device_id = get_voter_device_id(request) # We standardize how we take in the voter_device_id voter_friend_we_vote_id_list = [] voter_we_vote_id = '' activity_tidbit_we_vote_id_list = request.GET.getlist('activity_tidbit_we_vote_id_list[]') activity_tidbit_we_vote_id_list = list(filter(None, activity_tidbit_we_vote_id_list)) if positive_value_exists(voter_device_id): voter_we_vote_id = fetch_voter_we_vote_id_from_voter_device_link(voter_device_id) if not positive_value_exists(voter_we_vote_id): status += "RETRIEVE_ACTIVITY_LIST_MISSING_VOTER_WE_VOTE_ID " json_data = { 'status': status, 'success': False, 'activity_list': activity_list, } return HttpResponse(json.dumps(json_data), content_type='application/json') # Retrieve the NOTICE_FRIEND_ENDORSEMENTS_SEED and the ActivityPost entries below results = activity_manager.retrieve_activity_notice_seed_list_for_recipient( recipient_voter_we_vote_id=voter_we_vote_id, kind_of_seed_list=[NOTICE_FRIEND_ENDORSEMENTS_SEED], limit_to_activity_tidbit_we_vote_id_list=activity_tidbit_we_vote_id_list) if results['success']: activity_notice_seed_list = results['activity_notice_seed_list'] voter_friend_we_vote_id_list = results['voter_friend_we_vote_id_list'] else: status += results['status'] status += "RETRIEVE_ACTIVITY_LIST_FAILED " for activity_notice_seed in activity_notice_seed_list: new_positions_entered_count = 0 position_name_list = [] position_we_vote_id_list = [] # In this scenario we want to return both friends and public values # Position names if positive_value_exists(activity_notice_seed.position_names_for_friends_serialized): position_name_list += json.loads(activity_notice_seed.position_names_for_friends_serialized) if positive_value_exists(activity_notice_seed.position_names_for_public_serialized): position_name_list += json.loads(activity_notice_seed.position_names_for_public_serialized) # Position we_vote_ids if positive_value_exists(activity_notice_seed.position_we_vote_ids_for_friends_serialized): position_we_vote_id_list += json.loads(activity_notice_seed.position_we_vote_ids_for_friends_serialized) if positive_value_exists(activity_notice_seed.position_we_vote_ids_for_public_serialized): position_we_vote_id_list += json.loads(activity_notice_seed.position_we_vote_ids_for_public_serialized) new_positions_entered_count += len(position_we_vote_id_list) if not positive_value_exists(activity_notice_seed.we_vote_id): try: activity_notice_seed.save() except Exception as e: status += "COULD_NOT_UPDATE_SEED_WE_VOTE_ID: " + str(e) + ' ' activity_notice_seed_dict = { 'date_created': activity_notice_seed.date_of_notice.strftime('%Y-%m-%d %H:%M:%S'), 'date_last_changed': activity_notice_seed.date_last_changed.strftime('%Y-%m-%d %H:%M:%S'), 'date_of_notice': activity_notice_seed.date_of_notice.strftime('%Y-%m-%d %H:%M:%S'), 'id': activity_notice_seed.id, # We normalize to generate activityTidbitKey 'activity_notice_seed_id': activity_notice_seed.id, 'kind_of_activity': "ACTIVITY_NOTICE_SEED", 'kind_of_seed': activity_notice_seed.kind_of_seed, 'new_positions_entered_count': new_positions_entered_count, 'position_name_list': position_name_list, 'position_we_vote_id_list': position_we_vote_id_list, 'speaker_name': activity_notice_seed.speaker_name, 'speaker_organization_we_vote_id': activity_notice_seed.speaker_organization_we_vote_id, 'speaker_voter_we_vote_id': activity_notice_seed.speaker_voter_we_vote_id, 'speaker_profile_image_url_medium': activity_notice_seed.speaker_profile_image_url_medium, 'speaker_profile_image_url_tiny': activity_notice_seed.speaker_profile_image_url_tiny, 'speaker_twitter_handle': activity_notice_seed.speaker_twitter_handle, 'speaker_twitter_followers_count': activity_notice_seed.speaker_twitter_followers_count, 'we_vote_id': activity_notice_seed.we_vote_id, } activity_list.append(activity_notice_seed_dict) # #################################################### # Retrieve entries directly in the ActivityPost table results = activity_manager.retrieve_activity_post_list_for_recipient( recipient_voter_we_vote_id=voter_we_vote_id, limit_to_activity_tidbit_we_vote_id_list=activity_tidbit_we_vote_id_list, voter_friend_we_vote_id_list=voter_friend_we_vote_id_list) if results['success']: activity_post_list = results['activity_post_list'] else: status += results['status'] status += "RETRIEVE_ACTIVITY_POST_LIST_FAILED " for activity_post in activity_post_list: date_created_string = '' if activity_post.date_created: date_created_string = activity_post.date_created.strftime('%Y-%m-%d %H:%M:%S') if not positive_value_exists(activity_post.we_vote_id): try: activity_post.save() except Exception as e: status += "COULD_NOT_UPDATE_POST_WE_VOTE_ID: " + str(e) + ' ' activity_post_dict = { 'date_created': date_created_string, 'date_last_changed': activity_post.date_last_changed.strftime('%Y-%m-%d %H:%M:%S'), 'date_of_notice': date_created_string, 'id': activity_post.id, # We normalize to generate activityTidbitKey 'activity_post_id': activity_post.id, 'kind_of_activity': 'ACTIVITY_POST', 'kind_of_seed': '', 'new_positions_entered_count': 0, 'position_name_list': [], 'position_we_vote_id_list': [], 'speaker_name': activity_post.speaker_name, 'speaker_organization_we_vote_id': activity_post.speaker_organization_we_vote_id, 'speaker_voter_we_vote_id': activity_post.speaker_voter_we_vote_id, 'speaker_profile_image_url_medium': activity_post.speaker_profile_image_url_medium, 'speaker_profile_image_url_tiny': activity_post.speaker_profile_image_url_tiny, 'speaker_twitter_handle': activity_post.speaker_twitter_handle, 'speaker_twitter_followers_count': activity_post.speaker_twitter_followers_count, 'statement_text': activity_post.statement_text, 'visibility_is_public': activity_post.visibility_is_public, 'we_vote_id': activity_post.we_vote_id, } activity_list.append(activity_post_dict) # Now cycle through these activities and retrieve all related comments activity_list_with_comments = [] for activity_tidbit_dict in activity_list: results = activity_manager.retrieve_activity_comment_list( parent_we_vote_id=activity_tidbit_dict['we_vote_id']) activity_comment_list = [] if results['success']: activity_comment_object_list = results['activity_comment_list'] for activity_comment in activity_comment_object_list: # Retrieve the Child comments child_results = activity_manager.retrieve_activity_comment_list( parent_comment_we_vote_id=activity_comment.we_vote_id) child_comment_list = [] if results['success']: child_comment_object_list = child_results['activity_comment_list'] for child_comment in child_comment_object_list: child_comment_dict = { 'date_created': child_comment.date_created.strftime('%Y-%m-%d %H:%M:%S'), 'date_last_changed': child_comment.date_last_changed.strftime('%Y-%m-%d %H:%M:%S'), 'commenter_name': child_comment.commenter_name, 'commenter_organization_we_vote_id': child_comment.commenter_organization_we_vote_id, 'commenter_voter_we_vote_id': child_comment.commenter_voter_we_vote_id, 'commenter_profile_image_url_medium': child_comment.commenter_profile_image_url_medium, 'commenter_profile_image_url_tiny': child_comment.commenter_profile_image_url_tiny, 'commenter_twitter_handle': child_comment.commenter_twitter_handle, 'commenter_twitter_followers_count': child_comment.commenter_twitter_followers_count, 'parent_we_vote_id': child_comment.parent_we_vote_id, 'parent_comment_we_vote_id': child_comment.parent_comment_we_vote_id, 'statement_text': child_comment.statement_text, 'visibility_is_public': child_comment.visibility_is_public, 'we_vote_id': child_comment.we_vote_id, } child_comment_list.append(child_comment_dict) activity_comment_dict = { 'comment_list': child_comment_list, 'date_created': activity_comment.date_created.strftime('%Y-%m-%d %H:%M:%S'), 'date_last_changed': activity_comment.date_last_changed.strftime('%Y-%m-%d %H:%M:%S'), 'commenter_name': activity_comment.commenter_name, 'commenter_organization_we_vote_id': activity_comment.commenter_organization_we_vote_id, 'commenter_voter_we_vote_id': activity_comment.commenter_voter_we_vote_id, 'commenter_profile_image_url_medium': activity_comment.commenter_profile_image_url_medium, 'commenter_profile_image_url_tiny': activity_comment.commenter_profile_image_url_tiny, 'commenter_twitter_handle': activity_comment.commenter_twitter_handle, 'commenter_twitter_followers_count': activity_comment.commenter_twitter_followers_count, 'parent_we_vote_id': activity_comment.parent_we_vote_id, 'parent_comment_we_vote_id': activity_comment.parent_comment_we_vote_id, 'statement_text': activity_comment.statement_text, 'visibility_is_public': activity_comment.visibility_is_public, 'we_vote_id': activity_comment.we_vote_id, } activity_comment_list.append(activity_comment_dict) activity_tidbit_dict['activity_comment_list'] = activity_comment_list activity_list_with_comments.append(activity_tidbit_dict) # Order entries in the activity_list by "date_created" activity_list_ordered = sorted(activity_list_with_comments, key=itemgetter('date_created'), reverse=True) json_data = { 'status': status, 'success': True, 'activity_list': activity_list_ordered, } return HttpResponse(json.dumps(json_data), content_type='application/json')
4ab7d7e2cd5c0a3c812b6ec1729efda19fb87ced
3,643,281
import argparse from textwrap import dedent def arg_parser() -> argparse.Namespace: """ Reads command line arguments. :returns: Values of accepted command line arguments. """ _parser = argparse.ArgumentParser( description=dedent( """Find all recipes in a directory, build them and push all their images to an sregistry. Recipes are identified by the suffix ".recipe". The image name will be taken from the recipe name using everything from the first character till the first "." occurrence. The version will be taken from the recipe name using everything from the first "." till the suffix ".recipe". The collection name will be taken from the recipes parent folder. """ ) ) _parser.add_argument( '--path', '-p', type=str, help="Base path to search recipes.", required=True ) _parser.add_argument( '--image_type', '-i', type=str, help="The type of image to be build." ) _parser.add_argument( '--build_log_dir', '-b', type=str, help="The directory, that should contain the build logs. Will be created if not existent." ) return _parser.parse_args()
6bf2f99cbab0674fb5b127b58cdb0e28ad87ef0a
3,643,282
import http from typing import Optional def edit_action( request: http.HttpRequest, pk: int, workflow: Optional[models.Workflow] = None, action: Optional[models.Action] = None, ) -> http.HttpResponse: """Invoke the specific edit view. :param request: Request object :param pk: Action PK :param workflow: Workflow being processed, :param action: Action being edited (set by the decorator) :return: HTML response """ del pk return services.ACTION_PROCESS_FACTORY.process_edit_request( request, workflow, action)
43f128dfe2abd47c1c6cf78d667343d9086aeb98
3,643,283
from typing import Any from typing import Set from typing import KeysView def to_set(data: Any) -> Set[Any]: """Convert data to a set. A single None value will be converted to the empty set. ```python x = fe.util.to_set(None) # set() x = fe.util.to_set([None]) # {None} x = fe.util.to_set(7) # {7} x = fe.util.to_set([7, 8]) # {7,8} x = fe.util.to_set({7}) # {7} x = fe.util.to_set((7)) # {7} ``` Args: data: Input data, within or without a python container. The `data` must be hashable. Returns: The input `data` but inside a set instead of whatever other container type used to hold it. """ if data is None: return set() if not isinstance(data, set): if isinstance(data, (tuple, list, KeysView)): data = set(data) else: data = {data} return data
df2649d0b7c7c2323984edd3eeea76eff0eab4d2
3,643,284
def Pei92(wavelength, Av, z, Rv=-99.0, ext_law="smc", Xcut=False): """ Extinction laws from Pei 1992 article Parameters ---------- wavelength: `array` or `float` wavlength in angstroms Av: `float` amount of extinction in the V band z: `float` redshift Rv: `float`, optional, default: -99. selective attenuation Rv = Av / E(B-V) if 'd-99.' set values by default from article if a float is given, use this value instead ext_law: `str` type of extinction law to use. Choices: mw, lmc, smc Xcut: `boolean`, optional, default: False Whether to set attenuation to 0 for wavelength below 700 angstrom Useful when coupling with X-ray data Returns ------- [Alambda_over_Av, Trans_dust] Alambda_over_Av : `array` atteanuation as a function of wavelength normalise by Av (attenuation in V band) Trans_dust: `array` transmission through dust as a function of wavelength """ wvl = wavelength * 1e-4 / (1 + z) if ext_law.lower() == "smc": if Rv == -99.: Rv = 2.93 a = [185, 27, 0.005, 0.010, 0.012, 0.03] wvl_ = [0.042, 0.08, 0.22, 9.7, 18, 25] b = [90, 5.50, -1.95, -1.95, -1.80, 0.0] n = [2.0, 4.0, 2.0, 2.0, 2.0, 2.0] elif ext_law.lower() == "lmc": if Rv == -99.: Rv = 3.16 a = [175, 19, 0.023, 0.005, 0.006, 0.02] wvl_ = [0.046, 0.08, 0.22, 9.7, 18, 25] b = [90, 5.5, -1.95, -1.95, -1.8, 0.0] n = [2.0, 4.5, 2.0, 2.0, 2.0, 2.0] elif ext_law.lower() == "mw": if Rv == -99.: Rv = 3.08 a = [165, 14, 0.045, 0.002, 0.002, 0.012] wvl_ = [0.046, 0.08, 0.22, 9.7, 18, 25] b = [90, 4.0, -1.95, -1.95, -1.8, 0.0] n = [2.0, 6.5, 2.0, 2.0, 2.0, 2.0] sums = np.zeros(len(wvl)) for i in range(len(a)): sums += a[i] / ((wvl / wvl_[i]) ** n[i] + (wvl_[i] / wvl) ** n[i] + b[i]) # Need to check whether extrapolation is needed # outside the range defined in Pei92 # convert Alambda_over_Ab to Alambda_over_Av Alambda_over_Av = (1.0 / Rv + 1.0) * sums # Applied a cut for wavelength below 700 angstrom # Useful when coupling with Xray data if Xcut: w = np.where(wvl < 0.07) Alambda_over_Av[w] = 0 # Return optical depth due to dust reddening in funtion of wavelength Tau_dust = Av * Alambda_over_Av / 1.086 Trans_dust = np.exp(-Tau_dust) Trans_dust[Trans_dust < 0] = 0 Trans_dust[Trans_dust > 1] = 1 return [Alambda_over_Av, Trans_dust]
9b0b9690f548319ffed7fcc964dc0e651828371f
3,643,285
import warnings def plot_profile_avg_with_bounds( data, ax=None, confint_alpha=0.05, label=None, xs=None, axis=0, bounds: str = "ci", **kwargs, ): """ TODO: Documentation Parameters ---------- data ax confint_alpha label kwargs Returns ------- """ with np.errstate(invalid="ignore"): mean = np.nanmean(data, axis=0) sem = stats.sem(data) bounds_map = { "ci": DescrStatsW(data).tconfint_mean(alpha=confint_alpha), "sem": (mean - sem, mean + sem), } if ax is None: ax = plt.gca() if xs is None: try: # if the data is an xr.DataArray xs = data.position except ValueError: # if it's a numpy array xs = np.arange(len(data)) with warnings.catch_warnings(): warnings.simplefilter("ignore") ax.plot(xs, np.nanmean(data, axis=axis), label=label, **kwargs) lower, upper = bounds_map[bounds] kwargs.pop("linestyle", None) kwargs.pop("linewidth", None) kwargs.pop("lw", None) ax.fill_between(xs, lower, upper, alpha=0.3, lw=0, **kwargs) return ax
cbce13474608bd710031698120b9ab01c78facc4
3,643,286
import mimetypes def get_mimetype(path): """ Get (guess) the mimetype of a file. """ mimetype, _ = mimetypes.guess_type(path) return mimetype
7677259fcdf052f9647fe41e4b4cb71d83ea50cd
3,643,287
import select async def read_clients_epics( client_id: int = None, session: Session = Depends(get_session) ): """Get epics from a client_id""" statement = ( select(Client.id, Client.name, Epic.name) .select_from(Client) .join(Epic) .where(Client.id == client_id) ) results = session.exec(statement).all() return results
e5af5d2776a941cde83ea341143732bcdb67da2a
3,643,288
def id_number_checksum(gd): """ Calculates a Swedish ID number checksum, using the Luhn algorithm """ n = s = 0 for c in (gd['year'] + gd['month'] + gd['day'] + gd['serial']): # Letter? It's an interimspersonnummer and we substitute the letter # with 1. if c.isalpha(): c = 1 tmp = ((n % 2) and 1 or 2) * int(c) if tmp > 9: tmp = sum([int(i) for i in str(tmp)]) s += tmp n += 1 if (s % 10) == 0: return 0 return (((s // 10) + 1) * 10) - s
bbf0a9fa7f6ed2c2bfc414173fd2ac9e9c1d8835
3,643,289
def date_loss_l1(pred, target_min, target_max, mask): """L1 loss function for dates.""" pred = jnp.squeeze(pred, 0) loss = 0. loss += jnp.abs(pred - target_min) * jnp.less(pred, target_min).astype( pred.dtype) loss += jnp.abs(pred - target_max) * jnp.greater(pred, target_max).astype( pred.dtype) # Mask loss loss = jnp.multiply(loss, mask.astype(loss.dtype)) return loss
12f0d5a1f7efbb8d51501c4d3fe41d192528010d
3,643,290
def new_single_genres(genres, val): """Takes the genres list and returns only one genre back if multiple genres are present Also has the parameter val with values "high" and "low" High picks the genres belonging to the existing genres with the highest examples count Low picks the genres belonging to the existing genres with the least examples count""" genres_file = "fma_metadata/genres.csv" reference_genres = pd.read_csv(genres_file) reference_tracks = reference_genres.iloc[:, 1] reference_genres = reference_genres.iloc[:, 0] for index, genre in genres.items(): split = genre.split(",") if len(split) == 1: new_genre = split[0] new_genre = new_genre.strip("[]") genres[index] = int(new_genre) elif len(split) > 1: new_genre = [int(item.strip(" [ ] ")) for item in split] count = {} for indices, value in reference_genres.items(): if value in new_genre: count[value] = reference_tracks[indices] counts = {k: v for k, v in sorted(count.items(), key=lambda item: item[1])} if val == "high": genres[index] = int(list(counts.keys())[-1]) elif val == "low": genres[index] = int(list(counts.keys())[0]) print("The shape of genres after single is:{}".format(genres.shape)) genres = genres.astype('int') return genres
0cabcb93548007b3cd87dc40740da5d0f4614867
3,643,291
import sys import unittest def run(funcs_to_test=None, tests_to_run=None, verbosity=2): """ run testing routine args: - funcs_to_test: dict: {lang_name <str>: lang_func <callable>} of language processing modules to test if None `corpus.functions` passed - tests_to_run: list[<str>]: list of tests to run if None `TESTS_TO_RUN` passed - verbosity: int: verbosity mode return: List[str]: list of failing langs """ failing_langs = [] funcs_to_test = FUNCS_TO_TEST if funcs_to_test is None else funcs_to_test tests_to_run = TESTS_TO_RUN if tests_to_run is None else tests_to_run stream = sys.stderr log_header = '\n%s\nTESTING: %s_corpus.py\n%s\n\n' runner = unittest.TextTestRunner(stream, verbosity=verbosity) for lang, func in funcs_to_test.items(): stream.write(log_header % ('*' * 20, lang, '*' * 20)) lang_fails = [] suite = unittest.TestSuite() routine = TestLangFunc routine.set_env(routine, func, lang) c_test_res = runner.run(routine('test_fetch_data')) lang_fails.extend(c_test_res.failures + c_test_res.errors) if routine.fetch_data is not None: for test in tests_to_run: suite.addTest(routine(test)) c_test_res = runner.run(suite) lang_fails.extend(c_test_res.failures + c_test_res.errors) if lang_fails: failing_langs.append(lang) return failing_langs
116bbbbb5c20b8dd73b5d45af3bde9cf80ae841f
3,643,292
def roparameter(cosphi, hist, s_cosphi=0.25): """ ... Parameters ---------- cosphi : ... hist : ... s_cosphi : ... Returns ------- ... """ perp=(np.abs(cosphi)>1.-s_cosphi).nonzero() para=(np.abs(cosphi)<s_cosphi).nonzero() xi=(np.sum(hist[para])-np.sum(hist[perp]))/float(np.sum(hist[para])+np.sum(hist[perp])) return xi
c9f30db90482600c50a9369139fc75c046d57e40
3,643,293
def execute(model_fn, input_fn, **params): """Execute train or eval and/or inference graph writing. Args: model_fn: An estimator compatible function taking parameters (features, labels, mode, params) that returns a EstimatorSpec. input_fn: An estimator compatible function taking 'params' that returns a dataset **params: Dict of additional params to pass to both model_fn and input_fn. """ params['is_graph'] = False if params['write_inference_graph']: inference_graph.write(model_fn, input_fn, params, params['model_dir']) params['is_graph'] = True #todo youxiugai def estimator_model_fn(features, labels, mode, params): spec = model_fn(features, labels, mode, params) return spec def train_input_fn(): train_params = params.copy() train_params['input_data'] = params['input_data_train'] train_params['batch_size'] = params['train_batch_size'] if params['randomize_training']: train_params['randomize_order'] = True return input_fn(train_params) def eval_input_fn(): eval_params = params.copy() eval_params['input_data'] = params['input_data_eval'] eval_params['batch_size'] = params['eval_batch_size'] return input_fn(eval_params) train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=params['train_steps']) eval_steps = int(round(params['eval_examples'] / params['eval_batch_size'])) eval_spec = tf.estimator.EvalSpec( name=params['eval_suffix'], input_fn=eval_input_fn, steps=eval_steps, throttle_secs=params.get('eval_throttle_secs', 600)) run_config = tf.estimator.RunConfig( model_dir=params['model_dir'], save_summary_steps=params['save_summary_steps'], save_checkpoints_secs=params['save_checkpoints_secs'], keep_checkpoint_every_n_hours=params['keep_checkpoint_every_n_hours']) estimator = tf.estimator.Estimator( model_fn=estimator_model_fn, params=params, config=run_config) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
44b5cc8105ec663642724a4cbba66c12a81e3b98
3,643,294
def polyfill_bbox( min_lng, max_lng, min_lat, max_lat, min_resolution=0, max_resolution=30 ): """Polyfill a planar bounding box with compact s2 cells between resolution levels""" check_valid_polyfill_resolution(min_resolution, max_resolution) rc = s2sphere.RegionCoverer() rc.min_level = min_resolution rc.max_level = max_resolution lower_left = s2sphere.LatLng(radians(min_lat), radians(min_lng)) upper_right = s2sphere.LatLng(radians(max_lat), radians(max_lng)) rect = s2sphere.LatLngRect(lower_left, upper_right) cell_ids = [int(uint64_to_int64(cell.id())) for cell in rc.get_covering(rect)] cell_ids_str = '[' + ','.join([str(id) for id in cell_ids]) + ']' return cell_ids_str
d6c2cb0d3f0d7a9eea05a456beda96a1a646e306
3,643,295
from lvmspec.qa import qalib import copy def qa_skysub(param, frame, skymodel, quick_look=False): """Calculate QA on SkySubtraction Note: Pixels rejected in generating the SkyModel (as above), are not rejected in the stats calculated here. Would need to carry along current_ivar to do so. Args: param : dict of QA parameters : see qa_frame.init_skysub for example frame : lvmspec.Frame object; Should have been flat fielded skymodel : lvmspec.SkyModel object quick_look : bool, optional If True, do QuickLook specific QA (or avoid some) Returns: qadict: dict of QA outputs Need to record simple Python objects for yaml (str, float, int) """ #- QAs #- first subtract sky to get the sky subtracted frame. This is only for QA. Pipeline does it separately. tempframe=copy.deepcopy(frame) #- make a copy so as to propagate frame unaffected so that downstream pipeline uses it. subtract_sky(tempframe,skymodel) #- Note: sky subtract is done to get residuals. As part of pipeline it is done in fluxcalib stage # Sky residuals first qadict = qalib.sky_resid(param, tempframe, skymodel, quick_look=quick_look) # Sky continuum if not quick_look: # Sky continuum is measured after flat fielding in QuickLook channel = frame.meta['CAMERA'][0] wrange1, wrange2 = param[channel.upper()+'_CONT'] skyfiber, contfiberlow, contfiberhigh, meancontfiber, skycont = qalib.sky_continuum(frame,wrange1,wrange2) qadict["SKYFIBERID"] = skyfiber.tolist() qadict["SKYCONT"] = skycont qadict["SKYCONT_FIBER"] = meancontfiber if quick_look: # The following can be a *large* dict qadict_snr = qalib.SignalVsNoise(tempframe,param) qadict.update(qadict_snr) return qadict
3b53f99ae4936fa6870dc8020d677ffddcb2d4ef
3,643,296
def _code_to_symbol(code): """ 生成symbol代码标志 """ if code in ct.INDEX_LABELS: return ct.INDEX_LIST[code] else: if len(code) != 6 : return '' else: return 'sh%s'%code if code[:1] in ['5', '6', '9'] else 'sz%s'%code
4b783adad975246c9d6722f6eeeb95a2388d1823
3,643,297
def gesv(a, b): """Solve a linear matrix equation using cusolverDn<t>getr[fs](). Computes the solution to a system of linear equation ``ax = b``. Args: a (cupy.ndarray): The matrix with dimension ``(M, M)``. b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``. Returns: cupy.ndarray: The matrix with dimension ``(M)`` or ``(M, K)``. """ if a.ndim != 2: raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim)) if b.ndim not in (1, 2): raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim)) if a.shape[0] != a.shape[1]: raise ValueError('a must be a square matrix.') if a.shape[0] != b.shape[0]: raise ValueError('shape mismatch (a: {}, b: {}).'. format(a.shape, b.shape)) dtype = _numpy.promote_types(a.dtype.char, 'f') if dtype == 'f': t = 's' elif dtype == 'd': t = 'd' elif dtype == 'F': t = 'c' elif dtype == 'D': t = 'z' else: raise ValueError('unsupported dtype (actual:{})'.format(a.dtype)) helper = getattr(_cusolver, t + 'getrf_bufferSize') getrf = getattr(_cusolver, t + 'getrf') getrs = getattr(_cusolver, t + 'getrs') n = b.shape[0] nrhs = b.shape[1] if b.ndim == 2 else 1 a_data_ptr = a.data.ptr b_data_ptr = b.data.ptr a = _cupy.asfortranarray(a, dtype=dtype) b = _cupy.asfortranarray(b, dtype=dtype) if a.data.ptr == a_data_ptr: a = a.copy() if b.data.ptr == b_data_ptr: b = b.copy() handle = _device.get_cusolver_handle() dipiv = _cupy.empty(n, dtype=_numpy.int32) dinfo = _cupy.empty(1, dtype=_numpy.int32) lwork = helper(handle, n, n, a.data.ptr, n) dwork = _cupy.empty(lwork, dtype=a.dtype) # LU factrization (A = L * U) getrf(handle, n, n, a.data.ptr, n, dwork.data.ptr, dipiv.data.ptr, dinfo.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( getrf, dinfo) # Solves Ax = b getrs(handle, _cublas.CUBLAS_OP_N, n, nrhs, a.data.ptr, n, dipiv.data.ptr, b.data.ptr, n, dinfo.data.ptr) _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed( getrs, dinfo) return b
333f06bd8f91bdfde5526c80894c284580074bb5
3,643,298
def del_none(d): """ Delete dict keys with None values, and empty lists, recursively. """ for key, value in d.items(): if value is None or (isinstance(value, list) and len(value) == 0): del d[key] elif isinstance(value, dict): del_none(value) return d
46cf9e331c633f5f69b980f3b10c96306d3478c2
3,643,299